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Abstract: Various predictive models, both linear and non-linear, such as Multiple Linear Regression (MLR), Partial 
Least Squares (PLS), and Artificial Neural Network (ANN), were frequently employed for predicting the clinical 
scores of stroke patients. Nonetheless, the effectiveness of these predictive models is somewhat impacted by how 
features are selected from the data to serve as inputs for the model. Hence, it's crucial to explore an ideal feature 
selection method to attain the most accurate prediction performance. This study primarily aims to evaluate the 
performance of two non-motorized three-degree-of-freedom devices, namely iRest and ReHAD using MLR, PLS and 
ANN predictive models and to examine the usefulness of including a hand grip function with the assessment device. 
The results reveal that ReHAD coupled with non-linear model (i.e. ANN) has a better prediction performance 
compared to iRest and at once proving that by including the hand grip function into the assessment device may 
increase the prediction accuracy in predicting Motor Assessment Scale (MAS) score of stroke subjects. Furthermore, 
these findings imply that there is a substantial association between kinematic variables and MAS scores, and as such 
the ANN model with a feature selection of twelve kinematic variables can predict stroke patients' MAS scores. 
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1. Introduction 
Stroke often leads to upper limb motor impairment, a condition that substantially curtails functional abilities and 

significantly diminishes the quality of life for stroke survivors [1–4]. This upper limb impairment directly affects self-
sufficiency in everyday tasks, discharge destination, resuming work, emotional well-being, and overall quality of life due 
to motor limitations [5–7]. To address upper limb disability, it is crucial for stroke patients to engage in rehabilitation 
focused on the upper limb. The core objective of upper limb rehabilitation is to restore functional arm usage, enabling 
individuals to perform meaningful activities in their daily routines. The improved motor function also helps patients 
experiencing greater satisfied, heightened independence, and an overall improvement in their quality of life [8]. 

Various clinical scales such as Motor Assessment Scale (MAS) [9, 10], Fugl-Mayer Assessment (FMA) [11, 12], 
and Manual Muscle Test (MMT) [13, 14] are frequently adopted by therapists to evaluate the motor function of stroke 
patients throughout the rehabilitation program. Nonetheless, due to time constraints and limited resources, evaluating 
motor function with traditional clinical scales is challenging [15]. Moreover, the methods for scoring often exhibit 
subjectivity, demonstrate limited reliability, and rely significantly on the skill of proficient physiotherapists, leading to 
approximate evaluations of motor function [9, 16]. Over the past years, various assessment devices for upper limb stroke 
rehabilitation have emerged, aiming to support physiotherapists throughout the rehabilitation program [17–22]. These 
devices offer an accurate assessment of a motor sensory function of patients, enhancing the efficacy of the rehabilitation 
program [15, 23]. Kinematic variables generated by the device were employed as input predictor throughout the 
multivariate analysis to predict the clinical score of stroke patients [15].   

Different sorts of multivariate analysis approaches can be used to extract the important part of the information from 
a huge dataset in order to forecast the clinical scale scores. Multiple Linear Regression (MLR), Partial Least Squares 
(PLS), and Artificial Neural Network (ANN) algorithms have become popular techniques for deriving a linear or non-
linear input-output model from a provided dataset [24]. Nonetheless, the efficacy of the model is partially contingent 
upon the feature selection method employed. Hence, it is important to investigate an effective feature selection method 
for achieving the best prediction performance. In addition, various type of kinematic variables has been used as pivotal 
parameter to predict the clinical scores of stroke patients [23]. Grip strength is one of the kinematic variables required to 
assess upper limb performance. Therefore, it becomes necessary to investigate the potential effectiveness of integrating 
a hand grip function into the non-motorized assessment device.  

The principal objective of this study is to evaluate the performance of two non-motorized with three-degree-of-
freedom devices (iRest and ReHAD) using linear and non-linear predictive models and to examine the usefulness of 
including a hand grip function with the assessment device. The paper aims (i) to develop MLR, PLS, and ANN predictive 
models for predicting the MAS score of stroke subjects, (ii) to determine an effective feature selection method used in 
conjunction with predictive models for producing high prediction performance, (iii) to evaluate the prediction 
performance of iRest and ReHAD based on the root mean squared error (RMSE) and the coefficient of determination 
(R2). 

