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Abstract 

Linear prediction filtering techniques have been used in studying the coupling 

processes between the solar wind and magneto sphere. The magnetosphere is a complex, 

dynamic system with at least two independent coupling methods for energy input, driven 

and unloading. Linear models were built and tested on the Bargatze data set, consisting of 

over 70 days of geomagnetic indices and solar wind data ordered in 34 intervals of 

increasing geomagnetic activity. Linear filtering techniques employing single- and 

multiple-input, autoregressive models predicted values of the magnetic index AL from 

solar wind data. The impulse response curves of the AL-coupling function groups showed 

amplitude peaks at 25 and 70 minutes, confirming results in previous studies. The 

separate peaks indicate responses corresponding to the driven and unloading time scales. 

The average correlation coefficients generated between predicted AL values and the 

measured values of AL were 0.665, 0.738, and 0.793 for single, dual, and triple input 

models, respectively. 
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APPLICATION OF AUTOREGRESSIVE MOVING AVERAGE LINEAR 

PREDICTION FILTERS TO THE CHARACTERIZATION OF 

SOLAR WIND-MAGNETOSPHERE COUPLING 

I.   Introduction 

Background 

In the last three decades of solar wind-magnetosphere coupling research, 

geomagnetic activity has been indirectly linked to variations in the solar wind. In general, 

changes in components of the solar wind (bulk solar wind speed, Interplanetary Magnetic 

Field (IMF) strength and orientation, etc.) cause changes in the geomagnetic activity 

levels. The exact relation defining the interaction between the solar wind and the 

magnetosphere is currently unknown. Several theories have been proposed, but none are 

able to account for all of the observed phenomena. 

Due to the complexity of the detailed physical relationship between solar wind 

components and geomagnetic activity levels, empirical techniques have been used to relate 

the two. Correlative studies [Gonzalez, 1990] have established "important" solar wind 

parameters. When adopted as "inputs" in a linear predictive filter analysis [Bargatze et al., 

1985; Clauer, 1986] or "states" in a state-input space approach [Vassiliadis et al., 1995], 

geomagnetic activity, in terms of the magnetic indices, may be forecast with a high degree 

of success. These system approaches additionally provide insight on energy 



transfer/relaxation time scales and permit assessment of simple models of solar wind- 

magneto sphere coupling. 

The solar wind is an extension of the Sun's corona. The Sun's activity, and hence 

the solar wind's characteristics, are primarily chaotic in nature, with only a minimum of its 

features being predictable. If a forecast of the geomagnetic indices is desired, solar wind 

data retrieved from a point upstream of the Earth (nearer to the Sun) is required. The 

WTND/Solar Wind Interplanetary Measurements (WIND/SWIM) satellite, launched by 

National Aeronautics and Space Administration (NASA) in November of 1994, provides 

data on the components of the solar wind (Figure 1). In May 1997, the satellite will enter 

a permanent orbit at the Lagrange point, named "LI", located at approximately 1% of the 

Sun-Earth distance upstream. From this distance, data recorded by the satellite provides 

researchers approximately one hour lead time before coupling actions are initiated 

between the solar wind and magnetosphere. 

Problem Statement 

The 50th Weather Squadron (50 WS), located at Falcon AFB in Colorado Springs, 

prepares and disseminates forecasts and information on the solar and geomagnetic activity 

levels. The standard forecast is persistence, i.e., forecasting current conditions to continue 

into the future. The 50 WS has currently begun implementing and testing the 

Magnetospheric Specification Model (MSM), a model that describes the current state of 

the magnetosphere. The model uses various inputs but can be run with a single input, the 

magnetic index Kp. 



In the near future, the Magnetospheric Specification Forecast Model (MSFM) will 

begin testing. Until the MSFM (a true forecast model) is fully implemented, the MSM (a 

"nowcast" model) using a predicted Ap will provide the only predictive capability to the 

forecasters. Thus, the development of a model which can predict Ap would greatly 

enhance the capability of the MSM and provide a better prediction of geomagnetic activity 

than persistence. 

WIND spacecraft and instruments 

WAVES 

TGRS 

3-D PLASMA 

—-j '■ 

WAVES 

KONUS 

EPACT 

SMS, not shown, is on the far side 
of the spacecraft. Second sensor 
for KONUS is obscured on the bottom 
of the spacecraft 

MFI 

Figure 1. WIND/SWIM Satellite.   (Courtesy of the Space Environment Lab, Boulder.) 



Research Objectives 

The initial research objective of this thesis will be to reproduce the results of 

Clauer [1986], applying linear prediction filter techniques to solar wind-magneto sphere 

coupling.   Specifically, using the Bargatze data set [Bargatze, 1985], a 5-interval, 

moving-average filter will be constructed to predict AL from VBS, the product of the bulk 

solar wind speed and the rectified vertical component of the solar wind's magnetic field. 

The results will be compared with previous works and actual measurements of the 

AL index. Multiple input models will then be developed to determine possible 

improvement in the predictive capability of linear filter models. The results of the multiple 

input models will then be contrasted with a state-input space model [Vassiliadis, 1995]. 

Data Source 

The data base for this study will be the Bargatze data set. This data set is 

comprised of data recorded from November 1973 to December 1974 and is the same data 

set used by Clauer [1986] and Vassiliadis, et al. [1995]. The data set consists of the AL 

and AE indices as well as solar wind plasma and IMF measurements at 2.5 minute time 

resolution. The plasma and IMF observations were averaged over 2.5 minute periods for 

comparison with the AL index values, which were obtained from the World Data Center, 

Boulder, Colorado [Clauer, 1986]. 

There are 34 time intervals included in the Bargatze data set, ordered from low- 

to high-level activity, and encompassing 73 days of data. The intervals are at least one day 



long, but shorter than four days. Each interval is temporally bounded at both ends by a 2- 

hour segment of small, nearly zero solar wind input and AL index values [Bargatze, 1985]. 



II. Literature Review 

In this chapter, the relevant background information will be given in five sections. 

The first section will discuss the physics of the solar wind, magneto sphere, and solar wind- 

magnetosphere coupling. The second portion will introduce the relevant geomagnetic 

indices, discuss how they are formed, and identify the geographic latitudes where their 

areas of greatest influence lie. The third section will give a more detailed description of 

the WIND/SWIM satellite. The fourth section will review the approaches and findings of 

Bargatze et al. [1985], Clauer [1986], and Vassiliadis et al. [1995]. The last section will 

introduce and explain the criteria for assessing the quality and accuracy of the overall 

output. 

Solar Wind and Magnetosphere 

The sun's atmosphere does not have a well-defined exterior boundary. The solar 

corona expands into space, and is referred to as the solar wind. The solar wind is a fully- 

ionized, quasi-neutral plasma, consisting primarily of electrons and protons, but including 

some traces of heavier ionized particles [Parks, 1991]. The solar wind plasma, by 

definition an excellent conductor, carries the corona's magnetic field with it as it leaves the 

sun's atmosphere. As the solar wind convects outward to space, it stretches the sun's 

open magnetic field lines outward, creating the IMF [Tascione, 1994]. 

The solar wind's parameters, i.e., the bulk velocity, IMF strength, and IMF 

orientation, are the primary determinants of geomagnetic activity.   Characteristic values 



of the bulk velocity and IMF strength range between 300 and 1000 km-s"1 and ones to tens 

of nanotesla for the vertical component, respectively. The values of the horizontal IMF 

components are much stronger, ranging from tens to a few hundred nanotesla. These 

variations occur primarily because of Coronal Mass Ejections (CME), Coronal Holes 

(CH), and solar flares. Solar flares and CMEs are sporadic in nature and provide short- 

lived bursts of energy to the solar wind. Coronal holes are relatively long-lived features, 

and may influence geomagnetic activity for several solar rotations [Tascione, 1994]. High 

solar wind speed, high IMF strength, and southward-oriented IMF field lines are, in 

combination or individually, the major causes for the largest variations in geomagnetic 

activity, geomagnetic storms. 

Geomagnetic storms are divided into 2 primary classes: substorms and major 

storms. Substorms occur on a time scale of 1 to 3 hours and are generally less than half as 

intense as the major storms. The major storms are typically longer in duration, lasting 

from 3 hours to 7 days, with intensities, expressed in terms of magnetic deviations from 

the norm, averaging larger than -50 nT (where the more negative the measurement of the 

storm is, the greater its strength). The true source of a substorm is still unresolved; 

however, some causes ascribed in current theories are a sudden change of orientation in 

IMF from northward to southward, a sharp change in solar wind speed or density, or even 

a spontaneous event with no apparent cause [Hargreaves, 1992:200]. Major storms are 

almost always related to significant activity on the surface of the Sun. Sunspot groups, 

large coronal holes, and high solar flare activity over an extended period of time are some 

causes of major storms and high geomagnetic activity. 



The solar wind experiences fluid-like shocks, due to acceleration of the plasma as 

it leaves the solar corona. This was first proposed in E.N. Parker's dynamic 

model of the sun and solar wind [Parker, 1958]. The speed of the solar wind averages 

approximately 400 kms"1, which is 5 to 10 times greater than supersonics speeds in space. 

As the solar wind expands radially, a slow-moving region may be compressed by a fast- 

moving region ejected after it. The diffusion of magnetic fields between the regions does 

not occur over the time they take to reach the Earth, so a discontinuity develops between 

the fast- and slow-moving regions. As there are no actual collisions between particles or 

the regions containing them, the shocks are termed collisionless [Parks, 1991:5]. It is 

through collisionless interactions that the energy stored in magnetic fields is transferred to 

the plasma. 

The magnetosphere's shape is the result of the interaction between the Earth's 

magnetic field and the solar wind (Figure 2). As the solar wind streams past, it pushes (via 

magnetic pressure) and couples with the Earth's magnetic field lines (via magnetic field 

line merging) allowing the solar wind's energy to be transferred to the magnetosphere. 

This is why the shape of the Earth's magnetosphere is asymmetric, a small bubble on the 

sunward side, upstream, and an extended tail in the anti-sunward direction, downstream. 

For the purposes of this thesis, the relevant features of the magnetosphere are: the 

bow shock, magnetopause, plasmasphere, magnetotail, and the cusps. Distance 

measurements in the magnetosphere are usually in units of Earth radii (RE). The bow 
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shock is understood to be similar in nature to an aerodynamic shock ahead of a blunt 

body. The solar wind cannot pass through the magnetosphere so it must slow down, 

transfer energy to the magnetosphere, and then be pushed around it by the subsequent 

solar wind. The magnetopause is the boundary between the solar wind and the 

magnetosphere and is generally located at 10 RE upstream of Earth. The plasmasphere is 

the lower portion of the magnetosphere surrounding Earth (3 to 4 RE) which corotates 

with the neutral atmosphere and ionosphere. The cusps (or clefts) are narrow regions 

encompassing magnetic field lines open to the solar wind plasma and extending down from 

the high latitude magnetopause to the polar ionosphere. They indicate the primary areas 

for solar wind plasma injection into the ionosphere. 

There are also current systems in the magnetosphere. These currents are 

generated as the ions and electrons traveling along the magnetopause boundary or within 

the magnetosphere slowly drift across geomagnetic field lines. The variations in the 

magnetospheric current systems (which the geomagnetic indices reflect) affect the current 

systems in the ionosphere. Figures 3 and 4 show the major magnetospheric current 

systems and their effects on the current systems of the Earth's ionosphere. 

