Design and Evaluation of Standard Telerobotic Control Software

Kevin P. Anchor

Follow this and additional works at: https://scholar.afit.edu/etd
Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

Anchor, Kevin P., "Design and Evaluation of Standard Telerobotic Control Software" (1995). Theses and Dissertations. 6184.
https://scholar.afit.edu/etd/6184

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.

DESIGN AND EVALUATION OF STANDARD TELEROBOTIC CONTROL SOFTWARE

THESIS
Kevin P. Anchor, list Lt, USAF
AFIT/GE/ENG/95D-01

DIEMRIRUTOOT STATEMENT R
 Approved tor prize relocked Discabunces Intimated

 \cdotsDEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
Inwountre macruran

DESIGN AND EVALUATION OF STANDARD TELEROBOTIC CONTROL SOFTWARE

THESIS
Kevin P. Anchor, 1st Lt, USAF
AFIT/GE/ENG/95D-01

Approved for public release; distribution unlimited
19960426059

DISCLIIMER NOTICR

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

DESIGN AND EVALUATION OF STANDARD TELEROBOTIC CONTROL SOFTWARE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of Master of Science in Electrical Engineering

Kevin P. Anchor, B.S.E.E.

1st Lt, USAF

December 1995

Approved for public release; distribution unlimited

ACKNOWLEDGEMENTS

First, I would like to thank my wife, Vicky, for providing support during my time at AFIT. While I worked on this thesis project, she took care of everything else with only a little help from me. I could not have finished this effort without her help. I would also like to thank my thesis advisor, Maj Dean Schneider, for his help, support, and encouragement. He helped make this work interesting and fun for me and valuable for the Air Force. My thanks also to the members of my thesis committee, Lt Col Paul Bailor and Maj Keith Shomper. Their comments helped make this document much better and their questions from before and during my thesis defense allowed me to refine the document as well.

Finally, I would like to extend a special thanks to three men who I respect very much: Lt Col William Hobart, Lt Col Paul Bailor, and Maj Dean Schneider. Without their help and support, I truly would not have been able to complete this thesis effort. I deeply appreciate all of their efforts on my behalf.

Table of Contents

Page
ACKNOWLEDGEMENTS ii
List of Figures v
List of Tables vii
ABSTRACT viii
I. Introduction 1
I.1. Motivation 2
I.2. Problem 3
I.3. Approach/Methodology 3
I.4. Materials and Equipment 4
I.5. Overview 4
II. Literature Review 6
II.1. Current Work on Telerobotic Control Architectures. 6
II.1.1. Software Architecture Using Port-Based Objects 6
II.1.2. Onika 7
II.1.3. Unified Telerobotic Architecture Project (UTAP) 8
II. 1.4. Commercial Uses of UTAP 9
II.2. Real-Time Operating Systems 9
II.2.1. VxWorks 10
II.2.2. LynxOS 11
II.2.3. Real-Time executive for Military Systems (RTEMS) 11
II.2.4. Proprietary Operating Systems 12
II.2.5. Chimera 12
II.3. Summary 13
III. Methodology 15
III.1. The Unified Telerobotic Architecture Project: What Is It? 15
III.1.1. UTAP Philosophy 15
III.1.2. UTAP Features Not Fully Supported 17
III.1.3. Problems with the UTAP Specification 19
III.2. The Pre-UTAP AFIT Architecture 20
III.3. Architectural Changes Needed 22
III.3.1. Message-Passing 22
III.3.2. The Interface Layer 23
III.3.3. State Information 25
III.3.4. Mapping Chimera Modules into UTAP Modules 26
III.4. Implementing the Changes 27
III.4.1. General Problems in Implementation Phase 27
III.4.2. Object Knowledgebase 29
III.4.3. Operator Input 30
III.4.4. Robot Servo Control 31
III.5. Testing the Changes 31
III.5.1. Simulation. 31
III.5.2. Informal Testing 32
III.5.3. Formal Testing 32
III.6. Measuring Performance 33
III.6.1. Missed Cycles 33
III.6.2. Step Response 33
III.7. Summary 35
IV. Analysis 36
IV.1. Commanded versus Actual Position Error 36
IV.2. Analysis. 40
IV.3. Summary 41
V. Conclusions and Recommendations 42
V.1. Conclusions 42
V.2. Recommendations. 43
V.2.1. Recommendations for Future Research 43
V.2.2. Recommendations to Improve the UTAP Specification. 45
V.3. Summary 46
Bibliography 48
APPENDIX A 50
APPENDIX B 54
APPENDIX C 56
APPENDIX D. 59
APPENDIX E 78

List of Figures

Page
III.1. UTAP Architecture (adapted from [6]) 16
III.2. UTAP Overview 17
III.3. Pre-UTAP AFIT Architecture 21
III.4. Chimera/UTAP Interface Layer 24
IV.1. Error Plot for Joint 1 at Nominal Trajectory 37
IV.2. Error Plot for Joint 2 at Nominal Trajectory 37
IV.3. Error Plot for Joint 3 at Nominal Trajectory 38
IV.4. Error Plot for Joint 4 at Nominal Trajectory 38
IV.5. Error Plot for Joint 5 at Nominal Trajectory 39
IV.6. Error Plot for Joint 6 at Nominal Trajectory 39
V.1. Summary of Conclusions 46
V.2. Summary of Research Recommendations 47
V.3. Summary of Recommendations for UTAP Specification. 47
D.1. Joint 1 Error for Nominal Trajectory 60
D.2. Joint 2 Error for Nominal Trajectory 61
D.3. Joint 3 Error for Nominal Trajectory 62
D.4. Joint 4 Error for Nominal Trajectory. 63
D.5. Joint 5 Error for Nominal Trajectory 64
D.6. Joint 6 Error for Nominal Trajectory 65
D.7. Joint 1 Error for Fast Trajectory 66
D.8. Joint 2 Error for Fast Trajectory 67
D.9. Joint 3 Error for Fast Trajectory 68
D.10. Joint 4 Error for Fast Trajectory 69
D.11. Joint 5 Error for Fast Trajectory 70
D.12. Joint 6 Error for Fast Trajectory 71
D.13. Joint 1 Error for Slow Trajectory 72
D.14. Joint 2 Error for Slow Trajectory 73
D.15. Joint 3 Error for Slow Trajectory 74
D.16. Joint 4 Error for Slow Trajectory 75
D.17. Joint 5 Error for Slow Trajectory 76
D.18. Joint 6 Error for Slow Trajectory 77

List of Tables

Page
III.1. Standard Chimera Module Functions 22
III.2. Baseline System Description 26
III.3. Chimera Features That Map Directly To UTAP 26
III.4. Predefined Positions 32
III.5. Gains Used for Testing and Data Acquisition 34
IV.1. Integral Error for Slow Trajectory 40
IV.2. Integral Error for Nominal Trajectory 41
IV.3. Integral Error for Fast Trajectory. 41

Abstract

This thesis represents the first implementation of a proposed Air Force standard telerobotic control architecture. This architecture was developed by the NASA Jet Propulsion Laboratory and the National Institute of Standards and Technology under contract to the Air Force Materiel Command Robotics and Automation Center of Excellence (RACE) as the Unified Telerobotics Architecture Project (UTAP).

The AFIT Robotics and Automation Applications Group (RAAG) Lab B facility computational structure was redesigned to be compliant with the UTAP architecture. This thesis shows that the UTAP specification to be implementable. However, if the underlying operating system does not support generic message passing, an interface layer must be implemented to access operating system functions.

The UTAP compliant controller implemented the robot servo control, object knowledge base, and user interface components of the specification. The controller performed adequately although there was degradation in the performance as evidenced by increased error during trajectories. We believe this error can be reduced by re-tuning the controller gains.

Further study of the UTAP specification is recommended: additional functions such as external sensor readings should be added; implementation of the specification on different operating systems and robot platforms will prove the transportability of the specification.

DESIGN AND EVALUATION OF STANDARD TELEROBOTIC CONTROL SOFTWARE

I. Introduction

The Robot Institute of America defines a robot as "a reprogrammable, multifunctional manipulator designed to move material, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks" [11]. This definition describes the two main advantages that robots offer: variable programmed motion and performance of a variety of tasks. Because an operator can program the robot's motions, the operator can control what task the robot performs. Programming the robot also results in predictable and repeatable actions by the robot. Robots are also useful because they can perform tasks that are difficult or dangerous for humans to perform. Yet, despite these advantages, robots lack the ability to think and the ability to adapt to new situations as humans can because computational technology is not yet advanced enough to do so [11].

A telerobotic system, or a telerobot, combines the advantages of robots with a human operator's ability to react and think by including the human in the task. Telerobotic systems can be classified into three broad types. The first type is an operatorcontrolled system, where the operator uses one or more input devices to control exactly what the robot does. The key idea is that the operator has complete, real-time control over the robot. The second type of telerobotic system is an operator-supervised system in which a control program gives instructions to the robot; in this type of system, the operator does not have direct, real-time control, but he can change the program or stop
the robot at any time. The final type is the shared-control system. The operator of this type of system uses one or more input devices to control certain aspects of the robotic task, while the robot's controller controls the remaining aspects of the task.

In all of these systems, the robot's controller receives instructions in the form of input or programs from a human operator and converts these instructions into signals which operate the actual mechanical and electrical parts of the robot. This controller must provide a method to get input from the human operator and a method to provide output or feedback to the user. Some framework must exist so that the operator knows how to provide input and examine output; this framework is called the telerobotic control architecture.

I.1. Motivation

The Air Force uses telerobots to perform critical tasks such as $\mathrm{C}-5 \mathrm{~A} / \mathrm{B}$ painting and paint stripping, surface cleaning, and sealing and desealing of aircraft fuel tanks. The Robotics and Automation Center for Excellence (RACE), at Kelly Air Force Base, Texas, is attempting to improve the efficiency and productivity of these robots throughout the Air Force by defining an open telerobotics control architecture to be implemented on all Air Force robots. Since this architecture will explicitly define an interface for all functions which a telerobotic controller needs to operate, old functional modules can be replaced by new modules in a plug-and-play type of environment. This easy replacement of modules means that a telerobot which has this type of architecture can easily be changed from one task to another when one set of modules is replaced by other modules that have the same interface. Also, reuse of existing modules will be easier under this type of architecture.

RACE has defined such an architecture, called the Unified Telerobotic Architecture Project, or UTAP [6].

However, the UTAP architecture has not yet been implemented at any Air Force site, so its effect on performance and its ease of implementation are not yet fully understood. Also, existing robotic controllers will have to be redesigned to some extent to become compliant with the UTAP specification, which consists of modules of control services which pass messages to change the state or mode of the system. Since the UTAP specification may become an Air Force standard, the difficulty in converting an existing controller to be compliant with the UTAP specification must be determined. This information will assist the Air Force in determining if the retrofit of existing controllers should be required if the UTAP specification is adopted as a standard.

I.2. Problem

Currently, the PUMA robot in the AFIT Robotics Laboratory has an architecture which consists of modules that execute on a periodic basis and which update the state of the system by directly changing a global state table. In order to examine the UTAP specification and to determine its effect on real-time system performance, we redesigned the software architecture of the PUMA robot in the AFIT Robotics Laboratory to be compliant with the UTAP specification. Current performance is compared with the new architecture's performance through the use of performance metrics.

I.3. Approach/Methodology

I have conducted my thesis research using the following general steps which are discussed further in later sections:
a. Analyzed both the current AFIT architecture and the proposed UTAP architecture. A system description and pictorial representation of the current architecture of the PUMA robot are included in this document.
b. Determined the changes needed to make the non-UTAP compliant system compliant with the specification and designed a system which incorporates these changes. This task was the most important and time-consuming step of the research project.
c. Implemented and tested the changes in an iterative process.
d. Conducted performance measurements and compared the performance of the new system to the old performance through the use of metrics. The metrics used were developed throughout the course of the project as a better understanding of the two architectures was gained.

I.4. Materials and Equipment

All necessary equipment was already available in the AFIT Robotics Laboratory. This equipment included the VMEbus hardware, the PUMA 560 manipulator, the Chimera 3.2 real-time operating system, and the software modules which make up the current architecture for the PUMA manipulator. Also, the existing Sun workstation network, which uses the SunOS 4.1.3 operating system, was used for program development and for collection and analysis of data.

I.5. Overview

This thesis report is divided into five chapters. Chapter I contains background information and is an introduction to the topic. Chapter II is a literature review of current robotic architecture work. Chapter III describes the procedure used to develop the new architecture, while Chapter IV contains my evaluation and analysis of the results. Conclusions drawn from this research and my recommendations for future research are located in Chapter V.

This thesis also has several appendices. Appendix A is a User's Manual which lists the steps needed to run the UTAP-compliant modules, while Appendix B is a Programmer's Manual which lists the steps necessary to compile UTAP-compliant modules and other necessary modules under the Chimera Operating System. Appendix C is a list of all UTAP messages which shows what messages were implemented for this project. Appendix D contains the plots for the data collected during performance measurement. Appendix E is a listing of all new source code developed for this project.

II. Literature Review

In this literature review, I present an initial examination of the current work in the field of robotic architectures. These examinations are limited to work which supports the Air Force's need for an open telerobotic architectural standard. The review discusses the Unified Telerobtic Architecture Project (UTAP) specification, which is being considered by RACE to become the Air Force architecture standard for robotic systems, as well as commercial applications of this specification. This review also motivates the need for my thesis research, which is to investigate the complexity of converting a telerobotic system to be compliant with the UTAP specification and the performance of the converted system.

The review first looks at Chimera and Onika, which are building blocks for an architecture such as the Unified Telerobtic Architecture Project (UTAP) architecture. Then, it discusses the UTAP architecture. Finally, it describes some commercial work on the UTAP project.

