Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

6-1996

A Methodology for Reengineering Relational Databases to an
Object-Oriented Database

Pedro A. Linhares Lima

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Linhares Lima, Pedro A., "A Methodology for Reengineering Relational Databases to an Object-Oriented
Database" (1996). Theses and Dissertations. 6147.
https://scholar.afit.edu/etd/6147

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6147?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/96J-01

A METHODOLOGY FOR REENGINEERING
RELATIONAL DATABASES TO
AN OBJECT-ORIENTED DATABASE
THESIS

Pedro A. Linhares Lima, Major, Brazilian Air Force

AFIT/GCS/ENG/96J-01

DIIC §uanyre o

VIPISTRD B

Approved for public release; distribution unlimited

19960718 120

o

* DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
" CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

AFIT/GCS/ENG/96J-01

A METHODOLOGY FOR REENGINEERING RELATIONAL

DATABASES TO AN OBJECT-ORIENTED DATABASE

THESIS
Presented to the faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Science

Pedro A. Linhares Lima, B. S.

Major, Brazilian Air Force

JUNE, 1996

Approved for public release; distribution unlimited.

ii

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States

Government.

jii

Acknowledgments

I would like to thank my advisor, Doctor Thomas C. Hartrum, for his trust,
guidance, and assistance during this research effort. He provided motivation without
limiting the learning from the freedom to explore. I also wish to thank my readers,

Doctor Henry Potoczny and Doctor Eugene Santos Jr.

Special thanks to Doctor Blaha for explaining some points of his methodology

and answering some questions concerning reengineering tools.

Finally, I would like to thank my wife, Ana Cristina R. Linhares Lima, for her
support and understanding during the time consuming thesis process. She provided

encouragement and motivation to complete the thesis and the AFIT program.

Pedro Arthur Linhares Lima

iv

Table of Contents

ACKNOWLEDGMENTS v
TABLE OF CONTENTS \'
TABLE OF FIGURES VIl
ABSTRACT X
1 Introduction 1
1.1 Background. 1

1.2 Problem. 3

1.3 Hypothesis. 3

1.4 Research Objectives. 3

1.5 Test case. 4

1.6 Assumptions. 5

1.7 Sequence of Presentation. 6

2 Summary of Current Knowledge 7
2.1 Treatment and Organization. 7

2.2 Software Reengineering. 7

2.3 Reengineering of Relational Databases. 9

2.4 Object-Oriented Methodology. 14

2.5 Conclusion 15

3 Methodology 16

3.1 Introduction
3.2 The Methodology

3.3 Summary

4 Application of Methodology
4.1 Introduction
4.2 ER Model
4.3 Object Model
4.4 Functional Model

4.5 Summary

5 Implementation Issues
5.1 Introduction
5.2 Analysis and Choice of the OODBMS
5.3 Implementation of the Object Model
5.4 Limitations of Foxpro Encountered During Implementation

5.5 Summary

6 Analysis, Conclusions, and Recommendations
6.1 Analysis of The Results
6.2 Conclusion

6.3 Recommendations

APPENDIX A: LIST OF TABLES WITH SSAN

APPENDIX B: THE ENTITY RELATIONSHIP DIAGRAM

APPENDIX C: THE OBJECT MODEL

vi

16

16

27

28

28

28

31

36

37

38

38

38

39

43

44

45

45

46

48

50

54

58

APPENDIX D: THE FUNCTIONAL MODEL 82
APPENDIX E: IMPLEMENTATION OF THE OBJECT MODEL 90
APPENDIX F: LIST OF ABBREVIATIONS 101
BIBLIOGRAPHY 102

VITA

vii

Table of Figures

FIGURE 1: RELATIONSHIP BETWEEN TERMS [5]

FIGURE 2: VARIOUS APPROACHES TO IDENTIFY THE PRIMARY KEY [2]

FIGURE 3: DOUBLE BURIED ASSOCIATION

FIGURE 4: OPTIONAL QUALIFIED ASSOCIATION

FIGURE 5: ALTERNATE QUALIFIERS

FIGURE 6: TRANSITIVE CLOSURE INVOLVING GENERALIZATION AND ASSOCIATION [1]
FIGURE 7: SQL STATEMENT TO FIND TABLES WITH SSAN AS AN ATTRIBUTE

FIGURE 8: INITIAL OBJECT DIAGRAM BEFORE THE DATA ANALYSIS

FIGURE 9: BINARY ASSOCIATION

FIGURE 10:

FIGURE 11:

FIGURE 12:

FIGURE 13:

FIGURE 14:

FIGURE 15:

FIGURE 16:

FIGURE 17:

FIGURE 18:

FIGURE 19:

FIGURE 20:

FIGURE 21:

FIGURE 22:

FIGURE 23:

FIGURE 24:

QUALIFIED ASSOCIATIONS

ER DIAGRAM (PERSON)

ER DIAGRAM (RESIDENT STUDENT 1)

ER DIAGRAM (RESIDENT STUDENT 2)

ER DIAGRAM (RESIDENT STUDENT 3)
PERSON’S OBJECT MODEL

PERSON OBJECT MODEL (CONT.)
RESIDENT STUDENT OBJECT MODEL
RESIDENT STUDENT OBJECT MODEL (CONT.)
GRADE HISTORY ASSOCIATION

GRADE CHANGE HISTORY ASSOCIATION
STUDENT COURSES ASSOCIATION
DROPPED COURSE ASSOCIATION
WAIVED COURSE ASSOCIATION

EDUCATION HISTORY ASSOCIATION

viii

19

23

24

24

26

29

34

34

35

54

55

56

57

58

59

60

61

61

62

62

62

62

63

FIGURE 25:

FIGURE 26:

FIGURE 27:

FIGURE 28:

FIGURE 29:

FIGURE 30:

FIGURE 31:

FIGURE 32:

FIGURE 33:

FIGURE 34:

FIGURE 35:

FIGURE 36:

FIGURE 37:

FIGURE 38:

FIGURE 39:

FIGURE 40:

FIGURE 41:

FIGURE 42:

FIGURE 43:

STARS APPLICATION LEVEL 0 DFD
PERFORM ACTION LEVEL 1 DFD

MENU OPTION LEVEL 2 DFD

HANDLE SELECTION LEVEL 2 DFD
PERFORM SELECTION LEVEL 3 DFD
PERFORM INSERTION LEVEL 4 DFD
PERFORM UPDATE LEVEL 4 DFD
PERFORM DELETION LEVEL 4 DFD
TABLE’S RELATIONSHIP IN STARS DATABASE
PERSON’S CLASS

MILITARY’S CLASS
MILITARY_STUDENT’S CLASS
MILITARY_RESIDENT _STUDENT’S CLASS
MILITARY_INTIL._STUDENT’S CLASS
CIVILIAN’S CLASS

CIVILIAN_STUDENT’S CLASS
CIVILIAN_RESIDENT STUDENT’S CLASS
CIVILIAN_INTL_STUDENT’S CLASS

ADDRESS’ CLASS

ix

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

AFIT/GCS/ENG/96J-01

Abstract

This research proposes and evaluates a methodology for reengineering a
relational database to an object-oriented database. We applied this methodology to
reengineering the Air Force Institute of Technology Student Information System
(AFITSIS) as our test case. With this test case, we could verify the applicability of the
proposed methodology, especially because AFITSIS comes from an old version of
Oracle RDBMS. We had the opportunity to implement part of the object model using
an object-oriented database, and we present some peculiarities encountered during this
implementation. The most important result of this research is that it demonstrated that
the proposed methodology can be used for reengineering an arbitrarily selected
relational database to an object-oriented database. It appears that this approach can be

applied to any relational database.

A METHODOLOGY FOR REENGINEERING RELATIONAL

DATABASES TO AN OBJECT-ORIENTED DATABASE

1 Introduction

The software reengineering process has been used to solve many problems
involving legacy systems. It has been helping companies to recover and to update
documentation, design, and requirements of important systems. Most of the time
thousands of lines of code are the only source of the business rules, and are the starting
point in the process of reverse engineering. Software reengineering has been playing
an important role and has been proven to be very effective in extending the lifetime of
many applications.

All systems have a limited lifetime. Each implemented change erodes the
structure which makes any following changes more expensive. As time goes on, the
cost to implement a change will be too high, and the system will not be able to support
its intended task. The reengineering process plays an important role by not allowing

the system to reach this condition.

1.1 Background.

The goal of reengineering is to mechanically reuse past development efforts in
order to reduce maintenance expense and improve software flexibility. Reengineering
is applicable to diverse software such as programming code, databases, and inference
logic [1].

There are many possible motives for the reverse engineering of databases [2]:

Migration between database paradigms. One may want to migrate
between database paradigms, for example from past hierarchical, network,
and relational databases to modern relational and object-oriented databases;
Migration within a database paradigm. A more mundane task would be
to migrate between different implementations of a database paradigm, for
example from one vendor’s relational database to another relational
database;

Documentation. Reverse engineering can elucidate poorly documented
existing software when the developers are no longer available for advice;
Tentative requirements. Reverse engineering of existing software can
yield tentative requirements for the new replacement system. Reverse
engineering ensures that the functionality of the existing system is not
overlooked or forgotten,;

Assessment of software. The quality of the database design is an indicator
of the quality of the software as a whole. An understanding of the concepts
supported by the underlying database schema allows one to better judge
functionality claims;

Integration. Reverse engineering facilitates integration of related legacy
applications and purchased applications. A logical model of encompassed

software is a prerequisite for integration;

e Conversion of legacy data. One must fully understand the logical
correspondence between the old database and the new database before

attempting to convert data.

1.2 Problem.

The main difficulty to reengineering relational databases is the lack of a robust
process that can be applied in all cases. Most of the existing processes for database

reverse engineering are inadequate; they assume too high a quality of input information
[2].
1.3 Hypothesis.

The maintenance of a relational database application can be improved by:

1. Reverse engineering the system to develop an object-oriented model;

2. Redesigning the system using an Object-Oriented Methodology;

3. Changing the Database Management System to one that supports an object-

oriented approach.

1.4 Research Objectives.

In order to solve the problem stated above and establish the validity of the
above hypothesis, the following objectives were established:

1. Define an appropriate reverse-engineering methodology;

2. Determine an appropriate database application to be a test case;

3. Analyze and reverse engineer the test case using this methodology;

4. Redesign the test case using object-oriented methods;

5. Implement a portion of the new design in an Object-Oriented Database
Management System prototype system;

6. Analyze the methodology based on this experience.

1.5 Test case.

With the intention of conducting directly useable research in the field of
software reengineering, the director of the Communication Computer System of the Air
Force Institute of Technology (AFIT/SC) was contacted. Discussions led to the
discovery that his working group was facing a significant reengineering task which
could be used as a basis test case for this thesis research.

In 1987 the Air Force Institute of Technology (AFIT) contracted the
development of an automated system called Student Tracking and Registration System
(STARS). This system is used for scheduling courses, registering students in courses,
tracking academic histories of students, and generating related reports. The STARS
application uses the Structured Query Language (SQL) to access an Oracle Relational
Database Management System (RDBMS) Version 6. This system also uses the
following tools: the SQL-Forms, SQL-ReportWriter, SQL-Menu, VMS, and Batch
files [3]. From the time the system was designed until this thesis effort, requirements
have been changing. Some of these changes were implemented, while others were not.

Even though this system is only eight years old, it is already considered old or a
legacy system. This quick obsolescence was caused mainly by the following [4]:

1. Changes were made to incorporate some new requirements; however,

documentation was not updated;

2. Past leaders who lacked software knowledge;

3. New technology;

4. Poor training;

5. Lack of focus on changing needs.

The Air Force Institute of Technology Student Information System (AFITSIS)
was chosen as the test case in implementing a new method for reengineering relational
databases to an Object-Oriented database.

AFITSIS is currently designed and implemented using relational technology and
unfriendly user interface mechanisms. This old design and technology cause the
maintenance to be difficult, because there are no maintainability features. This lack of
maintainability demands a lot of time and effort every time new requirements are
implemented on the system. Additionally, the system is inflexible and complex,
requiring for each change up to five hundred forms and reports to be updated and

checked for consistency.

1.6 Assumptions.

The following assumptions were made for the thesis research:

1. The decision to reengineer AFITSIS instead of starting the analysis and
design of a new system is the best decision;

2. Access to AFITSIS and query information from the database are available;

3. Access to an Object-Oriented Database Management System (OODBMYS) is

available for use.

1.7 Sequence of Presentation.

The thesis is divided into six chapters. Chapter I, Introduction, has provided an
overview of the work. Chapter II, Summary of Current Knowledge, discusses the
background information which provides the foundation for this research. Chapter III,
The Methodology, presents a proposed methodology for reengineering a relational
database to an object-oriented database. Chapter IV, Application of the Methodology,
presents the application of the proposed methodology using AFITSIS as a test case.
Chapter V, Implementation Issues, discusses how the selected part of AFITSIS was
implemented using an OODBMS. Lastly, Chapter VI, Analysis, Conclusions, and
Recommendations, analyzes the results obtained from the application and
implementation of the methodology, draws conclusions from this analysis, and makes

recommendations for futures applications of this methodology.

