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Abstract

There are numerous methods used for troubleshooting devices. Each method has certain

domains, knowledge requirements, and assumptions required for it to perform well. However,

oftentimes no one method by itself is sufficient to completely solve a troubleshooting problem.

Therefore, an architecture is required to control the combined use of many problem solving

methods. The combination of multiple problem solving methods makes the troubleshooting

process more robust in terms of device domains that can be dealt with and quality of diagnoses

produced.

Troubleshooting has two tasks: diagnosis and problem resolution. This research provides

an architecture that allows dynamic method selection during diagnosis. Dynamic method

selection factors the current state of the diagnosis process along with other method parameters to

determine which method to use to advance the diagnosis process.

The architecture was developed by combining themes from diagnosis research that focused

on dynamic multimethod diagnosis and its control.

This work has produced several results. It provides an architecture to organize the

methods and a basis for making control decisions concerning method use during diagnosis. It

identifies a generous number of methods useful to perform diagnosis. It identifies the knowledge

these methods require.
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AN ARCHITECTURE FOR DYNAMIC META-LEVEL PROCESS CONTROL
FOR MODEL-BASED TROUBLESHOOTING

I. Introduction

1.1 Chapter Overview

This chapter provides a high level description of the contents of this research. In

doing so, it first describes the problem this research addressed. Next, it lists the objectives

this research aimed to achieve. The specific scope the research focused on is discussed

next, then follows the approach the research took in order to reach the objectives. Finally,

the executive summary concisely restates the purpose, approach, and results for this thesis

and outlines the remainder of the document.

1.2 Research Problem

1.2.1 Background. When an entity does not operate as its user expects, and the

user desires the entity to be operational again, the troubleshooting process begins. Simply

put, the overall goal of the troubleshooting process is to return an entity to operational

status (16:11). The entity may be something physical like an electronic device or

something abstract like a process. In realizing the overall goal of troubleshooting, a sub-

goal must be realized: find a explanations for why the entity is not producing the expected

results. The explanations can involve various things. For example, with a physical entity

(like a device) perhaps some components of the device are broken; perhaps the settings

that configure the device to operate for a certain function do not match the function the

operator wished the device to perform; perhaps external forces the user is unaware of are

influencing the device so that the operating assumptions are not being met. With an
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abstract entity, like a process in an office, perhaps the resources needed to accomplish a

task are not available as they were assumed to be. Whatever the entity, the explanations

provide possible reasons for why it is misbehaving. The reasons contained in the

explanations, in turn, help realize another sub-goal of the troubleshooting process:

implement corrective actions that return the entity to correct operation. Here, the

corrective actions aim to fix the reasons for misbehavior, such as replacing bad

components, putting control dials to their proper settings, etc.

When working on the first sub-goal (finding explanations for misbehavior), a

troubleshooter has basic jobs to accomplish. These are tasks. Furthermore, some tasks

may be accomplished in more than one way. These are problem solving methods (1:44).

A problem solving method dictates how a task can be accomplished. For each problem

solving method, there are particular requirements to be met in order for the method to

perform well or even perform at all. These requirements may state that particular

knowledge must be available to the method or that particular assumptions hold regarding

the problem the method is applied to. Also, these methods can be designed toward use in

specific domains outside of which the method's results are invalid. Because of these

requirements, oftentimes one problem solving method alone cannot find explanations for

misbehavior in a troubleshooting problem. In these cases, to satisfy the first sub-goal of

the troubleshooting process, it would be helpful for the different methods to work

together to find explanations that they could not find by themselves.

1.2.2 Problem Statement. Therefore, the problem this research addresses is:

how to make a generalized troubleshooting system that can match a given state of the

troubleshooting process to method requirements and capabilities in order to choose the

most appropriate method to advance the diagnostic reasoning.

1-2



1.3 Research Objectives

The purpose of this research was to investigate the following hypothesis: a

generalized troubleshooting system can be designed which uses general troubleshooting

heuristics and domain knowledge if available to guide the troubleshooting process. More

specifically, this research set out to determine a generalized troubleshooting system

architecture and theory of operation that could dynamically choose between competing

problem solving methods when performing the first sub-goal of the troubleshooting

process, namely finding explanations for a physical entity's misbehavior.

To achieve this objective, four sub-objectives were established:

1. Determine a robust set of problem solving methods in terms of domain and

device independence;

2. Determine a robust set of knowledge the problem solving methods require;

3. Determine a basis for which heuristics can be developed to choose between

problem solving methods;

4. Determine an organization into which the problem solving methods can be

placed.

1.4 Scope

This thesis focused on a portion of the broad capabilities envision for a generalized

troubleshooting system. Chapter three, section two discusses this vision. To obtain this

portion, this thesis has been focused along two dimensions. The first dimension involves

the troubleshooting process itself and the second involves the part of a larger project this

thesis can contribute to.

Concerning the first focusing dimension, in order to have a workable piece of the

problem this research addressed, three focusing assumptions were made. First, although
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troubleshooting involves finding explanations and enacting corrective actions, this research

focuses on the "finding explanations" sub-goal, hereafter called diagnosis. Second, the

entities dealt with are physical rather that abstract. Third, this research focuses on using

problem solving methods that use model-based reasoning. Assumptions two and three

focus the type of systems usable with the generalized troubleshooting architecture to

physical systems that can be characterized by interconnections of subsystems, which is true

for nearly all engineered devices. These three assumptions allow for a generalized

troubleshooting architecture to be developed without overly constraining the solution.

Just as the generalized troubleshooter examines a portion of the troubleshooting

process, it also alms to be applicable to a portion of a larger program where

troubleshooting is used. This program is MAGIC, or Multimission Advanced Ground

Intelligent Control, a program to improve satellite control by using an intelligent real-time

system. The program is managed by the Satellite Control and Simulation Division of

Phillips Laboratory at Kirtland Air Force Base. The MAGIC vision is to "architect a

ground station environment that will manage multiple missions, easily adapt to new

missions, and improve operator effectiveness and enhance operational capabilities" (5:3).

Part of this vision is to have an intelligent system capable of determining causes of satellite

malfunctions and assisting the operator in devising solution plans. The generalized

troubleshooter is applicable to this vision because of the range of device domains it can

work on (multiple satellite missions and constellations) and its ability to propose possible

causes for malfunction as the first step to proposing solution plans.

1.5 Approach

The approach used for this effort is divided into four phases. Phase one involved

research into diagnosis in general and various model-based methods to do diagnosis. The

model-based diagnosis systems were analyzed to find features among them that were
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domain independent and to describe what knowledge and assumptions each system relied

on. Phase two conducted research into other work involving a combined method

approach to diagnosis. Phase three's task was to analyze the work of four separate

research groups from phase two in order to find strengths in their architectures that were

complementary. In phase four, an architecture and theory of operation were formed by

combining the pieces gathered in phase three. Just as the combined method approach uses

the strengths of different problem solving methods, phase four sought to develop a system

that used the strengths of different combined method approaches.

1.6 Executive Summary

The executive summary concisely states the purpose of this research, its

accomplishments, and provides a roadmap for the rest of the thesis.

1.6.1 Research Summary. This research has developed an architecture and

theory of operation for an automated generalized troubleshooter. A generalized

troubleshooter aims to be robust in terms of domains it can work on and knowledge it can

use. Furthermore, a practical application of a generalized troubleshooter may lie in the

MAGIC program's future goal of autonomous satellite control.

Many current automated diagnosis systems attempt to define the best approach to

perform diagnosis. However, due to the variability of diagnosis problem characteristics,

defining the best approach is too restrictive (25:1). Therefore, this thesis attempts to

overcome the limitation of current single-approach diagnosis systems. To achieve robust

performance, this work focused on the idea of many methods, each with their specialties,

working together to solve a diagnosis problem. Additionally, the reasoning methods used

in the generalized troubleshooter architecture use the model-based approach.

This work has produced several results. It identified a generous number of

methods useful to perform the tasks involved in diagnosis. It identified the knowledge
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these methods require. It provides an architecture to organize the methods and a basis for

making control decisions concerning the method to use during the diagnosis process.

Finally, it describes possible contributions an automated generalized troubleshooter could

make to a significant Air Force goal: improved satellite control through automated

anomaly detection and resolution.

1.6.2 Document Summary Chapter one provided a brief summary of the

problem, objectives, scope and approach involved with this research. Chapter two

provides details research results on the components used in the thesis architecture, namely

the model-based problem solving methods, and work using a combined method approach

to diagnosis. Chapter three discusses the approach to this thesis work, providing rationale

for the scoping decisions, and presenting the organization of research work used to

manage the project. Chapter four discusses in detail the generalized troubleshooter's

design architecture and theory of operation. Chapter five analyzes the design architecture

and theory of operation and outlines its strengths and areas for improvement. Finally,

chapter 6 summarizes the research effort and provides recommendations for possible

extensions to it.
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II. Literature Review

2.1 Chapter Overview

This literature review presents past efforts in the field of automated diagnosis.

After a brief discussion of the diagnosis part of troubleshooting, the first generation of

automated diagnosis methods is presented. An analysis of their shortcomings motivates

why the model-based approach is desirable in a generalized troubleshooter. Consequently,

the elements from phase one of the research approach are then presented, namely concepts

and methods from model-based diagnosis. Finally, results from phase two of the research

approach are presented describing work involving a combined method approach to

performing diagnosis

2.2 Diagnosis

In the next two subsections, diagnosis is discussed in regards to the main tasks it

accomplishes and the elements that are used in accomplishing the tasks.

2.2.1 Diagnosis: the Process. According to The American Heritage Dictionary,

to diagnose is "To perform an examination of (a person or thing)"; "To distinguish or

identify..., as a disease" (17:326). Diagnosis is that part of the troubleshooting process

where observations of device behavior are collected and used in examining device

behavior in order to identify reasons for why a device is not behaving as expected.

In performing diagnosis, three main tasks are accomplished (1:43):

1. Symptom detection

2. Hypothesis Generation

3. Hypothesis Discrimination
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Symptom detection involves collecting observations of a device's behavior and

determines if an observation is indeed a symptom of device malfunction. It combines

observations about the device, provided by some type of sensor, and knowledge of device

operation to assign a "normal" or "abnormal" value to the observation. The output from

the symptom detection task is an observation with a "normal" or "abnormal" value

assigned to it. Those observations associated with an abnormal value are the observations

that need further processing to identify reasons why the value is abnormal.

An interesting point is that symptom detection can produce different results

depending on the point of view from which it is looked. For example, Mager states that a

competent troubleshooter always verifies the symptoms reported before automatically

starting to formulate hypotheses (16:39). This is often geared toward determining an

operator error versus a device malfunction. For example, a printer would work fine if the

baud rate switch was in the correct position or the monitor would produce a display if the

brightness setting was not zero (16:34). In these cases, symptom detection from the

operator's point of view would assign a value of abnormal to the device operation,

whereas from the troubleshooter's point of view, considering the knowledge of device

operation would lead him to not describe the device's operation as abnormal. Under these

operator induced errors, the device itself works fine, but the operator's assumptions

surrounding the operating environment of the device are not consistent with the actual

operating environment. In these cases, a lengthy diagnosis process can be avoided when

this type of problem is detected early. This difference in points of view is important

because for this thesis the troubleshooter's point of view is taken which does not

automatically consider an observation as abnormal and needing explanation, so by default

symptoms are verified. This assumes the troubleshooter has more knowledge available to

it to distinguish normal from abnormal operation.
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Hypothesis generation involves determining an initial set of reasons for why the

device has abnormal observations. For example, after performing some reasoning about

the observations and the device operation, a proposed reason (hypothesis) can contain a

set of components believed to be operating abnormally. If the components in the

hypothesis are operating abnormally as the hypothesis suggests, then their misbehavior can

account for the abnormal observations.

Hypothesis discrimination takes the hypotheses generated by the hypothesis

generation step and decides which hypotheses to keep, refine, or reject, thereby pruning

the list of hypotheses under consideration. These decisions can be based on additional

knowledge such as additional behavior observations, knowledge of the likeliness of a

hypothesis, or the cost of implementing a repair plan that would clear a fault identified in a

hypothesis (if that knowledge is considered) to name just a few (12:2). This pruning

narrows the scope of what is considered as causing the abnormal observations and

eliminates some hypotheses from needing further consideration.

2.2.2 Elements of Diagnosis. The previous section described at a high level the

"what" that is done during the diagnosis process. To accomplish these tasks, the diagnosis

process needs to act on elementary objects (22:131) to transform the diagnosis state from

supposing something is wrong with a device to proposing what may be wrong with the

device.

The elements have already been presented, although not explicitly. The first

element is observations of device behavior. Observations are the inputs to the diagnosis

process. The second is hypotheses for why a device is not behaving correctly.

Hypotheses are the outputs of the diagnosis process. In between, in transforming

observations to hypotheses, inferences (reasoning from section 2.2.1) and knowledge are

used. Inferences draw conclusions about possible reasons for faulty behavior based on the

observations and knowledge. A major point of this thesis is that the way to perform these
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inferences varies and can be controlled to solve a diagnosis problem. Finally, knowledge

is needed for feeding the way inferences are performed. A brief list of the types of

knowledge that could be used in the diagnosis process contains knowledge of: structure,

function, correct behavior, faulty behavior, diagnostic hypotheses, component failure

probabilities, causal models, available problem solving methods, selection criteria for these

methods, historical data, assumptions of purpose the diagnosis session seeks to fulfill, and

many more. A large part of this work was to find the types of knowledge that could be

applied during diagnosis and how to fit the knowledge and the inference methods they

relate to into the overall architecture for dynamic diagnosis.

2.2.3 Diagnosis Summary. In summary, diagnosis is the process of using

knowledge and observations to infer hypotheses. It is a "...complex, non-monotonic

process..." (23:412) where the three tasks of diagnosis may repeat during the same

diagnosis session.

2.3 "First Generation" Automated Diagnosis

Having discussed what diagnosis involves, this section present past techniques for

performing automated diagnosis. These techniques are presented to analyze their

contributions to the overall goal of developing a generalized troubleshooter and to provide

a basis of comparison for the model-based methods chosen as the methods used for this

thesis.

2.3.1 Diagnostics. According to Davis, diagnostics are test programs used

"...to ensure that the device is capable of doing everything it's supposed to do" (7:5). As

such, they verify if the intended functionality is present in a device but cannot propose

reasons for malfunction if some functionality is missing. They may be useful as a front end
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to the Symptom Detection module, providing observations of the device's behavior, but in

and of themselves their purpose is not to propose hypotheses.

2.3.2 Rule-based Expert System. An automated diagnosis system based on

rules is developed by collecting the empirical associations of faults to symptoms (and the

reasoning steps a troubleshooter takes along the way) generated by expert troubleshooters

familiar with a specific device. Because the associations are based on experience, a

feature of this technique is the long time usually required to acquire the associations (7:6).

Another characteristic of a rule-based diagnosis system is that for a new device, new

experience needs to be gained with it thereby creating a new rule base for the device. This

leads to a high cost for the rule-based system since much effort goes into devising a

diagnosis system applicable to just one or very few devices (22:316). Additionally, if

experience has not revealed a particular fault/symptom association a device can display,

the rule base cannot report on that fault when the symptom eventually occurs.

2.3.3 Decision Trees. "Decision trees provide a simple and efficient way to

write down the sequence of tests and conclusions needed to guide a diagnosis" (7:6).