The magnetospheric current systems are: the magnetopause current, ring current, 

neutral (or cross-tail) current sheet, and the field-aligned current. The current found at the 

magnetopause is created by the amount of mass and energy transmitted across the 

magnetopause. According to Tascione [1994], observations of this boundary indicate that 

approximately 0.5% of the solar wind's mass incident on the dayside of the magnetosphere 

10 
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passes through the magnetopause. The ring current encircles the geomagnetic equator, 

and is typically located between 3 to 6 RE. It involves a slow drift of particles across the 

magnetic field lines. The neutral sheet current system separates the oppositely directed 

magnetic fields emanating from the north and south polar caps. The undisturbed neutral 

sheet is about 5 RE thick and has an identifiable inner edge near 7 RE on the anti-sunward 

side The field-aligned currents (also called Birkeland currents) flow parallel to the Earth's 

magnetic field into the high-latitude auroral oval. These currents produce a magnetic 

perturbation in a direction perpendicular to the Earth's magnetic field and generate a small 

current by 

HoJ||=(Vx8B)n (1) 

where \i0 is the magnetic permeability of free space, Jj| is the Birkeland current density, 

and 8B is the magnetic perturbation perpendicular to the Earth's magnetic field [Kelley, 

1989:296-7]. The magnetic perturbation which creates the small field aligned currents 

also produces a convective electric field, according to Maxwell's equations. The electric 

field can be mapped into the ionosphere or back out into the magnetosphere, i.e. the field 

aligned currents may be driven by the actions of the ionosphere or the magnetosphere. 

This interactive relationship is why Birkeland currents are an essential link between the 

solar wind-magnetosphere system and the ionospheric system [Kelley, 1989:296-7]. 

These two current systems, the magneto spheric and ionospheric, have a great deal 

of influence on the time scale and intensity of geomagnetic activity. The magnetospheric 

system responds much quicker to the solar wind inputs than the ionospheric current 

system. The enhanced response time is due to the immediate coupling of the southward 

13 



IMF and the Earth's magnetic field, resulting in the erosion of the Earth's field when the 

IMF turns southward. The majority of the energy from the solar wind is "loaded" into the 

magnetosphere in this time. This mechanism has been termed the driven model for solar 

wind-magnetosphere coupling because these parameters directly drive the reaction of the 

magnetosphere. A second mechanism, associated with the unloading model, requires the 

energy input to be stored in the magnetotail, and later released to modify the current 

systems. The response time of the unloading model is on the order of 8 hours. When the 

magnetotail releases the stored energy, it is in the form of precipitated particle injection 

into the ring current or auroral electrojet. This unloading response is consistently apparent 

for all of the input parameters used in this study, and will be discussed further using the 

parameter VBS, which describes the convective electric field and is closely related to the 

current system. 

The orientation of the IMF field is considered to be the most important factor 

when determining the occurrences of geomagnetic storms. Southward-oriented IMF are 

thought to couple with the Earth's magnetic field lines and allow them to be swept back 

into the magnetotail (Figure 5). When this occurs, the magnetosphere erodes as the solar 

wind moves into the regions where the magnetic field lines and magneto spheric particles 

have been evacuated. 

"The energy transfer or coupling process begins when enhanced magnetic 
merging is initiated on the dayside magnetopause. The process ends when the 
energy is irreversibly dissipated by auroral particle precipitation, Joule heating in 
the ionosphere, or particle injection into the ring current and when energy is lost 
from the magnetosphere via plasmoid formation" [Bargatze et al., 1985:6387]. 

14 



Baumjohann [1986] states "...magnetic merging is the dominant coupling process and 

provides roughly 90% of the energy input (~ 1013 W) into the magnetosphere." The ring 

current is directly affected by the loss of these particles. The ring current opposes 

Solar wind 
direction 
 >■ 

j,    t> 

Figure 5. Erosion of magnetic field line in the presence of a southward IMF. 
(Adopted from Parks [1991:300] from the original proposal of J. Dungey [1961]). 

the Earth's magnetic field in the area between the location of the ring current and the 

Earth and reinforces the Earth's magnetic field exterior to the location of the ring current. 

In an attempt to reestablish the balance between the ring current and the Earth's field, 

particles are pulled in from the magnetotail as the Earth's magnetic field lines are eroded. 

A disturbance created in this fashion is quantified primarily by the geomagnetic index DST 

[Baumjohann and Kamide, 1984]. 
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Concurrent with ring current enhancement, another response to increased solar 

activity begins. As the ionized particles move through the magnetic fields in the 

magnetotail, small electric fields (~1 mV-m"1) are generated [Kelley, 1989:264]. As 

mentioned earlier, plasma is a good electrical conductor, and so, the magnetic field lines 

act as equipotential surfaces. As the distance, ds, between these surfaces decreases, the 

electric field increases by 

E = -dV/ds (2) 

where Els the electric field and tfFis the differential potential However, as the electric 

field approaches the ionosphere, the density of ions and neutral particles increases, and the 

conductivity decreases. The ionized particles contribute to the current density in the 

auroral region for a short period of time, and increase the auroral electrojet [Kelley, 

1991:468]. This disturbance is predominately quantified by the geomagnetic indices AU 

and AL, which represent the individual strengths of the eastward and westward electrojets, 

respectively. 

Geomagnetic Indices 

Geomagnetic indices have a dual purpose: first, to provide information on the 

geomagnetic activity level when analyzing phenomena linked to it, and second, to study 

the geomagnetic activity itself and its response to various parameters, from which one can 

derive information about the magnetospheric machinery. 
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"The oldest characterization of geomagnetic activity came from the daily 
estimation of geomagnetic disturbances, but nowadays three families of indices are 
in use: 

(1) DST index, calculated near the magnetic equator, which describes the 
ring behavior [Sugiura, 1964] 

(2) AU, AL, and AE indices, calculated at auroral latitudes, which gives 
information on the maxima of the auroral electrojet intensity [Davis et al., 1966] 

(3) K indices, which are calculated at all latitudes but are shown to be 
appropriate mainly at subauroral latitudes; planetary indices are derived from 
subauroral K indices" [Menvielle and Berthelier, 1991]. 

From the description above, there are visible differences between DST and the 

family of "Ax" indices. The distinct difference is that the indices measure changes in 

different geographical locations around the world. The effects which register as changes 

in DST occur near the geomagnetic equator, while AE, AL, and AU changes are seen when 

phenomena occur in the auroral region. The ring current is built from the motion of the 

trapped energetic particles through the Earth's magnetic field. The auroral electrojets 

develop due to atmospheric instabilities and particle precipitation from the magneto sphere. 

They are also influenced by the currents of the magnetotail. 

The DST index has been discussed because of its strong relationship with the solar 

wind-magnetosphere coupling and its contribution to the K index. It continues to be used 

in modeling and predicting geomagnetic activity levels, but is of primary importance when 

related to the effects produced by the ring current. 

The auroral electrojet indices AE, AU, and AL were introduced by Davis and 

Sugiura [1966] as a measure of global electrojet activity and first used by Arnoldy et al. 

(1970) in a solar wind-magnetosphere coupling study [Baumjohann, 1986]. The AL and 

AU indices are defined as the negative and positive maxima, respectively, for the variation 
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of the horizontal component of the Earth's magnetic field (H) in the auroral region 

[Kelley, 1989:468]. The perturbations are caused by the Joule heating rate of the 

westward and eastward electrojets, respectively [Perreault and Akasofu, 1978]. The AE 

index is defined as the separation between the upper and lower envelopes, AE = AU - AL. 

Since the electrojet currents travel in opposite directions, AE then reflects the value of the 

total maximum electrojet current. 

There are advantages and disadvantages to using the auroral indices (AL, AU, and 

AE) in solar wind-magnetosphere coupling studies. Since the AE, AL, and AU indices 

depend on measurements made in high-latitude regions, disturbances taking place in the 

low-altitude subauroral and equatorial regions do not manifest themselves in these indices. 

Another disadvantage is that the electrojet may move in relation to the station taking 

measurements, resulting in a variation being recorded in the absence of a disturbance. 

These anomalous measurements also take place due to limited number of stations 

observing the disturbances. AE has an advantage over AL and AU separately since it is 

only influenced by zonally uniform non-electrojet fields, so movements of the electrojets 

generally cancel out. Since it monitors the total electrojet current, the AE index is more 

often used than AL or AU. An advantage in using AL and AU over AE is that one may 

separately distinguish convection electrojets. The electrojets characterize direct 

dissipation of solar wind energy and are related to the sudden dissipation of energy 

previously stored in the magnetotail [Kamide et al., 1985]. AE, AL and AU are 

advantageous indices to researchers since they are measured at 1 or 2.5 minute time 

resolution which is much less than the time scale of most substorms and all major storms 
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(tens of minutes to hours for substorms and several hours to days for major storms). The 

base value for these indices is the average activity of the 5 internationally quiet days, 

which is called Sq (averaged solar quiet variations measured) [Berthelier, 1992]. 

Both the DST and auroral indices contribute to the creation of the K and a indices. 

The K and a indices are different representations of the same measurement; a is linearly 

scaled while K is on a logarithmic scale (Table 2-1). The indices K and a may vary with 

latitude, longitude, season, or universal time, so a standard for the world has been 

developed. The Göttingen indices are the recognized world Kp and Ap values (planetary 

indices), and are published 4 to 5 weeks after their observation. There are 12 worldwide, 

preselected observing stations (Table 2-2) which record data and report them to 

Göttingen. They are then corrected to filter out any dependence of the indices other than 

variations due to the changing solar wind. 

Table 2-1. Relationship between Kp and ap. Note: ap is in units of 2 nT, so a 
measurement of 32 is actually 64 nT. (Menvielle and Berthelier, 1991). 

Kp interval 
Oo to 0+ 

ap, nT 
0 

Kp interval 
2+ to 3- 

ap, nT 
9 

Kp interval 
5- to 5o 

ap, nT 
39 

Kp interval 
7o to 7+ 

ap, nT 
132 

0+ to 1- 2 3- to 3o 12 5o to 5+ 48 7+ to 8- 154 

1-to1o 3 3o to 3+ 15 5+ to 6- 56 8- to 8o 179 

1oto 1 + 4 3+ to 4- 18 6- to 6o 67 8o to 8+ 207 

1+to2- 5 4- to 4o 22 6o to 6+ 80 8+ to 9- 236 

2- to 2o 6 4o to 4+ 27 6+ to 7- 94 9- to 9o 300 

2o to 2+ 7 4+ to 5- 32 7- to 7o 111 9o to 9+ 400 
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Table 2-2. Magnetic observatories selected for determining Göttingen Ap 
(Gehredetal., 1995) 

Symbol Observatory Geographic 
Lat          Long 

Geomagnetic 
Lat           Long 

Le Lewick, Shetland Islands 60 08N 358 49E + 62.5 88.6 

Lo Lovo, Sweden 59 21N 17 50E + 58.1 105.8 

Si Sitka, Alaska 57 04N 224 40E + 60.0 275.4 

Rs Rude Skov, Denmark 55 51N 12 27E + 55.8 98.5 

Es Eskdalemuir, Scotland 55 19N 356 48E + 58.5 82.9 

Me Meanook, Alberta, Canada 54 37N 246 40E + 61.8 301.0 

Wn Wingst, West Germany 53 45N 9 04E + 54.5 94.0 

Wi Witteveen, Netherlands 52 49N 6 40E + 54.2 91.0 

Ha Hartland, Devon, England 51 00N 355 31E + 54.6 79.0 

Ag Agincourt, Ontario, Canada 43 47N 280 44E + 55.0 347.0 

Fr Fredericksburg, Virginia 38 12N 282 38E + 49.6 349.9 

Am Amberley, New Zealand 43 09S 172 43E -47.7 252.5 

The Kp and ap indices are measurements of the variation in the horizontal 

component (AH) of the geomagnetic field, filtered and averaged over on 3 hour intervals, 

which is representative of the time scales of substorms in the subauroral latitudes (1 to 2 

hours in duration) [Berthelier, 1992]. The base values are those calculated by a computer 

algorithm for the solar regular variation SR, which are the magnetic variations of a 

geomagnetically quiet day. According to Menvielle et al. [1991], this gives the simplest 

smooth curve of "K indices-type" variations corresponding to SR variations. 