2 Summary of Current Knowledge

2.1 Treatment and Organization.

This literature review provides the foundation to create a methodology for
reengineering relational database applications to an object-oriented database. This
chapter is divided into three sections: software reengineering, reengineering of
relational databases, and object-oriented methodology. The software reengineering
section gives an overview of the software reengineering process. The reengineering of
relational databases section presents the basic steps when reverse engineering relational
databases. The object-oriented methodology section describes the stages used by
developers to analyze a problem, design a system, and implement the system into a

usable product.

2.2 Software Reengineering.

Reengineering, also viewed as both renovation and reclamation, is the
examination and alteration of a system to reconstitute it in a new form. Reengineering
usually includes some form of reverse engineering (to achieve a more abstract
description) followed by some form of forward engineering or re-structuring [5].

Reverse engineering is a process of examination and analysis of the subject to
identify its components and create a higher level form of abstraction [5]. It can start at
any stage of the life-cycle and it does not involve changes to the subject. Its sub-
products include the design recovery and the redocumentation of the subject. Forward

engineering can be easily understood as a process of moving from a high-level of

abstraction to low-level or physical details. It is the same as the traditional method of
developing a new system. This term is used only to distinguish this process from
reverse engineering. Figure 1 illustrates the basic ideas of software reengineering

using, for simplicity, only three life-cycle stages of software.

Requirements
(business rules)

Design Implementation

Forward Forward
engineering engineering
Renovation Renovation
Reverse Reverse

engineering

engineering

recovery

Restructuring Restructuring Redocumentation,
restructuring

Figure 1: Relationship between terms [5]

The objectives of Software reengineering can be grouped into four main areas
[6]:

1. Improve maintainability. The maintenance efforts can be reduced by
reengineering smaller modules with more explicit interfaces. However, it is
not easy to measure progress toward this goal.

2. Migration. This task usually deals with altering and converting program
structure. This goal can be easily measured, since the system will perform
the same operation in the new environment.

3. Achieve greater reliability. This goal can be easily reached because the
restructuring process usually causes most of the potential defects to appear.
The other factor that contributes to better software reliability is the extensive
testing required to prove the functional equivalence between the old and the
new system. This goal can be readily measured by fault analysis.

4. Preparation for functional enhancement. Once the programs are
decomposed into smaller modules, it is easier to isolate them from one
another. This makes it simpler to change or add new functions without

affecting other modules.

2.3 Reengineering of Relational Databases.

The goal of reengineering is to mechanically reuse past development efforts in
order to reduce maintenance expense and improve software flexibility. According to

Hainaut [7] the most tractable approach for database applications is to first reverse

engineering the database and then deal with the programming code. Object-oriented
models provide a natural language for facilitating the reengineering process. An
object-oriented model can describe the existing software, the reverse-engineering
semantic intent, and the forward-engineered new system.

In general, the mapping between object models and a database schema is many-
to-many. Various optimizations and design decisions can be used to forward engineer
an object model into a database schema. Similarly, when reverse engineering a
database, alternate interpretations of the structure and data can yield different object
models. Usually there is no obvious, single correct answer for reverse engineering.
Multiple interpretations can all yield plausible results [2].

A good way to begin reverse engineering is by entering the existing schema into
a CASE tool. Associations will often be found in a degraded form such as relational
database foreign keys. Inheritance must be implemented in a degraded manner for
current relational database managers. The schema may then be gradually transformed
to a logical model as underlying relationships are inferred.

Jacobson [8] presents a good approach for reengineering old systems to an
object-oriented architecture, but he does not give much information when dealing with
relational databases. The same problem exists when considering other approaches for
reengineering like those of Bennett [9] and Sneed [6]; they are not focusing on
relational databases.

A good approach is suggested by Blaha [1], [2]. His papers present some

typical implementation strategies that are used for forward engineering. He explains in

10

detail each step to be taken for reverse engineering of relational databases. The basic
steps he suggests are:
Step 1. Prepare an initial object model.

e Represent each table as a tentative class. All columns of tables

become attributes of classes.
Step 2. Determine candidate keys.

e Look for unique indexes. Automated scanning of data can yield

potential candidate keys.
Step 3. Determine foreign-key groups.

e Try to resolve homonyms, attributes with the same name that refer to
different things, and synonyms, attributes with different names that
refer to the same thing.

e Matching attribute names, data types, and/or domains may suggest
foreign keys.

e During this step do not attempt to determine specific reference-
referent attribute pairs — but merely groups of attributes within which
foreign keys may be found.

Step 4. Refine tentative classes.

e Agglomerate horizontally partitioned classes into a single class.
(horizontally partitioned classes must also have the same semantic
intent.)

e Detect functions and constraints that are represented as tables.

11

Step 5. Discover generalizations.

e Analyze large foreign-key groups, particularly those with 5, 10, or
more cross-related attributes.

e Look for patterns of many replicated attributes.

e Look for patterns of data where a class has mutually exclusive subsets
of attributes.

e When discovering generalizations do not forget there may be a forest
of generalizations with multiple superclass roots and intermediate
levels.

Step 6. Discover associations.

e Convert a tentative class to an association when a candidate key is a
concatenation of two or more foreign keys.

e Introduce a qualified association when a candidate key combines a
foreign key with non-foreign key attributes.

e The remaining associations are buried and manifest as foreign keys.

e Note minimum multiplicity for associations. Optional multiplicity is
the permissive case; a lower limit of one (or another number) is more
restrictive.

e Note maximum multiplicity for associations. Many multiplicity is the
permissive case; an upper limit of one (or another number) is more

restrictive.

12

e Apply semantic understanding and restate some associations as

aggregations. Aggregation is the “a-part-of” relationship.
Step 7. Perform transformation.

e Convert a class to a link class as needed.

e Lightweight one-to-one associations should be more simply
represented as an attribute.

e Nonatomic n-ary associations should be decomposed into their
constituent associations of lesser order.

e Consider shifting associations via transitive closure.

e Double-buried associations should be merged into a single
association.

e You may need to insert an intermediate class in a generalization
hierarchy to recognize common semantics, attributes, and
associations.

e Transitive closure also arises through the combination of
generalization and association. = Where possible, eliminate an
impfecise association to a superclass in favor of a more restrictive
association to a subclass.

e Similarly, eliminate associations to subclasses by recognizing patterns

of commonality.

13

2.4 Object-Oriented Methodology.

One of the primary reasons for adopting object technology is the promise of
faster development and reduced maintenance costs. In traditional systems, ongoing
maintenance costs amount to more than 80% of the overall cost of the system [10].
Object-oriented systems promise to reduce maintenance costs through reusable objects
that can dramatically reduce maintenance. In many cases, developers only need to
identify an object class that functions like the object that they desire to create, and
specify the differences between the object and their new object. This type of code
reusability can dramatically reduce development and maintenance costs.

Object-oriented methodology allows developers to analyze problems and divide
them into entities residing in specific states and exhibiting certain dynamic behaviors.
The entities become objects in the system. The designer defines the relationships
between the objects to determine how the system functions as a whole. The four
specific stages of object-oriented methodology are [11:4-6]:

1. Analysis. During the analysis stage, the developer defines the system
requirements. Objects are identified and their relationships to other objects
are recorded. There are no implementation decisions in this stage. Three
models are defined in this stage: an object relationship model, a dynamic
model, and a functional model;

2. System Design. In this stage the system’s architecture is determined. The

application is broken into subsystems. Control mechanisms are defined for

14

each subsystem. The focus is on what needs to be done, and not how it is
to be done;

3. Object Design. During this phase, the object relationship model, dynamic
model, and functional model are evaluated to determine what operations
must be implemented for each object. Structures for representing the
relationships between objects are defined.

4. Implementation. The final stage involves transforming the design into an
executable system. This is dependent on whether the software language

selected supports object-oriented programming.

2.5 Conclusion

This literature review has provided an overview of the basic concepts of
software reengineering, the reengineering of relational databases, and object-oriented
methodology. All three of these areas are required for the successful analysis and

implementation of the new methodology.

15

3 Methodology

3.1 Introduction

This chapter presents the methodology for reengineering a relational database to
an object-oriented database. It shows the methodology step by step explaining each
step in detail, including some discussion of typical implementation techniques that one
can find during the process of reverse engineering.

This methodology is based on Blaha [1] [2] with some changes. His papers
were selected because they are focused specifically on reverse engineering of a
relational database to an object-oriented database and they are the only ones that give
detailed information on this subject.

Some changes were introduced on his approach just to facilitate the transition
from relational to an object-oriented view. The most important changes are:

1. Construct an entity-relationship model instead of going directly from the

tables to an object model;

2. Besides the object model, prepare a functional model to facilitate the

implementation of the system.

3.2 The Methodology

This methodology is presented in a linear fashion for ease of understanding,
but, except for the first and last step, the others steps are weakly ordered since during
the process of reverse engineering there is much iteration and backtracking. The steps

are as follows:

16

Step 1. Prepare an entity-relationship (ER) model.

This step can be easily accomplished by using an automated tool. Otherwise

proceed as listed below:

e Represent each table as an entity.

e Determine candidate keys. Look for unique indexes, but some candidate
keys may not be enforced by unique indexes. Automated scanning of data

can yield potential candidate keys.

e Determine primary keys. Ordinarily every table should have a primary key.

But exceptions can be encountered as follow:

1. Tables with temporary data or tables which the performance

overhead can not be tolerated.

2. Missing primary key without cause. Some applications enforce
primary keys with custom code and do not rely upon the database

manager.

3. Null primary key attributes. Some relational database managers
require that one define a unique index to enforce a primary key.
Indexed attributes are permitted to be null, unless “not null” is
specified for each of the attributes. This violates the definition of

primary key; attributes in a primary key may not be null.

17

4. Extraneous primary key attributes. By definition a primary key must

also be minimal; no attribute can be discarded from the primary key
without destroying uniqueness. The reverse engineer must regard all
primary key declarations with suspicion, and look for attributes that

do not seem semantically justified.

Even when tables do have a primary key, different realizations may still be

chosen. Figure 2 shows relational tables for three different approaches to

identify the primary key. All three schemas can be reverse engineered to

the same logical model.

Artificial identity. Each object table (shown in Figure 2) has an
object identifier as primary key. Association tables (not shown in
Figure 2) have a primary key consisting of the identifiers of the

related objects.

Value-based identity. The primary key of each object consists of
some combination of application attributes. Some primary keys may
become lengthy, as attributes are incorporated from foreign key of

related tables.

Hybrid identity. One may use artificial identity and value-based
identity in the same schema. In the third segment of Figure 2 Bank
has artificial identity and Account has identity derived from a

reference to a bank combined with an account number.

18

Reverse engineering input: Artificial identity

Bank Account
bank ID account ID
bank name bank ID

account number

{Candidate key of bank is: bank name.}
{Candidate key of Account is: bank ID + account number.}

Reverse engineering input: Value-based identity

Bank Account

bank name bank name
account number

Reverse engineering input: Hybrid identity

Bank Account
bank Id bank ID
bank name account number

{Candidate key of bank is: bank name.}

Reverse engineering output: Logical intent

Bank Account
account number

bank name

Figure 2: Various approaches to identify the primary key [2]

e Determine foreign-keys. Most of the modern RDBs have a foreign-key

clause as part of the schema. If you do not have this do the following:

e Try to resolve homonyms, attributes with the same name that refer to
different things, and synonyms, attributes with different names that

refer to the same thing.

19

e Matching attribute names, data types, and/or domains suggest

foreign keys.

e Generate the relationships by checking every possible foreign key against

every candidate key.

e Finish the ER model by querying the data and determining the multiplicity

of each relationship.

Step 2. Prepare an initial object model.

Based on the ER diagram, represent each entity as a tentative class and each
relationship as a tentative association. All columns of the related tables become

attributes of classes.

Step 3. Refine tentative classes.

Agglomerate horizontally partitioned classes into a single class. Horizontally
partitioned classes have the same schema. Distributed databases often use horizontal
partitioning to disperse records. (Horizontally partitioned classes must also have the

same semantic intent. Identical schema is a good indicator of same semantic intent.)

Detect functions and constraints that are represented as tables and take these
classes out of the tentative object model. Look for classes that do not participate in any

foreign key.

20

Step 4. Discover generalizations.

Analyze large foreign-key groups, particularly those with 5, 10, or more cross-
related attributes. Look for a primary key that is entirely composed of a foreign key of
another table. Derived identity is symptomatic of an implementation of generalization
with distinct superclass and subclass tables or propagation of identity via one-to-one
association. Data analysis can increase confidence in the discovery of generalization by

revealing subsets of records.

Look for patterns of many replicated attributes. A generalization may have

been implemented by pushing superclass attributes down to each subclass.

Look for patterns of data where a class has mutually exclusive subsets of
attributes. This may indicate an implementation of generalization where subclass

attributes were pushed up to the superclass.

When discovering generalizations one must not forget there may be a forest of
generalizations with multiple superclass roots and intermediate levels. Data analysis
can help distinguish multiple, disjoint, and overlapping inheritance. (Keep in mind that
data analysis only yields hypotheses, and semantic understanding is required to reach

firm conclusions.)

Step 5. Discover associations.

