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ABSTRACT 

This dissertation explores the application of remote sensing technologies in conservation 

agriculture, specifically focusing on identifying and mapping winter cover crops and assessing 

voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi 

Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology 

examines the last 30 years of thematic research, development, and trends in remote sensing 

applied to conservation agriculture from a global perspective. The review uncovers a growing 

interest in remote sensing-based research in conservation agriculture and emphasizes the 

necessity for further studies dedicated to conservation practices. Among the 68 articles 

examined, 94% of studies utilized a pixel-based classification method, while only 6% employed 

an object-based approach. The analysis also revealed a thematic shift over time, with tillage 

practices being extensively studied before 2005, followed by a focus on crop residue from 2004 

to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These 

findings highlight the evolving research landscape and provide insights into the trends within 

remote sensing-based conservation agriculture studies. The second chapter presents a 

methodological framework for identifying and mapping winter cover crops. The framework 

utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series 

data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a 

significant increase (34%) in model-predicted cover crop adoption over the study period between 

2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently 

map the growing season's length and cover crops' phenological characteristics. The third chapter 

assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. 

Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA 



 
 

Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide 

voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall 

voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also 

indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being 

prominent. This dissertation enhances our understanding of the role of remote sensing in 

conservation agriculture with a particular focus on winter cover crops. These insights are 

valuable for policymakers, stakeholders, and researchers seeking to promote sustainable 

agricultural practices and increased cover crop adoption. The study also underscores the 

significance of integrating remote sensing technologies into agricultural decision-making 

processes and highlights the importance of collaboration among policymakers, researchers, and 

producers. By leveraging the capabilities of remote sensing, it will enhance conservation 

agriculture contribution to long-term environmental sustainability and agricultural resilience. 

Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, 

Voluntary adoption, Cropping patterns, Sustainable agricultural practices 
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CHAPTER 1: INTRODUCTION 

As one of the most essential human activities, agriculture has been at the heart of human 

survival and progress, shaping societies and powering economies. But as humanity has 

modernized its agricultural systems, it has often failed to account for the toll these practices can 

take on its natural resources, specifically the soil. This dissertation seeks to tackle the nexus of 

agricultural production and sustainability, focusing on adopting sustainable farming practices and 

technologies in the Arkansas portion of the Mississippi Alluvial Plain (MAP) region. 

The first chapter of this dissertation, titled "An examination of thematic research, 

development, and trends in remote sensing applied to conservation agriculture," analyzes related 

scholarly work and highlights the application of remote sensing strategies and techniques, solely 

within the context of conservation agriculture, from a global perspective, from 1991 to 2021. The 

methodology is built upon a systematic literature analysis, deploying a suite of keywords, 

Boolean operators, and wildcards to yield pertinent outcomes. The search focuses on article titles 

rather than abstracts or complete manuscripts, ensuring topic-specific literature and reducing 

false-positive articles. Transparency is ensured by adopting the PRISMA methodology and 

protocol framework for systematic literature reviews. This comprehensive study provides 

valuable insights into the application of remote sensing in conservation agriculture, aiming to 

identify trends and developments in this field, emphasizing the thematic nature of the research 

due to the lack of literature on this aspect. 

The study aims to fulfill several objectives, including examining the thematic nature of 

remote sensing applied to conservation agriculture, identifying trends and developments in this 

field, and providing a comprehensive literature review. It focuses on five agricultural 

conservation practices: cover crops, crop residue, crop rotation, mulching, and tillage practices, 



2 
 

employing a systematic process for assessing and evaluating remote sensing techniques. Guided 

by the main research question of how remote sensing tools, techniques, algorithms, and methods 

are applied to conservation agriculture, this study stands out by gathering and examining a 

diverse array of studies from different regions and countries. It offers a summarization and global 

perspective on remote sensing tools, techniques, and methods used in the five essential 

conservation practice categories, which have not been adequately addressed in previous reviews 

(Ali et al., 2015; Babaeian et al., 2019; García-Berná et al., 2020; Khanal et al., 2017; Lausch et 

al., 2019; Lizotte et al., 2021; Nasir Ahmad et al., 2020; Navarro et al., 2020; Prokopy et al., 

2019; Weiss et al., 2020).  

By highlighting gaps in the existing literature and providing recommendations for future 

research, this evaluation serves as a valuable resource for developing more advanced and 

efficient remote sensing tools, techniques, and methods tailored for conservation agriculture and 

its principles. Furthermore, the study offers insights into potential future applications in 

conservation agriculture research. The novelty of this research lies in its categorical and thematic 

approach, countering the gap in available literature in this dimension. It also provides a snapshot 

of various agricultural conservation methods and sheds light on the common remote sensing 

tools, methods, and algorithms used to identify these practices. The results of this study, 

representing a relatively comprehensive examination of remote sensing for conservation 

agriculture, will be helpful to conservation scholars, researchers, and policymakers interested in 

conservation research on both domestic and international levels. 

Building on this, chapter two, titled “Winter Cover Crop Identification: A Remote 

Sensing-based Methodological Framework for New and Rapid Data Generation,” focuses on 

winter cover crops in the Arkansas portion of Mississippi Alluvial Plain (MAP), a region that has 
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been subjected to intensive farming practices leading to soil erosion and nutrient leaching 

(Basche et al., 2016; Dabney et al., 2001). In this context, the chapter presents a compelling case 

for adopting winter cover crops as a key strategy for preserving soil health and productivity 

during the non-cash cropping season, when fields are often left bare and vulnerable to erosive 

forces. In the United States, although the adoption of winter cover crops is not a new agricultural 

practice, its extensive array of environmental and economic advantages has recently garnered the 

interest of producers and policymakers. Consequently, there was a 50% increase in the reported 

area dedicated to cover crop planting in the United States between 2012 and 2017 (Wallander et 

al., 2021).  

Despite the significant increase in government incentives funding to encourage cover 

crop adoption since 2012 (Wallander et al., 2021), there is still a lack of clarity regarding the 

geographical distribution and total area of these adopted cover crops. This lack of clarity arises 

from the absence of ground-truthed spatial data and a reliable method for accurately identifying 

the locations where cover crops are being adopted.  

With the advancement of novel remote sensing tools and techniques, researchers can 

swiftly conduct research projects with improved data accuracy, often at a minimal cost and with 

reduced labor requirements. The agricultural sector has widely embraced the use of remotely 

sensed data due to its inherent user-friendliness. Previous research studies have employed 

multiple satellite imagery datasets, as well as spectral and vegetation indices, to effectively 

identify, understand, categorize, monitor, and evaluate winter cover crops across various 

geographic scales (Hagen et al., 2020; Hively et al., 2015; Kc et al., 2021; Rundquist & Carlson, 

2017; Seifert et al., 2018; Thieme et al., 2020). However, when it comes to cover crop 

identification and monitoring, remote sensing techniques have been primarily limited to smaller 
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areas, typically ranging from a few acres to a few hundred acres. Studies focusing on larger 

areas, accompanied by ground truthing, are scarce or rely on less accurate methods, such as 

windshield surveys, which are prone to errors and possess low GPS precision, revealing a 

significant research gap. Besides, no single research has been conducted for identifying cover 

crops and their adoption in heterogeneous landscapes and one of the key agricultural regions in 

the United States, the MAP region.  

This study focused on three primary objectives to fill the existing research gaps. Firstly, it 

aimed to develop a scalable methodological framework for identifying and estimating the 

locations where winter cover crops are grown. Secondly, the study utilized this framework to 

generate new data on cover crop locations, serving as a benchmark for future studies. Lastly, the 

research aimed to identify and analyze the NDVI time series, spectral characteristics, and 

temporal patterns of winter cover crops. 

This chapter presents a unique and, to some extent an innovative methodology to identify 

winter cover crops using remote sensing technologies. The study methodology was applied to the 

MAP ecoregion, achieving a 97.7% mean classification accuracy using a Random Forest (RF) 

classifier. This study sheds light on the potential of platforms like Google Earth Engine (GEE) 

and using Landsat 8 satellite imageries to identify the geographical locations of winter cover 

crop adoption in the MAP region from 2013 to 2019. This study introduces several novel aspects 

that set it apart from previous research endeavors. First, it conducts an analysis encompassing a 

large geographic area, incorporating extensive ground-truthed data. This approach facilitates a 

more comprehensive understanding of the spatial adoption of winter cover crops. Second, the 

study utilizes the USDA binary cultivated band and historical noble conservation practice 

datasets for training the model, enhancing the accuracy and reliability of the obtained results. 
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These distinctive features of the research contribute to novel insights and advancements in 

identifying and monitoring winter cover crops using remote sensing techniques. 

Accurate mapping of areas with cover crops and those without is essential to provide 

valuable information to agricultural decision-makers and cost-share providers. The methodology 

presented in this study has the potential to be applied and replicated in different agricultural 

regions, given the availability of high-quality training data. By combining sensor sources and 

ground-truthed data, this study has demonstrated the feasibility of achieving cover crop and non-

cover crop classifications with comparable detail in class labels for extensive areas, multiple 

years, and uniform landscapes, such as the MAP study area. This approach can be adapted for 

other regions enabling accurate identification and mapping of cover crop adoption. The 

availability of this data can contribute to formulating policies that are advantageous for 

producers, while promoting the preservation or improvement of environmental resources and 

services. 

Finally, chapter three, titled “Evaluation of Voluntary Adoption of Cover Crops and 

Associated Crop Rotations Using Remote Sensing” adopted the model-predicted winter cover 

crop location data generated using remote sensing technologies, USDA-NRCS government-

subsidized cover crop acreage data by county, and the USDA CDL data layer to examines and 

identify the voluntary adoption of winter cover crops and the associated cropping patterns in the 

Arkansas portion of the MAP region. 

Winter cover crops play a vital role in agriculture by providing various benefits, such as 

preserving soil health, preventing erosion, and enhancing nutrient retention in fields during the 

off-season (Adetunji et al., 2020; Basche et al., 2016; Dabney et al., 2001). In the specific 

context of the MAP region, these crops offer long-term advantages to producers by improving 
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soil structure, increasing soil organic matter, and reducing nutrient losses through leaching or 

runoff (Aryal et al., 2018; Kladivko et al., 2014). The cropping rotations utilized by producers 

before and after the adoption of winter cover crops are of great significance in policy research 

and agricultural planning. Farmers in the MAP region employ various management techniques 

for cover crops, including crop rotation. The decision-making process regarding cropping plans 

and rotations is influenced by factors such as the previous crop grown and the subsequent crop to 

be planted (Dury et al., 2012). Cash crops in many parts of the MAP region are rotated to 

enhance soil health and manage farm pests (Bergtold et al., 2019). Cash crops such as corn and 

soybeans are among the major crops alternated in these rotations (Boryan et al., 2014). Previous 

research on cropping patterns has predominantly concentrated on major cash crops, overlooking 

the specific identification of winter cover crops (Ambinakudige & Intsiful, 2020; Boryan et al., 

2014). This narrow focus can be attributed to researchers' challenges in accurately identifying 

cover crop areas and effectively incorporating them into existing rotations (Fageria et al., 2005). 

This has resulted in significant research gaps within the existing literature. 

Recently, there has been a significant increase in the adoption of winter cover crops in the 

MAP region, driven by the notable benefits they offer (Geosolutions et al., 2019). The 

availability of cost-shared funding from USDA-NRCS programs like EQIP and CSP has 

particularly stimulated this adoption surge. Consequently, there has been a 50% rise in the 

reported area dedicated to cover crop planting across the United States from 2012 to 2017 

(Wallander et al., 2021). Many producers also voluntarily adopt certain practices, such as cover 

cropping and no-tillage, independent of funding from CSP and EQIP (Dunn et al., 2016). 

However, the extent of voluntary cover crop adoption at the county level remains unknown due 

to challenges in acquiring accurate spatial data and lacking a reliable method for identifying 
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voluntary adoption independent of government cost-shared funding. More importantly, there is a 

notable research gap in the United States regarding voluntary adoption, as no prior studies have 

been conducted on this subject. Most of the previous cropping pattern research has been done 

only focusing on major cash crops without identifying winter cover crops (Ambinakudige & 

Intsiful, 2020; Boryan et al., 2014).  

To address these knowledge gaps, this research aims to accomplish two primary research 

objectives. First, it seeks to determine the county-wide voluntary adoption of cover crops within 

the MAP region. Secondly, it intends to analyze the cropping patterns before and after the 

adoption of cover crops. Additionally, the study aims to examine the complete cropping 

sequence, specifically focusing on the placement of cover crops versus non-cover crops between 

cash crops. 

This study utilized remote sensing technologies to achieve the first objective, specifically 

leveraging the GEE platform and Landsat 8 satellite imagery. These tools were employed to 

identify the locations of winter cover crops in the MAP region from 2013 to 2019. The model-

predicted cover crop acres consisted of both government-subsidized and voluntary adoption of 

cover crops. A subtraction method was applied to distinguish voluntary adoption by deducting 

the government-subsidized cover crop row sum acres from the model-predicted cover crop row 

sum acres by county. This approach allowed for the preparation of yearly county-wide maps 

highlighting the areas where cover crops were voluntarily adopted.  

To achieve the second objective, this study focuses on three different cropping patterns 

revolving around cash crops and their sequential cultivation following cover and non-cover 

crops. These patterns include (1) finding out which cash crops are planted before cover crops, (2) 

identifying which cash crops follow cover crops, and (3) mapping out a full one-year cropping 
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pattern that starts with cash crops and incorporates cover and non-cover crops the same year and 

ends with the reintroduction of cash crops the year after.  

This study addresses a significant research gap by providing, for the first time, valuable 

insights into the county-level voluntary adoption of cover crops and cropping patterns within the 

MAP region. This understanding of shifting cropping patterns, particularly the increasing 

adoption of cover crops, is of importance for stakeholders and policymakers in formulating 

strategies for resilient and sustainable agriculture. These findings contribute to the knowledge 

base required for promoting agricultural practices that effectively balance productivity and 

environmental stewardship. 

The underlying thread that connects the three chapters of this dissertation is a shared 

emphasis on the crucial need for sustainable farming practices. These practices must strike a 

balance between agriculture's ecological necessities and economic realities. Central to the 

discussions in this dissertation is the role of winter cover crops in maintaining soil health and, as 

a result, ensuring agricultural productivity. It underscores the need to comprehend producers' 

decision-making processes to enhance the adoption of these sustainable practices. Recognizing 

and acting upon these links is vital to the future of agriculture, especially amidst escalating 

environmental stressors and growing demand for food. 

Highlighting the advantages of technology in agriculture, the dissertation brings attention 

to the potential of remote sensing technologies. These advanced tools provide an efficient and 

accurate means to monitor agricultural practices, offering invaluable insights into crop 

management on a broad scale. By leveraging remote sensing technologies, researchers can 

identify winter cover crop areas, areas of voluntary cover crop adoption and analyze cropping 
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patterns, contributing to a better understanding of the factors influencing farmers' decision-

making processes. 

In conclusion, this dissertation offers a thorough examination of the adoption of winter 

cover crops in Arkansas portion of the MAP region. It investigates their role in enhancing soil 

health and affecting crop productivity. The insights gathered from this study will prove beneficial 

to policymakers, researchers, and agricultural stakeholders. It contributes to the ongoing dialogue 

on sustainable agriculture and provides actionable strategies for soil preservation, improved crop 

productivity, and securing our future in a rapidly evolving world. 
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Abstract 

Conservation agriculture seeks to reduce environmental degradation through sustainable 

management of agricultural land. Since the 1990s, agricultural research has been conducted 

using remote sensing technologies; however, few previous reviews have been conducted focused 

on different conservation management practices. Most of the previous literature has focused on 

the application of remote sensing in agriculture without focusing exclusively on conservation 

practices, with some only providing a narrative review, others using biophysical remote sensing 

for quantitative estimates of the bio-geo-chemical-physical properties of soils and crops, and few 

others focused on single agricultural management practices. This paper used the preferred 

reporting items for systematic review (PRISMA) methodology to examine the last 30 years of 

thematic research, development, and trends associated with remote sensing technologies and 

methods applied to conservation agriculture research at various spatial and temporal scales. A set 

of predefined key concepts and keywords were applied in three databases: Scopus, Web of 

Science, and Google Scholar. A total of 188 articles were compiled for initial examination, where 

68 articles were selected for final analysis and grouped into cover crops, crop residue, crop 

rotation, mulching, and tillage practices. Publications on conservation agriculture research using 

remote sensing have been increasing since 1991 and peaked at 10 publications in 2020. Among 

the 68 articles, 94% used a pixel-based, while only 6% used an object-based classification 

method. Prior to 2005, tillage practices were abundantly studied, then crop residue was a focused 

theme between 2004 and 2012. From 2012 to 2020, the focus shifted again to cover crops. Ten 

spectral indices were used in 76% of the 68 studies. This examination offered a summary of the 

new potential and identifies crucial future research needs and directions that could improve the 
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contribution of remote sensing to the provision of long-term operational services for various 

conservation agriculture applications.  

Keywords: Remote sensing, Conservation agriculture, Classification algorithm, Spatial 

resolution, Satellite, Spectral indices, PRISMA 
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2.1 Introduction 

One of the greatest challenges of the 21st century is to increase food production without 

compromising soil and environmental quality. The key objectives of sustainable agriculture are 

to meet the food and fiber demand of a growing population while maintaining the quality of the 

soil and environment and providing sufficient profit to agricultural producers (Davis et al., 

2012). Although simplification of the current cropping system and increased dependence on 

external inputs have improved the amount and quality of crop production worldwide, intensive 

agricultural practices also brought about degradation to the environment and slowly eroded and 

degraded much of the existing topsoil (Pittelkow et al., 2015). Tillage is one of the conventional 

agricultural practices responsible for soil loss from plowed agricultural lands (Thaler et al., 

2021). Scientists realized that “worn-out” soils, whose productivity had declined, resulted mainly 

from the depletion of soil organic matter due to “tillage addiction” (Magdoff & van Es, 2009). 

Degradation from excessive tillage reduces soil health if best management practices are not 

adopted (Lehman et al., 2015). Since the end of World War II, agricultural policy, research, and 

the agricultural industry have focused on increasing food production for food security with little 

consideration to agricultural sustainability issues (Giovannucci et al., 2012). Following the Dust 

Bowl catastrophe of the 1930s, the U.S. policy focus on farm-level conservation was formed 

(Uri, 2001). Since then, soil regeneration techniques have drawn more attention to ensure the 

long-term sustainability of agricultural output through the use of best management practices 

(Baumgart-Getz et al., 2012; Prokopy et al., 2019).  

The three pillars of conservation agriculture seek to address different agricultural 

problems. The three pillars are: 1) use no-tillage or minimum-tillage practices, 2) cover the soil 

surface with crop residue, and 3) use diverse crop rotations (Brye & Pirani, 2005; Sharpley et al., 
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2015). No-tillage leaves plant parts or crop residue after a crop is harvested in the field as soil 

cover. Soil microorganisms increase rapidly after conversion to no-tillage and help decompose 

the crop residue and build soil organic matter. No-tillage also decreases soil erosion by wind and 

water (Claassen et al., 2018; Huggins & Reganold, 2008). Cover crops can act as a weed 

suppressor if planted in seasons between commercial crops. The cover crops are mowed or 

terminated before or during subsequent plantings, which helps suppress unwanted weeds and 

provides nutrients to the soil as they decay (Hartwig & Ammon, 2002; Teasdale, 1996). 

Additionally, the use of diverse crop rotations can help reduce insect pests and other plant 

pathogens. A diverse crop rotation helps to break up the plant-pathogen cycle and competition, 

thus helping to reduce the need for pesticides (Bullock, 1992; Chamberlain et al., 2020). The 

benefits of adopting all three conservation agriculture techniques jointly are an increase in soil 

health, which includes building soil organic matter, reducing soil compaction, decreasing 

erosion, rebuilding soil aggregates, increasing water holding capacity, and increasing water 

infiltration. In the long term, these practices may help to increase crop yields and possibly cut 

input costs and the system’s energy footprint, thus improving agricultural and environmental 

sustainability (Magdoff & van Es, 2009). Therefore, the assessment and identification of best 

agricultural management practices are essential for sustainable agriculture.  Data from satellite, 

airborne, and drone sensors can now be combined with ground data to repeatedly map and 

measure a range of vegetation and soil properties required for the three pillars of conservation 

agriculture. 

Remote sensing technologies have been useful and effective in assessing and monitoring 

agricultural practices (Khanal et al., 2017). Farmers and researchers can observe their fields, 

crops, yield, and production practices without physically visiting or inspecting them. Due to the 
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recent development of multispectral (3-10 wider bands) and hyperspectral (hundreds of narrow 

bands) sensors onboard different satellite platforms (Landsat, Sentinel, and others) and 

unoccupied aerial vehicles (UAV), the spectral and temporal properties of agricultural land 

surfaces can be monitored with high spatial and temporal resolution. As remote sensing in 

agriculture has a wide range of applications, specifying categories is important. Applications, 

platforms, sensors, location, and context are the five aspects that should be addressed or included 

when using remote sensing techniques in agricultural research, according to a remote sensing 

meta-review on agriculture by Weiss et al. (2020). In recent years, the popularity of using remote 

sensing has increased mainly due to a significant increase in publicly available, fully corrected 

global satellite archives and associated online processing. However, using remote sensing 

techniques is not straightforward and requires knowledge and skills in processing remotely 

sensed data for meaningful result interpretation.  

Among the existing remote sensing platforms, different satellite- and UAV- derived 

multispectral and hyperspectral data have been widely used in agricultural research (Candiago et 

al., 2015; Govender et al., 2008; R. Hunt & Daughtry, 2018; Maes & Steppe, 2019; Radočaj et 

al., 2020). Due to recent improvements in sensor development, UAVs have been widely adopted 

in the precision agriculture domain. The unoccupied aerial vehicles are equipped with high-

resolution sensors and used mainly for field-level data collection. The unoccupied aerial vehicles 

have many applications, including crop yield estimation (Feng et al., 2020; Nevavuori et al., 

2019, 2020; Stroppiana et al., 2015; S. Yang et al., 2021), assessment of soil moisture 

(Aboutalebi et al., 2019; X. Ge et al., 2019; Hassan-Esfahani et al., 2015; Luo et al., 2019), weed 

identification (Dian Bah et al., 2018; Hung et al., 2014; Lan et al., 2021), vegetative growth 

monitoring (Al-Ali et al., 2020; Burns et al., 2022; H. Tao et al., 2020; Zhang et al., 2020), water 
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and irrigation mapping (Chao et al., 2008; Shi et al., 2019), crop identification (Chew et al., 

2020), crop phenology (G. Yang et al., 2017; Q. Yang et al., 2020), and others. Although UAVs 

have many useful applications in agriculture, the limitations are that quality UAVs are costly and 

flight duration largely depends on payload, weight, and internal configurations (Adão et al., 

2017; Delavarpour et al., 2021). By contrast, free access to Landsat, Sentinel, MODIS, and other 

satellite archives has revolutionized satellite images, especially in conservation agriculture (C. 

Liu et al., 2020; Wulder et al., 2019). Many studies use free satellite imageries for land-use 

monitoring and change detection (Al-Juboury & Al-Rubaye, 2021; Z. Chen & Wang, 2010; 

Chughtai et al., 2021; Fonji & Taff, 2014), crop identification and mapping (Belgiu & Csillik, 

2018; Xun et al., 2021; S. Yan et al., 2021), phenology mapping using time series (R. Li et al., 

2021; Schreier et al., 2021; F. Zhao et al., 2021) and other applications. In addition to access to 

free satellite imagery, many private satellite companies, like Planet Lab, provide high spatial and 

temporal resolution time series imagery for a fee (Huang & Roy, 2021). The type and use of 

satellite images mainly depend on the research objectives.  

Another important aspect of remote sensing is using different statistical, machine learning 

algorithms, and biophysical models to classify satellite images by transforming pixel values to 

quantify key properties, such as plant biomass and soil moisture, for agricultural research. Using 

pixel- (Kc et al., 2021a; Martins et al., 2021) and object-based classification methods (Ding et 

al., 2021; Najafi et al., 2021), researchers seek to understand, identify, detect, and map different 

agricultural conservation practices. Researchers can use a variety of Spectral Indices (SIs) such 

as the Normalized Difference Tillage Index (NDTI), Normalized Difference Senescent 

Vegetation Index (NDSVI), Shortwave Infrared Normalized Difference Residue Index (SINDRI), 

Normalized Difference Residue Index (NDRI), Enhanced Vegetation Index (EVI), and 
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Normalized Difference Vegetation Index (NDVI), to identify, model, and infer crop and soil 

surface information. Among the indices, the NDVI is widely used and misused in many 

agricultural studies (Estrella et al., 2021; Ustuner et al., 2014). A new modified version of NDVI 

called kernel NDVI (kNDVI), which can reduce the mixed pixel issue (Camps-Valls et al., 

2021a), is helpful in agricultural research and may generate intriguing results. The SIs are 

computed by adding and subtracting different image bands, such as red, green, blue, near-

infrared, and others, by emphasizing a particular property while omitting other features. The 

indices are frequently used to improve the classification algorithm’s accuracy. In agriculture, the 

reflectance of light changes with chlorophyll content, water content, plant type, sugar content 

within tissues, and other factors. Indices enhance the spectral information and increase the 

separability of the classes of interest. Various classification algorithms such as Random Forest 

(Barnes et al., 2021a; Seifert et al., 2019), regression models (Thieme et al., 2020a; Van Deventer 

et al., 1997; Viña et al., 2003), Spectral Unmixing (Chi & Crawford, 2014; Laamrani et al., 2020; 

Pacheco et al., 2008; Pacheco & McNairn, 2010), Thresholding (Hively et al., 2018, 2020; J. Liu 

et al., 2018; Nowak et al., 2021) and other techniques, have been used in solving various 

identification, classification, and prediction problems in conservation agriculture. The use of 

single and/or multiple methods and algorithms is largely dependent on the topic of interest. 

