Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1995

Objectism 3.0: A Software Architecture for the Development of
Portable Visual Simulation Applications

Shawn M. Hannan

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Software Engineering Commons

Recommended Citation

Hannan, Shawn M., "Objectism 3.0: A Software Architecture for the Development of Portable Visual
Simulation Applications" (1995). Theses and Dissertations. 6138.
https://scholar.afit.edu/etd/6138

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F6138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6138?utm_source=scholar.afit.edu%2Fetd%2F6138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/95D-05

OBJECTSIM 3.0: A
SOFTWARE ARCHITECTURE FOR
THE DEVELOPMENT OF PORTABLE
VISUAL SIMULATION APPLICATIONS
THESIS

Shawn Michael Hannan
Captain, USAF

AFIT/GCS/ENG/95D-05

Approved for public release, distribution unlimited

19960402 155

AFIT/GCS/ENG/95D-05

OBJECTSIM 3.0: A
SOFTWARE ARCHITECTURE FOR
THE DEVELOPMENT OF PORTABLE
VISUAL SIMULATION APPLICATIONS

THESIS

Presented to the Faculty of the School of Engineering of the

Air Force Institute of Technology
Air University

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Systems

with
Emphasis in Software Engineering

Shawn Michael Hannan
Captain, USAF

December, 1995

Approved for public release; distribution unlimited

Acknowledgments

A thesis effort can at times be a frustrating experience. Thankfully, I had mentors to keep
fueling the fire when it got too low, and friends to throw water on the fire when it got too
high. Ineeded both. Among the mentors, of course, was my thesis advisor, Major Mark
Kanko. I thank him for all of his time and energy, but most particularly for bolstering my

confidence when it was lacking, and his invariably positive outlook on the thesis effort.

Other mentors included LtCol (ret.) Patricia Lawlis, the originator of the software
architecture research group, and Dr. Thomas Hartrum, my first software engineering
mentor at AFIT. Both were also members of my thesis committee. I thank Colonel
Lawlis for her guidance and continued devotion to our efforts, despite her retirement from
the Air Force and subsequent relocation to Arizona. And I appreciate Dr. Hartrum’s
willingness to continue to try to teach me things, even though I never seem to learn

anything.

I also want to thank the friends who helped me maintain my sanity during the latter half of
the AFIT experience: Chuck Beem, who taught me that no matter how hard you work,
there’s always someone who works harder; Vince Hibdon, who taught me that no matter
how little you do, you could always do a little less; and Don Hill, who taught me that no
matter how busy you are, you always have time to re-accomplish something you’ve done
1000 times before.

Shawn M. Hannan

ii

Table of Contents

ACKNOWLEDGMENTS ii
LIST OF FIGURES vi
LIST OF TABLES vii
ABSTRACT viii
1. INTRODUCTION 1
L1 OVERVIEW ..cccuiiuiieiseetsceeestsitesenssessesssaresssesseessssessesseessesaesssssessssssssassassssessssnersssasesesstessasssasesssessensassasas 1
1.2 BACKGROUND.....c.cutiitiecueeneirareesasaniesssessserssasssassressssssassssssseesasessesssesssssassassssessasessesssasstesssasssssssessnssanens 1
1.3 RESEARCH MOTIVATIONcccceeruersuensuesarersuessuesseessesssesssssosesssssssesssessasssesssesssssssesssessnesstessssssasssesssasasasns 3
1.4 SCOPE OF RESEARCHuceueruermsunrecsnsssssessasessessssssntastesessaseasasssssssassessosssssossssestessasassasssssssssseneassssessessasass 4
1.5 RESEARCH APPROACH....ccceervvenseesssissecsssossosssesssesssesssesssesssssssesssssssassssossesseessessssossessssossesssesssesssessassssens 4
1.6 RESEARCH ENVIRONMENTccecititivtrnnrisuesessssrsssesessessesessassessenssssssassassstsssessssessessessssentassassssassessassasens 6
1.6.1 The IRIS GTapRiCS LIDTATYcouvevrrveveererernireennisessesessssssssesssssesssssssosssssstssssssssessessessesssssssensssessans 6
1.6.2 The IRIS Performer LIDIATYcccereveeveriessessissesassssascesssssssssssssssessssessessesssssnsessssssssesessessessssensons 7
1.7 DOCUMENT OVERVIEWcoiiierererissecsssessessssesssisssesassssssssesssesssessssssssssssessassassssssssesssasssessassssssasassassnnans 8
2. SUMMARY OF CURRENT KNOWLEDGE 9
2.1 OVERVIEW....coiinimmiiinisseisiesssnssstsssssesssesesssesssssesstassessesssssssssssssssssessessssssensesssssessassssssesssssasssenssssessasssenes 9
2.2 OBJECT-ORIENTED CONCEPTS0vcctuviseeirseressurerssessseeessssessssesssesessesessessesesssssassssssssstsssssessssssesssssssssssssas 9
2.2.1 Rumbaugh’s Object MOAEling NOGHON............c.ceeeeeceereererrererresesesssssssssssssssesssssssossssssssssessassssens 9
2.2.1.1 CSSES ..ucuerirrierasssestansnssnssessssesssessessessessssersessessessessessasssnsssasstossosesasesessassessossessesssssssasesseseessesessersnsnss 10
2.2.1.2 ASSOCIALIONSeeuerrrrrareaerienesessraeesesiesessnseseesessasersereasessssessssessssssessessssesessssssessosesnssensensess ssssssensesessssenns 10
2.2.1.3 Aggregation and GeneraliZAtiONcecevcerereererseressirerersessesessesessesessessorsssesensassssssessessssessessssssnesssssssses 11

2.2. 1.4 SUIMIMNALY covveriririiniiiaiaisissssetsissesestsnsecetseststsssssesssasesssssesssssesesesssassssnasssanssssssesesesassnssessssnsassesesesessses 13
2.2.2 Object-Oriented Programming With AdG 95ueveeeeeesissessesssensisscssssssssssssessssssssssssssssasssenes 14
2.3 STANDARD GRAPHICS LIBRARIES........ccceeuererretrniarensenessessessesssssssessssessossessssssnesssssesessessessssessessssensansones 17
23T PHIGS ...uooviiieiiiteesesiesesissssssts s ssssssesessesessssste s s sessssensasesesssassssasessasessssesoss susssossnsasssseses 17
2.3 2 OPENGLoeeoeeeeeeieerirecrectiereesessiesvestssssosaesbossesssbssbesstsnesssssbtastostssssssensansssssastensesstonssnssssasnsessn 18
2.3.3 OPERINVENIOT «....uveeeeeeirceriiireneessressesreessesaensssessessssssisesssssssessessesasssssssssasssssensssassessssnesssssensnn 19
2.3.4 SUIIMATY c.oc.tvotevireirniecirsiestesteteetestsesse s esseesee s esaesasssessestesssassssassessesasesssstsssetesnesssnssenesnsensssnane 20
2.4 DISTRIBUTED INTERACTIVE SIMULATIONS. ...c.ceveveuetererseresersssesessereesssssessesssssssssssssssssssssessosessssossssnsoras 21
2.5 SOFTWARE ARCHITECTURES.......ccveentrterrnssesessasesassasessesensesosessesessasessseassrossosssensnssssssssssssosessssesensnses 22
2.6 OBIECTSIM....cocviuinrineiicerentnsentesesesessessesessssessssssesessssesessesetssesessssessasesessssonsssasessstosesssssssassnentsseesssnones 24
2.6.] ODJECISIM ANA DIS........cccoooiriererrreiereieierseeisnessessestssssesssssssstsssssstssessssssssssssnssssssstsssasssssessesenes 25
2.6.2 ObjectSim and Platform-INAEPEndencecuueceeeeseeiieseeeroressessssssesssssssssessssssessssessssssssenes 27
2T EASY_SIM ...uiiiirinniirisiisiiinecrseesesetstststsnssssssessassesesessssssssssisssesssonsasnsssssabosssssentsbesessnsnessssesnsssanns 27
2.7.1 TRE SimULATION CLASS vvveerereeereersseerereiresessisesesessessstssesessessssssssseesesssssssssssssssasessasessssesssessasessnsesesss 28
2.7.2 TRE PIAYEE ClASS cuveuevruresiesiriracieeneseeeeseeeereseessstosessesnessssssssssssssssssssesssssensessesessessessssensensesssns 29
2.7.3 TRE MOMEL CLASSeouoeeueerevrrrerereeresserssesissesessssnsissessssstessssssessssasessnsasesssssnsessnensssssssessssesensasenen 30
2.7. 4 TRE VIEW ClLASS.ecrvnneeaeereerrrrereriisiassssisssesssusesssssessssassssssssesessassssssasessssssssssnsssssessssessssesessensseen 30
2.7.5 TRE MOGIIEr ClASS...coveueererirrererereienisieeseeessesessesstsssessseseesesessessssssassnsnssssssessssessnsnsssenensssessesees 31
2.7.6 THE ENVIFONIMENT CLASS «..covvreererereerereereseiieeisrenesssesesscossssessssssssesessasessssssessssessessssnsessssssssessssnes 32
2.7.7 The MANAZET CLASSES ..vvvecrererraereveresreesesrisiesisesessesessessssssnssssessssassassssessesessessessassssssssssessssensesssns 32
2.7.8 EaSY_SiM GRA DIS...........ccotrieriveeneneeeserresesisissssesssisssissssssssessssssssssssssssssssesssssssesosssssnsssnsesssssasssnns 33
2.7.9 Easy_Sim and Platform-INAePENdEncecuueeecerieeeereeesssesiseesseresesesessssssssssssssssssssssssssssnes 34

iii

3. THE DEVELOPMENT OF OBJECTSIM 3.0

37

3.1 OVERVIEW....ccouiiiiiieiecinisissiisesssiesessesssssesessassessasessossessastansatessensessesenssessesesstesssssasensensessssessansenssssases 37
3.2 WORK WITH A STANDARD LIBRARYccevuinieieaenienrenienentensnnieessessessesssssssssssosssssssorsssessessessessessesssssonss 37
3.3 ADAPT A COMMERCIAL ARCHITECTUREceeererseresrsesersessersescrasrsesassssssssessessonsesssssnsensossasasssssesssssassosans 39
3301 CliPuanneieeeeisctirerecseesessecssesseesessessseeseeseestessessessssssestessssbesssesssansenssssessessesasesserstsonaessessessesssnaenes 39
3.3.1.1 CHP CIASSES .cuvrururirererisrncseniiiecsisisieesissssassssisesesssescsssasassssssenesssssssestatsassetssnentacntusstesssssssessssssansonsanss 43
3.3.1.2 The Clip ATCHIECIUIR.covvviriiiiriierireritsiteriseinseessestssecssbe et stesnssassassenssasseneaseassssesssssrsnsssnesssssases 45
3.3.1.3 Platform-INAEPENAENCE. ...cviutreererrrcresiirieesisseeeestesiesessessserssessstsssssssessessssessssessessessessssessssssessensesssssssanans 45
3.3.1.4 ClP ANA Ad@..uiriiiriicrrrereniiiisesesnseeeeniessessessessesnsassassssessessessasssesassssssesessesesassessensenssassessssssssesasnarassens 46
332 VEBA ittt ettt s st e e skt e e e e s aa e r e R e e e s aRa e ertanaenas 47
3.3.2.1 VB ClaSSES..0rueeriruirriercerieneecniraestestrseestesseseesseensaseassssessassesssessessessesaesstssessassesssessentessessnsssessaaorasssannass 49
KT V. 1 e e S O 49
3.3.2.3 Platform-INAePendence.o vemeurerrerccrarrenreesctesnreesesesesessesesssasesssuessessseressssssstasesssesessessssenssassasssnas 50

3.4 ADAPT EASY_SIM..iiiiiirieirrerrintrsrenieseessassesesssesessassesssssasssessesssssssssessssssessasssssssssesssessesssessessessesses 51
3.4.1 DiStriDUIEA SIMULALIONceeeevereecrecreeeraseereensessessresessssssesssessessessessssssessessssssessssssessessssmssensesses 51
3.4.2 PlatfOrm-INAEPENAENCEcc..uvevueeeeereeeiirersirrecreresssesesssessssesssseesssessasssssssessssesssssasssssessssssssessonnes 53
3.4.3 ODJECISIM 3.0 ..cunvevrererrcrecirensreerrissseesaesssesseessesossssssssssessesssnesssssssessasesssssssasssssssssssessnssnsssassssans 54
3.4.3.1 LOW-LEVEl SEIVICES...ecrvrerrtirirerrerrierieeereresesseestesssesssessssssesssnestessasssassasssssssstossasssessassssssssessssnsssnsonsen 55
3.4.3.2 Application Programming INTEIfaceccevivrrrererreccecrrereresnessssresessnsssessessresesssssseserassssssarssssssens .57
3.4.3.3 ApPPLiCAtioN FIAMEWOTK...cceetruirueeirueeecririennsreesiessessasessssesesesssassasssesssssssessesessessssessesssnssensensenssssssssessons 66

4. SPECIFICATION AND IMPLEMENTATION IN ADA 95 71
4.1 OVERVIEW.....ccciuieeeruererresrsrresssessssnesssnsossssessseesssssssstassssssssssessssssossssesssssssssssnssesssssssnesssessssssssssssnsssnsesne 71
4.2 A SIMPLE PERFORMER PROGRAMccuoiueciiriiieninriniisioreesenteseessenssessessessessssessessessessssessensessonsessssensoneas 7
4.3 LOW-LEVEL SERVICESccouseristsesseusesesesersesesseserssssssssessssessssesessasssessessstssssssssssossssessnsssssssesnssssssssesens 74
4.4 APPLICATION PROGRAMMING INTERFACEcoccevieverueririensensesnesessessessessesessesesssssssessossessensonsossessssessonses 77
4.5 THE APPLICATION FRAMEWORKcoivvivvrrererserenreenmrirssssessesesessesensssessasesassessssossanssessesssssssssosessnssnsntane 83
4.5.1 TILOTING tRE FTAMEWOTK....ccueereneeeriveveririeeesineseessssessesessessessessesessessessssessassossessassesssssssessossssossens 83
4.5.2 FTaMEWOTK SUMITATYcovvverivrriirersisssrssssssessssessssesssssssstsssssossssessasssensasssessnsossssssssssassssosons 90

5. RESULTS AND COMPARISONS 91
S L OVERVIEW.....cutietirteiiisieientesreeseeeessesesssessessesasessossassssstsnsessesssenssssessesassssensessasssssnssnnessessssnsessensassesnes 91
5.2 AN ANALYSIS OF OBJECTSIM 3.0...ccuiuiniiiintnieietnienserrnesessesetissesessessssssesssssssessessossssssensessnsssonesnsesnssens 91
5.2.1 LOW-LEVEL SETVICES .oeuvvvervrsteerireeesricreereseeessssinsssssesessesssessessesesssssosseneessassosessssassssntossassosssssssenas 91
5.2.2 The API VETSUS the FTAMEWOTK.......vcveveeeeriiriereeiieeieeieseesesssssesesssessssesasssessosssssssssasssesssssessesessassns 93
5.2.3 A ClOSEr LOOK Gt tHE FTAMEWOTK......ccvcreeveeeeererererisiesessissessesessessssssssentassosssssssensssessonsessassessossos 95
5.2.3.1 What the FIamEWOTK DOES......cceeveirereerrrenrererireitcaseseesesessssssesssssseesssassosssessssesasessssessasssenssesesssnessens 95
5.2.3.2 What the Framework D0es NOE DO.....cceuireerrerirneererieieisescesnessassesssssssssssessssesssssesesssnsaseasassssssssssssens 96

5.3 OBJECTSIM 3.0 VERSUS EASY_SIM...ccevtevirriniininiinrinriniieerisseseeresssessessesnssssssssessessonsessessessessssessessssens 97
5.3.1 THE SCENE CLASS cevevrrvereererreiraereiresrereneesisessssesnssessesssssessssessentsssssssssssensensessessessesenssesesssssessessesses 98
5.3.2 ENHLY VEPSUS PLAYETeeeeeeiirisrersesisienieneesssessssesessesssssssssssossstsssssssssesssssossssessssesssessessssssesses 99
5.3.3 Entities, PIAYers Nd MOAEIS..........ucueeeveeeririreieiniseesesesisiesesssnsseseseessssssssessasesssssssssansasns 101
S5.3: 4 MUILPLE VIEWS wovuvvrniiniieiieerecsieicvsisesessssiessesesesssssssssssssssssesessstssasossatasossssesassnsasessssssasnsns 102
5.3.5 FOlloWIng And TrACKINGuccouvueverereererereeeeesiieesestesssesesatsasssesssesssssssssessesesessessesessssssessnsens 103
5.3.6 USEE INDUL ..ottt st et te s ese bbb ss st ssestsb st e eeseseenssnstesessesensasesessenssssns 103
5.3.7 ENVIFONMENLcuuoerervuirrerrirennserisesessesssseessssestssessstssesessesssessssesssssassssssessesssssssssessssssssessesssses 104
5.3.8 Static versus DYNAMIC ENHESc.coccvvceerreeerereeeesiveesisesssessesesseessssesssesssessesssssssssssessensssssesens 104
5.3.9 TRE DiVISION OF LADOTcoveeueeereerreeencrersrersreiisensesssessstseesssesesssassssssssssssssnsesssssssssssessessssanns 105
S.3.10 SUMMATY c.vvvvinivininieerineetesevestsisstsssstebsssessse e ss et s ssests et asestos et sessesessssessssssessesssessnsesessesens 106
6. RECOMMENDATIONS FOR FUTURE STUDY 109
6.1 OVERVIEW......ocuitmnnsiuisiscinciaeseensastssssasssesssssssessssss s sossssssssssssssassesnsessssnsnssssssnssssssasnsssssssssesssssen 109
6.2 RECOMMENDATIONS ...ccvututrtennnesnsensentesssesesstssesessssmessessessssssssnsnssssssssssssssessessesssssessssssssssssnssesmens 109
6.2.1 TeCRANICAL IMPIOVEMENLSceveveeeeeererererreersresstssesetstseee s esesessssssssssssssssssssassssessassssesesensesesens 109

6.2.1.1 REMOVE RENGCTRL.....ccoevrrrerirrenrnisrereereeserenni e issesessssessacsssesssessssesssnasascssssssssssssssssenensesessssssnsnsenenes 109

6.2.1.2 Change the Scene/Entity DiviSion 0f LaDOT........coceerninnrmnieciusrsiencsssessssssssesssssenssssssessesssssnessssssssasssssaes 110

6.2.1.3 New Kinds of VIEWS......ccccevvrevennreneresesssernsnnnncssessssseranses

6.2.1.4 Static ENttiescccoveerecrereerenrerensenns

6.2.1.5 Multiple Environments

6.2.2 Strategic RECOMMENAAHIONScucevvvvrereerereerererrerisisesorsssssssssssesosssssssnsessssssssesssessensssssssssssssans 112

6.2.2.1 Address Distributed SIMULAION.covurveveeirienreriririesierecreesesessessrssstsseesessssssesesssssssassssssssessssssesesssssnesses 112

6.2.2.2 Convert to OpenGL...................

6.2.2.3 Upgrade Low-Level Services
6.3 FINAL REMARKScocvoiiiiiiiniiiniceenesesenssssesssesesesnsssesssassssssssssassssesesessnssesessssssesesesesssessssnsssssases
APPENDIX A y 115
APPENDIX B 124
APPENDIX C 137
BIBLIOGRAPHY 143
VITA 146

FIGURE 1.
FIGURE 2.
HFIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.
FIGURE 32.
FIGURE 33.
FIGURE 34.
FIGURE 35.
FIGURE 36.
FIGURE 37.
FIGURE 38.
FIGURE 39.
FIGURE 40.
FIGURE 41.
FIGURE 42.
FIGURE 43.
FIGURE 44,
FIGURE 45.
FIGURE 46.
FiGURE 47.
FIGURE 48.
FIGURE 49.

List of Figures

PERSON CLASS [RUMO1, 26].....oicirieiriicierisiecrecaeeressesseessssessssnessensssssssessssssessesssesssonsesasnnes 10
WORKS FOR ASSOCIATION [RUMOY, 34] ...cevineireceerintirisrisresneseeeseestesseessessessasssensssssesusssossesnenn 10
ADIJUSTED WORKS FOR ASSOCIATION.....veciteestesreressesseesaesssessassssesssossesssesssesarsssssssssesssessssessseses 11
AGGREGATION [RUMOL, 38]oiirieiiiireecireccireesitecesreseseeeesstessssesssessessessstesesssssssaessnessnssees 11
GENERALIZATION [RUMO1, 62] ...cecvivrerrerrenireeniensensesnenessessssssessessssssosssossessssssonesssessessssssasans 12
AGGREGATION AND GENERALIZATION [RUMO91, 59]...ccveiieriiniireenesninsesssesressessesssssssossesssssssnes 13
AUTOMOBILE CLASS HIERARCHY ...veeveereereeresiasseesuersessessanssessessesssossessssssessossasssassessessssssessssssones 14
AUTOMOBILE CLASS IN ADA 95.....oieieiieieriecrrereerrstssssesseessessossessessssessssesssssstesesssessesssosasnnsenes 15
CAR SUBCLASS OF AUTOMOBILE IN ADA 95vcovvvieenriiricreesreessnessseseessseseessssessssessosssssessessassnnn 16
TEST_ENGINE PROCEDURE MANTPULATES A CAR OBJECT....cccvouiseeeeersersssecsesssorssssssessssessessessenes 17
OBJECTSIM ARCHITECTUREc.vevueeetinsinresisnesesessssssssessonsesessessessessensosessessssssssssesssssesssesasesss 24
NETWORKING CLASSES IN OBJECTSIM.....c.veuvivrerieemerissesesessessessesessessessassssnssssssensonsssensensassns 26
EASY_SIM ARCHITECTURE [KAYO4, 79]...cccviirierririiiirriireeseoseenseesesssessassssssssessssssmssssessesnonsesnes 28
EASY_SIM'S SIMULATION CLASS [KAYO4, 771 cevvtieeeiieereerisreseeessssesssssesiessssessassessossesesesanns 29
EASY_SIM'S PLAYER CLASS [KAYD4, 65]vvevieieririrreeisresscnssensesssessosessssesseseosssssessssssessesnes 29
EASY_SIM'S MODEL CLASS [KAYO4, 60]....coieeeeeiieicrenericeneereeseessssisasonsssessessssensessessesessenns 30
EASY_SIM'S VIEW CLASS [KAYO4, 69]....ccvoirireeiirinnereresenseeessssissessnsssessssssssssssesssssessesessessens 31
EASY_SIM'S MODIFIER CLASS [KAYO4, 707ooievieeiriieerestesesrentecesssestescosssssssessesssseesessenssnsans 31
EASY_SIM'S ENVIRONMENT CLASS [KAY94, 62]....cceerevierieeeririneriesesesssseerseseesessenssesssssesassens 32
EASY_SIM'S MANAGER CLASSES [KAYO4, 72]..ccuieriiriiirenersenencsseeesesossessesesssssssssessssssessessssnes 33
AFIT LAB SOFTWARE LAYERING DIAGRAM.....00eveitiesesneenressesseessssssssesssssssssssssssesssesseesasssesssenes 34
EASY_SIM FRAMEWORK'S RELIANCE ON PERFORMERcucovereeeereaenseseesesssseseesessssesessesesessesenes 36
A POSSIBLE APPROACHcoueeventiireesistestetieseesesessossessssensoseosessonsestosssssssntonsoneossnsessesssssssnes 37
A VISTAWORKS SIMULATION ON AN SGI PLATFORMcovieeueirrrecerereoresessssssesessessssessassesenes 42
KEY CLIP CLASSES AND RELATIONSHIPS IN A VISTAWORKS SIMULATIONcuveuveeereesesseensnsnenes 43
CLIP CLASS HIERARCHY [IDDO4, 3-4] c..ooueiririreitiseeeeeeeresresessessessessesssssssasssssssessasasssssesssnsenes 44
POTENTIAL ADA BINDINGS TO CLIP.....c.voiventereireerensiosesessseeseessessessasnsessssnsesmesessnsessessessessssnns 46
REPLACE THE SIM PROCESS WITH ADA CODEeciuierinuisesssssssessereessesessessessessesssssssssssssssssenes 46
A POSSIBLE NEW CLIP IMPLEMENTATIONuceuvierinuinsieeenseessessessesssessensessessaesesssessesssessesasesnessen 47
VEGA’S DEVELOPER’S CONFIGURATION [VPGO4,4]ouiviniirinieeeeeseeseeieseeesesesssesessesssssssesas 48
VEGA’S BASIC SYSTEM CONFIGURATION........cevvverieseerenrenesssssessessessassessessssesssssessasessessessssenses 48
CLASS RELATIONSHIPS IN VEGA ..v.uvoviuveverieesesiisesctssessssesseeseesssessessssssessssssessassasesenssssasasessass 50
AN OBJECTSIM APPLICATION WORKS WITH AN OBJECT MANAGER PROCESS <...veuvvevereeseresessonns 52
A POSSIBLE 3-PROCESS MODEL FOR DISTRIBUTED SIMULATION ...vsveveveveveeeresessersssesessesessrssons 52
SOFTWARE LAYERING WITH EASY_SIM VS. OBIECTSIM 3.0...cveveiiteirereneeseressereseesessesessssssens 55
OBJIECTSIM’S OBJECT-ORIENTED APL......ucuoeieieiiieeeeneeercereesesesesessessssesessssessessssssenssssssssssnns 59
THE OBJECTSIM 3.0 API CLASS DEPENDENCY HIERARCHYuvveveevereerssseesessesessasessssssssesssssns 60
THE OBJECTSIM 3.0 APL SCENE CLASS.....uvuviuieeeeeeeeeeesessesnssssssssessssessssssessssessssssssssssssssssssens 61
THE OBJECTSIM 3.0 API ORIENTABLE ENTITY CLASS ..cevevttrueerteeresseseeeseresessessessessssssssssssssses 63
THE OBJECTSIM 3.0 API 3D MODEL CLASS....cueueveuiierereeeereeneresessssessssesessssessssessssssesssrssssnns 63
THE OBJECTSIM 3.0 API ENVIRONMENT CLASS «.vuvivvreeetreereressssessssssssessssssesessssasesssssesssssses 64
THE OBJECTSIM 3.0 API VIEW CLASS ..viviviiireeeeeeeeesseeessesesessessassssssesessssesssssssssesesssssns 65
THE OBJECTSIM 3.0 API RENDERER OBJECTocuvuiuivimeeeseessessssessessssessssssssssssesssesssssssssens 66
THE API BECOMES AN ARCHITECTURE?......cvevevstiseseeeeeeeeesessesssssessssssssnesesesssessosessssssesssssnsens 68
A SIMPLE PERFORMER PROGRAMc.covitiuitiniiesenseeseeneesesensssssssasessssssssssesessssssssssssssssssssssssens 72
SIMPLE2, AN OBJECTSIM LOW-LEVEL SERVICES VERSION OF SIMPLE........c00ovevevoverersrsssesesseses. 75
THE OBJECTSIM 3.0 LOW-LEVEL SERVICES WINDOWS PACKAGE «..evvevevevevereverereeersessssseessenens 77
OBJECTSIM APPLICATIONS WILL PRIMARILY WORK THROUGH THE API «..veeeeeereeeeseeeeseesees e 78
A PORTION OF THE OBJECTSIM API'S VIEW CLASS .veveveeereesresesresesesessssosesessssssssssssesessesens 79

vi

FIGURE 50. SIMPLER, AN OBJECTSIM 3.0 API VERSION OF SIMPLE....cccceeveuesrersseesessesersssessesessasssessesssessenes 81
FIGURE 51. THE BOX SUBCLASS IS DERIVED FROM THE FRAMEWORK’S 3D CLASS...veeetrueeeereseemieeeeesnssnnns 84
FIGURE 52. THE ROTATING_VIEW SUBCLASS IS DERIVED FROM THE FRAMEWORK'’S VIEW CLASS....vveuven... 85
FIGURE 53. THE SIMPLE_SCENE SUBCLASS IS DERIVED FROM THE FRAMEWORK’S SCENE CLASS.vvvuoueee. 86
FIGURE 54. SIMPLEST, THE FRAMEWORK VERSION OF THE SIMPLE PROGRAMvvvevveveeeressessseesesessesesonennes 88
FIGURE 55. SIMPLESTIS A SPECIALIZED VERSION OF THE APPLICATION FRAMEWORK.......coveoveeeeeesrevesrensens 89
FIGURE 56. SIMPLEST_DRIVER EXECUTES THE SIMULATIONccuvviueeeesesensereresseeseressessessssessssesensensssssanes 89
FIGURE 57. THE OBJECTSIM 3.0 FRAMEWORK’S ENTITY HIERARCHY....eveevereerererereesesessensesesssssessssesseses 100
FIGURE 58. POSSIBLE EXPANSION OF ENTITY HIERARCHYcvvvertrverevsrareonssessnssessensssnsesesssssnsesensessssnns 100
FIGURE 59. THE SCENE CLASS AND ITS COMPONENTS.....cseeeeetetseessesessessssessessesssssssssssssessessessessssessessssene 107
List of Tables
TABLE 1. DEVELOPMENT IMPROVEMENTS WITH OBJECTSIM [SNY03, 73]ueeeveeererecsreesersessesssesesssesssessssesens 2
TABLE2. OBIECTSIM APPLICATION PERFORMER DEPENDENCIES.......cereeseresuessessessessesssssessessssessessonsssnsses 54

vii

AFIT/GCS/ENG/95D-05

Abstract

A visual simulation software architecture is a reusable design for visual simulation
applications. This thesis effort was the third stage in an ongoing refinement of such an
architecture, named ObjectSim. The primary goals of this stage were to improve the
architecture by eliminating its dependence on two platform-specific graphics libraries
(named GL and Performer, from Silicon Graphics, Inc.), and to examine the potential for

expanding the architecture to accomodate distributed simulations.

