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Abstract

Classification of time series has wide Air Force, DoD and commercial interest, from

automatic target recognition systems on munitions to recognition of speakers in diverse

environments. The ability to effectively model the temporal information contained in a

sequence is of paramount importance. Toward this goal, this research develops theoretical

extensions to a class of stochastic models and demonstrates their effectiveness on the prob-

lem of text-independent (language constrained) speaker recognition. Specifically within the

hidden Markov model architecture, additional constraints are implemented which better

incorporate observation correlations and context, where standard approaches fail. Two

methods of modeling correlations are developed, and their mathematical properties of con-

vergence and reestimation are analyzed. These differ in modeling correlation present in

the time samples and those present in the processed features, such as Mel frequency cep-

stral coefficients. The system models speaker dependent phonemes, making use of word

dictionary grammars, and recognition is based on normalized log-likelihood Viterbi decod-

ing. Both closed set identification and speaker verification using cohorts are performed on

the YOHO database. YOHO is the only large scale, multiple-session, high-quality speech

database for speaker authentication and contains over one hundred speakers stating combi-

nation locks. Equal error rates of 0.21% for males and 0.31% for females are demonstrated.

A critical error analysis using a hypothesis test formulation provides the maximum number

of errors observable while still meeting the goal error rates of 1% False Reject and 0.1%

False Accept. Our system achieves this goal. This research supports the many new elec-

tronic applications requiring speech-based biometric authentication such as secure access

control, telephone-based recognition, transaction or credit account verification, forensic

science, law enforcement and military intelligence.

xii



GENERALIZED HIDDEN FILTER MARKOV MODELS

APPLIED TO SPEAKER RECOGNITION

L Introduction

1.1 Historical Overview

Classification of time series has wide Air Force, DoD and commercial interest, from

automatic target recognition systems on munitions to recognition of speakers in diverse

environments. The ability to effectively model the temporal information contained in a

sequence is of paramount importance. Toward this goal, this research develops theoretical

extensions to a class of stochastic models and demonstrates their effectiveness on the prob-

lem of text-independent (language constrained) speaker recognition. Specifically within the

hidden Markov model architecture, additional constraints are implemented which better

incorporate observation correlations and context, where standard approaches fail.

The speech signal contains a great deal of information more than just a sequence

of words. It contains the acoustic environment (car, aircraft, machinery, office noise),

gender, prosody (pitch changes, syllable stress, loud or soft speech, emotional state of the

speaker), language, dialect or ethnic characteristics and speaker information. This latter

information in the speech signal is desired and exploited for a speaker recognition system.

Speaker recognition applications include closed-set identification, open-set identification

and verification. With the electronic age, there comes many new applications for biometric

authentication, in addition to forensic science [49, 50], security access and specific military

requirements [129].

A speaker has two biological areas of uniqueness [85]. These include the vocal physi-

ology and the learned neural control of the articulators which control the physiology. The

first area includes such physical factors as length of vocal tract; size of mouth and nasal

cavities; glottal size, shape and pulse patterns; and teeth and lip characteristics. The

second area includes the learned habits of these facilities such as dialect or regional ac-

cents, pronunciation or ethnic traits, and speed and timing of the articulators. The latter

1



neural code may never be modeled directly, but the overall effect shows up eventually in

the dynamics of acoustic signal, such as formant transitions and coarticulation effects. In

fact, anatomical models attempting to estimate control of vocal articulators have been

proposed for speech recognition [43, 44, 118]. For the receiver, biological acoustic phe-

nomena also support the value of classification of speech and speakers using a temporal

model. Auditory psychoacoustic studies provide a wealth of examples that relate specific

temporal changes in the acoustic signal to a specific auditory event [82, 83] or measured

electro-chemical response [117, 132]. Together, both the effects of physiology and the

learned neural traits dynamically alter the acoustic spectrum through formant transitions

and coarticulation effects; the ability to accurately model these spectra should be useful

for speaker recognition.

Historically, speaker recognition has made use of techniques borrowed from speech

recognition research. Distortion based methods were first chosen to compare speaker spec-

tral representations. These methods used long term spectral averages as a representation

[116]. Later, some form of dynamic time warping was used for text-dependent applications

[130], allowing recognition of previously recorded utterances. Depending on the extracted

features, certain distortions or metrics were proposed which were optimal for those features

[55, 95]. Similarity of test speech to speaker models was based on overall distance or distor-

tion. In the mid-1980's, Soong [119] proposed a clustering approach for text-independent

applications. This classic approach will be referred to as vector quantization (VQ) since a

clustering of a speaker's training features/ vectors becomes the model and classification is

determined by minimum quantization error. Many successful applications and variations

of this procedure have been accomplished [22, 23, 38, 61, 79, 120, 135]. Vector quantization

assumes each observation is independent in time, clearly not true for speech signals.

Over the last decade, the predominant speech recognizers have been based on the

hidden Markov model (HMM), first pioneered by Baum and his colleagues [7, 8, 9, 10] and

soon thereafter applied to automatic speech recognition (ASR) [96]. This statistical model

is complex enough to model the variability of the speech waveform, yet simple enough for

its parameters to be estimated [16]. The HMM framework provides efficient Maximum

Likelihood (ML) reestimation/ training algorithms with desirable properties and methods

2



to model and decode / recognize the many levels of speech - acoustic, phoneme, word and

language. Speaker recognition, for instance when needing personal identification numbers

(PIN) or passwords, may need to perform both speech and speaker recognition. The ability

to remove the effects of the word sequence and extract speaker dependencies alone is an

unsolved problem. With the increasing performance of hidden Markov models on speech

recognition, several researchers started examining these statistical techniques for automatic

speaker recognition.

Poritz [92] was one of the first to pioneer hidden Markov models for speaker identifi-

cation as well as a hidden filter method, though his results were preliminary. In the early

1990's, Tishby [124] extended these hidden filters, complete with multiple mixtures [57, 60].

His results indicated that the transitions (temporal structure) of the hidden Markov chain

was unnecessary. Furui [113] later compared vector quantization (VQ) codebooks to the

ergodic HMM structure and also concluded that output density mixture numbers alone

where responsible for performance. In effect, these researchers concluded that only model-

ing the spectrum of a speaker, and not the temporal patterns of the spectrum, alone was

necessary for recognition. This appears to contradict the second well-known characteristic

of voice differences, namely the speaking habits and learned patterns of speech. Levinson

[72] has pointed historically to key experiments, including Markov himself, which demon-

strated certain HMM architectures will learn the structure of the language itself. Thus,

specific architectures of an HMM may not be well-suited to model speaker dependencies.

Another related approach making an observation independence assumption is the

Gaussian Mixture Model (GMM), pioneered by Reynolds [101, 102, 103, 104]. In this

model, a speaker's spectral vectors are represented by a mixture of multivariate normal

densities, reestimated using the Expectation Maximization algorithm of Dempster [28].

The GMM assumes no temporal structure within the signal and can be considered a special

case of the more general HMM, with a single state. Each of these researchers applied the

hidden Markov models to unlabeled speech, where a single model represented all possible

speech interactions and transitions. These methods sharply contrast to speech recognition

where tens of phoneme models or thousands of context dependent tri-phone models are

required.

3



Hidden Markov models make erroneous, simplifying assumptions in the dynamics

of the speech observations. Existing models assume speech features are generated by a

discrete state Markov process. Furthermore, the observations are the result of a proba-

bilistic function of this hidden process and considered conditionally independent. It seems

intuitive that past and/ or future observations provide extra information concerning the

context of the current realization. In order to improve upon current statistical techniques,

this independence assumption must be removed. Recently, several researchers have been

relaxing these assumptions. Methods such as multi-layer perceptrons (MLP) and other

neural network/ HMM hybrids [13, 26] have emerged for speech recognition though they

have required specialized hardware for training. Others have proposed linear predictive

densities [66, 131] or joint normal densities [16] for speech recognition though they have

showed little improvement. Still others have tried polynomial representations [29] and

Kalman filtering approaches [33]. An original contribution of this work includes modeling

speaker dependent phonemes by the use of Markov modulated rational filters.

Speaker recognition continues to be a potential application area for better time series

modeling, attracting entire workshops [113] and recent dissertations [18, 102]. This time

series provides a challenge since channel and recording instrumentation, effects of particular

text, prosody and speaker variability add to the classification difficulty. Recently at an

international conference focusing on speaker recognition research, Furui supported this

dissertation's approach stating [113],

As fundamental research, it is important to pursue a method for extracting
and representing the speaker characteristics that are commonly included in all
the phonemes irrespective of the speech text.... It is expected that diversified
research related to speaker-specific information in speech waves will become
more active in the near future.

Lastly, the contributions of accurately modeling speakers may provide for better

speech recognition. Speaker adaptation are the methods used to transform a speaker

independent (SI) speech recognizer for a particular speaker. Large, accurate speech models

require large amounts of training data, and it is often impractical and impossible to acquire

enough training data for each speaker. Instead, speech from many speakers is used to

train a speaker independent recognizer, then these models are adapted to become speaker

4



dependent (SD). Research in speaker modeling provides valuable insight to solutions into

this adaptation.

1.2 Problem Statement and Scope

A complete framework which encompasses many older and newly developed models

of discrete state dynamic systems will be created. New analysis and reestimation of several

classes of linear functions within a hidden Markov model will be accomplished. Specifically,

probabilistic linear functions of a hidden Markov process will account for context and

correlation in the observations. These new models will then be applied to the difficult

problem of modeling speaker dependencies within language-constrained (digits) speech.

1.2.1 Scope. Existing automatic speaker recognition methods do not model the

spectral phoneme-level dynamics, since the current models assume observations are statis-

tically independent. Past methods have attempted modeling speakers by either assuming

1) independent observations, 2) models assuming state-conditional independent observa-

tions or 3) architectures which grossly estimated language and grammar dynamics. This

has left a large window of opportunity for extensions of the current statistical models.

Whether the goal is to classify a sequence of observations, predict a time series, or uncover

the hidden "state" of a system, this research has great relevance. This research addresses

the reestimation of generalized statistical models for eventual classification of time series,

and in particular applying these to speaker dependent phoneme modeling.

1.2.2 Research Contributions. Toward successful accomplishment of these prob-

lems, a number of original research contributions have been completed. These include:

Generalized Hidden Filter Architecture. A complete framework

including many existing linear and nonlinear systems used for classification, as well as

prediction, is developed for discrete state Markov models. The existing hidden Markov

model independence assumptions are reviewed and removed, thus defining a new, more

generalized, hidden filter Markov model.

• 5



New reestimation methods are provided for autoregressive (AR) and autoregressive

moving average (ARMA) as well as an optimal initialization strategy. This models are

allowed nonzero biases and either state-conditioned or common noise statistics. The ability

to reestimate these filters adequately for the difficult ergodic case is novel and shown by

example. This new class of ARMA Markov modulated hidden filters is applicable to specific

broad classes of phonemes, with a spectral zero component. Lastly, filters operating on

frames of speech have been extended from simple architectures to multi-state phoneme

models.

Vector Autoregressive Hidden Filters. The extension from sample or

frame based filters to full vector autoregressive hidden filters is developed with an emit-on-

state notation. Several variations of the model include the regression characteristics of each

vector element on past elements and noise correlation. The choice of spectral features, the

Mel frequency cepstral coefficients, dictate a diagonal matrix filter, with a least-squared

solution developed within. A procedure of a posteriori mean removal is developed to

separate the state mean estimation from the filter coefficients for numerical stability.

HMM and Hidden Filter Analysis. A new proof of monotonic

convergence for Gaussian mixtures is presented using a new equivalence model paradigm. A

new proof of monotonic convergence for hidden filter Markov models is then demonstrated.

An application of the Markov property of.the observations for hidden filter models is applied

to the Fielding [42] information theoretic proof. Since pattern recognition methods seek

ways which reduce entropy (to reduce classification errors), this new theorem justifies the

hidden filter model over standard hidden Markov models.

Phonetic Modeling for Speaker Recognition. The extensive Linguistic

Data Consortium (LDC) YOHO database is used for all experimentation. A speaker

dependent phoneme-based hidden filter Markov model approach is accomplished for both

speaker identification and verification. The most current speech recognition tools are

incorporated such as phonetic labeling, word dictionaries, bi-word language models and

Viterbi scoring constraints. The method of forced Viterbi decoding of phoneme based

6



temporal models for speaker verification is the first to be published. Likelihood ratio

normalization using cohorts is accomplished and error rates shown using a newly developed

second order cohort selection strategy. A unique critical error analysis is provided for

YOHO at the mixed 5% and 25% significance levels for false acceptance and false rejection

target error rates, respectively.

Many current techniques apply models which assume independent observations or

do not target the dynamics present in speech or the processed speech vectors. Those

techniques which do attempt to model the dynamical properties have not targeted individ-

ual phonemes. Our state-of-the art approach develops state-dependent dynamic systems

within phoneme for speaker recognition, providing equal error rates of 0.21% for males

and 0.31% for females. These error rates have also been shown to statistically satisfy the

hypothesis that our system meets or beats the U.S. Government target error rates of 1%

false rejection and 0.1% false acceptance.

1.3 Dissertation Organization

This document is organized into six main chapters. The following chapter provides

background material concerning hidden Markov models theory and several recent devel-

opments. It provides a new architecture unifying many other techniques. Chapter III

develops the reestimation equations for hidden filter Markov models, at the scalar (sam-

ple and frame) and vector (feature) levels. In Chapter IV, the analysis of the monotonic

likelihood reestimation is demonstrated along with an information theoretical justification

for the hidden filter model. Chapter V provides an in-depth analysis of phonetic hidden

filter Markov modeling approach to speaker recognition. The final chapter offers several

research-directed recommendations and conclusions with a brief review of contributions.
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I. Background

2.1 Introduction

This chapter introduces the hidden Markov model and several extensions for use in

modeling speech and speakers. Given the intra-speaker variability of speech over a set of

words, a statistical model which attempts to estimate these variabilities presents the best

solution. The HMM makes use of a hidden changing state, where the state may represent

some particular spectrum of speech or some dynamics of this spectrum. The next section

describes the theory underlying standard HMMs, and the assumptions often made. Next,

the assumptions are relaxed to model the dynamics of speech, for both frames of speech

and processed features. The last section exemplifies the typical processing of speech for

extracting features and analyzes their independence. Lastly, a linear method to extract

transitional information of the feature process is provided.

2.2 Statistical Hidden Markov Models

Consider a source system which traverses between N hidden states or characteristic

modes, denoting this sequence as qj, q2 ,... , qT, where qt E {1, 2,..., N}. This sequence is

a Markov chain and will be assumed to be a discrete first order Markov process. As such

its behavior can be described completely by a set of state transition probabilities A and

initial state probabilities I. Assuming stationarity of this process allows the transitions

to be independent of time.

A = (aij) = P (qt = jIqt-i = i, qt-2,... , q) = P (qt = jjqt-1 = i) (1)

An ergodic model is generally assumed to allow the full set of transitions between all states.

Most often in using speech, a restricted set is used. A left-to-right model is composed of an

upper diagonal A matrix, and occasionally further restricts skipping states. An example

of the standard left-to-right model is shown in Figure 1.

I = (i) = P (ql = i) (2)
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al 1 a22 at33

all a12  a13
1 a3A = 0 a22 a23

S0 0 a33
bi(Ot) b2(Ot) 53(Ot)

Figure 1. Standard three state left-to-right multivariate Gaussian mixture hidden Markov
model. Shown with upper triangular transition matrix A. Each state is de-
scribed by a parametric output density bi(Ot).

For the left-to-right model, 7r, = 1 and 7rj = 0, j > 1. These will not have to be reestimated.

The states of an ergodic model are also characterized by stationary distributions so that

flG = (7r7') = P (qt = i) (3)

At each time, the system generates an observation Ot based on some probabilistic

function of the Markov chain. It is this function which is the most important component

of the HMM [124]. The output distribution function for each state can be either discrete

or continuous. In the discrete case, the distribution function is a set of probabilities

associated with each output symbol. Often these symbols relate to a particular codeword

of a codebook. Typically, the output function is continuous - a convex combination of

multivariate Gaussian densities.

M

b (0t) E CiA)(O P(ok, 4k)
k=1

1 {1 e'p _(Ot -i)1k Pk
k= Z i(27r)d/2 IFikI11/2 ex 2 I1k~kO f') 4

where this density has parameters cik, P ik, and Eik, denoting the mixture weights, mean

and covariance for the i-th state and k-th mixture, respectively. This now enables a formal

definition for a hidden Markov model.
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Definition II.1 (Hidden Markov Model) A Hidden Markov Model is a probabilistic func-

tion of a first order Markov state process, denoted by the triple A= (Hl, A, B) where fI is

the N x 1 vector of initial state probabilities, A is the N x N matrix of transitions and B

is the set of all parameters describing the unconditional output state density for all states.

These include

* Ilik: mean for state i, mixture k

* Eik: covariance for state i, mixture k

* Cik: state i, mixture k weight

The maximum likelihood estimation of all parameters will be examined in Chapter

III. The trained Markov models can be compared to observation sequences, by a decoding

process which attempts to uncover the hidden state sequence and provides a likelihood

of the observation given the model parameters. Consider an observation sequence, 0 =

{O1, 02, ... , OT}, with its corresponding hidden state sequence Q = {ql, q2,... , qT} [100].

Making use of the model assumptions, the likelihood of the observation sequence for this

state sequence is
T

p(OIQ, A) 1 fp(ot lqt, A)
t=1

which can be expanded using the the Markov property.

p(QA) = 7qaqlq aq2 ,q3 ... aqT,qT

Solve for the marginal likelihood as follows.

p(O, QIA) = p(1 Q,A)p(QIA)

p(OIA) = Ip(OQA)p(QIA) (5)
Q

Equation 5 provides the likelihood of a sequence and is used to score how similar a sequence

0 compares to a particular model A. This exact calculation requires on the order of NT

summations. The Viterbi decoding algorithm approximates this quantity by the joint

10



likelihood of observation and hidden state sequence. This can be accomplished in only

N 2 T operations.

p(01A) maxp(O, QIA) (6)
Q

Ephraim [81] has shown that the difference between the two approaches is bounded. The

logarithm of this last expression, Equation 6, will be used in all classification experiments

to score a test observation for a particular speaker model A. For our research, a speaker

will actually be represented by 22 phoneme or subword models. Current speech recogni-

tion techniques would create 49 phoneme models or over 3000 context-dependent triphone

models for unrestricted vocabulary. An efficient Viterbi decoding method using multiple

models and allowing easy grammar constraints is the Token Passing algorithm [133].

2.2.1 Standard Assumptions. Hidden Markov models are providing the most

successful methods for automatic speech recognition. Speech is ideally suited, in some

respects, to HMM modeling since speech is "quasi-stationary," i.e., the statistics are un-

changing over small frames of 30-70 msecs [90]. However, adequate speech recognition

performance requires tripling the feature dimensions by concatenating first and second

order regression features, indicating the basic HMM model with Gaussian mixtures may

be lacking capabilities in capturing the dynamics of the observations. The need for these

transitional features can be found in the inherent model assumptions. Many tutorial pa-

pers can be found for the standard hidden Markov model [93, 97, 100], where the following

assumptions are required.

" First Order Markov state process Hidden state sequence conforms to a discrete

Markov chain stationary process:

p(qt = jjqt- 1 = i, qt- 2 ,... , q1 , Ot-i Ot-2, ... , O1) = p(qt = jqt-1 = i) = aij

" Observation Independence: Observations are independent of their past values:

p(Ot, qtjqt-i, . . . , qj, Ot-1,... 01) = p(Ot, qtlqt-1)
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" Current State Dependence: Observations independent of past observations and

also of past states:

p(Ot, qtIqt-, .. , qj, Ot-,""", 01) - p(Ot, qtlqt-,) = aijp(Otlqt)

" Output Probability density family: Output defined by a mixture of M normal

densities:

2.2.2 Removal of Output Independence Assumption. Though hidden Markov

models have been the model of choice for the past decade in speech recognition, the as-

sumption of state-conditioned observation independence is not valid. This prompted the

development of output densities produced by other stochastic functions of the observations.

