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ABSTRACT

This thesis presents a novel approach to video understanding by emulating human perceptual

processes and creating an explainable and coherent storytelling representation of video content.

Central to this approach is the development of a Visual-Linguistic (VL) feature for an interpretable

video representation and the creation of a Transformer-in-Transformer (TinT) decoder for modeling

intra- and inter-event coherence in a video.

Drawing inspiration from the way humans comprehend scenes by breaking them down into visual

and non-visual components, the proposed VL feature models a scene through three distinct modal-

ities. These include: (i) a global visual environment, providing a broad contextual understanding

of the scene; (ii) local visual main agents, focusing on key elements or entities in the video; and

(iii) linguistic scene elements, incorporating semantically relevant language-based information for

a comprehensive understanding of the scene. By integrating these multimodal features, the VL

representation offers a rich, diverse, and interpretable view of video content, effectively bridging

the gap between visual perception and linguistic description.

To ensure the temporal coherence and narrative structure of the video content, we introduce an

autoregressive Transformer-in-Transformer (TinT) decoder. The TinT design consists of a nested

architecture where the inner transformer models the intra-event coherency, capturing the semantic

connections within individual events, while the outer transformer models the inter-event coherency,

identifying the relationships and transitions between different events. This dual-layer transformer

structure facilitates the generation of accurate and meaningful video descriptions that reflect the

chronological and causal links in the video content.

Another crucial aspect of this work is the introduction of a novel VL contrastive loss function. This

function plays an essential role in ensuring that the learned embedding features are semantically

consistent with the video captions. By aligning the embeddings with the ground truth captions, the

VL contrastive loss function enhances the model’s performance and contributes to the quality of

the generated descriptions.



The efficacy of our proposed methods is validated through comprehensive experiments on popular

video understanding benchmarks. The results demonstrate superior performance in terms of both

the accuracy and diversity of the generated captions, highlighting the potential of our approach in

advancing the field of video understanding.

In conclusion, this thesis provides a promising pathway toward building explainable video under-

standing models. By emulating human perception processes, leveraging multimodal features, and

incorporating a nested transformer design, we contribute a new perspective to the field, paving the

way for more advanced and intuitive video understanding systems in the future.
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Chapter 1

INTRODUCTION AND BACKGROUND

This chapter lays the foundation for our exploration into the world of video captioning, providing

both an introduction and a comprehensive background context. The materials presented here are

crucial for understanding the progression of ideas and the core methodologies applied in the ensuing

discussions and analyses. In Section 1.1, we delve into the foundational concepts of deep learning,

including problem formulation, optimization techniques, and architectural components such as

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Transformers. In

Section 1.2, we delve into related research areas in video representation and its various approaches.

We also discuss the advantages and challenges of this technique. In Section 1.3, we present the

applications of video understanding, with a focus on video captioning. We highlight the benefits

of using this technique in each of these domains. Finally, in Section 1.4, we outline our research

contributions Our study is committed to augmenting our understanding of video captioning, a goal

we aspire to achieve by enhancing the model’s explainability and incorporating an inductive bias

within the model. We believe that our research can contribute to the advancement of deep learning

and its applications. We hope that the insights gleaned from this work will not only serve academic

interest but also foster practical improvements in the wider realm of video understanding.

1.1 Deep Learning

Deep learning is a method of machine learning that leverages deep neural networks with multiple

linear and non-linear layers1 to learn complex patterns in data. With a hierarchical connection of

neurons that transform input data into progressively more abstract representations, deep learning

models can approximate highly nonlinear functions with unprecedented accuracy. In general,

deep learning models try to model the data distribution 𝑝𝑑𝑎𝑡𝑎 with a probability model 𝑝𝜃 with

a learnable parameter 𝜃. Although we don’t have direct access, we assume the existence of the

data distribution and we substitute it with empirical distribution 𝑝 |D|
𝑑𝑎𝑡𝑎

of dataset D. An empirical
1The most commonly used activation functions are 𝜎(𝑥) = 1

1+exp(−𝑥 ) , tanh(𝑥) = exp(𝑥 )−exp(−𝑥 )
exp(𝑥 )+exp(−𝑥 ) , and ReLU(𝑥) =

max(0, 𝑥).



2

distribution will converge to the data distribution as we increase the number of data samples:

lim|D|→∞ 𝑝
|D|
𝑑𝑎𝑡𝑎

= 𝑝𝑑𝑎𝑡𝑎. To model the data distribution via an empirical distribution, we use a

statistical distance and minimize the difference between the probability model and the empirical

distribution. To this end, a family of f-divergence or integral probability metrics is often utilized

in the context of deep learning. Kullback-Leibler (KL) divergence is one of the most commonly

used instances of f-divergence2 as a measure of two probability distributions over the same random

variable. Consider two probability distributions 𝑃 and 𝑄. Usually, 𝑃 represents the data or the

observations, and 𝑄 represents a model or an approximation of 𝑃. Then, the KL divergence from

𝑄 to 𝑃 is given as:

𝐷𝐾𝐿 (𝑃 | |𝑄) = E𝑥∼𝑃
[
log

𝑃(𝑥)
𝑄(𝑥)

]
= E𝑥∼𝑃 [log 𝑃(𝑥) − log𝑄(𝑥)] (1.1)

We need to note that the KL divergence is not a true distance measure because it is asymmetric,

i.e., 𝐷𝐾𝐿 (𝑃 | |𝑄) ≠ 𝐷𝐾𝐿 (𝑄 | |𝑃), as we notice from the formula.

As we want to find a parameter 𝜃∗ that minimizes the distance between the empirical distribution

and the model, the training objective can be formulated as a minimization of KL divergence. For

a discriminative model, we will model the conditional probability distribution 𝑝(𝑦 |𝑥) given an

annotated dataset D = {(𝑥 (𝑛) , 𝑦 (𝑛))} |D|
𝑛=1, which consists of a set of data 𝑥 and its corresponding

labels 𝑦.

𝜃∗ = argmin
𝜃

E
𝑥,𝑦∼𝑝 |D |

𝑑𝑎𝑡𝑎

[
log 𝑝 |D|

𝑑𝑎𝑡𝑎
(𝑦 |𝑥) − log 𝑝𝜃 (𝑦 |𝑥)

]
= argmax

𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖)
(1.2)

For a regression problem, we usually model the label 𝑦 with a normal distribution with a mean

determined by a function 𝑓 with parameter 𝜃 and some fixed variance of𝜎2
𝑦 , i.e., 𝑦𝑖 ∼ N( 𝑓𝜃 (𝑥𝑖), 𝜎2

𝑦 ).
2KL divergence is the f-divergence generated by 𝑓 (𝑥) = 𝑥 ln 𝑥
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Considering the probability density function of the normal distribution3, we can rewrite the objective

function as follows:

argmax
𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = argmin
𝜃

1
2𝜎2

𝑦

|D|∑︁
𝑖=1
( 𝑓𝜃 (𝑥𝑖) − 𝑦𝑖)2 (1.3)

Therefore, the maximization of the log-likelihood of the regression model is equivalent to the

minimization of the squared error between the predicted and ground-truth values.

For a classification problem, we consider that the label 𝑦 is drawn from a categorical distribution

that follows class probabilities 𝜋1, . . . , 𝜋𝑘 , i.e., 𝑦𝑖 ∼ 𝐶𝑎𝑡 (𝜋𝑖), which can be represented by the output

of the softmax function. The softmax function takes a vector 𝑧 ∈ R𝑘 with 𝑘 values as its input and

normalizes it into a probability distribution consisting of 𝑘 probabilities. We apply this function to

the output of 𝑓 to model the categorical distribution of 𝑦, i.e., 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = softmax( 𝑓𝜃 (𝑥𝑖)). The

softmax function is defined as follows for 𝑘 ≥ 1:

softmax(𝑧𝑖) =
exp(𝑧𝑖)∑𝑘
𝑗=1 exp(𝑧 𝑗 )

for 𝑖 = 1, . . . , 𝑘 (1.4)

Then, the objective function of the model can be rewritten as follows according to the probability

mass function of a categorical distribution4:

argmax
𝜃

|D|∑︁
𝑖=1

log 𝑝𝜃 (𝑦𝑖 |𝑥𝑖) = argmin
𝜃

|D|∑︁
𝑖=1

𝑘∑︁
𝑗=1
−𝑦𝑖, 𝑗 log softmax( 𝑓𝜃 (𝑥𝑖, 𝑗 )) (1.5)

This shows that the maximization of the log-likelihood of the classification model is equivalent to

the minimization of the cross-entropy loss.

When trying to find the 𝜃∗ that satisfies Equation 1.3 or Equation 1.5, depending on the problem

setup, we will find it very difficult to obtain an analytical solution because of the complexity of the

3The probability density function of normal distribution is: 𝑓 (𝑥) = 1
𝜎
√

2𝜋
exp

(
− 1

2
( 𝑥−𝜇

𝜎

)2
)

4The probability mass function of a categorical distribution is: 𝑓 (𝑥 |𝑝) = ∏𝑘
𝑖=1 𝑝

𝑥𝑖
𝑖
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function 𝑓 implemented with a neural network. Therefore, we instead use a numerical method called

stochastic gradient descent (SGD). SGD is an iterative optimization technique used to optimize an

objective function. It can be seen as a stochastic approximation of gradient descent optimization

because it replaces the true gradient, which is calculated using the entire data set, with an estimated

gradient calculated from a randomly selected subset of the data. As we consider the problem of

empirical risk minimization, the value 𝐿𝑖 (𝜃), which is the loss function at 𝑖𝑡ℎ observation in the

dataset to approximate the true gradient of the empirical risk 𝐿 (𝜃), is used to update the parameter

𝜃:

𝜃 ← 𝜃 − 𝜂∇𝐿𝑖 (𝜃) (1.6)

During the execution of the algorithm, it iteratively applies the above update for every training

sample in the dataset. Multiple passes over the training set can be performed until the algorithm

reaches convergence. To avoid cyclic patterns, the data can be shuffled before each pass. In practice,

the gradient against more than one training sample, called a mini-batch, is used to alleviate a large

deviation in gradient and slow convergence.

In the following subsections, we will introduce some widely-adopted network architectures in deep

learning.

Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) refers to a category of fully connected, feedforward artificial neural

networks. It is composed of a series of linear and non-linear operations arranged in an alternating

fashion. Following is an instance of MLP that can be commonly seen in a Transformer block,

which will be described in detail in the subsequent subsection:

MLP(𝑥) = 𝜎(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1.7)
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where𝑊1,𝑊2 are the linear transformation weights, 𝑏1, 𝑏2 are bias, and 𝜎 is a non-linearity, which

is usually set to Rectified Linear Unit (ReLU) (Agarap, 2018) activation or Gaussian Error Linear

Unit (GELU) (Hendrycks and Gimpel, 2016).