 
2. Research Method 

The participants for this study were chosen by the occupational therapists at SOCSO Tun Razak Rehabilitation 
Centre using specific inclusion criteria. These criteria included individuals who had experienced a stroke, had limited 
arm and hand movements, and had impaired hand function that affected their ability to perform typical activities of daily 
living (with a minimum MAS score of 3 for upper arm function). All subjects received daily conventional physiotherapy 
during the rehabilitation program. The motor sensory performance of each individual was assessed using the MAS at the 
completion of the study. Fig. 1 illustrates the research methodology’s overall framework. The original data collected 
from the assessment device will undergo analysis during the feature extraction phase, resulting in twelve kinematic 
variables. Subsequently, multivariate analysis will be employed to model the data and predict the MAS scores of each 
stroke subject.  
 

 

Fig. 1 - The process flows of MAS score prediction 
 
2.1 Robotic Assessment 

Two types of assessment devices, namely iRest and ReHAD were utilized in this study for assessing the upper limb 
performance of stroke subjects. Both assessment devices were devoid of motors and had three-degree-of-freedom, 
encompassing actions such as hand reaching, forearm manipulation, and hand grasping. The grasping mechanism for 
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iRest has been designed to assess hand opening/closing movement [25]. The problem faced with iRest was the moving 
fixture of the grasping mechanism can opening/closing itself during forearm pronation/supination position due to gravity. 
Thus, it does not allow the voluntary movement of forearm manipulation. Several research endeavors have indicated a 
positive correlation between grip strength and both motor function and the performance in activity of daily living [26, 
27]. Since grip strength is necessary for assessing the upper limb function [28], the grasping mechanism for ReHAD was 
designed to overcome the shortcomings of iRest by replacing the opening/closing function with the hand grip function 
for assessing hand grip strength of the stroke subject. Fig. 2 shows the grasping mechanism for iRest and ReHAD. This 
study takes into account the effect of body movement hence it will influence the performance prediction [29]. 

 

 
(a) (b) 

Fig. 2 - Grasping mechanism (a) iRest; (b) ReHAD 
 
Fifty subjects who had experienced strokes (comprising 36 males and 14 females) and presented with upper limb 

impairment took part in a half-hour robotic assessment, where ten minutes were allocated for each assessment module. 
Subjects need to undergo three trials for each assessment module, starting with Draw Capital I (Draw I), Draw Diamond 
(Draw D), and Draw Circle (Draw C), where the experiment design implemented in this study was identical to the prior 
study [16, 25]. Upon completion of the assessment process, the data pertaining to each subject such as position, time and 
grip force were extracted from the assessment device. A dataset consisting of 150 samples was generated following the 
assessment process conducted on a sample of 50 stroke subjects. 
 
2.2 Feature Extraction 

The feature extraction phase was executed using MATLAB software to generate twelve kinematic variables from 
the raw data extracted from the assessment device. These variables encompassed reaction time, total movement time, 
stability time, time to peak velocity, mean velocity, peak velocity, target reached, trajectory error, hit-wall score, path 
ratio, grasping, and number of peaks speed. These kinematic variables were extracted because the kinematic parameters 
obtained through out the robotic assessment reflect the motor performance of stroke patients. The computation methods 
for the kinematic variables were based on the prior study [16, 30]. 
 
2.3 Feature Selection 

The concept of feature selection pertains to identifying the optimal amalgamation of predictor variables that holds 
the greatest influence on the predictive model. A study using a 3R horizontal robot showed that by using all kinematic 
variables as input predictors for the ANN model was able to produce high predictive performance [31]. In addition, a 
study conducted utilizing Kinect employed over twelve predictors in the ANN model, yielding substantial predictive 
performance in estimating the FMA clinical score of stroke subjects [32]. Other studies have found that the combination 
of four kinematic variables exhibited sufficient strength to yield a robust regression model with favorable predictive 
performance [16, 33]. Moreover, a study was carried out utilizing MIT-Manus, wherein four kinematic variables were 
employed as predictors for the MLR model resulting the best prediction performance [34]. Other than that, a research 
utilized univariate regression to determine the input predictor for the multiple regression model with a p-value less than 
0.2 [35]. However, only the input predictor with a p-value below 0.05 was retained for the final model, as it exhibited a 
statistically substantial contribution to the regression model. 

