
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-1996

A Methodology for Reengineering Relational Databases to an A Methodology for Reengineering Relational Databases to an

Object-Oriented Database Object-Oriented Database

Pedro A. Linhares Lima

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Linhares Lima, Pedro A., "A Methodology for Reengineering Relational Databases to an Object-Oriented
Database" (1996). Theses and Dissertations. 6147.
https://scholar.afit.edu/etd/6147

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6147?utm_source=scholar.afit.edu%2Fetd%2F6147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/96J-01

A METHODOLOGY FOR REENGINEERING

RELATIONAL DATABASES TO

AN OBJECT-ORIENTED DATABASE

THESIS

Pedro A. Linhares Lima, Major, Brazilian Air Force

AFIT/GCS/ENG/96J-01

Approved for public release; distribution unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

AFIT/GCS/ENG/96J-01

A METHODOLOGY FOR REENGINEERING RELATIONAL

DATABASES TO AN OBJECT-ORIENTED DATABASE

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

Pedro A. Linhares Lima, B. S.

Major, Brazilian Air Force

JUNE, 1996

Approved for public release; distribution unlimited.

ii

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the United States

Government.

iii

Acknowledgments

I would like to thank my advisor, Doctor Thomas C. Hartrum, for his trust,

guidance, and assistance during this research effort. He provided motivation without

limiting the learning from the freedom to explore. I also wish to thank my readers,

Doctor Henry Potoczny and Doctor Eugene Santos Jr.

Special thanks to Doctor Blaha for explaining some points of his methodology

and answering some questions concerning reengineering tools.

Finally, I would like to thank my wife, Ana Cristina R. Linhares Lima, for her

support and understanding during the time consuming thesis process. She provided

encouragement and motivation to complete the thesis and the AFIT program.

Pedro Arthur Linhares Lima

iv

Table of Contents

ACKNOWLEDGMENTS IV

TABLE OF CONTENTS V

TABLE OF FIGURES VIII

ABSTRACT x

1 Introduction 1

1.1 Background. 1

1.2 Problem. 3

1.3 Hypothesis. 3

1.4 Research Objectives. 3

1.5 Test case. 4

1.6 Assumptions. 5

1.7 Sequence of Presentation. 6

2 Summary of Current Knowledge 7

2.1 Treatment and Organization. 7

2.2 Software Reengineering. 7

2.3 Reengineering of Relational Databases. 9

2.4 Object-Oriented Methodology. 14

2.5 Conclusion 15

3 Methodology 16

V

3.1 Introduction 16

3.2 The Methodology 16

3.3 Summary 27

4 Application of Methodology 28

4.1 Introduction 28

4.2 ER Model 28

4.3 Object Model 31

4.4 Functional Model 36

4.5 Summary 37

5 Implementation Issues 38

5.1 Introduction 38

5.2 Analysis and Choice of the OODBMS 38

5.3 Implementation of the Object Model 39

5.4 Limitations of Foxpro Encountered During Implementation 43

5.5 Summary 44

6 Analysis, Conclusions, and Recommendations 45

6.1 Analysis of The Results 45

6.2 Conclusion 46

6.3 Recommendations 48

APPENDIX A: LIST OF TABLES WITH SSAN 50

APPENDIX B: THE ENTITY RELATIONSHIP DIAGRAM 54

APPENDIX C: THE OBJECT MODEL 58

vi

APPENDIX D: THE FUNCTIONAL MODEL 82

APPENDIX E: IMPLEMENTATION OF THE OBJECT MODEL 90

APPENDIX F: LIST OF ABBREVIATIONS 101

BIBLIOGRAPHY 102

VITA

vii

Table of Figures

FIGURE 1: RELATIONSHIP BETWEEN TERMS [5] 8

FIGURE 2: VARIOUS APPROACHES TO IDENTIFY THE PRIMARY KEY [2] 19

FIGURE 3: DOUBLE BURIED ASSOCIATION 23

FIGURE 4: OPTIONAL QUALIFIED ASSOCIATION 24

FIGURE 5: ALTERNATE QUALIFIERS 24

FIGURE 6: TRANSITIVE CLOSURE INVOLVING GENERALIZATION AND ASSOCIATION [1] 26

FIGURE 7: SQL STATEMENT TO FIND TABLES WITH SSAN AS AN ATTRIBUTE 29

FIGURE 8: INITIAL OBJECT DIAGRAM BEFORE THE DATA ANALYSIS 34

FIGURE 9: BINARY ASSOCIATION 34

FIGURE 10: QUALIFIED ASSOCIATIONS 35

FIGURE 11: ER DIAGRAM (PERSON) 54

FIGURE 12: ER DIAGRAM (RESIDENT STUDENT 1) 55

FIGURE 13: ER DIAGRAM (RESIDENT STUDENT 2) 56

FIGURE 14: ER DIAGRAM (RESIDENT STUDENT 3) 57

FIGURE 15: PERSON'S OBJECT MODEL 58

FIGURE 16: PERSON OBJECT MODEL (CONT.) 59

FIGURE 17: RESIDENT STUDENT OBJECT MODEL 60

FIGURE 18: RESIDENT STUDENT OBJECT MODEL (CONT.) 61

FIGURE 19: GRADE HISTORY ASSOCIATION 61

FIGURE 20: GRADE CHANGE HISTORY ASSOCIATION 62

FIGURE 21: STUDENT COURSES ASSOCIATION 62

FIGURE 22: DROPPED COURSE ASSOCIATION 62

FIGURE 23: WAIVED COURSE ASSOCIATION 62

FIGURE 24: EDUCATION HISTORY ASSOCIATION 63

viii

FIGURE 25: STARS APPLICATION LEVEL 0 DFD 82

FIGURE 26: PERFORM ACTION LEVEL 1 DFD 83

FIGURE 27: MENU OPTION LEVEL 2 DFD 84

FIGURE 28: HANDLE SELECTION LEVEL 2 DFD 85

FIGURE 29: PERFORM SELECTION LEVEL 3 DFD 86

FIGURE 30: PERFORM INSERTION LEVEL 4 DFD 87

FIGURE 31: PERFORM UPDATE LEVEL 4 DFD 88

FIGURE 32: PERFORM DELETION LEVEL 4 DFD 89

FIGURE 33: TABLE'S RELATIONSHIP IN STARS DATABASE 90

FIGURE 34: PERSON'S CLASS 91

FIGURE 35: MILITARY'S CLASS 92

FIGURE 36: MILITARYSTUDENT'S CLASS 93

FIGURE 37: MILITARYRESIDENTSTUDENT'S CLASS 94

FIGURE 38: MILITARYINTLSTUDENT'S CLASS 95

FIGURE 39: CIVILIAN'S CLASS 96

FIGURE 40: CIVILIANSTUDENT'S CLASS 97

FIGURE 41: CIVILIANRESIDENTSTUDENT'S CLASS 98

FIGURE 42: CIVILIANINTLSTUDENT'S CLASS 99

FIGURE 43: ADDRESS' CLASS 100

ix

AFIT/GCS/ENG/96J-01

Abstract

This research proposes and evaluates a methodology for reengineering a

relational database to an object-oriented database. We applied this methodology to

reengineering the Air Force Institute of Technology Student Information System

(AFITSIS) as our test case. With this test case, we could verify the applicability of the

proposed methodology, especially because AFITSIS comes from an old version of

Oracle RDBMS. We had the opportunity to implement part of the object model using

an object-oriented database, and we present some peculiarities encountered during this

implementation. The most important result of this research is that it demonstrated that

the proposed methodology can be used for reengineering an arbitrarily selected

relational database to an object-oriented database. It appears that this approach can be

applied to any relational database.

x

A METHODOLOGY FOR REENGINEERING RELATIONAL

DATABASES TO AN OBJECT-ORIENTED DATABASE

1 Introduction

The software reengineering process has been used to solve many problems

involving legacy systems. It has been helping companies to recover and to update

documentation, design, and requirements of important systems. Most of the time

thousands of lines of code are the only source of the business rules, and are the starting

point in the process of reverse engineering. Software reengineering has been playing

an important role and has been proven to be very effective in extending the lifetime of

many applications.

All systems have a limited lifetime. Each implemented change erodes the

structure which makes any following changes more expensive. As time goes on, the

cost to implement a change will be too high, and the system will not be able to support

its intended task. The reengineering process plays an important role by not allowing

the system to reach this condition.

1.1 Background.

The goal of reengineering is to mechanically reuse past development efforts in

order to reduce maintenance expense and improve software flexibility. Reengineering

is applicable to diverse software such as programming code, databases, and inference

logic [1].

There are many possible motives for the reverse engineering of databases [2]:

1

" Migration between database paradigms. One may want to migrate

between database paradigms, for example from past hierarchical, network,

and relational databases to modern relational and object-oriented databases;

" Migration within a database paradigm. A more mundane task would be

to migrate between different implementations of a database paradigm, for

example from one vendor's relational database to another relational

database;

" Documentation. Reverse engineering can elucidate poorly documented

existing software when the developers are no longer available for advice;

• Tentative requirements. Reverse engineering of existing software can

yield tentative requirements for the new replacement system. Reverse

engineering ensures that the functionality of the existing system is not

overlooked or forgotten;

• Assessment of software. The quality of the database design is an indicator

of the quality of the software as a whole. An understanding of the concepts

supported by the underlying database schema allows one to better judge

functionality claims;

• Integration. Reverse engineering facilitates integration of related legacy

applications and purchased applications. A logical model of encompassed

software is a prerequisite for integration;

2

Conversion of legacy data. One must fully understand the logical

correspondence between the old database and the new database before

attempting to convert data.

1.2 Problem.

The main difficulty to reengineering relational databases is the lack of a robust

process that can be applied in all cases. Most of the existing processes for database

reverse engineering are inadequate; they assume too high a quality of input information

[2].

1.3 Hypothesis.

The maintenance of a relational database application can be improved by:

1. Reverse engineering the system to develop an object-oriented model;

2. Redesigning the system using an Object-Oriented Methodology;

3. Changing the Database Management System to one that supports an object-

oriented approach.

1.4 Research Objectives.

In order to solve the problem stated above and establish the validity of the

above hypothesis, the following objectives were established:

1. Define an appropriate reverse-engineering methodology;

2. Determine an appropriate database application to be a test case;

3. Analyze and reverse engineer the test case using this methodology;

4. Redesign the test case using object-oriented methods;

3

5. Implement a portion of the new design in an Object-Oriented Database

Management System prototype system;

6. Analyze the methodology based on this experience.

1.5 Test case.

With the intention of conducting directly useable research in the field of

software reengineering, the director of the Communication Computer System of the Air

Force Institute of Technology (AFIT/SC) was contacted. Discussions led to the

discovery that his working group was facing a significant reengineering task which

could be used as a basis test case for this thesis research.

In 1987 the Air Force Institute of Technology (AFIT) contracted the

development of an automated system called Student Tracking and Registration System

(STARS). This system is used for scheduling courses, registering students in courses,

tracking academic histories of students, and generating related reports. The STARS

application uses the Structured Query Language (SQL) to access an Oracle Relational

Database Management System (RDBMS) Version 6. This system also uses the

following tools: the SQL-Forms, SQL-ReportWriter, SQL-Menu, VMS, and Batch

files [3]. From the time the system was designed until this thesis effort, requirements

have been changing. Some of these changes were implemented, while others were not.

Even though this system is only eight years old, it is already considered old or a

legacy system. This quick obsolescence was caused mainly by the following [4]:

1. Changes were made to incorporate some new requirements; however,

documentation was not updated;

4

2. Past leaders who lacked software knowledge;

3. New technology;

4. Poor training;

5. Lack of focus on changing needs.

The Air Force Institute of Technology Student Information System (AFITSIS)

was chosen as the test case in implementing a new method for reengineering relational

databases to an Object-Oriented database.

AFITSIS is currently designed and implemented using relational technology and

unfriendly user interface mechanisms. This old design and technology cause the

maintenance to be difficult, because there are no maintainability features. This lack of

maintainability demands a lot of time and effort every time new requirements are

implemented on the system. Additionally, the system is inflexible and complex,

requiring for each change up to five hundred forms and reports to be updated and

checked for consistency.

1.6 Assumptions.

The following assumptions were made for the thesis research:

1. The decision to reengineer AFITSIS instead of starting the analysis and

design of a new system is the best decision;

2. Access to AFITSIS and query information from the database are available;

3. Access to an Object-Oriented Database Management System (OODBMS) is

available for use.

5

1.7 Sequence of Presentation.

The thesis is divided into six chapters. Chapter I, Introduction, has provided an

overview of the work. Chapter II, Summary of Current Knowledge, discusses the

background information which provides the foundation for this research. Chapter III,

The Methodology, presents a proposed methodology for reengineering a relational

database to an object-oriented database. Chapter IV, Application of the Methodology,

presents the application of the proposed methodology using AFITSIS as a test case.

Chapter V, Implementation Issues, discusses how the selected part of AFITSIS was

implemented using an OODBMS. Lastly, Chapter VI, Analysis, Conclusions, and

Recommendations, analyzes the results obtained from the application and

implementation of the methodology, draws conclusions from this analysis, and makes

recommendations for futures applications of this methodology.

