

JOURNAL OF SOFT COMPUTING AND DATA MINING VOL.4 NO. 2 (2023) 52-58

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

JSCDM

http://penerbit.uthm.edu.my/ojs/index.php/jscdm

e-ISSN : 2716-621X

Journal of Soft

Computing and

Data Mining

*Corresponding author: zanes@uthm.edu.my
2023 UTHM Publisher. All rights reserved.

penerbit.uthm.edu.my/ojs/index.php/jscdm

52

Comparative Analysis of Test Case Prioritization Using Ant

Colony Optimization Algorithm and Genetic Algorithm

Muhamad Asyraf Anuar1, Mohd Zanes Sahid1*, Nurezayana Zainal1

1Faculty of Computer Science and Information Technology,

 Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, 86400, MALAYSIA

*Corresponding Author

DOI: https://doi.org/10.30880/jscdm.2023.04.02.005

Received 15 February 2023; Accepted 22 September 2023; Available online 04 October 2023

1. Introduction

According to the ANSI/IEEE 1059 standard [citation required], software testing is a step that occurs at the conclusion

of software quality assurance (SQA), when engineers execute the process of analyzing a system or program to determine

if it passes or fails a pre-determined condition. Based on the results revealed on the system, such as the number of missing

requirements, flaws, and mistakes, the testing process entails assessing the system on numerous aspects, such as

reliability, security, and performance. The system or product is tested to find faults and flaws, following which the source

of the mistakes is explored, debated, and then corrected or improved. Unfortunately, software testing is often hurried due

to how costly and time-consuming the process is, forcing software developers to conclude software testing early due to

time and money constraints, degrading software quality [1]. Regression testing, one of the most critical tests, is a method

that ensures that any future addition or upgrade to the system will not impair the previously functional system. As the

system expands in size over time, it becomes more expensive to run all the test suites in the system, thus different ways

are designed to address the regression testing of the test suites. Test case prioritization was one of the ways utilized to

overcome the challenge.

Abstract: After a software is deployed, every software system will get an upgrade, requiring it to adapt to meet the

ever-changing client needs. Thus, regression testing becomes one of the most important operations in any software

system. As it is too expensive to repeat the execution of all the test cases available from a previous version of the

software system, numerous ways to optimizing the regression test suite have evolved, one of which is test case

prioritizing (TCP). This study was carried out to test and compare the effectiveness of evolutionary algorithms and

swarm intelligence algorithms, represented by Genetic Algorithm (GA) and Ant Colony Optimization (ACO)

algorithms. These algorithms were be implemented to find the Average Percentage Fault Detected (APFD),

execution time, and Big O notation, as these are critical aspects in software testing to ensure that high-quality

products are produced on time. This study employs data from two separate investigations on comparable issues,

denoted as Case Study One and Case Study Two. TCP has been extensively used in recent years, but not much

research has been conducted to analyze and evaluate the performance of GA and ACO in a test case prioritization

context. The algorithms were compared using APFD and execution time. The APFD and execution time values of

50, 100, 150 and 200 iterations for ACO and GA for both datasets. Both algorithms were determined to work on

O(𝑛2
) notation, which indicates they should scale up their execution process similarly on different input scales. Both

algorithms performed well in their respective roles. ACO has shown to be more valuable than GA in terms of APFD,

whereas GA has shown to be more valuable than ACO in terms of execution time.

Keywords: Test case prioritization, regression testing, Ant Colony Optimization (ACO), Genetic Algorithm (GA)

http://penerbit.uthm.edu.my/ojs/index.php/jscdm

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

 53

The Ant Colony Optimization (ACO) algorithm is a metaheuristic algorithm inspired by ant behavior in nature

[citation required]. While the ants are sight handicapped and ineffective on their own, studies show that they may execute

complicated tasks by enabling one another to aid them. One of the key concepts is shown when ants release a specific

chemical called pheromones to determine the fastest way to a food source or other key destination. An increase in

pheromone deposits on a certain route enhances the chance that that path will be followed; the greatest pheromone deposit

from the start node may be used to assess a path's optimality [2].

Genetic Algorithm (GA) is another metaheuristic algorithm based on Darwin's theory of evolution, in which the

"parents" are chosen from an initial population after exchanging genes, causing crossover, and producing offspring, and

mutations are applied to these offspring, which will be passed down to the next generation [citation required]. This

procedure will be repeated until a termination condition is satisfied. The program guides the search for the best solutions

in the search space by using genetic information from chromosomes [3].