Convert a tentative class to an association when a candidate key is a

concatenation of two or more foreign keys. Where possible, try to restate ternary and

21

n-ary associations (confluence of primary keys from three or more classes) as binary

associations[2].

Introduce a qualified association when a candidate key combines a foreign key

with non-foreign key attributes. This will find some, but not all, qualifiers.
The remaining associations are buried and manifest as foreign keys.

Note minimum multiplicity for associations. Optional multiplicity (nulls
allowed) is the permissive case as for a given record you may store an actual value or
store a null; a lower limit of one (or another number) is more restrictive.

Note maximum multiplicity for associations. = Many multiplicity is the
permissive case as a collection can store a single value or many values; an upper limit
of one (or another number) is more restrictive.

Apply semantic understanding and restate some associations as aggregations.

(Aggregation is the “a-part-of” relationship.)

When discovering associations be aware to the following kind of

implementations that one may encounter [2]:

e Double-buried associations. This is when an association was buried in
both participating classes as shown in Figure 3. This construct complicates
reverse engineering, since these double-buried associations look like two
separate associations. Data analysis can detect redundancy between the dual

pointers, but semantic understanding is required to resolve this situation.

22

Model as implemented

A table B table
A primary key B primary key
B foreign key A foreign key
other A attributes other B attributes
Logical intent
A B

Figure 3: Double buried association

Optional qualified association. Figure 4 shows an optional qualified
association. A cluster contains many Tables. A Table may belong to at
most one Cluster. The combination of a Cluster and a table# yields a
specific Table. This association was implemented by burying cluster id as a
foreign key in Table. Because of the optional membership in a cluster, the
foreign key can be null, and the combination of cluster id and table# is not
a candidate key of Table. Therefore it is difficult to detect this qualified

association.

Alternate qualifier. In Figure 5 Column derives its identity from a Table

plus a qualifier, either column name or column number.

23

Model as implemented

Table
table#

Cluster O

Logical intent

Cluster M Table

Figure 4: Optional qualified association

Model as implemented

Column table Table table
column primary key table primary key

table foreign key
column name
column number

other column attributes

other column attributes

{Candidate key of Column table is:
table foreign key + column name,
table foreign key + column number. }

Logical intent

column name or

Column
column number

Table

Figure 5: Alternate qualifiers

Step 6. Perform transformation.

Various optimizations may have been employed in preparing the original RDB

schema to improve time and/or space performance. Some transformations are listed

here [1].

24

Convert a class to a link class as needed. A link class is an association
whose links can participate in associations with other classes. An

association has derived, rather than intrinsic, identity.

Lightweight one-to-one associations (they have no attributes) should be
more simply represented as an attribute. For example, it is unnecessary to
represent city as a class, when city-name is the only attribute of interest.
Nonatomic n-ary associations should be decomposed into their constituent
associations of lesser order. Binary associations are most common and
easier to understand. We may find ternary association, but never an
association of higher order.

Consider shifting associations via transitive closure. For example
associations from A to B and B to C could possibly be restated as
associations from A to B and A to C. In general, multiplicity constrains
derivation of association, but the vague multiplicity limits often obtained
through reverse engineering allow more latitude.

Double-buried associations should be merged into a single association. For
example, an association between A and B may have been buried in both the
A and B classes.

You may need to insert an intermediate class in a generalization hierarchy
to recognize common semantics, attributes, and associations.

Transitive closure also arises through the combination of generalization and

association. Where possible, eliminate an imprecise association to a

25

superclass in favor of a more restrictive association to a subclass. For
example, in Figure 6 if our semantic knowledge is that X only associates
with B and never with C, then we can eliminate the association between X

and A and the association between X and C.

IAI
—

Figure 6: Transitive closure involving generalization and association [I]

e Similarly, eliminate associations to subclasses by recognizing patterns of
commonality. In Figure 6, if all instances of B partition across classes D
and E, we can eliminate the association between X and D and the
association between X and E.

Step 7. Prepare a functional model.

The functional model describes computations within a system, and specifies the
results of this computation without specifying how or when they are computed.

Database system often have a trivial function model, since their purpose is to store and

organize data, not to transform it [11:123].

26

One can prepare the functional model only using the user manual, the forms,

and, if necessary, interviewing the users.

3.3 Summary

This chapter has presented the methodology for reengineering a relational
database to an object-oriented database. This methodology is heavily based on Blaha
papers [1] and [2], except for the first step, that was introduced to facilitate the
transition from relational to an object-oriented view, and the last step, that was
introduced to give more information about the functionality of the system. It showed
each step to be followed with some discussion of typical implementation techniques.
The next chapter presents the application of this methodology using AFITSIS as a test

casc.

27

4 Application of Methodology

4.1 Introduction

This chapter presents the application of the proposed methodology using
AFITSIS as a test case. It is divided into three sections: the first section shows how
the ER model was obtained. The next section presents the transformations that were
made to the ER model to obtain the object model. The last section shows how the

functional model was drawn.

Following direction of the sponsor (AFIT/SC), this analysis is restricted to
those tables and forms that have some relationship to the Person table. This restriction
does not invalidate the work, since about 66 of 294 tables from the entire AFITSIS are

considered.

4.2 ER Model

To accomplish the first step of the methodology, which is to draw the ER
model, we used ERwin (an ER diagram editor developed by Logic Works [12]). Since
AFITSIS was developed for Oracle version 5, which does not support foreign-key
clauses, and migrated to Oracle version 6 without changes, ERwin was able to capture
only the tables and its attributes (all 294 tables from AFITSIS). If you are reverse
engineering a RDB that supports foreign-key clauses, ERwin can recover not only the
tables and their attributes, but also foreign-keys, the relationships between tables, and

can draw the entire ER model.

28

We started our work identifying the Person’s primary key (SSAN). Next we
selected all tables that have this primary key as an attribute by querying the Oracle data

dictionary (Figure 7). This query resulted in 66 tables (Appendix A).

SELECT table_name
FROM accessible_columns
WHERE column_name
like “%SSAN%”;

Figure 7: SQL statement to find tables with SSAN as an attribute

The next step was to determine the candidate keys for each of the selected
tables. We looked for unique indexes in the data dictionary, and for each one that we
found we scanned the data to confirm the correctness. For the other tables for which

we could not find a unique index, we had to scan the data.

During the process of scanning the data to look for the primary key, we were
able to find many tables that have no data, tables that have not been used for many
years, and tables that were used as a temporary files. After we confirmed that they

were not being used by any form, we eliminated these tables from our diagram.

We looked for foreign key groups by matching attribute names and types. We
did not have any complication in this step, especially because the names are very

suggestive and we did not find any homonyms nor synonyms.

Next, we were able to generate the relationships between the entities by

checking every possible foreign key against every candidate key, and linking the

29

related entities using ERwin. In our model we did not consider as a relationship the
link of a table with a validation table, via its foreign key. For example: Address table
has as foreign keys the attributes Address type code, Street type code,
Address_room_type_code, and country_code; which are the primary key of the
following validation tables (table look up): Address_type valid,
Street_type code valid, = Address room_type code valid, and Country valid,

respectively.

To finish the ER model (see Appendix B) we queried the data to determine the

multiplicity of each relationship, doing the following:

e One-to-one association. To determine a one-to-one association we verified
if for each row in one table of the relationship there was only one entry into

the other table.

e One-to-one-or-more association. For this type of association we verified
whether for each row in one table we found at least one or more entries

into the other table.

e One-to-zero-or-one association. In this case we verified whether for each
row in one table we could find zero or exactly one entry into the other

table.

o One-to-zero-one-or-more association. Now we verified whether for each

row in one table we found zero or more entries into the other table.

30

4.3 Object Model

To draw the object model we started preparing an initial object diagram (step 2)

based on the ER diagram, where we represented each entity as a tentative class and

each relationship as a tentative association. We transformed all columns of the related

entity into the attributes of the class.

We started refining the object model (step 3) by looking for horizontally

partitioned classes (classes with the same schema) and representing them as a single

class. This is what we found:

The classes Term _entry and Term_entry history had the same schema and

the same semantic intent. We merged them into a single class;

The classes Selected_student, Selected student 91, and
Selected _student new 91, had the same schema but, after checking the
data, we determined that the classes Selected student 91 and
Selected_student new 91 were used as temporary files. We retained only

the class Selected_student and eliminated the others.

Then we looked for tables that could have been representing functions and/or

constraints, but we did not find any.

We started the process of discovering generalization (step 4) by looking for

large foreign-key groups. Although we found a couple of tables in this case we

31

realized that these tables were not involved in a generalization but in a binary or

ternary association.

Generalization was found when we started looking for any class that had its
primary key entirely composed of a foreign key of another class. We took these

classes apart and analyzed their relationship.

To do a good analysis of this kind of relationship we had to improve our
semantic knowledge of the system. We did that by making some queries and analyzing
its results, by looking up the forms, and by interviewing the Database Administrator
(DBA). After that, we were able to take these classes and select those involved in a
generalization from those involved in an association. For example: the tables
Spouse_info, Emergency data, AFIT user name, Recall roster,
Dependent_information, and Graduation_name all have their primary key entirely
composed of Person’s primary key, but they have no inheritance relationship with this

table.

Semantic knowledge was especially important to incorporate some abstract
classes. For example, in the object diagram in Figure 15 (Appendix C), the abstract
classes Civilian and Military were introduced after we discovered that Faculty, Student,
and Administrative people could be either military or civilian, but only military people
have a relationship with Rank_history and Recall roster. So, we decided to introduce
these two abstract classes to increase code reuse and to organize features common to

these subclasses.

32

Another generalization chain was encountered when we analyzed Student,
CI student, Resident student, and INIL student tables. We found out that every
instance of CI student and Resident student was in the Student table, and that every

instance of INTL_student was in the Resident_student table.

We introduced the class Parz-time_student to represent another kind of student,
after we discovered that this class was implemented as an attribute of Resident student
class called program_code. One of the valid values is ‘PTE’, meaning ‘part-time

student’.

Data analysis was very important to increase confidence in the discovery of
generalization. Figure 8 shows our initial object diagram where we made some
assumptions based on our understanding of the system. But, after we analyzed the data
in the Eligible, Selected students, and Student tables, we discovered that, contrary to
our assumption, not all instances of Student could be found in the Selected student
table, and that not all instances of Selected student could be found in the Eligible table.
This data analysis led us to change our object diagram to the one shown in Appendix

C.

We continued our work of drawing the object model by discovering other
associations (step 5). We started this step by looking for candidate keys composed of
two or more foreign keys, and we converted it into an association. Figure 9 shows one
binary association that we found. All the other associations can be seen in Appendix

C.

33

Administrative

Person Rank History
Civilian Military Eligible
Ket':all_roster
Faculty Selected
Students
Student
Advises

| Resident student Cl-student

INTL-Student

Figure 8: Initial object diagram before the data analysis

Course k

Resident
\/ Student

Dropped
Course

Figure 9: Binary association

34

We introduced a qualified association when we found a candidate key that
combined a foreign key with a non-foreign key attribute. Figure 10 shows some of the
qualified associations that we introduced to reduce the effective multiplicity of the
association (from many to one), to improve semantic accuracy, and to increase the

visibility of navigation paths.

Languages Language Change_date | Name History

Spoken

Dependent Person Spouse
- | .
Children O Information

Sponsor Country

Address Address_type Country_code e
reference

@)
Dependent

Information

Figure 10: Qualified associations

In our research we were not able to find the following cases of association:

e Association that could be representing an aggregation;

e Double-buried associations;

e Optional qualified association;

35

¢ Alternate qualifier.

We started our final step (step 6-perform transformation) to get the object model
by transforming each lightweight one-to-one association into an attribute. We found a
one-to-one association of Person with AFIT user name and Person with
Emergency data and we transformed these associations into attributes of Person
(Person Structure Definition, Appendix C). We did the same with a one-to-one
association of Resident student with Graduation_name (see Resident Student Structure

Definition, Appendix C).

We did not find any class that could be better represented as a link class. This
does not mean that none of our classes is a link class; the only restriction is that our
view is limited, since our research is concerned with only part of AFITSIS. We did
not have to do any work to decompose n-ary associations into their constituent
associations of lesser order, especially because we had only binary associations. Our
complete object model, including the object structure definition, can be seen in

Appendix C.

4.4 Functional Model

In order to get the functional model done we initially made use of the STARS
User’s Guide [3] to select the boundaries of what we were going to implement, and
then limited our work in doing the functional model to this specific part. We used

SQLForms to extract the name of the tables that each form can read or update, what

36

actions the form is doing, and all the other information needed to draw the functional

model. The complete functional model is shown in Appendix D.

4.5 Summary

This chapter has presented the application of the proposed methodology using
AFITSIS as a test case. It showed how the ER model was obtained, the
transformations that were made on the ER model to get the object model, and how the
functional model was drawn. The next chapter discusses the implementation of part of

AFITSIS using an OODBMS.

37

5 Implementation Issues

5.1 Introduction

This chapter presents the implementation issues concerning the development of
part of AFITSIS using an OODBMS. It is divided into three sections: the first section
discusses how we analyzed several OODBMS and why we chose Microsoft Visual
Foxpro (Foxpro) version 3 to be used in this implementation. The next section shows
how part of the object model was implemented. The last section discusses some

limitations encountered when using Foxpro as an OODBMS.