Within this study, three distinct feature selection methods were observed in order to obtain the best prediction 
accuracy of the MAS score. Since this study extracted twelve kinematic variables from the assessment device, all twelve 
kinematic variables were utilized as the first feature selection method for the predictive model. Moreover, the optimal 
sets of four kinematic variables were employed as the secondary feature selection method for evaluating the effectiveness 
of the multivariate model for predicting the MAS scores. The combination was determined via the implementation of the 
leave-one-out cross-validation method. One point of the data was sequentially released, and the remaining data were 
utilized to train the predictive model. Subsequently, the RMSE was calculated contrasting the predicted MAS score of 
the unused data point against the actual MAS score. A set of four kinematic variables that resulted the lower RMSE value 
was selected using a comprehensive search of all conceivable combinations. As the third feature selection method, the 
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combinations of kinematic variables with p < 0.05 have been selected for evaluating the performance of the multivariate 
model for MAS score prediction. 

 
2.4 Multiple Linear Regression 

Multiple Linear Regression (MLR) is the most fundamental and straightforward approach for experimental analysis 
and data processing in analytical contexts. It serves as a sophisticated statistical approach for elucidating correlations 
between multiple input predictors and a single response variable [36, 37]. The response variables y exhibit linear 
correlations with multiple predictor variables. The following describes the multiple linear regression model in Eq. (1). 

 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛          (1) 

where, y represents the response variable, x symbolizes the predictor variables, β0 denotes the bias, while β1, β2, …, βn 
correspond to the coefficient of predictor variables. These values are determined through the process of training the 
samples. The majority of studies that have used MLR to predict upper limb performance in stroke rehabilitation have 
found a strong correlation between the MLR and the clinical scales [9, 33, 36]. In this study, the data sets were divided 
into two, which allocated 100 data sets for training and 50 data sets for testing. The training data sets were used to train 
the MLR model, whereas testing data sets were used to determine the accuracy of the MLR model to predict the MAS 
score of stroke patients. 

2.5 Partial Least Squares Regression 
The general idea behind Partial Least Squares (PLS) modeling is to partition the design matrix predictor X and matrix 

response Y as Eqs. (2) and (3). X denotes a n x m predictor matrix, and Y signifies a n x p response matrix. Additionally, 
matrices T and U, both with dimensions n x l represent the score projections for X and Y correspondingly. Matrices P (m 
x l) and Q (p x l) stand as orthogonal loading matrices. The algorithms will produce the PLS regression estimates B and 
Bo following the estimation of the loading and factor matrices T, U, P, and Q for the linear regression, as outlined in Eq. 
(4). 
 

𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑇𝑇               (2) 
 
𝑌𝑌 = 𝑈𝑈𝑄𝑄𝑇𝑇                      (3) 

 
𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑋𝑋𝑜𝑜                     (4) 
 

where B and Bo represent the regression coefficient of the PLS model. In this study, the regression coefficients were 
computed by using the MATLAB matrix routine’s function. PLS components ranging from one until twelve were 
analyzed to optimize the accuracy of the MAS score predictions. The data sets for the PLS model were divided into 
training and testing samples (100 and 50 data set respectively).  
 
2.6 Artificial Neural Network 

The Artificial Neural Network (ANN) stands as the prevalent choice for non-linear prediction due to its ability to 
capture intricate non-linear associations between predictor variables and the response variable. The configuration of the 
ANN model encompasses the input layer, hidden layer, and output layer, all interlinked to one another in a complete 
connection. The signal was transmitted from the input layer to the output layer via the intermediary hidden layer. The 
connection between the nodes is known as weights, and there is an additional bias input in both the hidden and output 
layers. Fig. 3 depicts the feed forward back propagation of the 12-1-1 ANN model.  
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Fig. 3 - Feed forward back propagation ANN for MAS score prediction 

 
The input of the ith node hidden layer (HSumh) is calculated using Eq. (5). The output of the hidden layer node 

(HSumhout) is determined using Eq. (6). The weighted sum of the output layer (OSumout) is derived through the utilization 
of Eq. (7). 
 

𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆ℎ = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑏𝑏𝑖𝑖ℎ            (5) 

𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆ℎ)                      (6) 

𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜 = 𝑓𝑓�∑ 𝑥𝑥𝑖𝑖ℎ𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖ℎ + 𝑏𝑏𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�                                (7) 

 
where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛 denotes the input value, 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛 represents the weight of the input layer, and 𝑏𝑏𝑖𝑖ℎ stands for the bias of 
the input layer. The activation function for this layer is denoted as f. For achieving accuracy, a single hidden layer is 
adequate for approximating any non-linear function effectively [38]. Within this research, the exploration of hidden nodes 
in the hidden layer ranged from one to ten, aiming to enhance the precision of MAS score predictions. Additionally, 
tangent sigmoid activation function has been applied within the hidden and output layer of the ANN model. The data sets 
for the ANN model were divided into three including training, validation, and testing samples (100, 25, and 25 data sets 
respectively). 
 
3. Result 

This section addresses the comprehensive findings of this study, encompassing the outcomes of the MLR, PLS, and 
ANN predictive models, incorporating the three distinct feature selection techniques explored in this study. A comparison 
between all predictive models with the best feature selection method for iRest and ReHAD were discussed at the end of 
this section. 

 
3.1 Multiple Linear Regression 

The results of root mean squared error (RMSEtr) and coefficient of determination (𝑅𝑅𝑜𝑜𝑡𝑡2 ) of training data sets were 
slightly better compared to testing data sets. The performance of the MLR model was observed from the root mean 
squared error (RMSEte) and coefficient of determination (𝑅𝑅𝑜𝑜𝑡𝑡2 ) of testing data sets . Table 1 and Table 2 exhibit the MLR 
predictive model’s performance for iRest and ReHAD correspondingly. In accordance with Table 1, for each assessment 
module employing iRest, all feature selection methods have RMSEte values lower than 3.3. In the context of the first 
feature selection approach, which encompassed the incorporation of twelve kinematic variables in the regression analysis, 
the Draw I module demonstrated superior predictive precision (RMSEte=2.6232, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.7921) on contrast to the other 
two modules. Furthermore, in the second feature selection approach, the prediction performance of the Draw C module 
(RMSEte=3.1015, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.6934) was improved while the other two modules were dropped. In the third approach to feature 
selection, which involved retaining only kinematic variables with a p-value below 0.05 as predictors for the MLR model, 
the Draw I module showcased the most remarkable predictive capability (RMSEte=2.5952, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.7882), trailed by the 
Draw C and Draw D modules. The evaluation of the MLR model with iRest demonstrated that the third feature selection 
method has outstanding performance, with two of the three assessment modules performing well in the regression 
analysis. 
 

Table 1 - The performance of MLR model for iRest 

Features selection Module 
Training Testing 

RMSEtr  RMSEte  
All kinematic variables Draw I 2.4846 0.8001 2.6232 0.7921 

Draw D 2.6755 0.7683 2.8553 0.7374 
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Draw C 2.3388 0.8228 3.2943 0.6642 
Best combinations of 4 
kinematic variables 

Draw I 2.5763 0.7852 2.6379 0.7758 
Draw D 2.7717 0.7513 2.8968 0.7312 
Draw C 2.4422 0.8069 3.1015 0.6934 

Kinematic variables 
with p_value < 0.05 

Draw I 2.5253 0.7935 2.5952 0.7882 
Draw D 2.7072 0.7627 2.8945 0.7305 
Draw C 2.7325 0.7583 2.7544 0.7550 

 
Table 2 - The performance of MLR model for ReHAD 

Features selection Module 
Training Testing 

RMSEtr  RMSEte  
All kinematic variables Draw I 1.4948 0.9166 2.1968 0.8221 

Draw D 1.9117 0.8636 2.5538 0.7592 
Draw C 2.0198 0.8477 2.1606 0.8276 

Best combinations of 4 
kinematic variables 

Draw I 1.9273 0.8614 1.9591 0.8571 
Draw D 2.2883 0.8046 2.5173 0.7672 
Draw C 2.1082 0.8341 2.3366 0.7997 