II.1. Current Work on Telerobotic Control Architectures

II.1.1. Software Architecture Using Port-Based Objects [10]

Stewart, Volpe, and Khosla describe the need for a real-time operating system which supports module reuse to avoid redeveloping code at great expense when much of the required code is already available. The authors then focus on defining a software framework which allows code to be reused easily. This framework is based on code sections called modules, which have defined communication interfaces. The authors make use of object-oriented software design and port automaton digital control design theory to build the framework. Using these concepts, a framework which allows software module
reuse, hardware-independent interfaces, real-time communication between tasks, and dynamic, or on-the-fly, reconfiguration of modules is described.

Port-based objects and resource ports are the keys to this framework. Port-based objects are modules which have input and output ports for real-time inter-object communication, while resource ports are modules which communicate with hardware objects such as sensors and actuators. In essence, resource ports function as device drivers. Because the port-based philosophy requires that the interface of a module be explicitly defined, modules can be connected together easily. Also, a module can be replaced by another module as long as the interfaces of the two modules are identical, regardless of the internal differences.

Another important feature of this framework is that modules can be dynamically reconfigured, which means that one or more modules can be changed while the real-time system is operating without affecting the system's stability.

The authors' work has been incorporated into the Chimera Real-Time Operating System, which was also developed at Carnegie Mellon University. Thus, the important concepts of module reuse, defined interfaces, and changeable tasks are all present in Chimera. However, their work does not explicitly define the interfaces necessary for telerobotic systems because Chimera is a general-purpose real-time operating system. Thus, the work does not completely address the Air Force need for a telerobotic architecture.

II.1.2. Onika [3]

Building on the foundation of the Chimera operating system, Gertz, Stewart, and Khosla describe a graphical approach to building reusable software for dynamically
reconfigurable systems. The authors present Onika, their icon-based graphical programming interface, as a software development environment for real-time robotic systems.

Onika graphically depicts modules as icons; the user simply connects icons together to form programs, while Onika ensures that all interfaces match. Any number of modules can be connected together and then treated as a single module, so Onika is capable of forming low-level or high-level connections of software modules.

In keeping with the work done by Stewart, Volpe, and Khosla in [10], Onika allows for dynamic reconfiguration of modules and module reuse. To dynamically reconfigure the system, the user connects the appropriate icon which represents the new module into the system, while Onika handles all of the underlying work. To reuse a module, the user only has to copy the icon representing the module into the system.

Thus, Onika provides all of the advantages described by Stewart, Volpe, and Khosla, and it allows applications to be created by manipulating graphic elements which represent the modules. However, like the previous work, it does not define the interfaces for a telerobotic system.

II.1.3. Unified Telerobotic Architecture Project (UTAP)

Since no previous work completely addressed the Air Force's need, the Robotics and Automation Center for Excellence (RACE) sponsored the Unified Telerobotic Architecture Project (UTAP). The purpose of UTAP is to define a standard telerobotic architecture to be used throughout the Air Force and possibly in the commercial sector as well. The Intelligent Systems Division of the National Institute of Standards and Technology and the Jet Propulsion Laboratory worked jointly on this project [6], [5].

The UTAP document describes the architecture as "a modularized arrangement of control services." This modular arrangement implies an interface. The majority of the UTAP document [6] explicitly defines the interface of each module. Both the software and hardware interfaces for the architecture are defined. See Figure III. 1 for an overview of the UTAP architecture. The UTAP specification is explained in detail in the next chapter.

II.1.4. Commercial Uses of UTAP [2]

Using the UTAP specification as a guide, Advanced Cybernetics Group, Inc. (AGC) has implemented a programming environment which is compatible with the UTAP specification. AGC's environment is built on the commercially available Adept V+ robotic programming language. In addition to describing the environment's implementation, DaCosta gives examples of commercial and Air Force sites that are using the AGC product to perform tasks with telerobotic systems.

This paper shows that the philosophy of the UTAP document is sound and that commercially available products can be used to implement the UTAP specification; however, the ACG work only implements the Information Model, which is one small part of the UTAP-specification. The main thrust of UTAP, which is standardized interfaces to standard modules across any robotic system, is not implemented.

II.2. Real-Time Operating Systems

A variety of real-time operating systems (RTOS) are available today. Each operating system has several advantages and disadvantages which contribute to its overall usefulness for this thesis project. A basic requirement for an operating system is that it must support the available hardware; several RTOS were eliminated from further
consideration because they do not support the hardware which AFIT uses. This AFIT hardware consists of a Sun SparcStation development environment with Motorola 68000 real-time processors in a VMEbus chassis. Thus, any RTOS considered must support cross-compilation from the Unix environment to Motorola 68000 executable code.

I will discuss several of these operating systems and describe the reasons why each was rejected, or in the case of Chimera accepted, for use in this project.

II.2.1. VxWorks [13]

VxWorks is a commercial product developed by Wind River Systems. According to Wind River Systems, VxWorks is "a high performance, scalable real-time operating system which executes on a target processor; a set of powerful cross-development tools which are used on a host development system; and a full range of communications software options such as Ethernet or serial line for the target connection to the host." VxWorks is based on a microkernel called "wind", which supports the runtime system and provides intertask communication through a variety of mechanisms such as shared memory or message queues. Both Unix and Windows development platforms are supported, and VxWorks supports many target processors including the Motorola 68000. In addition, VxWorks can be ported to other hardware as needed by using an additional toolkit. C and $\mathrm{C}++$ tools are provided for VxWorks.

The primary advantage of VxWorks is that it is a widely-used commercial product, so it has support from Wind River Systems and from other users on the Internet (comp.os.vxworks is an existing Usenet newsgroup). Also, it supports ANSI-C and POSIX standards. Finally, the system includes a debugger and many other development tools can be purchased to ease development.

However, the primary disadvantage of VxWorks is cost. This disadvantage will be eliminated next year because AFIT will be getting a copy of this OS from Wind River Systems.

II.2.2. LynxOS [4]

LynxOS is also a commercial product developed by Lynx Real-Time Systems. LynxOS is also a kernel-based system and was designed to be like Unix from a programmer's prospective. It can be used in a cross-development environment or the development tools can be run on the target processor. \mathbf{C} and $\mathrm{C}++$ languages are supported by the OS, and Ada support is available from a third-party, Alsys, Inc., of Burlington, MA.

LynxOS shares the same advantages and disadvantages as VxWorks. Lynx RealTime Systems provides support and training (for a fee) and support is also available through the Internet via the comp.os.lynx newsgroup. LynxOS also conforms to POSIX real-time extensions.

The main disadvantage, again, is cost for the OS, support, and training.

II.2.3. Real-Time executive for Military Systems (RTEMS) [12]

RTEMS was developed by On-Line Applications Research Corporation under contract to the Research, Development, and Engineering Center of the U.S. Army Missile Command. It supports multi-tasking, priority-based scheduling, rate monotonic scheduling, and intertask communication, as well as other features. There are two versions which both support the same functionality: RTEMS/C and RTEMS/Ada. RTEMS/C supports several different target platforms, while RTEMS/Ada only supports the Motorola 68000 family. Ada95 support is planned for implementation this year.

The advantages of this OS are that it is free and is provided for DualUse/Technology Transfer. All documentation and source code for the OS and development tools can be retrieved from the RTEMS World-Wide Web Page. Support is provided by the developer. Also, the ability to use C, Ada, or Ada95 for development is very powerful.

The main disadvantage of this OS is that it has not been used at AFIT. Thus, there would be no baseline system with which the new system performance could be compared. Also, since AFIT does not currently use this OS, we do not know how stable and mature it is.

II.2.4. Proprietary Operating Systems

Proprietary operating systems are mentioned solely because many robotic systems are packaged with their own proprietary OS. For example, the Adept robot in the AFIT Robotics Laboratory uses a proprietary OS and a proprietary programming language called $\mathrm{V}+$.

Each proprietary OS will have its own advantages and disadvantages. In general, though, a proprietary OS will take good advantage of the particular hardware that it executes on; however, existing software will have to be modified or completely rewritten to execute under that OS. In the case of the Adept, any existing software for other robotic systems would have to be rewritten in $\mathrm{V}+$.

II.2.5. Chimera [1]

Chimera was developed at Carnegie Mellon University by David B. Stewart and Pradeep K. Khosla. The Air Force Institute of Technology Robotics Laboratory currently uses the Chimera Real-Time Operating System to control the VMEbus-based Motorola
processors which are used to control the PUMA 560 manipulator. Based on the work of Stewart and Khosla on dynamically reconfigurable software for robotic systems, Chimera supports the Motorola MC680x0 family of processors. Chimera supports "static and dynamic scheduling, extensive error detection and handling, a full set of library utilities, several different multiprocessor communication and synchronization primitives, and a fully integrated host workstation environment." Chimera supports programs written in both C and $\mathrm{C}++$ which are compiled with a modified version of the GNU C compiler, gcc. Chimera can schedule tasks using the rate monotonic algorithm or by using a dynamic priority scheme such as earliest deadline first. The policy of scheduling is separated from the mechanism, as expected in modern operating systems [7], so that the scheduler can be modified by the user.

The advantages of this OS are that it is free and it is the operating system that AFIT currently uses. Because it is already in use, we have working, tested application software that runs on this operating system. Also, Chimera automatically tracks certain performance measurements such as the number of missed cycles for each task. However, since Chimera is not a commercial product, its support is not reliable. Also, we have experienced random errors using this software at AFIT since it is essentially a beta version. Finally, Chimera is not widely used outside of the academic or laboratory setting, so the generality of results obtained from developing software using this operating system may be limited.

II.3. Summary

The Air Force has many telerobotic systems. In order to maximize the productivity and efficiency of these systems, the Robotics and Automation Center for

Excellence (RACE) has sponsored UTAP, a project designed to define a standard interface for telerobotic systems. The work of Stewart, Khosla, Gertz, and others at Carnegie Mellon University has laid a foundation for the UTAP interface, and the work of companies such as Advanced Cybernetics Group, Inc. shows that the UTAP architecture has merit in the commercial sector as well as in the Air Force.

Now that an overview of the UTAP architecture has been given, it must be examined to determine the monetary and time costs of converting current telerobotic systems into systems that are compliant with this architecture. Also, the performance of systems using this architecture must be determined because real-time robotic systems must meet all time constraints.

III. Methodology

This chapter describes the methodology used in this thesis effort. Since the main goal of the thesis effort is to implement and evaluate the UTAP specification, the first topic that is addressed is that specification. First, I describe my understanding of UTAP and its intent. Next, I discuss the pre-UTAP architecture used to control the PUMA robot in the AFIT Robotics Laboratory. Then, I focus on what architectural decisions were made to support the UTAP architecture and how these changes were implemented and tested. Finally, I describe how performance between the pre-UTAP and UTAP architectures was measured and compared.

III.1. The Unified Telerobotic Architecture Project: What Is It?

III.1.1. UTAP Philosophy [6]

The Unified Telerobotic Architecture Project is described in [6]. The intent of the specification can be summed up fairly easily: the purpose of the UTAP specification is to provide an open, system-independent description for building telerobotic applications quickly, cheaply, and easily. Just as the C language is fairly independent and transportable among many different operating systems, a UTAP-compliant robotic application should be transportable to many different robotic systems with little effort to get the application working on a different computer system, operating system, or robot. Other goals of the specification, such as code reusability, abstraction, and understandability, line up with the goals of software engineering.

UTAP has an object-oriented philosophy. Each module has defined inputs, outputs, and responsibilities, and all data inside of a module, or "object", is self-contained and hidden from other modules. Data that is needed by multiple modules or data that is
considered to be "global" is stored by the Object Knowledgebase, which is itself just another module. Data and control flow is passed between modules through the use of predefined messages. Appendix C contains a list of these messages. Thus, the modules which make up the system and the interface between these modules is explicitly defined.

Figure III.1. UTAP Architecture (adapted from [6])
Figure III. 1 shows the overall UTAP architectural block diagram. Each box represents a module and each line represents a communication channel. Arrows on the line show which way communication can occur. Communication can only occur between modules that are connected together in the block diagram.

For any particular application, not all of the boxes, or modules, need to exist. Likewise, some modules may have multiple instances. A configuration file specifies what
modules compose the system. For example, if the Object Modeling module is not needed for some task, then the corresponding configuration file would indicate the absence of that module from the system.

Figure III. 2 shows at a more general level what the UTAP specification defines for each module. The inputs, outputs, and responsibilities of each module from Figure III. 1 are defined. Likewise, the communication channels and the messages which can be passed over those channels are also explicitly defined.

Figure III.2. UTAP Overview

III.1.2. UTAP Features Not Fully Supported [6]

Although the main philosophy is as described above, the UTAP specification has several other parts. The UTAP Information Model allows the workspace, or the three dimensional area in which the robot can operate, to be described using geometric shapes and patterns, or motions within the workspace. The Information Model is not considered in this thesis project.

Another aspect of the specification is that multiple instances of some module types may exist in a system. For example, there may be more than one Tooling Control module or more than one Robot Servo Control module. The UTAP specification proposes that a system configuration file describes what modules are present in the system and how many instances of each module exist. However, the format and operation of this configuration file are not yet defined. To simplify this project, I did not choose to use a system configuration file. Instead, I require the user to manually load the correct system configuration. Note that a Chimera program which automatically loads and executes all needed modules can be written. Such a program would eliminate the need for the user to manually load all necessary components every time the UTAP application is to be executed.

