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Abstract 

 

The Early – Late Cretaceous transition in Western North America recorded a period of rapid 

climatic and tectonic change in Earth’s history. Major climate events associated with large 

igneous province eruptions caused several instances of ocean anoxic events (OAE) and 

perturbations to the global carbon (C) – cycle. These perturbations to the global C-cycle are 

observed in the bulk organic C record of both marine and terrestrial deposits and can be used to 

correlate units across major depositional basins. Major efforts are being made to generate time-

constrained palaeontologic and paleoclimate information from the North American Cordilleran 

foreland basin and C-isotope chemostratigraphy can aid in making these correlations. This study 

uses the isotopic composition of bulk organic carbon from the Lower Cretaceous Cloverly 

Formation to constrain the age of the Cloverly Formation within the Bighorn Basin, Wyoming. 

The study also investigates paleoclimate proxies such as mean annual precipitation and 

atmospheric CO2 concentrations. C-isotope chemostratigraphy of bulk organic carbon results 

range between -21‰ and -30.1‰ and average at -23.97 ‰. Two pedogenic carbonates nodules 

from the Little Sheep Member (CCC-12 and CCC-24) were analyzed for δ13Corg, δ
13Ccarb, and 

δ18Ocarb. The Little Sheep Mudstone Member carbonate nodules have average δ13Ccarb values of -

6.72 ‰ at CCC-12 and -7.25 ‰ at CCC-24. The mudstone organic C isotopic values of the 

carbonate nodules are -26.27 ‰ for CCC-12, and -25.9 ‰ for CCC-24. The S(z) values (soil 

CO2 concentration) were estimated to be between 1000 – 3000 ppm, typical of micro-high vertic 

soils. Atmospheric pCO2 concentrations are calculated using the paleosol CO2 paleobarometer of 

Ekart et al. (1999) and are reported at S(z) = 2000 ± 1000 ppm. Atmospheric C-isotopic 

composition of pCO2 is estimated using the δ13C of bulk organic C in mudstones and the 

relationship between plant matter and pCO2 outlined in Arens et al. (2000). Atmospheric pCO2 



values at 4 m above the Pryor Conglomerate, 14.5 m above the Cloverly-Morrison lithologic 

boundary are 352 ± 176 ppm and increase to 931 ± 465 ppm at 18.5 m. Mean annual 

precipitation (MAP) was calculated from weathering indices of metal oxides in soils using 

CALMAG and CIA-K equations. MAP increases up section from a minimum of 697- 984 mm/yr 

in the LSM to a maximum of 1291-1705 mm/yr in the Upper Himes Member.  Given the 

maximum depositional age of the base of the Little Sheep Mudstone Member (129.4 ± 3.4 Ma) 

from D’Emic et al. (2019), a maximum depositional age for the lower Himes Member at 

Crooked Creek of 103.6 ± 1.3 Ma (D’Emic et al., 2019), the maximum depositional age of 

112.09 ± 0.34 Ma (Carrano et al., 2021) from other Little Sheep Mudstone outcrops, and the high 

resolution C-isotope chemostratigraphic trend of the Crooked Creek Section (this study) 

constrains the positive C-isotope trend and decreasing (negative CIE) trend to the C-10 to C-11 

C-isotope excursions associated with the CIE of Bralower et al. (1999) that occurs in the Late 

Aptian to Early Albian. 
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Chapter 1: 

Introduction 

Thesis Structure 

 This thesis has two chapters. Chapter 1 is a general introduction to the Early Cretaceous 

Period, carbon(C) isotope chemostratigraphy, the Cloverly Formation, and paleoclimate proxies 

used in the study. Chapter 2 is formatted as a manuscript that will be submitted for publication in 

Cretaceous Research. This chapter: “C-Isotope Chemostratigraphy and pCO2 calculations from 

the Cloverly Formation in Northern Wyoming” includes details of the paleoclimate proxies used 

in the study, discussions/interpretations, and conclusion.  

The Early Cretaceous Paleoclimate  

 The Early – Late Cretaceous Period is generally thought of a greenhouse climate that 

induced periods of ocean anoxic events (OAEs) but also saw periods of coolhouse events that 

occurred during the latest Aptian to Early Albian stages (Bodin et al., 2015; Erba et al., 2015; 

Lee et al., 2019; McAnena et al., 2013). Major geologic events such as the Sevier Orogenic 

event, continued sea-level rise of the Zuni Sequence, development of the Western Interior 

Seaway, continued rifting and break-up of Gondwanaland, global sea-level fall (North America 

Bering land bridge), and large igneous province (LIPs) eruptions greatly impacted the 

Cretaceous (Erba et al., 2015; Ernst & Youbi, 2017; Shurr et al., 1989; Suarez et al., 2017; 

Wignall, 2001). Large igneous province eruptions including the Paraná-Etendeka LIP (South 

America and Africa rifting), Ontong Java LIP, Kerguelen LIP, Caribbean-Columbian, 

Madagascar LIP, and Deccan Basalt traps (India) (Figure 1) resulted in several ocean anoxic 

events (e.g the Selli event (OAE1a), increased atmospheric CO2 concentrations, increased 



2 

 

productivity, accelerated hydrologic cycles recorded in O-isotope records and marine extinctions 

(Erba et al., 2015; Ernst & Youbi, 2017; Wignall, 2005). Life events that occurred during the 

Cretaceous including major expansion of single celled organisms such as foraminifera and 

coccolithophores; continued evolution of ammonites into large forms; diversification of marine 

reptiles (mosasaurs and plesiosaurs), reef-forming clam populations (Rudist bivalves) and 

Scleractinian corals; terrestrial evolution such as continued diversification of dinosaur, evolution 

of angiosperms, evolution of pollenating insects, and expansion of birds and mammals 

(Grimaldi, 1999; Harrell Jr et al., 2016; Lloyd et al., 2008; Martin, 2002). 

 

 

 

 

 

 

 

 

Figure 1: Large igneous provinces (red squares) that erupted during the 

Cretaceous Period. 1. Parana Etendeka LIP 2. Ontong Java LIP 3. Kerguelen 4. 

Madagascar, 5. Deccan traps. Modified slightly from Ernst & Youbi (2017) 



3 

 

 

The Carbon Cycle and Carbon Isotope Chemostratigraphy 

  Degassed carbon from the Earth’s interior passes through the exogenic system 

(atmosphere, terrestrial biosphere, surface ocean, intermediate and deep ocean, and reactive 

marine sediment), and influences the climate prior to burial as carbonates or organic carbon (Lee 

et al., 2019; Figure 2, Figure 3). Carbon cycling in the atmosphere and ocean reservoirs occur 

over short time scales of ~ <1000 years (Lee et al., 2019) (Figure 3). The deep-C reservoir is 

connected to the surface reservoir via volcanism and metasomatism. Within the surface reservoir, 

Table 1: Large igneous province eruptions and associated events. Modified from Wignall 

(2005) 

Large 

igneous 

province 

Global 

warming 

Ocean 

anoxia 

Methane 

release 

from gas 

hydrates 

Ocean 

calcificatio

n crisis 

Significan

t 

extinction 

events 

~Age Age source 

Deccan 

Traps 

yes moderat

e 

no moderate End – 

Cretaceou

s (K/T) 

66 

Ma 

(Schoene et 

al., 2015) 

Caribbea

n-

Columbi

an, 

Madagas

car 

yes End-

Cenoma

nian 

Stage 

no no yes 90 

Ma 

(Cucciniello 

et al., 2010) 

Kerguel

en 

Plateau 

cooling no no yes moderate 119-

110 

Ma 

(Coffin, 

2002; Frey 

et al., 2003) 

Ontong 

Java 

yes Early 

Aptian 

Stage 

OAE 1a 

moderate yes no 124 - 

120 

Ma 

(Bond & 

Wignall, 

2014; Timm 

et al., 2011) 

Parana-

Etendek

a 

no Valangi

nian 

Stage 

no yes no 133 

Ma 

(Almeida et 

al., 2018; 

Florisbal et 

al., 2014) 
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are a number of smaller reservoirs such as the ocean, atmosphere, biosphere, and lithosphere. 

Changes in the flux of one carbon reservoir to another results in perturbations in the global C-

cycle and the isotopic compositions of these reservoirs can be used to correlate units across 

major depositional basins through records in bulk organic C- isotope record of both marine and 

terrestrial deposits (Foreman et al., 2012; Herrle et al., 2015; Ludvigson et al., 2015; Suarez et 

al., 2017; Suarez et al., 2013; Wignall, 2001). 

 

Figure 2: Long term carbon cycle adapted from Breugel (2006), initially modified from 

Kump & Arthur (1999)  
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  Perturbations within the carbon cycle are seen in carbon isotope chemostratigraphy as 

negative and positive excursions. A complex interaction of the biosphere, lithosphere, and 

atmosphere can affect the magnitude of these excursions as well as whether a positive or 

negative response occurs in the carbon isotope system. In general, an increase in the amount of 

atmospheric CO2 (depending on the source of CO2 and it’s isotopic composition) can cause 

increased silicate weathering to the oceans, increased primary productivity, increased rates of 

burial of organic matter, and dissolved inorganic carbon (DIC) in oceans, which results in a 

positive carbon isotope excursion (PCIE) (Arthur et al., 1988; Wignall, 2001, 2005). The 

increase in primary productivity and burial of organic matter sequesters light carbon since 

photosynthetic fractionation causes sequestering of 12C from the DIC pool, resulting in a positive 

C-isotope excursion. This is in part due to photosynthetic fractionation of C-isotopes. 

Photosynthetic organisms (such as plants) take up carbon dioxide during photosynthesis and 

 

Figure 3: Endogenic and exogenic carbon cycle processes with reservoirs placed 

according to the estimated residence time (in years) assuming a steady state system. 