5.2 Analysis and Choice of the OODBMS

During the process of choosing one OODBMS to implement part of AFITSIS

we took the following considerations:

e Based on the interview [4], AFIT/SC wanted to migrate AFITSIS to an
OODBMS. However, before making any decision, they will wait for Oracle
Company to release version 8, expected to be an extension of the RDBMS

with some object capabilities;

e Since Oracle version 8 is not expected to reach the market until the end of
1996 or beginning of 1997, and with the intention of doing a useful
implementation, we looked for an available RDBMS that would have some
similarities with the expected Oracle version 8. These similarities that we

were concerned about are: the product should be able to use all the power

38

and flexibility of RDBMS, like Data Definition Language (DDL) and Data
Manipulation Language (DML), share the basic relational tables, and
incorporate some concept of “object,” and have the ability to store

procedures as well as data in the database.

With these considerations in mind we started analyzing some available
OODBMS. The first two OODBMS that we analyzed were ITASCA and Objectstore.
Even though we concluded that each is a very good OODBMS, we decided not to use
either of them because they are heavily based on some language like C or C+ +, and

they have no compatibility and similarity with any RDBMS.

The next product that we analyzed was Foxpro. Once we had some experience
in using an old version of Foxpro and knowing that it is a RDBMS, we concentrated
our analysis to see if the new object-oriented features would be compatible with what
we wanted. After we read the Foxpro Developer’s Guide [13] and used it for two
weeks, we were convinced that this product could give us a good means of comparison

and insight of what we could expect when we have the Oracle version 8 available.

5.3 Implementation of the Object Model

We started the implementation of our object model by creating a new project
and inserting a new database that we called Stars. In Foxpro the terms database and
table are not synonymous. The term database refers to a relational database that stores

information about one or more tables or views [13]. The database is where we can

39

create stored procedures (that can be used as field- and record-level rules) and

persistent table relationships (to enforce referential integrity).

After we created the Stars database we created the definition of the tables that
we were going to use, their primary key and indexes, and we added these tables to the
database. Then we linked the tables to set up the relationships (Figure 33, Appendix
E), so that we do not need a code program to check the referential integrity every time
an application tries to modify the database. The database manager system takes care of

it whenever the database is opened and used.

The next step was to create the forms, one for each table. After that, we were
ready to start creating the definitions of the classes. To implement the Person’s Object

Model (Figure 15, Appendix C) we did the following:

e We created the Person’s class based on the Person’s form (Figure 34,

Appendix E);

e We created the Military’s class based on the Person’s class and adding the

Military’s form (Figure 35, Appendix E);

e We created the Military student’s class based on the Military’s class and

adding the Student’s form (Figure 36, Appendix E);

e We created the Military faculty’s class based on the Military’s class and

adding the Faculty’s form,;

40

e We created the Military resident student’s class based on the
Military student’s class and adding the Resident student’s form (Figure 37,

Appendix E);

o We created the Military INTL student’s class based on the
Military Resident student’s class and adding the INTL student’s form

(Figure 38, Appendix E);

e We created the Civilian’s class based on the Person’s class and adding the

Civilian’s form (Figure 39, Appendix E);

e We created the Civilian student’s class based on the Civilian’s class and

adding the Student’s form (Figure 40, Appendix E);

e We created the Civilian faculty’s class based on the Civilian’s class and

adding the Faculty’s form;

e We created the Civilian resident student’s class based on the
Civilian_student’s class and adding the Resident student’s form (Figure 41,

Appendix E);

e We created the Civilian INTL student’s class based on the
Civilian resident_student’s class and adding the INTL _student’s form (Figure

42, Appendix E);

The reason we created the classes this way was to give more flexibility and to

make the classes easier to maintain. For example: if we need to make some change in

41

person’s class we do not have to modify all the other classes that use it. Because of the
inheritance feature, the changes that we make in the parent class reflect over the
subclasses automatically; and if we need to overload some parent method (function,
procedure, trigger, or event) so that it takes a different action when running the
subclass, it can be easily achieved by just creating a method in the subclass with the
same name as the parent class. This way the subclass method will have precedence

over the parent class method.

We implemented binary associations by first creating a view with the related
tables and then creating a form based on this view. For example: the association
between Person and Address (Figure 16, Appendix C) was implemented by creating a
view with Person and Address tables, and then creating a form using this view, the

Person class, and the Address form (Figure 43, Appendix E).

We implemented a binary association with link attributes by creating a new
table with these link attributes and the primary key of the two associated tables as
foreign keys. We created a form based on this new table, and a class based on this
form. For example: the Dropped Courses Association (Figure 22, Appendix C) was
implemented by creating a Dropped courses table having the primary key of the
Course and Resident student tables as foreign keys, plus the link attributes. Then we
created a form base on the Dropped courses table and a class Dropped courses based

on this form.

42

5.4 Limitations of Foxpro Encountered During Implementation

During the implementation of our object model we faced two major problems
when using Foxpro as an OODBMS. The first one is that in Foxpro we can’t define
one class based on a table by only adding its methods. Instead, we have to define the
table, define one form based on this table, and then define the class based on this form
and add the methods. Actually, this peculiarity does not cause much of a problem
(when you need to modify some attribute, you have to change the table structure and its

related form), but it is a little different from what we learned in theory [11].

Another problem encountered is that Foxpro did not appear to support multiple
inheritance. To implement the Person’s Object Model (Figure 15, Appendix C),
instead of defining only one class for Student, Faculty, and Administrative, we had to
define the classes Military student, Military faculty Military administrative,
Civilian_student, Civilian_faculty, Civilian_administrative, and so on. This restriction
may cause some problems if the subclass has other relationships. For example: the
relationship Advises between Faculty and Resident student (Figure 15, Appendix C),
has to be implemented by defining one relationship Advises from Civilian_faculty to
Civilian resident student and Military resident student, and the same relationship
Advises from Military faculty to Civilian_resident_student and

Military resident_student.

43

5.5 Summary

This chapter has presented the implementation issues of part of AFITSIS. Some
OODBMS were analyzed and Foxpro was chosen because of its similarity to what we
are expecting for Oracle version 8. We showed the implementation techniques that we
used to implement inheritance and some associations. During the implementation we
found two limitations in using Foxpro as an OODBMS. One is that we can’t define a
class directly from a table and the other is that it does not support multiple inheritance.
With this implementation done, we had the last piece of information necessary to make

an analysis and conclusion of our research. That is presented in the next chapter.

44

6 Analysis, Conclusions, and Recommendations

6.1 Analysis of The Results

In Chapter III we presented a methodology for reengineering a relational
database to an object-oriented database. To validate this methodology we applied it to
reengineering AFITSIS as a test case. As we presented in Chapter IV, this
methodology is easy to use in practice. We did not have any difficulty when following

its steps.

Our methodology has the purpose of reengineering a relational database,
independent of the kind of the RDBMS and its version. With our test case, we had the
opportunity to verify this applicability, especially because AFITSIS comes from an old
version of Oracle RDBMS. This way we could apply most of the steps of what we
proposed in the methodology. For example: to accomplish the first step of the
methodology, which is to draw the ER model, we used ERwin. Since AFITSIS was
developed for Oracle version 5, which does not support foreign-key clauses, ERwin
was able to capture only the tables and their attributes. Since ERwin was not able to
draw the entire ER model and facilitate this job, we really had to apply the
methodology and follow its steps to recover the foreign-keys and the relationships

between tables.

When applying our methodology to draw the object model we found out that

semantic logic can play an important role, especially to discover generalization and to

45

incorporate some abstract classes. Another important factor that we found that
increased our confidence in the discovery of generalization was data analysis. After we
analyzed the data we could change our first object diagram to the one shown in
Appendix C. Even though in our test case we were not able to apply our methodology
to exemplify the discovery of all kinds of associations, we were able to find some of

them.

The most important result of this analysis is that it demonstrated that the
proposed methodology can be easily used for reengineering any relational database to
an object-oriented database, filling the lack of a robust process that can be applied in all

cases.

6.2 Conclusion

The life span of an information system consists of specification, design and
maintenance. The maintenance phase dominates in time and often with respect to
resources as well. During this phase the system is subjected to a number of changes
and additions. The gap between the older technology in the system and the new
technology that becomes available increases successively. Changes in the activities of

an organization also mean that systems grow old.

Gradually the system approaches a limit where it no longer is cost-efficient or
even technically feasible to continue the maintenance. But the cost of enforcing the

required changes is usually very high [8]. A possible way out of this dilemma is to

46

define well delimited system parts that are candidates for modernization. This is where

reengineering can help.

We have described a practical method for reengineering. The method is based
on object-oriented modeling. We have described how the work can be divided into a

number of steps so that the method can be performed in a systematic manner.

We have used AFITSIS as a test case and have shown that with this method we
can model an existing system in a simple manner and with limited effort. The new

model is object-oriented and can serve as a basis for a future development plan.

We have implemented part of AFITSIS using Foxpro, one OODBMS that we
have chosen because of its similarities with the expected Version 8 of Oracle. From
this experience we were able to see that our object model can be easily mapped to be

implemented using another OODBMS.

The six research objectives, as stated in Chapter I, were:

1. Define an appropriate reverse-engineering methodology;

2. Determine an appropriate database application to be a test case;

3. Analyze and reverse engineer the test case using this methodology;

4. Redesign the test case using object-oriented methods;

5. Implement a portion of the new design in an Object-Oriented Database
Management System prototype system,;

6. Analyze the methodology based on this experience.

47

The research was successful in all the original objectives. We presented a
practical methodology that can be applied for reengineering any relational database
system. We chose AFITSIS as a test case, we applied our methodology for
reengineering it, we obtained an object and functional model from this work, and we
implemented this model using an OODBMS. Finally, one of the most important
lessons that we have learned when working with reengineering is that in general, the
mapping between object models and schemes are many-to-many. Various optimizations
and design decisions can be used to transform an object model into a database schema.
Similarly, when reverse-engineering a database, alternate interpretations of the
structure and data can yield different object models. Usually, there is no obvious,
single correct answer for reverse engineering. Multiple interpretations can yield

plausible results [1].

6.3 Recommendations

For those who intend to use the object model obtained from our test case, we
recommend that you revise this model making another data analysis. This is because
we had restricted access to AFITSIS tables, since they record confidential information.
Doing this you can have more confidence on the model, and may find some important

information that we were not able to uncover.

Even though Foxpro was demonstrated to be a good OODBMS to be used in
our test case, I recommend further analysis concerning its security of the data. This is

because security is an important aspect to be considered for adopting an OODBMS to

48

implement AFITSIS, and Foxpro does not appear to have any mechanism to restrict the

access to the databases (for example: password with level of access.)

49

Appendix A: List of Tables with SSAN

(PX): Primary key; (Fk): Foreign key.

Address: SSAN (Pk) (Fk), Address Type Code (Pk), Address Line 1, Address Line 2, Address Line 3,
City, State Code, Zipcode, Zipcode_Extension, Country Code, Area_Code, Phone Number,
Address_Effective Date, DSN_Prefix, Login Name, Firm_Name Office Symbol,
Additional Address Information, Street Address, Street_Type _Code,
Address Room Type Code, Address Room_Type Number, Revision Name, Revision_Date,
Country, Login_Date, Phone Number Ext.

Address Data_Final: SSAN (Pk) (Fk), Address_Type Code (Pk),Firm_Name_ Office_Symbol,
Additional _Address Information, Street_Address, City, State_Code, Zipcode,

Zipcode Extension, Street Type Code, Address_Room_Type_Code,
Address Room_Type Number, Area_Code, Phone_Number, Address_Effective_Date,
DSN_Prefix, Login_Name, Revision_Name, Revision_Date, Country.

AFITnet_User_Name: SSAN (Pk) (Fk), Login_Name, Input_Date, User_Name, User_UID,
Host_Accnt_Created

Ci_Student: SSAN (Pk) (Fk), MajorO0Ocareer_Pointer_Code, Academic_Status_Code,
Accounting_Status Code, Book Payment Authorize Code, Ci Student Comment,
Civilian_Institution_Code, Corps_Code, Course_ Of Study, Current00ASC Code,
Current00ewi_Option_Code, Email_Address, Grad_Date, Gre_Status_Code,

Hpsp Medical Code, Ida_Date, Kit Sent Date, MAJCOM_Abbrev, Major00ASC_Code,
Motorcycle Status_Code, Motorcycle Train Date, Office_Code , Overseas_Indicator,
Program_Entry Date, Quota Program_Code, Report No_Earlier Than Date,

Report No Later Than_Date, Residence00Ostate Code, Residency Status_Code,
Selected0OASC Code, Selected00career Pointer_Code, Selected00ewi_Option_Code,
Selected Date, Selected Quota Year, Thesis Diss Required_Code,

Thesis_Program Complete_Date, Type Degree_Code, Input_Date, Login Name,
Ewi0Ooccupation_Series Code, Scholarship Type Code, DLI_Language Code,

Af Acad Sponsor_Dept Code, No_Cost_Indicator, Esp_Code, Book_Qtrs_Paid,

DLI _Entry Date, School In_Civ_Ins Code, Remarks, Advance_Flag.