Each individual module also requires a configuration file; however, the UTAP specification does not define a format for this file. Because Chimera also requires that each module has a configuration file of a specific format which contains specific data, I chose to use the Chimera configuration file as the UTAP configuration file. Chimera allows local, or user-specific, data to be added to the file and the operating system provides services to easily read the files.

Another feature of UTAP that is not supported in my work is the notion of each module "posting" what messages it will respond to. Upon initialization, each module is expected to post to the system Object Knowledgebase what messages that it can respond to. Before another module sends a message to that module, it can check the Object Knowledgebase to determine if the message will be responded to. To simplify this project, this feature is not supported.

III.1.3. Problems with the UTAP Specification

Although the UTAP specification is a very good attempt to develop an open telerobotic system, it suffers from several weaknesses. The major problem is that the specification is very general so it can be applied to many different systems; however, this generality means the specification does not define or describe many items in enough detail.

The biggest problem is that the specification does not completely define the interface between modules. All available messages are listed, but the messages are not fully defined. Additionally, the semantic meaning of some messages is open to interpretation, and how to pass data is not defined. The current version of the UTAP specification purposely ignores the how-to-pass issue in order to simplify the specification. However, I see this as a major issue because the method of passing data will greatly influence whether a UTAP-compliant system will be portable. For example, one module which uses pointers, or pass by reference, will not work with another module which uses pass by value. Thus, the plug-replacement nature of modules may not work as expected.

Although each module's inputs, outputs, and responsibilities are defined, the definitions are ambiguous and vague. For example, the Object Knowledgebase is defined by the following:

RESPONSIBILITY:	Store information about objects in the task environment including geometry and task information.
INPUT:	Object Information
OUTPUT:	Object Information

From this definition, I decided to use the Object Knowledgebase as a repository for all global data; however, another implementor may interpret this definition differently.

As stated above, the UTAP specification also requires system and module configuration files, but the format and content of these files is not fully defined. Thus, different implementations may use different file formats. If this occurs, some of the portability of the system will be lost.

Finally, "conformance" to the UTAP specification is not well-defined. Clearly, a UTAP-compliant system does not have to support all messages associated with a particular type of module, or else the concept of "posting" would not be needed. So, how many messages must a module support to be considered UTAP-compliant? A definition for compliance or conformance to the specification needs to be specified in the UTAP document to clear up this question.

III.2. The Pre-UTAP AFIT Architecture

The current architecture at AFIT is based on the Chimera Dynamically Reconfigurable Module standard developed by Stewart [9]. An overview of the architecture is presented in Figure III.3. Chimera modules are executed cyclically, and system state data is maintained in a Global State Variable Table, or GSVT. At the beginning of each cycle, any variables needed by the module are copied from the GSVT into the local state variable table for that module. The module then executes until it becomes blocked for any reason such as waiting for I/O. When the module completes execution, the variables updated by the module are copied from the local state variable table back into the GSVT. The operating system handles locking so that concurrent access to the GSVT does not cause any problems. The data stored in the GSVT is defined by a system-wide configuration file. The local state variable table for each module is defined by declaring a structure inside the module. Thus, the local state variable table can
contain any data that is needed by the module; it does not have to only contain a subset of the values stored in the GSVT. Each module also has a configuration file, called an RMOD file, which defines what variables will be copied to and from the GSVT, the frequency at which the module should be executed, the name of the module, and any other information needed by the module.

Figure III.3. Pre-UTAP AFIT Architecture
Every Chimera module must follow a specific format. If the module is named Module Name, then it will have several functions of the following form: Module_NameXXX. Table III. 1 lists the functions that are important for this project and specifies what role each function plays. The most important fact to note is that these modules are run by the Chimera operating system whenever the associated event occurs. So, whenever a module is spawned by the user, the Module_NameInit function is executed. Similarly, the Module NameCycle function is executed at the rate specified in the RMOD file.

Module Name	When it is executed
Module_NameInit	When the module is SPAWNed
Module_NameOn	When the module is turned ON
Module_NameCycle	Executed periodically at a set frequency whenever the module is ON
Module NameOff	When the module is turned OFF
Module_NameError	When an error occurs

Table III.1. Standard Chimera Module Functions

III.3. Architectural Changes Needed

Once the UTAP specification and the existing AFIT architecture were understood, the next step was to determine what changes were needed to develop a UTAP-compliant architecture in the AFIT Robotics Laboratory. Each of the major architectural design decisions is discussed below.

III.3.1. Message-Passing

The first major design decision to be made was how to implement the UTAP message-passing scheme. Since messages can pass data or control flow, the obvious choice was to implement the messages as procedure or function calls. The C language and the Chimera operating system both support this option. The advantages of this option were that data could be passed by value or reference very easily, the built-in support for this implementation, and the ease with which new messages, or functions, could be implemented. The disadvantage of this method is that the system performance would be hurt because of the context switches which would occur each time a message was sent and control flow passed to another task.

Another alternative considered was to implement true messages which would be sent from one task to another. This scheme would probably contribute to better system performance than would the function-based method discussed above since messages
would not cause the currently executing task to block unless a reply was needed. Chimera supports this scheme with Interprocessor Message Passing [9]; however, using this feature of Chimera would make the UTAP implementation dependent on the Chimera Operating System, thus violating one of the major philosophies behind UTAP.

Based on the discussion above, I decided to implement the function-based scheme. The ease of implementation and C language support independent of operating system provided enough advantage to choose this method.

III.3.2. The Interface Layer

The next problem to be faced was how to make the UTAP implementation completely operating system independent. Unfortunately, Chimera forces modules to be written with a predefined structure (discussed in Section III.2). Chimera schedules the Module_NameCycle function of each module to run at the appropriate time, while the UTAP architecture requires that a UTAP message start and stop each module. The approaches seem to be almost diametrically opposite from each other; I needed to find a way to bridge the two different architectural approaches.

My solution was the Chimera/UTAP Interface Layer, or CUIL (pronounced "cool"). Figure III. 4 illustrates the CUIL. Essentially, the CUIL bridges the gap between Chimera and UTAP. The CUIL is a Chimera module which conforms to all of the format requirements of any other Chimera module. Using UTAP messages, which are function calls, it invokes and passes data to a UTAP-compliant module. The UTAP-compliant module receives messages and communicates to the CUIL and to other UTAP-compliant modules using UTAP messages. In other words, the UTAP-compliant module does not
know or care what other module is acting on the messages; all that matters is that the messages are responded to correctly.

The CUIL module handles all operating system-dependent tasks, such as communication with devices and the robot. When Chimera invokes the CUIL_Module_NameInit routine, any Chimera-specific tasks are completed, and then the UTAP module's initialization routine is invoked through the use of a UTAP message.

Figure III.4. Chimera/UTAP Interface Layer
The CUIL scheme allows the UTAP-compliant modules to be completely operating system independent, and therefore portable. It is important to note that other operating systems may also require an interface layer to address specific requirements of the particular operating system. Thus, a major portion of this thesis effort was invested in the design and development of the interface layer.

III.3.3. State Information

As discussed in the above sections, Chimera stores all information in the Global State Variable Table, or GSVT. UTAP specifies a module called the Object Knowledgebase to be a repository for task information.

Since these two items seem to be a good match, one design approach was to allow a UTAP-compliant module to access the GSVT directly. All external modules would consider the Object Knowledgebase to be another UTAP module because of its external UTAP interface, but internally it would be dependent on the Chimera Operating System. Although the intent of UTAP is violated somewhat with this approach, it does provide a very efficient, easy to implement approach because Chimera automatically provides the mechanisms for concurrent access to the GSVT.

A second approach would be to not use the Chimera GSVT and to instead implement the Object Knowledgebase module with its own internal state table. Though this could be done fairly easily, the issue of concurrent access by multiple tasks could become a problem. Also, interprocessor communication in Chimera is handled through the use of the GSVT.

I chose to implement the first option. The main reason to use the GSVT was so that UTAP modules could be executed at the same time as non-UTAP modules. Any regular Chimera modules would require the GSVT, so it would have to be present and in use in order to execute these modules. Since it had to be there, the best choice was to use it and accept the portability limitations on the Object Knowledgebase.

III.3.4. Mapping Chimera Modules into UTAP Modules

The next phase of the design of the new architecture focused on mapping Chimera modules into the predefined UTAP modules shown in Figure III.1. The baseline system is described by Table III. 2 and Table III.3. Table III. 2 shows what Chimera module was mapped to each UTAP module. Table III. 3 shows how internal features of the Chimera OS have the functionality of certain UTAP modules. This system was chosen because it is a simple telerobotic task.

Chimera Module Name	Purpose	Inputs	Outputs	Maps To UTAP Module
jtrackball	gets the position commands from the trackball and converts them to joint position commands	none	$\underset{\substack{\text { (Reference joint } \\ \text { positions) }}}{\text { QREF }}$	Operator Input
PUMA_pidg	proportional, integral, derivative (PID) controller for the PUMA manipulator. This controller eliminates steady-state error in the commanded joint positions.(joint-level)	Q REF (Reference joint positions) Q^_REF (Reference joint velocities) T_GRAV (gravity compensation torques)	QMEZ (Measured joint positions) Q $^{\wedge}$ MEZ (Measured joint velocities)	Robot Servo Control
grav_comp	calculates the torques needed at each joint to compensate for gravity.fjoint-level)	$\begin{gathered} \text { Q MEZ } \\ \begin{array}{c} \text { Measured joint } \\ \text { positions) } \end{array} \\ \hline \end{gathered}$	T_GRAV (gravity $\begin{array}{c}\text { compensation } \\ \text { torques) }\end{array}$	Robot Servo Control

Table III.2. Baseline System Description

Chimera Function	Maps To UTAP Module(s)
Global State Variable Table	Object Knowledgebase
User Interface	Status and Graphical Display
Scheduler	Analysis and Diagnosis and Task Program Sequencing

Table III.3. Chimera Features That Map Directly To UTAP

III.4. Implementing the Changes

The process of implementing the architectural decisions took much longer than I expected. The Object Knowledgebase was picked to be the first module to be implemented as a UTAP-compliant module because it is needed by all other UTAPcompliant modules. The jtrackball module was implemented next because of its simplicity relative to the other modules. During coding of the first two modules, most of the problems were identified and overcome. These problems and their resolution are presented below.

III.4.1. General Problems in Implementation Phase

Most of the problems encountered were related to my initial unfamiliarity with the C programming language and the Chimera operating system. I was quickly able to learn about them, but some of the fine points had to be learned through trial and error. Also, figuring out how to use the gicc compiler and what makefiles had to be changed to recompile the system were other tasks which caused problems during this stage.

Pointers, which are used extensively throughout the code, were another source of problems. The first pointer-related problem was just ensuring that the correct pointers were being passed from one module to another. The second problem was much more insidious and caused a major delay in getting any working code. The system would lock up randomly, but always when I was using the gravity compensation UTAP module. In the module, I had declared a structure as follows:

```
typedef struct {
    int qmez_id; /* Object ID for Q_MEZ in Object Knowledgebase */
    int tgrav_id; /* Object ID for T_GRAV in Object Knowledgebase */
    float *Tgrav;
    float *Qmez;
} RSC1_Local_t;
static RSC1_Local_t *local;
```

This compiled and appeared to work correctly, but after much investigation, I eventually determined that it was the cause of the "random" lockups. Since I failed to allocate memory for a variable of the structure type before declaring a pointer to the structure type, I was getting a random pointer to somewhere in memory. When I wrote data to a member of the structure, I was writing to that random memory address. If I wrote to another module's memory space or to the operating system's space, then the system would crash. I solved this problem by allocating a variable of the structure type, declaring a pointer to the structure type, and then setting the pointer to point to the variable, as shown in the code fragment below.

```
/* create the local 'object' Data structure */
static RSC1_Local_t *local;
static RSC1_Local_t local_var;
void Module_Name(void)
{
        local = &local_var;
        ... more code ...
}
```

Once this change was applied to all of the modules I had written, the "random" lockup problem stopped occurring.

Another problem which took a great deal of time to solve involved the Chimera .rmod files. Since each of the Chimera/UTAP Interface Layer modules was implemented as a Chimera module, each had a. rmod file. The first line of the .rmod file is the

MODULE line. The name of the Chimera module, which should be the same as the filename (without the .c extension), is placed on this line. When the Chimera command "spawn module_name" is used to spawn a module, Chimera first looks at the file "module_name.rmod" to get the frequency and the name of the actual module to spawn. Since I was using an existing module as a basis for my new module, I copied the source code and the .rmod file. After changing the source code, however, I neglected to change the old module name to the new module name in the rmod file. The result was that when I tried to spawn my module, Chimera actually spawned the old module. This caused a lot of problems because I thought my new module was working correctly for over a week when it actually did not work at all. I was able to catch this error because I added a print statement to my module and I noticed that it never printed out.

Another general problem was that no debugger was available to help determine what was causing all of the errors discussed above. Instead, kprintf statements were used to determine the state of the system at various points. Kprintf is a Chimera function which provides the same functionality as the C printf statement. Kprintf, however, does not cause the function invoking it to block and therefore lose control of the processor as does the printf statement.

III.4.2. Object Knowledgebase

When I designed my new system, I planned to make the Object Knowledgebase, or $O K$, a separate module. However, once I actually started implementing the module, I ran into a problem with Chimera that forced me to change the design. Because of the way Chimera handles the Global State Table, I could not find a good way of having a separate module write directly to the Global State Variable Table.

I spoke with Dr David Stewart, one of the creators of Chimera, to try to find a way to do so [8]. He suggested that I should not use the "Direct Write" function that is provided by Chimera because it was primarily included only for testing purposes. Without this function, no module is able to write directly to the state table. The Object_Knowledgebase module needs to be a static artifact as is the GSVT. However, if implemented as a Chimera module, it would be run cyclically, and so the data would only be copied to and from the GSVT at that same frequency. I was concerned that other modules might get incorrect data because of this situation. Therefore, I instead decided to implement the OK in a distributed fashion.