They are a way to record the results of the decision making process a troubleshooter made

in reaching hypotheses by guiding which branches to take in the tree based on the answer

to questions at decision nodes. An important feature of decision trees is that results of

decisions are recorded and not the knowledge used in arriving at those decisions in the

first place.

2.3.4 Analysis of "First Generation" Automated Diagnosis. This section

looks at the features of the techniques used in first generation automated diagnosis

systems to see how they can contribute to the development of a generalized

troubleshooter in terms of the thesis objectives (Chapter one, section three). Specifically,

their shortcomings will be discussed and the gaps left will provide motivation for using

another technique to perform diagnosis, namely model-based reasoning.
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Since diagnostics do not perform diagnosis but verify functionality, their role in a

generalized troubleshooter is limited. As mentioned above, they may serve as a front end

to the diagnosis process, but do not present a means of generating hypotheses.

Rule-based diagnosis systems are efficient for a narrow domain; however, a

generalized troubleshooter aims to be applicable to an array of domains. Because of this,

one rule base is not usually general enough for many device domains. Additionally, rule-

based diagnosis systems may not be able to provide a hypothesis because experience has

not involved a new fault/symptom association. A generalized troubleshooter should be

able to use knowledge not based on experience to lead to a hypothesis even if the

symptom was not encountered before.

Last, decision trees record results of reasoning and not what was considered in

doing the reasoning in the first place. A generalized troubleshooter should be able to use

knowledge a human troubleshooter uses about what problem solving method is good to

use and why (among other knowledge) to recreate the reasoning process and not just

follow recorded decisions.

Because of these shortcomings, another method of reasoning to perform diagnosis

is needed. The method chosen for this thesis is based on model-based reasoning.

2.4 Model-Based Diagnosis

Chapter one listed several focusing assumptions made as part of this research. One

assumption involved focusing the kinds of methods used to do diagnosis. The kinds of

methods used here are methods based on model-based reasoning. Model-based

reasoning's advantages over first generation diagnosis systems, combined with the

abundant research conducted in the model-based diagnosis field, make the model-based
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methods contribute well to the overall objectives of this research . This section discusses

the fundamentals of model-based diagnosis concepts and methods.

2.4.1. Operation of Model-Based Diagnosis. This section presents at a

fundamental level how a model-based system performs diagnosis.

2.4.1.1 Model-Based Diagnosis Basic Paradigm. First generation

diagnosis methods relied on something other than the computer initially reasoning about

what was wrong. A model-based diagnosis system aims to reach diagnoses by recreating

on the computer the reasoning process a human would go through, by directly using the

knowledge a human uses rather than just using the results of human reasoning fed to it.

The knowledge available to a human troubleshooter is widely varied and this knowledge in

part is what is represented in models. To do its job, the basic paradigm of model-based

diagnosis is to compare observations of device behavior to the behavior predicted by the

device models and, when prediction does not match observation, search the model for

where the agreement breaks down.

Another term for model-based diagnosis is deep reasoning or reasoning from first

principles as opposed to the term shallow reasoning associated with first generation

diagnosis systems. The term shallow reasoning attempts to convey the connotation that

little of the internal workings of a device are known in doing diagnosis. Instead, the

empirical fault/symptom associations are the major source of knowledge. Deep reasoning,

on the other hand, attempts to convey the connotation that knowledge about what is

actually happening inside a device is known and used during diagnosis. It is this type of

low level device knowledge that forms a part of what is modeled.

2.4.1.2 Elementary Model Content. Besides being characterized by the

depth of knowledge about a device's internal operation, the knowledge in device models

can also be characterized by its different types. Early research in model-based diagnosis
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identified device models containing a spectrum of knowledge that has two types at its

ends:

1. Knowledge of the individual behavior and structural interconnectivity of

device components;

2. Knowledge of device behavior based on knowledge of the how the

behavior of a component causes behavior in other components.

Furthermore, the structure and individual behavior end of the spectrum uses only

knowledge of the correct behavior of the components - how they are supposed to work.

The other end of the spectrum - the causal end - deals with only knowledge of how a

component could fail and what behavior a failure in one component would induce in other

components or observable parameters.

2.4.1.3 Fundamental Approaches to Model-Based Diagnosis. A

model-based diagnosis system based on the first spectrum end operates as follows:

Expected device operation is predicted based on the structure and behavior models. The

behavior models determine component output based on its input, and the structure model

carries the values from device input to components, from component to component, and

from components to device outputs. Observations are collected of the device outputs or

other measurable parameters and compared to the predictions. Any observations that do

not agree with predictions based on the models of correct component behavior indicate

the device is malfunctioning somewhere, since if the components were operating as their

correct behavior models say, then no contradictory observations would be produced. This

approach to model-based diagnosis is often referred to as consistency based diagnosis

because the normality or abnormality of observations is based on the consistency or

inconsistency of those observations to their associated model predictions.

A model-based diagnosis system based on the second spectrum end operates

differently. Here, observations deemed abnormal are fed to the diagnosis system and a
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causal network is searched to find what malfunctions may have led to those observations.

Since sometimes a single malfunction may have multiple results, only a certain set of

malfunctions are proposed as diagnoses. That set is composed of the malfunctions that

cover the abnormal observations and do not imply the device ought to be showing other

observations that in fact the device is not showing. If a malfunction of a component

predicts two observations need to be present and only one is observed, then this

malfunction is pruned under this method because the results the model predicts for the

proposed malfunction are not fully observed. This approach to model-based diagnosis is

referred to as abductive diagnosis because of the abductive nature of the inferencing.

Abductive inferencing is used to generate possible explanations and follows this process

(20:1):

Rule: a CAUSES b

Given: b

Infer: a

For abductive diagnosis systems, b could be the abnormal observations and a could be a

component malfunction. Also, since a causal model may not be just two layers, links of

several CAUSES statements may be traversed in tracing an abnormal observation back to

a component malfunction mode. In summary, the goal of abductive diagnosis is to

conclude a set of component malfunctions such that the device observations logically

follow from the malfunctions according to the effects captured in the causal model.

Although abduction is not a legal inference like deduction, it is a useful mechanism to

generate possible explanations when used in conjunction with the causal net.

2.4.2 Specific Model-Based Diagnosis Systems. The previous section

explained the fundamental approaches to model-based diagnosis. There are numerous

systems that perform model-based diagnosis using these core approaches, each with its

own contribution to the approach it's based on. The three systems presented below are
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good representatives of the consistency or abductive approach they use. All three systems

are a foundation upon which other consistency or abductive systems were built. To

discuss these three provides an understanding of a wide range of other consistency and

abductive systems. Furthermore, the problem solving methods each system uses are

contained in the set of methods for the generalized troubleshooter. Besides giving an

example of how consistency and abductive systems work, discussion of them gives an idea

of the types of problem solving methods that can be used in the multimethod approaches

to diagnosis and ultimately in the generalized troubleshooter.

2.4.2.1 Consistency Based. The DART system is among the first model-

based diagnosis systems that followed the consistency approach. It was developed at

Stanford University as part of research into developing an automated diagnosis system

applicable to a wide class of devices. It was implemented in MRS, a meta-level

representation system, and used to diagnose problems in simple digital circuits, complex

teleprocessing equipment, and the cooling system of a nuclear reactor (10:332). DART

implemented the concept of using device design information as the basis for diagnostic

reasoning versus the shallow knowledge in production rules. The device design

information contained knowledge of a device's structure and intended behavior and these

constitute the model used by the DART system.

In DART, all behavioral and structural descriptions are expressed as

propositions using prefix predicate calculus. For example, in an example from (10:330),

the following propositions can be used to declare knowledge about components:

To declare that components XI and X2 are exclusive-OR gates:

(XORG X 1)

(XORG X2)

2-10



To declare the behavioral knowledge of an XOR gate:

(IF (AND (XORG g) (VAL (IN I g) ON) (VAL (IN 2 g) ON))

(VAL (OUT 1 g) OFF))

(IF (AND (XORG g) (VAL (IN I g) ON) (VAL (IN 2 g) OFF))

(VAL (OUT 1 g) ON))

(IF (AND (XORG g) (VAL (IN I g) OFF) (VAL (IN 2 g) ON))

(VAL (OUT 1 g) ON))

(IF (AND (XORG g) (VAL (IN 1 g) OFF) (VAL (IN 2 g) OFF))

(VAL (OUT 1 g) OFF))

To declare the structural knowledge that the output of XOR gate X1 is connected

to the first input of XOR gate X2:

(CONN (OUT 1 XI) (IN 1 X2))

To improve the efficiency that DART generates diagnoses, it provides the

ability to state simplifying assumptions. Two common assumptions are the single fault

assumption and the non-intermittence assumption. The single fault assumption states that

there is at most one faulty component in a device whose failure can explain the overall

misbehavior. This assumption reduces the number of suspect components to be

generated. The non-intermittence assumption states that components behave consistently

for the duration of the diagnosis; that is, they do not fail at time t and then behave

correctly at time t+At.

To find a diagnosis, DART follows an iterative three-step process. In step

one, DART uses the device's structural and behavioral model and statements about device

observations to deduce propositions about component behavior that describe the

inconsistent observations. This step produces sets of suspect components and their

propositions describing inconsistent behavior. If the single-fault assumption is asserted,

the suspect sets are intersected to find the singleton sets of components that are common
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to all the initial suspect sets. Step two gathers additional data to help confirm or

disconfirm the propositions surrounding the suspect set. DART does this by selecting a

proposition from step one and deducing different inputs to the device other than the ones

observed that, when used with the device model, predict certain observations. In step

three, the deduced inputs are applied to the device and the new observations are input to

DART, and the process repeats. If the new observations are consistent with the

predictions from step two, then the proposition involving a suspect component is

consistent with the device behavior it predicts, and the suspect remains a suspect. If the

new observations do not agree with the predictions from step two, then the suspect

component is not operating incorrectly as the proposition suggested. In this case, the

suspect component is no longer suspected as operating in the assumed incorrect mode.

To produce the propositions in steps one and two, DART uses resolution

residue (9:1), a variation of the resolution inference procedure. Resolution residue is "...a

direct proof procedure rather than a refutation method" and uses the resolution rule of

inference on conjunctive normal propositions (10:334). Resolution residue begins with

propositions known to be true and ends when it deduces a proposition whose literals are

each 1) the negation of a proposition from the device model and 2) logically consistent

with all other propositions surrounding the device. To prove consistency, resolution

residue attempts to prove the literal's negation. If the attempt is unsuccessful, then the

literal is consistent. If the consistency test does not terminate, resolution residue fails.

However, Genesereth points out that "Fortunately, the problems that arise in diagnosing

most computer-hardware faults are decidable" (10:336), so the procedure is expected to

be applicable the majority of. the time.

A second consistency-based system for diagnosis is GDE, the General

Diagnostic Engine. GDE was developed at the Xerox Palo Alto Research Center to

overcome the limitations of automated diagnosis systems that preceded it. Specifically,
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GDE sought to develop an efficient general method to diagnose simultaneous failures in

multiple components, and provide a means for guiding the gathering of additional

observations to prune the suspect component list.

The models used in GDE are based on a device's structural knowledge and

knowledge of its component's correct behavior. In GDE, both types of knowledge are

represented as constraints. Constraints are conditions that must be satisfied by the

correctly operating internals of a device. Constraints can represent the connection of

components, or the behavior of a component given values for its inputs or outputs. A

GDE device model is a constraint propagation net. Given observations for the inputs to a

device, structural constraints dictate the connectivity of device inputs to components, of

components to components, and of components to device outputs. Behavioral constraints

dictate the values at a component's terminals given values at its other terminals. For

example, given values for the inputs to a two-input adder component, the correct output is

constrained to be the sum of the two inputs.

To find a diagnosis, GDE starts with several assumptions: making an

observation does not change the value of that observation at a later time; non-

intermittence for failures, the same assumption DART uses; any behavior a component

exhibits that is different from the model prediction implies the component is faulty. The

last assumption is because the model only contains knowledge of correct component

behavior. Next, GDE follows a three-step procedure similar to DART. In step one, the

observations of a device are input to the system and the predicted values based on these

observations are produced by constraint propagation. Besides the predicted values for

components, GDE propagates which constraints were used to deduce those values. GDE

uses an Assumption Truth Maintenance System (ATMS) to accomplish this. The

propagated constraints are referred to by the name of the component they describe. A

discrepancy occurs if a point in the constraint net has more than one value assigned to it.
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This occurs, for example, if a "1" is observed at a device output terminal, yet the

constraint net predicts a "0" there. In step two, GDE uses the component names carried

with the predicted value to form minimal suspect sets of components that can explain the

discrepancy. A minimal suspect set is a minimum cardinality set of suspect components

that can explain the discrepancy if all the members of the set are faulty. The procedure to

determine the minimal suspect sets corresponds to the general Set Covering Problem

where the things being covered are the discrepancies and the things covering them are the

components carried with a predicted value. As in DART, GDE requires additional data to

discriminate among the suspect sets. However, unlike DART which manipulates the

inputs to create new observations, GDE probes additional points within the device without

changing any inputs. This is the task of step three, to determine optimal probe points. To

do this, GDE computes a scalar for each point in the constraint net where there is a

discrepancy that measures the expected number of additional probes required to isolate the

correct diagnosis. The computation is based on the concept of minimum entropy from

information theory (18:93-109). Using the domain-specific knowledge concerning the a

priori probabilities of component failure, GDE calculates the scalar value. The point with

the minimum scalar value represents the point with the lowest information disorder and

hence the next best probe point at which to gather additional observations. The additional

observations are input to the system and the cycle repeats.

2.4.2.2 Abductive Based. The AID system (Abductive and Iterative

Diagnosis) is an abductive-based system designed to diagnosis problems in the

hydropneumatic braking system of a truck. It was developed as part of the CHECK

project, a six year project involving the Universita di Torino and Messarteam while

researching automated diagnosis for industrial applications.

The AID system uses a causal network of the faulty behavior of the braking

system. In the simple case, this means the model shows the specific ways components are
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known to fail and the symptoms caused by the failures. For example, the model could

show "brakes not grabbing" as a symptom caused by the specific component failure "low

brake line pressure," where the component is the entire brake line system. Additionally,

the model can show strings of causal links between a symptom and several component

failures. For the previous example, a "hole in brake line segment X" failure can cause the

failure "low brake line pressure" which in turn leads to the symptom "brakes not

grabbing."

The causal network used for the model in an abductive system can be thought of in

graph terms as a semantic network with specific definitions for the nodes and arcs. In

AID, the nodes represent possible individual component failures, internal states the system

could be in because of component failures (these states are not directly observable to the

outside world), symptoms the system could exhibit, and contextual knowledge describing

when the model is valid to use. The arcs are of the following types: causal arcs, that

show the cause-effect relationships between pairs of failure nodes and state nodes or state

nodes and symptom nodes; HAM (Has As Manifestation) arcs that link a symptom to its

associated internal state nodes. Figure 2.1, taken from (4:273-274), shows a part of the

causal network used in the AID system.