In this study, we presented a test case prioritizing (TCP) study employing GA and ACO algorithms to compare

algorithm performance based on average fault percentage detection (AFPD), Big O notation, and execution time when

applied to the same datasets. The outcomes will be compared to assess the efficacy of both the GA and ACO algorithms.

2. Related Work

The approach of selecting the best test cases such that it arranges them in a sequence based on characteristics that

might boost the effectiveness of the test cases in meeting a performance objective, which is where the TCP process

specializes in [4]. Regression testing, one of the most resource intensive yet crucial test for any software may be improved

by adopting test case prioritizing strategies, which have been shown to provide better results in terms of identifying

objective functions in less time and processing resources than other methods [5].

There are several algorithms inspired by nature that can be used in test case prioritization, as more researchers

observe the nature closely to study natural behaviors. Thus, this paper will compare two of the most used algorithms for

prioritizing test cases. One of the algorithms is GA, which is one of the widely used algorithms in prioritization

techniques. Anu Bajaj et al. [6] had implemented GA in their paper, including Padmnav et al. [7], who used the same

algorithm in their study. The next algorithm that will be utilized in this paper is ACO, which is based on the ant colony

behavior in finding paths, has also been implemented as a prioritization technique. For instance, ACO algorithm has been

implemented by Panwar et al. [8] in their paper for prioritizing test cases.

Thus, this paper will use ACO and GA to prioritize the selected test cases. ACO is a type of swarm intelligence that

deals with computational approaches inspired by ant colony behavior. In ACO, the hypothetical ants construct a solution

to an existing optimization problem, and information about these solutions is transmitted via a communication technique

similar to that employed by actual ants. Aside from TCP, ACO has been found to increase test case creation across a

range of testing categories, including regression testing, functional testing, and so on [2]. Because of their environment

and size, ants have trouble utilizing their eyesight to choose the optimal way to their objective, therefore they utilize a

fluid called pheromones to transmit their journey to other ants. The route with the greatest number of pheromone deposits,

which began at the first node, is more likely to be followed.

The next technique, GA is a search strategy based on Darwin's theory of biological evolution's natural selection

processes. The premise is that people in a population must compete for limited resources, and those that prevail create

more children, which are subsequently passed on to the next generation [6]. GA is widely regarded as one of the finest

single-objective algorithms for test case prioritization challenges [8].

Other techniques for optimization include bat algorithm[9], greedy algorithm [10], cuckoo search algorithm [11] and

flower pollination algorithm [11]. These techniques can also be customized and hybrid in optimizing the selection of test

cases, such as in [12], [13], [14] and [15].

3. Methodology

3.1 Research Framework

In the first stage, all the processes affecting the data that will be utilized throughout the study will be completed in

the first stage. This includes locating a research article with acceptable and useable datasets and processing them such

that they can be utilized by the suggested methods. For the second stage, the ACO method and GA will be implemented

in Python, and the previously generated datasets will be fed through the algorithms and processed until the datasets are

successfully prioritized. Finally for the last stage, the metrics of execution time, Average Percentage of Fault Detected

(APFD), and Big O Notation are extracted from the process of test case prioritization of both algorithms, which are then

compared and analyzed to determine which algorithm is superior in terms of test case prioritization performance. Please

introduce Fig. 1 in this paragraph.

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

54

Fig. 1 - Research framework

3.2 Algorithms

3.2.1 Ant Colony Algorithm (ACO)

The ACO algorithm starts with the ants being randomly allocated to test cases. The ants will choose which test case

to visit next based on a specified criterion. Each ant remembers its previously travelled route, and on succeeding steps, it

picks the way that it has not before visited. After visiting all of the test cases, an ant builds a solution. The probabilistic

rule is defined by pheromone values and heuristic information, and the greater the pheromone and heuristic value

connected with a route, the more likely the ants will take that road. The pheromone on the trail is updated after all ants

have finished their journey. The ACO pseudocode, seen in Figure 2, describes the steps required to implement the

algorithm. For the study, the ACO algorithm stages is adopted from a previous work[16]. Please introduce Fig. 2 in this

paragraph.

Fig. 2 - ACO pseudocode

3.2.2 Genetic Algorithm (GA)

GA procedure starts with an initial population, P, of individuals. Then, pairs of chosen individuals are cross-bred

and mutated to produce a new individual that will be inserted into the population of the next generation. A GA is an

approximated algorithm that has no guarantee of convergence. Thus, the search will continue for several predetermined

generations until a termination condition is fulfilled. Please introduce Fig. 3 in this paragraph.