Class_Leader: SSAN (Pk) (Fk), Leader_Code (Pk), Program_Graduation00Term_Code, Class_Code,
Program_Year Prefix.

Degree_Awards: AFIT Degree_Code (Pk) , SSAN (Pk) (Fk), Career_Pointer Code, Grad_Status_Code,
Pse_Code, Grade Rank Abbrev, Name Prefix, Name_Suffix, First Name , Last Name ,
Middle Initial, Birth Date, Sex_Code, Race_Code, Marital Status Code, Religion_Code,
Blue Chip Indicator, Aka_Fname, Aka Lname, Prior AFIT Months, Tafms_Date,
Ethnic_Group Code, Aero Rating_Code, Manning_Code, Deros_Date, Separation_Date,
Commission_Code, Grade Rank_Date, CitizenshipOOcountry Code, Department_Code,

Duty Title, Duty Phone, Duty Area_Code, Badge Number, Academic_Action_Code,
Overdue Indicator, Classification Code, Part Record_Indicator, Admin_Hold_Indicator,
Major00ASC Code, Academic_Specialty, Major0Oed_Level Code, Ed_Level, Program_Code,
Program, Program Graduation0Oterm_Code, Class_Code, Program_Year Prefix,
Selected Type Code, Selected_Type, AFIT_Degree, Graduation00term_Code,
Graduation0Oquarter Code, Graduation Year Prefix, Graduation Date, Departure Date,
Box_Number, Card_Number, Encoded_Card Number, Library Number, Locker Number,
Admit_Date, Student Sponsor SSAN, Entry0Oterm_Code, Entry0Oquarter Code,

Entry Year Prefix, Admission_Type Code, Admission_Action_Code, GainingDOAFSC_Code,
Faculty Advisor SSAN, Registration0Odepartment_Code, Program_Effective0Oterm_Code,
EffectiveO0quarter Code, Effective Year Prefix, Leader Code, Program_Section_Number,

50

Gain0OOMAJCOM_Abbrev, Gain00duty Station, Losing0OMAJCOM_ Abbrev,
Double Degree Indicator, Branch_Service Code.

Dependent_Children: SSAN (Pk) (Fk), Child_Last Name (Pk), Child_First Name (Pk),
Dependent_Child Birth Date, Dependent_At AFIT_Indicator, Child00sex_Code.

Dependent_Information: SSAN (Pk) (Fk), Number_Children, Sngle_Dep_Chldrn_Indicator,
Deps_At_AFIT Indicator.

Drop_Table: Course_Prefix_Code (Pk) (Fk), Course_Number (Pk) (Fk), Course_Section (Pk) (Fk), SSAN
(Pk) (Fk), Course Dropped Date, Drop_Reason.

Edplan_Desc: Career_Pointer_Code (Pk), SSAN (Pk) (Fk), Description, Description_Line_Number.

Education_History: MPC_School_Code (Pk) (Fk), Ed_Level Code (Pk), SSAN (Pk) (Fk),

Type Degree Code, ASC_Code, Quality Points, Total Credit_Hours,
Method Of Obtainment_Code, Academic_Ed_Status_Code, Input_Date, Operators_Initials,
Login Name, Last Year Attended, ABET Accredited_Indicator, Ed_History Remarks,
Work ID_Processed_Code, TrnscrptOOcareer Pointer_Code, Duty Location_Code,

Degree Cum_Gpa, Degree_Title.

Eligibility: SSAN (Pk) (Fk), Eligibility Evaluation_date (Pk), Pre_ AFITOOEd Level_Code (Pk),
Counse;or_Initials, Elig__Overall_GPA, Elig_Math_GPA, Elig,Major_GPA,
Evaluation_Status Code, List Number.

Emergency_Data: SSAN (Pk) (Fk), Emergency Contact_Fname, Emergency_Contact_Lname,
Emergency Relation, Address Line_1, Address_Line_2, Address_Line_3, City, State_Code,
Zipcode, Zipcode Extension, Country_Code, Area_Code, Phone Number, Country,

Firm Name Office_Symbol, Additional Address_Information, Street Address,
Address Room_Type Code, Address_Room_Type Number, Street Type Code,
Revision Name, Revision_Date, Login_Name, Login_Date.

EN_Program_Leader: SSAN (Pk) (Fk),ENOOLeader Code, EN_Student00Program_Code,
Program_Graduation_Term_Code, Class_Code, Program_Year Prefix.

Evaluation_By_School: SSAN (Pk) (Fk), Admitted Indicator, Evaluation_Result_Remark,

Evaluation Forwarded Date, Forwarded_ToOODepartment Code, Evaluation_Returned Date.

Faculty: SSAN (Pk) (Fk), AFIT School Code, Academic_Instruction_Indicator,

Appointment Type_Remark, Faculty Type Code.

Faculty History: SSAN (Pk) (Fk), Academic_Rank_Code (Pk), Academic_Rank_Date, Academic_Step.

Fitness_Performance: SSAN (Pk) (Fk), Fitness_Category Code(Pk), Elapsed Time, Trial Time,
Input_Date, Login Name, Distance.

Grade_Change_History: Course_Prefix_Code (Pk) (Fk), Course_Number (Pk) (Fk), Course_Section (Pk)
(Fk), SSAN (Pk) (Fk), Term_Code, Grade_Effective Date, Prior00grade_Code.

Grade_History: Course Prefix_Code (Pk) (Fk), Course_Number (Pk) (Fk), Course_Section (Pk) (Fk),
SSAN (Pk) (Fk), Term_Code, Approval_Code, Approval Date, Career_Pointer Code,

Credit Hours, Earned Hours_Indicator, Gpa_Indicator, Grade_Code, Grade_Effective_Date,
Login Name, Grade Type Code, Input Date, Prior00grade_Code.

Graduation_Attendees: SSAN (Pk) (Fk), Graduation00term_Code (Pk), Graduation0Oquarter Code,
Graduation_Year Prefix.

Graduation_Date_History: SSAN (Pk) (Fk), Graduation00term_Code, Effective00term_Code,
Grad_Status_Code, Departure_Date, GraduationOOquarter_Code, Graduation_Year_Prefix,
Effective0Oquarter Code, Effective_Year Prefix, Login_Name, Input_Date.

Graduation_Name: SSAN (Pk) (Fk), Graduation_Name.

Intl_Student: SSAN (Pk) (Fk), WSCN, ITO, Case_Number, DLI_Req_Indicator, DLI_Indicator,
Evaluation Request_Date, Requested00program_Code, Eval Forward Date,

Forward ToOOdepartment Code, Eval Returned_Date, Admission_Status_Code, Eval_Remarks,
Country Notified Date, AFSAT Notified Date, AFSAT_Quota_Indicator, First_Sponsor SSAN,
Second_Sponsor SSAN, Source_Of Funds_Code, AFSAT_Country_Code.

IP_Attendee: SSAN (Pk) (Fk), IP_Activity_Code (Pk), Activity_Date (Pk).

Languages_Spoken: SSAN (Pk) (Fk), Language_Code (Pk).

LS_Part_Time: SSAN (Pk) (Fk), PT_LS_Student00Program_Code (Pk).

LS Section_Leader: SSAN (Pk) (Fk), SectionNumber (Pk), LS00Leader Code (Pk).

51

Majors: Career Pointer_Code (Pk), Major (Pk), SSAN (Pk) (Fk), Login_Name, Input_Date.

Name_History: SSAN (Pk) (Fk), Name_Change Date (Pk), First Name, Last Name, Middle_Initial,
Name_Suffix, Name Prefix, Login_Name, Marital Status Code.

New_AFSC: SSAN (Pk) (Fk), AFSC_Code (Pk), Prefix.

OER Data: SSAN (Pk) (Fk), Last. OER_Date, OER_Due_Date.

PCE_Grade: SSAN (Pk) (Fk), PCE_Couse_Prefix (Pk), PCE_Couse_Number (Pk), PCE_Couse_Letter
(Pk), PCE_Couse Year, PCE00Grade_ Code.

PCE_Std: SSAN (Pk) (Fk), PCE_Stay Begin_Date (Pk), PCE_Stay End_Date, PCE0O0Billeting_Code,
MAJCOM_Code.

Person: SSAN (Pk), Grade Rank Abbrev, Name Prefix, Name Suffix, First Name , Last Name
Middle Initial, Birth Date, Sex_Code, Race_Code, Marital Status Code, Religion Code,
Blue Chip_Indicator, Aka Fname, Aka Lname, Prior AFIT Months, Tafms_Date,
Ethnic_Group Code, Aero Rating_Code, Manning_Code, Deros_Date, Separation_Date,
Commission_Code, Grade_Rank_Date, Citizenship0Ocountry_Code, Department_Code ,

Duty Title, Duty Phone, Duty Area_Code, Badge Number, Branch Service Code,
Login_Name, Input_Date, Duty Phone Ext.

Personnel: SSAN (Pk) (Fk), Personnel00Department Code, Personnel_Hire Date, Personnel Duty_Title,
Phone Number.

PHD: SSAN (Pk) (Fk), PHD_ Major Remark, PHD Minor Remark.

Planes_Flown: SSAN (Pk) (Fk), Plane_Name.

Program_History: Program_Code (Pk), Program_Graduation00Oterm_Code (Pk),
Program_Effective0Oterm Code (Pk), SSAN (Pk) (Fk), Input_Date, Faculty Advisor SSAN,
Class_Code, Program_Year Prefix, Ed_Level Code, ASC_Code, Login_Name,
EffectiveOOquarter_Code, Effective Year Prefix, Carecer Pointer Code, AFIT Degree Code.

Program_STD_Sections: SSAN (Pk) (Fk), Section_Number (Pk).

Rank_History: SSAN (Pk) (Fk), Grade_Rank_Abbrev (Pk), Grade_Rank_Date, Login_Name,
Input_Date, Manning_Code, Branch_Service_Code.

Recall_Roster: SSAN (Pk) (Fk), Home_Phone_Number, Next_In_Chain_SSAN.

Registration_Verification: SSAN (Pk) (Fk), Term_Code, Quarter_Code, Year_Prefix,

Registration Notice.

Resident_Student: SSAN (Pk) (Fk), Academic_Action_Code, Overdue_Indicator, Classification_Code,
Part Record Indicator, Admin_Hold Indicator, Major00ASC_Code, Major00ed Level Code,
Program_Code , Program_Graduation0Oterm_Code, Class_Code , Program_Year Prefix,
Selected Type Code, AFIT Degree Code, Graduation00term_Code , Graduation0Oquarter_Code
, Graduation_Year Prefix, Grad_Status Code, Departure Date, Box Number, Card Number,
Encoded Card Number, Library Number, Locker Number, Admit_Date,

Student_Sponsor SSAN, Entry00term_Code, Entry0Oquarter_Code, Entry_Year Prefix,
Admission_Type Code, Admission_Action_Code, Career_Pointer_Code, Gaining00AFSC_Code,
Faculty_Advisor_SSAN, Registration0Odepartment_Code , Program_Effective00term_Code,
Effective00quarter Code, Effective Year Prefix, Leader Code, Program_Section Number,
Gain0OMAJCOM_ Abbrev, Gain00duty Station, Losing0OMAJCOM_Abbrev, Pse_Code.

Section_Leaders: Leader_Code (Pk), SSAN (Pk) (Fk), Program_Code, Class_Code,
Program_Section_Number.

Selected_Comments: SSAN (Pk) (Fk), Selected Comment.

Selected_Projection: SSAN (Pk) (Fk), Gain0OMAJCOM_Code, Gain00MAJCOM_Abbrev,

Gain_ MAJCOM_Supervisor, Gain_MAJCOM_Supervisor_Phone, Gain MAJCOM_DSN_Prefix,
Gain_MAJCOMOODepartment_Code, Position_Number_Projected.

Selected_Student: SSAN (Pk) (Fk), Selected0OASC_Code, Selected00ed_Level_Code,

Selected Quota_Year, Selected00ewi_Option_Code, Pca_Indicator, Quota_Program_Code,
List Number, Report_No_Earlier Than_Date, Report No_Later Than_Date,
Projected_Start Date, Assign_Avail Date, Assign_Reason_Code, MAJCOM_Abbrev,
Projected_Entry Class, Selected_Date, Input_Date, Login_Name, Selected Type Code,
Selected0OAFSC _Code, Reselection Code, MPC School _Code, Pse_Code,
Assign00department_Code.

52

Selected_Student_Archive: Selected_Quota_Year (Pk), SSAN (Pk) (Fk), Selected00ASC_Code,
Selected00ed Level Code, Selected00ewi_Option_Code, Pca_Indicator, Quota Program Code,
List Number, Report No_Earlier_Than_Date, Report No_Later Than_Date,
Projected Start_Date, Assign_Avail Date, Assign_Reason_Code, MAJCOM_Abbrev,
Projected Entry_Class, Selected Date, Input_Date, Login_Name, Selected_Type_Code,
Selected0OAFSC Code, Gain0OOMAJCOM_Code, Gain0OOMAJCOM_Abbrev,
Gain MAJCOM _Supervisor, Gain_ MAJCOM_DSN_Prefix, Gain MAJCOM_Supervisor_Phone,
Gain MAJCOMOOdepartment Code, Position_Number_Projected, Reselection_Code, Pse_Code,
MPC_School Code, Assign00Odepartment_Code.