Adapted from Lee et al. (2019) 
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convert it to sugar through two pathways: the Calvin Cycle (C3 plants) and the Hatch -Slack 

Cycle (C4 plants). Carbon fixation with ribulose -1, 5-biphosphate (RuBP) carboxylation (C3 

pathway) are used by C3 plants. The total fractionation for C3 plants falls within the range of -20 

to -30 as determined from bacterial and RuBP carboxylation but may be up to -34 ‰ for 

terrestrial plants (White, 2014). C4 plants which occurred only after evolution of C4 grasses in 

the Miocene Epoch use phosphoenolpyruvate carboxylase to form oxaloacetate (Sundquist & 

Visser, 2003; White, 2014) that results in a less fractionation and thus more enriched δ13C values 

(-9 to -17 ‰) (Ballentine et al., 1998). Due to this decreased fractionation, C-isotope 

chemostratigraphy can only be related to global CO2 prior to C4 plant evolution using C3-

dominated systems. Thus, kinetic fractionation of isotopically light to heavy carbon (13C/12C), 

12C is incorporated into plants leaving the atmosphere enriched in 13C (Saltzman & Thomas, 

2012; White, 2014) 

 Negative C-isotope excursions (NCIEs) are more difficult to explain, but most instances 

of NCIEs are related to large igneous provinces in which a pool of volcanic isotopically light C 

is volatilized into the atmosphere (Hoefs 2009; Breugel, 2006; Grocke, 2002; Hesselbo et al., 

2000; Jahren et al., 2001; Kump & Arthur, 1999; McInerney & Wing, 2011; Röhl et al., 2007; 

Zeebe et al., 2009). This can include volatilization of C-isotopically light methane (CH4) 

hydrates as ocean temperatures increase (greenhouse warming) and volatilization of organic-rich 

sediments (Breugel, 2006; Wignall, 2005). In these instances of large igneous province 

eruptions, a typical pattern observed in the C-isotopic record is an initial NCIE as light C sources 

are volatilized, followed by a PCIE as primary productivity in enhanced, and then a stabilization 

to pre-excursion δ13C values. Thus, the pattern of positive and negative CIEs can be used to 

explain the multi-faceted mechanisms of climate change brought on by volcanic activity (Bond 
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& Wignall, 2014; Breugel, 2006; Cramer & Jarvis, 2020; Harper et al., 2020; Röhl et al., 2007; 

Zachos et al., 2005). 

The Cloverly Formation and Paleoclimate Proxies Used in the Study 

 The Cloverly Formation comprises the Pryor Conglomerate, the Little Sheep Mudstone 

Member, and the Himes Member (Lower and Upper Himes Members) which were previously 

classified by Ostrom (1970) as Units IV, V, VI, and VII respectively. This research focuses on 

outcrops from the Cloverly Formation and the overlying Sykes Mountain Formation located in 

the Crooked Creek area, Big Horn Basin, northern Wyoming. In the study area, the basal 

member – the Pryor Conglomerate (PC) overlies the Jurassic Morrison Formation with a 

disconformable contact, the Little Sheep Mudstone (LSM) Member overlies the Pryor 

Conglomerate, and the overlying Himes Member has disconformable contact with the LSM 

Member. There is a gradual and transitional contact between the upper Himes Member and the 

overlying Sykes Mountain Formation in which an increase in organic matter and proximal 

coastal facies occurs D’Emic et al. (2019); Figure 4). 
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The purpose of this study is to 1) constrain the age of the Cloverly Formation as well as 

important vertebrate fossil localities within the formation and 2) generate climate proxy data 

from the Cloverly Formation. 

 

Figure 4: General stratigraphy of the Cloverly Formation. 
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Figure 5: Variation in δ13Ccarb through the Cretaceous by Cramer & Jarvis (2020) 

To do this (Chapter 2), we generate bulk organic (δ13Corg) chemostratigraphic data from 164 

samples, and δ13Ccarb, and δ18Ocarb values from two pedogenic carbonate samples with the goal of 

calculating atmospheric pCO2 and calculate mean annual precipitation (MAP) from weight 

percent metal oxides in 13 vertic soils exhibiting pedogenic features. The chemostratigraphic 

curve from this study was correlated to age constrained C-isotope chemostratigraphic records 

from marine carbonates (such as Herrle et al. (2015). This correlation is constrained by ages 

determined from previous studies (D’Emic et al., 2019) of detrital zircon U-Pb geochronology 
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with laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and chemical 

abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) from the Crooked 

Creek section, and by the age of the Little Sheep Mudstone Member from volcanolithic units of 

the Little Sheep Member in other outcrops of the Cloverly Formation (Carrano et al., 2021). 
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Chapter 2 

C-Isotope Chemostratigraphy and pCO2 calculations from the Cloverly Formation in 

Northern Wyoming 

Abstract 

The Early – Late Cretaceous transition in Western North America recorded a period of rapid 

climatic and tectonic change in Earth’s history. Major climate events associated with large 

igneous province eruptions caused several instances of ocean anoxic events and perturbations to 

the global carbon (C) cycle, resulting in rises in pCO2, global warming, and rising sea-level 

culminating in the formation of the Western Interior Seaway (WIS). Major efforts are being 

made to generate paleoclimate information from the Cordilleran foreland basin, but the lack of 

time-constrained palaeontologic and paleoclimatic data makes correlation of global carbon (C)-

cycle perturbations to the Early – Late Cretaceous biotic transition in Western North America 

uncertain. Here, we apply C-isotope chemostratigraphy to determine the extent to which the 

Cloverly Formation of Wyoming captures paleoclimate change. We also analyzed pedogenic 

carbonates from two horizons. These two samples were thin sectioned to observe calcite 

microfabrics. Micro-sampling of the facing billets of these carbonates and analysis of δ18Ocarb 

and δ13Ccarb were conducted to examine the diagenetic history of the pedogenic carbonate 

nodules with the goal of calculating paleo-CO2 concentrations. Finally, we collected major 

elemental oxide concentrations from X-ray fluorescence analysis of interpreted paleosol B-

horizons to calculate mean annual precipitation. The constructed high-resolution C-isotope 

chemostratigraphic record reveals an average δ13C value of -23.97‰. A positive C-isotope 

excursion occurs between 15m and 34m with a broad positive C-isotope excursion of -21 ± 0.71 

‰ at 15 m in the lower LSM Member. This excursion was correlated to positive δ13Ccarbonate 
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chemostratigraphic curve of Herrle et al., (2015), and given known detrital zircon ages, we 

correlate the broad positive CIE as the C-9 to C-11 segments of Bralower et al. (1999) that 

occurs in the Late Aptian to Early Albian. Atmospheric pCO2 concentrations are calculated using 

the paleosol CO2 paleobarometer of Ekart et al. (1999) and are reported at S(z) = 2000 ppm with 

an uncertainty of 1000 ppm. Atmospheric C-isotopic composition of pCO2 is estimated using the 

δ13C of bulk organic C in mudstones and the relationship between plant matter and pCO2 

outlined in Arens et al. (2000). Atmospheric pCO2 values at 14.5m above the Morrison 

Formation 352 ± 176 ppm and increase to 931 ± 465 ppm at 18.5 m. Finally, the MAP gradually 

increases up section from a minimum of 697mm/yr to 984 mm/yr at 17.75m within the Little 

Sheep Mudstone to 1291mm/yr to 1705 mm/yr at 55.05m in the upper Himes Member. The 

correlated high resolution chemostratigraphic positive excursion with age constraints from 

Carrano et al. (2021); D’Emic et al. (2019), places the Little Sheep Mudstone Member within the 

Late Aptian to Albian Stage. The lower pCO2 values relative to the rest of the Cretaceous and the 

correlation with the C-9 to C-11 CIE are consistent with periods of cooling associated with the 

emplacement of the Kerguelen LIP. Renewed warming following this “cold snap” in the Early 

Albian is consistent with the increasing MAP. 
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Introduction    

The Cretaceous Period has historically been interpreted as a “hot-house” or “warm-

house” climate due to its overall higher CO2 concentration in the atmosphere. However, as high-

resolution climate records come to light, subtle complexities such as “cold” or “cool-snaps” are 

known to have occurred throughout the Cretaceous (Bodin et al., 2015; McAnena et al., 2013). 

This complex interaction of the Cretaceous Earth system is preserved in the stratigraphy of 

sedimentary rocks deposited within the Western Interior Foreland Basin. The Sevier Fold and 

Thrust Belt resulted in a major change in the depositional setting of North America during the 

Cretaceous and superimposed on this was a rise in sea-level that caused the ancient Boreal Sea 

and the ancient Gulf of Mexico to connect, creating an epicontinental sea known as the Western 

Interior Seaway (WIS). This caused the deposition of non-marine sediments in the Cordilleran 

foreland basin to the west of the WIS including the Cloverly Formations in northern Wyoming 

(DeCelles & Burden, 1992).  