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

 55

Fig. 3 - Genetic Algorithm (GA) pseudocode

3.3 Evaluation Parameters

The key activity for the last part of this study will be the assessment and comparison of the findings for each method.

The acquired findings for APFD, Big O notation, and time execution will be analyzed for both algorithms based on the

algorithm processes. The parameters will be compared and examined, and a conclusion on the algorithms' performance

will be established.

3.3.1 Average Percentage of Fault Detected (APFD)

Rotherm et al. [17] proposed APFD as a metric for assessing prioritizing performance. The weighted mean of the

faults covered by the test cases is calculated using APFD value corresponding to the test case's position in the test suite.

The mathematical expression is shown in (1).

APFD = 1 -
𝑇𝐹1+𝑇𝐹2+⋯𝑇𝐹𝑚

𝑛𝑚
 +

1

2𝑛
 (1)

𝑇𝐹1 is the number of test cases conducted in 𝑇 before to detect the fault, 𝑇 is an ordered test suite with n test cases,

and F is a collection of m failures identified by 𝑇. The following is the APFD formula: The APFD value ranges from 0

to 1, with higher values signifying faster fault detections [18].

3.3.2 Execution Time

The second evaluation parameter is based on the time it took to apply the algorithms. The time is expressed in

seconds (s). In this study, the algorithm with the shortest execution time is determined to be the best. The time calculation

equation is shown in (2).

Execution time = Start time ± End time (2)

3.3.3 Big O Notation

Big-O is a mathematical notation that displays how efficient an algorithm is in the worst-case situation in relation to

the amount of its input. We will utilize the frequency count approach to discover Big O. It is the technique of determining

how many times a certain statement gets performed. To begin, comments are never performed by the machine, thus they

are excluded from the count. This also applies to any declarations made during the algorithm stage. For return statements

and assignment statements, it counts as one step. Finally, higher-order exponents take precedence over lower-order

exponents. Apart from that, the procedure of counting the code line by line in their programming stage will be covered

later in the article.

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

56

3.4 Datasets

Two sets of datasets were selected to carry out this study. Case Study One consists of 15 test cases with 15 faults

from the work by Palak et al. [19] and Case Study Two consists of 10 test cases with 10 faults from the work by Pradeepa

et al. [20]. Table 1 summarizes the test cases and their respective flaws for Case Study One, whereas Table 2 summarizes

the test cases and their respective faults for Case Study Two. For Case Study One, 10 number of populations and 10

number of ants were allocated based on a set of test suite which consists of fifteen test cases as shown in Table 1 based

on sequential order, represented as T = {T1,T2,T3,T4,T5,T6,T7,T8,T9,T10, T11,T12,T13,T14,T15}. Then, the faults

were represented by F = {F1,F2,F3,F4,F5,F6,F7, F8,F9,F10,F11,F12, F13,F14,F15}. For Case Study Two, 10 number of

populations and 10 number of ants were allocated based on a test suite which consists of ten test cases as shown in Table

2 based on sequential order, represented as T = {T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 }. Then, the faults were represented

by F = {F1,F2,F3,F4,F5,F6,F7, F8,F9,F10 }.

Table 1 - Case study one

Test

Case

Fault

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

T1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1

T2 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0

T3 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0

T4 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0

T5 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0

T6 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

T7 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

T8 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0

T9 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0

T10 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0

T11 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0

T12 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0

T13 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0

T14 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

T15 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0

Table 2 - Case study two

Test Case Fault

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 0 0 0 0 0 1 1 0 0 0

T2 0 1 0 0 1 0 0 0 0 0

T3 0 0 0 0 0 0 0 0 0 0

T4 0 0 0 1 0 0 0 0 1 0

T5 0 1 0 0 0 1 0 0 0 0

T6 1 0 0 0 0 0 0 0 0 0

T7 1 0 0 0 0 0 0 1 0 0

T8 0 0 0 0 0 0 1 0 1 0

T9 0 0 0 1 0 0 0 0 0 1

T10 0 1 0 0 0 0 1 0 0 0

4. Results and Analysis

The performance measures taken into consideration for this study are APFD, execution time and Big O Notation

which have been recorded by the successful implementation and execution of the algorithms with the datasets. A

comparative analysis was put together and discussed in this section to determine the effectiveness of both the algorithms.