Several field-level experimental research studies and reviews have been published on 

conservation agriculture practices globally (Ahmad et al., 2020; Prokopy et al., 2019), and some 

research reviews incorporate remote sensing techniques in agriculture in general (García-Berná 

et al., 2020; Lizotte et al., 2021; Weiss et al., 2020). A few review articles have focused on two 

vitally important biophysical variables, such as plant biomass and soil moisture  (Ali et al., 2015; 

Babaeian et al., 2019; Y. Ge et al., 2011; Lausch et al., 2019). A limited number of reviews have 
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focused on some key topics, such as precision and smart farming in agriculture using remote 

sensing techniques (Khanal et al., 2017; Navarro et al., 2020). Biophysical remote sensing 

models use data collected by satellite and other remote sensing technologies to estimate various 

biophysical parameters of Earth's surface, such as vegetation cover, canopy height, and leaf area 

index. These models are important in conservation agriculture because they provide information 

on the health and productivity of crops, which can help farmers make informed decisions about 

management practices that can improve soil health and reduce erosion. In addition, researchers 

and scientists use biophysical remote sensing models to study the relationship between land 

management practices and their impact on the environment. By analyzing data from these 

models, they can better understand the effects of different management practices on soil health, 

water quality, and other key environmental indicators and explore the systems for the retrieval of 

bio-geo-chemical-physical variables from satellite remote sensing imagery (Ali et al., 2015; 

Babaeian et al., 2019; Y. Ge et al., 2011; Lausch et al., 2019). However, during a thorough 

literature evaluation, no categorical or thematic examination of remote sensing exclusively 

focused on conservation agriculture practices and its principles were identified. 

Given its importance, this study provides an examination of remote sensing techniques, 

methods, and processes used particularly for conservation agriculture. As a result, existing 

literature that applies any conservation practices, as well as some predefined inclusion and 

exclusion criteria, were chosen after searching the literature that is currently accessible. Due to 

the heterogeneity of study articles, a statistical meta-analysis is not provided. Furthermore, 

though an essential component of conservation agriculture, the specific separation of biophysical 

remote sensing models for quantitative estimates of bio-geo-chemical properties of soils and 

crops was beyond the initial intended scope of this study. Instead, qualitative results on article 
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metadata and the data extracted from selected papers on some key variables of interest are 

presented without statistical comparison across methods or results; however, citations of related 

reviews and articles for readers are provided when necessary.  

The main goal of this literature examination is to provide a general overview and trends 

of remote sensing methods applied in conservation agriculture research. To accomplish the goal, 

this paper was guided by the main research question: How are remote sensing tools, techniques, 

algorithms, and methods applied to conservation agriculture? This study is unique in that a 

diverse array of studies from various regions and countries have been gathered and examined, 

offering a summarization and global perspective on remote sensing tools, techniques, and 

methods used in five essential conservation practice categories, which were not addressed in past 

reviews. By highlighting gaps in the existing literature and offering recommendations for future 

research, our evaluation serves as a valuable resource for the development of more advanced and 

efficient remote sensing tools, techniques, and methods tailored especially for conservation 

agriculture and its three principles. Further, this study adopted the PRISMA methodology and 

distinct keywords related to conservation agriculture and remote sensing, ensuring the findings 

draw from high-quality evidence that exclusively focuses on the intersection of both 

conservation agriculture and remote sensing, setting this examination apart from previous works. 

This assessment presents trends and standards for evaluating remote sensing tools, techniques, 

and methods to date, making it a valuable resource for researchers, policymakers, and other 

stakeholders interested in using remote sensing as a tool for conservation agriculture, an aspect 

not fully explored in earlier reviews. 
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2.2 Principle and typology for conservation agriculture 

Conservation agriculture is an agricultural management system that promotes minimum 

soil disturbance using no-tillage or conservation tillage, maintenance of ground cover using crop 

residue, cover crops, or mulching, and crop diversification through crop rotations and 

intercropping (Hobbs et al., 2008; K. L. Page et al., 2020). In the long term, the process helps 

rebuild soil biological processes, contributes to minimizing soil erosion, and ultimately increases 

agricultural production. This paper describes conservation agriculture in terms of its underlying 

three fundamental principles (Fig. 1). Conservation tillage is defined in terms of no-tillage and 

minimum tillage. Soil or ground cover is defined as a cover crop, crop residue, and mulching. 

Crop diversification is defined as crop rotation, crop mix, and intercropping. However, in some 

cases, well-grounded judgment was used in grouping those conservation practices by article type. 

For data analysis and visualization, all conservation practice information extracted from the 

selected articles was grouped into five major categories: cover crop, crop residue, crop rotation, 

mulching, and tillage practice.  
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Fig. 1. Three principles of conservation agriculture (Sources: panel 1: https://bit.ly/35cE4x0,  

panel 2: https://bit.ly/3AuxZYo, panel 3: https://bit.ly/3rHYSEb) 

 

2.3 Materials and methods 

2.3.1. Information sources and search strategy 

Literature from three established databases, including Clarivate Analytics Web of Science 

core collection via University of Arkansas library, Elsevier's Scopus database via Pisa University 

Library, and Google Scholar database were used to prepare this examination. Web of Science 

covers more than 20,000 peer-reviewed journals from more than 250 fields of study with a 

temporal coverage from 1900 to the present year. Scopus has more than 23,000 peer-reviewed 

journals from more than 23 major disciplines. It is uncertain how many journals or over what 

period Google Scholar has publications. The final search was performed on December 3rd, 2021. 

An important step in any systematic literature search process is defining key concepts and 

associated search keywords. Most databases like Web of Science, Scopus, and Google Scholar 

https://bit.ly/35cE4x0
https://bit.ly/3AuxZYo
https://bit.ly/3rHYSEb


25 
 

use keywords with Boolean operators and wildcards. Boolean syntax acts as a search engine that 

allows users to combine keywords with operators such as AND, NOT, and OR to generate more 

relevant results. In contrast, wildcards are characters, such as an asterisk (*), which can be used 

to add spelling variations and derivatives of a keyword without having to input them all 

separately. The combination of concepts and keywords is often called search strings, which was 

used to search and retrieve relevant literature from the database. Keywords related to the 

application of remote sensing tools, techniques, methods, algorithms, and indices in conservation 

agriculture and variations of words associated with the topic of interest were used in such a way 

that only those articles that matched the research objective were identified. The keyword search 

was performed only on article titles rather than the abstract or the whole manuscript. This 

strategy helped to get topic-specific literature and reduced false-positive articles for final 

selection. The keywords and concept-wise search strings are presented in Table 1. 

The literature search process used the combination of “OR” and “AND” as Boolean 

operators. Concept 1: remote sensing and concept 2: conservation agriculture using the operator 

“AND” requires that at least one keyword of each concept must appear in the article title to be 

selected for screening. Additionally, the operator “OR” was used to find articles that included 

any keywords in the article title. The “OR” operator helps broaden the search and captures all the 

related articles on the topic of interest. Several search strings were developed and refined using 

several rounds of trial-and-error processes so that only relevant papers were identified via 

database searching. The keywords used were selected after an extensive literature search of 

existing articles on remote sensing and conservation agriculture. It is important to note that 

different search strategies using different keywords and inclusion and exclusion criteria may 

result in a different number of articles, and it is solely dependent on researchers and their 
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research objectives. Efforts were made to find all related literature and record information 

accordingly, but some articles may not have been selected due to the constraints mentioned 

above.  

Table 1: Search queries designed for getting articles from databases. 

Key concepts and keywords 

Concept 1: Remote Sensing Concept 2: Conservation Agriculture 

remotely sensed 

satellite image* 

conservation cover 

crop residue 

tillage* 

no-till 

crop rotation 

mulch* 

soil conservation 

soil cover 

multi-cropping 

buffer strips 

contour buffer 

strips 

contour farming 

intercropping 

cropping pattern 
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2.3.2. Preferred Reporting Items Systematic Reviews and Meta-Analyses (PRISMA) 

The PRISMA methodology and protocol framework version 2020 was used in this 

current work (M. J. Page et al., 2021) (Fig. 2). PRISMA is a structured protocol that guides 

systematic literature reviews and supports the reporting of step-by-step processes of different 

phases of the systematic review. PRISMA has three main sections: i) identification of the total 

number of articles from different databases; ii) screening of identified articles using inclusion 

and exclusion criteria and the reason for exclusion of studies; and iii) reporting the total number 

of articles that have been both included and reported in the review paper (M. J. Page et al., 

2021). This framework helps researchers ensure transparency in each step of the review process 

(Liberati et al., 2009; Moher et al., 2009). The PRISMA framework has been used extensively by 

health and medical researchers. Due to its unique characteristics and transparency in research 

steps, PRISMA is now being used in many disciplines, including finding more comprehensive 

applications as is the case with remote sensing in the agricultural field (Adu et al., 2018; Koutsos 

et al., 2019; Navarro et al., 2020). 
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Fig. 2. PRISMA 2020 flow diagram for the systematic review of remote sensing for conservation 

agriculture [adapted from Page et al. (2021)].  

 

2.3.3. Eligibility, exclusion criteria, article screening, and selection 

To obtain a robust number of articles for evaluation and data extraction, several inclusion 

and exclusion criteria were utilized. Only peer-reviewed articles written in English and without 

any year-of-publication restriction were searched for. Any articles that were not peer-reviewed 

were discarded from the search process. After setting up inclusion and exclusion criteria, 225 

peer-reviewed journal articles from the Web of Science and Scopus databases were identified. 

Out of the 225 articles, 155 and 70 were derived from Web of Science and Scopus databases, 

respectively. Using the Google Scholar search, another 16 articles were identified that were not 

identified using keyword searches from the databases above. A duplication check was conducted 

using Excel® and led to the elimination of 53 articles, leaving 172 articles combinedly from the 

Web of Science and Scopus database, plus 16 articles from the Google Scholar search. Screening 

of abstracts of the remaining 188 papers using the following additional criteria led to the 



29 
 

exclusion of an additional 111 articles that did not meet the research objective and screening 

criteria. Abstract screening involved: (1) whether or not identified articles were related to 

conservation agriculture and/or soil conservation field and have applied any remote sensing 

methods; (2) exclusion of studies other than conservation agriculture and/or soil conservation 

such as erosion, soil moisture, water, forestry, and biodiversity; (3) inclusion of articles that had 

at least one conservation agriculture keywords from Table 1; and, (4) articles using either 

satellite- and/or UAV- derived data. After abstract screening, 77 articles were downloaded as full-

text articles. After reading all articles, an additional nine articles were determined to be outside 

of the screening criteria leaving 68 (36.17%) articles for data extraction. While this study focuses 

on the articles themselves, future research may want to disaggregate between such attributes as 

author affiliation (public vs. private sector), author discipline, and other demographic variables.  

In the identification phase, 225 articles were identified with the search tools. Among 

those, 53 articles discovered to be present in both databases and were eliminated. Following the 

previously indicated screening criteria, a manual assessment of the articles was carried out 

during the screening phase to determine whether article titles adhered to the aims provided for 

this study. Out of the 188 articles, 120 (63.83%) were deemed invalid and eliminated because 

they did not fit the research aim and screening criteria. Only 7 (5.73%) of the 120 publications 

were non-English, and the remaining articles did not consider remote sensing and conservation 

agriculture to be the primary focus of the study. Obvious limitations exist by not including those 

articles which were non-peer-reviewed and not in English. That being said, by using the 

PRISMA framework with our parameters (peer-reviewed and in English) this constitutes a 

representative sample of work.  
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2.3.4. Data extraction 

For each selected article, article metadata for further descriptive analysis were collected. 

Latitude and longitude information were collected from the study or from the centroid of the 

respective country. Aside from metadata extraction, key variable information from each article 

was collected (Table 2). As shown, both qualitative and quantitative information were recorded 

from the selected articles.  

Table 2: Attributes and variables used for data extraction from the selected papers. 

Number Attribute Type Key categories/description 

1 Paper id Numeric Total number of articles (1-68) 

2 Conservation 

practice type 

Text Cover crop; Crop residue; Crop rotation; 

Mulching; Tillage practices 

3 Data types Text Optical; Radar 

4 Satellite/sensor 

type 

Text Landsat; Sentinel; Moderate Resolution Imaging 

Spectroradiometer (MODIS); Satellite Pour 

l'Observation de la Terre (SPOT); Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS); 

Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER); Unoccupied 

Aerial Vehicle (UAV); Vegetation and 

Environment monitoring on a New Micro-Satellite 

(VENuS); WorldView; and others 
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Table 2 (Cont.)  

Number Attribute Type Key categories/description 

5 Spatial resolution Numeric Recorded in meters 

6 Spatial resolution 

type 

Text Low; Medium; High 

7 Number of 

bands/features 

Numeric Total number of bands/feature each study used 

8 Indices/index 

type 

Text Normalized Difference Vegetation Index (NDVI); 

Cellulose Absorption Index (CAI); Soil‐adjusted 

Vegetation Index (SAVI) and others 

9 Classification 

method type 

Text Pixel-based; Object-based 

10 Classification 

algorithm type 

Text Random Forest (RF); Maximum Likelihood; 

Support Vector Machine; Spectral Unmixing 

Algorithm, Threshold-based Algorithm; Object-

based Algorithm; Logistic Regression and others.   

11 Accuracy Numeric Range from 65% to 98% 

12 Crop species Text Different species of crops used in each study 
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2.4 Results 

The results of this examination were compiled and discussed using the database 

mentioned above. The results pertain to the research period between 1991 and 2021.  

2.4.1. Number of conservation agriculture papers published by year 

The trend of conservation agriculture research publications using remote sensing is 

upward (Fig. 3), with a noticeable increase in publications after 2007. In 2020, the maximum 

number of articles published per year (10) occurring, with half of the total published after 2015.  

 
Fig. 3. Number of conservation agriculture papers published per year using remote sensing from 

1991 to 2021. [Blue line represents the trend line, and the gray-shaded area represents the 95% 

confidence interval] 

 

2.4.2. Number of conservation agriculture papers and classification method types 

Pixel-based classification methods were used in most of the conservation agriculture 

papers. Among the 68 articles, 64 (94%) papers used the pixel-based classification method, and 

only 4 (6%) used the object-based classification method. 
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2.4.3. Conservation agriculture practices and classification method types 

Of the 64 studies using pixel-based classification, 23 were on crop residue practices, 

followed by cover crops, tillage practices, and crop rotation (Fig. 4). Only four studies reported 

the use of pixel-based classification for mulching. Four studies used object-based classification; 

that method was used on crop residue and cover crop studies. By combining classification 

methods, conservation practices, and paper id, the count was calculated. In certain contexts, 

object-based classification yields better accuracy than pixel-based classification because the 

method utilizes the latest image segmentation techniques, which first groups image pixels into 

spectrally homogenous picture objects before classifying the individual objects (Guo et al., 

2007). 

 
Fig. 4. Conservation practices and classification methods from 1991 to 2021. 

 

2.4.4. Conservation agriculture paper citations by year grouped by classification method types 

Most citations recorded the use of pixel-based classification compared to object-based 

classification. Pixel-based methods started in 1995, whereas object-based citations were not 

found until 2012. The temporal trend across years showed that citation count has a downward in 
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recent years. This should not be surprising, given that older articles have a greater chance for 

citation.  

2.4.5. Number of conservation agriculture papers and classification algorithm types  

Among the 68 articles, 52 (76%) reported using one or more classification algorithm 

types (Fig. 5). In contrast, 16 (24%) of the publications used various reflectance/spectral-based 

techniques, which were not included as classification algorithms since they were not regarded as 

classification algorithms. Of the classification algorithms used, the Random Forest and 

Maximum Likelihood were used the most (13% and 10% of the publications, respectively). 

Additionally, 23% of articles integrated the usage of a Support Vector Machine, Spectral 

Unmixing Algorithm, or Threshold-based models. The remaining papers (54%) combined used 

the other classification algorithms. 

 
Fig. 5. Conservation agriculture papers by classification algorithm types from 1991 to 2021. 
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2.4.6. Conservation agriculture and classification algorithm 

Image classification using various classification algorithms has gained traction in recent 

years due to the development of new tools, techniques, and algorithms. As many machine 

learning and classification algorithms have developed, such as the Random Forest (RF), Gradient 

Boosting Tree, Support Vector Machine (SVM), Classification and Regression Trees (CART), 

and other methods, classification accuracy has improved. These algorithms are freely available 

and widely used in conservation agriculture research. Fig. 6 shows all the classification 

algorithms and conservation practices used by the studies identified for the current examination. 

Among the various algorithms, only Random Forest was used by all of the conservation 

practices. Additionally, crop rotation, tillage practices, and crop residue conservation practice all 

used the Maximum Likelihood approach. 

 
Fig. 6. Conservation practices and classification algorithm from 1991 to 2021.  
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2.4.7. Conservation agriculture papers citations by years grouped by classification algorithm 

type 

The classification algorithm type has a large number of levels. To avoid clutter, the top 

six algorithm types represented 68% of the total citations, with their use trend shown in Fig. 7. 

Overall, the logistic regression classification algorithm had the largest number of citations. The 

Random Forest algorithm gained recent popularity compared to the other algorithms, among 

which Spectral Angle Mapping was the next most frequently used. 

 
Fig 7. Conservation agriculture papers citations by years grouped by classification algorithm 

type from 1991 to 2021. 

 

2.4.8. Classification algorithm types and accuracy 

Table 3 shows various classification algorithms and their accuracies used in the selected 

papers. From the 52 articles that stated employing one or more classification algorithm types, 

only 26 papers (38%) demonstrated accuracy using 15 classification algorithm types. As can be 

seen from Table 3, modern classification algorithms, like Evolutionary Neural Networks (ENN), 

Gradient Boosting Tree, Classification and Regression Trees (CART), Random Forest (RF), and 
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Object-based Algorithm (OBIA) generally outperformed older algorithms for identifying 

conservation practices. Except for Spectral Unmixing Algorithm (SUA) and Artificial Neural 

Network (ANN), the majority of classification algorithms' mean accuracy was to be greater than 

80%. 

Table 3: Classification algorithm types and accuracy. 

Classification algorithm type Mean accuracy 

(%) 

Accuracy range 

(%) 

Number of 

articles 

Evolutionary Neural Networks (ENN) 98  - 1 

Gradient Boosting Tree 93 - 1 

Classification and Regression Trees 

(CART) 

92 - 1 

Logistic Regression 90 88- 93 2 

Object-based Algorithm (OBIA) 86 74- 92 3 

Random Forest (RF) 86 75- 95 6 

Spectral Angle Mapping (SAM) 86 76- 96 2 

Artificial Bee Colony (ABC) 86 - 1 

Mahalanobis Distance Classifier 85 - 1 

Supervised Classification 85 - 1 

Threshold-based Model 84 - 1 

Maximum Likelihood 83 73- 93 3 

Support Vector Machine (SVM) 81 75- 86 3 

[Note: Mean accuracy by classification algorithm types from 1991 to 2021] 
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Table 3 (Cont.) 

Classification algorithm type 

Mean accuracy 

(%) 

Accuracy range 

(%) 

Number of 

articles 

Artificial Neural Network (ANN) 73 - 1 

Spectral Unmixing Algorithm 

(SUA) 

65 - 1 

[Note: Mean accuracy by classification algorithm types from 1991 to 2021] 

 

2.4.9. Number of conservation agriculture papers and conservation practice types 

Various types of conservation practices have been used in conservation agriculture 

studies. Among the 68 articles, three studies reported using more than one conservation practice. 

Thirty-eight percent of the studies used crop residue, which was followed by tillage practices 

(23%), cover crop (20%), crop rotation (13%), and mulching (6%). 

2.4.10. Conservation agriculture papers citations by years grouped by conservation practice type 

The yearly trends of conservation agriculture research by conservation practice type 

reveal that citations for tillage practice were high early on, with less reference to tillage practice 

after 2005 (Fig. 8). From 2004 to 2012, crop residue was highly cited, whereas the focus shifted 

to cover crops from 2012 to 2020, with no citations before 2007 on cover crops. 
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Fig. 8. Conservation agriculture papers citations by years grouped by conservation practice type 

from 1991 to 2021. 

 

2.4.11. Conservation agriculture papers and data type 

Different remote sensing data products have been used in conservation agriculture 

research. Among them, optical and radar data were common and frequently used in several 

studies. Some studies used single-data types, while other studies used a combination of both 

optical and radar data. Of these two data types, 62 studies used the single optical data type, while 

only one used radar data type. Five studies used both optical and radar data. 

2.4.12. Conservation agriculture and sensor type, number of bands, and spatial resolution  

In conservation agriculture studies, 19 types of satellites and sensors were used to 

identify different conservation practices (Fig. 9). The Landsat 7 satellite was the leading source, 

followed by earlier and later releases. Landsat 7 was launched in 1999, and Landsat 8 was 

launched in 2013. To identify mulching, the Gaofen-1 satellite had more citations than Landsat 5. 

Landsat 7 and UAV were used in most articles (combined 5%) when attempting to identify cover 
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crops, with Landsat 5, 8, and Sentinel 2 also used in many papers (combined 4%). For the 

identification of cover crops, the least used common satellites were SPOT and Probe-1. 

 
Fig. 9. Conservation agriculture and sensor/satellite type from 1991 to 2021. 

[ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer; UAV: 

Unoccupied Aerial Vehicle; IRS: Indian Remote Sensing; SPOT: Satellite Pour l'Observation de 

la Terre; SAR: Synthetic Aperture Radar; MODIS: Moderate Resolution Imaging 

Spectroradiometer; EO-1: Earth Observing-1; AVIRIS: Airborne Visible/Infrared Imaging 

Spectrometer] 

 

Different spatial resolution imagery was classified into three groups: high (more than 0 

and less than 10 m), medium (greater than or equal to 10 to less than or equal to 30 m), and low 

(greater than 30 to less than or equal to 1000 m) (Fig. 10). The satellites within the medium-

resolution group were used in most articles (31%) for all conservation practices. To identify 

conservation practices of cover crops, crop residue, crop rotations, mulching, and tillage 

practices, medium spatial resolution imagery was used most. The sensors in the lower resolution 

group were only used in a few articles concerning crop rotation, cover crops, and tillage practice. 
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Fig. 10. Conservation agriculture and spatial resolution by practice from 1991 to 2021. [Note: 

Spatial resolution (pixel size in meters along one dimension): High: > 0 to < 10; Medium: ≥ 10 

to ≤ 30; Low: > 30 to ≤ 1000] 

 

Out of the 68 conservation agriculture studies, four bands/features were used in a limited 

number of studies for cover crops (5 studies), crop rotation (4 studies), and mulching (3 studies) 

(Fig. 11). However, in crop residue and tillage studies, most articles (17.5%) stated using three 

bands/features. The use of sensors above nine bands was the least common among the selected 

studies (9.5%).  



42 
 

 
Fig. 11. The number of bands used by conservation agriculture practices from 1991 to 2021. 

 

2.4.13. Conservation agriculture and spectral indices 

Among the conservation agriculture studies used in this examination, 31 spectral indices 

were reported. There were ten indices that were used in most (76%) of the 68 studies (Fig. 12). 

The Normalized Difference Vegetation Index (NDVI) was reported in 29 studies, followed by the 

Normalized Difference Tillage Index (NDTI) and the Cellulose Absorption Index (CAI) in 15 

and 11 studies, respectively. The remaining indices were reported in four or fewer studies. 
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Fig. 12. Top 10 indices found in conservation agriculture publications from 1991 to 2021. [Note: 

NDVI: Normalized Difference Vegetation Index; NDTI: Normalized Difference Tillage Index; 

CAI: Cellulose Absorption Index; NDSVI: Normalized Difference Senescent Vegetation Index; 

LCA: Lignin-Cellulose Absorption Index; SINDRI: Shortwave Infrared Normalized Difference 

Residue Index; NDI: Normalized Difference Index; NDRI: Normalized Difference Residue 

Index; minNDTI: Minimum values of Normalized Difference Tillage Index; EVI: Enhanced 

Vegetation Index] 

 

NDVI indices were the most common (30%) for different conservation practices and the 

leading tool to identify cover crops. For crop residue, the CAI index had the largest number of 

articles. The NDTI was not used most frequently to identify tillage practices (Fig. 13). Also, 

NDVI was used to identify the largest number of different practices. 
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Fig. 13. Top 10 indices grouped by conservation practices from 1991 to 2021. 

 

2.4.14. Conservation agriculture practices and crop species 

Fig. 14 indicates that maize (Zea mays) has been a part of all conservation practices 

analyzed in this examination. Likewise, soybeans (Glycine max) have also been part of all the 

practices except for mulching. Mulching was only reported for a maize crop in 2 out of 68 

articles. 

 
Fig. 14. Conservation practices and crop types from 1991 to 2021. 
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2.5 Discussion 

There has been an increasing number of papers targeting the identification of 

conservation practices using remote sensing published since 1990 with the annual trend 

increasing. This was expected given that new remote sensing technologies have developed and 

been more precise over time (Crowley & Cardille, 2020). There may be other factors at play, but 

the fact that the number of research publications on remote sensing in conservation agriculture 

has doubled in the last decade suggests that, due to the most recent technologies such as sensors, 

satellites, and algorithms, as well as the availability of data and ease of data transmission, 

research on agricultural conservative practices using remote sensing is becoming more funded, 

more studied, or both (Rogan & Chen, 2004). 

Remote sensing devices are based on several categories, including airborne, satellite, or 

ground-based platforms (Cracknell, 2018). Satellites, drones, helicopters, and aircraft are a few 

types of aerial remote-sensing equipment. To gather data, these devices frequently have sensors 

like cameras, lidar, radar, and other sorts of sensors. There are several uses for airborne optical 

remote sensing, including mapping, surveying, and environmental monitoring. In conservation 

agriculture studies, researchers have used mostly optical data during their research using remote 

sensing platforms (Aoki et al., 2021; Brooker et al., 2021; Chi & Crawford, 2014; Galloza et al., 

2013; Gelder et al., 2009; Jayanth et al., 2021; Maas & Rajan, 2008; Nowak et al., 2021; Obade 

& Gaya, 2020; Seifert et al., 2019; Sood et al., 2009). 

Although radar technology has existed for over five decades, radar has not been as widely 

utilized as optical remote sensing (Rogan & Chen, 2004). There have not been many active radar 

applications for conservation agriculture research, despite the theory supporting their usefulness 

in various areas, such as natural environments (Kasischke et al., 1997). This might be attributable 
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to inadequate techniques for radar data analysis and a general lack of comprehension of radar 

data. It has been observed that satellite remote sensing information has been used often for 

conservation agricultural research. One explanation might be that the researchers are more 

accustomed to and at ease using optical data than radar data. Additionally, the price of satellite 

data might also have an impact. Some satellite data is freely available to the public when using 

Landsat, Sentinel, and MODIS. Additionally, the availability of geometrically corrected optical 

data, a wider perspective of the land, less preparation of images, more preprocessing software, 

and less trained expertise are all contributing factors. In the current examination, only one study 

used radar data (Brisco et al., 1991), with other studies using a combination of both optical and 

radar in their publications (Hasituya, Chen, Li, et al., 2017; Hasituya et al., 2020; Leek & 

Solberg, 1995; Smith et al., 1995; Sood et al., 2009). The potential of radar in natural 

environments seems to be more understood by the remote sensing research community, although 

work on conservation agriculture is still ongoing, particularly about the synergistic use of optical 

and radar data(Gamba & Houshmand, 2010; Hasituya, Chen, Li, et al., 2017; Hasituya et al., 

2020).  