The Cretaceous Period also recorded higher concentrations of atmospheric CO2 which 

contributed to higher temperature, productivity, and biotic distribution, although details of these 

connection are not fully understood (Arens & Jahren, 2000; Cramer & Jarvis, 2020; Ekart et al., 

1999).  These C-isotope perturbations during the Cretaceous are also associated with large 

igneous province eruptions (LIP) as well as the >1,100 km Cordillera that extended from Canada 

to South America (Price 1986) and caused several instances of ocean anoxic events (OAEs) and 

perturbations to the global carbon (C) – cycle. These C-isotope records can be used to generate 

time-constrained paleontologic and paleoclimate information from the Cordilleran foreland basin 

(D’Emic et al., 2019; Ludvigson et al., 2015; Suarez et al., 2013). 
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 This study aims at investigating the Cretaceous C-isotope and climate record for the 

northernly WIB recorded by the Cloverly Formation of the Big Horn Basin, Wyoming. The 

Cloverly Formation may have spanned the Valanginian to Cenomanian stages (ca. 140 – 98 Ma) 

(D’Emic et al., 2019), however a recent study by Carrano et al. (2021) dated a volcanolithic unit 

within the lower Little Sheep Member that directly overlies the basal Pryor Conglomerate as 

112.9 ± 0.34 Ma, suggesting an Early Albian stage for the oldest fossil-bearing units of the 

Cloverly Formation. By determining the organic carbon isotopic record of the Cloverly 

Formation that is constrained by recent geochronologic studies, more accurate age-constraints 

can be determined for the Cloverly Formation. In this study, the C-isotope record is augmented 

by paleoclimate proxy data. Pedogenic carbonates are used to calculate atmospheric pCO2 

concentrations and weight percent metal oxides are used to calculate mean annual precipitation. 

Geologic Setting  

Lower Cretaceous rocks are exposed throughout Wyoming along the flanks of Laramide 

basement block uplifts at the front of the Sevier fold and thrust belt (DeCelles & Burden, 1992; 

Elliott et al., 2007). The Cloverly Formation consist of sediments derived from braided and 

meandering rivers, thick flood plain derived paleosols, evaporitic lacustrine deposits, and in the 

upper part of the formation, organic rich coastal plain deposits (DeCelles, 2004; DeCelles & 

Burden, 1992; D’Emic et al., 2019; Moberly, 1960; Ostrom, 1970). In the Bighorn Basin, the 

Cloverly Formation is divided into three basic lithostratigraphic units: the Pryor Conglomerate, 

the Little Sheep Mudstone Member, and the Himes Member (Moberly, 1960) 
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Figure. 1: Study area (A) of the Crooked Creek sections and generalized stratigraphy (B)of 

the Cloverly Formation in the Bighorn Basin with Ostrom (1970) designations. 



16 

 

As the Boreal Sea transgressed from the north to eventually merge with the ancestral Gulf of 

Mexico and form the Western Interior Seaway, the Sykes Mountain Formation began nearshore 

deposition and conformably overlies the Cloverly Formation (Figure 1).  

Pryor Conglomerate  

The Pryor Conglomerate is the lowest member of the Cloverly Formation (Moberly, 1960; 

Ostrom, 1970). It was most likely deposited ca. 140 – 130 Ma in response to the initiation of the 

Sevier Orogeny shedding sediments from the west to the east and from the south to the north-

northeast (DeCelles & Burden, 1992; D’Emic et al., 2019; Ostrom, 1970). Deposition was 

through a shallow, transient, gravel-bed braided stream system (DeCelles & Burden, 1992). It 

preserves well–defined massive and horizontally bedded basal chert pebble and quartzite-clast 

conglomerate as well as medium to fine cross-bedded sandstone (Moberly, 1960). The Pryor 

Conglomerate is an erosional lag deposit due to its underlying disconformity with the Morrison 

Formation (Oreska et al., 2013). The age range between ~140 Ma of the Pryor Conglomerate 

(D’Emic et al., 2019) and the youngest Morrison Formation from recalibrated 40Ar/39Ar Laser 

fusion age of ~150 Ma (Trujillo & Kowallis, 2015) in the Bighorn Basin indicates a lack of 

deposition of ca.10 Ma. The oldest age for the CF comes from this member. 

Little Sheep Mudstone Member  

The Little Sheep Mudstone Member (LSM) overlies the Pryor Conglomerate in some places 

but in others, directly overlies the Morrison Formation (D’Emic et al., 2019; Moberly, 1960). It 

is considered Unit V of Ostrom (1970) and comprises multi-colored bentonitic mudstones that 

are grey to dark grey in color, with occasional sandstone and limestone units (Ostrom, 1970). 

The LSM consists of clay composed of montmorillonite, illite, kaolinite and smectite, indicative 
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of the weathering process of volcanic ash with the middle portion of the LSM exhibiting an 

evaporative lake sequence (Moberly, 1960; Zaleha, 2006). D’Emic et al., (2019) described the 

middle portion of the LSM as an evaporative lake sequence based on the presence of gray to 

black organic rich bentonitic mudstone with interbedded nodular limestone, chalcedony, and 

gypsum deposits.  D’Emic et al. (2019) reanalyzed published age ranges based on palynomorph 

biostratigraphic data from central and northern Wyoming (DeCelles & Burden, 1992; Furer, 

1970) with ages spanning from 86 -145 Ma for the Little Sheep Mudstone Member. Analyses of 

detrital zircon grains from the Little Sheep Member yielded dates from the pre-Aptian to the 

Albian Stages. D’Emic et al. (2019) suggested the Little Sheep Mudstone Member was deposited 

during a period of low sediment supply ca. 124 – 109 Ma with dates specifically within 129.4 ± 

3.4 Ma (LA-ICPMS) at the base of the Little Sheep Mudstone Member near Shell, Wyoming on 

the eastern side of the outcrop belt, 124.06 ± 0.12 Mya (CA-ID-TIMS) in the middle of the Little 

Sheep Mudstone Member on the north side of Cody, WY and 109.09 ± 1.1 Ma (LA-ICPMS) in 

the middle of Little Sheep Mudstone Member in the southwest side of Cody, WY (D’Emic et al., 

2019). In contrast to the study by D’Emic et al. (2019), U/Pb geochronology of zircon reported 

by Carrano et al., (2021) suggest that a distinctive hard white unit that is presumably 

volcanolithic and often observed in the lower LSM in some localities places the LSM fully 

within the Albian, and reports age of 112.09 ± 0.34 Ma (CA-ID-TIMS). The depositional 

environment of the upper part of the Little Sheep Mudstone Member has been interpreted as 

alluvial to overbank soil sequences containing abundant vertebrate microfossil bonebeds 

including various dinosaurian remains such as Deinonychus sp., Tenontosaurus, presence of 

gastrolith, various mammalians, chondrichthyians, osteichthyians, amphibians, and other 

archosaurs such as testudines (turtles), crocodilian, and squamates with some fauna persisting 
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into the Himes Member (D’Emic et al., 2019; Nudds et al., 2022; Oreska et al., 2013; Ostrom, 

1970). Several palynological studies (e.g DeCelles & Burden, 1992; Furer, 1970; Knowlton, 

1916; Nolan, 2000; Vuke-Foster, 1982; Wieland, 1905; Zaleha, 2006) have been conducted, but, 

ambiguous stratigraphic location of samples, misidentification, and insufficient documentation of 

specimens have resulted in age-designations ranging between Berriasian to Albian (D’Emic et 

al., 2019).  

The Little Sheep Member is most notable for its paleoflora preserved within its lacustrine 

units. The presence of cycad Nilsonia nigracollensis, a plant macro fossil is suggestive of an 

earliest Cretaceous age based on its co-occurrence in the Lower Cretaceous Lakota Formation of 

South Dakota (Wieland, 1905). Some Mesozoic conifer shoots and fern leaves such as the 

conifer Coniopteris hymenophylloides, Dipteris sp., and Microphyopteris sp. are also preserved. 

Also found in the Little Sheep Member include gingkoes as well as the bennettitalean Zamites 

sp. These floras are typical of pre-angiosperms flora, and it is important to note that no 

angiosperms have been found within the Little Sheep Member. 

Himes Member  

The Himes Member is the youngest member of the three members of the CF with MDA of 

103.6 ± 1.3 Ma (LA-ICPMS age) at the base the Himes Member in Crooked Creek section, 

northern Wyoming (D’Emic et al., 2019). The Himes Member disconformably overlies the LSM 

and is separated into two informal units, the lower Himes, and the upper Himes units (Mantzios, 

1986; Moberly, 1960; Ostrom, 1970; Ostrom, 1970). Himes sediments were primarily sourced 

from the east as deposition continued during the mid – late Albian to early Cenomanian ca. 109 

to 98 Ma (D’Emic et al., 2019). The lower Himes Member is characterized by litharenite and 

quartz arenite sand bodies with unique lenticular geometries that overlap laterally in outcrop. The 



19 

 

conglomeratic portions contain clasts of quartzite, diagenetically altered limestone, and chert 

with trough cross bedding and ripple lamination (Moberly, 1960; Zaleha & Wiesemann, 2005). 

The deposits are interpreted as meandering river systems and floodplain environments (D’Emic 

et al., 2019; Moberly, 1960; Ostrom, 1970). The upper Himes Member (Unit VII of Ostrom 

(1970) consists of highly mottled and multi-colored red and green mudstones and siltstones with 

some pedogenic carbonate nodules. Deinonychus sp. and Tenontosaurus sp. persists into the 

middle Himes Member (Nudds et al., 2022; Ostrom, 1970). The upper part of the upper Himes 

member preserves a uniquely different flora from the Little Sheep Member.  Some species of 

Athrotaxis such as seed cones of Athrotaxites yumenensis (Dong et al., 2014), the conifer 

Athrotaxites berryi (D’Emic et al.,2019), and most notably, a diverse angiosperm flora such as 

Populus potomacensis, Sapindopsis sp., are well preserved in the upper Himes Member (D’Emic 

et al., 2019). The angiosperm flora suggests at the oldest a Barremian age, and more likely an 

Albian age for the Himes. Other notable vertebrate remains such as Sauroposeidon.,(D’Emic et 

al., 2019), and amphibian Albanerpeton ektopisitikon, sp.nov.,(Carrano et al., 2021) are also 

present. 