6

2 Summary of Current Knowledge

2.1 Treatment and Organization.

This literature review provides the foundation to create a methodology for

reengineering relational database applications to an object-oriented database. This

chapter is divided into three sections: software reengineering, reengineering of

relational databases, and object-oriented methodology. The software reengineering

section gives an overview of the software reengineering process. The reengineering of

relational databases section presents the basic steps when reverse engineering relational

databases. The object-oriented methodology section describes the stages used by

developers to analyze a problem, design a system, and implement the system into a

usable product.

2.2 Software Reengineering.

Reengineering, also viewed as both renovation and reclamation, is the

examination and alteration of a system to reconstitute it in a new form. Reengineering

usually includes some form of reverse engineering (to achieve a more abstract

description) followed by some form of forward engineering or re-structuring [5].

Reverse engineering is a process of examination and analysis of the subject to

identify its components and create a higher level form of abstraction [5]. It can start at

any stage of the life-cycle and it does not involve changes to the subject. Its sub-

products include the design recovery and the redocumentation of the subject. Forward

engineering can be easily understood as a process of moving from a high-level of

7

abstraction to low-level or physical details. It is the same as the traditional method of

developing a new system. This term is used only to distinguish this process from

reverse engineering. Figure 1 illustrates the basic ideas of software reengineering

using, for simplicity, only three life-cycle stages of software.

Requirements Design Implementation
(business rules)

Forward Forward

e____gineering__ e____gineering__

Renovatioin Renovatiot

Reverse------ Reverse'------

,'egineering ,egner

.Design Desi
"recovery recovery

Restructuring Restructuring Redocumentation,
restructuring

Figure 1: Relationship between terms [5]

8

The objectives of Software reengineering can be grouped into four main areas

[6]:

1. Improve maintainability. The maintenance efforts can be reduced by

reengineering smaller modules with more explicit interfaces. However, it is

not easy to measure progress toward this goal.

2. Migration. This task usually deals with altering and converting program

structure. This goal can be easily measured, since the system will perform

the same operation in the new environment.

3. Achieve greater reliability. This goal can be easily reached because the

restructuring process usually causes most of the potential defects to appear.

The other factor that contributes to better software reliability is the extensive

testing required to prove the functional equivalence between the old and the

new system. This goal can be readily measured by fault analysis.

4. Preparation for functional enhancement. Once the programs are

decomposed into smaller modules, it is easier to isolate them from one

another. This makes it simpler to change or add new functions without

affecting other modules.

2.3 Reengineering of Relational Databases.

The goal of reengineering is to mechanically reuse past development efforts in

order to reduce maintenance expense and improve software flexibility. According to

Hainaut [7] the most tractable approach for database applications is to first reverse

9

engineering the database and then deal with the programming code. Object-oriented

models provide a natural language for facilitating the reengineering process. An

object-oriented model can describe the existing software, the reverse-engineering

semantic intent, and the forward-engineered new system.

In general, the mapping between object models and a database schema is many-

to-many. Various optimizations and design decisions can be used to forward engineer

an object model into a database schema. Similarly, when reverse engineering a

database, alternate interpretations of the structure and data can yield different object

models. Usually there is no obvious, single correct answer for reverse engineering.

Multiple interpretations can all yield plausible results [2].

A good way to begin reverse engineering is by entering the existing schema into

a CASE tool. Associations will often be found in a degraded form such as relational

database foreign keys. Inheritance must be implemented in a degraded manner for

current relational database managers. The schema may then be gradually transformed

to a logical model as underlying relationships are inferred.

Jacobson [8] presents a good approach for reengineering old systems to an

object-oriented architecture, but he does not give much information when dealing with

relational databases. The same problem exists when considering other approaches for

reengineering like those of Bennett [9] and Sneed [6]; they are not focusing on

relational databases.

A good approach is suggested by Blaha [1], [2]. His papers present some

typical implementation strategies that are used for forward engineering. He explains in

10

detail each step to be taken for reverse engineering of relational databases. The basic

steps he suggests are:

Step 1. Prepare an initial object model.

" Represent each table as a tentative class. All columns of tables

become attributes of classes.

Step 2. Determine candidate keys.

" Look for unique indexes. Automated scanning of data can yield

potential candidate keys.

Step 3. Determine foreign-key groups.

" Try to resolve homonyms, attributes with the same name that refer to

different things, and synonyms, attributes with different names that

refer to the same thing.

" Matching attribute names, data types, and/or domains may suggest

foreign keys.

" During this step do not attempt to determine specific reference-

referent attribute pairs - but merely groups of attributes within which

foreign keys may be found.

Step 4. Refine tentative classes.

" Agglomerate horizontally partitioned classes into a single class.

(horizontally partitioned classes must also have the same semantic

intent.)

* Detect functions and constraints that are represented as tables.

11

Step 5. Discover generalizations.

" Analyze large foreign-key groups, particularly those with 5, 10, or

more cross-related attributes.

" Look for patterns of many replicated attributes.

" Look for patterns of data where a class has mutually exclusive subsets

of attributes.

" When discovering generalizations do not forget there may be a forest

of generalizations with multiple superclass roots and intermediate

levels.

Step 6. Discover associations.

" Convert a tentative class to an association when a candidate key is a

concatenation of two or more foreign keys.

" Introduce a qualified association when a candidate key combines a

foreign key with non-foreign key attributes.

" The remaining associations are buried and manifest as foreign keys.

" Note minimum multiplicity for associations. Optional multiplicity is

the permissive case; a lower limit of one (or another number) is more

restrictive.

" Note maximum multiplicity for associations. Many multiplicity is the

permissive case; an upper limit of one (or another number) is more

restrictive.

12

* Apply semantic understanding and restate some associations as

aggregations. Aggregation is the "a-part-of" relationship.

Step 7. Perform transformation.

* Convert a class to a link class as needed.

" Lightweight one-to-one associations should be more simply

represented as an attribute.

* Nonatomic n-ary associations should be decomposed into their

constituent associations of lesser order.

" Consider shifting associations via transitive closure.

" Double-buried associations should be merged into a single

association.

* You may need to insert an intermediate class in a generalization

hierarchy to recognize common semantics, attributes, and

associations.

" Transitive closure also arises through the combination of

generalization and association. Where possible, eliminate an

imprecise association to a superclass in favor of a more restrictive

association to a subclass.

" Similarly, eliminate associations to subclasses by recognizing patterns

of commonality.

13

2.4 Object-Oriented Methodology.

One of the primary reasons for adopting object technology is the promise of

faster development and reduced maintenance costs. In traditional systems, ongoing

maintenance costs amount to more than 80% of the overall cost of the system [10].

Object-oriented systems promise to reduce maintenance costs through reusable objects

that can dramatically reduce maintenance. In many cases, developers only need to

identify an object class that functions like the object that they desire to create, and

specify the differences between the object and their new object. This type of code

reusability can dramatically reduce development and maintenance costs.

Object-oriented methodology allows developers to analyze problems and divide

them into entities residing in specific states and exhibiting certain dynamic behaviors.

The entities become objects in the system. The designer defines the relationships

between the objects to determine how the system functions as a whole. The four

specific stages of object-oriented methodology are [11:4-6]:

1. Analysis. During the analysis stage, the developer defines the system

requirements. Objects are identified and their relationships to other objects

are recorded. There are no implementation decisions in this stage. Three

models are defined in this stage: an object relationship model, a dynamic

model, and a functional model;

2. System Design. In this stage the system's architecture is determined. The

application is broken into subsystems. Control mechanisms are defined for

14

each subsystem. The focus is on what needs to be done, and not how it is

to be done;

3. Object Design. During this phase, the object relationship model, dynamic

model, and functional model are evaluated to determine what operations

must be implemented for each object. Structures for representing the

relationships between objects are defined.

4. Implementation. The final stage involves transforming the design into an

executable system. This is dependent on whether the software language

selected supports object-oriented programming.

2.5 Conclusion

This literature review has provided an overview of the basic concepts of

software reengineering, the reengineering of relational databases, and object-oriented

methodology. All three of these areas are required for the successful analysis and

implementation of the new methodology.

15

3 Methodology

3.1 Introduction

This chapter presents the methodology for reengineering a relational database to

an object-oriented database. It shows the methodology step by step explaining each

step in detail, including some discussion of typical implementation techniques that one

can find during the process of reverse engineering.

This methodology is based on Blaha [1] [2] with some changes. His papers

were selected because they are focused specifically on reverse engineering of a

relational database to an object-oriented database and they are the only ones that give

detailed information on this subject.

Some changes were introduced on his approach just to facilitate the transition

from relational to an object-oriented view. The most important changes are:

1. Construct an entity-relationship model instead of going directly from the

tables to an object model;

2. Besides the object model, prepare a functional model to facilitate the

implementation of the system.

3.2 The Methodology

This methodology is presented in a linear fashion for ease of understanding,

but, except for the first and last step, the others steps are weakly ordered since during

the process of reverse engineering there is much iteration and backtracking. The steps

are as follows:

16

Step 1. Prepare an entity-relationship (ER) model.

This step can be easily accomplished by using an automated tool. Otherwise

proceed as listed below:

" Represent each table as an entity.

" Determine candidate keys. Look for unique indexes, but some candidate

keys may not be enforced by unique indexes. Automated scanning of data

can yield potential candidate keys.

* Determine primary keys. Ordinarily every table should have a primary key.

But exceptions can be encountered as follow:

1. Tables with temporary data or tables which the performance

overhead can not be tolerated.

2. Missing primary key without cause. Some applications enforce

primary keys with custom code and do not rely upon the database

manager.

3. Null primary key attributes. Some relational database managers

require that one define a unique index to enforce a primary key.

Indexed attributes are permitted to be null, unless "not null" is

specified for each of the attributes. This violates the definition of

primary key; attributes in a primary key may not be null.

17

4. Extraneous primary key attributes. By definition a primary key must

also be minimal; no attribute can be discarded from the primary key

without destroying uniqueness. The reverse engineer must regard all

primary key declarations with suspicion, and look for attributes that

do not seem semantically justified.

Even when tables do have a primary key, different realizations may still be

chosen. Figure 2 shows relational tables for three different approaches to

identify the primary key. All three schemas can be reverse engineered to

the same logical model.

" Artificial identity. Each object table (shown in Figure 2) has an

object identifier as primary key. Association tables (not shown in

Figure 2) have a primary key consisting of the identifiers of the

related objects.

" Value-based identity. The primary key of each object consists of

some combination of application attributes. Some primary keys may

become lengthy, as attributes are incorporated from foreign key of

related tables.

" Hybrid identity. One may use artificial identity and value-based

identity in the same schema. In the third segment of Figure 2 Bank

has artificial identity and Account has identity derived from a

reference to a bank combined with an account number.

18

Reverse engineering input: Artificial identity

Bank Account

bank ID account ID
bank name bank ID

account number

{Candidate key of bank is: bank name.}
{Candidate key of Account is: bank ID + account number.}

Reverse engineering input: Value-based identity

Bank Account

bank name bank name
account number

Reverse engineering input: Hybrid identity

Bank Account

bank Id bank ID
bank name account number

{Candidate key of bank is: bank name.}

Reverse engineering output: Logical intent

Bank account number Acon

bank name

Figure 2: Various approaches to identify the primary key [2]

Determine foreign-keys. Most of the modern RDBs have a foreign-key

clause as part of the schema. If you do not have this do the following:

* Try to resolve homonyms, attributes with the same name that refer to

different things, and synonyms, attributes with different names that

refer to the same thing.

19

Matching attribute names, data types, and/or domains suggest

foreign keys.

" Generate the relationships by checking every possible foreign key against

every candidate key.

* Finish the ER model by querying the data and determining the multiplicity

of each relationship.

Step 2. Prepare an initial object model.

Based on the ER diagram, represent each entity as a tentative class and each

relationship as a tentative association. All columns of the related tables become

attributes of classes.

Step 3. Refine tentative classes.

Agglomerate horizontally partitioned classes into a single class. Horizontally

partitioned classes have the same schema. Distributed databases often use horizontal

partitioning to disperse records. (Horizontally partitioned classes must also have the

same semantic intent. Identical schema is a good indicator of same semantic intent.)

Detect functions and constraints that are represented as tables and take these

classes out of the tentative object model. Look for classes that do not participate in any

foreign key.

20

Step 4. Discover generalizations.

Analyze large foreign-key groups, particularly those with 5, 10, or more cross-

related attributes. Look for a primary key that is entirely composed of a foreign key of

another table. Derived identity is symptomatic of an implementation of generalization

with distinct superclass and subclass tables or propagation of identity via one-to-one

association. Data analysis can increase confidence in the discovery of generalization by

revealing subsets of records.

Look for patterns of many replicated attributes. A generalization may have

been implemented by pushing superclass attributes down to each subclass.

Look for patterns of data where a class has mutually exclusive subsets of

attributes. This may indicate an implementation of generalization where subclass

attributes were pushed up to the superclass.