Among the optical data, Landsat 7 and Landsat 8 platforms were popular in crop residue 

(Barnes et al., 2021a; Chi & Crawford, 2014; Laamrani et al., 2020; Najafi et al., 2018; Pacheco 

& McNairn, 2010; Sonmez & Slater, 2016a; Zheng, Campbell, Shao, et al., 2013; Zheng et al., 

2012), tillage practices (Gowda et al., 2008; Hagen et al., 2020a; South et al., 2004; Sudheer et 

al., 2010; Watts et al., 2011; Zheng, Campbell, Shao, et al., 2013), and cover crop (Hively et al., 

2015a, 2020; Seifert et al., 2019; Thieme et al., 2020a; M. Xu et al., 2018) conservation 

practices. In contrast, Landsat-5 and the Gaofen-1 platforms were popular in mulching 

conservation practice (Hasituya, Chen, Li, et al., 2017; Hasituya, Chen, Wang, et al., 2017; 
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Hasituya et al., 2020; Xiong et al., 2019), while fewer studies used UAVs (Brooker et al., 2021; 

Cruz-Ramírez et al., 2012; E. R. Hunt et al., 2011; Yue & Tian, 2020) for cover crop and crop 

residue conservation practices. According to the literature summarized in this study, the UAVs 

have not been widely used in conservation agriculture. Although UAVs have a high spatial 

resolution, they are expensive and have low coverage. The UAVs are beneficial when the area 

covered is small. As such, UAVs are primarily used in precision agriculture applications 

(Delavarpour et al., 2021). Overall, results showed that researchers are more inclined to use old 

remote sensing technologies rather than proposing or using new tools and techniques. However, 

in recent years, the trend of using new remote sensing tools and techniques has been increasing 

(Crowley and Cardille, 2020). 

Satellite systems with increasing spatial resolution have proliferated over the past few 

years. The constantly growing constellation of satellite platforms has gathered trillions of bytes 

worth of data that will be useful for conservation agricultural research. The spatial resolution is 

important for any research on satellite images (Fisher et al., 2018). The greater the spatial 

resolution, the greater the image quality, and the greater the accuracy in correctly identifying 

objects in the image (Wulder et al., 2004; Zhou et al., 2018). Results suggest that almost all 

conservation practice categories used medium (Beeson et al., 2020; Daughtry et al., 2003; 

Galloza et al., 2013; Hagen et al., 2020a; Hively et al., 2019; Kc et al., 2021a; Leek & Solberg, 

1995; Nowak et al., 2021; Serbin, Daughtry, Hunt, Brown, et al., 2009; Serbin, Daughtry, Hunt, 

Reeves, et al., 2009; Serbin, Hunt, et al., 2009; Thieme et al., 2020a; Xiong et al., 2019) to high 

spatial resolution images (Beeson et al., 2016; Brooker et al., 2021; Cruz-Ramírez et al., 2012; 

Galloza et al., 2013; Jayanth et al., 2021; Koger et al., 2004; Najafi et al., 2021; Pacheco et al., 

2008; Panigrahy & Sharma, 1997; Viña et al., 2003; Waldhoff et al., 2017; Yue & Tian, 2020) in 
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their articles and only a few studies used low spatial resolution images (Conrad et al., 2016; 

Hively et al., 2009; J. Liu et al., 2018; Obade & Gaya, 2020; Watts et al., 2011; Xiong et al., 

2019). It is important to note that many studies used combinations of high, medium, and low 

spatial resolution images. However, the medium spatial resolution group was used in most 

articles, especially in crop residue (Beeson et al., 2016; Chi & Crawford, 2014; Daughtry et al., 

2005; Dvorakova et al., 2020; Galloza et al., 2013; Gelder et al., 2009; Hively et al., 2019; Najafi 

et al., 2018; Serbin, Daughtry, Hunt, Brown, et al., 2009; Serbin, Daughtry, Hunt, Reeves, et al., 

2009; Serbin, Hunt, et al., 2009; Zheng et al., 2012), tillage practice (Beeson et al., 2020; Gowda 

et al., 2008; Hagen et al., 2020a; Leek & Solberg, 1995; Sonmez & Slater, 2016a; Sudheer et al., 

2010; Watts et al., 2011; Zheng, Campbell, Shao, et al., 2013), and cover crop (Gao et al., 2020; 

Hively et al., 2015a, 2020; E. R. Hunt et al., 2011; Kc et al., 2021a; Seifert et al., 2019; Thieme 

et al., 2020a; Yue & Tian, 2020) conservation practice identification studies. It is anticipated that 

medium spatial resolution data will continue to contribute into the future (Franklin, 2001). One 

reason for this is that data from some satellite images are freely available. The sensors of low-

resolution groups were used in a few articles regarding crop rotation (Conrad et al., 2016), cover 

crop (Hively et al., 2009), and tillage conservation practices (Obade & Gaya, 2020). Basic land-

cover and land-use data have long been acquired using low-resolution images of large areas. In 

contrast, high-to-medium resolution optical data-collecting technologies have developed quickly 

lately. As a result, a wide range of spatial, spectral, and temporal resolutions from remote sensing 

data have been used in conservation agriculture studies.  

In terms of bands and/or features, the phrases multispectral and hyperspectral images are 

similarly related. These classifications are based on the number of recorded bands rather than 

specific wavelengths. Multispectral images are ones in which just a few bands, often three to 10 
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bands, are captured for each pixel (García-Berná et al., 2020). Each band represents a sizeable 

fraction of the spectrum, and each band may be given an illustrative name. A Red, Green, and 

Blue (RGB) image, for instance, may be considered as a three-band multispectral image. 

However, not all of the 11 unique bands that the Lansat-8 satellite can capture have the same 

level of spatial resolution. The many bands in hyperspectral images, which can number hundreds 

or even thousands, make them distinctive (García-Berná et al., 2020). The Hyperion imaging 

spectrometer, for instance, can capture 224 bands at intervals of 10 nm in wavelength (Pearlman 

et al., 2001). This enormous number of bands enables a precise and detailed analysis of the 

observed items by acquiring the spectral signature of the conservation practices being 

investigated. The majority of machine learning approaches, however, were created for images 

with a fixed number of bands. When the images have a low spatial resolution but a large band 

count, specific techniques should be used. Most of the agricultural conservation practices 

selected in this study used three to four bands. Red, Green, Blue, and Near Infrared (NIR) bands 

were the most frequently used image bands. Red, Green, and Blue (RGB) helps with a simple 

inspection of results when it comes to agricultural practices, but they are of little help in 

discriminating crop cover and residue as the class category is almost the same in the context of 

land use and vegetation. However, NIR helps identify a crop or object due to its reflectance 

property of the wavelength in the vegetation class. Near Infrared is also beneficial for 

differentiating between different objects of interest. From the results, five studies (Gao et al., 

2020; Hively et al., 2009, 2015a, 2020; Prabhakara et al., 2015a), four studies (Conrad et al., 

2016; J. Liu et al., 2018; Manjunath et al., 2015; Waldhoff et al., 2017) and three studies 

(Hasituya, Chen, Li, et al., 2017; Hasituya et al., 2020; Xiong et al., 2019) reported the use of 

four bands in cover crop, crop rotation, and mulching, respectively. However, in crop residues 
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(Barnes et al., 2021a; Chi & Crawford, 2014; Dvorakova et al., 2020; Serbin, Hunt, et al., 2009; 

Sonmez & Slater, 2016a) and tillage conservation studies (Beeson et al., 2020; Brisco et al., 

1991; Gowda et al., 2008; Hagen et al., 2020a; Smith et al., 1995; Zheng, Campbell, Shao, et al., 

2013), most of the articles stated the use of three bands. Only a few studies have used more than 

nine bands (Chi & Crawford, 2014; Daughtry et al., 2003; Daughtry & Hunt, 2008; Galloza et 

al., 2013; Hively et al., 2018; Pacheco et al., 2008; Serbin, Daughtry, Hunt, Brown, et al., 2009; 

Serbin, Daughtry, Hunt, Reeves, et al., 2009; D. Zhao et al., 2012). A large spatial resolution 

hyperspectral band image is helpful in identifying and getting detailed information about an 

object or crop. 

The image classification problem may be regarded from the perspectives of classification 

units and classification features to compare the differences between object and pixel-based 

classification techniques (D. Liu & Xia, 2010). In pixel-based classification, mathematical 

calculations are applied based on the spectral bands of the image. For example, for crop rotation, 

NDVI is calculated by combining Landsat near-infrared (band 4 of Landsat 5-7 or band 5 of 

Landsat 8) and red (band 3 of Landsat 5-7 or band 4 of Landsat 8) bands. The pixel-based 

classification would give the result in the form of pixels. Pixel-based classification (Beeson et 

al., 2016, 2020; Hagen et al., 2020a; Hively et al., 2018; E. R. Hunt et al., 2011; Muñoz et al., 

2010; Obade & Gaya, 2020; Seifert et al., 2019; South et al., 2004; Sudheer et al., 2010; Thieme 

et al., 2020a; Van Deventer et al., 1997; Viña et al., 2003) was the principal classification 

approach adopted in most of the research papers. The pixel-based classification method was 

mostly adopted for the identification of crop residue (Barnes et al., 2021a; Beeson et al., 2016; 

Hively et al., 2018), cover crop (Hively et al., 2015a; Kc et al., 2021a; Seifert et al., 2019; 

Thieme et al., 2020a) and tillage practice (Beeson et al., 2020; Gowda et al., 2008; Leek & 
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Solberg, 1995; Watts et al., 2011) in comparison to crop rotation (Conrad et al., 2016; Jayanth et 

al., 2021; Panigrahy & Sharma, 1997) and mulching conservation practices (Hasituya, Chen, Li, 

et al., 2017; Hasituya et al., 2020; Xiong et al., 2019). The information suggests that researchers 

are finding it easier to use pixel-based classification because it is less difficult in terms of local 

knowledge, cost, and resources than object-based classification. However, comparing pixel 

accuracy to object-based classification, a newly developed method (Cruz-Ramírez et al., 2012; 

Najafi et al., 2018, 2021), object-based produced better accuracy. In object-based classification, 

RGB components are extracted in the classification technique from the images. The object-based 

method is followed by image segmentation after preprocessing the images, i.e., balancing of 

color transformation and processing. The object-based technique outperforms the pixel-based 

strategy in these two instances. First, moving from object to pixel-based classification reduces 

within-class spectral variation and, in most cases, removes the so-called salt-and-pepper effects. 

In order to possibly improve classification accuracy, a large variety of attributes that define the 

spatial, textural, and contextual aspects of objects may be inferred in addition to the direct 

spectral observations (Guo et al., 2007). The object-based method, in contrast, has its own 

drawbacks about the two characteristics. Over and under-segmentation are two common forms of 

segmentation mistakes in object-based classification methods (Möller et al., 2007). Because all 

pixels in each mixed image object must be assigned to the same class, under-segmentation results 

in image objects that cover more than one class, which introduces classification errors. 

Additionally, features extracted from mis-segmented image objects with over or under-

segmentation errors do not accurately represent the characteristics of real objects on the Earth’s 

surface (Song et al., 2011). As a result, the use of images objects as classification units and the 

inclusion of the objects' characteristics in classification have both positive and negative 
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implications on the ultimate performance of object over pixel-based classification methods. 

When using object-based classification techniques, care must be taken to choose the correct 

segmentation scale (D. Liu & Xia, 2010). Furthermore, in a few articles, some researchers have 

used rule-based classification techniques (J. Liu et al., 2018) along with pixel and object-based 

classification. Rule-based is the conventional technique to find out the reflectance of the images 

based on formulae and is useful when combined with other methods and when local knowledge 

and ground data are limited (Lu & Weng, 2007). 

Early 1990s conservation agriculture studies using remote sensing techniques relied 

heavily on supervised methodologies like Logistic Regression (Van Deventer et al., 1997), 

Maximum Likelihood (Leek & Solberg, 1995; Panigrahy & Sharma, 1997) as well as various 

types of reflectance/spectral-based methods (Brisco et al., 1991; Daughtry et al., 1996; Smith et 

al., 1995). The reliance on supervised methodologies is primarily attributable to the fact that the 

supervised classifiers and/or methods were widely used at the time (Lu & Weng, 2007). The 

following generation of classifiers used in conservation agriculture studies using remote sensing 

techniques between 2000 and 2010 included the Spectral Unmixing Algorithm (Pacheco et al., 

2008; Pacheco & McNairn, 2010), Spectral Angle Mapping (South et al., 2004), Bayesian 

(Muñoz et al., 2010), among a few other algorithms. Recent studies after 2010 examined the 

well-known classification algorithms as well as older generation classification algorithms used in 

conservation agriculture studies using remote sensing techniques, including Random Forest 

(Barnes et al., 2021a; Conrad et al., 2016; Hasituya et al., 2020; Kc et al., 2021a; Seifert et al., 

2019; Watts et al., 2011; Yue & Tian, 2020), Gradient Boosting Tree (Hively et al., 2019), 

Support Vector Machine (Hasituya, Chen, Li, et al., 2017; Hasituya, Chen, Wang, et al., 2017; 

Najafi et al., 2021; Waldhoff et al., 2017), Object-based Algorithm (Najafi et al., 2018, 2021; 
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Zheng, Campbell, Shao, et al., 2013), Artificial Neural Network (Najafi et al., 2021), 

Evolutionary Neural Networks (Cruz-Ramírez et al., 2012), Classification and Regression Trees 

(Xiong et al., 2019), among a few others. These classifiers do not require normally distributed 

input data since most are non-parametric (Mahdianpari et al., 2020). This is especially helpful 

when several input data sources are used in the classification scheme to increase classification 

accuracy, such as spectral, geometrical, textural, and vegetation indices. Significant 

improvements were later observed when object-based classification was combined with spectral, 

spatial, and contextual information (Najafi et al., 2018, 2021; Zheng, Campbell, Shao, et al., 

2013). New studies evaluated how various types of neural networks used in remote sensing, 

particularly deep- and machine-learning models, may increase the accuracy of classifying 

conservation methods (Cruz-Ramírez et al., 2012; Najafi et al., 2021). In conservation 

agriculture using remote sensing, the use of the newest machine- and deep-learning algorithms is 

still relatively low. One of the primary reasons is that these techniques demand advanced 

software expertise and domain understanding. Various classification algorithms and conservation 

techniques employed by multiple studies are presented in a comprehensive manner, along with 

conservation publications cited by different types of classification algorithms and various 

classification algorithms and their accuracy. As can be seen, among other classification 

techniques for conservation agriculture using remote sensing research, Random Forest, 

Maximum Likelihood, Logistic Regression, Support Vector Machine, Gradient Boosting Tree, 

and Object-based Algorithm (OBIA) received more attention. The supervised machine learning 

algorithms mentioned above are used in conservation agriculture research for a variety of 

reasons, including their ability to model relationships and dependencies between input 

characteristics and the intended prediction output, which enables researchers to forecast the 
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values of the output for brand-new data using the relationships that the algorithms have learned 

from previous data sets. For example, in the case of the Random Forest algorithm, on various 

samples, it constructs decision trees and uses their average for classification and majority vote 

for regression modeling. One of the most important features of the Random Forest Algorithm is 

its capacity to handle data sets, including both continuous variables, as in regression, and 

categorical variables, as in classification. The Random Forest algorithm has evolved into a 

common classification technique that competes with Logistic Regression in several research on 

conservation agriculture. Logistic regression is recognized as a common strategy and is 

frequently used in conservation agriculture to address binary classification problems when 

dealing with low-dimensional data or when the number of variables is modest relative to the 

sample size. Due to improvements in multiple algorithmic approaches and enhanced 

classification algorithms, accuracy has significantly increased in recent years. 

Combinations of spectral reflectance from two or more wavelengths are known as 

spectral indices, and they may be used to calculate the relative abundance of specific 

characteristics of interest. Although vegetation is the most prevalent type of indicator, there are 

other indices for burnt regions, man-made features, water, and geologic features. The NDVI 

index is most typically used to assess different crops and plants' health, developmental phases, 

biomass, and yield expectations. The NDVI has surpassed other vegetation indices in terms of 

usage (Wallace et al., 2004). Other indices are mostly crop- and/or conservation-practice 

specific. To optimize the crop residue signal and the partial cover of agricultural residue, 

quantitative techniques primarily use various regression techniques using spectral indices (Zheng 

et al., 2014). The most common tillage indices are the Cellulose Absorption Index (CAI) (Van 

Deventer et al., 1997) and the Normalized Difference Tillage Index (NDTI) (Daughtry et al., 
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2005). However, environmental factors like soil moisture or residual water content have an 

impact on the outcomes. The NDVI (Barnes et al., 2021a; Hively et al., 2009, 2020; Kc et al., 

2021a; Obade & Gaya, 2020; Seifert et al., 2019; Viña et al., 2003) was shown to be the most 

promising index for identifying agricultural conservation practices followed by the NDTI 

(Beeson et al., 2020; Daughtry et al., 2005; Serbin, Daughtry, Hunt, Brown, et al., 2009; Yue & 

Tian, 2020; Zheng et al., 2012) and the CAI (Dvorakova et al., 2020; Zheng, Campbell, Serbin, 

et al., 2013) that was applied in the identification of cover crops, crop residue, crop rotation, and 

tillage practices. With the advent of technology and data transmission facilities, NDVI is 

increasingly used, whereas others have also been upward trending over time but more 

sporadically. Numerous efforts have been undertaken to create new indices that might lessen the 

influence of the soil background and atmospheric effects on the outcomes of spectral 

observations. 

Most of the conservation practice groups used maize as a crop of interest. At the same 

time, soybean has been part of all the practices except for mulching. Rice and maize were also 

important crops for the conservation practice groups because, especially in the U.S., Canada, 

China, and India, farmers cultivate these crops more than others. The sole purpose of this part of 

the analysis was to show the types of crops being used in remote sensing-based conservation 

agriculture research. However, some crops could have been sensed or analyzed using remote 

sensing methods, while others may not have been sensed or analyzed using remote sensing 

methods but used in those articles. In summary, care must be used when interpreting results 

because this study did not distinguish between crops that were sensed and those that were not 

using remote sensing techniques. 
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Study limitations 

Every systematic review has limitations. The current examination has several possible 

limitations, including   

1) Using different key concepts and associated keywords search strings can result in entirely 

different types and number of articles. As this research focus was to identify different 

remote sensing tools and techniques that have been used in conservation agriculture 

research, some pre-listed general conservation practices and remote sensing keywords 

were used to reduce this limitation by forming search strings as broadly as possible. Trial 

and error led to several related articles deemed appropriate to elicit trends in application 

techniques used over time.   

2) The inclusion criteria of selecting only English articles could have rejected some relevant 

papers that could have impacted the results, specifically in non-English speaking 

countries. 

3) The inclusion criteria of selecting only peer-reviewed research articles and excluding 

review articles, conference proceeding papers, data papers, book chapters, letters, 

editorial materials, and grey literature could have rejected some relevant papers that 

could have impacted the results. When searching for papers in the databases, there were 

no restrictions on publication years, yet the results eventually included works dating back 

to 1991. Therefore, publications from 1991 to 2021 were assumed to have provided 

representative results. 

4) The current study purposely did not focus on biophysical remote sensing models to 

quantitatively estimate important variables, such as plant biomass and soil moisture, since 

they have already been well studied in previous literature reviews, thus were beyond the 
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intended scope of this study, while the categorical/thematic nature of the current 

examination was the focus due to the lack of literature attention on this aspect. 

2.6 Summary and conclusions 

Remote sensing-based conservation agriculture research has long attracted the interest of 

both the agricultural and remote sensing communities. This popularity is because of the 

effectiveness of its tools and methods in providing detailed information for the field as well as 

the foundation for numerous environmental and socioeconomic applications. Researchers and 

scientists have created advanced remote sensing technologies and procedures to improve the 

identification, categorization, and accuracy of diverse domains, including conservation 

agricultural practices. The heterogeneity of the land area, the availability of cloud-free remotely 

sensed optical data, the level of technical and software expertise required to process a large 

number of satellite imageries, and, most importantly, the types of tools and techniques used may 

all have an impact on the success of conservation agriculture research using remote sensing. As a 

result, identifying and classifying satellite imagery and turning them into actionable data and 

insights for conservation agriculture research remains a challenge. 

Over the past few decades, remote sensing has improved significantly, particularly in 

developing different machine- and deep-learning algorithms and using cutting-edge tools and 

techniques. As a result, starting in the early 1990s, there has been a progressive rise in 

publications related to conservation agriculture using remote sensing methods. Remote sensing 

technology can help many conservation agriculture practices for which there is insufficient 

information. Optical data from Landsat, Sentinel, and other satellites and UAVs are presently 

used by the majority of conservation agriculture researchers. There are many more opportunities 

to use radar data, which can sense through clouds, but requires enhanced expertise.  
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Regarding various remote sensing technologies, the current examination has provided a 

snapshot of many forms of agricultural conservation methods. The results of individual research 

could not be summed up since we dealt with and examined various conservation practices using 

various satellite data, methodologies, and algorithms. However, the qualitative analysis sheds 

light on the common remote sensing tools, methods, and algorithms used to identify five 

important agricultural conservation practices. The results of this study, which represent a 

relatively comprehensive examination of remote sensing for conservation agriculture, will be 

helpful to scholars of conservation as well as other researchers and policymakers who are 

interested in conservation research both domestically and internationally. Furthermore, this study 

used a systematic process for assessing and evaluating remote sensing techniques to date and 

provided insights about potential future applications in conservation agriculture research.



59 
 

References 

Aboutalebi, M., Allen, N., Torres-Rua, A. F., McKee, M., & Coopmans, C. (2019). Estimation of 

soil moisture at different soil levels using machine learning techniques and unmanned aerial 

vehicle (UAV) multispectral imagery. Autonomous Air and Ground Sensing Systems for 

Agricultural Optimization and Phenotyping IV; 110080S, 26. 

https://doi.org/10.1117/12.2519743 

Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). 

Hyperspectral imaging: A review on UAV-based sensors, data processing and applications 

for agriculture and forestry. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111110 

Adu, M. O., Yawson, D. O., Armah, F. A., Abano, E. E., & Quansah, R. (2018). Systematic 

review of the effects of agricultural interventions on food security in northern Ghana. PLoS 

ONE, 13(9). https://doi.org/10.1371/journal.pone.0203605 

Ahmad, N. S. B. N., Mustafa, F. B., Yusoff, S. Y. M., & Didams, G. (2020). A systematic review 

of soil erosion control practices on the agricultural land in Asia. International Soil and 

Water Conservation Research, 8(2), 103–115. https://doi.org/10.1016/j.iswcr.2020.04.001 

Al-Ali, Z. M., Abdullah, M. M., Asadalla, N. B., & Gholoum, M. (2020). A comparative study of 

remote sensing classification methods for monitoring and assessing desert vegetation using 

a UAV-based multispectral sensor. Environmental Monitoring and Assessment, 192(6). 

https://doi.org/10.1007/s10661-020-08330-1 

Alhassan, M., Lawrence, C., Richardson, S., & Pindilli, E. (2019). The Mississippi Alluvial Plain 

Aquifers: An Engine for Economic Activity. https://doi.org/10.3133/fs20193003 

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of 

machine learning approaches for biomass and soil moisture retrievals from remote sensing 

data. In Remote Sensing (Vol. 7, Issue 12, pp. 16398–16421). MDPI AG. 

https://doi.org/10.3390/rs71215841 

Al-Juboury, I. A. M., & Al-Rubaye, S. A. J. (2021). Integration Satellite Imagery with Fuzzy 

Logic for Potential Change Detection in Land Use/Land Cover. Journal of Physics: 

Conference Series, 1804(1). https://doi.org/10.1088/1742-6596/1804/1/012036 

Al-Wassai, F., & Kalyankar, N. (2013). Major Limitations of Satellite images. Journal of Global 

Research in Computer Science, 4(5), 51–59. https://doi.org/10.48550/arXiv.1307.2434 

Aoki, A. M., Robledo, J. I., Izaurralde, R. C., & Balzarini, M. G. (2021). Temporal integration of 

remote-sensing land cover maps to identify crop rotation patterns in a semiarid region of 

Argentina. Agronomy Journal, 113(4), 3232–3243. https://doi.org/10.1002/agj2.20758 

Arévalo, P., Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020). A Suite of Tools for 

Continuous Land Change Monitoring in Google Earth Engine. Frontiers in Climate, 2. 

https://doi.org/10.3389/fclim.2020.576740 



60 
 

Asner, G. P., & Lobell, D. B. (2000). A Biogeophysical Approach for Automated SWIR 

Unmixing of Soils and Vegetation. Remote Sensing of Environment, 74(1), 99–112. 

https://doi.org/10.1016/S0034-4257(00)00126-7 

Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). 

Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. In Reviews of 

Geophysics (Vol. 57, Issue 2, pp. 530–616). Blackwell Publishing Ltd. 

https://doi.org/10.1029/2018RG000618 

Barnes, M. L., Yoder, L., & Khodaee, M. (2021a). Detecting winter cover crops and crop 

residues in the midwest us using machine learning classification of thermal and optical 

imagery. Remote Sensing, 13(10). https://doi.org/10.3390/rs13101998 

Barnes, M. L., Yoder, L., & Khodaee, M. (2021b). Detecting winter cover crops and crop 

residues in the midwest us using machine learning classification of thermal and optical 

imagery. Remote Sensing, 13(10). https://doi.org/10.3390/rs13101998 

Basche, A. D., Archontoulis, S. v., Kaspar, T. C., Jaynes, D. B., Parkin, T. B., & Miguez, F. E. 

(2016). Simulating long-term impacts of cover crops and climate change on crop production 

and environmental outcomes in the Midwestern United States. Agriculture, Ecosystems and 

Environment, 218, 95–106. https://doi.org/10.1016/j.agee.2015.11.011 

Baumgart-Getz, A., Prokopy, L. S., & Floress, K. (2012). Why farmers adopt best management 

practice in the United States: A meta-analysis of the adoption literature. Journal of 

Environmental Management, 96(1), 17–25. https://doi.org/10.1016/j.jenvman.2011.10.006 

Beeson, P. C., Daughtry, C. S. T., Hunt, E. R., Akhmedov, B., Sadeghi, A. M., Karlen, D. L., & 

Tomer, M. D. (2016). Multispectral satellite mapping of crop residue cover and tillage 

intensity in Iowa. Journal of Soil and Water Conservation, 71(5), 385–395. 

https://doi.org/10.2489/jswc.71.5.385 

Beeson, P. C., Daughtry, C. S. T., & Wallander, S. A. (2020). Estimates of conservation tillage 

practices using landsat archive. Remote Sensing, 12(16). 

https://doi.org/10.3390/RS12162665 

Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-

based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 

509–523. https://doi.org/10.1016/j.rse.2017.10.005 

Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and 

future directions. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 114, pp. 