WIND/SWIM Satellite 

The SWIM User's Guide and Reference [Phillips Laboratory, 1995] provides a 

great deal of information not only about the satellite, but its proposed functions and 
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capabilities as well. The SWTM (GL-804) portion of the satellite is the primary concern in 

this research, as these components measure and return the data required. Since its launch 

in 1994, SWTM has been a proof-of-concept experiment designed to demonstrate space 

weather forecasting using real-time upstream solar wind data. The satellite remains in a 

stable trajectory at LI, the point in space on the Earth-Sun line where the gravitational 

forces balance (~ 240 RE). The experiments on-board will run at least until NASA's 

Advanced Composition Explorer (ACE) is launched in late 1997. 

Two experiments are of specific interest which will measure constituents and 

properties of the solar wind and provide the necessary data: the Solar Wind Experiment 

(SWE) and the Magnetic Field Instrument (MFI). They are explained in the SWTM User's 

Guide and Reference as:   SWE provides the standard plasma parameters of the solar 

wind: velocity, density, and temperature. MFI provides the three components of the 

magnetic field of the solar wind (Bx, BY, and Bz) [Phillips Laboratory, 1995:5]. Along 

with the parameters mentioned above, one simple combination will also be recorded and 

returned, VBS, the product of the solar wind bulk speed and the rectified vertical 

component of the IMF. This index is a hybrid parameter which combines the dynamic and 

magnetic aspects of the solar wind. 

Models 

As noted by Clauer [1986], linear prediction filtering (LPF) was originally 

developed by mathematician Norbert Weiner [1942] for applications dealing with 

continuous time series. Levinson [1942] adapted this technique to discrete time series, 
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and his work was included in Wiener's book as an appendix. Magnetospheric researchers 

have taken advantage of the LPF technique, and have begun to use it, first Arnoldy 

[1971], as a means of characterizing and predicting geomagnetic activity using solar wind 

data. 

The use of LPF is restricted by two basic assumptions. The first assumption is that 

the data is stationary. Stationarity indicates that the statistical properties of the input and 

output do not change with time [Makridakis and Wheelwright, 1978:263]. A criterion to 

establish that the data is stationary has been developed. Examination of the 

autocorrelations of the data will indicate 95% of the coefficients lie within a range of plus 

or minus 1.96 standard deviations from the mean of the autocorrelations. The second 

assumption is the input and output are related by a linear relationship. If they are not 

related by a linear relationship, LPF results are erroneous since the explicit purpose of 

using LPF is to return a linear filter. Therefore, linearity and stationarity have been 

considered pertinent assumptions for this data set. 

Three authors' works are of historical interest and important to the undertaking of 

this thesis. Bargatze et al. [1985], Clauer [1986], and Vassiliadis et al. [1995] have 

written papers which detail the use of LPF with respect to the problem of solar wind- 

magnetosphere coupling. Bargatze et al. [1985] assembled a data set, and established the 

magnetospheric impulse response using moving-average linear filter analysis. Clauer 

[1986] used the Bargatze data set to show the applications of LPF in magnetospheric 

studies with different geomagnetic indices and input time series. Vassiliadis et al. [1995] 

advanced this research by introducing the use of a state-input space method using 
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nonlinear equations of state for the magnetosphere. Vassiliadis furthered improved his 

attempts by working with multiple input time series in his analysis. Although he did not 

use LPF, he broadened the approach to modeling geomagnetic activity by using multiple 

inputs to capture greater detail of the interactions taking place. 

LPF uses a filter to model the most general, linear relationship between the 

measured magnetospheric and solar wind quantities as shown below [Bargatze, 

1985:6387]: 

°T= 

oo 

HA-,* 
0 (3) 

In this continuous time model, HT is the filter, 0T is the output parameter, IT.T is the input 

parameter at time T-x, T is the time of the observation, and x is the time lag.   The variable 

names Ox, HT, and IT-T, scalars for single input-output models, will remain the same for all 

of the models demonstrated. That is, even for multiple input models, the input variable 

will remain I T-x, even though it will have several components. To use this model for 

multiple inputs or outputs, substitution of matrices must be made for the scalars. 

Using Equation [3], the geomagnetic index AL, output, can be predicted once the 

filter H has been determined. For given input(s) of the solar wind coupling functions, LPF 

constructs the filter HT by minimizing the least-square errors associated with estimated and 

observed outputs. Although the integral in Equation [3] extends to infinity, practical 

applications use a predetermined number of coefficients which model the effects of the 

input reasonably. These coefficients correspond to the time lags which have a significant 

impact on the calculation of the output OT. 
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Bargatze et al. [1985] and Clauer [1986] used the magnetic index AL as the 

output parameter (0T) and the solar wind parameter VBS (the product of the solar wind 

bulk speed and the rectified Bz component of the IMF) as the input (IT-T) for the LPF 

model below. Clauer [1986] extended this research to include other outputs to be tested 

using similar coupling functions as inputs over discrete time intervals. Equation [3] then 

becomes 

00 

°T=   Ti    VT- 
T = 0 (4) 

The only difference between the continuous and discrete models is the form of the 

equations being solved under least squares error techniques. For Equation [3], the 

equations are integrals while for Equation [4] the equations contain summations. Single 

channel (single input-single output) and multichannel filters (multiple input-single output) 

were used to predict AL in this thesis while Clauer used only single channel models. 

Clauer [1986] made use of several parameters as input: VBS, V2BS, and 

VBT
2sin4(9/2). The first is the same parameter used by Bargatze [1985], the second was 

introduced by Murayama and Hakamada [1975], and the third was initially used by 

Perreault and Akasofu in 1978. The coupling function inputs used in solar-wind 

magnetosphere studies fall into three major categories: (1) simple expressions, (2) electric 

field-related, and (3) power-related. VBS is the rectified solar wind convective electric 

field developed by Rostoker et al. [1972]. V2BS is considered a simple coupling 

expression, i.e., just a relationship between two components of the solar wind. 

VBT
2sin4(9/2), called the epsilon parameter, s, is a coupling function relating the power in 
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the solar wind to geomagnetic activity. These functions are the actual inputs, I, to the 

LPF model. 

Vassiliadis et al. [1995], employing a state-input space formalism rather than LPF, 

used the same input parameters as Clauer [1986]. State-input space models are a pattern- 

recognition technique which classifies activity "patterns" in time series data by associating 

them with points in the space vector [I O], where I and O are the input and output vector 

spaces, respectively. The space vector is a multi-dimensional vector whose points 

represent a magneto spheric-solar wind event. The input is related to a reference point of 

the output space vector by its magnitude and orientation. A predefined distance is set 

about the reference point, and any "neighbors", output points from similar inputs, are used 

to determine what the output values corresponding to the new input will return 

[Vassiliadis et al., 1995]. 

Vassiliadis et al. [1995] discusses the comparisons between linear filters and their 

predictive capabilities and those using nonlinear techniques. The values of the correlations 

provided by Vassiliadis and Clauer will be used in the verification and comparison of the 

linear filters' predictions. 

Verification 

The primary means of verification will be to use correlations between the measured 

AL index and the predicted AL returned by the models. The prediction-observation 

correlation relationship, used by Vassiliadis [1995], establishes the correlation between a 

predicted and observed time series over some interval of time. Least squares error 
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minimization of the time series is inherent in the LPF technique, and adds an additional 

support in achieving the optimal models. 

LPF is based on minimizing the least squares error of the time series, and 

producing the most general linear filters (functions which transform the input into the 

output) possible. In determining the filter coefficients by this criterion, one must minimize 

the error between the different time series by subtracting the actual or measured output 

from the computed or predicted output [Clauer, 1986:41]. 

The prediction-observation correlation relationship is defined as 

^{ALM-\AL\)-{ALM-\AL\) 

C„. = -^  (5) 
°AL ■ °ÄL 

where CAL represents the correlation value between the observed and predicted time series 

over a given time interval T, T is the time interval over which the series is viewed, i is the 

time increment, AL is the value of the observed index AL, AL is the value of the 

predicted index, and GAL and a ~ are the standard deviations of the observed and 

predicted AL indices, respectively. 

The predicted values of AL will be correlated with the measured values of AL to 

determine the accuracy at which the models performed. Previous works [Bargatze, 1985; 

Clauer, 1986; Vassiliadis, 1995] have used this method to compare the results of single 

input LPF and state-input space methods with measured values. Vassiliadis [1995:3503] 

reports the average correlations between predicted and measured values of AL to lie 

between 0.50 and 0.65. 
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III. Methodology 

In this chapter, the methodology and approach to predicting the AL index will be 

presented in seven sections. The first section will describe the coordinate system in which 

the measurements of the solar wind data were made. The second section will show the 

identification and construction of the coupling functions which will be used as inputs to 

the models. The third section will discuss the terminology used with the models, the types 

of models which can be used, and how each type of model approaches prediction. Section 

four establishes the procedure for construction of the models used for predicting AL in 

this research. The fifth section will explain the approaches to prediction, the prediction 

requirements, and the comparisons of the model outputs with persistance. The sixth and 

seventh sections will describe the use of the impulse and frequency response functions as 

tools for the analysis of the model's output and filter coefficients. 

Reference Coordinate System 

The Bargatze data set provides raw data from the WIND/SWIM satellite in GSM 

coordinates. The GSM coordinate system is a right-handed Cartesian system with its 

origin at the center of the Earth [Figure 6]. The positive x axis is directed toward the Sun, 

and the z axis lies in the plane containing both the x axis and the geomagnetic dipole axis. 

With these conditions established, the y axis can not lay in the ecliptic plane at all times. 

Therefore, the z axis will oscillate with the geomagnetic coordinates (through 23 degrees) 

as the geomagnetic dipole axis rotates over a period of one day. GSM coordinates are 
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useful to reference data from the distant magnetosphere since the whole magnetosphere is 

expected to shift position, to a first approximation, as the dipole axis moves [Handbook of 

Geophysics, 1985:4-3]. Additional details concerning the data set can be found in the 

Scope and Limitations section of Chapter I. 

Z axis oscillation 

Dipole 
Axis 

SUN 

\ 23 deg angle 

X to Sun 

Earth 

Figure 6. The Geocentric Solar-Magnetospheric (GSM) 
Coordinate System. 

Identification and Construction of Model Inputs 

Bargatze has ordered the data set into 34 intervals of increasing geomagnetic 

activity, moving from low activity (quiet) through moderate to strong activity 

(geomagnetic storm levels). Appendix A reveals the data format and units for all of the 

data to be used in this study. The beginning and ending points of each interval are 

identified in Appendix B as well as the number of hours spanned by each interval, number 

of data entries, and the input parameters to be used, averaged for each interval. 
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In order to model the geomagnetic activity, the original data must be transformed 

and built into coupling functions, or inputs. Coupling functions are parameters whose 

values are in some way related to an observed or predicted phenomenon. The 

construction of these coupling functions requires some alteration and assembly of the 

original data parameters. The Bz component of the IMF is rectified and identified as B- 

South, Bs, where : 

Be 
0 

-B z> 

for Bz > 0 

for Bz<0. 
(6) 

This southward component of the IMF is utilized to help form 2 of the 3 inputs which are 

used by LPF techniques, namely Bs and VBS. 