When discovering generalizations one must not forget there may be a forest of

generalizations with multiple superclass roots and intermediate levels. Data analysis

can help distinguish multiple, disjoint, and overlapping inheritance. (Keep in mind that

data analysis only yields hypotheses, and semantic understanding is required to reach

firm conclusions.)

Step 5. Discover associations.

Convert a tentative class to an association when a candidate key is a

concatenation of two or more foreign keys. Where possible, try to restate ternary and

21

n-ary associations (confluence of primary keys from three or more classes) as binary

associations [2].

Introduce a qualified association when a candidate key combines a foreign key

with non-foreign key attributes. This will find some, but not all, qualifiers.

The remaining associations are buried and manifest as foreign keys.

Note minimum multiplicity for associations. Optional multiplicity (nulls

allowed) is the permissive case as for a given record you may store an actual value or

store a null; a lower limit of one (or another number) is more restrictive.

Note maximum multiplicity for associations. Many multiplicity is the

permissive case as a collection can store a single value or many values; an upper limit

of one (or another number) is more restrictive.

Apply semantic understanding and restate some associations as aggregations.

(Aggregation is the "a-part-of" relationship.)

When discovering associations be aware to the following kind of

implementations that one may encounter [2]:

Double-buried associations. This is when an association was buried in

both participating classes as shown in Figure 3. This construct complicates

reverse engineering, since these double-buried associations look like two

separate associations. Data analysis can detect redundancy between the dual

pointers, but semantic understanding is required to resolve this situation.

22

Model as implemented

A table B table

A primary key B primary key
B foreign key A foreign key
other A attributes other B attributes

Logical intent

Figure 3. Double buried association

* Optional qualified association. Figure 4 shows an optional qualified

association. A cluster contains many Tables. A Table may belong to at

most one Cluster. The combination of a Cluster and a table# yields a

specific Table. This association was implemented by burying cluster id as a

foreign key in Table. Because of the optional membership in a cluster, the

foreign key can be null, and the combination of cluster id and table# is not

a candidate key of Table. Therefore it is difficult to detect this qualified

association.

* Alternate qualifier. In Figure 5 Column derives its identity from a Table

plus a qualifier, either column name or column number.

23

Model as implemented

Table
Cluster table#

Logical intent

Cluster table# Table

Figure 4: Optional qualified association

Model as implemented

Column table Table table

column primary key table primary key
table foreign key other column attributes
column name
column number

other column attributes

{Candidate key of Column table is:
table foreign key + column name,
table foreign key + column number.}

Logical intent

Table column name or Column
column number -]

Figure 5: Alternate qualifiers

Step 6. Perform transformation.

Various optimizations may have been employed in preparing the original RDB

schema to improve time and/or space performance. Some transformations are listed

here [1].

24

" Convert a class to a link class as needed. A link class is an association

whose links can participate in associations with other classes. An

association has derived, rather than intrinsic, identity.

" Lightweight one-to-one associations (they have no attributes) should be

more simply represented as an attribute. For example, it is unnecessary to

represent city as a class, when city-name is the only attribute of interest.

" Nonatomic n-ary associations should be decomposed into their constituent

associations of lesser order. Binary associations are most common and

easier to understand. We may find ternary association, but never an

association of higher order.

* Consider shifting associations via transitive closure. For example

associations from A to B and B to C could possibly be restated as

associations from A to B and A to C. In general, multiplicity constrains

derivation of association, but the vague multiplicity limits often obtained

through reverse engineering allow more latitude.

* Double-buried associations should be merged into a single association. For

example, an association between A and B may have been buried in both the

A and B classes.

" You may need to insert an intermediate class in a generalization hierarchy

to recognize common semantics, attributes, and associations.

" Transitive closure also arises through the combination of generalization and

association. Where possible, eliminate an imprecise association to a

25

superclass in favor of a more restrictive association to a subclass. For

example, in Figure 6 if our semantic knowledge is that X only associates

with B and never with C, then we can eliminate the association between X

and A and the association between X and C.

X C

D &

Figure 6: Transitive closure involving generalization and association [1]

0 Similarly, eliminate associations to subclasses by recognizing patterns of

commonality. In Figure 6, if all instances of B partition across classes D

and E, we can eliminate the association between X and D and the

association between X and E.

Step 7. Prepare a functional model.

The functional model describes computations within a system, and specifies the

results of this computation without specifying how or when they are computed.

Database system often have a trivial function model, since their purpose is to store and

organize data, not to transform it [11:123].

26

One can prepare the functional model only using the user manual, the forms,

and, if necessary, interviewing the users.

3.3 Summary

This chapter has presented the methodology for reengineering a relational

database to an object-oriented database. This methodology is heavily based on Blaha

papers [1] and [2], except for the first step, that was introduced to facilitate the

transition from relational to an object-oriented view, and the last step, that was

introduced to give more information about the functionality of the system. It showed

each step to be followed with some discussion of typical implementation techniques.

The next chapter presents the application of this methodology using AFITSIS as a test

case.

27

4 Application of Methodology

4.1 Introduction

This chapter presents the application of the proposed methodology using

AFITSIS as a test case. It is divided into three sections: the first section shows how

the ER model was obtained. The next section presents the transformations that were

made to the ER model to obtain the object model. The last section shows how the

functional model was drawn.

Following direction of the sponsor (AFIT/SC), this analysis is restricted to

those tables and forms that have some relationship to the Person table. This restriction

does not invalidate the work, since about 66 of 294 tables from the entire AFITSIS are

considered.

4.2 ER Model

To accomplish the first step of the methodology, which is to draw the ER

model, we used ERwin (an ER diagram editor developed by Logic Works [12]). Since

AFITSIS was developed for Oracle version 5, which does not support foreign-key

clauses, and migrated to Oracle version 6 without changes, ERwin was able to capture

only the tables and its attributes (all 294 tables from AFITSIS). If you are reverse

engineering a RDB that supports foreign-key clauses, ERwin can recover not only the

tables and their attributes, but also foreign-keys, the relationships between tables, and

can draw the entire ER model.

28

We started our work identifying the Person's primary key (SSAN). Next we

selected all tables that have this primary key as an attribute by querying the Oracle data

dictionary (Figure 7). This query resulted in 66 tables (Appendix A).

SELECT table name
FROM accessible-columns
WHERE column name
like "%SSAN%";

Figure 7 SQL statement to find tables with SSAN as an attribute

The next step was to determine the candidate keys for each of the selected

tables. We looked for unique indexes in the data dictionary, and for each one that we

found we scanned the data to confirm the correctness. For the other tables for which

we could not find a unique index, we had to scan the data.

During the process of scanning the data to look for the primary key, we were

able to find many tables that have no data, tables that have not been used for many

years, and tables that were used as a temporary files. After we confirmed that they

were not being used by any form, we eliminated these tables from our diagram.

We looked for foreign key groups by matching attribute names and types. We

did not have any complication in this step, especially because the names are very

suggestive and we did not find any homonyms nor synonyms.

Next, we were able to generate the relationships between the entities by

checking every possible foreign key against every candidate key, and linking the

29

related entities using ERwin. In our model we did not consider as a relationship the

link of a table with a validation table, via its foreign key. For example: Address table

has as foreign keys the attributes Address type code, Street type_code,

Addressroomtype code, and country_code; which are the primary key of the

following validation tables (table look up): Address type_valid,

Street type_code_valid, Addressroom type code valid, and Countryvalid,

respectively.

To finish the ER model (see Appendix B) we queried the data to determine the

multiplicity of each relationship, doing the following:

* One-to-one association. To determine a one-to-one association we verified

if for each row in one table of the relationship there was only one entry into

the other table.

" One-to-one-or-more association. For this type of association we verified

whether for each row in one table we found at least one or more entries

into the other table.

" One-to-zero-or-one association. In this case we verified whether for each

row in one table we could find zero or exactly one entry into the other

table.

" One-to-zero-one-or-more association. Now we verified whether for each

row in one table we found zero or more entries into the other table.

30

4.3 Object Model

To draw the object model we started preparing an initial object diagram (step 2)

based on the ER diagram, where we represented each entity as a tentative class and

each relationship as a tentative association. We transformed all columns of the related

entity into the attributes of the class.

We started refining the object model (step 3) by looking for horizontally

partitioned classes (classes with the same schema) and representing them as a single

class. This is what we found:

The classes Termentry and Termentry history had the same schema and

the same semantic intent. We merged them into a single class;

The classes Selectedstudent, Selectedstudent_91, and

Selectedstudent-new_91, had the same schema but, after checking the

data, we determined that the classes Selected student_91 and

Selected student new_91 were used as temporary files. We retained only

the class Selected-student and eliminated the others.

Then we looked for tables that could have been representing functions and/or

constraints, but we did not find any.

We started the process of discovering generalization (step 4) by looking for

large foreign-key groups. Although we found a couple of tables in this case we

31

realized that these tables were not involved in a generalization but in a binary or

ternary association.

Generalization was found when we started looking for any class that had its

primary key entirely composed of a foreign key of another class. We took these

classes apart and analyzed their relationship.

To do a good analysis of this kind of relationship we had to improve our

semantic knowledge of the system. We did that by making some queries and analyzing

its results, by looking up the forms, and by interviewing the Database Administrator

(DBA). After that, we were able to take these classes and select those involved in a

generalization from those involved in an association. For example: the tables

Spouse-info, Emergencydata, AFITusername, Recallroster,

Dependent-information, and Graduation-name all have their primary key entirely

composed of Person's primary key, but they have no inheritance relationship with this

table.

Semantic knowledge was especially important to incorporate some abstract

classes. For example, in the object diagram in Figure 15 (Appendix C), the abstract

classes Civilian and Military were introduced after we discovered that Faculty, Student,

and Administrative people could be either military or civilian, but only military people

have a relationship with Rank-history and Recallroster. So, we decided to introduce

these two abstract classes to increase code reuse and to organize features common to

these subclasses.

32

Another generalization chain was encountered when we analyzed Student,

CIstudent, Resident-student, and INTL_student tables. We found out that every

instance of CI student and Resident student was in the Student table, and that every

instance of INTL student was in the Resident-student table.

We introduced the class Part-timestudent to represent another kind of student,

after we discovered that this class was implemented as an attribute of Residentstudent

class called programcode. One of the valid values is 'PTE', meaning 'part-time

student'.

Data analysis was very important to increase confidence in the discovery of

generalization. Figure 8 shows our initial object diagram where we made some

assumptions based on our understanding of the system. But, after we analyzed the data

in the Eligible, Selectedstudents, and Student tables, we discovered that, contrary to

our assumption, not all instances of Student could be found in the Selectedstudent

table, and that not all instances of Selectedstudent could be found in the Eligible table.

This data analysis led us to change our object diagram to the one shown in Appendix

C.

We continued our work of drawing the object model by discovering other

associations (step 5). We started this step by looking for candidate keys composed of

two or more foreign keys, and we converted it into an association. Figure 9 shows one

binary association that we found. All the other associations can be seen in Appendix

C.

33

Person IRank HistoryI

SI

lig ib e

Administrative Faculty Selected
Students

I

Resident studentl l C-student

INTL-Student

Figure 8: Initial object diagram before the data analysis

I c ~Course

Figure 9: Binary association

34

We introduced a qualified association when we found a candidate key that

combined a foreign key with a non-foreign key attribute. Figure 10 shows some of the

qualified associations that we introduced to reduce the effective multiplicity of the

association (from many to one), to improve semantic accuracy, and to increase the

visibility of navigation paths.

(Languages Langug Change-date NmHitr
Spoken [

Dependent Person 14 Spouse

Children Information

Address Addresst Country-code Sponsor Countryp Eff Preference

rDependentInformation

Figure 10: Qualified associations

In our research we were not able to find the following cases of association:

" Association that could be representing an aggregation;

" Double-buried associations;

" Optional qualified association;

35

* Alternate qualifier.

We started our final step (step 6-perform transformation) to get the object model

by transforming each lightweight one-to-one association into an attribute. We found a

one-to-one association of Person with AFIT user-name and Person with

Emergencydata and we transformed these associations into attributes of Person

(Person Structure Definition, Appendix C). We did the same with a one-to-one

association of Resident-student with Graduation name (see Resident Student Structure

Definition, Appendix C).

We did not find any class that could be better represented as a link class. This

does not mean that none of our classes is a link class; the only restriction is that our

view is limited, since our research is concerned with only part of AFITSIS. We did

not have to do any work to decompose n-ary associations into their constituent

associations of lesser order, especially because we had only binary associations. Our

complete object model, including the object structure definition, can be seen in

Appendix C.

4.4 Functional Model

In order to get the functional model done we initially made use of the STARS

User's Guide [3] to select the boundaries of what we were going to implement, and

then limited our work in doing the functional model to this specific part. We used

SQLForms to extract the name of the tables that each form can read or update, what

36

actions the form is doing, and all the other information needed to draw the functional

model. The complete functional model is shown in Appendix D.

4.5 Summary

This chapter has presented the application of the proposed methodology using

AFITSIS as a test case. It showed how the ER model was obtained, the

transformations that were made on the ER model to get the object model, and how the

functional model was drawn. The next chapter discusses the implementation of part of

AFITSIS using an OODBMS.