APFD value is used to calculate the weighted mean of faults covered by test cases in accordance with the test case

position of the test suite. If the fault detection rate is faster, the APFD value is higher. The higher APFD value represents

the better performing algorithm. Based on the study conducted using GA and ACO algorithms on two cases studies, the

APFD values were calculated based on the prioritized test cases. Table 3 represents the values of the prioritized test cases.

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

 57

Table 3 - APFD comparison

Algorithm

 Iteration

Case Study One APFD Case Study Two APFD

50 100 150 200 50 100 150 200

GA 0.59 0.67 0.70 0.71 0.51 0.60 0.66 0.67

ACO 0.60 0.65 0.71 0.72 0.52 0.64 0.70 0.70

Based on the comparison of APFD values illustrated in Table 3, it is shown that the APFD values for ACO algorithm

for most of the time are higher than the values of APFD for GA algorithm for both Case Study One and Two, which are

0.72 and 0.70 respectively. From the results, we can conclude that 150 iterations are the best number of iterations to be

applied to both algorithms as from Table 4.5 we can see at iterations 200 the increase in APFD value is small.

In the process of SDLC, time plays a very important role in ensuring the product can be delivered within the project

timeline. Hence, in software testing, execution time should always be taken into consideration to avoid delays. Time

module was used to record the execution time of both algorithms. The execution time of iteration of 150 was used for

both algorithms since we had concluded that 150 iterations is the most optimum value for both algorithms. Table 4 shows

an execution time comparison between Case Study One and Case Study Two.

Table 4 - Execution time comparison

Algorithm Case Study One (s) Case Study Two (s)

GA 0.21 0.19

ACO 0.54 0.35

From the data collected in Table 4, it can be observed that ACO took a longer time which is 0.54 seconds, while GA

took only 0.21 seconds. Case Study Two also showed the same outcome whereby ACO and GA took 0.35 seconds and

0.19 seconds respectively. A conclusion can be drawn that GA has a faster execution time than ACO. Big O Notation is

a metric for determining an algorithm's efficiency as it gives an approximation of how long your code run on various sets

and sizes of inputs. We can also say that it is a way to measure how effectively the code scales as your input size increases

or decreases. Table 5 shows Big O notation comparison between Case Study One and Case Study Two.

Table 5 - Big O notation comparison

Algorithm Case Study One Big O Case Study Two Big O

GA O(𝑛2) O(𝑛2)

ACO O(𝑛2) O(𝑛2)

From the step count method calculation performed earlier, we can see that both algorithms, GA and ACO have the

same Big O notation. From Table 5, it can be seen that ACO have longer execution time than GA which resulted 0.05

seconds of difference. This difference is acceptable since both algorithms have the same big O notation values. Therefore,

we can conclude that the difference in the execution time between the two algorithms would not be large.

5. Conclusion

This study was conducted with the idea of implementing GA and ACO algorithms on Test Case Prioritization to

acquire and compare APFD and Execution Time of both algorithms. The algorithms used were GA and ACO in which

they were implemented on two different datasets, namely Case Study One and Case Study Two. Case Study One consists

of a set of 15 test cases with 15 faults, while Case Study Two consists of 10 test cases and 10 faults. The results were

compared. In conclusion, both GA and ACO performance did not differ far between each other. When compared in terms

of APFD, GA had shown to give a higher value of fault detection for both the datasets while in terms of execution time,

GA also converged faster during the execution. For the algorithms Big O notation, both have O(𝑛2) notation. Although

GA has the upper hand in terms of performance, the difference between them is insignificant. Hence, it can be concluded

that both GA and ACO algorithms are similarly good when implemented on test case prioritization. For future research,

efforts can be directed into a similar study by proposing hybrid, improved or enhanced GA and ACO algorithms. Besides

that, different algorithms such as Black Hole Optimization Algorithm [citation required], Butterfly Algorithm [citation

required], Grey Wolf Algorithm [citation required], and many others can also be implemented. Finally, although focusing

on implementing the algorithms on TCP is a great move, research can also use these algorithms on a different research

path such as Test Case Optimization or Test Case Selection.

Anuar et al., Journal of Soft Computing and Data Mining Vol. 4 No. 2 (2023) p. 52-58

58

Acknowledgement

The authors would like to thank the Faculty of Computer Science and Information Technology, Universiti Tun

Hussein Onn Malaysia, for supporting this work.