Material and Methods: 

 Samples were collected at 25 cm intervals where possible near Crooked Creek, Bighorn 

Basin Northern Wyoming (Figure 2). Where present, carbonate nodules were collected and 

analyzed for both O and C-isotope analysis of preserved micrite. Samples were oven dried at 48 

℃ upon being returned from the field. 
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Figure 2: High resolution stratigraphic section of Cloverly Formation at Crooked Creek 

Section. Y-axis is in meters 
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Organic Carbon Isotope Analysis 

The collected samples were prepared for C-isotopic analysis of bulk organic carbon. 

Using the method of Suarez et al. (2013). Samples were cleaned of modern organic material 

(roots) and crushed into a fine powder with a mortar and pestle and prepared for decarbonation. 

One gram of powder was decarbonated in 30 mL of 3M HCl. The samples were then reacted for 

two to four hours to ensure completion of the reaction. When the reaction reached completion, 

the samples were rinsed with deionized water until the sample was at a neutral pH. The samples 

were dried in an oven at 48°C and re-crushed into a fine powder. Samples were analyzed for bulk 

organic carbon isotopes via elemental analyzer (EA) Isolink coupled to a Delta V Plus isotope 

ratio mass spectrometer (IRMS) at the University of Arkansas Stable Isotope Laboratory 

(UASIL). Samples were reported in delta notation relative to Vienna Pee Dee Belemnite 

(VPDB). Calibration of organic carbon samples were relative to both internal and international 

isotope standards, this includes Sandy soil (−26.29 ± 0.2‰, material standard); Corn Maize 

(−11.32 ± 0.06‰, actual=−11.32‰, high standard); White River Trout (−26.63. ± 0.07‰, 

actual=−26.63‰, low standard), Benzoic acid (-27.77 ± 0.21, actual -27.64 ‰), and ANU 

Sucrose (−10.48 ± 0.148‰, actual=−10.45‰). Carbon isotope values were plotted relative to 

stratigraphic location for bulk organic C and the resultant data reported in delta notation. 

Carbonate Petrography and Analysis 

 For this study, pedogenic carbonate nodules were sampled where present and logged into 

the measured section. The nodules were thin sectioned and micro-sampled for different 

carbonate phases (sparite versus micrite). Approximately 0.25-0.30 mg of powder was drilled 

and weighed into 4.5 mL Excetainer ® vials. Samples were reacted with 105% phosphoric acid 

at room temperature on a Gas Bench II. The produced CO2 were analyzed on a Delta V 
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Advantage Mass Spectrometer. Calibration of carbonate samples was relative to NBS-19 (with a 

δ13C average value of 1.95‰ ± 0.13 vs VPDB) and two in-house standards, UASIL 22 (with a 

δ13C average value of -35.60‰ vs VPDB) and UASIL 23 (with a δ13C average value of -0.60‰). 

The resultant data of carbon and oxygen isotope values were reported in delta notation relative to 

VPDB. A C-O-isotope cross plot (Figure 4) was created to examine the diagenetic history of the 

pedogenic carbonate nodules with the goal of calculating paleo-CO2 concentrations. 

Weight percent Metal Oxide Analysis 

 Identified B-horizons (units with clear slickensides, root traces, or accumulations of 

mineral, (e.g. pedogenic carbonates) were identified from stratigraphic section notes. B-horizon 

sediments were powdered and prepared for glass beads and pressed pellet analysis using X-Ray 

Fluorescence (XRF) spectrometry. Analysis was done at the University of Texas at San Antonio, 

Department of Geological Sciences. A total of 13 samples from across the section from the Little 

Sheep Mudstone Member and the Himes Member were analyzed. Samples were powdered and 

~1.0 to 2.0 g of each sample were weighed into a crucible, weights recorded, and dried in the 

oven at 1050 ℃ for 90 minutes. The samples were reweighed after cooling and loss on ignition 

(LOI) was calculated. 0.001g of each dry sample was weighed and transferred into the glass 

mortar with lithium tetraborate, Li2B4O7, and mixed for 30 seconds. The resulting mold was 

placed in a mold holder, the fusion program was selected, and fusion parameters monitored. 

Each sample was processed as a glass bead for major elements analysis. 
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Paleoclimate Proxy Calculations: 

Soil elements such as Ca, Mg, Na, Al, and K are lost through weathering forming basic 

oxides such as CaO, MgO, Na2O, and K2O and become depleted with increasing rainfall relative 

to Al2O3. The variations in precipitation and temperature control chemical weathering in soils 

(Sheldon et al., 2002). Vertisols are clayey soils with shrink-swell properties, pedogenic 

characteristics, slickensides, and iron oxides (Lynn & Williams, 1992; Nordt & Driese, 2010; 

Sheldon et al., 2002). Nordt & Driese (2010) developed a relationship for vertisols; chemical 

weathering indices such as fluxes of magnesium and calcium (CALMAG), and Maynard (1992) 

developed the chemical index of alteration without potassium (CIA-K) equation. 

Two weathering index parameters were calculated: 1) chemical index of alteration minus 

potassium (CIA-K) (Maynard, 1992) 

CIA-K = Al2O3/ (Al2O3 + CaO + Na2O) × 100  (Equation 1) 

and CALMAG using the equation of Nordt & Driese (2010): 

CALMAG = 100(Al/Al +Ca + K + Na)                               (Equation 2) 

By using the CALMAG and CIA-K weathering index calculation and the relationship established 

by Nordt and Driese (2010) for CALMAG and by Maynard (1992) for CIA-K, mean annual 

precipitation can be calculated using relationship established by Nordt & Driese (2010) for 

CALMAG and by Sheldon et al (2002) for CIA-K:  

 MAP = 22.69*(CALMAG) – 435.8   (Equation 3) 

 MAP = 14.3*(CIA-K) – 37.6    (Equation 4) 
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  Ancient pCO2 levels were estimated using C-isotope values derived from pedogenic 

carbonates and disseminated organic materials found in paleosols. The diffusion – production 

equation which models the contributions of atmospheric and soil respired CO2 in the soil profile 

was used to calculate the concentration of CO2 in the atmosphere (Cerling et al., 1991; Ekart et 

al., 1999):   

𝑝𝐶𝑂2=𝑆(𝑧)[(𝛿13𝐶𝑠−1.0044∗𝛿13𝐶𝑟−4.4) ÷ (𝛿13𝐶𝑎tm− 𝛿13𝐶𝑠)]  (Equation 5) 

Where S(z) is the concentration of CO2 from soil respired CO2, 𝛿13Cs is the C-isotopic 

composition of soil CO2, 𝛿13Cr is the C-isotopic composition of soil respired CO2, and 𝛿13Catm is 

the C-isotopic composition of the atmosphere. The S(z) value is a measure of soil productivity, 

the biological contribution of CO2 to the soil in combination with atmospheric CO2 contribution 

(Cerling et al., 1991; Cotton & Sheldon, 2012; Ekart et al., 1999). S(z) is a depth dependent 

contribution from soil-respired CO2, and is by far the most significant factor on pCO2 

calculation, but also is the least well-constrained value in geologic materials (Cerling et al., 1991, 

1993; Cotton & Sheldon, 2012; Ekart et al., 1999). S(z) has been estimated in several ways (e.g.  

Cotton & Sheldon, 2012; Ekart et al., 1999; Montañez, 2013) and is seen to be highly influenced 

by precipitation. For this study we used both a moderate estimate of S(z) = 2000 ppm, a high 

estimate of 3000 ppm, and a low estimate of 1000 ppm, with S(z) values from modern vertisols 

by Montañez (2013).  

The isotopic composition of total CO2 (𝛿13Cs) is determined from the isotopic 

composition of carbonate carbon. The low temperature value was assumed from Ekart et al. 

(1999) for soils in subtropical to temperate conditions at 25°C. The isotopic composition of 

respired CO2 (𝛿13Cr) is estimated from occluded organic C within the carbonate nodules. The 

isotopic composition of the atmosphere (𝛿13Catm) is determined in three ways. 1) The Arens et 
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al., (2000) method which relates the isotopic composition of organic matter to the isotopic 

composition of atmospheric CO2 

δ13Catm = (δ13Corg+18.67) ÷1.10  (Equation 6) 

2) δ13Catm can be inferred from the δ13Ccarb of average of marine carbonates from the same age 

from Ekart et al (1999).  

δ13Catm= (avg δ13C Cretaceous marine carb -8)  (Equation 7) 

Ekart et al (1999) used an average δ13Catm for Cloverly Formation pedogenic carbonates 

of +2.3‰ and calculated a δ13Catm of -5.7‰. 3). Finally, δ13Catm values may be calculated using 

temperature dependent fractionation factors established by fish δ18OPO4 and the isotopic 

composition of marine carbonates from Barral et al. (2017) in which Late Aptian δ13Catm = -

4.88‰. 

These values and values calculated for mean annual precipitation were placed within a 

high-resolution, bulk organic C-isotopic chemostratigraphic profile constrained by detrital zircon 

geochronology from previous studies e.g D’Emic et al. (2019) and Carrano et al. (2021). 
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Results: 

C-isotope chemostratigraphy 

Three-point average values of the chemostratigraphic data were plotted against the 

stratigraphic section to show smoothed trends in the bulk δ13Corg signal (Figure 3). C-isotope 

values range between -21‰ and -30.1‰ and average at -23.97‰. The produced bulk δ13Corg 

curve was divided into seven segments. In the first segment, segment a, a PCIE exists in the 

Pryor Conglomerate and progresses into the Lower LSM Member with its peak at -20.88‰ at 

15m. Segment b is characterized by a slight decreasing trend in δ13C value to a minimum of -

26.41‰ at 20.25m. Segment c is characterized by a rapid increase in δ 13C to -22.9‰ at 20.5 m. 