24–31). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Boryan, C., Yang, Z., Mueller, R., & Craig, M. (2011). Monitoring US agriculture: The US 

department of agriculture, national agricultural statistics service, cropland data layer 

program. Geocarto International, 26(5), 341–358. 

https://doi.org/10.1080/10106049.2011.562309 



61 
 

Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., & Nelson, A. 

(2017). PhenoRice: A method for automatic extraction of spatio-temporal information on 

rice crops using satellite data time series. Remote Sensing of Environment, 194, 347–365. 

https://doi.org/10.1016/j.rse.2017.03.029 

Boumis, G., & Peter, B. (2021). Time-Series Matrix (TSMx): A visualization tool for plotting 

multiscale temporal trends. https://doi.org/10.7910/DVN/ZZDYM9 

Brisco, B., Brown, R. J., Snider, B., Sofko, G. J., Koehler, J. A., & Wacker, A. G. (1991). Tillage 

effects on the radar backscattering coefficient of grain stubble fields. International Journal 

of Remote Sensing, 12(11), 2283–2298. https://doi.org/10.1080/01431169108955258 

Broich, M., Hansen, M. C., Potapov, P., Adusei, B., Lindquist, E., & Stehman, S. v. (2011). 

Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in 

Sumatra and Kalimantan, Indonesia. International Journal of Applied Earth Observation 

and Geoinformation, 13(2), 277–291. https://doi.org/10.1016/j.jag.2010.11.004 

Brooker, A., Renner, K., Price, R. F., & Basso, B. (2021). Evaluating high-resolution optical and 

thermal reflectance of maize interseeded with cover crops across spatial scales using 

remotely sensed imagery. Agronomy Journal, 113(3), 2884–2899. 

https://doi.org/10.1002/agj2.20592 

Brye, K. R., & Pirani, A. L. (2005). Native Soil Quality and the Effects of Tillage in the Grand 

Prairie Region of Eastern Arkansas. In Source: The American Midland Naturalist (Vol. 154, 

Issue 1). 

Bullock, D. G. (1992). Crop rotation. Critical Reviews in Plant Sciences, 11(4), 309–326. 

https://doi.org/10.1080/07352689209382349 

Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. 

A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote 

sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/S11119-021-

09861-4/TABLES/7 

Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., 

Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., 

Gamon, J. A., Reichstein, M., & Running, S. W. (2021a). A unified vegetation index for 

quantifying the terrestrial biosphere. Sci. Adv, 7, 7447–7473. https://www.science.org 

Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., 

Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., 

Gamon, J. A., Reichstein, M., & Running, S. W. (2021b). A unified vegetation index for 

quantifying the terrestrial biosphere. Science Advances, 7, 7447–7473. 

https://doi.org/10.1126/sciadv.abc7447 

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating 

multispectral images and vegetation indices for precision farming applications from UAV 

images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026 



62 
 

Carlson, T. N., & Riziley, D. A. (1997). On the Relation between NDVI, Fractional Vegetation 

Cover, and Leaf Area Index. Remote Sensing of Environment, 62(3), 241–252. 

https://doi.org/10.1016/S0034-4257(97)00104-1 

Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use 

efficiency, and nitrogen management. Ambio, 31(2), 132–140. https://doi.org/10.1579/0044-

7447-31.2.132 

Chamberlain, L. A., Bolton, M. L., Cox, M. S., Suen, G., Conley, S. P., & Ané, J. M. (2020). 

Crop rotation, but not cover crops, influenced soil bacterial community composition in a 

corn-soybean system in southern Wisconsin. Applied Soil Ecology, 154. 

https://doi.org/10.1016/j.apsoil.2020.103603 

Chao, H., Baumann, M., Jensens, A., Chen, Y. Q., Cao, Y., Ren, W., & McKee, M. (2008). Band-

reconfigurable multi-UAV-based cooperative remote sensing for real-time water 

management and di. IFAC Proceedings Volumes (IFAC-PapersOnline), 17(1 PART 1). 

https://doi.org/10.3182/20080706-5-KR-1001.2220 

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple 

method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-

Golay filter. Remote Sensing of Environment, 91(3–4), 332–344. 

https://doi.org/10.1016/j.rse.2004.03.014 

Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., & Pan, Y. (2004). Monitoring the seasonal bare 

soil areas in Beijing using multi-temporal TM images. International Geoscience and 

Remote Sensing Symposium (IGARSS), 5, 3379–3382. 

https://doi.org/10.1109/igarss.2004.1370429 

Chen, Y., Cao, R., Chen, J., Liu, L., & Matsushita, B. (2021). A practical approach to reconstruct 

high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter. 

ISPRS Journal of Photogrammetry and Remote Sensing, 180, 174–190. 

https://doi.org/10.1016/j.isprsjprs.2021.08.015 

Chen, Z., & Wang, J. (2010). Land use and land cover change detection using satellite remote 

sensing techniques in the mountainous Three Gorges Area, China. International Journal of 

Remote Sensing, 31(6), 1519–1542. https://doi.org/10.1080/01431160903475381 

Chew, R., Rineer, J., Beach, R., O’neil, M., Ujeneza, N., Lapidus, D., Miano, T., Hegarty-Craver, 

M., Polly, J., & Temple, D. S. (2020). Deep neural networks and transfer learning for food 

crop identification in UAV images. Drones, 4(1), 1–14. 

https://doi.org/10.3390/drones4010007 

Chi, J., & Crawford, M. M. (2014). Spectral unmixing-based crop residue estimation using 

hyperspectral remote sensing data: A case study at Purdue University. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2531–2539. 

https://doi.org/10.1109/JSTARS.2014.2319585 



63 
 

Chughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and 

accuracy assessment for land use land cover. Remote Sensing Applications: Society and 

Environment, 22, 100482. https://doi.org/10.1016/j.rsase.2021.100482 

Claassen, R., Bowman, M., Mcfadden, J., Smith, D., & Wallander, S. (2018). Tillage Intensity 

and Conservation Cropping in the United States. www.ers.usda.gov 

Conrad, C., Lamers, J. P. A., Ibragimov, N., Löw, F., & Martius, C. (2016). Analysing irrigated 

crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on 

post-Soviet agricultural land use. Journal of Arid Environments, 124, 150–159. 

https://doi.org/10.1016/j.jaridenv.2015.08.008 

Cracknell, A. P. (2018). The development of remote sensing in the last 40 years. International 

Journal of Remote Sensing, 39(23), 8387–8427. 

https://doi.org/10.1080/01431161.2018.1550919 

Crowley, M. A., & Cardille, J. A. (2020). Remote Sensing’s Recent and Future Contributions to 

Landscape Ecology. Current Landscape Ecology Reports, 5(3), 45–57. 

https://doi.org/10.1007/s40823-020-00054-9 

Cruz-Ramírez, M., Hervás-Martínez, C., Jurado-Expósito, M., & López-Granados, F. (2012). A 

multi-objective neural network based method for cover crop identification from remote 

sensed data. Expert Systems with Applications, 39(11), 10038–10048. 

https://doi.org/10.1016/j.eswa.2012.02.046 

Dabney, S. M., Delgado, J. A., & Reeves, D. W. (2001). Using winter cover crops to improve soil 

and water quality. Communications in Soil Science and Plant Analysis, 32(7–8), 1221–1250. 

https://doi.org/10.1081/CSS-100104110 

Daughtry, C. S. T., & Hunt, E. R. (2008). Mitigating the effects of soil and residue water contents 

on remotely sensed estimates of crop residue cover. Remote Sensing of Environment, 112(4), 

1647–1657. https://doi.org/10.1016/j.rse.2007.08.006 

Daughtry, C. S. T., Hunt, E. R., Doraiswamy, & McMurtrey. (2005). Remote sensing the spatial 

distribution of crop residues. Agronomy Journal, 97(3), 864–871. 

https://doi.org/10.2134/agronj2003.0291 

Daughtry, C. S. T., Hunt, E. R., Doraiswamy, McMurtrey, & Russ. (2003). Remote Sensing of 

Crop Residue Cover and Soil Tillage Intensity. IGARSS 2003. 2003 IEEE International 

Geoscience and Remote Sensing Symposium. doi:10.1109/IGARSS.2003.1294385 

Daughtry, C. S. T., McMurtrey, J. E., Chappelle, E. W., Hunter, W. J., & Steiner, J. L. (1996). 

Measuring Crop Residue Cover Using Remote Sensing Techniques. Theor. Appl. Climatol, 

54, 17–26. 

Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M., & Liebman, M. (2012). Increasing 

Cropping System Diversity Balances Productivity, Profitability and Environmental Health. 

PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0047149 



64 
 

Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on 

UAV characteristics for precision agriculture applications and associated practical 

challenges. In Remote Sensing (Vol. 13, Issue 6). MDPI AG. 

https://doi.org/10.3390/rs13061204 

Dewitz, J., & USGS. (2021). National Land Cover Database (NLCD) 2019 Products (ver. 2.0). In 

U.S. Geological Survey data release. https://doi.org/10.5066/P9KZCM54 

Dian Bah, M., Hafiane, A., & Canals, R. (2018). Deep learning with unsupervised data labeling 

for weed detection in line crops in UAV images. Remote Sensing, 10(11). 

https://doi.org/10.3390/rs10111690 

Ding, H., Na, J., Jiang, S., Zhu, J., Liu, K., Fu, Y., & Li, F. (2021). Evaluation of three different 

machine learning methods for object-based artificial terrace mapping—a case study of the 

loess plateau, China. Remote Sensing, 13(5), 1–19. https://doi.org/10.3390/rs13051021 

Dvorakova, K., Shi, P., Limbourg, Q., & van Wesemael, B. (2020). Soil organic carbon mapping 

from remote sensing: The effect of crop residues. Remote Sensing, 12(12). 

https://doi.org/10.3390/rs12121913 

English, L., & Popp, J. (2022). Economic Contribution of the Agricultural Sector to the Arkansas 

Economy in 2020. https://doi.org/https://bpb-us-

e1.wpmucdn.com/wordpressua.uark.edu/dist/3/599/files/2023/05/1010_Contrib_Agri_secto

r_Ark_Econ_2021.pdf 

Estrella, E., Stoeth, A., Krakauer, N. Y., & Devineni, N. (2021). Quantifying vegetation response 

to environmental changes on the Galapagos Islands, Ecuador using the Normalized 

Difference Vegetation Index (NDVI). Environmental Research Communications, 3(6), 

065003. https://doi.org/10.1088/2515-7620/ac0bd1 

Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A., & Zhang, M. (2020). Yield estimation in cotton 

using UAV-based multi-sensor imagery. Biosystems Engineering, 193, 101–114. 

https://doi.org/10.1016/j.biosystemseng.2020.02.014 

Fisher, J. R. B., Acosta, E. A., Dennedy-Frank, P. J., Kroeger, T., & Boucher, T. M. (2018). 

Impact of satellite imagery spatial resolution on land use classification accuracy and 

modeled water quality. Remote Sensing in Ecology and Conservation, 4(2), 137–149. 

https://doi.org/10.1002/rse2.61 

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., 

Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison 

and validation for operational Landsat data products. Remote Sensing of Environment, 194, 

379–390. https://doi.org/10.1016/j.rse.2017.03.026 

Fonji, S. F., & Taff, G. N. (2014). Using satellite data to monitor land-use land-cover change in 

North-eastern Latvia. SpringerPlus, 3(61), 1–15. 

http://www.springerplus.com/content/3/1/61 



65 
 

Franklin, S. E. (2001). Remote Sensing for Sustainable Forest Management (S. E. Franklin, Ed.). 

Taylor and Francis. https://doi.org/https://doi.org/10.1201/9781420032857 

Galloza, M. S., Crawford, M. M., & Heathman, G. C. (2013). Crop residue modeling and 

mapping using landsat, ALI, hyperion and airborne remote sensing data. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 446–456. 

https://doi.org/10.1109/JSTARS.2012.2222355 

Gamba, P., & Houshmand, B. (2010). An efficient neural classification chain of SAR and optical 

urban images. International Journal of Remote Sensing, 22(8), 1535–1553. 

https://doi.org/10.1080/01431160118746 

Gao, F., Anderson, M. C., & Hively, W. D. (2020). Detecting cover crop end-of-season using 

venµs and sentinel-2 satellite imagery. Remote Sensing, 12(21), 1–22. 

https://doi.org/10.3390/rs12213524 

Gao, F., Masek, J., & Wolfe, R. E. (2009). Automated registration and orthorectification package 

for Landsat and Landsat-like data processing. Journal of Applied Remote Sensing, 3(1), 

033515. https://doi.org/10.1117/1.3104620 

García-Berná, J. A., Ouhbi, S., Benmouna, B., García-Mateos, G., Fernández-Alemán, J. L., & 

Molina-Martínez, J. M. (2020). Systematic mapping study on remote sensing in agriculture. 

In Applied Sciences (Switzerland) (Vol. 10, Issue 10). MDPI AG. 

https://doi.org/10.3390/app10103456 

Ge, X., Wang, J., Ding, J., Cao, X., Zhang, Z., Liu, J., & Li, X. (2019). Combining UAV-based 

hyperspectral imagery and machine learning algorithms for soil moisture content 

monitoring. PeerJ, 7, e6926. https://doi.org/10.7717/peerj.6926 

Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision 

agriculture: A review. In Frontiers of Earth Science (Vol. 5, Issue 3, pp. 229–238). Higher 

Education Press Limited Company. https://doi.org/10.1007/s11707-011-0175-0 

Gelder, B. K., Kaleita, A. L., & Cruse, R. M. (2009). Estimating mean field residue cover on 

midwestern soils using satellite imagery. Agronomy Journal, 101(3), 635–643. 

https://doi.org/10.2134/agronj2007.0249 

Ghazaryan, G., Dubovyk, O., Löw, F., Lavreniuk, M., Kolotii, A., Schellberg, J., & Kussul, N. 

(2018). A rule-based approach for crop identification using multi-temporal and multi-sensor 

phenological metrics. European Journal of Remote Sensing, 51(1), 511–524. 

https://doi.org/10.1080/22797254.2018.1455540 

Giovannucci, D., Scherr, S., Nierenberg, D., Hebebrand, C., Shapiro, J., Milder, J., & Wheeler, 

K. (2012). Food and Agriculture: The future of sustainability. A  strategic input to the 

Sustainable Development in the  21st Century (SD21) project. 

https://www.un.org/esa/dsd/dsd_sd21st/21_pdf/agriculture_and_food_the_future_of_sustain

ability_web.pdf 



66 
 

Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in 

higher plant leaves. Advances in Space Research, 22(5), 689–692. 

https://doi.org/10.1016/S0273-1177(97)01133-2 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Govender, M., Chetty, K., Naiken, V., & Bulcock, H. (2008). A comparison of satellite 

hyperspectral and multispectral remote sensing imagery for improved classification and 

mapping of vegetation. Water SA, 34(2), 147–154. http://www.wrc.org.za 

Gowda, P. H., Howell, T. A., Evett, S. R., Chavez, J. L., & New, L. (2008). Remote sensing of 

contrasting tillage practices in the Texas Panhandle. International Journal of Remote 

Sensing, 29(12), 3477–3487. https://doi.org/10.1080/01431160701581810 

Gumma, M. K., Thenkabail, P. S., Teluguntla, P. G., Oliphant, A., Xiong, J., Giri, C., Pyla, V., 

Dixit, S., & Whitbread, A. M. (2020). Agricultural cropland extent and areas of South Asia 

derived using Landsat satellite 30-m time-series big-data using random forest machine 

learning algorithms on the Google Earth Engine cloud. GIScience and Remote Sensing, 

57(3), 302–322. https://doi.org/10.1080/15481603.2019.1690780 

Guo, Q., Kelly, M., Gong, P., & Liu, D. (2007). An Object-Based Classification Approach in 

Mapping Tree Mortality Using High Spatial Resolution Imagery. GIScience & Remote 

Sensing, 44(1), 24–47. https://doi.org/10.2747/1548-1603.44.1.24 

Hagen, S. C., Delgado, G., Ingraham, P., Cooke, I., Emery, R., Fisk, J. P., Melendy, L., Olson, T., 

Patti, S., Rubin, N., Ziniti, B., Chen, H., Salas, W., Elias, P., & Gustafson, D. (2020a). 

Mapping conservation management practices and outcomes in the corn belt using the 

operational tillage information system (Optis) and the denitrification–decomposition 

(DNDC) model. Land, 9(11), 1–23. https://doi.org/10.3390/land9110408 

Hagen, S. C., Delgado, G., Ingraham, P., Cooke, I., Emery, R., Fisk, J. P., Melendy, L., Olson, T., 

Patti, S., Rubin, N., Ziniti, B., Chen, H., Salas, W., Elias, P., & Gustafson, D. (2020b). 

Mapping conservation management practices and outcomes in the corn belt using the 

operational tillage information system (Optis) and the denitrification–decomposition 

(DNDC) model. Land, 9(11), 1–23. https://doi.org/10.3390/land9110408 

Hao, P., Di, L., Zhang, C., & Guo, L. (2020). Transfer Learning for Crop classification with 

Cropland Data Layer data (CDL) as training samples. Science of the Total Environment, 

733. https://doi.org/10.1016/j.scitotenv.2020.138869 

Hartwig, N. L., & Ammon, H. U. (2002). Cover crops and living mulches. Weed Science, 50(6), 

688–699. https://doi.org/10.1614/0043-1745(2002)050[0688:aiacca]2.0.co;2 

Hasituya, Chen, Z., Li, F., & Hongmei. (2017). Mapping Plastic-Mulched Farmland with C-band 

full polarization SAR remote sensing data. Remote Sensing, 9(12). 

https://doi.org/10.3390/rs9121264 



67 
 

Hasituya, Chen, Z., Wang, L., & Liu, J. (2017). Selecting appropriate spatial scale for mapping 

plastic-mulched farmland with satellite remote sensing imagery. Remote Sensing, 9(3). 

https://doi.org/10.3390/rs9030265 

Hasituya, Zhongxin, C., Fei, L., & Yuncai, H. (2020). Mapping plastic-mulched farmland by 

coupling optical and synthetic aperture radar remote sensing. International Journal of 

Remote Sensing, 41(20), 7757–7778. https://doi.org/10.1080/01431161.2020.1763510 

Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & McKee, M. (2015). Assessment of surface 

soil moisture using high-resolution multi-spectral imagery and artificial neural networks. 

Remote Sensing, 7(3), 2627–2646. https://doi.org/10.3390/rs70302627 

Hively, W. D., Duiker, S., McCarty, G., & Prabhakara, K. (2015a). Remote sensing to monitor 

cover crop adoption in southeastern Pennsylvania. Journal of Soil and Water Conservation, 

70(6), 340–352. https://doi.org/10.2489/jswc.70.6.340 

Hively, W. D., Duiker, S., McCarty, G., & Prabhakara, K. (2015b). Remote sensing to monitor 

cover crop adoption in southeastern Pennsylvania. Journal of Soil and Water Conservation, 

70(6), 340–352. https://doi.org/10.2489/jswc.70.6.340 

Hively, W. D., Lamb, B. T., Daughtry, C. S. T., Shermeyer, J., McCarty, G. W., & Quemada, M. 

(2018). Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave 

infrared residue indices. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101657 

Hively, W. D., Lang, M., McCarty, G. W., Keppler, J., Sadeghi, A., & McConnell, L. L. (2009). 

Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. 

Journal of Soil and Water Conservation, 64(5), 303–313. 

https://doi.org/10.2489/jswc.64.5.303 

Hively, W. D., Lee, S., Sadeghi, A. M., McCarty, G. W., Lamb, B. T., Soroka, A., Keppler, J., 

Yeo, I. Y., & Moglen, G. E. (2020). Estimating the effect of winter cover crops on nitrogen 

leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water 

Assessment Tool (SWAT) modeling. Journal of Soil and Water Conservation, 75(3), 362–

375. https://doi.org/10.2489/JSWC.75.3.362 

Hively, W. D., Shermeyer, J., Lamb, B. T., Daughtry, C. T., Quemada, M., & Keppler, J. (2019). 

Mapping crop residue by combining landsat and worldview-3 satellite imagery. Remote 

Sensing, 11(16). https://doi.org/10.3390/rs11161857 

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable 

agriculture. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 

363, Issue 1491, pp. 543–555). Royal Society. https://doi.org/10.1098/rstb.2007.2169 

Huang, H., & Roy, D. P. (2021). Characterization of Planetscope-0 Planetscope-1 surface 

reflectance and normalized difference vegetation index continuity. Science of Remote 

Sensing, 3, 100014. https://doi.org/10.1016/j.srs.2021.100014 



68 
 

Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 

25, 295–309. https://doi.org/10.1016/0034-4257(88)90106-X 

Huete, A. R., Liu, H. Q., Batchily, ° K, & Van Leeuwen, W. (1997). A comparison of vegetation 

indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 

59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5 

Huggins, D. R., & Reganold, J. P. (2008). No-Till: the Quiet Revolution. 

Hung, C., Xu, Z., & Sukkarieh, S. (2014). Feature learning based approach for weed 

classification using high resolution aerial images from a digital camera mounted on a UAV. 

Remote Sensing, 6(12), 12037–12054. https://doi.org/10.3390/rs61212037 

Hunt, E. R., Hively, W., McCarty, G., Daughtry, C., Forrestal, P., Kratochvil, R., Carr, J., Allen, 

N., Fox-Rabinovitz, J., & Miller, C. (2011). NIR-green-blue high-resolution digital images 

for assessment of winter cover crop biomass. GIScience and Remote Sensing, 48(1), 86–98. 

https://doi.org/10.2747/1548-1603.48.1.86 

Hunt, R., & Daughtry, C. (2018). What good are unmanned aircraft systems for agricultural 

remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15–

16), 5345–5376. https://doi.org/10.1080/01431161.2017.1410300 

Jayanth, J., Aravind, R., & Amulya, C. M. (2021). Classification of Crops and Crop Rotation 

Using Remote Sensing and GIS-Based Approach: A Case Study of Doddakawalande Hobli, 

Nanjangudu Taluk. Journal of the Indian Society of Remote Sensing. 

https://doi.org/10.1007/s12524-020-01296-0 

Johnston, C. A. (2013). Wetland losses due to row crop expansion in the dakota prairie pothole 

region. Wetlands, 33(1), 175–182. https://doi.org/10.1007/s13157-012-0365-x 

Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of 

monotonic greening and browning trends from global NDVI time-series. Remote Sensing of 

Environment, 115(2), 692–702. https://doi.org/10.1016/j.rse.2010.10.011 

Kasischke, E. S., Melack, J. M., & Dobson, M. C. (1997). The use of imaging radars for 

ecological applications - A review. Remote Sensing of Environment, 59(2), 141–156. 

https://doi.org/10.1016/S0034-4257(96)00148-4 

Kc, K., Zhao, K., Romanko, M., & Khanal, S. (2021a). Assessment of the spatial and temporal 

patterns of cover crops using remote sensing. Remote Sensing, 13(14). 

https://doi.org/10.3390/rs13142689 

Kc, K., Zhao, K., Romanko, M., & Khanal, S. (2021b). Assessment of the spatial and temporal 

patterns of cover crops using remote sensing. Remote Sensing, 13(14). 

https://doi.org/10.3390/rs13142689 

Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of 

thermal remote sensing in precision agriculture. In Computers and Electronics in 



69 
 

Agriculture (Vol. 139, pp. 22–32). Elsevier B.V. 

https://doi.org/10.1016/j.compag.2017.05.001 

Kibret, K. S., Marohn, C., & Cadisch, G. (2020). Use of MODIS EVI to map crop phenology, 

identify cropping systems, detect land use change and drought risk in Ethiopia–an 

application of Google Earth Engine. European Journal of Remote Sensing, 53(1), 176–191. 

https://doi.org/10.1080/22797254.2020.1786466 

Kladivko, E. J., Kaspar, T. C., Jaynes, D. B., Malone, R. W., Singer, J., Morin, X. K., & 

Searchinger, T. (2014). Cover crops in the upper midwestern United States: Potential 

adoption and reduction of nitrate leaching in the mississippi river basin. Journal of Soil and 

Water Conservation, 69(4), 279–291. https://doi.org/10.2489/jswc.69.4.279 

Knight, S. S., Locke, M. A., & Smith, S. (2013). Effects of Agricultural Conservation Practices 

on Oxbow Lake Watersheds in the Mississippi River Alluvial Plain. Soil & Water Res, 8(3), 

113–123. https://doi.org/https://www.agriculturejournals.cz/pdfs/swr/2013/03/03.pdf 

Koger, C. H., Shaw, D. R., Reddy, K. N., & Bruce, L. M. (2004). Detection of pitted 

morningglory (Ipomoea lacunosa) by hyperspectral remote sensing. 1. Effects of tillage and 

cover crop residue. Source: Weed Science, 52(2), 222–229. 

Koutsos, T. M., Menexes, G. C., & Dordas, C. A. (2019). An efficient framework for conducting 

systematic literature reviews in agricultural sciences. In Science of the Total Environment 

(Vol. 682, pp. 106–117). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.04.354 

Laamrani, A., Joosse, P., McNairn, H., Berg, A. A., Hagerman, J., Powell, K., & Berry, M. 

(2020). Assessing soil cover levels during the non-growing season using multitemporal 

satellite imagery and spectral unmixing techniques. Remote Sensing, 12(9). 

https://doi.org/10.3390/RS12091397 

Lan, Y., Huang, K., Yang, C., Lei, L., Ye, J., Zhang, J., Zeng, W., Zhang, Y., & Deng, J. (2021). 

Real-time identification of rice weeds by uav low-altitude remote sensing based on 

improved semantic segmentation model. Remote Sensing, 13(21). 

https://doi.org/10.3390/rs13214370 

Lark, T. J., Meghan Salmon, J., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural 

and biofuel policies in the United States. Environmental Research Letters, 10(4). 

https://doi.org/10.1088/1748-9326/10/4/044003 

Lark, T. J., Mueller, R. M., Johnson, D. M., & Gibbs, H. K. (2017). Measuring land-use and 

land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions 

and recommendations. International Journal of Applied Earth Observation and 

Geoinformation, 62, 224–235. https://doi.org/10.1016/j.jag.2017.06.007 

Lark, T. J., Schelly, I. H., & Gibbs, H. K. (2021). Accuracy, bias, and improvements in mapping 

crops and cropland across the united states using the usda cropland data layer. Remote 

Sensing, 13(5), 1–30. https://doi.org/10.3390/rs13050968 



70 
 

Lausch, A., Baade, J., Bannehr, L., Borg, E., Bumberger, J., Chabrilliat, S., Dietrich, P., 

Gerighausen, H., Glässer, C., Hacker, J. M., Haase, D., Jagdhuber, T., Jany, S., Jung, A., 

Karnieli, A., Kraemer, R., Makki, M., Mielke, C., Möller, M., … Schaepman, M. E. (2019). 