A second parameter, highly correlated with the geomagnetic activity, is the power 

of the solar wind incident on the magnetosphere [Gonzalez, 1990]. This quantity, 

s = VBT
2sin4(9/2), is constructed from the data set according to the following procedures: 

6 

tan -i \BY\ 

B7 

n - tan -i \BY\ 

B7 

for Bz>0 

forBz<0 

(7) 

BT=j(Bx)2+(Br)
2+(Bzy (8) 
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where Bx, BY, and Bz are the components of the IMF, 0 is the angle at which the IMF 

interacts with the magnetosphere, and BT is the total IMF strength. 

Model Terminology 

This thesis investigated autoregressive (AR), moving-average (MA), and 

autoregressive moving average (ARMA) models used in representing and predicting time 

series data [Makridakis and Wheelwright, 1978:252-309]. An AR model uses a linear 

combination of past output values to compute a new value for the output. The general 

equation form which represents all three different model types is given by: 

ax -0(t) + a2-0(t-l) +... aI+l  0(t-r)   = 

(9) 
b0-I(t) + brI(t-l)+...bT-I(t-T) 

where O is the output time series, I represents the input time series, and a and b are the 

coefficients which are computed through least square error minimization using LPF. 

When using multiple inputs to the LPF models, each of the inputs will have a separate 

series of b coefficients and I inputs while there will be only one set of a coefficients for any 

model. 

For AR models, the only input variable is an earlier output value, so the term 

auto is applicable, while regressive refers to going back along its own timeline. Using 

least squares minimization, coefficients for these earlier values are determined and used to 

calculate the new output. MA models use linear combinations of the past errors between 
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actual and predicted output values with computed coefficients to influence the importance 

of each error. The predicted output values mentioned above are actually the calculated 

values of the output at time t. The AR and MA models are considered to be special cases 

of a more general model. An ARMA model uses linear combinations of both the past 

values and past errors to achieve the new output [Makridakis and Wheelwright, 1978]. 

An important feature of each of the types of models is that they have the ability to 

increase their order. The order of a model identifies the number of earlier values entering 

the linear equation relating "output" to "input". For example, an AR model of order 2 

includes the current value and the previous 2 values of the output variable. Likewise, an 

MA model of order 2 uses the current error and the previous 2 errors between the 

predicted and actual output. An ARMA model which combines these two models would 

be classified as ARMA(2,2). 

As the models increase in order, successively larger numbers of previous errors or 

values will be required for the model to begin optimizing the filter coefficients. For large 

time series, this poses a small problem since a great deal of prior data can be used to 

optimize the filter before real-time analysis is required. For small time series, however, 

this is a significant problem. If there are an insufficient number of data points to allow 

optimization of the filter coefficients, initial estimates must be made so that the filters 

approach the ideal values more quickly. This can be done by solving a system of nonlinear 

simultaneous equations of n dimension, where n is the order number. A detailed 

description of the procedure to develop the system of equations can be found in the 

31 



mathematical supplement appendix of chapter 9 of Interactive Forecasting: Univariate 

and Multivariate Methods [Makridakis and Wheelwright, 1978]. 

The input variables need not begin with the current time. In many circumstances, a 

delay is introduced. A delay indicates the value, measured in time intervals, of the 

temporal offset or lag. For example, a delay of 4 would mean the input for an AR, MA, or 

ARMA model would begin with the 4th previous value or error as the current value or 

error. If the order was 2 for the AR or MA models, the fourth, fifth, and sixth previous 

values or errors would be used to determine the next output. For ARMA, the same 

previous values and errors would be used in the models together. In all of these cases, 

associated with the values and errors is a set of coefficients which determine how they 

influence the new output. 

The representation for a second order AR or MA model with a time delay of 4 

used to compute the next value of an output is, therefore, given by: 

a, ■ 0(t) =b0 ■ I(t -4) + bx ■ I(t - 5) + b2 ■ I(t - 6) (10) 

where O is the output, I are the past values of the outputs or errors of the AR or MA 

models, respectively, used as inputs and a, and b, are the coefficients to be used in 

construction of the filter for this model. The equation for an ARMA model would be very 

similar, the only difference being the right hand side of Equation [10] would contain an 

additional, similar set of terms. One set of inputs and coefficients would pertain to the 

past values of input and the other to past errors. 
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The coefficients in Equation [9] and [10] are the filter coefficients or amplitudes. 

The filter is built by selecting a specific model, delay, and order for the data set. On a 

point-by-point basis, the filter coefficients would change continually throughout a data set. 

By minimization of the least-squares errors, partial derivatives of Equation [10] with 

respect to the coefficients are computed, and the filter coefficients are optimized over a 

given time interval. This optimization technique, the foundation for adaptive filtering 

processes, provides the best fit for linear methods over the whole data set. 

The construction and analysis of the models was performed using a suite of 

procedures in the Matlab® System Identification Toolbox®. The ARX function is given 

the input-output (10) data, in the form of coupling functions, the order of the AR model 

to use on the input and output, and the time delay and computes the loss function for each 

model [Ljung, 1992]. The loss functions for each different model were calculated using 

the ARXSTRUC command. This command computes the loss function of each model by 

a cross validation technique, also known as Akaike's Final Prediction Error (FPE) 

criterion. The loss function over a desired interval is the difference between the actual 

output value and the predicted value generated by the model's least-squares error 

estimate. The loss functions were then sorted, by the SELSTRUC command, to find the 

smallest FPE, which is given by 

FPE=l + n/N*V (11) 
l-n/N 

where n is the total number of estimated parameters, N is the length of the data record, 

and V is the loss function for the structure in question [Ljung, 1992]. 
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There are several types of loss functions which can be computed depending on the 

size of the data set or how the data set is used in the model. For small data sets or where 

the interval to be tested includes all of the data points, a different method of computing the 

least squared errors is suggested. Using the Matlab® software, there are at least two 

alternatives to using Akaike's FPE method. They are Akaike's Information Theoretic 

Criterion (AIC) and Rissanen's Minimum Description Length criterion (MDL) [Ljung, 

1992:1-52-3]. They are given by: 

AIC * log (1+—)*F 
N 

(12) 

MDL l + log(tf)~ N 
-V (13) 

respectively. The variables used in Equations [12] and [13] are the same as those used in 

Equation [11]. 

Model Construction 

The construction of the models to predict the AL index consists of several steps. 

The first step involves the testing of the coupling functions or inputs to determine if they 

are going to provide good correlations. If the coupling functions are not related to the 

output at all, there is no reason to build the models containing them. Secondly, the 

models are built using the coupling functions and the measured AL values using LPF 
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techniques. Finally, the models' outputs, the predicted AL for each model, are compared 

by correlating the measured and predicted AL values. 

The measured AL and coupling function values are correlated to determine the 

prudence of using the coupling function as an input to a model. Matlab® computes the 

cross correlations between the inputs and the measured values of AL using the 

CORRCOEF command. CORRCOEF uses the covariances of the input and output 

matrices to compute the correlation coefficients matrix by Equation [14], where 

Corrcoef = ^=   C(fJ) (14) 
V(C(/,z) * C(jJ) 

and C is the covariance matrix for the input(s) and output and (i,j) indicate the respective 

covariance elements. If the input(s) correlated perfectly with the AL index, the 

correlation values would equal unity, indicating input(s) and output amplitudes and phases 

are coincident. The proximity of the correlation values to unity indicates the accuracy of 

fit between the input(s) and the output. 

Once the inputs have been tested to insure they will provide good results, the 

coupling functions can be entered into the model. The filter coefficients were created 

using the ARX command, which performs AR techniques of order X to return the least- 

squares estimate of the filter coefficients for each model. Models were constructed in 

groups of several thousands at a time, encompassing orders from ARMA(1,1) to 

ARMA( 150,200) with time lags extending from 0 to 250 time steps, or real-time lags of 0 

to 10.5 hours. 

The filter coefficients which were generated by the models were saved and used to 

predict values of the AL index. The input(s) and filters were used by the IDSIM 
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command to predict the output values of AL. IDSIM uses a built-in FILTER function to 

implement a standard difference equation and solve for the output values [Matlab, 1992]. 

The difference equation uses all of the filter coefficients and time delays recorded in a 

model to produce the simulated output using the input matrices (one or more) being 

investigated. The loss functions, discussed above, were then computed to find the optimal 

set of filter coefficients for each coupling function. 

Once the output has been generated, Equation [14] is again used to determine how 

well the model has performed by calculating the correlation matrix between the predicted 

and measured values of AL. Typical values for the correlation have averaged from 0.50 to 

0.65 in previous studies, depending on the coupling functions used as input [Vassiliadis, 

1995:3503]. This correlation describes the ability of the model to predict the AL index 

given the same input values over the same period of time. The correlation values achieved 

using single and multiple inputs for these models will be discussed in Chapter IV and the 

actual values can be seen in tabular format in Appendix D. 

Prediction 

The prediction of geomagnetic activity has a large number of possible users in both 

the military and industry. Most users would request an 8 - 12 hour forecast of 

geomagnetic activity to enable them to terminate current operations and protect assets, or 

to allow time to redirect operations to alternative methods. Currently, such long range 

predictions are based on the use of persistance and a forecaster's discretion. Although 
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these methods are currently accepted as the most reliable, a computer model with a 

guaranteed level of reliability over this period of time would gain acceptance very quickly. 

The models used in this research are capable of making forecasts nearly this far 

into the future. This capability is directly related to the location of the satellite recording 

the solar wind parameters and the model's ability to predict AL several time steps into the 

future. The data which is received by the WIND/SWIM satellite will precede the arrival 

of the physical components of the solar wind at the magnetopause by approximately 45 

minutes. However, for high solar wind speeds, this time may be more than halved. In 

addition to this lead time, the solar wind requires, theoretically, at least one hour to 

interact with the magnetosphere. This provides input to the models, once the data are 

incorporated into coupling functions, nearly 2 hours prior to any expected increase in 

geomagnetic activity. By combining the time delays inherent in the data and short term 

predictions, of approximately 2.5 hours, by a model, a total forecast time of 3.5 to 4.5 

hours can be achieved. Thus, a more detailed forecast in terms of both onset time and 

magnitude of expected geomagnetic activity is achievable. 

In order for the models to make these predictions correctly, two major 

prerequisites must be fulfilled. The first requirement is that there must be input data for 

the model to run and there cannot be gaps in the data set. If there are gaps in the data or 

no data at all, the model cannot run without incorporating interpolation or substitution. 

From Equations [3] or [4], the model needs both an input and the predetermined filter 

coefficients in order to predict the output. The second major requirement is that the input 

data must be measured on the same time scale as the data which was used to develop the 
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filter coefficients. If this requirement is not fulfilled, the predicted AL values will not be 

comparable with the measured AL values. 

The different types of prediction which can be performed with completed models 

are the single-step and the block forecast methods. The first method, the single-step 

method, predicts each step out to the time desired. By using each predicted value of AL 

as an actual value of AL, the single-step method propagates until it has reached the 

desired prediction time. The single-step method of prediction should not allow any 

significant errors to occur as each value of AL is generated using actual values of the solar 

wind input and a proven filter. 

The second method, block method, uses past data, propagates it forward in time, 

and reuses it as a new set of input data. Even if the solar wind parameters change 

radically over a time period of half an hour, this method can produce reasonable results. 

This effect can be explained by considering the impulse response of the system. The 

"peaks" of the impulse response show that the system can "remember" inputs for 

approximately 90 minutes. Therefore, small blocks of past input data can be replicated 

and brought forward in time to keep a model running without severe effects on the output. 

