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Abstract

Mach 2.9 boundary layer flow (Re/m 1.75x107 ) under the influence of mild pressure
gradients is studied numerically. Baldwin-Lomax and k - w turbulence models are incor-
porated into a cell-centered finite volume flow solver and the results are compared with
hot wire anemometry and Laser Doppler Velocimetry (LDV) measurements obtained for
the same geometries in the AFIT Mach 2.9 wind tunnel. Agreement between the present
simulations obtained with the k - w turbulence model and experimental velocity profiles

is excellent in all test sections. Nondimensional turbulent shear stress predictions closely
match experimental data in the flat plate and adverse pressure gradient sections while
slightly over-predicting this quantity in the favorable pressure gradient region. Favorable
pressure gradients are found to stabilize the flowfield, resulting in increased boundary
layer thickness and reduced turbulent and wall shear stress distributions. Additionally,

the presence of a favorable pressure gradient is found to diminish the effects of variations
in upstream boundary condition specification. Adverse presure gradients are found to de-
stabilize the flowfield, resulting in increases in the turbulent shear stress, turbulent kinetic
energy, and wall shear stress. Upstream effects are found to play a major role in adverse
pressure gradient flowfield development. Flowfield features are predicted more accurately

with the k - w model than with the Baldwin-Lomax model.

xvii



NUMERICAL SIMULATION OF SUPERSONIC

TURBULENT BOUNDARY LAYER FLOW

UNDER THE INFLUENCE OF MILD

PRESSURE GRADIENTS

I. Introduction

1.1 Problem Motivation

The vast majority of flowfields of current engineering interest are turbulent in na-

ture. High speed turbulent flows are of particular interest to the Air Force as many of the

weapon systems currently under development operate in the supersonic and hypersonic

regimes. As the atmospheric conditions in which these aerospace vehicles operate become

more and more hostile, experimental determination of the character of these flowfields be-

comes prohibitively difficult and expensive. In the current atmosphere of reduced defense

spending, the emphasis must be placed on working smarter, not harder. Numerical simu-

lation of these flowfields must be an option by which design issues may be resolved without

the need to resort to expensive wind tunnel testing. It is therefore imperative that the

Computational Fluid Dynamics (CFD) researcher provide the means to obtain accurate,

timely solutions to these types of flow fields if the development of the next generation of

aerospace vehicles is to take place. To ensure their long-term utility, the methodologies

thus developed must be flexible enough to accurately resolve the flowfields over a large

variety of geometries and under varying atmospheric conditions.

To increase the confidence level in computational output for arbitrary geometries

under varying atmospheric conditions, steps must be taken to validate the driver code's

output with existing experimental data on similar geometries subjected to similar condi-

tions. Thus, valid data sets from supersonic turbulent flow surveys play a vital role in the

development of turbulence models for CFD. Recent experimental investigations by Miller

(16), Dotter (5), Luker (15), Hale (9) and Huffman (12) at the Air Force Institute of Tech-

1-1



nology (AFIT) provide excellent test cases for the development of turbulence models for

CFD. The aforementioned tests were designed to meet the rigorous requirements of Set-

tles and Dodson (20) for viable high-speed turbulence model validation cases, and as such

should prove to be invaluable in the development of turbulence closure models. Since the

stated goal of this data collection is to serve as a validation database for computational

turbulence research, generating a code with which to perform this research is a logical

companion effort.

The focus of this effort is threefold: first, add a two-equation turbulence model to an

existing, validated, laminar CFD code; second, validate the code thus modified for use in

turbulence research by comparing its output with the experimental data mentioned above;

and third, utilize this code to evaluate the effects of pressure gradient on compressible,

turbulent, boundary layer flowfields.

1.2 The Closure Problem

Turbulence is a three-dimensional time-dependent phenomenon, manifesting itself in

fluid flows in which the ratio of inertial forces to viscous forces is sufficiently large. In

1937, Taylor and von Kirm~in (see Wilcox (27)) proposed that "turbulence is an irregular

motion which in general makes its appearance in fluids, gaseous or liquid, when they flow

past solid surfaces or even when neighboring streams of the same fluid flow past or over

one another." In turbulent flow, the viscous forces are insufficient to damp out small

disturbances in the mean flow, which instead are amplified, leading to irregular, turbulent

motion. The structure of this turbulent motion may be thought of as a cascade of eddies,
in which large eddies swirling through the flow entrain smaller eddies, who in turn entrain
yet smaller eddies. The energy associated with these eddies, the turbulent kinetic energy,

is dissipated away in the smallest eddies. This cascade of eddies leads to greater diffusivity

in turbulent flow, resulting in increased skin friction and heat transfer rates. The largest

of these eddies are typically of the same order of magnitude as the length scale of the

mean fluid flow; the smallest are microscopic in size. Thus, the range of applicable length

scales in turbulent flow is extremely large. Fortunately, as noted in Wilcox (27), "the time-

dependent, three-dimensional Navier Stokes equation contains all of the physics of a given
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turbulent flow." Notice that turbulent fluid motion is not excluded; it too must obey the

Navier-Stokes equations. That said, modeling a turbulent flow should be fundamentally no

different than modeling a laminar flow; in fact turbulence will develop naturally, provided

that all the pertinent length scales are captured.

But just how widely do these length scales vary? As previously noted, the largest

is on the order of the characteristic length of the flowfield being modeled. The length

scale associated with the smallest eddies is on the order of the Kolmogorov length scale,

ilk. For wall bounded flows, the characteristic length of the flow may be taken to be the

boundary layer thickness, b. The ratio of these length scales has been found to be inversely

proportional to the Reynolds number based on b raised to the three-fourths power, or

fl~(1.1)

Using this approximation, r}k for the flowfields to be studied in this investigation is esti-

mated to be roughly 1.22x10- 6. Assuming that flowfield features of this length scale may

be accurately resolved if the grid spacing is equal to 77k, computing the solution over 1

cubic centimeter of the flowfield would require a grid with 5.49x10 nI nodes. With this kind

of required node density, problems of a realistic size quickly become unmanageable with

present day computational resources. This is the core problem in turbulence. The inability

to resolve all of the pertinent length scales, all the effects of the turbulent eddies, requires

that the effect of these eddies be modeled.

In present-day turbulence modeling, a statistical approach is used to solve the gov-

erning equations. In both Reynolds and Favre averaging, each flow variable is replaced by

the sum of a time-averaged and a fluctuating term. Expanding and then contracting these

terms (See Appendix E) produces similar sets of differential equations. These forms of the

governing equations, the Reynolds- and Favr6-averaged Navier-Stokes equations, contain

additional fluctuation terms required to model the actions of the turbulent eddies and are 1

the forms most frequently used in turbulent flow modeling.
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1.3 "Excuse me, your Boussinesq is showing"

At the core of eddy viscosity turbulence models is the Boussinesq eddy viscosity

approximation, which (27) "assumes that the principal axes of the Reynolds stress tensor,

rij are coincident with those of the mean strain-rate tensor, Si, at all points in a turbulent

flow ... [where] ... the constant of proportionality between rij and Sj is the eddy viscosity,

1'r." The ultimate goal of an eddy viscosity turbulence closure model is then to compute j
~r in such a manner as to replicate accurately the effects of the turbulent eddies on

the flowfield. Dimensional arguments have been used to show that appropriate length

(or time) and velocity scales are needed to specify pT. Two-equation turbulence models

propose differential equations that govern these length scales and as such are complete

models; both required scales are specified. The solution of these differential equations in

terms of the scales modeled is then used to specify AT.

The wide range of velocity and length scales present in a turbulent flowfield neces-

sitates the consideration of non-local flowfield influences on the local turbulent quantities.

Turbulent kinetic energy models have been found to be successful at incorporating these

effects. Prandtl chose the kinetic energy per unit mass of the turbulent fluctuations, k, as

the basis for his velocity scale:

1 . ., 1( i- -

7 uu+ = (1.2)

As described in Appendix E, the primed velocities in Equation 1.2 represent the Reynolds

fluctuating portion of the instantaneous velocities and overbars represent time averaging.

The link between k and p lies in the trace of the Reynolds stress tensor (see Appendix E),

which may be expressed in terms of Favr fluctuating components as

-pu, u - 2pk (1.3)

The full form of the Reynolds stress tensor is then given by

32T Sij k (1.4)
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where the second term ensures that the trace of the Reynolds stress tensor is correct for

incompressible flows, where Sij = 0. In a similar fashion, the differential equation for

k may be obtained by taking the trace of the Reynolds stress equation (27). With the

velocity scale thus specified, a length scale is needed.

In 1942, Kolmogorov (see Wilcox (27)) proposed a two-equation turbulence model

that used the specific dissipation of turbulent kinetic energy, w, as its second scale. Al-

though current trends lean towards viewing w as the dissipation of k per unit k, w itself

is a non-physical quantity and as such, its exact definition is open for discussion. In justi-

fying the selection of w as the second scale, Wilcox (27), a strong proponent of the k - w

turbulence model, argues that "While the actual process of dissipation takes place in the

smallest eddies, the rate of dissipation is the rate of transfer of turbulence kinetic energy

to the smallest eddies. Hence, this rate is set by the properties of the large eddies, and

thus scales with k and 1 ... " Thus, the two scales modeled in the k - w turbulence model

are consistent; both concern themselves with the actions of the large eddies (not to be

confused with Large Eddy Simulation, another turbulence modeling method, which will

not be discussed here). Physical arguments have been utilized to determine the form of the

governing equation for w, which closely resembles the governing equation for k in that con-

vection, diffusion, production, and dissipation terms are all present. Though the arguments

used to determine the governing equation for w are certainly not rigorous mathematically,

in turbulence modeling the most successful models are frequently developed with more

emphasis on dimensional analysis and physical reasoning than mathematical rigor.

The more popular k - c turbulence model attempts to directly model the dissipation,

e, occurring in the smallest eddies. The governing equation for c is obtained by taking a

moment of the Navier-Stokes equations and involves several additional double and triple

correlations. Since this equation is obtained with substantially more rigor than the equation

for w, the bulk of two-equation turbulent flow modeling has been done with this model.

The model is not without flaws, however. Closing the equation for c requires estimations

of the aforementioned correlations, which traditionally have been very difficult to measure

experimentally. Additionally, this difficulty aside, there is concern that even if it is modeled

exactly, c might not be the appropriate length scale, since it is the scale associated with
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the dissipating eddies and not that of the Reynolds-stress bearing larger eddies. Recall

that k is the velocity scale corresponding to the large-scale turbulent fluctuations.

1.4 Flowfield Configuration

The computations performed in this investigation simulate the flow in the AFIT

supersonic pressure-vacuum wind tunnel, which operates at a nominal freestream Mach

number of 2.9. In this facility, favorable and adverse pressure gradients are imposed on su-

personic flow through the introduction of expansion and compression ramps, respectively,

into the tunnel ceiling. In four related studies at AFIT, experimental data have been

collected in these pressure gradient regions. The present numerical effort simulates these

flowfields and compares the data thus generated to that obtained through the aforemen-

tioned experimental investigations.

1.5 Summary

The generality, completeness, and overall accuracy of two-equation turbulence models

makes them attractive. The Boussinesq approximation makes their implementation into

existing laminar codes easy. Due to questions regarding the basic formulation of the

k - c model and reports of exceptional accuracy obtained with the k - W model (see

Wilcox (26) (27), Liu and Zheng (14), Coakley and Huang (4), and Morrison (18)), the

focus of this computational effort is on the k - w model. Several different versions of the

k - w model exist; certainly Wilcox's (27) has been tested more than any other. For this

investigation, however, the model presented by Coakley and Huang (4) is used. The reason

behind this selection is that the model itself is fundamentally the same as Wilcox's, but

the algorithm development presented in (4) is such that only minor changes are required to

move from the k - w model to a k - c model or almost any other two-equation turbulence

model. Thus, the final source code will serve as a valuable research tool for turbulence

model development, facilitating direct comparison between results obtained with different

turbulence models using the same basic flow solver.

The remainder of this thesis is structured as follows: A description of the problem

geometries is presented in Chapter 2. Details of the governing equations and development
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of the numeric scheme used in the mean flow and turbulence modeling portions of the

source code are provided in Chapter 3. Chapter four presents results of a grid refinement

study conducted to ensure grid independence in the solutions. Results of the present study

are compared and contrasted with experimental data collected by Miller (16), Dotter (5)

Luker (15), and Hale (9) in Chapter 5. Conclusions and recommendations, including

proposed coding changes are given in Chapter 6.
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II. Problem Descriptions

2.1 AFIT Mach 3 Blowdown Wind Tunnel

The computations presented in this effort simulate the flowfield within the AFIT

Supersonic Pressure-Vacuum Wind Tunnel. This wind tunnel was used in previous inves-

tigations by Dotter (5) and Miller (16), who experimentally examined Mach 2.9 boundary

layer flows using hot-fim anemometry. Luker (15) and Hale (9) considered the same

flowfields in their investigation, employing Laser Doppler Velocimetry for flowfield charac-

terization. In the latter set of experiments, the settling chamber pressure and temperature

were 2.1263x105 Pa and 294 K, respectively, producing a freestream Mach number at the

nozzle exit of nominally 2.85 and a freestream Reynolds number R,/m = 1.75x107 . All

flow stations referenced in this investigation are specified in centimeters using a Cartesian

coordinate system with the origin set at the nozzle throat. As such, Flow Station (FS) 71.5

corresponds to a location 71.5 cm aft of the nozzle throat. For convenience, computational

meshes used in this investigation are inverted; the wind tunnel ceiling, which contains the

compression (Adverse Pressure Gradient) and expansion (Favorable Pressure Gradient)

ramps in the physical domain, is the floor of the computational domain.