Instead of being one separate module, I have implemented the OK in each of the Chimera/UTAP Interface Layer, or CUIL, modules. Each CUIL module has functions to handle calls to the Object Knowledgebase. I then slightly modified the standard UTAP messages used to send and get data from the Object Knowledgebase to take the new implementation into account. Instead of using the standard UTAP message US_OK_ATTRIBUTE_QUERY, I have changed the form to US_OK_XXX_ATTRIBUTE_QUERY, where XXX is the UTAP abbreviation for that module. For instance, the Operator Input module would use the message US_OK_OI_ATTRIBUTE_QUERY. Although I have in effect added new messages to the UTAP specification, this seemed to be the best solution.

III.4.3. Operator Input

After solving all of the problems discussed above, this module was fairly easy to code. The CUIL module handles reading from the trackball through the serial port. The
gains and speed are read from the configuration .rmod file using Chimera system calls; these values are requested by the UTAP $O I$ module via a UTAP message.

III.4.4. Robot Servo Control

This module was written in two parts. First, I made the Chimera puma pidg module UTAP-compliant. Next, I implemented the Chimera grav_comp module. After both of these modules were tested independently, I combined them into the UTAP RSC module.

Whether gravity compensation is used or not is specified in the .rmod configuration file for the CUIL module. Also, the UTAP messages US_AXIS_SERVO_START_GRAVITY_COMPENSATION and US_AXIS_SERVO_STOP_GRAVITY_COMPENSATION can be issued to start or stop gravity compensation at any time while the system is running. Note that these messages can be issued by another module or the user can change the value directly in the configuration file.

III.5. Testing the Changes

I tested each UTAP module in isolation. By this I mean that only one UTAP module at a time was in use in the system. All other modules were the existing Chimera modules that had already been tested.

III.5.1. Simulation

I tested the Object Knowledgebase and the Operator Interface modules using simulation. I did this to ensure that they were working properly so that the robot would not be damaged in the case of an accident. The existing Chimera module psim pidg was
used for the simulation. This module reads the commanded position and returns the updated measured position.

III.5.2. Informal Testing

Once a module was completed and compiled correctly, it was tested informally. This informal testing involved using the trackball to move the robot or the simulated robot. I used display test.c, another program that I wrote, to view various values from the GSVT for this testing. This testing was informal because there was no structure to the tests; they were simply used to gain confidence that the modules were actually working correctly before formally testing them.

III.5.3. Formal Testing

I formally tested each module in the following manner:

1) I chose ten predefined positions and orientations.
2) The UTAP module under test was the only UTAP module spawned; all other modules were the existing chimera modules.
3) From the home position, the robot was commanded to each of the ten positions and orientations using the Chimera trijgen module, which generates a trajectory. Table III. 4 lists some of the important predefined positions.
4) I compared the final position to the commanded position.

Position Name	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6
Home	0.0	-1.5708	1.5708	0.0	0.0	0.0
Data Initial	0.0	-2.36	2.36	0.0	0.0	0.0
Data Final	1.5708	-1.5708	0.524	0.0	0.0	0.0
Offboard	0.0	-1.5090	2.800	0.0	0.058	0.0
NBoard	0.0	-1.8090	0.3490	0.0	-0.078	0.0

Table III.4. Predefined Positions

This testing method ensured that each of the modules worked correctly when used alone. After I verified that each module was operating correctly, I spawned all of the available UTAP modules and repeated the testing procedure. This was done to ensure that the UTAP modules worked together without any system-level conflicts.

III.6. Measuring Performance

III.6.1. Missed Cycles

Once all of the UTAP modules were tested, performance data needed to be collected. Originally, I intended to use the number of missed cycles as a metric; however, UTAP did not impact the system performance as much as I had anticipated, so no missed cycles occurred in the baseline configuration using the existing gains. Chimera keeps track of missed cycles, so this data would have been easy to obtain and obtaining it would not have impacted the system performance at all.

III.6.2. Step Response

Since I could not use the missed cycle metric to quantify performance, I had to come up with a different measurement to determine how UTAP impacts performance. I decided to use the step response of the robot as a measure of the system performance because it shows the overall system performance. Step response shows how the robot responds over time to a commanded position. Instead of focusing only on the software performance, I was able to see the entire system performance by using the step response. Using an exisiting module called track, I collected data using the following procedure:

1) I spawned the Chimera modules track and trijgen and the UTAP module RSC. Note that RSC includes the grav_comp, puma_pidg, and Object

Knowledgebase functionality. Gravity compensation was turned on and the gains were set as shown in Table III. 5.
2) I commanded the robot to the Data_Initial position (See Table III.4).
3) I turned on the track module. This module starts to record data when the commanded and actual positions differ, so it did not immediately start recording data.
4) I commanded the robot to the Data_Final position with a speed of 1.5 seconds. See Table III.4. The track module recorded data until the actual positions matched the commanded positions. Note that the end points were chosen so that the trajectory between them would excite the dynamics of the robot. Although joints 4,5 , and 6 are not commanded to change, these joints are affected by the dynamic forces and so the controller must compensate for these forces.
5) Steps 2, 3, and 4 were repeated two more times. The first time, the trajectory duration was 3 seconds; the second time it was 5 seconds. Thus, the trajectory was tested at slow, nominal, and fast speeds.

Joint	Position Gain, $\mathbf{K}_{\mathbf{p}}$	Velocity Gain, $\mathbf{K}_{\mathbf{v}}$	Integral Gain, $\mathbf{K}_{\mathbf{i}}$
1	4000	80	5
2	11000	114	5
3	3000	25	5
4	500	25	5
5	310	12	5
6	300	17	5

Table III.5. Gains Used for Testing and Data Acquisition

III.7.Summary

This chapter has described the UTAP specification, the pre-UTAP AFIT architecture, and the process by which the AFIT robotic system was made UTAPcompliant. In discussing the AFIT architecture, the Chimera Real-Time Operating System was explained. This chapter also presented the procedures by which the UTAP-compliant system was tested and how performance was measured. In the next chapter, I analyze the data collected using these procedures.

IV. Analysis

IV.1. Commanded versus Actual Position Error

From the data collected using the procedure described in Chapter III, I calculate and plotted the error between commanded and actual position of each joint for each trajectory. Each joint has three plots since each plot shows the error for the existing AFIT controller and for the UTAP-compliant controller for one of the three trajectories. The plots for the nominal trajectory are shown in Figures IV. 1 through IV.6, while all of the plots can be found in Appendix D. As can be seen from the figures, each plot shows the error curves for both controllers. The error in radians is plotted against the cycle of the periodic task which recorded the data (Note: $1^{\circ}=0.0175$ radians). The cycle can be equated to time because the task recorded data once each cycle and it was executed at a frequency of 50 Hz . The plot shown in Figure IV. 1 shows that both controllers had error but converged to the steady-state condition of no error. Figures IV. 2 through IV. 6 show similar results.

Each of the plots shows a common trend. For the slow trajectory, the UTAP controller has a spiky curve for about the first 250 cycles; this type of curve also occurs for about the first 100 cycles during the nominal trajectory and for the first 50 cycles for the fast trajectory. This type of curve can be explained by noting that the gains used while recording this data have been tuned for the old AFIT controller and not for the new UTAP controller. Gain tuning is a process by which the controller gains are adjusted to optimum values for a particular system.

Figure IV.1. Error Plot for Joint 1 at Nominal Trajectory

Figure IV.2. Error Plot for Joint 2 at Nominal Trajectory

Joint 3 Error for Nominal Trajectory

Figure IV.3. Error Plot for Joint 3 at Nominal Trajectory

Joint 4 Error for Nominal Trajectory

Figure IV.4. Error Plot for Joint 4 at Nominal Trajectory

Figure IV.5. Error Plot for Joint 5 at Nominal Trajectory

Figure IV.6. Error Plot for Joint 6 at Nominal Trajectory

IV.2. Analysis

The plots in Appendix D show the error as a function of time, while Tables IV.1, IV.2, and IV. 3 show the integral error which occurred during the 500 cycles of data collection. I calculated the integral error by summing the absolute value of the error measurement at each cycle. As can be seen in the tables, the new UTAP compliant controller had slightly less total error than the AFIT controller for joints 1 and 3 at each trajectory, but the UTAP controller had more error for the other joints at all trajectories. Also, in every case for joints 4,5 and 6 , the UTAP controller had much greater error than did the AFIT controller.

I calculated the percent difference of error using the equation

$$
\text { PercentDifference }=100 \times\left(\frac{\text { UTAPControllerError }- \text { AFITControllerError }}{\text { UTAPControllerError }}\right)
$$

As Tables IV.1, IV.2, and IV. 3 show, the UTAP controller had a much greater total error than did the AFIT controller. However, the joint 6 error accounts for much of this total error. If the joint 6 error is not included, the total percent difference of error drops to $14.07 \%, 17.41 \%$, and 28.58%, respectively. If the error for joints 4,5 and 6 are excluded, the UTAP controller actually has less total error than the AFIT controller. The percent differences of error for this case are $-1.80 \%,-2.45 \%$, and -0.97%, respectively.

	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6	Total Error
AFIT Controller	1.8189	0.7853	1.0213	0.0000	0.0000	0.0000	3.6255
UTAP Controller	1.7497	0.9547	0.8569	0.5317	0.1558	95.2280	99.4768
Percent Difference	-3.96	17.74	-19.16	100	100	100	96.36

Table IV.1. Integral Error for Slow Trajectory

	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6	Total Error
AFIT Controller	2.3471	0.8405	1.2949	0.0115	0.0001	0.0377	4.5318
UTAP Controller	2.2042	1.1034	1.0679	0.8692	0.2423	104.7391	110.2261
Percent Difference	-6.48	23.83	-21.22	98.68	99.94	99.96	95.89

Table IV.2. Integral Error for Nominal Trajectory

	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6	Total Error
AFIT Controller	2.9696	1.1653	1.6241	0.0000	0.0000	0.0000	5.759
UTAP Controller	2.8886	1.3002	1.5148	1.6659	0.4419	1.3951	9.2065
Percent Difference	-2.80	10.38	-7.22	100	100	100	37.45

Table IV.3. Integral Error for Fast Trajectory

IV.3. Summary

The performance of the UTAP-compliant and the pre-UTAP architectures was presented and compared using the step response and the integral error of the step response. The collected data shows that the UTAP-compliant sytem had worse overall performance than the non UTAP-compliant system, but I believe this performance degradation can be improved with gain tuning.

V. Conclusions and Recommendations

V.1. Conclusions

The work performed during this research project leads to several conclusions about the UTAP architecture. The primary conclusion is that the UTAP architecture can be implemented and it will work using the Chimera operating system and the PUMA 560 manipulator. Since the architecture is designed to be system-independent, this conclusion can be generalized. Assuming that an interface layer similar to the Chimera/UTAP Interface Layer can be implemented on an arbitrary system, then the UTAP software architecture can also be implemented on that system.

Another conclusion is that the system performance is adversely affected by the UTAP architecture. Both the message-passing and the interface layer contribute to the degradation by adding overhead to the processor. However, the data collected is insufficient to determine how much of the degradation is due to message-passing and how much is due to the interface layer. Also, even though the error is increased, the commanded task was still performed in the time required. Thus, for a soft real-time system such as the AFIT robot, the difference in error may not matter as long as the task or application is still accomplished by a UTAP-compliant system in the time required.

UTAP is a good effort to try to standardize telerobotic system development in an open, portable manner using software engineering principles. Though the UTAP specification has some inconsistencies and it does not address all issues, it is a vehicle to achieve standardization in the robotics community much as the IBM PC Bus eventually
caused a standardization among PC components. Such standardization helps achieve the goals of lowering cost, improving reliability, and increased component availability.

In general, the implementation of a UTAP-compliant system is not trivial due to the generality of the UTAP specification. Because the specification is not yet finalized, the implementor must make many decisions which may make the code incompatible with another implementation. One example of this type of decision is the format of the configuration file.

V.2. Recommendations

V.2.1. Recommendations for Future Research

A follow-on study should analyze the code produced in this thesis project. The delay associated with the code should be analyzed analytically using a technique such as rate monotonic analysis. Also, more data should be collected so that the performance impacts can be identifed more clearly.

In order to get more data on the difficulty of implementing UTAP and on how it affects performance, a project similar to this thesis effort should be conducted using a different operating system but the same hardware and the C language. Since AFIT will be receiving a copy of VxWorks from the vendor and it supports our current hardware, I recommend implementing UTAP using the VxWorks operating system. The main issues to be dealt with in this project would be: 1) the necessity and design of an interface layer for this OS; 2) what telerobotic task to implement; and 3) how to measure performance. The third issue is important because there is a need to separate the message-passing performance impact from the interface layer impact. An analytical technique such as rate
monotonic analysis may be useful in this regard. Also, there will not be any existing working code to use as a benchmark to test the UTAP modules against.

To get even more data, a similar experiment should be performed using a different robotic system. AFIT already has the Adept robot, which uses a proprietary OS and language. The same issues mentioned above would apply to this project. A project of this type would show the language-, operating system-, and robotic system-independence of the UTAP specification.

Implementing a UTAP compliant system using a programming language other than C would prove beneficial because it would show that the UTAP specification is truly language-independent. I would recommend using Ada if possible. Again, all of the above comments apply. In addition, an operating system which supports Ada would have to be used.

Any of the projects discussed above should also strive to implement more of the features of the UTAP specification that were not implemented in this thesis project. Implementing a system-level configuration file to describe what components are present and to show the relationships among modules would allow the system to be more powerful and more easily reconfigurable.