The effort resulted in a new version of the architecture which allows the development of
visual simulation applications which take full advantage of the aforementioned libraries
without calling those libraries directly. This capability substantially improves the potential

portability of future applications.

ObjectSim also has other enhancements not found in its predecessors, but still does not

accommodate distributed simulations. Insights into addressing the distributed simulation

issue are, however, included in this thesis.

viii

OBJECTSIM 3.0: A
SOFTWARE ARCHITECTURE FOR
THE DEVELOPMENT OF PORTABLE
VISUAL SIMULATION APPLICATIONS

1. Introduction

1.1 Overview

This thesis effort was a continuation of previous research in the area of visual simulation
software architectures. A visual simulation software architecture is a reusable design for
visual simulation applications. An implementation of such a design in a particular
programming language is termed an application framework. The motivation for
developing an architecture and associated application frameworks is increased productivity
for application programmers. By offering these programmers a basic design as a starting
point, a software architecture allows the developers to avoid starting from scratch with
each new simulation. This document details the latest stages of an ongoing refinement of

a visual simulation software architecture named ObjectSim.

1.2 Background

Students in the Graphics Laboratory (Lab) at the Air Force Institute of Technology
(AFIT) have been conducting research in the field of distributed visual simulation for
several years. This research has led to the development of a number of visual simulation

applications, most notably a virtual cockpit [Dia94], a space modeler [Van94], a

commander’s situational battle bridge [Roh94], and a debriefing tool for the Air Force’s

Red Flag excercise [For94].

In 1992, upon recognizing the many commonalities in these applications, a senior faculty

member (LtCol Patricia Lawlis) suggested a common structure could be designed as the

foundation for the various programs. The end result of this suggestion was a software

architecture named ObjectSim, developed by Capt Mark Snyder [Sny93]. ObjectSim was

the first real step taken by the Lab to incorporate software reuse into the graphics

research. The four applications mentioned above were developed in conjunction with the

new architecture, and all four continue to be based around the ObjectSim framework for

visual simulations. Table 1 lists the software development problems experienced in the Lab

before ObjectSim, as well as the noted improvements attributed to the reusable software

architecture.

Problem

Improvement

No one responsible for standard
components

ObjectSim provides a toolbox of
components designed to fit together

No one responsible for evaluating and
integrating new outside code

ObjectSim developer performed analysis in
this area

Existing components hard to understand

Students had to understand ObjectSim
approach, but less detail than before

No standard library locations, CASE, or
CM to support large developments

ObjectSim captures a lot into one library,
but does not solve CM problem

No design methodology adopted

ObjectSim facilitated a reasonable object-
oriented approach to simulation design

Students don’t have time to become well
grounded in languages or design methods

ObjectSim provides design, reduces the
amount of code necessary for success

Simulation projects didn’t have stable
requirements

ObjectSim allowed quicker maintenance
turnarounds; simulation design stable

Table 1. Development Improvements with ObjectSim [Sny93, 73]

An application framework based on ObjectSim, written in C++, was completed in the fall
of 1993. LtCol Lawlis then initiated a research effort to follow up on the success of
ObjectSim. The goals of this research, conducted by Capt Jordan Kayloe, were to
improve the architecture of ObjectSim and simultaneously explore an application
framework in the Ada programming language [Kay94]. The culmination of this second
effort was an architecture called Easy Sim, and an implementation of that architecture in
Ada 95. Easy_Sim was deemed a success, though there were several acknowledged

shortcomings [Kay94, 137].

1.3 Research Motivation

The motivation for this research stemmed from two important issues unresolved by the
ObjectSim and Easy_Sim efforts. The first concerned participation in distributed
simulations. A distributed simulation is the aggregate of any number of simulations which
are interacting with each other via a network. The ObjectSim and Easy_Sim architectures

do not include components to assist applications in participating in such simulations.

The second issue concerned the tight coupling between the ObjectSim and Easy_Sim
application frameworks and the underlying graphics software used in the Lab. This
coupling leads to platform-dependent simulation applications which are difficult to port to

other systems.

An additional driving force behind this effort was a desire to demonstrate the utility of Ada

95 in the realm of visual simulation. Although Easy_Sim proved Ada 95 a legitimate

option for implementing visual simulations, the C++ language still enjoys immense
popularity in the graphics community, including the AFIT Lab. Ada continues to wage an

uphill battle to establish itself as an accepted implementation language in this community.

1.4 Scope of Research
There were two main goals of this research effort. The first was to improve upon the
predecessor architectures, ObjectSim and Easy_Sim. The second was to continue to

explore the Ada 95 programming language as a tool for visual simulations.

In particular, with respect to the first goal, one objective was to design a visual simulation
software architecture which could yield platform-independent application frameworks.
Applications developed using the earlier frameworks are highly reliant on platform-specific
software libraries, and the intention was to ensure the next generation of frameworks
allowed the development of more portable applications. Furthermore, since ever-
increasing Department of Defense (DoD) interest in distributed simulations is anticipated,
a second objective was that the architecture specifically support these kinds of

applications.

1.5 Research Approach

Since this effort was essentially an attempt to improve upon the successes of two earlier
architectures, the first step was to examine those two predecessors. Because Easy_Sim
was already an improvement over the original ObjectSim architecture, analysis was
predominantly focused on the newer design. The primary objective during the examination

of Easy_Sim was to locate framework dependencies on platform-specific software.

A natural second step was to seek out commercial architectures for comparison. It
seemed quite likely that vendors would be developing products similar to ObjectSim and
Easy_Sim, and that these products would offer insights into how to meet the objectives

stated in the previous section.

Thirdly, key faculty members in the Lab were consulted for input. These faculty members
are “customers” of the architecture in the sense that they oversee the development of
visual simulations at AFIT. Current and previous Lab developers were also contacted for

suggestions.

Given an analysis of the predecessor architectures, an examination of comparable
commercial products, and the recommendations of knowledgeable Lab personnel, the final
step was to develop and execute a plan for delivery of a third-generation visual simulation

software architecture.

For the sake of consistency, it was decided to return to the original ObjectSim designation

for this and future efforts.

1.6 Research Environment

Graphics work in the AFIT Lab is conducted on a network of Silicon Graphics, Inc. (SGI)
workstations. The most powerful machines in current use are two Onyx RealityEngines.
One of these is running version 5.2 of the IRIX operating system, while the other has been
upgraded to version 5.3. In the following two subsections, brief descriptions of some of

the key Silicon Graphics software used in the Lab are given.

1.6.1 The IRIS Graphics Library

The IRIS Graphics Library (GL) is a collection of low-level graphics routines which can
be incorporated into graphics applications written on SGI platforms. The library provides
simple capabilities such as drawing points, lines and polygons on-screen. It also assists

with basic animation via double-buffering. Additional GL features include:

handling of user input
coordinate transformations
hidden surface removal
lighting effects
atmospheric effects
antialiasing

surface textures

In short, GL is an excellent package for drawing, or rendering, pictures on-screen. The
added features of double-buffered animation and user input handling allow GL to be used

for such things as simple video games [McL92].

Although it is possible to use GL for the development of complex visual simulations,

newer libraries have been developed which are better suited to these types of applications,

because they allow developers to work at a higher level of abstraction. The next

subsection provides an introduction to one such library.

1.6.2 The IRIS Performer Library

In contrast to GL, the IRIS Performer Library was specifically designed to support the
development of full-scale visual simulations [Har94, xix]. By using Performer, simulation
developers can quickly construct entire scenes from previously-created models of terrain,
buildings, aircraft, etc. Performer offers a variety of routines, based on database formats
commonly used in the graphics community, to read in such models [Har94, 30].

Once a developer has used Performer to construct a visual scene, he or she can
subsequently use Performer to manage the simulated motion within that scene. With
simple calls to the Performer library, the developer easily adjusts the positions of entities
and viewpoints within the scene. Performer then handles rendering the changes on-screen

[Har94, 47].

Because simulations can be quite intensive in terms of computation, SGI has designed
special hardware to support them. In particular, the previously-mentioned Onyx
RealityEngines are highly-capable simulation workstations. The IRIS Performer library
was developed with these workstations in mind, and the combination of special-purpose
hardware and highly-tuned software leads to very effective simulations [Sch94, 1-2]. The
drawback is that simulations written using SGI hardware and Performer software are not

easily moved to other simulation platforms. There is also concern that reliance on specific

versions of hardware and software will impede efforts to transition the software to newer

and better platforms when they become available, even if those platforms come from SGI.

1.7 Document Overview

The remainder of this document is divided into five chapters. Chapter 2, “Summary of
Current Knowledge,” covers a variety of information which is important background for
readers of this thesis. Chapter 3, “The Development of ObjectSim 3.0,” details the design
of the latest architecture, including the routes which were considered but not chosen, and
concludes with a discussion of ObjectSim’s new design. Chapter 4, “Specification and
Implementation in Ada 95,” describes the translation of the ObjectSim architecture into an
Ada application framework. Chapter 5, “Results and Comparisons,” analyzes ObjectSim
3.0, and examines the advantages and disadvantages of the new architecture versus its
predecessor. Finally, Chapter 6, “Recommendations for Future Study,” lists the lessons
learned during the course of this effort, as well as suggestions for continued work in this

area.

2. Summary of Current Knowledge

2.1 Overview

The fundamental background information covered in this chapter is divided into six
sections. First, in section 2.2, is a discussion of object-oriented topics, including
introductions to Rumbaugh’s Object Modeling Notation and the Ada 95 programming
language. Next, section 2.3 briefly describes the features of three standard graphics
libraries. Section 2.4 introduces the Distributed Interactive Simulation protocol for
distributed visual simulations, and section 2.5 offers a short summary of Garlan and
Shaw’s “An Introduction to Software Architecture [Gar93).” Lastly, the final two
sections of chapter 2 describe the ObjectSim and Easy_Sim architectures developed at

AFIT.

2.2 Object-Oriented Concepts

Both ObjectSim and Easy_Sim were designed using object-oriented concepts. For an
introduction to these concepts, see [Boo91] or [Rum91]. The next two subsections
provide an overview of the object-oriented analysis and design notation generally used at

AFIT, as well as an introduction to object-oriented programming with Ada 95.

2.2.1 Rumbaugh’s Object Modeling Notation

Rumbaugh [Rum91] details techniques for analyzing, designing and implementing
software systems in an object-oriented fashion. The intention of this subsection is not to
summarize those techniques, but rather to familiarize the reader with the Rumbaugh

notation, which will appear elsewhere in this document.

2.2.1.1 Classes

Of primary interest is Rumbaugh’s notation for capturing the organization of, and
relationships between, classes in a software system. Classes are drawn as simple
rectangles, with the name of the class centered at the top of the rectangle. Attributes of
the class may be listed below the name, and operations, or methods, may be listed below

the attributes. A simple example is:

Person ¢~ C(lass Name
name

‘—-———_ 0
age Class Attributes
change-job 4———— (lass Operations
change-address op

Figure 1. Person class [Rum91, 26]

2.2.1.2 Associations

Associations between classes are drawn as lines connecting the rectangles. The lines are
usually labelled with identifiers which give meaning to the associations. For example, the
following diagram asserts that objects of type Person work for objects of type Company.
(The direction of associations is implied by the context [Rum91, 27]. In this case, the
association reads from left to right.) Note that class attributes and operations have been

omitted for simplicity.

Person Company

works for

Figure 2. Works for association [Rum91, 34]

10

As it stands, the simple Rumbaugh diagram of Figure 2 shows a one-to-one relationship
between Person and Company. The implication is that a person can only work for one
company, and a company can only employ one person. Rumbaugh uses multiplicity balls
to allow for multiple associations between classes. A solid ball means zero or more, and a
hollow ball means zero or one [Rum91, 30]. For example, the following variation of
Figure 2 shows how we would indicate that a company may employ zero or more people,
and that every person may or may not work for a company. (This diagram does not allow

for the possibility of a person working for more than one company.)

Company

Person I‘

Q

works for

Figure 3. Adjusted works for association

2.2.1.3 Aggregation and Generalization
Two important kinds of relationships between classes are aggregation and generalization.
Rumbaugh defines aggregation as

the “part-whole” or “a-part-of” relationship in which objects representing

the components of something are associated with an object representing the

entire assembly [Rum91, 36].

Rumbaugh uses a diamond to capture this type of association. An example might be the

relationship between a computer and its consituent parts:

Computer

Y

I l s |

Monitor System Box Mouse Keyboard

Figure 4. Aggregation [Rum91, 38]

11

Generalization, according to Rumbaugh, is a relationship between a class and one or more
refined versions of that class. The original class is called the superclass, and the refined
classes are known as subclasses. In a generalization association, subclasses inherit
attributes and operations from their superclasses. This process is termed inheritance
[Rum91, 39]. The following example of generalization shows how different types of

employees inherit characteristics from an overall Employee superclass:

{Employee}
year-to-date earnings

compute pay {abstract}

N

Hourly Employee Salaried Employee Exempt Employee

hourly rate weekly rate monthly rate
overtime rate

compute pay compute pay

compute pay

Figure 5. Generalization [Rum91, 62]

In Figure 5, the triangle beneath the Employee class indicates that the other three classes
are subclasses of Employee. These three classes therefore inherit the year-to-date

earnings attribute and the compute pay operation.

The braces around the word “Employee” specify that Employee is an abstract class, which

means there will be no actual instances of the Employee class. All object instances will be

required to be designated as either Hourly Employee, Salaried Employee or Exempt

12

Employee. (Note: Rumbaugh does not use braces around the class name to identify it as

abstract. This is an extension invented for illustrative purposes in this thesis.)

Also, the designer has designated compute pay as an abstract operation, so as to require
every subclass of Employee to include an algorithm for computing pay for that subclass.
For this reason, the compute pay operation is shown in every subclass. The operations
are implicitly different in each case. This in contrast to the year-to-date earnings

attribute, which is also inherited by all subclasses, but only shown in the superclass.

2.2.1.4 Summary

The following example summarizes the Rumbaugh object diagram notation. In this figure,
we see a description of the relationships among kinds of desk lamps. The diagram asserts
a lamp is composed of a base, a cover, a switch, and some wiring. Inheritance is used to
allow for two subclasses of Lamp--Fluorescent Lamp and Incandescent Lamp. The

two subclasses include special components beyond the standard four mentioned

previously.
A Lamp
[I
Fluorescent Incandescent
Lamp Lamp l I T |
<|> ? Base || Cover || Switch || Wiring
Ballast Twist Mount Starter Socket

Figure 6. Aggregation and Generalization [Rum91, 59]

13

2.2.2 Object-Oriented Programming with Ada 95

Ada 95 is the first internationally-standardized object-oriented programming language
[Ada95, 1]. This standardization implies a high degree of code portability amongst plat-
forms. Ada applications should be easy to move from one computer to another, provided
both computers have compilers which conform to the standards established by the Ada

Reference Manual [RM95], and assuming the applications rely only on standard features.

For an in-depth discussion of Ada 95 the reader is referred to [RM95]. The intention of
this section is only to show examples of what object-oriented programming in Ada 95
looks like. The examples are original, though the style is influenced by the conventions

established in [Cer93].

Let us assume we wish to implement the following object-oriented design using Ada 95:

{Automobile}

Make

Model

Color

Start_Engine

Stop_Engine

Car Pickup

Style Bed_Size
Open_Trunk Drop_Tailgate
Close_Trunk Raise_Tailgate

Figure 7. Automobile class hierarchy

14

Figure 7 shows a simple class hierarchy for automobiles. Our Ada 95 implementation of
this hierarchy includes several packages. The first corresponds to the Automobile

superclass, and is shown in Figure 8.

with Ada.Finalization;
package Automobile is

-- This is the actual “class type.” It is always called “Object.”
-- Users of the package will declare variables such as
-- My_Auto : Automobile.Object;

type Object is abstract new Ada.Finalization.Controlled with private;

-- The following type makes it easy for users to have pointers
-- to object instances.
type Reference is access all Object’Class;

type Auto_Make is (Ford, Chrysler, General_Motors);
type Auto_Model is (F_150, Concorde, Camaro);
type Auto_Color is (Red, Green, Black);

-- There are usually subprograms for changing and retrieving the
-- attribute values.
function Make_Of (Instance : Object) return Auto_Make;

function Model_Of (Instance : Object) return Auto_Model;
function Color_Of (Instance : Object) return Auto_Color;

procedure Set_Make (Instance : in out Object;
Make : in Auto_Make);

procedure Set_Model (Instance : in out Object;
Model : in Auto_Model);

procedure Set_Color (Instance : in out Object;
Color : in Auto_Color);

-- Here are the desired operations/methods.
procedure Start_Engine (Instance : in out Object);
procedure Stop_Engine (Instance : in out Object);

private
type Object is new Ada.Finalization.Controlled with
record
Make : Auto_Make;
Model : Auto_Model;
Color : Auto_Color;
end record;
end Automobile;

Figure 8. Automobile class in Ada 95

15

The two subclasses, Car and Pickup, are coded as child packages of Automobile. The
class types are based on the abstract Automebile class type, and Start_Engine and
Stop_Engine are inherited (as well as the Make, Medel, and Color attributes). The Car

package is shown in Figure 9. Pickup would be similar.

package Automobile.Car is

-- This type definition allows us to inherit all attributes
-- and primitive operations of type Automobile.Object.

type Object is new Automobile.Object with private;

type Reference is access all Object’Class;

type Car_Style is (Sedan, Coupe);

function Style_Of (Instance : Object) return Car_Style;

procedure Set_Style (Instance : in out Object;
Style : in Car_Style);

procedure Open_Trunk (Instance : in out Object);
procedure Close_Trunk (Instance : in out Object);
private
type Object is new Automobile.Object with
record
Style : Car_Style;

end record;

end Automobile.Car;

Figure 9. Car subclass of Automobile in Ada 95

Finally, Figure 10 shows a short procedure which demonstrates how users might declare

and manipulate an instance of the Car class.

16

with Automobile.Car;
procedure Test_Engine is

Sports_Car : Automobile.Car.Object;
begin

Automobile.Car.Set_Make (Instance => Sports_Car,
Make => Automobile.General_Motors);

Automobile.Car.Set_Model (Instance => Sports_Car,
Model => Automobile.Camaro);

Automobile.Car.Set_Color (Instance => Sports_Car,
Color => Automobile.Red);

Automobile.Car.Set_Style (Instance => Sports_Car,
Style => Automobile.Car.Coupe);

Automobile.Car.Start_Engine (Sports_Car);
Automobile.Car.Stop_Engine (Sports_Car);

end Test_Engine;

Figure 10. Test_Engine procedure manipulates a Car object.

2.3 Standard Graphics Libraries
In the search for platform-independence, the possible role of standard graphics libraries
was considered. The following subsections briefly introduce three common graphics

libraries which are available on a variety of platforms.

2.3.1 PHIGS
The Programmer’s Hierarchical Interactive Graphics System (PHIGS) is a fairly recent

international standard in the world of computer graphics. It gives programmers the

capability to define and display two-dimensional and three-dimensional models with which

users can interact. Because it is available for a wide range of hardware and operating
system combinations, it is possible to write PHIGS applications which are highly portable

between platforms [How91, 1].

17

PHIGS offers routines which support the following features:
¢ Graphical output primitives: lines, text and filled areas
e Attributes: such as the style of lines--dashed, dotted or solid

e Model Creation: combining output primitives with their attributes to form
structures, and composing complex graphical models from these structures

e Model Display: actually displaying the previously-created models
e Model Editing: changing previously-created models

¢ Transformations and Viewing: moving models within a scene, and viewing the
scene from various vantage points

e Input: reading user input to allow interaction with the graphical models

® Model and Picture Files: archiving model data
As the reader can see, the focus of PHIGS is on constructing and displaying graphical
models [How91, 3]. The library does not include features to support real-time visual

simulation.

2.3.2 OpenGL

The newest proposed standard graphics library is called OpenGL. Like Performer
(discussed in chapter 1), OpenGL is an invention of Silicon Graphics. The crucial
difference is that OpenGL is "an open standard designed to run on a variety of computers
and a variety of operating systems” [Pro94,2]. Therefore, any software which relies on
OpenGL should be easy to port to any platform which supports the OpenGL standard.
Currently, OpenGL implementations exist for some Silicon Graphics workstations, as well
as selected DEC workstations, IBM RS/6000 workstations, and all computers running

Windows NT. Versions for other systems are under development.

18

According to Segal and Akeley, OpenGL “is very similar in both its functionality and its
interface to Silicon Graphics’ IRIS GL” [Seg93, 3]. The interface consists of several
hundred subprograms which allow programmers to render high-quality graphical images,
particularly of three-dimensional objects in color. As with IRIS GL, the focus is on
rendering, not simulation. Unlike IRIS GL, however, OpenGL has no facilities for user

input [Seg93, 4].

Although applications relying on OpenGL should, in general, be quite portable, it must be
noted that OpenGL does not make applications entirely platform-independent. Certain
crucial functions (such as opening a window on the screen) are not provided by OpenGL.
Applications using OpenGL must therefore resort to platform-dependent operations in

these cases [Pro94,2].

2.3.3 Openlnventor
Openlnventor is yet another product from Silicon Graphics, Inc. SGI describes this
product as “an object-oriented 3D toolkit” for developing interactive graphics applications
[Bel95, 1]. Openlnventor runs on top of OpenGL, which implies a high degree of
portability of OpenInventor applications. Features include [Bel95, 1]:

¢ a standard file format for 3D data interchange

¢ asimple event model for 3D interaction

e animation objects called “engines”

® aprogramming model based on a 3D scene database

¢ aset of objects including cubes, polygons, cameras, lights and more

19

Counterbalancing the features of OpenInventor are, of course, certain disadvantages.
These include a requirement to develop applications using C or C++, as well as limitations
as to which compilers can be used [Bel95, 2]. Most important from the Lab’s perspective
is the fact that OpenInventor is not as well suited to visual simulation as SGI’s Performer
library. SGI says:

...Performer was designed for vis-sim, while Inventor was designed to be

more general purpose. IRIS Performer is for developers who need to

extract maximum performance from SGI machines for visual simulation,

virtual reality, game development, and high-end CAD systems. Often these

applications need multi-processor Onyx systems with multiple Reality-

Engine pipelines with a high degree of parallelism and running at fixed

frame rates.

Inventor is designed for maximum programmer productivity when writing

other kinds of 3D applications, like modelling, animation, visualization, etc.

[Sch94, 3]
So although Openlnventor adds capabilities above and beyond the features of OpenGL,

while still preserving a high degree of platform-independence for applications, it is not

inherently well-suited to the development of high-performance visual simulations.

2.3.4 Summary

PHIGS and OpenGL are two contemporary graphics libraries which can be used to
develop highly-portable rendering applications. Unfortunately, neither library was
designed to support visual simulation. OpenInventor comes closer to this latter goal, but
is still not comparable to SGI's Performer library. The result is a portability vs.
performance dilemma for visual simulation developers. No library offers the power of

Performer with the portability of OpenGL.

20

2.4 Distributed Interactive Simulations

The Distributed Interactive Simulation (DIS) protocol is a standard which allows
geographically separated computers to participate in a joint simulation without the
assistance of a central computer. The various simulation participants (tanks, airplanes,
etc.) are termed entities. Entities interact by passing prescribed format messages known

as Protocol Data Units (PDUs) [Bel93, 14].

Following are some of the key principles of the DIS protocol [She92, 14]:

e Each host maintains a local copy of information such as the terrain of the
simulation and entity models.

* Each entity bases its viewpoint of the simulation on the information supplied by
its host.

¢ Each host approximates the positions of other entities of interest so as to
maintain the simulation without constant position updates from all entities.

* To minimize network data traffic, each host broadcasts updates only under
certain conditions.

To expound on the last two principles outlined above, a definition of dead reckoning
algorithms is required. Dead reckoning basically means approximating the new position of
an entity based on its last known position and how it was moving. DIS supports a variety
of algorithms for calculating such approximations. More accurate algorithms take longer

to execute, and therefore slow down the simulation [She92, 20].

The DIS protocol requires that each host maintain two positions for local entities--the
actual position and the dead reckoned position. The host must also maintain dead
reckoned positions for all non-local entities. When a host recognizes the dead reckoned

position of a local entity is inaccurate, it broadcasts the correct position to all other hosts.

21

The other hosts abandon their inaccurate approximations in favor of the new information.
In general, this method leads to minimal network traffic [She92, 17]. The overall result is

that each host is essentially running a local copy of the entire simulation.

2.5 Software Architectures

The term software architecture is fairly new and its definition continues to evolve. For
our purposes, a software architecture can be defined as the high-level design (or perhaps
blueprint) from which an application is constructed. This design is inherently reusable;
many similar applications can be built using the same architecture. This reusability aspect
is a primary motivation for developing software architectures, since reuse generally leads

to resource savings during application development.