2.2 Nozzle

Figure 2.1 is a cross section of the nozzle section used in the AFIT Supersonic

Pressure-Vacuum Wind Tunnel. This contour was designed by Dr Rodney Bowersox using

the method of characteristics with a boundary condition correction. The coordinates of t
the contour of this nozzle may be found in Appendix F. I

2.3 Zero Pressure Gradient (ZPG) Test Sections

Experimental data has been collected in this test section, effectively a zero-pressure I
gradient (ZPG) channel flow, at FS 44.0 by Miller (16) and Luker (15). Additional ZPG

data was collected by Luker (15) in a similar channel flow configuration at FS 71.5 with

the pressure gradient test sections removed.
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AFIT Supersonic Pressure-Vacuum Wind Tunnel Nozzle
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Figure 2.1 Nozzle Cross Section

2.4 Favorable Pressure Gradient (FPG) Test Section

The tunnel contour in this test section is presented in Figure 2.2 and is given by the

third-order polynomial

Y = -0.2078 + 0.0897x - 0.009476x2 + 0.00003598x 3  (2.1)

7

4

3

2

0

-1 71.5 c

66 66 67 68 6 0 71 72 73

Figure 2.2 Favorable Pressure Gradient Test Section Cross Section

where x is measured in cm from the beginning of the test section (60.0 cm). Experimental

data has been acquired by Miller (16) and Luker (15) at FS 71.5 in a region characterized

by a mild favorable pressure gradient. This data plane is presented as the dashed line in

Figure 2.2 and is locally normal to the lower surface. All flowfield quantities at this plane

are represented in terms of a body normal coordinate system, defined by the dashed line

and the tangent line at FS 71.5.
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2.5 Adverse Pressure Gradient (APG) Test Section

Figure 2.4 presents the tunnel contour in this test section, which is given by the

third-order polynomial

Y = 1.186 - 0.5410x + 0.07478x 2 - 0.0028x3  (2.2)

where x is once again measured in cm from the beginning of the test section (60.0 cm).

Experimental data has been collected in this test section at FS 71.0 by both Dotter (5)

and Hale (9). During the course of this investigation, however, it became obvious that FS

71.0 lies in a region whose pressure gradient is even more favorable than that referred to in

Section 2.4, as may be seen in Figure 2.3. This figure shows the computed static pressure

along the surface of the contours of both test sections; indicating that the pressure gradient

at FS 71.0 of the APG test section is indeed favorable. Using this figure to guide further

experiments, Hale (9) obtained additional data at FS 68.0, well within the APG region.

1.3E4

1.2E4

FPG Ted SaIon
1.E4 APG TOM Seb / "

CB 0.0 06 0.610 0.66 0

Figure 2.3 Surface Pressure in Test Sections

The planes of data examined experimentally are shown by the dotted and dashed lines in

Figure 2.4. Once again, a body normal coordinate system is used for data output.
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III. Numerical Formulation

3.1 Governing Equations

Within the field of fluid mechanics, conservation of mass, momentum, and energy

may be expressed through the Navier-Stokes equations, which may be written (in Cartesian

coordinates for two-dimensional flow) as:

Ut + F, +G =0 (3.1)

The solution vector is given by

P

_PuU (E (3.2)

Et

and the flux vectors in the x and y coordinate directions are

F= Pi 2 +p-rzx (3.3)
puv - Try

(Et + p)u - ur,,. - vr~y + q.

puv-
Pt,

G Pty - J'y (3.4)pv 2 + p _ r,,

(Et + p)v - ury - vry + q,

In the above formulation, E, is the total energy per unit volume and is given by

E= p e + u + V2 ) (3.5)
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where e is the internal energy per unit mass. The viscous stresses and heat fluxes are given

by

rij 1- ,3 i aukl i,,k= 1,2 (3.6)K'-p \x + Oxi/-"5) OXkJ

and

q,= (-T)q = (-T), (3.7)

Equation 3.1 is a system of four equations in eight unknowns, those being p, u, v, p, e,

,u, T, and x. Thus, four additional relations are required to close the system. Three of

these come from Sutherland's law and the assumptions of thermally and calorically perfect

gases:

p =pRT (3.8)

e = c'T (3.9)

I= 1  (3.10)[iI

CT + C2

where R is the gas constant, c, is the specific heat at constant volume, and C1 and C2 are

constant for a given gas. Assuming that the specific heat at constant pressure, cp, and the

Prandtl number, Pr, are constant for the flows being considered, the final relation comes

from the definition of the Prandtl number:

Pr - c= (3.11)
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3.2 Algorithm Development

This section describes the algorithm used within Flat Plate Finite Volume (FPFV),

the driver code utilized and modified in this investigation. FPFV operates on the two-

dimensional Navier-Stokes equations in general curvilinear coordinates using a cell-centered,

finite volume approach. This code was originally developed and validated for high-speed

viscous flows by Dr. Datta Gaitonde (8) (6).

The form of the governing equations given in the preceding section is not amenable

to solution on uneven computational meshes. Transforming the uneven physical domain

((x, y) space) into an even computational domain ((c, ,7) space) allows the equations to

be more readily solved. As the physical space is transformed into computational space,

so must the governing equations be transformed. The set of equations thus obtained is

referred to as the strong conservation form of the governing equations, the derivation of

which may be found in Appendix A.

Beginning with the strong conservation form of the governing equations

Ut
+ r+ Gi = 0 (3.12)

the dissipative viscous terms are separated from the convective terms to yield the form

1 .9U arn iU,,in, OT. a -,,
S - =--- 0 (3.13)

where

PUG: + pVf,

1 (pu2 + p) + PUvGp (3.14)

pUvG + (pv2 + p)G

(Et+p)u+(Et+p)v,

3-3



0
1/

T= - (3.15)

(-ur.. - VTr-, + q)z+ (-ur,y - v'r., + qY)XY

Pun. + Pv y

1 (pu2 + p)n7 + puvY (.6=7n (3.16)
Puv7,l1 + (pv' + p),7|

( Et + p)ur/7: + ( Et + p)vnY J

0
1 -Gll - yly (3.17)

(-ur-- - vr, + q-)71- + (-ur., - yryy + q,)n1 J I
Using A to represent spatial finite differences, Equation 3.13 may be further re-written as

J- + + A +-A-+- -= 0 (3.18)

where

U U"n+ - U" (3.19)

where U n represents the solution at the current time step and Un + represents the solution

at the next time step. Since the computational domain is uniform with A = AT/= 1.0,

Equation 3.18 may be re-written yet again as

U, n.t - U~n .
" +" +,+Ti 0 (3.20)

Solving for the update to the solution 6U based on the current state of the flux vectors

yields
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Ui= U.j+1 -, UP, -Jijbtij [ ,--' -,,j] (3.21)

In the present computational effort, this equation is solved using a cell-centered, finite-

volume approach in which the conserved quantities (p, pu, pv, Et) are stored at cell centers.

Note that the formulation in Equation 3.21 may be obtained through the use of a classical

finite-volume approach (10) on a uniform computational mesh, as can be found in Appendix

B.

II W 4

S .
iim . I

Rod POiW 0 0 -

..................... .......................-

Figure 3.1 Cell Configuration Along a Solid Wall Boundary

3.2.1 Boundary Conditions. As the name suggests, cell-centered, finite-volume

codes store no flowfield information at the cell interfaces. Specification of boundary condi-

tions poses special difficulties for these codes since cell interfaces, not cell centers, lie on the

boundaries of the physical and computational domains. To address this difficulty, "ghost

points" (see Figure 3.1) may be created outside the physical domain and their values set

to enforce the condition at the interface (surface). In this effort, the physical domain is

broken into a mesh consisting of (iI - 2) x (jl - 2) cells with nodes 2 through (il - 1) in

the direction (2 through (jl - 1) in the r? direction) treated as interior nodes. The ghost

points are assigned indices of 1 and il in the direction and 1 and j1 in the r7 direction.

The boundary conditions imposed at a non-moving impermeable wall may be ex-

pressed in the following manner: No slip and no penetration are specified by setting u

and v at the wall equal to zero. This is accomplished by specifying that the ghost point

velocities are equal in magnitude and opposite in direction to the corresponding velocities

inside the physical domain:
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* Iwall "-0 : Ui,1 - -Ui,2

*) Iwall 0 " Vi,1 " -Vi, 2

In specifying an isothermal wall boundary condition, the internal energy at the ghost point

is extrapolated using the specified wall temperature and the internal energy at the first

node inside the physical domain. The isobaric wall boundary condition, OP = 0, requires

that the static pressure at the ghost point be equal to the static pressure just inside the

physical domain:

T Iwal = Twau: ei,1 = 2cvTa,. - ei,2

Iwall -0 PiJ = Pi,2

Other pertinent flowfield properties (p, pu, pv, Et, A) are obtained from these specified val-

ues. Inflow boundary conditions are specified by explicitly setting flowfield properties at

the upstream ghost points:

Pij Poo
Ulj "-Uo

Vj" Voo

eP1j = cPT0o

Pij Po

where once again, pu, pv, Et, and p are specified through the use of these values with the

governing equations listed in Section 3.1. Details concerning the specific implementation of

the upstream boundary conditions are presented in Section 4.6. Downstream ghost point

values are extrapolated using the values at the last two interior nodes to define a rate of

change of each flow property, which is then used to set flowfield quantities at the ghost

points:

i
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Pij = 2Uil-l,j - Uil-2,j

puit,j = 2puit-ij - PUi1-2j

PVilj = 2ptvi-i-j - PVi1-2j

Pitj = 2 PiI-,j Pil-2j

=j Ij

Vili -

=il C.Pdaj

eij p (ei, +

3.2.2 Implementation. The flowfield is initialized using either a uniform or one-

dimensional approximation of initial flowfield properties. The next step, the first in an

iterative series of steps, is to scan the flowfield to establish either a local or global 6t based

on a specified maximum CFL number, the magnitude of the mean flow eigenvalues, and

the cell size. After 6t (potentially 6ti,) has been determined, computational sweeps on the

interior nodes begin by fixing j and sweeping 2 < i < (il - 1). In this sweep, denoted the e

sweep, the left and right states at the cell's Eastern interface are extrapolated using both

upstream and downstream flow information. MINMOD limiting (28) is used in conjunction

with flowfield information from the i, (i + 1), and (i - 1) cells to establish the left state;

the right state uses the same limiting logic with flowfield information from the i, (i + 1)

and (i + 2) cells. In this application, p, pu, pv and p are extrapolated; other flowfield

properties are obtained from these extrapolated quantities. The choice of the extrapolated

variables has a large impact on the behavior of the algorithm; extrapolating these variables

provides the best overall flowfield behavior. See Appendix C for an explanation of the

extrapolation and limiting procedure. The left and right states are combined using Roe's

flux-difference splitting (18) to obtain the inviscid flux at the East interface of each cell.

Central differences about the cell interface are used to obtain the viscous fluxes (including

the turbulent contributions from PT and , r) at the East interface, which are added to the

previously calculated inviscid fluxes. At this point the contribution of the East and West

fluxes to 6U is calculated as shown below.
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Uii= JiMti - - F, 1J (3.22)

The 77 sweep begins by fixing i and sweeping 2 < j < (jI - 1). The manipulations

performed in the q sweep are effectively identical to those performed in the sweep ex-

cept that the states are established at the North interface of each cell, and flux boundary

conditions are enforced at solid wall boundaries. These conditions supplement the bound-

ary conditions enforced explicitly at the end of each step. The flux boundary conditions

enforced at these solid wall boundaries are

0
-Pyf

G =(3.23)
px

reflecting u = v = 0 at the stationary, impermeable walls. At the conclusion of these

sweeps, the contribution of the North and South fluxes to 6U is calculated and added to

that previously established:

bUij = A-Uij + Jijbtij [G' .V,ij - G' i+- + ,i - G'ij+I] (3.24)

Using the 6U vector calculated above, the flowfield is updated by setting

&j'j = Vij + bUi( )  (3.25)

At this point, the residual is evaluated to determine the extent to which the flow has

converged. The flowfield residual is defined as

Einterior nodes )V, ),
RESID - (il - 2)(jl - 2) (3.26)
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Following this calculation, the mean flow boundary conditions are updated explicitly as

described in Section 3.2.1.

If desired, the above procedure may be executed twice at each time step, allowing

the code to operate in a predictor-corrector mode. After the second set of sweeps, the

solution is updated by setting

+i + u(2)

UI, = + U (3.27)

with the residual evaluated in exactly the same manner as before. If only one sweep

through the computational domain is desired, then

U =ij U,(3.28)

If the flowfield under consideration is turbulent, PT and KT are updated at this

point using either the Baldwin-Lomax or k - w turbulence model. Descriptions of these

turbulence models are found in Sections 3.3.1 and 3.3.2, respectively. When the ratio of

the residual calculated in Equation 3.26 to the first residual is below a specified threshold,

calculations are halted and the flowfield is deemed converged.

3.3 Turbulence Modeling

Turbulence modeling in FPFV is accomplished through the use of either the Baldwin-

Lomax algebraic turbulence model or the k - w two equation turbulence model. Both are

eddy viscosity models, making their incorporation into existing laminar codes a relatively

straightforward exercise. In eddy viscosity turbulence models, the governing equations are

modified through the addition of eddy viscosity and eddy thermal conductivity coefficients

to the already existing thermophysical viscosity and thermal conductivity coefficients, as

seen below

P=--P+ T - -T (3.29)
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where

XT (3.30)
PT

and PrT is the turbulent Prandtl number, considered to be a constant for a given fluid. As

is common practice for air at the temperatures considered in this study (see Coakley (4),

Wilcox (27), and White (25)), a value of 0.90 has been assumed.

3.3.1 Baldwin - Lomax Turbulence Model. The choice of an algebraic turbulence

model as the "other" model to be implemented in this effort is based on the well docu-

mented features of this flowfield. The work of Miller (16) and Dotter (5) established that

the test sections are separation-free, meaning that simpler algebraic turbulence models

should do a fair job at computing the flowfield. The results from computations performed

with this model may serve then as an additional reference point for the validation of the

more complex k - w model. The Baldwin-Lomax turbulence model is a two-layer eddy

viscosity model, incorporating different formulations for the eddy viscosity for the inner

and outer regions of the boundary layer. To that end, the eddy viscosity is defined as

P r, Y > YM/ = -(3.31)

where y,,r is the first point away from the wall at which p, = 1To. This model was

incorporated in accordance with the formulation described in Wilcox (27). The sections

below describe the formulations in each of these regions

3.3.1.1 Inner Region. The inner region uses a basic mixing length model

IP, = Plni. IWBLI (3.32)

where w is the magnitude of the vorticity vector and is defined for two-dimensional flow as
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WBL= (3.33)

and the mixing length is defined as

lmia = BLY (1 -- e ) (3.34)

with

A+ = 26.0

u*Yy+ -p (3.35)

u* Tw- 1  (3.36)
Pwail

Twa 1 = L + (3.37)(- T)L all
3.3.1.2 Outer Region. In the outer region, the Baldwin-Lomax model uses

the vorticity in the boundary layer to determine the length scale, giving

AT. = PaCcpFwaeFKIcb (Y; Yn') (3.38)CKieb

where

Fieb (y; 6) = 1 + 5.5 (3.39)

Fw[k, min yazF ,; Cwk"maF (3.40)
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Fmaz = L [= . i..W.L . . . (3.41)

and Ym,, is the y location at which Fa, is evaluated. Traditionally, Udif is the maximum

value of U for boundary layer flows. In this application, Udif is chosen to be the centerline

velocity. Additional closure coefficients, taken from Wilcox (27), are as follows

Ckleb = 0.3

C, = 1.6

Ck = 1.0

= 0.0168

KBL = 0.41

Note that A+ = 26 is "rigorously" valid only for zero pressure gradient flows; modifications

may be made to enhance the performance of this method in the presence of strong pressure

gradients (25). In this investigation, the pressure gradients are mild and the aforementioned

modification has not been made.