37

5 Implementation Issues

5.1 Introduction

This chapter presents the implementation issues concerning the development of

part of AFITSIS using an OODBMS. It is divided into three sections: the first section

discusses how we analyzed several OODBMS and why we chose Microsoft Visual

Foxpro (Foxpro) version 3 to be used in this implementation. The next section shows

how part of the object model was implemented. The last section discusses some

limitations encountered when using Foxpro as an OODBMS.

5.2 Analysis and Choice of the OODBMS

During the process of choosing one OODBMS to implement part of AFITSIS

we took the following considerations:

* Based on the interview [4], AFIT/SC wanted to migrate AFITSIS to an

OODBMS. However, before making any decision, they will wait for Oracle

Company to release version 8, expected to be an extension of the RDBMS

with some object capabilities;

" Since Oracle version 8 is not expected to reach the market until the end of

1996 or beginning of 1997, and with the intention of doing a useful

implementation, we looked for an available RDBMS that would have some

similarities with the expected Oracle version 8. These similarities that we

were concerned about are: the product should be able to use all the power

38

and flexibility of RDBMS, like Data Definition Language (DDL) and Data

Manipulation Language (DML), share the basic relational tables, and

incorporate some concept of "object," and have the ability to store

procedures as well as data in the database.

With these considerations in mind we started analyzing some available

OODBMS. The first two OODBMS that we analyzed were ITASCA and Objectstore.

Even though we concluded that each is a very good OODBMS, we decided not to use

either of them because they are heavily based on some language like C or C + +, and

they have no compatibility and similarity with any RDBMS.

The next product that we analyzed was Foxpro. Once we had some experience

in using an old version of Foxpro and knowing that it is a RDBMS, we concentrated

our analysis to see if the new object-oriented features would be compatible with what

we wanted. After we read the Foxpro Developer's Guide [13] and used it for two

weeks, we were convinced that this product could give us a good means of comparison

and insight of what we could expect when we have the Oracle version 8 available.

5.3 Implementation of the Object Model

We started the implementation of our object model by creating a new project

and inserting a new database that we called Stars. In Foxpro the terms database and

table are not synonymous. The term database refers to a relational database that stores

information about one or more tables or views [13]. The database is where we can

39

create stored procedures (that can be used as field- and record-level rules) and

persistent table relationships (to enforce referential integrity).

After we created the Stars database we created the definition of the tables that

we were going to use, their primary key and indexes, and we added these tables to the

database. Then we linked the tables to set up the relationships (Figure 33, Appendix

E), so that we do not need a code program to check the referential integrity every time

an application tries to modify the database. The database manager system takes care of

it whenever the database is opened and used.

The next step was to create the forms, one for each table. After that, we were

ready to start creating the definitions of the classes. To implement the Person's Object

Model (Figure 15, Appendix C) we did the following:

" We created the Person's class based on the Person's form (Figure 34,

Appendix E);

" We created the Military's class based on the Person's class and adding the

Military's form (Figure 35, Appendix E);

" We created the Military-student's class based on the Military's class and

adding the Student's form (Figure 36, Appendix E);

* We created the Military Jaculty's class based on the Military's class and

adding the Faculty 's form;

40

" We created the Militaryresident student's class based on the

Military-student's class and adding the Resident-student's form (Figure 37,

Appendix E);

" We created the MilitaryINTL student's class based on the

MilitaryResident-student's class and adding the INTLstudent's form

(Figure 38, Appendix E);

" We created the Civilian's class based on the Person's class and adding the

Civilian's form (Figure 39, Appendix E);

" We created the Civilian-student's class based on the Civilian's class and

adding the Student's form (Figure 40, Appendix E);

" We created the Civilian jaculty's class based on the Civilian's class and

adding the Faculty 's form;

" We created the Civilian resident-student's class based on the

Civilian-student's class and adding the Resident-student's form (Figure 41,

Appendix E);

* We created the CivilianINTL student's class based on the

Civilianresidentstudent's class and adding the INTLstudent's form (Figure

42, Appendix E);

The reason we created the classes this way was to give more flexibility and to

make the classes easier to maintain. For example: if we need to make some change in

41

person's class we do not have to modify all the other classes that use it. Because of the

inheritance feature, the changes that we make in the parent class reflect over the

subclasses automatically; and if we need to overload some parent method (function,

procedure, trigger, or event) so that it takes a different action when running the

subclass, it can be easily achieved by just creating a method in the subclass with the

same name as the parent class. This way the subclass method will have precedence

over the parent class method.

We implemented binary associations by first creating a view with the related

tables and then creating a form based on this view. For example: the association

between Person and Address (Figure 16, Appendix C) was implemented by creating a

view with Person and Address tables, and then creating a form using this view, the

Person class, and the Address form (Figure 43, Appendix E).

We implemented a binary association with link attributes by creating a new

table with these link attributes and the primary key of the two associated tables as

foreign keys. We created a form based on this new table, and a class based on this

form. For example: the Dropped Courses Association (Figure 22, Appendix C) was

implemented by creating a Dropped-courses table having the primary key of the

Course and Resident-student tables as foreign keys, plus the link attributes. Then we

created a form base on the Dropped-courses table and a class Dropped-courses based

on this form.

42

5.4 Limitations of Foxpro Encountered During Implementation

During the implementation of our object model we faced two major problems

when using Foxpro as an OODBMS. The first one is that in Foxpro we can't define

one class based on a table by only adding its methods. Instead, we have to define the

table, define one form based on this table, and then define the class based on this form

and add the methods. Actually, this peculiarity does not cause much of a problem

(when you need to modify some attribute, you have to change the table structure and its

related form), but it is a little different from what we learned in theory [11].

Another problem encountered is that Foxpro did not appear to support multiple

inheritance. To implement the Person's Object Model (Figure 15, Appendix C),

instead of defining only one class for Student, Faculty, and Administrative, we had to

define the classes Military-student, Military Jaculty Militaryadministrative,

Civilian-student, Civilian_faculty, Civilianadministrative, and so on. This restriction

may cause some problems if the subclass has other relationships. For example: the

relationship Advises between Faculty and Resident-student (Figure 15, Appendix C),

has to be implemented by defining one relationship Advises from Civilian Jaculty to

Civilian resident-student and Militaryresident-student, and the same relationship

Advises from Military Jaculty to Civilian resident-student and

Militaryresident student.

43

5.5 Summary

This chapter has presented the implementation issues of part of AFITSIS. Some

OODBMS were analyzed and Foxpro was chosen because of its similarity to what we

are expecting for Oracle version 8. We showed the implementation techniques that we

used to implement inheritance and some associations. During the implementation we

found two limitations in using Foxpro as an OODBMS. One is that we can't define a

class directly from a table and the other is that it does not support multiple inheritance.

With this implementation done, we had the last piece of information necessary to make

an analysis and conclusion of our research. That is presented in the next chapter.

44

6 Analysis, Conclusions, and Recommendations

6.1 Analysis of The Results

In Chapter III we presented a methodology for reengineering a relational

database to an object-oriented database. To validate this methodology we applied it to

reengineering AFITSIS as a test case. As we presented in Chapter IV, this

methodology is easy to use in practice. We did not have any difficulty when following

its steps.

Our methodology has the purpose of reengineering a relational database,

independent of the kind of the RDBMS and its version. With our test case, we had the

opportunity to verify this applicability, especially because AFITSIS comes from an old

version of Oracle RDBMS. This way we could apply most of the steps of what we

proposed in the methodology. For example: to accomplish the first step of the

methodology, which is to draw the ER model, we used ERwin. Since AFITSIS was

developed for Oracle version 5, which does not support foreign-key clauses, ERwin

was able to capture only the tables and their attributes. Since ERwin was not able to

draw the entire ER model and facilitate this job, we really had to apply the

methodology and follow its steps to recover the foreign-keys and the relationships

between tables.

When applying our methodology to draw the object model we found out that

semantic logic can play an important role, especially to discover generalization and to

45

incorporate some abstract classes. Another important factor that we found that

increased our confidence in the discovery of generalization was data analysis. After we

analyzed the data we could change our first object diagram to the one shown in

Appendix C. Even though in our test case we were not able to apply our methodology

to exemplify the discovery of all kinds of associations, we were able to find some of

them.

The most important result of this analysis is that it demonstrated that the

proposed methodology can be easily used for reengineering any relational database to

an object-oriented database, filling the lack of a robust process that can be applied in all

cases.

6.2 Conclusion

The life span of an information system consists of specification, design and

maintenance. The maintenance phase dominates in time and often with respect to

resources as well. During this phase the system is subjected to a number of changes

and additions. The gap between the older technology in the system and the new

technology that becomes available increases successively. Changes in the activities of

an organization also mean that systems grow old.

Gradually the system approaches a limit where it no longer is cost-efficient or

even technically feasible to continue the maintenance. But the cost of enforcing the

required changes is usually very high [8]. A possible way out of this dilemma is to

46

define well delimited system parts that are candidates for modernization. This is where

reengineering can help.

We have described a practical method for reengineering. The method is based

on object-oriented modeling. We have described how the work can be divided into a

number of steps so that the method can be performed in a systematic manner.

We have used AFITSIS as a test case and have shown that with this method we

can model an existing system in a simple manner and with limited effort. The new

model is object-oriented and can serve as a basis for a future development plan.

We have implemented part of AFITSIS using Foxpro, one OODBMS that we

have chosen because of its similarities with the expected Version 8 of Oracle. From

this experience we were able to see that our object model can be easily mapped to be

implemented using another OODBMS.

The six research objectives, as stated in Chapter I, were:

1. Define an appropriate reverse-engineering methodology;

2. Determine an appropriate database application to be a test case;

3. Analyze and reverse engineer the test case using this methodology;

4. Redesign the test case using object-oriented methods;

5. Implement a portion of the new design in an Object-Oriented Database

Management System prototype system;

6. Analyze the methodology based on this experience.

47

The research was successful in all the original objectives. We presented a

practical methodology that can be applied for reengineering any relational database

system. We chose AFITSIS as a test case, we applied our methodology for

reengineering it, we obtained an object and functional model from this work, and we

implemented this model using an OODBMS. Finally, one of the most important

lessons that we have learned when working with reengineering is that in general, the

mapping between object models and schemes are many-to-many. Various optimizations

and design decisions can be used to transform an object model into a database schema.

Similarly, when reverse-engineering a database, alternate interpretations of the

structure and data can yield different object models. Usually, there is no obvious,

single correct answer for reverse engineering. Multiple interpretations can yield

plausible results [1].

6.3 Recommendations

For those who intend to use the object model obtained from our test case, we

recommend that you revise this model making another data analysis. This is because

we had restricted access to AFITSIS tables, since they record confidential information.

Doing this you can have more confidence on the model, and may find some important

information that we were not able to uncover.

Even though Foxpro was demonstrated to be a good OODBMS to be used in

our test case, I recommend further analysis concerning its security of the data. This is

because security is an important aspect to be considered for adopting an OODBMS to

48

implement AFITSIS, and Foxpro does not appear to have any mechanism to restrict the

access to the databases (for example: password with level of access.)

49

Appendix A: List of Tables with SSAN

(Pk): Primary key; (Fk): Foreign key.

Address: SSAN (Pk) (Fk), AddressTypeCode (Pk), AddressLine 1, AddressLine2, AddressLine_3,
City, StateCode, Zipcode, Zipcode Extension, CountryCode, AreaCode, PhoneNumber,
Address EffectiveDate, DSNPrefix, Login Name, FirmNameOfficeSymbol,
Additional AddressInformation, StreetAddress, StreetTypeCode,
AddressRoom_TypeCode, AddressRoomTypeNumber, RevisionName, RevisionDate,
Country, Login-Date, PhoneNumberExt.

AddressDataFinal: SSAN (Pk) (Fk), AddressTypeCode (Pk),Firm NameOffice Symbol,
Additional AddressInformation, StreetAddress, City, StateCode, Zipcode,
ZipcodeExtension, Street_Type Code, AddressRoom Type Code,
AddressRoom_TypeNumber, AreaCode, PhoneNumber, AddressEffectiveDate,
DSNPrefix, Login Name, RevisionName, RevisionDate, Country.

AFITnetUserName: SSAN (Pk) (Fk), Login-Name, InputDate, UserName, UserUID,
Host Accnt Created

CiStudent: SSAN (Pk) (Fk), Major00careerPointerCode, AcademicStatusCode,
AccountingStatus_Code, Book PaymentAuthorizeCode, CiStudentComment,
CivilianInstitution_Code, Corps Code, Course Of Study, CurrentOOASCCode,
CurrentOOewiOption Code, EmailAddress, GradDate, Gre_StatusCode,
HpspMedical Code, IdaDate, KitSentDate, MAJCOMAbbrev, Major00ASC_Code,
MotorcycleStatusCode, Motorcycle TrainDate, Office_Code, OverseasIndicator,
Program EntryDate, Quota Program-Code, ReportNoEarlierThanDate,
Report No LaterThanDate, ResidenceOOstateCode, Residency-Status Code,
SelectedOOASCCode, Selected00careerPointerCode, SelectedOOewi OptionCode,
SelectedDate, Selected QuotaYear, ThesisDissRequiredCode,
Thesis-Program Complete-Date, Type DegreeCode, Input Date, Login Name,
EwiOOoccupationSeriesCode, ScholarshipType Code, DLILanguageCode,
AfAcad Sponsor Dept Code, NoCostIndicator, EspCode, Book Qtrs Paid,
DLI EntryDate, SchoolInCivInsCode, Remarks, AdvanceFlag.