The main detriments to this method are that the values of the output, AL, are not 

known ahead of time, and if there are significant variations in the solar wind data, the 

model will under- or overpredict the actual values of AL, dependent on the characteristics 

of the data which are made use of in the forecast. If the data used in the forecast contains 

solar wind parameters which produce strong geomagnetic activity, the model will forecast 
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extended periods of strong geomagnetic activity when, actually, the activity may decrease 

as the solar wind components drop in intensity. 

The lack of input data is the primary restriction of the models to forecasting out to 

tens of hours or days. Forecasts made using persistance can be used for general activity 

levels of geomagnetic activity, but do not provide specific onset times or specific levels of 

activity. Generalized forecasts can be made by recording the positions of long lasting 

disturbances and features on the Sun, and predicting their return. By measuring the 

intensity of the disturbances on the Sun and the geomagnetic activity level they generated, 

a relationship can be developed to predict average activity levels on a monthly time scale. 

This method is not useful to organizations which must continue or can only shut down 

operations for short periods of time. 

Persistance, on the other hand, takes the measure of the previous time period's 

activity level and uses it to predict the value of the next time period's activity level. 

Obviously, this method does not consider any changes in the solar wind parameters over a 

given interval. As such, it will be unable to predict sudden increases or decreases in the 

geomagnetic activity levels. Since there are eight time periods in each day for predictions, 

this method may also predict unreasonably high or low levels of activity. Again, this 

method should not be forwarded to users since it does not consider changes which may 

take place in the solar wind and, therefore, in the geomagnetic activity. 
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Impulse Response 

The impulse response is the magnitude of the output at time x resulting from an 

input of unity at time x =0. The filter coefficients which were generated by the LPF 

techniques are used to transform a single value of unity input into the AL output values 

over the time interval the filter covers. As described in coordination with Equation [4], 

the filter is of finite length, covering the time lags which are most important to 

approximate the actual output with the predicted values. 

The impulse response curves shown in Figures 7a and 7b were built with a 

constructed input time series, the predetermined filters, and the IDSEVI command from 

Matlab® which uses the filters to transform the input into the output. The time series input 

consisted of an hour of zero input, a single input of unity, and followed by a time series of 

zero inputs. The initial zero input values were to ensure the filter was stable and 

responded only to non-zero inputs. The single value of unity allows the filter to respond 

to a unit input at each individual time lag. The response from the filter shows the impulse 

response of the output. Since the input value is unity and only zeroes follow it in the time 

series, the impulse response is also the magnitude of the individual filter coefficients. The 

zeroes trailing the single unit input allow the filter to show how the individual coefficients 

transform the normal time series input into the predicted index AL. 

In order for the exact relationship between an input and an output to be shown, the 

impulse response curve must be finite in length. A perfect curve would go to zero and 

remain there after all of the coefficients contributing to the output were used. The 

"memory" of the impulse response would "recall" the events that have taken place earlier 
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and use these coefficients until the physical system "forgot" the event had occurred. In 

other words, the original event would have moved into the past far enough that the 

impulse response no longer viewed it as a contribution to the current state of geomagnetic 

activity. The system memory would then represent energy input, energy storage, and 

eventually, energy dissipation. 

Figures 8a and 8b show the impulse response curves for the convective electric 

field coupling function, VBS, over moderate and strong geomagnetic activity regions 

(intervals 10 to 14 for moderate and 27 to 31 for strong). These intervals and activity 

levels chosen because they represent a wide range of possible solar wind inputs to the 

models. They were also used in previous studies [Clauer, 1986] and could be compared 

to them for accuracy and validation. The curves were created through correlation and 

covariance analysis methods using the Matlab®'s CRA command. The cross correlation 

values are an unsealed measure of the impulse response. Properly scaled, these values 

return the impulse response curves for the different inputs. 

The structured curves in each figure represent the actual filter coefficients for the 

given time intervals or geomagnetic activity levels. The smooth curves in Figures 8a and 

8b are presented as general guides to locate general peaks and minimums. These curves 

help to indicate which time lags in the filter are most important to correctly predicting the 

output. 

By examining these curves, the importance of past values of the input becomes 

clear. The curves in figure 8a show two predominant peaks at approximately 12 and 30 

time lags, or 30 and 75 minutes, respectively, for moderate geomagnetic activity. The 
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rest of the curve decays gradually to near zero values. The curves in figure 8b shows a 

single general peak at approximately 10 time lags, or 25 minutes after which the curve 

decays towards an amplitude of zero. The peaks in both figures relate the importance of 

events at these earlier to the current values of the output, AL. Analysis of the mechanisms 

behind the peaks will take place in Chapter IV. 

These curves helped to develop the models used to predict the magnetic index AL 

and compare it to the measured AL in the Bargatze data set. The models were initially 

built using the software's default filter length (20 coefficients). Once the new 

corresponding impulse responses were viewed, the filters were determined to be far too 

short in length to estimate the model properly. At this point in the analysis, the models 

were rebuilt several times until their impulse response curves showed that the magnitude 

of the filter coefficients decayed to and remained near values of zero. The drop in the 

amplitudes of the impulse response indicated that the current filter length was sufficient to 

model the greatest portions of the variability in the output. Any further increase in the 

filter length would not benefit the predictive quality of the model significantly, and would 

increase the computation time of the model to where the model itself would no longer be 

useful. 

Frequency Response 

The frequency response is a time domain description of the predictive model. This 

is important because the predicted and measured outputs must correlate well at 

frequencies corresponding to geomagnetic storms and substorms in order to model 
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geomagnetic activity. Geomagnetic storms and substorms occur on frequency scales of 

MO"4 and lower and 6-10"4 to MO"4 rad/seo, respectively. If the model can account for 

changes in frequency phase and amplitude in the ranges of storms and substorms, it should 

predict geomagnetic activity well. The higher frequency scales correspond to individual 

data measurements, on the order of 7-10"3 rad/sec and above. If the predicted frequencies 

match the phase and amplitude of the measured AL index, the model should be able to 

predict the output well from step to step. 

The AL frequency response derived from a single input, VBS, prediction is 

compared with the actual AL outputs in Figure 9. The upper plot in Figure 9 is the 

amplitude comparison of the actual and estimated data while the lower plot is the phase 

comparison. The frequency phase responses of the two models correspond well in the 

lower frequency regions, indicating that the predictive model should do well in predicting 

onset and duration of the geomagnetic activity at storm and substorm levels. The 

frequency amplitude responses are of the same order of magnitude for the lower 

frequencies so we should expect that the predictive model will tend to deviate from the 

actual intensity of the geomagnetic activity by a small amount. 

As the frequency response function moves into the higher frequency regions 

(moving to the right), the phase responses diverge. This would indicate that the model 

will not respond closely with the actual AL index for each time step. However, since the 

general shape and trend of the curve remain similar to the actual phase, the model will not 

become erratic and unstable. The amplitude response of the model remains very close to 

the actual amplitude responses of AL. The amplitudes of the model's responses should, 
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therefore, remain relatively close to those of the measured AL regardless of the frequency. 

The errors in the simulated model will be apparent primarily by small deviations in 

amplitude throughout the frequency range of inputs and by the model's inability to 

respond exactly as the actual AL index does for the individual inputs. 

The present analysis of the model frequency analysis confirms in the works of 

Bargatze [1985]. He concluded that although the VBS and AL time series contain a high- 

frequency component, the high-frequency components are not correlated. This would 

indicate the magnetosphere acts as a low-pass filter for the solar wind variations [Bargatze 

et al., 1985]. Since the correlations for the multiple, and even single, input models in high, 

the high frequency components of the time series do not add significantly to the 

correlation of the models. 
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IV. Results and Analysis 

In this chapter, the results obtained from this research will be examined and 

compared with the results reported by Bargatze et al. [1985], Clauer [1986], and 

Vassiliadis et al. [1995]. The information will move in a logical fashion from the basic 

theory and parameters through the actual analysis to the attempts at forecasting. The next 

four sections will discuss comparisons of the impulse response curves, filter and model 

content, the residuals and correlations for the different models, and the forecasting results. 

Impulse Response 

Bargatze's paper describes the development of a series of filters based on the 

geomagnetic activity level. The filters are actually just the impulse response amplitudes of 

the output to the input for a given time interval. To show gradual change between the 

levels of activity, he averaged each over a five interval period. This stacked plot of filters, 

depicted in Appendix E, shows the impulse response curve for a zero time lag and a filter 

order corresponding to approximately 4 hours. 

Clauer [1986] used a great deal of the information revealed in the paper by 

Bargatze. His work expanded on the work of Bargatze by using other inputs and outputs 

to show the advantages of the LPF techniques. 

The filter amplitudes show patterns which vary with activity levels. At the lower 

activity levels, intervals 1 to 6, the filters show two peaks of approximately equal 

amplitude. The lags for these peaks are roughly at 20 and 60 minutes. They are 
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somewhat variable, taking values for the 20 minute peak from 15 to 30 minutes and for 

the 60 minute peak from 55 to 70 minutes [Bargatze, 1985:6390]. The filters gradually 

decay to zero after approximately 2 hours. The peaks of these impulse responses reflect 

both the driven and unloading model equally, showing the response of the output is related 

to two separate mechanisms. 

The filters from 6 to 18 also have two peaks, but the second peak is significantly 

larger than the first. The peaks still remain near the 20 and 60 minute established by the 

first six filters. This range of filters encompasses the moderate range of activity, and 

indicates that moderate activity is more closely related to the unloading model, where 

stored energy is released into the auroral electrojets. 

Filters 19 to 30 are much different from the previous two groups of filters. They 

have a single broad peak and takes longer to decay. The peaks of these filters reach their 

maximum amplitudes near the 20 minute peak of the first two groups. The peaks are 

much broader, however, and may cover as much as a 30 minute interval. This indicates 

the driven model dominates at strong geomagnetic activity levels. The slow decay from 

the peak amplitude is completed in approximately 2.5 hours. The impulse response curve 

then stays near the zero line, but remains slightly negative until approximately 3.5 hours of 

lag where it begins to rise again. 

The broadening of the 20 minute peak for strong geomagnetic activity levels is not 

explained completely. A possible explanation is that although the peak at 20 minutes 

indicates the driven model has taken precedence, the broadening of the peak would 

suggest an interaction time. The solar wind-magnetosphere coupling actions do not take 
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place immediately. The broadening may be the result of the solar wind's push into the 

magnetosphere, and the magnetosphere's impedance to such action. 

-0.06 

0 1 2 

TIME   LAG   (hours) 

Figure 10. Filters 10 and 27 for the Bargatze data set. 
(Adopted from Bargatze [1985:6389]). 

Filters 10 and 27, reproduced in Figure [10], have been highlighted in Bargatze's 

paper as representative filters for the second and third group of filters mentioned above. 

Filter 10 demonstrates the two peak curve with the second peak being higher. Filter 10 

describes, in general, the levels of geomagnetic activity where the unloading and driven 

model are both important to calculation of AL, but the former model is preeminent. Filter 

27 illustrates the single peak curve, associated with the dominance of the driven model, 

with a maxima near the 20 minute lag and decaying gradually thereafter. 
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Filter and model components 

The models used were built by implementing ARMA techniques. The number of 

previous inputs and outputs and time lags had a great deal of influence on the ability of the 

model properly estimate the actual output. The papers mentioned earlier do not reference 

exact values of orders or lags to incorporate into a model in order to maximize its 

performance. Clauer [1986:43] suggests three courses of action in order to produce the 

best models possible. They are to set a predetermined length for the model's filter, preset 

a minimum least squares error for the model to achieve, or continue until the least squares 

error levels out and shows no sign of any appreciable increase or decrease. The models 

used in this thesis have set the orders and lags which appear to give the best performance. 