Segment d represents a persistent positive C-isotope trend for 7.5 m with an average value of -

23.25‰. Segment e represents a negative C-isotope excursion from -22.87‰ at 28 m to -27.48‰ 

at 33.5 m in the lower portion of Himes Member (Unit VI). Segment f progresses as a positive 

CIE mainly in the bone bed of the Lower Himes Member (Unit VI) from 33.5m to a maximum 

of -23.32 at 36.55m. Finally, segment g, Upper Himes (Unit VII) maintains a gradual PCIE trend 

above the bone bed with some alternating NCIE’s within the section and into the Sykes 

Mountain Formation.  

 

 



27 

 

 

Figure 3: High resolution chemostratigraphic section and stratigraphic location of 

Cloverly samples showing segments a to g 
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Carbonate Petrography and Stable Isotope Analysis 

  
Figure 4: Photomicrographic image of carbonate nodules from the Little Sheep Mudstone 

Member shown in plane polarized (upper row) and cross polarized (lower row) light and 

taken at 10x magnification. (a) CCC-12 showing micrite and calcite rhombs. (b) CCC-12 

showing micrite and microspar as well as an ostracode valve. (c) CCC-24 showing micrite 

and microspar with phreatic zone sparry linings of the micrite.  

 

Abbreviations-mi-micrite, ca-calcite, os- ostracod, ms-micro spar, sp = spar 

 

The pedogenic carbonates from the LSM predominantly preserve micritic textures. 

Micritic phases seen in the two samples are the primary phases of calcite.  However, the micro 

spar present may be due to replacement of the original calcite or recrystallization from micrite 

within the phreatic zone. For example, CCC-24 (Figure 4c) shows phreatic zone spar lining the 

micrite within groundmass of micro spar. The micritic and micro-sparry portions were sampled, 

but only averages from the micrite were used for the pCO2 calculation (Table 1, Figure 5). The 

sampled micrites in the Little Sheep Mudstone Member carbonate nodules have average δ13Ccarb 

value of -6.72 ‰ VPDB at CCC-12 and -7.25 ‰ VPDB at CCC-24. The average δ18Ocarb are -

8.48 ‰ VPDB for CCC-12 and -7.96 ‰ VPDB at CCC-24. The average δ13Ccarb micro-sparry 
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values are -6.73 ‰ for CCC-12 and -7.22 ‰ for CCC-24. The average δ18Ocarb micro-sparry 

values are -8.64 for CCC-12, and -7.94 for CCC-24. The micrites have median δ13Ccarb values of 

-6.71 ‰ VPDB at CCC-12 and -7.24 ‰ VPDB at CCC-24. The median δ18Ocarb values are -8.46 

‰ VPDB for CCC-12 and -7.92 ‰ VPDB at CCC-24. The median δ13Ccarb micro-sparry values 

are -6.77 ‰ for CCC-12 and -7.20 ‰ for CCC-24. The median δ18Ocarb micro-sparry values are -

8.61 for CCC-12, and -7.95 for CCC-24. The median and mean micrite and micro-sparry values 

are not significantly different from each other. This suggests there is no isotopic difference 

between the solution that precipitated the micrite and the microspar and suggests that the 

microspar may be the result of crystal coarsening and no fractionation occurred during crystal 

coarsening. In the absence of other diagenetic evidence, we suggest that the carbon and oxygen 

isotope compositions represent meteoric water during soil formation.  
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Figure 5: C-O-isotope cross plot of CCC-12 (a) and CCC-24 (b) nodules. Blue color 

denotes micritic calcite, and orange color denotes microsparry calcite. 
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Table 1: Characteristics of sampled areas for CCC-12 and CCC-24 carbonate nodules 

Samples Characteristics δ13C VPDB δ18O VPDB 

CCC-12_1 White micrite -6.71 -8.45 

CCC-12_2 White micrite -6.71 -8.46 

CCC-12_3 Light gray micrite -6.77 -8.49 

CCC-12_4 Light gray micrite -6.66 -8.42 

CCC-12_5 Sparry vein -6.62 -9.04 

CCC-12_6 Sparry vein -6.80 -8.61 

CCC-12_7 Sparry vein -6.78 -8.59 

CCC-12_8 Sparry vein -6.69 -8.21 

CCC-12_9 Sparry vein -6.77 -8.69 

CCC-12_10 Light gray micrite -6.75 -8.58 

CCC-24_1 Dark gray micrite -7.17 -7.93 

CCC-24_2 Dark gray micrite -7.41 -8.09 

CCC-24_3 Dark gray micrite -7.25 -8.02 

CCC-24_4 Dark gray micrite -7.23 -7.88 

CCC-24_5 Light gray micrite -7.27 -7.91 

CCC-24_6 Sparry  -7.14 -7.86 

CCC-24_7 Light gray micrite -7.15 -7.89 

CCC-24_8 Sparry -7.23 -7.93 

CCC-24_9 Sparry -7.32 -8.01 

CCC-24_10 Sparry -7.17 -7.96 

 

pCO2 Calculations 

Atmospheric pCO2 calculations use the paleosol pCO2 paleobarometer of Ekart et al. 

(1999). In this relationship, δ18Oorg and δ18Ocarb are used to estimate the concentration of pCO2 

within a soil in equilibrium with the atmosphere. The temperature of formation of carbonate, the 

isotopic composition of the atmosphere, and the concentration of soil respired CO2 (S(z)) are all 

unknowns that must either be estimated using other proxies or assumed. We assumed a 

temperature of 25°C for formation of carbonates. The isotopic composition of the atmospheric 

CO2 was estimate in three ways: 1) using equation 6 in which the isotopic composition of bulk 

organic C of occluded organic material from the carbonate nodule is used to calculate δ13Catm 

(Arens et al., 2000).  2) The average isotopic composition of marine carbonates is assumed to be 
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in equilibrium with the atmosphere and is used to calculate the isotopic composition of the 

atmosphere (Ekart et al., 1999). We used the average value for Early Cretaceous marine 

carbonates reported by Ekart et al. (1999) of -5.7‰. 3) Barral et al. (2017) generates a more 

accurate δ13Catm by determining the temperature dependent fractionation factor () between DIC 

and CO2 for different time slices. Temperature is estimated from fish phosphate from the same 

interval and used to determine these fractionation factors. These fractionation factors are then 

used in conjunction with the average marine carbonate values for the desired time slice to 

calculate a more accurate δ13Catm. For the Late Aptian time slice, δ13Catm= -4.88‰ (Barral et al., 

2017). S(z) values can be estimated using MAP and the relationship established by Cotton & 

Sheldon (2012), but their relationship is best used for low MAP values (150 to 600 mm/yr) and 

MAP calculated from our data suggests that the MAP is much greater for the Cloverly (see 

below). Thus, we estimated S(z) values using the range of vertic soil estimates from Montañez. 

(2013). Table 2 shows the range in pCO2 values calculated using the variety of δ13Catm and S(z) 

values. 

Using the Arens et al., (2000) estimation for δ13Catm, atmospheric pCO2 values at 14.5 m 

above the Morrison – Cloverly contact are 352 ± 176 ppm at 14.5 m and increase to 931 ± 465 

ppm at 18.5 m. Using Ekart et al., (1999), results for 14.5 m above the Morrison – Cloverly 

contact are 446 ± 223 ppm and increase to 916 ± 458 ppm at 18.5 m. Using Barral et al. (2017), 

atmospheric pCO2 values at 14.5 m above the Morrison – Cloverly contact are 411 ± 205 ppm at 

14.5 m and increase to 849 ± 424 ppm at 18.5 m. 
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Table 2: Atmospheric δ13Catm calculations from (Arens et al., 2000; Barral et al., 2017; 

Ekart et al., 1999) for CCC-12 and CCC-24 using isotopic composition of organic C 

mudstone and carbonate carbon 

Atmospheric δ13Catm = -5.7 ‰ (Ekart et al., 1999) for both samples 

Sample 

(Mudstone) 

pCO2 at Sz = 

1000 ppm 

pCO2 at Sz = 

2000 ppm 

pCO2 at Sz = 

3000 ppm 

pCO2 @ Sz = 

5000 ppm 

(used by Ekart 

1999) 

CCC-12 @ 14.5 

m 

223 446 668 1114 

CCC-24 @ 18.5 

m 

458 916 1373 2289 

Atmospheric δ13Catm = -6.9 ‰ (Arens et al., 2000) for CCC-12 and δ13Catm = -6.63 ‰ for 

CCC-24 

CCC-12 @ 14.5 

m 

176 352 528 880 

CCC-24 @ 18.5 

m 

465 931 1397 2328 

Atmospheric δ13Catm = -4.88‰ (Barral et al., 2017) for both samples 

CCC-12 @ 14.5 

m 

205 411 617 1028 

CCC-24 @ 18.5 

m 

424 849 1273 2121 

 

Mean Annual Precipitation 

MAP calculations are reported in Table 3 with CALMAG and CIA-K (also see Figure 7). 

MAP increases up section from a minimum of 697– 984 mm/yr in the Little Sheep Mudstone 

Member to a maximum of 1291 – 1705 mm/yr in the upper Himes Member. 
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Table 3: MAP calculated with CALMAG and CIA-K for micro-high vertic soils 

Sample Meters above 

Morrison Fm. 