3.3.1.3 Implementation. The flowfields under consideration are treated

as horizontally opposed flat plate flows. Therefore, at each i-plane in the computational

domain two sweeps are used to calculate PT. The first sweep begins at the top wall,

calculating Pjr, from the wall to the centerline from above. Following this calculation, AT.

is calculated over the same range of nodes and compared to PT. at each node. The stored

values for PT in the upper half of the computational domain are then determined through

the rule given in Equation 3.31. The above procedure is repeated on the bottom half of

the computational domain, with the sweeps moving from the lower wall to the centerline

from below. In this application, y is taken to be the normal distance from the node in

question to the node on the wall at that i-plane. Calculation of p progresses in this

manner through the computational domain one i-plane at a time after each mean flow

update.
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3.3.2 k - w Turbulence Model. As described in Coakley and Huang (4) the
governing differential equation for the k - w turbulence model may be written as

OUKE dFRE,..+ dGKE,i. +FKE,v OG (K3,40-'--09 a-  49Y - +  y- + O + Oy P (3.42)

Wt tx Oxwithr

KE (3.43)

E pu (3.44)

pvw (3.45)

-- + ! ) k
GKE,. ( . (3.46)

G"E" - +(3.47)

p [ckcpfk (1)2 - _C pk 1
[C"I C1, (s) 2  c _ j (3.48)

s2=(')+2( )( )+ (;fo ) 2o (ou)Qv) ('Ov\21 ,
'0) + av)2](3.49)

dgu t0v

5x ay+ i:" (3.50)
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with closure coefficients given by

ak= a= 2.0

fk = f" = f = 1.0

ak = 2=1.
21

aw -- 3 Wl

Ckl -- Ck2 -= 1.0 i

C, 1 = 0.555

C,,, 2 = 0.833

Following the solution of these differential equations, the eddy viscosity may be obtained

through the following relation

k
AT C,fP- (3.51)

with C, = 0.09

3.3.2.1 Algorithm Development. The transformation of the governing equa-

tions for the k - w turbulence model into strong conservation form is analogous to the

transformation of the governing mean flow equations. The resulting form of the equations

is

1 OUK2 OF,,,, OG,,,, OF, OG. PC (3.52)
i F0f417 8 a17 J

where

F,, (3.53)

As in Equation 3.18, A is used to represent spatial differentiation, allowing Equation 3.52

to be written in finite-difference form as
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bUKE AF..V AG..IV F AGV P (3.54)
t+ +

Defining b UKE as had been done previously with 6U in Equation 3.19, multiplying through
by J5t, taking advantage of the uniform and unitary the computational domain, and

evaluating the flux vectors and source term, P, at the current time step, Equation 3.54

may be re-written as

bUKE,,j = P'bt, - J,,iti [AF ,i, + AGi, ,j + AF,,j + AGv,,] (3.55)

With all flow and turbulence properties known at time level n, updating the solution

involves evaluation of the above equation at each cell.

3.3.2.2 Boundary Conditions. Boundary conditions in this application are

implemented in accordance with the algorithm description given in Coakley and Huang (4).

At an impermeable wall, the governing equations for k and w must satisfy

k =O (3.56)

7.2 (3.57)
yl

In Equation 3.57, the subscript 1 refers to the first calculated data point above the wall and

y is the normal distance from the wall to that data point. Inflow or freestream conditions

must satisfy the somewhat more ambiguous conditions

(lT) (sk) / 1(3.58)

U00> 10 (3.59)
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where L is a characteristic length of the flow field, taken to be 1 m in the present investiga-

tion. For the present calculations, discussions with Dr Gaitonde (7) lead these boundary

conditions to the form

koo =0.001(W) (3.60)
C11

10 - (3.61) 'L
L

3.3.2.3 Implementation. The procedure by which the governing equations

for the k - w turbulence model are marched to convergence is essentially identical to that

used for the mean flow. As in the mean flow equations, the conserved variables (pk and

pw) are extrapolated to the cell faces using MINMOD limiting and the resulting fluxes

established through the use of Roe flux-difference splitting (18). The viscous terms are

once again treated with central differences and, as stated previously, the source terms are

evaluated at the present time level.

The boundary conditions are treated in a similar manner. At the solid wall bound-

aries, Equation 3.56 is enforced by setting

ki,1 = -k, 2  (3.62)

Since the w solid wall boundary condition is not actually enforced at the wall, but at the

point immediately above the wall, Equation 3.57 is implemented by setting

Wi, 7.2 (3.63)

where yi is the normal distance from the wall to the cell center of node (i, 2). Inflow

boundary conditions are set using the methodology outlined in Section 4.6. Downstream

or outflow boundary conditions are set by extrapolating k and w using the previous two

upstream points in a manner reminiscent of the mean flow calculations. Subsequent to the
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evaluation of the boundary conditions on k and WYT is evaluated through the functional

form given in equation 3.51.
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IV. Grid Refinement and Flat-Plate Validation

A grid study was conducted to ensure that the computed results are not grid de-

pendent. For this study, a series of 9 grids were examined to determine the effects of

grid properties on the computed solutions. The properties of the grids studied may be

found in Table 4.1. The grids itemized in this table begin at Flow Station (FS) 27.457,

corresponding to the nozzle exit plane, and extend to FS 73.0, aft of the favorable pressure

gradient test (FPG) section. Flowfield properties axe examined both upstream at FS 44.0

and in the FPG test section at FS 71.5. For the purposes of this grid study, the upstream

boundary conditions reflect a M = 2.9, Re/m = 1.5x10 7 uniform flow with zero boundary

layer thickness and T 0, 1 = To = 294K impinging on the leading edge of the grid. These

conditions reflect the freestream conditions reported by Miller (16) and Dotter (5).

GRIDGEN2D revision 8.4.7.1 was utilized for the grid generation task in this effort.

Node stretching normal to the wall was accomplished within GRIDGEN2D using Vinokur's

weighting factor. Initial wall spacings are the same at the North and South grid boundaries

and are as given in Table 4.1. Spacing in the streamwise direction is uniform. Grids were

generated algebraically using the arclength-based Trans-Finite Interpolation (TFI) option

and smoothed elliptically using the Thomas and Middlecoff background control function.

Transverse node spacing was held constant through the smoothing process, which enforced

orthogonality at domain boundaries and utilized exponential blending between boundary

and interior points. Grids were smoothed elliptically until the residual dropped below

1.0x10- 9.

The effects of variations in streamwise and normal node count on non-dimensional

velocity and turbulent shear stress profiles and law of the wall plots are discussed in this

chapter. An assessment of the sensitivity of the computed solution to the initial wall

spacing is also included.

4.1 Variation in Normal Node Count

The effect of normal node count variation is studied by doubling the normal node

count, utilizing grids GS1, GS2, and GS3. Streamwise spacing in all three grids is uniform,
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Table 4.1 Dimensions - Grid Study Meshes

Reference Size AYwal[ AYmid,L AYmidR AX j]x7 m] [m] Ira] [m] I

GS1 101 x 101 1.5x10 - 5  0.2047xi0 2  0.2325xi0 2  0.4605xI0 -

GS2 101 x 151 1.5x10 -  0.1253xi0 2  0.1425xi0 2  0.4605xi0 -

GS3 101 x 201 1.5x10- 5  0.8814x10 - 3  0.1004x10 - 2 0.4605x10- 2

GS4 75 x 151 1.5x10- 5  0.1253xi0 2  0.1425x10 - 2 0.6244x10I 2

GS5 151 x 151 1.5x10- 5  0.1253x10-  0.1425x10 - 2  0.3059xi0 - 2

GS6 201 x 151 1.5x10 - 5  0.1253x10- 2 0.1425x10- 2  0.2291x10- 2

GS7 101 x 151 0.5x10- 5  0.1527x10- 2  0.1730xi0- 2  0.4605xi0 - 2

GS8 101 x 151 1.0x10- 5  0.1354xi0 2  0.1538xi0 2  0.4605xi0 2

GS9 101 x 151 2.0x10 - 5  0.1180x10 - 2  0.1344xi0 -  0.4605xi0 -2

and the initial wall spacing is 1.5xl0 5-m, calculated to provide y+ values near 1.0 in the

test sections. All figures referred to in this section may be found in Appendix G.

Figures G.1 and G.2 show the influence of normal node count on the wall law plot,

which plots u+ as a function of y+, where u+ is based on the effective velocity as defined

by van Driest (25)

,l= o p~, dii (4.1)

Differences between the three grids are very slight in the inner region, which may be

attributed to the fact that initial node spacing is held constant for all three. Grid GS1
separates itself from the others in the logarithmic and wake regions, where GS2 and GS3

continue to agree very closely. Nondimensional velocity profiles in these two regions exhibit

the same basic trends. Figure G.3 and Figure G.4 are plots of the nondimensional velocity

through the boundary layer. The boundary layer thickness, b., is the location at which

u = 0.995Ue, where Ue is the edge velocity at the flow station of interest. Agreement

between the three solutions is good near the wall; once again the coarser grid does not do

well away from the wall, where the disparity between that solution and the others reaches

0.5%. Comparisons of the nondimensional turbulent shear stress profiles
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taua
T +,ND (4.2)

where PT is the eddy viscosity, as defined in Chapter III, are shown in Figures G.5 and

G.6. Once again, differences between grids GS2 and GS3 are negligible. The figures

discussed above indicate that while 101 normal nodes is insufficient for accurate flowfield

computation, increasing the normal node count beyond 151 nodes has a negligible effect on

computational accuracy. For this reason, the bulk of the computations performed hereafter

utilize 151 nodes in the normal direction.

4.2 Variation in Streamwise Node Count

In this section the effects of variations in streamwise node count are studied by

examining computational output generated on grids GS2, GS4, GS5, and GS6. Uniform

streamwise spacing is once again used for the four grids considered, which range in size

from 75x151 (Ax = .6244cm), to 201x151 (Ax = .2291cm). Initial wall spacing for all

grids is once again 1.5x10- 5 m.

Figures G.7 and G.8 are wall law plots for the upstream flat plate and favorable

pressure gradient test sections, respectively. With the exception of the extremely coarse

75x151 grid, axial node distribution seems to have no effect on the flowfield properties

in the flat-plate region. Figure G.8, however, shows that at FS 71.5 in the FPG test

section, axial node count has a more noticeable effect on the solution in the inner and

overlap regions. The difference disappears away from the wall and thus seems to be linked

to poor resolution of the curvature of the wall. The nondimensional velocity profiles in

Figure G.7 and Figure G.8 show little sensitivity to the streamwise node count, as do the

nondimensional turbulent shear stress profiles shown in Figures G.11 and Figure G.12.

In order to improve resolution in the curved wall region without wasting grid points

upstream, a non-uniform node spacing scheme is adopted in the final grid generation task.

4-3



i!

4.3 Variation in Wall Spacing

In this section, computations performed on grids GS2, GS7, GS8, and GS9 are used

to determine the flowfield effects of initial wall spacing variations. Uniform streamwise

spacing is used, and the initial wall spacing is varied from 0.5x10- 5 m to 2.0x10- m. The

effect of wall spacing on the wall law plots may be seen in Figures G.13 and G.14 for flow

stations 44.0 and 71.5, respectively. These figures clearly show that the initial wall spacing

has an effect on the computed solution. At FS 44.0, the profiles generated using grid GS9

are appreciably different from the remainder of the grids. Moving to FS 71.5, this difference

diminishes, but does not disappear. Figure G.15 and Figure G.16 show the effect of wall

spacing variation on the nondimensional velocity profiles. Once again, differences at FS

44.0 are greater than those at FS 71.5, and both curves show close agreement between all

solutions near the wall. Figures G.17 and G.18 serve only to reinforce the previous trends.

In considering initial wall spacing variation only, differences in the computed solutions

are greatest in the logarithmic and outer regions. This can be attributed to the fact that

when the total node count is held constant, decreasing the initial node spacing serves also

to decrease the number of nodes that are available for freestream resolution. A compromise

must be made between resolution of mean flow and near wall effects. Grids utilized in the

remainder of the calculations contained herein use an initial wall spacing of 1.0x10 - m,

providing for both accurate near-wall modeling and mean flow resolution.

4.4 Final Grid Generation

The preceding grid study was used to guide the final grid generation task for this

project. All of the grids begin with a channel flow section, basically two parallel flat plates,

beginning at either FS 0.0 (FPG1, APG1) or FS 44.0 (FPG2, APG2). The streamwise

node spacing in these sections is uniform and given by Axi in Table 4.2. Aft of this

section is a 4.0 cm region where the streamwise spacing is compressed from Ax, to AX3

using Vinokur's weighting factor. Ax 3 is the uniform streamwise node spacing used in

the test sections, which begin at FS 64.0 and extend to FS 73.0. As was mentioned in

Section 4.2, node spacing in the curved wall test sections is significantly tighter than that

used in the upstream region. For grids FPG1 and APG1, the streamwise spacing in the
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Table 4.2 Grid Dimensions - Test Case Grids

Reference Size fAy,, jj Ax AX3  HI
_ _ _ _ x 77 [m] [m] [im]

FPG1 219 x 151 1.5x10- 5 0.4068x10- 2  0.1644x10 -

FPG2 151 x 151 1.5x10- 5 0.2963x10l 2  0.1239x10- 2

APG1 219 x 151 1.5x10- 5 0.4068x10- 2 0.1642x10- 2

APG2 151 x 151 1.5x10- 5 0.2963x10l 2  0.1237x10-2

FLAT1 151 x 101 0.4x10-I 0.99x10- 2  N/A

test sections is equivalent to utilizing approximately 278 evenly spaced nodes on the GS

series of grids. For the FPG2 and APG2 grids, this number climbs to approximately 370

evenly spaced nodes. This node distribution scheme enables increased resolution of the

curved wall sections without adversely impacting computational expense. The compressed

region, including the test sections, of Grids FPG1, FPG2, APG1, and APG2 are depicted

in Figures G.19, G.20, G.21, and G.22, respectively.