To determine a diagnosis using the causal network, AID performs what it

calls a sequential diagnosis. The first step is to collect information about the context of

the current diagnosis problem and observations of system parameters. The context

information defines if a model is applicable or not. For example, in Figure 2.1, part of the

model context is that the braking system is applied and that the engine is on. If an

observation was that the wheels were locked, but the context of this observation was that

the braking system was not applied, then the given causal model would not be correct to

use under this context because the causal relationships are models of behavior when the

braking system is applied. The next step is to explain, using abduction, why the observed
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symptom is present. This is done by starting at the symptom node in the causal network

and tracing backward via the arcs to the component failure nodes. The next step is to

predict all symptoms that would be exhibited if the suspected components were actually

faulty. This is done by starting from the component failure nodes and tracing forward via

the arcs to the linked symptoms. This step is done to eliminate those components from

suspicion that predict a symptom that is not observed. With the remaining set of

components, the system asks the user to supply additional observations to further

discriminate among suspects. With the new data, the cycle is repeated until the faulty

component (or components) is identified and reported.
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2.4.3 Model-Based Diagnosis: Advantages and Disadvantages. Model-

based diagnosis has a number of advantages and disadvantages. Among the advantages

are:

1. It allows a broader range of faults to be diagnosable compared to first

generation systems that relied solely on precompiled lists of symptom/faults

because even unexperienced faults can be diagnosed from first principles

(7:23).

2. The model-based reasoning method is device independent, meaning the

model-based diagnosis system can be used on a device as soon as its design

information is available (7:18).

3. Model-based diagnosis encourages a disciplined approach to designing an

automated diagnosis system. Models can be divided along clear lines such as

structure and behavior, allowing the designer to concentrate on collecting the

types of knowledge needed one division at a time (4:285).

4. Due to the modular nature described in 3, system update is easier because

specific portions of the model need only be changed. This also reduces the

chance of errors being introduced outside the module of interest (4:285).

5. A model-based diagnosis system provides a cleaner explanation for why a

fault is present, showing what propagated constraints or causality links were

involved in the hypothesis generation (4:286).

6. Component models may be stored in a model object library. Model

generation for new devices using existing components is easier by reusing the

models contained in the library (22:319).

Among the disadvantages are:
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1. The models may become too complex. If all interactions in a device are to be

included in its model, there may be no modular way to express all of them

(22:311).

2. Computing all hypotheses grows exponentially with the number of

components (22:311).

3. Structure and behavior are not the only knowledge applicable to

troubleshooting (3:222).

4. A discrepancy between the predicted behavior and the observed behavior is

not always indicative of component failure (3:223).

Although model-based diagnosis has several disadvantages, they do not prevent

the model-based method from being usable. The following are ways to overcome the

possible disadvantages listed above:

1. If the frequency of times is small that complex interactions contribute to a

diagnosis, then the model could be built on the assumption that the complex

interaction is not used and therefore is not included in the model.

Additionally, the model could be a hybrid, containing a symptom/fault

association for the complex interaction case.

2. Models may be organized hierarchically, with the model detail increasing as

the hierarchy is descended. This scheme could allow diagnosis to the unit

level, then to the card level within the unit, then to the section level on the

card, then to the chip level, and so on. Each level considers a subset of the

total number of components in the device. Because of this, for each level the

number of possible hypotheses is less than the total number of hypotheses if

considering the total number of components.

3. Human troubleshooters use other knowledge beside structural and behavioral

knowledge. Chitarro and others have identified five types of knowledge
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usable during diagnosis (3:228): structural and behavioral; functional

knowledge, or the roles filled by components in a device; teleological

knowledge, or knowledge about the goals a system or subsystem was

designed to fulfill; and empirical knowledge, or knowledge obtained from

experiment or experience.

4. Components may have a range of values within which is considered normal

operation. The consistency-based systems previously presented rely on an

equal or not-equal check for comparing predicted to observed values.

Additional component fault knowledge and the context in which they operate

determine if a simple equal or not-equal check is an appropriate fault

discriminator.

2.4.4 Model-Based Diagnosis Conclusion. Section 2.4 has presented diagnosis

as based on the model-based technique. Compared to the first generation of automated

diagnosis systems, model-based systems have significant advantages that make them much

more attractive. Additionally, their disadvantages are not insurmountable. Furthermore,

model-based abilities contribute directly to a generalized troubleshooter where robust

operation and range of applicability are important. Still, just as model-based technology

advanced the state of the art over first generation systems, model-based systems

themselves are a step along the evolution to more abstract and generic diagnosis systems.

The systems presented above each relied on the same set sequence of methods to satisfy

the goals of very similar three-step diagnosis processes: find discrepancies and determine

suspects, gather additional data, and refine the suspects. What can be abstracted from

model-based systems to make an even more generic diagnosis system? Since the process

of the three systems was very similar, and it was realized by different methods, the

proposed answer is the problem solving methods current model-based systems use can be

abstracted out leading to a more generalized diagnosis system design that is not limited to
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use only certain methods without choice. These diagnosis systems use a combined

method approach to diagnosis.

2.5 Combined Method Approach to Diagnosis

While previous model-based diagnosis systems each fulfilled similar goals to find a

diagnosis, they fulfilled the goals by using different problem solving methods. In an

attempt to expand the generality of past model-based systems, the systems that use the

combined method approach to diagnosis allow dynamic selection between methods based

on available domain knowledge and the current state of the diagnosis process. Where a

past model-based diagnosis system might fail because the problem that it is solving does

not meet its knowledge requirements, a combined method system can determine what

knowledge is available and dynamically select a method to satisfy the current diagnosis

process goal being satisfied.

2.5.1 Meta-level Inference Systems. The first combined method approach to

diagnosis is not so much an actual system, but is an architecture to organize the

knowledge used in a combined method system.

The term meta means "beyond" or "about". Metaknowledge refers to knowledge

about knowledge, and a meta-level inference system is one that performs inference at one

level about another level. In meta-level inference systems, the "level" refers to the object

level and the meta level. The object level refers to a domain-specific area of interest.

Inference performed at the object level uses domain-specific knowledge to deduce results

within that domain. The meta-level, on the other hand, refers to a level above the domain

level. The meta level contains knowledge about the knowledge in the object level.

Another important division in meta-level inference systems is distinguishing

between domain knowledge and control knowledge. Domain knowledge, mentioned
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above, refers to that which is known about a specific domain. It embodies objects,

relations, facts, rules, and procedures of the domain of expertise (13:3). Control

knowledge is knowledge about how to use the domain knowledge.

Meta-level inference systems are useful for many things (6: 1), but for a combined

method approach to diagnosis, they are useful to control the inferencing in the object

level. Used this way, the meta-level contains control knowledge about how to use the

domain knowledge, contained in the object level, for a specific purpose. In terms of the

combined method approach to diagnosis, the domain level contains the problem solving

methods that are designed to perform on a narrow range of domain assumptions and

knowledge requirements. The meta-level contains knowledge about the overall diagnosis

process and when to invoke a problem solving method based on the state of the diagnosis

process and presence of any device domain knowledge.

2.5.2 Task Structures. Given an architecture to organize the knowledge used in

combined method diagnosis, the next step is to state a common definition of the diagnosis

process and determine a set of methods useful during that process.

The task structure approach to combined method diagnosis begins by decomposing

diagnosis into its constituent tasks to be performed. Each task has a goal to be achieved

and specifies what is to be done. A task is characterized by its knowledge roles, or the

type of inputs and outputs it receives and produces. It is further characterized by the

problem solving methods useful to achieve its goal. Problem solving methods define how

the goal of a task is to be accomplished. Problem solving methods also have knowledge

roles, and may be further decomposed into the tasks that comprise it. This recursive

decomposition ends when a primitive inference task is reached. A primitive inference task

is one where inference is performed using domain knowledge to attain a specific goal.

The decomposition of diagnosis into its constituents in this manner forms a task-method

graph.
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Given the knowledge roles for problem solving methods, a system using the task

structure can reason about which method to choose from the multiple methods associated

with a task. Suitability criteria state method-specific knowledge that entails the

knowledge roles and reflects the domain-specific knowledge requirements and

assumptions necessary for a problem solving method to operate. Given the domain-

specific knowledge and current diagnosis task, control knowledge can dynamically

determine which problem solving method is most appropriate to apply by evaluating each

method's suitability criteria.

2.5.3 ARTIST. ARTIST was a 32 month project aimed at developing model-

based reasoning methods for diagnosing industrial systems. It involved a consortium of

European universities and industries and ran from 1990 to 1993. Its goal was to develop a

generic architecture for a model based diagnosis system that could have previous model-

based systems as instantiations of its architecture. This goal was important to realize to

the ARTIST team because in industrial operations, where equipment changes are frequent,

updating first-generation diagnosis system knowledge bases takes too much time.

Furthermore, the team realized the reuse potential of existing model-based diagnosis

systems and sought to develop an architecture to reuse those systems.

The main contributions of ARTIST are the ARTIST architecture and its

specification methodology. The architecture divides the diagnosis process into three

modules: the Diagnostic Strategist, the Predictor, and the Candidate Proposer. The

Diagnostic Strategist controls the overall diagnosis process by evaluating diagnosis goal

accomplishment, determining which device models or parts thereof should be focused on,

specifying the criteria suspect components needs to satisfy to be further investigated, and

determining the next diagnostic step. The Predictor produces predicted component values

based on the device inputs and detects discrepancies based on the device observations.

The Candidate Proposer defines suspect components based on the discrepancies, ranks the
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suspects according to the criteria specified by the Diagnostic Strategist, and accepts new

observations to discriminate between suspect components. The specification methodology

provides a mapping from the characteristics of a diagnosis problem to the various model-

based diagnosis systems available to ARTIST that can work on those characteristics. The

methodology identified three areas of diagnostic problem requirements: task requirements

(such as limitation of resources), fault requirements (such as the single fault assumption),

and model requirements (such as static versus continuous device model). It also identified

the properties of the three model-based diagnosis systems it used for reuse in terms of the

diagnostic strategy specification, the predictor specification, and the candidate proposer

specification. These specifications identify the knowledge and assumptions of the three

model-based diagnosis systems. The methodology then links the problem requirements to

the system specifications, and the ARTIST architecture is then instantiated with the

combinations of methods from the model-based diagnosis systems.

ARTIST does not perform dynamic method selection during diagnosis. Once the

method selection has been established by the methodology, it remains fixed for the

duration of the diagnosis session. With a new diagnosis problem, however, new methods

may be chosen based on the evaluation of the new problem's requirements and how they

match to the method properties.

2.5.4 SRS. The last combined method approach to diagnosis actually involves

more than combining problem solving methods. It combines four reasoning paradigms to

opportunistically use the strengths of a paradigm, when appropriate, under the control of a

central algorithm. The system is called SRS for Synergistic Reasoning System.

The SRS uses case-based, rule-based, model-based and procedural reasoning

together. The SRS prototype was built to diagnose problems with the Reaction Wheel

Assembly in the Hubble Space Telescope. The SRS uses a central control algorithm and a

number of heuristics to activate different reasoning paradigm modules when appropriate
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during the diagnosis process. Also, it uses a modified blackboard problem-solving model

to organize the reasoning paradigms, heuristics, control scheme, and solutions. The

central control algorithm cycles through four stages: cooperation, confirmation,

refutation, and follow-up. During cooperation, different reasoning modules post partial

solutions to the blackboard. Confirmation allows other reasoning modules to verify the

results posted to the blackboard by comparing their partial solution to what was posted.

This is done to increase confidence in the partial solutions being posted. Refutation allows

other reasoning modules to refute the results posted to the blackboard similar to how

confirmation verifies partial solutions. Finally, follow-up examines the history of

diagnoses to determine if any problematic trends are indicated. For example, if the same

diagnosis and repair plan was reached many times in the near past, follow-up would

suggest the presence of the deeper problem requiring its own diagnosis. The heuristics

provide guidance for reasoning module selection or diagnosis goal persuit. For example,

one heuristic is "If more than one reasoner can act on a goal, employ in the order of rule-

based, case-based, model-based". Another heuristic is "If multiple components are

suspected, diagnose the least reliable." The combined effect of different reasoning

modules, the control algorithm, and heuristics is that a diagnosis problem can be solved

through cooperative efforts that no one reasoning module could solve on it own.

2.6 Literature Review Conclusion

This chapter has presented a brief summary of past efforts for automated

diagnosis. Since the first generation diagnosis systems were constrained in their ability to

contribute much to a generalized troubleshooter, an alternate diagnosis reasoning method

was presented. The model-based method overcomes the narrow applicability of first

generation systems and provides a significant step forward in generalized diagnosis system
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design. Analysis of several model-based systems led to the idea that even they could be

generalized by considering the problem solving methods implicitly encoded in them. This

led to considering diagnosis systems based on the ability to choose among several problem

solving methods using meta level reasoning as a further step toward a generalized

troubleshooter.
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III. Methodology

3.1 Chapter Overview

This chapter discusses the high level methodology used to construct a generalized

troubleshooting architecture. It discusses the scope this work focused on and provides

reasons for the focusing assumptions. Also, it presents the relation between the work

performed and the research objectives to demonstrate how the objectives were satisfied.

Chapter two presented past efforts in accomplishing automated diagnosis. The approach

for this work is to combine the strengths of those past efforts in constructing a generalized

troubleshooting architecture.

3.2 Scope

This thesis deals with performing troubleshooting, the process of determining why

an entity is not working properly and implementing corrective actions that return the entity

to correct operation. The results of this thesis form an initial architectural basis for

realizing the vision sought by a generalized troubleshooting system. The vision is an

unconstrained statement of what is desired of a generalized troubleshooter regardless of

current technology. It provides a long range target for what a generalized troubleshooter

eventually ought to be. The vision's main characteristic is to have an automated system

capable of successfully troubleshooting a broad range of different domains. Regardless of

the domain, a truly generalized troubleshooter could determine why problems existed by

drawing on and applying "whatever is available." This statement is intentionally vague

because at present, all that encompasses "whatever is available" is not defined.

Furthermore, even when there is no obvious step to take, a generalized troubleshooter
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would use "whatever is available" to at least make attempts at solving the problem.

Because the long term vision of a generalized troubleshooter is so broad, it needs to be

narrowed so that gains can be made in the short term. One way to narrow the vision is to

limit the range of domains. This limited range could include dealing with only physical

entities like electronic devices, a truck's braking system, or a nuclear power plant, or

abstract entities like management or process control. A further restriction is to limit how

the entities in the limited range are represented. For this thesis, this restriction meant

dealing only with entities capable of being represented by interconnections of subsystems.

Since even these restrictions lead to a broad problem space, I made further focusing

assumptions to obtain a workable problem size. These assumptions further limited what

was considered regarding the applicable domains, the troubleshooting process itself, and

the degree of "whatever was available." The last item refers to limiting the vast array of

what could be available to truly generalized troubleshooter down to considering only one

type of reasoning and the domain knowledge it depends on. The three focusing

assumptions were:

1. Focus on the first sub-goal of troubleshooting: determine why an entity is

not operating properly;

2. Focus the entities undergoing troubleshooting to physical devices;

3. Focus on using model-based problem solving methods to perform the

reasoning that generates hypotheses for why the device is failing.

Also, a particular approach to diagnosis was adopted. That approach involves combining

problem solving methods, each with their own strengths and knowledge requirements, to

work together on solving a diagnostic problem. Additionally, using the methods should be

opportunistic. That is, according to the current state of the diagnosis process, dynamically

choose among the problem solving methods to use the one that can contribute the most.