The earliest known is the Hidden Filter HMM by Poritz [92]. Instead of the simple discrete

or continuous normal output density conditioned only on state, this likelihood is condi-

tioned both on state and past observations. Observation frames are assumed generated by

an autoregressive source, Equation 7. The general p-th order autoregressive AR(p) model

[63, 94] bases the current output on p past outputs. Let an observations Ot be frame of K

samples such that Ot = (x1, x 2 ,... XK).

p
Xt= - ajx + +e = ,t+et (7)

j=1

where aj is the j-th predictor coefficient and the process et is typically a Gaussian white

noise process with variance o-2 . The term autoregression implies xt is a linear regression

on itself with Jt representing the prediction of xt at time t. This simple model works

particularly well for voiced speech segments [27, 90]. Using this linear relation, it is easily

seen the probability density function of a sample given past samples has the same density

12



of et, only shifted'

bi(xt Ix- 1, Xt 2 , . -p= 121
1270 .

2  exp -2 (xt + Zaj Xt 2 }

Surprisingly, the unconditional probability density function for the entire frame Ot has

the same functional form as the conditional sample density, since the noise process is

independent.

K

t=l

1 
1 K p )2(21ro.2)K/2 exp{-- ,(xt + E a xt.j)2} (8)

2 t=1 j=1

where o is the noise variance over the K samples within a frame.

These models were further generalized to linear AR mixture models by Juang and

Rabiner [60] and later used within ergodic structures by Tishby [124]. Equation 8 has

an efficient form, first demonstrated by Juang [57]. The output density for an autore-

gressive frame Ot = (X1, X2,... , XK), for state i described by predictor coefficients i =

(a,, a2 ,..., a) and noise variance o- is

bi(Ot) - 1 1 1 (Ot, d)} (9)
(27ro-?)K/2 e 2p-?O ) 9

and
p6(0t, di) = r.(0)r.(0) + 2 E ra(j)rx (j) (10)

j=1

where 6(O, di) can be considered a distortion or distance metric between a frame Ot and

a hidden filter di. The efficiency of this equation is that the frame samples need not be

known - only the biased autocorrelation estimate, r,, of the frame and the autocorrelation

of the filter ra. Equation 9 describes a single mixture of an HMM state. For a state i with

'The dilemma we are faced with is notation. All signal processing, statistical modeling uses "aj" as a
predictor, autoregressive or IIR filter coefficient. Also, the hidden Markov literature always uses "aij" as
a transition probability. Since the latter has little significance in this research, it should be clear filters are
often discussed.
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M mixtures,
M

m= 1

this architecture will attempt to model a p-th order filter dim for each state i and each

mixture m. This description defines the frame autoregressive hidden Markov model, graph-

ically shown in Figure 2.

all1 a22 a33

bl(Ot) b2(Ot) b3(Ot)

C12 C22 C32
cii C2M C31

Aul C21 C31J

Figure 2. Juang's frame autoregressive mixture extensions to the Poritz hidden filter.
While Poritz proposed single filter states, Juang extended to multiple mixtures.

Definition II.2 (Frame Autoregressive Hidden Markov Model) A frame autoregressive

hidden Markov model is a probabilistic function of a first order Markov state process,

denoted by the triple A = (11, A, B) where II is the N x 1 vector of initial probabilities,

A is the N x N matrix of transitions and B is the set of all parameters describing the

conditional output state densities. These include:

* Aim = (aim,, aim2,... , aimp): p-th order filter coefficients for state i, mixture m

o : residual error variance for state i, mixture m

c cim: state i mixture m weight

The approach taken by Kenny [66] and later Woodland [131] models the vector-

valued features as an linear predictive source. Including a separate mean per state, the

14



vector observations are assumed generated by

Ot = fi(qt, qt-i) + Ai(qt, qt,)Ot-i+, ... , +Al(qt, qt-1)Ot-l + Bt (12)

where, E is a multivariate white Gaussian process with covariance E(qt, qt-1). Note this

model uses the notation of "emission on state transition", where the quantities of interest

are conditioned on the state pair, (qt, qt-i). Kenny applied this model to phoneme recog-

nition and examined specific lags 1. His results indicated no improvement over standard

hidden Markov models. Woodland used the more common "emit on state" assumption

with a state model of the form

p
Ot= + EZA(Otj - Pj) + Et. (13)

j=1

This regression is similar to Kenny's model, but with the added offset mean parameters, fj.

He also selects a portion of the residual space to enhance discrimination. The corresponding

multivariate output density for state i is given by

bi(Ot) = (27r)d/21i1/2 exp {- E -TE t (14)

where the T transformation selects the most discriminating dimensions. Woodland was

able to demonstrate better performance by reducing the feature sizes (using the T trans-

form) when applied to a small "E-set" 2.

To date, the only application of the two previous models have focused on linear

prediction using specific lags (forward or backward) and applied to phoneme recognition.

Since knowledge of the most important lags is unavailable, either for speech or speaker

recognition, a full autoregressive should will be examined. The multivariate conditional

output density defined in Equation 14, without the mean offset Ftj and transform matrix

T, will be defined as the vector autoregressive hidden Markov model.

2The E-set typically consists of the small English alphabet (B,C,D,E,G,P,T,V).
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Definition 11.3 (Vector Autoregressive Hidden Markov Model) A vector autoregressive

hidden Markov model is a multivariate probabilistic function of a first order Markov state

process, denoted by the triple A = (fl, A, B) where H is the N x 1 vector of initial proba-

bilities, A is the N x N matrix of transitions and B is the set of all parameters describing

the conditional output state densities. These include

* fpim: mean vector for state i, mixture m

* Bim = (Ail, Ai2,..., Aip): p-th order filter matrices for state i, mixture m

" Eim: multivariate noise covariance for state i, mixture m

" cim: state i mixture m weight

This section described the research in linear dynamic systems, applied most often to

speech recognition. The common philosophy to all these approaches examines the statistics

of the observations within a state. Standard hidden Markov models assume features are

generated as a constant state mean with any observation errors accounted by the covariance

estimate. Hidden filters, on the other hand, account for the (prediction) error after a linear

regression is applied. The next section examines the approach when linearity is removed

from the state model.

2.2.3 Nonlinear Hybrid Markov Models. Several researchers have recently com-

bined the pertinent features of HMMs and multilayer perceptrons or neural networks. The

HMM provides an explicit discrete state model, including efficient optimization strategies

of model parameters; the neural networks provide nonlinear input-output mappings, and

discriminative class estimation.

The first complete treatment of HMM hybrids is the recent work by Bourlard and

Morgan [13, 14]. Their presentation of the subject of HMMs is based on variations of

"local contribution", which they define as the joint probability of the state and observation

conditioned on all previous states and observations (and the current set of weights W).

p(qt = i, Ot ql,... , qt-1, 01,... , O-1, W) (15)
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Hybrid techniques then make various simplifying assumptions or relaxations of this like-

lihood and attempt to approximate it through MLPs or recurrent architectures. Gener-

alization of the local contribution in Equation 15 can use past and future observations.

Bourlard and Morgan use a feedforward MLP to approximate this likelihood by training

with state desired values.

Neural networks can also be trained to approximate both nonlinear autoregressive

(NAR) and nonlinear autoregressive moving average (NARMA) through gradient descent

learning. If the stochastic inputs are unknown, as is usually the case, they may be ap-

proximated by using the prediction residual of the previous prediction [24]. All these

stochastic time series models can be extended, in theory, with a Markov structure. One

such NAR/ HMM hybrid approach was developed by Levin [70] called the "Hidden Control

Neural Network" and later detailed in [71]. A few enhancements and applications by other

researchers have also been published [39, 121, 122] and shown successful.

During the past three years, the similarities of hidden Markov models and recurrent

architectures have been studied. These interpretations have been accomplished by Bri-

dle and Kehagias [15, 64, 65] and explicitly used for phoneme recognition by Robinson

[105, 106, 107, 108]. The recurrent architecture can be shown as a non-linear state-space

model. Robinson, for example, uses these networks to retain context in the hidden ac-

tivation nodes. Standard HMM processing can then be integrated on the back-side for

hierarchical word modeling, state-duration modeling and overall word likelihood calcula-

tion. Like Bourlard and Morgan, Robinson requires specialized hardware to calculate the

error gradients during training, due to the extensive amounts of training data needed for

reliable speaker independent subword modeling.

2.3 General Hidden Filter Framework

Extensions to the standard Gaussian mixture HMM have developed recently to add

context and discriminative capabilities. Context has been attempted through the use

of linear prediction, whereas discriminative learning is provided by feedforward MLPs or

feedback recurrent networks. Other related Markov modulated sources have included noise

corrupted polynomials [30] and mixed state-observation approaches [45]. Each method, to
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date, fits into the general framework of Markov-modulated dynamic systems or Generalized

Hidden Filter Markov Models (GHFMM). The underlying state probabilistic functions may

be linear or non-linear, conditional or non-conditional, and causal or noncausal. Figure 3

shows all HMM approaches in a new unified framework.

This research indicates a wide range of applicability to modeling general, possibly

even chaotic, time series. Many applications requiring prediction, monitoring of dynamic

systems or classification of noise corrupted observations potentially benefit through the

use for GHFMMs. This research will specifically examine classification of acoustic signals,

which can be considered noise corrupted observations from the a particularly personal

dynamic system - human speech production.

Chapter III will demonstrate that hidden filter Markov models can be applied to

raw speech samples, frames of speech or processed features. The following sections in this

chapter examine the typical processing of raw speech into features which is often performed

prior to speech or speaker recognition. The last section demonstrates the feature extraction

procedure, then it will be shown these features are highly correlated.

2.4 Feature Analysis

Standard speech processing techniques were used to extract features from the raw

samples. It should be noted that no "best" feature set has been determined for speaker

recognition tasks. Since speaker modeling has such a rich history - one which parallels

speech recognition - many popular features have been examined. [1, 2, 4, 11, 25, 47, 53,

61, 62, 77, 114, 120]. Recent studies for open set speaker identification, on both high

quality TIMIT [56, 84] and tactical radio GREENFLAG [40, 41] databases indicate that

no one feature may prove optimal in all cases [91].

2.4.1 Signal Processing of Speech. Features are extracted using many standard

signal processing techniques [99, 98, 59, 134]. The speech signal traverses through many

stationary points with specific spectral signatures. It is these short-time signatures which

separate phones or phonemes. Accordingly, a phone is the smallest individual acoustic

unit, in the field of phonetics [87, 90]. In the study of descriptive linguistics, the small-
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Dynamic Systems

Discrete State (Markov) Continuous State (Gauss-Markov)
5-- -- - - -

Stochastic Segment Model

-Digalakis, Ostendorf

Determininistic Probabilistic Functions (PDF)

Finite State Machine

Unconditional PDF bi(Ot) Conditional PDF bi(Otl Ot-1,...Ot-p)

Gaussian Mixture HMM
GMMs

-Reynolds
Linear NonLinear

HMM/ MLP Hybrid
- Bourlard, Morgan

Frame (sample) Vector Predictive Neural Nets
- Waibel

Hidden Filter (ARHMM) Linear Prediction Hidden Control NN
- Poritz, Juang, Rabiner - Kenny - Levin
- Tishby,Sorenson - Woodland Trend Functions

AR/ARMA Hidden Filter Vector AR HMM - Deng
- COLOMBI - COLOMBI

Figure 3. Architecture for Generalized Hidden Filter Markov Models (GFHMM).

est unit is the phoneme. A phoneme is that entity which must be altered to change

word meaning, i.e., "bat" and "cat" differ only in the phoneme /b/. Since there is much

overlap between the two fields of study, this research will use Parson's definition [90].

Definition 11.4 (Phoneme) A Phoneme is the smallest acoustic unit in a given language

that is able to change word meaning. A model of this unit will be referred to as a phoneme

or monophone model.
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Modeling of speaker dependencies within phoneme acoustics will be explored. As such,

labeled phonetic data will be required for initial training and separate phoneme models

will be created for all speakers. As will be discussed in Chapter V, testing will string

together the correct phoneme models relating to the particular phrase prompted.

All raw data consist of 8 kHz sampled speech. The original signal conditioning and

acquisition were designed by Campbell [67] to provide bandwidth and linear phase up to

3.8 kHz. The resulting bandpass filter response models the DoD's STU-III secure voice

terminal's input characteristics very closely.

Analysis frames of 20 msec are first pre-emphasized to remove lip radiation effects by

a simple high pass filter. Then, a Hamming window is applied to decrease frame edge effects

in the Fourier transform. Frames are analyzed every 10 msec. If one stops at this point

and displays the magnitude of the resulting short-term Fourier transform, a spectrogram

results (See Figure 4 for an example YOHO database combination lock utterance).

3000-

1 1.5 2 2:5 .8
Time (seconds3

Figure 4. Spectrogram of YOHO combination lock phrase, "Forty One, Sixty Nine, Fifty
Six".

The magnitude transform coefficients are correlated with each of 24 triangular filters

spaced linearly up to 1 KHz and logarithmic thereafter, see Figure 5. On a Mel scale, the

filters are spaced linearly,

Mel(f) = 25951og 10(1 + f
700

This nonlinear frequency analysis models human perception [90] and empirically improves

speech recognition performance [1, 2, 3]. The logarithm of the energy outputs from these

filters, denoted mj, are the Mel frequency spectral coefficients. To reduce and decorrelate
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24 Mel freq spectral coefficients (MFSC)
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1-4 -DCT to decorrelate, lifter, mean removal

l 10msec frame step [ 12 Mel frequency cepstral coefficients (MFCC)

Figure 5. Typical Speech Processing/ Feature extraction.

these N = 24 coefficients, a Discrete Cosine Transform is applied which reduces the features

to 12 Mel frequency cepstral coefficients, ci.

= mjcos( (j - 0.5))
j=1

A raised cosine is applied to account for noisy low and high order coefficients. This filtering

process, called liftering, uses the following weighting for L = 20.

L si
c' = (1 + -si ci2 2 L

Lastly, to remove channel effects, removal of the Mel frequency cepstral time average is

performed. This homomorphic deconvolution [88] compensates for microphone and other

long-term recording effects present in the signal. The logarithm of the frame energy is

appended to all cepstral vectors. This value is normalized by the maximum energy present

in the utterance. Thus, the baseline feature contains 13 coefficients.

2.4.2 Cepstral Characteristics. Digalakis [32] recently examined linear and non-

linear regression of the cepstral coefficients within and between phoneme segments. His

conclusions were that within phoneme segments, a linear regression (model) can explain

up to 88% of the variance in predicting the next cepstral vector for most frames. However,

between phonemes the linear model breaks down.
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The following graph show the scatterplots for the first cepstral coefficient at various

lags 1, see Figures 6. Each subplot presents cl(t) against cl(t + 1). The inset is the

calculated correlation coefficient for this data. These indicate that close frames, separated

up to 70 msec, are not statistically independent in time. Also, the scatterplots appear

Gaussian through the seventh lag. The statistical independence assumption of standard

hidden Markov models is obviously not valid and must be removed. Digalakis suggests a

linear model will be appropriate and relevant for phoneme modeling. For larger subword

models (syllables, diphones, etc.) possibly the hybrid HMM/ neural approaches are more

suitable.

lagO 0 . . lag .......... .........

p=1.00 _. 0=0.91
-2a -21

-20 -10 a 10 20 -20 -10 a 111 20

20 V 20

, ,,,,. ,,,, , . .........

lag2 . -. .. lag3 U V, .....

-20 -* '"p=0.78  ." p--0.68
-20 -10 0 10 20 -21 -1a a 10 20

°t ....q.....Ilag' ..... lag5 t ......
: :'''":P=0.58 / :p=0.48_2,- 0 '

-201 -i a1 1 a1 201 -2a2 -11 a1 101 20

lag6 [..,. ... ...... lag7 t " "' " "

p=.3 p-0.31
-20 - -201
-203 -19 a[ 10 20 -20] -11 1a A1 21U

Figure 6. Scatterplot of first cepstral coefficient cl(t) for lags 0-7. Each point within
a subplot is the order pair (c, (t), cl (t + 1)) where I is lag. Inset within each
subplot is the correlation coefficient over all data.

2.4.3 Transitional Coefficients. One method of modeling transitional effects in

the observations is through the use of regression coefficients often denoted by A t.These
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coefficients are found by fitting the best linear line through a set of observations

(Ot-w, Ot-w+1,... -, Ot_1, Ot, Ot+1,... -, Ot+w-1, Ot+w)

and passing through the point Ot, using a window of width +W. The equation for this

linear line is y = a • k + Ot which is a shift of the origin to the place t with an unknown

slope, a. Define the squared error cost criterion to be

w w
J = E (Ot+k _ y) 2 = E (Ot+k - ak - O) 2 .

k=-W k=-W

The value of the slope a which minimizes this quadratic occurs at a aJ/Oa = 0. Thus

W
0 = E 2(o0+k - ak - Ot)(-k)

k=-W
-W W

- k(Ot+k - ak - Ot) + E k(Ot+k - ak - O) + E k(Ot+k - ak - Ot)
0 k=-i k=1

and letting I = -k,

W W
0 = 0 - E(-)(Ot-1 + al - O) + E k(Ot+k - ak - Ot)

1=1 k=1

W W

= Z((-Ot-_ - al + Ot) + Z k(Ot+ - ak - Ot)
1=1 k=1

and combining summations,

W W W

0 = 1: k(Ot+k - Ot-k - 2ak) = 1 k(Ot+k - Ot-k) - 2a E k2

k=1 k=1 k=1

At -- a = wW k(tk -Ot (16)
2 Ek=lk

This linear least squared error solution to the slope is the standard regression coefficient

found in calculating "Delta", and subsequently "Delta-Delta", coefficients in speech recog-

nition. The approximation to this regression, called the differenced coefficient is sometimes

also used, Equation 17.

6t Ot+w - Ot-w (17)
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2.5 Conclusion

This chapter has developed a general hidden Markov model framework, and reviewed

the necessary linear submodels within each state. The motivation to extend the current

techniques is better acoustic modeling of phoneme context and correlation. The full po-

tential of temporal stochastic models has not yet been applied to the speaker modeling

problem. To date, published material for speaker modeling has used frame based linear

prediction within an ergodic HMM structure. It will be demonstrated that ergodic models

greatly account for the effects due to language, rather than the speaker. To circumvent

language modeling, speaker dependent phoneme hidden filter modeling is proposed.

The phoneme continues to be the popular subword unit for speech. The acoustics

within a phoneme segment are relatively stationary and as such, this research will focus on

their speaker dependent modeling. This approach provides an inherent text-independent

application since the set of all phonemes can be modeled. For experimentation, the YOHO

database will be used which constrains utterances to combination lock phrases, which only

need a subset of the full phoneme acoustic space. The next chapter proposes new extensions

and develops the reestimation of these extensions to the baseline hidden Markov model.

Methods will be shown applicable to raw samples of a signal, frames of samples or a

sequence of processed feature vectors.
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III. Model Reestimation

3.1 Introduction

In their book, "Connectionist Speech Recognition", Bourlard and Morgan write,

For speech recognition in particular, it is important to improve our models to
better take into account the dynamical properties of the speech process. In this
framework, methods should be developed to use more contextual information
for classification.

This chapter first presents the theory behind hidden Markov model reestimation, then pro-

vides the reestimation of hidden filter models. The choice of hidden filters comes naturally

from the long accepted speech production model [5, 95, 99]. Speech can be grossly viewed

as source signal (either noise-like or periodic) convolved with a rational filter describing the

vocal tract. While rational filter models such as autoregressive (AR) and autoregressive-

moving average (ARMA) have a rich history in spectral estimation, signal prediction,

speech processing and economics, their effectiveness within a Markov modulated structure

for modeling speakers is yet unknown.