4.5 Flat Plate Validation

Prior to comparisons with the experimental data taken at AFIT, validation runs using

the Baldwin-Lomax and k - w turbulence models were performed against Morrison's (18)

flat-plate test case using the following conditions

Mo: 2.0

T,, : 222K

Twai : 222K

R,/m: 1.0x10 7

These computations were performed on grid FLAT1, which utilized node clustering at the

North and South domain boundaries and even spacing in the "streamwise direction. This

nodal distribution was chosen to correspond approximately to that used in the test section

calculations. Results of these runs may be seen in Figures 4.1 and 4.2. Figure 4.1 is a
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Figure 4.1 y+ vs u+(van Driest)

plot of u+ vs Y, where u+ is once again based on the effective velocity as defined by van

Driest (25). The correlated curve shown follows the rule

0< + Y Vnatch (4.3)'n+ Y- +- 4.--Y
.41 +Ynmatch

as given in Morrison (18). Also shown in this plot is the output from a previously validated

finite-difference code (19) which utilizes Roe flux difference splitting and a k - c two

equation turbulence model. Agreement between the present calculations, the k - C code,

and the correlated curve is very close through the inner region. In the overlap region,

both the k - w and Baldwin-Lomax models predict slightly lower velocities than the k - c

calculation. Note that the correlated curve has not been modified to account for the overlap

region between the inner and logarithmic regions. Both of the two equation models do

exceptionally well in the logarithmic layer, where both the magnitude and slope of the

correlated curve is replicated computationally. In this region, the Baldwin-Lomax model

accurately predicts the slope of the correlated data, but the magnitude is slightly lower

than expected. Finally, agreement between all three models is excellent in the wake region.
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Figure 4.2 C1 vs Ree

Figure 4.2 is a plot of C1 vs Re0, where 0 is the momentum thickness and is defined

(25) as

10= p-0 dy (4.4)

A correlated curve from Hopkins and Inouye (11) is presented along with the computational

results to serve as a basis for comparison. All three models accurately predict the skin

friction for R,0 > 7500. At lower values of Re0, the k - c model slightly under-predicts the

skin friction whereas the k - w and Baldwin-Lomax results continue to agree exceptionally

well with the correlated values. j

4.6 Upstream Boundary Conditions

In accordance with the recommendations of Settles and Dodson (20), upstream

boundary conditions are set using experimentally determined values. Calculations per-

formed in this investigation utilize two sets of boundary conditions, both based on the FS

44.0 data of Luker (15). The method by which these conditions were set is presented in

this section.
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4.6.1 Freestream Inflow. This boundary condition is used exclusively with grids

FPG1 and APG1. It assumes that an undisturbed freestream (6 = 0) flow impinges on the

leading edge of these grids at FS 0.0. The freestream value of u is set to the edge velocity

measured by Luker (15) at Flow Station (FS) 44.0 and v is assumed to be everywhere zero.

The total temperature (To = 294 K) and pressure (P0 = 2.12634x105 Pa) are assumed

constant, allowing direct computation of the static temperature and pressure at this flow

station. The second of these assumptions (Po constant) is used with the realization that

it is technically inaccurate due to the presence of weak shocks in the wind tunnel caused

by test section misalignment. {

ue = u= 605.1 m/s (4.5)
u2

T=To- =111.8 K (4.6)
2cp

(T\
P Po = 7210 Pa (4.7)

The viscosity and density are calculated using Sutherland's Law 3.10 and the Equation of

State 3.8, respectively. The constants utilized in the above formulations are

R 287.0
cp= 1005.0

7 = 1.40

C = 1.458x10 M2

C 2 = 110.4 K

Boundary conditions on k and w are specified using Equations 3.60 and 3.61, respectively,

using the thermophysical conditions calculated above.

4.6.2 Experimental Profile Inflow. This boundary condition set is used exclu-

sively with grids FPG2 and APG2, approximating the flowfield conditions measured by

Luker (15) at FS 44.0. The experimental velocity profile (with the additional specification
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that v = 0) is used with the assumption of constant To to approximate the temperature

distribution through the boundary layer. The static pressure is assumed to be constant and

equal to the value calculated at the mid-plane using the methodology introduced above.

From these values, the density distribution through the boundary layer is established. I
Boundary conditions on k are specified from fluctuating velocity information provided

in the experimental data set, where the contribution of w' is assumed to be equal to v',

reducing Equation 1.2 to

k = (u 2 + 2v'2) (4.8)

The velocity profile is differentiated to obtain , which is combined with the experi-

mentally determined turbulent shear stress profile to specify an effective AT distribution.

Rearranging Equation 3.51, k and ATr are used to generate the w profile at this station. The

k and w profiles thus generated may be found in Figures 4.3(a) and 4.3(b), respectively.

OO

W on0 oW I= 6 1200 1.062 0D 60 2. OWOE A 4.06000. MaOW $)COWS ?.DO 6&60606

(a) (b)

Figure 4.3 k and w Experimental Inflow Profiles
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V. Results and Discussion

This chapter presents the results of the present computational effort, beginning with

a validation of the computed results through a comparison with the experimental data of

Miller (16), Dotter (5), Luker (15) and Hale (9). Comparisons are made in the Zero Pres-

sure Gradient (ZPG), Favorable Pressure Gradient (FPG), and Adverse Pressure Gradient

(APG) test sections. Through this analysis, the effects of pressure gradient are addressed.

Also discussed are differences between the Badwin-Lomax and k - w solutions, relative

computational expense for both models, and the effect of upstream boundary condition

specification on the downstream solutions.

5.1 Validation

This section presents the results of computations performed using the k - W turbu-

lence model. Computations utilize grids FPG2 and APG2, and in accordance with the

recommendations of Settles and Dodson (20), the experimental profile inflow conditions

are used unless otherwise specified. Overall agreement with experimental data is found to

be excellent.

5.1.1 ZPG Test Section. The inflow plane for grids FPG2 and APG2 is at Flow

Station (FS) 44.0; as such, direct comparison to the experimental data collected at FS

44.0 is meaningless. In the figures that follow, computed results at FS 60.0, upstream

of the APG/FPG test sections, is compared to experimental data collected at FS 44.0

(Miller (16) and Dotter (5)) and FS 71.5 (ZPG data from Luker (15) and Hale (9)). This

comparison assumes that the boundary layer at all three stations is fully developed and

therefore velocity and shear stress profiles at these stations should be similar when plotted

against y/6.

Figure 5.1 is a comparison between the present computed Mach number profile at

FS 60.0 and Miller's (16) experimental data, collected at FS 44.0. The Mach number is

based on the magnitude of the velocity vector and the local static temperature

r!
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M- (5.1)

Agreement between the computational and experimental profiles is very good, with

a slight (magnitude is less than 1.1%) mismatch in the freestream that may potentially be

related to either a mismatch in experimental testing conditions or the physical separation

between the experimental and computational flow stations used to generate the plot. With

regard to the former, recall that the upstream boundary conditions for this calculation are

set using Luker's (15) FS 44.0 data. Using this inflow information, the freestream Reynolds

number per meter is approximately 1.75x107 , whereas Miller (16) reported a freestream

Reynolds number per meter of 1.50x10 7 for his measurements.

1.5

Present: k-e Modeling
1.0

* Pitot/Cone-static Data - Miller

Y/SS

0.5

0.0 .
0.5 1.0 1.5 2.0 2.5 3.0

M

Figure 5.1 Mach Number vs y/ 6 M, ZPG, FS 60.0/44.0

Figure 5.2 is a plot of the nondimensional turbulent shear stress (see Equation 4.2)

versus y//M. Shown in this plot are the present computed results and the "incompressible"

component of the Reynolds stress tensor (see Appendix E) as reported by Miller (16) for

the flow stations indicated. Agreement here is quite good, with the character of the exper-

imental data being accurately reproduced computationally. Vertical shifting of the data
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may be attributed to the methodology used to determine the boundary layer thickness, 6M.

The boundary layer thickness utilized in this figure and all those generated by Miller (16)

and Dotter (5) is 6 .995M, or the value of y at which M = 0.995Me. This process hinges

on the accurate determination of the edge Mach number, an evaluation made extremely

difficult by scatter in the experimental data. In retrospect, defining the boundary layer

edge as b.99 would have significantly simplified this task by reducing the effect of the data

scatter. With this in mind, computational agreement with the hot film data of Miller (16)

at this flow station is considered excellent.

1.5

Present: k-e Modeling
1.0

S Hot Film Data - Miller

0.5

0.0

0.000 0.002 0.004 O.006 0.008 0.010

Figure 5.2 Nondimensional Turbulent Shear Stress vs y/ 6 M, ZPG, FS 60.0/44.0

Figure 5.3 plots the nondimensionalized u component of velocity versus y/6,, where

6. is the value of y at which u = 0.995ue. This figure and all figures containing the

Laser Doppler Velocimetry (LDV) data of Luker (15) and Hale (9) use this definition of

the boundary layer thickness. Agreement between the present calculations and the LDV

data is excellent. Both the magnitude and slope of the experimental data are replicated

computationally. Similarly impressive results are presented in Figure 5.4, where the nondi-

mensional turbulent shear stress is plotted versus y/b,. Once again, both the shape and

magnitude of the experimental curve are captured in the computational results. Inspection
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of Figure 5.5 reveals that the computed turbulent kinetic energy (k) profile closely matches

the experimental data throughout the boundary layer.

1.5

Present: k- Modeling

1.0 -

LDV Data - Luker

0.5

0.00.5 0.6 0.7 0.8 0.9 1.0
u/U,

Figure 5.3 u/U vs y/ 6u, ZPG, FS 60.0/71.5

5.1.2 FPG Test Section. Profiles presented in this section are taken at FS 71.5

in the FPG test section. Figure 5.6 presents a comparison between the computed Mach

number profile and Miller's (16) hot film data obtained at the same location. Agreement

between the two curves is excellent within the boundary layer but once again a Mach

number mismatch is evident in the freestream. In this case, the computed solution over-

predicts the freestream Mach number at this flow station by less than 1.2%.

Comparisons between the computed and measured turbulent shear stress at this flow

station (Figure 5.7) reveal a large mismatch between the numerically and experimentally

generated curves. The character of the experimental data is captured in the computational

curve, but the average difference in magnitude is greater than 50%, with the numerical

results severely under-predicting the experimental data.

Comparison with the LDV data of Luker (15) at this flow station reveals similar,

though not identical, results. The computed non-dimensional velocity profile shown in
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Figure 5.4 Nondimensional Turbulent Shear Stress vs y/ 6 u, ZPG, FS 60.0/71.5
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Figure 5.5 k vs y/lb, ZPG, FS 60.0/71.5
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Figure 5.8 tracks with the experimental data from the wall to the freestream, accurately

predicting every aspect of the profile. Agreement with the experimentally generated nondi-

mensional turbulent shear stress curve, however, is not as good. As shown in Figure 5.9,

the computed curve over-predicts the experimental data by roughly 50% while maintaining

the character of the experimentally generated profile. A comparison of Figures 5.9 and 5.7

reveals that large discrepancies exist between the data sets generated by Miller (16) and

Luker (15). Luker (15) has suggested that this discrepancy may be due to the failure of the

assumption that p' = 0, an assumption required in the hot-film data reduction technique.

While this assumption is considered valid in zero pressure gradient regions, Luker (15)

asserts that it may not be valid when a pressure gradient is present. The computational

profile splits the difference between the hot-film and LDV measurements. Figure 5.10

compares the computed and experimental k profiles at this flow station. As was seen in

the ZPG test section, agreement between the computational and experimental profiles is

outstanding through the majority of the boundary layer. Differences near the wall may

be attributed to the breakdown of an assumption made by Luker (15) and Hale (9) in the

calculation of the experimental k data points in regions of FPG. An assumption regarding

the magnitude of w' is required to calculate the turbulent kinetic energy because although

the LDV setup did not allow for the measurement of velocity components in the transverse

direction, fluctuations in this direction still contribute to k. The assumption made in the

experimental analysis is that w' = v'.

5.1.3 APG Test Section. Profiles presented in this section were generated at FS

71.0 (Dotter (5)) and FS 68.0 (Hale (9)). As previously mentioned, FS 71.0 in the APG

test section actually lies in a FPG region. This should not affect comparisons between the

computational results and those presented by Dotter (5), although the profiles will not

necessarily represent those characteristic of an APG flowfield.

Figure 5.11 is a plot of the local Mach number versus y/M at FS 71.0. In this figure

a sizeable mismatch is seen between the computed and calculated Mach number profiles.

The profile itself is similar, but the magnitude of the computed curve is appreciably lower

than that of the experimental data. The error appears almost as an "offset" type of error
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and may be due to the upstream flowfield specification as mentioned previously. In the

freestream, the magnitude of this error is 3.2%.

As may be seen in Figure 5.12, computed nondimensional turbulent shear stress pro-

files at this flow station are not in close agreement with the hot film data of Dotter (5),

although some of the characteristics of the experimental data are present. The computa-

tional curve exhibits a linear region from 0.3 < y~/ < 0.7, the slope of which is only slightly

greater than that of the linear portion of the hot film curve. Additionally, the experimental

profile shows a sharp increase in turbulent shear as the wall is approached. This trend is

also seen in the numerical results, the difference once again being that the magnitude of

the computed curve is significantly less than that of its experimental counterpart.

Comparisons between the numerical curves and the LDV data of Hale (9) gener-

ated at FS 68.0 appear more promising. The nondimensional velocity profiles, shown

in Figure 5.13, agree extremely well through the boundary layer. The computed turbu-

lent shear stress curve (Figure 5.14) displays the same slope as the experimental data, but

under-predicts the magnitude of the stress. The computational k profile is similarly under-

5-9
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1

predicted, as may be seen in Figure 5.15, where the character of the experimental profile

is replicated very well numerically; only the magnitude is mis-represented. As mentioned

previously, the mismatch seen in these last two figures may be the result of difficulties in

determining the boundary layer thickness, which is compounded at this flow station by

the coalescence of pressure waves near y = b (see Figure 5.47). This coalescence has the

effect of smearing the edge of the boundary layer, making determination of the boundary

layer thickness a difficult exercise. Altering the boundary layer thickness utilized in the

generation of these curves will shift the profiles vertically, diminishing both the apparent

accuracy displayed in Figure 5.13 and the discrepancies seen in Figures 5.14 and 5.15.

Present: k-w Modefing
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LDV Data - Hale
y/8,

0.5

0.0 ' . . . . . .
0.5 0.6 0.7 0.8 0.9 1.0
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Figure 5.13 u/ue vs y/bu, APG, FS 68.0

5.2 Comparison to Baldwin-Lomax Results

In order to further evaluate the effectiveness of the k - w turbulence model and its

present implementation, comparisons to numerical solutions obtained through the use of

the Baldwin-Lomax turbulence model were conducted. This section presents a comparison

between solutions obtained with these two models for the three test geometries, utilizing

the LDV data of Luker (15) and Hale (9) as the basis for comparison.
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5.2.1 Zero Pressure Gradient (ZPG) Test Section. Figure 5.16 is a plot of the

numerically and experimentally determined nondimensional velocity profiles at FS 60.0

(numerical data) and FS 71.5 (ZPG LDV data). As may be seen in this figure, agreement

between the two numerical curves in the near-wall and wake regions is good. The profiles

differ over a larger portion of the boundary layer, extending from 0.05 < y/6b < 0.7. Similar

disagreement was observed in Section 4.5, where the Baldwin-Lomax model under-predicts

the velocity in the logarithmic region of the wall law plot. Agreement between the Baldwin-

Lomax and LDV velocity profiles at this flow station is therefore inferior to that observed

with the k - w solution.