Focus one deals with performing diagnosis, perhaps "...the single largest category

of expert systems in use" (1 l:xi). Diagnostic expert systems attempt to automate the
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diagnostic reasoning process for various domains including medicine, electronic devices,

and plant process control. Diagnostic expert systems have been under investigation since

the mid 1970's when the medical advice system MYCIN was developed for diagnosing

blood infections (24:642). Besides providing a basis for research into basic artificial

intelligence technologies, diagnostic expert systems have the potential for wide practical

use. For example, a goal of the ARTIST program was to design an environment that

made it relatively easy to build diagnostic systems for realistic industry applications such

as diagnosing problems in power generation and transmission systems, operation and

supervisory systems in refineries, and systems for chemical, food and cement

manufacturing (21:9). The diagnosis part of the troubleshooting process was examined

because of the abundant research conducted in automated diagnosis and the desire to use

the generalized troubleshooting architecture in a substantial application with an automated

diagnosis need.

The application that this research could be used in is the MAGIC (Multimission

Advanced Ground Intelligent Control) program. The program is managed by the Satellite

Control and Simulation Division of Phillips Laboratory at Kirtland Air Force Base. It is a

program to improve satellite control by using an intelligent real-time system to "manage

and control multiple satellite constellations, easily adapt to new constellations, improve

operator effectiveness and enhance operational capabilities" (14:7). Due to a change in

the operational concept of satellite operations, highlighted by a reduction in the training

and rank of satellite operators and the elimination of an engineering shop to troubleshoot

anomalies not experienced before, an "efficient and economical automated system is

necessary to assist the current satellite operator in.. .maintaining.. .high priority DOD..."

satellites (14:1-7). A generalized troubleshooter would assist a program such as MAGIC

by being able to automatically diagnose (possibly unforeseen) problems on many satellites

in a time when the job for a human expert to do this has been eliminated.
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Focus two, focusing the entities undergoing troubleshooting to physical devices,

stems in part from MAGIC. Also contributing to this focusing assumption is the

abundance of research conducted in developing diagnosis systems for devices. The

abundant research results of previous diagnosis systems provided a large base from which

to choose ideas.

Finally, focus three deals with using a specific kind of method to generate

hypotheses for device failure. The method and its knowledge should support several

characteristics. Among these are: be general enough to be applicable to various devices

without significant rework; use knowledge not based solely on experience so that

upgrades to the diagnosis system are easy; organize knowledge cleanly; recreate the

reasoning process, not just use recorded results; and provide a clear explanation for why a

hypothesis may cause a fault. Also, the method should support the needs of the

troubleshooter envisioned in the MAGIC system. Model-based diagnosis satisfies these

characteristics. The basic paradigm of model-based diagnosis, comparing observations to

predictions based on a model of the device, works well to be device independent.

Furthermore, updating a device with new or different components does not require a

lengthy experience buildup with the new device; rather, the model can be updated or

reused from a model library and then used with the previous reasoning method. Also, the

knowledge used in model-based diagnosis is divided among clean lines such as along

component lines, along structural lines, or along functional lines. Cleanly organizing

diagnostic knowledge leads to a principled approach to designing a diagnosis system and

reduces missed knowledge by exposing gaps in model content. Finally, model-based

diagnosis uses knowledge a human troubleshooter uses to reason from first principles

about device behavior, again reducing the reliance on experience and providing the means

to diagnose unforeseen problems.

These focusing assumptions allowed the scope of work to be reduced to a

manageable size. However, they also imposed some limitations on the generalized
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troubleshooting architecture built using them. Because the architecture focuses on

performing diagnosis, the second half of the overall troubleshooting process is ignored.

Once the cause of a fault is found, it needs to be repaired to return the device to operation.

The generalized troubleshooting architecture ignores for the moment the issue of how to

correct the fault once its cause is found. Additionally, the architecture relies on model-

based methods that themselves rely on models. If models do not exist, then model-based

methods cannot be used. For the target application, where satellite subsystems would

undergo diagnosis, this limitation is not too severe because ample design data exists for

satellite components. It is the design data from which models are built, so the satellite

domain would more than likely have the models usable by the model-based methods.

Chapter five, Analysis, presents ways these focusing assumptions may be relaxed and

consequent ways the generalized troubleshooting architecture can be expanded.

Besides the focusing assumptions listed above, another factor played into the

methodology for this work. That factor involved not trying to discover the one best

algorithm a generalized troubleshooter should use, but to build a troubleshooter using a

toolbox approach. Just as a toolbox contains different items with which to do work (claw

hammer, pliers, ratchet wrench, crescent wrench, etc.), the generalized troubleshooter has

different tools available to it to do diagnosis. Each tool is designed separately to do a

specific job well. Designing a tool for a narrow range of use is often easier than designing

a tool that is useful for everything. Concentrating on a narrow range of use can allow the

tool to be designed for efficient use in that range. Then, if the union of narrow ranges is

broad enough, the combined use of the different tools can lead to the accomplishment of

work that no tool on its own could do. This approach to problem solving, a systems

approach, is widespread and applying this to troubleshooting appears to be a valid. In

hardware design, the current trend is to design new devices by choosing from existing off

the shelf components specialized for a certain function. Depending on the requirements of

the new device (for example, size or speed), components able to contribute to the new
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device requirements are chosen. Likewise, a very different problem solving discipline,

program management, also uses a systems approach. Here, the current trend is to use

Integrated Product Teams (IPTs) composed of personnel who are specialists in different

areas (finance, contracting, test, configuration management, systems engineering) all under

the control of a program manager. The program manager assigns team members to tasks

based on the work to be accomplished. A third area, software engineering, has a vision of

using the systems approach to be able to choose among existing specialized code when

building new software systems. Although software engineering has not had the degree of

success with the systems approach compared to the hardware and program management

areas, the area is actively designing systems able to realize the systems approach vision. A

generalized troubleshooter using the systems approach operates in a similar manner to

these three examples. Under the control of a central module, it chooses from existing

specialized methods to accomplish diagnosis tasks. Given that the systems approach is

being applied to a wide range of areas, applying it to the problem of troubleshooting

appears to make sense.

Depending on the problem at hand, a mechanic or a generalized troubleshooter

ought to choose the most appropriate tool (based on some parameters) to do the work at

hand. The parameters evaluate the data and knowledge available at the time of tool

selection (25:2). Also, if after work on the problem started, new knowledge came about

that showed the current tool was not doing the job, a mechanic or generalized

troubleshooter ought to be able to change to another appropriate tool based on the new

situation. If, for example, the (mechanical) job at hand was to tighten a nut onto a bolt,

and the speed it was put on was the discriminating parameter, the first choice of tool from

those just listed would most likely be the ratchet wrench. But what if after tightening the

nut, enough of the bolt shaft was left so that the socket on the ratchet could not reach the

nut anymore? The mechanic would need to reevaluate tool selection and make another

appropriate choice. In this example, the choice may be to go to the crescent wrench. The

3-6



availability of different tools allows decisions to be made about the most appropriate one

to use based on the problem input and allows for continued effort toward solving a

problem if one tool fails.

Another reason for using multiple tools is because the goal of problem solving can

be different from problem to problem. Another mechanical example could involve driving

a nail. Suppose the job was to drive a finishing nail. Usually, a goal associated with

driving a finishing nail is to not mar the wood. Focusing on tool selection, appropriate

tools could be a claw hammer and a punch set: the hammer to drive the nail to within 1/8

inch of the wood surface and the hammer and set to drive the head of the nail flush with

the wood surface. Driving a finishing nail has a different goal compared to driving a large

8 penny nail into roof sheathing. The neatness goal does not count as much here, so using

the claw hammer itself would be appropriate.

These mechanical examples have a relation to diagnosis. Determining hypotheses

for fault causes is analogous to performing a mechanical job. Both are solving some

problem. The tools the mechanic uses are analogous to the problem solving methods the

generalized troubleshooter uses. Furthermore, the mechanic can dynamically evaluate tool

selection based on how the tools are contributing to solving his problem. Likewise, the

generalized troubleshooter can dynamically evaluate what problem solving method to use

based on the current state of the diagnosis process. In both circumstances, different tools

are used together to solve a problem. Also, tool selection is "...based on given input (goal

and specific problem), the available knowledge of the problem type and.. .problem solving

methods" (25:2). Of the tools available, the most appropriate is used when its strengths

are needed.
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3.3 Research Methodology

This section discusses how the work for this effort was organized and reviews the

development of the research objectives. Also, it discusses in more detail the phases of

work mentioned in Chapter one, section 5, and how they relate to the research objectives.

3.3.1 Research Objectives. The research objectives for this thesis aimed to The

overall objective of this research was to investigate the following hypothesis: a

generalized troubleshooting system can be designed which uses general troubleshooting

heuristics and domain knowledge if available to guide the troubleshooting process. In

light of the combined problem solving method concept and focusing assumption one

mentioned above, the overall objective was redefined to be: determine a troubleshooting

system architecture that can dynamically choose between competing problem solving

methods when performing diagnosis. To assist in managing the research, the overall

objective was decomposed into four sub-objectives. This helped to guide the work and

provide a way to measure progress in achieving the overall objective. These sub-

objectives are (see also Table 3.1):

1. Determine a set of problem solving methods in terms of domain and device

independence (Research Objective 1.1);

2. Determine a set of the knowledge the problem solving methods require

(Research Objective 1.2);

3. Determine a basis for which heuristics can be developed to choose between

problem solving methods (Research Objective 1.3);

4. Determine an organization into which the problem solving methods can be

placed (Research Objective 1.4).

Satisfying the four sub-objectives satisfies the overall objective. That is, to have an

architecture that combines problem solving methods, first those problem solving methods

need to be identified. This is sub-objective one. Next, a particular stage a diagnosis
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solution is in needs to be matched to an appropriate problem solving method to advance

the solution. This requires evaluating diagnosis process parameters in terms of a method's

specification to evaluate a method's applicability. The specification contains what

knowledge the method requires in order to operate, what kind of diagnosis goal it is

designed to efficiently satisfy, and what type of result it is designed to produce to name a

few. Sub-objectives two and three are intended to cover these points, namely defining the

specification knowledge for problem solving methods and providing a basis for heuristics

to choose which problem solving method to use after the parameter evaluation. Last, sub-

objective four provides the framework into which the other three objects can be placed

and, for this work, provides the initial design.

Because this work's aim was to build on the strengths of previous combined

method approaches to diagnosis, a second level sub-objective was created to accomplish

this: Determine complementary strengths (in terms of organization and selection) of

previous combined method approaches (Research Objective 2.1). Its accomplishment was

necessary to satisfy sub-objectives three and four. The primary strengths it examined were

strengths related to system architecture organization and method evaluation and selection.

3.3.2 Research Organization. The objectives laid out above can be visualized

graphically as follows:

Figure 3.1 - Research Objective Organization
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The nodes represent research objectives or sub-objectives and the numbers inside the

nodes represent objective identification numbers (see Table 3.1). Nodes with multiple

sub-objectives need all the sub-objectives satisfied for itself to be satisfied. Visualizing the

objectives in this way helped to guide the research by showing how a goal could be

satisfied by tracing down the graph, and by showing why a sub-objective was being

investigated by tracing up the graph. Although simple, focusing on the goal structure

helped to keep the research from wandering too far from where it was needed.

In order to satisfy the research objectives, work packages were assigned to them.

These are the phases mentioned in Chapter one, section 5. The objectives and work

packages together constitute the entire research effort organization. They can be

visualized graphically as in Figure 3.2. Additionally, the research objectives and work

packages together are summarized in Table 3.1:

RO 2.1

1 PHASE2 PHASE 3

Figure 3.2 - Research Objective/Work Package Organization

Phase one consisted of learning more about diagnosis itself: the processes

involved, the goals to be satisfied, and the tasks required to meet the goals. Also, after

research into diagnosis itself, the model-based systems to do diagnosis were examined
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Designator Description

Objectives

Overall Research Determine a troubleshooting system architecture that can dynamically choose between competing

Objective (RO) problem solving methods when performing diagnosis.

RO 1.1 Determine a robust set of problem solving methods in terms of domain and device independence.

RO 1.2 Determine the knowledge the problem solving methods require.

RO 1.3 Determine a basis for which heuristics can be developed to choose between problem solving

methods.

RO 1.4 Determine an organization into which the problem solving methods can be placed.

RO 2.1 Determine complementary strengths (in terms of organization and selection) of previous combined

method approaches.

Work Packages

Phase I Research diagnosis and various model based systems to do diagnosis.

Phase 2 Research into other work involving a combined method approach to diagnosis.

Phase 3 Analyze four specific combined method approaches in order to find strengths from each (in terms of

organization and selection) that are complementary with other approaches strengths.

Phase 4 Combine the strengths from phase 3 to form a generalized model based troubleshooter.

Table 3.1 - Research Objectives and Work Packages

since it was the model based paradigm that was the focus for this research. Phase one

contributed to research sub-objectives one and two. It examined specific model-based

diagnosis systems in order to find what among them could be abstracted to a higher level

where a generalized troubleshooter was envisioned to operate. Looking at the model

based diagnosis systems individually to extract out their components proved to be difficult.

First, I did not know what components I was looking for. Although it turned out the

approach this research took involved problem solving method components, I was unaware

of this at the start of phase one. Often, the methods were not explicitly identified, nor

were the knowledge requirements for the system. Only after comparing many systems

were a few commonalties observed between them in terms of methods and knowledge

they used. Additionally, assumptions each system made concerning, for example, the

goals of diagnosis it was satisfying were seldom explicitly stated, especially in the older

systems. Assumptions each diagnosis system were working under are also knowledge

requirements that can be used during method selection and therefore were needed to be

extracted as part of the knowledge identification. Last, most of the model-based diagnosis
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systems touted themselves as being domain independent. Since a generalized

troubleshooter seeks to be applicable to many domains, at first it seemed these systems fit

the generalized troubleshooter description. It took time to realize that even though they

were each domain independent as far as devices are concerned, the domain of the methods

they used was fairly narrow. It is this aspect of domain independence a generalized

troubleshooter aims to expand also. For these reasons, this phase proceeded slowly. It

required understanding a wide range of systems in order to be able to classify their

components.

In light of the difficulties from phase one, and the realization that each system had

its own specialized set of methods whose basic purposes were shared between systems,

phase two started to see if other research had extracted the commonalties between various

model based diagnosis systems. In hindsight, had I realized earlier that many methods

were in use, the focus of phase one could have been narrowed to search for knowledge

requirements only instead of searching for both a taxonomy of methods and their

requirements. Phase one would have then most likely taken much less time. Phase two

was fruitful with results in that several approaches were found that each examined a piece

of the problem solving method taxonomy. However, finding these approaches again was

time consuming since the sense from the phase one research was that making a generalized

troubleshooter was the next step for automated diagnosis. In fact, compared to phase

one's literature, phase two's literature was generally newer and less abundant. Phase two

supported research sub-objectives one and two and also supported the second level sub-

objective to determine complementary strengths of previous approaches by providing a set

of approaches to examine.

Phases three and four were the work packages that dealt with devising the

generalized troubleshooter itself. Of the approaches found in phase two, four were found

to have concepts applicable to a generalized troubleshooter. Phase three examined the

strengths of these concepts in terms of how method selection and method organization
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were done to find which ones could be merged. Phase three centered on ideas of meta

level control (knowledge about when to use knowledge associated with problem solving

methods) and the concepts that dealt with this were the ones examined. Phase four was

the building package where the pieces gathered from the research were finally put

together.