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a neural network architecture that is specialized for

processing data with local structure. This includes time-series data like audio, which can be

thought of as a 1D sequence with regular temporal sampling interval, image data, which can be

thought of as a 2D grid of pixels, and video data, which can be thought of as a 3D grid of pixels with

temporal consistency. CNN achieves this by using a convolutional layer that introduces locality

and translation equivariant5 maps by sharing the parameters of the linear transformation in every

location. This property brings a strong inductive bias about the data structure into the model. The

operation of a 2D convolutional layer can be summarized as:

𝑥
(𝑙+1)
𝑖, 𝑗

=

𝑘ℎ∑︁
ℎ=1

𝑘𝑤∑︁
𝑤=1

𝑊ℎ,𝑤𝑥
(𝑙)
(𝑖+ℎ),( 𝑗+𝑤) + 𝑏 (1.8)

where𝑊 ∈ R𝑘ℎ×𝑘𝑤×𝐶 (𝑙)×𝐶 (𝑙+1) is the convolutional weights that will be shared throughout the spacial

dimension and 𝑏 is a bias term.

Residual Network

Residual network (ResNet) (He, X. Zhang, et al., 2016) is a special instance of CNN introduced to

train deep neural networks. ResNet explicitly reformulates the layers as learning residual functions

with reference to the layer inputs by a residual connection. A residual connection is an identity

mapping that allows for the direct flow of information from the earlier layer to the later layer,

bypassing intermediate layers. The purpose of introducing residual connections is to facilitate the

gradient flow during training and alleviate the vanishing gradient problem. Residual connections

enable the network to effectively learn the desired mapping by focusing only on residual mapping.
5A function 𝑓 is translation equivariant if it commutes with translations, i.e. if 𝑓 (𝑇𝑋) = 𝑇 [ 𝑓 (𝑋)]
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This mechanism facilitates improved learning and optimization within the network architecture and

widely adopted in many advanced network architectures in recent years. The residual connection

is formulated as:

𝑥 (𝑙+1) = 𝑓

(
𝑥 (𝑙)

)
+ 𝑥 (𝑙) (1.9)

where 𝑓 (·) is a subnetwork and 𝑙 indicates the layer index.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a neural network architecture that can deal with the arbitrary

lengths of the input sequence. Given a input tensor with length 𝑇 , RNN calculates the 𝑙𝑡ℎ hidden

states recursively as:

ℎ
(𝑙)
𝑡 = 𝜎

(
𝑊 (𝑙)

[
ℎ
(𝑙−1)
𝑡 ; ℎ(𝑙)

𝑡−1

]
+ 𝑏 (𝑙)

)
(1.10)

where the network parameters 𝑊 and 𝑏 are shared across the temporal dimension, and the first

hidden state ℎ(1)0 is the pseudo hidden state, which is usually initialized as zero-vector.

Gated RNNs

Since RNNs are deep neural networks in the temporal domain, they face difficulties in propagating

errors that occurred at temporally distant time steps. Consequently, they tend to struggle with

learning long-term dependencies, such as the relationship between the beginning and end of a

sentence and instead focus on learning only immediate dependencies. To address this issue, gates

were introduced to enable the balanced learning of short-term and long-term memories.

LSTM: long short-term memory (LSTM) is a representative architecture for gated RNNs (Hochre-

iter and Schmidhuber, 1997). LSTM utilizes three gates including input gate 𝑖, forget gate 𝑓 , and

output gate 𝑜 besides the cell 𝑐 to store long-term information.
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𝑐
(𝑙)
𝑡 = 𝑖

(𝑙)
𝑡 ⊙ ℎ̄

(𝑙)
𝑡 + 𝑓

(𝑙)
𝑡 ⊙ 𝑐

(𝑙)
𝑡−1 (1.12)

ℎ
(𝑙)
𝑡 = 𝑜

(𝑙)
𝑡 ⊙ tanh

(
𝑐
(𝑙)
𝑡

)
(1.13)

where ⊙ denotes Hadamard product and 𝜎 refers to sigmoid function.

Here, ℎ̄𝑡 corresponds to the hidden state of an RNN, and its value is adjusted by the input gate 𝑖 to

update the cell 𝑐, which aggregates long-term information. Additionally, the forget gate 𝑓 reduces

the value of the past cell. In other words, we can say that the cell value is updated by adjusting

the balance between short-term and long-term information using the input gate and the forget gate.

Finally, the updated cell value is used to determine the final hidden state by adjusting it with the

output gate.

GRU: gated recurrent unit (GRU) integrates long-term information into hidden state ℎ, allowing

it to operate with only two gates to manipulate the forgetting and updating of the state (Cho et al.,

2014). The two gates are a reset gate 𝑟 and an update gate 𝑧, which will be used to update the

hidden states as follows:


𝑟
(𝑙)
𝑡

𝑧
(𝑙)
𝑡

 = 𝜎
©­­«

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𝑟

𝑊
(𝑙)
𝑧



ℎ
(𝑙−1)
𝑡

ℎ
(𝑙)
𝑡−1

 +

𝑏
(𝑙)
𝑟

𝑏
(𝑙)
𝑧


ª®®¬ (1.14)
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ℎ̃
(𝑙)
𝑡 = tanh

©­­«


ℎ
(𝑙−1)
𝑡

𝑟
(𝑙)
𝑡 ⊙ ℎ

(𝑙)
𝑡−1


ª®®¬ (1.15)

ℎ
(𝑙)
𝑡 =

(
1 − 𝑧(𝑙)𝑡

)
⊙ ℎ̃(𝑙)𝑡 + 𝑧

(𝑙)
𝑡 ⊙ ℎ

(𝑙)
𝑡−1 (1.16)

The performance of RNNs varies depending on the task, and it is not clear whether LSTM or

GRU is superior (Jozefowicz, Zaremba, and Sutskever, 2015). However, GRU has fewer gates and

does not require a cell, which means that under conditions where state variables are aligned, GRU

can perform calculations similar to LSTM with less computational and memory requirements than

LSTM.

Transformers

Transformers are a type of neural network architecture that leverage attention mechanisms to capture

long-range dependencies in sequential data, such as text, speech, and image-patch sequences, with

a cost of memory complexity. The vanilla Transformer (Vaswani et al., 2017) consists of two

main components, namely, multi-head attention and a point-wise feed-forward network (FFN) with

the residual connection. The multi-head attention is the parallel operation of Scaled Dot-Product

Attention, which computes the softmax of the dot products of the query with all keys scaled by

the inverse squared root of the keys’ dimension to obtain the weights on the values. The operation

of Scaled Dot-Product Attention can be summarized as follows using the query, key, and value

matrices 𝑄, 𝐾,𝑉 as below:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾⊤

√
𝑑𝑘

)
𝑉 (1.17)

where the superscript ⊤ refers to the transpose operation, 𝑑𝑘 is a dimension of key vector.

By projecting queries, keys, and values onto multiple subspaces using 𝑛 different linear projections,

multi-head attention can jointly attend to information from different representation sub-spaces at
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different positions. In contrast, using a single attention head averages over different subspaces and

inhibits the model’s ability to capture fine-grained patterns in the data. Considering the multi-head

attention operation with ℎ heads, the feature dimension 𝑑 is split into ℎ identical blocks, i.e.,

R𝐿×
𝑑
ℎ
×ℎ. Then, we can formulate the multi-head attention operation as:

MHA(𝑄, 𝐾,𝑉) = [head1; . . . ; headℎ]𝑊𝑂 (1.18)

where [; ] denotes the channel wise concatenation of tensor, 𝑊𝑂 ∈ R𝑑×𝑑 is the output projection

weights, and each head head𝑖 is calculated as:

head𝑖 = softmax

(
𝑄𝑖𝐾

⊤
𝑖√︁

𝑑/ℎ
+ 𝑀

)
𝑉𝑖 (1.19)

where 𝑄𝑖 = 𝑄𝑊
𝑄

𝑖
, 𝐾𝑖 = 𝐾𝑊𝐾

𝑖
, 𝑉𝑖 = 𝑉𝑊

𝑉
𝑖
∈ R𝐿× 𝑑

ℎ are the query, key, and value tensors, which

are created by linearly projecting the input with learnable weights of 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 ∈ R 𝑑
ℎ
× 𝑑

ℎ .

𝑀 ∈ R𝐿×𝐿 is a mask matrix that assigns −∞ to those elements we want to mask out after the

softmax. The mask matrix is set to zero if no masking is required.

The attention mechanism is referred to by different names, depending on the route through which

𝑄, 𝐾 , and 𝑉 are prepared. We provide a typical classification as follows:

1. Self-Attention: This prepares 𝑄, 𝐾 , and 𝑉 by applying respective transformation matrices to

a common input 𝑋 , such that 𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , and 𝑉 = 𝑋𝑊𝑉 . We can extract the

inter-token relationship of the given sequence.

2. Masked Self-Attention: When used for autoregressive generation tasks, it is necessary to

prevent the attention mechanism from referring to "future" elements. By applying a triangular

mask 𝑀 , we can prevent each element from accessing future elements, allowing the model

to learn to predict future information using only past and current information.
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3. Cross-Attention: This prepares 𝑄, 𝐾 , and 𝑉 from different input matrices 𝑋 and 𝑌 , such that

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑌𝑊𝐾 , and 𝑉 = 𝑌𝑊𝑉 . This can be interpreted as a process where 𝑋 extracts

information from a different source 𝑌 .

Feed Forward Net (FFN) constitutes two-thirds of a Transformer model’s parameters. Geva et

al. demonstrated that the feed-forward layers in transformer-based language models function as

key-value memories. Each key corresponds to textual patterns within the training examples, and

each value triggers a distribution over the output vocabulary. In practical applications, a simple

Multi-Layer Perceptron (MLP), comprising two linear transformations interspersed with a ReLU

activation function, is typically used to implement the FFN. This is mathematically represented as:

FFN(𝑥) = ReLU(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (1.20)

Here, 𝑊1 and 𝑊2 denote the weight matrices, and 𝑏1 and 𝑏2 are the bias vectors. The inner

dimension of the linear transformation is generally four times the transformer dimension. This

is then reduced back to the original size, e.g., from 512 → 2048 → 512, which preserves the

input-output dimensions while still allowing the model to learn more complex representations.