1.5

k-

1.0 Baldwin-Lomax
a LDV Data - Luker

y/8.
0.5 o 0

0.0 '.

0.5 0.6 0.7 0.8 0.9 1.0
0V.

Figure 5.16 u/u, vs y/6, ZPG, FS 60.0/71.5

Turbulent shear stress profiles taken at this flow station (see Figure 5.17) reveal

similar trends. The Baldwin-Lomax profiles agree well with the k - w solution both near

the wall and in the far field, but outside of these regions, the turbulent shear stress values

predicted by the the Baldwin-Lomax model are marginally higher than those of the k - w

model. Once again, the character of the experimental profile is better approximated by

the profile generated through the use of the k - w turbulence model.
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The disparity between the Baldwin-Lomax and k-w profiles seen in the figures above

must be linked to the computed eddy viscosity distribution, since this is the method by

which the effects of turbulent fluctuations are incorporated into the mean flow equations.

Figure 5.18 contains profiles of frr/ vs y,/6, for both the Baldwin-Lomax and k - w com-

putations, taken at FS 60.0. As may be seen in this figure, the profiles differ substantially

in the region between 0.1 < y/. < 0.7, where the Baldwin-Lomax model under-predicts

the eddy viscosity by a large margin. This region is precisely that in which the nondi-

mensional velocity profiles (see Figure 5.16) disagree. Disagreement between the turbulent

shear stress profiles examined above is limited to the region given by 0.1 < y/b, :_ 0.4, but

the largest offset (see Figure 5.17) occurs at approximately the same y/ 6u location as the

largest offset in the eddy viscosity profiles.

Notice that the k - w eddy viscosity profile presented in Figure 5.18 does not go to

0 in the freestream. This is the result of the "experimental profile" upstream boundary

conditions, which specified a finite eddy viscosity in the freestream. Physically, this may

be thought of as the result of finite freestream turbulence intensities. Because the k - w

turbulence model determines the eddy viscosity based on the state of the entire flowfield,
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this upstream specification is reflected in the downstream profiles. As with all algebraic

turbulence models, the Baldwin-Lomax model relies only on the local state of the flow to

determine the eddy viscosity; the upstream boundary condition specification therefore has

little or no effect on the downstream eddy viscosity distribution.

3.0

2.5

2.0
k-w Modeling

,--------- Baldwin-Lomax Modeling
yAh. 1.5 "

1.0

0.5

0.01
0 100 200 30

Figure 5.18 p'r/ vs y/b,,, ZPG, FS 60.0/71.5

5.2.2 Favorable Pressure Gradient (FPG) Test Section. This section compares

numerical profiles generated in the FPG test section at FS 71.5 with the LDV data of

Luker (15) obtained at the same flow station. Figures 5.19 and 5.20 are plots of the nondi-

mensional velocity and turbulent shear stress, respectively, at this location. These figures

exhibit the same trends with regards to the Baldwin-Lomax solutions that were observed

in the ZPG region, with under-predictions of the velocity and over-predictions in the tur-

bulent shear stress appearing between 0.05 < y/, <0.7. As before, the k - w turbulence

model appears to more accurately represent the experimental data. Examination of the

eddy viscosity profiles at this flow station (see Figure 5.21) reveals significant disparities

throughout the boundary layer. While the peak eddy viscosity is similarly predicted by
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both models, the Baldwin-Lomax model predicts that this peak occurs near the boundary

layer edge, whereas the k - w model predicts its location at y/, t 0.6.
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Figure 5.19 u/u, vs y,/6, FPG, FS 71.5

5.2.3 Adverse Pressure Gradient (APG) Test Section. In this section, computed

nondimensional velocity and turbulent shear stress profiles at FS 68.0 in the APG test

section are compared; the LDV data of Hale (9) serves as the basis for comparison. In Fig-

ure 5.22, the Baldwin-Lomax solution is seen to deviate only slightly from the k -w profile.

Unfortunately, this profile deviation is such that the computed curve no longer matches

the character of the experimental data. Similarly, in Figure 5.23 the overall magnitude

of the turbulent shear stress is similar to that of the k - w solution, but the character of

the experimental curve is lost. Inspection of Figure 5.24 reveals good agreement between

the computed eddy viscosity profiles in the inner and outer regions of the boundary layer,

but a significant under-prediction of this quantity between 0.05 < y/b, < 0.6. This is

seen as the root of the large disparities in the velocity and turbulent shear stress profiles

mentioned previously.
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5.2.4 Surface Effects. Figure 5.25 displays the distribution of the wall shear

stress along the test sections for the Baidwin-Lomax and k - w computations. Neglecting

the entrance region, the Baldwin-Lomax turbulence model predicts wall shear values in

the ZPG region that are 8% to 13% less than those predicted using the k - w turbulence

model. Using the correlation from van Driest II theory (24) (1), Luker (15) calculated

the wall shear stress at FS 71.5 in the ZPG test section as 67.0 Pa. Extrapolating the

slope of the Twall vs x curve from upstream of the test sections to 71.5 cm shows that the

computed r,,al at this station would be approximately 66.8 Pa, a difference of 0.3% from

the experimental value. A similar extrapolation performed on the Baldwin-Lomax curve

yields a wall shear stress of 64 Pa. Interestingly, the Baldwin-Lomax results indicate that

a, axI> 0, a trend that predicted by neither the k - w results nor theory. Predictions of

wall shear in the FPG test section are similar in both slope and magnitude, whereas the

Baldwin-Lomax computations in the APG test section under-predict the wall shear by a

large margin when compared to the k - w solution.

Figure 5.26 contains plots of the computed surface pressure as a function of location.

The pressure distribution predicted through the use of the Baldwin-Lomax model is very
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similax to that obtained using the k - w model over the majority of the tunnel surface

for both experimental test sections. This agreement breaks down somewhat in the region

between FS 58.0 and FS 65.0. In this region, a decrease in surface pressure is predicted

by both models, the artifact of a series of pressure waves that are present in the computa-

tional domain as the result of the boundary conditions applied at the inflow station. The

magnitude and duration of this pressure fluctuation is larger with the k - w model than

with the Baldwin-Lomax model. In the APG and FPG test sections, however, Pwaii and
OP-111 are seen to be effectively independent of the turbulence model utilized.

Dz

5.2.5 Computational Expense and Convergence Characteristics. Although the

solutions obtained with the Baldwin-Lomax turbulence model are in general found to be

less accurate than that obtained through use of the k - w turbulence model, use of the

former for flowfield analysis may be justified if a significant savings in computational time

may be realized by doing so. A comparison of required Central Processing Unit (CPU)

time for a fixed number of iterations using the two turbulence models has been performed.

For this comparison, the code was run for 10,000 iterations on grid APG2, a 151x151 grid
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having 22801 cell centers on a Cray Research C916. In order to minimize the effect of

read and write time requirements, no data output subroutines were called during these

computations. The k - w computations required 3012.529 seconds of CPU time for a total

of 1.3212x10- 5 seconds per iteration per cell center. The Baldwin-Lomax computations

required 2811.601 seconds, or 1.2331x10- 5 seconds per iteration per cell center, a 6.67%

reduction in CPU usage over the k - w model.

The convergence histories of computations utilizing the Baldwin-Lomax model are

significantly different than those exhibited when k - w modeling is used. Figure 5.27

shows characteristic convergence histories for Baldwin-Lomax and k - W computations

performed on Grid FPG2. The CFL number .used for these calculations was 0.5. The

convergence history typical of the k - w turbulence model displays an initial increase in

the residual, followed by a long steady decrease of roughly 12 orders of magnitude before

bottoming out near 2.5x10 -11 . Convergence to this level is seldom required, however,

since the solutions effectively cease to evolve after the residual drops four or five orders

of magnitude. The convergence history characteristic of the Baldwin-Lomax turbulence

model shows a much smaller initial jump in the residual followed by a shallow decrease
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of roughly 4 orders of magnitude. At this point oscillations in the solution preclude any

further reduction in the residual unless the turbulence model is frozen, as shown in this

figure. These oscillations are not eliminated by a reduction in the CFL number and are j
thought to be linked to the specification of y!ma, and F,,,a within the Baldwin-Lomax

subroutine (see Section 3.3.1). As y, a, bounces between two adjacent nodes, the flowfield

is continually attempting to adjust to the new formulation for pT at that plane within

the flow. This behavior may be at least partially eliminated by the introduction of finer

computational meshes, but the intent of this section is to evaluate the performance of

the models on the same mesh for the same flowfield conditions. For the purposes of this

investigation, Badwin-Lomax computations are deemed converged when this oscillation

continues for roughly 10000 iterations unchanged. Fortunately, this oscillatory behavior

appears after the flowfield properties of interest (rwaliPwali, U, r T ) have ceased to change.

It should be noted that this oscillation, though typical of Baldwin-Lomax computations,

did not appear in every such computation. Variations in freestream/upstrearn conditions

had a profound effect on the convergence history of Baldwin-Lomax computations; in fact,

several Baldwin-Lomax computations (using different flow conditions) converged to the

same degree as the companion k - w computations.

In summary, the Baldwin-Lomax turbulence model produces results for these flow-

fields that are found to be less accurate and more sensitive to the inflow conditions than

those obtained through use of the k - w turbulence model. This may be the result of the

Baldwin-Lomax model's inability to account for flow history effects, an ability possessed

by the k - w model, as mentioned in Chapter I. As such, use of this model based on

potential CPU time savings is not a viable option for flowfields of the type examined in

this study. As an alternative, implicit solution of the k - w equations has the potential to

significantly reduce computational expense while maintaining the high level of accuracy of

the k - w formulation.

5.3 Evaluation of Inflow Boundary Condition Effects

The uniqueness of the solution of a system of differential equations is guaranteed by

the form of the boundary conditions imposed on that system of equations. This mathe-
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Figure 5.27 Convergence History, k - w vs Baldwin-Lomax

matical reality drives the need to evaluate the effect of boundary condition variation on

the solutions generated in this effort. Since the flowfield being studied is for the most part

supersonic, the preferred direction of information propagation is largely in the streamwise

direction. Thus, variations in the upstream boundary conditions may be expected to have

a significant effect on the flowfield.

The two sets of boundary conditions used in this investigation are described in Sec-

tion 4.6. The following sections compare and contrast the solutions obtained with each set

of boundary conditions, once again using the LDV data of Luker (15) and Hale (9) as the

basis for comparison.

5.3.1 Zero Pressure Gradient (ZPG) Test Section. This section compares the

numerical solutions obtained at FS 60.0 with the LDV data extracted at FS 71.5 in the

ZPG test section. Figure 5.28 is a plot of the nondimensiona velocity as a function of

y/b through the boundary layer at this flow station. Although the numerically generated

solutions agree closely in the wall region, this agreement disappears above y!/6 ;- 0.2

Examination of the freestream inflow curve reveals a velocity deficit in the upper two-
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thirds of the boundary layer that is not seen in either the experimental profile inflow curve

or the experimental data. This velocity deficit may be linked to an over-prediction of the

turbulent shear stress in the same region, as is seen in Figure 5.29.
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Figure 5.28 u/u, vs y/,u, ZPG, FS 60.0/71.5

5.3.2 Favorable Pressure Gradient (FPG) Test Section. Profiles in this section

were generated at FS 71.5 in the FPG test section. Figure 5.30 shows that the nondi-

mensional computed velocity profiles differ only slightly at this flow station; both do an

acceptable job approximating the experimental data. Similarly, Figure 5.31 shows close

agreement between the computed solutions. Comparing the features of Figures 5.30 and

5.31 reveals that for a given y/ 6 location, high nondimensional velocity is typically coupled

with reduced turbulent shear stress. Thus, an over-prediction of the local velocity appears

to be linked to an under-prediction of the turbulent shear stress. This trend is also present

in the ZPG test section, as may be seen in Figures 5.28 and 5.29.

5.3.3 Adverse Pressure Gradient (APG) Test Section. Profiles presented in

this section were generated at FS 68.0 in the APG test section. Agreement between the

numerical profiles is similar to that which was seen in the ZPG test section. The differences
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may once again be characterized by a velocity deficit and accompanying turbulent shear

stress surplus between 0.2 < y/ < 0.75. The velocity profile is once again more accurately

predicted numerically when the experimental profile boundary conditions axe used. The

turbulent shear stress profile generated through the use of the freestream inflow conditions,

however, more accurately predicts the magnitude of this quantity over a fairly large region

of the boundary layer. Unfortunately, this agreement is restricted to magnitude effects only;

the general shape of the turbulent shear stress profile is still more accurately reproduced by

the computations utilizing the experimental profile conditions. Finally, the converse of the

trend observed in the above sections appears to hold as well; numerical under-prediction

of the velocity is coupled with an over-prediction of the turbulent shear stress.

5.3.4 Surface Effects. The effect of the upstream boundary condition variation is

not limited to the velocity and shear stress profiles. Differences exist in the surface pressure

and wall shear stress distributions as well. Figure 5.34 shows that while the computed wall

shear stress values are the same for both models in the upstream ZPG region, wall shear

predictions in the pressure gradient regions differ. This figure indicates that the magnitude
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of the change in the wall shear stress in the pressure gradient regions is smaller with the

freestrearn inflow conditions than that obtained through the use of the experimental profile

inflow conditions.

100
90 .:. '

so
80

80
50

40L 40 FPG: Experimental Profile Inflow

....------ APG: Experimental Profile Inflow

20 --------- FPG: Freestreern Inflow

APG: Freestream Inflow

0 L . . . . . ! . . I . . . . . . .

0.45 0.50 0.55 0.60 0.65 0.70
x Location [m]

Figure 5.34 T~oti vs x

Figure 5.35 shows that while the pressure gradient within the test sections is similarly

predicted by both inflow boundary conditions, a fairly large discrepancy exists in the

computed surface static pressure distributions. In this figure, computations using the

freestream inflow conditions predict significantly higher static pressures than those utilizing

the experimental inflow profile. Interestingly, it is the curve generated using the freestream

inflow conditions that most closely approximates the experimental data (Luker (15), FPG

data and Hale (9), APG data). Recall that both inflow conditions use essentially the same

data, the difference being that the latter utilizes more fiowfield information by specifying

nonuniform velocity, temperature, density, k, and w profiles. Thus, there is no reason to

expect that the pressure distribution should vary when one set of boundary conditions is

used in lieu of the other.