ClassLeader: SSAN (Pk) (Fk), Leader-Code (Pk), ProgramGraduationOOTerm_Code, Class_Code,
ProgramYearPrefix.

Degree-Awards: AFITDegree Code (Pk), SSAN (Pk) (Fk), CareerPointerCode, GradStatusCode,
PseCode, GradeRankAbbrev, NamePrefix, NameSuffix, FirstName, LastName,
MiddleInitial, BirthDate, SexCode, RaceCode, MaritalStatusCode, Religion Code,
BlueChipIndicator, AkaFname, AkaLname, PriorAFITMonths, Tafms_Date,
EthnicGroupCode, AeroRatingCode, Manning_Code, Deros Date, SeparationDate,
CommissionCode, GradeRankDate, CitizenshipOOcountryCode, DepartmentCode,
DutyTitle, Duty_Phone, DutyArea Code, Badge-Number, AcademicActionCode,
OverdueIndicator, ClassificationCode, PartRecordIndicator, AdminHoldIndicator,
MajorOOASCCode, Academic-Specialty, MajorOOedLevelCode, Ed Level, ProgramCode,
Program, ProgramGraduationOOtermCode, ClassCode, ProgramYearPrefix,
SelectedType Code, SelectedType, AFITDegree, Graduation00termCode,
GraduationOOquarterCode, GraduationYearPrefix, GraduationDate, Departure Date,
BoxNumber, CardNumber, EncodedCardNumber, Library_Number, LockerNumber,
AdmitDate, Student Sponsor_SSAN, Entry00termCode, EntryOOquarter Code,
Entry_YearPrefix, AdmissionTypeCode, AdmissionActionCode, GainingOOAFSC_Code,
FacultyAdvisorSSAN, RegistrationOdepartmentCode, ProgramEffectiveOOtermCode,
EffectiveOOquarterCode, EffectiveYearPrefix, LeaderCode, ProgramSectionNumber,

50

GainOOMAJCOMAbbrev, GainOOdutyStation, LosingOOMAJCOMAbbrev,
Double DegreeIndicator, BranchServiceCode.

Dependent Children: SSAN (Pk) (Fk), Child Last-Name (Pk), ChildFirstName (Pk),
DependentChildBirthDate, DependentAtAFITIndicator, ChildOOsexCode.

Dependent Information: SSAN (Pk) (Fk), NumberChildren, SngleDepChldrnlndicator,
DepsAtAFITIndicator.

DropTable: CoursePrefix Code (Pk) (Fk), CourseNumber (Pk) (Fk), CourseSection (Pk) (Fk), SSAN
(Pk) (Fk), Course-Dropped Date, Drop_Reason.

EdplanDesc: CareerPointerCode (Pk), SSAN (Pk) (Fk), Description, DescriptionLineNumber.
EducationHistory: MPCSchoolCode (Pk) (Fk), EdLevelCode (Pk), SSAN (Pk) (Fk),

Type DegreeCode, ASC_Code, QualityPoints, TotalCreditHours,
MethodOf ObtainmentCode, AcademicEdStatusCode, Input Date, OperatorsInitials,
LoginName, LastYearAttended, ABETAccreditedIndicator, EdHistoryRemarks,
Work ID ProcessedCode, TmscrptOOcareerPointerCode, DutyLocationCode,
DegreeCumGpa, Degree Title.

Eligibility: SSAN (Pk) (Fk), EligibilityEvaluation date (Pk), Pre AFITOOEdLevelCode (Pk),
Counse;orInitials, EligOverall_GPA, EligMath GPA, Elig,MajorGPA,
EvaluationStatus_Code, ListNumber.

EmergencyData: SSAN (Pk) (Fk), Emergency_ContactFname, EmergencyContactLname,
EmergencyRelation, AddressLinel, AddressLine_2, AddressLine_3, City, State Code,
Zipcode, ZipcodeExtension, Country-Code, AreaCode, PhoneNumber, Country,
FirmNameOffice-Symbol, AdditionalAddressInformation, StreetAddress,
AddressRoom_Type Code, Address_RoomType_Number, StreetType Code,
RevisionName, RevisionDate, Login Name, LoginDate.

ENProgramLeader: SSAN (Pk) (Fk),ENOOLeaderCode, ENStudentOOProgramCode,
Program_GraduationTermCode, Class_Code, ProgramYearPrefix.

Evaluation_BySchool: SSAN (Pk) (Fk), AdmittedIndicator, EvaluationResultRemark,
EvaluationForwardedDate, ForwardedToOODepartmentCode, EvaluationReturnedDate.

Faculty: SSAN (Pk) (Fk), AFIT SchoolCode, AcademicInstructionIndicator,
AppointmentTypeRemark, FacultyType Code.

FacultyHistory: SSAN (Pk) (Fk), AcademicRank-Code (Pk), AcademicRankDate, Academic-Step.
FitnessPerformance: SSAN (Pk) (Fk), FitnessCategoryCode(Pk), Elapsed Time, TrialTime,

Input Date, LoginName, Distance.
GradeChangeHistory: CoursePrefix Code (Pk) (Fk), CourseNumber (Pk) (Fk), CourseSection (Pk)

(Fk), SSAN (Pk) (Fk), Term_Code, GradeEffectiveDate, PriorOOgradeCode.
GradeHistory: CoursePrefixCode (Pk) (Fk), CourseNumber (Pk) (Fk), Course Section (Pk) (Fk),

SSAN (Pk) (Fk), TermCode, Approval-Code, ApprovalDate, CareerPointerCode,
CreditHours, EarnedHoursIndicator, Gpa Indicator, GradeCode, GradeEffective_Date,
LoginName, GradeTypeCode, InputDate, PriorOOgrade Code.

GraduationAttendees: SSAN (Pk) (Fk), GraduationOOtermCode (Pk), GraduationOOquarter Code,
Graduation Year Prefix.

GraduationDateHistory: SSAN (Pk) (Fk), GraduationOOtermCode, Effective00term_Code,
GradStatusCode, DepartureDate, GraduationOOquarterCode, GraduationYearPrefix,
Effective00quarterCode, EffectiveYearPrefix, Login-Name, Input Date.

GraduationName: SSAN (Pk) (Fk), GraduationName.
Intl-Student: SSAN (Pk) (Fk), WSCN, ITO, CaseNumber, DLI Req_lndicator, DLIIndicator,

EvaluationRequestDate, RequestedOOprogramCode, EvalForwardDate,
ForwardToOOdepartmentCode, EvalReturnedDate, AdmissionStatusCode, EvalRemarks,
CountryNotifiedDate, AFSATNotifiedDate, AFSATQuota_Indicator, First SponsorSSAN,
Second SponsorSSAN, SourceOf FundsCode, AFSATCountry-Code.

IPAttendee: SSAN (Pk) (Fk), IPActivityCode (Pk), ActivityDate (Pk).
LanguagesSpoken: SSAN (Pk) (Fk), Language Code (Pk).
LSPartTime: SSAN (Pk) (Fk), PTLSStudentOOProgram Code (Pk).
LSSectionLeader: SSAN (Pk) (Fk), Section-Number (Pk), LSOOLeaderCode (Pk).

51

Majors: CareerPointerCode (Pk), Major (Pk), SSAN (Pk) (Fk), Login-Name, InputDate.
NameHistory: SSAN (Pk) (Fk), NameChangeDate (Pk), FirstName, LastName, Middle_Initial,

NameSuffix, NamePrefix, Login Name, MaritalStatusCode.
NewAFSC: SSAN (Pk) (Fk), AFSCCode (Pk), Prefix.
OERData: SSAN (Pk) (Fk), LastOERDate, OERDueDate.
PCEGrade: SSAN (Pk) (Fk), PCECousePrefix (Pk), PCECouseNumber (Pk), PCECouseLetter

(Pk), PCECouseYear, PCEOOGradeCode.
PCEStd: SSAN (Pk) (Fk), PCEStayBeginDate (Pk), PCEStayEndDate, PCEOOBilleting_Code,

MAJCOM Code.
Person: SSAN (Pk), GradeRankAbbrev, NamePrefix, NameSuffix, FirstName, LastName,

MiddleInitial, Birth_Date, SexCode, RaceCode, MaritalStatusCode, Religion Code,
BlueChipIndicator, AkaFname, AkaLname, PriorAFITMonths, Tafms_Date,
Ethnic GroupCode, AeroRatingCode, ManningCode, Deros Date, SeparationDate,
Commission-Code, GradeRank_Date, CitizenshipOOcountryCode, DepartmentCode,
DutyTitle, Duty_Phone, DutyArea Code, Badge Number, BranchServiceCode,
LoginName, InputDate, DutyPhoneExt.

Personnel: SSAN (Pk) (Fk), PersonnelOODepartmentCode, PersonnelHireDate, PersonnelDutyTitle,
Phone Number.

PHD: SSAN (Pk) (Fk), PHD Major Remark, PHDMinorRemark.
PlanesFlown: SSAN (Pk) (Fk), PlaneName.
Program-History: Program Code (Pk), ProgramGraduation00termCode (Pk),

ProgramEffective00termCode (Pk), SSAN (Pk) (Fk), Input Date, FacultyAdvisorSSAN,
ClassCode, Program-YearPrefix, EdLevelCode, ASCCode, Login-Name,
Effective00quarterCode, EffectiveYearPrefix, CareerPointerCode, AFIT Degree-Code.

Program STDSections: SSAN (Pk) (Fk), SectionNumber (Pk).
RankHistory: SSAN (Pk) (Fk), GradeRankAbbrev (Pk), GradeRank Date, LoginName,

InputDate, ManningCode, BranchServiceCode.
RecallRoster: SSAN (Pk) (Fk), HomePhoneNumber, Next InChainSSAN.
RegistrationVerification: SSAN (Pk) (Fk), TermCode, QuarterCode, YearPrefix,

RegistrationNotice.
ResidentStudent: SSAN (Pk) (Fk), AcademicActionCode, OverdueIndicator, ClassificationCode,

PartRecordIndicator, AdminHoldIndicator, Major00ASCCode, Major00edLevelCode,
ProgramCode, ProgramGraduation00termCode, ClassCode, ProgramYearPrefix,
Selected TypeCode, AFIT DegreeCode, GraduationOOtermCode, Graduation00quarterCode
, GraduationYearPrefix, GradStatusCode, DepartureDate, BoxNumber, CardNumber,
EncodedCardNumber, LibraryNumber, LockerNumber, AdmitDate,
Student-SponsorSSAN, EntryOOtermCode, EntryOOquarter Code, EntryYearPrefix,
AdmissionTypeCode, AdmissionActionCode, CareerPointerCode, GainingOOAFSCCode,
FacultyAdvisorSSAN, Registration00departmentCode , ProgramEffectiveOOtermCode,
EffectiveOOquarterCode, EffectiveYearPrefix, LeaderCode, Program SectionNumber,
GainOOMAJCOM_Abbrev, GainOOduty_Station, LosingOOMAJCOMAbbrev, Pse_Code.

SectionLeaders: Leader Code (Pk), SSAN (Pk) (Fk), Program_Code, ClassCode,
ProgramSectionNumber.

SelectedComments: SSAN (Pk) (Fk), SelectedComment.
SelectedProjection: SSAN (Pk) (Fk), GainOOMAJCOMCode, GainOOMAJCOMAbbrev,

GainMAJCOMSupervisor, GainMAJCOMSupervisorPhone, GainMAJCOMDSNPrefix,
GainMAJCOMOODepartmentCode, PositionNumber-Projected.

SelectedStudent: SSAN (Pk) (Fk), SelectedOOASCCode, SelectedOOedLevelCode,
SelectedQuotaYear, SelectedOOewi_OptionCode, PcaIndicator, Quota Program Code,
ListNumber, Report No EarlierThan Date, ReportNoLaterThanDate,
ProjectedStartDate, AssignAvailDate, Assign ReasonCode, MAJCOMAbbrev,
ProjectedEntry_Class, SelectedDate, Input Date, Login-Name, SelectedTypeCode,
SelectedOOAFSC_Code, ReselectionCode, MPCSchoolCode, PseCode,
AssignOOdepartmentCode.

52

SelectedStudentArchive: Selected QuotaYear (Pk), SSAN (Pk) (Fk), SelectedOOASCCode,
SelectedOOedLevel_Code, SelectedOOewiOptionCode, Pca_Indicator, Quota Program_Code,
ListNumber, Report No EarlierThan Date, ReportNoLaterThanDate,
ProjectedStartDate, AssignAvailDate, AssignReasonCode, MAJCOMAbbrev,
ProjectedEntry_Class, SelectedDate, Input Date, Login-Name, SelectedTypeCode,
SelectedOOAFSCCode, GainOOMAJCOMCode, Gain00MAJCOMAbbrev,
GainMAJCOM Supervisor, GainMAJCOMDSNPrefix, GainMAJCOM SupervisorPhone,
GainMAJCOMOOdepartmentCode, PositionNumber-Projected, Reselection_Code, PseCode,
MPCSchoolCode, Assign00departmentCode.