Extending to Vision Tasks

Traditionally, Convolutional Neural Networks (CNNs) have been the dominant architecture for

visual tasks such as image classification, object detection, and segmentation. However, the success

of Transformers in natural language processing prompted researchers to explore their potential in

computer vision as well. Transformers were first introduced to the vision tasks by embedding

16 × 16 pixels into a single patch that is treated equally as the language tokens (Dosovitskiy et

al., 2021). By applying self-attention mechanisms to capture global dependencies and modeling

relationships between patches, Vision Transformers (ViTs) can learn powerful representations for

image understanding. However, this advantage comes at the expense of requiring larger amounts
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of data for effective training. In other words, when dealing with small-scale dataset, the inductive

bias that we bring to the model plays a crucial role.

Scaling Laws and Potential of Transformers

The Scaling Laws of Transformers present a fascinating aspect of their functioning. J. Kaplan et al.

delineated a power law relationship that can predict the test loss of a Transformer which models

language in an autoregressive fashion. This relationship becomes relevant when the Transformer’s

performance is restrained by certain factors, namely the number of non-embedding parameters (𝑁),

the size of the dataset (𝐷), or the optimally allocated compute budget (𝐶𝑚𝑖𝑛).

𝐿 (𝑥) = 𝐿∞ +
(𝑥0

𝑥

)𝛼𝑥

, 𝑥 ∈ {𝑁, 𝐷,𝐶𝑚𝑖𝑛} (1.21)

This demonstrates the potential for enhancing language model performance in a predictable manner

through the scaling up of models, datasets, and computational resources. Later, this Scaling Law

was shown to also apply to Transformers (autoregressive generative models) in domains such as

images, videos, image-text, and mathematical formulas (Henighan et al., 2020). Following this,

various companies and research groups have undertaken efforts to upscale their models. These

large-scale models are referred to as foundational models, and there is a growing trend of using

these pre-trained models in zero-shot or few-shot manner.

1.2 Spatiotemporal Feature Learning

The effective extraction of spatiotemporal features from video data is fundamental to any video

understanding task. It enables the recognition of complex activities occurring over time while con-

sidering both spatial and temporal information. To perform video understanding tasks successfully,

it is vital to incorporate both spatial and temporal dimensions, which contain visual and motion

information, respectively. As the field has advanced, various approaches have been developed to

handle this intricate process, each with its unique strengths and limitations.

This section delves into several of the prominent methods used in spatiotemporal feature learning,
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Figure 1.1: Power-law scaling laws of autoregressive language model (adopted from J. Kaplan
et al., 2020)

covering a range of techniques from 3D Convolutional Networks (C3D), Inflated 3D ConvNet

(I3D), and SlowFast Networks, to Cooperative Hierarchical Transformer (COOT) - from traditional

3D convolution-based methods to more recent transformer-based architectures.

3D Convolutional Networks (C3D)

C3D (Tran et al., 2014) is a video representation method that also uses 3D convolutions to learn

spatio-temporal features from videos. Unlike 2D convolutions that operate on individual frames,

3D convolutions operate on video clips, allowing the model to learn temporal information. C3D

demonstrates strong generalization capability and can serve as a versatile feature extractor for a

range of video processing tasks. Many researchers have chosen to use C3D primarily as a feature

extraction tool for varying applications rather than opting for network modifications or fine-tuning.

Inflated 3D ConvNet (I3D)

I3D (Carreira and Zisserman, 2017) extends the traditional 2D CNNs to 3D, allowing them to learn

spatio-temporal features directly from videos. The I3D model is pre-trained on a large dataset of

videos and then fine-tuned for specific tasks. This method has shown excellent performance in

video classification and action recognition tasks.

SlowFast Networks (SlowFast)

The key idea behind SlowFast (Feichtenhofer et al., 2018) is to process a video through two parallel

pathways: a slow pathway and a fast pathway. The slow pathway operates at a low frame rate and
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captures spatial semantics, while the fast pathway operates at a high frame rate to capture motion

at fine temporal resolution. The outputs of these two pathways are fused to produce the final

representation. This method is computationally efficient and has achieved state-of-the-art results

on several video understanding benchmarks.

Cooperative Hierarchical Transformer (COOT)

COOT (Ging et al., 2020) is a transformer-based method for video understanding. It uses a

hierarchical transformer architecture that operates at two levels: clip-level and video-level. The

clip-level transformer captures local temporal dependencies, while the video-level transformer

captures global temporal dependencies. The key feature of COOT is its cooperative learning

mechanism, which allows the clip-level and video-level transformers to interact and learn from

each other. This method has shown promising results in video understanding tasks, including video

captioning and video question answering.

1.3 Applications in Video Understanding - Video Captioning

The current era is one of rapid technological development, where data takes the shape of not only

texts, figures, or individual images but extends to complex, dynamic entities like videos. The

ability to interpret and analyze videos has been a subject of intense study, primarily in areas such as

surveillance, entertainment, healthcare, and autonomous driving. In this section, we will explore

the applications of video understanding with a particular focus on captioning tasks.

Video captioning is an interdisciplinary research area that combines computer vision and natural

language processing. The primary objective is to generate descriptive and meaningful sentences

that accurately represent the content of a video. This task is challenging due to the inherent

complexity of understanding and interpreting video content, which includes recognizing objects,

actions, and events, and then translating these visual elements into coherent and contextually

appropriate language. The task is further complicated by the temporal dimension of videos, which

requires understanding the sequence and progression of events.
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A cowboy is riding a horse in a barn. He lassos a small calf. He dismounts, tying the calf and celebrating.
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Figure 1.2: An illustration of the video paragraph captioning (VPC) task. Given the video stream
and the corresponding action intervals (top), we aim to produce coherent video paragraph captions
that describe the video content according to the action intervals (bottom).

Dense Video Captioning

An important branch of video captioning is dense video captioning (DVC) (Krishna et al., 2017),

which requires generating a list of temporal event proposals and the associated sentence description

of each event to form a coherent paragraph description of a video. DVC has been implemented by

various approaches including visual feature only (Krishna et al., 2017; Li et al., 2018; L. Zhou,

Y. Zhou, et al., 2018; Mun et al., 2019; Deng et al., 2021) or multimodal features such as audio

(Rahman, B. Xu, and Sigal, 2019), speech (Shi et al., 2019; Iashin and Rahtu, 2020), and both

Iashin and Rahtu, 2020).

Video Paragraph Captioning

As a simplified version of DVC, video paragraph captioning (VPC) (Park et al., 2019) concentrates

on generating better paragraph captions given a set of event segments in a video, which eases

the requirement of event proposal generation. In general, a VPC model consists of two main

components: an encoder to represent each event segment as a feature; and a decoder to generate

captions while maintaining the consistency within each event and the coherence among all sentences

of the generated paragraph. L. Zhou, Y. Zhou, et al. first introduced the transformer to the VPC

task known as Vanilla Transformer, where each event is decoded individually without knowing
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the coherence between sentences. To address this limitation, Lei et al. modified the Transformer-

XL (Z. Dai et al., 2019) and proposed MART. MART decodes the caption to learn word-level

dependencies by a transformer while modeling the paragraph coherence based on GRU (Chung et

al., 2014). Different from the existing VPC methods which utilize pre-trained backbone networks to

extract features, Yamazaki et al. inherits the merits of both vision and language models and proposed

VLCap. However, all previous works rely on RNN-based setup for the inter-event modeling and

are limited in capturing long-range dependencies as well as prone to suffer from the problem of

gradient vanishing (Pascanu, Mikolov, and Bengio, 2013).

1.4 Research Questions and Contributions

In this thesis, our primary objective is to enhance the understanding of video captioning. We seek

to accomplish this by focusing on two critical areas: bolstering the model’s explainability and

integrating an inductive bias within the model. The key research questions and contributions that

guide and characterize this work are presented below:

• Question 1: How can we represent video content in an explainable manner making it beneficial

not only for the task of video captioning but also for humans to interpret?

In Section 2.2, we present a novel video representation framework called VL Encoder that

models a video with (i) environment, (ii) main agents, (iii) scene elements, and their inter-

actions. The VL Encoder learns to selectively utilize features of each modality via Hybrid

Attention Mechanism (HAM) that will be introduced in 2.1. The HAM plays a crucial role

in VL Encoder enabling us to examine and comprehend which components have the most

influence on video representation.

• Question 2: How can we decode the salient features into comprehensive captions while

simultaneously modeling dependencies within and between events to generate a coherent

narrative?

In Section 3.3, we introduce our tailored Transformer-in-Transformer (TinT) decoder. Uniquely

designed, this TinT decoder is capable of capturing both the intra- and inter-dependencies
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of events found within a video. This intricate process allows it to generate captions that

maintain coherence and accuracy, effectively encapsulating the content of the video.

• Question 3: What strategies can we employ to better align both visual and linguistic infor-

mation, thereby improving the overall effectiveness of video captioning?

In Section 3.4, we proposed a VL contrastive loss function designed to ensure the learned

embedding features exhibit semantic consistency with their corresponding video captions.

This function works by aligning the feature embeddings with the ground-truth captions.

Much of the works in this thesis appear in the following publications:

1. K. Yamazaki, K. Vo, S. Truong, B. Raj, N. Le "VLTinT: Visual-Linguistic Transformer-in-

Transformer for Coherent Video Paragraph Captioning," Thirty-Seventh AAAI Conference

on Artificial Intelligence (AAAI) - (Oral Presentation), 2023.

2. K. Yamazaki, S. Truong, K. Vo, M. Kidd, C. Rainwater, K. Luu, N. Le "VLCap: Vision-

Language with Contrastive Learning for Coherent Video Paragraph Captioning," IEEE In-

ternational Conference on Image Processing (ICIP), 2022.

3. K. Vo, S. Truong∗, K. Yamazaki∗, B. Raj, M. Tran, N. Le "AOE-Net: Entities Interactions

Modeling with Adaptive Attention Mechanism for Temporal Action Proposals Generation,"

International Journal of Computer Vision, 2022.
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Chapter 2

EXPLAINABLE VIDEO REPRESENTATION

In this chapter, we will introduce our effort towards explainable video representation. Video

representation aims to transform raw video data into meaningful and manageable forms, providing

a way for systems to understand the embedded information. In the pursuit of accurate understanding,

models have become increasingly sophisticated and complex. However, this complexity often comes

with a price, rendering these models as "black boxes", challenging to understand and interpret. The

quest for explainability is thus born out of the need to decipher these black boxes and illuminate

their inner workings. Explainable video representation, consequently, is not just about how videos

are interpreted and processed, but about how the models used to do so can be understood. In other

words, how can we not only make our models perform accurately but also make them transparent,

allowing humans to understand their decision-making processes?