The differences observed may be partially explained through an examination of Fig-

ures 5.36 and 5.37. The lower frame of these figures contains a numerical contour plot of
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the static pressure in the test section; the upper frame is a line plot of the static pressure

at the surface. Comparing these figures with Figure 5.35 reveals that while the pressure

at the inflow plane is effectively the same for both sets of boundary conditions, a series of

reflected pressure waves present in the numerical solution increases the surface (and mean

flow) pressure substantially in the streamwise direction. These pressure waves appear to

originate at the leading edge of the computational mesh when the previously undisturbed

freestream is subjected to no-slip boundary conditions at the inlet. This is an interesting

feature, but it does not explain the agreement between the freestream inflow case and the

experimental data.

Looking to the experimental setup for potential answers, Schlieren images taken in

the test sections reveal the presence of "seam shocks," oblique shock waves which originate

upstream of the measurement stations due to misalignment of the wind tunnel sections.

The presence of these weak shock waves raises two issues: first, it challenges the assumption

that the total pressure is constant from the settling chamber to FS 44.0, the location at

which the upstream boundary conditions were measured. The effect of these seam shocks

would be to reduce the total pressure at that station, leading to further reductions in the
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static pressure. Thus, the static pressure assumed at FS 44.0 is the maximum possible static

pressure at that flow station given the velocity profile and total pressure and temperature

measured in the settling chamber. The second is that these shocks may be responsible

for raising the static pressure from the "assumed" upstream value of roughly 7200 Pa to

the 8400 Pa measurement obtained by Hale (9) at FS 63.0. In that case, the agreement

between the freestream inflow calculation and the experimental data is fortuitous at best;

the non-physical numerical pressure fluctuations simply combine in such a manner as to

mimic the pressure rise in the actual flow due to these unintended, but physical, oblique

shocks.

These reflected pressure waves are also present to some extent in Figures 5.38 and

5.39, which were generated through the use of the experimental profile inflow boundary

conditions. The appearance of pressure fluctuations in these solutions tends to dispel the

notion that the instantaneous application of no-slip at the leading edge is responsible for

the computational pressure fluctuations. A potential link between these two calculations

is that in both cases the v component of velocity is set to 0. For the freestream inflow

case, this is a good approximation, consistent with the assumption of an undisturbed

freestream. In the experimental profile case, however, this assumption is fairly inaccurate;

boundary layer flows typically have non-zero v components of velocity. It is possible that

this inconsistency is at least partially responsible for the appearance of the pressure waves

in that calculation.

Finally, a portion of the observed pressure mismatch may be linked to the stagnation

temperature and pressure utilized in the specification of both sets of boundary conditions

(see Section 4.6. For example, a 1 degree difference in the total temperature specification

leads to a 140 Pa offset in the static pressure. Similarly, uncertainty in the stagnation

pressure measurements reported by Luker (15) lead to an 88 Pa window over which the

static pressure may vary.

5.3.5 Summary. Specification of the upstream boundary condition appears to

have a significant effect on the velocity and shear stress profiles in the ZPG and APG

test sections. This effect is diminished appreciably in the FPG test section. Thus, the
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stabilizing effect of a FPG tends to reduce the effects of variations in upstream boundary

condition specification, whereas the effect of an APG is to maintain, if not amplify, these

differences. From a practical standpoint, this observation implies that extra care must

be taken when specifying the upstream boundary conditions for a flowfield characterized

by ZPG or an APG. The converse appears to hold as well for FPG flowfields. Finally,

accurate specification of the upstream profile, to include thermophysical quantities and

all components of the velocity vector, is required to obtain accurate absolute pressure

distributions, although the magnitudes of pressure gradients are reproduced accurately

regardless of the inflow condition used.

5.4 Flowfield Analysis

This section presents the results of a flowfield analysis performed using the exper-

imental profile inflow conditions and the k - w turbulence model, the combination of

turbulence model and upstream boundary conditions found to provide the most accurate

overall solutions. As in the previous sections, this section focuses on the effects of the

favorable and adverse pressure gradients through an examination of the velocity, turbulent

shear stress, and eddy viscosity profiles, the static pressure distribution along the surface,

and the distribution of wal through the test sections.

5.4.1 Favorable Pressure Gradient (FPG) Test Section. The flowfield in the FPG

test section is characterized by a progressive and mild expansion beginning at FS 65.0 and

continuing to the end of the computational domain. A numerical Schlieren image of this

test section, showing density gradients in the y direction, 9y, is presented in Figure 5.40(a).

In this figure, flow is from left to right and lightly shaded areas represent regions of positive

density gradients; dark areas correspond to negative gradients. The expansion is visible

as an incrementally brighter triangular region in the lower right hand corner of the figure.

In this figure, the boundary layer at the lower surface is seen to respond immediately

to the presence of this pressure gradient by increasing in thickness, while the boundary

layer at the upper surface appears to be unaffected by the expansion. This observation is

consistent with those of Spina, Smits & Robinson (21), who found that "...bulk dilitation
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decreases the wall shear stress and increases the boundary-layer thickness." Referring back

to Figure 5.38, the average pressure gradient at the lower surface in the expansion region

is fairly constant and may be calculated as -4.5728x10 4 Pa/m.

(a) (b) Luker (15)

Figure 5.40 Schlieren Imagery of FPG Test Section

Figure 5.40(b) is an actual Schlieren photograph of the FPG test section. Prominent

in this figure are the "seam shocks" mentioned in Section 5.3.4. One appears as a light

line passing through the frame from upper left to lower right, the other begins at the lower

left, moving towards the upper right corner but dissipating away before it arrives there.

This pattern is initially symmetric about the centerline of the tunnel. In this figure, a

thickening of the boundary layer is evident as the flow passes into the expansion region,

but the expansion is more difficult to visualize due to noise in the flow and the the arrival

of the first seam shock.

The remainder of this section will concentrate on profiles obtained at different flow

stations within the FPG test section. The location of these stations and the orientation

of the cutting planes (lines) with respect to the test section are shown in Figure 5.41, a

composite figure based on a contour plot of the pressure gradient in the x direction, .

Superimposed over this contour plot are the planes along which data has been extracted;

directly above the plot is a representation of the surface pressure distribution at the bottom

wall in the test section. Immediately evident in this contour plot are the reflected pressure

waves mentioned previously and a significantly more visible expansion region.
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Figure 5.42 presents velocity profiles obtained at the stations indicated in Figure 5.41.

This figure clearly shows the evolution of the flow from one closely resembgazPG profile
(FS 65.5), to the profle presented previously as one representative of a FPG flow. This

evolutioF is characterized by a gradual increase in the edge velocity and boundary layer

thickness as the traverse moves farther into the expansion regon. although it appears in

this figure that the freestream velocity decreases at the downstream fow stations, this is a

by-product of the body' normal coordinate system used in the generation of these proies.

The n•nn n turbulent shear stress profile evolves in a similar manner, as may
Th odimensional tr . . ,z 5coeyesbeshePG 

profiles

be seenn Figure 5.43. Once again, the profile at FS 65.5 Closely resembles the Z rIler

taken at FS 60.0 (see Figure 5.9). Progressing through the expansion region, the character

of the profile changes, with the slope of the curve increasing, reducing the turbulent shear

stress through a large portion of the boundary layer. While the peak value near the wall
remains essentily nchanged, the area under the profile decreases significantly, potentially

indicating a reduction in the total amount of energy present in the turbulent fluctuations.

Based on this supposition, Figure 5.44 presentS the turbulent kinetic energy proies

at these same flow stations. The arrows in this figure indicate the direction of movement
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Figure 5.42 Velocity vs y, FPG Test Section
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Figure 5.43 Nondimensional Turbulent Shear Stress vs y/b., FPG Test Section
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of the profiles as the cutting planes are moved downstream. This figure shows that while

neither the peak turbulent kinetic energy (TKE) near the wall nor the area under the

k - y curve are significantly reduced, the distribution of TKE through the boundary layer

is altered by the presence of the FPG. This alteration consists of a shift which increases

the TKE near the edge of the boundary layer while reducing its magnitude close to the

wall. A physical argument is proposed: High inertia freestream flow resists the influence

of the curvature of the wall, increasing the boundary layer thickness. As a result of this

increased boundary layer thickness, the velocity gradient near the wall decreases, resulting

in decreased shear stress at the wall and decreased energy transfer to the wall through

viscous effects. This reduction in the wall shear stress may be clearly seen in Figure 5.34,

where the shear stress at the wall is reduced from 72 Pa to 46 Pa over the course of 8 cm.

Since the total energy in the flow is conserved, the reduction in energy transfer to the wall

must be balanced by an increase in the energy transfer elsewhere. This shifts the TKE

curve toward the edge of the boundary layer, where increased transfer of TKE into the

mean flow accounts for the reduction in energy transferred to the wall.
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66.5 CM
0.030 ........ 67.5 cm

68.5 cm
0.025 - ---------69.5 cm

0.020 70.5 cm

71.5 cm

0.015 72.5 Cm
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Figure 5.44 Turbulent Kinetic Energy vs y, FPG Test Section
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Figure 5.45 shows the evolution of the eddy viscosity profiles through the FPG test

section. The peak eddy viscosity is seen to decrease and move away from the wall as the

cutting plane is moved downstream. This magnitude reduction and peak shift are thought

to be responsible for the reduction in the turbulent shear stress seen in Figure 5.43 and

the re-distribution of turbulent kinetic energy seen in Figure 5.44. Examination of the

eddy viscosity levels in the freestream reveals that these values are also reduced under

the influence of the FPG. As noted in Spina, Smits & Robinson (21), a FPG tends to

decrease the magnitude of turbulent fluctuations in compressible boundary layer flow,

even re-laminarizing these flowfields if the FPG is strong enough. Computationally, this

result arises from a reduction in the eddy viscosity, a feature that is clearly predicted by

the k - w turbulence model.

2.0 - 65.5 cm

66.5 cm

67.5 cm

1.5 . 68.5 cm

- -70.5 cm...... 06.5 cm

Y18. 1.0 "'71.5 cm

72.5 cm

0.5

0.0
0.000 50.000 100.000 150.000 200.000 250.000 300.000

Figure 5.45 IA/ vs y/ 6 ,, k - w Modeling, FPG Test Section

5.4.2 Adverse Pressure Gradient (APG) Test Section. The flowfield in the APG

Test Section displays a mixed set of features. As mentioned in Chapter II, regions of

both favorable and adverse pressure gradient are present in this test section. In the region

upstream of FS 68.0, (see Figure 5.39) the lower wall is concave up, creating a region
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of adverse pressure gradient. The magnitude of the pressure gradient in this region is

relatively constant and calculated to be 1.3425x105 Pa/m. Beyond FS 68.0, the radius

of curvature increases until an inflection occurs, transitioning the pressure gradient from

adverse to favorable. Hence, aft of FS 69.0 the pressure gradient is favorable; beyond FS

71.0 the magnitude of this gradient is fairly constant and equal to -1.6201x10 5 Pa/m

(a) (b) Hale (9)

Figure 5.46 Schlieren Imagery of APG Test Section

Figure 5.46(a) is a numerical Schlieren image of this test section. Strong density

gradients are evident in the shock wave, which strengthens near the end of the test sec-

tion. The boundary layer is seen to decrease in thickness initially behind the coalescence

of pressure waves near the wall, and then to increase in the region of FPG which follows.

Figure 5.46(b) is an actual Schlieren image of this test section, displaying the same charac-

teristics as the numerical prediction. Note that the "seam shocks" seen in Figure 5.40(b)

are present in this image as well. The effect of these weak oblique waves is diminished in

this test section, however, due to the strength of the main shock structure.

Figure 5.47 is a contour plot of the pressure gradient in the x direction, over which

are superimposed the locations of the data planes considered in this section. From this

figure, the development of the shock wave is readily visible, transitioning from a simple

coalescence of pressure waves into a proper shock near the end of the test section. As was

done previously, a representation of the surface static pressure in the test section is shown

above this contour plot.
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Figure 5.47 Location of Measurement Stations, APG Test Section

As may be expected and seen in Figure 5.48, the combination of the pressure gradients

and the shock wave has a dramatic effect on the velocity profiles in the test section. Initially,

the effect of the APG on the velocity profiles is to decrease the edge velocity and thin the

boundary layer, as may be seen by comparing the profiles at FS 66.0 and 6.0. By FS 68.0,

the shock is strong enough to have a smearing effect on the boundary layer edge, making

that edge ill-defined. Aft of FS 68.0, the effect of the shock is restricted primarily to the

flow outside the boundary layer. It is in this region (aft of FS 68.0) that the FPG begins

to dominate the flowfeld, manifesting its presence through an increase in the boundary

layer thickness.

The nondimensional turbulent shear stress profiles in this section also reflect the

varying character of the flowfeld. The peak turbulent shear stress near the wall is seen to

increase with streamwise position initially, maintaining a profile that resembles that seen

in the ZPG regions. After the peak value is reached in the vicinity of FS 68.0, the profiles

begin to change in character, moving towards the form presented in Figure 5.43. As was

seen in this figure, progression along the FPG region is accompanied by a reduction in the

turbulent shear stress in the flowfield. It is interesting to note that the profiles aft of FS

68.0 in this test section do not immediately take the form of those generated in the FPG
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Figure 5.48 Velocity vs y, APG Test Section

test section. Their shape instead reflects both APG and FPG qualities. This observation

serves to emphasize the importance of "historical" flowfield effects in turbulence modeling.

This trend is also reflected in Figure 5.34, which indicates an initial increase in the wall

shear stress, followed by a decrease in this quantity. Note that the peak wall shear occurs

after the inflection takes place, once again indicating the importance of upstream effects.