Kinematic variables 
with p_value < 0.05 

Draw I 1.8975 0.8656 1.9228 0.8623 
Draw D 2.0603 0.8416 2.6136 0.7477 
Draw C 2.0404 0.8446 2.1756 0.8268 

 
As indicated in Table 2, the Draw C module outperformed the other two modules with regard to the prediction 

performance (RMSEte=2.1968, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.8221) when employing the first feature selection approach, which encompassed all 
kinematic variables within the regression analysis.  In contrast, the Draw D module exhibited the least accurate prediction, 
characterized by a higher RMSEte value and the lowest 𝑅𝑅𝑜𝑜𝑡𝑡2  value. Under the second approach of feature selection, 
wherein only the top four kinematic variables were chosen as predictors for the MLR model, the Draw I module delivered 
the most favorable predictive outcome (RMSEte=1.9591, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.8571). Among the many feature selection methods 
employed, the third approach involved retaining only kinematic variables with a p-value below 0.05 for the purpose of 
regression analysis. Notably, the Draw I module had the most superior predictive ability, as seen by its RMSEte value of 
1.9228 and 𝑅𝑅𝑜𝑜𝑡𝑡2  value of 0.8623. Subsequently, the Draw C and Draw D modules followed suit in terms of prediction 
performance. The MLR model’s prediction performance for ReHAD was evaluated, and it was observed that the third 
feature selection approach exhibited outstanding results. Specifically, two out of three assessment modules achieved the 
maximum prediction accuracy in the regression analysis. Overall, the findings of the multiple linear regression (MLR) 
model indicate that ReHAD exhibits superior performance in evaluating the upper limb performance of stroke subjects 
when compared to iRest.  

 
3.2 Partial Least Square Regression 

The performance of the PLS predictive model was evaluated based on the value of RMSEte and 𝑅𝑅𝑜𝑜𝑡𝑡2 . The accuracy 
of the Partial Least Squares (PLS) predictive model is seen in Table 3 and Table 4, which present the results for iRest 
and ReHAD, respectively. Most of the outcomes generated by the Partial Least Squares (PLS) prediction model exhibit 
greater accuracy in comparison to the Multiple Linear Regression (MLR) prediction model. However, some results are 
similar to the MLR prediction model due to the number of PLS components is maximum corresponding to the number 
of kinematic variables as an input predictor depending on the type of feature selection method.  

 
Table 3 - The performance of PLS model for iRest 

Features selection Module PLS 
Comp 

Training Testing 
RMSEtr  RMSEte  

All kinematic variables Draw I 3 2.4914 0.8006 2.5543 0.7991 
Draw D 4 2.6965 0.7646 2.8364 0.7409 
Draw C 2 2.6403 0.7743 2.9637 0.7177 

Best combinations of 4 
kinematic variables 

Draw I 2 2.5890 0.7830 2.6354 0.7818 
Draw D 3 2.7718 0.7513 2.8948 0.7315 
Draw C 4 2.4422 0.8069 3.1015 0.6934 

Kinematic variables 
with p_value < 0.05 

Draw I 4 2.5258 0.7935 2.5905 0.7893 
Draw D 3 2.7681 0.7519 2.8528 0.7390 
Draw C 3 2.7143 0.7615 2.7383 0.7606 

 
 



Sulaiman et al., Int. Journal of Integrated Engineering Vol. 15 No. 4 (2023) p. 237-247 

 243 

Table 4 - The performance of PLS model for ReHAD 

Features selection Module PLS 
Comp 

Training Testing 
RMSEtr  RMSEte  

All kinematic variables Draw I 3 1.7525 0.8854 2.1198 0.8334 
Draw D 3 1.9924 0.8518 2.5079 0.7675 
Draw C 4 2.0388 0.8449 2.1238 0.8331 

Best combinations of 4 
kinematic variables 

Draw I 4 1.9273 0.8614 1.9591 0.8571 
Draw D 4 2.2883 0.8046 2.5173 0.7672 
Draw C 4 2.1082 0.8341 2.3366 0.7997 