This chapter develops three levels of hidden filters and provides their reestimation

procedures. The first level models the sample or raw observations. While this may be

the most efficient [46], it also requires extensive calculations for both reestimation and

decoding, due to the amount and frequency of the data. The next level combines obser-

vations into frames. Efficiency is gained since the actual raw samples are not needed in

reestimation - only the autocorrelation of the samples. Also the frequency of reestima-

tion has been reduced substantially. The last level of modeling occurs on some processed

spectral representation of these frames. Methods such as the mean-subtracted, liftered,

Mel frequency cepstral vectors have been researched extensively to provide a compact,

decorrelated representation of the log-spectrum. This last level of modeling reduces the

occurrence, number and complexity of the Baum-Welch algorithm and for this reason, it

will be the primary technique applied to large speaker recognition experiments.
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3.2 Hidden Markov Model Reestimation

The hidden Markov model reestimation provides maximum likelihood parameter es-

timates given a set of training sequences. The reestimation will be solved for a single

observation sequence and is easily extended for multiple training sequences. Two proba-

bilistic quantities, which are often used throughout standard HMM model reestimation,

are the forward and backward variables. These take on great significance in deciding

which observations get used to reestimate a particular states' parameters. These initial

calculations (Forward-Backward algorithm), along with the final parameter updates, are

collectively called the Baum- Welch algorithm.

3.2.1 Forward-Backward Variables. From [96, 112], define

at(i) = p(O1,..., Ot, qt = iIA)

as the joint likelihood of the observation 01,..., Ot and state qt = i given the model A.

The derivation for at(i) is inductive (see Appendix A). Two important points are that

at+, (i) is a function of the previous at

N

at+1(j) = bj(Ot+1) Zaijat(i)

and the forward variable evaluated at the last time sample provides the total likelihood of

the observation sequence given this current model

N

P(o1 ... OTIA) = p(Oi ... OT, qT = iIA)

N

&aT(i).

The backward algorithm is also inductive, derived in a similar manner. Let

t-(i) = p(Ot+1 ... OTIqt = i, A)
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where the backward variable, 3t(i) is the likelihood of observing the partial sequence

Ot+l... OT given the current state qt = i and the model A. The inductive calculation

of /3t(i) (see Appendix A) becomes

N

(i) = Z7r bi(Ol)01 (i).
i=1

The total likelihood can be evaluated at t = 1.

N

p(o1 ... OTIA) = Zrbi (01)1(i)

3.2.2 State Likelihood. Lastly, a related quantity is denoted by [95, 96]

t(i,j) = p(qt+l = j, qt = i01 ... OT, A) = p(qt+l = j, qt = i, 01 ... OTIA)

p(OI ... OT1, A)

which can be expressed in the forward and backward quantities as

tc(i)ajj bj (Ot+i)Ot+j(j)

P(Ol...OTI, A)

The following single state likelihood is most useful in practice, often denoted by 'yt(i).

N

-yt(i) E Z (i,j) = p(qt = iIo . . . OT)
j=1

3.2.3 Baum Auxiliary Function. The goal of the training phase for HMMs is to

model a set of observations with a maximum likelihood set of parameters representing the

underlying Markov process and probabilistic function of that process. Denote the model

by A = (HI,A, B). Given a set of observations, (01, 02,..., OT), search over all A E A

to maximize the likelihood, p(01, 02,... , OT IA). Brute force approaches would search for

critical points of this likelihood such that various probabilistic constraints of A are satisfied,

often using Lagrange techniques [100].

A better approach is the Dempster [28] Expectation Maximization (EM) algorithm,

developed for maximum likelihood estimation with missing data [28]. The missing data for
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the HMM problem are the unknown (hidden) state sequence. The EM algorithm solves

for the maximum likelihood model by first defining the Auxiliary Function, Q(A, A), which

is a function of both the current model A and a re-estimated model A = (H, A, B).

Q(A, A) = P(O1 ... OT, ql,..., qTIA) Iogp(Ol ... OT, ql,....,iqTIA) (18)
qo,q1,..,qT

The properties which make this optimization procedure so attractive are the following:

" If Q(A, A) _> Q(A, A) then p(01 ... OTIA) > P(O1 ... OTIA)

" For a broad class of models, Q has a single global maximum - true for a single normal

density.

First, p(01 ... OTIA) is usually written as [100]

p(Ol...OTIA) = 1: p(O1...OTql,...,qT, A)p(q,...,qTIA)
ql,q2"",qT

= 7q~bq1 (01)aqiq2bq2 (0 2) aqT-lqTbqT (OT).

Expanding the joint likelihood from Equation 18,

logp(O1 ... OT, q ,... ,qTA) log [,bq(O1)aqlq.bq2 (02).., aqTqTbqT(OT)]

T T

- log 7Trql + Elogaq,-1qt + E logbq,_(Ot)
t=1 t=1

then,

Q(A,A) ( p(O...OTq1,...,qTIA) logrql
qlq2 ...,qT

T-1

+ : P(Oi ... OTql,.. qTIA) E logaqt qt+I
q ,q2 ,...,qT t=1

T

+ P(O"...OTql,...,qTIA)E logbqt(Ot)
ql,q2,...,qT t=1
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and by defining subfunctions,

N

9(AA) = Q+( H) ± QA(A,A) + Qb(A, fi)
i= 1

where the use of Kronecker delta function, 6( ), can be used to sample a particular state.

Qn(A,fl) = E p(O1...OT, qi,...,qTA) log rqj
qlq2,...,qT

N

- p(O1...OT, qI,...,qT A) log7ri6(q -i)
ql ,q2 ,...,qT i--

N

= Yp(O1...OT, q=iIA) log7ri
i=1

T-1

QA(A,A) P E p(O1...OTqi,...,qTA) Elogaqtqt+l
ql,q2,...,qT t=1

T-1 N N

E x p(O...OT, qI,...,qTI A) E E E logai6(qt-i)b(qt+ -ij)
ql,q2,...,qT t=1 i=1 j=1

T-1 N N

= EEp (O1 '... OTqt + i =j,qt =ilA)logaij
t=1 i=1 5=1

T

Qb(A,B) = p(E P ... OT,qi,...,qTIA) -logbj(Ot)6(qt -i)

qlq2,.. .,qT t=1

T

= Ep(O1...OT, qt=iA)logbi(Ot)
t=1

It is readily noted that the auxiliary function can be maximized individually for A, HI and

the output density parameters contained in P. Scaling the Q-function by p(Oi ... OTIA)

results in the following (shown for Qb only), where yt(i) is a product of the Forward-

Backward algorithm.

T

Qb(A, Bj) = yp(Oi ... OT, qt = i1A) log bi(Ot)/p(O 1 ... OTIA)
t=1
T T

Ep(qt = il01 ... OT, A) log bi(Ot) = E yt(i) log bi(Ot) (19)
t=l t=1

29



The update equations are found by examining critical points of this scaled Q-function.

The solution for the output density parameters of a single normal yields

ET 1 EN~i

TT:I t= 1 oet-l(i)ajjbj(Ot)Pt(j)Ot

= EN1 at- I (i) aij bi)(Ot) Pt (j)
ETEt=1 Yt (i) Ot

t .- t ) 
(2 0 )

and similarly,

t aET h E ct mo)(o W this h fsj) n ts(j)

sta te at_(i)ajbjft(j)
t= -I 7 i - PA (21)

ET _ti)

Note that when the number of states equals one, then ot(h) = 1 for all t, and Equations

20 and 21 are the maximum likelihood estimates forase all nd covariance of a random

sample. Note also these equations are all functions of the Forward-Backward variables,

which in turn are derived from the current model A. While this holds for single Gaussian
densities, multiple mixtures may be estimated providing a richer, statistical model for each

state.

This section has presented the standard Baum-Welch algorithm for the output density
parameters, i, o-? and their mixture extensions. We have purposely not examined the

transition matrix or the initial state probabilities, because all further techniques and models

will not change their reestimation. The derivation can be found in Rabiner [95, 96]. The
scope of the remaining sections within this chapter full examines the assumptions of the

output density functions, bi(Ot).

3.3 Hidden Filter Markov Model Reestimation

Standard Markov models describe observations as noisy realizations of a constant

signal for each state. This research examines models describing linear dynamic systems

for each state. These hidden filters may be applied at various levels, based on the nature

of the dynamics. The first level applies to the actual samples themselves. For voiced and
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some unvoiced speech signals, based on rational polynomial source models, this appears

quite appropriate. Also, some glottal-stop consonants last for only a few microseconds,

shorter than the typical frame length.

3.3.1 Yule-Walker Approach. The Yule-Walker equations, known also as the

Wiener-Hopf or normal equations, provide the maximum likelihood estimate (MLE) for

the predictor coefficients assuming a random scalar process generated by

p

Ot -E akOt-k + et (22)
k=1

where the ak is the kth autoregressive or predictor coefficient and et is assumed to be an

innovations sequence assumed a white noise process with zero mean and variance 0-
2 . The

solution to the filter coefficients is a set of linear equations given by,

ro(1) r,(O) ro(1) ... ro(p - 1) a,

r (2) r (-1) ro(O) ... r (p - 2) a2

r (p) ro(-p + 1) r.(-p + 2) ... ro(O) - a

which uses the biased autocorrelation estimate for a frame of K samples,

1 K-i
ro(i) K -i OjOj+.

.i=i

The maximum likely noise variance is obtained by using the MLE filter coefficients.

2p0'= ro(O) + Ero(k)ak

k=1

Several variations of these equations exist (such as covariance, modified covariance, or

Burg) which make assumptions concerning data outside the frame boundary or use of data

within the frame [27, 63, 123]. This set of equations will have a similar counterpart for

each individual state of an HMM.
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3.3.2 Reestimation of Zero Mean AR Filters. This section details the reestima-

tion of hidden filter Markov models using zero-mean observations, with no framing. The

reestimation assumes each state is described by a zero mean autoregression of the form

p
t - Z aikOt-k + et,

k=1

where et Af(O, o). The logarithm of the output density for each Markov state i is given

by

log bi(Ot) -(1/2) log 27 - (1/2) logo - (O + -aikOt-k) 2 . (24)
k=1

Solving for the gradient of the auxiliary function, which equals zero at a critical point (see

Equation 19)

T-1 p

9Qb()A, Bi)/ai = E "yt(i)[- 2(Ot + E aikOt-k)2Ot-] = 0.
t=1 i k=1

Typical of linear systems, we solve a set of p simultaneous equations for aik,

T-1 T-1 p

- I yt(i)oto-, = E -y(i) 1 aiokot, Vl = (1,2,... ,p) (25)
t=1 k=I

which is reminiscent of the autocorrelation method, weighted by the state likelihood "yt(i).

Solving these equations provides the maximum likelihood estimate of the aik filter coeffi-

cients for each state. The noise variance o- is then solved using these values of &ik.

T-1 p T-1

0? 7t -(i) (o + &,i ot,-)2/ ( (26)
t=1 k=1 t=l

If the same noise is present, or assumed present across all states, then

N T-1 p T-1

i=1 t=l k=1 t=l

1 N T-1 p

T- 1 E E 7t (i)(o + E a&,kOt -).
"=1 t=1 k=1
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3.3.3 Reestimation of non-Zero Mean AR Filters. Applying a similar approach

used by Kenny [66] on a vector process, instead let the sample observations have state

dependent bias, pi. The logarithm of the output density becomes,

log bi(Ot)= -(1/2) log 27 - (1/2) logo - (o, - , + _ a1kOk) 2 . (27)

k=l

Solving for the gradients of Q with respect to both ail and [ti, and critical values yields

T-1 p

9Qb(A, 3-)/aail = 1 -y(i)[(O, - t + 1 aik Ot_)O,_,] = 0
t=l k=1

T-1 p

NOQb(A, )/oii = y -(i)(O, - It1 + E a Ot-k) = 0.
t=1 k=1

or shown in vector-matrix notation,

O tO t 1  O r-10 t 1  O t 2 Ot 1  " " O -pO t- 1 O --1 ail

OtOt 2  1 O-10t-2 Ot-2
0 t-2 "'" Ot-pOt-2 Ot-2 ai2T-1T-

t=l t=l

OO,_p Ot-10 t-p O,-2 0 t-p ... O,-pOt-p Op aip

Ot L O-1 01-2 ... Op 1 Ji i

The noise variance o- is then estimated using the maximum likelihood values of f2i and

dik.

f~i1a_2a''F= 0a9Qb(A, DIa , = o

T-1 p T-1

oi= E Y(i)(o - Ai + E Ctik°- )/ -'(i) (28)
t=1 k=1 t=1

For a model which used the same driving statistics across all states [31],

aQb (A, Bi )la,2 ldi,,= 0
N T-1 p T-1

2= ZZ-: Yt (i) (0t _ -i 1ZakOt-k)2/ZE Yt(i)

i=1 t=1 k=l t=1
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1 N T-1 p
T- 1 E E 7,(i)WOA - Ai + E 5,"' Ot- k 2

i=1 t=1 k=1

3.3.4 AR Proof of Concept Trial. This subsection examines the ability to es-

timate two autoregressive filters which switch ergodically according to a Markov process.

The forward-backward procedure determines the likelihood, 'yt(i), that each observation

was generated by a particular hidden state (i.e. filter). The new filters are reestimated

by the weighted autocorrelation given in Equation 25 with the noise variance given by

Equation 26. Figure 8 demonstrates the ability to recover the underlying, hidden state

sequence by using applying the maximum operator to the process 'Yt.

The test sequence contains 500 samples shown in Figure 7. The ergodic Markov

transition matrix has A(1, 1) = A(2, 2) = 0.9 . The original model parameters are

A,(z) = (1, .05, .80), o- = 3.00, A2(z) = (1,.20, -. 50),r 2 = 2.00

with the final estimates given after eight Baum-Welch iterations.

A,(z) = (1, -. 02,.78), J1 = 3.00, A2 (z) = (1, .21, -. 53), 2 = 2.10.

This is the first known application of uncovering a hidden state sequence for a hidden

filter Markov model, as well as the ability to estimate filters with state dependent noise

variances. The next section extends autoregressive sample-based hidden filter modeling to

a more general, robust, autoregressive moving-average (pole-zero) filter.

3.3.5 Reestimation of MA and ARMA Filters. Other filters, besides the all-pole,

autoregressive can also be Markov-modulated. Linear prediction on speech samples has

long been an effective representation for voiced speech sounds [27, 63, 78]. However, for

many phonemes, especially nasals and other unvoiced fricatives, a moving average (MA)

component is more appropriate [37, 90]. Bourlard and Morgan strongly justify the use of

autoregressive models, which are suited well for dynamic systems. While very applicable
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Figure 7. Sample AR(2) Markov-Modulated Source with Actual State Sequence.

to speech, a better model would be autoregressive-moving average (ARMA) [94]. Kay [63]

observes,

Since nearly all data are corrupted by some amount of observation noise, the
ARMA model is nearly always the appropriate one.

A linear autoregressive moving average ARMA(p,q) model is defined as

p q

Ot - ajOt-i + E biet-j
i=1 j=1

where the p and q represent the order of the Moving Average (MA) and Autoregressive

(AR) processes and et is often assumed white, Gaussian noise. This model reflects a white

noise input to a pole-zero filter, with transform

Hz) = B(z) -.2 (1 + biz-' + b2 z - 2 +... bqz-q) (29)H A)--(z) - 1+ alz - 1 + a2 Z-2 +... ap z-P

The estimation of ARMA(p,q) models involves solving a set of highly nonlinear equa-

tions, thus only efficient suboptimal techniques exist. Durbin's approach [63, 123] models

the A(z) and B(z) filters separately, first solving for the maximum likelihood estimate of
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Figure 8. Uncovering the AR Hidden State Sequence. Shown are the actual state log
likelihood -yt(2) and the most likely state sequence maxi 'yt(i) for the process
described in Figure 7.

the AR(p) process then applying the filter to create an approximate MA approximation.

The method is considered an approximate maximum likely estimator (MLE) for the ARMA

coefficients.

First the A(z) filter from Equation 29 is estimated using Equations 25 and 26. Then,

a new approximate MA process 0* is created by filtering the original signal Ot with the

maximum likelihood state qt filters

p

0= - aj,qt Ot-j. (30)
j=1

Durbin approximation for MA filter estimation involves the following assumption, which

uses a large AR model or order L to approximate the MA coefficients.

q 1 1 1 1
B(z) Zbz--

j=0 d (z) Z;'o a=ZJ ZLo aAZJ AL(z)

36



All previous Markov-modulated AR reestimation (see Section 3.3.2) then applies to

this L-th order AR approximation. Approximate MLE estimates of B(z) use the auto-

correlation method of model order q where the AL(Z) coefficients (1, ail, ai2 ,... aiL) are

treated as "data" [63].

3.3.6 Proof of Concept Trial. An examination of an ARMA Markov modulated

process shows the ability to estimate rational hidden filters. The 1000 samples were gener-

ated by two ARMA(2,2) filters with Markov transition probabilities of A(1, 1) = A(2, 2) =

0.9995 (Figure 9). Following an initial uniform segmentation, eight Baum-Welch iterations

produced the following state likelihoods (Figure 10). Various large AR approximations

(L = 10, 20 and 30) to the MA filter were successful. Note for this example, the AR pro-

cess was not Markov modulated and could be estimated directly. The original rational

c5
0

o: io 20 30 40 50 60 70 80 90 10

-5

0 100 200 300 400 500 600 700 800 900 1000

1

0 100 200 300 400 500 600 700 800 900 1000

Figure 9. Markov-Modulated ARMA(2,2) Process

filters were

H (z) -. 5(1.00 + 0.50z - ' + 0.30z - 2)

1.00 - 1.00z- 1 + 0.30z - 2

H 2 (z) -.5(1.00 - 0.40z - 1 + 0.20z - 2)

1.00 - 1.00z - 1 + 0.30z - 2
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Figure 10. Uncovering the ARMA Hidden State Sequence. Shown are the actual like-
lihoods -yt(2) and the most likely state sequence maxi-yt(i) for the process
described in Figure 9.

Table 1 shows final ARMA filters and noise variance estimates. A(z) was estimated to be

A(z) = 1.00 - 1.06z - 1 + 0.30z 2 .

Table 1. Estimated Markov-modulated ARMA Filters.

B(z) P. 1/AL(z) B 2 (z) filter Bi(z) filter 0'2 0"2
L=10 1.00, -0.43, 0.13 1.00, 0.50, 0.21 0.6975 0.5623

L=20 1.00, -0.47, 0.15 1.00, 0.50, 0.17 0.6876 0.5492
L=30 1.00, -0.49, 0.13 1.00, 0.55, 0.21 0.6783 0.5298

This example provided the ability to find and estimate pole-zero filters which are

generated by a hidden Markov process. It has been demonstrated that for certain speech

phonemes, ARMA is the model of choice. However, only approximate MLE methods exist

for their solutions and their methods involve filtering the sequence with estimated filters.

The next section returns to autoregressive model, but this time on frames of observations.
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3.4 Frame Autoregressive Hidden Filter Reestimation

This section examines the reestimation of filters when applied to frames of observa-

tions. We believe this technique has much merit, especially when trained and applied in

a new architecture to model speaker dependent phonemes. The following derivations are

expansions and clarifications from [29, 57, 58, 60, 72, 92, 93, 96]. First, assume a single

hidden filter for each state modeling frames of observations. For any autoregressive obser-

vation , Juang [57, 60] defines the output density of the frame, Ot = (xI, x 2,.... I X) when

the observation sequence length K is much greater than the autoregressive order, as

p (O I) ( 2 wr)g/)(=2)g/2 exp - a(xi,... ,XK;di)}• (31)

The gain-independent density, where (s,... ,st) = (X1/O-... XT/o) is simply

A81,- (SIsi),= 1 exp Sg;c( SK;5i) (32)
(27)K/2 2

Juang uses a total prediction error in the form expressed by

P
a(xj,... ,XK;Ct) = r,,(O)rx(O) + 2E ra(i)rx(i) (33)

i=1

and the autocorrelations are further defined as

p-i

ra(i) = Zajaj+
j=1

K-i

j=1

This derivation assumes the driving error was a zero mean white process, normally dis-

tributed.