Due to the length of phases one and two, the essence of the ideas for this thesis

was not generated until late in the research process. Although it was initially a goal to

implement a generalized troubleshooter to compare its performance to the individual

diagnosis systems advertised as being general, enough time was not available to make a

proper implementation. A proper implementation would involve coding and testing a set

of problem solving methods greater than the number used in a system examined in phase

one, coding the meta-level control structure to implement dynamic method selection,

developing device models, and obtaining the phase one diagnosis systems or implementing

them to work as they were described in the literature so results could be compared.

Instead of implementation, this thesis presents an initial design on which to base a future

implementation.

3.4 Methodology Conclusion

This chapter provided an overview of the methodology used to conduct this

research. It discussed choices for what was done and provided reasons for why those

choices were made. Its aim was to show the reasoning process with justifications for how

the research was organized. Furthermore, it demonstrated the wide range of knowledge

investigated in order to satisfy the overall research objective.
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IV. Design

4.1 Chapter Overview

This chapter presents the product of the work done for this thesis, an architecture

for the diagnosis task of the generalized troubleshooting system (GTS). It describes the

assembly of the many pieces that were important to the development of the GTS. It links

the architecture functional components of the GTS spawned by the research objectives to

the architecture structural components that evolved from this research. Furthermore, it

fills in the structural components with the concepts produced from phases two and three.

First, the GTS big picture is discussed. Next, the architecture is developed according to

its three structural components: the method section, the knowledge section, and the

control section. The chapter ends with a review of the completed architecture and an

example of its operation.

4.2 Generalized Troubleshooter Architecture

4.2.1 Architecture Overview. The architecture for the GTS aims to concisely

organize the broad scope of knowledge used in the multiple method approach to

diagnosis. It also aims to provide an environment where the many problem solving

methods can work together to solve a diagnosis problem, each contributing to the process

when it is able and appropriate. However, although GTS stands for Generalized

Troubleshooting System to convey the idea that GTS can be used on many types of

systems, GTS is not generalized enough to be used on any type of system. Specifically,

GTS is applicable to those systems that can be modeled by interconnections of

subsystems. Generalized still means that GTS can be used on many systems; however the
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types of systems are restricted. However, since engineered fit this interconnection of

subsystems characterization, the modeling restriction does not significantly reduce the

types of devices GTS was designed to diagnose.

Work phases two and three found specific concepts and an existing artificial

intelligence technology, the blackboard problem solving model, to contribute to the

architecture. The concepts and blackboard problem solving model were combined in

phase four to make up the overall generalized troubleshooter architecture. At a high level,

the overall GTS architecture covers the following items (see Figure 4.1): the architecture

functional components (obtained from the research objectives) of methods, organization

of methods and knowledge, and dynamic selection of methods during the diagnosis

process; the architecture structural components (obtained form the thesis research results)

of the method section, the knowledge section, and the control section; the links between

the functional components and the structural components; and the concepts from past

automated diagnosis research that are reused in the GTS' structural components. The mix

is a complex one, and in an attempt to present it as clearly as possible, the GTS

architecture will be presented according to the structural components.

Research unctional Links Stutrl < - Cnet

bjcieorponents Components

Methods Selection Method Section Control Section

Organization Knowledge Section

Figure 4.1 - GTS Architecture Big Picture
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4.2.2 Architecture Structural Components. As the research evolved, three

structural components emerged as broad categories of the GTS architecture. These are

contrasted with what I call the functional components of the GTS that organize the

functions the GTS architecture ought to support. The first structural component is the

method section of the architecture which holds the actual model-based problem solving

methods obtained from the previous automated diagnosis systems. The second is the

knowledge section that holds the knowledge about the state of the diagnosis process, the

domain specific knowledge particular to a diagnosis problem, and the knowledge about

the applicability of the problem solving methods. The last section is the control section

that holds the items necessary to dynamically choose among the methods in the method

section.

4.2.2.1 Origin of Architecture Structural Components. This section

describes which research concepts led to the design of the structural components for the

GTS architecture. The concepts directly correspond to the main structural components of

the GTS, and the structural components derived from them provide a sound foundation to

organize other research concepts that were the strengths of other automated diagnosis

systems. It is these strengths that fill in the foundation the structural components provide.

Figure 4.2 and Table 4.1 summarize the discussion presented in this section.

The three structural components are the result from two main areas of research.

The first area involves using meta-level inference systems to control a reasoning process.

As discussed in Chapter two, section 5.1, meta-level inference systems rely on the

separation of control and domain knowledge, and the explicit representation of control

knowledge (13:25). Domain knowledge usually concerns the what that a system knows

and control knowledge refers to how to use the domain knowledge. The explicit

representation of control knowledge allows the strategy of how to apply domain

knowledge to be defined independently from the development of the domain knowledge

itself. These two ideas correspond with the objectives of the GTS. A multimethod
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diagnosis system relies on both domain and control knowledge. The "what" knowledge

corresponds to the knowledge the system has about a particular device under diagnosis,

the knowledge it has about the diagnosis process (the diagnosis domain), the knowledge it

has about the current state of the diagnosis process at a particular time, and the problem

solving methods themselves. The "how" knowledge corresponds to the knowledge about

when to apply the methods and to a lesser extent the steps performed by the problem

solving methods during their operation. Additionally, the "what" corresponds to the

object level and the "how" corresponds to the meta level as discussed in Chapter two;

section 5.1. An important note is that the "how" knowledge for the steps performed by

the problem solving methods is at the object level since it is particular to the methods on

the object level. Furthermore, separating the different types of knowledge goes along with

the toolbox approach adopted by the GTS. The problem solving methods can be designed

to efficiently solve certain classes of problems independent of the control knowledge

designed to efficiently use the methods. The meta-level inference idea of separating types

of knowledge gave hints to the need for all three of the structural components. The

domain knowledge goes into the knowledge and method sections, and the control

knowledge goes into the control section.

The second research area that helped define the structural components is the

blackboard problem solving model. It has many characteristics that relate to the objectives

of the GTS and the ideas from meta-level inferencing, making the blackboard organization

a natural foundation for the GTS organization.

The basic blackboard problem solving model involves a blackboard data structure

that is common to a number of knowledge sources with the operation of the system guided

by a control module. A blackboard model has several things to offer that are applicable to

the GTS:

1. The blackboard data structure is the global database and holds the domain

knowledge needed by the knowledge sources and the results of applying the knowledge
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sources. Furthermore, the blackboard is usually divided into "any type of hierarchy

appropriate for solving the problem" (8:4). The GTS requires that different methods

operate on common information or on the results of other methods. Having the

information and results globally stored for access by the various methods can be

accomplished by using a blackboard data structure. Also, some methods operate only on

certain information and do not need to be concerned with the information for other

methods. Dividing the blackboard so that methods need to only look in the area they are

interested in is an appropriate hierarchy for multimethod diagnosis problem solving. The

blackboard goes into the knowledge section structural component.

2. The knowledge sources are separate and independent entities that each

operate in their own special domain. The knowledge sources communicate only with the

blackboard and hence only need to be aware of the portion of the blackboard that pertains

to them. The knowledge sources are responsible for evaluating the blackboard contents to

determine if it contains what they need to operate. Given these jobs to perform, the

knowledge sources are broken into two parts: the applicability evaluation part and the

body or operational part. The knowledge sources directly relate to the various problem

solving methods the GTS uses. Each problem solving method is designed to work on its

own special class of problems and is separate from other methods even if the methods can

do the same job. A main aspect of the multimethod approach in GTS is to know when to

apply a method. This relates to a knowledge source's job of evaluating its applicability. A

difference between GTS and the blackboard model is that in GTS, the knowledge sources

do not evaluate if they are applicable, but only contain the knowledge saying what their

applicability requirements are. The applicability evaluation part of the knowledge sources

goes into the knowledge structural component and the body goes into the method

structural component.

3. In a blackboard system, the control module determines which knowledge

source to activate based on the current solution state and how well a knowledge source
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can contribute to advancing the solution. This directly relates to the requirement within

GTS to choose the most applicable problem solving method at the time to advance the

diagnosis process. The function of the blackboard control module led to the development

of a control section for the GTS architecture to perform a similar function. The control

section uses the knowledge in the applicability evaluation part of the method knowledge

sources to decide which method is most applicable.

In summary, the ideas from research into meta-level inference systems and the

blackboard problem solving model led to the development of three structural components

for the GTS architecture. These components are shown in Figure 4.2. Also, Table 4.1

summarizes which concepts contributed to the creation of the components. The

operational concepts from these two research areas directly related to the functions the

GTS architecture ought to support. Also, the organizations described in these two

research areas naturally provided a structure that could be used to organize the remaining

concepts used in the GTS. The following three sections describe the content of the

structural components and the design of how they interrelate.

Knowledge Method
Section Section

Control
Section

Figure 4.2 - GTS Structural Components
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Structural Derived from Contains These Research Concepts
Component

Method Section Meta-Level Inference Systems. Domain Knowledge.
Blackboard Problem Solving Knowledge Source Independence.
Model. Knowledge Source Body.

Knowledge Section Meta-Level Inference Systems. Domain Knowledge.
Blackboard Problem Solving Blackboard Data Structure.
Model. Blackboard Hierarchy Divisions.

Knowledge Source Applicability
Evaluation.

Control Section Meta-Level Inference Systems. Control Knowledge.
Blackboard Problem Solving Blackboard Control Module.
Model.

Table 4.1 - Structural Components: Origins and Contents

4.2.2.2 Method Section. A major point of this research was to investigate

how to create a GTS architecture using the toolbox approach discussed in Chapter three.

The tools are items designed to perform well on a narrow range of tasks. In terms of

diagnosis, the tools correspond to different problem solving methods. These methods are

designed to satisfy the goals of the tasks to be performed during diagnosis. The tasks

specify what is to be done, and the problem solving methods specify steps the method

takes to transform inputs to outputs in order to satisfy the prescribed diagnosis goal.

Depending on the steps a method implements, different granularities of results may be

produced, different knowledge may be needed to make the method work, or different

processing times may be required. It is the methods that are dynamically chosen in GTS.

The method section is the place where the problem solving method code

bodies are placed within the GTS architecture. A method constitutes the steps it was

designed to carry out and the control mechanism that operates the steps. The method

section is divided according to the concept of the knowledge source from the blackboard

model. Each method has its own area in which it resides. Since the areas are separate,

each method is free to be designed however is best for it to work on its particular class of

problems. A result of this is the methods do not all have to be in the same representation.
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If an algorithm is a suitable representation for one method, it can be placed that way in its

own partition independent of the IF-THEN rule structure, for example, that may be

suitable for another method. The methods do, however, need to be able to communicate

in a common way with the portion of the knowledge section it shares with other methods.

The expanded method section is shown is Figure 4.3. Table 4.2 summarizes the Method

section contents.

Kl',died1e I Problem solving
section method bodies

Control
Section

Figure 4.3- GTS Architecture, Expanded Method Section

Structural Contains These Filled by this Previous-System
Component Research Concepts Strength

Method Domain Knowledge. Actual Problem Solving Method
Section Knowledge Source Bodies.

Independence.
Knowledge Source
Body.

Knowledge Domain Knowledge.
Section Blackboard Data

Structure.
Blackboard Hierarchy
Divisions.
Knowledge Source
Applicability
Evaluation.

Control Control Knowledge.
Section Blackboard Control

Module.

Table 4.2 - Method Section Contents
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Since this thesis focuses on the architecture of the GTS, a discussion of the

internal method operations is outside the scope of this work. The overall set of methods

used for the GTS and a brief description of their operation is, however, contained in

Appendix A.

4.2.2.3 Knowledge Section. In designing the GTS architecture, a wide

array of knowledge came into play. The knowledge section's job is to apply some

structure to the diversity of knowledge applicable for use in the GTS. The knowledge

included knowledge of a specific device (its component list, its models, failure data, etc.),

diagnosis process knowledge (what diagnosis goals need to be accomplished, the tasks to

be performed during diagnosis, and the incremental solution leading to a diagnosis),

knowledge pertaining to the problem solving methods (the steps they go through, when

they are applicable), and how to control the whole operation to find what is faulty with a

device. The types of knowledge listed in parentheses could all be contained in the

knowledge section. However, to reduce the interrelations to be designed between the

structural components, only three types were chosen to belong to the knowledge section:

specific device domain knowledge, incremental diagnosis solution knowledge, and method

applicability knowledge. A discussion of these three types is in the following paragraphs.

The last knowledge type, control knowledge, is contained in the control section.

The knowledge section is divided into three main areas. This division is

based on the hierarchy concept from the blackboard model and meta-level inference's

concept of separation of domain and control knowledge. The first area relates to specific

domain knowledge available for the diagnosis session. This could include models available

for the device under diagnosis, existing empirical fault/symptom associations, component

failure rates, the granularity of an acceptable solution, or computational requirements to

name a few. The second area contains knowledge about the incremental diagnosis

solutions. The second area is subdivided according to the three main tasks to be realized

while doing diagnosis (symptom detection, hypothesis generation, and hypothesis
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discrimination); incremental solution knowledge is distributed among them. Since

methods are designed to satisfy the goals of tasks, dividing the second area along task

lines provides specific partitions that methods (interested in satisfying the goals of only

certain tasks) need to use. The design of the second area is influenced by the diagnosis

task structure, a major find from the literature review research. Below, the design of the

second area is discussed further. The third area of the knowledge section relates to the

knowledge the problem solving methods use to determine their applicability. The third

area is divided the same way the method section is - each method in the method section is

linked to a division in the third knowledge section area that holds its applicability

evaluation knowledge. The knowledge section and method section are connected in two

ways: the methods read and write to the first and second areas, and each division of the

third area is linked to its associated method division in the method section. Below, the

design of the third area is discussed further. Figure 4.4 shows the knowledge section and

its divisions as discussed in this paragraph. Table 4.3 summarizes the knowledge section

contents.

elArea 2---- ] 2 2 !iii, --- --------

Cotrol
Section

Figure 4.4 - GTS Architecture, Expanded Knowledge Section
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Structural Contains These Filled by this Previous-System Strength
Component Research Concepts

Method Domain Knowledge. Problem Solving Method Bodies.
Section Knowledge Source

Independence.
Knowledge Source
Body.

Knowledge Domain Knowledge. Area 1 Area 2 Area 3
Section Blackboard Data Specific Incremental Method

Domain Diagnosis Applicability
Structure. Solutions. Knowledge.
Blackboard Hierarchy Knowledge.
Divisions. Three
Knowledge Source Subdivisions

According to
Applicability Task

Evaluation. Structure

Control Control Knowledge.
Section Blackboard Control

Module.

Table 4.3 - Knowledge Section Contents

The second area of the knowledge section was defined to hold knowledge

about the incremental diagnosis solutions. The knowledge needed to be organized to

make effective use of it. The organization used for this objective was the task structure of

the diagnosis process (1:45). The task structure is a graph-based representation of the

knowledge surrounding the diagnosis process. The word process implies a series of tasks

that bring about a result. Consequently, one purpose the task structure serves is to

identify the diagnosis process tasks. The task structure for the multimethod approach to

diagnosis contains more than just the tasks to be accomplished. Consequently, a second

purpose the task structure serves is to specify the methods that can be used to complete

the tasks. In summary, the task structure organizes in a graph the diagnosis process

according to the hierarchy of tasks that need to be accomplished and the problem solving

methods associated with each task. It is important to the knowledge section's Area two

because it provides an organization for the incremental solution knowledge stored there.
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An example of part of the task structure used in the GTS is shown in Figure 4.5. The

complete task structure graph is contained in Appendix B.