For single and multiple input models, the best model structure is [10 85 1], where 10 is the 

number of previous outputs used, 85 the number of previous input data points, and 1 

represents the time lag. 

Figures 11 and 12 show several intervals where strong activity starts suddenly. 

The model does not respond quickly to and may miss some onsets of geomagnetic 

activity. This was also noted by Clauer [1986], so it is not specific to this effort and could 

be considered as a uncertainity in the physical system or prediction method. 

Multiple input models are slightly different than the single input models. The 

impulse response and model coefficients for multiple input are created with all of the 

inputs at once. Therefore, their impulse responses and coefficients are very different from 

those created using single input models. In general, the impulse response curves for the 
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multiple input models are much smoother than the single input models, and each input 

affects the impulse response curve differently. 

Vassiliadis' [1995] state-input space uses several inputs and outputs in developing 

the model, and has a different approach to modeling the time series compared to LPF 

techniques. The state-input space model does not relate to filter estimation or coefficients. 

The conditions for best fitting a model come from an estimate of distance from a specific 

point in three dimensional space. This method determines what level of fit is required by 

the model, and chooses a distance from the reference point which encompasses enough 

points to give this correlation. The shorter the distance from the reference point to the 

other points needed to achieve a certain correlation the better the model. The distance can 

shortened to any minimum length, so long as there is at least one neighbor within that 

distance. The state-input space model cannot perform its calculations without at least one 

nearest neighbor.   For Vassiliadis' 2.5 hour prediction, use of the three nearest neighbors 

in state-space produced a model with an average correlation coefficient of 92%. 

Residuals and correlations 

The comparison of residuals shows the difference between the predicted and actual 

values for AL. Bargatze et al. [1985] and Vassiliadis et al. [1995] both used residuals as a 

method of establishing the quality of their results. The results of the predicted values of 

AL and the residuals from this thesis are seen in Figures 11 and 12. The units of the 

residuals are the same as the AL index (nT) since they are only the difference between the 

actual and simulated. 
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Residuals attained were smaller in overall magnitude than those produced by 

Bargatze [1986]. Bargatze showed only the results of the model using VBS as model 

input to simulate AL. As shown in his paper, the residuals for VBS over moderate 

geomagnetic activity levels reached maximum amplitudes near 300 nT. Using the same 

input and interval of activity, the residuals of this study reach an amplitude slightly less 

than those of Bargatze, approximately 250 nT. This indicates that this model was better 

able to fit the data and has a higher correlation since, in areas of low residual amplitudes, 

the two results are nearly equal. 

The results at stronger geomagnetic activity were also superior to those reported 

by Bargatze, when evaluated in terms of the magnitude of the residuals. Again, over the 

same time interval and input, this study's residuals did not exceed the amplitude of 

400 nT. In contrast, Bargatze's results showed a maximum residual of 600 nT with 

several peaks over the 400 nT mark. Both sets of residuals show a good deal of departure 

from the actual AL with the greatest differences occurring at the onset of strong activity. 

This would indicate that the models did not respond well to sudden increases in the 

activity level. The models did, however, do reasonably well once the model noticed the 

increase in activity. 

The results of other single input models and multiple input models for moderate 

and strong geomagnetic activity appear in Appendix C. The models with more than one 

input show several input graphs, a predicted versus actual AL graph, and a graph of the 
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residuals. The combinations of coupling functions and levels of geomagnetic activity can 

be determined by the titles of each input graph. The figures are numbered and have full 

title descriptions of the input or inputs, simulated versus actual AL, and the residuals. 

The residuals are, in general, smaller for multiple input models. The reason for this 

is using more than one input allows for modeling multiple reactions of the magnetosphere 

which have linear contributions to AL. If two or more physical processes are causing the 

growth or diminishment of AL, models using inputs which involve all of these processes 

would have a better chance of modeling AL than a model which only involved a single 

process. This can also be seen in the increase of the correlation for multiple input models. 

There is an approximate 5% increase in the overall correlation for each model that 

incorporates an additional input in predicting AL. If a model uses three coupling functions 

as input, the correlation can be expected to increase by approximately 10%. 

Vassiliadis' work shows a remarkable increase in correlation when compared to 

any of the models which used LPF techniques. His average correlation values were near 

94%, while those of Bargatze averaged between 50% and 65% [Vassiliadis, 1995]. This 

improvement may not be solely due to Vassiliadis' use of state-input space models, but 

also lie in the fact that he used multiple inputs. If this is the case, linear modeling may be 

sufficient to produce excellent results, given that the coupling functions have some type of 

linear relationship to AL or any other geomagnetic index. 

The correlation between predicted and observed values of the AL index for various 

models is presented in Figure 13. The results displayed include Bargatze's single input, 

this study's single and two multiple input, and Vassiliadis's state-input space correlation 
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values. In Appendix D, the correlation values reported are those of Bargatze as reported 

by Vassiliadis, the single input model for VBS, two multiple input models, and the state- 

input space model used by Vassiliadis et al [1995]. It is easy to see that the state-input 

space model "scored" the best of the models tested. The explanation for the improved 

performance is the nonlinear model was able to interpret relations which the linear models 

could not, and multiple, instead of single, inputs were used. As seen by both the linear and 

nonlinear models, an increased number of inputs allows the models to achieve a greater 

correlation and accuracy compared to single input models. 

Vassiliadis et al. [1995] reported that linear prediction filtering averaged 50-60% 

for cross correlations using single inputs. The single input, LPF, models designed in this 

thesis achieved correlations in this range. However, the multiple input models show a 

significant improvement over the single input correlations. The triple input LFP model did 

quite well with values averaging in the middle to upper 70% range. It is apparent that the 

next generation of models will need to include both the adaptive and nonlinear features as 

well as multiple inputs to perform more successfully than those illustrated here. 

Forecasting 

The method of forecasting AL is very similar to the predictive method used in all 

of the models described above. The models predict the next value of AL from the 

coupling function inputs and the previous values of AL. In order to extend this forecast 

beyond a single time step, different techniques are available. 
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Two types of forecasting were implemented in this thesis. The first was an 

extended single step prediction which, in effect, was the same as the prediction of AL 

produced by the standard LPF models. The distinguishing feature was that the predicted 

output was now treated as the true, observed value with autoregressive feedback being 

now driven by a prediction. The input data stream, solar wind data, was assumed to still 

be available at the 2.5 minute intervals. The second forecast type assumed that both the 

observed outputs and inputs were not available over the forecast interval. Operationally, 

when those conditions are encountered, persistance of the output is the standard forecast. 

However, improving on this, within the LPF approaches, requires that inputs be supplied. 

The remedy adapted was input persistance. 

The basis of the input persistance method is the distributed nature of the impulse 

response. Previously, we established that significant contributions to the impulse response 

extended over a time interval in excess of 90 minutes, with "peak" contributions at lagged 

times of 25 and 70 minutes. Forecasts using only lagged input values in the 30 to 70 

minute sector of the true input data, for example, would capture a significant portion of 

the impulse response. Filling the remaining interval, if the fill is chosen appropriately, will 

improve the prediction and enable a time interval forecast, tf (30 minutes in this example). 

The implementation of input persistance thus consists of repeating or duplicating the input 

data (persistance) over a time interval for forecast, tf, and using this current data, from 

current time t through t-tf, as the future data for t to t + tf. 
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These forecast methods produced results which were better correlated than 

persistance but less accurate than the model's prediction at short time increments. The 

results showed residuals ranging from 175 to 400 nT for low to moderate activity for both 

models and, for strong activity, ranging from 500 to 800 nT for the single step method and 

500 to 950 nT for the input persistance method. The cross correlation values between the 

forecast and actual values of AL for both methods ranged from 0.69 at low levels to 0.35 

for strong geomagnetic activity. On average, the single step method performed between 

0.03 and 0.06 better than the input persistance method. 

Vassiliadis et al. [1995] predicted AL in single steps out to the desired forecast 

time. Using each new predicted value of AL as a previous value, he then predicted the 

next value of AL using the actual inputs and their nearest neighbors in state-input space. 

In this approach, the two limitations on single step predictions are 1) the amount of noise 

in the data and the determinism of the coupling and 2) the amount of available data in the 

region of interest in the state-input space [Vassiliadis et al., 1995:3498]. As seen in Figure 

13, the correlations of the 2.5 minute prediction were the highest, by far, of all of the 

models. The values for the 4.17 hour prediction model were lower but in the same range 

as the dual and triple input models for linear prediction filtering. 
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V. Conclusions and Recommendations 

This chapter will be concise as it contains only two sections. The first will assess 

the models developed, discuss limitations and achievements, and compare them to 

previous work in the field. The second section will introduce directions to follow in order 

to further this research and suggest even better methods for predicting the desired indices. 

Conclusions 

There are several conclusions which can be drawn from the results of this research. 

Some of them include the use of LPF in prediction and forecasting, the accuracy of LPF in 

comparison to other linear and nonlinear models, and the limitations of the LPF in 

forecasting. 

The techniques of linear prediction filtering represent a useful tool and can be used 

to develop good models for predicting geomagnetic activity. The impulse response curves 

for the different coupling functions provide physical insight regarding characteristic system 

times and enable assessment of physical mechanisms and models. Multiple input models 

allow the LPF techniques to achieve improved correlation scores and lower residuals when 

compared to single input models. The effectiveness of these LPF approaches, however, 

has already been surpassed by the use of state-input space models. Other techniques 

capable of addressing nonlinear systems becoming available, such as neural networks, 

should be used to examine the physical processes of solar wind-magnetosphere coupling. 
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LPF methods developed in this effort showed good comparisons to the results of 

the previous linear methods as well as the state-input space models. The past linear 

models were able to achieve correlations of approximately 60 with the actual values of AL 

while the linear models of this thesis reach an average 78 using three inputs. The state- 

input space model, also using three inputs, achieved much better results, nearly 94% of the 

actual AL values. The LPF methods results are excellent for linear models, but it can be 

seen that nonlinear methods should be employed to secure the best results. 

An obvious limitation of LPF techniques is they model only the linear processes 

which take place. It is clear that some of the processes in the solar wind-magnetosphere 

coupling are nonlinear. Therefore, nonlinear models are the best equipped to model and 

forecast them. 

Recommendations 

There are several directions to take to continue this research. They involve using 

different types of models, applying these methods to different indices, and using other 

coupling functions discussed by Gonzalez [1990] to determine their importance with 

respect to all of the different indices. Such investigations will provide substantial progress 

for the field of predicting the geomagnetic indices and a better understanding of the 

processes taking place during the coupling of the solar wind and magnetosphere. 

Application of adaptive filtering techniques to nonlinear methods is a good place to 

start additional research. Nonlinear methods should show a greater correlation between 

the solar wind input and the resulting indices. In the last several years, neural networks 
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have been experimented with and refined to a degree which suggests their use would be 

beneficial in the arena of forecasting. They are able to model linear as well as nonlinear 

effects in a continuous time domain. This makes them very applicable to the prediction 

and forecasting of geomagnetic indices. Their application to this field should be studied, 

applied, and exploited. 

The different indices represent varied effects taking place within the overall 

coupling between the solar wind-magnetosphere system. By modeling each of the indices 

with adaptive filtering techniques, understanding can be gained for both the physical 

actions taking place and the relative linear-nonlinear relationship between the indices and 

the solar wind input. By using different coupling functions in the prediction of different 

indices, new indications of the processes taking place may be revealed. 
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APPENDIX A: Data Formats 

Data Format for Bargatze Data Set 

The Bargatze data set is a matrix which is 42216 x 14 in dimension. The number 
of rows (42216) is the number of 2.5-minute time steps in the interval. The numbers of 
columns (14) are the types of data in the set itself. Below, listed by column number, are 
the data which are included in the Bargatze set: 

1. TIME in YYMMDDSSSSS format where YY is the two digit year (i.e. 67 
is 1967), MM is the month, DD is the day of month, and SSSSS is the 
seconds of day which ranges between 00000 and 86250 for this 2.5 
minute data set. 