Kay [63] defines a similar density (after the first p samples) as

1 { 1 K }
p(xp~l,... ,xK7ili) = (2w)K-Pv2 exp { I: E (Xt + SaikXt-k)2

t-p+l k=1
1

S(2 )(K-P)/2 exp fa*(X,... ,X; d)} (34)
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The squared prediction residual for Kay's density a*(x,... ,xt;d) can be shown to be

identical to Juang's, under the assumption of K > p, and the fact that a0 = 1, and

xt =O, t < O,t > T

K pa*(xl,• •,XK;d) E (xt+ aixti)2

t=p+ i=1
P

ra(O)rx(O)+2 ra(i)rx(i)== a(x,...,xK;d)•
i=1

The original method by Poritz [92] noted that another, simpler expression for the prediction

error, realized through a matrix product.

rx(O) rx(1) ... rx(p) 1

[1 a, a2 . a] r(-1) r.(O) ... rx(p-1) a,

rx(-p) r.(-(p+ 1)) ... rx(o) - a
= dTRxa (35)

Thus, the three methods contained in Equations 33, 34 and 35 provide a method to

evaluate the output density of the current frame with respect to the state filter coefficients.

For reestimation, the critical points of the auxiliary function with'respect to the filter

coefficients and residual energy is examined, now using the frame-based density function

given in Equation 31. The results are expressible in terms of the autocorrelation coefficients

of the frame. Using Juang's notation of the autocorrelation function of the t-th frame

having length K,
K-j

rt(j) = E Ot,kOt,k+j.
k=1
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it can be shown [57, 60] the MLE predictor coefficients can be solved through the normal

equations, Equation 23,

rt(1) rt(O) rt(-1) ".. rt(-p+ 1) ai (1)
T i)Y r, (2 T I t(i) rt (1) rt (0) ... rt (- p + 2) ai (2)

t=l it=1

rt(p) rt(p - 1) rt(p - 2) ... rt (O) aj(p)

where rt(j) is the average state autocorrelation function expressed by

r (y) = - y(i)rj(j)

Denote the linear equations as

E y(i)= yt(i)Rt d (37)
t t

or simply

ri Riai.

Similarly, the noise variance estimate uses the maximum likelihood di, which solves the

equation

2 K _ET_ 1 __t_(i)

In summary, this section demonstrated the procedure when hidden state changes occur

at frame boundaries and hidden filters represent a linear dynamic system describing the

entire frame.

3.4.1 Initialization By Clustering. Since all of the reestimation schemes for

HMMs are both iterative and without theoretical convergence to global extrema, the need

for good initial models exists. Often, a uniform segmentation process is used to cluster data

into the number of HMM states; these cluster centroids are then mapped to probabilistic

distributions. Depending on the feature representation, some expectation is used within
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this uniform segmentation process. It is demonstrated that for autoregressive features,

also known as linear predictive coding (LPC), this sample mean produces non-optimal

initialization when using an appropriate distortion optimality criterion.

3.4.1.1 Spectral Distortion Measures. Each frame of data can be repre-

sented by autoregressive filter coefficients, the autocorrelation function or by some other

spectral feature, such as Mel frequency cepstral coefficients. In order to measure "close-

ness" amongst frames of data, a suitable distortion must be defined. Distortions in spectral

shape or overall spectrum can make use of mathematical metrics. For example, the L 2 met-

ric between two log spectra results in

d2(s8,s2) ISi(w),S 2 (w)I = IlogSi(w) -logS 2 (w)12 dw

Applying this metric to two unity gain LPC spectra1 results in the Itakura measure [95].

Using the density of a linear prediction coefficient, the definition of the Itakura-Saito

distance [27] is a form of the Mahalanobis distance, defined as

djs(dl,d2) = (d2 - dl)TRal(Z2 - aZ) (38)
aTRa a,

When clustering cepstral coefficients for initial state model, it turns out that the L2

norm on the log spectra results in the typical Euclidean norm of the cepstral coefficients.

Thus, the sample mean is the optimal cluster center,

S2 ) IlogS(w) logS 2 (w)12dw

E ICI,. - C2,I 2 E-~~ C2,nI

7 2-o- 7 n=-Oo

'The unity gain LPC spectrum is denoted as
1

S(w)- =IA(ei-)
2
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where a finite approximation using L coefficients is often used.

L

d'(si, 82)= jic, - C2,ni 2

71=0

This will be true even if perceptual weightings are performed, such as a Mel frequency

analysis.

3.4.1.2 Uniform Segmentation and Clustering. In order to create an initial

model for the reestimation process, it will be necessary to cluster the features into initial

"states." Assume the frames are represented by autoregressive coefficients. Then, define

the sample expectation over L autoregressive or LPC vectors as

N
zis = E [a,, a2,...- , dL] = min dj dl(d, dii)

jil

which is simply the LPC representation with minimum Itakura-Saito distortion to all L

LPC vectors. Without consideration to feature representation, the arithmetic mean is

often used [95, 134], denoted by PA

1 Ldi
PA = L ai.

Solving for the minimum of the TZis and using Equation 38, one seeks d which solves the

necessary optimality condition

L
17a djs(a, di) =O

i=1

which occurs, for gain-normalized frames, as the solution of

L LERid =Z E i (39)
i=l i=1

where ri denotes the autocorrelation function for frame i and Ri denotes corresponding

matrix.
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3.4.1.3 Relationship to AR HMMs. During the reestimation for new state

filter coefficients, the Baum-Welch procedure applied to the frame AR HMM problem

resulted in Equation 36. This described the new state autocorrelation function, interpreted

as a weighted sum of individual frame autocorrelations, using the weight, -yt(i). The

maximum likely state sequence would find those frames belonging to state i. This would

result in the new estimate for the ith state autocorrelation function as

r(l) ET'1 rt(l)

or the sample mean of the frame autocorrelation functions. Thus, minimizing the Baum

auxiliary function for a frame autoregressive hidden Markov model with respect to the

state filters, Equation 36 and 37, results in minimization of the Itakura-Saito distortion

across those frames.

3.4.2 Proof of Concept Trial. Poritz applied this frame-based hidden filter rees-

timation using a 5-state ergodic architecture with simple third order filters. The reulsts

are shown for a female speaker of the YOHO database in Figure 11, which demonstrates

in the inherent language modeling by this method. The five states naturally form five

phonetically-similar broad classes [92, 72]. These include silence (S), vowels (V), nasals

(N), liquid-glides (L), and consonants (C) as evidenced by the spectral characteristics.

Another contribution of this research is the extension of this technique to model

the sample correlations within each phoneme separately, shown in Figure 12. In order

to extract temporal information within a phoneme, a 3-state left-to-right model for each

phone has been created, each with a more appropriate 12-th order predictor. Not only

does this architecture better model the overall spectrum of each phoneme, but the 3-state

left-to-right architecture models the transitions within a phoneme. Another useful result

of this method is the ability to provide state-of-the-art speech recognition based on these

type of sub-word models.

44



[A(z)

- - ---------.---- 4 . .- .------- ------ -----

V
AE"z)

-1o ~ ~~~~~ N .. ..

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Norm Fmq

Figure 11.
Poritz Method Applied to a YOHO Speaker - Showing Language Broad Class
Modeling. Right: The architecture provides an ergodic 5-state hidden filter
Markov model. Note: not all transitions shown for clarity. Left: The five
filters attempt to model a broad phonetic category. These include silence (S),
vowels (V), nasals (N), liquid-glides (L), and consonants (C) as evidenced by
the power spectral densities of the resulting filter estimates.

3.5 Vector Hidden Filter Markov Model Reestimation

Thus far, the reestimation of hidden filters operating on samples have been developed.

Options have included samples with and without a bias, autoregressive, autoregressive

moving average and frame based techniques. The third and final level where hidden filter

Markov models may prove extremely useful is the feature space. This level of modeling

first attempts to optimize the feature extraction, where relatively small-sized vectors are

analyzed at efficient rates. Then, the dynamics within each state, assumed generated

by a vector autoregressive process, is estimated. Begin with the definition of a vector

autoregressive hidden Markov model. For each state i,

P

j=1

where the last expression Wt can be a non-zero mean multivariate white Gaussian noise

source and the predictor matrices given for state i are denoted by Aij. This equation is
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Figure 12. Extended Poritz Method for Temporal Phoneme Modeling of YOHO Speaker.
Each speaker is represented by 21 3-state left-to-right monophone models.
Shown for one speaker, the power spectrum of the resulting filter estimates
for all models and all states.

expressible with a zero mean Gaussian input, Et, as

p

Ot = Pi -ZAiaot-j+ERt (40)
j=1

where we seek to estimate the Aij matrices and the state mean, /i. First, the relation to

the standard multivariate Linear Prediction is established.

3.5.1 Multivariate LPC Appoach. For zero mean multivariate noise, Kay [63] an-

alyzes the multidimensional spectral estimation of vector Linear Predictive Coding (LPC)

processes. The solution is a matrix equivalent of the Yule-Walker equations, using the
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biased autocorrelation function estimator.

R (1) R (0) R (- 1) ... R ,(- (p - 1)) A il

R x (2) R ,(1) R () ... R .(- (p - 2)) A T 2( 1= (41)

R. (p) R(p-1) R.(p-2) ... R ,(0) A T

where each R, (j) is a (d x d) matrix corresponding to lag j of the vector process.

For the non-zero mean case, there exists the less-known relation of the covariance

function satisfying the Yule-Walker equations [20, 21]. Let the estimated matrix covariance

function be substituted for the autocorrelation function in Equation 41.

C (j) = R.(j)- tf T  (42)

Equation 42 will be shown identical to the technique of maximizing the Baum auxiliary

function Q(A, ) with respect to the vector and matrix quantities for each state.

3.5.2 Special Cases. Four cases can be developed based on vector autoregressive

modeling:

" Diagonal Ai, Diagonal E: Each current observation dimension d separately is re-

gressed on past observations, but same dimensions. The current observation has

independent dimensions (uncorrelated) as expressed by its covariance.

dt + - di(d,d)Od-i Ed, Ejk = 0, Ai(j,k) = 0,j $ k

" Full Ai, Diagonal E: Each dimension, in turn, is regressed on past observations, all

dimensions. The current observation still has independent dimensions (uncorrelated).

Ot = [ - AiOt-i + Et, % = j 0 k,

" Diagonal Ai, Full E: Each current observation dimension d separately is regressed

on past observations, same dimensions. The current observation has full covariance
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and dimensions may be correlated.

=dZEAi(d,d) di.+E,, Ai(j, k) = 0, j : k
i

* Full Ai, Full E: Each dimension, in turn, is regressed on past observations, all dimen-

sions. The current observation has full covariance - dimensions may be correlated.

Ot =P - ZAiO i + Et,

3.5.3 Full predictor, Full Covariance Reestimation. Without any a prior infor-

mation concerning the vector process, it would be safe to apply the full predictor with full

covariance equations to the problem. The solution of the new estimates, begins by taking

the partial derivative of the Baum auxiliary function with respect to each states' predictor

and covariance matrix. Using simplify notation [66], the logarithm of the output density

of the multivariate model in Equation 40 is given by,

1 1 - _ p
log bi(Ot) = C - 2 Al- 2(Ot - fi + AijO )T (O - + AijOt-j). (43)

j~l j=l

Make the following matrix substitutions.

Bi = [ Ail Ai2 ... Aip I, YtOt, Xt = (Ot-1Ot-2 ... t-p) T

This allows certain summations to appear as matrix multiplications. The matrix equations

which satisfy the critical point of the Baum auxiliary function, Equation 18, using the

density function of Equation 43, become

N T-1 1

Qb/OB. = Z t - /(i,j)(v - /2, + Bilt)XT = 0
j=l t---2

T-1

E -yt(i)(Vtf - f2Xt
T + B2tXtX) = 0. (44)

t=l
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Applying the gradient for the state mean provides

N T-1 1

Qb/l2fti El E 2yt(i, j)[Yt - pi + BiXt] = 0

T-1

=- -yt(i)[Y - Fii + BiXt] = 0 (45)
t=1

Making the following matrix substitutions,

SY =E (i) s = E _Y(i) Xt
Y =~~(~ Et7 =ft

S= E tY(i)Xt X[ N = Et yt(i)

then dropping state notation, Equations 44 and 45 simply become the following.

S~y. = fpS - BS., Sy = Nf - BS (46)

Lastly, the covariance of the noise source E is estimated by

T-1 T-1
-- i)(yyT + BYX T + BXtYt + BX [B T - Nftil-T)/ Z yt(i)

t=1 t=1

and dropping state notation

E = - [S,, + BS T + SVXB T + BSXXBT - NffT]f. (47)

The solution of the Equations 46, the joint vector-matrix simultaneous equations is

SyS f - S y . = B(NSX- S.S [T)

B = (SyS.T - Sy)(NS.. - SST) - 1  (48)

and
1

g = -(Sy + BS.). (49)
N

3.5.4 Diagonal Predictor, Diagonal Covariance Reestimation. The choice of

speech spectral features, Mel frequency cepstral, support a diagonal predictor structure.
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This decision is based on the Discrete Cosine Transform uncorrelating the elements within

each vector. Thus, one seeks the best diagonal Aij matrices, such that Bi takes the form

Bi = I Ail Ai2 ... Alp]

and each submatrix Aij now resembles,

ail1  0 0 0

0 ai12  0 0

0 0 0 al d

We observe that each dimension of Equation 48 can be solved separately using least squares.

This occurs since there is still d * p linear equations (for each dimension) but only p

unknowns. Solving the filter coefficients reduces to the familiar Yule-Walker equations,

substituted with the covariance quantities instead of the autocorrelation ones.

3.5.5 Numerical Stability. Noting in Equation 49, any imprecision in the current

filter affects both the new covariance and mean estimates. For this reason, a similar model

which uses the same mean estimate vector of a standard HMM, namely the a posteriori

mean or probabilistically weighted mean, is proposed. Using the vector autoregressive

model
p

=a / - E Aij O t -j + E t

3=1

where the original /i has been identified as dependent on the filter. Let the new observa-

tions (0) be reduced by the current state mean estimate, 0* = Ot - i. Note that /A is

not the a posteriori mean of a standard HMM, which shall be denoted by ft.

P
-Aft A i Pi + E Aijrfi

j=1
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The vector process O* is zero mean within each state or mixture and the model becomes,

p

t EZAijO*~ E
j=1

with the estimation of Aij matrices and the a posteriori state mean, fTp proceeding accord-

ingly to the standard hidden Markov model mean update. Naturally, in both cases, when

p = 0 or Aij = 0, the reestimation reduces to the standard Gaussian HMM model. Also

note that in the single state N = 1 case, the reestimation is the direct multivariate LPC

model [63] from Section 3.5.1.

3.5.6 Proof of Concept Trial. To demonstrate the ability of this model to extract

low-pass, high-pass and bandpass filters across different dimension from a vector Markov

state source, ten sequences of 200 observations (2 dimensional) where created using the

following multivariate filters. The left-to-right transition matrix has all = 0.99.

[1.00 0.00 -1.20 0.00 0.429 0.00B1 = [IIAi1IA 2] = I I
0.00 1.00 0.00 0.24 0.00 0.795

[ 1.00 0.00 1.124 0.00 0.39 0.00 1
0.00 1.00 0.00 -1.237 0.00 0.775

l= [.0 El 0.05 2 = 14, 2 =0 0.00

4.0 0.00 0.02 -3.0 0.00 0.05

For the diagonal model, the estimated output density parameters were as follows:

B, = [IA1 1A12] = [1.00 0.00 -0.878 0.00 0.084 0.00

0.00 1.00 0.00 0.176 0.00 0.819

[1.00 0.00 1.136 0.00 0.398 0.00B2 = [1IA 211A22] = I
0.00 1.00 0.00 -1.224 0.00 0.770
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1.80 [ 0.131 0.00 [ 0.99 [ 0.10 0.00

3.93 0.00 0.059 -3.04 0.00 0.05

The power spectrum of the generator for each state and each dimension is shown in Figure

13. When using a known feature, such as cepstral coefficients, the predictor should be

Stt-Dim2 State2-Diml

o

Statel -Dim2

/ \I-5 -

~-10 Statel-Diml \, ,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Norm Freq

Figure 13. Markov-Modulated Vector AR(2) process.

diagonal. For this test signal, both full and diagonal predictor types were applied and the

spectrums of the estimated filters shown in Figure 14.

3.6 Conclusion

The methods developed in this chapter now allow for modeling Markov-modulated

linear dynamic system, at the sample level, the frame level and the processed features level.

Key examples have shown their ability to find ergodic AR filters, ergodic ARMA models,

phoneme-based frame level left-to-right AR filters and vector autoregressive models.

In summary, the Baum-Welch reestimation procedure follows a prescribed sequence:
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Figure 14. Estimated Markov-modulated vector AR(2) spectrum using both a diagonal

and full predictors.

" Initial model A,,, often solved with some clustering or segmental k-means procedure

[Sec 3.4.1]

" Forward-Backward algorithm solves for yt(i) [Sec 3.2.1 and 3.2.2

" Solve ML estimates of I, A using standard hidden Markov model procedures [96]

" Solve simultaneous equations for the ML B output density parameters including:

- Sample AR: di, u? and/or /ti [Sec 3.3.2, 3.3.3]

- Sample ARMA: ai, bi, o-? [Sec 3.3.5]

- Frame: di, o-? [Sec 3.4]

- Vector: Bi = [Ail,...,Aip],Ei, pi [Sec 3.5]

" Repeat until convergence.

Naturally, each can be extended to multiple mixtures, with state mixture weighting similar

to the standard hidden Markov model approach.
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Before exploring their effectiveness experimentally, several theoretic properties con-

cerning the a priori classification and convergence of the Baum-Welch learning must be

resolved. These are proven in Chapter IV. Then in Chapter V, particular versions of these

models will be applied to the challenging problem of large population, speaker identification

and recognition.
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IV. Hidden Filter Analysis

4.1 Introduction

Several key properties of hidden filter Markov models will be demonstrated analyt-

ically and experimentally in this chapter. The first justifies their use over other methods

for pattern classifications problems. Based on a theorem by Fielding [42], it will be shown

an assumed hidden filter Markov source reduces the joint entropy over an assumed Gaus-

sian mixture Markov model. Secondly, it will be shown that construction of an equivalent

single mixture structure can be generated for any finite mixture. If all output densities

have the property of negative log concavity for this equivalence model, then each step of

the Baum-Welch algorithm will find the global maximum for that iteration, as well as the

overall convergence will be monotonic. Lastly, the hidden filter output densities will also

demonstrate the property of negative log concavity.

4.2 Entropy Analysis of Markov Sources

Fielding [42] recently provided a relation between information theory and pattern

classification. Entropy, the average measure of information over a set of observations,

provides a useful tool for comparing classifiers. A classification system which reduces

uncertainty in a set of observations by using useful assumptions of the source model, will,

reduce the probability of error [72]. It is therefore desirable to find models which reduce

joint entropy, H(0 1, 02,... , On) defined over a set of observations as

H(01,02,. On) = - p(O1,02,...,On) log p(O 1 ,O 2 ,...,On).

N

The summation over N accounts for all possible orderings of the sequence of observations.

Two key facts concern the joint entropy properties of sequences. The first, attributed to

Blahut [12], is
n

H(01,0O2, ... ,On) <_ H(Oi)

with equality holding if the random variables are independent. Thus, the entropy of a

sequence will also be less than or equal to the entropy of an individual observation. The
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second fact provides insight to Markov processes. Let the observation sequence be a p-th

order Markov process. Then,

n

Hp(O 1 , 02,...,On) < ZH(Oi)
i=1

where Hp(0 1, 02,..., On) denotes the entropy of a p-th order Markov process and equality

holds for independence. Fielding's final results demonstrate [42]

n

Hp(O1, 02,.. .O) !5H1 (01,02,..--,.O:)<H(O1, 02,... , On) _ H(Oi) (50)
i=1

where H1 (0 1, 02,... , On) as the entropy of a first order Markov process. An increasing

Markov dependency in the sequence results in a decreasing joint entropy. A pattern rec-

ognizer which models this dependency should have better classification. While Fielding

chose the hidden Markov model as the source model, this dissertation examines hidden fil-

ter Markov models. It will be shown that the observations produced by a hidden Markov

models are not a Markov process. However, if the assumed source is a p-th order hid-

den filter Markov model, then the observations will be a p-th order Markov process and

Fielding's theorem applies directly.