Kinematic variables 
with p_value < 0.05 

Draw I 6 1.8976 0.8656 1.9205 0.8627 
Draw D 4 2.0823 0.8382 2.5806 0.7539 
Draw C 4 2.0538 0.8426 2.1392 0.8318 

 
According to the data presented in Table 3, the initial feature selection approach that used all kinematic variables as 

predictors for the Partial Least Squares (PLS) model yielded the most accurate prediction results. Specifically, the Draw 
I module featuring a PLS component of 3 achieved the highest prediction performance, as seen by its RMSEte value of 
2.5543 and 𝑅𝑅𝑜𝑜𝑡𝑡2  value of 0.7991. Additionally, Draw I module also demonstrated remarkable prediction performance 
(RMSEte=2.6354, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.7818) in the second feature selection approach, which involved selecting only the best four 
kinematic variables as predictor variables. Nevertheless, the performance of the second feature selection method, which 
encompasses all assessment modules, has exhibited a decline in comparison to the first feature selection method. The 
performance of the third feature selection approach showed improvement across all assessment modules in comparison 
to the second feature selection approach. Moreover, it is worth noting that Draw I exhibited the most favorable prediction 
outcome (RMSEte=2.5905, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.7893), thus indicating that Draw C and Draw D modules had comparatively lower 
performance in terms of prediction accuracy. The PLS model’s performance for iRest demonstrated that the first feature 
selection method yielded exceptional outcomes, with two out of the three assessment modules scoring the highest 
prediction accuracy in the regression analysis. 

Based on Table 4, the Draw I module featuring a PLS component score of 3 demonstrates superior predictive ability 
(RMSEte=2.1198, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.8334) in contrast to the other modules when utilizing the first feature selection approach. The 
second approach of feature selection, which selected the best set of four kinematic variables as predictors, Draw I module 
featuring a PLS component of 4 yielded the best performance (RMSEte=1.9591, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.8571). The Draw C and Draw D 
modules also performed well in terms of prediction accuracy. There was a similarity of results for all assessment modules 
in the second feature selection approach with the MLR predictive model. This happened due to the number of PLS 
components was equal to the number of predictor inputs for the predictive model. In the context of the third feature 
selection approach, which exclusively incorporated kinematic variables with a p-value below 0.05 into the regression 
analysis, the Draw I module demonstrated the highest predictive proficiency (RMSEte=1.9205, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.8627), trailed by 
the Draw C and Draw D modules. The prediction performance of the PLS model with ReHAD showed that the first 
feature selection approach performed remarkably well, with two out of the three assessment modules getting the best 
prediction accuracy in the regression analysis. Overall, the results of the PLS predictive model indicated that ReHAD 
displays superior prediction performance in assessing stroke subjects’ upper limb performance compared to iRest. 

 
3.3 Artificial Neural Network 

The training data sets exhibited marginally better results in terms of root mean squared error (RMSEtr) and coefficient 
of determination (𝑅𝑅𝑜𝑜𝑡𝑡2 ) as compared to the testing data sets. The performance of the ANN model was examined from the 
value of RMSEte and 𝑅𝑅𝑜𝑜𝑡𝑡 

2 of testing data sets. Table 5 and Table 6 exhibit the ANN predictive model’s performance in 
relation to iRest and ReHAD respectively.  
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Table 5 - The performance of ANN model for iRest 

Features selection Module Hn 
Training Testing 

RMSEtr  RMSEte  
All kinematic variables Draw I 8 1.3485 0.9414 1.4108 0.9335 

Draw D 10 1.3295 0.9431 1.4687 0.9416 
Draw C 6 1.1894 0.9544 1.2593 0.9465 

Best combinations of 4 
kinematic variables 

Draw I 10 1.2282 0.9517 1.4469 0.9435 
Draw D 8 1.5265 0.9247 1.6104 0.9135 
Draw C 10 1.3596 0.9402 1.4374 0.9306 

Kinematic variables 
with p_value < 0.05 

Draw I 6 1.4161 0.9353 1.5732 0.9201 
Draw D 3 1.2566 0.9497 1.4014 0.9338 
Draw C 9 1.4891 0.9290 1.5161 0.9224 