Linking remote sensing and geodiversity and their traits relevant to biodiversity-Part I: Soil 

characteristics. In Remote Sensing (Vol. 11, Issue 20). MDPI AG. 

https://doi.org/10.3390/rs11202356 

Le’an, Q., Manchun, L., Zhenjie, C., & Junjun, Z. (2021). A Modified Self-adaptive Method for 

Mapping Annual 30-m Land Use/Land Cover Using Google Earth Engine: A Case Study of 

Yangtze River Delta. Chinese Geographical Science, 31(5), 782–794. 

https://doi.org/10.1007/s11769-021-1226-4 

Leek, R., & Solberg, R. (1995). Using remote sensing for monitoring of autumn tillage in 

norway. International Journal of Remote Sensing, 16(3), 447–466. 

https://doi.org/10.1080/01431169508954412 

Lehman, R. M., Cambardella, C. A., Stott, D. E., Acosta-Martinez, V., Manter, D. K., Buyer, J. 

S., Maul, J. E., Smith, J. L., Collins, H. P., Halvorson, J. J., Kremer, R. J., Lundgren, J. G., 

Ducey, T. F., Jin, V. L., & Karlen, D. L. (2015). Understanding and enhancing soil 

biological health: The solution for reversing soil degradation. Sustainability (Switzerland), 

7(1), 988–1027. https://doi.org/10.3390/su7010988 

Lepot, M., Aubin, J. B., & Clemens, F. H. L. R. (2017). Interpolation in time series: An 

introductive overview of existing methods, their performance criteria and uncertainty 

assessment. In Water (Switzerland) (Vol. 9, Issue 10). MDPI AG. 

https://doi.org/10.3390/w9100796 

Li, Q., Wang, C., Zhang, B., & Lu, L. (2015). Object-based crop classification with Landsat-

MODIS enhanced time-series data. Remote Sensing, 7(12), 16091–16107. 

https://doi.org/10.3390/rs71215820 

Li, R., Xu, M., Chen, Z., Gao, B., Cai, J., Shen, F., He, X., Zhuang, Y., & Chen, D. (2021). 

Phenology-based classification of crop species and rotation types using fused MODIS and 

Landsat data: The comparison of a random-forest-based model and a decision-rule-based 

model. Soil and Tillage Research, 206. https://doi.org/10.1016/j.still.2020.104838 

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, 

M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for 

reporting systematic reviews and meta-analyses of studies that evaluate health care 

interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), e1–

e34. https://doi.org/10.1016/j.jclinepi.2009.06.006 

Lin, L., Di, L., Zhang, C., Guo, L., Di, Y., Li, H., & Yang, A. (2022). Validation and refinement 

of cropland data layer using a spatial-temporal decision tree algorithm. Scientific Data, 9(1). 

https://doi.org/10.1038/s41597-022-01169-w 

Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., Wu, B., Zhang, M., Nabil, M., Tian, F., 

Zeng, H., Zhang, N., Bavuudorj, G., Rukundo, E., Liu, W., Bofana, J., Beyene, A. N., & 



71 
 

Elnashar, A. (2020). A new framework to map fine resolution cropping intensity across the 

globe: Algorithm, validation, and implication. Remote Sensing of Environment, 251. 

https://doi.org/10.1016/j.rse.2020.112095 

Liu, D., & Xia, F. (2010). Assessing object-based classification: advantages and limitations. 

Remote Sensing Letters. https://doi.org/10.1080/01431161003743173 

Liu, J., Zhu, W., Atzberger, C., Zhao, A., Pan, Y., & Huang, X. (2018). A phenology-based 

method to map cropping patterns under a wheat-maize rotation using remotely sensed time-

series data. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081203 

Liu, Z., Wang, L., & Li, B. (2022). Quality Assessment of Ecological Environment Based on 

Google Earth Engine: A Case Study of the Zhoushan Islands. Frontiers in Ecology and 

Evolution, 10. https://doi.org/10.3389/fevo.2022.918756 

Lizotte, R. E., Smiley, P. C., Gillespie, R. B., & Knight, S. S. (2021). Agricultural conservation 

practices and aquatic ecological responses. Water (Switzerland), 13(12). 

https://doi.org/10.3390/w13121687 

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for 

improving classification performance. In International Journal of Remote Sensing (Vol. 28, 

Issue 5, pp. 823–870). Taylor and Francis Ltd. https://doi.org/10.1080/01431160600746456 

Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., Xu, C., Zhang, Y., & Zhang, R. (2019). UAV 

based soil moisture remote sensing in a karst mountainous catchment. Catena, 174, 478–

489. https://doi.org/10.1016/j.catena.2018.11.017 

Maas, S. J., & Rajan, N. (2008). Estimating ground cover of field crops using medium-resolution 

multispectral satellite imagery. Agronomy Journal, 100(2), 320–327. 

https://doi.org/10.2134/agronj2007.0140 

Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial 

Vehicles in Precision Agriculture. In Trends in Plant Science (Vol. 24, Issue 2, pp. 152–

164). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.11.007 

Magdoff, F., & van Es, H. (2009). Building soils for better crops: Ecological management for 

healthy soils. https://www.sare.org/resources/building-soils-for-better-crops/ 

Mahdianpari, M., Granger, J. E., Mohammadimanesh, F., Salehi, B., Brisco, B., Homayouni, S., 

Gill, E., Huberty, B., & Lang, M. (2020). Meta-Analysis of Wetland Classification Using 

Remote Sensing: A Systematic Review of a 40-Year Trend in North America. Remote 

Sensing, 12(11), 1882. https://doi.org/10.3390/RS12111882 

Manjunath, K. R., More, R. S., Jain, N. K., Panigrahy, S., & Parihar, J. S. (2015). Mapping of 

rice-cropping pattern and cultural type using remote-sensing and ancillary data: a case study 

for South and Southeast Asian countries. International Journal of Remote Sensing, 36(24), 

6008–6030. https://doi.org/10.1080/01431161.2015.1110259 



72 
 

Martínez, B., & Gilabert, M. A. (2009). Vegetation dynamics from NDVI time series analysis 

using the wavelet transform. Remote Sensing of Environment, 113(9), 1823–1842. 

https://doi.org/10.1016/j.rse.2009.04.016 

Martins, V. S., Kaleita, A. L., & Gelder, B. K. (2021). Digital mapping of structural conservation 

practices in the Midwest U.S. croplands: Implementation and preliminary analysis. Science 

of the Total Environment, 772. https://doi.org/10.1016/j.scitotenv.2021.145191 

Masek, J., Ju, J., Roger, J.-C., Skakun, S., Claverie, M., & Dungan, J. (2018). Harmonized 

Landsat/Sentinel-2 Products for Land Monitoring. IEEE International Geoscience and 

Remote Sensing Symposium, 8163–8165. https://doi.org/10.1109/IGARSS.2018.8517760 

Mateo-García, G., Gómez-Chova, L., Amorós-López, J., Muñoz-Marí, J., & Camps-Valls, G. 

(2018). Multitemporal cloud masking in the Google Earth Engine. Remote Sensing, 10(7). 

https://doi.org/10.3390/rs10071079 

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the 

delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–

1432. https://doi.org/10.1080/01431169608948714 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for 

systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical 

Epidemiology, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005 

Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the 

accuracy of image segmentation. International Journal of Applied Earth Observation and 

Geoinformation, 9(3), 311–321. https://doi.org/10.1016/J.JAG.2006.10.002 

Momm, H. G., ElKadiri, R., & Porter, W. (2020). Crop-type classification for long-term 

modeling: An integrated remote sensing and machine learning approach. Remote Sensing, 

12(3). https://doi.org/10.3390/rs12030449 

Muñoz, J. D., Finley, A. O., Gehl, R., & Kravchenko Sasha, S. (2010). Nonlinear hierarchical 

models for predicting cover crop biomass using Normalized Difference Vegetation Index. 

Remote Sensing of Environment, 114(12), 2833–2840. 

https://doi.org/10.1016/j.rse.2010.06.011 

Najafi, P., Feizizadeh, B., & Navid, H. (2021). A comparative approach of fuzzy object based 

image analysis and machine learning techniques which are applied to crop residue cover 

mapping by using sentinel-2 satellite and uav imagery. Remote Sensing, 13(5), 1–24. 

https://doi.org/10.3390/rs13050937 

Najafi, P., Navid, H., Feizizadeh, B., & Eskandari, I. (2018). Object-based satellite image 

analysis applied for crop residue estimating using Landsat OLI imagery. International 

Journal of Remote Sensing, 39(19), 6117–6136. 

https://doi.org/10.1080/01431161.2018.1454621 



73 
 

Navarro, E., Costa, N., & Pereira, A. (2020). A systematic review of iot solutions for smart 

farming. In Sensors (Switzerland) (Vol. 20, Issue 15, pp. 1–29). MDPI AG. 

https://doi.org/10.3390/s20154231 

Nevavuori, P., Narra, N., Linna, P., & Lipping, T. (2020). Crop yield prediction using 

multitemporal UAV data and spatio-temporal deep learning models. Remote Sensing, 

12(23), 1–18. https://doi.org/10.3390/rs12234000 

Nevavuori, P., Narra, N., & Lipping, T. (2019). Crop yield prediction with deep convolutional 

neural networks. Computers and Electronics in Agriculture, 163. 

https://doi.org/10.1016/j.compag.2019.104859 

Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of Machine Learning Algorithms 

Random Forest, Artificial Neural Network and Support Vector Machine to Maximum 

Likelihood for Supervised Crop Type Classification. Proceedings of the 4th GEOBIA, 1–35. 

https://doi.org/http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-

m18/2012/05.15.13.21/doc/015.pdf 

Nowak, B., Marliac, G., & Michaud, A. (2021). Estimation of winter soil cover by vegetation 

before spring-sown crops for mainland France using multispectral satellite imagery. 

Environmental Research Letters, 16(6). https://doi.org/10.1088/1748-9326/ac007c 

Obade, V. de P., & Gaya, C. (2020). Mapping Tillage Practices Using Spatial Information 

Techniques. Environmental Management, 66(4), 722–731. https://doi.org/10.1007/s00267-

020-01335-z 

Ok, A. O., Akar, O., & Gungor, O. (2012). Evaluation of random forest method for agricultural 

crop classification. European Journal of Remote Sensing, 45(1), 421–432. 

https://doi.org/10.5721/EuJRS20124535 

Oshiro, T. M., Santoro Perez, P., & Baranauskas, J. A. (2012). How Many Trees in a Random 

Forest? In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition. 

MLDM 2012. Lecture Notes in Computer Science (Vol. 7376, pp. 154–168). 

https://doi.org/10.1007/978-3-642-31537-4_13 

Pacheco, A., Bannari, A., Staenz, K., & McNairn, H. (2008). Deriving percent crop cover over 

agriculture canopies using hyperspectral remote sensing. In Can. J. Remote Sensing (Vol. 

34). http://pubs.nrc-cnrc.gc.ca/cjrson 

Pacheco, A., & McNairn, H. (2010). Evaluating multispectral remote sensing and spectral 

unmixing analysis for crop residue mapping. Remote Sensing of Environment, 114(10), 

2219–2228. https://doi.org/10.1016/j.rse.2010.04.024 

Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The Ability of Conservation Agriculture to 

Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and 

Biological Properties and Yield. In Frontiers in Sustainable Food Systems (Vol. 4). Frontiers 

Media S.A. https://doi.org/10.3389/fsufs.2020.00031 



74 
 

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., 

Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, 

J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., 

… Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting 

systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71 

Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal 

of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698 

Pan, Y., Li, L., Zhang, J., Liang, S., Zhu, X., & Sulla-Menashe, D. (2012). Winter wheat area 

estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. 

Remote Sensing of Environment, 119, 232–242. https://doi.org/10.1016/j.rse.2011.10.011 

Panigrahy, S., & Sharma, S. A. (1997). Mapping of crop rotation using multidate Indian Remote 

Sensing Satellite digital data. In ISPRS Journal of Photogrammetry & Remote Sensing (Vol. 

52). 

Pearlman, J., Carman, S., Segal, C., Jarecke, P., Clancy, P., & Browne, W. (2001). Overview of 

the Hyperion imaging spectrometer for the NASA EO-1 mission. International Geoscience 

and Remote Sensing Symposium (IGARSS), 7, 3036–3038. 

https://doi.org/10.1109/IGARSS.2001.978246 

Peña-Barragán, J. M., Ngugi, M. K., Plant, R. E., & Six, J. (2011). Object-based crop 

identification using multiple vegetation indices, textural features and crop phenology. 

Remote Sensing of Environment, 115(6), 1301–1316. 

https://doi.org/10.1016/j.rse.2011.01.009 

Phan, T., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using google earth engine 

and random forest classifier-the role of image composition. Remote Sensing, 12(15). 

https://doi.org/10.3390/RS12152411 

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. 

(2019). Plant phenology and global climate change: Current progresses and challenges. 

Global Change Biology, 25(6), 1922–1940. https://doi.org/10.1111/gcb.14619 

Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, L. J., Lee, J., Lundy, M. E., Van 

Gestel, N., Six, J., Venterea, R. T., & Van Kessel, C. (2015). Productivity limits and 

potentials of the principles of conservation agriculture. Nature, 517(7534), 365–368. 

https://doi.org/10.1038/nature13809 

Planet Team. (2017). Planet Application Program Interface: In Space for Life on Earth. Planet. 

https://doi.org/api.planet.com 

Plourde, J. D., Pijanowski, B. C., & Pekin, B. K. (2013). Evidence for increased monoculture 

cropping in the Central United States. Agriculture, Ecosystems and Environment, 165, 50–

59. https://doi.org/10.1016/j.agee.2012.11.011 



75 
 

Prabhakara, K., Dean Hively, W., & McCarty, G. W. (2015a). Evaluating the relationship 

between biomass, percent groundcover and remote sensing indices across six winter cover 

crop fields in Maryland, United States. International Journal of Applied Earth Observation 

and Geoinformation, 39, 88–102. https://doi.org/10.1016/j.jag.2015.03.002 

Prabhakara, K., Dean Hively, W., & McCarty, G. W. (2015b). Evaluating the relationship 

between biomass, percent groundcover and remote sensing indices across six winter cover 

crop fields in Maryland, United States. International Journal of Applied Earth Observation 

and Geoinformation, 39, 88–102. https://doi.org/10.1016/j.jag.2015.03.002 

Prokopy, L. S., Floress, K., Arbuckle, J. G., Church, S. P., Eanes, F. R., Gao, Y., Gramig, B. M., 

Ranjan, P., & Singh, A. S. (2019). Adoption of agricultural conservation practices in the 

United States: Evidence from 35 years of quantitative literature. Journal of Soil and Water 

Conservation, 74(5), 520–534. https://doi.org/10.2489/jswc.74.5.520 

Radočaj, D., Obhođaš, J., Jurišić, M., & Gašparović, M. (2020). Global open data remote sensing 

satellite missions for land monitoring and conservation: A review. In Land (Vol. 9, Issue 11, 

pp. 1–24). MDPI AG. https://doi.org/10.3390/land9110402 

Reitsma, K. D., Clay, D. E., Clay, S. A., Dunn, B. H., & Reese, C. (2016). Does the U.S. 

cropland data layer provide an accurate benchmark for land-use change estimates? 

Agronomy Journal, 108(1), 266–272. https://doi.org/10.2134/agronj2015.0288 

Roberts, T., Research, G., Kelsey, A., Graduate, H., Assistant, R., & Wright, H. (2018). 

Understanding Cover Crops. https://doi.org/https://www.uaex.uada.edu/farm-ranch/crops-

commercial-horticulture/horticulture/FSA-2156.pdf 

Rogan, J., & Chen, D. M. (2004). Remote sensing technology for mapping and monitoring land-

cover and land-use change. Progress in Planning, 61(4), 301–325. 

https://doi.org/10.1016/S0305-9006(03)00066-7 

Rouse, R. W. H., Haas, J. A. W., & Deering, D. W. (1974). Monitoring Vegetation Systems in the 

Great Plains with ERTS. 3rd Earth Resource Technology Satellite (ERTS) Symposium, 48–

62. https://doi.org/https://ntrs.nasa.gov/citations/19740022614 

Roy, D. P., & Yan, L. (2020). Robust Landsat-based crop time series modelling. Remote Sensing 

of Environment, 238. https://doi.org/10.1016/j.rse.2018.06.038 

Rundquist, S., & Carlson, S. (2017). Mapping Cover Crops on Corn and Soybeans in Illinois, 

Indiana and Iowa, 2015–2016. https://doi.org/https://www.ewg.org/research/mapping-

cover-crops-corn-and-soybeans-illinois-indiana-and-iowa-2015-2016 

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein, O., Manivasagam, V. S., 

& Chenu, K. (2021). Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m 

surface reflectance and wheat LAI monitoring. International Journal of Applied Earth 

Observation and Geoinformation, 96. https://doi.org/10.1016/j.jag.2020.102260 



76 
 

Sahajpal, R., Zhang, X., Izaurralde, R. C., Gelfand, I., & Hurtt, G. C. (2014). Identifying 

representative crop rotation patterns and grassland loss in the US Western Corn Belt. 

Computers and Electronics in Agriculture, 108, 173–182. 

https://doi.org/10.1016/j.compag.2014.08.005 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A 

crop phenology detection method using time-series MODIS data. Remote Sensing of 

Environment, 96(3–4), 366–374. https://doi.org/10.1016/j.rse.2005.03.008 

Sarrantonio, M., & Gallandt, E. (2003). The Role of Cover Crops in North American Cropping 

Systems. In Journal of Crop Production (Vol. 8, Issues 1–2, pp. 53–74). 

https://doi.org/10.1300/J144v08n01_04 

Schreier, J., Ghazaryan, G., & Dubovyk, O. (2021). Crop-specific phenomapping by fusing 

Landsat and Sentinel data with MODIS time series. European Journal of Remote Sensing, 

54(sup1), 47–58. https://doi.org/10.1080/22797254.2020.1831969 

Seifert, C. A., Azzari, G., & Lobell, D. B. (2018). Satellite detection of cover crops and their 

effects on crop yield in the Midwestern United States. Environmental Research Letters, 

13(6). https://doi.org/10.1088/1748-9326/aac4c8 

Seifert, C. A., Azzari, G., & Lobell, D. B. (2019). Corrigendum: Satellite detection of cover 

crops and their effects on crop yield in the Midwestern United States. Environmental 

Research Letters, 14(3). https://doi.org/10.1088/1748-9326/aaf933 

Serbin, G., Daughtry, C., Hunt, E., Brown, D., & McCarty, G. (2009). Effect of Soil Spectral 

Properties on Remote Sensing of Crop Residue Cover. Soil & Water Management & 

Conservation, 73(5), 1545–1558. https://doi.org/10.2136/sssaj2008.0311 

Serbin, G., Daughtry, C., Hunt, E., Reeves, J., & Brown, D. (2009). Effects of soil composition 

and mineralogy on remote sensing of crop residue cover. Remote Sensing of Environment, 

113(1), 224–238. https://doi.org/10.1016/j.rse.2008.09.004 

Serbin, G., Hunt, E., Daughtry, C., McCarty, G., & Doraiswamy, P. (2009). An improved ASTER 

index for remote sensing of crop residue. Remote Sensing, 1(4), 971–991. 

https://doi.org/10.3390/rs1040971 

Shafizadeh-Moghadam, H., Khazaei, M., Alavipanah, S. K., & Weng, Q. (2021). Google Earth 

Engine for large-scale land use and land cover mapping: an object-based classification 

approach using spectral, textural and topographical factors. GIScience and Remote Sensing, 

58(6), 914–928. https://doi.org/10.1080/15481603.2021.1947623 

Sharpley, A., Daniels, M., Berry, L., Hallmark, C., & Hesselbein, J. (2015). Arkansas Discovery 

Farms: documenting water quality benefits of on-farm conservation management and 

empowering farmers. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 

65, 186–198. https://doi.org/10.1080/09064710.2014.960444 



77 
 

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Large scale crop 

classification using Google earth engine platform. IEEE International Geoscience and 

Remote Sensing Symposium, 3696–3699. https://doi.org/doi: 

10.1109/IGARSS.2017.8127801 

Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., & Zhao, W. (2022). A 30 m Resolution 

Distribution Map of Maize for China Based on Landsat and Sentinel Images. Journal of 

Remote Sensing, 2022, 1–12. https://doi.org/10.34133/2022/9846712 

Shew, A. M., & Ghosh, A. (2019). Identifying dry-season rice-planting patterns in bangladesh 

using the landsat archive. Remote Sensing, 11(10). https://doi.org/10.3390/rs11101235 

Shi, X., Han, W., Zhao, T., & Tang, J. (2019). Decision support system for variable rate irrigation 

based on UAV multispectral remote sensing. Sensors (Switzerland), 19(13). 

https://doi.org/10.3390/s19132880 

Singer, J. W., Malone, R. W., Jaynes, D. B., & Ma, L. (2011). Cover crop effects on nitrogen load 

in tile drainage from Walnut Creek Iowa using root zone water quality (RZWQ) model. 

Agricultural Water Management, 98(10), 1622–1628. 

https://doi.org/10.1016/j.agwat.2011.05.015 

Smith, A. M., Major, D. J., Lindwall, C. W., & Brown, R. J. (1995). Multi-temporal, multi-sensor 

remote sensing for monitoring soil conservation farming. Canadian Journal of Remote 

Sensing, 21(2), 177–184. https://doi.org/10.1080/07038992.1995.10874611 

Song, M., Civco, D. L., & Hurd, J. D. (2011). A competitive pixel-object approach for land cover 

classification. International Journal of Remote Sensing, 26(22), 4981–4997. 

https://doi.org/10.1080/01431160500213912 

Sonmez, N. K., & Slater, B. (2016a). Measuring intensity of tillage and plant residue cover using 

remote sensing. European Journal of Remote Sensing, 49, 121–135. 

https://doi.org/10.5721/EuJRS20164907 

Sonmez, N. K., & Slater, B. (2016b). Measuring intensity of tillage and plant residue cover using 

remote sensing. European Journal of Remote Sensing, 49, 121–135. 

https://doi.org/10.5721/EuJRS20164907 

Sood, A., Choudhury, B., Ray, S., Jalota, S., Sharma, P., Panigrahy, S., & Sood Choudhury SS 

Ray SK Jalota PK Sharma Shushma Panigrahy, A. B. (2009). Impact of Cropping Pattern 

Changes on the Exploitation of Water Resources: A Remote Sensing and GIS Approach. In 

J. Indian Soc. Remote Sens (Vol. 37). 

South, S., Qi, J., & Lusch, D. P. (2004). Optimal classification methods for mapping agricultural 

tillage practices. Remote Sensing of Environment, 91(1), 90–97. 

https://doi.org/10.1016/j.rse.2004.03.001 

Stern, A., Doraiswamy, P., & Hunt Jr, R. (2012). Changes of crop rotation in Iowa determined 

from the United States Department of Agriculture, National Agricultural Statistics Service 



78 
 

cropland data layer product. Journal of Applied Remote Sensing, 6(1). 

https://doi.org/10.1117/1.JRS.6.063590 

Stroppiana, D., Migliazzi, M., Chiarabini, V., Crema, A., Musanti, M., Franchino, C., & Villa, P. 

(2015). Rice yield estimation using multispectral data from UAV: A preliminary experiment 

in northern Italy. 2015 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 4664–4667. 

Sudheer, K. P., Gowda, P., Chaubey, I., & Howell, T. (2010). Artificial Neural Network approach 

for mapping contrasting tillage practices. Remote Sensing, 2(2), 579–590. 

https://doi.org/10.3390/rs2020579 

Tao, H., Feng, H., Xu, L., Miao, M., Long, H., Yue, J., Li, Z., Yang, G., Yang, X., & Fan, L. 

(2020). Estimation of crop growth parameters using UAV‐ based hyperspectral remote 

sensing data. Sensors (Switzerland), 20(5). https://doi.org/10.3390/s20051296 

Tao, Y., & You, F. (2019). Prediction of Cover Crop Adoption through Machine Learning Models 

using Satellite-derived Data. IFAC-PapersOnLine, 52(30), 137–142. 

https://doi.org/10.1016/j.ifacol.2019.12.511 

Teasdale, J. R. (1996). Contribution of Cover Crops to Weed Management in Sustainable 

Agricultural Systems. Journal of Production Agriculture, 9(4), 475–479. 

Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). 

Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on 

tandem data sets. Remote Sensing of Environment, 78(1–2), 39–54. 

https://doi.org/10.1016/S0034-4257(01)00248-6 

Thaler, E. A., Larsen, I. J., & Yu, Q. (2021). The extent of soil loss across the US Corn Belt. 

Proceedings of the National Academy of Sciences of the United States of America (PNAS), 

118(8), 1–8. https://doi.org/https://doi.org/10.1073/pnas.1922375118 

Thieme, A., Yadav, S., Oddo, P. C., Fitz, J. M., McCartney, S., King, L. A., Keppler, J., McCarty, 

G. W., & Hively, W. D. (2020a). Using NASA Earth observations and Google Earth Engine 

to map winter cover crop conservation performance in the Chesapeake Bay watershed. 

Remote Sensing of Environment, 248. https://doi.org/10.1016/j.rse.2020.111943 

Thieme, A., Yadav, S., Oddo, P. C., Fitz, J. M., McCartney, S., King, L. A., Keppler, J., McCarty, 

G. W., & Hively, W. D. (2020b). Using NASA Earth observations and Google Earth Engine 

to map winter cover crop conservation performance in the Chesapeake Bay watershed. 

Remote Sensing of Environment, 248. https://doi.org/10.1016/j.rse.2020.111943 

Uri, N. D. (2001). The Environmental Implications of Soil Erosion in the United States. 

Environmental Monitoring and Assessment, 66, 293–312. 

USDA. (2015). Cool Season Cover Crop Species and Planting Dates and Techniques Plant 

Materials Technical Note. USDA-NRCS. https://doi.org/https://southerncovercrops.org/wp-

content/uploads/2018/11/TX-planting-cool-Season-Cover-crops.pdf 



79 
 

USDA ERS. (2014). Agricultural Act of 2014: Highlights and Implications. 

https://doi.org/https://www.ers.usda.gov/agricultural-act-of-2014-highlights-and-

implications/ 

USDA ERS. (2018). Agriculture Improvement Act of 2018: Highlights and Implications. 

https://doi.org/https://www.congress.gov/115/bills/hr2/BILLS-115hr2enr.pdf 

Ustuner, M., Sanli, F. B., Abdikan, S., Esetlili, M. T., & Kurucu, Y. (2014). Crop type 

classification using vegetation indices of rapideye imagery. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 

40(7), 195–198. https://doi.org/10.5194/isprsarchives-XL-7-195-2014 

Van Deventer, A. P., Ward, A. D., Gowda, P. H., & Lyon, J. G. (1997). Using Thematic Mapper 

Data to Identify Contrasting Soil Plains and Tillage Practices. Photogrammetric 

Engineering & Remote Sensing, 63(01), 87–93. 