The turbulent kinetic energy (TKE) profiles shown in Figure 5.50 exhibit similar

features. Within the APG region, the peak value of the TKE is seen to increase and shift

slightly away from the wall. Transitioning into the FPG region of this test section, the

peak value decreases more dramatically, and the curve appears to begin to turn in on itself

in an attempt to return to the type of profile seen earlier in the FPG test section (see

Figure 5.44). Again, the condition of the upstream flow appears to play a major role in

specifying the TKE profiles at each flow station. In other words, the profile in the FPG

portion of this test section still retains many of the features of the APG profiles, while

obviously moving towards the overall shape of the profiles seen in the FPG test section.
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The eddy viscosity profiles (see Figure 5.51) in the APG test section behave in a

similar manner. From FS 66.0 to FS 69.0, the peak eddy viscosity increases at a fairly

constant rate and does not shift vertically within the boundary layer. The peak eddy

viscosity at FS 70.0 is greater than that at FS 69.0 but has begun to move away from

the wall, as was seen in the FPG test section. This seems to indicate that the maximum

eddy viscosity lies somewhere between FS 69.0 and 70.0, on the same y plane as is seen

between FS 66.0 and F'S 69.0. Then, as the adverse pressure gradient diminishes in strength

and the gradient becomes favorable, the peak eddy viscosity decreases and moves towards

the boundary layer edge, as seen at FS 70.0 and 71.0. As before, this appears to be the

mechanism responsible for shifting the TKE profile towards the boundary layer edge. Note

that the eddy viscosity in the region between the shock wave and the lower test section

wall is higher than that above the shock, indicating perhaps that the shock wave itself

limits the extent of the APG to the region close to the wall. In the region below the shock

wave but outside the boundary layer, eddy viscosity is seen to increase under the influence

of the APG.
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Figure 5.51 A/rp vs y, k - w Modeling

5-43



VI. Conclusions and Recommendations for Further Investigation

6.1 Conclusions

1. The k - w turbulence model provides acceptable computational results for this family

of flowfields. Agreement between computed and experimental velocity and turbu-

lent shear stress profiles is excellent, as is the agreement between computed and

experimental wall shear stress in the zero pressure gradient test section. Wall shear

predictions in the pressure gradient sections appear to follow published observations,

but the lack of experimental data in these regions precludes direct comparison. All

pertinent flowfield features have been accurately predicted numerically using this

model. Finally, k - w computations produced significantly better results than the

corresponding Baldwin-Lomax computations.

2. Flowfield history plays a significant role in the determination of flowfield properties

at every station in the flowfield. Velocity and shear stress profiles evolve under the in-

fluence of both local and non-local flow features. Failing to account for the non-local

flow features will introduce errors into the solution. Although FPG flowfield compu-

tations appear to be fairly insensitive to variations in upstream boundary conditions,

ZPG and APG flowfield calculations are extremely sensitive to such variations.

3. Favorable pressure gradients tend to damp out turbulent fluctuations in compressible

boundary layer flow. The effect of the imposition of a favorable pressure gradient on

the flowfields studied was to reduce the turbulent shear stress and alter the distribu-

tion of the turbulent kinetic energy through the boundary layer. Wall shear stress is

also reduced in regions of favorable pressure gradient.

4. Adverse pressure gradients tend to increase the magnitude of the turbulent fluctu-

ations in compressible boundary layer flowfields. The effect of an adverse pressure

gradient on the flowfields studied was to increase the turbulent shear stress through

the boundary layer. Additionally, the peak turbulent kinetic energy and the wall

shear stress are increased under the influence of the adverse pressure gradient.
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6.2 Recommendations for Further Investigation

1. Decrease the solution time by enabling the implicit solution of the k - W equations.

If running in implicit mode, the flow solver in its present form utilizes Symmetric

Gauss-Seidel Simultaneous Over-Relaxation (SOR) by Lines to rapidly advance the

solution utilizing CFL numbers as high as 1.0x10 6 . In this mode, converged laminar

solutions are possible in as few as 200 iterations. Enabling the solution of the k

and w equations to proceed at this rate would significantly reduce computation time,

dramatically increasing this code's utility.

2. Move on to more challenging flowfields. Now that the performance of this algo-

rithm/turbulence model combination has been documented for compressible turbu-

lent flows involving mild pressure gradients, evaluate its applicability to separated

flows or flows over more complex geometries. Specifically, the supersonic slot injection

flowfields studied by Tucker (23) stand out as excellent test cases for an investigation

of this nature.

3. Integrate additional sophisticated turbulence models. For the mild pressure gradi-

ent cases presented in this study, the Baldwin-Lomax turbulence model is relatively

well behaved and helps to provide a baseline against which the performance of the

k - w model may be judged. For the massively separated flows mentioned above,

algebraic models such as Baldwin-Lomax tend not to fare very well. The addition

of a Reynolds-Stress turbulence model, directly solving the Reynolds-stress equa-

tion, will provide additional capabilities for computations involving more challenging

flowfields. Failing that, the addition of one or several other two-equation models will

enhance this code's utility as an analysis tool and serve as a basis for comparison for

investigations involving these more complicated flowfields.
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Appendix A. Strong Conservation Law form of Governing Differential Equations

This section presents the tramsformation of the governing equations from Cartesian

form to the Strong Conservation Law form. The governing partial differential equations in

vector form in Cartesian coordinates

OU OF OG
--" + -6X + 6Y = 0 (A.1)

may be recast using the chain rule of partial differentiation

OF OF OF
Ox = 57 (A.2)

OG OG OG
7yYo~ +" j7 (A.3)

into the Weak (or Chain Rule) Conservation form of the governing equations

aU OF OF OG OG
ot +1- 5 yT +1y-i (A.4)

The next step in the transformation is to divide the above equation by the Jacobian of the

forward transformation and regroup

IOU + ' .OF 4OG) +(2.OF+ 7yG\ =
J o+ ,- O j - 7 =0 (A5)

The first term in parentheses on the LHS may be re-expressed as

Ff+ ( - F + La), (L)F - (LY)G (A.6)

Similarly, the second term in parentheses may be expressed as

F,+l ,, 21F l GF} (' G (A.7)
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Inserting these two terms into Equation A.5 and re-grouping yields

1 t9U + (4GF + G'\ C(.,F + %G)' +7x)]F- [( Y\I'?x\ [ +4 ('7,7]G=0
kj Tt j I [Y yjF - JG=

(A.8)

Re-expressing the terms in square brackets in terms of the metrics of the inverse transfor-

mation (see Appendix D) reveals that

( + = -q % -7 -0 (A.9)

( + _ = ( )+ -0 (A.10)

Finally, the strong conservation law form of the governing equations is obtained

1 OU (F + y G) = OJ QlFj (A.11)

Now, defining

-= (.F+ G) (A.12)

and

the strong conservation law form of the governing equations may be rewritten as

Ut - -
y+c G,= (A. 14)
7 + F + ?77 = 0h.
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Appendix B. Finite Volume Method Overview

This section presents an overview of the Finite Volume method, based on the presen-

tation given in Buter (3). Consider the governing differential equations of fluid mechanics

in strong conservation form

i au iya -G
-7+ -5 +  - = 0 (B.1)

If this equation is integrated over a stationary control volume with vertices abcd, as shown

in Figure B, this equation becomes

Jbcd tdd1 = - + 5(B.2)

Applying Green's Theorem (13) to the right hand side of the above equation yields

-Jf ]abcd (-) d~d1 = - pb(Fd7 - Gd ) (B.3)

where the line integral is evaluated by integrating counterclockwise around the cell. Refer-

ring to Figure B, Equation B.3 may be represented by the following finite approximation

1 (Un+I-_ U")
& A A r/ = (B.4)

- [FAr7ab + FEAIb + FNA?7,d + FWA7daI

+ [GsA.ab + GEA&bC + GNAed + GwAd]

where F refers to the evaluation of F at point E and so on. Referring once again the

uniform, unitary computational mesh in Figure B, it is clear that

A7ab = A7'cd " Ab = Ada = 0

Ar7b = A b = 1
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Figure B.1 Finite Volume Cell in Computational Domain

ANa = Ad= -1

which, when inserted into Equation B.4 yields

( U ) = Gc + GN - FE - F (B.5)

Finally, defining bU U" + ' - U" and multiplying through by Jbt yields

6 U =Jbt[Gs-GN+FW -FBI (B.6)
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Appendix C. Extrapolation and Limiting

In cell centered, finite volume codes, no fiowfield information is stored at the cell

interfaces. Finite differences involving the fluxes F and ?, however, require the evaluation

of these fluxes at those interfaces. Therefore, approximations of the flowfield properties at

the interfaces are required. A first order approximation assumes that the flux at the inter-

face is the same as the flux at the cell center. A second order approximation extrapolates

interface values using the value of the flux vector at the cell center and that of the cell

immediately upstream. These two methods of extrapolation are shown for the left state

in Figure C.1. From this figure it is obvious that second order extrapolation utilizes more

flowfield information and therefore should provide better results. Unfortunately, second

order extrapolation breaks down at local maxima and minima, where extrapolation based

on upstream property variance can induce overshoots at cell interfaces. Thus, any extrap-

olation greater than first order must be controlled, or limited, to prevent oscillations in

the vicinity of local maxima or minima. Yee (28) developed the MINMOD limiting scheme

to address this difficulty. MINMOD is neither first nor second order, but something in

between, providing most of the benefits of second order extrapolation everywhere but at

local minima and maxima, where it reverts to first order. This section describes MINMOD

limiting as implemented by Gaitonde (8) within FPFV.

C.1 Left State

can hofw -

W Ceamd Sm 

nUo m*r FrnpoIku a

I-I i 1..+.

Figure C.1 First and Second Order Extrapolation, Left State
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Figure C.2 Sign Convention for Extrapolation and Limiting, Left State

If is a fiowfield variable to be extrapolated, the left state is computed using using

Oi-Ij, Oij, and Oi+,j. The sign convention for extrapolation of the left state is shown in

Figure C.2, with A and B positive for the configuration shown, or

B = Oi+1,j - Oij (C.1)

A= Oj - O-ij

In general, not including the case where A = B = 0, six cases must be considered and

handled differently, depending on the signs and magnitudes of A and B. All six cases are

handled within FPFV rather elegantly by the following functional evaluation

FL1(A,B) (C.2)

where FL1(A,B) is a function defined by

FL1(A,B) = sign( 1,A)max(O,min(IAI ,Bsign(1,A))) (C.3)

where

sign(A,B) JAI: B>0 (C.4)
I -JAI: B<0

These functional evaluations are perhaps better understood if presented in a graphical

manner, as is done below for the six cases under consideration

Case 1 : A > B > 0: See Figure C.3, bi+, = , +

Case 2 : B > A > 0 : See Figure CA, L+, 2
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Figure C.3 A > B > 0, Left State
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Figure C.4 B > A > 0, Left State

Case 3 : A, B < 0, JAI > IBI: See Figure C.5, + = - IBI

Case 4: A, B <0, IBI > AI: See Figure C.6, OL  =O - A

Case 5 : A > 0, B < 0: Local Maximum. See Figure C.7, OiL+ j =0i'

Case 6 : A < 0, B > 0: Local Minimum. See Figure C.8, OL+I =

C.2 Right State

Still using 0S as the flowfield variable to be extrapolated, the right state is computed

using O 4j, Oi+1,,, and 4 +2j. The sign convention for extrapolation of the right state is

shown in Figure C.9, with A and B positive for the configuration shown, or

0{

CeC nd Stantdc0

Cd Ceed Sme

I-I i 1+l

Figure C.5 A, B < 0, JAI > 1B, Left State
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Cdn Interfaces

CeHCente!dStae 0
Exftp* ate~

I-I i i+1

Figure C.6 A, B < 0, IBI > JI, Left State

0-41CD Ctaeed State 0

Extp* Satee

* 0

14I 1 1.1

Figure 0.7 Local Maximum, Left State

* 0 CA 11Nzfaces; -

CA Cemed Sew 0

Figure C.8 Local Minimum, Left State

Figure C.9 Sign Convention for Extrapolation and Limiting, Right State

C-4



J Cell Iterfwa

Cel CannSite *
Extrapolaed Stte U

I i+1 i+2

Figure C.10 A > B > 0, Right State

Cel Infaces

CeD Centexd Swe 0

Figure C.11 B > A > 0, Right State

A = O,+2,j+ (C.5)

B = -

Once again, six cases must be considered and handled differently, depending on the signs

and magnitudes of A and B. The functional evaluation presented in the previous section

is used with the following modification

= FLI(A,B) (.6)¢'s+ij = 2 +(C.6)

where FL1(A,B) is as defined in Equation C.3. Graphically, the six cases under consider-

ation are as shown below

Case 1 : A > B > 0 See Figure C.10, = B
6+2s j+j 2

Case 2 : B > A > 0 See Figure C.11, 0 Ij = €+1j- A
rs+ 2

Case 3 : A, B < 0, JAI > JBI: See Figure C.12, ¢,+, = S0. + 2

Case 4 : A, B < 0, IBI > IAl: See Figure C.13, 0+ z = oj +

Case 5 : A > 0, B < 0: Local Maximum. See Figure C.14, q+ ,j = Oi+lj

Case 6 : A < 0, B > 0: Local Minimum. See Figure C.15, 0 +Ij = Oi+lj
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Cell Inerfaces-

CellCentedStae 0

Extrapolated State

I il 1+2

Figure 0.12 A, B < 0, JAIl> IBI, Right State

Cell Centered Stae 0

ExtrapobAted State II

41h 1+2

Figure 0.13 A, B < 0, JBI > JAI, Right State

Cel Intraces

Cell Cneed State

* Eitrapolaed Stae U

1 1+ 1+2

Figure C.14 Local Maximum, Right State

0 0

CA Interfaces -

CeD C=Nved State 0

llabupdwmd Sue

hI W 1i2

Figure C.15 Local Minimum, Right State
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Appendix D. Coordinate Transformation

Numerically solving the above system of differential equations is most often facilitated

by transforming the frequently irregular physical domain into a rectilinear computational

domain using evenly spaced grid points. This section presents the details of a general

coordinate transformation as described by Buter (2).

Thus, the physical (x,y) space is mapped into the computational ( ,ir) space using

the following coordinate transformation

f= f(x,y) (D.1)

rq = 17(x, y) (D.2)

Applying the chain rule of partial differentiation to the above transformation yields

a-- =  f -- + % 0(D.3)

a a a
a -fy a O + IV a (D.4)

For the forward transformation, the total derivatives may be expressed as

d = f,:dx + fldy (D.5)

d= ri:dz + 'iydy (D.6)

or

dI f- If, d (D.7)
dJ [7C fi dy
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where the Jacobian of the forward transformation may be defined as

J = G7 - i77-, (D.8)

Similarly, for the inverse transformation, the total derivatives may be expressed as

dx = xcd, + x,,d (D.9)

dy = yfd + yd77 (D.10)

or

dx] Xc x. d1 (D.11)

dy Yc Y, di7

Combining Equations D.7 and D.11 yields

[X :J-[ Z], (D.12)

If the Jacobian of the forward transformation is defined as

J = C-77 - 7Ix (D.13)

the relationships between the metrics of the forward and inverse transformations as

= Jy,7 (D.14)

4 = -Jx, (D.15)
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,= -Jy (D.16)

S= Jxf (D.17)

Similar manipulations reveal that the Jacobian of the inverse transformation may be de-

fined as

J = xfy? - VfX7 (D.18)

and that the Jacobians of the forward and inverse transformations are related by

(D.19)
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Appendix E. Time-Averaged Navier-Stokes Equations

This appendix presents an overview of Reynolds and Favr6 averaging as presented

by Bowersox (1) and the forms of the Navier-Stokes equations obtained through the use of

each technique.