SponsorsCountryPrefere: SSAN (Pk) (Fk),Ce, PreferredOOcountryCode (Pk).
Spouse-Info: SSAN (Pk) (Fk), SpouseBirthDate, SpouseFname, SpouseLname,

SpouseAtAFITIndicator, Spouse Nickname, SpouseInMilitaryIndicator,
Spouse Occupation, SpouseRemarks.

Student: SSAN (Pk) (Fk), Last-Name, FirstName, DepartmentCode, GradeRankAbbrev,
ProgramCode, ClassCode, GradTerm, DateEntered, RevisionDate.

StudentAddress: SSAN (Pk) (Fk), AddressType (Pk), AddressTypeDesc, AddressLine_1,
AddressLine_2, City, State, ZIP, ZIPExt.

StudentCourses: CoursePrefixCode (Pk) (Fk), Course-Number (Pk) (Fk), Course-Section (Pk) (Fk),
SSAN (Pk) (Fk), TermCode, Hours, Grade, CalculatedField.

StudentDutyHistory: DutySequenceNumber (Pk), SSAN (Pk) (Fk), DutyTitle, DutyOOAFSCCode,
DutyOrganization, DutyStation, DutyAssignedDate, LoginName.

Student Sequences: ProgramSequenceCode (Pk), SSAN (Pk) (Fk).
Term-Entry: SSAN (Pk) (Fk), EntryOOtermCode, EntryOOquarter Code, EntryYearPrefix,

Admission-TypeCode, AdmissionActionCode.
TermEntryHistory: SSAN (Pk) (Fk), Entry00termCode, EntryOOquarterCode, EntryYearPrefix,

AdmissionTypeCode, AdmissionActionCode.
TestScores: TestTypeCode (Pk), SSAN (Pk) (Fk), Test TakenDate, TestScore, Login-Name,

InputDate.
TDYAttendees: SSAN (Pk) (Fk), LeftForTDYDate (Pk), ReturnedFromTDYDatee,

TDYDestinationCode, TDY Purpose.
ThesisDissBookAllowance: SSAN (Pk) (Fk), AllowanceCode, ASCCode, EDLevelCode.
TranscriptSSANS_105643: SSAN (Pk) (Fk), LastName, FirstName, MiddleInitial, Name_Suffix,

GradeRankAbbrev, ProgramCode, Selected Type_Code, TableIndicator.
TranscriptSent: SSAN (Pk) (Fk), TranscriptSent Date (Pk), Num TranscriptSent.
TransferTranscript: SSAN (Pk) (Fk), CoursePrefixCode (Pk), CourseNumber (Pk),

TransferCourse-Prefix (Pk), Transfer-CourseNumber (Pk), CourseSection,
AFITOOCreditHours, EarnedHoursIndicator, GPA_Indicator, TransferCreditHours,
TransferOOGradeCode, TransferStartDate, TransferEndDate, MPCSchoolCode,
SocheIndicator, TrnsfrOOTermCode, TrnsfrOOQuarterCode, TmsfrYearPrefix,
TrnsfrOOCareerPointerCode, TransferCourse_Title, TranscripCourseTitle.

WaitList: SSAN (Pk) (Fk), CoursePrefixCode (Pk), CourseNumber (Pk), Course-Section (Pk).
WaivedCourse: Waived00coursePrefix_Code (Pk), Waived00courseNumber (Fk),

CoursePrefixCode (Pk) (Fk), Course-Number (Pk) (Fk), CourseSection (Pk) (Fk), SSAN (Pk)
(Fk), WaivedOOgrade Code, WaivedDate.

53

Appendix B: The Entity Relationship Diagram

Dependent Children I
ZFSpose Info

Sponsor Country Preference

ICl Sudent Isident Sudent F aculty

Figure 11. ER diagram (Person)

54

Selected Comments z Selected Projection

Selected Student I

Selected Student Student Duty
Archive History

SStudent Sequences~t Ar ISection Leaders

ZStudentCourses Resident Student TestScores

Waived Coure

Term Entry
History

Term Entry

Figure 12: ER diagram (Resident Student 1)

55

Edplan Desc

Grade History D TablesI

Graduation Date Registration

History Verification

Education Histo Resident Student

INTL Student lm. Majors

Graduation NameJ W Grade Change

History

Pogram History

Figure 13: ER diagram (Resident Student 2)

56

J " Grade History '

Schedule A -Student Courses

Grade Change
History

Resident Student

Figue 14 ERdiagam (eientStu den

= Drop Table7

SCourse

j €! Waived Course L

Scholls i- Education History

Figure 14: ER diagram (Resident Student 3)

57

Appendix C: The Object Model

Person

Civilian Militar RankHitr

Advises

-student Part-time student Resident studen

INTL-Student

*This model does not show all the associations related to this object

Figure 15: Person's Object Model

58

Languages Language Change date Name History

Spoken L

Dependent : L Person Spouse

Children Information

AddAddre sddress type Country code Sponsor CountrySPreference

Dependent

Information

*This model does not show all the associations related to this object

Figure 16: Person Object Model (cont.)

59

Student Sequence sLeader Section
SequencesI Ladr

[Degree Awards AFIT-degree _ Scores

Student Duty Sequence TestLp e EdplanI
HisoW Descritin~ iption

Resident Student

ProgramHistory Major

Graduaton~aeiso JSelected Student

S SelectedSeetdSlcdProjection St :udCet Commlets I
**This model does not show all the associations related to this object

Figure 17: Resident Student Object Model

60

Student Courses Grade History

ed u iTerm
Entry

Droped Courses no Grade Changer" I IHistory
i Resident MStudent

Registration TermFcode 19: GaeHtrAsct
Verification Histor

Waived Course Term Entr

%This model does not show all the associations related to this object

Figure 18: Resident Student Object Model (cont.)

Schedule L Res ident

Figure 19: Grade History Association

61

ISchedule 6 Resident I
I Grade Change

History I

Figure 20: Grade Change History Association

Sceul Resident I

K Student

S Student

Courses

Figure 21: Student Courses Association

I Cous 111 ,. Resident I

Fiue2:Dropped Cus soito

I~ ~ ~~Cus CoreI , R:i:t

I Waived
Course

Figure 23: Waived Course Association

62

Figure 24: Education History Association

63

Person Structure Definition

Object Name: Person
Object Number:
Object Description: General model of a person

Author: Maj Pedro Arthur Linhares Lima
Date: 03/25/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
SSAN SSAN type Social Security Account Number.
lastname String Person's last name.
firstname String Person's first name.
nameprefix Prefix type Name prefix.
namesuffix Suffix type Name suffix.
middle initial Character Name middle initial.
gender {male, female}
birthdate Date type Birth date.
marital status {single, married, divorced, widow }
race Race type Person's race.
religion Religion type Person's religion.
ethnicgroup Ethnic type Person's ethnicity.
badge number Badge number type Badge number.
emailaddress String Electronic mail address.
academic ed status Academiced type Academic education status.
dutytitle String Duty title.
dutyyhone Phone type Duty phone number.
departmentcode Department type Person's department.
citizenship country Country type Person's country.
login name String Login name of who made changes.
input-date Date type Date of last change.

Constraints:

Z Static Schema:
Let SSANTYPE be the set of all Social Security Account Numbers.
Let DATETYPE be the set of all possible dates.
Let PREFIXTYPE be the set of all possible name prefixes.
Let SUFFIXTYPE be the set of all possible name suffixes.
Let RACETYPE be the set of all possible races.
Let RELIGIONTYPE be the set of all possible religions.
Let ETHNICTYPE be the set of all possible ethnic groups.
Let BADGENUMBERTYPE be the set of all possible badge numbers.
Let ACADEMIC ED TYPE be the set of all possible academic education types.
Let PHONETYPE be the set of all possible phone numbers.
Let DEPARTMENTTYPE be the set of all possible departments.
Let COUNTRYTYPE be the set of all possible country codes.

64

Person
SSAN: SSAN TYPE

lastname String
firstname : String
nameprefix : PREFIX TYPE
name-suffix. SUFFIXTYPE
middle initial : Character

gender: (male, female]

birth date: DATETYPE
race : RACE TYPE
marital-status: (single, married, divorced, widow]

religion: RELIGION TYPE
emailaddress : String
academic ed status : ACADEMICEDTYPE

ethnicgroup : ETHNICTYPE
citizenship country: COUNTRYTYPE

department-code• DEPARTMENTTYPE
dutytitle : String
dutyphone :PHONETYPE
badgenumber : BADGETYPE
login-name : String

input-date : DATE TYPE

65

Military Structure Definition

Object Name: Military
Object Number:
Object Description: General model of a military

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Person
Components: None

Context: None

Attributes:
rank Rank type Military rank.

branch Branch type Branch of service.

date ofrank Date type Date of rank.
AFSC AFSC type AFSC code.

date-of_commission Date type Date of commission.
date of separation Date type Date of separation.

manningcode Manning type Manning code.

DEROSdate Date type DEROS date.
duty effective date Date type Date of effective duty.

aeroratingcode Aero rating type Aero rating code.
MAJCOM MAJCOM type MAJCOM code.

base Base type Base code.

bluechip indicator Character Blue chip indicator.
NCO-indicator Boolean NCO indicator.

MPCcode MPC type MPC code.

recallroster Person pointer Pointer to another military.

Constraints:

Z Static Schema:
Let RANKTYPE be the set of all possible rank types.
Let BRANCHTYPE be the set of all possible branch types.

Let DATETYPE be the set of all possible dates.

Let MANNINGTYPE be the set of all possible manning types.
Let AERORATINGTYPE be the set of all possible aero rating types.

Let MAJCOMTYPE be the set of all possible MAJCOM types.

Let BASETYPE be the set of all possible base types.
Let MPCTYPE be the set of all possible MPC types.

Let PERSONPOINTERTYPE be a pointer to a particular person.

66

Military
rank: RANKTYPE
branch: BRANCH TYPE
date of rank : DATETYPE
AFSC" AFSCTYPE
date of commission: DATE TYPE
date of separation: DATETYPE
manning code• MANNINGTYPE
DEROS date: DATETYPE
duty effectivedate : DA TETYPE
aero_ratingcode : AERORA TINGTYPE
MAJCOM: AJCOM TYPE
base : BASETYPE
blue chip_indicator." Character
NCO indicator: Boolean
MPC code: MPCTYPE
recall-roster: PERSON POINTERTYPE

67

Student Structure Definition

Object Name: Student
Object Number:
Object Description: General model of student

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Person
Components: None
Context: None

Attributes:
PartRecordIndicator Boolean If a student is resident or part time.
EdLevel Educationlevel type Major education level.
Selected Type Selected type School that has been selected.
GainingAFSC AFSC type The AFSC that he is going.
GainMAJCOM MAJCOM type The MAJCOM that he is going.
GaindutyStation DutyStation type Duty station he is going.
Losing_MAJCOM MAJCOM type The MAJCOM that he is losing.
PSE PSE type The professional specialized educ.
LastYearAttended Year type The last year he attended a schooll.

Constraints:

Z Static Schema:
Let EDUCATIONLEVELTYPE be the set of all education level types.
Let SELECTEDTYPE be the set of all possible selected types.
Let AFSCTYPE be the set of all possible AFSC types.
Let MAJCOMTYPE be the set of all possible MAJCOM types.
Let DUTYSTATIONTYPE be the set of all possible duty stations.
Let PSETYPE be the set of all possible PSE types.
Let YEARTYPE be the set of all possible years.

Student
Part Record Indicator: Boolean
Ed Level: EDUCATION LEVELTYPE
SelectedType. SELECTEDTYPE
GainingAFSC : AFSCTYPE
Gain MAJCOM: MAJCOM TYPE
Gainduty_Station: DUTYSTATION TYPE
LosingMAJCOM: MAJCOMTYPE
PSE: PSE TYPE
Last Year Attended: YEARTYPE

68

Resident Student Structure Definition

Object Name: Resident Student
Object Number:
Object Description: General model of resident student

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Student
Components: None
Context: None

Attributes:
AcademicAction AcademicAction type Student's academic standing.
Overdue Indicator Boolean If a student has an overdue book.
Classification Classification type Represents an enrollment classific.
Major ASC ASC type Major Academic specialty.
Program Program type Student's Program.
Class Class type Student's class.
ProgramYear Year type Prefix of the program year.
AFIT Degree Degree type Type of AFIT degree.
CareerPointerCode Career pointer type Level of education that credit apply
DepartureDate Date type Departure date from AFIT.
BoxNumber Box type Student's box number.
Card Number Card type Student's card number.
LibraryNumber LibraryNumber type Student's library number.
LockerNumber Locker type Student's locker number.
Student Sponsor Person pointer Pointer to sponsor.
FacultyAdvisor Person pointer Pointer to faculty advisor.