In this chapter, we will explore this exciting frontier, starting with an important building block called

Hybrid Attention Mechanism (HAM) and then we introduce our proposed Visual-Linguistic

(VL) Encoder. We then delve into a comprehensive discussion of each of the Encoder’s compo-

nents, providing a description that elucidates their design and functionality.

2.1 Hybrid Attention Mechanism (HAM)

The Hybrid Attention Mechanism (HAM) combines the advantages of both hard attention (Patro

and Namboodiri, 2018) and self-attention (Vaswani et al., 2017). It judiciously selects a subset of

representative features from a given set of input features, examines their mutual relationships, and

integrates them into a unified representation. The concept of HAM was first introduced by (Vo,

Joo*, et al., 2021), and since then, it has found successful applications in video analysis domains

such as action localization (Vo, Yamazaki, Nguyen, et al., 2022; Vo, Truong*, et al., 2023). A visual

representation of the HAM workflow is presented in Fig. 2.1, and its mathematical formulation is

as follows:
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Figure 2.1: Illustration of Hybrid Attention Mechanism (HAM). HAM is capable of selecting
and representing an arbitrary number of representative features from the input features F𝑖𝑛 with
guidance from reference feature 𝑓ref.

Hin = Fin ⊕ 𝑓ref (2.1a)

C = softmax( | |Hin | |2) (2.1b)

M = C > 1
𝑁𝑖𝑛

(2.1c)

𝑓out = mean(MHA(Fin ⊙M)) (2.1d)

Eq.2.1a propagates the reference feature 𝑓ref across all input features in Fin, employing element-wise

addition to establish a set of hidden features Hin. Subsequently, Eq.2.1b calculates the 𝐿2-norm

value for each hidden feature within Hin and re-normalizes these values using softmax to ensure

their sum equals 1.0. As a result, the value associated with each input feature signifies its probability
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Figure 2.2: Depiction of our Visual-Linguistic (VL) Encoder’s overall architecture: Provided a
snippet 𝑋𝑖, the encoder concurrently derives local visual features from primary agents, global
visual features from the surrounding environment, and linguistically relevant scene elements.
It subsequently models the interactions amongst these three modalities using our Multi-modal
Representation Fusion (M2RF) module.

of being a representative feature of the entire input feature set.

The adaptive threshold defined in Eq.2.1c generates a maskM, which screens out features deemed

non-representative. Finally, Eq.2.1d employs self-attention to discern mutual relationships amongst

the selected input features, which are then averaged to yield a single representation feature 𝑓out ∈ R𝑑in

representing the entire set of input features.



20

2.2 Visual-Linguistic (VL) Encoder

Our VL encoder is responsible for comprehensively representing each snippet 𝑋𝑖 of an event into

a representative feature to compose a sequence of snippet features for the decoder. Given an event

𝑒 = (𝑒𝑏, 𝑒𝑒) and its corresponding video frames V𝑒 = {𝑣𝑖 |𝑒𝑏 ≤ 𝑖 ≤ 𝑒𝑒}, we follow the standard

settings from existing works (L. Zhou, Y. Zhou, et al., 2018; Lei et al., 2020; Song, S. Chen, and

Jin, 2021) and divideV𝑒 into a sequence of 𝛿-frame snippets {𝑋𝑖}𝐿𝑖=1. Each snippet 𝑋𝑖 consists of

𝛿 consecutive frames and V𝑒 has a total of 𝐿 =
⌈ |V𝑒 |
𝛿

⌉
snippets. The VL encoder module encodes

each snippet 𝑋𝑖 to a VL representation 𝑓 𝑉𝐿
𝑖

as shown in Fig.2.2. Therefore, video segment V𝑒 is

encoded into VL representation { 𝑓 𝑉𝐿
𝑖
}𝐿
𝑖=1.

The VL encoder first models a video with the three modalities, (i) global visual environment, (ii)

local visual main agents, and (iii) linguistic relevant scene elements, and then fuses them into one

representation based on the interactions between them. Given a snippet 𝑋𝑖, it is encoded into these

three modalities, corresponding to 𝑓 𝑒
𝑖

, 𝑓 𝑎
𝑖

, and 𝑓 𝑙
𝑖
, respectively. The final feature 𝑓 𝑉𝐿

𝑖
representing

the interaction is extracted by fusing 𝑓 𝑒
𝑖

, 𝑓 𝑎
𝑖

, and 𝑓 𝑙
𝑖

through our Multi-modal Representation Fusion

(M2RF) module. We will provide the details of each module in the following subsections.

Global Visual Environment

This modality provides the visual semantic information from the entire spatial scene of input

snippet 𝑋𝑖. To obtain such target, we adopt a backbone 3D-CNN network (Ji et al., 2013) to 𝑋𝑖

to extract feature map H𝑖 at the last convolutional block of the network. Then, we obtain the

global environment visual feature 𝑓 𝑒
𝑖
∈ R𝑑emb by processing H𝑖 with an average pooling operation

to reduce the entire spatial dimension followed by channel MLP. The procedure is summarized as

follows:

𝑓 𝑒𝑖 = MLP𝜃𝑒 (Avg.Pooling(H𝑖)) (2.2)

Local Visual Main Agents

This modality provides the visual features of the main human agents, who actually contribute to

the formation of the event being described. Even though most of the events are associated with
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Figure 2.3: Illustration of relevant scene elements extraction process where we utilized ViT/16 and
Text Transformer pre-trained with CLIP (Radford et al., 2021).

agents, not all agents committing movements are related to the main content of the event segment.

Using a similar assumption as in (Vo, Le, et al., 2021; Vo, Yamazaki, Truong, et al., 2021), we

apply a human detector to the center frame of 𝑋𝑖 to obtain the bounding boxes of all human agents.

Afterward, we align each of the detected bounding boxes B𝑖 onto the feature map H𝑖, which is

obtained by the previous modality, using RoIAlign (He, Gkioxari, et al., 2017). Then, features

overlapped by each agent bounding box are averagely pooled into a single feature vector to represent

visual information of the agent inside that box. Finally, we obtain a set of local agent visual features

𝐹𝑎
𝑖
∈ R𝑁𝑎×𝑑𝑎 , where 𝑁𝑎 and 𝑑𝑎 are the number of detected agents and agent embedding dimension,

respectively. Finally, we apply HAM to adaptively select an arbitrary number of main agents

from 𝑁𝑎 detected agents and extract their mutual relationships to form a unified agent-aware visual

feature 𝑓 𝑎
𝑖
∈ R𝑑emb as follows:

𝑓 𝑎𝑖 = HAM(MLP𝜃𝑎 (𝐹𝑎𝑖 ), 𝑓 𝑒𝑖 ) (2.3)
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Linguistic Relevant Scene Elements

This modality provides additional contextual details of the scene. While the two former modalities

capture visual information of spatial appearances and temporal motions, their features may overlook

some of the scene components because of the spacial reduction in the pooling operation from the

feature map H𝑖. Furthermore, non-visual features could hardly be captured by a normal vision

backbone model. Recent studies (Patashnik et al., 2021; Yang, T. Zhang, and Zou, 2022) have

shown the extreme zero-shot capability of Contrastive Language-Image Pre-training (CLIP) where

the model can estimate the semantic similarity between a set of words and an image. Trained on

large-scale text-image pairs, CLIP can correlate not only the visual words but also the non-visual

words to the given image. We thus leverage CLIP as a linguistic feature extractor to obtain top 𝑘

scene elements (i.e., 𝑘 texts) that are highly correlated with the middle frame of the input snippet

𝑋𝑖. Specifically, we construct a vocabularyW = {𝑤1, . . . 𝑤𝑚} based on the groundtruth captions

of our training dataset. Each vocabulary 𝑤𝑖 ∈ W is encoded by a transformer network 𝑓𝜙 into a text

feature 𝑓 𝑤
𝑖

. Let𝑊𝑡 be a text projection matrix pre-trained by CLIP, the embedding text vocabulary

is computed as

𝑤𝑒 = 𝑊𝑡 · 𝑓𝜙 (W) = 𝑊𝑡 · 𝑓 𝑤where 𝑓 𝑤 = { 𝑓 𝑤𝑖 }𝑚𝑖=1. (2.4)

Let 𝑊𝑖 be an image projection matrix pre-trained by CLIP, the center frame 𝐼 of the input snippet

𝑋𝑖 is first encoded by a pre-trained ViT 𝑔𝜓 to extract visual feature 𝑓 𝐼 , and then embedded by 𝑊𝑖

as below:

𝐼𝑒 = 𝑊𝑖 · 𝑔𝜓 (𝐼) = 𝑊𝑖 · 𝑓 𝐼 (2.5)

The pairwise cosine similarities between embedded 𝐼𝑒 and 𝑤𝑒 are then computed. The text feature

with top 𝑘 similarity scores are chosen as linguistic categorical concept features 𝐹 𝑙
𝑖
∈ R𝑘×𝑑𝑙 . This

feature is also subjected to the HAM module to select only the most relevant representative linguistic

features and merge them into a single representation 𝑓 𝑙
𝑖
∈ R𝑑emb as follows:

𝑓 𝑙𝑖 = HAM(MLP𝜃𝑙 (𝐹 𝑙𝑖 ), 𝑓 𝑒𝑖 ) (2.6)
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The flowchart of extracting 𝑓 𝑙
𝑖

is illustrated in Fig.2.3.

Multi-modal Representation Fusion (M2RF)

This component aims to fuse features from the three modalities. While concatenation or summation

are the two common fusion mechanisms, they treat all modalities equally. To better model the impact

of each individual modality, we propose M2RF as a function 𝑔𝛾, which takes the features 𝑓 𝑒
𝑖

, 𝑓 𝑎
𝑖

,

and 𝑓 𝑙
𝑖

as its input. We extract the inter-feature relationships by utilizing a self-attention (MHA)

layer (Vaswani et al., 2017) followed by a mean operation. The final representation 𝑓 𝑉𝐿
𝑖
∈ R𝑑emb of

a given snippet 𝑋𝑖 is defined as follows:

𝑓 𝑉𝐿𝑖 = 𝑔𝛾 ( [ 𝑓 𝑒𝑖 ; 𝑓 𝑎𝑖 ; 𝑓 𝑙𝑖 ]) = mean(MHA( [ 𝑓 𝑒𝑖 ; 𝑓 𝑎𝑖 ; 𝑓 𝑙𝑖 ])) (2.7a)

where [; ] represents the concatenation of features in a new dimension, where self-attention is

applied on the new dimension and reduced by the mean operation to account for permutation

invariance.