Sponsors_Country_Prefere: SSAN (Pk) (Fk),Ce, Preferred0Ocountry Code (Pk).

Spouse_Info: SSAN (Pk) (Fk), Spouse_Birth_Date , Spouse_Fname , Spouse_Lname,
Spouse_At_AFIT Indicator, Spouse_Nickname, Spouse In_Military_Indicator,
Spouse Occupation, Spouse_Remarks.

Student: SSAN (Pk) (Fk), Last Name, First Name, Department_Code, Grade_Rank_Abbrev,
Program_Code, Class_Code, Grad Term, Date_Entered, Revision Date.

Student_Address: SSAN (Pk) (Fk), Address_Type (Pk), Address_Type_Desc, Address_Line 1,
Address Line 2, City, State, ZIP, ZIP_Ext.

Student_Courses: Course_Prefix_Code (Pk) (Fk), Course_Number (Pk) (Fk), Course_Section (Pk) (Fk),
SSAN (Pk) (Fk), Term_Code, Hours, Grade, Calculated Field.

Student_Duty History: Duty_Sequence_Number (Pk), SSAN (Pk) (Fk), Duty_Title, Duty0OAFSC_Code,
Duty Organization, Duty_Station, Duty Assigned_Date, Login_Name.

Student_Sequences: Program_Sequence_Code (Pk), SSAN (Pk) (Fk).

Term_Entry: SSAN (Pk) (Fk), Entry00term_Code, EntryOOquarter Code, Entry_Year Prefix,
Admission_Type Code, Admission_Action_Code.

Term_Entry_History: SSAN (Pk) (Fk), Entry0Oterm_Code, Entry00Oquarter_Code, Entry Year_Prefix,
Admission_Type Code, Admission_Action_Code.

Test_Scores: Test Type_Code (Pk), SSAN (Pk) (Fk), Test_Taken_ Date, Test_Score, Login_Name,
Input Date.

TDY_Attendees: SSAN (Pk) (Fk), Left For TDY_Date (Pk), Returned From_TDY_Datee,
TDY Destination_Code, TDY_Purpose.

Thesis_Diss_Book_Allowance: SSAN (Pk) (Fk), Allowance_Code, ASC_Code, ED_Level Code.

Transcript SSANS_105643: SSAN (Pk) (Fk), Last_Name, First Name, Middle_Initial, Name_Suffix,
Grade Rank_ Abbrev, Program_Code, Selected_Type_Code, Table_Indicator.

Transcript_Sent: SSAN (Pk) (Fk), Transcript_Sent_Date (Pk), Num_Transcript_Sent.

Transfer_Transcript: SSAN (Pk) (Fk), Course_Prefix_Code (Pk), Course_Number (Pk),
Transfer Course Prefix (Pk), Transfer_Course_Number (Pk), Course_Section,
AFIT00Credit Hours, Earned Hours_Indicator, GPA_Indicator, Transfer Credit_Hours,
Transfer00Grade Code, Transfer Start Date, Transfer End Date, MPC_School_Code,
Soche_Indicator, Trnsfr00Term_Code, Trnsfr00Quarter Code, Trnsfr_Year Prefix,
Trnsfr00Career Pointer Code, Transfer_Course_Title, Transcrip_Course_Title.

Wait_List: SSAN (Pk) (Fk), Course_Prefix_Code (Pk), Course_Number (Pk), Course_Section (Pk).

Waived_Course: Waived0Ocourse Prefix_Code (Pk), Waived00Ocourse_Number (Fk),
Course Prefix_Code (Pk) (Fk), Course_Number (Pk) (Fk), Course_Section (Pk) (Fk), SSAN (Pk)
(Fk), Waived0Ograde Code, Waived_Date.

53

Appendix B: The Entity Relationship Diagram

z

Languages Spoken P

AFIT User name ___1quergency Data
Person z * Recall Roster

q Dependent Info

J

Rank History

Address Name History

[

Dependent Childre

|

z
_—4 Spouse Info

Sponsor Country Preference

T

I] }F |

Cl Student Resident Student Faculty

Figure 11: ER diagram (Person)

54

z Z
Selected Commentsk___ ___.ISelected Projection

Selected Student

Selected Student ¢ Student Duty
Archive History

Student Sequences P___ —ﬁiection Leaders

Student Courses Pi Resident Student 4@

Waived Course
Term Entry
History

@

Term Entry

Figure 12: ER diagram (Resident Student 1)

55

Edplan Desc

Grade History P

Graduation Date
History

Education History

k Resident Student

.| Drop Tables

Registration
Verification

Graduation Name

INTL Student #___
|. 1

1 Degree Awards

Program History

Grade Change
History

Figure 13: ER diagram (Resident Student 2)

56

Grade History

Schedule

___q Student Courses

Grade Change
History

Course

Drop Table

Waived Course

1T

Resident Student

@

Scholls

4.| Education Historyk

Tl

Figure 14: ER diagram (Resident Student 3)

57

Appendix C: The Object Model

Person

Civilian Military I| Rank History

A A recall jroster

Administrative Student Faculty

Advises

Cl-student Part-time student Resident student

JAN

INTL-Student

&This model does not show all the associations related to this object

Figure 15: Person’s Object Model

58

Change_date

Name History

&

Spouse
Information

Country_code

Sponsor Country
Preference

Languages Language
Spoken
Dependent Person
Children
Address Address_type | |
QO
Dependent
Information

&This model does not show all the associations related to this object

Figure 16: Person Object Model (cont.)

59

Student Sequence Leader_code Section
Sequences Leaders

Degree Awards [“AFIT degree | Test_type Test Scores
Student Duty Sequence | —] Test_type Edplan
History Description

Resident Student

Q -
Program History Major
o——

Graduation Date Selected Student
History Archive

O

Selected Selected Selected

Projection O Student G Comments

&This model does not show all the associations related to this object

Figure 17: Resident Student Object Model

60

Student Courses P

Droped Courses | :

d
—
—

Resident
Student

*

|

Registration
Verification

Term_code

—

Grade History

Term Entry
History

Grade Change
History

Education
History

Waived Course P

Term Entry

@This model does not show all the associations related to this object

Figure 18: Resident Student Object Model (cont.)

Schedule F

\/

d

Resident
Student

Grade
History

Figure 19: Grade History Association

61

Schedule Resident
Student

Grade Change
History

Figure 20: Grade Change History Association

Schedule Resident
v Student

Student
Courses

Figure 21: Student Courses Association

Course Resident
v Student

Dropped
Course

Figure 22: Dropped Course Association

Course Resident

v Student
Waived
Course

Figure 23: Waived Course Association

62

schools k

J

Resident
Student

Education
History

Figure 24: Education History Association

63

Person Structure Definition

Object Name: Person
Object Number:
Object Description: General model of a person

Author: Maj Pedro Arthur Linhares Lima
Date: 03/25/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
SSAN SSAN type Social Security Account Number.
lastname String Person’s last name.
firstname String Person’s first name.
name_prefix Prefix type Name prefix.
name_suffix Suffix type Name suffix.
middle_initial Character Name middle initial.
gender {male, female}
birth_date Date type Birth date.
marital_status {single, married, divorced, widow}
race Race type Person’s race.
religion Religion type Person’s religion.
ethnic_group Ethnic type Person’s ethnicity.
badge number Badge number type Badge number.
email_address String Electronic mail address.
academic _ed_status Academic_ed type Academic education status.
duty_title String Duty title.
duty _phone Phone type Duty phone number.
department _code Department type Person’s department.
citizenship_country Country type Person’s country.
login _name String Login name of who made changes.
input_date Date type Date of last change.
Constraints:

Z Static Schema:
Let SSAN_TYPE be the set of all Social Security Account Numbers.
Let DATE_TYPE be the set of all possible dates.
Let PREFIX_TYPE be the set of all possible name prefixes.
Let SUFFIX_TYPE be the set of all possible name suffixes.
Let RACE_TYPE be the set of all possible races.
Let RELIGION_TYPE be the set of all possible religions.
Let ETHNIC_TYPE be the set of all possible ethnic groups.
Let BADGE_NUMBER_TYPE be the set of all possible badge numbers.
Let ACADEMIC_ED_TYPE be the set of all possible academic education types.
Let PHONE_TYPE be the set of all possible phone numbers.
Let DEPARTMENT_TYPE be the set of all possible departments.
Let COUNTRY_TYPE be the set of all possible country codes.

64

Person

SSAN : SSAN TYPE

lastname : String

firstname : String

name_prefix : PREFIX TYPE
name_suffix : SUFFIX_TYPE
middle_initial : Character

gender : {male, female}

birth date : DATE TYPE

race : RACE TYPE

marital_status : {single, married, divorced, widow}
religion : RELIGION TYPE
email_address : String

academic_ed _status : ACADEMIC ED TYPE
ethnic_group : ETHNIC TYPE
citizenship_country : COUNTRY TYPE
department_code : DEPARTMENT TYPE
duty title : String

duty_phone :PHONE _TYPE

badge _number : BADGE TYPE

login name : String

input date : DATE TYPE

65

Military Structure Definition

Object Name: Military
Object Number:

Object Description: General model of a military

Author: Maj Pedro Arthur Linhares Lima

Date: 03/27/96
History: Thesis

Superclass: Person
Components: None
Context: None

Attributes:
rank
branch
date_of rank
AFSC
date_of commission
date_of separation
manning code
DEROS_date
duty effective_date
aero_rating code
MAJCOM
base
blue_chip_indicator
NCO indicator
MPC code
recall roster

Constraints:

Z Static Schema:

Rank type
Branch type
Date type
AFSC type
Date type

Date type
Manning type
Date type

Date type
Aero_rating type
MAJCOM type
Base type
Character
Boolean

MPC type
Person pointer

Military rank.

Branch of service.
Date of rank.

AFSC code.

Date of commission.
Date of separation.
Manning code.
DEROS date.

Date of effective duty.
Aero rating code.
MAJCOM code.

Base code.

Blue chip indicator.
NCO indicator.

MPC code.

Pointer to another military.

Let RANK_TYPE be the set of all possible rank types.
Let BRANCH_TYPE be the set of all possible branch types.

Let DATE_TYPE be the set of all possible dates.

Let MANNING_TYPE be the set of all possible manning types.

Let AERO_RATING_TYPE be the set of all possible aero rating types.
Let MAJCOM_TYPE be the set of all possible MAJCOM types.

Let BASE_TYPE be the set of all possible base types.

Let MPC_TYPE be the set of all possible MPC types.

Let PERSON_POINTER_TYPE be a pointer to a particular person.

66

— Military

rank : RANK TYPE

branch : BRANCH TYPE

date_of rank : DATE TYPE

AFSC : AFSC TYPE

date_of commission : DATE TYPE
date_of separation : DATE TYPE
manning _code : MANNING TYPE
DEROS _date : DATE _TYPE
duty_effective_date : DATE TYPE
aero_rating code : AERO RATING TYPE
MAJCOM : MAJCOM_TYPE

base : BASE _TYPE

blue chip_indicator : Character

NCO _indicator : Boolean

MPC code : MPC TYPE

recall_roster : PERSON POINTER TYPE

67

Student Structure Definition

Object Name: Student
Object Number:
Object Description: General model of student

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Person
Components: None
Context: None

Attributes:
Part_Record Indicator Boolean If a student is resident or part time.
Ed Level Education_level type Major education level.
Selected Type Selected type School that has been selected.
Gaining AFSC AFSC type The AFSC that he is going.
Gain MAJCOM MAIJCOM type The MAJCOM that he is going.
Gain_duty Station Duty Station type Duty station he is going.
Losing MAJCOM MAJCOM type The MAJCOM that he is losing.
PSE PSE type The professional specialized educ.
Last Year Attended Year type The last year he attended a schooll.
Constraints:

Z Static Schema:
Let EDUCATION_LEVEL TYPE be the set of all education level types.
Let SELECTED_TYPE be the set of all possible selected types.
Let AFSC_TYPE be the set of all possible AFSC types.
Let MAJCOM_TYPE be the set of all possible MAJCOM types.
Let DUTY_STATION_TYPE be the set of all possible duty stations.
Let PSE_TYPE be the set of all possible PSE types.
Let YEAR TYPE be the set of all possible years.