In one of the premier papers [Gar93] on the subject, Garlan and Shaw offer insights into
the predominant styles of existing software architectures. They compare these styles in
terms of components and connectors. Components are the computational building blocks
used as the basis of an architecture. Connectors describe how the components interact

with each other.

The first major type of architecture described by Garlan and Shaw is the pipe and filter
style. In this kind of architecture, each component (filter) simply accepts data as input,
performs some calculations, and provides output. The pipes provide the means by which
input and output move amongst the filters. Each filter is independent of the others, and is
thus interested only in providing the correct output based on its input. Most language
compilers fall into this category, where the phases of compilation (lexical analysis, parsing,

semantic analysis, code generation) can be viewed as stages in a pipeline.

22

A second type of architecture detailed by Garlan and Shaw is the object-oriented style.
Components of this style are objects, and the connectors are subprogram invocations
amongst them. The object-oriented style has become increasingly popular in recent years

and is the style implemented for both ObjectSim and Easy_Sim.

In an event-based, implicit invocation architecture, components are modules whose
interfaces provide both a collection of subprograms and a set of events. Components
react to each other's events by executing subprograms. The connectors are thus
characterized by the subprogram calls and the event announcements which cause them.
Garlan and Shaw cite the Field System [Rei90] as an example. In this system, various
tools register for a debugger’s breakpoint events. When the debugger stops at a
breakpoint, it announces an event. Other tools react to this event by automatically

invoking the appropriate methods.

A fourth architectural style is the layered system. In this organization, the architecture
consists of a hierarchy of layers and a set of protocols defining how the layers interact.
Each layer is a component and each protocol is a connector. The best-known examples of
this style are layered communication protocols, such as the Open Systems Interconnection

(OSI) Reference Model [Tan88, 14].

The fifth type of architecture discussed by Garlan and Shaw is the repository. In this style,
a central data structure holds the current state information for the system, and a collection
of independent modules operate on this structure. The data structure and the modules
collectively form the set of components. The connectors are somewhat ill-defined, as the
authors state: "Interactions between the repository and its external components can vary
significantly between systems [Gar93, 10].” Batch-sequential systems with global

databases are examples of the repository architecture.

23

Beyond the architectural types outlined above, Garlan and Shaw also briefly discuss
domain-specific software architectures, which describe organizational structures tailored
to families of applications. An example is a visual simulation software architecture, which
can be used as the foundation of any number of visual simulation systems. While
ObjectSim and Easy_Sim are certainly examples of object-oriented architectures, both may

be characterized as domain-specific as well.

2.6 ObjectSim
A Rumbaugh object diagram of the ObjectSim architecture is shown below. This diagram

has been adapted from Figure 24 of [Sny93, 62] for clarity.

{Simulation}
1+
Pfmr_Renderer {View}
{Terrain} {Modifier}
r 1+
1 represented b
{Player} : P = d FIt_Model
l

Figure 11. ObjectSim architecture (Note: “1+” indicates 1 or more)

The architecture shown in Figure 11 is used as the foundation of all ObjectSim
simulations. The basic idea is that every simulation involves some sort of terrain, plus one
or more moving entities (players), and one or more views into the simulation. Following

are highlights of the ObjectSim architecture:

24

e The Pfmr_Renderer class was created in the hopes of isolating dependencies
on SGI’s Performer library. Unfortunately, this attempt at isolation failed, and
Performer dependencies pervade the existing C++ application framework.

e Each view may be affected by input from the keyboard, a mouse, or other
device. These devices come under the generic heading of modifier. Hence the
Modifier class shown in Figure 11 [Sny93, 56].

e Most players in the simulation have an associated geometric representation.
This representation is stored as an instance of the Fit_Model class [Sny93,
52], so named due to its reliance on a particular database format, the Flight

format. Players may sometimes share the same representation. For example,
two F-16 fighters might share a common FIt_Model instance.

e Each view must be attached to a player. As the player moves, so moves the
view [Sny93, 48].

e A stealth view is a view which is attached to a player which has no associated

geometric representation. The result is an invisible viewpoint which moves
around the simulation [Sny93, 48].

2.6.1 ObjectSim and DIS

Throughout [Sny93], it is clear that allowing for participation in DIS simulations was a
consideration during the design of ObjectSim. Although the ObjectSim architecture as
presented in [Sny93] did not include classes for the development of DIS-participating
simulations, the final C++ framework was modified to accomodate these applications
[Sny93, 57-61]. Unfortunately, scrutiny reveals ObjectSim’s DIS interface as a mystifying
portion of the application framework. The networking class hierarchy is hard to unravel,

as evidenced in Figure 12, adapted from Figures 23 and 25 of Snyder’s thesis.

25

{Player}

&

{Attachable_Player}

é propagates

{Base_Net_Player} F

reads

Sim_Entity_Controller

processes

Event

T reads

{Base_Net_Remote_Player}P

maintains

Object_Manager

Basic_Net_Manager

uses

Figure 12. Networking classes in ObjectSim

The basic idea behind Figure 12 is as follows. The Object_Manager is the class which is
actually responsible for interacting with the network. It retrieves two types of informa-
tion--events and player updates. These two types of information are represented by the
Event and Base_Net Remote_Player classes, respectively. The Basic Net Manager is
responsible for maintaining the list of remote players, and the Sim_Entity Controller is

responsible for propagating network events to local players.

It is interesting to point out that applications participating in DIS simulations are also

required to send updates to the network. ObjectSim does not, however, arrange for this.

ObjectSim applications must therefore assume full responsibility for keeping remote

participants apprised of the local status.

26

In summary then, the ObjectSim architecture does not include components for distributed
simulation. However, the associated C++ application framework does include classes for
applications wishing to participate in DIS simulations. But those classes only concern

receiving information from the network, which is only half of the problem. Furthermore,

this portion of the framework is at best hard to follow, and at worst confounding.

2.6.2 ObjectSim and Platform-Independence
With simulation performance a top concern, ObjectSim was designed to use SGI’s
Performer library to its full potential. In his thesis, Snyder states:
ObjectSim currently is dependent on the SGI platform and the Performer
library. To make the architecture platform-independent would require a
tree-based rendering abstraction similar to the Performer tree [Sny93, 99].
To put it simply, an effort to move ObjectSim to a new platform would require one of
three things:

e Performer on the new platform

¢ something as close to Performer as possible on the new platform, and
commensurate changes to the architecture

e acomplete redesign and reimplementation of ObjectSim

2.7 Easy Sim
ObjectSim was used as a starting point for the Easy_Sim effort of 1994. The end result
was an architecture which was similar to, yet different from, ObjectSim. The Rumbaugh

diagram shown in Figure 13 is an adaptation of Figure 23 from Kayloe’s thesis.

27

{Simulation}

I I I l

View Manager Player Manager Model Manager {Environment}
? attached-t represents Y represents
(View} s Model
l changed-by
e
{Modifier} {Pl1ayer}

Figure 13. Easy_Sim architecture [Kay94, 79]

Like the ObjectSim architecture, Easy_Sim includes views, modifiers, players and models.
Easy_Sim adds manager classes for players, views and models, and renames ObjectSim’s
Terrain class to Environment. The following subsections take a closer look at
Easy_Sim’s classes. The intention here is to hit the main points of how Easy_Sim works.

For a more in-depth discussion, see [Kay94].

2.7.1 The Simulation Class

The Simulation class (shown in Figure 14) is essentially the aggregate of four other
classes--the three manager classes and the Environment class. As Kayloe states in his
thesis, the Simulation class is “the glue that holds the other pieces of the application
together [Kay94, 76].” Thus, any simulation constructed using the Easy_Sim architecture
will include one instance of each of the manager classes, as well as some sort of
environment. The Simulation class is abstract, meaning developers must devise

specialized subclasses of Simulation for actual use in applications. The only attribute of

28

this class is a Pipe, which is a Performer term for a rendering pipeline. Thus, one might
argue that the reliance of the Easy_Sim application frameworks on the Performer library

found its way “backwards” into the architecture itself.

{Simulation }

Pipe

Initialize

Finalize

Configure
Open_Window
Application_Name
Add

Render

Update {abstract}

Figure 14. Easy_Sim's Simulation class [Kay94, 77]

2.7.2 The Player Class

Easy_Sim’s Player class (depicted in Figure 15) is also abstract. When writing
simulations, developers create subclasses of Player such as Circling_Drone,
Patrolling_Tank, etc. In these subclasses, developers provide concrete Update
operations which characterize the movement and other changes the players go through
during the simulation. The Update operation for each player is called by the

Player Manager during each frame of the simulation.

{Player}

Coords

Initialize

Finalize
Configure

Update {abstract}
Move_Straight
Look_At

Image

Figure 15. Easy_Sim's Player class [Kay94, 65]

29

A

2.7.3 The Model Class

Easy_Sim’s Model class is fairly simplistic. Its purpose is to handle the geometric
representations of simulation images. Predominantly, this means the class is used to read
models from previously-created database files. Once loaded, models are associated with
the environment and players via routines in other classes. As with the Simulation class,
the only attribute of Model is an artifact of a framework reliance on Performer.
(Abstractly, there is no such thing as the root of a model. The attribute only makes sense
in a Performer context, where the root is used to attach the model to the scene database

maintained by Performer.) The Model class is shown in Figure 16.

Model

Root

Initialize
Adjust
Finalize
Configure
Clone
Image

Figure 16. Easy_Sim's Model class [Kay94, 60]

2.7.4 The View Class

Easy_Sim’s View class provides the capabilities for creating and manipulating a vantage
point in a simulation. As Figure 17 shows, the View class has three attributes, two of
which (Channel and Scene) are directly attributable to the frameworks’ Performer
dependencies. The third attribute is for the position and orientation of the view relative to
the player to which it is attached. As with ObjectSim, every view must be attached to a

player. As the player moves, the view moves.

30

{View}

Channel
Scene
Coords

Initialize

Finalize
Configure

Cull

Draw

Update {abstract}
Image

Figure 17. Easy_Sim's View class [Kay94, 69]

2.7.5 The Modifier Class

The Modifier class (Figure 18) is the third abstract class in Easy_Sim. Each subclass of
Modifier corresponds to some sort of input device. When a developer designs a new
subclass, he or she provides an Update operation to specify how input values are to be
translated into position and orientation adjustments. One Modifier subclass is provided

with Easy_Sim: Standard_Input, which accepts input from a mouse and keyboard.

{Modifier}

Coords

Initialize

Finalize

Update {abstract}
Reset

Figure 18. Easy_Sim's Modifier class [Kay%4, 70]

31

2.7.6 The Environment Class

ObjectSim’s Terrain class is replaced in Easy_Sim by an Environment class (Figure 19),
which substantially differs from its ObjectSim counterpart. In ObjectSim, Terrain is
simply a subclass of Model, though this isn’t necessarily intuitive. Easy_Sim’s approach
seems to make more sense. Environment is an abstract class, and developers are free to
design any number of subclasses, such as a heavenly spacescape, an undersea world, or a
mountainous landscape. Easy_Sim provides one such subclass, called Terrain, which is a
basic horizon and sun environment. Terrain, as well as every other kind of environment,
has an associated Model, which contains the geometric representation to be drawn on-

screen.

{Environment}

Initialize
Finalize
Configure

Draw {abstract}
Image

Figure 19. Easy_Sim's Environment class [Kay94, 62]

2.7.7 The Manager Classes

Easy_Sim’s approach to dealing with multiple instances of the various classes is more
consistent than that of ObjectSim. In Easy_Sim, the Model, Player and View classes
each provide an abstraction of a single entity. Three additional classes, Model_Manager,
Player_Manager and View_Manager, provide abstractions of collections of entities.

Model_Manager and Player Manager manage lists of models and players, respectively.

32

View_Manager maintains both a list of views and a list of view states [Kay94, 74].

Figure 20 shows the manager classes.

Model_Manager
List
Count
Initialize View_Manager
Finalize Views
Assign_Model States
Initialize
Finalize
Configure
Player_Manager Add
- Update
List Set_View
Count Set_Player
Initialize
Finalize
Add
Update

Figure 20. Easy_Sim's manager classes [Kay94, 72]

2.7.8 Easy_Sim and DIS

Easy_Sim includes no specific provisions for participation in DIS (or other distributed)
simulations. In his thesis, Kayloe does make recommendations as to how Easy_Sim might
be adjusted to accomodate distributed simulation. Specifically, he suggests the
Player_Manager class might be replaced with an abstract class which allows for DIS
participation. An appropriate subclass would be derived for each different simulation,
based on that simulation’s networking requirements [Kay94, 73]. To date, however, no
simulation based on Easy_Sim has ever participated in a DIS simulation, using this

approach or any other.

33

2.7.9 Easy_Sim and Platform-Independence

Since Easy_Sim served as the starting point for this effort, and a primary research goal
was an architecture which would yield highly-portable application frameworks, it is
important to understand what portions of Easy_Sim are not platform-independent. As a
starting point, Figure 21 shows the layering of the Lab’s visual simulation software.

Higher level layers make calls into the lower level layers they touch.

Applications

Easy_Sim
IRIS Performer
IRIX Operating System/IRIS Graphics Library (GL)

SGI Hmd&me

Figure 21. AFIT Lab software layering diagram

The software layering diagram shows how the IRIX Operating System and IRIS Graphics
Library both interact directly with the SGI hardware, the Performer library is dependent
on the lower-level software, and the Easy_Sim frameworks access both Performer and

GL. Visual simulation applications have access to all layers, from Easy_Sim down to the

operating system.

If the objective is to create applications which are relatively easily moved to other
hardware, it is clearly important to restrict access to the specialized software which runs
only on the SGI platforms. The implication is that applications should predominantly

make calls to an abstract interface which hides access to this specialized software. This

34

leads to the crucial question: Does Easy_Sim provide an abstract interface which hides

access to SGI’s software?

In partial answer to that question, Kayloe states:
Ideally, the Easy_Sim architecture should be portable, and its underlying
layers should be interchangeable with a graphics library from any platform.
There is nothing inherent in the Easy_Sim architectural design that prevents
this adaptation, but no industry standards for graphics libraries currently
exist. The architectural connectors that allow interaction between the
Easy_Sim and Performer layers therefore operate differently than
connectors to other commercial graphics libraries would operate [Kay94,
79-80].
Two points must be made concerning this statement. First, the portion of the statement
concerning standard graphics libraries should be qualified. As discussed in chapter 2 of
this thesis, there are industry standards for graphics libraries. The real point raised by

Kayloe is that Easy_Sim needs the capabilities of Performer, and there are no standard

graphics libraries which come close to providing these capabilities.

Second, there is a case to be made against the claim, “There is nothing inherent in the
Easy_Sim architectural design that prevents this adaptation...” As pointed out earlier in
this chapter, certain class attributes are pure artifacts of the Easy_Sim frameworks’
reliance on Performer. If these attributes were removed at the design level and relegated
to the role of implementation details within the frameworks, the architecture itself would
have no fundamental dependency on the SGI software. Given this adjustment, the next

step would be to ensure the application frameworks restrict access to SGI’s specialized

35

software to the greatest extent possible. Consider the following excerpt from the Ada

framework’s specification of the Player class. Note the overt usage of Performer types.

with Easy_Sim.Model;
package Easy_Sim.Player is

-- Instance is an instance of the Player class.

procedure Configure (Instance : in out Object;
Under_Node : in Performer_Pf.PfNode);

function Image (Instance : Object) return Performer_Pf.PfGroup;

end Easy_Sim.Player;

Figure 22. Easy_Sim framework's reliance on Performer

Figure 22 offers an example of how the Easy_Sim application frameworks allow platform-
dependencies to find their way into applications, despite the platform-independent nature

of the architecture itself.

The bottom line is that the Easy_Sim architecture, for the most part, is not fundamentally
dependent on any platform. The key issue is ensuring the frameworks correctly implement
the architectural design without allowing application reliance on platform-specific

software.

36

3. The Development of ObjectSim 3.0
3.1 Overview

As discussed in section 1.2, one of the primary objectives behind this thesis was to define a
platform-independent architecture which could be used as the foundation of all visual
simulations at AFIT, including DIS-participating simulations. The initial analysis of
previous work suggested three distinct avenues for the definition of this architecture. The
next two sections outline the possibilities which were considered but rejected. The
remainder of the chapter describes the third avenue, the design of ObjectSim 3.0, and the

rationale behind that design.

3.2 Work with a Standard Library

The first approach to the development of a new architecture centered on existing standard
graphics libraries. The libraries discussed in Chapter 2, for example, all offer certain
capabilities on a variety of platforms. The question arose as to whether one of these
libraries could be expanded to support visual simulation, or if perhaps a visual simulation
architecture could be implemented using one of these libraries. The software layering

diagram in Figure 23 depicts this latter scenario.

Platform A (unique hardware/software)

Figure 23. A possible approach: A visual simulation software architecture
built on top of a standard graphics library

37

The approach shown in Figure 23 was attractive because it shifts the responsibility for
platform-independence to the implementor of the standard graphics library. If a visual
simulation software architecture could be constructed to rely only on, for example,
OpenGL, the architecture and all applications which depend on it would port easily to any

platform which supports the OpenGL library.

Unfortunately, the analyses of selected graphics libraries (discussed in chapter 2) led to
concern about the apparent gap between features offered by standard libraries versus
capability requirements of visual simulations. This is the same concern raised by Kayloe in

his thesis (See section 2.7.9.).

Independently, Janett, Hayes and Miller reached similar conclusions:
Interfaces such as OpenGL, Renderman and PHIGS+ provide extensive
support for describing graphics primitives and for forming hierarchies of
primitives, but are awkward for describing the composition of the virtual
environment [Jan94, 4].
Janett et al. deemed the aforementioned libraries too low level for visual simulation, and
also determined it would be difficult to extend or build upon them to “support the needs of

the interactive simulation community [Jan94, 4].” They also concluded that any such

extension would be overly complex [Jan94, 2].

As aresult of these findings, the approach of designing an architecture around an existing

standard graphics library was abandoned.

38

3.3 Adapt a Commercial Architecture

While the Lab has no intention of fostering new dependencies on specific commercial
software, it seemed plausible that a commercial architecture might be examined and then
adapted or somehow reimplemented in the Lab. Research along this path did not discover
a suitable architecture, but two products were found which subsequently influenced the
design of ObjectSim 3.0. The following subsections describe the two products and their

pertinence to this thesis.

3.3.1 Clip
Loral’s Advanced Distributed Simulation Division in Bellevue, Washington has been
conducting work which might well contribute to the development of a platform-
independent visual simulation software architecture. In the abstract of [Jan94], Janett et
al. state:

A standard Computer Image Generator (CIG) interface for real-time

interactive visual applications that allowed software to be ported easily

between many rendering platforms would provide many benefits to the VR,
simulation and entertainment communities [Jan94, 1].

[Jan94] goes on to describe Clip, a proposed foundation for a standard real-time visual
simulation interface. Clip was designed to allow the development of visual simulations
which do not rely on specific graphics hardware and software. The authors echo the
concern of the AFIT Lab when they say, “Without a standard interface, large sections of
simulation code become tightly bound to a particular CIG [Jan94, 1].” (Note: Janett et
al. use the term “Computer Image Generator”, or CIG, in roughly the same context this

thesis uses the term “platform.”)

39

In the Clip Interface Design Document (IDD) [IDD94, 3-2], Loral lists the goals which
influenced the design of Clip. The interface was to:

e be alogical and abstract, rather than physical and concrete, representation of the
capabilities of the underlying CIG hardware and software.

be tailored toward distributed simulation applications.

be simple and uniform.

allow full access to underlying CIG system capabilities.

be portable across CIG vendors.

be extensible.

Clip is just one part of a larger system known as Vistaworks, which is a collective title for
the following software components:

¢ Real-Time Director - image generator graphics package which is responsible
for rendering visual images

e S1000 - tools for creating models and terrains

- a compiler which converts raw data into a form usable

by the Real-Time Director

- API (for accessing data from applications)
SNIP - network interface package
CLIP - image generator interface package
TestSim - sample application
Stealth - sample application

The first four components are used in combination to develop and run visual simulations

such as the TestSim and Stealth applications provided as samples.

When a Vistaworks simulation is running, there are three independent processes active.
These are:

¢ Simulation (Sim) - This is the process which is actually executing the specific
application. It is responsible for handling user input and controlling the simulation
via calls to the Clip basic functions. Examples include the Stealth and TestSim
applications.

e Database and Polygon Processing (DPP) - Responsible for drawing the simulation
on the Computer Image Generator (CIG). The way this works is entirely hidden
from the application (and application developers), though Janett offered a few
insights via email [Jan95a], and these are reflected in Figure 24.

e Clip-to-CIPE (CTC) - CIPE is the CIG Interface Processor Executive, which is a
front-end to the Real-Time Director. The CTC process is responsible for
translating Clip calls into commands to the CIPE.

There are actually two distinct parts to Clip. First, there’s the interface through which
applications manipulate the various aspects of the simulation. This interface is often
referred to as the application side of Clip. The second part is known as the CIG side of
Clip. This portion is embedded in the CTC process. During the course of a simulation,
the two halves of Clip communicate with each other to accomplish the developer’s

objectives. The strong separation of the package into these two halves is what provides

the desired platform-independence.

Figure 24 depicts a Vistaworks simulation. Other than handling user input and interacting
with network entities (if there are any), the application controls all aspects of the visual
simulation via calls to the Clip library. Clip views the entire simulation as a collection of
interacting objects. The CIG, each individual display, each viewpoint, each model, and so
on, are all instances of Clip classes. These classes are defined in the Clip IDD.
(Unfortunately, the IDD is strongly influenced by the existing C implementation of Clip.
The IDD is not so much an abstract definition of the Clip approach as a high-level

commentary on the C implementation.)

41

Application Code

libclip_app library
libclip_comm library

Sim Process

internal comm. code

internal comm. code

CTC Process libclip_comm library
libelip_cig library

CIPE/Real-Time Director
GL/IRIX

DPP Process

Clip (Application Side)

communication via shared
memory/Ethernet/etc.

Clip (CIG Side)

Figure 24. A Vistaworks simulation on an SGI platform

At run-time, the Clip classes are maintained within the CTC process. This means that

many application requests for services require messages be sent from the Sim process to

the CTC process, and the results of the requests often cause messages in the other

direction. Furthermore, for the sake of speed, the application generally doesn’t wait for

the return message to arrive. Instead, the application continues processing. Eventually,

Clip calls a callback function in the application to inform the application of the results of

the earlier service request.

Following is an example of an application call to Clip:

status = clip_call(model_3d_table,

/* object instance

CLIP_GET CANDIDATE_COMPONENT_ INFO_BY_ INDEX, /* method name

&call_status,
&ccinfo[i],
_getting ccinfo);

42

/* return status
/* parametexrs

/* callback function

*/
*/
*/
*/
*/

The above call results in a message being sent from the Sim process to the CTC process.
During the message propagation time, the application continues executing. Eventually,

the CTC process calls _getting_ccinfo, returning any desired data.

3.3.1.1 Clip Classes
Figure 25 shows the key Clip classes and their interrelationships. Instances of these
classes appear in every Vistaworks simulation. The key classes are:

e World - an entire viewable scene, including the terrain, models of entities,
weather conditions, etc.

e CIG - computer image generator; represents the device responsible for
generating images of the simulation; (Note a physical monitor is not an
example of a CIG. Rather, a workstation is an example, whereas a monitor
is represented by an instance of the Display class.)

e Display - A CIG may have multiple attached displays. Each instance of the
Display class corresponds to an output from a CIG.

e View - represents “what you see”; not just a viewpoint or an invisible
camera, because it includes attributes such as sky color, horizon glow, and

level of detail
World 4 View
)
1+ -
CIG Display

Figure 25. Key Clip classes and relationships in a Vistaworks simulation

In total, the Clip IDD describes 37 classes, some of which are yet to be implemented.

These classes are hierarchically arranged as shown in Figure 26.

43

Base Class

Attachment Group CIG Data Table Display
Moveable 3D World Moveable 2D DrawingPad | | Bounding
Volume
Viewable 2D : Image
Transfer
Teajeciny
Model 3D Model 2D Table
Table Table ; Table
| Model2D Arc Line Segment Text { Rectangle | Polyline | | Point
, Pro;ecnon
Viewable 3D Weather View Reference Data
; Point Intersect
Model 3D Local Mumination i Point Light Polygon Projectile Chord
Obscurance : ;

Figure 26. Clip Class Hierarchy (dashed lines indicate not implemented as of 9/20/95) [IDD94, 3-4]

3.3.1.2 The Clip Architecture

It would be inaccurate to label Clip an “architecture” using the same definition as applied
to ObjectSim and Easy_Sim. These latter two impose a structure on conforming
applications, whereas Clip merely provides an abstract interface. As mentioned in the
previous subsection, however, all Clip simulations include instances of key Clip classes.

To an extent, then, the usage of Clip does imply a certain structure for the applications.

3.3.1.3 Platform-Independence

The Clip approach allows the development of simulation applications which do not rely on
the CIG. This is because all aspects of the image generation are accessible by
manipulation of the standard Clip classes. Regardless of how these classes are
implemented from one platform to another, applications always work through the same

interface.

In an email message from the Advanced Distributed Simulation Division [Jan95a], Janett
asserted that Loral actually demonstrated this platform-independence:

Using Clip we have proven that a single application can drive two

completely different image generators (SGI vs GT200) with no code

changes to that application.
In that same message, Janett also said that porting the application side of Clip wasn’t
difficult. Apparently there is little platform-dependence even in the implementation of the

code which comprises the Sim process. An implication of this inference is that it might

not be overly difficult to reimplement the application side of Clip in Ada 95.

45

3.3.1.4 Clip and Ada
As of September of 1995, there was no way to write Ada applications using the Clip
interface. Since using Ada was an important objective of this thesis, possible solutions to
this problem were examined. Three options were considered:

e Write an Ada binding (or bindings) to the Clip libraries on the application side

of Clip. Further research would have been required to determine the most
appropriate positioning of the binding(s). Figure 27 shows several alternatives:

Application Code (Ada)

Application Code (Ada)

Application Code (Ada)

Ada to C binding

libclip_app library (Ada)

libclip_app library (Ada)

libclip_app library (C)

Ada to C binding

libclip_comm lib (Ada)

libclip_comm library (C)

libclip_comm library (C)

Ada to C binding

internal comm. code

internal comm. code

internal comm. code

Figure 27. Potential Ada bindings to Clip

(Loral, also interested in offering the capability to develop Ada Clip applica-
tions, pursued the approach shown in Figure 27’s leftmost box, using Ada 83.)

e Replace the entire Sim process code with Ada. This would require rewriting
some of the Vistaworks internal communication code, which is proprietary.
This possibility is illustrated in Figure 28.