2.3 Analysis of Local Visual Main Agents

The effectiveness of our proposed local visual main agents modality is demonstrated through the

qualitative results depicted in Fig.2.4. Our example illustrates that this novel modality is capable

of distinguishing and eliminating non-essential agents, whilst retaining those critical agents that

actively perform actions within the scene. This underscores its potential in honing the focus on

principal elements in video analysis. This approach has further implications for the model’s explain-

ability. By focusing on the main agents and their actions, our model becomes more transparent and

its operation more understandable. This attribute is vital as it allows for easier interpretation of the

model’s outputs and facilitates debugging and optimization efforts. With a clear understanding of

how our model processes and evaluates video content, we can more efficiently adjust and fine-tune

its parameters to achieve superior video captioning performance. Hence, the Local Visual Main

Agents modality contributes not only to the accuracy of the model but also significantly enhances
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HAM selects HAM removes

Figure 2.4: Qualitative results of our local visual main agent modality. indicates main agents
selected by our local main agent modality, and indicates eliminated trivial agents. Left: Input
image. Right: selected and eliminated agents.

its explainability.

2.4 Analysis of Linguistic Relevant Scene Elements

In the linguistic relevant scene elements modality, the linguistic scene elements are first extracted by

CLIP (Radford et al., 2021). Subsequently, the HAM assists in selecting the most pertinent elements.

Fig.2.5 first illustrates the qualitative results derived from CLIP, followed by a presentation of the

most relevant linguistic scene elements as determined by HAM. As demonstrated in Fig.2.5, CLIP

effectively recognizes both visual and non-visual scene elements. Among all the scene elements

captured by CLIP, only a subset is genuinely relevant to the action at hand. With the aid of HAM,
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['welding', 'welder', 'motorbike', 'motor', 'motorcycle',
'mechanics', 'weld', 'motorcycles', 'video', 'welded',
'motocross', 'gloves', 'bike', 'pedals', 'gopro', 'welds',
'wrench', 'helmet', 'glove', 'biker', 'pedal', 'dj', 'bikers',
'crash', 'polishing', 'scraping', 'rubbing', 'bikes', 'handing',
'screwdriver', 'screwing', 'part', 'spraying', 'foil', 'stunts']

'welding', 'welder', 'motorbike', 'motor'

['gymnast', 'gymnastic', 'gymnastics', 'gymnasts', 'vaulting',
'leotards', 'leotard', 'splits', 'jumps', 'aerobics', 'aerobic',
'somersault', 'pommel', 'leaps', 'top', 'acrobatic', 'jumping',
'tumbling', 'somersaults', 'demonstrating', 'baton', 'ballerina',
'diving', 'leap', 'handstand', 'flying', 'twirling', 'stretching',
'video', 'flips', 'ballet', 'jumper', 'jump', 'bow', 'pole']

'gymnast', 'gymnastic', 'gymnastics', 'gymnasts',
'vaulting', 'leotards', 'leotard', 'splits'

CLIP

masked by HAM

masked by HAM

CLIP

Figure 2.5: Examples of the scene elements that are initially extracted by CLIP (notated in black
text) and the most pertinent ones selected by HAM (red text). For a given image, the top 𝑘 related
terms from the dataset vocabulary are drawn out as scene elements via CLIP, and these are then
refined using HAM.

we can efficiently identify and select these pertinent scene elements.

Scene elements are often presented as objects in the scene. Thus, we further compare the effective-

ness of our CLIP and HAM against Mask R-CNN (He, Gkioxari, et al., 2017) in extracting the most

relevant scene elements. We observe that object detectors like Mask R-CNN can only extract a

limited amount of visual scene elements, whereas CLIP provides much richer information on scene

concepts including visual and non-visual scene elements. For example, given an image of people

playing tennis as shown in Fig. 2.6, it is unfeasible to detect a small object such as a tennis ball

using an object detector. For instance, given an image of people engaging in a game of tennis as

displayed in Fig. 2.6, detecting a small object like a tennis ball using an object detector can prove

to be difficult. Fig. 2.6 (bottom) shows that Mask-R-CNN can only identify humans and a tennis

racket, failing to capture the tennis ball. On the other hand, CLIP is able to encode the concept of
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Figure 2.6: Examples of scene elements derived qualitatively from our proposed CLIP + HAM
(top row) versus Mask-RCNN (bottom row). Despite lacking specific location information, the key
scene elements selected by HAM, highlighted in red text (top row), successfully reveal image-based
semantic associations.

a tennis game, including the presence of a tennis ball and other related objects, such as a basket,

court, fence, etc., as shown in Fig. 2.6 (top). This demonstrates the effectiveness of utilizing CLIP

model to extract linguistically relevant information from the scene.
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Chapter 3

PARAGRAPH CAPTIONING MODEL

In this chapter, we will introduce our video paragraph captioning model that utilizes the Visual-

Linguistic (VL) Encoder presented in the previous chapter and the Transformer-in-Transformer

(TinT) Decoder developed specifically for generating a coherent paragraph caption of a video. We

trained our VL Encoder and TinT decoder in an end-to-end fashion using our Visual-Linguistic

(VL) Loss to better align the learned features.

The primary focus of the chapter will be on the description and demonstration of the mechanics

of the model, including its intricate design and various functionalities. We delve into the technical

aspects of the model, exploring the algorithms and techniques that power it, as well as the novel

solutions developed to overcome challenges faced during its development. A comparative analysis

will be presented to highlight the benefits and improvements our model offers over existing video

captioning methodologies.

3.1 Problem Setup

In Video Paragraph Captioning (VPC), we are given an untrimmed videoV = {𝑣𝑖} |V|𝑖=1 , where |V|

is the number of frames, and a list of its important events E = {𝑒𝑖 = (𝑒𝑏𝑖 , 𝑒𝑒𝑖 )}
|E |
𝑖=1, where |E | is

the number of events within a video and an event 𝑒𝑖 is defined by a pair of beginning and ending

timestamps (𝑒𝑏
𝑖
, 𝑒𝑒
𝑖
). Our objective is to generate a coherent paragraph that matches the ground truth

paragraph P = {s𝑖} |E |𝑖=1 that describes the whole videoV. In this setup, 𝑖𝑡ℎ sentence s = {𝑠1 . . . 𝑠𝑁 }

that consists of 𝑁 words is the description of its corresponding event 𝑒𝑖.

3.2 Baselines

In the following, we first describe the baseline models that has been presented for video paragraph

captioning.

Vanilla Transformer

L. Zhou, Y. Zhou, et al. proposed a baseline model for dense video captioning utilizing the

Transformer model proposed by Vaswani et al. whose architecture was detailed in Section 1.1. This
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model, often referred to as the Vanilla Transformer, is a standard transformer model equipped with

an auxiliary proposal generation module for dense video captioning, i.e., for the event proposal

generation. As our focus within this discussion is strictly confined to the paragraph caption

generation, we disregard this auxiliary module for our baseline. Fundamentally, this model is

designed to accept a single video segment as its input. It then independently produces a single

sentence that succinctly describes the content of the given segment. We illustrate the model in Fig.

3.1 (left).

Transformer-XL

Initially proposed by Z. Dai et al., the Transformer-XL model was developed to handle long-term

dependencies in natural language. Transformer-XL modifies the input to the multi-head self-

attention where the query is 𝑄 = 𝐻𝑡 and key and value takes the concatenation of the previous

and current hidden states 𝐾,𝑉 = [𝑆𝐺 (𝐻𝑡−1);𝐻𝑡]. Here, 𝑆𝐺 (·) indicates a stop gradient operation,

which was introduced as a strategy to conserve GPU memory and computation resources. Lei

et al. modified this model to adopt to VPC task. For a more balanced comparison with other VPC

models, Lei et al. proposed a variant of the Transformer-XL that allows the gradient to propagate

through different recurrent steps, which is known as Transformer-XLRG. We illustrate the model

in Fig. 3.1 (right).

MART

Lei et al. proposed Memory-Augmented Recurrent Transformer (MART) to better utilize the video

segments and sentence history information by augmenting the transformer with recurrent memory.

A graphical representation of this memory module can be found in Fig. 3.2. The memory module

is formulated as the modified GRU (Chung et al., 2014), where the multi-head attention is used to

encode the memory state. The memory update process is as follows:
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Figure 3.1: Illustration of the baseline video paragraph captioning models. (left) Vanilla Trans-
former (L. Zhou, Y. Zhou, et al., 2018) (right) Transformer-XL (Z. Dai et al., 2019) // in the
Transformer-XL hidden state concatenation denotes stop-gradient. Transformer-XLRG (Lei et al.,
2020) does not apply this stop-gradient.

𝑆𝑙𝑡 = MHA
(
𝑀 𝑙
𝑡−1, 𝐻̄

𝑙
𝑡 , 𝐻̄

𝑙
𝑡

)
(3.1a)

𝐶 𝑙𝑡 = tanh
(
𝑊 𝑙
𝑚𝑐𝑀

𝑙
𝑡−1 +𝑊

𝑙
𝑠𝑐𝑆

𝑙
𝑡 + 𝑏𝑙𝑐

)
(3.1b)

𝑍 𝑙𝑡 = 𝜎

(
𝑊 𝑙
𝑚𝑧𝑀

𝑙
𝑡−1 +𝑊

𝑙
𝑠𝑧𝑆

𝑙
𝑡 + 𝑏𝑙𝑧

)
(3.1c)

𝑀 𝑙
𝑡 =

(
1 − 𝑍 𝑙𝑡

)
⊙ 𝐶 𝑙𝑡 + 𝑍 𝑙𝑡 ⊙ 𝑀 𝑙

𝑡−1 (3.1d)

where𝑊𝑚𝑟 ,𝑊𝑢𝑟 ,𝑊𝑚𝑧,𝑊𝑢𝑧 are network linear weights and 𝑏𝑙𝑟 , 𝑏𝑙𝑧 are bias.

In a manner akin to Transformer-XL, the calculated memory, denoted as 𝑀𝑡 , is merged with the
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Figure 3.2: Illustration of MART (Lei et al., 2020) architecture. MART augments the transformer
with the GRU-like memory module to exploit the video segments and sentences history information
to better model the inter-event relationship.

model’s hidden states and then supplied as key and value in the multi-head attention mechanism

for the subsequent decoding step. Thus, the input query matrix becomes 𝑄 = 𝐻𝑡+1, while the key

and value matrices become 𝐾,𝑉 = [𝑀𝑡 ;𝐻𝑡+1].