Another feature that should be implemented is to support posting of messages that each module will respond to. This feature will allow the UTAP implementation to be more stable when confronted with a UTAP module which passes a non-implemented message.

Finally, any new UTAP implementation should implement more messages so that a clear picture of the performance impact of the message-passing may not be seen. In other
words, the more message-passing that occurs, the better we can observe the impact on the system from these messages.

V.2.2. Recommendations to Improve the UTAP Specification

The specification should clearly define what UTAP compliance means and come up with a meaningful way of measuring it. Without such a definition, it will be hard to compare different implementations of UTAP and to determine what a claim of "UTAPcompliant" means.

The module responsibilities need to be defined more clearly and more precisely. If the responsibilities are better defined, there will be less variance in how modules implemented by different people perform the assigned tasks.

Message meanings and parameters also need to be more clearly defined. For many messages, the implementor has to decide the function of the message simply by looking at the message name and the parameter list. Similarly, some of the parameters have unclear names and functions. Also, listing the intended purpose or function of each message may prevent an implementor from adding a new message to perform the same task as an old message that the implementor did not understand.

The configuration file formats and the how-to-pass part of the interface need to be defined explicitly. If these features are left undefined, then different implementors may choose different formats and then UTAP modules will no longer be transportable from one system to another.

Finally, the UTAP document [6] is "C-centric", but the specification is intended to be language-independent. Thus, I recommend modifying the examples and the messages
into a different format. This will remove the suggestion that C should be used to implement UTAP.

V.3. Summary

This thesis project has investigated the UTAP software architecture by implementing a UTAP-compliant system and measuring the performance. The results of this thesis will assist the Air Force in determining whether the UTAP specification should be adopted as an Air Force standard. This thesis effort has shown that the UTAP architecture is valid but that it lacks maturity and its implementation on an existing system is not trivial. This thesis also discusses issues that an implementor may face when a system is changed to be compliant with the UTAP specification. Figure V. 1 summarizes the conclusions of this thesis. Figure V. 2 summarizes my recommendations for future research, and Figure V. 3 summarizes my recommendations for the UTAP specification.

	Conclusion
1	UTAP can be implemented on an arbitrary system (with the use of an interface layer)
2	System performance is adversely affected by the UTAP architecture
3	UTAP is a good effort to try to standardize telerobotic system development in an open, portable manner
4	Implementation of a UTAP-compliant system is not trivial due to the generality of the UTAP specification

Figure V.1. Summary of Conclusions

	Research Recommendation
1	Further analyze code produced in this thesis project
2	Implement UTAP using a different operating system
3	Implement UTAP using a different robotic system
4	Implement UTAP using a different programming language
5	Implement more of the features from the UTAP specification
6	Implement more of the messages defined by the UTAP specification

Figure V.2. Summary of Research Recommendations

	Recommendation for UTAP Document
1	Clearly define UTAP-compliance and how to measure it
2	Define module responsibilities more clearly
3	Define message and message parameter meanings more clearly
4	Define the configuration file formats
5	Define how data will be passed between modules (how-to-pass)
6	Remove perception that C language is required by reformatting examples and messages

Figure V.3. Summary of Recommendations for UTAP Specification

Bibliography

1. Carnegie Mellon University, World Wide Web Page, http://www.cs.cmu.edu/afs/cs.cmu.edu/project/chimera/www/home.html
2. DaCosta, F., and others. "Towards Rapid Implementation of Robotic Systems." Preliminary, draft report of work done in late 1994 and early 1995 by Advanced Cybernetics Group, Inc., 227 Humboldt Court, Sunnyvale, CA 94089.
3. Gertz, Matthew W., David B. Stewart, and Pradeep K. Khosla. "A Software Architecture-Based Human-Machine Interface for Reconfigurable Sensor-Based Control Systems," Proceedings of 8th IEEE International Symposium on Intelligent Control. 75-80. Chicago: IEEE Press, 1993.
4. Lynx Real-Time Systems, World Wide Web Page, http://www.lynx.com/faq.html
5. National Air and Space Administration Jet Propulsion Laboratory. A Generic Telerobotics Architecture for C-5 Industrial Processes: Final Report. Prepared for the Air Force Material Command (AFMC) Robotics and Automation Center for Excellence, Kelly AFB, TX. Pasadena, CA: NASA JPL.
6. National Institute of Standards and Technology (NIST) Intelligent Systems Division. Unified Telerobotic Architecture Project (UTAP) Interface Document (Draft Copy). Gaithersburg, MD: NIST, 18 June 1994.
7. Singhal, Mukesh and Niranjan Shivaratri. Advanced Concepts in Operating Systems. New York: McGraw-Hill Inc., 1994.
8. Stewart, David B. Co-creator of the Chimera Real-Time Operating System and Assistant Professor of Electrical Engineering, University of Maryland, College Park MD. Telephone Conversation. Sep 1995.
9. Stewart, David B. and Pradeep K. Khosla. CHIMERA 3.1 The Real-Time Operating System for Reconfigurable Sensor Based Control System. Carnegie Mellon University, 1993.
10. Stewart, David B., Richard A. Volpe, and Pradeep K. Khosla. Design of Dynamically Reconfigurable Real-Time Software Using Port-Based Objects. Carnegie Mellon University Technical Report CMU-RI-TR-93-11. Carnegie Mellon University: Robotics Institute, July 1993.
11. Taylor, Paul M. Understanding Robotics. Hong Kong: CRC Press, 1990.
12. United States Army, Real-Time Executive for Military Systems World Wide Web Page, http://lancelot.gcs.redstone.army.mil/rg4/rtems.html
13. Wind River Systems, World Wide Web Page, http://www.wrs.com

APPENDIX A

Chimera/UTAP System User's Manual

Note: User input and system prompts are shown in a different font than the rest of the text. User input is also shown in boldface. Text in italics represents a placeholder for some other text (i.e., a variable name).

Steps:

1. Log in to Gepetto at the system prompt. Gepetto is the only workstation that can be used to run the PUMA robot.
2. Change to the $\sim /$ chimera/bin directory by using the following command at the UNIX prompt:
gepetto:@~/chimera/bin> cd chimera/bin
3. Ensure that the VMEbus is powered on.
4. Start the Chimera system by typing the following command at the UNIX prompt:
gepetto:@~/chimera/bin> chim
5. Calibrate the PUMA robot by typing the following at the Chimera prompt:

CHIM:control> ex calibrate
This command will execute the calibrate command that is stored in the $\sim /$ chimera/bin subdirectory.
5. Start the main system, tmain. This is accomplished by running a script which contains the following lines:
attach control
attach crusher
kill all
select control
download tmain

The script is executed by typing the following at the Chimera prompt:
CHIM:control> < Go
6. Once the script has completed, the tmain program is downloaded on the real-time processing units (RTPUs). To start the progam, type the following command at the Chimera prompt:

CHIM:control> go all

This command will start up the SBS system and will result in the SBS prompt.
7. Spawn any necessary modules and then turn them on. The script UTAP_Example will spawn the following modules: int_RSC, int jtrackball, and trjjgen. The int_PUMA pidg module will be turned on. The script contains the following commands:

```
spawn crusher int_RSC
spawn control int jtrackball
spawn control trjigen
on int_RSC
```

The script is executed by typing the following at the SBS prompt:

SBS tmain<none> <UTAP_example

8. Either of the trjigen or int jtrackball modules can be turned on to cause the robot to change position. DO NOT turn both modules on at the same time as they both attempt to write values that will cause motion. Unpredictable motion may result if this occurs, and the robot may be damaged because of this.

To turn on the trajectory generator module trjigen, type the following at the SBS prompt:

SBS tmain<some-module> on trijgen j1_val j2_val j3_val j4_val j5_val j6_val duration speed

or use a script. Similarly, to turn on the trackball module int jtrackball, type:
SBS tmain<some-module> on int_jtrackball

Some scripts exist which will use the trjjgen module. A few of these scripts are shown below:
<Offboard - on trijgen 0.0-1.50902.8000 0.00 .0580 .05 .03
<Board - on trjigen 0.0-1.3090 2.8000 0.0 0.058 0.05 .03
$<$ NBoard - on trjigen 0.0-1.8090 0.3490 0.0-0.078 0.0 7.03
$<$ Home - on trjigen 0.0-1.5708 1.5708 0.0 0.0 0.05 .03
9. The trijgen module will automatically turn off when the error between commanded and actual position is within a certain value. The int_jtrackball and int_PUMA pidg modules, as well as any other modules which may have been used during the Chimera session, must be turned off manually by using the following command at the SBS prompt:

SBS tmain<some-module> off module-name

10. When the session is finished, each module must be turned off as in step 9, then each module must be killed by typing the following command at the SBS prompt:

SBS tmain<some-module> kill module-name

11. Once all modules are killed, exit the SBS system by typing the following at the SBS prompt:

SBS tmain<none> quit

12. Exit Chimera by typing the following at the Chimera prompt:

CHIM:control> quit
13. Logout of the system by typing the following at the Unix prompt:
gepetto:@~/chimera/bin> logout

Miscellaneous Chimera Commands:
To see what tasks exist and what state they are in, as well as information on missed cycles, execution frequency, etc., type the following command at the SBS prompt:

SBS tmain<some-module> status

To view the Global State Table, type the following command at the SBS prompt:
SBS tmain<some-module> display all

For a list of available modules, type the following command at the SBS prompt:

SBS tmain<some-module> mod

For a list of commands available in Chimera, type the following command at the SBS prompt:

SBS tmain<some-module> ?

For help with a particular command, type the following command at the SBS prompt:
SBS tmain<some-module> help command-name

APPENDIX B

Chimera/UTAP System Programmer's Manual

Note: User input and system prompts are shown in a different font than the rest of the text. User input is also shown in boldface. Text in italics represents a placeholder for some other text (i.e., a variable name).

Steps:

1. Log in to Gepetto or any other workstation on the Hawkeye network.
2. If any Chimera modules need to be edited, then change to the $\sim /$ chimera/src/module directory by using the following command at the UNIX prompt:
gepetto:@~/chimera/bin> cd ~/chimera/src/module
Edit any Chimera modules that need to be changed by using any text editor. The Makefile in this directory needs to be updated to include any new Chimera modules that are to be included. The Makefile will be used to compile the final system, so only modules that are referenced in the Makefile will be compiled.
3. If any changes to the rmod file, which is the Chimera configuration file, need to be made, then change to the $\sim /$ chimera/module directory by using the following command at the UNIX prompt:

gepetto:@~/chimera/bin> cd ~/chimera/module

Edit the .rmod files that need to be changed by using any text editor. Make sure that the "MODULE" line in the rmod file references the correct module name or else problems may occur.
4. If any UTAP modules need to be edited, then change to the $\sim /$ chimera/src/libutap directory by using the following command at the UNIX prompt:
gepetto:@~/chimera/bin> cd ~/chimera/src/libutap
Edit any UTAP modules that need to be changed by using any text editor. The Makefile in this directory needs to be updated to include any new UTAP modules that are to be included. The Makefile will be used to compile the final system, so only modules that are referenced in the Makefile will be compiled.
5. The final Makefile which links in all necessary components is located in the $\sim /$ chimera/src/main directory. Change to this directory by using the following command at the UNIX prompt:
gepetto:@~/chimera/bin> cd ~/chimera/src/main
Ensure that all Chimera and UTAP modules that are needed are referenced in this Makefile. If a module is missing, then Chimera will generate an error message when the missing module is spawned.
6. If no new modules are being added to the system (i.e., only changes to existing modules are being made), then none of the Makefiles will need to be updated.
7. Change to the $\sim /$ chimera/src directory and then make the system by using the following commands at the UNIX prompt:

> gepetto:@~/chimera/bin> cd ~/chimera/src
> gepetto:@~/chimera/bin> make

Any compilation or linking errors must be corrected. If there are no errors, then the gicc compiler will be used to compile and link the system. The tmain program is the final product of this step.