Application Code

libclip_app library

Sim Process (Ada) libclip_comm library

internal comm. code

communication via shared
memory/Ethernet/etc.

internal comm. code

CTC Process (C) libclip_comm library

libclip_cig library

CIPE/Real-Time Director
GL/IRIX

DPP Process (C)

Figure 28. Replace the Sim process with Ada code

e Abandon all of the Vistaworks code. Reimplement the Clip interface in
Ada 95. The result might be something like this:

Application Code (Ada)
Clip Interface (Ada)

Clip Implementation (Ada)

Ada to C Binding
IRIS Performer (C)
IRIS GL (C)

SGI Hardware/OS

Figure 29. A possible new Clip implementation

Because of its emphasis on platform-independence, the Clip specification appeared to be
an excellent starting point for a joint effort between the AFIT Lab and Loral. Unfortu-
nately, Loral was unable to contribute to such an effort. Without assistance from Loral’s
Advanced Distributed Simulation Division, it was doubtful whether any of the concepts
depicted in Figures 27-29 could be implemented. This uncertainty resulted in Clip being

removed from consideration as other avenues were considered for ObjectSim.

3.3.2 Vega

A second commercial product was also examined for potential use in this effort. Vega,
from Paradigm Simulation, Inc., is described as “a high performance visual simulation
toolkit” [VPG94, 3]. In the Developer’s Configuration, Vega provides an Application
Progamming Interface (API) as a layer above Performer. Simulations predominantly make
calls into Vega, but also have access to SGI's underlying software. Figure 30, an

adaptation of Figure 1-1 in the Vega Programmer’s Guide, shows this scenario.

47

Simulation Application

Figure 30. Vega's Developer’s Configuration (adapted from [VPG94, 4])

An alternate configuration of Vega (known as the Basic System) allows the development
of simulations which work strictly through the Vega API. In this scenario, simulations are
not given access to the layers below Vega (i.e., Performer, GL, and the IRIX operating
system). Simulations run separately from a Vega run-time process. Communication
occurs via shared memory. This setup, shown in Figure 31, is quite comparable to the

Clip approach (see Figure 24).

Application Code
__J Simulation Process
libvgs library
shared memory
Vega
Implementation :l Vega Process
Performer/GL/etc.

Figure 31. Vega's Basic System Configuration

3.3.2.1 Vega Classes

In either configuration, Vega allows simulation applications to take advantage of Vega
(and Performer) services via manipulation of an object-oriented interface. The key classes
in this interface are:

e Window - where rendering occurs; can contain any number of channels; a video
display can have any number of windows

e Channel - describes both a view into a scene as well as a rectangular viewing
region within a window

o Observer - a viewpoint within a scene; multiple channels may be driven by a
single observer (example: an infrared channel and a “daylight” channel may be two
ways of looking at a scene from the same viewpoint)

e Scene - the collection of everything viewable within the simulation

e Object- a viewable entity

¢ Player - essentially a moving local coordinate system within a scene; within the
local coordinate system may be any number of visible objects (example: an F-16
and a number of missiles); may be positioned relative to another player, an

observer, or the scene itself

Figure 32 shows the aforementioned classes and their interrelationships.

3.3.2.2 Vega and Ada
Paradigm does not offer an Ada implementation of the Vega API. An email conversation
with a representative from the company revealed Paradigm is not currently planning to

provide an Ada interface in the future [Cur95].

49

Window

displays

I+

Channel

1+
controlled by

Observer

1+

views

Scene o

positioned relative to

Q

1+

positioned relative to

represents

Object

Player O—

r

positioned relative to

Figure 32. Class relationships in Vega

3.3.2.3 Platform-Independence

There is a direct correlation between Vega’s class organization and SGI’s software

hierarchy. Specifically, the Channel and Scene classes correspond to Performer

constructs. The Window class describes a GL window. At the core, Vega’s abstraction

of a visual simulation is the same as SGI’s, as implemented by GL and Performer.

Vega does add higher-level concepts such as observers, objects and players, but these

concepts are built on a foundation which is very tightly coupled to the Performer library.

In fact, in the opening chapter of the Vega Programmer’s Guide, Paradigm touts the

50

“Vega-Performer Connection” and the close relationship between Paradigm and SGI

[VPGY4, 4].

Vega offers an interface at the level of abstraction desired by the AFIT Lab. The degree
of coupling to a specific rendering library (Performer), however, precluded the adoption of

this API as part of an overall platform-independent visual simulation software architecture.

3.4 Adapt Easy Sim

The route selected for the development of ObjectSim 3.0 was to adapt Easy_Sim to
address the two issues cited in section 1.2: lack of a distributed simulation capability and
platform dependencies. The next two subsections discuss these two issues, and the final

subsection of this chapter describes the high-level design of ObjectSim 3.0.

3.4.1 Distributed Simulation

The first reference point for how to incorporate a distributed simulation capability into the
existing Easy_Sim architecture was the ObjectSim framework. Although the ObjectSim
architecture did not originally account for participation in distributed simulations, the C++
framework ultimately included classes which assisted applications in this regard. As
reported in section 2.6.1, this portion of the framework can be confusing. However,
analysis revealed one important fact: an ObjectSim application which participates in a
distributed simulation communicates with an independent network management process,

called the Object Manager, as shown in Figure 33.

51

Updates

Updates
from ftrom .
networ
Application network
PI():Ode (selected data) (raw data)
.................................. e re——— ObjeCt Amrrr—

Manager

Performer/GL/etc.

Figure 33. An ObjectSim application works with an Object Manager process
to participate in a distributed simulation.

Figure 33 suggests that adjusting the Easy Sim architecture to allow for distributed
simulations would involve expanding the architecture to encompass multiple processes.
This prospect is reinforced by the fact that both Loral and Paradigm use multiple-process
models for some configurations of their products. The analyses of ObjectSim, Clip and

Vega inspired consideration of a new 3-process architecture, as shown in Figure 34.

Updates Updates
to/from to/from
network network
Application (selected data) Network (raw data)
Process Manager G ——
Process

Scene
Updates

Scene Management
& Rendering Process

Figure 34. A possible 3-process model for distributed simulation

52

The design shown in Figure 34 is similar to that shown in Figure 33, with the added
concept of a separate process which manages and renders the scene, based on updates
from both the application and the network manager. This “scene management” process
would be the only process to make calls to the platform-specific graphics and simulation

libraries, such as GL and Performer.

This realization raised the issue of whether this thesis effort was pursuing objectives at
two different levels of architectural abstraction. One objective, how to allow for
distributed simulations, involved higher-level issues such as how many processes Lab
simulations should be composed of, what the interfaces to these processes should look
like, and how the processes would communicate with each other. The second objective,
independence from platform-specific libraries, seemed to be at a lower level of abstraction,

and of interest to only one of the three proposed processes.

The decision was made to focus on the issue of platform-independence and to drop further

consideration of the distributed simulation problem.

3.4.2 Platform-Independence

As discussed in section 2.7.9, the Easy_Sim architecture is, for the most part, conceptually
independent of any platform. The problem is that the application frameworks reference
Performer constructs at both the specification and implementation level, and do not
discourage applications from using these same constructs. Although no substantial

simulation applications using Easy_Sim have been written, examination of existing

53

ObjectSim applications shows that applications rely heavily on these constructs. Table 2
shows the number of Performer references found in four ObjectSim applications, as well

as the approximate number of lines of source code in each. More detailed information is

offered in Appendix A.

Application Performer References Lines of Code
Battle Bridge 2394 19915
Space Modeler 1992 16948
Virtual Cockpit 3420 24520
Debriefing Tool 1686 24515

Table 2. ObjectSim application Performer dependencies

Because it is exactly the Performer references noted in Table 2 which hinder application
portability, eliminating these references became a crucial goal during the design of
ObjectSim 3.0. In fact, ensuring applications rely solely on ObjectSim is a cornerstone of

the updated architecture, which is presented in the next subsection.

3.4.3 ObjectSim 3.0

The primary difficulty faced during the design of ObjectSim 3.0 was how to improve the
portability of simulation applications without denying those applications the services
provided by GL and Performer. The chosen solution involved widening the definition of
the architecture to include lower-level services previously provided by these platform-

dependent libraries. This fundamental change is depicted in Figure 35.

54

Applications Applications

Easy_Sim ObjectSim 3.0
IRIS Performer IRIS Performer

IRIX Operating System/IRIS Graphics Library (GL) | [IRIX Operating System/IRIS Graphics Library (GL)

SGI Hardware SGI Hardware

Figure 35. Software layering with Easy_Sim vs. ObjectSim 3.0

The ObjectSim 3.0 layer shown in Figure 35 is divided into two parts: ObjectSim Low-
Level Services (LLS) and the ObjectSim Application Programming Interface (API).

These two parts are discussed in the next two subsections.

3.4.3.1 Low-Level Services

The intention of ObjectSim Low-Level Services is to offer application developers a
collection of capabilities which are typically needed for visual simulations, but which have
historically been provided by platform-specific libraries. For example, as evidenced by
Table 2, applications previously developed at AFIT have used the Performer library
extensively. Furthermore, discussions with Lab developers and some additional research
revealed a need for access to the resources of the IRIS Graphics Library as well. The key
issue during the design of the LLS thus became how to ensure continued access to these
libraries without allowing direct references from the applications. The result was a close
correlation between the LLS and SGI's Performer and GL libraries. This close correlation
means an understanding of the SGI software essentially implies an understanding of the

ObjectSim Low-Level Services.

55

The ObjectSim LLS presents a set of libraries which offer the same functionality as the
SGI libraries. ObjectSim applications can therefore access the extensive features of the
SGI software without calling those libraries directly. While at first glance this may seem
to reduce platform-independence in name only, consider the benefits of this arrangement:

e By obviating application references to Performer and GL, the LLS isolates
platform-dependencies on these libraries within itself, giving the Lab a
measure of control over these reliances.

e Since the Lab controls the interface to Low-Level Services, the names of
constants, types and subprograms (and their parameters) are chosen by the
Lab. The LLS maps these names to their SGI counterparts.

e The LLS can make upgrades to the GL and Performer libraries transparent to
using applications. Features which might be dropped in new releases could
conceivably be provided by the LLS itself. Adjustments to other GL and
Performer capabilities could be compensated for by the LLS, reducing or
eliminating any impact on the applications. And the Lab controls the
integration of new GL and Performer features into the applications.

So although the ObjectSim 3.0 Low-Level Services components do not put the Lab in a
position to declare true independence from the platform-specific SGI libraries, they
collectively form a software layer which shields applications from direct dependencies on

those libraries. This “step in the right direction” was subsequently implemented in Ada 95.

The discussion of that implementation follows in chapter 4.

Following are brief descriptions of the components of the LLS, including the SGI libraries
to which each component is related.
e Math _Utilities: replicates the capabilities of the Performer “libprmath”

library; includes functions such as Sin, Cos, Min, Max, vector and matrix
operations

56

Rendering: replicates the capabilities of the Performer “libpr” library;
includes functions such as Set_Texture_Format, Set_Shininess, and Set_Color

Rendering-Stats: consists of the five statistics-related constants in the
Performer “libprstats” library

Vis_Sim: replicates the capabilities of the Performer “libpf” library; includes
functions such as Initialize_Pipe, Attach_Channel_To_Scene and
Set_Viewport

Vis_Sim-Stats: replicates the capabilities of the Performer “libpfstats” library;
includes functions to selectively draw channel statistics on-screen

Vis_Sim-Utilities: replicates the capabilities of the Performer “libpfutil”
library; includes functions related to keyboard and mouse input, as well as
certain texture utilities

Vis_Sim-Import_Utilities: offers data import capabilities from the Performer
“libpfsgi” and “libpfflt” libraries

Windows: offers a subset of the windowing capabilities of the GL library; a
limited set of functions are presently specified

3.4.3.2 Application Programming Interface

Although the original ObjectSim architecture and the successor Easy_Sim architecture

differ in what services they offer to application developers, both share a common goal: to

provide at least some capabilities at an even higher level of abstraction than those provided

by Performer. By offering such features, these architectures reduce the need for

applications to use Performer’s lower-level services. The same can be said of the Clip and

Vega APIs discussed earlier in the chapter.

This observation indicated that additional platform-independence gains could be made by

constructing a second layer on top of the LLS. If applications could rely primarily on this

57

second layer, they would be less likely to call upon Low-Level Services itself. The result
would be an overall reduction in the number of dependencies from the applications to the
LLS. Transitively, this would mean lower coupling between each application and the GL

and Performer libraries.

Thus, a higher-level services layer was designed. In keeping with the terminology of the
commercial products, this layer was designated the ObjectSim 3.0 Application
Programming Interface (API). The goal of the API is to simplify the development of
visual simulations by abstracting away selected parts of the ObjectSim LLS and providing
a set of higher-level routines which developers would otherwise end up writing from

scratch.

Like Clip and Vega, the ObjectSim API is object-oriented. The key classes are:

e Scene: an entire viewable “world”, with its own coordinate system, an
optional environment, and any number of entities

¢ Entity: anything which might be placed within a scene, such as a light or a 3d
model

e Environment: the “surroundings” within a scene, such as ambient light,
background color and fog

e View: a movable viewing frustum; every view has an associated scene, but
the view is considered external to the scene, not a part of it

* Renderer: responsible for actually drawing the views on a display; since only
one of these is ever desired, Renderer is not really a class--it’s a single object;
(The box representing the Renderer in Rumbaugh object diagrams is shaded
gray to distinguish it from regular classes. This is a convention adopted for
illustrative purposes in this thesis.)

58

The relationships amongst these classes are captured in the Rumbaugh object diagram of
Figure 36. Note the subclasses of Entity. This inheritance hierarchy is explained later in

the section.

looks

draws

Scene

tracks

Sollows

. 3
{Entity} Environment
A follows

{Orientable}

A

3D

Figure 36. ObjectSim’s object-oriented API

The ObjectSim API was developed with an important underlying principle--simplicity. In
an effort to make the API easy to learn and understand, the interface was designed with a
strict one-way hierarchy of class dependencies. No two classes are mutually dependent at
the specification level. For example, the Renderer “understands” and manipulates
instances of the View class, but View instances never call on the services of the
Renderer. Similarly, the Scene class manipulates entities via calls to the Entity class, but
Entity instances have no notion of a scene (or a view, or the Renderer). The complete
hierarchy is shown in Figure 37. Each arrow represents a sort of client-server relationship,

with the arrow pointing towards the server.

59

Renderer
View

Scene

Entity Environment

Figure 37. The ObjectSim 3.0 API class dependency hierarchy

The following subsections describe each of the API classes in greater detail. Most
descriptions include a Rumbaugh diagram to show the public attributes and methods of the
classes. Note the following conventions for these diagrams:
¢ Constructor and destructor operations are available in all cases, but are not
shown in the diagrams.

e Operations for retrieving and adjusting attribute values are available in all
cases, but are not shown in the diagrams.

e Explanatory Ada-style comments are given to the right of each diagram.

3.4.3.2.1 Scene

The Scene class is the most complex of the ObjectSim 3.0 AP, which is not surprising,
since it represents the abstraction of an entire viewable world. In the simplest case, a
scene is just an empty coordinate system with a black background. The background is
altered via the Environment class, described in subsection 3.4.3.2.3. A scene has user-

definable boundaries which establish a three-dimensional, brick-shaped, scene volume.

60

In general, there will be some number of entities positioned within a scene’s coordinate
system. The positioning of entities is accomplished by calls to the Scene class. In
addition to positioning commands, developers can direct entities to “follow” one another.
As the lead entity is moved, the follower is moved automatically. Multiple entities can
follow a single leader, maintaining different relative positions. Also, one entity can follow

another entity, which is following a third entity, and so on.

Figure 38 depicts the Scene class.

Scene

-- number of entities in the scene

-- the list of entities in the scene

-- minimum x,y,z position within scene boundaries
-- maximum X,y,z position within scene boundaries

Num_Entities
Entities
Minimum_Corner
Maximum_Corner

Add -- add an entity to the scene
Delete -- delete an entity from the scene
Move -- move an entity a relative distance

-- set the position of an entity to an absolute location

-- move an entity according to its orientation

-~ adjust an entity’s orientation to face a point

-- position of an entity (could be relative to another entity)
-- position of an entity in “world coordinates”

Set_Position
Move_Straight
Look_At
Position_Of
Scene_Position_Of

Number_Of Entities_In
Get_Entity

Follow

Stop_Following
Number_Of_Followers
Leader_Of
Get_Follower
Set_Environment
Environment_Of

-- number of entities in the scene

-- returns entity number 1 (or 2, 3, etc.)

-- directs an entity to follow another entity

-- directs an entity to stop following

-- how many entities following a given entity

-- which entity a given entity is following

-- returns follower number 1 (or 2, 3, etc.)

-- connects an environment to the scene

-- returns the environment connected to the scene

Figure 38. The ObjectSim 3.0 API Scene Class

3.4.3.2.2 Entity

An instance of the Entity class is anything which can be positioned in a scene. Although

the ObjectSim API establishes that every entity has a scene position, this information is

61

stored as part of the scene, not as part of the entity. This approach differs from the
original ObjectSim and Easy_Sim approaches. The advantage is that, in ObjectSim 3.0,
entities are completely oblivious of the fact that they are part of a larger scene. In fact, the
Entity class has no visibility to, or understanding of, any other API classes. This was
done intentionally as part of the effort to keep the API simple, as described in section

3.4.3.2.

It should also be noted that the Entity class differs from the Player classes of the earlier
architectures. Everything which might be positioned within a scene, including the terrain
and stationary objects, is considered an entity in ObjectSim 3.0. In the original ObjectSim
and Easy_Sim architectures, the terrain and stationary objects came under the heading of
Terrain or Environment. This conceptual difference inspired the name change from

“player” to the more generic term “entity”.

The Entity class is abstract, meaning there will be no simulation participants with the
generic “entity” designation. Rather, participants must be members of some particular
refinement of the Entity class. Only one such refinement has been specified at this time,

and that subclass is described in the next subsection.

The Entity class has no public attributes or methods, so the Rumbaugh diagram is

omitted.

62

3.4.3.2.3 Orientable

The Orientable class is the only currently-defined subclass of Entity. Members of this
subclass are distinguished from other entities by the fact that they have an associated
heading, pitch and roll. Examples include three-dimensional models and directable light

sources. (A non-directable light source is one example of a non-orientable entity.)

Orientable is an abstract subclass. The attributes are listed in Figure 39, but the
operations which retrieve and adjust those attributes are omitted, according to the

convention of this section.

{Orientable}

Heading
Pitch
Roll

Figure 39. The ObjectSim 3.0 API Orientable Entity Class
3.4.3.2.4 3D
The 3D subclass is the only currently-defined concrete descendant of Entity. Presently,
then, any entity in an ObjectSim 3.0 simulation will be a member of this subclass. The
only operation of this class is to read the geometry of the three-dimensional model from a
file. (Supported file formats are the same as those supported by Performer 1.2.) The 3D

subclass is shown in Figure 40.

3D

-- N0 attributes

Load -- load from a file

Figure 40. The ObjectSim 3.0 API 3D Model Class

63

3.4.3.2.5 Environment

The Environment class deals with aspects of a scene which cannot come under the
heading of “entity.” For example, if a view is positioned at the outer edge of a scene,
looking away from the scene, what does it see? Perhaps nothing--just blackness. Or
pehaps a blue sky and a dull, brown terrain. The ObjectSim API mandates that if a scene
has no associated environment, the overall scene background will default to black. If a
scene does have an associated environment, attributes of the Environment class allow the
background color to be changed. These are the only class attributes currently specified. It
is anticipated that the Environment class will be expanded in the future to account for

such things as fog and time-of-day.

The Environment class is depicted in Figure 41. Again, attribute read/write operations

have been omitted.

Environment

Red -- background color values
Green
Blue

Alpha

Figure 41. The ObjectSim 3.0 API Environment Class

3.4.3.2.6 View

The View class provides an abstraction similar to the Performer concept of a channel.
(See [Har94] chapter 4.) A view includes a viewing frustum, which leads to four class

attributes: the near and far clipping plane distances, and the horizontal and vertical fields-

64

of-view. These four attributes define the frustum. Furthermore, each view has a position
within its associated scene, and an orientation which dictates which way the view is

directed.

As for operations, a view can be directed to mimic another view, alter its orientation to
“look at” a particular point in the scene, or follow an entity as it moves. A view can also
be instructed to “track” a particular entity, which means the view will stay in place but
continually look at the entity as the entity moves. Following and tracking can be

combined.

The attributes and operations of the View class are summarized in Figure 42.

View
Horizontal_FOV -- horizontal field-of-view
Vertical _FOV -- vertical field-of-view
Near_Clipping_Plane Dst| -- distance to near clipping plane
Far_Clipping_Plane_Dst -- distance to far clipping plane
Position -- position of view within scene
Orientation -- heading, pitch and roll
Move -- move a relative distance
Scene_Position_Of -- view position in “world coordinates”
Follow -- follow an entity
Stop_Following -- stop following an entity
Leader_Of -- the entity being followed
Look_At -~ adjusts orientation of a view to face a point
Track -- constantly change orientation to face an entity
Stop_Tracking -~ stop tracking an entity
Mimic -- mimic another view
Set_Scene -- connects a scene to the view
Scene_Of -- returns the scene connected to the view

Figure 42. The ObjectSim 3.0 API View Class

65

3.4.3.2.7 The Renderer

The Renderer is a special “simulation executive” object which has a variety of simulation
responsibilities. Only a small set of services have been identified at this point, but it is
expected that this set will substantially expand in the future. Every simulation application
will have exactly one Renderer, so it is not a typical class which can be instantiated.
Instead, applications simply refer to “the Renderer.” Developers call it to accomplish any
pre-simulation initialization, set the frame rate, and draw the frames. Furthermore, a
current simplifying assumption is that the Renderer draws to a single implied screen. This
screen can be subdivided into multiple viewports, and these viewports are manipulated via
calls to the Renderer. The Renderer “understands” what a view is, and is capable of
directing each instance of the View class to one or more viewports. Attributes and

operations are shown in Figure 43.

Viewports -- list of active viewports
Num_Viewports -- number of active viewports
Frame_Rate -- frame display rate

Synchronize -- wait for next frame boundary
Draw_Frames -~ draw next frame (for each viewport)
New_Viewport -- activate new viewport

Set_Corners -- set viewport boundaries

Set_View -- attach view to viewport

Figure 43. The ObjectSim 3.0 API Renderer Object

3.4.3.3 Application Framework
Given Low-Level Services and the Application Programming Interface, the next issue was

how to transform ObjectSim 3.0 into an “architecture” like its predecessors. Considera-

66

tion of this issue raised several questions, such as: What is the relationship between an
APT and an architecture? Why are commercial offerings typically of the first category,
while the AFIT Lab continues work in the latter realm? What are the advantages and

disadvantages of the two approaches?

A natural first step towards answering these types of questions was to compare the
Easy_Sim architecture (see Figure 13) to the new ObjectSim 3.0 API (Figure 36). There
are clearly similarities. The architecture and the API both include the notions of an
“environment” and a “view,” and the Easy_Sim Player class seems roughly comparable to

the ObjectSim Entity class.

A key difference is Easy_Sim’s overt mandate of a particular structure for any Easy_Sim
simulation. Each simulation must include an instance of some subclass of the
architecture’s Simulation class, as well as Player_Manager, View_Manager, and
Model_Manager instances. In this way, the architecture establishes the basic design of

every Easy_Sim simulation.

In contrast, as shown in Figure 36, the ObjectSim API does not stipulate any structure for
simulations which use it. An ObjectSim API simulation could be a single procedure which
manipulates instances of the various API classes. (All simulations which take advantage

of the API will have certain things in common, however. Namely, every simulation will

67

have exactly one Renderer object, some number {usually just one} of scenes, possibly an

environment, some number of views, and some number of entities.)

To take ObjectSim 3.0 a step closer to Easy_Sim, there is no reason why every ObjectSim
3.0 simulation could not be required to have “manager” objects to administer the scenes

and views. This line of reasoning yields Figure 44.

Simulation

Y
| |

View_Manager Scene_Manager

i i

Scene

tracks

Jollows

¢ 3
—o {Entity} Environment
Jollows

Figure 44. The API becomes an architecture?

The Rumbaugh diagram of Figure 44 certainly appears to qualify as an architecture,
though there remains one important difference when compared to Easy_Sim. The
Easy_Sim View, Player, Modifier and Environment classes are abstract, and they are
abstract in essentially the same way. Each class includes an Update operation which
specifies the behavior of class instances at run-time. Developers tailor Easy_Sim by
designing new classes with particular behaviors. For example, in an Easy_Sim simulation

with two F-15 models flying in different patterns, there would be one instance of each of

68

two Player subclasses, where the only difference between those subclasses is the Update

operation which details the motion of class instances.

Using the ObjectSim 3.0 API, this same simulation would be accomplished by declaring
two variables, both of the 3D class. The application would move the F-15s via calls to the
Scene class, and these calls could appear anywhere in the application. Thus, unlike in the
preceding approach, the behavior of the F15s is not necessarily localized to one particular

place in the source code.

Research into this fundamental difference in operation revealed apparent recognition of
both concepts by the object-oriented community. White papers ([Tal93} and [Tal94])
from Taligent, Inc., a company dedicated to object-oriented technology, validates the
usefulness of both APIs and architectures. Interestingly, Taligent classifies both concepts
under the heading of “frameworks.” From page 4 of [Tal94]:

Another categorization [of frameworks] is based on how a framework is
used--whether you derive new classes or instantiate and combine existing
classes. This distinction is sometimes referred to as architecture-driven
versus data-driven, or inheritance-focused versus composition-focused.

Architecture-driven frameworks rely on inheritance for customization.
Clients customize the behavior of the framework by deriving new classes
from the framework and overriding member functions.

Data-driven frameworks rely primarily on object composition for
customization. Clients customize the behavior of the framework by using
different combinations of objects. The objects that clients pass into the
framework affect what the framework does, but the framework defines
how the objects can be combined.

69

Which is the better approach? As is often the case, arguments can be made in favor of
either technique. Taligent offers the following insight:
Frameworks that are heavily architecture-driven can be difficult to use
because they require clients to write a substantial amount of code to
produce interesting behavior. Purely data-driven frameworks are generally
easy to use, but they can be limiting [Tal94, 4].
Apparently, vendors such as Loral and Paradigm have chosen the API (or data-driven

framework) concept for its ease of use, whereas the AFIT Lab has historically worked in

the realm of inheritance-focused architectures (or architecture-driven frameworks).

For the sake of comparison, the ObjectSim 3.0 API was altered to form the ObjectSim 3.0
Framework. The API and the Framework are virtually identical in capability, but the API
is tailored via composition, whereas the Framework is tailored via inheritance. The design
of the Framework is exactly that shown in Figure 44, with the caveat that the Scene,
Entity, Environment and View classes have new, abstract Update operations. Develop-
ers specify the behavior of each Scene, Entity, Environment and View instance by
writing a new Update operation for every subclass of these classes. The ObjectSim
Framework calls Update for every object instance during each frame of the simulation.
The result of having both an API and Framework is that an ObjectSim 3.0 simulation may
take advantage of the API, with minimal structural requirements on the simulation ifself,
or it may choose to use the Framework, in which case the simulation becomes a
specialized instance of Figure 44. The differences between these two approaches is easiest

to see by way of example, which is a key part of chapter 4.

70

4. Specification and Implementation in Ada 95

4.1 Overview

Section 1.3 of this thesis mentioned a desire to continue demonstrating the viability of the
Ada programming language in the visual simulation domain. To that end, the ObjectSim
3.0 LLS, API and Framework outlined in chapter 3 were implemented in Ada 95.
Although the current implementation does not meet 100% of the specifications, the
majority of code is in place. Several demonstration programs have been completed.