However, a comparison between the MART and Transformer-XL reveals an advantage of the

former. While Transformer-XL employs all the hidden states from the preceding step to enable

recurrence, MART adopts a more strategic approach, in which its integrated memory module is

designed to filter out information that is less relevant or repetitive. This feature of MART ensures

more effective utilization of historical information, enhancing the model’s performance and output

quality in video paragraph captioning tasks.
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Figure 3.3: A high-level comparison between our VLTinT and recent SOTA VPC methods. In the
encoder, both Transformer-XL (Z. Dai et al., 2019) and MART (Lei et al., 2020) encode visual
features by applying a 3D CNN-based backbone network whereas our VLTinT encodes visual-
linguistic features by (i) global visual environment, (ii) local visual main agents, (iii) linguistic
scene elements, and a fusion mechanism. In the decoder, Transformer-XL uses recurrence to
address context fragmentation, MART uses a highly summarized memory to remember history
information whereas we propose to utilize a transformer to model the contextual dependencies at
both intra- and inter-levels.
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3.3 Transformer-in-Transformer (TinT) Decoder

In this section, we introduce our proposed model - the Transformer-in-Transformer (TinT) Decoder.

This novel architecture employs a Transformer to model the relationships between events. Fig. 3.3

provides a comparative overview of our model and the current state-of-the-art (SOTA) baseline

models, namely MART and Transformer-XL. In terms of the decoder design, Transformer-XL

uses recurrence to address context fragmentation, while MART employs a highly summarized

memory to remember historical information. Contrastingly, our proposed TinT Decoder advances

a different approach. It employs a Transformer model to capture the contextual dependencies at

both intra- and inter-event levels. This dual-level modeling of contextual dependencies promises

an enhanced comprehension and representation of the sequence, improving the quality of video

paragraph captioning.

Inspired by the recent transformer-based vision-language models (Y.-C. Chen et al., 2020; Lei et al.,

2020), we adopt the unified encoder-decoder transformer structure as a foundation for the caption

generator, namely an inner transformer. The inner transformer’s input is described as follows. In

this setup, video features F 𝑉𝐿 is formed by concatenating all 𝑓 𝑉𝐿
𝑖

obtained by applying VL Encoder

into each snippet 𝑋𝑖, i.e., F 𝑉𝐿 = { 𝑓 𝑉𝐿
𝑖
}𝐿
𝑖=1 ∈ R

𝐿×𝑑emb . Textual tokens F 𝑡𝑒𝑥𝑡 is encoded by a pre-

trained text transformer 𝑔𝜙 from CLIP and a MLP layer, i.e., F 𝑡𝑒𝑥𝑡 = 𝑀𝐿𝑃(𝑔𝜙 (Shifted GT text)) ∈

R𝑁×𝑑emb , where 𝑁 is the sequence length of the text tokens. Following (Lei et al., 2020), learnable

token type embeddings F 𝑡𝑦𝑝𝑒 ∈ R(𝐿+𝑁)×𝑑emb are introduced to inform the location of the video and

the caption representations. F 𝑡𝑦𝑝𝑒 is initialized as 0/1 vectors, i.e., video as 0 and text as 1. For the

𝑡𝑡ℎ event, an intermediate hidden state 𝐻̄𝑙
𝑡 ∈ R(𝐿+𝑁)×𝑑emb is computed in Eq. 3.2b as canonical inner

transformer encoder, where 𝐻̃𝑙
𝑡 is the internal states after Masked Multihead Self Attention (MSA).

𝐻0
𝑡 = [F 𝑉𝐿;F 𝑡𝑒𝑥𝑡] + F 𝑡𝑦𝑝𝑒 ∈ R(𝐿+𝑁)×𝑑emb (3.2a)

𝐻̄𝑙
𝑡 = MLP(𝐻̃𝑙

𝑡 ) + 𝐻̃𝑙
𝑡 , 𝐻̃

𝑙
𝑡 = MSA(𝐻𝑙

𝑡 ) + 𝐻𝑙
𝑡 (3.2b)
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Figure 3.4: TinT Decoder: the canonical transformer encoder is extended by an autoregressive
outer transformer that can selectively access the 1𝑠𝑡 to 𝑡 − 1𝑡ℎ hidden states, which are stored in the
event memory, at the 𝑡𝑡ℎ event captioning step.

While the inner transformer can effectively model intra-event coherency, it cannot handle the

contextual relationship of inter-event. To address this limitation, we introduce an autoregressive

outer transformer. The outer transformer selectively utilizes the activations of the inner transformer

from the previous time steps for generating a coherent paragraph.

Specifically, we take advantage of HAM to select only the most relevant hidden states of all previous

events stored in event memory with respect to the current one. The outer transformer process is
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formulated below:

𝑀 𝑙
𝑡 = [𝑀 𝑙

𝑡−1; 𝐻̄𝑙
𝑡 ] (3.3a)

𝑍 𝑙𝑡 = HAM(𝑀 𝑙
𝑡−1, 𝐻̄

𝑙
𝑡 ) (3.3b)

𝐻𝑙
𝑡 = MLP(𝑔𝛾 ( [𝐻̄𝑙

𝑡 ; 𝑍
𝑙
𝑡 ])) + 𝐻̄𝑙

𝑡 (3.3c)

For the 𝑡𝑡ℎ event, an intermediate hidden states 𝐻̄𝑙
𝑡 is stacked to the event memory𝑀 𝑙

𝑡 ∈ R𝑡×(𝐿+𝑁)×𝑑emb ,

where 𝑀 𝑙
0 = ∅ as in Eq. 3.3a. Eq. 3.3b computes the context 𝑍 𝑙𝑡 from the previous states of the

event memory and the current intermediate hidden states 𝐻̄𝑙
𝑡 using HAM. Finally, in Eq. 3.3c, the

context is integrated with the intermediate hidden states 𝐻̄𝑙
𝑡 using 𝑔𝛾, which was introduced in

Eq. 2.7a, and the hidden states are updated via the residual connection. After the last layer, video

token positions in 𝐻N𝑡 are ignored, and only the text token positions are fed to a feed-forward layer

followed by softmax to predict a caption for the 𝑡𝑡ℎ event.

3.4 Visual-Linguistic (VL) Loss

Typically, the existing VPC methods exploit the MLE loss to train their models. The MLE loss

serves the objective of increasing the likelihood of predicted captions to be matched with the

groundtruths. However, it is unable to address the question of how well the learnt event embedding

features represent the groundtruth captions. To this end, we leverage the recent advantages of

contrastive learning (Wu et al., 2018; T. Chen et al., 2020) and propose L𝑐𝑜𝑛 to pull all snippets

of the same event and push snippets of different events. Our VL Loss consists of two terms

corresponding to captioning loss (L𝑐𝑎𝑝.) and a contrastive contextual loss (L𝑐𝑜𝑛.). While L𝑐𝑎𝑝.

aims to decode captions that match with groundtruths, L𝑐𝑜𝑛. guarantees the learnt latent features

are close to the semantic information encoded in the groundtruth captions.

Captioning Loss L𝑐𝑎𝑝.

Kullback–Leibler (KL) divergence is commonly utilized to minimize the divergence between em-

pirical distribution 𝑝(s|V𝑒) and predicted distribution 𝑝𝜃 (s|V𝑒) for a video segmentV𝑒. However,
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this objective easily makes the captioning model overfit high-frequency tokens and phrases, which

results in repetitive phrases. In order to enhance the smoothness of the predicted sentence, a

regularization term 𝜏 is introduced to the training objective with hyper-parameter 𝜆 as:

𝜃∗ = argmin
𝜃

Es∼𝑝(s)

[
log

(
𝑝(s)
𝑝𝜃 (s)

)
+ 𝜆𝜏(s)

]
(3.4)

The second term 𝜏 imposes a token-level high-frequency penalty as Song, S. Chen, and Jin. Based

on the observation that the model tends to generate words that have been generated before, we

penalize the previously appeared words in the regularization term:

𝜏(s) = − 1
𝑁

𝑁∑︁
𝑖=1

∑︁
𝑐∈{𝑠 |𝑠<𝑖}

log (1 − 𝑝𝜃 (𝑐 |𝑠<𝑖, E)) (3.5)

where 𝑐 is the candidate word at 𝑛 to be penalized.

Our L𝑐𝑎𝑝. is defined as follows:

L𝑐𝑎𝑝. = −
1
𝑁

𝑁∑︁
𝑖=1
(log 𝑝𝜃 (𝑠𝑖 |𝑠<𝑖,V𝑒)) + 𝜆𝜏(s) (3.6)

where 𝜃 is the model parameters, 𝑠1:𝑁 is the target ground truth sequence.

Contrastive Contextual Loss L𝑐𝑜𝑛.

We propose contrastive contextual loss to optimize the latent feature of the input event to be highly

correlated with its groundtruth description. This loss function implicitly encourages our model

to learn better representations of the events and enhance its overall performance without extra

computational cost.

Specifically, contrastive contextual loss processes the entire mini-batch of training examples B =

{(V𝑏, s𝑏)} |B|𝑏=1, where V𝑏 is a set of snippets within the same event and s𝑏 is its corresponding

groundtruth description sentence. On the one hand, video snippets inV𝑏 are processed through our
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proposed VLTinT to obtain the event embeddings, which corresponds to the video token position

FN
𝑏
∈ R𝐿×𝑑emb of the final hidden state𝐻N

𝑏
. On the other hand, we process each groundtruth caption

sentence s𝑏 through the transformer 𝑔𝜙 of CLIP (Radford et al., 2021) to obtain a representation

feature 𝑓 T
𝑏
∈ R𝑑emb . Then, L𝑐𝑜𝑛. processes FN

𝑏
and 𝑓 T

𝑏
as follows:

L𝑐𝑜𝑛. = −
|B|∑︁
𝑏1=1

|B|∑︁
𝑏2=1
[⊮𝑏1=𝑏2 log(𝑒𝜌 ( 𝑓N

𝑏1
· 𝑓 T
𝑏2
))

+ (1 − ⊮𝑏1=𝑏2) (1 − log(𝑒𝜌 ( 𝑓N
𝑏1
· 𝑓 T
𝑏2
)))] (3.7a)

where 𝑓N
𝑏

= mean(FN
𝑏
). ⊮𝑏1=𝑏2 returns 1 when samples come from the same event, i.e., 𝑏1 = 𝑏2

and 0 when samples come from the different events i.e., 𝑏1 ≠ 𝑏2. 𝜌 is a learnable temperature

parameter initialized as log(1/0.07), to prevent scaling of the dot product values and stabilize the

training.

Finally, our proposed VL contrastive loss L𝑉𝐿 is defined as:

L𝑉𝐿 = L𝑐𝑎𝑝. + L𝑐𝑜𝑛. (3.8)

3.5 Experiments

This section is dedicated to presenting the experimental framework that we have set up to validate

our model’s effectiveness.