References

[1] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., & Tumeng, R. (2018). Test case prioritization approaches in

regression testing: A systematic literature review. Information and Software Technology, 93, 74-93

[2] SS, V. C. (2020). An ant colony optimization algorithm based automated generation of software test cases. In

Advances in Swarm Intelligence: 11th International Conference, ICSI 2020, Belgrade, Serbia, July 14–20, 2020,

Proceedings 11 (pp. 231-239). Springer International Publishing.

[3] Bajaj, A., & Sangwan, O. P. (2019). A systematic literature review of test case prioritization using genetic

algorithms. IEEE Access, 7, 126355-126375.

[4] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999, August). Test case prioritization: An empirical study.

In Proceedings IEEE International Conference on Software Maintenance-1999 (ICSM'99).'Software Maintenance

for Business Change'(Cat. No. 99CB36360) (pp. 179-188). IEEE.

[5] Shaheamlung, G., & Rote, K. (2020, June). A comprehensive review for test case prioritization in software

engineering. In 2020 International Conference on Intelligent Engineering and Management (ICIEM) (pp. 331-336).

IEEE.

[6] Bajaj, A., & Sangwan, O. P. (2019, February). Study the impact of parameter settings and operator’s role for genetic

algorithm based test case prioritization. In Proceedings of International Conference on Sustainable Computing in

Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.

[7] Padmnav, P., Pahwa, G., Singh, D., & Bansal, S. (2019, January). Test case prioritization based on historical failure

patterns using ABC and GA. In 2019 9th International Conference on Cloud Computing, Data Science &

Engineering (Confluence) (pp. 293-298). IEEE.

[8] Di Nucci, D., Panichella, A., Zaidman, A., & De Lucia, A. (2018). A test case prioritization genetic algorithm guided

by the hypervolume indicator. IEEE Transactions on Software Engineering, 46(6), 674-696.

[9] Bajaj, A., & Sangwan, O. P. (2021). Test case prioritization using bat algorithm. Recent Advances in Computer

Science and Communications (Formerly: Recent Patents on Computer Science), 14(2), 593-598.

[10] Li, F., Zhou, J., Li, Y., Hao, D., & Zhang, L. (2021). Aga: An accelerated greedy additional algorithm for test case

prioritization. IEEE Transactions on Software Engineering, 48(12), 5102-5119.

[11] Dhareula, P., & Ganpati, A. (2022). Comparative Analysis of Efficacious Metaheuristic Technique with Genetically

Modified-Flower Pollination Algorithm (GM-FPA) for Test Case Prioritization in Regression Testing.

[12] Silvarajoo, A., & Alkawaz, M. H. (2022). A Framework for Optimizing Software Regression Test Case based on

Modified-Ant Colony Optimization (M-ACO). In ITM Web of Conferences (Vol. 42, p. 01007). EDP Sciences.

[13] Akila, T. K., & Malathi, A. (2022). Test case prioritization using modified genetic algorithm and ant colony

optimization for regression testing. International Journal of Advanced Technology and Engineering Exploration,

9(88), 384.

[14] Ufuktepe, E., Ufuktepe, D. K., & Karabulut, K. (2021, July). MUKEA-TCP: A mutant kill-based local search

augmented evolutionary algorithm approach for test case prioritization. In 2021 IEEE 45th Annual Computers,

Software, and Applications Conference (COMPSAC) (pp. 962-967). IEEE.

[15] Bajaj, A., & Abraham, A. (2022, July). Test Case Prioritization and Reduction Using Hybrid Quantum-behaved

Particle Swarm Optimization. In 2022 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.

[16] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine,

1(4), 28-39.

[17] Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C., Huang, R., & Guo, Y. (2018). Test case prioritization for

object-oriented software: An adaptive random sequence approach based on clustering. Journal of Systems and

Software, 135, 107-125.

[18] Lima, J. A. P., & Vergilio, S. R. (2020). Test Case Prioritization in Continuous Integration environments: A

systematic mapping study. Information and Software Technology, 121, 106268.

[19] Palak, P., & Gulia, P. (2019). Hybrid swarm and GA based approach for software test case selection. International

Journal of Electrical and Computer Engineering, 9(6), 4898.

[20] Pradeepa, R., & VimalDevi, K. (2013). Effectiveness of testcase prioritization using apfd metric: Survey. In

International Conference on Research Trends in Computer Technologies (ICRTCT—2013). Proceedings published

in International Journal of Computer Applications®(IJCA) (pp. 0975-8887).