APPENDIX C

UTAP Messages

Note: Bold and Italicized messages have been implemented in this Thesis Project.

```
GENERIC (42)
    US STARTUP
    US SHUTDOWN
    US RESET
    US_ENABLE
    *US DISABLE
    US ESTOP
    *US START
    US STOP
    US ABORT
    US HALT
    *US INIT
    US_HOLD
    US PAUSE
    US_RESUME
    US ZERO
    US BEGIN SINGLE STEP
    US NEXT SINGLE STEP
    US CLEAR SINGLE STEP
    us begin block
    US END BLOCK
    us_begin plan
    Us END PİAN
    US_USE_PLAN
    US_BEGIN MACRO
    US END_MACRO
    US USE_MACRO
    US BEGIN EVENT
    US_END EVENT
    US MARK BREAKPOINT
    US_MARK_EVENT
    US GET SELECTION ID
    US_POST_SELECTION_ID
    US USE_SELECTION
    US_USE_AXIS_MASK
    US USE EXT ALGORITHM
    US_LOAD_EXT_PARAMETER
    *US
    US POST EXT DATA VALUE
    US_SET EXT_DATA V VALUE
    US LOAD STATUS TYPE
    US_LOAD_STATUS_PERIOD
    US_GENERIC_STATUS REPORT
```

ERRORS (9)
US_ERROR_COMMAND NOT IMPLEMENTED
US ERROR COMMAND ENTRY
US_ERROR DUPLICATE_NAME
US ERROR BAD DATA
US_ERROR_NO_DATA_AVAILABLE
US_ERROR_SAFETY_VIOLATION
*US ERROR LIMIT EXCEEDED
US ERROR OVVER SPECIFIED
US_ERROR UNDER_SPECIFIED
AXIS SERVO (34)
US_AXIS_SERVO_USE ANGLE UNITS
US_AXIS SERVO-USE RADIAN UNITS
US_AXIS_SERVO_USE_ABS_POSITION_MODE
US AXIS SERVO_USE_REL_ POSITION_MODE

US_AXIS SERVO USE_ABS VELOCITY MODE
US_AXIS_SERVO_USE_REL_VELOCITY_MODE
US_AXIS_SERVO_USE_PID
US AXIS SERVO USE FEEDFORWARD TORQUE
US_AXIS_SERVO_USE_CURRENT
US AXIS SERVO USE VOLTAGE
US_AXIS_SERVO_USE STIFFNESS
US AXIS SERVO USE COMPLIANCE
US_AXIS SERVO_USE_IMPEDANCE
*US_AXIS_SERVO_START_GRAVTY_ COMPENSATION
*US_AXIS_SERVO_STOP_GRAVTTY_ COMPENSATION
US_AXIS SERVO_LOAD DOF
S_AXIS_SERVO_LOAD_CYCLE_TIME
S_AXIS SERVO LOAD PID GAIN
S_AXIS_SERVO_LOAD JOINT_LIMIT
S_AXIS_SERVO_LOAD_VELOCITY_LIMIT
S_AXIS SERVO LOAD GAIN LIMIT
Ū̄_AXIS_SERVŌ_LOAD_DAMPING_VALUES
US_AXIS_SERVO_HOME
US_AXIS_SERVO-SET BREAKS
US AXIS SERVO CLEAR BREAKS
US_AXIS_SERVO_SET_TORQUE
US_AXIS SERVO SET CURRENT
US_AXIS_SERVO_SET_VOLTAGE
US_AXIS SERVO- SET POSITION
US_AXIS SERVO SET VELOCITY
US_AXIS SERVO SET ACCELERATION
US_AXIS SERVO SET FORCES
US_AXIS SERVO_JOG
US_AXIS_SERVO_JOG_STOP
TOOL (14)
US SPINDLE_RETRACT_TRAVERSE
US_SPINDLE_LOAD_SPEED
US_SPINDLE_START TURNING
US SPINDLE_STOP TURNING
US_SPINDLE_RETRACT
US_SPINDLE_ORIENT
US_SPINDLE_LOCK_Z
US_SPINDLE USE FORCE
US_SPINDLE_USE_NO_FORCE
US_FLOW_START_MIST
US FLOW STOP MIST
US_FLOW START_FLOOD
US_FLOW STOP FLOOD
US_FLOW_LOAD_PARAMETERS

SENSOR (45)

US START TRANSFORM
US_STOP TRANSFORM
US_START FILTER
US STOP_FILTER
US SENSOR_USE_MEASUREMENT_UNITS
US SENSOR_LOAD SAMPLING SPEED
US_SENSOR_LOAD_FREQUENCY
US SENSOR LOAD_TRANSFORM
US_SENSOR_LOAD_FILTER
US_SENSOR_GET_READING

US SENSOR GET ATTRIBUTES READING
US_VECTOR SENSOR GET_READING
US FT SENSOR POST READING US_SCALAR_SENSOR_POST_READING US_VECTOR SENSOR POST_READING US_2D SENSOR_LOAD ARRĀY PATTERN
US_2D SENSOR USE ARRAY TYPE
US_2D_SENSOR GET READING
US_2D_SENSOR_POST_READING
US_IMĀGE_USE_FRAME_GRAB MODE
US_IMAGE_USE HISTOGRAM MODE
US_IMAGE_USE_CENTROID_MODE
US IMAGE USE GRAY LEVEL MODE
US_IMAGE_USE_THRESHOLD_MODE
US_IMAGE_COMPUTE_SPATIAL_DERIVATIVES MODE
US_IMAGE_COMPUTE_TEMPORAL_ DERIVATIVES_MODE
US_IMAGE_USE_SEḠMENTATION_MODE
US_IMAGE_USE RECOGNITION_MODE
US_IMAGE_COMPUTE_RANGE_MODE
US IMAGE COMPUTE_FLOW MODE
US_IMAGE LOAD_CALIBRATION
US IMAGE SET POSITION
US_IMAGE_ADIUST_POSITION
US_IMAGE ADJUST FOCUS
US_IMAGE_POST SPECIFICATION
US_IMAGE POST_PIXEL MAP READING
US IMAGE POST HISTOGRAM READING
US IMAGE POST XY CHAR READING
US IMAGE POST BYTE SYMBOLIC READING
US_IMAGE_POST_THRESHOLD_READING
US_IMAGE POST_SPATIAL_DERIVATIVE READING
US IMAGE_POST_TEMPORAL_DERIVATIVE_ READING
US_IMAGE_POST_RECOGNITION_READING
US_IMAGE POST_RANGE_READING
US IMAGE_POST_FLOW READING
PROGRAMMABLE_IO (11)
US PIo ENABLE
US PIO-DISABLE
US PIO_SET_MODE
US_PIO_CONTROL_WRITE
US PIO LOAD SCĀLE
US PIO DATA WRITE
*US_PIO_DATA_READ
US_PIO_BIT_READ
US_PIO_BIT SET
US_PIO-TOGGLE_BIT
US PIO POST DATA
TASK_LEVEL_CONTROL (78)
US_TLC_US̄E_JOINT_REFERENCE_FRAME
US_TLC_USE_CARTESIAN_REFERENCE_FRAME
US TLC USE REPRESENTATION_UNITS
US_TLC_USE_ABSOLUTE_POSITIONING_MODE
US_TLC_USE_RELATIVE_POSITIONING_MODE
US_TLC_USE_WRIST_COORDINATE_FRAME
US_TLC_USE TOOL TIP COORDINATE FRAME
US_TLC CHANGE TOOL
US_TLC USE MODIFIED_TOOL LENGTH OFFSETS
US_TLC_USE NORMAL TOOL LENGTH OFFSETS
US_TLC_USE_NO_TOOL_LENGTH OFFSETS
US_TLC_USE_KINEMATIC_RING_POSITIONING_ MODE
US TLC_START_MANUAL MOTION
US_TLC_STOP_MANUAL_MOTION
US_TLC_START_AUTOMATIC_MOTION

```
US_TLC_STOP_AUTOMATIC_MOTION US_TLC_START TRANSVERSE_MOTION
US_TLC_STOP TRANSVERSE_MOTION
US_TLC_START_GUARDED_MOTION
US TLC STOP GUARDED MOTION
US_TLC_START_COMPLIANT_MOTION
US TLC STOP COMPLIANT MOTION
US_TLC_START_FINE_MOTION
US TLC STOP FINE MOTION
US_TLC_START_MOVE_UNTIL_MOTION
US_TLC STOP_MOVE UNTIL MOTION
US_TLC_START_STANDOFF_DISTANCE
US_TLC STOP_STANDOFF DISTANCE
US_TLC_START_FORCE POSITIONING MODE
US_TLC_STOP_FORCE_POSITIONING_MODE
US TLC LOAD DOF
US_TLC_LOAD CYCLE_TIME
US TLC LOAD REPRESENTATION UNITS
US_TLC LOAD LENGTH UNITS
US_TLC LOAD_RELATIVE_POSITIONING
US_TLC_ZERO_RELATIVE POSITIONING
US_TLC ZERO PROGRAM ORIGIN
US_TLC_LOAD_KINEMATIC_RING POSITIONING MODE
US_TLC_LOAD_BASE_PARAMETERS
US_TLC_LOAD_TOOL_PARAMETERS
US TLC LOAD OBJECT
US TLC LOAD OBJECT BASE
US_TLC_LOAD OBJECT OFFSET
US_TLC_LOAD_DELTA
US TLC LOAD OBSTACLE VOLUME
US_TLC_LOAD_NEIGHBORHOOD
US TLC LOAD FEED RATE
US_TLC_LOAD_TRAVERSE_RATE
US TLC LOAD ACCELERATION
US_TLC_LOAD JERK
US_TLC_LOAD PROXIMITY
US_TLC_LOAD_CONTACT_FORCES
US TLC LOAD JOINT LIMTT
US_TLC_LOAD_CONTACT_FORCE LIMIT
US_TLC_LOAD_CONTACT_TORQUE LIMIT
US_TLC_LOAD_SENSOR_FUSION_POS_LIMIT
US_TLC_LOAD_SENSOR FUSION_ORIENT_LIMIT
US_TLC_LOAD_SEGMENT_TIME
US_TLC_LOAD_TERMINATION_CONDITION
US TlC IncR VELOCITY
US_TLC_INCR ACCELERATION
US_TLC_SET_GOAL_POSITION
US_TLC_GOAL SEGMENT
US TLC ADJUST AXIS
US_TLC_UPDATE_SENSOR_FUSION
US_TLC_SELECT PLANE
US TLC_USE CUTTER RADIUS COMPENSATION
US_TLC_START CUTTER_RADIUS_
COMPENSATION
US_TLC_STOP CUTTER_RADIUS_ COMPENSATION
US_TLC_STRAIGHT_TRAVERSE
US_TLC-ARC_FEED
US_TLC_STRĀIGHT_FEED
US_TLC_PARAMETRIC_2D_CURVE_FEED
US_TLC_PARAMETRIC_3D_CURVE_FEED
US TLC_NURBS KNOT VECTOR
US_TLC_NURBS_CONTROL_POINT
US_TLC_NURBS_FEED
US_TLC_TELEOP_FORCE_REFLECTION_UPDATE
```

TASK DESCRIPTION (10)
US̄_TDS_LOAD USER
US_TDS SELECT PROGRAM
US_TDS_EXECUTE_PROGRAM

US TDS SELECT OPERATION
US TDS SELECT OPMODE US TDS LOAD SELECTIONS US_TDS LOAD REFERENCE_UNITS
US_TDS_LOAD_RATE_DEFAUTLTS
US_TDS_LOAD_ORIGIN
US_TDS_LOAD_SENSING_DEFAULTS

TASK KNOWLEDGE (4)
US_TK DEFINE FRAMEWORK
US TK MACRO CREATE
US TK MACRO DELETE
US_TK_MACRO_MODIFY
PARENT_TASK_PROGRAM_SEQUENCING (7)
US_PTPS_SELECT_AGENT
US PTPS SELECT TOOL
US PTPS SELECT SENSOR
US_PTPS_INTERP_RUN_PLAN
US_PTPS_INTERP_HALT_PLAN
US_PTPS_INPUT_REQUEST
US_PTPS_OUTPUT ENABLE_SUBSYSTEM
TASK PROGRAM_SEQUENCING (10)
US_TPS_FREESPACE MOTION
US_TPS GUARDED_MOTION
US_TPS_CONTACT_MOTION
US_TPS_SET_SUPERVISORY_MODE
US TPS_SELECT FEATURE
US_TPS SELECT MATERIAL
US_LOAD_OBSTACLE
US_LOAD-PATTERN
US_TPS_MARK_EVENT
US_TPS_ENABLE
OPERATOR_INTERFACE (9)
US_BEGIN_FRAMEWORK
US_END_FRAMEWORK
US_CREATE FRAMEWORK
US_DELETE_FRAMEWORK
US_ADD SYMBOLIC_ITEM
US DELETE_SYMBOLIC ITEM
US_ADD SYMBOLIC_ITEM_ATTR
US_DELETE SYMBOLIC_ITEM_ATTR
US_SET_SYMBOLIC_ITEM_ATTR
OBJECT_MODELING (3)
US_OM_CREATE
US_OM_DELETE
US OM MODIFY

OBJECT_CALIBRATION (4)
US_OC_SET CALIB US OC GET_CALIB US_OC_SET_ATTR US_OC_GET_ATTR

OBJECT_KNOWLEDGE (9)
US_OK_RECORD
US OK PLAYBACK
US_OK CREATE OBJ
US OK DELETE OBJ
US OK_MODIFY
*US_OK_MODIFY_ATTRIBUTE
*US_OK_ATTRIBUTE QUERY
*US_OK_OUTPUT_REGISTERED_OBJ_ID

US OK ATTRIBUTE_RESPONSE
TRAJECTORY DESCRIPTION (15)
US TRD_OPEN
US_TRD_ERASE
US_TRD_RECORD
US_TRD RECORD ON
US_TRD_RECORD_OFF
US_TRD_FIND
US_TRD_NEXT
US TRD PREVIOUS
US_TRD_DELETE
US_TRD_NAME_ITEM
US_TRD_DELETE_ITEM
US_TRD_SET JOINT_MODE
US -TRD_SET CARTESIAN_MODE
US_TRD_MODIFY
US_TRD_ADD_ELEMENT
ANALYSIS DIAGNOSIS SYSTEM (1)
US_ADS_COLLISION_DETECTED
UTAP_DATA_DEFS (34)
US POST ID
US GET_OBJECT_ID
US USE OBJECT
US_GET FEATURE
US_USE FEATURE
US_GET_VALUE
US_POST_VALUE
US GET LIST
US_POST_LIST
US_ATTRIBUTE POST RESPONSE
US_ATTRIBUTE_GET_TIME
${ }^{*} U S_{-} A T T R I B U T E=G E T_{-} P O S I T I O N$
US_ATTRIBUTE _-GET_ORIENTATION
US ATTRIBUTE GET POSE
US_ATTRIBUTE_GET_VELOCITY
US_ATTRIBUTE_GET_ACCELERATION
US_ATTRIBUTE GET JERK
US_ATTRIBUTE_GET_FORCE
US_ATTRIBUTE_GET_TORQUE
US ATTRIBUTE GET MASS
US_ATTRIBUTE_GET_TEMPERATURE
US_ATTRIBUTE_GET-PRESSURE
US_ATTRIBUTE GET VISCOSITY
US_ATTRIBUTE GET LUMINANCE
US ATTRIBUTE GET HUMIDITY
US_ATTRIBUTE GET FLOW
US_ATTRIBUTE GET HARDNESS
US_ATTRIBUTE GET ROUGHNESS
US_ATTRIBUTE GET_GEOMETRY
US_ATTRIBUTE_GET_TOPOLOGY
US ATTRIBUTE GET SHAPE
US_ATTRIBUTE_GET_PATTERN
US ATTRIBUTE GET MATERIAL
US ATTRIBUTE GET KINEMATICS
MESSAGES ADDED FOR THIS
PROJECT
(NOT IN UTAP SPECIFICATION)
*US_RSC_LOAD_TORQUES
*US_RSC_CHECK ROBOT_POWER
*US_ERROR_ROBOT_POWER