Datasets and Evaluation Metrics

Our model is benchmarked on two widely used datasets: ActivityNet Captions (Krishna et al., 2017)

and YouCookII (L. Zhou, C. Xu, and Corso, 2018). The ActivityNet Captions dataset comprises

10,009 training videos and 4,917 validation videos. In the training set, each video is associated with

a single reference paragraph, while each video in the validation set has two reference paragraphs.

The average count of event segments for each video stands at 3.65. Following previous works (Lei

et al., 2020), the original validation set is split into two subsets: ae-val (for validation, with 2,460
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videos) and ae-test (for testing, with 2,457 videos).

The YouCookII dataset includes 1,333 training videos and 457 validation videos. Each video in

this dataset is coupled with a single reference paragraph, with an average of 7.7 event segments for

each video. Our results are reported on the validation sets of both datasets.

We constructed a vocabulary based on the words found in the training set captions, supplemented

with a few special tokens. As a result, the vocabulary encompasses 10,648 words for ActivityNet

Captions and 2,310 words for YouCookII.

To evaluate performance, we employ four standard metrics: BLEU@4 (B@4) (Papineni et al.,

2002), METEOR (M) (Denkowski and Lavie, 2014), CIDEr (C) (Vedantam, Zitnick, and Parikh,

2015), and ROUGE (R) (C.-Y. Lin, 2004). Furthermore, to assess the diversity of the generated

captions, we utilize two additional metrics: 2-gram diversity (Div@2) (Shetty et al., 2017) and 4-

gram repetition (R@4) (Xiong, B. Dai, and D. Lin, 2018). These latter metrics serve to benchmark

the uniqueness and non-repetitiveness of the generated captions.

Implementation Details

For visual feature extraction, we utilize a C3D model, as outlined by Ji et al., which is pretrained on

the Kinetics-400 dataset (Kay et al., 2017). This backbone network serves as a primary conduit for

the interpretation of environmental visuals. The agent visual feature is extracted by Faster-RCNN

(Ren et al., 2015) that is pre-trained on the COCO dataset (T.-Y. Lin et al., 2014). To obtain linguistic

features of the scene elements, we use the Contrastive Language–Image Pretraining (CLIP) model

(Radford et al., 2021) based on ViT-B/16, made publicly available by OpenAI. In the CLIP model,

the text and image features are encoded by the Transformer (Vaswani et al., 2017) and the Vision

Transformer (Dosovitskiy et al., 2021), respectively.

In terms of model specifications, the hidden size is set to 768, and we opt for a configuration of 3

Transformer layers with 12 attention heads each. The model is trained using the Adam optimizer

with an initial learning rate of 1e-4, 𝛽1 = 0.9, 𝛽2 = 0.999, and an 𝐿2 weight decay of 0.01. The

learning rate is warmed up over the initial 5 epochs. During the training phase, we employ label
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A cowboy is riding a horse in a barn. He lassos a small calf. He dismounts, tying the calf and celebrating.GT:

v_G8dCenteoT0

A woman holds a contact lens on her finger. She puts the contact lens into her eye. She opens her eye with her fingers and takes the contact lens out.

A close up of a eye is shown with a person's eye. A person is then seen putting a contact lens in her eye. The person then takes a contact lens out
of her eye.

The person then puts eye on the contact lens. The woman puts the contact lens in her eye. The person puts a contact lens in the eye.
A woman is seen looking at the camera. She holds up a contact lens and puts it in her eye. She then puts the contact into the camera.MART:

VTrans:

VLTinT: 

GT:

A man is riding a horse in a rodeo ring. He lassos a calf. He ties the calf up and ties it up.

A man is riding a horse down a river. The man then gets up and throws the calf down and grabs the horse and runs back to the horse. He gets
back on his horse and gets back on his horse .
A man is seen standing on a horse and throws a rope around. The man throws the calf down and the man chases after it. He ties the calf up and
walks back to the horse .

MART:

VTrans:

VLTinT: 

v_PAGuZzrzSO4

v_UxlSiLBleX4

A man is sitting down in a chair.  He begins to play an acoustic guitar.  He finishes playing the guitar and standing up.
A man is sitting down playing an acoustic guitar. He is playing the guitar. He finishes playing the guitar and smiles . 

A man is playing a guitar. He is playing the guitar. He stops playing the guitar .
A man is seen sitting on a stool holding a guitar and playing a guitar. The man continues playing the guitar while the camera captures his movements.
The man finishes the song and smiles .

MART:
VTrans:

VLTinT: 
GT:

Figure 3.5: Qualitative comparison on ActivityNet Captions ae-test split. Red text indicates the
captioning mistakes, purple text indicates repetitive patterns, and blue text indicates some distinct
expressions.

smoothing with a value of 0.1 and set 𝜆 = 0.1. All these computations and training routines were

conducted on a single NVIDIA RTX 3090 (24GB) GPU.

Qualitative Analysis

Fig. 3.5 offers a comparison of our model (VLTinT), the Vanilla Transformer (VTrans) (L. Zhou,

Y. Zhou, et al., 2018), and MART (Lei et al., 2020). Overall, VLTinT demonstrates superior

performance in generating more descriptive captions with finer details. A key observation is that

while VTrans and MART tend to rely on high-frequency words in their captions, VLTinT has

a propensity to use more expressive but less frequently occurring words. For instance, in the

first example, VLTinT chooses "lassos" over the more commonplace "throws". We attribute this

enhanced expressiveness to our VL Encoder, which incorporates relative scene elements, thus
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Table 3.1: Performance comparison of our model with other SOTA models on ActivityNet Captions
ae-val split. † denotes results by us.

Methods Venue Input B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓
Vanilla Trans. CVPR Res200/Flow 9.75 15.64 22.16 28.90† 77.40† 7.79
AdvInf CVPR C3D/Object 10.04 16.60 20.97 – – 5.76
GVD CVPR Res200/Flow/Object 11.04 15.71 21.95 – – 8.76
Trans.-XL ACL Res200/Flow 10.39 15.09 21.67 30.18† 75.96† 8.54
Trans.-XLRG ACL Res200/Flow 10.17 14.77 20.40 – – 8.85
MART ACL Res200/Flow 10.33 15.68 23.42 30.32† 75.71† 5.18
PDVC ICCV C3D/Flow 11.80 15.93 27.27 – – –
VLTinT (ours) AAAI C3D/Ling 14.93 18.16 33.07 36.86 77.72 4.87

Table 3.2: Performance comparison of our model with other SOTA models on ActivityNet Captions
ae-test split. † denotes results by us.

Methods Venue Input B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓
Vanilla Trans. CVPR Res200/Flow 9.31 15.54 21.33 28.98† 77.29† 7.45
Trans.-XL ACL Res200/Flow 10.25 14.91 21.71 30.25† 76.17† 8.79
Trans.-XLRG ACL Res200/Flow 10.07 14.58 20.34 – – 9.37
MART ACL Res200/Flow 9.78 15.57 22.16 30.85† 75.69† 5.44
MARTCOOT NIPS COOT 10.85 15.99 28.19 – – 6.64
Memory Trans. CVPR I3D 11.74 15.64 26.55 – 83.95 2.75
VLTinT (ours) AAAI C3D/Ling 14.50 17.97 31.13 36.56 77.72 4.75

Table 3.3: Performance comparison of VLTinT with other SOTA models on YouCookII validation
set.

Methods Venue Input B@4 ↑ M ↑ C ↑ R ↑ R@4 ↓
Vanilla Trans. CVPR Res200/Flow 4.38 11.55 38.00 – –
MART ACL Res200/Flow 8.00 15.90 35.74 – 4.39
MARTCOOT NIPS COOT 9.44 18.17 46.06 – 6.30
VLTinT (ours) AAAI C3D/Ling 9.40 17.94 48.70 34.55 4.29

enriching the model’s language usage. Another observed issue is caption repetitiveness in VTrans

and MART. This is effectively tackled by our proposed TinT Decoder. Notably, when dealing with

similar actions (e.g., inserting and removing a contact lens), our VLTinT is able to distinguish

between the two, while the other baselines fail to correctly caption these actions. This distinction

capability can be credited to the rich spatial information provided by the VL Encoder and the strong

temporal coherency facilitated by the TinT Decoder.
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Quantitative Analysis

Our model, VLTinT, is benchmarked and compared with previous state-of-the-art (SOTA) video

paragraph captioning (VPC) models on ActivityNet Captions (ae-val, ae-test) and YouCookII, as

shown in Tables 3.1, 3.2, and 3.3 respectively. In these tables, we underline the second-best scores

and bolden the best scores for each metric. When compared with the SOTA models MART (Lei

et al., 2020), MART w/COOT (a variant of MART using COOT feature (Ging et al., 2020), and

PDVC (Wang et al., 2021), our VLTinT significantly outperforms them across both accuracy and

diversity metrics on ActivityNet Captions. For instance, on the ae-val split, our model achieves

gains of 3.13%, 1.56%, 5.80%, and 6.54% on the B@4, M, C, and R accuracy metrics respectively,

when compared to the second-best performance. Furthermore, diversity increases by 0.32% on

Div@2 and reduces by 0.32% on R@4.

On the ae-test split, the accuracy gains are 3.65%, 1.98%, 2.94%, and 5.71% on B@4, M, C, and R

metrics respectively, while diversity increases by 0.43% on Div@2 and reduces by 0.67% on R@4,

all compared to the second-best performance.

On YouCookII, our model sets the best scores on C, R, and R@4 metrics by considerable margins

while achieving competitive performance on B@4 and M metrics. This demonstrates the overall

effectiveness of our VLTinT in video paragraph captioning tasks across diverse videos.

3.6 Ablation Studies

This section aims to investigate the impact and significance of individual components or factors

within the proposed system.

Contribution of each modality in VL Encoder

We examine VLTinT on ActivityNet Captions with different modality settings as given in Table 3.4

and 3.5. The first three rows show the performance on each individual modality whereas the last

three rows show the performance on different combinations. Even though the best performance on

overall is obtained by combining all three modalities of both vision (environment and agent) and

language (scene elements), the performance on only linguistic feature is promising with notable
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Table 3.4: Ablation study on the contribution of each modality in VL Encoder on ActivityNet
Captions dataset for ae-val split. Env., Agt., and Ling. denote the global visual environment, local
visual main agents, and linguistic relevant scene elements, respectively.