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the 

performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of 

Environment, 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008 

Viña, A., Peters, A. J., & Ji, L. (2003). Use of Multispectral Ikonos Imagery for Discriminating 

between Conventional and Conservation Agricultural Tillage Practices. In Photogrammetric 

Engineering & Remote Sensing (Vol. 69, Issue 5). 

Waldhoff, G., Lussem, U., & Bareth, G. (2017). Multi-Data Approach for remote sensing-based 

regional crop rotation mapping: A case study for the Rur catchment, Germany. International 

Journal of Applied Earth Observation and Geoinformation, 61, 55–69. 

https://doi.org/10.1016/j.jag.2017.04.009 

Wallace, J. F., Caccetta, P. A., & Kiiveri, H. T. (2004). Recent developments in analysis of spatial 

and temporal data for landscape qualities and monitoring. Austral Ecology, 29(1), 100–107. 

https://doi.org/10.1111/J.1442-9993.2004.01356.X 

Wallander, S., Smith, D., Bowman, M., & Claassen, R. (2021). Cover Crop Trends, Programs, 

and Practices in the United States. 

https://www.ers.usda.gov/webdocs/publications/100551/eib-222.pdf?v=6828.8 

Wang, X., Yao, X., Jiang, C., & Duan, W. (2022). Dynamic monitoring and analysis of factors 

influencing ecological environment quality in northern Anhui, China, based on the Google 

Earth Engine. Scientific Reports, 12(1), 20307. https://doi.org/10.1038/s41598-022-24413-0 

Watts, J. D., Powell, S. L., Lawrence, R. L., & Hilker, T. (2011). Improved classification of 

conservation tillage adoption using high temporal and synthetic satellite imagery. Remote 

Sensing of Environment, 115(1), 66–75. https://doi.org/10.1016/j.rse.2010.08.005 

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A 

meta-review. Remote Sensing of Environment, 236. 

https://doi.org/10.1016/j.rse.2019.111402 



80 
 

Wulder, M. A., Franklin, S. E., Hall, R. J., & Coops, N. C. (2004). High Spatial Resolution 

Remotely Sensed Data for Ecosystem Characterization. In BioScience (Vol. 54, Issue 6). 

https://academic.oup.com/bioscience/article/54/6/511/294008 

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., 

Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., 

Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., … Zhu, Z. 

(2019). Current status of Landsat program, science, and applications. Remote Sensing of 

Environment, 225, 127–147. https://doi.org/10.1016/j.rse.2019.02.015 

Xiong, Y., Zhang, Q., Chen, X., Bao, A., Zhang, J., & Wang, Y. (2019). Large scale agricultural 

plastic mulch detecting and monitoring with multi-source remote sensing data: A case study 

in Xinjiang, China. Remote Sensing, 11(18). https://doi.org/10.3390/rs11182088 

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open 

water features in remotely sensed imagery. International Journal of Remote Sensing, 

27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 

Xu, M., Lacey, C. G., & Armstrong, S. D. (2018). The feasibility of satellite remote sensing and 

spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small 

watershed. Journal of Soil and Water Conservation, 73(6), 682–692. 

https://doi.org/10.2489/jswc.73.6.682 

Xun, L., Zhang, J., Cao, D., Wang, J., Zhang, S., & Yao, F. (2021). Mapping cotton cultivated 

area combining remote sensing with a fused representation-based classification algorithm. 

Computers and Electronics in Agriculture, 181. 

https://doi.org/10.1016/j.compag.2020.105940 

Yan, S., Yao, X., Zhu, D., Liu, D., Zhang, L., Yu, G., Gao, B., Yang, J., & Yun, W. (2021). Large-

scale crop mapping from multi-source optical satellite imageries using machine learning 

with discrete grids. International Journal of Applied Earth Observation and 

Geoinformation, 103. https://doi.org/10.1016/j.jag.2021.102485 

Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., Zeng, S., Zhang, Q., & Kong, L. (2021). 

Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological 

quality in highly susceptible areas. Ecological Indicators, 132. 

https://doi.org/10.1016/j.ecolind.2021.108258 

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., 

Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H., & Yang, H. (2017). Unmanned aerial vehicle 

remote sensing for field-based crop phenotyping: Current status and perspectives. In 

Frontiers in Plant Science (Vol. 8). Frontiers Media S.A. 

https://doi.org/10.3389/fpls.2017.01111 

Yang, Q., Shi, L., Han, J., Yu, J., & Huang, K. (2020). A near real-time deep learning approach 

for detecting rice phenology based on UAV images. Agricultural and Forest Meteorology, 

287. https://doi.org/10.1016/j.agrformet.2020.107938 



81 
 

Yang, S., Hu, L., Wu, H., Ren, H., Qiao, H., Li, P., & Fan, W. (2021). Integration of Crop Growth 

Model and Random Forest for Winter Wheat Yield Estimation from UAV Hyperspectral 

Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 14, 6253–6269. https://doi.org/10.1109/JSTARS.2021.3089203 

Yasarer, L. M. W., Taylor, J. M., Rigby, J. R., & Locke, M. A. (2020). Trends in Land Use, 

Irrigation, and Streamflow Alteration in the Mississippi River Alluvial Plain. Frontiers in 

Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00066 

Yue, J., & Tian, Q. (2020). Estimating fractional cover of crop, crop residue, and soil in cropland 

using broadband remote sensing data and machine learning. International Journal of 

Applied Earth Observation and Geoinformation, 89, 102089. 

https://doi.org/10.1016/j.jag.2020.102089 

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically 

mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 

583–594. https://doi.org/10.1080/01431160304987 

Zhang, J., Wang, C., Yang, C., Xie, T., Jiang, Z., Hu, T., Luo, Z., Zhou, G., & Xie, J. (2020). 

Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on 

Seedling Rapeseed Growth Monitoring. Remote Sensing, 12(7), 1–18. 

https://doi.org/10.3390/rs12081207 

Zhao, D., Yang, T., & An, S. (2012). Effects of crop residue cover resulting from tillage practices 

on LAI estimation of wheat canopies using remote sensing. International Journal of 

Applied Earth Observation and Geoinformation, 14(1), 169–177. 

https://doi.org/10.1016/j.jag.2011.09.003 

Zhao, F., Yang, G., Yang, X., Cen, H., Zhu, Y., Han, S., Yang, H., He, Y., & Zhao, C. (2021). 

Determination of key phenological phases ofwinter wheat based on the time-weighted 

dynamic time warping algorithm and MODIS time-series data. Remote Sensing, 13(9). 

https://doi.org/10.3390/rs13091836 

Zheng, B., Campbell, J., & de Beurs, K. (2012). Remote sensing of crop residue cover using 

multi-temporal Landsat imagery. Remote Sensing of Environment, 117, 177–183. 

https://doi.org/10.1016/j.rse.2011.09.016 

Zheng, B., Campbell, J., Serbin, G., & Daughtry, C. (2013). Multitemporal remote sensing of 

crop residue cover and tillage practices: A validation of the minNDTI strategy in the United 

States. Journal of Soil and Water Conservation, 68(2), 120–131. 

https://doi.org/10.2489/jswc.68.2.120 

Zheng, B., Campbell, J., Serbin, G., & Galbraith, J. (2014). Remote sensing of crop residue and 

tillage practices: Present capabilities and future prospects. Soil and Tillage Research, 138, 

26–34. https://doi.org/10.1016/J.STILL.2013.12.009 



82 
 

Zheng, B., Campbell, J., Shao, Y., & Wynne, R. (2013). Broad-Scale Monitoring of Tillage 

Practices Using Sequential Landsat Imagery. Soil Science Society of America Journal, 

77(5), 1755–1764. https://doi.org/10.2136/sssaj2013.03.0108 

Zhou, K., Cheng, T., Zhu, Y., Cao, W., Ustin, S., Zheng, H., Yao, X., & Tian, Y. (2018). 

Assessing the impact of spatial resolution on the estimation of leaf nitrogen concentration 

over the full season of paddy rice using near-surface imaging spectroscopy data. Frontiers 

in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00964 

  



83 
 

CHAPTER 3: WINTER COVER CROP IDENTIFICATION: A REMOTE SENSING-

BASED METHODOLOGICAL FRAMEWORK FOR NEW AND RAPID DATA 

GENERATION 



84 
 

Abstract 

Accurately identifying and systematically mapping winter cover crops and their phenological 

characteristics offer significant benefits to agricultural producers and policymakers, as cover 

crops are a potential solution to climate change mitigation. We present a methodological 

framework for identifying and mapping the presence of winter cover crops at the field level and 

finally aggregated to county scales from 2013 to 2019 by using the Google Earth Engine (GEE), 

a random forest classifier with time series data from Landsat 8, and yearly cover crop training 

data from the United States Department of Agriculture (USDA)- Natural Resources Conservation 

Service (NRCS). The methodology was tested with data from the Mississippi Alluvial Plain 

(MAP) region. Despite the inter-annual agronomic and climatic variations across space, results 

demonstrate an overall mean classification accuracy of 97.7%, with a Kappa coefficient of 0.94. 

Results also revealed a 34% increase in model-predicted cover crop adoption in the study region 

from 2013 to 2019. Additionally, we demonstrated how to use a multi-year dataset to efficiently 

map the length of the growing season and winter cover and non-cover phenological 

characteristics using the Normalized Difference Vegetation Index (NDVI) time series, spectral 

signature, and temporal profile analysis. We observed that spectral bands and other spectral 

indices assist with distinguishing between cover and non-cover crop areas. The methodology 

developed and tested has broad applicability to other regions where cover crops have been 

promoted for climate-change mitigation and improving soil health for long-term sustainability. 

Keywords: Winter cover crops, remote sensing, methodological framework, Random Forest 

classifier, Google Earth Engine, Landsat 
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3.1 Introduction 

Cover crops are a management practice that can sustainably enhance crop yields while 

benefiting soil health and water quality (Basche et al., 2016). Cover crops are typically planted in 

the fall after cash-crop harvest and provide a vegetative soil cover during winter. Previous 

literature has classified cover crops as providing environmental services to producers in the form 

of soil erosion control, improved water infiltration, reduced runoff, reduced weed and insect 

pressure, reduced leaching of chemicals from agricultural fields, and increased healthy soil 

microbial activity (Basche et al., 2016; Cassman et al., 2002; Dabney et al., 2001; Singer et al., 

2011). While the adoption of cover crops is not a new agricultural practice in the United States, 

its wide range of environmental and economic benefits has recently drawn the attention of 

producers and policymakers as a part of their holistic soil and water conservation approach 

(Sarrantonio & Gallandt, 2003). The Natural Resources Conservation Service (NRCS) of the 

United States Department of Agriculture (USDA) and 50 state organizations have provided 

financial incentives to farmers for growing cover crops in their fields. The incentive programs, 

such as the Environmental Quality Incentives Program (EQIP) and Conservation Stewardship 

Program (CSP), aim to promote conservation and sustainable agriculture practices. As a result, 

the reported area planted with cover crops in the United States increased by 50 % from 2012 to 

2017 (Wallander et al., 2021). Cover crop adoption rates were collected from the USDA's Census 

of Agriculture and the Agricultural Resource Management Survey, with field-level data obtained 

from Production Practice and Cost Report surveys (Wallander et al., 2021).  

Although government incentives to encourage producers to adopt cover crops have 

considerably expanded in funding from 2012 (Wallander et al., 2021), it is still geographically 

unclear exactly where the cover crops are being adopted because there is a lack of ground-
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truthed, spatial data, and a reliable method to identify cover crop locations. One of the primary 

methods of conducting historical research to identify cover crop adoption has been through field-

based research and surveys of farmers (Wallander et al., 2021).  The approaches of field-based 

research and surveys, while having unique benefits, face challenges in aggregating data across 

large geographic areas. These methods can be costly, time-consuming, and labor-intensive and 

may not provide a complete picture of spatial adoption for informing policy decisions. Further, 

measurement error, human error during the recording process, and the nature of small, localized 

datasets hinder external validity. Given the development of new remote sensing tools and 

techniques, researchers can conduct a range of field-based or large-area research projects rapidly, 

often at minimal cost, and with minimal labor to improve overall data accuracy. Like traditional 

study techniques, remote sensing techniques have their drawbacks. Limited temporal and spatial 

resolution, local cloudiness, and image gaps can make classifying vegetation difficult (Al-Wassai 

& Kalyankar, 2013). The advantages of remote sensing, in terms of timeliness and cost, can 

outweigh existing limitations when policymakers require large areas to be analyzed, even when 

there are significant data gaps. 

The development of satellite technology offers vast collections of remotely sensed data 

for analysis in various sectors such as agriculture, environmental and disaster management, 

navigation, and transportation. Due to its relative ease of use, remotely sensed data have gained 

widespread adoption throughout the agricultural sector. The development of multispectral 

sensors, such as those with 3 to 10 wide bands, and hyperspectral sensors, such as those with 

hundreds of narrow bands, has made it possible to implement them on a variety of satellite 

platforms, including Landsat, Sentinel, as well as Unmanned Aerial Vehicles (UAVs), for Earth 

observation research projects. As a result, we can now monitor agricultural land surfaces' spectral 
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and temporal characteristics with relative ease and at high spatial and temporal resolution. The 

lack of data within a specific temporal and geographical range is reduced by using many 

satellites. However, to use fine spatial resolution imagery (Sentinel), one must forgo high 

temporal resolution imagery (Landsat) and vice versa. 

Conservationists face two challenging issues: estimating where and what the total area of 

cover crops is in the United States. Estimating crop phenology responses (refers to the timing of 

various crop growth stages, such as emergence, vegetative growth, flowering, and maturity) and 

identifying cover crop areas are possible through analyzing remote sensing data in conjunction 

with the United States Department of Agriculture (USDA) cropland data using multimodal 

methods, such as fusing multi-source data and image fusion. However, variations in spatial, 

temporal, and spectral resolution make it difficult to combine data from several platforms (Gao et 

al., 2009; Masek et al., 2018; Sadeh et al., 2021; Teillet et al., 2001). Nonetheless, a multimodal 

image fusion method or fusing multi-source data may be beneficial for distinguishing between 

cover crops and cash crops and can be accomplished using advancements in big-data platforms, 

such as the Google Earth Engine (GEE) (Gorelick et al., 2017). As a result, crop identification 

has improved dramatically, even in heterogeneous landscapes, such as the Mississippi Alluvial 

Plain (Dewitz & USGS, 2021; Peña-Barragán et al., 2011). 

Previous studies have used several satellite imageries and spectral and vegetation indices 

to identify, comprehend, categorize, monitor, and evaluate winter cover crops at various 

geographic scales (Kc et al., 2021; Hively et al., 2015; Seifert et al., 2018; Hagen et al., 2020; 

Rundquist & Carlson, 2017; Thieme et al., 2020). However, studies on cover crop identification 

and monitoring used remote sensing techniques limited to small areas, with geographic scales 

ranging from a few acres to a few hundred acres. Studies of larger areas with ground truthing are 
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sparse or rely on error-prone windshield surveys with low GPS accuracy. Few studies used the 

USDA cropland band's maize and soybean pixels, and none used the USDA binary cultivated 

band or the USDA-NRCS historical noble conservation practice datasets for cover crop model 

training. Using images acquired by Landsat satellites between 2008 and 2019 on the GEE 

platform,  Kc et al. (2021) evaluated the geographic and temporal inventory of winter cover 

crops grown in a maize-soybean rotation in the Maumee River watershed spanning Ohio, 

Indiana, and Michigan. In another study,  Hively et al. (2015) evaluated the presence and amount 

of green winter vegetation on agricultural fields in four counties in Pennsylvania (i.e., Berks, 

Lebanon, Lancaster, and York) from 2010 to 2013 using Landsat and SPOT satellite imagery in 

conjunction with the USDA Cropland Data Layer (CDL). Similarly, using publicly accessible 

Landsat satellite data from 2008 to 2016, Seifert et al. (2018) investigated regional and temporal 

patterns in cover crop occurrence in maize and soybean fields in eight midwestern states using a 

single image composite during the winter season. 

The advantages of using a single image composite for large-area research are that they 

average out the crop spectral reflectance over a growing season, and limited ground-truthed data 

are needed for classification. While this helps identify whether a field is planted with cover 

crops, it is difficult to account for the temporal variability in cover crop phenology due to many 

factors, such as weather, management practices, and field conditions (Kc et al., 2021b). Hagen et 

al. (2020) used a Normalized Difference Vegetation Index (NDVI) time series along with a 

NDVI threshold value to estimate whether individual pixels (30 m in size) did or did not have a 

winter cover crop. Similarly, Rundquist & Carlson (2017) used NDVI generated from Landsat 8 

satellite data and a NDVI threshold value to assess the emergence of cover crops in maize and 

soybean fields. In this study, they only included fields with more than 10 acres (4.05 hectares) of 
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vegetation as cover crop fields. Thieme et al. (2020) used linear regression between satellite 

vegetation indices and USGS/USDA-ARS field sample data obtained on Maryland farms 

between 2006 and 2012 to measure cover crop growth. Their study reported significant 

relationships between the observed percentage of vegetative ground cover and the natural 

logarithm of cover crop biomass, which was determined from satellite measurements of the 

NDVI. 

The application of remote sensing using GEE has been widely used (Arévalo et al., 2020; 

Gorelick et al., 2017). Previous research has shown the value of using GEE to classify land use 

and identify land use changes (Le’an et al., 2021; Phan et al., 2020; Shafizadeh-Moghadam et al., 

2021), estimate environmental impacts (Z. Liu et al., 2022; Wang et al., 2022; Y. Yan et al., 

2021), and classify crop types (Gumma et al., 2020; Shelestov et al., 2017; Shen et al., 2022). 

The methodologies used include unsupervised, supervised, rule-based, and/or time series 

algorithms (Boschetti et al., 2017; Roy & Yan, 2020; Shew & Ghosh, 2019). However, an in-

depth literature review suggests that only a limited number of studies have been conducted to 

detect winter cover crop growing areas using GEE remotely sensed satellite images (Hagen et al., 

2020b; Hively et al., 2015b; Kc et al., 2021b; Rundquist & Carlson, 2017; Seifert et al., 2018). 

Consequently, there is a significant gap in research on mapping winter cover, as previous 

research used limited ground truthing and often relied on error-prone windshield surveys. 

This study presents several novel aspects that distinguish it from previous research. First, 

we analyze a large geographic area with extensive ground-truthed data, enabling a more 

comprehensive understanding of the spatial adoption of winter cover crops. Secondly, we used 

the USDA binary cultivated band and historical noble conservation practice datasets to train our 

model, enhancing the accuracy and reliability of the results. These unique features of our 
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research provide novel insights and contribute to advancing winter cover crop identification and 

monitoring using remote sensing techniques by applying the methodology to the Mississippi 

Alluvial Plain (MAP) ecoregion, an important agricultural region in the United States.  

The specific objectives of this research were to (1) develop a scalable methodological 

framework to identify and estimate winter cover crop growing locations, (2) use the 

methodological framework to generate new cover crop location data as a benchmark for future 

cover crop studies, and (3) identify and analyze the NDVI time series, spectral, and temporal 

profile of winter cover crops for Arkansas’s part of MAP study region. 

 

3.2 Materials and methods 

3.2.1. Methodology framework for identification of winter cover crop  

Our methodological framework was created by merging GEE-derived remote sensing and 

USDA-NRCS field-level training data to identify and map winter cover crops. In addition, we 

used NDVI time series, spectral and temporal profiles of cover and non-cover crop areas. The 

methodology is illustrated as a flow chart in (Fig. 1), further explained in the following sections. 
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Fig. 1: The methodology workflow framework 
 

3.2.2. Cover crop government data pre-processing 

The USDA-NRCS dataset includes cover crops and other conservation practices at a field 

level planted to different types of cover crops for which the producer received a government 

funding contract. In this database, a field is defined as an area planted with one type or a mixture 
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of cover crops during a specific year, also known as the applied year. Each field received a 

single, government-funded contract, and each contract was associated with a GPS coordinate 

point. The types of cover crops planted under contract were not specified in the NRCS database. 

As a result, we treated and combined cover crop practice types as a single “cover crop” category 

and added a 30-m square buffer around each GPS coordinate point to match with the Landsat 8-

pixel resolution to increase accuracy following Kc et al. (2021). Cover crop geographical 

coordinates were used in this study as training data and consisted of observations with spatial 

coordinates (i.e., longitude and latitude) to represent where each cover crop conservation practice 

funded by USDA-NRCS took place from 2013 to 2019 (Fig. 1). 

One of the limitations of the USDA-NRCS database is that certain cover crop locations 

lack GPS accuracy. Often, producers would record their GPS location from their home or farm 

shop instead of the site on their farm where the actual cover crop was being grown. We applied a 

rule or threshold-based approach for cover crop point data filtering to generate quality training 

data for cover crop identification using machine learning models (Ghazaryan et al., 2018). 

Filtering and identifying points within cover crop fields were performed using an NDVI 

threshold value greater than 0.3. This methodology is similar to what has been done in previous 

studies (Hively et al., 2015b; Kc et al., 2021b; Thieme et al., 2020b). Using the GEE, cover crops 

were defined as having an NDVI pixel value greater than 0.3, while the remaining pixels were 

categorized as “non-cover crop” pixels. Everything else, such as bare soil, farm-built areas, 

shallow and sparse vegetation (NDVI < 0.3), winter weeds, and some non-green crop residue 

pixels, may fall under the non-cover crop category. However, since we used the CDL data layer 

to filter out non-cultivated fields, most non-cover crop pixels were bare soil areas (see section 

3.2.4). To cross-check the accuracy of the final training data, we used PlanetScope high spatial 
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resolution (5 m) and near-daily temporal resolution satellite imageries, which only became 

accessible in 2016 (Planet Team, 2017). This methodology was chosen to randomly cross-check 

if a cover crop pixel is present at the farm point location of our final training data within the 

selected temporal month’s range. Finally, to feed the machine learning model and learn features 

from the training data, the final binary training dataset per year was uploaded in GEE Assets, a 

cloud-based repository for storing and managing large geospatial datasets. For privacy reasons, 

all personally identifiable information was omitted from the analysis. For subsequent mapping, 

farm locations were used as training data, and ranges of acres were aggregated to the county as 

required by USDA-NRCS in data-sharing agreements. 

3.2.3. Landsat-8 image pre-processing 

The NASA Landsat 8 Operational Land Imager (OLI) Top of Atmosphere (TOA) 30-m 

spatial and 16-day temporal resolution data products were used to obtain the satellite images for 

identifying cover crop growing locations across time (Hively et al., 2015b). Our methodology 

consisted of three parts. First, the method involved selecting the ground cover months for the 

cover crop; second, removing cloud cover; and finally, identifying the cover crop using a 

machine learning algorithm with multiple spectral reflectance bands and indices. Winter satellite 

images were collected for five months (November to March) after the last fall crop harvest and 

before the emergence of the spring crops to determine the winter cover crop each year from 2013 

to 2019. Each selected image is stacked on top of one another to produce the final image 

composite. The start of the winter cover crop season in November was chosen to reduce the 

possibility of detecting pixels on the plots of unharvested spring-sown crops, mainly cotton, that 

may be harvested late in the year. Similarly, the senescence or termination of the winter cover 

crop was planned for March because certain spring-seeded crops may be planted as early as 
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March, with seedlings beginning to emerge in April and May. Exploration with shorter or longer 

periods finalized the temporal selection period to prevent the misclassification of winter cover 

crop pixels during image classification using the machine learning algorithm. 

Cloud coverage is another challenge for crop identification using optical remote sensing. 

Cloud cover reduces the number of valuable observations during the identification process and 

creates a misclassification problem since optical satellites cannot penetrate cloud cover, unlike 

mixed-pixel problems involve multiple classes of nearby objects. Different cloud, cloud shadow, 

and snow-masking algorithms have been used to eliminate image pixels compromised by 

different types of clouds (Mateo-García et al., 2018). The correct cloud-masking process 

selection depends on the research methods used. To create maximum value image collections, 

when cover crop growth peaks for each cover crop pixel during the growth season (i.e., 

November to March) for each year from 2013 to 2019, Landsat 8 satellite images with the least 

amount of cloud cover were sorted using the GEE built-in sort filter function. For cloud-masking 

of Landsat images in this study, we used the Quality Assessment (QA) band generated through 

the C Function of Mask (CFMask) algorithm, which is provided with each Landsat image by 

default (Foga et al., 2017). This QA band helps to remove unnecessary image pixels that contain 

cloud, cloud shadow, and snow/ice and offers a correct representation of the cover crop vs. non-

cover crop signal. Unsigned values representing bit-packed combinations of the surface, 

atmospheric and sensor conditions are included in each pixel of the QA band. Unsigned values 

have an impact on a pixel's total value. For instance, the NDVI values calculated over pixels with 

cloud coverage will not accurately represent the vegetation cover on the ground. If a cloud 

covers a pixel, it will not receive the same amount of sunlight as a cloud-free pixel, and, as a 

result, the NDVI value for that pixel will be lower than it would be without cloud coverage. This 
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lower NDVI value may not accurately represent the actual vegetation cover on the ground since 

the presence of the cloud has influenced it. Similarly, pixels with other types of atmospheric or 

sensor conditions may also have unusual NDVI values that do not accurately represent the true 

vegetation cover on the ground. The findings of phenology research would thus not accurately 

reflect the surface features of seasonal plant development if such pixels were used. Cloud-

compromised pixels will result in lower NDVI values, making measurements, like peak maturity 

or time of green-up, appear to have happened later than they did. 

In addition to cloud-masking and maximum value image collection generation, we used 

different spectral bands and indices to identify winter cover crop growing locations from spectral 

reflectance. To identify locations of cover crops and non-cover crop areas throughout the chosen 

timeframe, several Landsat 8 spectral bands and indices were used (see Appendix Table A1). 