Chapter 4 is organized around the most straightforward of these demonstration programs.

4.2 A Simple Performer Program

Example 3-1 of [Har94] shows a very basic simulation application which uses SGI’s
Performer library. This sample application has been altered slightly and converted to Ada,
and is presented as Figure 45. See [Har94, 36-41] for a complete explanation of this

program.

Figure 45 shows the main program, Simple, and an embedded OpenPipeline routine.
The main program begins by initializing and configuring the Performer library. It then
loads some geometry from a file named “box.flt”, and adds this geometry to the visual
scene. After adding a light source to the scene as well, the program opens a Performer
“pipe,” which also causes an on-screen graphics window to be opened. The final step in

setting up the simulation is the creation and configuration of a Performer “channel.”

71

-- simple.adb - a simple Performer program

-- adapted from page 36 of the IRIS Performer Programming Guide
with GL;

with Performer_ Pr;

with Performer_ Pf;

with Performer_ Pfflt;

with Performer_Prmath;

with Basic_Types; use Basic_Types;

with Interfaces.C.Strings; use Interfaces.C.Strings;

procedure Simple is

Pipe : Performer_Pf.Pfpipe;
Scene : Performer_Pf.Pfscene;
Channel : Performer_°Pf.Pfchannel;
Root : Performer_ Pf.Pfgroup;
Elapsed_Time : Float64 := 0.0;

-- OpenPipeline is called to open the viewing window and set up
-- default view parameters.

procedure OpenPipeline (Pipe : Performer_Pf.Pfpipe) is

LightModel : Performer_Pr.Pflightmodel;
Window_Number : GL.Window_1Id;

begin

-- Negotiate with window manager
GL.Foreground;

Window_Number := GL.Winopen("Simple");
GL.Winconstraints;

-- Negotiate with GL
Performer_ Pf.PfInitGfx(Pipe);

-- Maximize lighting
LightModel := Performer_Pr.PfNewLModel(Performer_ Pr.PfGetSharedArena);
Performer_Pr.PfLModelAmbient(LightModel,1.0,1.0,1.0);

-- Create and apply default texture environment
Performer_Pr.PfApplyTEnv(Performer_Pr.PfNewTEnv
(Performer_ Pr.PfGetSharedArena));

-- Apply the light model
Performer_Pr.PfApplyLModel (LightModel) ;

-- Enable selected options
Performer_Pr.PfEnable(Performer_ Pr.PFEN_TEXTURE) ;
Performer_Pr.PfEnable(Performer_Pr.PFEN_LIGHTING);
end OpenPipeline;
begin -- Simple

-- Initialize Performer
Performer_ Pf.Pfinit;

-- Configure MP mode and start parallel processes
Performer_Pf.Pfconfig;

72

-- Read a single FLIGHT-format file

Scene := Performer_Pf.Pfnewscene;

Root := Performer_ Pfflt.Loadflt(New_String("box.flt"));
Performer_Pf.Pfaddchild(Scene, Root):;

-- Configure and open pipeline
Pipe := Performer_Pf.Pfgetpipe(0);
Performexr_ Pf.Pfinitpipe(Pipe, OpenPipeline'Address);

-- Get and configure channel

Channel := Performer_Pf.Pfnewchan(Pipe);
Performer_Pf.Pfchanscene(Channel, Scene);
Performer_Pf.Pfchannearfar(Channel,1.0,1000.0);
Performer_ Pf.Pfchanfov(Channel,45.0,-1.0);

-- Simulate for 20 seconds
while Elapsed_Time < 20.0 loop

declare
S, C : Float32;
View : Performer_ Prmath.Pfcoord;

Return_vValue : Integer;

begin
-- Go to sleep until next frame time
Return_Value := Performer_Pf.Pfsync;

-- Compute new view position

Elapsed_Time := Performer_Pr.Pfgettime;
Performer_Prmath.Pfsincos(Float32(33.0 * Elapsed_Time),
S'Address,
C'Address):;

Performer_Prmath.Pfsetvec3(View.Hpr'Address,
10.0 * 5, -45.0 + 10.0 * C, 0.0);

Performer_Prmath.Pfsetvec3(View.Xyz'Address,
0.0, -50.0, 50.0);
Performer_Pf.Pfchanview(Channel,View.Xyz'Address,View.Hpr'Address);

-- Initiate cull/draw for this frame
Performer_Pf.Pfframe;
end;

end loop;

-- Clean up and exit
Performer_Pf.Pfexit;

end Simple;

Figure 45. A simple Performer program

Once everything is set up, the main program goes into a 20 second loop. Within this loop,
the viewpoint orientation is modified such that the target object (the box geometry read

from the file) appears to move in a circle. Note the box itself never actually moves; the

viewpoint is rotating about the box.

73

During the course of this approximately 110-line program, there are a few calls to the
IRIS Graphics Library (e.g., identifiers preceded by “GL.”), and many calls to IRIS
Performer (e.g., identifiers preceded by “Performer_Pr”, “Performer_Pf”, etc.). The next
section shows how the same program could be written strictly through use of ObjectSim

Low-Level Services, without any direct calls to GL or Performer.

4.3 Low-Level Services

As explained in chapter 3, the goal of ObjectSim Low-Level Services is to shield
applications from platform-specific graphics libraries. In this first implementation of
ObjectSim 3.0, that goal has been accomplished via the process of dependency-masking.
Dependency-masking means the LLS presents developers with the same conceptual
abstractions as offered by GL and Performer, but with slightly different type, constant and
subprogram names. For example, the specification of the Performer “pfChanScene”

routine is:

procedure Pfchanscene (Chan : System.Address;
Scene : System.Address);

The LLS version of this specification is:

procedure Attach_Channel_To_Scene (Channel : Channel_Type;
Scene ¢ Scene_Type);

Granted, these are subtle changes. But, when used in place of direct references to
Performer and GL, the LLS interface substantially changes the “feel” of a program.
Figure 46 shows Simple2, an adaptation of the original Simple program which works
directly with ObjectSim Low-Level Services. Notice there is no indication that GL or

Performer is being used.

74

-- simple2.adb - a simple visual simulation
-- converted from simple.adb

-- This version of Simple works directly with ObjectSim.Low_Level_Services.
with Basic_Types; use Basic_Types;

with ObjectSim.Low_Level_Services.Math_Utilities;

with ObjectSim.Low_Level_Services.Rendering;

with ObjectSim.Low_Level_ Services.Windows;

with ObjectSim.Low_Level_Services.Vis_Sim.Import_Utilities;

procedure Simple2 is

use ObjectSim.Low_Level_Services;
package Import_Utilities renames Vis_Sim.Import_Utilities;

Elapsed_Time : Floaté64 = 0.0;
Scene : Vis_Sim.Scene_Type;

Pipe : Vis_Sim.Pipe_Type;

Channel : Vis_Sim.Channel_ Type:;

Root : Vis_Sim.Group_Type;

procedure Open_Window (Pipe : Vis_Sim.Pipe_Type) is

Window_Number : Windows.Window_Id_Type;
Light_Model : Rendering.Light_Model_Type;

begin

-- Negotiate with window-manager

Windows .Foreground;

Window_Number := Windows.Open("Simple2");
Windows.Allow_Resizing;

-- Negotiate with GL
Vis_Sim.Initialize_Graphics(Pipe):

-- Maximize lighting
Light_Model := Rendering.New_Light_ Model(Rendering.Get_Shared_Arena);
Rendering.Set_Ambience(Light_Model,1.0,1.0,1.0);

-- Create and apply a default texture environment
Rendering.Apply Texture_Environment
(Rendering.New_Texture_Environment (Rendering.Get_Shared_Arena));

-- Apply the light model
Rendering.Apply_Light_Model(Light_Model);

-- Enable selected options

Rendering.Enable(Rendering.Enable_Texture);

Rendering.Enable(Rendering.Enable_Lighting);
end Open_Window;

begin -- Simple2

-- Initialize Visual Simulation Services
Vis_Sim.Initialize;

-- Configure multiprocessing mode
Vis_Sim.Configure;

-- Read a single FLIGHT-format file and attach geometry to scene
Scene := Vis_Sim.New_Scene;

Root = Import_Utilities.Load_Flt("box.flt");
Vis_Sim.Add_Child(Scene,Root);

75

-- Configure and open pipeline (defaults to pipe 0)
Pipe := Vis_Sim.Get_Pipe;
Vis_Sim.Initialize_Pipe(Pipe,Open_Window'Address);

-- Get and configure channel

Channel := Vis_Sim.New_Channel(Pipe);
Vis_Sim.Attach_Channel_To_Scene(Channel, Scene);
Vis_Sim.Set_Clipping_Planes(Channel,1.0,1000.0);
Vis_Sim.Set_Field_Of_view(Channel,45.0,-1.0);

declare -- Simulate for twenty seconds
Sine_Value,
Cosine_value : Float32;

Viewpoint : Math_Utilities.Coordinates_Type;
Error_Code : Integer;
begin

while Elapsed_Time < 20.0 loop
-- Sleep until next frame time
Error_Code := Vis_Sim.Synchronize;

-- Compute new view position
Elapsed_Time := Rendering.Get_Time;
Math_Utilities.SinCos(Float32(33.0*Elapsed_Time),
Sine_vValue'Address,
Cosine_Value'Address);
Math_Utilities.Set_Vector_3d(Viewpoint.Hpr'Address,
10.0*Sine_value,
-45.0+10.0*Cosine_Value,
0.0);
Math_Utilities.Set_Vector_3d(Viewpoint.Xyz'Address,
0.0,
-50.0,
50.0);
Vis_Sim.Set_vViewpoint(Channel,
Viewpoint.Xyz'Address,
Viewpoint.Hpr'Address) ;

-- Initiate cull/draw for this frame
Vis_Sim.Frame;
end loop;
end;

-- Clean up and exit
Vis_Sim.Cleanup:;

end Simple2;

Figure 46. Simple2, an ObjectSim Low-Level Services version of Simple

Figure 47 shows the Windows package of the LLS. This package exemplifies how Ada
renaming declarations are used to mask dependencies on platform-specific libraries. The
current implementation of ObjectSim Low-Level Services is comprised of approximately

1500 lines of Ada 95 code, predominantly of the style shown in Figure 47. These 1500

76

with GL;
package ObjectSim.Low_Level_Services.Windows is

subtype Window_Id_Type is GL.Window_Id;
subtype Screen_Id_Type is GL.Screen_Id;
subtype X_Coordinate is GL.X_ Screencoord;
subtype Y_Coordinate is GL.Y_Screencoord;

function Screen_Select (Number : Screen_Id_Type)
return Basic_Types.Int32 renames GL.Scrnselect;

procedure Foreground renames GL.Foreground;
procedure Set_Position (Lower_Left_X,
Upper_Right_X : X_Coordinate;
Lower_Left_Y,
Upper_Right_Y : Y_Coordinate)
renames GL.Prefposition;
procedure Allow_Resizing renames GL.Winconstraints;

function Open (Name : String) return Window_Id_Type
renames GL.Winopen;

end ObjectSim.Low_Level_Services.Windows;

Figure 47. The ObjectSim 3.0 Low-Level Services Windows Package

lines cover the majority of the Performer library, but only a small portion of GL. Section

5.2.1 discusses the rationale behind which sections are covered and which are not.

Not only can the LLS be accessed by simulation developers, but it also forms the founda-

tion of the ObjectSim 3.0 API. This portion of ObjectSim is discussed in the next section.

4.4 Application Programming Interface

To use Taligent’s terminology, the ObjectSim 3.0 API offers a data-driven application
framework which is built on top of Low-Level Services. In general, applications which
take advantage of the API will also find cause to use the LLS. For example, the LLS
includes math routines which cannot be abstracted to a higher level. The goal, however, is

to maximize the usefulness of the API, and thereby minimize the necessity of calling Low-

77

Level Services. This arrangement, depicted in Figure 48, should prove advantageous to
ObjectSim maintainers, because it puts two layers of abstraction between applications and
platform-specific libraries such as Performer. Future maintainers will thus have some

flexibility as to the responsibilities and implementation of each layer.

Applications

ObjectSim 3.0 API

ObjectSim 3.0 Low-Level Services

Platform-specific Services

Figure 48. ObjectSim applications will primarily work through the API,
but may alsoe access the LLS.

Figure 49 shows excerpts from the Ada 95 package specification for the View class of the
API. The style of the package is influenced by the Cernosek conventions mentioned in
subsection 2.1.2. The class type is declared with the generic identifier Object, and the
type Reference is an access type which designates values of the class type. This setup
allows developers to declare instances of the class as View.Object, and pointers to

instances of the class as View.Reference.

Each class has a constructor, Initialize, and a destructor, Finalize, as well as operations
for retrieving and adjusting attribute values. Methods above and beyond these basic
operations collectively form the set of highest-level ObjectSim services. An example in
the View class is the Track operation, which causes a view to continually re-orient itself

to face an entity.

78

-- Unit: ObjectSim.API.View
-- Author: Capt Shawn Hannan

-- Comments: The ObjectSim API's View class

with Ada.Finalization;

with ObjectSim.Low_Level_Services.Vis_Sim;

with ObjectSim.API.Scene;

with ObjectSim.API.Entity;

with ObjectSim.API.Coordinate_System; use ObjectSim.API.Coordinate_System;
package ObjectSim.API.View is

type Object is new Ada.Finalization.Limited_Controlled with private;

type Reference is access all Object'Class;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

-- Scene operations

procedure Set_Scene (Instance : in out Object;
Target_Scene : in Scene.Reference);

-- Field of view operations

procedure Set_Horizontal_ FOV (Instance : in out Object;
New_Angle : in Angle := -1.0):

-- Clipping plane operations

procedure Set_Far_Clipping_Plane_Distance (Instance : in out Object;

New_Distance : in Distance);

-- Position/Orientation operations

procedure Set_Position (Instance : in out Object;
New_Position : in Position_vVector);
procedure Track (Instance : in out Object;
Target_Entity : in Entity.Reference);

-- Copy operations

procedure Mimic (Original : in Object;
Copy : in out Object);

79

-- Low_Level_Services operations

function Get_Channel (Instance : Object) return Vis_Sim.Channel_Type;

-- Exceptions

-- raised by Move or Set_Position if position adjustment would
-- move view outside scene boundaries
Position_Error : exception;

private

type Object is new Ada.Finalization.Limited_Controlled with

record
Channel : Vis_Sim.Channel_Type;
Scene_Ptr : Scene.Reference;
Horizontal_ FOV,
Vertical_FOV : Angle = 90.0;
Near_Clipping_Plane_Distance : Distance =1.0;
Far_Clipping_Plane_Distance : Distance = 100_000.0;
Position : Position_Vector = (0.0,0.0,0.0);
Orientation : Orientation_Vector = (0.0,0.0,0.0);
Following : Entity.Reference = null;
Trackee : Entity.Reference = null;

end record;

end ObjectSim.API.View;

Figure 49. A Portion of the ObjectSim API’s View Class

A noteworthy aspect of the API is that most classes include some means of extracting a
lower-level abstraction from a higher one. For example, in the View class there is an
operation called Get_Channel to retrieve the Low-Level Services channel value from a
view instance. Although the goal is to make it unnecessary for developers to work with
Low-Level Services in this way, it is recognized that there may be occasions where

manipulation at this lower level is required.

A second adaptation of the Simple program, designed to use the ObjectSim Application
Programming Interface, is shown in Figure 50. It should be noted at this point that the

APl includes an “extra” package over and above those related to the classes shown in

80

-- simpler.adb - a simple performer program
-- converted from simple.adb

-- This version of Simple works with the ObjectSim API.
with Basic_Types; use Basic_Types;

with ObjectSim.API.Renderer;

with ObjectSim.API.Scene;

with ObjectSim.API.View;

with ObjectSim.API.Coordinate_System;

with ObjectSim.API.Entity.Orientable.ThreeD;

with ObjectSim.Low_Level_Services.Rendering;

with ObjectSim.Low_Level_Services.Math Utilities;
procedure Simpler is

use ObjectSim;
use ObjectSim.API;
package ThreeD renames Entity.Orientable.ThreeD;

Elapsed_Time : Floaté64 := 0.0;

Scenel : Scene.Reference;

Viewl : View.Reference;

Box : ThreeD.Reference;

Viewportl : Renderer.Viewport_Index;
begin -- Simpler

-- Initialize Renderer
Renderer.Initialize;

-~ Allocate and initialize objects

Scenel := new Scene.Object;
Viewl := new View.Object;
Box = new ThreeD.Object;

Viewportl Renderer.New_Viewport;
-- Load geometry into Box object
ThreeD.Load(Box.all, "box.f1t");

-- Add Box to Scenel
Scene.Add(Scenel.all, New_Entity => Entity.Reference(Box));

-~ Configure Viewl (vertical FOV defaults to appropriate angle)
View.Set_Scene(Viewl.all, Target_Scene => Scenel);
View.Set_Horizontal_ FOV(Viewl.all,45.0);
View.Set_vVertical_FOV(Viewl.all);

-- Connect Viewl to Viewportl
Renderer.Set_View(Viewportl,viewl) ;

declare -- Simulate for twenty seconds
Sine_Value,
Cosine_Value : Float32;

Position : Coordinate_System.Position_Vector;
Orientation : Coordinate_System.Orientation_Vector;
begin

while Elapsed_Time < 20.0 loop
-- Sleep until next frame time
Renderer.Synchronize;

-- Compute new view position
Elapsed_Time := Low_Level_Services.Rendering.Get_Time;

81

Low_Level_Services.Math_Utilities.SinCos(Float32(33.0*Elapsed_Time),
Sine_value'Address,
Cosine_vVvalue'Address);

Orientation := (10.0*Sine_Value,
-45.0+10.0*Cosine_Value,
0.0);
Position := (0.0,
-50.0,
50.0);

View.Set_Position(Vviewl.all,Position);
View.Set_Orientation(Viewl.all,Orientation);

-~ Initiate cull/draw for this frame
Renderer.Draw_Frames;
end loop;
end;

-~ Clean up and exit
Renderer.Finalize;

end Simpler;

Figure 50. Simpler, an ObjectSim 3.0 API version of Simple

Figure 36. This package, called Coordinate_System, collects together constants, types
and operations which relate to ObjectSim’s world coordinate system. (The Framework

version of this package, identical to its API counterpart, is given in Appendix B.)

At about 85 lines, this version of the Simple program is indeed simpler than its
predecessors. The primary simplification is that the Renderer is now responsible for
opening the window as part of its initialization. Furthermore, object-oriented

programmers will likely find ThreeD.Load(Box.all, "box.f1t") more natural than

Root := Import Utilities.Load Flt("box.flt").

The final section of this chapter describes how the ObjectSim API was transformed into
the ObjectSim Framework. As discussed previously, the API and Framework are quite
similar. However, the fundamental difference between the two leads to substantially

different application development processes.

82

4.5 The Application Framework

The differences between ObjectSim’s API and Framework were outlined at the end of
chapter 3. In terms of source code adjustments, the following simple steps were sufficient
to transform the Ada 95 API into the Ada 95 Framework:

e The API source code was copied, and all references to “API” in the copy
were changed to “Framework.”

e The class types were changed to abstract types because the Framework
classes are abstract.

e An abstract Update operation was added to the Scene, View, Entity and
Environment classes.

e A Scene_Manager class and a View_Manager class were added to the
Framework. These classes are concrete.

e An abstract Simulation class was added to the Framework. This class is
the template for all ObjectSim simulations which use the Framework.

The Ada 95 source code for the package specifications which comprise the ObjectSim 3.0
Application Framework is attached as Appendix B. It may be helpful for the reader to
examine this appendix now, since the following subsection assumes an understanding of

this code.

4.5.1 Tailoring the Framework

It is easiest to explain the process by which developers tailor the ObjectSim Framework by
taking one last look at the Simple example used throughout this chapter. A good place to
start is with the only entity in this simulation--the box. The box never moves in the course
of Simple, so the behavior of this entity is easy to describe. Figure 51 shows how the Box

subclass is a specialized version of the abstract 3D class.

&3

-- Unit: Box
-- Author: Capt Shawn Hannan

-- Comments: a stationary multi-colored cube

-- History: 23 Sep 95 - created

with ObjectSim.Framework.Entity.Orientable.ThreeD;
package Box is

type Object is new ObjectSim.Framework.Entity.Orientable.ThreeD.Object
with private;

type Reference is access all Object'Class;
procedure Update (Instance : in out Object);
private

type Object is new ObjectSim.Framework.Entity.Orientable.ThreeD.Object
with null record;

end Box;

package body Box is

procedure Update (Instance : in out Object) is
begin

null;
end Update;

end Box;

Figure 51. The Box subclass is derived from the Framework’s 3D class

Slightly more complicated is the rotating view which gives motion to the Simple
simulation. Figure 52 shows how the Rotating_View subclass is derived from the
Framework’s View class, and how the behavior of the subclass is defined in the Update

operation.

All that remains is to define a specialized subclass of the Scene class. In the case of

Simple, the entire scene (comprised of just the one box) is stationary, so the Update

operation need not do anything. In general, however, Scene subclasses will want to

84

-- Unit: Rotating_View
-- Author: Capt Shawn Hannan

-- Comments: the rotating view of the Simplest simulation

-- History: 23 Sep 95 - created

with ObjectSim.Framework.View;
package Rotating_View 1is

type Object is new ObjectSim.Framework.View.Object with private;
type Reference is access all Object'Class;
procedure Update (Instance : in out Object);

private

type Object is new ObjectSim.Framework.View.Object with
null record;

end Rotating_vView;

with Basic_Types; use Basic_Types;
with ObjectSim.Low_Level_Services.Rendering;
package body Rotating_vView is

use ObjectSim;

procedure Update (Instance : in out Object) is

Sine_vValue,
Cosine_value : Float32;

Position : Framework.Coordinate_System.Position_vVector;
Orientation : Framework.Coordinate_System.Orientation_Vector;

Elapsed_Time : Floaté64;

begin
Elapsed_Time := Low_Level_Services.Rendering.Get_Time;
Low_Level_Services.Math_Utilities.SinCos(Float32(33.0*Elapsed_Time),

Sine_Value'Address,
Cosine_value'Address);

Orientation := (10.0*Sine_Value,
-45.0+10.0*Cosine_vVvalue,
0.0);
Position := (0.0,
-50.0,
50.0);

Set_Position(Instance,Position);
Set_Orientation(Instance,Orientation);

end Update;

end Rotating_vView;

Figure 52. The Rotating_View subclass is derived from the Framework’s View class

85

update themselves by calling Update for ali entities in the scene, as well as for the
environment, if there is one. The Simple_Scene subclass, shown in Figure 53,

demonstrates this process.

-~ Unit: Simple_Scene
-- Author: Capt Shawn Hannan

-- Comments: the scene of the Simplest demo

-- History: 23 Sep 95 - created

with ObjectSim.Framework.Scene;
package Simple_Scene is

type Object is new ObjectSim.Framework.Scene.Object with private;
type Reference is access all Object'Class:
procedure Update (Instance : in out Object);

private

type Object is new ObjectSim.Framework.Scene.Object with
null record;

end Simple_Scene;

with ObjectSim.Framework.Entity;
package body Simple_Scene is

use ObjectSim.Framework;

procedure Update (Instance : in out Object) is
begin

-- This can be a bit confusing. Because Simple_Scene is not a
-~ child of the Framework's Scene class, it does NOT have access
-- to the private components of its own record! That means we
-- cannot reference Instance.Number_ Of_Entities, or the set

-- Instance.Entities, and so on. We therefore use public

-- functions to access this information.

for Index in 1..Scene.Number Of_Entities_In(Scene.Object(Instance)) loop
Entity.Update(Scene.Get_Entity(Scene.Object(Instance),Index).all);
end loop;
end Update;

end Simple_Scene;

Figure 53. The Simple_Scene subclass is derived from the Framework’s Scene class

86

Given the Box, Rotating_View and Simple_Scene classes, the next step is to write the
program which brings them all together. This is accomplished by creating a new subclass
of the Framework’s Simulation class, which specifies a relatively simple structure for all
applications based on the Framework. The structure breaks applications into three parts:
initialization, visualization, and finalization. The Simulation class includes a method for
each of these three simulation phases. Each method has default behavior, described
below:

¢ Initialize - initializes the Renderer, Scene_Manager and View_Manager

o Finalize - finalizes the Renderer (the managers are finalized by the run-
time system)

e Visualize - infinitely loops, calling Update for the Scene_Manager and
Update for the View_Manager during each iteration

Application developers will need to override the Initialize method to set up their scenes as
desired. In many cases, the default behavior for Finalize and Visualize will be sufficient,
and will not be overridden. Developers must exercise caution to replicate the required
behavior of overridden methods. For example, when Initialize is overridden, the
developer must ensure the Renderer and manager instances are initialized. This is done
easily enough by calling the Simulation superclass version of Initialize as part of the
implementation of the subclass method. Figure 54, which shows Simplest, the

Framework version of the Simple simulation, demonstrates this technique.

87

-- simplest.ads - a simple performer program

with ObjectSim.Framework.Renderer;

with ObjectSim.Framework.Scene;

with ObjectSim.Framework.View;

with ObjectSim.Framework.Entity.Orientable.ThreeD;
with ObjectSim.Framework.Simulation;

package Simplest is

use ObjectSim.Framework;
package ThreeD renames Entity.Orientable.ThreeD;

type Object is new Simulation.Object with private;
type Reference is access all Object'Class;

procedure Initialize (Instance : in out Object);
-- Visualize and Finalize accept default behavior

private
type Object is new Simulation.Object with
record
Scenel : Scene.Reference;
Viewl : View.Reference;
Viewportl : Renderer.Viewport_Index;
Box1 : ThreeD.Reference;

end record;
end Simplest;
with Box;
with Rotating_View;
with Simple_Scene;
with ObjectSim.Framework.Scene_Manager;
with ObjectSim.Framework.View_Manager;
package body Simplest is

procedure Initjalize (Instance : in out Object) is
begin
-- As required, call superclass Initialize
Simulation.Initialize(Simulation.Object(Instance));

-- Allocate and initialize objects

Instance.Scenel := new Simple_Scene.Object;
Instance.Viewl := new Rotating_View.Object;
Instance.Boxl := new Box.Object;
Instance.Viewportl := Renderer.New_Viewport;

-- Load geometry into Box object
ThreeD.Load(Instance.Boxl.all,"box.flt");

-~ Add Box to Scenel
Scene.Add(Instance.Scenel.all,
New_Entity => Entity.Reference(Instance.Boxl));

-- Configure Viewl (vertical FOV defaults to appropriate angle)
View.Set_Scene(Instance.Viewl.all,

Target_Scene => Instance.Scenel);
View.Set_Horizontal FOV(Instance.Viewl.all,45.0);
View.Set_Vertical_FOV(Instance.Viewl.all);

-- Connect Viewl to Viewportl
Renderer.Set_View(Instance.Viewportl, Instance.Viewl);

-- Inform managers
Scene_Manager.Add(Simulation.Scene_Manager_Of(Simulation.Object(Instance)).all,
Instance.Scenel);
View_Manager.Add(Simulation.View_Manager_Of(Simulation.Object(Instance)).all,
Instance.Viewl);
end Initialize;
end Simplest;

Figure 54. Simplest, the Framework version of the Simple simulation

88

Figure 55 depicts the Simplest simulation. Note the similarity to the ObjectSim 3.0

Application Framework diagram of Figure 44.