2. AE Index in nT 

3. AL Index in nT 

4. X coordinate of IMP 8 in GSM coordinates and in km 

5. Y coordinate of IMP 8 in GSM coordinates and in km 

6. Z coordinate of IMP 8 in GSM coordinates and in km 

7. Bx in GSM coordinates and in nT 

8. By in GSM coordinates and in nT 

9. Bz in GSM coordinates and in nT 

10. B sigma squared in (nT)**2, a measure of the magnetic field variance 

11. Np, the proton number density in #/cm**3 

12. V, the solar wind bulk speed in km/s 

13. Na, the alpha particle number density in #/cm**3 

14. Tp, the proton temperature in degrees K 
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Data Format for Solar Wind Experiment (SWE) data 

The following format statement can be used to read the SWE data into a Fortran 
program. The data itself is an XX x 24 matrix. The length is dependent on how long a 
window remains open while receiving the data. The data in each column is described in 
the list below. 

Fortran Code 

READ( 1,100) IYRDAY,UTIME,MILLSECJDATA(I),I= 1,20) 
100 FORMAT(I6,1X,A12,I9,20F12.3) 

Column listing 

1 GSMVX KM/S 
2 GSMVY KM/S 
3 GSMVZ KM/S 
4 GSMVT KM/S 
5 GSM VTHETA DEG 
6 GSMVPHI DEG 
7 GSEVX KM/S 
8 GSEVY KM/S 
9 GSEVZ KM/S 
10 GSE VTHETA DEG 
11 GSEVPffl DEG 
12 DISTANCE RE 
13 GSMRX RE 
14 GSMRY RE 
15 GSMRZ RE 
16 GSERX RE 
17 GSERY RE 
18 GSERZ RE 
19 ATEMP DEGK 
20 ADENS P/CM3 

WIND KP DATA: SWE GSM VX 
WIND KP DATA: SWE GSM VY 
WIND KP DATA: SWE GSM VZ 
WIND KP DATA: SWE GSM VT 
WIND KP DATA: SWE GSM VTHETA 
WIND KP DATA: SWE GSM VPHI 
WIND KP DATA: SWE GSE VX 
WIND KP DATA: SWE GSE VY 
WIND KP DATA: SWE GSE VZ 
WIND KP DATA: SWE GSE VTHETA 
WIND KP DATA: SWE GSE VPHI 
WIND DIST: S/C DISTANCE 
WIND GSM RX: S/C POSITION 
WIND GSM RY: S/C POSITION 
WIND GSM RZ: S/C POSITION 
WIND GSE RX: S/C POSITION 
WIND GSE RY: S/C POSITION 
WIND GSE RZ: S/C POSITION 
WIND KP DATA: SWE PROTON TEMP 
WIND KP DATA: SWE PROTON DENS 
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Data Format for Magnetic Field Instrument (MFD data 

The following format statement can be used to read the MFI data into a Fortran 
program. The data itself is an XX x 20 matrix. The length is dependent on how long a 
window remains open while receiving the data. The data in each column is described in 
the list below. 

Fortran Code 

READ( 1,100) IYRDAY,UTIME,MILLSEC,DATA(I),I= 1,18) 
100 F0RMAT(I6,1X,A12,I9,18F12.3) 

Column listing 

1 GSMBX NT 
2 GSM BY NT 
3 GSMBZ NT 
4 GSMBT NT 
5 GSM BTHETA DEG 
6 GSMBPHI DEG 
7 GSEBX NT 
8 GSEBY NT 
9 GSEBZ NT 
10 GSE BTHETA DEG 
11 GSE BPFfl DEG 
12 DISTANCE RE 
13 GSMRX RE 
14 GSMRY RE 
15 GSMRZ RE 
16 GSERX RE 
17 GSERY RE 
18 GSERZ RE 

WIND KP DATA: GSM BX 
WIND KP DATA: GSM BY 
WIND KP DATA: GSM BZ 
WIND KP DATA: GSM BT 
WIND KP DATA: GSM BTHETA 
WIND KP DATA: GSM BPHI 
WIND KP DATA: GSE BX 
WIND KP DATA: GSE BY 
WIND KP DATA: GSE BZ 
WIND KP DATA: GSE BTHETA 
WIND KP DATA: GSE BPHI 
WIND DIST: S/C DISTANCE 
WIND GSM RX: S/C POSITION 
WIND GSM RY: S/C POSITION 
WIND GSM RZ: S/C POSITION 
WIND GSE RX: S/C POSITION 
WIND GSE RY: S/C POSITION 
WIND GSE RZ: S/C POSITION 

68 



APPENDIX B: Baraatze Data Set Information 

Intervals of the Barqatze data set 

(From Dr. Klimas, Personal Correspondence) 

Interval number Beainnina-End Beainnina-End Number of Points 

(in Points) (in Hours) (in Interval) 

1 1-660 0-27.5 660 

2 660-1596 27.5-66.5 936 

3 1596-2592 66.5-108.0 996 

4 2592-3264 108.0-136.0 672 

5 3264-4068 136.0-169.5 804 

6 4068-4956 169.5-206.5 888 

7 4956-5940 206.5-247.5 984 

8 5940-7212 247.5-300.5 1272 

9 7212-7764 300.5-323.5 552 

10 7764-9420 323.5-392.5 1656 

11 9420-10452 392.5-435.5 1032 

12 10452-11064 435.5-461.0 612 

13 11064-12324 461.0-513.5 1260 

14 12324-13008 513.5-542.0 684 

15 13008-14532 542.0-605.5 1524 

16 14532-15720 605.5-655.0 1188 

17 15720-17160 655.0-715.0 1440 

18 17160-18564 715.0-773.5 1404 

19 18564-19596 773.5-816.5 1032 

20 19596-20532 816.5-855.5 936 

21 20532-21708 855.5-904.5 1176 

22 21708-22836 904.5-951.5 1128 

23 22836-24012 951.5-1000.5 1176 

24 24012-24912 1000.5-1038.0 900 

25 24912-26124 1038.0-1088.5 1212 

26 26124-27876 1088.5-1161.5 1752 

27 27876-29796 1161.5-1241.5 1920 

28 29796-31812 1241.5-1325.5 2016 

29 31812-34476 1325.5-1436.5 2664 

30 34476-37104 1436.5-1546.0 2628 

31 37104-38148 1546.0-1589.5 1044 

32 38148-39660 1589.5-1652.5 1512 

33 39660-41460 1652.5-1727.5 1800 

34 41460-42216 
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Interval 

Bargatze Data Set Components 
[Means of the parameters used in computing the various models] 

(All calculations were made using double precision accuracy.) 

AL Index Bs VBs VA2Bs Epsilon 

1 -15.227273 0.20492577 67.0471714 21936.3493 573.915282 

2 -25.611526 0.51431242 183.263214 65301.565 1645.57648 

3 -32.019057 0.19343149 64.947771 21807.2714 1371.04054 

4 -33.46211 0.15687739 74.9729211 35830.1405 1455.70048 

5 -39.086957 0.23949521 97.4044936 39615.1359 1725.42281 

6 -30.56243 0.41618896 174.740152 73366.0032 2078.94568 

7 -37.17868 0.70004449 254.090154 92225.2897 2126.45236 

8 -47.568735 0.93924617 303.079525 97798.8533 2955.85545 

9 -35.799277 0.2955825 117.414416 46640.6008 1972.59965 

10 -41.629451 0.43832874 148.41389 50251.5135 1536.57794 

11 -45.03485 0.39354822 178.741892 81181.0653 3791.00373 

12 -50.587276 0.168572 87.3595636 45272.6046 3042.06145 

13 -69.458366 0.63473358 280.656093 124095.913 4335.40463 

14 -66.252555 0.98601463 353.110321 126455.425 5066.58246 

15 -78.161967 0.99907416 407.318642 166062.224 4294.00479 

16 -89.783011 0.88939006 389.951065 170973.166 4587.83306 

17 -106.84178 0.67115191 319.716843 152303.612 5962.70139 

18 -101.59359 0.61629239 319.185418 165310.058 4757.23215 

19 -96.736689 1.56116573 657.623398 277016.415 8385.39901 

20 -83.116329 1.11901064 490.158559 214703.421 4539.01254 

21 -128.42991 2.46372657 893.24006 323849.982 14215.3971 

22 -102.69619 1.20490582 579.212238 278434.059 8913.44441 

23 -133.12234 1.72903147 709.895004 291464.282 9212.53151 

24 -150.37292 1.42075298 640.076672 288366.909 7087.67384 

25 -152.65293 1.06904252 620.804525 360507.887 9957.54564 

26 -186.28694 0.67888426 484.125901 345239.835 6088.12426 

27 -204.09058 0.86835436 556.750409 356963.739 8528.96208 

28 -218.17353 0.9823384 660.402298 443972.457 10818.8573 

29 -227.37186 1.02337076 633.85389 392595.499 13397.5192 

30 -231.77025 1.73080193 935.914742 506087.029 15770.8044 

31 -247.61818 2.0296073 1195.09673 703710.617 15817.4818 

32 -289.64706 1.394705 831.035612 495172.948 8053.17499 

33 -287.82954 1.44331395 883.076023 540300.509 7390.91338 

34 -413.08851 3.50311121 1825.23298 951004.755 34588.5883 
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Appendix C: Simulation of AL using various models 

The following figures are numbered and included as references. Each has one or 

more titles and descriptions to allow the reader a better understanding of what is contained 

and how they would be applicable. 
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Appendix D: Correlation Values 

Correlations between input and AL for models used 

Bargatze Linear Prediction Filtering Vassiliadis 
Single Single Dual Triple State- 

Input 
Interval Input Input Input Input Space 

1 68 68 82 87 84 
2 79 80 87 89 91 
3 43 45 49 62 86 
4 0 31 51 67 79 
5 42 45 61 76 88 
6 59 59 66 69 93 

7 64 65 71 79 96 
8 65 65 74 83 92 
9 44 44 75 87 91 
10 79 79 82 81 93 
11 65 65 72 91 91 
12 63 63 72 78 88 
13 61 65 71 75 94 
14 87 87 91 91 97 
15 73 74 80 83 93 
16 76 76 82 84 95 
17 68 68 73 84 94 
18 61 62 70 74 84 
19 64 59 55 80 96 
20 74 74 77 79 95 
21 84 84 87 89 96 
22 57 58 70 74 96 
23 60 60 72 78 95 
24 79 79 84 87 96 
25 48 64 70 74 92 
26 54 56 66 69 90 
27 81 81 82 83 95 
28 73 73 78 80 94 
29 60 60 66 73 94 
30 68 68 75 76 93 
31 84 84 86 66 93 
32 73 74 76 86 94 
33 72 73 73 75 94 
34 72 72 82 86 92 

The values listed are percentages of one, where 100 indicates a perfect or complete 

correlation with the output data. 



Appendix E: Bargatze's Stack Plot of Filters 

0 12 3 4 

TIME   LAG   (hours) 

Figure El. Stack plot of linear prediction filters for all levels of geomagnetic activity. 
(Adapted from Bargatze [1985:6389]) 

89 



Bibliography 

Air Force Institute of Technology. Style guide for Theses and Dissertations. Wright- 
Patterson AFB, OH: September, 1994. 