APPENDIX D

Step Response Error Plots

Figure D.1. Joint 1 Error for Nominal Trajectory

Figure D.2. Joint 2 Error for Nominal Trajectory

Figure D.3. Joint 3 Error for Nominal Trajectory

Figure D.4. Joint 4 Error for Nominal Trajectory

Figure D.5. Joint 5 Error for Nominal Trajectory

Figure D.6. Joint 6 Error for Nominal Trajectory

Figure D.7. Joint 1 Error for Fast Trajectory

Figure D.8. Joint 2 Error for Fast Trajectory

Figure D.9. Joint 3 Error for Fast Trajectory

Figure D.10. Joint 4 Error for Fast Trajectory

Figure D.11. Joint 5 Error for Fast Trajectory

Figure D.12. Joint 6 Error for Fast Trajectory

Figure D.13. Joint 1 Error for Slow Trajectory

Figure D.14. Joint 2 Error for Slow Trajectory

Figure D.15. Joint 3 Error for Slow Trajectory

Figure D.16. Joint 4 Error for Slow Trajectory

Figure D.17. Joint 5 Error for Slow Trajectory

Figure D.18. Joint 6 Error for Slow Trajectory

APPENDIX E

UTAP and Interface Module Source Code

[^0] /* module 'Local t' definition as required by Chimera

[^1]
Display Test Module (used to test othe
 (used to test other modules)

/* display testoff Stop the module.
 /* display testKill Clean up after the module.
int display_testKill(local, stask)
int display testCycle(local, stask)
$\begin{array}{ll}\text { display_testLocal_t } & \text { *local; } \\ \text { sbsTask_t } & \text { *stask; }\end{array}$
int i;
printf("\n");
/* print the values of Qref */
printf("Q_REF : ");
for ($i=0 ; \bar{i}<6 ; i++$)
printf("\%f ",local->oref[i]);
printf("\n");
/* print the values of Tgrav */
for ($\mathrm{i}=0 ; \overline{\mathrm{i}}<6 ; i++$) \quad local->Tgrav[i]);

\} return I_OK;
/***/

int i;
\} return -
1
*stask;

Interface Module for jtrackball

\#include <chimera.h>
\#include <sbs.h>
\#include <iod.h>
 \#define NBYTES $12 \quad / *$ read 12 bytes of data from trackball $*$ $*$ values for the UTAP_ERROR_FLAG */
\#define UTAP NO ERROR \#define UTAP_ERROR_DISABLE OI

tatic int Clean port(IOD *iod);
/*function to clean serial port and send handshake */

extern int US INTT OI (void);
extern int US_START_OI (void);

 typedef struct \{
$/ *$ Number of degrees of freedom */
/* iod interface variable */
/* which port (from rmod file) */
$/ *$ which io device (from rmod file) */
$/ *$ serial port parameters: page $169 * /$

SBS_MODULE(int_jtrackball);

$\begin{array}{lc}\text { sbsSvar_t } & \text { *svar = \&stask->svar: } \\ \text { iodSioparam_t } & \text { *siop; } \\ \text { unsigned } & \text { ports; } \\ \text { int } & n ;\end{array}$
/* All Chimera-specific initialization is handled in this module. The
UTAP init module is then called to perform UTAP initialization */
/* Get pointers to state variables */
local->Qref = svarTranslatevalue(svar->vartable, "Q_REF", float); utap_Qref = local->Qref; /* Make sure Ndof <= 6 .
$n=\star(l o c a l->N d o f) ;$
if $(n>6)$
l printf("Maximum allowed NDOF is 6 - current NDOF is sd\n", n);
f errInvoke(stask->errmod, "NDOF too great", 1);
 /* Make sure Ndof <= 6.
$n=\star(l o c a l->N d o f) ;$
if $(n>6)$
l
printf("Maximum allowed NDOF is 6 - current NDOF is sd\n", n);
f errInvoke (stask->errmod, "NDOF too great", 1);
/* One time initialization. Read from the .RMOD file */
cfigCompulsory(cinfo, "GAINS", gain, CFIG_FLOAT, 6);
cfigcompulsory(cinfo, "SPEED", \&speed, VT_FLOAT, 1); cfigCompulsory(cinfo, "SIO_DEVICE",local->sioname,VI_STRING,MAXNAMELEN) ;
cfigCompulsory(cinfo, "SIO_PORT", \&ports,VT_INT,1);
local->sioport = IOD_PORT(ports);

$$
\begin{aligned}
& \text { cfigCompulsory(cinfo, "SIO_DEVICE",local->sioname, VT_STRING,MAXNAMELEN) ; } \\
& \text { cfigCompulsorv(cinfo."STO PORT". }
\end{aligned}
$$ local->sioport = IOD_PORT(ports);

/* default is the IOD default */
siop = \&local->sioparam;
*siop = iodSioDflt;
if (cfigoptionai (cinfo, "SIO SPEED", \&siop->baudRx, V
siop->baudTx = siop->baudRx;
cfigoptional (cinfo, "SIO_BITS", \&siop->bits,VT_BYTE,
cfigoptional (cinfo, "SIO_STOP", \&siop->stop,VT_BYTE, local->sioport = IOD_PORT(ports);
/* default is the IOD default */
siop = \&local->sioparam;
*siop = iodSioDflt;
if (cfigoptionai (cinfo, "SIO SPEED", \&siop->baudRx, V
siop->baudTx = siop->baudRx;
cfigoptional (cinfo, "SIO_BITS", \&siop->bits,VT_BYTE,
cfigoptional (cinfo, "SIO_STOP", \&siop->stop,VT_BYTE, local->sioport = IOD_PORT(ports);
/* default is the IOD default */
siop = \&local->sioparam;
*siop = iodSioDflt;
if (cfigoptionai (cinfo, "SIO SPEED", \&siop->baudRx, V
siop->baudTx = siop->baudRx;
cfigoptional (cinfo, "SIO_BITS", \&siop->bits,VT_BYTE,
cfigoptional (cinfo, "SIO_STOP", \&siop->stop,VT_BYTE,

 /* COpY IOD variable for use by non-Chimera specific functions */ /* Copy Iod variable toruse by nonchica secicic functions */ default */ cfigCompulsory(cinfo, "GAINS", gain, CFIG_FLOAT, 6);
cfigCompulsory(cinfo, "SPEED", \&speed, VT_FLOAT, 1);
cfigCompulsory(cinfo,"SIO DEVICE", local->sioname, VT STRING,MAXNAMELEN); cfigCompulsory(cinfo, "GAINS", gain, CFIG_FLOAT, 6);
cfigCompulsory(cinfo, "SPEED", \&speed, VT_FLOAT, 1);
cfigCompulsory(cinfo,"SIO DEVICE", local->sioname, VT STRING,MAXNAMELEN);

port twice so button is erased*/
lean port(iod var);
printf("***UTAP: Operator Interface Module Disabled ${ }^{\text {Cn") }}$;
/* Clear error flag so it won't cause a problem when the
UTAP ERROR FLAG = UTAP NO_ERROR;
sbsSigSend (stask, SBS_OFE) $; / *$ send Einish signal */
printf ("Unknown error flag si raised in int_jtrackballCycle\n", printf ("Disabling UTAP OI Module (just in case)..."); /* the trackball sends the number three times so we must clean port twice 30 button is erased*/
Clean_port(iod_var);
Clean_port(iod_var);
/* Clear error flag so it won't cause a problem when the UTAP_ERROR_FLAG = UTAP_NO_ERROR;
sbsSigSend (staskr ${ }^{\text {SBS_OFF) }}$; $/ *$ send finish signal */ return SBS_OFF;

int int_jtrackballoff(local, stask)
int_jtrackballLocal_t
*local:

kprintf("int_jtrackball: OFF\n");
return I_OK; \} return I_{-}
 int int_jtrackballKill(local, stask)
int_jtrackballlocal_t \quad local;
(kprintf("int_jtrackball: EINISHED\n");
return I_OK;
int_jtrackballLocal_t
sbsTask_t
*local;
*stask;
return I_OK;

int int jtrackballSync(local, stask)
$\begin{array}{ll}\text { int jtrackbaIlLocal_t } \\ \text { sbsTask_t } & \text { *local; } \\ \text { *stask; }\end{array}$
/* $* / / ~$
/* Local function that will read all remaining bytes then send a
/* signal of hex 05 to handshake
/* **/,
static int Clean_port(iod)
IOD *iod;
char rqst $=5$;
char no = 1;
char data;
while ($n \mathrm{~b}$ > 0) $\quad / *$ flush the sio buffers one byte at a time */

/* This module returns a pointer to the array which contains the data

> that is read from the trackball. */
> 1 that is read from the trackball. κ,

 $\left.\backslash n^{\prime \prime}\right)$;
$\quad 1$

[^2]Iocal_var;
static $O I_{-}$Local_t

extern void US DISABLE OI (void);
extern byte * US_PIO_READ_DATA (char *, char *, int *);
extern void * US_GET EXT DATA VALUE (char *);
extern int US_OK_OI_OUTPUT REGISTERED_OBJ ID (char *);
extern void * USOKOOI ATTRIBUTE QUERY (int);
extern void US_OK_OI_MODIFY_ATTRIBUTE (int, void *);
$/ * / / ~$
$/ *$ UTAP functions
$/ * /, ~$

US_INIT_OI (void)
float *temp_speed;
int i;
local $=$ \& local var;
/* This data needs to be read from a config file */
/* A global module will read these values from the Chimera .RMOD files */ /* get the gain values from the global configuration file reader */
/* for our purposes, this file reader will read the Chimera. RMOD files */ local->gain $=$ (float *) US_GET_EXT_DATA_VALUE ("GAINS") ; printf("-- US INIT_OI: Got Gains $="$):
for $(\mathrm{i}=0 ; \mathrm{i}<6 ; \overline{\mathrm{i}}++)$
printf("-- US INIT_OI: Got Gains
for $(i=0 ; i<6 ; \bar{i}++)$
printf("\%f ", local->gain[i]);
printf("\n");
temp_speed $=$ (float *) US_GET_EXT_DATA_VALUE("SPEED");
locaI->speed = *temp_speed;
printf("\n-- US_INIT_OI: Got Speed $=\frac{2 f}{\mathrm{f}} \mathrm{n"}$, local->speed);
/* load local->data with zeros */
for ($i=0$; i<12;i++)

$L 8$

/* update the local value of gref for the selected joint */
/* Update Object Knowledgebase. Qref is passed by address since
it is an array */
US_OK_OI_MODIFY_ATTRIBUTE(local->qref_id, local->Qref);
This

printf("-- US_INIT_OI: Getting Object ID for Q_REF\n");

local->Qd_ref $=$ svarTranslateValue (svar->vartable, "Q^REF", float);
local->T_grav $=$ svarTranslatevalue(svar->vartable, "T_GRAV", float);
utap_Q_mez = local->Q_mez;
utap_Qd_mez = local->Qdmez;
utap_Q_ref $=$ local \rightarrow Q_ref;
utap_Qd_ref $=$ local->Qd_ref;
utap_T_grav $=$ local->T_grav;

cfigCompulsory(cinfo, "DEviCEFILE", cfigfile, CFIG_STRING, MAXFNAMELEN);
printf("int_RSCInit; Read .rmod files\n"); kprintf("int_RSCInit: Read .rmod files ${ }^{2} "$);
f ((local->puma = saiInit (cfigfile, 0)) = NULL)
errInvoke(stask->errmod, "puma initialization failed", DUMMY_CODE); kprintf("int_RSCInit: Puma is initialized\n"); /* Ensure that the robot has been calibrated. saiStatus(local->puma, SAI_CAIIB, \&Cal);
if (!ca1)
errInvoke(stask->errmod, "Puma is not calibrated", DUMMY_CODE); kprintf("int_RSCInit: Puma is calibrated \backslash_{n} ");
/* Make the local puma var available to all functions in module */
puma = local->puma; /* Make the local puma var available to all functions in module
puma $=$ local->puma;
/* set the outconsts. ndof $=$ svarTranslateValue(svar->vartable, "NDOF", int);
\#ndof $=6 ;$
dh = svarTranslateValue(svar->vartabie, "DH", float);
for $(i=0 ; i<24 ;++i)$
/* allow UTAP module to know the task frequency */
utap_task_freq $=$ stask->freq;
/* clear error flag */

 /* module initialization as required by Chimera SBS_MODULE (int_RSC) :
/*********************************t*************************************/ / / / / / / $1 *$ Chimera Interface Modules $1 * \quad$ */

[^3]

 /*

/* Do an explicit state variable table write so that the PUMA will. */
/* will come up "self stable" ((Q_REF = QMEZ) \& (Q^{\wedge} _REF = Q^{\wedge} _MEZ $)$. */

Svargd ref $=$ SvarTrans.
for $(i=0 ; i<6 ;++i)$
local->Q_ref $[i]=$ joint $[i] ;$
local->Qd_ref[i] $=0.0 ;$
SvarWrite (svarQ_ref);
svarWrite(svarQd_ref);
/* $\underset{/ * / ~}{\text { Int }}$

/*sbsNewBrror (stask, "Clear not defined, still in error state", errcode); ;
return SBS OFF
, return SBS_OFE;

S
*
/* Disable power in hardware.