Hypothesis
Generation

.. . ..... .. ..

Model-Based Compiled
Hypothesis Generation Hypothesis Generation

Find Transform to
Contributors Hypothesis Set...

Task

Trace Back Causal Cover Prediction Method... ..... ... . ...... ..................... ............. . ... .. .... .... ..

Figure 4.5 - Portion of Diagnosis Task Structure

The task structure's three highest tasks - symptom detection, hypothesis

generation, and hypothesis discrimination - serve as the basis for the subdivisions in Area

two. Each subdivision holds the incremental solution knowledge associated with the tasks

and methods organized under the three highest tasks. Both the blackboard model and the

meta-level inference model make the point that explicit representation of the knowledge

used in a knowledge-based system has many advantages. This principle was used in the

further design of Area two to define the kinds of knowledge to be stored in each

subdivision. Once again the diagnosis task structure was used, this time to take advantage

of its ability to organize the knowledge requirements of the different tasks and methods.

Each method was analyzed using a modified form of IDEF-0 modeling, an industrial

engineering approach to modeling processes. An IDEF-0 model decomposes a process

into the functions and subfunctions that realize it. Similarly, the task structure

decomposes the diagnosis process into its tasks, subtasks, and methods. For each
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function, the IDEF-0 model identifies the inputs, outputs, controls and mechanisms which

make the function operate. Applying the IDEF-0 model to the task structure allows the

input, output and knowledge requirements to be gathered for each method and task.

Applying the model consecutively up the task structure collects the knowledge

requirements of lower levels into the upper levels. The knowledge requirements of the

three main diagnosis tasks are then the collection of the knowledge requirements of the

tasks and methods organized below them. A complete summary of IDEF-0 analysis for

the diagnosis task structure is in Appendix C. Figure 4.6 shows the IDEF-0 model applied

to a generic function and the modified model applied to the Find Contributors task shown

in Figure 4.5. In summary, applying the modified IDEF-0 modeling technique to the

diagnosis task structure allows for the explicit identification of what knowledge to store in

the three subdivisions of Area two in the GTS knowledge section.

Device Structure Model

Control Device Behavior Model

I Device Causal Model

Input enec Output Normal or Abnormal
GnrcFindColitSt

Functin Device Input Values _. Contributors C

Mechanisms

Figure 4.6 - IDEF-0 Modeling

Besides the incremental knowledge and domain knowledge, the knowledge

section of the GTS architecture also deals with the knowledge each method has to

describe its applicability during the diagnosis process. This is contained in Area three of

the knowledge section. For each method in the method section, there is a corresponding

division in Area three that is the applicability evaluation part of the knowledge source.

These evaluation parts contain a sponsor (19:69) for each method. The sponsor lists a
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method's suitability criteria (2:155). The suitability criteria provide a means to explicitly

capture the requirements the methods have to operate.

According to Benjamins, the suitability criteria can be categorized along

three axes: the type of knowledge axis, the strictness axis, and the persistency axis (see

Figure 4.7) (2:155-157). The type of knowledge axis is further divided into four areas:

epistemological, environmental, computational, and assumption areas. The

epistemological area specifies the type of domain knowledge the method needs to have

available. Examples include whether the device model is based on structure and behavior

or causal associations, if the model is static or continuous, or what is the scope of the

model (15:17-20). The environmental area specifies physical conditions that need to be

present with the device under diagnoses for the method to work. An example is a method

that probes the device to gather observations requires the probe points be accessible. The

computational area reflects the characteristics that relate to a method's processing

requirements- memory requirements, time requirements, etc. Last, the assumption area

captures the implicit assumptions built into the methods of past diagnostic systems. For

example, some methods only produce a hypothesis containing a single component as an

explanation for a fault. If multiple component combinations are desired for a given

diagnosis session, a method adopting the single fault assumption cannot be used. The

strictness axis is divided into two areas: necessary and useful. A criterion categorized as

necessary absolutely needs to be present for the method to operate. A useful criterion

specifies conditions that would aid the method's operation, but would not prohibit the

method's operation if it were not available. In evaluating its applicability, a method must

first satisfy all its necessary criteria before even looking at the useful ones, for if the

necessary are not satisfied, the method is guaranteed to not operate. The useful criteria

are helpful in discriminating between several applicable methods. The third axis, the

persistence axis, is divided into two areas: static and dynamic. Static criteria are those
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that describe knowledge that does not change throughout the diagnosis process, whereas

dynamic criteria knowledge can change.

Each criterion a method has can be evaluated to see what criteria

knowledge areas apply to it. For example, for the above example regarding probe point

accessibility, the Environmental, Necessary, and Static criteria areas apply. Evaluating all

method criteria to find what areas apply allows for a consistent, explicit representation of

suitability knowledge, and allows for comparisons between methods to make dynamic

method selection choices.

Computational Assumptions

Figure 4.7 - Suitability Criteria Knowledge Axes and Areas

This concludes the design description for the knowledge section of the

GTS architecture. Summarizing, the knowledge sections job is to provide an organization

for the diverse types of knowledge used in the GTS. It holds knowledge that deals with

the incremental diagnosis solutions, specific domain knowledge, and method applicability.

It was designed considering the importance of separating domain from control knowledge,

and augmented the basic blackboard problem solving model with several features from
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past multimethod approaches to automated diagnosis. With the methods and knowledge

sections described, the control section will now be presented.

4.2.2.4 Control Section. In terms of a meta-level inference system, the

method and knowledge sections are at the object level. They deal with specific domains

and are tightly focused. The control section, on the other hand, is at the meta-level. The

control section for the GTS has knowledge of how to use the object level knowledge.

The control section is where decisions are made that guide the diagnosis process.

The control section uses the same strategy of using components from other

automated diagnosis systems just as the method and knowledge sections did. There are

three concepts that go into the design of the control section (see Figure 4.9 and Table

4.4). The first is the task structure already mentioned in the knowledge section. There, it

was used because it organized the knowledge used during the diagnosis process. In the

control section, the task structure is used for how it organizes the diagnosis tasks. The

control section uses the task structure to keep track of where the system is in the diagnosis

process. Also, the task structure provides the control section with the methods and tasks

directly applicable to the state of the process. It focuses the control section regarding

what to consider doing next; it does not need to consider all methods and all suitability

criteria but only those directly related to the current diagnosis task. The second

component of the control section is the selector (19:69). The selector receives the set of

methods and tasks directly applicable to the state of the process and polls the sponsors

contained in the knowledge section Area three. Upon receiving the applicability

knowledge from the methods, the selector calculates the applicability scores, selects the

highest scoring method, and invokes the method to start operating. The third component,

as currently designed for the GTS, is a simple loop that repeatedly chooses and applies the

most appropriate problem solving method until a suitable diagnosis is found The pseudo

code for this loop is in Figure 4.8. Figure 4.9 shows the expanded control section, and

Table 4.4 summarizes the contents of the Control section.
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While suitable diagnosis not found

Based on the current diagnosis task

Find the methods associated with the task

While diagnosis tasks goals not met

If no associated methods then
Announce Diagnosis Failure

End

End if

Evaluate method applicability

Select the most appropriate method

Invoke the method

Evaluate method results

If results do not satisfy diagnosis task goals then

Remove current method from consideration

End If

Loop

If suitable diagnosis not found then

Advance to next diagnosis task

End if

Loop

Report suitable diagnosis

Figure 4.8 - Control Loop Pseudo Code

SelectoTask StructureSelecto r .Area
Area

Loop

Control Loop
Area

Figure 4.9 - GTS Architecture, Expanded Control Section
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Method Domain Knowledge. Actual Problem Solving Method
Section Knowledge Source Bodies.

Independence.
Knowledge Source
Body.

Knowledge Domain Knowledge. Area I Area 2 Area 3

Section Blackboard Data Specific Incremental Method
Diagnosis Applicability

Structure. Domain Solutions. Knowledge
Blackboard Hierarchy Knowledg (Sponsors)
Divisions. e. Three

Knowledge Source Subdivisions Suitability
According to Criteria.

Applicability Task

Evaluation. Structure.

Control Control Knowledge. Task Selector Loop Area

Section Blackboard Control Structure Area
Module. Area Control

Selector Loop
Task
Structure

Table 4.4 - Control Section Contents

Diagnosis

Prime
Diagnmtic

Symptom Hypotheis Hypo t

Detection Generation i Disof matc

C preCsiySymptom Sympt(~ Ask User
Detetion

Generate Compare
t t u t ection bobservation tospecttioosrediction

Lmkp Simutate Enact OOM Thrmhotd Teteotogicat Statisticat -l toca
novice Compare Compare Compare Compare Compare Comnpare

Figure 4. 10 - Symptom Detection Portion of Task Structure

4.2.3 GTS Operation Example. The previous sections described in detail the

design architecture for the Generalized Troubleshooter. While those sections described

the structure, this section briefly describes the operation - how a diagnosis could be

formulated using the architecture. This example simulates a consistency-based approach
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for only the processing done for the Symptom Detection task. This is sufficient to show

how all the components of the GTS architecture operate and to keep the discussion to a

minimum. Figure 4.10 shows the Symptom Detection portion of the Diagnosis Task

Structure. This figure aids in visualizing the operation described below.

For this diagnosis session, several assumptions are made: structural and behavioral

models are available, there is at least one discrepancy between model predictions and the

observations, and the knowledge required by the Exact Compare method is available. The

last assumption is applicable when performing the "Compare Observation to Prediction"

task. To begin, Area one of the knowledge section would contain the device specific

structural and behavioral models. Assuming the troubleshooter is continuously on, the

control section starts off in the Diagnosis task. Using the task structure, it would find that

the Prime Diagnostic Method is the only method associated with the Diagnosis task. The

Control Loop then tasks the Selector to poll the Sponsor for the Prime Diagnostic

Method. The Sponsor reports to the Selector its applicability knowledge. The Selector

evaluates the applicability knowledge using the knowledge in the knowledge section to

compute an applicability score. The applicability score shows the method's criteria are

satisfied. The Selector then selects and invokes the Prime Diagnostic Method. At this

high level in the task structure, the Prime Diagnostic Method does no real work. It merely

confirms that the diagnosis process should continue. Upon evaluating the method results,

the Control Loop evaluates the method as successful, decides that no diagnoses have been

found and consequently updates the process task position to the Symptom Detection task.

This is the end of one pass through the control loop.

Using the task structure, the Control Loop finds that applicable methods are the

Compare method, the Classify method, and the Ask User method. This means to satisfy

the goals of the Symptom Detection task, the observations and predictions need to be

compared and then classified as normal or abnormal, or the GTS user needs to tell GTS

which observations are abnormal, bypassing the Compare and Classify methods. Although
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not explicitly specified in the control section at present, because the task structure is not

an and/or graph, this and/or sequence knowledge must be taken into account. Chapter

five discusses how this may be possible. The Selector polls the Sponsors for these three

methods and they report back their applicability knowledge to the Selector. The Selector

determines that the knowledge needed by the Compare and Classify Methods is present in

the knowledge section. The Selector invokes both methods with the Compare method

scheduled first. Again since the Compare method is at a high level in the task structure,

no real work is done although the method is evaluated as successful because it can be

applied to the current situation. The Control Loop decides no diagnoses have been found

and updates the process task position to the tasks organized under the Compare method -

the Generate Expectation and Compare tasks. The Classify method, not having completed

yet, is kept on hold, ready to run when all task goals preceding it in the task structure are

completed. This is the end of the second pass through the control loop.

Since the current process task position is the Generate Expectation task, the

Lookup and Simulate methods are identified as being the ones to consider using next. The

Selector polls the Sponsors for these two methods and here is when some choices are

made. Considering the domain knowledge in Area one, the Selector evaluates Lookup to

"not applicable" since no domain-specific database is available that tells what the device's

output values should be based on the applied inputs. As a result, the Simulate method

evaluates to "applicable" and the Selector invokes the Simulate method. The method

reads from Area one the device inputs, and writes the values predicted for the internal

points to the Symptom Detection subdivision of Area two. Assuming no problems are

encountered, the Control Loop evaluates the methods as successful, decides no diagnoses

have been produced yet, and updates the current process position to the Compare task.

The Classify method is still on hold.

The task structure identifies a number of methods possibly applicable to the

Compare task and has the Selector poll the Sponsors for the Exact, Order-of-Magnitude,
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Threshold, Teleological, Statistical, and Historical methods. Because of the assumption

that the knowledge required by the Exact Compare method is available, the Selector

evaluates the Exact method to "applicable". Each of the other methods under

consideration requires specific knowledge that is not available. The Selector invokes the

Exact method, and it proceeds to compare the predicted values to the observed values,

noting the values that are not exactly equal. It places its results in its portion of the

Symptom Detection subdivision of Area two.

The Classify method that has been on hold for the last few cycles is now invoked.

The job of the Classify method is to evaluate the comparisons performed by the Compare

method and assign a value to them of either normal or abnormal according to the method

used to compare predictions to observations. Since the Exact Compare method was used,

any prediction/observation comparisons that was not exactly equal is classified as

abnormal. Assuming there is at least one discrepancy, the Classify method writes the

abnormal classification to its part of the Symptom Detection subdivision of Area two.

Still no suitable diagnosis has been found, so the current process position is updated to the

Hypothesis Generation task and the diagnosis process continues.

This example of the diagnosis processing through one branch of the task structure

demonstrates the general operation of the GTS. For each task, a breadth first search

determines the methods available to choose from. In the times when more than one

method is chosen to be accomplished, a depth first search is performed from the first

method scheduled. Using the task structure in this way guides the Selector's search for

methods to apply in that not all the methods need to be evaluated at every step during the

process. The diagnosis process ends when there are no more methods to invoke and the

results of the string of methods invoked in the past have all been successful. At this point,

the suitable diagnosis will be in its portion of the Hypothesis Discrimination subdivision of

Area two and the current process position is returned to the diagnosis task. The diagnosis

process also ends if all the methods applicable to a task are executed unsuccessfully. This
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means a diagnosis task cannot be completed with the set of methods available for the

particular diagnosis problem. Since a task failed completion and there are no others to try

the overall diagnosis process fails. If the full troubleshooter was included and the

diagnosis process successfully completed, it would take the generated hypotheses and

formulate a corrective action plan, but for now this is outside the scope of the GTS.

4.3 Design Conclusion

This chapter has presented the product of the research performed for this thesis:

an architecture for a Generalized Troubleshooting system based on the dynamically

selected multimethod approach to diagnosis. Its main features include a blackboard

problem solving model augmented with specific concepts gathered from other

multimethod diagnosis systems. The architecture consists of three structural components:

the method section, the knowledge section, and the control section. The method section

holds the steps to be performed by various methods that each work on a narrow range of

problems. The knowledge section holds the domain specific knowledge required by the

methods to operate. The control section holds the knowledge needed to make decisions

about when to apply the method knowledge. Because of the separation of domain and

control knowledge, the GTS has meta-level inference characteristics, meaning it uses

knowledge about domain knowledge to guide the selection of problem solving methods

during the diagnosis process.
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V. Analysis

5.1 Chapter Overview

This chapter examines the GTS system and comments on its strengths and

weaknesses. Possible improvements to the architecture will be presented, and the role of

the GTS in the targeted application - the MAGIC program - is discussed.