Env. Agt. Ling. B@4 ↑ M ↑ C ↑ R ↑ Div@2 ↑ R@4 ↓√ × × 14.02 17.58 30.31 36.20 76.11 6.08
× √ × 12.13 16.57 24.98 34.36 79.18 4.24
× × √

14.00 17.88 31.64 35.95 80.44 3.22√ √ × 14.12 17.78 31.15 36.12 78.02 4.56√ × √
14.84 17.97 31.86 36.80 76.41 5.67√ √ √
14.93 18.16 33.07 36.86 77.72 4.87

Table 3.5: Ablation study on the contribution of each modality in VL Encoder on ActivityNet
Captions dataset for at-test split. Env., Agt., and Ling. denote the global visual environment, local
visual main agents, and linguistic relevant scene elements, respectively.

Env. Agt. Ling. B@4 ↑ M ↑ C ↑ R ↑ Div@2↑ R@4 ↓√ × × 13.62 17.41 29.09 35.96 76.14 5.97
× √ × 11.83 16.22 21.39 33.97 79.20 4.16
× × √

13.38 17.69 30.30 35.63 80.50 3.32√ √ × 13.77 17.52 30.05 35.93 77.78 4.69√ × √
14.53 17.79 30.83 36.67 76.47 5.60√ √ √
14.50 17.97 31.13 36.56 77.72 4.75

performance, especially on diversity metrics. This should be included in our future investigation.

Effectiveness of linguistic relevant scene elements

To demonstrate the effectiveness of our chosen method for extracting scene elements, we compare

the performance of VLTinT with two scenarios, as detailed in Table 3.6: (i) where scene elements

are extracted using Mask-RCNN trained on the COCO dataset with 80 classes (He, Gkioxari, et

al., 2017), and (ii) where scene elements are extracted using CLIP. Our ablation study highlights

the superiority of CLIP-extracted scene elements over those extracted using Mask-RCNN. Scene

elements encompass a broad variety of factors, including human and non-human elements (such as

animals and vehicles), and visual and non-visual elements (such as relations and activities). Mask

R-CNN, however, is only capable of capturing a limited subset of these elements because it has



42

Table 3.6: Performance comparison between two cases trained on TinT network without visual
feature: (i) scene elements extracted by Mask R-CNN (M RCNN) (ii) scene elements extracted by
CLIP. The experiment is done on the ActivityNet Captions dataset at-test split.

B@4↑ M ↑ C ↑ R ↑ R@4 ↓
M RCNN 1.35 9.09 12.29 23.06 18.52
CLIP 13.38 17.69 30.30 35.63 3.32

Table 3.7: Comparison between RNN and Transformer to model inter-event dependencies in TinT
decoder on ActivityNet Captions with C3D (env+agent) is visual feature in the encoder. Linguistic
feature (Ling.) is considered as an option.

use of inter-event B@4 ↑ M ↑ C ↑ R ↑ling. modeling

ae
-v

al × RNN 11.68 16.79 25.86 33.97
Trans. 14.12 17.78 31.15 36.12

√ RNN 13.75 17.63 28.01 36.21
Trans. 14.93 18.16 33.07 36.86

ae
-te

st × RNN 11.10 15.72 27.67 31.75
Trans. 13.77 17.52 30.05 35.93

√ RNN 13.45 17.42 29.68 36.09
Trans. 14.50 17.97 31.13 36.56

been trained on a relatively small number of visual objects/classes. Consequently, its diversity

and scene understanding performance are poorer compared to CLIP. The results demonstrate the

improved effectiveness and utility of CLIP for extracting linguistically relevant scene elements in

our VLTinT.

Effectiveness of VL Loss L𝑉𝐿

We examine the effectiveness of the VL Loss by replacing it with the MLE loss, a commonly

employed loss function in VPC. The performance of the VLTinT model on the ActivityNet Captions

ae-test dataset, when implemented with these two different loss functions, is presented in Table 3.8.

Our analysis confirms that aligning the semantics of the latent feature with the groundtruth caption

indeed contributes to enhancing the model’s performance.
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Table 3.8: Effectiveness of L𝑉𝐿 compared to the standard MLE loss on ActivityNet Captions
ae-test split.

Loss B@4↑ M ↑ C ↑ R ↑
MLE 13.80 17.72 30.59 36.11
L𝑉𝐿 (ours) 14.50 17.97 31.13 36.56

Table 3.9: Computational cost vs. accuracy between VLTinT (Env./Agent./Ling.) with different
settings and SOTA VPC models.

Computational cost Accuracy
Models Params↓ Comp. ↓ Inf.↓ M↑ C↑
MART 36.25 6.32 0.025 15.57 22.16
Mem Trans 29.69 256.44 0.706 16.10 27.36
Env. 36.01 17.69 0.028 17.41 29.09
Env./Agent. 40.37 22.70 0.032 17.52 30.05
Env./Agent./Ling. 43.40 40.37 0.038 17.97 31.13

Computational Complexity

Finally, we evaluate the computational complexity of our proposed VLTinT model in comparison

to state-of-the-art (SOTA) VPC models on the ActivityNet ae-test dataset. The evaluation metrics

include trainable parameters (measured in millions), computation (GFLOPs), average inference

time (seconds) over 100 random videos, and accuracy metrics. These results are compiled in Table

3.9. We present evaluations of our VLTinT model under different settings for a comprehensive

understanding. When compared to the SOTA models, our model, when implemented with only

environmental features, exhibits compatible parameter count and inference time while demonstrat-

ing improved performance. Furthermore, when our model is implemented with environmental,

agent, and linguistic features, it achieves a substantial improvement in accuracy while maintaining

reasonable computational complexities.

Analysis of TinT Decoder

Our TinT Decoder is structured as a nested transformer architecture, in which the inner transformer

addresses intra-event coherence and the outer transformer manages inter-event coherence. Quanti-

tative analysis of the TinT Decoder, replacing the outer transformer with an RNN-based network
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A group of people are playing volleyball on a beach. They lob the ball back and forth over the net. The
game continues on with the ball, and the other teammates play.

A group of people are on a beach playing volleyball. They lob the ball back and forth over the net. They hit
the ball back and forth over the net.

Trans:

RNN:

A group of girls are on a sandy beach. They are engaged in a game of volleyball. They lob the ball back and
forth over the net.

GT:

A young man is seen speaking to the camera while holding up a brush. The man then begins brushing his
hair and looking back to the camera. He continues brushing his hair and looking off into the distance.

Trans:

RNN:

GT:

A young woman is seen sitting in front of a camera and begins brushing her hair. She then brushes her
hair down and begins brushing her hair. She continues brushing the hair and looking off into the camera.

A man with long hair is seen looking at the camera and begins brushing his hair. The man brushes his hair
all around while still looking down at the camera. The man turns around to finish brushing his hair and ends
by waving to the camera.

v_aCknCFmU0sA

v_laeOL4ipHck

Figure 3.6: Qualitative analysis of inter-event modeling by RNN (the first row) and our outer
transformer (the second row), whereas the groundtruth is shown in the last row. Red text indicates
the captioning mistakes, purple text indicates repetitive patterns, and blue text indicates some
distinct expressions.

(Lei et al., 2020), is provided in Table 3.7. This comparison was made using two encoder fea-

ture settings: one including and the other excluding linguistic features, while C3D (encompassing

both environment and agent) was employed as visual features. Our results indicate a significant

performance boost through the modeling of inter-event relationships with our autoregressive outer

transformer.

When using the same comparison settings, qualitative results are depicted in Fig. 3.6. Aside from

minor captioning errors, the main issue with RNN-based inter-event coherence modeling lies in its
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tendency towards repetitive patterns. This indicates that the relationships between sentences are

not effectively handled by the RNN-based network, highlighting the advantages of our proposed

TinT Decoder. By using the outer transformer for inter-event coherence and the inner transformer

for intra-event coherence, the TinT Decoder exhibits superior performance in managing complex

contextual relationships.
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Chapter 4

CONCLUSION & FUTURE WORK

In this thesis, we have embarked on an in-depth exploration of video understanding, focusing on

Video Paragraph Captioning (VPC). This area poses unique challenges, necessitating comprehen-

sive insights into both visual and contextual dependencies in videos.

Our main contribution is the development of VLTinT, a novel end-to-end model designed specifi-

cally for VPC tasks. The architecture of VLTinT is comprised of two integral components: the VL

Encoder and the Transformer-in-Transformer (TinT) Decoder. The VL Encoder effectively extracts

video features using three modalities: the global visual environment, the local visual main agents,

and the linguistically relevant scene elements. The fusion of these diverse features is facilitated by

a multi-modal representation fusion (M2RF) mechanism, ensuring a comprehensive representation

of the video content.

As for the TinT Decoder, it capitalizes on a nested transformer design to effectively capture both

intra-event and inter-event coherencies. The unified inner transformer is tasked with modeling intra-

event relationships, while the autoregressive outer transformer focuses on inter-event connections.

To train our VLTinT framework, we introduce the Video-linguistic (VL) contrastive loss, L𝑉𝐿 ,

designed to align the semantics of the latent feature with the ground truth caption, contributing

significantly to the model’s performance.

The efficacy of our proposed VLTinT was validated on several popular benchmark datasets. The

model’s superior performance, in terms of both accuracy and diversity of generated captions,

highlights its potential in contributing to the advancements in the field of video understanding.

Below, we point out several important future directions that should be further investigated.

Utilization of Foundation models: Over the past months, we have witnessed the exponential rise

of large-scale foundation models in various domains. Early examples of models include GPTs

(T. Brown et al., 2020), CLIP (Patashnik et al., 2021), DALL·E (Ramesh et al., 2021), SAM
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(Kirillov et al., 2023), and more. These models, pretrained on diverse and extensive data, have

demonstrated extraordinary performance in a wide range of downstream tasks. In this thesis, we

have utilized CLIP to obtain linguistic concepts of the scene but many other possibilities of utilizing

the foundation models are yet to be explored. Our VLTinT framework, while proficient in VPC

tasks, could potentially benefit from incorporating these foundation models. Some of the possible

directions include: adopting pretrained LLM for the captioning decoder, exploring the internal

representations of the VL models for the video representation, and employing transformer models

such as SAM for understanding segment-level dependencies.

Integration of other modalities: While our VLTinT focuses primarily on the visual and linguistic

modalities, there is considerable potential for enriching video understanding by incorporating other

modalities. Audio, for instance, is a crucial component of many videos and can provide important

contextual cues that are not always visually apparent. Similarly, the integration of text modality in

the form of subtitles or transcriptions can add another layer of contextual understanding, especially

in dialog-heavy videos. In future work, we aim to expand our VLTinT to become a multimodal

framework that can seamlessly integrate and learn from these additional modalities. This could

significantly improve the model’s ability to comprehend and describe complex videos, leading to

even more accurate and comprehensive video paragraph captioning.
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