— Student
Part Record Indicator : Boolean

Ed Level : EDUCATION_LEVEL TYPE
Selected Type : SELECTED _TYPE

Gaining AFSC : AFSC_TYPE

Gain_ MAJCOM : MAJCOM_TYPE
Gain_duty Station : DUTY STATION_TYPE
Losing MAJCOM : MAJCOM_TYPE

PSE : PSE_TYPE

Last Year Attended : YEAR TYPE

68

Resident Student Structure Definition

Object Name: Resident Student
Object Number:
Object Description: General model of resident student

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Student
Components: None
Context: None

Attributes:
Academic_Action Academic Action type Student’s academic standing.
Overdue Indicator Boolean If a student has an overdue book.
Classification Classification type Represents an enrollment classific.
Major ASC ASC type Major Academic specialty.
Program Program type Student’s Program.
Class Class type Student’s class.
Program Year Year type Prefix of the program year.
AFIT Degree Degree type Type of AFIT degree.
Career Pointer Code Career pointer type Level of education that credit apply
Departure_Date Date type Departure date from AFIT.
Box Number Box type Student’s box number.
Card _Number Card type Student’s card number.
Library Number Library Number type Student’s library number.
Locker Number Locker type Student’s locker number.
Student Sponsor Person pointer Pointer to sponsor.
Faculty Advisor Person pointer Pointer to faculty advisor.
Constraints:
Z Static Schema:

Let ACADEMIC _ACTION _TYPE be the set of all possible academic actions.
Let CLASSIFICATION_TYPE be the set of all possible classification types.
Let ASC_TYPE be the set of all possible ASC types.

Let PROGRAM_TYPE be the set of all possible programs.

Let CLASS_TYPE be the set of all possible class types.

Let YEAR _TYPE be the set of all possible years.

Let DEGREE_TYPE be the set of all possible degree types.

Let CAREER_POINTER_TYPE be the set of all possible career pointer types.
Let DATE_TYPE be the set of all possible dates.

Let BOX_TYPE be the set of all possible boxes.

Let CARD POINTER_TYPE be the set of all possible card pointer types.

Let LIBRARY NUMBER _TYPE be the set of all possible library numbers.
Let LOCKER TYPE be the set of all possible locker numbers.

Let PSE_TYPE be the set of all possible PSE types.

Let PERSON_POINTER_TYPE be a pointer to a particular person.

69

— Resident student

Academic_Action : ACADEMIC ACTION_TYPE
Overdue_Indicator : Boolean

Classification : CLASSIFICATION TYPE

Major ASC : ASC_TYPE

Program : PROGRAM_TYPE

Class : CLASS TYPE

Program Year : YEAR TYPE

AFIT Degree : DEGREE TYPE
Career_Pointer Code : CAREER _POINTER_TYPE
Departure_Date : DATE_TYPE

Box_Number : BOX_TYPE

Card Number : CARD _TYPE

Library Number : LIBRARY NUMBER TYPE
Locker Number : LOCKER_TYPE

Student Sponsor : PERSON_POINTER TYPE
Faculty Advisor : PERSON_POINTER_TYPE

70

INTL-Student Structure Definition

Object Name: INTL-Student
Object Number:

Object Description: General model of INTL-student

Author: Maj Pedro Arthur Linhares Lima

Date: 03/27/96
History: Thesis

Superclass: Resident Student
Components: None
Context: None

Attributes:
WSCN
ITO
Case_number
DLI request_indicator
DLI indicator
evaluation_req date
requested_program
eval forward date
Sforward to dept
Eval returned_date
admission_status
eval remarks
country_notified date
AFSAT notified_date

AFSAT quota_indicator

first_sponsor

second_sponsor
source_of funds
AFSAT country

Constraints:

Z Static Schema:

WSCN type
ITO type
Case_number type
Boolean
Boolean

Date type
Program type
Date type
Department type
Date type
Admission type
String

Date type

Date type
Boolean

Person pointer
Person pointer
Funds type

Country type

Work Sheet Control Number.
ITO number.

Case number.

If student has to attended DLI.
If student attended DLI.

Date evaluation was requested.
Requested student’s Program.
Evaluation forward date.
Department it was forwarded.
Date the evaluation returned.
Admission status code.
Evaluation remarks.

Date the country was notified.
Date that AFSAT was notified.
If student fills a country’s quota.
Pointer to sponsor.

Pointer to sponsor.

Source of funds code.

The home country of a student.

Let WSCN _TYPE be the set of all possible WSCN numbers.
Let ITO_TYPE be the set of all possible ITO numbers.
Let CASE_NUMBER_TYPE be the set of all possible case numbers.

Let DATE_TYPE be the set of all possible dates.

Let PROGRAM_TYPE be the set of all possible programs.

Let DEPARTMENT _TYPE be the set of all possible department types.
Let ADMISSION_TYPE be the set of all possible admission types.

Let PERSON_POINTER_TYPE be a pointer to a particular person.
Let FUNDS_TYPE be the set of all possible funds types.

Let COUNTRY_TYPE be the set of all possible country types.

71

— INTL-student

WSCN : WSCN_TYPE

ITO : ITO_TYPE

Case_number : CASE_NUMBER TYPE
DLI request_indicator : Boolean

DLI indicator : Boolean
evaluation req date : DATE TYPE
requested_program : PROGRAM_TYPE
eval _forward date : DATE TYPE
Jorward to _dept : DEPARTMENT TYPE
Eval returned date : DATE_TYPE
admission_status : ADMISSION_TYPE
eval_remarks : String
country_notified date : DATE_TYPE
AFSAT notified date : DATE_TYPE
AFSAT quota_indicator : Boolean
first_sponsor : PERSON_POINTER_TYPE
second_sponsor : PERSON_POINTER _TYPE
source_of funds : FUNDS TYPE

AFSAT country : COUNTRY_TYPE

72

Address Structure Definition

Object Name: Address
Object Number:

Object Description: General model of address

Author: Maj Pedro Arthur Linhares Lima

Date: 03/25/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
address_type
address
city
state
country
zipcode
phone
address_effective_date
login_name
login_date

Constraints:

Z Static Schema:

Address type
String

String

State type
Country type
Zip type
Phone type
Date type
String

Date type

Address type.

Address.

City.

State.

Country.

Zip code.

Phone number.

Date of effective address.

Login name of who made changes.
Date of last change.

Let ADDRESS_TYPE be the set of all possible address types.

Let STATE_TYPE be the set of all possible states.

Let COUNTRY_TYPE be the set of all possible country codes.

Let ZIP_TYPE be the set of all possible zip codes.
Let PHONE_TYPE be the set of all phone Numbers.
Let DATE_TYPE be the set of all possible dates.

— Address

address_type : String

address : String

city : String

state : STATE TYPE

zipcode : ZIP_TYPE

country : COUNTRY TYPE

phone : PHONE_TYPE
address_effective_date : DATE_TYPE
login_name : String

login_date : DATE_TYPE

73

Dependent Information Structure Definition

Object Name: Dependent Information
Object Number:
Object Description: General model of dependent information

Author: Maj Pedro Arthur Linhares Lima
Date: 03/26/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
number_children Integer Number of student’s children.

single dep_chldrn Character Indicator if single with children.
deps_at AFIT Character Indicator if dependents at AFIT.

Constraints:

Z Static Schema:

Dependent Information
number _children : Integer
single_dep chidrn: Character
deps _at AFIT: Character

74

Education History Structure Definition

Object Name: Education History
Object Number:

Object Description: General model of education history

Author: Maj Pedro Arthur Linhares Lima

Date: 03/26/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
MPC School Code MPC type Military Personnel Center school.
Ed Level Code Ed level type Education level.
Type_Degree Code Type_degree type Type of degree.
ASC Code ASC type Academic specialty code.
Quality Points Integer Quality points.
Total Credit Hours Integer Total of credit hours.

Method Of Obtainment
Academic Ed_Status

Method of obt type
Academic_ed type

Method of obtained an education.
Academic education status.

Last Year Attended Date type Last year that attended a school.
ABET Accredited Boolean If AFIT degree’s ABET accredited.
Ed History Remarks String Education history remarks.

Work ID Processed Work 1D type Action that orig. a transaction.
Login Name String Login name of who made changes.
Input Date Date type Date of last change.
Operators_Initials String Operator’s initials.
Trnscrpt_Career Pointer Transcript type Education level of student transcr.
Duty Location Duty location type Location of active duty.

Degree Cum_Gpa Integer The cumulative student’s GPA.
Degree_Title Degree type The title of a student’s degree.

Constraints:

Z Static Schema:

Let MPC_TYPE be the set of all possible MPC types.
Let ED_LEVEL_TYPE be the set of all possible education level types.
Let TYPE_DEGREE_TYPE be the set of all possible degree types.

Let ASC_TYPE be the set of all possible ASC types.

Let DATE_TYPE be the set of all possible dates.

Let METHOD_OF_OBT_TYPE be the set of all possible method of obtained types.
Let ACADEMIC _ED_TYPE be the set of all possible academic education types.
Let WORK _ID_TYPE be the set of all possible work ID types.

Let TRANSCRIPT _TYPE be the set of all possible transcript types.

Let DUTY_LOCATION_TYPE be the set of all possible duty location types.

Let DEGREE_TYPE be the set of all possible degree types.

75

— Education History
MPC School Code : MPC TYPE

Ed Level Code: ED_LEVEL TYPE

Type Degree Code : TYPE DEGREE TYPE

ASC Code : ASC TYPE

Quality Points : Integer

Total Credit Hours : Integer

Method_Of Obtainment :METHOD_OF OBT TYPE
Academic Ed Status : ACADEMIC ED TYPE
Last Year Attended : DATE TYPE

ABET Accredited : Boolean

Ed History Remarks : String

Work ID Processed : WORK ID TYPE

Login Name : String

Input Date : DATE TYPE

Operators_Initials : String

Trnscrpt_Career Pointer : TRANSCRIPT TYPE
Duty Location : DUTY LOCATION_TYPE

Degree Cum_Gpa : Integer

Degree_Title : DEGREE_TYPE

76

Emergency Data Structure Definition

Object Name: Emergency Data
Object Number:

Object Description: General model of emergency data

Author: Maj Pedro Arthur Linhares Lima

Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
Contact_Fname String Emergency contact first name.
Contact Lname String Emergency contact last name.
Relation Relation type The relationship with a person.
Address String Home address.
City String Home city.
State State type Home state.
Zipcode Zip type Home zip code.
Country Country type Person’s country.
Phone Phone type Home phone number.
Firm_Name Olffice Office type Person’s office symbol.
Additional_Address String Additional address information.
Street Address String Additional street information.
Address_Room_Type Room type Additional Room type.
Address Room Number String Additional room number.
Street Type_Code Street type Additional street type.
Revision Name String Name of who made the revision.
Revision Date Date type Revision date.
Login Name String Login name of who made changes.
Login Date Date type Date of last change.
Constraints:
Z Static Schema:

Let RELATION_TYPE be the set of all possible relationship types.

Let STATE_TYPE be the set of all possible states.

Let ZIP_TYPE be the set of all possible zip codes.

Let COUNTRY_TYPE be the set of all possible country codes.
Let PHONE_TYPE be the set of all phone numbers.

Let OFFICE_TYPE be the set of all possible offices.

Let ROOM_TYPE be the set of all possible room types.

Let STREET TYPE be the set of all possible street types.

Let DATE_TYPE be the set of all possible dates.

77

— Emergency data
Contact_Fname : String
Contact_Lname : String

Relation : RELATION _TYPE
Address : String

City : String

State : STATE TYPE

Zipcode : ZIP_TYPE

Country : COUNTRY _TYPE

Phone : PHONE_TYPE
Firm_Name_Olfficel : OFFICE_TYPE
Additional Address : String
Street_Address : String

Address Room_Type : ROOM_TYPE
Address Room Number : String
Street Type Code : STREET TYPE
Revision Name : String

Revision Date : DATE _TYPE

Login Name : String

Login Date : DATE TYPE

78

Spouse Information Structure Definition

Object Name: Spouse Information
Object Number:
Object Description: General model of spouse information

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
Birth_Date Date type Spouse birth date.
Frname String Spouse first name.
Lname String Spouse last name.
Spouse At AFIT Boolean If spouse came with him/her.
Nickname String Spouse nickname.
Spouse In_Military Boolean If spouse in military service.
Occupation String Spouse occupation.
Remarks String Remarks.
Constraints:

Z Static Schema:
Let DATE_TYPE be the set of all possible dates.

— Spouse Information

Birth_Date : DATE TYPE
Fname : String

Lname : String

Spouse_At AFIT : Boolean
Nickname : String
Spouse_In_Military : Boolean
Occupation : String

Remarks : String

79

Student Duty History Structure Definition

Object Name: Student Duty History
Object Number:
Object Description: General model of student duty history

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
Title Title type Job title.
AFSC AFSC type Duty AFSC.
Organization String Where the student works.
Duty Station Duty Station type Student’s duty station.
Assigned Date Date type Date the student was assigned.
Sequence_Number Integer Sequence number.
Login Name String Login name.

Constraints:

Z Static Schema:

Let TITLE _TYPE be the set of all possible titles.

Let AFSC_TYPE be the set of all possible AFSC types.

Let DUTY_STATION_TYPE be the set of all possible duty stations.
Let DATE_TYPE be the set of all possible dates.

— Student duty history

Title : TITLE TYPE

AFSC : AFESC TYPE

Organization : String

Duty Station : DUTY _STATION TYPE
Assigned Date : DATE TYPE
Sequence Number : Integer
Login_Name : String

80

Test Scores Structure Definition

Object Name: Test Scores
Object Number:

Object Description: General model of test scores

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
Test Type Test type
Taken Date Date type
Score Integer
Input Date Date type
Login Name String

Constraints:

Z Static Schema:

Let TEST_TYPE be the set of all possible test types.
Let DATE_TYPE be the set of all possible dates.