5.2 GTS System Strengths

Because the GTS architecture is based on the blackboard model, it inherits many

of the advantages the blackboard has. One advantage is the modularity the blackboard

model provides. A well planned modular design provides a well organized framework in

which to put a system's elements connected through specific interfaces. Also, it is

generally more acceptable to focus on a narrow range of a problem and put different

pieces together for the overall solution than to try to make one module fulfill all

requirements on its own. Modularity is used often in the GTS system, starting at a high

level with the architecture sections and continuing with the subdivisions within them. In

the knowledge section, modularity allows the specific identification of the type of

knowledge being used. This is important when gaps in the system appear. Modularity can

help in tracing the missing link to a narrow range of suspect modules and once the suspect

is located, the things to consider to fill the gap in knowledge is reduced to investigating a

similarly narrow range. Modularity also assists in separating the types of knowledge, an

important consideration when using meta-level inference systems. Other beneficial

features of a modular design include easier testing since testing a module with a

manageable set of requirements for correct operation is easier than testing an entire
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conglomeration of system level requirements. Maintenance is generally easier also

because the internals of the modules may be modified with smaller chance of introducing

errors into other parts of the system. Another blackboard attribute that the GTS inherits is

the ability to assemble and dynamically control various specialized problem solvers. This

attribute is exactly what the GTS approach encompassed, so there is a good match

between the blackboard's capabilities and the requirements the GTS needs to fulfill.

A second GTS system strength is the architecture's ability to store and use widely

varying types of knowledge to solve a diagnosis type of problem. The architecture

promotes experimentation to compare, for example, different sets of problem solving

methods, different method selection control strategies, or the effects of different types of

knowledge on the diagnosis process. The architecture modules provide "parameters"

which can be altered in different GTS configurations to determine the merits of each

configuration.

A third system strength is the GTS' robustness. It is robust in terms of the

different devices it can be applied to, the range of situations where the deep knowledge it

uses is applicable, and its ability to recover from an unproductive line of reasoning.

Regarding devices, the same diagnosis approach can be applied to different devices by

loading the GTS with domain knowledge (mainly models) about them. As long as

different devices can be described in modeling terms consistent with the knowledge

formats the problem solving methods use, the same generic method can reason about

them. The deep knowledge robustness means that deep knowledge (electrical component

operation equations, for example) that applies in one situation also applies in another

where the same device is used. A common knowledge base can be called upon for many

devices, precluding the need to derive all the domain knowledge surrounding a device

every time a new one is created. Last, unlike an algorithm that may quit if the problem

data does not exactly match the data the algorithm expected, the GTS allows for attempts

at finding a solution to continue even though one method did not successfully complete.
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5.3 GTS Shortcomings and Improvements

Although the GTS seems to have significant advantages over past automated

diagnosis systems, it is not the final word on multimethod diagnosis. The following

paragraphs discuss some shortcomings I see with the GTS architecture and suggest ways

to overcome them. Expanding the architecture also helps to overcome the limitations

made by the focusing assumptions discussed in Chapter three, section two.

The task structure intuitively appears to be incomplete because it is based on an

analysis of the actions performed by human troubleshooters. The high level tasks of what

a troubleshooter tries to accomplish during diagnosis are relatively constant, but the means

he uses to realize the task goals will likely change. Therefore, the task structure would

require periodic updating to keep pace with the state of the art. For example, in my

literature search, I found at least one method not currently captured in the task structure.

It is called the iterative search method (15:22). In this method, a model of a device is

used to predict component values and a discrepancy detector finds the differences between

predictions and observations. The method then searches the space of model variations it

has as domain knowledge to find the model of incorrect behavior whose evaluation

predicts the observations. The hypotheses for fault causes are then the differences

between the model of all correct behavior and the model of incorrect behavior. Based on

the literature, the model-based diagnosis field appears to have an abundance of ongoing

research, and the current task structure should reflect the results of new research.

Not only should the task structure be updated with new methods, but it should

have additional reasoning paradigms added too. One idea behind multimethod diagnosis

was to capitalize on the combined use of individual methods allowing methods to cover

the shortcomings of each other. I feel this notion of combined use should be extended to

reasoning paradigms also. Where one reasoning method falls short, perhaps there is

another that can take its place. An excellent example of a multi-paradigmed system is
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SRS discussed in Chapter two. Architecturally, additional reasoning paradigms could be

introduced as additional knowledge and method sections still under control of the control

section. As the knowledge section is subdivided into a hierarchy of knowledge, the

knowledge and method sections associated with another reasoning method form a

hierarchy of blackboards in the new GTS system. Additionally, considering the

improvement in the previous paragraph, the methods of the new reasoning paradigms

would be analyzed to see what tasks of the existing task structure they support.

Conceptually, inserting those methods into the task structure would require simply

inserting the methods under their appropriate tasks. Architecturally, this translates to

filling in the new knowledge and method sections for the new paradigms just as was done

for the model-based paradigm. Finally, it may be found that other reasoning paradigms

may not only add methods to choose from in accomplishing a task, but may identify

additional tasks themselves. Reasoning paradigms other than model-based reasoning

appear to be another source of knowledge to add to the pool already being used by GTS.

A generalized troubleshooter aims to be efficient as well as robust in developing

diagnoses. One shortcoming of the current GTS architecture is that the control section

does not have insight into the problem solving methods as they run to evaluate if the

method is converging on expected results. Currently, the problem solving method reports

to the control section after it has completed and its success is determined then. If the

method failed, and started failing an appreciable amount of time before its planned end,

then the time spent diverging from expected results serves no useful work. Perhaps a way

to evaluate if a method is diverging from a solution is to have GTS keep a database of

performance metrics based on past cases where the method was used. The past cases may

provide a reference the control section can use to make decisions about a method's current

progress. Also, perhaps GTS could be recursively used on itself. Just as a device is

modeled and diagnosed when observations do not match predictions, perhaps the problem

solving methods themselves could be modeled and evaluated by GTS (while they are
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running), leading to possibly diagnosing problems with a method when its performance

does not match expectations. This would also expand the entities GTS deals with from

just physical entities to abstract entities since a method says how to do something. To

control a method while it is running, there need to be communication between the control

section and the problem solving method so that method success can be evaluated during

method execution and control commands can be issued if needed.

Currently, GTS has little latitude in the order of the diagnosis tasks it performs.

As discussed in Chapter four, the current diagnosis process state follows a depth first

search through the tasks in the task structure. Knowledge of the sequence of diagnosis

tasks is partially defined by the layout of the task structure, similar to how rule selection is

sometimes implicitly defined by the ordering of the rules in a production system rule base.

As seen in the operation example, some methods depend on other methods being

performed first, and this sequencing knowledge in not currently available to the control

section using the task structure alone. To overcome this deficiency, knowledge regarding

task sequencing needs to be explicitly specified. This could possibly be done by adding

meta rules to the control section, or possibly by adding the sequencing knowledge to a

method's suitability criteria. Specifying the sequencing knowledge is consistent with GTS'

design approach to explicitly represent control and domain knowledge, but doing this still

leaves GTS with a rigid sequence of tasks the diagnosis process must go through each

time, and perhaps the sequence does not need to be the same for each diagnosis problem.

Task sequencing seems like an area that can be generalized more so that knowledge of

where to go in the diagnosis process may be used like all the other knowledge in the GTS

system to reason about what is the most appropriate task to do next.

Last, the current GTS architecture is targeted to diagnose electronic devices on

board a satellite. These are physical entities. However, diagnosis can be performed on

non-physical entities too, like the problem solving methods themselves previously

mentioned. An interesting extension to GTS would be to diagnose something abstract
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such as a process in an office or in manufacturing. A GTS acting in this capacity could

make an excellent program management tool to monitor and control program execution,

increase process efficiency, or aid in program planning by allowing processes to be

simulated and debugged before implementation. Using the GTS on an abstract entity

would give some measure of its domain independence. Going the other direction, project

management concepts could aid the GTS. Specifically, project management principles

(involving decision-making, for example) could be incorporated as heuristics in the GTS

control section as another source of knowledge for how to guide method selection.

5.4 GTS Target Application

The work done in developing an architecture for the GTS was not just a design

exercise. It was developed with a particular application in mind. Chapter three discussed

the ongoing MAGIC satellite control program whose requirements influenced many of the

choices made for the GTS. The MAGIC program has these goals: provide an intelligent

system to allow satellite operators to manage multiple satellite constellations and block

releases, be easily expanded for new constellations and block releases, be easily

modifiable, and reuse domain models. The first step of MAGIC is TAS, or Telemetry

Analysis System. TAS processes raw satellite telemetry to check for out of limit

conditions for satellite parameters, provides telemetry plots and graphs, and offers

trending analysis. No diagnostic capabilities are planned for TAS. MAGIC step two

expands on step one to make a decision support system. This system will analyze out of

limit conditions and other system information to determine if a known anomaly exists,

what its predefined solution plan is, and present to the operator the solution for operator

approval. Step three goes even further to allow the expert system to determine causes of

known and unknown anomalies, and aid the operator in how to resolve the problem. Step

three is about troubleshooting. It is the last step that I feel the GTS can fulfill the best.
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Since diagnosis is just half of troubleshooting, to fully satisfy the goals of troubleshooting,

the GTS could be augmented with a planning system. The planning system would take the

diagnoses from GTS as input and produce for output a plan for the sequence of steps to

perform to clear the trouble. Once causes for faults on board a satellite are found,

commands to correct the faults need to transmitted back to the satellite. A

troubleshooting expert system used this way could conceivably diagnose problems and

execute corrective action plans without the need for satellite operator involvement. In

light of current policy to reduce the training and rank of satellite operators, and the

reduction or elimination of expert troubleshooting teams for satellite anomalies, the GTS

and its extensions offer an approach to capture the expertise once applied by human

operators and engineers. GTS can augment a gap created by these policy changes to

keep valuable satellite resources at operational levels.

5.5 Analysis Conclusion

This chapter has looked at the GTS architecture to comment on its strengths,

weaknesses, possible areas for improvement, and how it may contribute in its foreseen

target application of an intelligent control system for satellite operation. I feel the overall

conclusion is the GTS architecture provides a sound basis to reuse existing artificial

intelligence technology and diagnosis research results on which to implement the diagnosis

portion of an automated troubleshooting tool.
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VI. Conclusion

This thesis dealt with troubleshooting, the process of 1) determining causes for

why an entity is not behaving correctly and 2) formulating action plans to alleviate those

causes in order to return the entity to correct operation. The process of determining

causes for faults is called diagnosis and was the portion of the overall troubleshooting

process that this thesis focused on.

Diagnosis transforms initial observations citing incorrect behavior into reasons

explaining the behavior. The transformation can be viewed as a process in which a series

of steps are applied to incrementally develop an explanation solution. One way to

organize a process is to identify its constituent components, the goals they aim to achieve,

the actions performed in them, the resources they require, and their relative ordering. This

thesis adopted this view of the diagnosis process and therefore set out to define an

architecture for automated knowledge-based diagnosis in terms of the tasks the process

performs, the goals the tasks have, the methods used to satisfy the goals, the knowledge

required to perform the methods, and the control of method selection. Furthermore, this

thesis assumed that 1) there is in general more than one method to use to achieve the goals

of a task and 2) that the choice of which method to use may be flexible as long as the task

goals are completed. The overall system is called the Generalized Troubleshooting

System (GTS) and the architecture developed for this thesis supports the first subgoal of

troubleshooting, efficiently finding explanations for faulty device behavior.

The approach to defining this architecture involved combining the individual

strengths of existing diagnosis technologies into a common framework. The architecture

is based on the blackboard problem solving model, an approach to problem solving that

opportunistically combines the expertise of various domain experts to solve a larger
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problem that no expert could solve alone. The blackboard provides the conceptual model

which to implement the individual strengths of other diagnosis systems.

This research produced a number of results. Of prime importance is the task

structure of the diagnosis process, a graph organization of the incremental tasks to be

performed and sets of methods useful to realize the tasks. The task structure provides a

foundation to organize the knowledge required by the methods and the control of the

diagnosis process. Another important result is the identification of the different types of

knowledge the methods in the task structure use. Some of this knowledge dictates when

the problem solving methods are applicable, and a third important result is the

organization of this type of knowledge into a common format for all methods. This

provides a means to control the diagnosis process by reasoning about when to invoke a

method. The last important result is the apparently successful merger of the task structure

with the blackboard problem solving model. The tasks to be performed during the

dynamic method selection approach to diagnosis line up well with the functionality the

blackboard model pieces provide.

The results of this research could be expanded in a number of ways. The first

involves making an implementation of the architecture. No implementation was made for

this work; however, the architecture provides a design upon which a future

implementation could possibly be based. Implementing a system based on the GTS

architecture and comparing its performance with past automated diagnosis systems would

give validity to the design choices. As with most first-time designs, I feel there is room for

improvements in the GTS architecture itself. The areas I feel should be expanded include

continuing the idea of combining domain specific experts by introducing other reasoning

paradigms and their methods into the task structure to augment the capabilities of the

model based methods. The next area I feel should be explored is enabling the dynamic

selection of methods to be made anytime when a problem solving method is operating
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instead of waiting for method completion. The addition of these two areas would increase

the tools available to the GTS to determine a diagnosis, and attempt to curb an increase in

processing time the extra reasoning methods may introduce.
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APPENDIX A. GTS Task and Method Descriptions

This appendix contains a brief description of the functionality for the methods and

tasks used in GTS. The method/task numbers in tables A-I and A-2 refer to the

identification number of the nodes in the task structure graph contained in Appendix B.

Method Method Name Brief Description
Number

RI Prime Diagnostic Encapsulates 3 main diagnosis subtasks.
R2 Compare Generates expected value and compares to

observation.
R3 Classify Classifies comparison as normal or

abnormal.
R4 User User decides normal or abnormal.
R5 Model Based Hypothesis Generate causes by comparing model

Generation predictions to observations.
R6 Compiled Finds causes by using compiled

symptom/cause associations.
R7 Discrimination Narrows list of possible hypotheses.
R8 Lookup Uses database to determine expected

values.
R9 Simulate Compute expected values by using

simulation model.
RIO Exact Compares exact values of predictions and

observations.
Ri1 Order Of Magnitude Compares OOM's of predictions and

observations.
R12 Threshold Checks for difference of predictions and

observation to exceed a threshold value.
R13 Teleological Compares according to function or

purpose.
R14 Statistical Expected values expressed in distribution

terms.
R15 Historical Uses historical data to decide if an

observation is normal or abnormal.
R16 Trace Back Uses structural model to find components

linked to a discrepancy between predicted
and observed value.

R17 Causal Covering Uses causal model to cover observations
with symptom causes.

R18 Prediction Stores names of components contributing
to a constraint network point calculation.

R19 Set Cover Uses candidate component sets to cover
symptom set.

Table A-I - GTS Method Descriptions
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R20 Intersection Intersect all candidate component sets to
find candidates that could cause all
symptoms

R21 Subset Minimality Build candidate sets that do not have
another candidate set as a proper subset

R22 Cardinality Minimality Build sets of candidate sets implicating
fewest number of failing components

R23 Constraint Suspension Remove model of suspected component
from device model while testing
hypotheses

R24 Corroboration Removes a fault hypothesis if it predicts
values for its components that differ from

observations
R25 Fault Simulation Instantiate a device fault model. Simulate

to match predictions with observations

R26 Random Select at random a hypothesis from the set
of hypotheses to collect further data for

R27 Smart Select a hypothesis from the set of
hypothesis by associating each with a
measurement cost

R28 Compiled Test Consult database of compiled test
procedures to collect further data for
hypotheses

R29 Probe Probe the device at test points to collect
further data for hypotheses

R30 Manipulate Determine a new input vector to apply.
See if implied faulty components same
under new inputs

R31 Replace Replace suspected components and apply
old input vector. Successful if symptom
disappears.