Lemma IV.1 A hidden Markov model A generates observations which are not Markov,

but independent. Hence,

pXoloti, 01 ,o) = A(ON.

Proof: Using the hidden Markov model standard assumptions (Section 2.2.1), the con-

ditional likelihood is shown to be unconditioned on any past observations:

p(O, IOtl,...,O1) = p(Ot Iqt, Ot-1,...Ol)p(qt)

qt

= -p(OtIqt)p(qt)
qt

- p(Ot) [
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Lemma IV.2 A p-th order hidden filter Markov model Ap generates observations which

are a p-th order Markov process, having the property,

( Ot I Ot_1, . . , o01) = p( Oi IOtl,. ... I otP)

Proof: Disprove independence by using the source output density, (Equations 24 or 27).

For state qt,
P

p(OtJOt-_,... ,O, q,(i)) = AF(O + E aij toj, J)
j=1

which clearly demonstrates past observation dependence. Therefore,

(totl..0 = E'p(Ot JOt_1,...,O01, qtp(qt)

qt

= Zp(OOti,_..., Op qt)p(qt)
qt

- p(OtIOt-l,1.. ,Ot r p) El

These two Lemmas provide insight to the following theorem.

Theorem IV.1 Let Ap denote a p-th order Markov model. Let A denote a standard Gaus-

sian mixture Markov model. Then, given an observation sequence (01 ... OT), the joint

entropy of this observation assuming a hidden filter source will have less entropy than a

hidden Markov model source. That is,

HA, (01. ... OT) :_ HA (01 . .. OT)

Proof: The hidden filter model A7 generates a p-th order Markov process by Lemma IV.1

with joint entropy Hp(0 1 ... OT). The standard hidden Markov model A produces obser-

vations with joint entropy H(0 1 ... OT) t-=1 H(Ot) by Lemma IV.2. Direct application

of Fielding's theorem given by Equation 50 completes this proof. El
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This theorem provides justification for hidden filter Markov models in pattern recog-

nition problems. Similar to arguments made by Le Chevalier [68] and Libby [74], if a

classifier uses an algorithm to account for this Markov dependency within a sequence,

recognition will increase. By using maximum likelihood parameter estimates, we inher-

ently assume the working model is the same as the source model which generated the

observations. For example, when using hidden Markov modeling, it is assumed the source

is a hidden Markov model. For observation sequences which appear correlated over partic-

ular changing blocks of the sequence, it should be assumed the source is some hidden filter

Markov model. Now that the model is justified, the next sections analyze some important

properties of the learning algorithm.

4.3 Monotonic Reestimation

One property of the Expectation Maximization (EM) algorithm guarantees the like-

lihood of the observations given the model is increased whenever the auxiliary function

is increased. For hidden Markov models with unimodal log concave output densities,

Baum and Petre [10] demonstrated that each EM iteration steps to the global maximum

of the auxiliary function. This is shown true for a single Gaussian output density and

was extended to the more general elliptically symmetrical density function by Liporace

[76]. Extending an architectural concept introduced by Rabiner [96], it is demonstrated

that HMMs with mixture components can be recast into an equivalent model with only

unimodal state densities and a particular transformed probability transition matrix. Thus,

Gaussian mixture models are now guaranteed to step to the global maximum of the aux-

iliary function each iteration of the Baum-Welch algorithm. Lastly, an examination of

conditional densities, such as hidden filter models with and without mean, demonstrates

they also maintain log concavity and results in optimal global maximum steps.

4.3.1 Single Mixture Gaussian HMM. First, the properties of the Baum-Welch

(or Expectation Maximization) algorithm, specifically when the output densities are neg-

ative log concave in the parameters, will be reviewed. Recall, the scaled auxiliary function

Q(A, A) can be maximized for each of the main parameter sets = (fl, A, TI) separately
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for each state. Specifically for the new output densities,

T

Qb(A, Bj) = EP(qt = i10 ... OT, A) log bi(Ot) (51)
t=l

T= E -t()log bi (0).
t=1

Baum examines the conditions on bi(Ot) to insure a critical point is also a global maxi-

mum over all new models, A. A proof using transformed observations and a log concave

(bi(Ot)" < 0) property was used by Baum and colleagues [10] showing Q has a negative

second derivative at a critical point. Liporace [76] then provides a more general proof

for elliptically symmetrical densities. So for any HMM with single Gaussian density func-

tions, each step of the EM algorithm is guaranteed to increase the likelihood function

monotonically by stepping to the maximum of the Q function.

4.3.2 Multiple Mixture Gaussian HMM. In practice, multiple mixtures are used

to model more complex distributions of data within each state. However, since log bi(Ot)

no longer satisfies negative log concavity, Baum's Theorem [10] no longer holds. His proof

used a centered process to attain a unit normal with zero mean. Since a mixture density

does not satisfy this structure, his theorem no longer applies to multiple mixtures.

4.3.2.1 Rabiner Model. Rabiner presents a similarity between Gaussian

mixtures and models with extra states [95]. However, his analysis required special non-

emitting entry and exit states for each mixture. Also, this theoretical architecture is not

easily verified with existing implementations due to these non-emitting states. Though

these special states could be analyzed as being a trivial zero "probabilistic function" of a

Markov state sequence, they would not lend themselves to theoretical convergence proofs.

Another similarity transformation needs to be defined.

4.3.2.2 Equivalence Model. These non-emitting states can be transformed

in a special structure entirely defined within the Markov state transition matrix. Let a

constructive example show this fact (Figure 15).
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Figure 15. Functional equivalence of HMM A and Equivalence model AE. Top model
(multiple mixture) can be recast as bottom (single mixture) with a particular
transition structure. (-) denotes uninvolved transitions.

Each state can be expanded into substates with the transitions being products of the

original transitions and the mixture weights. The following 2 matrices show an original 1

state - 2 mixture HMM generator A and the theoretical equivalent model AE 1-

= - 1.00 - - 0.30 0.70 -

A - 0.96 0.04 A A =E - 0.29 0.67 0.04

- 0.29 0.67 0.04

1When not directly applicable to the state transformation, unaffected values have been shown as -
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The original model generated 100 variable length sequences. Both models were

trained using the Baum-Welch algorithm of Chapter III, initialize to equivalent random

parameters. Table 2 provides the original output density parameters and those learned for

both architectures.

Table 2. Actual and Learned (Baum-Welch) Output Densities.

Parameter Actual A Learned A Learned ;E

Mean 3.53, -1.98 3.60, -2.00 3.60, -2.00
Variance 0.74, 0.22 0.68, 0.24 0.68, 0.24
Mixtures 0.30, 0.70 0.29, 0.71 - ) -

The final estimates of the transitions matrices are as follows, denoted by A and Ax-.

Note the similarity to the the original and the theoretical equivalent. Figure 16 shows the

monotonically increasing log-likelihoods for each iteration of the Baum-Welch algorithm.

Though the two models have different architectures, both converge to the equivalent overall

model having -29.45 log-likelihood.

- 1.00 - - 0.32 0.68 -

A1 - 0.94 0.06 AX], - 0.28 0.67 0.05

- 0.000 0.00 - 0.27 0.67 0.06

Having constructed the model and shown equivalence by example, the formal definition

for an Equivalence Model is as follows.
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Figure 16. Learning the maximum likelihood models from 10 random starts based on the
architectures of the original HMM A (2 mixture) and theoretical equivalence
model AE (2 state). Almost all models converged to the same equivalent
log-likelihood value of -29.45.

Theorem IV.2 (Equivalence Model) Given a hidden Markov model A such that bi(O) is

a state density function consisting of a finite convex combination of negative log concave

densities
M M

bi(O) = Z ickbik(O), such that Z:cik = 1, ci, _ 0
k=1 k=1

an Equivalence Model AE exists which is functionally equivalent to A, such that each orig-

inal state i is expanded into M substates, with the following properties:

" Each substate of AE is described by one of bik(O);

" The state transition matrix entries of AE, for the original state i, new substate k, are

given by,

ai,k = * Cik

A,\E = (ai,k) = ak,k = a, * cik

ak,i+1 = aii+ 1
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Proof: Proof by construction.

Furthermore, if fi,mC(u) satisfies the properties of Liporace Theorem 2 [76] or Baum

[10] then Q(AE, )-E) has a unique global maximum as a function of A-E, for fixed AE. The

results of this Theorem IV.2 insure that each step of the Baum-Welch algorithm for mixture

densities will increase the likelihood of the model - demonstrated in Figure 16.

4.4 Monotonic Reestimation of Hidden Filters

While the previous analysis was presented for standard hidden Markov models, sim-

ilar results will be extremely beneficial for hidden filter model. It was discussed that a

desirable property of the output density function was either 1) negative log concavity or

2) elliptically symmetric. This section demonstrates that hidden filters also demonstrate

this property. The approach of Baum and later Liporace examined the negative definite

property of the second derivative of the auxiliary function with respect to the space of new

models A. The following proof takes a similar approach.

Again, the scaled auxiliary function Q(A, A) can be maximized for each of the main

parameter sets A = (I,A, fB) separately for each state, Equation 52. It will be shown

that the auxiliary function is negative definite for the space of reestimated filter models

A. This is most easily demonstrated using a similar approach to Liporace [76]. This

method first chooses two arbitrary models, A1 and A2 and defines a new model A which is

a linear (convex) combination of these two. It can then be shown that any linear convex

combination of these models is negative definite. Since A1 and A2 are arbitrary, it suffices

that the entire space of new models is negative definite. Intuitively, the space must have

only one global maximum at the single critical point of the auxiliary function which is

where the Baum-Welch algorithm steps. Concisely,
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Theorem IV.3 (Hidden Filter Auxiliary Global Maximum) Given a hidden filter Markov

model such that the state i conditional density, potentially with mean, is given by

1plog -- . + aO_) 2

log bi(O)= -(1/2) log 27r - (1/2) log o±
k=1

then the Baum auxiliary function, pertaining to the output densities,

22Qb(A,A) = (1/2)log 27r - (1/2) log -2 _ + akO_) (52)

t k=1

has a single global maximum for fixed A .

Proof: For the unidimensional, single order case, p = 1, let the predictor coefficient

be denoted by b. The Baum auxiliary function defined in Equation 18 can be maximized

separately for each state (Equation 52). Drop the state notation and define the reestimated

model as

A , 0 1 + (1 - O)A2  (53)

for 0 < 0 < 1 where the new model A is a linear combination of two arbitrary ones. Now

examine the partial derivative of the auxiliary function with respect to 0, still updating to

a critical point. Equation 53 implies the following is true.

ft = 01 + (1 - O)P2

= 00"1 + (1 - 0)02

b = Obl + (1 - O)b2

Letting c - 1/ 2 > 0,

2Qb(A, A)/(0 2  T 1t 2( C2 2 -((b, - b2)Ot- 1 - (ttl - A2)) 2

t=l

-2((b, - b2 )Ot- 1 - (P1 - .2))(Ot - ft + bOt-1)(cl - c2 )]

T 1(CI 2 )2 
_((bj - b2 )Ot-

1 - ( 42 - 2)) 2

t--1

-2(b, - b2)Ot-l(Ot - t + bOt-1)(cl - c 2 )
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+2(pi - p2)(Ot - f + bOt-1)(cl - c2 )] (54)

Now, seek the second partial only at a critical point, implying both Q/Oft = 0 and

aQ/ab = 0. Expanding,

T

0Q6 (AA)/Ob= -1yt [--ot1(o + bO= 1 )] 0
t=1

implying

T

0 = Zmt [-2(c, - c2)(bl - b2)Ot-l(Ot - f+ 6)0t- 1)] (55)
t=1

T

aQb(A, A)/af = SYt [(ot - P) = 0
t=i

implying

T

0 = -yt [2(/Q - P2)(Cl - c2 )(Ot - f + b)Ot-)] (56)
t=1

These last two expressions (Equations 55 and 56) cancel the last two terms in Equation 54

leaving a negative sum of squared positive terms. Since the sum is negative for all choices

of A, and A2 , the auxiliary function is negative definite at the critical point. Also, if there

were two critical points, the auxiliary function would have to switch positive for some pairs

of A1 and A2. Since this was not evident, then only one critical point must exist and it is

the global maximum. F

Naturally this result for a single conditional density applies to mixtures of conditional

densities whereby the previous section constructively demonstrated a simpler equivalence

model exists. Applying both results of this section and the last concludes that multiple

mixtures of hidden filters can be transformed into an equivalent model with single filters

per state, and each Baum-Welch iteration will step to the global maximum of the auxiliary

function. Multiple iterations of Baum-Welch will monotonically increase the likelihood of

the reestimated parameters.
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4.5 Conclusion

Based on the assumed source model, it was first proven that a hidden filter Markov

model sequence has less joint entropy than a sequence generated from a standard hidden

Markov model. Pattern recognizers based on these correct models should exhibit lower

classification errors. Gaussian mixture hidden Markov models have been demonstrated to

be equivalent to single mixture larger models, with increased states. This allows currently

known theorems relating to the convergence properties of the algorithm to be satisfied.

Likewise, for conditional state density functions, the Baum auxiliary function is guaranteed

to have a global maximum at the single critical point which is achieved for each iteration

of the Baum-Welch algorithm. In summary, the direct application of the reestimation

equations in Chapter III guarantees better models each iteration they are applied, and

further implying they monotonically converge in likelihood. The next chapter uses the

reestimation outlined in Chapter III, with the insight of the algorithmic properties outlined

in this chapter, for the application of modeling speaker dependent phonemes for speaker

recognition.
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V. Speaker Recognition

5.1 Introduction

This chapter describes the extensive experimentation and evaluation of the hidden

filter Markov modeling approach. The next section reminds the reader of why this ap-

plication requires better techniques. A systems level description is first provided, shown

in Figure 17. The YOHO database is described and used for all experiments, with initial

experiments applied to speaker identification. Where appropriate, all methods compare

results to vector quantization, a well-proven technique for text-independent speaker mod-

eling. Speaker verification, an extremely difficult problem, compares log-likelihood ratios

to a posteriori globally determined thresholds. Three methods of normalization, using

close cohort speakers as a reference, are examined, with a second order approach being

developed in this research. Lastly, an important general pattern recognition concern is

analyzed, which answers the question, "Does my system meet requirements?" It will be

shown that a particular configuration of our system meets the stringent U.S. Government

requirement of 1% false reject and 0.1% false acceptance rates.

5.2 Why Better Speaker Recognition?

The National Institute of Standards and Technology (NIST) recently provided a

set of guidelines [86] to Federal agencies and departments for verifying the identities of

computer system users. They describe biometric-based authentication as the measurement

of a unique biological feature used to verify the claimed identity of an individual through

automated means. Biometric authentication mechanisms will attempt to measure a unique

biological feature to the degree that only one person may be authenticated as a specific

user. The biological feature may be based on a physiological or behavioral characteristic

as remarked in Chapter I. The physiological characteristics measure vocal tract and other

speech production physiology while the behavioral characteristics measure all other voice

habits and patterns. This chapter examines hidden filter Markov modeling of phonemes

for this identification and verification process.

Campbell writes [18]
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The LA Times recently reported that $1.2 billion is lost annually from telephone
calling card fraud and the accounting firm of Ernst and Young estimates that
high-tech computer thieves in the U.S. steal $3 to $5 billion annually.

The use of automatic speaker recognition could reduce these thefts substantially. In addi-

tion to these problems, legislation is being considered to automate, nationwide, the elec-

tronic distribution of welfare benefits using voice verification [36] among other techniques.

As introduced in Chapter I, speaker recognition includes speaker identification and

speaker verification. When performing verification or authentication, the errors can be

categorized by two measures, the False Acceptance Rate (FAR) and the False Rejection

Rate (FRR). The FAR (Type 2 errors) represents the percentage of unauthorized users who

are incorrectly identified as valid users. The FRR (Type 1 errors) represents the percentage

of authorized users who are incorrectly rejected.

All experiments were performed on the Linguistic Data Consortium's (LDC) YOHO

database, with initial identification results providing insight to the more extensive verifi-

cation experiments. Following these experiments, a hypothesis analysis will provide the

maximum critical errors allowed while still meeting the goal levels specified of 1% FR and

0.1% FA.

5.3 YOHO Database

The YOHO Speaker Verification database is the only large scale1 , scientifically con-

trolled and collected, high-quality speech database for speaker authentication testing at

high confidence levels. This corpus has been designed to test speaker verification at U.S.

Government required error rates of 1% false rejection and 0.1% false acceptance [17, 67],

with a goal level of one magnitude better. (0.1% False-Reject and 0.01% False-Accept).

The 138 subjects, 106 males and 32 females, were asked to participate in 14 sessions over

a 3-month interval. These included 4 enrollment sessions of 24 utterances each and 10

verification sessions of four utterances each.

1When uncompressed the raw speech consists of 1.2 gigabytes of data [67].
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TIMIT Speaker-Independent YOHO
MODELS DATABASE

/ah/ ------ --

It/ Forced Viterbi Enrollment

/thI Alignment Transcriptions
__________ Only

---- --- --- --- YOHO
with
PHONETIC
LABELS

Initialization and

Embedded Baum-Welch Reestimation

YOHO Speaker Dependent

MODELS

// /ah/ Cohort Selection/t/ /t/ /ah/

/t/ /t/

/th/ --- Determine "Close"
I Reference Speakers

/ih/
/ih/

I

YOHO Viterbi log-likelihood ScoreTest______________ IDENTIFICATION/
Tes 

VERIFICATION

Figure 17. Speaker recognition system overview.

The speech material consists of "combination-lock" phrases. An example prompt is:

"57 - 26 - 64", pronounced "fifty-seven, twenty-six, sixty-four". Each phrase consists of

three number doublets. The doublets are chosen from a list which includes all the doublets

from 21 to 99 with the following exceptions: (1) no exact decades (30, 40, etc.), (2) no

double digits (22, 33, etc.), and (3) no numbers ending in "8" (28, 38, etc.). Pausing

between the doublets is optional, but not encouraged [67]. The total number of words is

sixteen producing 56 possible doublets and a list of 166,320 phrases.
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5.4 Phonetic Labeling and Training

Using the full TIMIT database [56], single mixture - 3 state models were previously

trained by Anderson [3] based on 12 MFCC, 12 A MFCC and 12 AA MFCC, including

log energy, A log energy and AA log energy. The full set of Kai-Fu Lee's 49 phoneme

models [69] allowed segmentation and labeling of the (as yet unlabeled, but transcribed)

YOHO database.

5.4.1 Forced Viterbi Alignment. Viterbi decoding [48], for a single hidden Markov

model, provides the most probable state sequence given an observation sequence. The

algorithm also provides overall likelihood of the sequence. Since the transcriptions are

provided for each enrollment utterance, a network of phoneme models which must be

traversed from beginning to end is known. Consider building a very large, single hidden

Markov model from the individual phoneme models. The Viterbi algorithm can uncover

the most likely state sequence which in turn provides a phoneme label for each analysis

frame. Thus, the forced Viterbi procedure constrains the decoding of an input observation

sequence to a ordered list of word and phoneme transcriptions. While there is not yet a

substitute for hand segmentation by a phonetician, the overall process is fast, efficient and

remarkably reliable with a good set of trained models.

Table 3 provides the initial TIMIT phoneme list for monophone models constrained

to the YOHO vocabulary. See also Appendix 5.A for example words using these phonemes

and the actual language grammar. The YOHO vocabulary has 19 monophones, with an

additional /sil/ (leading and trailing silence) and /sp/ (interword space). The /DX/ is not

used in the TIMIT grammar.

Table 3. YOHO phoneme model List, with silence (sil) and interword space (sp).

AH AX (DX) ER F IY N S TH V sil
AO AY EH EY IH K R T UW W sp

The relative proportions for each phoneme, over the entire YOHO database, is pro-

vided in Figure 18. As evident from the graph, the enrollment data follows the identical
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distribution as the test data2 . These results indicate there is adequate coverage of the

phoneme space within the enrollment data [19].