Test scores

Type of test.
The date of the test.
Score on the test.

The date of the input.

Login name.

Test Type : TEST TYPE

Taken _Date : DATE TYPE

Score : Integer

Input Date : DATE TYPE
Login Name : String

81

Appendix D: The Functional Model

name
password display messages
selection forms

data

)
read input perform generate
— T) I >
° action output
_ /
Database

Figure 25: STARS Application Level 0 DFD

82

selection

dalta

invalid selection

Perform Action

™

Validate

valid user_type

Handle
Selection

selection

exit

/

\

v

Database

Figure 26. Perform Action Level 1 DFD

83

selection invalid

selection

Menu Options

1,,

validate |]valid (usef_type) verify display
login user_type options
user
selection

verify user
selection

\- =/

¥ selection

{

Return

Exit

handle
selection

Database

Figure 27: Menu Option Level 2 DFD

84

User

selection

Handle Selection l

query info

Database

Perform
Query

Perform
Selection

\xit

Load
Selection] Form
on
Form
J
return

v

v

Figure 28: Handle Selection Level 2 DFD

85

selection)
data exit return

errorm oeilection

Perform
Insertion

option
User

Perform

Perform
Deletion

Update

!

Database

Figure 29: Perform Selection Level 3 DFD

86

invalid
data
new data
User
confirm
U

| data
l Perform Insertion

Read valid data Perform |return
" #
Confirm Save

s/ /

\4

Database

v
return

Figure 30: Perform Insertion Level 4 DFD

87

User

invalid
data

data

Perform Update

data

confirm

Read

valid data

return

Confirm Save
\ T
v \ 4
return Database

Figure 31: Perform Update Level 4 DFD

88

User

return

confirm

data

Pertorm Deletion

.

Read
Confirm

data

Delete
Data

—/

return

.

Datai)ase

Figure 32: Perform Deletion Level 4 DFD

89

Appendix E: Implementation of the Object Model

last_name
first_name
middle_initial
login_name
birth_date
race
gender
religion

er - Stars

grade_rank_date

grade_rank_abbre major_asc
academic_act
overdue_indic
program
class
program_year

o box_number
part_record_indica

last_year_attende
ed_level
selected_type

[Elndexes:

majol_asc
academic_a
overdue_in
program
last_year_attende: class
date_of_grade ed_level : program_ye
manning_code selected_type box_number
(Blndexes: [Blndexes: : ndexes:

Figure 33: Table’s relationship in STARS Database

90

{ =4 Class Designer - stars class.vcx [person)

+ PERSON
SSAM- Last Name: First Name:
| SSANT |[m51_nm1€| |Fm5"r_ﬁms1 [|§~ﬁ{}l|

Birthdate: Gender: | GENDERT | Religion: | BELIGIONT
Login Name: | LOGIN_NAM| BRace:

PERSON
.T. - True (Default)
.T. - True [Defau

Figure 34: Person’s Class

91

Last Hame: First Name: Middle:
SSANT ||!_AST_NAM£| |FIRST_HAME1 | IHIDII

Gender: Religion:

SSANT |

Date of rank: | DATE_OF Date of commigsion: | DATE_DF

AFSC: |ﬁF5E1 | Manning Code: lmmmnﬁmcnﬂ

s
Foonset
0 - Modeless

Figure 35: Military’s Class

92

starg class.vcx [military_student]

Last Name: First Name: Middle:

ssmﬂ |LASTMHAHE| |FIRST_NAHE1 | ||~1m§|

Birthdate: Gender: Religion:
Login Name: Race:

Rank: | . Date of rank: AFSC: ;

SSANT IE DATE_DF| "5|AF31:1

Last Year Alt.: |_5IIE :
[ED_LEVEL
‘eELEFTED

Figure 36: Military_student’s Class

93

Last Name: First Name:
5SANT | ILAST_NAHEI IFIRS‘{_HAHH

BilthdaIEZ Gender: He“giun: —_,FIIE
| Login Name: Hace: vel:

fﬂaté of |f‘ank;: AFSC:
amzz,,m] § |AF5E

..

MANNING_COD|:

SSAN: | Maijér ASC:

, . Acad. Action:
SSANT1 Jﬁwsa_ﬁ.sm

|AmDEMH:_AéT|" ' 3

Figure 37: Military_resident_student’s Class

94

SSAN- Last Name: First Name:

L S5ANT J [L&ST_RAHﬂ EHST_NAMB

Birlhdate: Eender: Religion:i

Login Name: [LOGIN_RAM] Race: [RACET] [..... v

[Ep_LEVEL]

H:ank: [:)ate: of lﬂnk AF:SC :

' sémﬂ|mnm |LDATE Bf| E—'&FSH

...

..............

......................

Hamr ASE

SSANT | {MMUB ASﬁ

...

iy g - B ie b A4

Figure 38: Military INTL student’s Class

95

stars class.vex [civilian_person

Last Mame: First Hame:
ssﬁn1J|LAST_aAnE||HHSTMNAME1

Birthdate: Gender: Religion:
Login Name: Race:

v CIVILIAN

.ﬁl'ﬂl:]EZ :
GRADE

Figure 39: Civilian’s Class

96

il 55AN: Last Hame: First Name:
i SSANT | |LAST_NAME | |FIRST_NAMET

Birthdate: Gender: Religion:
Login Name: Race:

iEra::]e: D ate fnf Efrad
GRADE DATE_OF|

F'Elart lj"ime:f Lafst Y;ear ?’ntteﬁde:ﬂ: Ed Lefwel:f :Selefctetf: Tyﬁe:

..... ;|EU_LEV£L|"'|SELEET£Df

..... PN T T R I Iy

Figure 40: Civilian_student’s Class

97

student]

SSANT | |msrmnms| |F¥BSTWNAI~!E1 | Imml

| Birthdate: |[BIRTH_D| Gender:|GENDER1 | Religion: [RELIGION1
| Login Name: [LDGIN_NAM| Race: [RACET

; Gre
|"'|5§mn£1

IV_RESIDENT_STUDENT
n 01 MajorASC:
|| MAJOR_ASCI

...

..........

.................

..

...

...........

Figure 41: Civilian_resident_student’s Class

98

stars class. vex [civilian_intl_student]

LastName: FistNome: Middie |
SSAN1||£A§?_HhKE|lFTRST_NAME1 ||M|Bq

: Birthdate: Gender: Religion:
Login HName: Race:

fﬁlade:

liron _
CASE_NUMBET

. :

'|"]EBAQE1

vem; [PROGRAT] Acad. Acth
\yerdise Ind:. VERDUE |

Figure 42: Civilian INIL student’s Class

99

* Microsoft Visual FoxPro

Last Mame: FilsName: o Middle:
SSANT | Imsr_nmf.l |ﬂﬁsrwumm | LMiDIJ

Birthdate: | BIRTH_D| Gender:|[GENDERT | Religion: | RELIGIONT
Login Name: | LOGIN_HAM| Race:

?_ % £ g s

Address Tope:[ADD_TYPE:

Address:. [ADDRESS1

ZIP.Code:...

Figure 43: Address’ Class

100

Appendix F: List of Abbreviations

AFIT - Air Force Institute of Technology
AFITSIS - Air Force Institute of Technology Student Information System

AFIT/SC - Air Force Institute of Technology Communication Computer

System
CASE - Computer-Aided Software Engineering
DBA - Database Administrator
DBMS - Database Management System
DFD - Data Flow Diagram
ER - Entity Relationship
OODBMS - Object-Oriented Database Management System
RDB - Relational Database
RDBMS - Relational Database Management System
SQL - Structured Query Language

STARS - Student Tracking and Registration System

101

Bibliography

1 Blaha, Michel and William J. Premerlani. An Approach for Reverse Engineering of
Relational Databases. Communications of the ACM. May 1994. Vol. 37, No. 5.

2 Blaha, Michel and William J. Premerlani. Observed Idiosyncrasies of Relational
Database Designs. IEEE Software, 1995, pp. 116-125.

3 STARS User’s Manual (AFIT Database). System Research Laboratories, 1987.

4 Cerney, Barbara, Capt. Sullivan David, and Kathleen Hale. AFIT/SCQ Personal
Interview, May 1995.

5 Chikofsky, Elliot, James H. Cross II. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, January 1990, pp. 14-15.

6 Sneed, Harry M. Planning the Reengineering of Legacy Systems. IEEE Software,
January 1995, pp. 25-26.

7 Hainaut, J.L., and others. Contribution to a Theory of Database Reverse
Engineering. International Conference on Software Engineering, Workshop on
Reverse Engineering, May 1993, Baltimore, Maryland.

8 Jacobson, Ivar and Fredrik Lindstrom. Re-engineering of Old Systems to an Object-
oriented Architecture. Proceedings, OOPSLA 1991, pp. 340-350.

9 Bennett, Keith. Legacy Systems: Coping With Success. IEEE Software, April
1995, pp. 19-23.

10 Burleson, Donald. Practical Application of Object-Oriented Techniques to
Relational Databases. Wiley-QED Publication, 1994.

11 Rumbaugh, James and others. Object-Oriented Modeling and Design. Prentice-
Hall, 1991.

12 ERwin User’s Guide. Logic Works, Inc, 1995.

13 Microsoft Visual Foxpro Developer’s Guide. Microsoft Corporation, 1995.

102

Vita

Major Pedro Arthur Linhares Lima wasshsvminiionsfmetersinsanlly

. "R e cntered the Air Force Preparatory School of Cadets (EPCAR) in
Barbacena, Minas Gerais in 1975, and attended the Brazilian Air Force Academy,
where he was graduated in December of 1981. He entered the Catholic University of
Rio de Janeiro (PUC-RJ), where was awarded the degree of Bachelor in Systems
Analysis in June of 1984. His first assignment was at the Air Force Computer Center
of Rio de Janeiro (CCA-RJ), where he worked as a systems analyst for the Flight's
Statistics System Project. In January of 1989 he was assigned to Staff and War College
(ECEMAR). where he worked a; a systems analyst for the War Games Project. In
January of 1992 he was assngned to Air Force Computer Science and Statistics
Departmem (DIRINFE) " In June of 1994 Major Pedro Lima entered the Air Force

Institute of Technology as a Master candidate in computer science.

ADAZ10627

REPCRT DOCUMENTATION PAGE

1
e

sorm Aoproved

IMB No. 5704-0188

2uplic reporting surgen for
Jathering ang M3INTaINING The ata needed, and COmMDIEUNQ and review ng the calfectien ot information. Seng ccmments reqarai
coilecton of Information, inCiuaINg suggestions tor reducing this buraen. 10 Washingien

Davis Hichway, Suite 1204, Arlington, YA 22202-4302, and to the Office ot ~1anaqem°"r 3nd Buaget, P3perworx Qecumon Project (073

this corlection of information s 2stimated to average 1 ~cur ser rasponse, inc LG!HC tne Lime 1071 reviewinn

-

~eaaquarters Services, Cirectorate Tor ‘\nfy

N 2sTumate or any
2eratons ang Recs

ns. s2arcnmag 2eosting Cata sources,
rer aspect of this B
1215 jetferson

18,

,WNasningten, ZC 13503,

1. AGENCY USE ONLY (Leave blank} }2. REPORT DATE 3. REPORT TYPE AND DATES IJVERED
. June 1996 Master’s The515
4. TITLE AND SUBTITLE 5. TUNDING NUMBERS
A Methodology for Reengineering Relational Databases
to an Object-Oriented Database
5. AUTHOR(S)
Pedro Arthur Linhares Lima

!

~

. 2ERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

1
3

3. PERFCORMING CRGANIZATION
REPCRT

. AFTT/GCS/ENG/961-01

HUMBER

AFTT/SC
2950 P. Street

WPAFB, OH 45433-7765

. SPONSCRING/ MONITORING AGENCY MAME(S) AND ADDRESS(ES)

10. SPCNSCRING/ MCNITCZRING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This research proposes and evaluates a methodology for reengineering a relational database to an object-oriented
database. We applied this methodology to reengineering the Air Force Institute of Technology Student
Information System (AFITSIS) as our test case. With this. test case, we could: verify the applicability of the
proposed methodology, especially because AFITSIS comes from an old version of Oracle RDBMS. We had the
opportunity to implement part of the object model using an object-oriented database, and we present some
peculiarities encountered during this implementation. The most important result of this research is that it
demonstrated that the proposed methodology can be used for reengineering an arbitrarily selected relational
database to an object-oriented database. It appears that this approach can be applied to any relational database.

14.

SUBJECT TERMS

AFTTSIS, reengineering, reverse engineering, information system design,
OODBMS design, database OMT

15. NUMBER OF PAGES !

——

103

16. PRICE CODE

ey
~J

. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
QF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

{

T 20. LIMITATION OF ABSTRACT .

UL

NSN 7540-01-280-5500

Standard form 298 {Rev. 2-39)

Zrasert

pea by ANSI Sta. 239.18

298-1192

	A Methodology for Reengineering Relational Databases to an Object-Oriented Database
	Recommended Citation

	tmp.1695319450.pdf.K4ukp