MAP from 

CALMAG (mm/yr) 

MAP from CIA-K (mm/yr) 

CCC-18 16.75 1195 857 

CCC-22 17.75 984 696 

CCC-29 19.50 1428 1098 

CCC-31 20 1461 1117 

CCC-43 26 1375 1002 

CCC-52 29.75 1390 1076 

CCC-59 31.75 1447 1132 

CCC-78 38.05 1582 1145 

CCC-79 38.30 1588 1172 

CCC-106 45.20 1595 1220 

CCC-120 49.15 1705 129 

CCC-136 55.05 1680 127 

CCC-144 57.05 1618 1241 

 

Interpretation and Discussion: 

Based on constraints from a volcanolithic tuff with an age of 112.09 ± 0.34 Ma 

determined from CA-ID-TIMS (Carrano et al., 2021) from Little Sheep Mudstone Member 

outcrops near Shell, Wyoming, and a maximum depositional age of 103.6 ± 1.3 Ma generated 

from LA-ICP-MS (D’Emic et al., 2019) from the Crooked Creek Section within the lower Himes 

Member, the C-isotope record can be compared to the global C-isotope record from ~ 115 to ~ 

100 Ma (Figure 6). We correlated the C-isotope record from the Cloverly to that of the δ13Ccarb of 

Bralower et al. (1999); Herrle et al. (2015) and the δ13Corg record from the Ruby Ranch Member 

of the Cedar Mountain Formation of Utah from Gottberg (2022) (Figure 6). The δ13Corg trend 

within the lower LSM Member in which the ascending limb of segment a to the end of segment e 

with a broad positive C-isotope maximum of -22.49 % was cautiously correlated to the positive 

C-isotope trend C-9, persistent positive C-isotope trend (C-10), and decreasing negative trend 

(C-11) of Bralower et al. (1999) (Figure 6). This places the correlation to fall within the ages of 
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114-108 Ma for the Upper Little Sheep Mudstone Member and the lower Himes Member. This is 

a tentative correlation, because the maximum depositional age of 103.6 ± 1.3 Ma occurs at the 

bone-bearing unit starting at 35.55m and the minimum point of segment e for which we correlate 

to the C-11 segment of Bralower et al. (1999) has a known age of ~ 109 Ma at 33.5m. Thus, only 

2.05 m would be deposited within 5.4 million years. For this correlation to be valid, a significant 

unconformity would have occurred within this interval, or the 103.6 Ma date generated from LA-

ICP-MS may have been affected by lead loss causing a younger age calculation, or our 

correlation in not valid.  

Just below the bone bed at ~32.25m there are mudstone rip-up clasts and ripple marks. 

The detrital zircon sample from within the bone bed is within a fluvial sandstone body that could 

have many instances of unconformities. In general, D’Emic et al. (2019) and others (e.g. Elliott 

et al., 2007; Way et al., 1998) suggest that the Little Sheep Mudstone Member has persistent 

unconformities with ~15 million years being represented in ~40 m of the sections in southwest 

Cody and Shell Wyoming. Thus, a significant unconformity could be possible.  

Lead loss is another possibility for the age mismatch. Lead loss occurs when a damaged 

part of the zircon crystal matrix results in a loss of lead and a younger calculated age when using 

LA-ICP-MS spot techniques (Herrmann et al., 2021; Zi et al., 2022). This effect has been 

observed by several authors (Gehrels et al., 2020; Herriott et al., 2019; Quadt et al., 2014). 

Chemical abrasion ID-TIMS removes these damaged portions and results in an older age than 

those calculated by LA-ICP-MS. Significant lead loss that results in an age calculation of at least 

5.4 Ma younger than the C-isotope correlated age of 109 Ma (minimum of the C-11 segment) as 

opposed to the reported age of D’Emic et al. (2019) could be the result of analysis via LA-
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ICPMS as opposed to CA-ID-TIMS. Thus, U-Pb detrital zircon geochronology with CA-ID-

TIMS, will present more accurate and precise dates (Quadt et al., 2014).  

Alternative correlations are difficult to make, because there is a clear negative CIE made 

up of segments e and f, with a magnitude of -4.16‰. There are few negative CIEs with a similar 

magnitude within 105 to 100 Ma that would correlate to this excursion within the known global 

C-isotope record for this period. It is possible that the excursion represents a local change in 

source organic material, but without compound specific isotope analysis of long-chain alkanes 

such a determination is not possible.  

In general, the C-10 interval has been associated with the Southern Kerguelen LIP 

(Bottini et al., 2015; Erba et al., 2015; Herrle et al., 2015). Within the C-9 to C-11 excursions, 

short-lived events have been documented, for example the Kilian, Jacob, and OAE 1b events. 

More specifically, the Jacob and Kilian event have been associated with cooling and warming, 

respectively. Given our climate data (see below), we correlate the peak δ13Corg of segment a to 

the Jacob event seen in Herrle et al. (2015) and the peak of the negative excursion in segment b 

to the Kilian Event. This correlation is supported by known climatic events associated with each 

and our data (e.g., Bracquart et al., 2022; Weissert et al., 1998).
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Figure 6: High resolution stratigraphic section, Crooked Creek δ13Corg , Gottberg (2022) δ13Corg, Bralower et al. (1999) δ13Corg , 

Herrle et al. ( 2015) δ13Ccarb. Also showing D’Emic et al. (2019) LA-1CPMS detrital zircon geochronology age of MDA of 103.6 ± 

1.3 Ma in the Himes Member 
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 The presence of dispersed volcanic ash from the subaerial southern Kerguelen eruption, 

glenodites from the same time period in high-latitudes, foraminiferal zones such as 

Globoginerlloides alerianus, Ticinella bejaouaensis, high latitude ice-rafted debris, enhanced 

delivery of terrestrial organic matter, sea-level low stand, and increased weathering rates are 

linked to the Jacob peak cold snap (Erba et al., 2015; Herrle et al., 2015; Hochuli et al., 1999; 

Leckie et al., 2002). Our climate data (Figure 7) supports this correlation in which an increasing 

trend of pCO2 values from 352 ± 176 ppm for CCC-12 to 931± 465 ppm for CCC-24 is 

observed. The Kilian event (112.5 Ma) is associated with the start of renewed warming and black 

shales (Herrle et al., 2015; McAnena et al., 2013). This correlation with the Kilian event and its 

associated warming is supported by our MAP data in which MAP increases rapidly following the 

peak negative excursion of segment b. Increasing MAP is often associated with increasing 

temperatures in which a warmer atmosphere can hold more water, resulting in intensification of 

the hydrological cycle.  
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Figure 7: Stratigraphic section, chemostratigraphic curve, pCO2 calculations from pedogenic carbonate nodules and 

δ13Corg of mudstone and MAP calculations from CALMAG (Nordt & Driese, 2010) and CIA-K (Sheldon et al., 2002) from 

Crooked Creek Section, Cloverly Formation 
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 Cotton & Sheldon. (2012) suggest that Δ13C (δ13Ccarb- δ
13Corg) should range between 

14‰ and 17‰ for organic C from the occluded organic matter and δ13Ccarb suggesting 

equilibrium between the two organic C sources. In our calculations, however, we calculated the 

pCO2 using bulk organic C from mudstones. We further investigated pCO2 values by calculating 

Δ13C (δ13Ccarb- δ
13Coccluded organic C) from the occluded organic C within pedogenic carbonate 

nodules. Our calculated data using the occluded organic matter falls outside the range of Δ13C 

suggesting the δ13Coccluded organic C and pedogenic carbonate δ13Ccarb are out of equilibrium (Table 

4). We calculated Δ13C using bulk organic C from mudstones and δ13Ccarb. This results in Δ13C 

values falling within the suggested 14-17‰ range implying equilibrium with a slightly off value 

for CCC-24 calculated as 17.82‰ (Table 4). Values from the δ13Coccluded organic C and pedogenic 

carbonate δ13Ccarb does not correspond with our interpretation of associated Jacob and Kilian 

events (Table 5, Figure 8). Using Arens et al. (2000) estimation for Δ13Ca, atmospheric pCO2 

values at 14.5 m above the Cloverly-Morrison Formation contact are 1484 ± 742 ppm and 

decrease to 1185 ± 592 ppm at 18.5 m. Using Ekart et al. (1999), atmospheric pCO2 values at 

14.5 m above the Morrison-Cloverly contact are 1301 ± 651 ppm at 14.5 m and decrease to 1078 

± 539 ppm at 18.5 m. Using Barral et al., (2017), atmospheric pCO2 at 14.5 m above the 

Morrison-Cloverly contact are 1203 ± 602 ppm and decrease to 999 ± 500 ppm at 18.5 m. 

However, for the calculated δ13Cmudstone organic C and pedogenic carbonate δ13Ccarb, there is an 

increase in pCO2 from 14.5 to 18.5 m. of about 2x. (Figure 7). Atmospheric pCO2 doubles just 

prior to what we interpret as the Kilian Event (and its associated warming) and just prior to an 

increase in MAP in the Crooked Creek section. This trend would be consistent with low pCO2 

during the Cold Snap associated with the Jacob Event and increase in pCO2 and warming during 

the Kilian Event. Although recent work suggests that occluded organic matter from within the 
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carbonate nodules should be used when calculating pCO2 (Cotton & Sheldon, 2012; Montañez, 

2013; Porter et al., 2017), we suggest that the pCO2 trends associated with values calculated 

using isotopic composition of bulk organic C in mudstones are valid.  These pCO2 values are still 

within the range of values seen in other studies for this time period e.g Aptian pCO2 

concentrations of 1000 – 2000 ppm with a minimum of ~450 ppm specifically in the Late Aptian 

based on Gradstein et al., (2012) time scale (Hong & Lee, 2012; Li et al., 2014). 