0.14

01 All YOHO Enroll
- - All YOHO Verify

0.1

E

SU
0 S0.08

Ca 0.06-

0

0.04-

0.02

IY N S F T DX EH V IH AY R W AX TH K AO AH UW EY ER

Figure 18. Histogram of all YOHO enrollment and verification utterances, after a forced
Viterbi segmentation bootstrapped from TIMIT.

5.4.2 Embedded Reestimation. Once the entire YOHO database was phoneti-

cally marked, all four sessions of enrollment data were used to train speaker dependent

models. The phoneme models were reestimated individually using the Baum Welch algo-

rithm, with the initial model being the speaker independent TIMIT trained models, when

possible. When not possible due to the architecture involved, an initialization procedure

consisted, for each monophone separately, as follows: 1) Uniform segmentation into states

2) Segmental k-means based on Viterbi's most likely state sequence. Then, an embedded

reestimation of all speaker models was accomplished by concatenating the individual mono-

phones for the utterances and updating all models simultaneously using the Baum-Welch

algorithm [134].

2Enrollment data accounts for only 0.057% of the total phrases possible.
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5.5 Speaker Identification Results on YOHO

Speaker identification uses a Bayesian classifier, assuming equal priors, choosing

speaker model i from the normalized Viterbi log likelihoods for an utterance, or set of

utterances, U. These results provide a reference for speaker separation, model and feature

choice trade-offs. Speaker identification is provides an upper bound on verification error

[34], based on entropy.

i = arg max { logp(UlAk) 1 (57)

First, an examination of vector quantization (VQ) provides a baseline on the YOHO males

and females separately. The VQ procedure assumes independent observations and clusters

speech without any temporal assumptions. Next, the frame and vector autoregressive

techniques are applied to the YOHO database. These identification results select the

alternative techniques which will be further investigated for verification.

5.5.1 Vector Quantization. The classic approach to modeling speakers creates

a representation of their spectral vectors [4, 6, 47, 119], in this case the Mel frequency

cepstral vectors. Codebooks were derived using the Linde-Buzo-Gray (LBG) clustering

algorithm [75] over all enrollment sessions until convergence. Test results are derived from

the Euclidean minimum distortion over all test utterance frames. Table 4 shows the closed

set speaker identification for both 32 and 64 codeword models testing with 1, 2 and 4

combinations phrases. These results serve as the baseline performance for a non-temporal

Table 4. Closed-set speaker identification error Rates(%) for 1,2 and 4 combination lock
phrases applied to both 32 and 64 VQ codeword models. Features consisted of
the 12 dimensional Mel frequency cepstral coefficients (MFCC) only.

Method Males(Females)
1 2 4

VQ - 32 codewords 6.86 (6.17) 2.50 (2.50) 1.41 (0.94)
VQ - 64 codewords 4.27 (2.97) 1.65 (1.25) 1.04 (0.63)

model applied to YOHO.
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5.5.2 Phonemic Frame AR Hidden Filters. Poritz [92] proposed the fundamental

hidden filter model for speaker identification. His architecture consisted of a 5-state ergodic

model using third order filters. This section extends the training to all individual phoneme

models and reestimates all simultaneously using the Embedded Baum-Welch algorithm.

The following approach (see Figure 19) uses labeled phoneme enrollment data to initialize

the hidden filters and builds networks for embedded Baum-Welch reestimation based on

transcriptions and word dictionaries. The result is a set of left-to-right speaker-dependent

models, corresponding to specific phones. A forced Viterbi alignment using utterance

transcription and word dictionaries provides the overall log likelihood score.

Unlike the VQ case which requires some spectral representation processing, the frame

AR hidden Markov model only requires the autocorrelation of the raw samples. The frames

must be gain normalized, since raw autocorrelation features vary greatly with signal energy.

It was also demonstrated in Section 3.4 that by using the Poritz method on frames, only

the autocorrelation coefficients are required in the reestimation. The resulting p-th order

phoneme hidden filters are those which minimize the Itakura-Saito distortion to all frames

assigned to a hidden state. Table 5 shows closed set speaker identification error rates for

various p-th order filters and architectures. While these results are competitive to vector

quantization, we further examine models using the vector Mel frequency cepstral process.

Table 5. Closed-set Speaker Error Rates (%) using Poritz Phoneme Models on 1, 2 and
4 combination phrases. Monophones consist of either 1 or 3-state left-to-right
models with filter order p.

Method Females
1 2 4

1-state, p=8 11.09 5.00 2.19
1-state, p=10 8.91 2.34 0.94
1-state, p=12 8.20 2.81 0.63
3-state, p=12 4.84 1.72 0.94

5.5.3 Vector Hidden Filters. The vector autoregressive hidden filters can be

easily related to many existing statistical speaker recognition approaches. Denoting the

number of states as N, the number of mixtures per state, M, and the predictor matrices,
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YOHO _________

DATABASE 1 (x(l) / a, x(2) / a,... x(K)/ a) => (rO, rl,...,rp)

2 (rO, rl,...,rp)

3 (rO, rl ..... rp)
YOHO ...
with
PHONETIC T (rO, rl,...,rp)
LABELS ..

Initialization and
Embedded Baum Welch Reestimation

Speaker Dependent, 3-state left-to-right, p-th order
Frame autoregressive hidden filter Markov models

/ah/ ].

/th/ /t/ a./ -
/t

/th/, ,

/ih/ ,1 " "- .

i / ih

/ihl

Forced Viterbi decoding VERIFICATION/
Verification IDENTIFICATION
Combination
Transcriptions

Figure 19. The phoneme frame autoregressive hidden filter approach models individual
phonemes as 3-state left-to-right hidden filters. The A denotes a p-order
hidden filter, as reestimated in Section 3.4.

Bi = [Ail,..., Aip], then the following models in Table 6 are attainable. Note that the

hidden Markov model is attained when the hidden filter predictor matrices are all set

to zero. A hidden Markov model based on A coefficients (Section 2.4.3) is related by a

particular choice of matrices being set to I and -I respectively.
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Table 6. Relationship of Vector AR Hidden Filters to Other Models. Note: W denotes
the size of the A window.

Vector Quantization Bi = 0, Ej = 1, Vi, M = 1,
All Transitions aij equiprobable.

Gaussian B, -- 0,N -- 1, M = 1
Gaussian Mixture Model B, -- 0,N -- 1

Hidden Markov Model (baseline) Bi -= O,Vi

Hidden Markov Model, (A coeffs) A1 = 1, A 2w = -I, Ai = 0, all other i
Vector AR Hidden Filter Markov model Unconstrained reestimation

However, the correct choice of model filter order remains a difficult procedure, for

any linear system [63, 94]. Several single state models have been examined, with in-

creasing filter order. Appendix 5.B examines penalty function methods for correct model

order selection. For hidden filter Markov models, this analysis is unique. By increasing

the filter order, the residual variance, or prediction error, decreased, but all vector hidden

filter models lacked the ability to distinguish between speakers or phonemes. Others have

paradoxically noted better likelihood scores, yet decreased recognition. We propose an

explanation for this phenomena, detailed in Appendix 5.C, based on the strict stationarity

of the original speech samples. All further results will be based on a zero-th order vector

hidden filter Markov model, i.e. HMM. We continue to extract and model context infor-

mation by examining both first and second order regressive coefficients within this zero-th

order architecture.

Table 7 shows error rates for various numbers of combination lock phrases. For each

gender, two different Viterbi constraints were examined, Forced Viterbi alignment and

Word-Pair Grammar3 . The latter can be used to check if the prompted text matched the

most likely Viterbi label hypothesis. The Word-Pair grammar also catches many confused

doublets over a simple word dictionary grammar. For example, for the prompt "75-29-47",

Viterbi with word grammar only may hypothesize a transcription of "seventy-five-one-

nine-forty-seven" where this label is not valid under a word pair grammar, nor is it a valid

3In addition to forced Viterbi and Word-Pair, one easily could perform Word-Only grammar or No-
grammar Phoneme decoding. It will be shown that allowing impostor's greater decoding flexibility decreases
the separation between true user and impostor log-likelihood scores.
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YOHO transcription. Given the superiority of the forced Viterbi alignment procedure,

all remaining results chose forced Viterbi alignment based on the prompted transcription.

An analysis concerning the entropy of the language, induced by the choice of grammar,

dictates forced Viterbi is most suitable for the speaker recognition problem. See Appendix

5.D for full details.

Table 7. Closed-Set Speaker Error Rates(%) with Viterbi Constraints for 1,2 and 4 com-
bination phrases.

Method Males(Females)
1 2 4

Forced Viterbi 1.70(1.72) 0.47(0.78) 0.19(0.31)
Word Pair 1.75 (2.19) 0.47 (0.63) 0.38(0.31)

A practical pattern recognition concern is the amount of training data for model rees-

timation. With first and second order regression coefficients, each speaker is represented by

21 three-state monophone models, resulting in 4914 output density parameters per speaker.

Based on an average of 38,000 enrollment observations, the ratio of training patterns to

model parameters is 7.7. To increase this ratio, feature reduction and covariance sharing

were performed. Table 8 shows that reducing the model size by removing transitional fea-

tures increases error rates, and sharing covariance matrices among individual monophone

states shows the opposite effect.

The best identification results are shown in Table 9 when the architecture includes

two-mixtures per state, single shared diagonal covariance for each monophone and 21

monophones per speaker. Features include transitional information by incorporating A and

AA Mel frequency and energy coefficients. Experimentally, all male tests were correctly

classified when prompting four combinations as a test trial. The inability to correctly

identify all females can be explained by Campbell [17], where speaker #240 used a "false

voice." See Appendix 5.E for the typical log-likelihood of these four test utterances. If this

session were removed, all females would correctly classified, as well.

5.5.4 False Voice Effects. It has been noted by Campbell [17] that Speaker #240,

in test session #969 used a "false" voice for all four utterances. This effected identification
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Table 8. Closed-Set Speaker Error Rates (%) with/without Shared Covariance using
forced Viterbi decoding for 1,2 and 4 combination phrases. Base feature is
MFCC + Energy.

Feature Males(Females), E/state
1 2 4

Base+A + AA 1.70(1.72) 0.47(0.78) 0.19(0.31)
Base+A 2.52(2.34) 0.99(0.94) 0.57 (0.31)
Base 5.83(5.55) 2.55(2.34) 1.60(0.94)

Feature Males(Females), E/monophone
1 2 4

Base+A + AA 1.06(1.48) 0.47(0.78) 0.19(0.31)
Base+A 1.37(1.25) 0.57(0.47) 0.28(0.31)
Base 3.56(2.19) 1.46(1.41) 0.85(0.31)

Table 9. Closed-Set Speaker Error Rates(%) Using Decreasing Transitional Features and
2 Mixtures for 1,2 and 4 combination phrases. Base feature is MFCC + Energy.

Feature Males(Females), E/monophone
1 2 4

Base+A + AA 0.92(1.48) 0.28(0.78) 0.00(0.31)
Base+A 1.16(1.02) 0.52(0.47) 0.19(0.31)
Base 3.09(2.03) 1.04(0.78) 0.66(0.31)

(and verification) results continually by misclassification of these particular trials. Shown in

Figure 20 is the drop by several orders of magnitude in the normalized log-likelihood scores

for these utterances using speaker #240's model. Note in identification (and verification)

results for females, the 0.31% result is a consequence of these utterances.

5.6 Verification Methodology

The procedure of speaker verification involves some method of comparing the test

utterance to "relative proximity" of the claimed speaker model, instead of simply choosing

the maximum score for speaker identification (Equation 57). Often some threshold needs to

be specified, either globally for all speakers or individual thresholds can be used. Recently,

a proposal to use cohort speakers provides a method to use likelihood ratios as a basis for

verification where a a global a posteriori threshold will be examined for equal error rate
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Figure 20. False voice effects of speaker 240, session 969, shown in the forced Viterbi
normalized log-likelihood scores (*).

analysis. Examine Figure 21 to understand the reason for a relative threshold. For several

test utterances of a male speaker, the forced Viterbi log likelihoods are plotted using the

true speaker's model and several impostor models. The log ratios vary greatly across test

utterances, yet each models appear to track with all others. Obviously, poor results would

be observed using a single, fixed threshold.

5.6.1 Likelihood Ratios. The likelihood ratio test is a useful tool based on

Bayesian analysis for performing speaker verification. The Bayes error rate, a statistical

upper bound on performance of any pattern classifier [35, 110], is achieved by applying the

Bayes decision rule. This maximum a posteriori (MAP) approach, given utterance U, will

choose A1  if, p(AljU) > p(A2IU)

choose A2  otherwise
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Figure 21. Typical log-likelihood of true model and impostor models shows the variability
based on the transcription (prompted words) which forces some non-fixed
thresholding scheme.

or by using Bayes rule, the probability density functions, either known or approximated,

can be used. Taking the logarithm,

log p ( IA ) > T, where T = log p (A2)
P(Ul;A2) -p(Jtl)

Speaker verification systems are then based on this log-likelihood ratio £ of the utterance

(or set of utterances) by applying the concept to a claimed model (A,) against not the

claimant (A2 ).

p(U1A =AciimIC(U) = log p  jl'  j,,,' )

p(UlA Aciaim)

= logp(UjA = A,,,,i ) - logp(UIA # Aiai) (58)

If the above quantity is greater than the threshold T, which accounts for the unknown

speaker prior probabilities, the maximum likelihood decision is to accept the utterance U

as the claimed speaker. We seek to approximate this last quantity using a set of "close"

reference speakers, as suggested by Higgins [51]. Campbell establishes methods for testing
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on YOHO by calling these reference speakers "cohorts". To determine "close", we examine

training utterances through the set of reference models. This procedure will be referred to

as cohort normalization of the log-likelihood ratio.

Furui [113] discusses several measures for cohort normalization, each a potentional

approximation to the last expression of the log likelihood (Equation 58). Some of these

approximations include the logarithm of the summation of cohort likelihoods or the sum-

mation (average) of log likelihoods [80]. This latter geometric mean cohort normalization

method was used for these experiments. Specifically, define a set of cohort speakers C of

size JCl. Then, using the joint likelihood of the set of cohort speakers, the log-likelihood

ratio is given by

L(U) log p(u lA = A q. im)

1T Ejec p(UlAj)

logp(UlAciIm) - log F -- (UlAj). (59)
iEC

In practice, it has been reported this can be further approximated by

L(U) z ogp(IAc,,aim) - 1 Elogp(U I Aj). (60)
'C EC

If the last expression is assumed to be dominated by the single closest reference speaker,

then the maximum operator can also be used for normalization.

5.6.2 Measure of HMM Similarity. Each speaker is represented by 21 speaker

dependent phoneme models, including silence and interword space. All 96 enrollment utter-

ances are used to establish first and second order statistics for the Viterbi log likelihoods.

Creating cohort sets is accomplished in one of three ways, each a sorted list of "close"

speakers. Define the Difference of Means log ratio as

dDOM(Ai,Aj) log p (Ul ' )

p(UIAj)
- logp(UlAi) - logp(UlAj)
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where U are all enrollment utterances for speaker i. Reynolds [104] provides a Symmetric

distortion measure between two models using enrollment utterances from both the target

and the potential cohort to determine similarity. If Ui, Ai represent speaker i training

observations and model respectively, then a symmetric distortion measure can be defined

as

dsym(A-Aj)(AiAj) log' ( -U ' 1pbiAj) + log P I

These approaches are examples of a first order statistical analysis of the output dis-

tributions. Several researcher's have examined the issue of measuring "distances" between

HMMs [59] for measuring model similarity. The goal then is to search for the set of cohort

HMMs which are close to the claimant's HMM in some probabilistic distance. If enough

training sequences from each speaker are evaluated against each HMM, a distribution of

log likelihoods begins to form, where a sample mean and variance can be extracted [42].

Higher order statistics can be used in conjunction with the Bhattacharyya distance

for measuring the separability between the output distributions of a pair of HMMs [46].

The Bhattacharyya distance is derived from an analysis of determining an upper bound on

the Bayes error rate of a two class problem. The form of this distance, for the 1-dimensional

log likelihoods, is

dB (Ai, A) (mi - mj) 2  1 lo 2
4B(-? + o=-2 2 (0- J2 + log.

where mi represents the enrollment likelihood mean and o-? represents the enrollment like-

lihood variance. The first term is a measure of the class separability due to the difference

in the means while the second term is a measure of separability due to the variance differ-

ence. Fielding [42] has shown how the use of second order statistics can be useful for HMM

model comparisons. The Bhattacharyya distance applied to the log probability statistics

provides a unique approach to log-likelihood ratio normalization.
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5. 7 Speaker Verification Results on YOHO

To avoid statistical dependence between phrases within each verification session, all

four combination phrases are taken as a test sample, as outlined in [17]. Results are also

shown when this dependence assumption is not made and all utterances (or pairs) are each

taken as a sample. The standard procedure is not performing inter-gender tests or testing

with cohort speakers.

5.7.1 Vector Quantization. Verification using the VQ approach makes use of a

similar method to log likelihood ratios. If each speaker cluster is assumed the mean of

a unity variance normal density, and all frames are independent, then the negative log-

likelihood of a test utterance is proportional to the overall test utterance VQ distortion.

A rank ordering of close speakers or "cohorts" is accomplished by the simple Difference of

Means, the second order Bhattacharyya and Symmetric selection strategies using negative

distortion for the log-likelihoods.

These cohorts provide a reference for the verification system. The claimed speaker

model distortion is normalized by the average distortion of his or her closest cohorts. Equal

Error Rates (EER) for each of the three cohort normalization methods are shown in Tables

10 and 11 for codebook sizes of 32 and 64 and cohort sizes of 5 and 10. Note, very little

difference in cohort selection methods is evident.

Table 10. Speaker Verification Equal Error Rates (%) using vector quantization overall
distortion for 1 and 4 combination phrases. Cohort normalization methods
on the negative distortion include Difference of Means, Bhattacharyya, and
Symmetric using 5 cohorts.

Cohort Normalization Males (Females), VQ 32 Males (Females), VQ 64
1 4 1 4

Difference Of Means 4.88(6.64) 2.08(3.44) 3.56(3.76) 1.69(1.25)
Bhattacharyya 5.09(6.42) 2.15(3.12) 3.68(3.76) 1.60(1.28)
Symmetric 4.90(5.54) 1.96(2.18) 3.65(3.81) 1.60(1.32)

5.7.2 Phonemic Frame AR Hidden Filters. While identification results using

frame autoregressive hidden filters performed adequately, the method applied to verifica-
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Table 11. Speaker Verification Equal Error Rates (%) using Vector Quantization overall
distortion for 1 and 4 combination phrases. Cohort normalization methods
on the negative distortion include Difference of Means, Bhattacharyya, and
Symmetric using 10 cohorts.

Cohort Normalization Males (Females), VQ 32 Males (Females), VQ 64
1 4 1 4

Difference of Means 3.96 (4.92) 1.51 (2.17) 2.83 (2.87) 1.23 (0.96)
Bhattacharyya 4.09( 4.86) 1.51 (1.93) 2.90( 3.12) 1.13 (0.94)
Symmetric 4.03 (4.22) 1.59 (1.56) 2.90( 3.12) 1.13 (0.94)

tion did not perform as well as VQ. This can obviously be attributed to the closeness of

impostor and true claimant log-likelihood scores. For example, using four combination

lock phrases and five cohorts, the best verification equal error rates were 4.68%, 4.68% and

4.33% for DOM, Bhattacharyya, and Symmetric cohort selection strategies, respectively.

These results were based the best frame AR hidden filter model in the identification tests

- 3-state left-to-right monophones with 12-th order filters.

5.7.3 Vector Hidden Filters. Tables 12 and 13 summarize the extensive verifica-

tion test undertaken for this research. For each of the features, (MFCC+E, MFCC+E+A

and MFCC+E+AA), a complete set of hidden filter Markov models (0-th order) were

trained for each speaker. This set include 21 monophones per speaker, with each mono-

phone model consisting of a 3-state left-to-right two-mixture hidden Markov model, sharing

a single diagonal covariance.