Random Forest (RF), a popular machine learning algorithm, can differentiate between cover and 

non-cover crop areas using multiple bands and spectral indices. For instance, in the case of cover 

crop growing areas, it is important to observe the distinct color differences that are visible when 

cover crops reflect and/or absorb sunlight in the visible (i.e., red, green, and blue) and near-

infrared (NIR) bands. This helps identify areas where cover crops thrive and allows for better 

monitoring of their growth. Crops use solar energy to create biomass by reflecting certain 

wavelengths and absorbing others. By identifying the presence of chlorophyll pigments in crop 

leaves, we can determine where vegetation is growing in the fields. During photosynthesis, crop 

leaves absorb wavelengths in the visible (i.e., blue and red) light spectrum and strongly reflect 

wavelengths in the green and near-infrared spectra, allowing us to distinguish active growth 

areas. Furthermore, observing the peak growth and senescence of cover crops provides additional 

information about the state of the crops and their growth cycles. 
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Different criteria have been used to identify pixel values over a region or a selected point 

location. In GEE, reducers aggregate data over time, space, bands, arrays, and other data 

structures. The class "ee.Reducer" defines the aggregation of data. For the aggregate, the 

reducers in this class can define a statistic (e.g., minimum, maximum, mean, median, standard 

deviation, etc.). For instance, all satellite images in our image collection were reduced to a single 

image using a median reducer. The output is calculated on a pixel-by-pixel basis, with each 

output pixel comprising the median value of all the collected images at that specific area pixel. 

Instead of using the maximum composite, we opted for the median composite, eliminating 

clouds and shadows from image pixels. When the median reducer is used to reduce an image 

collection, the composite value of each band is the median across time. 

The advantage of using a single image composite for a large study region is that the 

composite averages out winter cover crop spectral reflectance over a cover crop growing season 

(November to March) and identifies whether a field is planted to cover crops. Nonetheless, the 

single image composite has some limitations when used to track changes in seasonal crop 

phenology, which is not the prime focus of this research, but rather the creation of a general 

framework for identifying whether a field has a cover crop. For instance, contrary to the notion 

that certain cover crops remain dormant or die due to frost in December and January, they remain 

green throughout the winter, with active growth increasing in February and March (appendix Fig. 

A1). This phenomenon, known as 'green-up,' leads to an increase in cover crop biomass, 

resulting in less visible soil and a greener appearance of the fields due to canopy closure. 

Regardless of whether a cover crop died during a hard freeze following seedling development or 

laid dormant before re-greening later, our proposed algorithm can determine whether a field was 

planted with a cover crop. The presumption is that our methodology can recognize cover crop 
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vegetative signals if they appear inside our defined temporal window. However, our method is 

only effective for a single growing season (i.e., single bell-shaped growth pattern curve) and 

cannot distinguish between multiple growing seasons (i.e., more than one bell-shaped growth 

pattern curve), limiting its ability to identify anomalies from winter frost kills of cover crops. 

Finally, in this study, after adding various spectral bands and indices to the image collections and 

removing cloudy imagery, we create a single median image composite using the GEE median 

reducer (Broich et al., 2011). 

3.2.4. Mixed pixel correction using USDA Cropland Data Layer 

Mixed pixels can weaken the vegetation signal, making crop mapping challenging 

(Hively et al., 2015b). A mixed pixel occurs when multiple class values are observed in each area 

represented by the pixel. Our study aims to determine the binary spectral signature for winter 

cover crop areas and classify non-cover crop areas. Our methodology provides high precision at 

the pixel level without needing classes of water regions, developed areas, forest areas, and other 

land use categories, as this study used the USDA-NASS Cropland Data Layer (CDL) 

"cultivated" annual layer. This "cultivated" binary layer only provides information on the land 

areas specifically used for agricultural purposes. The CDL is a crop-specific land use raster layer 

that is georeferenced annually. Since 2008, a crop cover map for the continental USA has been 

produced using medium-resolution satellite images, ground-truthed data, and a decision tree-

supervised classification. Since the CDL has been using crop-specific pixel-level information at 

field scale resolution (30 m), it has been used by previous researchers for crop identification 

(Hao et al., 2020; Q. Li et al., 2015; Momm et al., 2020), assessment of crop rotation and 

cropping pattern (Plourde et al., 2013; Sahajpal et al., 2014; Stern et al., 2012) and land use 

change detection (Johnston, 2013; Lark et al., 2015), and many other applications (Lark et al., 
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2017, 2021). The CDL "cultivated" band has two-pixel values: 1 and 2, which represent ‘non-

cultivated’ and ‘cultivated’ lands, respectively. The data for this band is available from 2013 to 

2020. In contrast, data are available for the CDL "cropland" band, which consists of crop and 

land use-specific bands (i.e., value ranges from 1-254) from 1997 to 2020. Except for a few 

crops like winter wheat (Triticum aestivum L.), there is little specific information about winter 

cover crops present in "cropland" bands. We selected CDL "cultivated" bands with pixel value 2 

(i.e., cultivated areas) in our analysis since we were solely interested in identifying and mapping 

winter cover crop and non-cover crop areas. Finally, we clipped the CDL image collection to a 

study region for final analysis and used GEE's "updateMask" function to mask out any "non-

cultivated" pixels from our analysis and only kept the "cultivated" area pixels. 

3.2.5. Algorithms development for classifying cover and non-cover crops area 

A large region makes identifying and mapping winter cover crops difficult, given the 

heterogenous cover crop planting and termination dates. Compounding issues include 

temperature and rainfall fluctuations. However, when training the model, we could map and 

classify winter cover and non-cover crop production areas using the appropriate classification 

algorithm and field-level ground-truthed data. This study used a pixel-based method to classify 

the winter cover crop and non-cover crop areas. After filtering government cover crop training 

data provided by USDA-NRCS and using the threshold method (see section 3.2.2 and Fig. 1), we 

split ground-truthed data into training (70%) and validation (30%) for final classification using 

the GEE platform. The training data is ground-truthed, meaning it has been verified by field 

observations, and serves as a reference dataset for classifying cover crops in the study area. 

Pixels representing government-subsidized (see section 3.2.2) cover crop fields were divided into 

training and validation datasets to mitigate spatial autocorrelation, as including pixels from a 
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field both in the training and validation datasets can frequently result in overestimation of 

classification accuracy due to autocorrelation. This ensures that pixels from a field are only 

included in one of the two datasets, not both (Kc et al., 2021b). 

The nonparametric RF classifier was used to categorize the final image composites into a 

binary cover and non-cover crop classification (Kc et al., 2021b; Ok et al., 2012; Pal, 2005). For 

applications involving crop classifications in particular, RF has been shown to frequently 

outperform other classification methods (Nitze et al., 2012; Ok et al., 2012). Numerous decision 

trees make up an RF algorithm, and the RF method trains its trees by bagging or bootstrap 

aggregating. An ensemble meta-algorithm, called bagging, increases the precision of machine 

learning algorithms. Different decision trees are trained using the training data. This dataset is 

made up of observations and characteristics that are chosen at random when the nodes are 

separated. Based on the predictions made by the decision trees, the RF algorithm determines the 

outcome. It makes predictions using a majority-voting system and averaging the results from 

different trees. For instance, a training dataset containing binary attributes is used in this study 

(cover crop and non-cover crop). The RF classifier divides this dataset into multiple subsets. 

Each decision tree in the RF network is allocated to one of these subsets. The binary output of 

each decision tree indicates whether the sampled pixel falls within the cover crop or non-cover 

crop categories. The RF classifier then compiles the majority votes from each tree to determine 

whether a pixel is a cover crop. To decide which features were most important in an RF model, 

we calculated their relative importance using an equation that divides the importance value of 

each feature by the total sum of all importance values for all features in the model (equation 1). 

This gives us the percentage (%) contribution of each feature to the overall feature importance, 

allowing us to identify the most important features (see section 3.2).  
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Feature importance (%) = 
(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒)

(𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)
𝑥 100 ………………………… (1) 

 

A common misconception is that the accuracy of the findings increases as the number of 

trees grows. Oshiro et al. (2012) reported that increasing the number of trees is both ineffective 

and computationally costly and may not always result in the RF with more trees performing 

noticeably better than an earlier RF with fewer trees. Results from Oshiro et al. (2012) are 

supported by an example graph from our methodology (Fig. 2). Increasing the number of trees in 

the RF did not improve overall model accuracy in our study. The tree numbers were set to 10 in 

this study for all RF classifiers based on these results, and other variables were set to default 

based on industry standards, although there are options in GEE to modify the hyperparameters 

(Belgiu & Drăgu, 2016). 

 
Fig. 2: Hyperparameter tuning for the number of tree parameters generated by GEE using 2013 

training data. 
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After defining the hyperparameters and related features, the RF classifier was first trained 

using 70% training data so that the model could learn from it, and then with the remaining 30% 

test data to check the trained classifier's accuracy. The accuracy of the classification results was 

evaluated using an aggregate confusion matrix that combined the distribution of classification 

results for the test validation datasets with their corresponding actual classes across all years. 

This was done by summing the values for each class in the confusion matrix (see section 3.1: 

Table 1). Additionally, statistics including producer accuracy (PA) [(% of the ground-truthed 

class that was correctly identified)], user accuracy (UA) [(% of the predicted class that were 

correctly identified as a ground-truthed class)], kappa coefficient (k) [(measures the agreement 

between classification and ground-truthed values)], and overall accuracy (OA) [(metric for 

evaluating classification model performance)] were estimated. 

3.2.6. Generate pixel-based NDVI time series, average spectral signature, and temporal 

phenology profile 

Crop phenological or cropping cycle (i.e., greening, peak, senescence) information is 

essential in crop identification. Using remote sensing techniques and applying different 

vegetation indices and algorithms, we can discriminate between cultivated and non-cultivated 

areas (Kibret et al., 2020). Winter cover crops have a distinct phenology, and different types of 

cover crops have different types of crop phenology, and thus different spectral reflections are 

observed (Pan et al., 2012; Prabhakara et al., 2015b). Although we do not have specific 

information on the winter cover crop types from the NRCS dataset (see section 3.2.2), we know 

the approximate growth cycle or temporal phenology of winter cover crops in the study area to 

which this methodology was applied. We know when cover crops typically break their winter 

dormancy, and we know peak growth periods and senescence timing (see section 3.2.3). The 
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NRCS conservation programs require farmers to plant and terminate cover crops within a 

specific window. Furthermore, NRCS encourages farmers to terminate cover crops after 

March/April to promote nutrient uptake by the subsequent crop once the cover crop has been 

terminated. It is important to note that crop phenology and planting time can vary spatially and 

temporally, given different climatic factors like air temperature, rainfall, snow, soil properties, 

and other associated factors that are expected to vary throughout a region. Nonetheless, the 

cultivated areas in a region are relatively homogenous when winter cover crops are grown, thus 

we expect relatively little variation in spectral response. 

One of the goals of this research is to examine the changes in cover crop vigor and 

growth over time in a large agricultural region by analyzing the mean NDVI values. Boumis & 

Peter (2021) created a time-series matrix visualization tool to show multiscale temporal patterns 

and the productivity of rice farming in Vietnam as measured via enhanced vegetation index using 

the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data product. We have 

adopted the same methodology but with different data products and indices to generate pixel-

based time series for cover crops in the application region. To generate pixel-based NDVI time 

series for cover crop growing areas, we used the Landsat 8-day NDVI composite. The 

composites were generated using all the scenes from each 8-day period between 2013 and 2019. 

We first filtered this image composite by month and year according to our predetermined 

temporal month range. Secondly, we calculated the mean cover crop NDVI by year for time-

series analysis. An R script was utilized to generate a linear regression slope plot for all possible 

year combinations within a given temporal range, which included examining data from 2013-

2014, 2013-2015, 2013-2016, and so on up to 2019. The input data required a two-column CSV 

format of years and NDVI values. The time-series vector regression parameters were extracted 
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using linear regression modeling to estimate trends (equation 2) (Jong et al., 2011, Fensholt & 

Proud, 2012). The results include a time-series matrix that shows the slope direction based on 

linear regression and the slope value plotted with colors indicating their magnitude (see section 

3.4) (Boumis & Peter, 2021).  

 

𝑦𝑖  =  𝛽0 +  𝛽1 ∗ 𝑥 + 𝜀𝑖 ……………………………………………………………….. (2) 

 

where, 𝑦𝑖 represents the study area mean yearly NDVI value for cover crop, 𝑥 represents the 

year, ranging from 2013 to 2019 (i.e., x = 2013, 2014, ..., 2019), 𝛽0 represents the y-intercept of 

the regression line, 𝛽1 represents the slope of the regression line, and 𝜀𝑖 is the error term. 

 

The linear regression slope direction and magnitude plot will show whether there is a 

positive or negative trend in mean cover crop NDVI values over time and how strong or weak 

that trend is and can help to identify years when cover crops are thriving or struggling. It is 

essential to consider the limitations of the analysis while interpreting the results. The linear trend 

analysis assumes a linear relationship between the years and NDVI values, which might not 

always be a valid assumption. 

Identifying and mapping winter cover crop growing locations using remote sensing 

methods requires knowledge about different vegetation indices (VI) and their spectral 

reflectance. Vegetation, soil, water, cloud cover, and topography interact with solar radiation 

differently and produce different spectral reflectance patterns. In this study, we applied a 

commonly used VI, the Normalized Difference Vegetation Index (NDVI) (Camps-Valls et al., 

2021b). We randomly selected training points per group per year to capture the average spectral 

signature and NDVI temporal profile for cover and non-cover crop pixels. A linear interpolation 
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technique was used to fill any gaps due to cloud masking (Lepot et al., 2017). For this part of the 

analysis, the selected months for NDVI value measurements were from September through May, 

which allowed us to observe the changes in winter crop phenology. These months were chosen 

purposely based on the growing cycle of cover crops in the application region, where planting 

typically occurs in September-October and termination in April-May. Following Jong et al. 

(2011), a conceptual diagram of pixel-based mean time series of winter cover crop temporal 

phenology with respect to NDVI value is shown in (Fig. 3). 

 
Fig. 3: Conceptual average phenology of winter cover crops in the application area, modified 

from Jong et al. (2011). Note: To prevent misclassification, winter satellite images were collected 

for five months (November to March) to identify the winter cover crop each year from 2013 to 

2019. The first two months September/October, and last two months, April/May, were used only 

for estimating the NDVI temporal profile analysis (start and end of the cover crop growing 

season). 

 

3.2.7. Study area 

The Mississippi Alluvial Plain's economy, which includes much of eastern Arkansas, 

western Mississippi, and northeastern Louisiana, primarily depends on commercial agriculture 
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(Alhassan et al., 2019). The area of study for the application of the methodology developed is the 

Arkansas portion of the MAP, consisting of all or parts of 27 counties (Fig. 4). The MAP study 

area’s aggregate agriculture sector contributes $31 billion annually to Arkansas’s economy 

(English & Popp, 2022). The monthly mean precipitation and temperature patterns for the study 

area from 2013 to 2020 are summarized in the appendix (Fig. A1). A humid subtropical climate 

characterizes the MAP region, which normally experiences hot and humid summers, mild 

winters, and abundant rainfall throughout the year. The region is prone to frequent 

thunderstorms, occasional tornadoes, and flooding due to its location along the Mississippi River. 

The climatic conditions in the area are suitable for cultivating a variety of crops, including cotton 

(Gossypium herbaceum L.), soybeans [Glycine max (L.) Merr.], rice (Oryza sativa L.), and corn 

(Zea mays L.). Winter cover crops have the most substantial ground coverage in January, 

February, and March in Arkansas (USDA, 2015). Understanding the monthly temporal range 

when temperatures decrease in the fall (post-primary crop harvest) and increase again in the 

spring (pre-primary crop planting) and how this pattern affects winter cover crop growth can 

provide valuable insights for farmers and policymakers. Such insights can inform decision-

making regarding crop management practices, water management, and disaster preparedness.  
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Fig. 4: The Arkansas portion of the Mississippi Alluvial Plain study area 

 

3.3 Results 

3.3.1. Model evaluation and performance assessment 

An aggregate confusion matrix was used to evaluate the performance of the RF classifier 

in distinguishing winter cover crop and non-cover crop area pixels in the MAP model- 

application area. The matrix, shown in Table 1, provides metrics such as PA and UA, which 

respectively measure how well the model identifies all samples in a particular class and the 

number of samples classified as a particular class that belongs to a different class. Overall 

accuracy (OA) is the percentage of all samples correctly classified by the model, and the Kappa 

coefficient (k) measures the agreement between the model and the ground-truth labels. The 

model achieved an OA of 97.7% and k of 0.94, indicating good performance. The PA was large 
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for both classes (98.8% for non-cover crops and 94.3% for cover crops), while the UA was lower 

for the cover crop (96.4%), suggesting that some sample pixels predicted as a cover crop were 

non-cover crops. 

Table 1: Accuracy assessment of classification results 

 Class types determined from classified map 

 

  

 

Producer 

Accuracy (%) 

Class types 

determined 

from 

reference 

data 

Class Cover Crop Non-Cover 

Crop 

 

Totals 

Cover Crop 267 

 

16 283 94.3 

Non-Cover 

Crop 

 

10 829 839 98.8 

 Totals 

 

277 845 1122  

User Accuracy (%) 96.4 98.1  

 

 

P0/Overall Accuracy (%) 0.97 

Pe/ Probability of Agreement 0.63 

k 0.94 

Note: The actual number of pixels is shown in the rows, while the predicted number is shown in 

the columns. The diagonal cells represent correctly classified pixels. This accuracy estimate is 

displayed for 30% of the samples used for validation. Each pixel represents an area of 900 m2. 

Kappa (k) = P0 - Pe / 1 - Pe. Here P0 is the probability of agreement, and Pe is the probability of 

random agreement. 
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3.3.2. Relative feature importance of random forest model feature variables 

The feature importance analysis using the RF algorithm for identifying cover crop and 

non-cover crop areas data revealed that the spectral indices are more important than the spectral 

bands for cover and non-cover crop identification (Fig. 5). In general, the spectral indices had a 

greater percentage of relative importance (ranging from 0.2 to 22.4%) than the spectral bands 

(ranging from 0 to 18.3%) across all years. Among the spectral indices, the Normalized 

Difference Built-up Index (NDBI), Bare Soil Index (BSI), NDVI, and Soil Adjusted Vegetation 

Index (SAVI) had consistently greater relative importance values over the years, suggesting their 

stronger predictive power for cover crop and non-cover crop classification. In contrast, the 

spectral bands with greater importance values were Shortwave Infrared 2 (SWIR2), Near-

Infrared (NIR), and Red. A complete list of spectral bands and indices utilized for RF model 

learning is presented in Appendix Table A1. 

 
Fig. 5: Relative importance of model variables grouped by spectral bands and spectral indices. 

[Note: The feature importance percentage, obtained from the Random Forest algorithm's 

supervised classification of cover crop and non-cover crop pixels (see equation 1), indicates the 

greater predictive power of spectral bands and indices with a higher relative importance 

percentage. A white circle denotes the mean value, and black dots represent outliers.] 
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3.3.3. Trends of model predicted county-wise cover crop adoption 

The adoption of cover crops in the MAP research region between 2013 and 2019 was 

predicted using vetted RF classification. A summary of the cover crop adoption percentage of 

total planted acres by county and year and an analysis of trends in cover crop adoption (acreage) 

over time is shown in (Fig. 6). Percentages were calculated annually since the cultivated land 

area varied over time. Winter cover crops were planted on 677,272 acres (274,082.25 ha) in 2013 

(10.8% of the total 2013 cropland). The adoption decreased in the year 2014 to 440,666 acres 

(178,331.20 ha) (7.1% of the total 2014 cropland), increased to 615,086 acres (248,916.47 ha) 

(9.8% of the total 2015 cropland) in 2015, and again decreased to 561,533 (227,244.34 ha) (9% 

of the total 2016 cropland) in 2016, and to 406,832 acres (164,639.07 ha) (6.5% of the total 2017 

cropland) in 2017. In 2017, the lowest predicted amount of cover crops were planted. The 

adoption of winter cover crops increased over the last two years in the data set, with 880,185 

acres (356,198.23 ha) (13.9% of the total 2018 cropland) and 904,624 acres (366,088.34 ha) 

(14.3% of the total 2019 cropland) in 2018 and 2019, respectively. With some year-to-year 

changes, there was a 34% increase in cover crop adoption in the study area between 2013 and 

2019. Similar county details on cover crop acreage over time are shown in the appendix (Fig. 

A2). 
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Fig. 6: Model predicted total cover crop adoption percentage range by county. Note: The map 

included in the figure displays two things: (1) the total cover crop adoption percentage by county 

and year, (2) the acreage value shown in the lower right corner of each year's map, providing 

insights into the trends in cover crop adoption from 2013 to 2019. The cover crop adoption 

percentages were calculated annually, accounting for variations in the cultivated cropland area. 

 

3.3.4. NDVI linear trend time series analysis for cover crop areas 

The analysis of the NDVI time-series trends for cover crop areas in the MAP region from 

2013 to 2019 revealed both positive and negative trends. Fig. 7 displays the direction and 

magnitude of the regression slopes for the average NDVI values, providing insights into the 

growth and development of cover crops over time. In the early years (2013-2015), a general 

decline in NDVI values is observed, indicating a potential decrease in vegetation health. This 

could be attributed to various factors, including weather conditions or economic constraints. 
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However, the later years (2016-2019) show a mix of positive and negative trends, suggesting a 

more variable vegetation health dynamic during this period. 

 
Fig. 7: Mean NDVI time series slope direction and magnitude for all study cover crop areas. 

Note: Mean NDVI time series slope magnitude (-0.10 to 0.10) and direction (- or +) for all study 

cover crop areas from 2013 to 2019. 

 

3.3.5. Spectral reflectance properties of winter cover crop and non-cover crop pixels 

Spectral reflectance or signature is a key concept in remote sensing and is mainly used in 

various crop identification using optical satellite imagery. The six spectral bands of blue, green, 

red, NIR, SWIR-1, and SWIR-2 were used to categorize spectral reflectance. Because of the 

variations in spectral bands and associated range of wavelengths, cover crop pixels are easily 
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differentiated from non-cover crop pixels. The mean spectral reflectance pattern for cover crop 

and non-cover crop pixels per year, along with the NDVI value as a comparison, is shown in 

(Fig. 8). Reflectance values for cover crop areas are low in blue (0.45 - 0.51 μm), green (0.53 - 

0.59 μm), and red (0.64 - 0.67 μm) wavelengths, but tend to rise in NIR (0.85 - 0.88 μm) 

wavelengths (Fig. 8-a). A separate NDVI index has been added to this set of bands to observe the 

change in reflectance value that occurs when several bands are combined to create a vegetation 

index that may be used to detect and distinguish vegetation pixels from other land use pixels. It 

should be noted that the NDVI, which is the ratio between the reflectance measured in the NIR 

and Red bands, has a maximum reflectance value between 0.35 and 0.45 and can easily identify 

cover crop pixels. 

Similar types of analysis, as displayed in (Fig. 8-b), were observed for the spectral pattern 

of areas without cover crops, i.e., bare soil. The spectral reflectance of bare soil exhibits similar 

responses as cover crops in the blue, green, and red bands. However, the reflectance values for 

bare soil are lower in the NIR and NDVI. In contrast, the spectral responses of bare soil are 

greater than cover crops in the SWIR-1 and SWIR-2 bands. The low NDVI values indicate the 

presence of bare soil areas and dry crop residues or grey grassland. Soil covered with crop 

residue can have spectral responses similar to cover crops, depending on the amount and type of 

residue. This can make distinguishing these areas from actual cover crops challenging, especially 

if the residue is still green and actively photosynthesizing. Fig. 8-c represents the mean spectral 

reflectance of cover and non-cover crop (i.e., bare soil) pixels. The greatest average value 

differences are apparent for NIR and NDVI values, making those values good predictors, 

corroborating findings (Fig. 5). 
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Fig. 8: Average spectral reflectance value per band and NDVI from randomly selected training 

points by year for cover and non-cover crop (i.e., bare soil) areas. Panel (a) shows the mean 

spectral values of cover crop areas for each year's randomly selected training points. Panel (b) 

shows the mean spectral values of non-cover crop areas for each year's randomly selected 

training points. Panel (c) displays the mean spectral values from 2013 to 2019 for both winter 

cover crop and non-cover crop areas. As a point of reference, the NDVI value is displayed here. 

The difference between NIR (which vegetation strongly reflects) and Red (which vegetation 

absorbs) bands are represented by the NDVI, which is an index rather than a band. 

 

3.3.6. NDVI temporal profile of winter cover and non-cover crops pixels 

The monthly NDVI temporal fluctuations from 2013 to 2019 for cover and non-cover 

crop areas (i.e., bare soil) are shown in (Fig. 9). With minor monthly variations, the yearly 

variance showed remarkably similar patterns for cover crop and non-cover types. The monthly 

NDVI temporal profile of the winter cover crops for each year is shown in (Fig. 9-a). These 

temporal profiles provide a thorough analysis of the state and health of the cover crop across the 

years and estimate the start and end of the cover crop growing season. Additionally, these 

temporal profiles demonstrate the accuracy of the model training data in identifying cover crop 

areas. Fig. 9-b also displays the NDVI temporal profile for regions without cover crops. The 

NDVI values of areas without cover crops at the beginning of winter are relatively large, 
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gradually decreasing and increasing again through the end of the winter season. The NDVI 

values of areas without cover crops at the beginning of winter are relatively large due to the 

presence of bare soil and low vegetation, gradually decreasing during the winter months and 

increasing again through the end of the winter season as new vegetation emerges. The average 

NDVI temporal profile from 2013 to 2019 is shown in (Fig. 9-c). Pattern differences between 

cover and non-cover crops emerge clearly across the seven-year average. 

 
Fig. 9: Average NDVI temporal profile from cover and non-cover crop (i.e., bare soil) training 

points by years and months. Panel (a) displays each year's monthly mean NDVI temporal profile 

of the winter cover crop areas. Panel (b) displays each year's monthly mean NDVI temporal 

profile of the winter non-cover crop areas. Panel (c) displays the mean NDVI temporal profile 

from 2013 to 2019 for both winter cover crop and non-cover crop areas. 
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3.4 Discussion 

3.4.1. Accuracy of the binary class model and the significance of the model feature variables 

This study used the MAP area of Arkansas to identify and map winter cover crop 

adoption using a newly developed, remote-sensing methodology. The MAP study region is a 

unique region for cover-crop mapping as the region suffers from conservation issues, such as soil 

degradation and water pollution, due to the long history of intensive row-crop cultivation 

(Kladivko et al., 2014; Knight et al., 2013; Yasarer et al., 2020). This study identified and 

classified winter cover and non-cover crop areas using remotely sensed satellite data combined 

with USDA-NRCS novel multi-year ground-truthed training data. Our model was robustly 

accurate in identifying cover crops and non-cover crop areas, with cover crop class producer and 

user accuracies ranging between 94.3 and 96.4%. These values are greater than those of other 

land cover products currently available, such as the CDL, which typically exhibits total crop 

mapping accuracies ranging from 85 to 95% for major crop categories (Boryan et al., 2011; Lin 

et al., 2022; Reitsma et al., 2016). 