Constraints:

Z Static Schema:
Let ACADEMICACTION _TYPE be the set of all possible academic actions.
Let CLASSIFICATIONTYPE be the set of all possible classification types.
Let ASCTYPE be the set of all possible ASC types.
Let PROGRAMTYPE be the set of all possible programs.
Let CLASSTYPE be the set of all possible class types.
Let YEARTYPE be the set of all possible years.
Let DEGREETYPE be the set of all possible degree types.
Let CAREERPOINTERTYPE be the set of all possible career pointer types.
Let DATETYPE be the set of all possible dates.
Let BOXTYPE be the set of all possible boxes.
Let CARDPOINTERTYPE be the set of all possible card pointer types.
Let LIBRARYNUMBERTYPE be the set of all possible library numbers.
Let LOCKERTYPE be the set of all possible locker numbers.
Let PSETYPE be the set of all possible PSE types.
Let PERSONPOINTERTYPE be a pointer to a particular person.

69

Resident student
Academic Action: ACADEMICACTION TYPE
Overdue Indicator : Boolean
Classification: CLASSIFICATIONTYPE
Major ASC: ASCTYPE
Program : PROGRAMTYPE
Class : CLASS TYPE
ProgramYear: YEARTYPE
AFIT Degree : DEGREE TYPE
Career PointerCode: CAREERPOINTERTYPE
DepartureDate DATETYPE
BoxNumber: BOX TYPE
Card Number : CARDTYPE
Library Number: LIBRARYNUMBERTYPE
Locker Number : LOCKERTYPE
StudentSponsor: PERSONPOINTERTYPE
FacultyAdvisor: PERSONPOINTERTYPE

70

INTL-Student Structure Definition

Object Name: INTL-Student
Object Number:
Object Description: General model of INTL-student

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: Resident Student
Components: None
Context: None

Attributes:
WSCN WSCN type Work Sheet Control Number.
ITO ITO type ITO number.
Casenumber Case-number type Case number.
DLIrequest indicator Boolean If student has to attended DLI.
DLI indicator Boolean If student attended DLI.
evaluation reqdate Date type Date evaluation was requested.
requested program Program type Requested student's Program.
evaljorwarddate Date type Evaluation forward date.
forward to dept Department type Department it was forwarded.
Evalreturneddate Date type Date the evaluation returned.
admissionstatus Admission type Admission status code.
evalremarks String Evaluation remarks.
country notified date Date type Date the country was notified.
AFSAT notified date Date type Date that AFSAT was notified.
AFSAT quota indicator Boolean If student fills a country's quota.
firstsponsor Person pointer Pointer to sponsor.
second sponsor Person pointer Pointer to sponsor.
source ofjfunds Funds type Source of funds code.
AFSAT country Country type The home country of a student.

Constraints:

Z Static Schema:
Let WSCN _TYPE be the set of all possible WSCN numbers.
Let ITOTYPE be the set of all possible ITO numbers.
Let CASENUMBERTYPE be the set of all possible case numbers.
Let DATETYPE be the set of all possible dates.
Let PROGRAMTYPE be the set of all possible programs.
Let DEPARTMENTTYPE be the set of all possible department types.
Let ADMISSIONTYPE be the set of all possible admission types.
Let PERSONPOINTERTYPE be a pointer to a particular person.
Let FUNDSTYPE be the set of all possible funds types.
Let COUNTRYTYPE be the set of all possible country types.

71

INTL-student
WSCN: WSCN TYPE
ITO: ITO-TYPE
Case number: CASENUMBERTYPE
DLI requestindicator:. Boolean
DLI-indicator : Boolean
evaluation reqdate : DATE TYPE
requestedprogram: PROGRAMTYPE
evalforwarddate : DATETYPE
forward to dept: DEPARTMENTTYPE
Eval returned date: DATETYPE
admission status: ADMISSION TYPE
evalremarks : String
country notfieddate: DATETYPE
AFSATnotified date: DATETYPE
AFSA Tquota_indicator: Boolean
first sponsor : PERSONPOINTERTYPE
second sponsor : PERSONPOINTERTYPE
source ofjunds: FUNDSTYPE

AFSAT country: COUNTRYTYPE

72

Address Structure Definition

Object Name: Address
Object Number:
Object Description: General model of address

Author: Maj Pedro Arthur Linhares Lima
Date: 03/25/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
address type Address type Address type.
address String Address.
city String City.
state State type State.
country Country type Country.
zipcode Zip type Zip code.
phone Phone type Phone number.
address effective date Date type Date of effective address.
login name String Login name of who made changes.
login-date Date type Date of last change.

Constraints:

Z Static Schema:
Let ADDRESSTYPE be the set of all possible address types.
Let STATETYPE be the set of all possible states.
Let COUNTRYTYPE be the set of all possible country codes.
Let ZIPTYPE be the set of all possible zip codes.
Let PHONETYPE be the set of all phone Numbers.
Let DATETYPE be the set of all possible dates.

Address
addresstype : String
address : String
city: String
state: STATETYPE
zipcode : ZIP TYPE
country: COUNTRYTYPE
phone : PHONETYPE
address_effective date : DA TETYPE
login-name : String
login-date : DATETYPE

73

Dependent Information Structure Definition

Object Name: Dependent Information
Object Number:
Object Description: General model of dependent information

Author: Maj Pedro Arthur Linhares Lima
Date: 03/26/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
numberchildren Integer Number of student's children.
singledepchldrn Character Indicator if single with children.
deps atAFIT Character Indicator if dependents at AFIT.

Constraints:

Z Static Schema:

-Dependent Information
number-children : Integer
single depchldrn: Character
deps-atAFIT." Character

74

Education History Structure Definition

Object Name: Education History
Object Number:
Object Description: General model of education history

Author: Maj Pedro Arthur Linhares Lima
Date: 03/26/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
MPCSchoolCode MPC type Military Personnel Center school.
EdLevelCode Edlevel type Education level.
TypeDegreeCode Type degree type Type of degree.
ASCCode ASC type Academic specialty code.
Quality_Points Integer Quality points.
TotalCreditHours Integer Total of credit hours.
Method Of Obtainment Method of obt type Method of obtained an education.
Academic Ed Status Academiced type Academic education status.
LastYearAttended Date type Last year that attended a school.
ABETAccredited Boolean If AFIT degree's ABET accredited.
EdHistoryRemarks String Education history remarks.
Work ID Processed Work ID type Action that orig. a transaction.
Login Name String Login name of who made changes.
Input Date Date type Date of last change.
OperatorsInitials String Operator's initials.
Trnscrpt_CareerPointer Transcript type Education level of student transcr.
DutyLocation Duty location type Location of active duty.
Degree CumGpa Integer The cumulative student's GPA.
DegreeTitle Degree type The title of a student's degree.

Constraints:

Z Static Schema:
Let MPCTYPE be the set of all possible MPC types.
Let EDLEVELTYPE be the set of all possible education level types.
Let TYPEDEGREETYPE be the set of all possible degree types.
Let ASCTYPE be the set of all possible ASC types.
Let DATETYPE be the set of all possible dates.
Let METHOD OF OBT_TYPE be the set of all possible method of obtained types.
Let ACADEMIC ED TYPE be the set of all possible academic education types.
Let WORK ID TYPE be the set of all possible work ID types.
Let TRANSCRIPTTYPE be the set of all possible transcript types.
Let DUTYLOCATIONTYPE be the set of all possible duty location types.
Let DEGREE_TYPE be the set of all possible degree types.

75

Education History
MPC SchoolCode: MPCTYPE
Ed LevelCode: EDLEVELTYPE

Type Degree Code : TYPEDEGREETYPE

ASC Code: ASCTYPE
Quality Points : Integer
TotalCreditHours : Integer
Method_Of Obtainment METHODOFOBTTYPE
Academic Ed Status: ACADEMICEDTYPE

Last Year Attended.: DATE TYPE
ABET Accredited: Boolean

Ed HistoryRemarks• String

Work ID Processed: WORKIDTYPE
Login-Name : String
Input Date: DA TETYPE
Operators Initials : String

TrnscrptCareerPointer: TRANSCRIPTTYPE

Duty Location: DUTYLOCATIONTYPE
DegreeCumGpa: Integer
Degree Title : DEGREE-TYPE

76

Emergency Data Structure Definition

Object Name: Emergency Data
Object Number:
Object Description: General model of emergency data

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
ContactFname String Emergency contact first name.
ContactLname String Emergency contact last name.
Relation Relation type The relationship with a person.
Address String Home address.
City String Home city.
State State type Home state.
Zipcode Zip type Home zip code.
Country Country type Person's country.
Phone Phone type Home phone number.
FirmName-Office Office type Person's office symbol.
AdditionalAddress String Additional address information.
StreetAddress String Additional street information.
Address Room Type Room type Additional Room type.
AddressRoom Number String Additional room number.
StreetTypeCode Street type Additional street type.
Revision Name String Name of who made the revision.
RevisionDate Date type Revision date.
Login Name String Login name of who made changes.
Login-Date Date type Date of last change.

Constraints:

Z Static Schema:
Let RELATIONTYPE be the set of all possible relationship types.
Let STATETYPE be the set of all possible states.
Let ZIPTYPE be the set of all possible zip codes.
Let COUNTRYTYPE be the set of all possible country codes.
Let PHONETYPE be the set of all phone numbers.
Let OFFICETYPE be the set of all possible offices.
Let ROOMTYPE be the set of all possible room types.
Let STREETTYPE be the set of all possible street types.
Let DATETYPE be the set of all possible dates.

77

Emergency data
ContactFname : String
ContactLname: String
Relation: RELATION TYPE
Address : String
City: String
State : STATETYPE
Zipcode : ZIPTYPE
Country: COUNTRYTYPE
Phone: PHONETYPE
Firm Name Officel: OFFICE TYPE
AdditionalAddress : String
StreetAddress : String
AddressRoomType: ROOM_TYPE
AddressRoom Number: String
Street Type_Code : STREETTYPE
Revision Name: String
Revision Date : DATETYPE
LoginName : String
Login-Date: DATETYPE

78

Spouse Information Structure Definition

Object Name: Spouse Information
Object Number:
Object Description: General model of spouse information

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
BirthDate Date type Spouse birth date.
Fname String Spouse first name.
Lname String Spouse last name.
Spouse At AFIT Boolean If spouse came with him/her.
Nickname String Spouse nickname.
Spouse In Military Boolean If spouse in military service.
Occupation String Spouse occupation.
Remarks String Remarks.

Constraints:

Z Static Schema:
Let DATETYPE be the set of all possible dates.

Spouse Information
Birth Date DATE TYPE
Fname : String
Lname : String
Spouse At AFIT: Boolean
Nickname : String
Spouse In Military: Boolean
Occupation: String
Remarks: String

79

Student Duty History Structure Definition

Object Name: Student Duty History
Object Number:
Object Description: General model of student duty history

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
Title Title type Job title.
AFSC AFSC type Duty AFSC.
Organization String Where the student works.
DutyStation DutyStation type Student's duty station.
AssignedDate Date type Date the student was assigned.
SequenceNumber Integer Sequence number.
Login Name String Login name.

Constraints:

Z Static Schema:
Let TITLETYPE be the set of all possible titles.
Let AFSCTYPE be the set of all possible AFSC types.
Let DUTYSTATIONTYPE be the set of all possible duty stations.
Let DATETYPE be the set of all possible dates.

Student duty history
Title : TITLE TYPE
AFSC : AFSCTYPE
Organization : String
DutyStation: DUTYSTATIONTYPE
Assigned Date: DATETYPE
SequenceNumber• Integer
Login-Name: String

80

Test Scores Structure Definition

Object Name: Test Scores
Object Number:
Object Description: General model of test scores

Author: Maj Pedro Arthur Linhares Lima
Date: 03/27/96
History: Thesis

Superclass: None
Components: None
Context: None

Attributes:
TestType Test type Type of test.
TakenDate Date type The date of the test.
Score Integer Score on the test.
Input-Date Date type The date of the input.
Login Name String Login name.

Constraints:

Z Static Schema:
Let TESTTYPE be the set of all possible test types.
Let DATETYPE be the set of all possible dates.