All possible male (female) test utterances were applied to all male (female) models,

respectively. The tables were generated using the approximation to the log-likelihood £

defined by Equation 60 using a specific ordered set of cohorts C. This ordered set was

previously determined by passing all enrollment data through all the trained models and

sorting by the three cohort similarity measures - dDOM, dsyM and dB. The final equal

error rate (EER) is calculated by stepping a global threshold until the average difference

between false accepts error rates and false reject errors converges. Note the best equal

error rate is found using the full 39-dimensional features with the Bhattacharyya cohort

normalization and prompting 4 combination locks as a single test trial.
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The extensiveness of these tests is further clarified. When one combination lock

phrase is tested for verification, the number of potential false reject tests (true speaker

claiming him/herself) is 4240 for males and 1280 for females. The potential false accept

tests (impostors) for the five cohort table is 424,000 for males and 33,280 for females.

Table 12. Speaker Verification Equal Error Rates (%) using 5 cohorts based on 2 mixture
3-state monophones. Base is MFCC+E.

Feature DOM Males(Females)
1 2 4

BASE+A + AA 1.39 (1.89) 0.89 (1.95) 0.66 (0.93)
BASE +A 1.58 (2.16) 0.99 (1.25) 0.74 (0.71)
BASE 2.38 (3.14) 1.50 (2.03) 1.22 (1.25)

Feature Bhattacharyya Males(Females)
1 2 4

BASE +A + AA 1.53 (1.89) 0.89 (0.92) 0.68 (0.63)
BASE +A 1.70 (1.95) 1.07 (1.09) 0.83 (0.63)
BASE 2.57 (2.98) 1.55 (2.03) 1.13 (0.94)

Feature Symmetric Males(Females)
1 2 4

BASE +A + AA 1.37 (1.72) 0.85 (0.78) 0.57 (0.63)
BASE +A 1.53 (1.79) 0.90 (0.94) 0.566 (0.60)
BASE 2.38 (2.82) 1.51 (1.89) 1.03 (1.25)

Figure 22 demonstrates the effectiveness of the Bhattacharyya distance when used in

conjunction with the log-ratio normalization compared to other cohort selection methods.

5.8 Critical Error Analysis

Higgins [51], and more recently Campbell [17], has examined the statistical signifi-

cance of the YOHO experiments based on confidence intervals. This section presents an

alternative method using hypothesis test analysis at the highest significance levels for the

amount of YOHO data. This presentation using significance levels provides a straightfor-

ward approach in accepting a potential speaker verification system. The technique easily

generalizes to any pattern recognition problem where a target level of acceptability is pro-

vided. We place much greater emphasis on rejecting potentially unacceptable systems
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Table 13. Speaker Verification Equal Error Rates (%) using 10 cohorts based on 2 mixture
3-state monophones. Base is MFCC+E.

Feature DOM normalization Males(Females)
1 2 4

BASE+A + A 0.94 (1.41) 0.51 (0.63) 0.38 (0.35)
BASE +A 1.04 (1.41) 0.56 (0.94) 0.47 (0.31)
BASE 1.72 (2.17) 0.95 (1.12) 0.75 (0.66)

Feature Bhattacharyya normalization Males(Females)
1 2 4

BASE +A + A 0.92 (1.56) 0.47 (0.63) 0.21 (0.55)
BASE +A 1.01 (1.56) 0.66 (0.63) 0.47 (0.31)
BASE 1.79 (2.50) 1.03 (1.41) 0.56 (0.94)

Feature Symmetric normalization Males(Females)
1 2 4

BASE +A + A 0.97 (1.25) 0.52 (0.51) 0.38 (0.32)
BASE +A 1.06 (1.39) 0.56 (0.47) 0.47 (0.31)
BASE 1.84 (1.95) 1.08 (0.97) 0.68 (0.56)

than on accepting potentially acceptable ones. For the speaker verification problem, the

consequences of a wrong decision dictates this approach.

Define the null hypothesis, H 0, to be the System Error Rate, Ser, does not meet the

Target Error Rate Ter,

Ho Ser > Ter UNACCEPTABLE (61)

H1  Ser < Ter ACCEPTABLE

Previously, results have been reported at the 75% confidence level for False Acceptance

and False Reject target values. However, this method would pass a large percentage of

systems that are in reality unacceptable.

The main concern should not be the probability of meeting the Target Error Rate,

which a confidence level analysis provides; the main concern should be in the decision

to reject potential candidates taking into account the consequences of a wrong decision.

Conjecture all systems are unacceptable and allow the experimental evidence (observed
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Figure 22. Speaker Verification False Accept and False Reject Error Rates (%) using
DOM, Bhattacharyya and Symmetric cohort selection strategies. Results
show the effect of an unseen threshold. Data only used male speakers, when
prompted with 4 combination lock phrases and normalized with 10 cohorts
using full 39-dimensional features (MFCC+E+A + AA). Best Equal Error
Rate shown is 0.21% using the Bhattacharyya normalization. Note: (*) de-
notes U.S. Government requirement of 1% FR and 0.1% FA [18, 17].

errors) to reject this conjecture [89]. One can also examine the probability of failing

acceptable systems, but this is a secondary concern.

5.8.1 Statistical Assumptions. Many times, we perform a set of tests and report

average results, typically with confidence intervals. Tests can average over several random

initial experiment setups (Monte Carlo Confidence Interval) or averages can be based on

the number of total test observations (Classifier Confidence Interval) [111]. However, if a

target error rate is specified, then instead of bounding the results, one needs to specify

how confident we are of meeting or exceeding this specification.

Ruck [111] reviews the approach and the procedures for both Monte Carlo and Classi-

fier confidence intervals. Each independent recognition trial is a Bernoulli random variable,

taking values 0 and 1 if the verification or identification was correct or incorrect, respec-
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tively. From elementary probability, the sum of Bernoulli random variables takes on a

binomial distribution, thus the total number correct (or incorrect) is a binomial random

variable. Under certain conditions, a Poisson or normal random variable may be used to

approximate the binomial and easily specify confidence intervals.

Let X be the total number of errors - a random variable. Given n independent tests

with a p probability of error, then the binomial distribution is

xp(x = x;n,p) =E(n P n-

i=o kc

which is the probability of observing x total errors. Suppose we observe x errors on the n

tests performed. Our point estimate for p is x/n. However, a better method of specifying

the true error probability p is to bound it at the -y = 95% or 99% confidence interval. The

boundary values (random variables) we seek are PL and PH such that

P(PL _ P < PH) = -Y.

Since n is exceedingly large for YOHO experiments, an approximation to the binomial

proves efficient. It has been noted that X is approximately normal when n is large with

mean np and variance pqn, q = 1 - p. Hoel [52] provides some experimental insight, in

that this approximation is valid when np > 5, p _ .5, nq > 5 and q > .5. Small values of p

with "moderately" large n would skew the distribution, and thus the following summary

holds in practice:

n small -- Use Binomial,

n large, p large/small -* Use Poisson,

n large, p moderate - Use Normal.

Using the Poisson approximation to the binomial (which is good for error rates less

than 5% and number of trials greater than 100), critical error curves [51] are drawn based

on the hypothesis test formulation in Equation 62 using the most stringent significance

levels, Figures 23. Following Higgins [51],
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Definition V.1 (Critical Error) The Critical Error is the maximum number of errors able

to be observed before rejecting the recognition system at a given significance level.

The probabilities of accepting a system for various critical errors is given in Figure 24.

Using these graphs allows recalculation of critical errors for YOHO in Table 14 and Table

15.

25

S20
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2 0 . . . . . . . .. .. . .. .. .. . . .. . . .. . . .. . . .. . . . . .I . . . . .
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10

0 2 4 6 8 10 12 14
Critical Errors

Figure 23. Critical Errors for Tests Designed at the 5% and 25%. The curve is generated
by searching for the appropriate A value given a particular (discrete) Critical
Error. The curve is used by knowing A = N Ter, the Target Error Rate
(Ter) and the size of the database N, then reading over and down.

We review the creation of these graphs, since their full understanding can lead to

applications elsewhere. For our application, these graphs provide the maximum number

of critical errors able to be seen while still satisfying the target error rate. However, one

could use this analysis for sizing a particular database by pre-specifying the critical errors.

The Poisson distribution has been chosen in our case since: 1) n can be up to 4240 for

identification and over 110,000 for verification and 2) the error rates are specified at 1%
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Figure 24. Probability of Rejecting H, - Accepting the System Meets the Target Error
Rate Ter, for number of critical errors (0,2,4,6,8,10,12,and 14) at the 5%
significance level.

and 0.1%:
SAke-.

Poisson distribution: p(x; A) = E k!
k=O

As can be seen, only the single parameter A specifies this distribution and subsequently its

mean and variance.

5.8.2 Application of Hypothesis Test. Table 14 provides critical errors (CE) for

particular FA and FR target error rates. Since the number of false rejects is limited (4,240

for males and 1,280 for females) one cannot report results at the 5% significance level, and

the entries for False Accept are provided at the 25% significance level [17]. Also, we chose

to use all impostor tests available, counting each session as statistically independent. This

amounts to total false acceptance (FA) tests of 106,000, and 100,700 based on the number

of cohorts (5 and 10) respectively. The rationale for this decision is based on allowing more

than one session for false reject testing and counting those as independent.
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Table 14. Critical Errors (CE) at the 5% and 25% Significance level (Sigf) for the U.S
government Required and Goal Target Error Rates (Target). Shown separately
for False Accept (FA - based on 5 cohorts) and False Reject (FR) tests. Table 14
provides approximate readings from Figure 24, where the ratio of hypothesized
Ser/Ter = e and the Probability of Accepting the System is denoted Ppass.
Sizes is attainable with the YOHO database.

Test JTarget [ Sigf Ppass lel Size ICEI
FR 1.0% 25% 70% 2/3 1,080 8
FR 0.1% 25% 50% 1/2 1,386 0

FA 10.1% 5% J99% 12/31105,0651881
FA 0.01% 5% 57% 1/2 105,131 5
FA 0.1% [25% 99% 12/31105,517198
FA 0.01% 25% 88% 1/2 96,845 7

Table 15. Critical Errors (CE) at the 5% for the U.S government Required and Goal Tar-
get Error Rates (Target). Shown for False Accept (FA - based on 10 cohorts).
All other columns described in Table 14.

[Test Target Sigf ]Ppass [ e Size CE]
FA 0.01% 5% 99% 1/2] 91,535
FA 0.1% 25% 99% 2/3 100,35 41[FA ]0.1% [25%] 99% [2/3 100,345 93
FA 0.01% 25% 88% 1/2 96,845 7

For example, in order to pass a system at the 5% significance level with a Target of

0.1% False Acceptance Rate, one must achieve less than or equal to 88 errors in 105,065

impostor tests. In addition, if we think our system is twice as good as the target, e = 1/2,

then we have a 99% probability of accepting the system. An interesting conclusion to this

analysis will be demonstrated through Figure 25. Similar to Figure 22, though instead of

percent errors, actual counts are plotted as an unseen threshold is varied. The "*" denotes

FA and FR critical errors at 5% and 25% significance level. While Figure 22 appears

to indicate that all three cohort normalization methods passed within the specified U.S.

Government target, in actually, when the hypothesis test (Equation 62) is used with a

specified significance level, only one method would actually be accepted.
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Due to the great imbalance of impostor tests, we can make a much stronger statement

by mixing the significance levels as follows.

The speaker dependent phoneme system, based on cohort selection using the symmetric

score passes the 0.1% False Acceptance target rate at the 5% significance level, while

passing the 1% False Reject target rate at the 25% significance level.

30
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Figure 25. Speaker Verification False Accept and False Reject Error (#) using DOM,
Bhattacharyya and Symmetric cohort selection strategies. Results show the
effect of an unseen threshold. Data only used male speakers, when prompted
with 4 combination lock phrases and normalized with 10 cohorts using full
39-dimensional features (MFCC+E+A + AA).

5.9 Conclusion

This chapter demonstrated several new findings concerning the ability to model and

subsequently identify or verify speakers based on the acoustic signal. First, it was demon-

strated that vector quantization, a reliable and proven method, provides similar perfor-

mance to the Poritz, frame autoregressive model. Whereas both have about equal param-
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eters, the hidden filter approach can also hypothesize the word-string spoken. Though

the vector hidden filters method using the baseline Mel frequency cepstral representation

showed better modeling with increased filter orders (Appendix 5.B), they did not provide

any classification usefulness. One plausible explanation relates to the strict stationarity of

the cepstral coefficients as hypothesized in Appendix 5.C. This manifests into a trivial filter

across all phonemes and all speaker. Another explanation may relate to the dilemma re-

lated to classifying signals based on prediction. Often the better the prediction of training

data, the less generalization occurs during test.

By using a 0-th order filter, which models states as noisy constant functions, statisti-

cally significant improvements were demonstrated over vector quantization. The addition

of transitional coefficients and the addition of several prompted phrases monotonically de-

crease errors. A shared covariance used across the phoneme states also decreased errors

for identification, probably due to the limitation on enrollment data. Best results of 100%

identification on both male and female 4 were demonstrated using two mixture 0-th order

filters.

Log ratios and log ratio normalization using cohorts were introduced. Three meth-

ods of selecting close speakers were examined, with the Bhattacharyya distance, a new

approach developed within this research which includes second order statistics, was shown

the optimal selection scheme when equal error rate (EER) is the benchmark. A more

significant critical error analysis was developed to specify the maximum errors allowed

while still achieving a specified target error rate. This analysis was applied to the YOHO

database. The noteworthy conclusion of this section included the ability to easily make

a claim of meeting requirements based on the maximum number of errors seen during

testing.

Comparison to Campbell's synopsis [18] of recent known results demonstrates the

effectiveness of these approaches, see Table 16. These tests were designed to model context

and coarticulation at the subword (phoneme) level for speaker modeling. Historical insight

dictated that both the physiology of a speaker and the neural habits and patterns together

4100% based on removing the false voice session of speaker 240.
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Table 16. Recent LDC YOHO Database Results [17].

Reference Verification EER (%) Identification Error (%)
ITT NN 0.5
ITT CSR 1.7
MIT/LL GMM 0.51 (0.2m, 1.5f) 0.8 (0.3m, 2.2f)
Rutgers' NTN 0.65
Rutgers' HMM 1.36
Rutgers' LVQ 0.36
COLOMBI 0.21m, 0.31f 0.0m, 0.31f

differentiate speakers. Both these unique traits alter the dynamics of the acoustic signal

which we have successfully modeled with a hidden Markov architecture.
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VI. Recommendations and Conclusions

6.1 Recommendations

During the course of good research, several avenues often arise which are not taken.

Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.

Robert Frost, 1915

This section addresses those areas which will have great potential for robust dynamic

time series modeling or applications in speaker recognition. We recommend the following

research areas, in order of importance:

Speaker Verification Normalization. Normalization of the likelihood

scores provides orders of magnitudes improvement over fixed thresholds. The fundamental

reason for their requirement lies in the overall likelihood score containing much more than

speaker contributions. As evident from Figure 21, the variability in the log-likelihood scores

reflects word sequence and ordering, phonemic content and other language phenomena -

all not related to speaker verification. Basic research in removing language and grammar

effects, which are present in current speaker models, would be significant to future systems

concerning speaker authentication and speaker adaptation.

NonCausal Filters. It has been observed that the human body ap-

pears to be a multichannel, noncausal processing machine [109]. Multichannel refers to

the several human sensors, all coherently merged in our billions of neurons to form a sin-

gle consistent "world model". Various noncausal capabilities have been observed in our

perception of time and sound (see auditory illusion of phoneme restoration by Warren and

Warren [127, 128]). This research has focused exclusively on causal filters. In the signal

processing and modeling literature there has been recent interest in Two Sided Predic-

tion (TSP) and other noncausal approaches. These models, for classification, should be

examined for providing better forward and backward context, potentially within a hidden

Markov model.
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Prediction and Classification. The need for theoretic relations be-

tween the accurate ability to classify sequences and their prediction needs to be addressed.

Under certain assumptions, Levin has shown for the nonlinear Markov-modulated dynamic

systems, there exists a direct relation between reducing mean squared error in the training

set and the overall likelihood of the training set. However, an investigation should be

conducted relating optimal prediction to optimal classification.

Discriminant Models. The theory behind Maximal Mutual Informa-

tion (MMI) [16] attempts to not model the maximum likelihood estimates of parameters,

such as Baum-Welch achieves. Instead, since the correct source models will never be known,

training methods should be discriminative and speaker models should be trained in con-

junction with all others for optimal discrimination. While this may be optimal in terms of

the least amount of needed assumptions, the amount of training data and the ability to add

new classes make this technique inefficient. Methods should be researched which weight

discrimination to the ability to add new classes (speakers) and to estimate parameters

efficiently. Naturally, discriminative hidden filter models should also be investigated.

Another related research area lies the effective use of artificial neural network tech-

nologies. As presented in the framework of general hidden filters (Chapter II), nonlinear

and discriminative techniques have recently been examined for output density estimation,

within hidden Markov models. However, they have often involved large "stupid" neural

networks and required specialized, fast hardware for training. Continued work in new

neural architectures and their placement in the hidden Markov architecture should be

performed.

6.2 Contributions

A number of original research contributions have been provided.

Generalized Hidden Filter Architecture. A complete framework for

many existing linear and nonlinear systems used for classification, as well as prediction,

was developed for discrete state Markov models. The existing hidden Markov model inde-
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pendence assumptions were reviewed and removed, which defined a new, more generalized,

hidden filter Markov model.

AR and ARMA hidden filters. New reestimation methods are provided

for autoregressive (AR) and autoregressive moving average (ARMA) as well as an optimal

initialization strategy. The ability to reestimate these filters adequately for the difficult

ergodic case is novel and shown by example. The new ARMA Markov modulated hidden

filters are applicable to specific broad classes of phonemes, with a spectral zero component.

An extension to frame autoregressive hidden filters was proposed for accurate phoneme

modeling and applied to speaker recognition.

Vector Autoregressive Hidden Filters. The extension from sample or

frame based filters to full vector autoregressive hidden filters was developed using an emit-

on-state notation. Full and diagonal regression variations were developed. The choice of

spectral features used in this research, the Mel frequency cepstral coefficients, dictated

a diagonal predictor and noise model. A procedure of a posteriori mean removal was

developed to separate the state mean estimation from the filter coefficients for numerical

stability.

HMM and Hidden Filter Convergence. A new proof of monotonic con-

vergence for Gaussian mixtures was presented using an equivalence model paradigm. A new

proof of monotonic convergence for hidden filter Markov models was then demonstrated.

An application of the Markov property of the observations for hidden filter models was

applied to the Fielding [42] information theoretic proof. Since pattern recognition methods

seek ways which reduce entropy (and reduce classification errors), this proof justified the

hidden filter model over standard hidden Markov models.

Phonetic Modeling for Speaker Recognition. A speaker dependent

phoneme-based hidden Markov model system was accomplished for both speaker iden-

tification and verification using the extensive YOHO database. State-of-the-art speech

recognition tools were incorporated into the system such as phonetic labeling, word dictio-

naries, bi-word language models and Viterbi scoring constraints. The left-to-right 3-state
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phoneme models were analyzed exclusively. The use of ergodic structures was hypothesized

and demonstrated as modeling language effects and thus dictated the choice of left-to-right

monophone models. The method of forced Viterbi decoding of phoneme based temporal

models for speaker verification was shown optimal, with a theoretic explanation demon-

strated with language entropy. A novel approach to correct hidden filter model order using

penalty functions was reported indicating a monophone dependent filter order. However,

the optimal hidden filter used for all tests happened to be the 0-th order hidden Markov

model - a hypothesis concerning the strict sense stationarity of speech was offered to explain

this effect. A new second order metric for cohort selection was developed and shown to

provide the best equal error rate of 0.21% on YOHO males and 0.31 on females. A critical

error analysis is provided for YOHO using a hypothesis test technique which demonstrated

the importance of comparing results to a test statistic.