E.1 Reynolds Averaging

In Reynolds averaging, flow variables are replaced by the sum of a mean value and a

fluctuating component, as shown below for the "random" flow variable g.

€+ 0 (E.1)

After these substitutions have been made, the governing equations are expanded and then

time averaged. The time average of fluctuating components is, by definition, zero, so terms

involving the product of a mean and a fluctuating component disappear. products of two

or more fluctuation terms do not necessarily go to zero physically, so they are preserved

through the averaging process. Consider the Continuity equation in Cartesian coordinates

Op Opu Opv+- +  + OPy = 0 (E.2)

after substituting in the mean and fluctuating components for all flow variables and ex-

panding, the above equation becomes

O (P + p') O (Ai +,u' +- p'ii + p'u') O (At + v' + p'f + p'v')
at + OX + oy= 0 (E.3)

Time averaging the resulting equation yields the Reynolds-averaged form

0,p O (fii + -FP)+ a(, + p-p)=0 (E.4)Ot + Ox Oy

which may be written in indicial notation as
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0-+ O zi1 pu 0x (E.5)

Similar manipulations, when performed on the momentum equations (22), yield

+________+ -___ Op + (E.6)

at 0xj OX OX

where the Reynolds stress tensor rT' contains the additional fluctuation terms added to the

momentum equations. In indicial notation, the Reynolds stress tensor takes the following

form:

-(Pult ± +,p'U; + t + 'u Uj) (E.7)

The Reynolds averaged form of the Energy equation (22) in terms of the total enthalpy is

at + - x (E.8)

where the turbulent heat flux is defined as

qT = +h o p' , i + ip'h" + p'ht',, (E.9)

E.2 Favr Averaging

The form of Reynolds stress tensor generated by Reynolds averaging contains four

terms that must be modeled if the system of equations is to be closed. In an attempt

to reduce the number of terms that must be modeled, a closer look at the Navier-Stokes

Equations suggests that mass averaging the flow variables is another way to account for

the turbulent fluctuations within the flow. The premise of replacing flow quantities with a

mean plus a fluctuating component does not change, but the rules by which the averaging
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process eliminates combinations of terms changes commensurate with the philosophy of

mass, or Favr , averaging. Consider once 1again a random flow variable, $:

= 4 + €" (E.10)

where

= 0 (E.11)

In Favr averaging, the averaging process eliminates only those terms that involve the

product of the mean density and a fluctuating term. This feature arises from the following

set of manipulations

p? = + po" (E.12)

Averaging yields

P-0 PO p oll (E.13)

which, when combined with Equation E.11, yields

or

pol = 0 (E.15)

Applying these rules to the governing differential equations (22) yields the Favre

averaged form of the Continuity Equation
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-T + 0-- 0 (E.16)
at axi

the Momentum Equations,

a O fifi fIj OP + +T (E.17)at ax xi &Xj

where the Reynolds stress tensor r7 is defined in indicial notation as

- , U,, (E.18)

and the Energy equation

at + ax, + fi) + ' a +T, -- (E.19)at Oxi  at 8X Oij xj a OXj

where the turbulent heat flux is given by

-T = ohiuu' (E.20)

Notice that the Reynolds stress tensor obtained through Favre Averaging contains three

fewer terms than that obtained from Reynolds averaging. In fact, the Favr6 averaged term

looks much like the "incompressible" portion of the Reynolds averaged term, as would be

obtained by setting p' = 0. The following exercise more formally shows the relationship

between the Favre -averaged and Reynolds-averaged terms. The instantaneous velocity

may be represented in terms of both Reynolds-averaged and Favrb -averaged variables

u = il + u' = fi + u" (E.21)

E-4



v= i+v' = i+v"

Solving for the ' quantities,i
u' =fi - t + u" (E.22)

v/ - 'D + V"

Next, take the time-average the Favr6 portions of Equation E.21

= U" + (E.23)

= '7+7 v"= + v"

and use them to replace the fi and f terms in Equation E.22

U' fi + u" - fi - = u" -u (E.24)

V, = + V" - f) - = v" - 7

Next, take the product of these two terms and multiply the result by the mean density

OuIvI = P u11v" - # u"7v - p v" u + A)u"7v = fiu;v" - P u"7v (E.25)

Then, remembering the principles of Favr averaging in terms of a general flow variable 4
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€;F7

" = _ (E.26)

the Favr6 fluctuating component may be re-written as

= P(E.27)

This result may be inserted into the right hand side (RHS) of Equation E.25 to yield

iuv- ' = u"v" + p' v' (E.28)

If the second term on the RHS of this equation is negligible, as may be expected of a

fourth-order fluctuation term, then the above relation reduces to

jAu'v'7  PuIv (E.29)

which supports the observation made previously. Thus, solving the Favrb averaged form

of the governing equations neglects the effects of p', manifested by the elimination of

the fourth-order fluctuation term in the above expression. Justification for doing so lies

in Morkovin's Hypothesis (17), which states that the effect of density fluctuations on

turbulent flow may be neglected as long as the magnitude of the density fluctuations is

small compared to the mean density. Miller (16) found that density fluctuations in the

mean flow were on the order of 1%, but within the boundary layer the magnitude of

these fluctuations increased to roughly 10%. This observation indicates that the effects of

density fluctuations are not negligible and should therefore technically be considered for

this flowfield. Modeling constraints, however, dictate that the Favr6 averaged form of the

governing equations, which by definition neglect density fluctuations, be used.
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Appendix F. AFIT Supersonic Pressure- Vacuum Wind Tunnel

The coordinates for the contour of the AFRT Supersonic Pressure-Vacuum Wind

Tunnel, beginning in the upstream settling chamber, are:

__________ Ceiling _____

x (in) y (in) x (in) y (in)

O.OOOOE+OO 3.2910E+00 2.2240E+00 2.2240E+00

1.5000E+00 3.2910E+00 2.2590E+00 2.1420E+00

1 .5340E+00 3.2870E+00 2.2930E+00 2.0600E+00

1.5690E+00 3.2770E+00 2.3280E+00 1.9770E+00

1.6030E+00 3.2610E+00 2.3620E+00 1.8940E+00

1.6380E+00 3.2390E+00 2.3970E+00 1.8110E+00

1.6720E+00 3.2120E+00 2.4310E+00 1.7290E+00

1.7070E+00 3.1790E+00 2.4660E+00 1.6470E+00

1.7410E+00 3.1400E+00 2.5000E+00 1.5670E+00

1 .7760E+00 3.0970E±00 2.5350E+00 1 .4870E+00

1 .8100E+00 3.0500E+00 2.5690E+00 1 .4090E+00

1 .8450E+00 2.9980E+00 2.6040E+00 1 .3330E+00

1 .8790E+00 2.9420E+00 2.6380E+00 1 .2590E±00

1.9140E+00 2.8830E+00 2.6730E+00 1.1870E+00

1.9480E+00 2.8200E+00 2.7070E+00 1.1180E+00

1 .9830E+00 2.7530E+00 2. 7420E+00 1 .0520E+00

2.0170E+00 2.6840E+00 2. 7760E+00 9.8890E-01

2.0520E+00 2.6120E+00 2.81 10E+00 9.2930E-01

2.0860E+00 2.5380E+00 2.8450E+00 8.7350F,0O1

2.1210E+00 2.4620E+00 2.8800E+00 8.2160E-01

2.1550E+00 2.3840E+00 2.9140E+00 7.741O0F-1

2. 1900E+00 2.3050E+00O1 2.9490E+00 7.31 1OE-O1
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Ceiling (continued)

x (in) y (in) x (in) y (in)

2.9830E+00 6.9290E-01 5.1000E+00 1.2600E+00

3.0180E+00 6.5990E-01 5.3030E+00 1.3310E+00

3.0520E+00 6.3220E-01 5.5120E+00 1.4010E+00

3.0870E+00 6.1020E-01 5.7290E+00 1.4700E+00

3.1210E+00 5.9420E-01 5.9560E+oo 1.5390E+00

3.1560E+00 5.8430E-01 6.1940E+00 1.6070E+00

3.1900E+00 5.8100E-01 6.4440E+00 1.6740E+00

3.2620E+00 5.8360E-01 6.7070E+00 1.7410E+00

3.3050E+00 5.8680E-01 6.9840E+00 1.8070E+00

3.3490E+00 5.9120E-01 7.2770E+00 1.8720E+00

3.3920E+00 5.9700E-01 7.5880E+00 1.9360E+00

3.4360E+00 6.0410E-01 7.9170E+00 2.OOOOE+00

3.4810E+00 6.1260E-01 8.2660E+00 2.0620E+00

3.5260E+00 6.2260E-01 8.6370E+00 2.1210E+00

3.5710E+00 6.3420E-01 9.0310E+00 2.1780E+00

3.6180E+00 6.4740E-01 9.4510E+00 2.2340E+00

3.6650E+00 6.6240E-01 9.8980E+00 2.2850E+00

3.7130E+00 6.7920E-01 1.0370E+01 2.3330E+00

3.7620E+00 6.9800E-01 1.0880E+01 2.3770E+00

3.8120E+00 7.1900E-01 1.1430E+01 2.4160E+00

3.8380E+00 7.3040E-01 1.2010E+01 2.4480E+00

4.0860E+00 8.4690E-01 1.2630E+01 2.4740E+00

4.5070E+00 1.0320E+00 1.3290E+01 2.4920E+00

4.7050E+00 1.1120E+00 1.4000E+01 2.5000E+00

4.9020E+00 1.1870E+00
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_________Floor

x (in) y (in) x (in) y (in)

.OOOOE+OO -.27l0E+O1 .2397E+01 -.1230E±01

.1500E+01 -.2710E+01 .2431E+01 -.1148E+01

.1534E+01 -.2706E+01 .2466E+01 -.1066E+01

.1569E+01 -.2696E+01 .2500E+01 -.9857E+00

.1603E+01 -.2680E+01 .2535E+01 -.9062E+00

.1638E+01 -.2658E+01 .2569E+01 -.8283E+00

.1672E+01 -.2631E+01 .2604E+01 -.7521E+00

.1707E+01 -.2598E+01 .2638E+01 -.6780E+00

.1741E+01 -.2559E+01 .2673E±01 -.6063E+00

.1776E+o1 -.2516E+01 .2707E+01 -.5372E+oo

.1810E+01 -.2469E+01 .2742E+01 -.4709E+00

.1845E+01 -.2417E+01 .2776E+01 -.4079E+00

.1879E+01 -.2361E+01 .2811E+01 -.3483E+00

.1914E+01 -.2302E+01 .2845E+01 -.2925E+00

.1948E+01 -.2239E+01 .2880E+01 -.2406E+00

.1983E+01 -.2172E+01 .2914E+01 -.1931E+00

.2017E+01 -.2103E+01 .2949E+01 -.1501E+00

.2052E+01 -.2031E+01 .2983E+01 -.1119E+00

.2086E+01 -. 1957E+01 .3018E+01 -.7888E-01

.2121E+o1 -.1881E+01 .3052E+01 -.5122E-0O1

.2155E+ol -. 1803E+01 .3087E+01 -.2923E-01

.2190E+01 -.1724E+01 .3121E+01 -.1317E-01

.2224E+01 -. 1643E+01 .3156E+01 -.3339E-02

.2259E+01 -. 1561E+01 .3190E+01 .OOOOE+00

.2293E+01 -. 1479E+01 .3290E+01 .OOOOE+00

.2328E+01 -. 1396E+01 .1400E+02 .OOOOE+00

.2362E+01 -.1313E+01
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Appendix G. Additional Figures
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Figure G.1 u+ (van Driest) vs y+, Upstream Flat Plate Test Section, FS 44.0, Normal
Node Count Variation
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Figure G.2 u+ (van Driest) vs y+, Favorable Pressure Gradient Section, FS 71.5, Normal
Node Count Variation
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Figure G.3 Nondimensional Velocity Profile, Upstream Flat Plate Test Section, FS 44.0,
Normal Node Count Variation
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Figure G.4 Nondimensional Velocity Profile, Favorable Pressure Gradient Section, FS
71.5, Normal Node Count Variation
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Figure G.5 Nondimensional Turbulent Shear Stress Profile, Upstream Flat Plate Test
Section, FS 44.0, Normal Node Count Variation
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Figure G.6 Nondimensional Turbulent Shear Stress Profile, Favorable Pressure Gradient
Section, FS 71.5, Normal Node Count Variation
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Figure G.7 u+ (van Driest) vs y+, Upstream Flat Plate Test Section, FS 44.0, Stream-
wise Node Count Variation
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Figure G.8 u+ (van Driest) vs y+, Favorable Pressure Gradient Section, FS 71.5, Stream-
wise Node Count Variation
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Figure G.9 Nondimensional Velocity Profile, Upstream Flat Plate Test Section, FS 44.0,
Streamwise Node Count Variation
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Figure G.10 Nondimensional Velocity Profile, Favorable Pressure Gradient Section, FS
71.5, Streamwise Node Count Variation
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Figure G.11 Nondimensional Turbulent Shear Stress Profile, Upstream Flat Plate Test
Section, FS 44.0, Streamwise Node Count Variation
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Figure G.12 Nondimensional Turbulent Shear Stress Profile, Favorable Pressure Gradient
Section, FS 71.5, Streamwise Node Count Variation
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Figure G.13 u+ (van Driest) vs y+, Upstream Flat Plate Test Section, FS 44.0, Wall
Spacing Variation
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Figure G.14 u+ (van Driest) vs y+, Favorable Pressure Gradient Section, FS 71.5, Wall
Spacing Variation
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Figure G.15 Nondimensional Velocity Profile, Upstream Flat Plate Test Section, FS 44.0,
Wall Spacing Variation
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Figure G.16 Nondimensional Velocity Profile, Favorable Pressure Gradient Section, FS
71.5, Wall Spacing Variation
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Figure G.17 Nondimensional Turbulent Shear Stress Profile, Upstream Flat Plate Test
Section, FS 44.0, Wall Spacing Variation

1.5

(37

1.0G2

A.5

0.5

0.000 MOMw 0.004 0.006 0.008 0.010

Figure G.18 Nondimensional Turbulent Shear Stress Profile, Favorable Pressure Gradient
Section, FS 71.5, Wall Spacing Variation
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