 

Table 5: Atmospheric δ13Catm calculations from (Arens et al., 2000; Barral et al., 2017; 

Ekart et al., 1999) CCC-12 and CCC-24 from the δ13Coccluded organic C and pedogenic 

carbonate δ13Ccarb 

 

Atmospheric δ13Catm = -5.7 ‰ from Ekart et al. (1999) for both samples 

Sample 

(occluded organic 

matter) 

pCO2 at Sz = 

1000 ppm 

pCO2 at Sz = 

2000 ppm 

pCO2 at Sz = 

3000 ppm 

pCO2 @ Sz 

= 5000 ppm 

(used by 

Ekart 1999) 

CCC-12 @ 14.5 m 651 1303 1955 3258 

CCC-24 @ 18.5 m 539 1078 1617 2695 

Atmospheric δ13Catm = -6.9 ‰ from Arens et al. (2000) for CCC-12 and δ13Catm = -6.63 

‰ for CCC-24 

CCC-12 @ 14.5 m 742 1485 2228 3714 

CCC-24 @ 18.5 m 592 1185 1777 2962 

Atmospheric δ13Catm = -4.88‰ from Barral et al. (2017) for both samples 

CCC-12 @ 14.5 m 602 1203 1805 3008 

CCC-24 @ 18.5 m 500 999 1499 2498 

Table 4: Δ13C range of δ13Corg of mudstone and δ13Corg of occluded organic material 

δ13Corg Δ13C (δ13Cc- δ
13Corg) Carbonate Nodule 

δ13Corg of mudstone 15.34 CCC-12 

17.88 CCC-24 

δ13Corg of occluded organic 

material 

19.55 CCC-12 

18.72 CCC-24 
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Figure 8: Stratigraphic section, chemostratigraphic curve, pCO2 calculations from δ13Coccluded organic C and pedogenic 

carbonate δ13Ccarb nodules, and MAP calculations from CALMAG (Nordt & Driese, 2010) and CIA-K (Sheldon et al., 2002) 

at the Crooked Creek Section, Cloverly Formation 
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Conclusion 

Interpreting the climatic conditions of the Early – Late Cretaceous climate has posed 

several challenges to paleontologists, geochemists, and stratigraphers. However, stable isotope 

analysis of δ13Corg, δ
13Ccarb, paleoatmospheric CO2 calculations, and mean annual precipitations 

calculations are helpful proxies for interpreting the terrestrial Cretaceous history. We analyzed 

the record of climatic events in the Crooked Creek Section of the Cloverly Formation through 

chemostratigraphic sampling in the field, stable isotope analyses of bulk organic and pedogenic 

carbonates preserved in vertic soils, thin sections, and weight percent oxide analyses of vertic 

soils. Our high-resolution bulk organic C-isotope chemostratigraphic profile placed the pCO2 

values in a higher resolution chronostratigraphic location. Given the maximum depositional age 

of the Little Sheep Mudstone Member (129.4 ± 0.12 Ma) from D’Emic et al. (2019) and a 

maximum depositional age for the lower Himes Member at Crooked Creek of 103.6 ± 1.3 Ma 

(D’Emic et al., 2019), we constrained the broad PCIE to the C-9 to C-11 segments of Bralower et 

al. (1999); McAnena et al. (2013), and others. More specifically, we correlated segment a of this 

study to the Jacob event, and the negative isotope excursion of segment b to the Kilian event. 

The low pCO2 values are consistent with the “Cold Snap” associated with the Jacob Event. This 

cold snap is interpreted to be the result of subaerial eruption of the Kerguelen LIP in the southern 

hemisphere in which increased nutrients released to the ocean and ashy eruptions resulted in an 

increase in terrestrial burial of organic matter and combined to result in global cooling (Erba et 

al., 2015; McAnena et al., 2013). Following the interpreted Kilian event, the mean annual 

precipitation values show an increase up section (Figure 7). This increasing MAP is consistent 

with lithology from the Crooked Creek Section as evidenced by intense mottling and 

slickensides. This is also consistent with a doubling in pCO2 at 18.5 m, resulting in increased 
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greenhouse warming and resulting in an intensification of the hydrological cycle as evident in the 

MAP data. Future detrital zircon U-Pb analysis (CA-ID-TIMS age) of the Cloverly Formation is 

recommended for precision and accuracy of zircon dates from the Crooked Creek section to 

resolve substantial parts with lead loss and reduce data scatter. This will be helpful to confirm 

correlations to the C-isotope record interpreted here and will better constrain the age of the 

Cloverly Formation and its correlation to other fauna of the Western Interior Basin. 
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Appendix A: Cloverly formation field notes at the Crooked Creek section and δ 13Corg 

isotopic composition 

Thickness Cumulative 

Thickness (m) 

δ 

13CorgVPDB 

Total 

Organic 

Carbon 

(TOC) 

% 

Lithologic Description 

CCC-01 3 -23.38 0.06 Very fine sandstone with charcoal bits 

CCC-02 4.5 -24.56 0.04 Fine to medium sized oxidized grains 

CCC-03 6.5 -24.66 0.04 Very fine to fine sa7ndstone with some black bits present 

CCC-04 10.5 -21.67 0.12 Dark gray silty mudstone 

CCC-05 12 -22.63 0.11 Gray muddy sand  

CCC-06 12.25 -23.00 0.11 Gray muddy sand Gray muddy fine to very fine sand- sample 

getting muddy 

CCC-07 12.50 -23.63 0.09 Light gray silty mudstone 

CCC-08 13.75 -21.79 0.14 Dark gray silty mudstone 

CCC-09 14 -22.00 0.10 Light gray silty mudstone 

CCC-10 15 -22.88 0.20 Dark gray mudstone 

CCC-11 14.75 -23.39 0.07 Tan Mudstone 

CCC-12 14.50 -22.06 0.15 Gray mudstone with lots of ostracods 

CCC-13 15.10 -21.31 0.08 Dark gray mudstone 

CCC-14 15.60 -21.43 0.11 Dark gray mudstone 

CCC-15 16.00 -24.22 0.21 Very light gray limestone with slickensides. Organic??? 

CCC-16 16.25 -23.92 0.22 Same as below 

CCC-17 16.50 -23.25 0.06 Gray mudstone with pea-sized carbonate nodules and slickensides. 

Ostracods present 

CCC-18 16.75 -23.70 0.05 Dark gray mudstone with slickensides and carbonate nodules 

present 

CCC-19 17.00 -23.61 0.06 Same as below 

CCC-20 17.25 -22.00 0.19 Same as below but no nodules 

CCC-21 17.50 -21.79 0.19 Has some bits 

CCC-22 17.75 -22.65 0.12 Dark gray mudstone with large slickensides 

CCC-23 18.00 -23.06 0.09 Gray mudstone with carbonate nodules and white mottles. Roots?? 

CCC-24 18.25 -25.13 0.09 Dark gray mudstone with very shiny slickensides and large 

carbonate 

CCC-25 18.50 -23.12 0.08 Same as below 

CCC-26 18.75 -23.30 0.09 Grayish purple mudstone 

CCC-27 19.00 23.03 0.13 Very dark gray mudstone with slickensides 

CCC-28 19.25 -23.21 0.19 Same as below 

CCC-29 19.50 -23.82 0.09 Same as below with larger slickensides 

CCC-30 19.75 -24.93 0.09 Lighter gray mudstone with slickensides 

CCC-31 20.00 -26.41 0.05 Grayish green mudstone with orange mottles and slickensides 

CCC-32 20.25 -22.90 0.5 Dark gray mudstone 

CCC-33 20.50 -22.98 0.4 Same as below 

CCC-34 20.75 -22.89 0.3 Same as below 

CCC-35 21.00 -22.83 0.3 Mudstone 

CCC-36 24.25 -22.65 0.21 Dark gray mudstone 

CCC-37 24.50 -22.75 0.19 Same as below 

CCC-38 24.75 -22.67 0.16 Same as below 

CCC-39 25.00 -22.49 0.24 Same as below with slickensides 

CCC-40 25.25 -23.48 0.13 Same as below with slickensides 

CCC-41 25.50 -23.89 0.09 Gray mudstone with slickensides 

CCC-42 25.75 -22.95 0.08 Gray greenish mudstone 

CCC-43 26.00 -23.02 0.08 Same as below with clear slickensides 

CCC-44 26.25 -23.65 0.07 Mud-gray claystone 
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CCC-45 26.50 -25.11 0.16 Mud-gray claystone with root trace and faint green mottles 

CCC-46 26.75 -24.64 0.12 Mud-gray claystone with black fragments 

CCC-47 27.00 -23.42 0.51 Gray mud with some black organic fragments 

CCC-48 28.00 -22.87 0.36 Cover 

CCC-49 28.25 -22.97 0.09 Gray mudstone with some slickensides 

CCC-50 28.50 -23.44 0.07 Gray clay/mudstone 

CCC-51 29.50 -24.54 0.10 Gray and brick red siltstone with green mottles 

CCC-52 29.5 -24.23 0.07 Dark red muddy siltstone with grayish green mottles and 

slickensides 

CCC-53 30.00 -23.82 0.10 Same as below 

CCC-54 30.25 -24.15 0.07 Same as below 

CCC-55 30.75 -25.46 0.07 Red and green noduled muddy siltstone with slickensides 

CCC-56 31.00 -23.59 0.04 Red siltstone with fine green mottles and larger purple nodules 

CCC-57 31.25 -26.08 0.05 Red muddy siltstone with fine green mottles and slickensides 

CCC-58 31.50 -23.63 005 Red and purplish gray muddy siltstone/silty mudstone with 

tapering root trace 

CCC-59 31.75 -24.10 0.03 Dark gray silty mudstone with green mottles and slickensides 

CCC-60 32.00 -24.73 0.03 Same as below but more reddish with some greenish mottles and 

yellowy orange mottles 

CCC-61 32.25 -26.51 0.02 Has some ripples in sand with mud fragments and tarnish green 

ripples 

CCC-62 32.50 -25.53 0.03 Same as below 

CCC-63 32.75 -26.05 0.02 Same as below but poorly sorted quartz 

CCC-64 33.00 -25.87 0.04 Same as below but no ripples 

CCC-65 33.50 -27.48 0.04 Reddish sand 

CCC-66 34.00 -25.91 0.03 Same as below 

CCC-67 35.30 -26.54 0.02 Top of sand 

CCC-68 35.55 -25.35 0.04 Green fine sandstone with purple mottles and black bits. Base of 

quarry 

CCC-69 35.80 -24.18 0.06 Same as below. Himes 

CCC-70 36.05 -24.20 0.07 Same as below 

CCC-71 36.30 -24.66 0.13 Very fine green sandstone with purple and orange mottles 

CCC-72 36.55 -23.32 0.08 More purple siltstone with green and yellow mottles. Fish tooth 

present ?? 