6.3 Conclusions

A complete system framework for hidden filter Markov models has been developed

and applied to the speaker recognition problem. This research proposed theoretical ex-

tensions to a class of stochastic models and demonstrated their effectiveness on the prob-

lem of text-independent (constrained) speaker recognition. Analysis concerning multiple

mixtures and hidden filter models guarantee monotonically increasing likelihoods during

learning. Using information theory, the hidden filter Markov models were demonstrated

optimal over hidden Markov models for pattern recognition problems. Both closed set

identification and normalized likelihood ratio verification using cohorts were performed on

the extensive YOHO database. Perfect identification for males and females was possible

prompting four combination lock phrases. Equal error rates of 0.21% males and 0.31%,

females was accomplished using a forced Viterbi scoring and cohort normalization incorpo-

rating a newly developed Bhattacharyya distance metric. Where other researchers report

equal error rates, this research demonstrated the importance of a critical error analysis,

basing acceptance on the number of critical errors - found using a hypothesis test tech-

nique. We feel this document advances the state-of-the-art in areas of Markov modulated
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dynamic systems, and their properties, log-likelihood normalization, and speaker authen-

tication/ verification techniques.

Many new applications will require speech-based biometric recognition such as secure

access control, telephone-based recognition, transaction and credit account verification,

forensic science, law enforcement and military intelligence gathering. Successful methods,

such as demonstrated by this research, provide excellent results of only 2 errors in 1000

attempts. The theoretic contributions clearly demonstrate the efficiency of training these

models and their justifiable use over existing techniques for many pattern recognition

problems, beyond speaker recognition. Insights from world-class researchers, suggesting

the importance of dynamic modeling of phonemes, have contributed to make this research

state-of-the-art in the challenging field of speaker recognition.

98



Appendix A. Induction Derivation of the Forward-Backward Variables

The following provides the inductive calculation of the forward and backward vari-

ables. Initial condition:

al(i) = p(Oj,qj =iIA)

= p(O Iq, = i,A)p(qi = iA) =bi(O1)7ri

which is valid for 1 < i < N. Given at, now find at+:

at+(j) = p(Ol'"Ot+l,qt+l =jIA)

= p(Ot+l I01,.. ., Or, qt+l = j,A)p(O1,..., Ot, qt+l =jA)
= bj(Ot+)p(O1,...,Ot,qt+l =jA)

Expanding,

N

p(O1,...,Ot, qt+l = A) = _p(O,...,Ot, qt+l = j,qt = iA)
i=1

N

= Zp(qt+l = jJoi,...,Ot,qt =i,A)p(Oi,...,Ot,qi =iIA)
i=1

N

- aijt(i)
i= 1

Hence,
N

at+1(j) = bj(O+,) aijat(i)
i 1

and this is valid for 1 < t < T - 1 and 1 < j _ N. For t = T the total probability is given

as

N

p(o1 ... OTIA) = Ep(oi ... OT, qT= i1A)
i=1

N

= ZE T(i)
i91
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For the backward variable, let the initial condition be

/3T(i) = p(OT+1 "''OTlqt = i, A) = 1

for 1 < i < N. Given 3t+i, now find Pt

i(i) = P(Ot+1 ... OTIqt = i, A)
N

= "p(Ot+1 ... OT, qt+l =jqt = i,A)
3=1

- Zp(Ot+i ... OTIqt+l = j, qt = i, A)p(qt+l Jlqt = i, A)

- Zaijp(Ot+l IOt+2 ... OT, qt+ = j, qt = i, A)p(Ot+ 2 ... OTIqt+l - j, q = i, A)

- a bj (Ot+ )P(Ot+2 ... OT qt+1 = j, qt = i, A)

Note Ot+2 ... OT is independent of qt = i by Markov property

/3t(i) = Iaijbj(Ot+l)p(O+2 ... OTIqt+l = j, A)

SE aijbj(Ot+llfPt+l(j)

Hence,
N

t (i) = Zaijbj(Ot+l)t+i(j)

j=1

for t = T - 1, T - 2,..., 1 and 1 < i < N. For t 1 the total probability is calculated as:

N
P(O1 ... OTIA) = E ]P(O1 ... OT, q, iIA)

i=1

= Ep(O1 ... OTIq = i,A)p(qi = ilA)

- 7rp(O102 ... OT, q = i, A)p(02 ... OTqj =i,A)

N

- Z7rjbj(Ol)P31(i)
=1
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Appendix B. Phonetic Listing With Examples

The following Table 17 provides the list of phoneme with examples. Each phoneme

will be represented by a 3-state left-to-right hidden filter Markov model trained separately

for each speaker. Table 18 provides the TIMIT language grammar used in all experiments

and two additional grammars - a grammar from the Resource Management (RM) database

[134] and an optional mixture of RM and TIMIT. The examination of these grammars

provide dictionaries in which clear read text, conversational speech or some combination of

the two will be observed. After initial experiments, recognition results were not significantly

different and the TIMIT grammar was used for the remaining experiments.

Table 17. Partial Phonetic List from Parsons [90] Applied to Digits.

Arpabet Example Digits Arpabet Example Digits
AH bud one W wow one
AX ahead seven N noon nine
AO hawed four T tug two
AY hide nine K kick six
EH head seven TH thick three
EY hayed eight F fife four
ER heard thirty S cease six
IH hid six R roar four
IY heed three V verve seven

UW who'd two (DX) batter forty
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Table 18. YOHO word grammar. [ ] denotes optional monophone, and I denotes dual
path through the word grammar. These grammars get used to expand a tran-
scription into the network of subword models for forced Viterbi decoding or to
provide standard Viterbi syntax for automatic speech recognition.

Word YOHO Monophone Grammar Source

one W AH N [sp] TIMIT,RM
two T UW [sp] TIMIT,RM
three TH R IY [sp] TIMIT
four F AO R [sp] TIMIT
five F AY V [sp] TIMIT
six S IH K S [sp] TIMIT
seven S EH V AX N [sp] TIMIT
nine NAY N [sp] TIMIT
twenty T W EH N T IY [sp] TIMIT

TWEHNIY [sp] RM
T W EH N [T] IY [sp] OPTION

thirty TH ER T IY [sp] TIMIT
TH ER DX IY [sp] RM
TH ER DX IT IY [sp] OPTION

forty F AO R T IY [sp] TIMIT
FAORDXIY [sp] RM
F AO R DX IT IY [sp] OPTION

fifty F IH F T IY [sp] TIMIT,RM
sixty S IH K X T IY [sp] TIMIT,RM
seventy S EH V AX N [T] IY [sp] TIMIT

SEHVAXNTIY [sp] RM
S EH V AX N [T] IY [sp] OPTION

eighty EY T IY [sp] TIMIT
EY DX IY [sp] RM
EY DXIT IY [sp] OPTION

ninety N AY N T IY [sp] TIMIT
NAYNIY [sp] RM
N AY N [T] IY [sp] OPTION
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Appendix C. Penalty Functions for Order Identification

For autoregressive models, both unidimensional and vector processes, several penalty

function methods exist for determining proper model order. Several of these base their

optimality criterion on some combination of the error variance and free parameters, yet

are derived from the Kullback-Liebler distance between a model PDF and the true PDF

of the data. Since it can be shown that error variance will monotonically decrease with

model order, a penalty term is added to prohibit excessively large order models. This is

the concept behind parsimonious models - ones with as few parameters as possible. Sev-

eral methods include the Akaike Information Criterion (AIC), the Final Prediction Error

(FPE), Parzen's Criterion of AR Transfer (CAT) function and the Bayesian Information

Criterion (BIC) [20, 21, 63, 94, 54]. The AIC is often chosen for small data samples and

both the AIC and FPE converge to the same solution as the number of samples increase [63].

The extension of these penalty functions has not been explored for Markov models, yet will

be needed for further investigations of their usefulness. The Akaike Information Criterion

is defined as

AIC(p) = Tlog 2 + 2p

where p is the model order, 2 is the MLE of the noise variance and T is the total num-

ber of observations. This penalty function has been extended to multidimensional vector

autoregressive processes [21] and its properties continually evaluated [21, 126]. For a d-

dimensional vector process the AIC is further defined as

AIC(p) = Tlog IEp + 2d 2p

where similarly, the EP is the MLE covariance for a Vector AR(p) process. Given an N-

state hidden filter Markov model, these penalty functions could be extended to sum the

AIC associated with each state. This would imply the following functional forms:

* Full Predictor, Full Covariance: AIC(p,N) = ZNT log IEp(i)l + 2d 2p

" Diag Predictor, Full Covariance: AIC(p, N) = N Tlog IEp(i)I + 2dp

• Full Predictor, Diag Covariance: AIC(p,N) = Z NTlogtrace(E,(i)) + 2d 2p
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* Diag Predictor, Diag Covariance: AIC(p, N) = EN T log trace(Ep(i)) + 2dp.

For the simple case of single state hidden filter phoneme models, the original versions apply

directly, demonstrated in Figure 26.

26 27 13 .5 20 20....... 11.5
- 25 26.5 9.12 12.

2 4 6 8 2 4 6 8 2 4 6 8

145 15 21 22 22 22.5

135 14 19. 20 2 2151. .. 145 21 _ _ 22

2 4 6 8 2 4 6 8 2 41

16 16 20 21 19 18.8

14' 15 19 19 184
2 4 6 8 2 4 6 8 2 4 6 8

20 21 24 24.5 196 21

19.5 20.5 23 24 194 20

19 20 22 23.5 19.2 - '- " 19
2 4 6 8 2 4 6 8 2 4 6 8

30 29 19 19 11 11.5

- 28 28 .18 18.5 10.5 1 1

26 .... 27 17 18 10 . . 10.5
2 4 6 8 2 4 6 8 2 4 6 8

16 5 1 8 2456 28 22 2

186""' 17 .. 26 21.5 ... ...21 22

15.5 '16 24 24 21 I ' 20
2 4 6 8 2 4 6 8 2 4 6 8

13 13.5 19 20 24 23

12..5.185 19 22 22.5
12 12.5 18 18 20 22

2 4 6 8 2 4 6 8 2 4 6 8

Figure 26. Akaike Information Criterion (AIC) for Vector Phoneme Models By Exam-
ining the Diagonal Covariance at Several Order Models. The subplots show
each of the 21 monophone models' MLE of the average noise variance (dashed
line). Note this MLE decreases with increasing model order and the AIC
(solid line) acts accordingly, decreasing to a minimum, then increasing.

This presentation of model order selection for hidden filters is the first known treat-

ment using a statistical penalty function methodology. Though the interactions between

optimal model order based on residual variance and model order for best recognition is

unclear, this appendix does suggest that different phonemes should have varying order

models.
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Appendix D. Vector AR Modeling of Strictly Stationary Speech

While other attempts to model spectral dynamics have not been overly successful for

speech recognition [16, 66], the applicability to speaker recognition has not been examined.

It is intuitive that the correlations and context of the changing phoneme vectors contains a

source of untapped speaker dependent information. However, if certain standard assump-

tions are made of the speech signal within a phoneme, then the following two propositions

explain the (negative) results of past researchers using conditional models.

Proposition D.1 Speech cepstral coefficients within a phone are a Strict Sense Stationary

(SSS) vector process.

Speech is considered quasi-stationary, assumed stationary over 30-70 msec. This time

relates to between 3 and 7 frames of data, using typical speech framing techniques. Strict

sense stationarity of the speech samples, xt, implies that frames of speech samples are also

a SSS vector process, Xt, - easily shown since different frames have the same n-th order

density. The SSS characteristic of the Xt process is maintained even after subjected to

linear transforms, £, (e.g. Fourier) and memoryless systems transformations (like square-

law, mel and log). Thus, the cepstral vector process, -- £[log(C[Xt] 2 )] is strict sense

stationary.

If a vector autoregressive model (for each hidden state) is used, then the following

proposition results. Let the state dynamics of the cepstral vectors be defined by

P

with the noise (Bt) being a white, normal vector process.
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Proposition D.2 During periods of stationarity (within a phone), the reestimation of a

P-th order vector autoregressive model, given observations of cepstral coefficients, results

in non-unique solutions. Two trivial solutions possible are:

1. (Trivial filter) fp = O and A, = -I, Ai O,i = 2,...P

2. (HMM) ft = f* and Ai = O, i=l,...P

For the i-th state and based on the assumed model, the state conditional density can

be specified,

1 1 pA -iT= t pi + _A 1ti
15#0 = (2 )d/2 1 11/2 exp (- t + - pi +

i= 1 i----1

and then,
P

Et[tSt-lt2,... ,-] = f + j Ait-. (62)

The stationary characteristic of the cepstral vector process implies the unconditional expec-

tation, E[E(t)] is constant, denoted by f#*. Now, given a sequence of a particular stationary

phoneme process, the expectation of Equation 62 over all past observations, is

P

E[Et[Zt,t-1,Et-2, ... ,et-p] = E[t] + EAjE[ t_j
j=1

P

= ft + Ait* = P*. (63)
j=1

Hence,

P

j=1

and when Ai = 0, then ft = ft* which is the standard Gaussian hidden Markov model.

The reestimation will attempt to model this behavior for each state. In doing so, the two

trivial solutions in the proposition are easily seen to be true based on Equation 63.
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Appendix E. Syntactic Explanation for Forced Viterbi

The ability to model a sequence of symbols has been shown to reduce entropy [42]

and guarantee a reduction in probability of error [73]. Statistical and syntactic pattern

recognition provides a foundation for classifying targets which have an inherent stochas-

tic grammar, !9. This grammar induces a set of possible observation sequences called a

stochastic language, L(g) [125]. When given a set of hidden Markov models, a hierarchy

of constraints can be placed on the Viterbi decoding process, in effect changing the gram-

mar. The grammar, in turn, changes the size of the language. For speaker recognition,

best results occur when a forced Viterbi decoding is used over alternative methods such as

word grammar, word-pair grammar or simple phoneme decoding. This section provides a

mathematical explanation.

For example, consider the following four grammars, each a language level constraint

on the Viterbi decoding process. The first are two methods using phoneme based gram-

mars.

" 1 FV, Constrain all phonemes to a transcription(Forced Viterbi)

" LNG, No constraints on phonemes (NoGrammar)

These next set are based on word models. First, a dictionary is created such that words

are defined by a fixed sequence of phonemes, with optional silence.

" Lwp, Constrained phonemes within words and constrained word pairs (WordPair)

" CwG, Constrained phonemes within words (WordGrammar)

For the statistical approach with several monophone models, let A represent the

overall speaker model. Since, recognition scores change several orders of magnitude based

on the word sequence along, explicitly show this variable into the Viterbi score. Denote

the word sequence by W. Viterbi provides the joint likelihood score of the observation and

the maximum likelihood word,

p(O1 ... OTIA,,W) = maxp(O ... OT, WIA ,)

= maxp(Ol...OTIW, Ac,L)p(WIAC,L) (64)
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In order to compare speakers using Viterbi decoding, this second term, must be the

same. When using forced Viterbi decoding, the set of models is fixed and the size of

the language ILI = 1. However, any other grammatical approach will incur a different

multiplicative expression based on the complexity of the grammar. Any other method

such as phoneme decoding, word grammar or word-pair grammars, which subsequently

induces a larger language L, will be comparing two speakers on potentially different word

and phoneme sequences.

We demonstrate that as the language increases by choice of grammar, the entropy

(bits/phn, Equation 65) increases and this results in increased equal error rate, shown

in Table 19 and Figure 27. Figure 27 further demonstrates the relationship by plotting

entropy (dashed) against EER for male and female speakers separately. For this demon-

stration, cohorts were not used specifically to examine the overlap between true claimant

and impostor scores without any normalization. Recall equal error rate occurs when the

false acceptance error rate (impostor errors) equals the false rejection error rate (true

claimant errors). Using Levinson's definition of entropy [72],

H(9) - log 2 LI (65)
E[n]

which uses the size of the language LI and the average number of words per utterance

converted to bits per phoneme. Table 19 shows the size of the language with entropy for

the various grammars. In the table, m is the number of phoneme/ word choices at each

time. The E[n] is the expected number of phonemes/ words during an utterance and ILI

denote how many possible paths exist through the grammar. All quantities have been

converted to phoneme units for calculation of entropy.

In summary, by changing the grammar or syntax allowed by Viterbi, different size

stochastic languages are created. For automatic speech recognition, these language con-

straints insure the recognition fits semantically acceptable speech. However, these larger

languages also allow impostors to find better paths through the language, which may not

fit the semantics of the transcriptions. By using likelihoods of observations, we must insure
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Table 19. YOHO Language Constraints, where the language allows an average of E[n]
symbols from a set of m. ILI denote how many possible paths exist through
the grammar. All entries for entropy were converted to bits per phoneme using
an average of 2.9 phonemes per word.

Grammar ! m E[n] Language II H(9)
Transcription 1 1 1 0.0

WordPair 57 3 1.85e+5 0.60
Word 16 6 1.67e+7 0.83

NoGrammar 21 29 5.5e+38 3.5

17 4 20 4

16.8 3.5 19.8 3.5

16.6 3 319.6

16.4 2.5 2.5

19.4
'16.2 -2 cr -"2 .

W Wl WWww w 19.w wU
19.2

16 1.5 1.5

19
15.8 1

15.6 0.5 18.8 .5

15.4 18.
FA WP WG N $8.1 WP WG

Figure 27. Equal error rates (Dashed) for males (left) and females (right) over the YOHO
database with one combination per test trial. Also shown is Entropy (Solid)
in bits/phoneme of the language induced by the grammar.

that the conditioning of word and phoneme sequences is identical for all Viterbi scores used

in recognition.
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Appendix F. Language Hypothesis

In this appendix, a hypothesis concerning ergodic hidden Markov model use for

speaker recognition is proposed and demonstrated experimentally. Experimental results

of Poritz [92, 113, 115, 124] and added interpretations by Levinson [73] also support this

assumption. In detailing methods of speech recognition, Levinson interprets the experi-

ments of Poritz as representing the structure found in the symbols of the language. He

further substantiates this interpretation by reference to 1) English text modeling using an

ergodic HMM framework by Cave and Neuwirth, and 2) originally by Markov, himself, for

analyzing printed Russian text.

Proposition F.1 An ergodic hidden Markov model A trained with unlabeled speech to

model a speaker will represent language model statistics in the Markov state transition

matrix.

Unless a predefined transition structure is provided, the state densities will model speaker

dependent spectra, but the transitions between these spectra will be language dependent as

evidenced by Levinson and references within. To demonstrate this experimentally, compare

the steady state probabilities of a trained ergodic hidden Markov model to the statistics

of the broad class transcriptions.

Beginning with phoneme labels (Table 20), transform the automatic phoneme seg-

mentation to broad class labels and estimate the bi-class probabilities. Using unlabeled

Table 20. Broad Class/ Phoneme Relation

Broad Class Phoneme
Vowel (V) IY IH EH AX AH UX UH AO EY AY
Liquid/Glide (L) R W ER
Nasal (N) N
Consonant (C) (DX) T K V F TH S
Silence (S) sp sil

data, the Baum-Welch algorithm reestimated the parameters of two ergodic, five-state

hidden Markov models. These systems included a HMM based on Mel frequency cepstral
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features (with regression) and a third order hidden filter Markov model (similar to Poritz).

The resulting transition matrices were extracted and stationarity, p(qj = i), probabilities

were analyzed (Table 21).

Table 21. Steady State Language Statistics.

Vowel Liquid-Glide Nasal Consonant Silence
.19 .05 .10 .19 .47

The steady state probabilities from the five-state ergodic HMMs, using both Poritz

and Mel frequency cepstral, can then be compared in Table 22.

Table 22. Learning the Language with Ergodic Models

V L N C S
Ergodic Poritz Method (5 state) .19 .01 .18 .26 .36
Ergodic Gaussian HMM (5 state) .19 .01 .14 .25 .41

While the automatic phoneme transcriptions will not be precise, the similarity of

the broad language statistics of the data to the learned model stationary state statistics

is remarkable. Based on Poritz initial experiments, Levinson's clarification of these results

with historical ergodic interpretations and these YOHO results, the explanation of past

"failures" in useful transition modeling is complete. Recall the reference to Nolan [85]

in Chapter I, who overviews several researchers claiming that in addition to the vocal

anatomy, voice differences are the result of neural patterns and habits. These manifest

themselves in the acoustic signal through coarticulation effects and formant dynamics.

Effective speaker recognition strategies should monopolize on these dynamics.
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