AirHFTiTCfi^fatemf^mmand 
Edited by Adolph S. Jursa. Air Force Geophysics Laboratory, 1985. 

Arnoldy, R. L., "Signature in the interplanetary medium for substorms," Journal of 
Geophysical Research, 76 (22): 5189 (1971). 

Bargatze, L. F., D. N. Baker, R. L. McPherron, and E. W. Hones, Jr. "Magnetospheric 
Impulse Response for Many Levels of Geomagnetic Activity," Journal of 
Geophysical Research, 90, A7: 6387:6394 (July 1, 1985) 

Baumjohann, Wolfgang. "Merits and Limitations of the Use of Geomagnetic Indices in 
Solar Wind-Magnetosphere Coupling Studies," Solar Wind-Magnetosphere 
Coupling, Edited by Y. Kamide and J. A. Slavin, 3-15 (1986) 

Berthelier, Annick. "The Geomagnetic Indices: Derivation, Meaning, and Uses in Solar- 
Terrestrial Physics," Solar-Terrestrial Predictions Proceedings IV. Volume 3, 
Edited by J. Hruska, M. A. Shea, D. F. Smart, and G. Heckman: 3-20. Boulder 
CO: Dept. Of Commerce, September 1993. 

Clauer, C. Robert. "The Technique of Linear Prediction Filters Applied to Studies of 
Solar Wind-Magnetosphere Coupling," Solar Wind-Magnetosphere Coupling, 
Edited by Y. Kamide and J. A. Slavin, 39-57 (1986). 

Cliver, Ed. Research Scientist, Geophysics Laboratory, Hanscom AFB, MA. Personal 
Correspondence. January-September 1995. 

Davis, T. N., and M. Sugiura. "Auroral electrojet activity index AE and its universal time 
variations", Journal of Geophysical Research., 71: 785-801 (1966). 

Department of the Air Force. SWIM User's Guide and Reference. Hanscom AFB: 
Phillips Laboratory/Geophysics Directorate, 1995. 

Gehred, P. A., W. Cliffswallow, and J. D. Schroeder III. A Comparison of USAF Ap and 
Kp Indices to Gottingen Indices. NOAA Technical Memorandum ERL SEL-88. 
Boulder CO:Space Environment Laboratory, March 1995. 

Gonzalez, W. D. " Unified view of Solar Wind-Magnetosphere Coupling Functions," 
Planetary and Space Science: 38, 5: 627-632(1990). 

90 



Hargreaves, J.K. The solar-terrestrial environment. Cambridge: University Press, 1992. 

Kamide, Y., and W. Baumjohann, "Estimation of electric field and currents from IMS 
magnetometer data for the CDAW-6 intervals: Implications for substorm 
dynamics," Journal of Geophysical Research, 90:  1305-1317 (1985). 

Kelley, Michael C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. New 
York: Academic Press, 1989. 

Klimas, Alexander J. Research Scientist, Goddard Space Flight Center, NASA. 
Personal Correspondence. August-September 1995. 

Klimas, A. J., D. N. Baker, D. Vassiliadis, and D. A. Roberts. "Substorm recurrence 
during steady and variable solar wind driving: Evidence for a normal mode in the 
unloading dynamics of the magnetosphere," Journal of Geophysical Research, 90 
(A8): 14855-14861 (1994). 

Klimas, A. J., D. N. Baker, D. A. Roberts, and D. H. Fairfield. "A nonlinear Dynamic 
Analogue Model of Substorms," Geophysical Monograph 64: 449-459(1991). 

Ljung, Lennart. System Identification Toolbox User's Guide. Version 4.0, UNIX. 
Computer software and tutorial. The MathWorks, Inc., Natick MA, 1992. 

Makridakis, Spyros, and Steven C. Wheelwright. Interactive Forecasting: Univariate and 
Multivariate Methods. 2nd Ed. Holden-Day: San Fransisco,  1978. 

Matlab: High-Performance Numeric Computation and Visualization Software. Version 
4.0, UNIX. Computer software. The MathWorks, Inc., Natick MA, 1992. 

Menvielle, M. And A. Berthelier. "The K-derived Planetary indices: Description and 
Availability," Reviews of Geophysics, 29, 3: 415-432 (August 1991). 

Nostrand, Philip M. Forecast Verification of the 10.7 Centimeter Solar Flux and the Ap 
Daily Geomagnetic Activity Indices. MS thesis, AFIT/GSO/PH-OS/84D-2. 
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson 
AFB OH, December 1984. 

Parks, George K. Physics of Space Plasmas: An Introduction. New York: Addison- 
WesleyPublishing Company, 1991. 

Perreault, P., and S.-I. Akasofü, "A study of geomagnetic storms," Geophysical Journal 
J. R. Astronomical Society., 54: 547 (1978). 

91 



Plasma Physics: An introductory course. Ed. R. O. Dendy. Cambridge: University 
Press, 1993. 

Robinson, Enders A. Multichannel time series analysis with Digital Computer Programs. 
Holden-Day: San Fransisco, 1967. 

Rostoker, Gordon. "Magnetospheric Substorms-Their phenomenology and 
predictability." Solar-Terrestrial Predictions Proceedings IV, Volume 3,   Edited 
by J. Hruska, M. A. Shea, D. F. Smart, and G. Heckman: 21-35. Boulder: CO: 
Dept. of Commerce, September 1993. 

Russell, C. T. "Solar Wind Control of Magnetospheric Configuration," Solar Wind- 
Magnetosphere Coupling, Edited by Y. Kamide and J. A. Slavin, 209-231 (1986). 

Smart, D. F., Research Scientist. Geophysics Laboratory, Hanscom AFB, MA. Personal 
Correspondence. January-July 1995. 

Tascione, Thomas F. Introduction to the Space Environment. Malabar, Florida: Orbit 
Book Company, 1994. 

Vassiliadis, D., A. J. Klimas, D. N. Baker, and D. A. Roberts. "A description of the solar 
wind-magnetosphere coupling based on nonlinear filters," Journal of Geophysical 
Research, 100, A3: 3495-3512 (March 1, 1995). 

Weidner, Richard T. Physics. Boston: Allyn and Bacon, 1985. 

92 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

N 

1. AGENCY USE ONLY (Leave blank) REPORT DATE „Ä„,„ 
January 1996 

3. REPORT T.YPE  AND DATES COVERED 
'aster s Thesis TOS 

4. TITLE AND SUBTITLE 
Application of Autoregressive Moving Average Linear Prediction 
Filters to the Characterization of Solar Wind-Magnetosphere Couplini 

6. AUTHOR(S) 

Carter N. Borst, Capt, USAF 

5.  FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology, WPAFB OH 45433-6583 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Ed Cliver 
PL/GPSG 
29 Randolph Rd 
Hanscom AFB, MA 01731 -3010 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Linear prediction filtering techniques have been used in studying the coupling processes 
between the solar wind and magnetosphere. The magnetosphere is a complex, dynamic system 
with at least two independent coupling methods for energy input, driven and unloading.  Linear 
models were built and tested on the Bargatze data set, consisting of over 70 days of 
geomagnetic indices and solar wind data ordered in 34 intervals of increasing geomagnetic 
activity.  Linear filtering techniques employing single- and multiple-input, autoregressive models 
predicted values of the magnetic index AL from solar wind data. The impulse response curves of 
the AL-coupling function groups showed amplitude peaks at 25 and 70 minutes, confirming 
results in previous studies. The separate peaks indicate responses corresponding to the driven 
and unloading time scales. The average correlation coefficients generated between predicted AL 
values and the measured values of AL were 0.665, 0.738, and 0.793 for single, dual, and triple 
input models, respectively. 

14. SUBJECT TERMS 

Magnetosphere, Solar wind, Geomagnetic activity, Prediction filters 
Linear filters, magnetospheric coupling 

15. NUMBER OF PAGES 
104 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



GENERAL INSTRUCTIONS FOR COMPLETING SF 298 

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important 
that this information be consistent with the rest of the report, particularly the cover and title page. 
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet 
optical scanning requirements. 

Block 1. Agency Use Only (Leave blank). 

Block 2.   Report Date. Full publication date 
including day, month, and year, if available (e.g. 1 
Jan 88). Must cite at least the year. 

Block 3. Type of Report and Dates Covered. 
State whether report is interim, final, etc. If 
applicable, enter inclusive report dates (e.g. 10 
Jun87-30Jun88). 

Block 4.   Title and Subtitle. A title is taken from 
the part of the report that provides the most 
meaningful and complete information. When a 
report is prepared in more than one volume, 
repeat the primary title, add volume number, and 
include subtitle for the specific volume. On 
classified documents enter the title classification 
in parentheses. 

Blocks. Funding Numbers. To include contract 
and grant numbers; may include program 
element number(s), project number(s), task 
number(s), and work unit number(s). Use the 
following labels: 

C 
G 
PE 

Contract 
Grant 
Program 
Element 

PR 
TA 
WU 

Project 
Task 
Work Unit 
Accession No. 

Block 6. Author(s). Name(s) of person(s) 
responsible for writing the report, performing 
the research, or credited with the content of the 
report. If editor or compiler, this should follow 
the name(s). 

Block 7. Performing Organization Name(s) and 
Address(es). Self-explanatory. 

Block 8. Performing Organization Report 
Number. Enter the unique alphanumeric report 
number(s) assigned by the organization 
performing the report. 

Block 9. Sponsoring/Monitoring Agency Name(s) 
and Address(es). Self-explanatory. 

Block 10.   Sponsoring/Monitoring Agency 
Report Number. (If known) 

Block 11. Supplementary Notes. Enter 
information not included elsewhere such as: 
Prepared in cooperation with...; Trans, of...; To be 
published in.... When a report is revised, include 
a statement whether the new report supersedes 
or supplements the older report. 

Block 12a.  Distribution/Availability Statement. 
Denotes public availability or limitations. Cite any 
availability to the public. Enter additional 
limitations or special markings in all capitals (e.g. 
NOFORN, REL, ITAR). 

DOD   -   See DoDD 5230.24, "Distribution 
Statements on Technical 
Documents." 

DOE   - See authorities. 
NASA- See Handbook NHB 2200.2. 
NTIS   - Leave blank. 

Block 12b. Distribution Code. 

DOD   - Leave blank. 
DOE   - Enter DOE distribution categories 

from the Standard Distribution for 
Unclassified Scientific and Technical 
Reports. 

NASA- Leave blank. 
NTIS   - Leave blank. 

Block 13. Abstract. Include a brief (Maximum 
200 words) factual summary of the most 
significant information contained in the report. 

Block 14. Subject Terms. Keywords or phrases 
identifying major subjects in the report. 

Block 15.  Number of Pages. Enter the total 
number of pages. 

Block 16. Price Code. Enter appropriate price 
code (NTIS only). 

Blocks 17.-19. Security Classifications. Self- 
explanatory. Enter U.S. Security Classification in 
accordance with U.S. Security Regulations (i.e., 
UNCLASSIFIED). If form contains classified 
information, stamp classification on the top and 
bottom of the page. 

Block 20. Limitation of Abstract. This block must 
be completed to assign a limitation to the 
abstract. Enter either UL (unlimited) or SAR (same 
as report). An entry in this block is necessary if 
the abstract is to be limited. If blank, the abstract 
is assumed to be unlimited. 

• U.S.GPO:1993-0-336-043 Standard Form 298 Back (Rev. 2-89) 


	Application of Autoregressive Moving Average Linear Prediction Filters to the Characterization of Solar Wind-Magnetosphere Coupling
	Recommended Citation

	/tardir/mig/a306523.tiff