Test scores
Test-Type: TESTTYPE
TakenDate: DATETYPE
Score : Integer
Input Date: DATETYPE
Login Name: String

81

Appendix D: The Functional Model

name User
password display messages

selection forms

data

tperform generate

readinpt action outputI

Figure 25: STARS Application Level 0 DFD

82

invalid selection
di ta

invalid
login erorm ction

User name 10Validate valid user--type01 Mn
Useror Login Option

selection selection
"

selection

Handle exitSelection m

FTDatabase

Figure 26. Perform Action Level 1 DFD

83

seietion invalid

selection

Menu Options

validate Ivalid (use -type) verifydipa

logi srtp SITPopin

Figure 27 en pto el 2elDFDo

84

selection

Fgre 2 Handle Seletion

queryin o Perform Load

. "s electon Fr

~data

DaabsePerformI
Daaa+ Selection Form

lex return _,O

Figure 28: Handle Selection Level 2 DFD

85

selectionda e;ta n T exit T return

'00 Perform :Selection

F optionPerform
Us er opio Insertion

[Perform I Perform

Update Deletion

Database

Figure 29: Perform Selection Level 3 DFD

86

data

invalid? Perform Insertion
data

Fnew data Read|
User Data /

confirm

Read valid data Perform return
Confirm I Save

return I Database

Figure 30: Perform Insertion Level 4 DFD

87

invalid Paerform Update
data

data . Read

User Data

Read valid data =fPerform retr

Confirm L Save

ret~urn Dtbs

Figure 31: Perform Update Level 4 DFD

88

Databas

returne 2 Perform Deletion

confirmR
User Cnim data

Delete Iretur

Data

Figure 32: Perform Deletion Level 4 DFD

89

Appendix E: Implementation of the Object Model

Mi Fields: iiFields:

ssan : ssa OFields:

:::,;rank grade -rank date ! ssan

................... - f r n grade -rank-abbre- maior-asc
af sc manning_code :'i academic -act!i ~

at fc om - over..........dic :i

b; ields: M- Indexes: <; Class
ssan 9ss:il :an WFields: program-.year
lastname ! ssan boxnumber ,

irstnam partrecord-indical fI nlxs
ignn e middle initiali last_.year -attended edlvlW ssan

birth date iselected-type
race l ndexes:

i',lgogender V ssan Wlm ields:

M Ilndexes: A mao is

= Fel : ssan overdue in
•ss! an part -record -indica, program-

,: ::!grade last_ ear_attended class
date -.of -grade ed -level program_.ye

i manning-code ; ;ii selected -type box -number !
i~~lndexes: !lnde: lnexes: !

Figure 33:."Table's relationship in STARS Database

90

.-

S SAN: Last Name: First Name: Middle:
j f LAST-AME [FRS NAM ElI D40

Birthdate:FBIRTi D Gender: ~~~1 Religion: 5-66-1-W

Login Name: ELOINNAMI Race:

Form pe~au Pa eprs

14 Data kleqjo ayu

Figur 34: Person'sF Class

9 1....I..........

Cls esge ~-7 str clsn (iiay

SSAN:. Last Name: First Name: Middle:
LAS~f T-NME FIRT AME-II MII

Birthdate: Gender: Religion: FRELIION1

~Login Name: FLGNNM Race: RC-

5SAN: F NlRank- IAK I

~Date ofrank:~O Date of commission: DT71

AFSC: AS1Manning Code: MANN O

Fiuel5aMltayssls

Clall~br92

Birthdate: FBITHD] Gender: ~~1 Religion: IIIN

Login Name: FLOINNAM Race:

~SSAN: R;ink:: Dati~ of r:ank-' AFSC:

Dat6 o bomm: OF l art A: n CoeATTE N COI

Eduj. Level:: EEL7

Selectod Te." ~,FFrFP<

For Page:

Figure 36: Military student's Class

93

* Class Deige - tr-ls.vx(iiar~eietsuet i

S SAN: Last Name: First Name: Middle: 55AN: [SSXAiT
II ~ l[FAAAME [FISTNAMEffi [WFD 1 Part Time:EQ

B irthdate: FB R HD IGender:FGNDR Religion: ~~IN LaterAt f
Edo. Level.: : YEVELl

Login Name: FLGNNM Race: [~~~~Z ~ ~ e~ti ype::S.

~SSAN: : fl: ank: Date of tank! AFSC-
SSAN1 RAK1

D)ato p0qniso. tDATEO OF.)4 p'lrt~nin C MNING COD

S SAWN: ~ uajor M C: Ac~id. Actio~i: Box W::

SS MAJOR ASCI AGADEI AC]

Ovicrdu .Rn:E INDIC Prpgrqap: 0. in.s~~ rgap er

Figure 37. Military resident-student's Class

94

ClssDein- str l.vc (mltryi suet

SSAN: Last Name: First Name: Middle SSAN:ESA

L~iiiII~I1 IAME FISTAM EI] [WD] Palt Time Q
Birthdate:FBRHD Gender: FGNE1 Religion: IN LatYaAt

Login Name: ~IN M Race: EduLevl II-E
Selectd AType .- TE

~SSAN- Rank4 IDat6.OfF3nk::AFSC: Ssah:

~Dat6 of ommissiton: a n:Cd-WS]CN: ; S41]
NanIn~ Cod MANINGCOD lT

rSA1 *a6 A Acad. Action: cae CASE-NMB

Overdue 14 ProrE INDICgrf

Figure 38: Military INTL student's Class

95

SSAN: Last Name: First Name: Middle:-

IX LATAM E I FISNAME1 II
Dirthdate: FBIHD] Gender: GEDR Religion:E~lN

SLogin Name: [LOGINNAM Race: RCI

SSSAN') Grade: Date of Gliade Manniing Code:

SSAN GjROF.

Figure 39: Civilian's Class

96

Clas Deignr -star clss-ex civiianstuent Ki
SS5AN: Last Name: First Name: Middle:

LAS -NZf~ AME] FFRNAME1
Birthdate:FITD Gender: R1 Rlin:~jINK

Login Name: [LOINAM Race:

SAN.: frade: Date of Giade Manning Code-

LSSAN1 PRA Tie Ls YerAtended:-E evI-SlctdTye

.... .~ 7 ~ w.

FiurI4. ivlinUtuen'sCls

..........97.

tZ SA"N ILATAME I IRT-AME1 MD

Logn Name:Rac: FRAANPal un

22T1AO7

SANrJ.de ADtter fc1 . yu~n EraDUE Manig~ Atclendd

Prginn AN CIGRAD F EdLevl]VE

........................... T. .e..

CI \RSDE\-T DENT INE

Ss~:j F igur 4: CPaiaresdntsudn' Class-

SS7A MAJR-AS1 S8

INIO. - I.I l

S SAN: Last Name: First Name: Middle: S ~ SSAN 1

AME I FITNAMEEZ MIDI SC

Iithdate:-IRTH D Gender: FGENDER17 ReliiTn

Login Name: ILOiIN-NAMI Race: IA lICa~e tF~ioE

____ ____ ____ ____ ____ ____ ____ ____ ____ __ DLRInd. - L

SSAN ... Gade: tef~adez G:anri aing ode ...

___ 1 _ _ W

Ssain: MajOrASC- SN

MAJOR ASCI ISN

[.~a A.p. ..n ParF Time :E
~Lasf Year At Iended:- F-TT l

Figure.. 42:.... CiilaI.LsudntsCls

99 Le

Cls Dige - -atcls. e jdzeZ

SSAN: Last Name: FirSt Name:. Middle:
SjjN-I LATAME FISTNAME Z [kD

B irthdate: FIHT D1Gender: R1 Religion: ~IN

Login Name: FLOINNAMI Race:

SIIZAN1 IAddtess:Effer-tive Date:
Addreis A-Type: -yp-E Pho' e f ...

Addres-:ADDRESSI it CITY

~State.:.[TATE . PCn... zip ODE.

f-6untiy: .. COiTR ...

Figure 43: Address' Class

100

Appendix F: List of Abbreviations

AFIT - Air Force Institute of Technology

AFITSIS - Air Force Institute of Technology Student Information System

AFIT/SC - Air Force Institute of Technology Communication Computer

System

CASE - Computer-Aided Software Engineering

DBA - Database Administrator

DBMS - Database Management System

DFD - Data Flow Diagram

ER - Entity Relationship

OODBMS - Object-Oriented Database Management System

RDB - Relational Database

RDBMS - Relational Database Management System

SQL - Structured Query Language

STARS - Student Tracking and Registration System

101

Bibliography

1 Blaha, Michel and William J. Premerlani. An Approach for Reverse Engineering of
Relational Databases. Communications of the ACM. May 1994. Vol. 37, No. 5.

2 Blaha, Michel and William J. Premerlani. Observed Idiosyncrasies of Relational
Database Designs. IEEE Software, 1995, pp. 116-125.

3 STARS User's Manual (AFIT Database). System Research Laboratories, 1987.

4 Cerney, Barbara, Capt. Sullivan David, and Kathleen Hale. AFIT/SCQ Personal
Interview, May 1995.

5 Chikofsky, Elliot, James H. Cross II. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, January 1990, pp. 14-15.

6 Sneed, Harry M. Planning the Reengineering of Legacy Systems. IEEE Software,
January 1995, pp. 25-26.

7 Hainaut, J.L., and others. Contribution to a Theory of Database Reverse
Engineering. International Conference on Software Engineering, Workshop on
Reverse Engineering, May 1993, Baltimore, Maryland.

8 Jacobson, Ivar and Fredrik Lindstrom. Re-engineering of Old Systems to an Object-
oriented Architecture. Proceedings, OOPSLA 1991, pp. 340-350.

9 Bennett, Keith. Legacy Systems: Coping With Success. IEEE Software, April
1995, pp. 19-23.

10 Burleson, Donald. Practical Application of Object-Oriented Techniques to
Relational Databases. Wiley-QED Publication, 1994.

11 Rumbaugh, James and others. Object-Oriented Modeling and Design. Prentice-
Hall, 1991.

12 ERwin User's Guide. Logic Works, Inc, 1995.

13 Microsoft Visual Foxpro Developer's Guide. Microsoft Corporation, 1995.

102

Vita

Major Pedro Arthur Linhares Lima _,

He entered the Air Force Preparatory School of Cadets (EPCAR) in

Barbacena, Minas Gerais in 1975, and attended the Brazilian Air Force Academy,

where he was graduated in December of 1981. He entered the Catholic University of

Rio de Janeiro (PUC-RJ), where was awarded the degree of Bachelor in Systems

Analysis in June of 1984. His first assignment was at the Air Force Computer Center

of Rio de Janeiro (CCA-RJ), where he worked as a systems analyst for the Flight's

* Statistics System Project. In January of 1989 he was assigned to Staff and War College

* (ECEMAR), where he worked as a systems analyst for the War Games Project. In

January of 1992 he was assigned to Air Force Computer Science and Statistics

Department (DIRINFE). In June of 1994 Major Pedro Lima entered the Air Force

Imtitute of Technology as a Master candidate in computer science.

A
AEDA31 0627

REPOTi OCUMENTA17CN PAGE N8o.7i

pcic e~or'ilic curden *icr7"s coifecton of inTorMatiOn is -?stmated to aver-ice 1 cwr zer e'socirse. '5 ~.Oin me :re '0 r~ t".17 7-7-77. rs earcm'nQ -rq,,. cata sources,
oarierino amt Maintaining The oata needed, and comoaletino andc reviewinq the c-otlecto!n -,f information, Onc comnments reriar:5nn :-s 0s. cen estimate Tre inr 3sect of This
ro'ilecton OT intormation, incluaifg suggestions tor reaucing tn's burcen. to Nasninqtonr eaciouar-ters Services, : re,:torate or ir-rmat. : O tctints s e o' 2s IS .erferson
Davies Hcnway. Suite '204, A rinton, 'IA 22202-4302, and to trie Office or -,aaen~ and Budget, '3oervvori< Qeouction Pcec:c ro03- . 5Sf, .Vsninccn, C 3 3

1AGNYUSE ONLY (Leave blank) 2. 3EPORT DATE o. REPORT 7YPP IND DA7-E3 -'VERED

Jue1996 Master's Thesis
T T 4. TITLE AND SUBTITLE 5.:j;UtjPN 'IUMBERS

A Methodology for Reengineering Relational Databases
to an Object-Oriented Database

6. AUTHOR(S)

Pedro Arthur Linhares Lima

7. ?ERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) '8. ?ERF-3RN1fNG --GANi7-T!ON

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT!GCS/ENG96J-O 1

9. ?ONSORINGc MONITORING AGENCY NAME(S) AND ADDRESS(ES) '10. SPONSORINOS 4ACNiTCRING
AGENCY REPORT 'NUNMBER

AFIT/SC
2950 P. Street

4 WTiui OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT -12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This research proposes and evaluates a methodology for reengineering a relational database to an object-oriented
database. We applied this methodology to reengineering the Air Force Institute of Technology Student
Information System (AFITSIS) as our test case. With this, test case, me could verify the applicability of the
proposed methodology, especially because AFITSIS comes from an old verson of Oracle RDBMS. We had the

opprtuityto implement part of the object model using an object-oriented database, and we present some
peculiarities encountered during this imlmnain.The most important result of tis research is that it
demonstrated that the proposed methodology can be used for reengmeering an arbitrarily selected relational
database to an object-oriented database. It appears that this approach can be applied to any relational database.

14. SUBJECT TERMS S.NMEOF PAGES

AFITSIS, reengineering, reverse engineering, information system design, 103
OODBMS design, database OMT 16. PRICE CODEI7 S ECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION -T19. SECURITY CLASSIFICATION 20. LMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNLSIIDUNCLASSIFIED UNCLASSIFIED IJL
'4SN 7540-01 -280-5500 ."aad orrn 298 ,Rev. 2-89)

-esc' nea bv "NSI ,io Z39.'8

	A Methodology for Reengineering Relational Databases to an Object-Oriented Database
	Recommended Citation

	tmp.1695319450.pdf.K4ukp