R32 Interpret In Isolation Keep/reject hypotheses based on
additional collected data

R33 Split Interpret Split hypothesis set into two parts. Reject
all hypotheses that do not predict newly
collected data

R34 Based On Local Costs Select hypothesis to test based on
probability of failure data for a suspected
component

R35 On The Number Of Tests Select hypothesis to test based on
expected number of tests to isolate cause

R36 Based On Overall Costs Select hypothesis to test based on a
combination of local costs and number of
tests.

R37 Direct Measure Collect additional discriminatory data
directly form test points.

R38 Indicator Based Use the value at a directly accessible test
point to infer the value of another non
accessible test point

Table A-I - GTS Method Descriptions (Continued)
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Task Number Task Name Brief Description

C I Diagnosis Determines possible causes for abnormal device observations.

C2 Symptom Detection Determines if observations compared to predictions are
abnormal.

C3 Hypothesis Generation Generates possible causes for explaining normal and abnormal
observations.

C4 Hypothesis Discrimination Discriminate among possible causes using additional
observations.

C5 Generate Expectation Generate expected values for given inputs.
C6 Compare Compares expected values to observed values
C7 Classify Classifies observations as abnormal or normal.
C8 Ask User Prompt user to classify observation as abnormal or

normal.
C9 Find Contributors Finds components that contribute to an abnormal observation.

C 10 Transform To Hypothesis Set Transforms contributor sets to hypothesis sets.

C11 Prediction Based Filtering Removes hypotheses from consideration that predict
observations the device is not showing.

C 12 Abstract Refers to compiled symptom/cause database.
C 13 Associate Associates causes with their symptoms.
C 14 Probability Filter Predicts observations that should be observed if the

causes exist.
C 15 Select Hypothesis Select a hypothesis that requires additional observation

data.
C 16 Collect Data Collection additional observation data.
C 17 Interpret Data Updates the hypothesis set based on the additional

data.
C 18 Lookup In table, look up output values for given input values.
C19 Simulate Uses model to determine output values based on input

values.
C20 Equal Check Compares prediction to observation for equality.
C21 Determine Order of Magnitude Generates order of magnitude for predictions and

observations.

C22 Determine Ratio Determines ration of predicted value to observed
value.

C23 Check Against Threshold Compares difference between observation and
prediction to threshold knowledge.

C24 Teleological Abstract Determine design purpose for a component,
C25 Statistical Compare Compare observations to an expected probability

distribution.

C26 Historical Compare Compare observations to past values for the same
parameter.

C27 Find Upstream Determine components that are physically connected
to a suspect component.

C28 Causal Covering Determine what possible causes predict the
observations.

C29 Set Cover Apply set cover algorithm to determine if suspected
components could explain all abnormal observations.

C30 Intersect Intersect all suspect component sets to find
commonalities.

C31 Subset Minimality Cover Find the smallest subset of suspect components that
explain the abnormal observations.

C32 Cardinality Minimality Cover Find the smallest number of components that are
suspects.

C33 Select Random Select a random element from a list of hypotheses.
C34 Suspend Constraint Remove a component's model from the device model.

Used in hypothesis generation.
C35 Check Consistency Check if observations are consistent with the model

predictions.

Table A-2 - GTS Task Descriptions
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C36 Delete Remove a hypothesis from a list.

C37 Select Fault Model Select a fault model for the device to simulate. Used
to compare the predictions to observations. If there
is a match, the model tells how the device is failing.

C38 Estimate The Cost Of Testing The Gather cost data to determine for which hypothesis to
Hypothesis Set gather additional data.

C39 Order Hypothesis Set Order hypothesis set based on cost estimates.
C40 Select First Select first hypothesis from list of ordered hypotheses.
C41 Compiled Test Run a test script to collect additional observation data.
C42 Measure Measure the value at a probe point.
C43 Deduce Input Vector Determine new inputs to device to exercise suspect

components.
C44 Replace Hypothesis Replace a suspected component with a new component.
C45 Split Hypothesis Set Remove half the hypothesis set from consideration

based on the result of additional observations.
C46 Obtain Obtain new observations after applying new inputs.
C47 Estimate Local Cost Use component a prior failure probabilities to rank

suspects.

C48 Estimate Number Of Tests Use information entropy to estimate the number of
additional measurements required to isolate a fault
starting with a give suspect component.

C49 Estimate Overall Costs Combine Local Cost and Number of Test estimates to
form a new estimate.

Table A-2 - GTS Task Descriptions (Continued)
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APPENDIX B. Diagnosis Task Structure

This appendix details the task structure of the diagnosis process. The task

structure is a graph-based representation of the knowledge for the diagnosis process. One

purpose the task structure serves is to identify the tasks of the diagnosis process. A

second purpose is to identify the problem solving methods that can be used to complete

the tasks. Both tasks and methods are represented by nodes of the graph. A task has a

goal and dictates what needs to be done for a certain stage of the diagnosis process. A

method is associated with a task (via an arc) when performing the method can satisfy the

task's goal. Tasks are decomposed into methods, which are in turn decomposed into the

tasks necessary to perform the method, to form alternating task/method levels down the

task structure hierarchy. The recursive decomposition ends when primitive inference tasks

are identified. Primitive inference tasks, analogous to subroutines or object methods, are

specific procedures that operate on domain knowledge to perform a specific job. Finally,

some methods rely on tasks that are not in the hierarchy below them. Therefore, the task

structure is not strictly hierarchical. In summary, the task structure organizes the

diagnosis process in a graph according to the hierarchy of tasks (goals) that need to be

accomplished and the problem solving methods associated with each task.

One use for the task structure is to control the diagnosis process. Traversing the

task structure according to its links steps through the tasks in the order necessary to solve

a diagnosis problem. Furthermore, for each task, the applicable methods that can achieve

its goals are directly linked to it. This focuses the controller's search for applicable

methods. The controller does not need to search through all methods identified in the

task structure, but only those linked to the current task. A second use for the task

structure is to organize the knowledge required at each stage in the diagnosis process.

This is necessary to dynamically choose the most applicable method to perform at each
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stage. Each task and method has certain knowledge requirements that must be satisfied

for it to operate. For each node, representing a task or method, its knowledge

requirements are the sum of the knowledge requirements for the lower level nodes linked

to it. In summary, the task structure can be used to control the diagnosis process. It

provides a means for the generalized troubleshooting system (GTS) controller to step

through the diagnosis tasks in the order required to solve a diagnosis problem.

Furthermore, it provides a means to allow the knowledge requirements to be explicitly

identified for each stage of the process, contributing to dynamic method selection.

The following pages show the diagnosis task structure used in the GTS. Its

purpose here is to see in one picture the entire task structure. Tables B. 1 and B.2 list the

names for the tasks and methods, respectively. Table B.3 lists the links between tasks and

methods. The "Node ID number" for each name corresponds to the number of the

appropriate node on the graph. Tasks are represented by circle nodes, and methods are

represented by rectangular nodes. The graph itself is divided over two pages. Page B-3

contains the left half of the graph, and page B-4 contains the right half. The following

picture demonstrates how to join the two parts.

Figure B. 1 - Task Structure Construction
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Node ID number, Circle Nodes Node Name (Tasksl
C I Diagnosis
C2 Symptom Detection
C3 Hypothesis Generation
C4 Hypothesis Discrimination
C5 Generate Expectation
C6 Compare
C7 Classify
C8 Ask User
C9 Find Contributors

C 10 Transform To Hypothesis Set
C11 Prediction Based Filtering
C 12 Abstract
C 13 Associate

C 14 Probability Filter
C 15 Select Hypothesis
C 16 Collect Data
C 17 Interpret Data
C18 Lookup

C 19 Simulate
C20 Equal Check
C21 Determine Order of Magnitude
C22 Determine Ratio
C23 Check Against Threshold
C24 Teleological Abstract
C25 Statistical Compare
C26 Historical Compare
C27 Find Upstream
C28 Causal Covering
C29 Set Cover
C30 Intersect
C31 Subset Minimality Cover
C32 Cardinality Minimality Cover
C33 Select Random
C34 Suspend Constraint
C35 Check Consistency
C36 Delete
C37 Select Fault Model
C38 Estimate The Cost Of Testing The Hypothesis Set
C39 Order Hypothesis Set
C40 Select First
C41 Compiled Test
C42 Measure
C43 Deduce Input Vector
C44 Replace Hypothesis
C45 Split Hypothesis Set
C46 Obtain
C47 Estimate Local Cost
C48 Estimate Number Of Tests
C49 Estimate Overall Costs

Table B. I - Diagnosis Tasks
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Node ID number. Rectangle Node Name (Methods)
Nodes

RI Prime Diagnostic
R2 Compare
R3 Classify
R4 User
R5 Model Based Hypothesis

Generation
R6 Compiled
R7 Discrimination

R8 Lookup
R9 Simulate
RIO Exact
Ri 1 Order Of Magnitude
R12 Threshold
R13 Teleological
R14 Statistical
R15 Historical
R16 Trace Back
R17 Causal Covering
RIS Prediction
R19 Set Cover
R20 Intersection
R21 Subset Minimality
R22 Cardinality Minimality
R23 Constraint Suspension
R24 Corroboration
R25 Fault Simulation
R26 Random
R27 Smart
R28 Compiled Test
R29 Probe
R30 Manipulate
R31 Replace
R32 Interpret In Isolation
R33 Split Interpret
R34 Based On Local Costs
R35 On The Number Of Tests
R36 Based On Overall Costs
R37 Direct Measure
R38 Indicator Based

Table B.2 - Diagnosis Methods
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Node Task/Method Name Points to Node Task/Method Name
ID ID
Cl Diagnosis RI Prime Diagnostic
C2 Symptom Detection R2, R3, R4 Compare, Classify,

User
C3 Hypothesis Generation R5, R6 Model-Based Hypothesis Generation, Compiled

C4 Hypothesis R7 Discrimination
Discrimination

C5 Generate Expectation R8, R9 Lookup, Simulate

C6 Compare RIO, RI 1, Exact, Order of Magnitude, Threshold,
R12, R13, Teleological, Statistical, Historical
R14, R15

C9 Find Contributors R16, R17, R18 Trace Back, Causal Covering, Prediction

CIO Transform to R 19, R20, Set Cover, Intersection, Subset Minimality,
Hypothesis Set R21, R22 Cardinality Minimality

Ci1 Prediction Based R23, R24, R25 Constraint Suspension, Corroboration, Fault
Filtering Simulation

C15 Select Hypothesis R26, R27 Random, Smart
C 16 Collect Data R28, R29, Compiled Test, Probe, Manipulate, Replace

R30, R31

C17 Interpret Data R32, R33, R5 Interpret in Isolation, Split Interpret, Model-
Based Hypothesis Generation

C38 Estimate the Cost of R34, R35, R36 Based on Local Costs, Based on the Number of
Testing the Hypothesis Tests, Based on Overall Costs

Set

C42 Measure R37, R38 Direct Measure, Indicator Based
RI Prime Diagnostic C2, C3, C4. Symptom Detection, Hypothesis Generation,

Hypothesis Generation.

R2 Compare C5, C6 Generate Expectation, Compare
R3 Classify C7 Classify
R4 User C8 Ask User
R5 Model-Based C9, CIO, CI Find Contributors, Transform to Hypothesis Set,

Hypothesis Generation Prediction Based Filtering

R6 Compiled C12, C13, C14 Abstract, Associate, Probability Filter
R7 Discrimination C15, C16, C17 Select Hypothesis, Collect Data, Interpret Data
R8 Lookup Cl8 Lookup

R9 Simulate C19 Simulate

RIO Exact C20 Equal Check
Ri1 Order of Magnitude C21, C20 Determine Order of Magnitude, Equal Check

R12 Threshold C22, C23 Determine Ratio, Check Against Threshold
R13 Teleological C24, C20 Teleological Abstract, Equal Check
R14 Statistical C25 Statistical Compare
R15 Historical C26 Historical Compare

Table B.3 - Task Structure Links
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R 16 Trace Back C27 Find Upstream
R 17 Causal Covering C28 Causal Covering
R18 Prediction C 19 Simulate
R19 Set Cover C29 Set Cover
R20 Intersection C30 Intersect
R21 Subset Minimality C31 Subset Minimality Cover
R22 Cardinality Minimality C32 Cardinality Minimality Cover
R23 Constraint Suspension C33, C34, Select Random, Suspend Constraint, Simulate,

C19, C35, C36 Check Consistency, Delete

R24 Corroboration C33, C 19, C6, Select Random, Simulate, Compare, Delete
C36

R25 Fault Simulation C33, C37, Select Random, Select Fault Model, Simulate,
C19, C6, C36 Compare, Delete

R26 Random C33 Select Random
R27 Smart C38, C39, C40 Estimate the Cost of Testing the Hypothesis Set,

Order Hypothesis Set, Select First
R28 Compiled Test C41 Compiled Test
R29 Probe C42, C5, C6 Measure, Generate Expectation, Compare
R30 Manipulate C43, C19, Deduce Input Vector, Simulate, Obtain, Compare

C46, C6
R31 Replace C44, C5, C6 Replace Hypothesis, Generate Expectation,

Compare
R32 Interpret in Isolation C36 Delete
R33 Split Interpret C45 Split Hypothesis Set
R34 Based on Local Costs C47 Estimate Local Costs
R35 Based on the Number C48 Estimate Number of Tests

of Tests
R36 Based on Overall Costs C49 Estimate Overall Costs
R37 Direct Measure C46 Obtain

Table B.3 - Task Structure Links (Continued)
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APPENDIX C. Modified IDEF-0 Task Structure Analysis

This appendix contains the modified IDEF-0 model for the diagnosis task

structure (see Appendix B) used in GTS. IDEF-0 is an industrial engineering approach to

modeling processes. Starting at the highest level functions for a process, an IDEF-0

model decomposes a process into the lower level functions and sub-functions that realize

it. For each function, the IDEF-0 model identifies the inputs, outputs, controls and

mechanisms which make the function operate. Applied to the diagnosis task structure,

for each task or method, the modified IDEF-0 model identifies the task's or method's

input, output, and knowledge requirements. Applying the model consecutively up the

task structure collects the input, output, and knowledge requirements of lower levels into

upper levels. The input, output, and knowledge requirements for a task are the collection

of the input, output, and knowledge requirements of the tasks and methods organized

below it. The requirements for the overall diagnosis process is then the collection of

input, output, and knowledge requirements of the tasks and methods contained in the

entire task structure. The knowledge requirements obtained from the IDEF-0 modeling

analysis are what are placed in the sponsor for each diagnosis problem solving method

(Chapter 4, section 2.2.3). Furthermore, the input and output requirements serve as a

basis for specifying the sequencing knowledge needed when the control section decides

what problem solving method to choose (Chapter 4, section 2.3, Chapter 5, section 3).

This is so because the IDEF-0 models show the data flow interconnections between the

problem solving methods. The IDEF-0 model is developed by traversing the task

structure from top to bottom and from left to right. Therefore, the first diagram is for the

Symptom Detection task, then all the tasks and methods organized under it, then the tasks

and methods under the Hypothesis Generation task are modeled, and finally the same is

done for the Hypothesis Discrimination task.
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