 
Table 6 - The performance of ANN model for ReHAD 

Features selection Module Hn 
Training Testing 

RMSEtr  RMSEte  
All kinematic variables Draw I 7 1.0398 0.9604 1.2234 0.9526 

Draw D 7 0.8271 0.9745 1.0520 0.9619 
Draw C 6 0.6501 0.9848 1.1044 0.9583 

Best combinations of 4 
kinematic variables 

Draw I 7 1.3055 0.9377 1.4260 0.9296 
Draw D 10 0.9917 0.9636 1.1152 0.9570 
Draw C 7 1.2292 0.9436 1.4627 0.9253 

Kinematic variables 
with p_value < 0.05 

Draw I 10 1.2418 0.9431 1.4838 0.9250 
Draw D 10 0.9074 0.9694 1.2930 0.9428 
Draw C 7 0.9335 0.9676 1.0873 0.9606 

 
Based on the findings shown in Table 5, it can be observed that all feature selection methods yielded RMSEte values 

below 2.0 and 𝑅𝑅𝑜𝑜𝑡𝑡2  values exceeding 0.9 for each assessment module when using iRest. In the regression study, the first 
feature selection approach utilized twelve kinematic variables as predictors for the ANN model. Among the three 
modules, the Draw C module with a hidden neuron of 6 demonstrated the most accurate prediction results, as indicated 
by a RMSEte value of 1.2593 and 𝑅𝑅𝑜𝑜𝑡𝑡2 value of 0.9465. In the second feature selection approach, the Draw C module 
exhibits the most favorable prediction outcome (RMSEte=1.4374, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9306), trailed by the Draw I and Draw D 
modules. However, the 𝑅𝑅𝑜𝑜𝑡𝑡2  for the Draw I module (0.9435) was higher compared to the Draw C module. For this 
situation, the selection of best performance was selected based on RMSEte since RMSE is an absolute measure of fit. 
When comparing all assessment modules engaged in the third feature approach method, the Draw D module with a hidden 
neuron of 3 has the highest prediction performance (RMSEte=1.4014, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9338). The performance of the ANN model 
for iRest shows that the first feature selection approach has higher performance by 66.67% in contrast to other two feature 
selection methods involved. 

According to the data presented in Table 6, the Draw D module with a hidden neuron of 7 scored the highest 
prediction performance (RMSEte=1.0520, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9619) in contrast to the other two modules in the first feature selection 
method. The second method of feature selection, which selected the best four kinematic variables as predictors, Draw D 
module with a hidden neuron of 10 yielded the best performance (RMSEte=1.1152, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9570). In contrast to the other 
assessment modules employed, the Draw C module exhibits the poorest performance, as evidenced by its notably lower 
values of RMSEte and 𝑅𝑅𝑜𝑜𝑡𝑡2 . However, the Draw C module with a hidden neuron of 7 demonstrates remarkable predictive 
capabilities (RMSEte=1.0873, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9606) in the third feature selection method trailed by Draw D and Draw I modules. 
The findings of the ANN model’s performance for ReHAD indicate that the first feature selection method exhibited 
exceptional performance. Specifically, 66.67% of the assessment module scored the highest prediction results, surpassing 
the outcomes achieved by the other two feature selection approach employed in the study. In general, the outcomes from 
the ANN predictive model indicate that ReHAD exhibits admirable performance in evaluating upper limb performance 
among stroke patients, as compared to iRest. 

 
4. Discussion 

The feature selection method plays an important role in improving the predictive accuracy of the predictive models. 
In this study, three distinct feature selection approaches are utilized to identify the optimal prediction accuracy for the 
MAS score. The findings of the predictive analysis highlight that the first feature selection approach, which incorporates 
twelve kinematic variables in the regression analysis, has superior performance with a 56% advantage over alternative 
methods. This is due to the fact that all of the kinematic variables that were recorded throughout the assessment contribute 
to highlight significant information regarding the motor performance of the stroke subject [23]. Each kinematic variable 
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holds its own distinct substantial input for analyzing the upper limb performance based on the three basic hand functions 
(hand reaching, forearm manipulation, and grasping). Therefore, it is noteworthy that incorporating all twelve kinematic 
variables as input predictors in the predictive model could potentially enhance the precision in predicting the MAS score 
of stroke subjects. Table 7 shows the performance of all predictive models for ReHAD. 