Simplest

View_Manager Scene_Manager

looks
upon

Rotating_View Simple_Scene

Y

Box

Figure 55. Simplest is a specialized version of the Application Framework

With the specialization of the Framework complete, the final step is to write a short

procedure to “kick off”” Simplest. This procedure is shown in Figure 56.

-- simplest_driver.adb

-- Initialize is called automatically when S is elaborated. Visualize
-- is called explicitly as the only executable line of this driver.

-- Finalize is called automatically after Visualize is complete, but
-- before Simplest_Driver terminates.

with Simplest;
procedure Simplest_Driver is
S : Simplest.Reference := new Simplest.Object;
begin
Simplest.Visualize(S.all);
end Simplest_Driver;

Figure 56. Simplest_Driver executes the simulation

89

4.5.2 Framework Summary

The case could likely be made that Simplest is actually the least simple version of the
Simple program. Whether using Performer and GL directly, working through the
ObjectSim Low-Level Services layer, or taking advantage of the ObjectSim API, all prior
versions of the application were written as a single procedure. Simplest, on the other
hand, was created by writing four Ada packages and a short driver routine. In terms of
coding, then, Simplest is more complex than its predecessors, if one accepts the argument

that more components implies greater complexity.

The counterargument is that modularization is a means of dealing with complexity. Since
the ObjectSim Framework standardizes the modularization of simulation applications, the

inherent complexity of those applications is always dealt with in the same way. The use of
a recurring design should allow developers to create and maintain applications more easily

than if every application were uniquely structured. Chapter 5 discusses this issue further.

90

5. Results and Comparisons
5.1 Overview

The goal of this chapter is to scrutinize the latest version of ObjectSim, both in isolation
and in comparison to its predecessor, Easy_Sim. Section 5.2 takes a closer look at the
three parts of ObjectSim 3.0, identifying the strengths and weaknesses of those parts.
Section 5.3 examines improvements and shortcomings of ObjectSim 3.0 compared to

Easy_Sim.

5.2 An Analysis of ObjectSim 3.0
The next three subsections offer an analysis of ObjectSim’s Low-Level Services,
Application Programming Interface and Application Framework. The intention is to

identify results which contribute to the “bottom line” of what ObjectSim 3.0 has achieved.

5.2.1 Low-Level Services

The purpose of the LLS is to keep applications from relying on platform-specific libraries
without denying applications the capabilities of those libraries. If future Lab applications
are implemented using the LLS, the potential problem of porting those app‘lications to new
platforms is largely reduced to the problem of porting the LLS. Though moving
ObjectSim’s Low-Level Services to a non-SGI platform would likely prove an arduous
task, the isolation of platform-dependencies in this layer of the architecture still represents

a substantial improvement over the Lab’s status quo.

91

Unfortunately, there are three foreseeable drawbacks to having new applications call the
LLS in lieu of calling the IRIS Graphics Library and Performer. First is the fact that the
LLS, as presently implemented, does not cover the full spectrum of GL and Performer
capabilities. With respect to GL, the LLS currently provides only a small subset of SGI's
routines. This is due to the fact that, in general, visual simulations need only call GL
during initialization to open and configure the graphics window. Thus the initial
implementation of Low-Level Services offers just the few GL-related routines needed for
this purpose. At this point, any applications requiring additional services from GL would
have no choice but to call GL itself. Since existing applications do, in fact, take advantage
of GL for more than opening the graphics window, it is clear that the relationship between
Low-Level Services and GL must be examined in the future. (See subsections 6.2.2.2 and

6.2.2.3.)

With respect to Performer, the LLS includes counterparts to all constants, types and
subprograms which appear in the Ada-to-C Performer bindings supplied by SGI.
Regrettably, these bindings are not complete. That is, there are Performer routines which
can be called from C programs, but which are presently inaccessible from Ada programs.
Since the LLS relies on the bindings, there are no LLS counterparts for any Performer
entities which are missing from the bindings. Fortunately, the omissions are relatively
minor. During implementation of the ObjectSim 3.0 demonstration programs, all required

Performer capabilities were found to be available. Furthermore, once up-to-date,

92

complete bindings are obtained from Silicon Graphics, it should take minimal effort to

incorporate the new features into the LLS.

A second concern with using the LLS in place of direct calls to GL and Performer relates
to programming languages. ObjectSim 3.0 has only been implemented in Ada 95, but Lab
simulations have historically been developed in C and C++. Either the LLS must be

translated to C or C++, or applications which use it must be written in Ada 95.

The third LLS issue is documentation. In the graphics sequence at AFIT, students learn
how to use SGI's GL and Performer libraries. Though the correlation between Low-
Level Services and these libraries is extremely close, the names of all constants, types and
subprograms are different. For the most part, the LLS identifiers are less cryptic (e.g.,
“Attach_Channel_to_Scene” versus “pfChanScene”), but the differing identifiers
nevertheless represents a difficulty for developers. Appendix C contains a set of cross-
reference tables which list the LLS routiI;es and their SGI counterparts. This appendix

represents the only current documentation of Low-Level Services.

5.2.2 The API versus the Framework

Chapter 4 showed how the Simple program was implemented using in one case the
ObjectSim 3.0 API, and in another case the ObjectSim 3.0 Framework. Implementation of
the API version of the program was straightforward. The main procedure simply declared

one instance of the Scene class, one instance of the View class and one instance of the 3D

93

Entity class. By manipulating these instances, as well as making key calls to the

Renderer, the Simple simulation was achieved with about 85 lines of Ada source code.

The Framework version of Simple was relatively complex by comparison. Specialized
subclasses of Scene, View and 3D--as well as the Framework Simulation class--had to be
written. The former three subclasses included a concrete Update operation which
specified the behavior of subclass instances, while the latter subclass had a specialized
Initialize procedure. The overall simulation was further complicated by two additional
class instances, a Scene_Manager instance and a View_Manager instance. The

Framework version also used the Renderer object.

Simply put, it is easier to understand and use the API than the Framework. This does not
imply, however, that it is better to use the API than the Framework. Whereas API-based
simulations will merely share a collection of related classes, simulations based on the
Framework will share a certain basic structure. Once this basic structure is understood,
future maintainers of Framework applications will be able to appreciate the common

foundation which underlies those applications.

Furthermore, since the ObjectSim Framework dictates the structure of conforming

applications, developers are relieved of the burden of designing that structure from

scratch. Hopefully, then, new simulation developers will get their applications off the

94

ground faster than without the Framework, once over the initial hurdle of learning the base

design.

5.2.3 A Closer Look at the Framework

Although using the ObjectSim Framework requires more developer savvy than using the
API, the Framework is actually conceptually fairly simple. In fact, its complexity is
comparable to that of Easy_Sim. The following two subsections examine in more detail

what the Framework does, and does not do, for developers.

5.2.3.1 What the Framework Does

The ObjectSim Application Framework establishes a basic design for visual simulations.
This design will be tailored, via inheritance, for each application. Any application based
on the Framework will have certain characteristics. First, an application will be
represented by a new subclass of Simulation, and will be divided into three phases:
initialization, visualization and finalization. The initialization phase will be unique to each
simulation, though every simulation must call the superclass version of Initialize, because
this routine performs mandatory startup functions. The visualization phase defaults to an
endless loop, during which the Scene_Manager and View_Manager are instructed to
update the scenes and views, and the Renderer is instructed to draw the views to the
screen. The finalization phase performs any necessary post-simulation cleanup. The

default behavior of the latter two phases will likely be sufficient for many applications.

95

Second, as far as composition, an application will probably include exactly one instance of
a Scene subclass, exactly one instance of an Environment subclass, at least one instance

of a View subclass and multiple instances of a variety of Entity subclasses.

Third, the behavior of every Scene, View, Entity and Environment instance is dictated
by the Update operation for the instance’s class. For each frame of the simulation, the
managers will call Update for each scene and view. It is up to developers, however, to
ensure the environment (if there is one) and all entities are updated. This should be done

as part of the Update routine for each Scene subclass. (See Figure 53 for an example.)

5.2.3.2 What the Framework Does Not Do

There are two important things the Framework does not do for developers. First, the
Framework does not assist with dealing with user input. Although this may at first seem
to be a glaring oversight, input-handling was omitted only after careful consideration.
Given that there are so many kinds of input (keyboard, mouse, head-mounted display,
joystick, etc.) and so many purposes for input (executive control, entity manipulation,
view manipulation, etc.), there was no clear way to make input-handling part of the
Framework. It was therefore decided to leave input-handling to application developers as

part of the tailoring process.

The second thing the Framework does not handle for developers is interrelated object

behavior. The Update operation of every subclass is independent of the Update

96

operation for every other subclass. For example, consider a simulation with two views,
Viewl and View2. Assume the Update operation for View1 specifies the view will
maintain a certain location, but will rotate about its Z-axis. Now assume the second view
is supposed to remain stationary until the first view rotates to a certain orientation, then
the second view is to begin rotating as well. This means View2 must have access to
View1’s orientation. The only way this can happen is for the developer to write a special
routine for View2 which allows it to receive a pointer to View1, since no such operation
is inherited from the basic View class. Indeed, except for the relationships inherent to the
ObjectSim Framework, no class instances are aware of any other class instances, unless

the developer adds routines for passing such information.

Since it would be impossible for the Framework to predict which instance behaviors are
related to which other instance behaviors, it is no surprise that this sort of responsibility
falls to the application developers. Still, it is important to recognize that the Framework
divides the overall behavior of simulations into well-defined partitions, but does not assist

in any interactions among those partitions.

5.3 ObjectSim 3.0 Versus Easy_Sim

The objective of this section is to discuss key differences between the ObjectSim 3.0
architecture and its predecessor architecture, Easy_Sim. The following subsections
examine these differences, beginning with ObjectSim’s improvements versus Easy_Sim,

and ending with what might be deemed comparative weaknesses of the new architecture.

97

5.3.1 The Scene Class

Although the Clip and Vega APIs discussed at the beginning of chapter 3 are substantially
different visual simulation products, they share many fundamental concepts. Among these
is the notion that a scene, or world in the case of Clip, is the heart of a visual simulation.
The scene or world is the virtual environment in which the simulation takes place.
Although there are a myriad of other contributing classes, the class representing the

collective scene is central to the abstraction of a visual simulation.

Interestingly, neither the original ObjectSim architecture nor its successor Easy_Sim
include a scene class as part of the design. In both architectures, the abstraction of the
scene is considered a part of the View class. At the start of an Easy_Sim simulation, for
example, an instance of the View class is created, which implicitly creates the overall
scene. Subsequently, a player can be added to the simulation via a routine in the
Simulation class which effectively says, “Add this player to the scene implicitly associated

with this view.” The specification of this routine is:

procedure Add (Instance : in out Simulation.Object;
New_Player : in Player.Reference;
To_View : in View.Reference;
Model_File : in String;
With Coords : in Coords;
Coords_File : in String);

This is less intuitive than the ObjectSim 3.0 approach, in which a routine in the Scene
class is used. This routine says simply, “Add this entity to this scene.” The specification

of this routine is:

procedure Add (Instance : in out Scene.Object;
New_Entity : in Entity.Reference);

98

And because with ObjectSim 3.0 there are two distinct classes with an explicit look upon
association between them (Figure 44), it is possible to have a view switch from one scene
to another in a multi-scene simulation. This isn’t possible with Easy_Sim, because the

scene is fundamentally a part of the view.

Furthermore, this issue casts a shadow of doubt on Easy_Sim’s capability to deal with
multiple views of a single scene. When an instance of the Easy_Sim View class is created,
a new scene is automatically created as well. It is unclear how two views can be
associated with the same scene. Kayloe’s thesis states Easy_Sim has this capability, but

admits it was never attempted [Kay94, 98-101].

5.3.2 Entity versus Player

Easy_Sim’s Player class includes attribute values for both position and orientation, as well
as operations for setting and retrieving these values. In general, this approach makes
sense, since most players will have a dynamic position and orientation within the scene.
The exception is in the case of a player which has no orientation, such as an omni-
directional light source. With Easy_Sim, a Light_Source subclass of Player could be
designed with new attributes for, say, color and intensity. The superclass orientation

attributes would simply be ignored for instances of the Light_Source subclass.

ObjectSim 3.0 exchanges the Player class for the more generically-termed Entity class,

recognizing that not all entities in a simulation are orientable, positionable “players.” The

99

abstract Entity class has no attributes, merely serving as the root of the class hierarchy of
all things which could conceivably be placed in a scene, as shown in Figure 57. (The
ObjectSim approach does assume that all entities have a position in the scene, but position
information is maintained in the Scene class. This decision will be discussed further in

subsection 5.3.8.)

{Entity}

A

{Orientable}

A

3D

Figure 57. The ObjectSim 3.0 Framework’s Entity Hierarchy

In short, the ObjectSim 3.0 architecture partially specifies an entire hierarchy of simulation
entities, whereas Easy_Sim offers only the Player class. Future expansion of this

hierarchy would likely result in an arrangement similar to that shown in Figure 58.

{Entity}

| l
{Orientable} {Non_Orientable}

A A
| | | l

3D Light “ e e Billboard Light_Source

Figure 58. Possible expansion of Entity Hierarchy

100

Foreseeable non-orientable classes include not only the Light_Source class discussed
above, but also a Billboard class. (See [Har94, 115] for an explanation of billboards.) A
likely new orientable subclass would be a Light class for lights which shine in a certain

direction.

5.3.3 Entities, Players and Models

The Easy_Sim architecture has both a Player class and a Model class. In general, an
instance of the Player class has some associated geometry which appears on-screen. This
geometry is stored as an instance of the Model class. Thus, in an Easy_Sim simulation,
the developer is responsible for maintaining two class instances for each visible player--the
Player instance, and the associated Model instance. Although not stated explicitly in
Kayloe’s thesis, the reason for having two distinct classes relates to efficiency. It is
possible for many players to have the same visible geometry. There may therefore be a
many-to-one relationship from Player instances to a single Model instance. By offering
two separate classes, Easy_Sim gives the developer control of which players are
associated with which models. This design also allows players to alter their geometry in

the midst of the simulation.

The ObjectSim 3.0 architecture combines the aforementioned classes into a single 3D
Entity class. The geometric model is an inherent part of this class, so developers are not
burdened with maintaining two separate class instances for each entity. This conceptual
simplification currently causes a potential efficiency loss. ObjectSim does not presently

allow model-sharing by multiple entities, though it would be quite simple to add a

101

Share_Model routine to the 3D class. Nor does ObjectSim presently allow 3D instances
to change models during the simulation, other than by loading new geometry from a file,
which would likely be prohibitively slow. This could be overcome by declaring multiple
instances of the 3D class for a single entity, then loading the geometry for each instance
from a different model file. During the simulation, the various instances could be swapped
into or out of the scene, depending on which geometric representation was desired. This
solution seems at least as burdensome on the developer as the Easy_Sim method, but the
expense of this special case is offset by the complexity savings in the more general case

where an entity has a single associated model, as described above.

5.3.4 Multiple Views

Subsection 5.3.1 pointed out the potential difficulty of working with multiple views in
Easy_Sim. This difficulty is compounded by the fact that Easy_Sim does not give
developers the capability to manipulate viewports, which makes it unclear how Easy_Sim

simulations can have multiple views drawn to a single screen simultaneously.

ObjectSim 3.0 allows the screen to be partitioned into several viewports via calls to the
Renderer. Each instance of the View class can be “attached to” one or more viewports.

These “attachments” can be changed mid-simulation, giving the developer full control over

which views are displayed where at all times.

5.3.5 Following and Tracking

The Easy_Sim Player class includes an operation called Look_At, which reorients a
player such that it faces a particular point. This same operation has been carried over to
ObjectSim 3.0, for both entities and views. Furthermore, ObjectSim has new capabilities
not found in Easy_Sim. As discussed in subsection 3.4.3.2, both entities and views can be
instructed to follow a “leader” entity. As the leader moves, all followers are automatically
moved by the Framework. Secondly, ObjectSim’s View class has a Track operation,
which causes a view to constantly reorient itself to face a selected entity. Again, this is

accomplished automatically by the Framework during each frame of the simulation.

5.3.6 User Input

Subsection 5.2.3.2 discussed the fact that the ObjectSim 3.0 Framework has no provisions
for dealing with user input. Although, as mentioned in that subsection, this was a
conscious decision, it must be noted that this decision caused a slight capability loss versus
Easy_Sim. The Easy_Sim architecture includes a Modifier class, where each instance of
this class is associated with an instance of the View class. A modifier, such as a keyboard,
can be used to change the position and orientation of an associated view. However, by
explicitly offering this capability, Easy_Sim draws attention to the fact that it has no
provisions for handling input for other purposes, such as player movement or executive
control (e.g., stop the simulation immediately). So although ObjectSim has no equivalent

to Easy_Sim’s Modifier class and Modifier-View association, it is more consistent in the

103

sense that user input of all kinds, for any purpose, is the responsibility of the tailorer of the

Framework.

5.3.7 Environment

Easy_Sim and ObjectSim differ substantially in their views of a scene’s environment. With
Easy_Sim, the Environment class has a mandatory association with the Model class.

This means that every Environment instance must include a geometric representation,
such as a mountainscape or city block. While this is convenient for many types of
simulations, it is unnecessarily restrictive; some simulations may require a simple

background color, with no associated 3D model.

ObjectSim 3.0, by contrast, does not associate a 3D model with the environment. Instead,
the Environment class represents almost exactly the same abstraction as the Performer
pfEarthSky. (See [Har94, 185] for a discussion of the pfEarthSky.) This means the
Environment instance may establish things such as a solid background color, or perhaps a
sky of varying shades combined with a terrain of varying shades. In no case, however,
would an ObjectSim environment include buildings, mountains, or any other three-
dimensional objects. These sorts of things would be classified as entities. This raises

another issue, which is discussed in the next subsection.

5.3.8 Static versus Dynamic Entities

ObjectSim 3.0 does not distinguish between static and dynamic entities. This could

potentially impact the speed of the simulation, depending on the implementation of the

104

Framework. Since it is usually more computationally expensive to render frames with
moving entities than it is to render frames with stationary entities, the speed of ObjectSim
3.0 simulations may suffer, because all entities are considered moveable. This simplifica-
tion releases developers from the task of partitioning simulation entities into two groups,
static and dynamic. The run-time cost of this simplification, however, necessitates further

consideration of this issue. (See subsection 6.2.1.4.)

5.3.9 The Division of Labor

A long-recognized principle of software engineering is that of modularity, which asserts
that the complexity of a program should be divided into manageable partitions. It is
undesirable to have a large, monolithic program in which all functionality is contained in a
single module. A program which has been decomposed into a collection of cooperating

components is easier to understand and maintain.

Arguably, the ObjectSim 3.0 Framework is more monolithic than its Easy_Sim counter-
part. As pointed out in chapter 3, ObjectSim’s Scene class is the most elaborate of the
Framework, in the sense that it has the richest set of operations. This is due in large part
to the “simplicity principle” discussed in subsection 3.4.3.2, which mandates a one-way
hierarchy of class dependencies, as shown in Figure 37. This hierarchy establishes that an
entity is not aware that it is positioned within a scene, or that a scene even exists.
Therefore, an entity’s scene position, as well as operations for moving the entity within the

scene, are part of the Scene class. These include the Move, Set_Position, Follow and

105

Stop_Follow routines, as well as the functions which return entity position information.
The end result is that many entity functions may appear to be misplaced in the Scene class,
while the Entity class has no operations of its own, other than the abstract Update
procedure. In this sense, the “division of labor” within ObjectSim may seem top-heavy, as

evidenced by the Rumbaugh diagram of Figure 59.

In an Easy_Sim simulation, the Player class shoulders more of the overall workload than
the Entity hierarchy does in an ObjectSim 3.0 simulation. The case could be made that
ObjectSim’s Entity class should be “strengthened” to be more like a Player by including
the scene position information as a class attribute, and by moving position-related
operations from Scene to Entity. This would better balance the division of labor in an
ObjectSim simulation, at the cost of losing the one-way class dependency hierarchy:
Scene instances would still need to call the Update operation for each entity, and Entity
instances would need to call the Scene class to ensure their positions were within the

scene boundaries.

Such an adjustment would have an additional benefit, but this advantage will be discussed

in chapter 6.

5.3.10 Summary

ObjectSim 3.0 differs from Easy_Sim both in concept and in capability. Conceptually, key
differences include a new Scene class, an Entity class hierarchy in lieu of Easy_Sim’s

Player and Model classes, and a different abstraction of “the environment.”

106

{Scene}

Num_Entities
Entities
Minimum_Corner
Maximum_Corner

Add

Delete

Move

Set_Position
Move_Straight
Look_At

Position_Of
Scene_Position_Of
Number_Of_Entities_In
Get_Entity

Follow
Stop_Following
Number_Of_Followers
Leader_Of
Get_Follower
Set_Environment
Environment_Of
Update {abstract}

¢

.

{Entity}

Update {abstract}

A

{Orientable}

Heading
Pitch
Roll

A

{3D}

Load

4

{Environment}

Red
Green
Blue
Alpha

Update {abstract}

Figure 59. The Scene class and its components

107

In terms of capability, ObjectSim adds to its predecessor the ability to set up multiple
viewports and dynamically attach views to those ports. The new architecture also includes
“following” and “tracking” features not found in Easy_Sim. Lastly, ObjectSim leaves all
aspects of input-handling to simulation developers, whereas Easy_Sim assists developers

in dealing with input for view adjustment, but nothing else.

108

6. Recommendations for Future Study

6.1 Overview

The objective of this final chapter is primarily to offer suggestions for continued work in
this research area. Much of the discussion of recommendations in section 6.2 focuses on
the results and issues described in the preceding chapter. Section 6.3 closes out the

document with final remarks.

6.2 Recommendations

The recommendations for future study are broken down into two categories: technical
improvements and strategic recommendations. The technical improvements subsection
proposes adjustments to the ObjectSim 3.0 architecture as it now stands, and lists the
benefits of those proposals. The strategic recommendations subsection concerns
suggestions for long-term planning in the visual simulation software architecture research

area, based on experiences during this thesis effort.

6.2.1 Technical Improvements

6.2.1.1 Remove Renderer

The Renderer is an anomaly in the ObjectSim Framework. It is a standalone object rather
than a class. It was designed largely as the collecting place for routines which did not fit
in other classes. The functionality of the Renderer could be distributed to other classes,
namely Simulation and View_Manager. Executive control operations, such as setting or
examining the frame rate, could go to Simulation, while routines related to the viewports

could be moved to View_Manager. Another possibility would be to add a Viewport

109

class, some sort of Display class, or both. Adding new classes would be the most natural,
object-oriented way to parcel out this functionality, at the cost of greater architectural and

developmental complexity.

6.2.1.2 Change the Scene/Entity Division of Labor

As discussed in Chapter 5, the Scene class probably does too much, and the Entity class
probably does too little. The classes would be better balanced if the Entity class included
position attributes, as well as all operations related to position. This would make

implementation harder, because Entity and Scene would be mutually-dependent classes.

The end of Chapter 5 alluded to a potential benefit beyond an improved division of labor.
Given the suggested changes, a new Framework Follower subclass of Entity could be
designed. This would be a special kind of entity which is always following some other
entity. The concept could be expanded to other kinds of specialized entities. A Mimic
might follow a lead entity’s movements, and also copy any orientation changes. A
Shadow might maintain a relative position in world coordinates, whereas the Follower
would maintain a relative position in the coordinate system of the leader. In short, a
variety of Entity subclasses could be designed, each with a particular behavior related to

position and orientation.

6.2.1.3 New Kinds of Views
Similar to the previous proposal, new subclasses of the Framework’s View class could be

designed as well. There could be Follower, Mimic and Shadow views. There could also

110

be a Tracker, which would be a view which is always tracking some entity. A

Tracker_Follower could track one entity while following another.

6.2.1.4 Static Entities

ObjectSim does not presently distinguish between static and dynamic entities. This can
have important consequences at run-time. As long as there is the potential that an entity
will move, the position and orientation of that entity must be calculated every frame of the
simulation. If it is known for certain that the entity will not move, these calculations can
be performed only once. For the sake of efficiency, ObjectSim should allow developers to
specify whether an entity is static or dynamic. One way to achieve this distinction would
be with inheritance. The Entity class would be inherently static, and a Dynamic_Entity

subclass would add operations for changing the position and orientation attributes.

Unfortunately, altering the Entity hierarchy in this way, plus incorporating the proposals
of subsection 6.2.1.2, would be a difficult design problem. Trying to maintain the existing
distinction between orientable and non-orientable entities would complicate matters

further. Multiple inheritance might prove necessary.

6.2.1.5 Multiple Environments
The ObjectSim Framework currently limits each scene to a single environment. While this

may seem natural at first, it is actually unnecessarily confining. What if the sky is colored

111

differently in different parts of the scene? Is it the same time of day in all places? Are the

weather conditions uniform throughout the scene?

Since it is often difficult, if not impossible, to define the environment at every location in a
scene, the best way to overcome these problems would be to allow the environment to
vary according to the position and orientation of each view. That is, each view should
query the scene for the local environmental conditions. As views move, they can
continuously receive updates on the sky color, time of day, fog intensity, etc. at the

locations of interest.

This adjustment could be achieved by altering the Scene class to keep a list of
Environment instances, and adding a routine to return a pointer to the appropriate
instance, given a position and orientation (and/or any other information). This operation

would be abstract, and would represent a new tailoring point in the Framework.

6.2.2 Strategic Recommendations

6.2.2.1 Address Distributed Simulation

Adapting ObjectSim to accomodate distributed simulations in a sensible, efficient manner
will be a major undertaking. Fortunately, this thesis effort shed some light on the
complexities which are involved. Namely, the overall software architecture will involve a
multi-process, concurrent design. Determining the high-level architecture for distributed
simulations is critical at this point, and should probably be the number one priority of

future work.

112

6.2.2.2 Convert to OpenGL

As discussed in Chapter 2, OpenGL is a standard graphics library designed by Silicon
Graphics, and intended to be implemented on a wide variety of platforms. The AFIT Lab
is still reliant on IRIS GL, which is the platform-dependent ancestor of OpenGL.
Although OpenGL offers only a subset of GL’s capabilities, it is in the Lab’s best interests
to convert to OpenGL and compensate for any shortcomings. The result would be

application portability at the lowest possible level of abstraction.

6.2.2.3 Upgrade Low-Level Services

ObjectSim’s Low-Level Services is, at present, a layer of aliases to GL and Performer
constructs. This layer could be substantially improved by adding subprogram parameter
defaults, ensuring identifiers are as meaningful as possible, and enhancing the in-source

documentation.

Furthermore, as pointed out in Chapter 5, the LLS does not fully cover the GL and
Performer libraries. Should this be remedied? Should some capabilities of the underlying
libraries be intentionally left out, or collected in “optional” portions of the layer? How
would the conversion to OpenGL impact LLS? Could the layer be improved by
reorganizing the components? These questions must be answered before Low-Level
Services reaches its full potential as a software layer which can be realistically moved to

new platforms, allowing for truly platform-independent visual simulations.