/* Indicate that the module is off and return. kprintf("int_RSC: OFF\n");
return I_OK;

int int_RSCKill(local, stask)
int_RSCLocal_t *local; *stask;
sbsTask_t
/* Close the external device (the PUMA).
saifinish(local->puma);
/* Indicate that the module is finished and return.
*/ */
kprintf("int_RSC: FINISHED $\backslash n "$);
return I_OK;

$\mathfrak{\Omega}$

if (strcmp (req_data, ${ }^{\text {GRAV_COMP_FREQ") }}=\mathbf{=}=0$)
kprintf("US_RSC_GET EXT_DATA_VALUE: ERROR, Nothing returned for requested
\"\%s \" $\backslash \mathrm{n}$ ", req_data);

[^4]Writing Torques ");

/**/
/* US_RSC_CHECK_ROBOT_POWER
$/ * * * * * \bar{*} * * * * * * * * * \bar{*} * * * * * \bar{*} * / ~$

[^5]/***/
/* US_OK_RSC_MODITFY ATTRIBUTE
$/ * * * * * * * * * * \bar{*} * /, ~$

float * US_ATTRIBUTE_GET_POSITION (void)

$\begin{array}{ll}\text { float } \\ \text { int } & \text { ijoint_ptr; }\end{array}$

[^6]
UTAP Robot Servo Control Module (PIDG controller and Gravity Compensation Modules)

extern void＊US＿RSC＿GET＿EXT＿DATA VALUE（char＊）； extern void＊US＿RSC＿GET＿EXT DATA VALUE（Char＊）；
extern int US OK＿RSC＿OUTPUT REGISTERED OBJ＿ID（ char＊）； extern void US＿OK RSC MODIFY ATTRIBUTE（int，void＊）； extern float＊US－ATTRIBUTE GET POSITION（void） extern int US RSC CHECK ROBOT POWER（void）；
extern void US ERROR LIMIT EXCEEDED（char extern void US＿RSC LIOAD TORQUES（float＊）；
extern void US＿ERROR＿ROBOT＿POWER（char＊）；

${ }_{i}^{\text {void US＿INIT＿RSC（void）}}$
local＝\＆local＿var；
／＊get the attribute IDs for neeced vars from the Object Knowledgebase（OK）．These IDs will be used throughtout the module．
Note that the OK has been implemented in a distributed fashion rather than as
Chimera OS．＊／ void US＿START＿GRAV＿COMP（void）；
void US＿END＿GRAV＿COMP（void）；

／＊＊）

$$
\text { int } i, j, k \text {; }
$$
int i，j，k；
local＝\＆local＿var；
／＊get the attribute IDs for needed vars from the Object
Knowledgebase（OK）．These IDs will be used throughtout the module．
Note that the OK has been implemented in a distributed fashion
rather than as a single module because of constraints of the
Chimera OS．＊／
 local－＞kp $=$（double＊）US＿RSC＿GET＿EXT＿DATA VALUE（＂KPGAINS＂）；
local－＞ki $=$（double $*$ ）US＿RSC＿GET＿EXT＿DATA＿VALUE（＂KIGAINS＂）；
local－＞kV $=$（double＊）US＿RSC＿GET＿EXT＿DATA＿VALUE（＂KVGAINS＂）； US＿RSC＿GET＿EXT＿DATA＿VALUE（＂USE＿GRAV＿COMP＂）；＊（int

 （4 ：\because ：

$\begin{array}{ll}\text { \＃define } \operatorname{rot} 14(s, c, i, 0) & 0[2]=i[0] * s-i[1] * c ; \\ 0[0]=i[0] * c-i[2] * s ; \\ & 0[1]=i[0] * s+i[2] * c ;\end{array}$
\＃define irot14（s，c，i，o） ．
 i［1］＊－i［0］＊s；

ลัきジロシ N NONN

0

[^7]

/* Read measured positions from the hardware.
joint $=$ US ATTRIBUTE GET POSITION():
/* Read measured positions from the hardware.
joint $=$ US_ATTRIBUTE GET_POSITION():
for $(i=0 ; i<6 ;+\overline{+})$)
local $->Q_{2} \operatorname{mez}[i]=$ joint $[i] ;$

local->indexa $=++($ local->indexa) \& MASKA;
local->jindexa $=++(l o c a l->j i n d e x a) ~ \& ~ M A S K A ; ~$
む

\[

$$
\begin{aligned}
& \text { for }(i=0 ; i<6 ;++i) \\
& \text { printf(" } \% f \text { ",local->kp[i]); } \\
& \text { printf("\n"); } \\
& \text { printf("US_INIT RSC: KV gains are: "); } \\
& \text { for }(i=0 ; i<6 ;++i) \\
& \quad \text { printf(" of ",local->kv[i]); } \\
& \text { printf("\n"): } \\
& \text { printf("US INIT_RSC: KI gains are: "); } \\
& \text { for (i }=0 ; i<6 ;++i) \\
& \text { printf(" of ",local->ki[i]); } \\
& \text { printf("\n"); }
\end{aligned}
$$
\]

printf("US_INIT_RSC: Task frequency is $\% f$ Hz\n", local->task_freq);
if (local->use_grav_comp $==1$)
(
printf\{"US_INIT_RSC: Using Gravity Compensation\n");
printf("US_INIT_RSC: Gravity compensation frequency is of
local->grav_comp_freq);
\quad \}
else
printf("US_INIT_RSC: Not using Gravity Compensation $\backslash n ") ;$ /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0; /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0; /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0;
*/
/ / Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0; /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0;
Reset all the velocity calculation values.
local->indexa $=$ AVGA;
local->indexb $=A V G B ;$
local->jindexa $=0 ;$
local->jindexb $=0 ;$
local->ncycle $=0 ;$
local->itimebaseA $=$ INVAVGA * local->task_freq;
local->itimebaseB $=$ INVAVGB * local->taskfreq;
$/ *$ was: local->itimebaseA $=$ INVAVGA * stask->freq;
local->itimebaseB $=$ INVAVGB * stask->freq; */ /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0; /* Initialize integral control to zero.
for $(k=0 ; k<6 ;++k)$
local->integral $[k]=0.0 ;$
/* Zero position storage to start.
$* /$
for (i $=0 ; i<3 ;++i)$
for (j $=0 ; j<16 ;++j)$
f local->posm[i][j] $=0.0 ;$
if (j<4)
local->posw[i][j]=0.0;
/* Reset all the velocity calculation values.

printf("US_INIT_RSC:
local->indexb $=++($ local->indexb $) \&$ MASKB;
local->jindexb $=++($ local->jindexb $) \& ~ M A S K B ;$
/* Check if qref values are out of range */ flag=0; if (local->Q ref [0]<J1LO || local->Q ref (0) $>$ UHA)

 if (llocal->Q_ref [3]<J4IO || local->Q_ref [3]>J4HI) if (local->Q_ref [4]<J5LO || local->Q_ref[4]>J5HI) if ($10 c a 1->Q_{\text {_ }}$ ref $[5]<J 6 L O$ || local->Q_ref[5]>J6HI)
if (flag=6;

rēturn;
/* Perform independent joint PID control with gravity compensation. */ /* Perform gravity compensation at the rate specified in the
if ((counter: (int) local->grav_comp_freq) $=0$) /* Is it time? */

*

* Precompute sines and cosines. Oniy compute vaiues for joints
 needs very little compensation. for ($i=1$; $i<5$; ++i)
temp $=$ (double) local->Q_mez[i];
cosine $[i]=\cos ($ temp $)$
sine $[i]=\sin (t e m p) ;$
/* Call the gravity compensation routine */
gravcomp(sine, cosine, local->I_grav);

$/ * / ~$
$/ * \quad$ US_START_GRAV_COMP

void US_START_GRAV_COMP (void)
$/ *$ turn gravity compenstation on $* /$
local->use_grav_comp $=1$;

/* turn gravity compenstation off $* /$
local->use_grav_comp $=0 ;$
$/ *)$ /**/* Internal Functions */ $/$ */ $/ * \quad$ Internal Functions
$/ *$
$/ * /$

$$
\begin{aligned}
& \text { static void gravcomp(double *s, double *c, float t[]) } \\
& \left\{\begin{array}{llll}
\text { (} \\
\text { static double } p 1[3] & =\{0.0, & 0.0, & 0.0\} ; \\
\text { static double } p 2[3] & =\{\text { PUMA560_A2, } & 0.0, & \text { PUMA560_D3]; } \\
\text { static double } p 3[3] & =1 & \text { PUMA560_A3, } & 0.0, \\
\text { static double } p 4[3] & =10.0, & - \text { PUMA560_D4, } & 0.0\} ; \\
\text { static double } p 5[3] & =\{0.0, & 0.0, & 0.0\} ;
\end{array}\right.
\end{aligned}
$$

Obtain $\mathrm{t}[3]$.

[^8]

Object Knowledgebase
(This is the attempt that was made to implement the
OK as a separate module. See Chapter 3 for a discussion of why this code

\#include <chimera.h>
\#include <sbs.h>

/* **/
/* <NONE> */
/* **/
/* module 'Local t' definition as required by Chimera \quad */
/* Can the position in the structure be used as the ID? Yes, that is
Obj_ID */
How are new attributes added 'on the fly' during runtime? For our
system, all data needed must be known ahead of time */

®
int utap_OKOn(local, stask)
sbsTask_t *stask;
printf("Object Knowledgebase: ON $\backslash n$ ");
utap_OK_status $=$ UTAP_OK_ON;
kprinté $(" \backslash$ nutap_OKOn:
status
return I_OK;

int utap oKCycle(local, stask)
sbsTask_t *stask;
return I_OK;

int utap OKOff(local, stask) utap_OkLocal_t *local; *stask;
kprintf("utap_OK: OFF\n");
utap_OK_status $=$ UTAP_OK_OFF;
\} return I_OK;

/**/,

int US OK OUTPUT REGISTERED OBJ ID(name)
int ${ }^{\text {inar } *_{\text {name }}}$;
/* returns the index value of the requested object. This value
repesents throp is returned if the specified object does not

kprintf("utap_ok: Getting Requested object ID...\n");
kprinte ("utap_ok: svar address = 8 p \n", svar);
return svarIndex (svarTranslate (svar, name));
/* The following two functions need to implement
handing ability in case the module is off */

Ist Lt Kevin Anchor He graduated from Westside High School in Augusta, G.A, in 1987 and enrolled at Clemson University in Clemson SC, in the fall of 1987. He received a Bachetor of Science degree in Electrical Engineering on December 12, 1991, and he received his commission in the United States Air Force that same day.

His first assignment was at Wright-Patterson Air Force Base, OH, as a staff engineer in the Avionics Directorate of the Aeronautical Systems Center. He then moved to the B-2 System Program Office, also at Wright-Patterson AFB, as the Responsible Engineer for several of the B-2's avionics systems. In June of 1994, he entered the School of Engineering at the Air Force Institute of Technology

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).
Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87-30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:
C - Contract
PR - Project
G - Grant
TA - Task
WU - Work Unit Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency

 Report Number. (If known)Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

> DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.
NASA - See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.
DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

[^0]: \#include <chimera.h>

[^1]: typedef struct $\{$
 float *Qref;
 | display_testLocal_t;

[^2]: This module will do nothing since the UTAP module points to the same
 data that the Interface module points to. Thus, the data is already state Table at the conclusion of this cycle */

[^3]: All Chimera-specific initialization is handled in this module. The
 UTAP init module is then called to perform UTAP initialization $* /$

 * Get pointers to state variables.
 local->Q mez = svarTranslateValue(svar->vartable, "Q MEZ", float); local->Qd_mez = svarTranslatevalue (svar->vartable, "Q̃" MEZ", float);
 local->Q_ref = svarTranslatevalue (svar->vartable, "Q_REF", float);

[^4]: int US_OK_RSC_OUTPUT_REGISTERED_OBJ_ID (name)

[^5]: void US_ERROR_ROBOT_POWER (error_msg)
 char ${ }^{\text {*error_msg; }}$

[^6]: void US_ERROR_IIIMIT_EXCEEDED (er -
 char
 *error_msg;

 $$
 \begin{aligned}
 & \text { UTAP_RSC_ERROR_FLAG = UTAP_ERROR_JOINT_OUT_OF_RANGE; }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \begin{array}{l}
 \text { void US_RSC_LOAD_TORQUES (torque_ptr) } \\
 \text { float *torque_ptr; } \\
 \quad \text { int i; }
 \end{array} \\
 & \begin{array}{l}
 \text { UTAP_RSC_ERROR FLAG = UTAP_ERROR_JOINT_OUT_OF_RANGE; } \\
 \text { kprintf("UTAP ERROR: \% } \% \text { Sn", error_msg); }
 \end{array} \\
 & \text { int i }
 \end{aligned}
 $$

[^7]:

[^8]: 1* Obtain t[2].
 scalarmult(m3, a3, F3);
 rot14(s4, c4, f4, tempa);
 add2vecs(tempa, F3, f3);
 xprod(p3, f3, tempa);
 add2vecs (fullt, tempa, tempb);
 xprod(q3, F3, tempa);
 add2vecs(temp, tempa, n3);
 rot35(s3, c3, n3, fullt);
 $t[2]=$ fullt $[2] ;$