 
Table 7 - The performance of predictive models with the first feature selection method for ReHAD 

 MLR PLS ANN 
Draw I Draw D Draw C Draw I Draw D Draw C Draw I Draw D Draw C 

RMSE 2.1968 2.5538 2.1606 2.1198 2.5079 2.1238 1.2234 1.0520 1.1044 
R2 0.8221 0.7592 0.8276 0.8334 0.7675 0.8331 0.9526 0.9619 0.9583 
 
In this study, two types of linear predictive models (MLR and PLS) and a non-linear predictive model (ANN) have 

been used to predict MAS scores. The results demonstrate that the performance of the PLS predictive model is marginally 
better than that of the MLR predictive model. The use of eigenvectors for the predictor variables ensures that the 
corresponding scores not only fully explain the variance of the predictor variables but also have a high correlation with 
the response variables, which gives PLS predictive model an advantage over MLR predictive model. However, the 
outcomes also corroborate the conclusions drawn in a prior study that the ANN predictive model outperformed the PLS 
predictive model in terms of prediction performance [39]. This could be because of the presence of non-linear information 
within the kinematic variables. Furthermore, the ANN predictive model exhibits a higher prediction accuracy due to its 
inherent ability to approximate the non-linearity of the system, which is not possible with the PLS model since it is 
constrained by linearity [40]. This study indicates that the ANN predictive model has better prediction performance 
compared to MLR and PLS predictive models for both iRest and ReHAD assessment devices. Besides, the MAS score 
and predicted MAS score have statistically significant (p < 0.05) correlations in all cases.  

Several studies have indicated a positive correlation between grip strength and motor function, as well as 
performance in activity of daily living [26, 27]. In MAS, there are some upper limb activities under the hand movement 
section that require the stroke subject to lift some object such as a cylindrical object, a 5-inch ball, and a polystyrene cup. 
A certain amount of hand grip strength is required in order to be able to lift the objects. The implementation of the hand 
grip function in the grasping mechanism makes ReHAD different from iRest, where the grasping mechanism for ReHAD 
can be used to assess the hand grip force of the stroke subject. Observing Table 6 and Table 7, the findings suggest that 
ReHAD combined with the ANN predictive model, utilizing all twelve kinematic variables as predictors, exhibits greater 
resilience in evaluating novel and unobserved test sets samples of kinematic variables. It had been evaluated through the 
lower value of RMSEte and higher value of 𝑅𝑅𝑜𝑜𝑡𝑡2 . Moreover, the results of the predictive analysis underscore that by 
including the hand grip function in the non-motorized three-degree-of-freedom assessment device, may increase the 
prediction accuracy in predicting the MAS score of stroke subjects.  

The results reported herein should be considered in the light of some limitations. This study focuses only on the 
linear and non-linear predictive models for predicting the clinical score of the stroke subjects. Other types of dedicated 
predictive models should be examined in order to achieve the best prediction performance on predicting the MAS score. 
The uses of the hybrid predictive model such as MLR combined with ANN (MLR-ANN) and PLS combined with ANN 
(PLS-ANN) that considering the linear and non-linearity of the data should be investigated in further studies with the 
larger sample dataset of stroke patients. 
 
5. Conclusions 

A study was carried out utilizing two assessment devices, namely iRest and ReHAD for the purpose of predicting 
clinical scale scores through MLR, PLS, and ANN predictive models. To summarize, choosing an appropriate feature 
selection method is important for enhancing the predictive accuracy of the predictive model. Findings show that the 
feature selection of all kinematic variables as predictors for the predictive model yields commendable prediction 
performance for both devices. Notably, iRest excels with the Draw C module (RMSEte=1.2593, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9465) while 
ReHAD showcased its peak performance with the Draw D module (RMSEte=1.0520, 𝑅𝑅𝑜𝑜𝑡𝑡2 =0.9619). In addition, the results 
reveal that ReHAD coupled with ANN predictive model has a better performance of prediction compared to iRest for 
most assessment modules and at once proving that by including the hand grip function into the non-motorized three-
degree-of-freedom assessment device could improve the prediction accuracy in predicting MAS score of stroke subjects.  
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