113

6.3 Final Remarks

Like its predecessors, ObjectSim 3.0 offers developers a reusable base design for visual
simulation applications. The latest version of the architecture offers the following new
features:

¢ the capability to develop applications which take advantage of GL and
Performer without actually calling those libraries directly

e a Scene class which captures the abstraction of the virtual world

e the capability to divide the screen into multiple viewports and dynamically
attach and detach views to and from those viewports

¢ the capability to have entities automatically follow other entities, and to
have views automatically track entities as the entities move

e apartially-specified hierarchy of simulation entities, with the capability to
easily extend this hierarchy with new classes
Future efforts will continue to improve the architecture to better support the AFIT Lab.
Hopefully the experiences recorded during this effort, as well as the recommendations

offered in this chapter, will be beneficial to successor architects.

114

Appendix A. ObjectSim Application Performer References

This appendix contains the results of searching through four ObjectSim applications for
references to SGI's Performer library. Any word beginning with the letters “pf” (upper,
lower, or mixed case) was flagged. References within comment boundaries were ignored.
The results are broken down by application. Each listing shows every Performer identifier
which was referenced within that application, the number of times each identifier was
flagged, and the total number of all non-comment Performer references.

A.l. The Red Flag Debriefing Tool

Pfmr_Renderer 6
PFSET_VEC 175
pfMatrix 42
pfMakeIdentMat 16
pfMultMat 54
pfSqgrt 3
pfVvec 237
PFCOPY_VEC 14
pfMalloc 24
pfGetSharedArena 24
pfGetSemaArena 3
| pfMakeRotMat 26
| pfXformvec 5
| PFADD_VEC 34
| pfTransposeMat 6
| PFSUB_VEC 4
| pfXformpPt 14
| pfNormalizeVec 4
‘ pfMakeScaleMat 16
| pfMakeTransMat 19
| PF_X 177
| PF_Y 174
| PF_Z 172
| pfMakeEulerMat 16
‘ pfNewSCS 18
pfNewDCS 20
| pfAddChild 58
pfGetTime 5
PFMAKE_IDENT_MAT 2
PF_R 14
PF_P 23
| pfDCSMat 3
| PF_H 25
} pfSetvec 28
| pfSCS 17
pfTraverser 3
pfChannel 8
pfESkyColor 3
1
PFES_GRND_FAR 1
PFES_CLEAR 1
pfESkyMode 1

PFES_GRND_NEAR
115

PFES_BUFFER_CLEAR
PFES_SKY_CLEAR
pfCoord
pfAddvec
pfMakeCoordMat
pfPreMultMat
pfDotVec
pfDistancePt
pfDCSScale
pfSinCos
pfBillboard
PF_DEG
pfScaleVec
pfNodeTravFuncs
pfPushState
pfBasicState
pfPopState
pflengthVec
pfChanViewport
pfChanFOV
pfDrawChanStats
pfInit
pfMultiprocess
PFMP_APPCULLDRAW
pfInitClock
PFNFY_INFO
pfNotifyLevel
pfConfig
pfNodeTravMask
PFTRAV_DRAW
PFTRAV_SELF
PF_AND
pfChanNearFar
pfFrameRate
PFLENGTH_VEC
pfDCSTrans
pfSegMode
PFSEQ_START
pFont

pfGroup
pfNewGroup
pfRemoveChild
PF_RAD
pEDCSCoord
pfz_rot
pfy_rot
pfx_rot
pfArcSin
pfCopyMat
pfmr_hpr
pfmr_to_euler_hpr
pfSeg
pfMakePtsSeg
pFOV

pfExit
pfArcTan
pfArcCos

pFile

w

PFHERPORERSBRBRRPHEIUNRRHERMOPRNRPEPHEHROBREOUORNEROR B
1N}

EPNRPRPRORANDNNOSNNDONDNOGO S WW

7

Performer references grand total: 1686

116

A.2. The Space Modeler

PF_X

PF_Y

PF_12

pfSeg

pfvec
PFSET_VEC
pfLengthVec
pfMatrix
pfCoord
pfMakeCoordMat
pfPreScaleMat
pfMultMat
pfMakeIdentMat
pfInvertMat
pfXformPt
pfMalloc
pfGetSharedArena
pfPushState
pfBasicState
PF_ON
pfPopState
pfTraverser
pfNodeTravFuncs
PFTRAV_DRAW
pfNodeTravData
PFTRAV_CONT
pfNewDCS
pfaddChild
pfDCSCoord
PFCOPY_VEC
pfMakePtsSeg
pfMakeScaleMat
pfNewSCS
pfGroup
pfGeoState
pfS8CS

pfLight

PF_H

PF_P

PF_R

pfCopyVec
pfInit
pfMultiprocess
PFMP_DEFAULT
pfSetVec
pfArcTan
pfPipe
pfGetPipe
pfGetPipeSize
pfGetPipeOrigin
pfCopyMat
pfSwitch
pfNewSwitch
pfNewGroup

282
281
266
48
196
165
3
33
36
9

2

4

6

3
17
18
18
8

8

5
10
21
7
11
5

9
10
41

[y
w

WRNURHFWWWARRHRHRERARBUOKRNROUO UG
~] & WO w

117

pfSwitchval
pfSegIsectTri
pfNode
pfGetTime
pfDisable
PFEN_LIGHTING
pfChannel

pfseg
PFNEGATE_VEC
PFADD_VEC
pfNormalizeVec
pfGetOrthoMatCoord
pfDrawChanStats
PFSUB_VEC

pfadd
PFDISTANCE_PT
pfRemoveChild
pfSphere
Pfmr_Renderer
pfuMakeTexList
pfChanFov
pfChanNearFar
pfPreMultMat
pfDCSMat
pfLPointPos
pfuDownloadTexList
PFUTEX_SHOW
pfNode.
pfNewLPoint
pfLPointSize
pfLPointShape
PFLP_OMNIDIRECTIONAL
pfLPointColor
pfDCSRot

pfDCS

PFDOT_VEC
PFLENGTH_VEC
PFSCALE_VEC
pfList
pfLightPoint
pfubDrawMessageRGB
PFU_MSG_PIPE
PFU_CENTER_JUSTIFIED
PFU_FONT_BIG
PFU_FONT_MED
pfNewLight
pfLightAmbient
pfLightPos
pfLightOn
PFCOPY_MAT
PFTRAV_CULL
pfPreTransMat

w N

[«)}

o

PRERBNNRPRERPREERENNRERERENRERENOEREENWREEDUORRE WL L

IS
SRR

e e e e

9

Performer references grand total: 1992

118

A.3. The Synthetic Battle Bridge

pfSeg 79
pfvec 375
PFSET_VEC 448
PF_X 214
PF_Y 214
PF_2Z 197
pfCoord 59
PF_H 61
PF_P 34
PF_R 14
pfNodeTravFuncs 5
PFTRAV_DRAW 10
pfNodeTravData 5
pfTraverser 15
pfPushState 7
pfBasicState 7
pfPopState 7
PFTRAV_CONT 5
pfMatrix 45
pfMakeCoordMat 8
pfPreScaleMat 10
pfMultMat 5
pfMakeIdentMat 13
pfInvertMat 4
pfXformPt 21
pfMalloc 34
pfGetSharedArena 37
PFCOPY_VEC 54
pfChannel 11
pfCopyVec 4
Pfmr_Renderer 8
pflInit 1
pfCopyMat 1
pfSwitch 7
pfNewSwitch 6
pfMakeScaleMat 1
pfNewSCS 1
pfNewGroup 11
pfAddChild 43
pfscs 4
pfSwitchval 29
pfSegIsectTri 2
pfGroup 8
pfNode 7
pfPipe 1
pfGetPipe 1
pfGetPipeSize 1
pfseg 5
pfMakePtsSeg 1
pfPreTransMat 21
pfGetOrthoMatCoord 3
pfDCSCoord 5
pfDrawChanStats 2
pfRemoveChild 8

119

PFSWITCH_ON
PFSWITCH_OFF
pfGetTime
piNewDCS
pfNewLOD
pfLODRange
pfInsertChild
PF_RAD
PFLENGTH_VEC
pfNormalizeVec
PFSCALE_VEC
pfGetSwitchval
pf

pfDCSMat
PFSUB_VEC
pfLOD
pfChanLODAttr
PFLOD_FADE
pfNewFog
pfFogType
PFFOG_PIX EXP
pfChanViewport
pfFog
piIDCSTrans
pfSegMode
PFSEQ_START
PFDISTANCE_PT
PFCOPY_MAT
pfEarthSky
pfLight
pfNewLight
pfLightPos
pfLightAmbient
pfLightColor
pfDCSScale
pfNode.
pfNewLPoint
pfLPointShape

PFLP_OMNIDIRECTIONAL

pfLPointColor
pfLPointSize
pfLPointPos
pfOverride
PFSTATE_FOG
PFSTATE_ENFOG
PF_OFF
pfFogRange
pfFogColor
pfEnable
PFEN_FOG
pfApplyFog
PF_ON
pfDisable
pfESkyAttr
PFES_GRND_HT
pfESkyMode
PFES_BUFFER_CLEAR
PFES_FAST
pfESkyColor
PFES_CLEAR

[
~N

_oew
N

I—‘O\l—'t\JMI\JWHHI—‘t\)i—-‘I—‘I—‘wwwwl—'P—‘wf—-‘}—‘l—‘}-—‘O\k\)l\)l\)f—‘mlﬂl—‘Mh#MmMMMMHHH#\)\]HNMwwG\w

120

pfChanESky
PFES_SKY_GRND
PFES_SKY_TOP
PFES_SKY_BOT
PFES_HORIZ
PFES_GRND_NEAR
PFES_GRND_FAR
PFES_HORIZ_ANGLE
pfLightOff
pfGetCurLights
pfDCS
pfBillboard
pfLightPoint

PRBRPRRRERERRERRRBD

Performer references grand total: 2394

A4. The Virtual Cockpit

pfTraverser 12
pfMalloc 22
pfGetSharedArena 22
pfCoord 21
pfMatrix 72
pfMakeEulerMat 60
pfNewSCS 65
pfNewDCS 64
pfNewGroup 2
pfAddChild 209
PFSET_VEC 405
pfNodeTravFuncs 4
pfNodeTravData 4
PFTRAV_DRAW 14
pfSeg 56
pfvec 629
pfChannel 7
pfPushState 8
pfBasicState 8
pfPopState 8
PFTRAV_CONT 4
pfDrawChanStats 1
PF_X 184
PF_Y 183
PF_7Z 160
pfScaleVec 10
PFADD_VEC 92
PF_H 35
PF_P 23
PF_R 18
PFCOPY_VEC 71
pfDCSCoord 10
pfseg 5
pfMakePtsSeg 11
pfGroup 3
pfscs 35
Pfmr_Renderer 4

pfMakeTransMat 72

121

pfRemoveChild
pfGetTime
pfMakeRotMat
pfMultMat
pfXformvec
pfulsect
pfuSegsIsectNode
PFTRAV_IS_PRIM
PFSUB_VEC
pfSetVec
pflLengthVec
pfArcTan
pfMakeCoordMat
pfPreScaleMat
pfMakeIdentMat
pfInvertMat
pfXformPt

pfmr
pfSegsIsectNode
pfPlane
PFNEGATE_VEC
pfMakeNormPtPlane
pfPtInHalfSpace
PFTRAV_IS_GEODE
PFTRAV_IS_CULL_BACK
pfCopyVec
pfGetSemaArena
pfsSqrt
pfTransposeMat
pfNormalizeVec
pfSinCos
pfArcCos
pfSubVec
pfDotVec
pfMakePolarSeg
pfDistancePt
pfPtInFrust
pfFrustNearFar
pfMakeSimpleFrust
pfOrthoXformFrust
pfNewFrust
pfFrustum
pfMakeScaleMat
PFMAKE_IDENT_MAT
pfDCSMat
pfDCSRot
pfDCSTrans
pfInit
pfMultiprocess
PFMP_DEFAULT
pfEarthSky
PFES_SKY_TOP
PFES_SKY_BOT
PFES_HORIZ
pfNewESky
pfESkyColor
PFES_GRND_NEAR
PFES_GRND_FAR
PFES_CLEAR
pfESkyMode

16
21
49
167

DA UGV 0O =0 W RN
E.) oo w oNn

NPEPEREMNMNOPBPOS-

[8}

EFNMMNMORPNNONFEFRPRNWONMANNNNASNNORDWORWWNG I
[\SJNe]

122

PFES_BUFFER_CLEAR
PFES_SKY_CLEAR
pfESkyAttr
PFES_HORIZ_ANGLE
pfChanESky
pfChanTravMode
PFDRAW_OFF
pfChanFOV
PFDRAW_ON
pfGetChanESky
pfChanViewport
PFSQR_DISTANCE_PT
pfCopyMat
pfuMakeTexList
pfNode
pfuDownloadTexList
PFUTEX_SHOW
pfList

pfvec
pfmr_renderer
pfSwitch
pfNewSwitch
pfSwitchval
pfSeglsectTri
pfInitClock
PFSCALE_VEC
PFCOPY_MAT

FREOVRERPOORRPRERRORBEROPONUNRR B R

Performer references grand total:

3420

123

Appendix B. ObjectSim 3.0 Ada 95 Source Code

In total, the Ada 95 implementation of ObjectSim 3.0 currently exceeds 6,000 lines of
source (including comments and blank lines). For the sake of space, this appendix
contains only the package specifications for the Ada 95 Application Framework.

B.1. The all-encompassing Framework package

-- Unit: ObjectSim.Framework
-- Author: Capt Shawn Hannan

-- Comments: This package collects all aspects of the framework in one place.

-- History: 23 Sep 95 - created

with ObjectSim.Low_Level_Services; use ObjectSim.Low_Level_ Services;
package ObjectSim.Framework is

end ObjectSim.Framework;

B.2. The Coordinate System package

-- Unit: ObjectSim.Framework.Coordinate_System
-- Author: Capt Shawn Hannan

-- Comments: This package collects all constants, types and operations
-- related to the world coordinate system supported by the
-- ObjectSim Framework.

-- Distance and Angle should really be private types, but are
-- currently implemented as subtypes of other visible types.

-- History: 22 Sep 95 - created from ObjectSim.API.Coordinate_System

with ObjectSim.Low_Level_Services.Math_Utilities;
package ObjectSim.Framework.Coordinate_System is

X : constant := Math_Utilities.X;
Y : constant Math_Utilities.Y;
Z : constant Math_Utilities.Z;

il

n

]

Heading : constant
Pitch : constant
Roll : constant

Math_Utilities.Heading;
Math_Utilities.Pitch;
Math_Utilities.Roll;

non

subtype Distance is Math_Utilities.Distance_Type;
subtype Angle is Math_Utilities.Angle_Type;

subtype Position_Vector is Math_Utilities.Vector_3d_Type;
subtype Orientation_Vector is Math_Utilities.Vector_3d_Type;

-- can be used for position vectors or orientation vectors
function "+" (Left, Right : Math_Utilities.Vector_3d_Type)
return Math_Utilities.Vector_3d_Type;

end Objectsim.Framework.Coordinate_System;

124

B.3. The abstract Environment package

-- Unit: ObjectSim.Framework.Environment
-- Author: Capt Shawn Hannan

-- Comments: The ObjectSim Framework's Environment class

-- History: 22 Sep 95 - created from ObjectSim.API.Environment

with Ada.Finalization;
with ObjectSim.Low_Level_Services.Vis_Sim;
package ObjectSim.Framework.Environment is

type Object is abstract new Ada.Finalization.Limited_Controlled with private;
type Reference is access all Object'Class;

-- For setting the percentage of Red, Green and Blue in a color
type Intensity_ Percentage is digits 7 range 0.0 .. 1.0;

-- The abstract Update operation

procedure Update (Instance : in out Object) is abstract;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

-- Background color operations

procedure Set_Background_Color (Instance : in out Object;
Red,
Green,
Blue,
Alpha : Intensity_Percentage);

function Background_Red_Of (Instance : Object) return Intensity_Percentage;
function Background_Green_Of (Instance : Object) return Intensity_ Percentage;
function Background_Blue_Of (Instance : Object) return Intensity_Percentage;

function Background_Alpha_Of (Instance : Object) return Intensity_Percentage;

-- Low_Level_Services operations

function Get_Earthsky (Instance : Object) return Vis_Sim.Earthsky_Type;
private

type Object is abstract new Ada.Finalization.Limited_Controlled with
record
Earthsky : Vis_Sim.Earthsky_Type;
Red,
Green,
Blue,
Alpha : Intensity_ Percentage := 0.0;
end record;

end ObjectSim.Framework.Environment;

125

B.4. The abstract Entity package

-- Unit: ObjectSim.Framework.Entity
-- Author: Capt Shawn Hannan

-- Comments: The ObjectSim Framework's Entity class
-- An entity is anything which can be placed in a scene.

-- History: 22 Sep 95 - created from ObjectSim.API.Entity

with Ada.Finalization;
with ObjectSim.Low_Level_Services.Vis_Sim;
package ObjectSim.Framework.Entity is

type Object is abstract new Ada.Finalization.Limited_Controlled with private;

type Reference is access all Object'Class;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object):

procedure Finalize (Instance : in out Object);

-- Low_Level_Services operations

function Get_Node (Instance : Object) return Vis_Sim.Dynamic_Coordinate_System_Type;
private

-- I am making an important simplifying assumption here. I am assuming
-- every entity can be positioned within a scene. Furthermore, most

-- entities will have an associated orientation. I am therefore using
-~ the Vis_Sim.Dynamic_Coordinate_System_Type for all entities. This
-- will adversely affect performance, but will ease implementation.

type Object is abstract new Ada.Finalization.Limited_Controlled with
record
Node : Vis_Sim.Dynamic_Coordinate_System_Type;
end record;

end ObjectSim.Framework.Entity;

B.5. The abstract Orientable Entity package

-- Unit: ObjectSim.Framework.Entity.Orientable
- Author: Capt Shawn Hannan

-- Comments: The ObjectSim Framework's Orientable Entity class

-- An orientable entity is any entity which has a heading, pitch
-- and roll.

-- History: 22 Sep 95 - created from ObjectSim.API.Entity.Orientable

with ObjectSim.Framework.Coordinate_System; use ObjectSim.Framework.Coordinate_System;
package ObjectSim.Framework.Entity.Orientable is

type Object is abstract new Entity.Object with private;

type Reference is access all Object'Class;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

126

procedure Finalize (Instance : in out Object);

-- Orientation operations

procedure Set_Orientation (Instance : in out Object;
New_Orientation_Vector : in Orientation_Vector);
procedure Set_Heading (Instance : in out Object;
New_Heading : in Angle);
procedure Set_Pitch (Instance : in out Object;
New_Pitch : in Angle);

procedure Set_Roll (Instance : in out Object;
New_Roll : in Angle);

function Orientation_Of (Instance : Object) return Orientation_Vector;
function Heading_Of (Instance : Object) return Angle;
function Pitch_Of (Instance : Object) return Angle;
function Roll_Of (Instance : Object) return Angle;
private
type Object is abstract new Entity.Object with
record
Heading,
Pitch,
Roll : Angle := 0.0;

end record;

end ObjectSim.Framework.Entity.Orientable;

B.6. The abstract 3D Entity package

-- Unit: ObjectSim.Framework.Entity.Orientable.ThreeD
-- Author: Capt Shawn Hannan

-- Comments: The ObjectSim Framework's ThreeD model class

-- History: 22 Sep 95 - created from ObjectSim.API.Entity.Orientable.ThreeD

package ObjectSim.Framework.Entity.Orientable.ThreeD is
type Object is abstract new Orientable.Object with private;
type Reference is access all Object'Class;

procedure Update (Instance : in out Object) is abstract;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

-- File operations

procedure Load (Instance : in out Object;
Filename : in String);

private
type Object is abstract new Orientable.Object with null record;

end ObjectSim.Framework.Entity.Orientable.ThreeD;

127

B.7. The abstract Scene package

-- Unit: ObjectSim.Framework.Scene
-- Author: Capt Shawn Hannan

~- Comments: The ObjectSim Framework's Scene class

-- History: 22 Sep 95 - created from ObjectSim.API.Scene

with Ada.Finalization;

with ObjectSim.Low_Level_Services.Vis_Sim;

with ObjectSim.Framework.Coordinate_System; use ObjectSim.Framework.Coordinate_System;
with ObjectSim.Framework.Entity.Orientable;

with ObjectSim.Framework.Environment;

package ObjectSim.Framework.Scene is

type Object is abstract new Ada.Finalization.Limited_Controlled with private;

type Reference is access all Object'Class;

-- The abstract Update operation

procedure Update (Instance : in out Object) is abstract;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

-- Boundary operations

procedure Set_Boundaries (Instance : in out Object;
Minimum_Corner : in Position_Vector;
Maximum_Corner : in Position_Vector);

function Minimum_Corner_Of (Instance : Object) return Position_Vector;

function Maximum_Corner_Of (Instance : Object) return Position_Vector;

-- Environment operations

procedure Set_Environment (Instance : in out Object;
New_Environment : in Environment.Reference);

function Environment_Of (Instance : Object) return Environment.Reference;

-- Entity operations

procedure Add (Instance : in out Object;
New_Entity : in Entity.Reference);
procedure Delete (Instance : in out Object;
Target_Entity : in Entity.Reference);
procedure Move (Instance : in out Object;
Target_Entity : in Entity.Reference;
Offset : in Position_Vector);
procedure Set_Position (Instance : in out Object;
Target_Entity : in Entity.Reference;
New_Position : in Position_Vector);
procedure Move_Straight (Instance : in out Object;
Target_Entity : in Entity.Orientable.Reference;
How_Far ¢ in Distance);

128

procedure Look At (Instance : in out Object;

Target_Entity : in Entity.Orientable.Reference;
Position : in Position_Vector);
function Position_Of (Instance : Object;

Target_Entity : Entity.Reference) return Position_Vector;

function Scene_Position_Of (Instance : Object;
Target_Entity : Entity.Reference) return Position_Vector;

function Number_Of_Entities_In (Instance : Object) return Natural;

function Get_Entity (Instance : Object;

Number : Positive) return Entity.Reference;
procedure Follow (Instance : in out Object;
Follower : in Entity.Reference;
Leader : in Entity.Reference);
procedure Stop_Following (Instance : in out Object;
Follower : in Entity.Reference);
function Is_Following (Instance : Object;

Target_Entity : Entity.Reference) return Boolean;

function Number_Of_Followers (Instance : Object;
Target_Entity : Entity.Reference)
return Natural;

function Leader_Of (Instance ¢ Object;
Target_Entity : Entity.Reference)
return Entity.Reference;

function Get_Follower (Instance : Object;
Target_Entity : Entity.Reference;
Number : Positive)

return Entity.Reference;

-- Low_Level_Services operations

function Get_Scene_Root (Instance : Object) return Vis_Sim.Scene_Type;

-- Exceptions

-- raised when an entity operation is called for an entity
-- which has not been added to the scene
Entity_Not_In_Scene_Error : exception;

-- raised when Stop_Following or Leader_Of is called, but
-- entity is not following anything
Not_Following_Error : exception;

-- raised by Get_Entity or Get_Follower when Number is
-- too high
Index_Error : exception;

-- raised by Move or Set_Position if position adjustment
-- would move entity outside boundaries
Position_Error : exception;

-- raised by Environment_Of if there is the environment of
-- the scene has not been set
No_Environment_Error : exception;
private
-- a rather arbitrary "maximum distance" used to establish default corners

-- for the scene
Max_Distance : constant := 1_000_000.0;

129

Default_Minimum_Corner : constant Position_Vector := (X => -Max_Distance,
Y => -Max_Distance,
Z => -Max_Distance);

Default_Maximum_Corner : constant Position_Vector := (X => Max_Distance,
Y => Max_Distance,
Z => Max_Distance);

-- Better to use linked lists, but I'll use arrays for now.

Max_Entities_Per_Scene : constant := 50;
Max_Followers_Per_Entity : constant := 20;
type Follower_List is array (1 .. Max_Followers_Per_Entity)
of Entity.Reference;
type Entity_Record is
record
Number_Of_Followers : Natural = 0;
Entity_Ptr : Entity.Reference;
Position : Position_Vector := (0.0,0.0,0.0);
Followers : Follower_List;
Following : Entity.Reference := null; -- not following anyone

-- when null
end record;

type Entity_List is array (1 .. Max_Entities_Per_Scene) of Entity_Record;

type Object is abstract new Ada.Finalization.Limited_Controlled with

record
Number_Of _Entities : Natural = 0;
Entities : Entity_List;
Scene : Vis_Sim.Scene_Type;
Minimum_Corner : Position_Vector = Default_Minimum_Corner;
Maximum_Corner : Position_Vector := Default_Maximum_Corner;
Environment_Ptr : Environment.Reference;

end record;

end ObjectSim.Framework.Scene;

B.8. The abstract View package

-- Unit: ObjectSim.Framework.View
-- Author: Capt Shawn Hannan

-- Comments: The ObjectSim Framework's View class

-- History: 22 Sep 95 - created from ObjectSim.API.View

with Ada.Finalization;

with ObjectSim.Low_Level_Services.Vis_Sim;

with ObjectSim.Framework.Scene;

with ObjectSim.Framework.Entity;

with ObjectSim.Framework.Coordinate_System; use ObjectSim.Framework.Coordinate_System;
package ObjectSim.Framework.View is

type Object is abstract new Ada.Finalization.Limited_Controlled with private;

type Reference is access all Object'Class;

-- The abstract Update operation

procedure Update (Instance : in out Object) is abstract;

-- Initialize and Finalize operations

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

130

-- Scene operations

procedure Set_Scene (Instance : in out Object;
Target_Scene : in Scene.Reference);

function Scene_Of (Instance : Object) return Scene.Reference;

-- Field of view operations

procedure Set_Horizontal FOV (Instance : in out Object;
New_Angle : in Angle := -1.0);
procedure Set_Vertical FOV (Instance : in out Object;
New_Angle : in Angle := -1.0);

function Horizontal FOV_Of (Instance : Object) return Angle;

function Vertical FOV_Of (Instance : Object) return Angle;

-- Clipping plane operations

procedure Set_Near_ Clipping_Plane_Distance (Instance : in out Object:
New_Distance : in Distance});

procedure Set_Far_Clipping_Plane_Distance (Instance : in out Object;
New_Distance : in Distance);

function Near_Clipping_Plane_Distance_Of (Instance : Object) return Distance;

function Far_Clipping_Plane_Distance_Of (Instance : Object) return Distance;

-- Position/Orientation operations

procedure Set_Position (Instance : in out Object;
New_Position : in Position_Vector);

procedure Move (Instance : in out Object;

Offset : in Position_Vector);
procedure Set_Orientation (Instance : in out Object;
New_Orientation : in Orientation_Vector):;

function Orientation_Of (Instance : Object) return Orientation_Vector;
function Position_Of (Instance : Object) return Position_Vector;
function Scene_Position_Of (Instance : Object) return Position_Vector;

procedure Follow (Instance : in out Object;
Target_Entity : in Entity.Reference);

procedure Stop_Following (Instance : in out Object);
function Is_Following (Instance : Object) return Boolean;
function Leader_Of (Instance : Object) return Entity.Reference;

procedure Look_At (Instance : in out Object;

Position : in Position_Vector);
procedure Track (Instance : in out Object;
Target_Entity : in Entity.Reference);

procedure Stop_Tracking (Instance : in out Object);
function Is_Tracking (Instance : Object) return Boolean;

function Trackee_Of (Instance : Object) return Entity.Reference;

131

-- Copy operations

procedure Mimic (Original : in Object;
Copy : in out Object);

-- Low_Level_Services operations

function Get_Channel (Instance : Object) return Vis_Sim.Channel_Type;

-- Exceptions

-- raised by Move or Set_Position if position adjustment would
-- move view outside scene boundaries
Position_Error : exception;

-- raised by Stop_Following and Leader_Of when the view is not
-- following an entity

Not_Following_Error : exception;

-- raised by Stop_Tracking and Trackee_Of when the view is not
-- tracking an entity

Not_Tracking_Error : exception;

private

type Object is abstract new Ada.Finalization.Limited_Controlled with

record
Channel : Vis_Sim.Channel_Type;
Scene_Ptr : Scene.Reference;
Horizontal_FOV,
Vertical_FOV : Angle := 90.0;
Near_Clipping_Plane_Distance : Distance = 1.0;
Far_Clipping_Plane_Distance : Distance := 100_000.0;
Position : Position_Vector = (0.0,0.0,0.0);
Orientation : Orientation_Vector := (0.0,0.0,0.0);
Following : Entity.Reference = null;
Trackee : Entity.Reference = null;

end record;

end ObjectSim.Framework.View;

B.9. The private View Movement package

-- Unit: ObjectSim.Framework.View.Movement
-- Author: Capt Shawn Hannan

-- Comments: a private package for use by other Framework class implementations
b Specifically, this package was initially created as a place to

-- put the Catch_Up operation. This operation will be called each

-- frame by the Renderer, but there is no need for this operation

-- to be publicly available.