CCC-73 36.80 -24.61 0.04 Purplish red siltstone with green and orange mottles 

CCC-74 37.05 -23.94 0.11 Very fine clear purplish red fine to gray siltstone with green and 

orange mottles. Iron oxide nodules present? 

CCC-75 37.30 -24.41 0.07 Purplish red siltstone with green and orange mottles 

CCC-76 37.55 -24.68 0.06 Very fine clear purplish red fine to gray siltstone with green and 

orange mottles. Iron oxide nodules present? 

CCC-77 37.50 -23.84 0.08 Green very fine sandstone with purple mottles and black organic 

bits 

CCC-78 38.05 -24.58 0.08 Very fine sandstone to siltstone. Red with light gray mottles plus 

pea sized to walnut sized  

carbonate nodule 

CCC-79 38.30 -26.02 0.08 Red siltstone with gray mottles, A/B horizon 

CCC-80 38.55 -24.85 0.05 Red siltstone with gray mottles, A/B horizon 

CCC-81 38.80 -24.92 0.06 Red with purple mottle siltstone with slickensides and carbonate 

nodule 

CCC-82 39.20 -24.39 0.05 Brick red siltstone with slickensides 

CCC-83 39.45 -24.71 0.05 Brick red siltstone with slickensides 

CCC-84 39.70 -25.16 0.05 Brick red siltstone with slickensides and gray mottles 

CCC-85 39.95 -24.81 0.06 Brick red siltstone with slickensides and gray mottles 

CCC-86 40.20 -24.14 0.05 Brick red siltstone with slickensides 

CCC-87 40.45 -23.63 0.05 Brick red siltstone with slickensides 

CCC-88 40.70 -25.97 0.06 Brick red siltstone with fine mottles 
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CCC-89 40.95 -22.24 0.06 Brick red siltstone with slickensides 

CCC-90 41.20 -24.60 0.05 Brick red siltstone with slickensides + fine green mottles 

CCC-91 41.45 -24.37 0.06 Brick red siltstone with slickensides + fine green mottles 

CCC-92 41.70 -24.93 0.06 Brick red siltstone with slickensides + larger green mottles 

CCC-93 41.95 -24.29 0.05 Brick red siltstone with slickensides 

CCC-94 42.20 -25.21 0.08 Brick red siltstone with green mottles + slickensides 

CCC-95 42.45 -24.43 0.05 Brick red siltstone with slickensides 

CCC-96 42.70 -24.07 0.07 Yellow fine sandstone. Approximately 5cm thick 

CCC-97 42.95 -24.73 0.05 Yellow fine sandstone. Approximately 5cm thick 

CCC-98 43.20 -24.56 0.05 Brick red siltstone with green mottles + slickensides 

CCC-99 43.45 -21.96 0.05 Brick red siltstone with purple mottles + orange mottles + 

slickensides 

CCC-100 43.70 -23.27 0.05 Brick red siltstone with orange mottles 

CCC-101 43.95 -24.31 0.05 Brick red siltstone with orange mottles + purple mottles with 

slickensides 

CCC-102 44.20 -24.44 0.05 Brick red siltstone with orange mottles + purple mottles with 

slickensides 

CCC-103 44.45 -24.27 0.03 Purple +gray siltstone with orange mottles + Fe-oxide nodules 

CCC-104 44.70 -24.15 0.04 Green + purple muddy siltstone with orange mottles + slickensides 

CCC-105 44.95 -24.84 0.05 Purple + grayish blue muddy siltstone with orange mottles + 

slickensides 

CCC-106 45.20 -24.36 0.03 Purple + grayish blue muddy siltstone with orange mottles + 

slickensides 

CCC-107 45.45 -30.20 0.08 Purple + grayish blue muddy siltstone with orange mottles + 

slickensides+ root mottles ?? 

CCC-108 45.70 -23.93 0.04 Gray/purple siltstone 

CCC-109 45.95 -24.87 0.03 Gray/purple siltstone with metal oxide nodules 

CCC-110 46.20 -22.96 0.04 Gray + purple siltstone with slickensides + orange mottles 

CCC-111 46.45 -23.43 0.09 Gray silty mudstone with floating FSS - sized pebbles + organic 

bits 

CCC-112 46.70 -23.37 0.10 Gray silty mudstone + orange mottles 

CCC-113 47.00 -23.42 0..18 Gray siltstone 

CCC-114 47.25 -23.35 0.19 Gray siltstone with root mottles 

CCC-115 47.50 -23.46 0.14 Gray silty mudstone with slickensides 

CCC-116 47.75 -22.83 0.16 Gray + brick red with muddy orange root mottles siltstone 

CCC-117 48.15 -23.44 0.05 Light gray silty mudstone 

CCC-118 48.55 -23.51 0.06 Light gray silty mudstone with fine orange root mottles 

CCC-119 48.95 -23.87 0.09 Fe-oxide nodules ??? 

CCC-120 49.15 -23.93 0.17 Gray muddy siltstone with slickensides 

CCC-121 49.50 -22.73 0.21 Gray with very large purple mottles with lots of fine orange mottles 

CCC-122 49.85 -23.14 0.14 Gray silty mudstone 

CCC-123 50.20 -23.36 0.27 Same as CCC-122 

CCC-124 50.55 -23.07 0.18 Same as CCC-123 

CCC-125 50.95 -23.61 0.24 Same as CCC- 123 + organic bits 

CCC-126 51.20 -24.64 0.25 Same as CCC-125 but shaley 

CCC-127 51.55 -24.71 0.14 Same as CCC-126 

CCC-128 51.8 -24.53 0.16 Same as CCC-127, probably same level as charcoal sample 

CCC-129 52.05 -22.76 0.09 Mottled red + gray siltstone 

CCC-130 52.30 -22.68 0.18 Gray siltstone 

CCC-131 53.80 -23.10 0.19 Gray siltstone 

CCC-132 54.05 -23.42 0.13 Greenish grey siltstone 

CCC-133 54.30 -23.44 0.03 Greenish grey siltstone with red mottles 

CCC-134 54.55 -23.47 0.04 Very fine sandstone - light greenish gray + yellow. Both sandstone 

+ gray mud sampled 

CCC-135 54.80 -24.32 0.04 Gray with red root mottles, very fine sandstone 

CCC-136 55.05 -23.61 0.04 Light grey very fine sandstone with yellow mottles + red fine root 
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traces 

CCC-137 55.30 -24.36 0.08 Yellowish gray muddy very fine sandstone with purple mottles 

CCC-138 55.55 -25.20 0.03 Light gray very fine sandstone with orange mottles 

CCC-139 55.80 -24.74 0.03 Tan fine sandstone with muddy root mottles 

CCC-140 56.05 -25.12 0.02 Tan fine sandstone with black staining 

CCC-141 56.30 -24.71 0.04 Gray fine sandstone with orange mottles above a grey silt with 

large red root mottles 

CCC-142 56.55 -25.91 0.04 Gray very fine sandstone with orange-red root mottles 

CCC-143 56.80 -24.17 0.07 Gray siltstone with large -Fe oxide nodules? 

CCC-144 57.05 -24.02 0.03 Gray very fine sandstone with orange fine root mottles 

CCC-145 57.30 -24.74 0.06 Gray very fine sandstone with orange mottles. Also sampled the 

mudstone above 

CCC-146 57.55 -25.03 0.07 Greenish/yellow grey muddy siltstone 

CCC-147 58.80 -24.00 0.06 Greenish/yellow gray muddy siltstone 

CCC-148 58.05 -24.74 0.05 Brown muddy siltstone 

CCC-149 58.30 -25.03 0.04 Same as 148 

CCC-150 58.55 -24.00 0.08 Gray silty mudstone with some large red mottles + fine orange root 

mottles 

CCC-151 58.80 -23.90 0.05 Orange/tan siltstone 

CCC-152 59.05 -24.34 0.09 Gray/orange skinned muddy siltstone 

CCC-153 59.30 -23.31 0.14 Gray + yellow stained muddy siltstone with Fe-oxide-stained 

resistive layers 

CCC-154 59.55 -23.77 0.64 Gray silty shale 

CCC-155 60.05 -23.51 0.45 Gray silty shale with interbedded resistant with Fe-Oxide cemented 

layers 

CCC-156 60.30 -23.62 0.65 Same as 155 

CCC-157 60.55 -23.69 0.41 Grey silty mudstone + shale with interbedded Fe-Oxide cement 

units. Some plant fragments +  

charcoal 

CCC-158 60.80 -23.14 0.58 Same as 157 

CCC-159 61.05 -23.79 0.17 Grey silty mudstone with yellow staining + lots of plant fragments  

CCC-160 61.30 -23.95 0.07 Gray shale (paper thin) with interbedded Fe-oxide cemented layers 

with plant fragments. Organic  

bits in grey shale too 

CCC-161 61.55 -23.42 0.23 Gray shale (paper thin) with interbedded Fe-oxide cemented layers 

with plant fragments. Organic  

bits in grey shale too 

CCC-162 61.80 -23.41 0.57 Same as 161 

CCC-163 62.05 -23.18 0.20 Bright yellow very fine sandstone/fine sandstone with interbedded 

fissile grey shale with plant fern  

samples 

CCC-164 63.00 -28.84 0.06 Tan quartzarenite mud sandstone. Top of Sykes Mountain 

 