-- History: 22 Sep 95 - created from ObjectSim.API.View.Movement

private package ObjectSim.Framework.View.Movement is
procedure Catch_Up (Instance : in out Object);

end ObjectSim.Framework.View.Movement;

132

B.10. The Renderer Package

-- Unit:
-- Author:

-- Comments:

ObjectSim.Framework.Renderer
Capt Shawn Hannan

The ObjectSim Framework's Renderer object

The Renderer manipulates a single implied window. Within
that window, any number of viewports may be created. Each
viewport is capable of displaying the output for a single
ObjectSim view.

22 Sep 95 - created from ObjectSim.API.Renderer

with Ada.Finalization;

with ObjectSim.Framework.View;

with ObjectSim.Low_Level_Services.Vis_Sim;
package ObjectSim.Framework.Renderer is

Max_Frame_Rate : constant := 60.0;
Max_Viewports : constant := 4;
type Viewport_Count is range 0 .. Max_Viewports;

subtype Viewport_Index is Viewport_Count range 1

type Frame_Rate is digits 7 range 0.0 .. Max_Frame_Rate;

-- Used to set up viewport sizes
type Normalized_Distance is digits 7 range 0.0 .. 1.0;

-- Initialize and Finalize operations

procedure Initialize;

procedure Finalize;

-- Frame rate operations

procedure Set_Frame_Rate (New_Frame_Rate : in Frame_Rate);

function Current_Frame_Rate return Frame_Rate;

-- Draw operations

procedure Synchronize;

procedure Draw_Frames;

-- Viewport operations

function New_Viewport return Viewport_Index;

function Number_ Of_ Viewports return Viewport_Count;

procedure Set_Corners (Viewport_Number : in Viewport_Index;
Left ¢ in Normalized_Distance
Right : in Normalized_Distance :=
Bottom : in Normalized_Distance :=
Top : in Normalized_Distance :=
procedure Set_View (Viewport_Number : in Viewport_Index;
Target_View ¢ in View.Reference);

function Left Of (Viewport Number : Viewport_Index)
return Normalized_Distance;

133

Viewport_Count'Last;

OO OO

RPOROo
~ .

function Right Of (Viewport_Number : Viewport_Index)
return Normalized_Distance;

function Bottom_Of (Viewport_Number : Viewport_Index)
return Normalized_Distance;

function Top_Of (Viewport_Number : Viewport_Index)
return Normalized_Distance;

function Associated_View_Of (Viewport_Number : Viewport_Index)
return View.Reference;

function Associated_Viewport_Of (Target_View : View.Reference)
return Viewport_Index;

-- Low_Level_Services operations

function Get_Pipe return Vis_Sim.Pipe_Type;

-~ Exceptions

-- raised by New_Viewport when max viewports already allocated
Too_Many_Viewports_Error : exception;

-- raised by Draw_Frames when no views have been set
No_Views_Error : exception;

-- raised by Associated_Viewport_Of when there is no associated viewport
No_Associated_Viewport_Error : exception;

-- raised by Associated_View_Of when there is no associated view
No_Associated_View_Error : exception;

end ObjectSim.Framework.Renderer;

B.11. The Scene_Manager package

-- Unit: ObjectSim.Framework.Scene_Manager
-- Author: Capt Shawn Hannan

-- Comments: Manages instances of the Framework's Scene class

-- This is a concrete class. The default behavior is simple.
-- Developers "register" their scenes with the Scene_Manager by
-~ calling Add. Subsequent calls to Update will cause the

-- Scene_Manager to call the Update operation for each scene.

-- History: 22 Sep 95 - created

with Ada.Finalization;
with ObjectSim.Framework.Scene;
package ObjectSim.Framework.Scene_Manager is

-- Arbitrarily set to 3 for now
Max_Scenes : constant := 3;

type Object is new Ada.Finalization.Limited_Controlled with private;
type Reference is access all Object'Class;

procedure Add (Instance : in out Object;
New_Scene : in Scene.Reference);

procedure Update (Instance : in out Object);

-- raised by Add when adding a new scene would exceed the maximum
Too_Many_Scenes_Error : exception;

134

private

type Scene_Count is range 0 .. Max_Scenes;
subtype Scene_Index is Scene_Count range 1 .. Max_Scenes;

type Scene_List is array (Scene_Index) of Scene.Reference;

type Object is new Ada.Finalization.Limited_Controlled with

record
Number_Of_Scenes : Scene_Count := 0;
Scenes : Scene_List;

end record;

end ObjectSim.Framework.Scene_Manager;

B.11. The View_Manager package

-- Unit: ObjectSim.Framework.View_Manager
-- Author: Capt Shawn Hannan

-- Comments: Manages instances of the Framework's View class
-- This is a concrete class. The default behavior is simple.
-- Developers "register" their views with the View_Manager by

-- calling Add. Subsequent calls to Update will cause the
- View_Manager to call the Update operation for each view.

-- History: 22 Sep 95 - created

with Ada.Finalization;
with ObjectSim.Framework.View;
package ObjectSim.Framework.View_Manager is

-- Arbitrarily set to 8 for now
Max_Views : constant := 8;

type Object is new Ada.Finalization.Limited_Controlled with private;
type Reference is access all Object'Class;

procedure Add (Instance : in out Object;
New_View : in View.Reference);

procedure Update (Instance : in out Object);

-- raised by Add when adding a new view would exceed the maximum
Too_Many_Views_Error : exception;

private
type View_Count is range 0 .. Max_Views;
subtype View_Index is View_Count range 1 .. Max_Views;

type View_List is array (View_Index) of View.Reference;

type Object is new Ada.Finalization.Limited_Controlled with

record
Number_Of_Views : View_Count := 0;
Views ¢ View_List;

end record;

end ObjectSim.Framework.View_Manager;

135

B.13. The abstract Simulation package

-- Unit:
-- Author:

-- Comments:

ObjectSim.Framework.Simulation
Capt Shawn Hannan

The ObjectSim framework's Simulation class

This abstract class serves as the template for all ObjectSim
visual simulations which are based on the Framework.

22 Sep 95 - created

with Ada.Finalization;

with ObjectSim.Framework.Scene_Manager;
with ObjectSim.Framework.View_Manager;
package ObjectSim.Framework.Simulation is

type Object is abstract new Ada.Finalization.Limited_Controlled with private;

type Reference is access all Object'Class;

-- Default behavior for Initialize and Finalize is provided. This behavior
-- is mandatory. Subclasses which override these operations must call the
-- superclass operations as part of their implementations.

procedure Initialize (Instance : in out Object);

procedure Finalize (Instance : in out Object);

procedure Visualize (Instance : in out Object);

-- Manager retrieval operations

function Scene_Manager_Of (Instance : Object) return Scene_Manager.Reference;

function View_Manager Of (Instance : Object) return View_Manager.Reference;

private

-- Subclass designers may add any number of scenes, views and
-- entities, as well as an optional environment.

type Object is abstract new Ada.Finalization.Limited_Controlled with

record

Scene_Managerl : Scene_Manager.Reference;
View_Managerl : View_Manager.Reference;
end record;

end ObjectSim.Framework.Simulation;

136

Appendix C. Low-Level-Services Cross-Reference Tables

The following tables provide cross-references from ObjectSim 3.0 Low-Level-Services
routines to their SGI counterpart routines. Known omissions are italicized and listed at
the end of each table.

C.1. Math Utilities (SGI Counterpart: libprmath)

Low-Level-Services Routine SGI Routine
SinCos Pfsincos

Arctan Pfarctan2
Arcsin Pfarcsin

Arccos Pfarccos
Degrees_To_Radians PF_DEG2RAD
Radians_To_Degrees PF_RAD2DEG
Max PF_MAX2

Min PF_MIN2
Set_Vector_2d Pfsetvec2
Subtract_Vector_2d Pfsubvec2
Length_Of_Vector_2d Pflengthvec2
Set_Vector_3d Pfsetvec3
Copy_Vector_3d Pfcopyvec3
Negate_Vector_3d Pfnegatevec3
Add_Vector_3d Pfaddvec3
Subtract_Vector_3d Pfsubvec3
Scale_Vector_3d Pfscalevec3
Normalize_Vector_3d Pfnormalizevec3
Cross_Muitiply_Vector_3d Pfcrossvec3
Transform_Point_3d Pfxformpt3
Length_Of_Vector_3d Pflengthvec3
Distance_Between_3d_Points Pfdistancept3
Make_Segment Pfmakeptsseg
Make_Polar_Segment Pfmakepolarseg
New_Frustum Pfnewfrust
Make_Empty_Box Pfmakeemptybox
Make_Euler_Matrix Pfmakeeulermat
Make_Box_Around_Points Pfboxaroundpts
Make_Translation_Matrix Pfmaketransmat
Make_Scaling_Matrix Pfmakescalemat
Make_Coordinate_Matrix Pfmakecoordmat
Get_Orthogonal_Matrix_Coordinates Pfgetorthomatcoord
Multiply_Matrices Pfmultmat
Post_Multiply_Matrix Pfpostmultmat
Pre_Multiply_Matrix Pfpremultmat
Invert_Matrix Pfinvertmat

137

C.2. Rendering (SGI Counterpart: libpr)

Low-Level-Services Routine SGI Routine
New_Geostate Pfnewgstate
Set_Attributes Pfgstateattr
Push_State Pfpushstate
Basic_State Pfbasicstate
Pop_State Pfpopstate
Override Pfoverride
Set_Cullface Pfcullface

Enable Pfenable

Disable Pfdisable
New_Geoset Pfnewgset
Set_Number_Of_Primitives Pfgsetnumprims
Number_Of_Primitives_Of Pfgetgsetnumprims
Set_Primitive_Type Pfgsetprimtype
Primitive_Type_Of Pfgetgsetprimtype
Set_Primitive_Lengths Pfgsetprimlengths
Primitive_Lengths_Of Pfgetgsetprimlengths
Set_Geostate Pfgsetgstate
Geostate_Of Pfgetgsetgstate
Set_Attributes Pfgsetattr
Attribute_Binding_Of Pfgetgsetattrbind
Get_Attribute_Lists_Of Pfgetgsetattrlists
Set_Draw_Mode Pfgsetdrawmode
Draw_Mode_Of Pfgetgsetdrawmode
Draw Pfdrawgset
Set_Line_Width Pfgsetlinewidth
Line_Width_Of Pfgetgsetlinewidth
Set_Point_Size Pfgsetpntsize
Point_Size_Of Pfgetgsetpntsize
Get_Bounding_Box Pfgetgsetbbox
Set_Bounding_Box Pfgsetbbox
New_Texture Pfnewtex
Load_Texture_File Pfloadtexfile
Free_Texture_Image Pffreeteximage
Texture_Image_Of Pfteximage
Set_Texture_Format Pftexformat
Texture_Format_Of Pfgettexformat
Set_Texture_Filter Pftexfilter
Texture_Filter_Of Pfgettexfilter
Set_Texture_Repeat Pftexrepeat
Texture_Repeat_Of Pfgettexrepeat
Apply_Texture Pfapplytex
Idle_Texture Pfidletex
Is_Texture_l.oaded Pfistexloaded
Current_Texture Pfgetcurtex
New_Texture_Environment Pfnewtenv
Apply_Texture_Environment Pfapplytenv
Set_Texture_Environment_Mode Pftenvmode
New_Material Pfnewmtl
Set_Side Pfmtlside
Side_Of Pfgetmtlside

138

Set_Alpha Pfmtlalpha
Alpha_Of Pfgetmtlalpha
Set_Shininess Pfmtishininess
Shininess_Of Pfgetmtlshininess
Set_Color Pfmticolor
Set_Color_Mode Pfmtlcolormode
Apply_Material Pfapplymtl
New_Light Pfnewlight
New_Light_Model Pfnewlmodel
Set_Ambience Pfimodelambient
Apply_Light_Model Pfapplylmodel
New_Fog Pfnewfog
Set_Type Pffogtype
Set_Range Pffogrange
Get_Range_Of Pfgetfogrange
Set_Offsets Pffogoffsets
Set_Ramp Pffogramp
Set_Color Pffogcolor
Apply_Fog Pfapplyfog
Current_Fog Pfgetcurfog
Push_Identity_Matrix Pfpushidentmatrix
Pop_Matrix Pfpopmatrix
Malloc Pfmalloc

Free Pffree
Set_Notify_Level Pfnotifylevel
Current_Notify_Level Pfgetnotifylevel
Get_Time Pfgettime
Initialize_Clock Pfinitclock
Set_File_Path Pffilepath
Get_Shared_Arena Pfgetsharedarena
not covered Pflightambient
not covered Pflightcolor

not covered Pflightpos

not covered Pflighton

not covered Pfnewgeoset

not covered Pfdeltex

not covered Pftexdeletor

not covered Pfcopytex

C.3. Import Utilities (SGI Counterpart: libpfflt/libpfsgi)

Low-Level-Services Routine SGI Routine
Load_Flt Loadflt
Load_Any Loadfile

139

C.A4. Vis_Sim (SGI Counterpart: libpf)

Low-Level-Services Routine SGI Routine
Initialize Pfinit

Cleanup Pfexit
Multiprocess Pfmultiprocess
Multipipe Pfmultipipe
Configure Pfconfig
Synchronize Pfsync

Frame Pfframe

Draw Pfdraw

Cull Pfcull
Set_Isector_Function Pfisectfunc
Set_Synchronization_Method Pfphase
Set_Frame_Rate Pfframerate
Frame_Rate Pfgetframerate
Field_Rate Pfgetfieldrate
Initialize_Pipe Pfinitpipe
Get_Pipe Pfgetpipe
Initialize_Graphics Pfinitgfx
Get_Pipe_Origin Pfgetpipeorigin
Get_Pipe_Size Pfgetpipesize
Get_Channel_Origin Pfgetchanorigin
Get_Channel_Size Pfgetchansize
New_Channel Pfnewchan
Set_Viewport Pfchanviewport
Get_Viewport Pfgetchanviewport
Set_Viewpoint Pfchanview
Set_Traversal_Mode Pfchantravmode
Set_Clipping_Planes Pfchannearfar
Set_Field_Of_View Pfchanfov
Allocate_Data Pfaliocchandata
Pass_Data Pfpasschandata
Set_Draw_Function Pfchandrawfunc
Set_Cull_Function Pfchancullfunc
Attach_Channel_To_Scene Pfchanscene
Draw_Statistics Pfdrawchanstats
Clear Pfclearchan
Set_Stress_Filter Pfchanstressfilter
Set_Stress Pfchanstress
Stress_Of Pfgetchanstress
Load_Of Pfgetchanload
Attach_Earthsky_To_Channel Pfchanesky
Set_Level_Of Detail_Attributes Pfchanlodattr
New_Earthsky Pfnewesky
Set_Mode Pfeskymode
Set_Attribute Pfeskyattr
Set_Color Pfeskycolor
Set_Name Pfnodename
Name_Of Pfgetnodename
Parent_Of Pfgetparent
Number_Of_Parents_Of Pfgetnumparents
Clone Pfclone

140

Flatten Pfflatten
Set_Traversal_Functions Pfnodetravfuncs
Set_Traversal_Data Pfnodetravdata
New_Group Pfnewgroup
Find_Group Pffindgroup
Add_Child Pfaddchild
Replace_Child Pfreplacechild
Insert_Child Pfinsertchild
Remove_Child Pfremovechild
Get_Child Pfgetchild
Number_Of_Children_Of Pfgetnumchildren
New_Scene Pfnewscene
New_Dynamic_Coordinate_System Pfnewdcs
Set_Scale Pfdcsscale
Set_Rotation Pfdcsrot
Set_Translation Pfdcstrans
New_Level_Of Detail Pfnewlod
Find_ILevel_Of_Detail Pffindlod
Set_Level_Of_Detail Range Pflodrange
Set_Level_Of_Detail_Center Pflodcenter
Get_Level_Of_Detail_Center Pfgetlodcenter
New_Light Pfnewlsource
Set_Ambient_Light Pflightambient
Set_Light_Color Pflightcolor
Set_Light_Position Pflightpos
Turn_On Pflighton
New_Geode Pfnewgeode
Find_Geode Pffindgeode
Number_Of_Geosets_Of Pfgetnumgsets
not covered Pfnewscs

not covered Pffog

not covered Pfgetchanfrust
not covered Pfgetchanbasefrust
not covered Pfdcscoord
not covered Pfdcsmat

not covered Pfaddgset

not covered Pfremovegset
not covered Pfinsertgset
not covered Pfreplacegset
not covered Pfgetgset

C.5. Vis_Sim-Stats (SGI Counterpart: libpfstats)

Low-Level-Services Routine SGI Routine
Stats_Class_Of Pfstatsclass
Chan_FStats_Of Pfgetchanfstats
Set_Channel_Stats_Mode Pfchanstatsmode
Draw_FStats Pfdrawfstats

141

C.6. Utilities (SGI Counterpart: libpfutil)

Low-Level-Services Routine SGI Routine

Initialize Pfuinitutil
Cleanup Pfuexitutil
Initialize_Input Pfuinitinput
Cleanup_Input Pfuexitinput
Get_Mouse Pfugetmouse
Get_Events Pfugetevents
Collect_Input Pfucollectinput
Map_Mouse_To_Channel Pfumapmousetochan
Collide_Setup Pfucollidesetup
Ground_Collision Pfucollidegrnd
New_Shared_Texture PfuNewSharedTex
Get_Shared_Texture_List PfuGetSharedTexList
Make_Texture_List PfuMakeTexList
Download_Texture_List PfuDownloadTexList
Get_Texture_Size PfuGetTexSize

C.7. Windows (SGI Counterpart: gl)
Low-Level-Services Routine SGI Routine
Foreground Foreground
Set_Position Prefposition
Allow_Resizing Winconstraints
Open Winopen

142

[Ada95]

[Bel95]

[Boo91]

[Cer93]

[Cur95]

[Dia94]

[For94]

[Gar93]

[Har94]

[How91]

[IDD94]

[Jan94]

Bibliography

“AdalC News,” Ada Joint Program Office, Arlington, Virginia;
Spring 1995.

Bell, Gavin, “Openlnventor Frequently Asked Questions (FAQ),” Silicon
Graphics, Inc., Mountain View, California; 1995.

Booch, Grady, Object Oriented Design with Applications, Benjamin/
Cummings, Redwood City, California; 1991.

Cernosek, Gary, “ROMAN-9X: A Technique for Representing Object
Models in Ada 9X Notation,” Tri-Ada ‘93 Conference Proceedings,
Association for Computing Machinery, Inc., Seattle, WA; September 1993.

Curry, Damon, Electronic Mail Message, Paradigm Simulation, Inc.,
Dallas, Texas; August 1995.

Diaz, Milton, “The Photo Realistic AFIT Virtual Cockpit,” MS Thesis
AFIT/GCS/ENG/94D-11, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio; November 1994.

Fortner, Jonathan, “Distributed Interactive Simulation Virtual Cassette
Recorder: A Datalogger with Variable Speed Replay,” MS Thesis
AFIT/GE/ENG/94D-10, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio; December 1994.

Garlan and Shaw, “An Introduction to Software Architecture,” Advances

in Software Engineering and Knowledge Engineering, Volume I, World
Scientific Publishing Co., Singapore; 1993.

Hartman and Creek, IRIS Performer Programming Guide, Silicon
Graphics, Inc., Mountain View, California; 1994.

Howard, Hewitt, Hubbold, Wyrwas, A Practical Introduction to PHIGS
and PHIGS Plus, Addison-Wesley Publishing Co., Workingham, England,;
1991.

Interface Design Document for Clip, version 1.4, Loral Advanced
Distributed Simulation, Bellevue, Washington; September 1994,

Janett, Hayes, and Miller, “CLIP: An Open Interface for Interactive Real-
Time Visual Simulations,” Loral Advanced Distributed Simulation,
Bellevue, Washington; June 1994.

143

[Jan95]

[Kay94]

[Loc94]

[McL92]

[Pro94]

[Rei90]

[RM9I5]

[Roh94]

[Rum91]

[Sch94]

[Seg93]

[She92]

Janett, Annette, Electronic Mail Message, Loral Advanced Distributed
Simulation, Bellevue, Washington; June 1995.

Kayloe, Jordan, “Easy_Sim: A Visual Simulation System Software
Architecture with an Ada 9X Application Framework,” MS Thesis
AFIT/GCS/ENG/94D-11, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio; December 1994.

Locke, John, “An Introduction to the Internet Networking Environment
and SIMNET/DIS,” Computer Science Department, Naval Postgraduate
School, Monterey, California; January 1994.

McLendon, Patricia, Graphics Library Programming Guide, Volume I,
Silicon Graphics, Inc., Mountain View, California; 1992.

Prosise, Jeff, “Advanced 3-D Graphics for Windows NT 3.5: Introducing
the OpenGL Interface, Part 1,” Microsoft Systems Journal, M&T
Publishing Co.; October 1994.

Reiss, S.P., “Connecting Tools Using Message Passing in the Field
Program Development Environment,” IEEE Software; July 1990.

Ada 95 Reference Manual: Language and Standard Libraries, Intermetrics,
Inc., Cambridge, Massachusetts; 1995.

Rohrer, J.J., “Design and Implementation of Tools to Increase User
Control and Knowledge Elicitation in a Virtual Battlespace,” MS Thesis
AFIT/GCS/ENG/94D-20, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio; December 1994.

Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, Inc., New York, New York; 1991.

Schaffer, Allan, “SGI Performer Frequently Asked Questions (FAQ),”
Silicon Graphics, Inc., Mountain View, California; 1994.

Segal and Akeley, “The OpenGL Graphics Interface,” Silicon Graphics,
Inc., Mountain View, California; 1993.

Sheasby, Steven, “Management of Simnet and DIS Entities in Synthetic
Environments,” MS Thesis AFIT/GCS/ENG/92D-16, School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB,
Ohio; December 1992.

144

[Sny93]

[Tal93]

[Tal94]

[Tan88]

[Van94]

[VPG94]

Snyder, Mark, “ObjectSim: A Reusable Object-Oriented DIS Visual
Simulation,” MS Thesis AFTT/GCS/ENG/93D-20, School of Engineering,
Air Force Institute of Technology, Wright-Patterson AFB, Ohio;
December 1994.

“Leveraging Object-Oriented Frameworks,” Taligent, Inc., Cupertino,
California; 1993.

“Building Object-Oriented Frameworks,” Taligent, Inc., Cupertino,
California; 1994.

Tanenbaum, Andrew, Computer Networks, Second Edition, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey; 1988.

Vanderburgh, John, “Space Modeler: An Expanded, Distributed, Virtual
Environment for Space Visualization,” MS Thesis AFIT/GCS/ENG/94D-
23, School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, Ohio; December 1994.

Vega Programmer’s Guide, Paradigm Simulation, Inc., Dallas, Texas;
1994,

145

Vita

Captain Shawn Michae! Hamnan [1 v

raised in Harford County, Maryland, and graduated from Fallston High School in 1986.

Hannan attended the University of Texas at Austin, from which he received a Bachelor of
Arts in Computer Science in 1990. Captain Hannan was commissioned in the United
States Air Force via the Reserve Officers' Training Corps, and began serving on active
duty in the spring of 1991. His first assignment was as an Ada instructor with the 333d
Training Squadron at Keesler Air Force Base, Mississippi. From Keesler, Hannan went to
the Air Force Institute of Technology in Dayton, Ohio to pursue a Master's of Science in
Computer Systems. His subsequent assignment was to the headquarters of the Air Force

Command, Control, Communications and Computer Agency at Scott AFB, Illinois.

Permanent Address:

146

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubtic reporting burden for this coilection of information s estimated to average 1 hour per resporse, inctuding the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and compieting and reviewing the collection of information. Send comments re?arding this burden estimate or any other aspec® of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Otfice of Management and Budget. Paperwerk Reduction Project (0704-0188), Washingtan, OC 20503,

1. AGENCY USE ONLY (Leave blank) {2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1995 Technical Report; Thesis

4. TITLE AND SUBTITLE

OBJECTSIM 3.0: A SOFTWARE ARCHITECTURE FOR THE
DEVELOPMENT OF PORTABLE VISUAL SIMULATION APPLICATIONS

5. FUNDING NUMBERS

6. AUTHOR(S)
Captain Shawn M. Hannan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/95D-05

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Office ATTN: Mr. Gary Shupe
Center for Software

Joint Interoperability and Engineering Organization
5600 Columbia Pike, Suite 364

Falls Church, VA 22041

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
A visual simulation software architecture is a reusable design for visual simulation applications. This thesis effort
was the third stage in an ongoing refinement of such an architecture, named ObjectSim. The goals of this stage
were to improve the architecture by eliminating its dependence on two platform-specific graphics libraries (named
GL and Performer, from Silicon Graphics, Inc.), and to examine the potential for expanding the architecturs to
accommodate distributed simulations.

The effort resulted in a new version of the architecture which allows the development of visual simulation ap-
plications which take full advantage of the aforementioned libraries without calling those libraries directiy. This
capability substantially improves the potential portability of future applications.

ObjectSim also has other enhancements not found in its predecessors, but still does not accommodate distributed
simulations. Insights into addressing the distributed simulation issue are, however, included in this thesis.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Architecture, Visual Simulation 157

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRALT

UL

NSN 7540-01-280-5500

tandard Form 298 (Rev. 2-89)

Proctibed by ANSE St 739-'3

	Objectism 3.0: A Software Architecture for the Development of Portable Visual Simulation Applications
	Recommended Citation

	tmp.1695056339.pdf.NegJj