We compared our results with other cover crop type mapping studies and showed that our 

yearly cover crop map products exhibited greater accuracy. However, it is challenging to directly 

compare accuracy statistics with results from previous research because of variations in class 

types, areas of study, and validation techniques. When predicting cover crops for Knox County, 

Indiana, Tao & You (2019) used a multi-layer perceptron neural network and achieved an 

accuracy of 93% and kappa of 0.76. Using four cover crop categories, Kc et al. (2021) created a 

spatial and temporal inventory of seasonal winter cover cropping practices in the Ohio Maumee 

River watershed from 2008 to 2019 and reported an overall classification accuracy of 75%, with 

a kappa coefficient of 0.63 using an RF classifier. Seifert et al. (2018) developed a RF classifier 
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with an overall 91.5% accuracy and a 0.68 kappa statistic to study cover cropping practices and 

their impact on crop productivity in eight midwestern US states. According to the findings, we 

argue that our yearly cover-crop map products achieved greater accuracy than previous cover-

crop-type-mapping methods (Barnes et al., 2021b; Kc et al., 2021b; Seifert et al., 2018; Y. Tao & 

You, 2019).  

Overall, we found that the NDBI, BSI, NDVI, and a few additional bands and indices 

were enough to identify and distinguish between cover crops and non-cover crop areas in the 

MAP study region. The NDBI and BSI indices are significant in our research area since there are 

more non-cover crop areas than cover crop areas. In our research area, if there were built-up 

areas in addition to bare land with similar spectral signatures, we used both the BSI and NDBI 

indices to enable our model to learn from spectral reflectance. Except for the thermal band, the 

other parts of the electromagnetic spectrum were investigated, which are connected to various 

aspects of vegetation, and each offers specific information for detection. These results confirmed 

the importance of utilizing Landsat 8 bands and band ratio index data to classify and map cover 

and non-cover crops in the model application area. Our research confirms findings from other 

studies that it is crucial to use several indices and bands other than a single index, such as NDVI, 

to enhance the detection of winter cover crops (Barnes et al., 2021b; Seifert et al., 2018). 

External factors, such as weather patterns and land management practices, should also be 

considered, as they can influence the performance of spectral bands and indices. Our results 

highlight the importance of selecting the appropriate spectral bands and indices for cover and 

non-cover crop identification and the potential of machine-learning algorithms, such as RF, for 

extracting meaningful information from complex remote sensing datasets. 
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An essential element for large-area cover-crop mapping is the availability of trustworthy 

and reliable ground-truthed data. A vast array of ground-truthed data are needed to make long-

standing products like USDA’s CDL. Aside from a few winter crops, researchers cannot use 

specific cover crop information or train models using CDL data, which are created by merging 

images from several optical sensors and field data (Lark et al., 2021). The yearly CDL offers 

excellent ground-truthed data for mapping different crop types in the continental US. Still, they 

are typically unavailable as daily or monthly data, which is a crucial requirement for mapping 

winter cover crops since most of the growing season for these cover crops overlaps between two 

calendar years. However, CDL has a cultivated data layer that may be utilized to prevent mixed 

pixel issues and, when applied in accordance with our proposed methodology, can increase 

model accuracy in a binary classification problem.  

3.4.2. Assessment of the linear trends in the cover crop NDVI, the spectral signature, and the 

greening and browning trends 

The phenology of various types of crops has historically been studied via field surveys 

carried out during the growing season. In contrast, visual assessments of spatial and temporal 

changes in crop phenology are arbitrary, labor-intensive, and infeasible across a large geographic 

region (Piao et al., 2019). Due to recent developments in remote sensing systems and sensors, 

many researchers now use publicly available data with better spatial, spectral, temporal, and 

radiometric precision to study a crop's phenological development through time and space. In this 

study, we investigated the phenology of winter cover crops using annual time series, monthly 

time series, and mean temporal profile from 2013 to 2019. For the study area, positive trends are 

linked to a yearly increase in mean NDVI value, whereas negative trends are connected to a 

decrease in mean NDVI value annually. Policymakers may use these results to understand better 
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the reasons behind the yearly variance in the mean cover crop NDVI. This information and other 

related data can be used to describe changes in the market and weather conditions that could 

have affected cover crop adoption acres in a particular year or across years.  

Additionally, our study assessed the effectiveness of employing spectral bands to identify 

areas with and without cover crops. Changes in spectral bands and the accompanying range of 

wavelengths allowed cover crop pixels to be distinguished from non-cover crop pixels. A similar 

pattern can be seen over the years with only minor variations. This slight annual variation is 

caused by the fact that various types of cover crops exhibit slightly different types of reflectance 

value. The vegetation index and photosynthetic activity are proxied by the red, green, and blue 

and NIR wavelengths (Carlson & Riziley, 1997). Non-photosynthetically active vegetation may 

be distinguished from bare soils using wavelengths in the SWIR that target the vegetation's 

water, cellulose, and lignin (Asner & Lobell, 2000; Peña-Barragán et al., 2011). Overall, we 

showed that spectral bands and other spectral indices were sufficient to identify cover and non-

cover crop areas in the MAP study region over the winter time. Our research confirms findings 

from other studies that utilizing more than just vegetation indices is necessary to enhance the 

detection of cover crops (Barnes et al., 2021b; Seifert et al., 2018; Sonmez & Slater, 2016b). 

Currently, there are no specific planting or termination dates for winter cover crops 

within the MAP study region. Using a time-series approach for a large geographic area, like 

MAP, we suggest a new methodology in this study to monitor the mean NDVI value of the cover 

crop at first by monthly intervals and later to show changes by yearly intervals. When tracking 

and evaluating the growth condition of cover crops, the monthly temporal NDVI profile can be 

useful. Due to variations in the timing of green-up, peak greenness, and senescence/termination, 

each year’s cover crop type exhibited different patterns. Additionally, specific years have low 
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NDVI levels, while others exhibit large values. One of the explanations is that, in Arkansas, 

winter cover crops are sown at somewhat different intervals of time and that the length of time 

changes from year to year and from north to south. Another important finding is that the NDVI 

values of areas without cover crops at the beginning of winter are large because some cash crops 

are still growing late into the fall. Apart from a few exceptions, most of the winter cover crops 

are sown between September and October (Roberts et al., 2018). This explains why the NDVI 

values in October decreased sharply, as it was the time when neither the main crop nor the cover 

crop was actively growing. Between October and November, the NDVI values increase as the 

winter cover crop develops. Cover crops continue growing, which increases the NDVI values. 

The NDVI values decrease as cover crops get mature and fade in color as they continue to 

decline through the end of the winter season or are terminated. Finally, the mean NDVI value for 

months and years was constructed by the average cover crop and non-cover crop NDVI temporal 

profile from 2013 to 2019. Researchers, producers, and policymakers can use this information to 

predict the cover crop growing timeframe using plus or minus one or two months as a buffer 

interval. Monitoring cover crops, which are planted over a short period often masked by cloud 

cover with limited quality satellite images, may be challenging with these techniques. Although 

researchers have used a variety of time-series gap-filling methods, each of these approaches has 

drawbacks and limitations, so care must be taken when using them (Chen et al., 2004; Chen et 

al., 2021; Martínez & Gilabert, 2009; Sakamoto et al., 2005).  

Our results suggest that the adoption of cover crops increased after 2018, which external 

factors, such as policy changes might influence. The Farm Bill of 2014 and the subsequent Farm 

Bill of 2018 (USDA ERS, 2014, 2018) could have contributed to the increased adoption of cover 

crops by providing financial incentives and technical support for farmers to implement 
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conservation practices. In contrast, the decrease in mean cover crop NDVI values in 2017 could 

be attributed to various factors, such as weather conditions, economic constraints, or regional 

challenges. Hurricane Harvey in 2017 (Blake and Zelinsky, 2018; Hightower, 2017) a late-season 

storm that caused significant wind, rain, and flood damage in the MAP region, potentially 

affecting crop growth and the ability of farmers to plant cover crops during the 2017 winter. In 

conclusion, the observed trends in NDVI values for cover crop areas in the MAP region can be 

attributed to a combination of policy changes, such as the Farm Bills of 2014 and 2018, and 

various environmental factors, such as weather conditions and regional challenges like Hurricane 

Harvey in 2017. 

The methodology proposed in this study could be extended and reproduced in other 

agricultural regions if good-quality training data are available. By integrating sensor sources and 

ground-truthed data, we showed that it is possible to obtain cover crop and non-cover crop 

classifications with roughly similar detail in class labels for larger areas, multiple years, and 

homogeneous landscapes, like the MAP study area. This approach can be used in other regions to 

accurately identify and map cover crop adoption by modifying certain code and variables. 

3.4.3. Study limitations and future work 

This study fills in data gaps by identifying winter cover crop areas for seven years in the 

MAP region, but it has some drawbacks that could be addressed with future research. The 

USDA-NRCS database was used to generate multi-year training datasets, filtered, and prepared 

following the procedure detailed in the methodology sections. The types of cover crops, 

however, were not specified in that database, which restricts the scope of our study to only one 

combined cover crop class. Thus, if weeds and cover crops have spectrally similar patterns, our 

RF model may treat those pixels equally, meaning some weed pixels could be considered cover 
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crops. Clearing very tiny and isolated pixels, we attempted to minimize this problem. We also 

adopted an NDVI threshold value to address this problem, as weeds are often sparsely dispersed 

in cropland and have a low NDVI value. Some of these results need to be interpreted with 

caution. Governmental data suggested that cover crops were present in certain locations, while 

satellite images revealed a lack of vegetation and vice versa. We applied the NDVI threshold rule 

to classify areas with active vegetation as cover crop areas and non-vegetative areas as non-cover 

crop areas. Another limitation is that certain cover crop locations with poor GPS accuracy were 

excluded from this research. Besides, many regions would not qualify as cover crop areas due to 

using the NDVI threshold of less than 0.3. This study used a pixel-based classification approach 

to distinguish between areas with and without cover crops throughout the winter months.  

The significant local spatial variability between surrounding pixels, which results in the 

speckled or salt-and-pepper effect, is one of the main drawbacks of pixel-based classification. 

However, this issue may be solved by adopting modern techniques like object-based 

classification (OBIA). The OBIA approach divides an image into objects or segments based on 

spatially connected pixels with similar spectral properties instead of classifying each pixel solely 

based on its spectral content. These objects are then classified based on their spectral, spatial, and 

contextual attributes and their interrelations across scales. The method may result in 

improvements in classification accuracy. Another limitation of our method is its inability to 

distinguish between multiple growing-season anomalies resulting from winter frost temporarily 

killing cover crops. Given the size of the MAP, it was challenging to obtain a collection of 

satellite imageries with reduced cloud cover that covered the same geographic area for several 

days or months during the cover crop growing season. Given that Landsat has a 16-day return 

period, it would be challenging to accurately identify cover crop areas and phenology if any 
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images happened to be compromised due to cloud-masking. By using the single median image 

composite and linear interpolation techniques, we attempted to address this issue, although the 

results occasionally may portray inaccurate seasonal patterns, such as peak or senescence. To 

improve classification accuracy and detect multiple growing-season anomalies, future research 

could address the issue by integrating radar data, such as Sentinel 1, with high spatial and 

temporal optical data, such as PlanetScope and Sentinel 2, and most importantly, use seasonal 

image composites, which are often susceptible to cloud coverage. 

 

3.5 Conclusion 

Accurate mapping of cover and non-cover crop areas is a crucial prerequisite to inform 

agricultural decision-makers and cost-share providers that aim to develop policies that can 

benefit producers while maintaining or adding to environmental resources and services. With the 

introduction of the big-data era, the remote sensing industry's focus has shifted to combining data 

from several sources and scales with precise algorithms. Among many other platforms, Google 

Earth Engine (GEE) offers free, processed, and available satellite images and strong computing 

power, which may successfully address the challenging issue of massive data processing for 

remote sensing. Based on GEE, this study created, for the first time, a 30-m spatial and seven-

year (2013 to 2019) temporal resolution binary annual datasets and then aggregated them by 

county in the MAP study region using Landsat 8 imageries and USDA-NRCS novel cover crop 

data. Additionally, the spectral signature, the greening and browning of cover crop patterns, and 

the linear changes in the cover crop NDVI were all explored and evaluated in this study. Results 

showed that, although there were slight variations among years, there was a highly correlated 

pattern between the winter cover crop profiles for all spectral bands. The annual variation also 
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revealed similar cover crop and non-cover crop area patterns, with slight monthly NDVI 

temporal fluctuations, which can aid researchers, decision-makers, and cost-share providers by 

approximating the beginning and end of the crop growing season. Our ability to anticipate and 

quantify the impact of summer crop production gains owing to cover crop adoption for extended 

periods, as well as evaluate the adoption of cover crop on local soil ecosystem, biogeochemical 

cycles, and services, may be improved by this multi-year novel dataset. Farmers, decision-

makers, and cost-share providers may use this information to develop agricultural conservation 

methods and land-use regulations that minimize soil erosion and climate change in the long run. 
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Appendix 

 
Fig. A1: Average precipitation and air temperature pattern for the study area from the year 2013 

to 2020. 

 

 
Fig. A2: Model-predicted total cover crop adoption acres by county in the Missippi Alluvial 

Plain. 
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Table A1: Description of the selected bands and indices used in the classification model. 

Bands/indices Description Wavelength/ formula Reference 

B2 Blue 0.45 - 0.51 μm Vermote et al. 

(2016) B3 Green 0.53 - 0.59 μm 

B4 Red 0.64 - 0.67 μm 

B5 Near infrared (NIR) 0.85 - 0.88 μm 

B6 Shortwave infrared 1 (SWIR-1) 1.57 - 1.65 μm 

B7 Shortwave infrared 2 (SWIR-2) 1.57 - 1.65 μm 

NDVI Normalized Difference 

Vegetation Index 

(NIR – Red) /  

(NIR + Red) 

Rouse et al. 

(1974) 

GNDVI Green Normalized Difference 

Vegetation Index 

(NIR – Green) / (NIR + 

Green) 

Gitelson & 

Merzlyak (1998) 

NDBI Normalized Difference Built-

Up Index 

(SWIR-1 – NIR) / 

(SWIR-1 + NIR) 

Zha et al. 

(2003) 

MNDWI Modified Normalized 

Difference Water Index 

(Green – SWIR-1) / 

(Green + SWIR-1) 

Xu (2006) 

BSI Bare Soil Index ((SWIR-1 + Red) – (NIR 

+ Blue)) / ((SWIR-1 + 

Red) + (NIR + Blue)) 

Chen et al. 

(2004) 

SAVI Soil Adjusted Vegetation Index (1 + 0.5) * (NIR – RED) 

/ (NIR + RED + 0.5) 

Huete (1988) 
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Table A1 (Cont.) 

Bands/indices Description Wavelength/ formula Reference 

EVI Enhanced Vegetation Index (2.5 * ((NIR – Red)) / 

(NIR + 6 * Red – 7.5 * 

Blue + 1)) 

Huete et al. 

(1997) 

NDWI Normalized Difference Water 

Index 

(Green – NIR) / (Green + 

NIR) 

McFeeters 

(1996) 
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CHAPTER 4: EVALUATION OF VOLUNTARY ADOPTION OF COVER CROPS AND 

ASSOCIATED CROP ROTATIONS USING REMOTE SENSING 
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Abstract 

This study examines the voluntary adoption of winter cover crops and their associated crop 

rotations in the Mississippi Alluvial Plain (MAP) region. Cover crop locations are identified 

using remote sensing technologies, ground-truthed government data sources, and the United 

State Department of Agriculture’s Cropland Data Layer (CDL). This research aims to assess the 

current extent of cover crop adoption and understand which crop rotations are most common in 

their incorporation. While government-subsidized programs like EQIP and CSP provide financial 

motivation for adopting cover crops, many producers have internalized the holistic benefits of 

cover crops and voluntarily adopted them into their crop rotations as a sustainable soil 

management practice. Results revealed a 5.3% increase in total voluntary cover crop adoption in 

the study region from 2013 to 2019. The study findings indicate a distinct change in crop 

rotations from 2013 to 2019, increasing the use of cover crops in cash-crop rotations. The 

analysis also revealed four predominant crop rotations that implement cover crops, with the 

soybean - cover crops - soybean pattern being the primary rotation with the largest 

implementation area. These findings provide valuable insights for policymakers and stakeholders 

to promote sustainable agricultural practices, foster further adoption of cover crops, and optimize 

cover crop integration into cropping systems in the MAP region. 

Keywords: voluntary adoption, winter cover crops, cropping patterns, cropping sequence, soil 

organic carbon, Mississippi Alluvial Plain 
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4.1 Introduction 

Winter cover crops provide benefits such as maintaining soil health, mitigating soil 

erosion, and improving nutrient retention in agricultural fields between primary cropping seasons 

(Adetunji et al., 2020; Basche et al., 2016; Dabney et al., 2001). Similarly, in the Mississippi 

Alluvial Plain (MAP), cover crops offer long-term benefits to producers by enhancing soil 

structure, increasing soil organic matter, and mitigating nutrient losses from leaching and/or 

runoff (Aryal et al., 2018; Kladivko et al., 2014). The MAP region is of significant national 

importance due to its extensive agricultural productivity and ecological significance. It 

encompasses parts of several states in the southern United States, including Arkansas, 

Mississippi, Louisiana, Missouri, and Tennessee. The region's fertile soil and favorable climate 

make it a productive agricultural area known for rice, soybeans, cotton, and corn production. In 

the American Corn Belt, the adoption of wintertime cover crops has experienced a significant 

increase of 2.3 million acres between 2006 and 2018, typically in a corn-soybean rotation 

(Geosolutions et al., 2019). The growth can be partially attributed to the financial incentives 

provided by the United States Department of Agriculture's Natural Resources Conservation 

Service (NRCS). Programs such as the Environmental Quality Incentives Program (EQIP) and 

Conservation Stewardship Program (CSP) have stimulated cover crop adoption. These federally 

funded programs have led to a 50% increase in the reported cover crop area in the United States 

between 2012 and 2017 (Wallander et al., 2021). 

Despite the substantial government expansion in funding for incentives to encourage 

producers to adopt cover crops since 2012 (Wallander et al., 2021), the voluntary (non-

government subsidized) adoption of cover crops remains unknown due to challenges in obtaining 

ground-truthed, spatial data, and a reliable method for identifying voluntary adoption. This study 
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addresses these gaps by investigating the voluntary adoption of cover crops in the MAP and 

examining producers' crop rotations before and after implementing cover crops. Additionally, 

this research explores the potential environmental benefits of total model-predicted (government-

funded vs. voluntary) cover crop adoption regarding estimated, potential soil organic carbon 

(SOC) sequestration, which plays a crucial role in enhancing soil health, mitigating climate 

change, and improving the overall sustainability of agricultural systems (Qin et al., 2023). 

To estimate the adoption of voluntary cover crops and associated SOC sequestration, 

remote sensing data from Landsat 8, the USDA-Cropland Data Layer (CDL), and the Google 

Earth Engine (GEE) platform were used. This approach identified specific locations of 

wintertime cover crops in the MAP region from 2013 to 2019 (Ahmed et al., 2023). In the past 

decade, particularly after 2010, the utilization of remote sensing technologies has played a 

crucial role in effectively identifying the location and extent of wintertime cover crops across the 

United States (Hively et al., 2015; Kc et al., 2021; Thieme et al., 2020). One of the current 

study’s goals was to identify government-subsidized cover crops and estimate the areas of 

voluntary cover crops in the MAP region. The study aimed to leverage the identified wintertime 

cover crop location data, combined with government-subsidized cover crop acreage data from 

EQIP and CSP programs and USDA’s CDL, to estimate voluntary adoption of wintertime cover 

crops and their respective crop rotations. With a better understanding of the crop rotations most 

conducive for cover crop adoption, future government funding to incentivize cover crop 

adoptions can better target those producers with the greatest likelihood of adoption.  

Crop rotations/patterns and/or sequences implemented by producers before and after 

wintertime cover crop adoption are important to policy research and agricultural planning to 

better understand the relationships between cropping patterns and ultimately cover crop 
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adoption. The decision-making process between crop rotations and cover crops is interrelated at 

the farm level (Dury et al., 2012). In many parts of the MAP region, cash crops are followed by 

wintertime cover crops to improve soil health, control pests, and reduce weed populations 

(Bergtold et al., 2019). Cover crop adoption is affected by the difference in timing before and 

after specific cash crops are harvested or planted (Wallander et al., 2021). Both late and early 

harvesting of cash crops may increase the duration of the cover crop season, which can also 

facilitate the potential use of a cover crop. What is currently unknown is which crop rotations 

will most likely include a cover crop between cash-crop production cycles in the MAP region. 

Merely estimating the overall extent of cover crop acreage is insufficient because it gives no 

insight into how cover crops fit into cropping patterns. It is important to better understand the 

specific crop rotations where cover crops are being implemented to enhance their adoption rates 

on a broader scale. To our knowledge, no prior research has been undertaken to specifically 

identify how cover crops fit into cropping patterns using remote sensing techniques in the MAP 

region and across the continental United States. This study’s findings will provide valuable 

information to policymakers and agricultural stakeholders in an attempt to optimize cover crop 

adoption and improve agricultural practices in the MAP region and beyond.  

 This study provides a foundational basis for evaluating government-subsidized cover 

crop adoption programs. The rapid data collection approach introduced in this study can be 

replicated in other areas, assisting researchers and policymakers in their investigations into cover 

crops and conservation (Dalsgaard, 2013; Park et al., 2022). The potential of cover crops to 

contribute to carbon sequestration initiatives is a promising development, potentially leading to 

an increase in their voluntary adoption by farmers who see the dual benefit of soil conservation 

and the possibility of additional revenue from carbon credits (Plastina & Sawadgo, 2021; 
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Plastina & Wongpiyabovorn, 2023). The emerging voluntary carbon markets within the 

agricultural sector could provide additional financial incentives for implementing conservation 

practices, such as cover cropping, beyond government funding through programs such as EQIP 

and CSP. As large corporations seek to meet net-zero emission targets, agricultural carbon credits 

offer an appealing solution. The ability of cover crops to sequester atmospheric carbon positions 

producers as essential contributors to these carbon offset initiatives (Bowman & Lynch, 2019). A 

better understanding of how cover crops fit into crop rotations may allow government programs 

and private industry to target specific types of row crop producers for potential carbon credits. 

 

4.2 Materials and methods 

4.2.1. Study Area 

The focus region for this research is the Arkansas portion of the Mississippi Alluvial 

Plain (MAP) region, which includes the entirety or parts of 27 counties (Fig. 1). This study 

region is considered one of the most agriculturally productive regions in the United States 

because of its fertile soil that supports large-scale agricultural production. Many producers in the 

study area have voluntarily planted various types of winter cover crops, and some have taken 

advantage of government assistance via programs like CSP and EQIP to enhance soil quality and 

reduce soil erosion. Gaining a comprehensive understanding of the voluntary adoption of cover 

crops and identifying cropping patterns is essential for producers and policymakers. 
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Fig. 1: Mississippi Alluvial Plain (MAP) region used in the study. Note that an example of a 

2013 reclassified USDA CDL data is presented here for reference. 

 

4.2.2. Data 

The data utilized in this study were derived from various sources, including remote 

sensing data, government-subsidized cover crop data, model-predicted cover, and non-cover crop 

areas, and USDA-CDL data layers. To identify the voluntary adoption of cover crops at the 

county level, total model-predicted wintertime cover crop county-level acreage data in 

conjunction with total government-subsidized cover crop acreage data from NRCS from 2013 to 

2019 were used. The process for mapping the voluntary adoption of cover crops is detailed in 

section 4.2.4. Reclassified CDL data was combined with the model-predicted cover and non-

cover crop areas data to identify cropping rotations. The CDL product provides an annual, geo-

referenced land cover map for the continental United States, encompassing 133 different crops 
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and non-crop raster data. The CDL data for multiple years (2013 to 2020) were sourced from the 

GEE data catalog. To streamline the analysis, a GEE script was employed to reclassify the crop 

types from the CDL into seven major classes (Fig. 1 illustrates an example of the reclassified 

CDL). For this study, five major CDL crop categories: corn, cotton, rice, sorghum, and soybeans, 

were selected, as these are the predominant cash crops in the MAP region. Additionally, four 

double crop pixels (i.e., double crop winter wheat/soybeans, double crop winter wheat/corn, 

double crop winter wheat/sorghum, and double crop winter wheat/cotton) were combined into a 

single, double crop category, with all remaining pixels falling into the “Minor Crops” category. 

Corn, rice, cotton, soybean, and sorghum are the main cash crops grown in eastern Arkansas, all 

of which are generally cropped with traditional tillage practices. In the subsequent analysis and 

visualization, the primary focus of this study was on soybean, cotton, and corn, as they represent 

the primary crop sequences involving cover and non-cover crops in the MAP study area. Despite 

rice being a significant crop in the MAP study area, it is typically not integrated with cover crops 

for various reasons. Rice cultivation primarily occurs on poorly drained soils, leading to 

waterlogged conditions during winter. This limits cover crop survival due to excessively wet or 

flooded soils. Additionally, some rice fields are intentionally flooded during winter to create a 

habitat for ducks, further limiting the feasibility of establishing cover crops. These factors 

contribute to the exclusion of rice from the subsequent analysis. Furthermore, the initial analysis 

revealed limited acreage for rice, sorghum, and double crop systems within cover crop fields. 

Consequently, these categories were combined under the "Other Crops" which includes “Minor 

Crops” as well. Consequently, these categories were combined under the "Other Crops" category 

only for visualizations for CDL Cash Crops > Cover Crops (sections 4.2.5.1) and Cover Crops > 

CDL Cash Crops (sections 4.2.5.2). 
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4.2.3. Identification of cover and non-cover crop areas 

Agricultural crop mapping and acreage estimation are challenging given the diverse 

farming systems, varying field sizes/ boundaries, crop heterogeneity, and heterogeneity in 

objectives across land management systems (Liu et al., 2020). Despite these challenges, such 

mapping remains a vital prerequisite to identifying agricultural farms, their respective crops, and 

their spatial distribution (Hudait & Patel, 2022). The USDA-NASS combines remote sensing and 

field-based data to map and estimate crop acreage. They generate a range of products, such as the 

Cropland Data Layer (CDL), for public usage. However, the CDL database has limited 

information concerning winter cover crops, particularly their spatial and temporal distribution, 

creating difficulties for researchers and policymakers. 

There is currently a lack of data regarding planted cover crop acreage and voluntary 

cover crop adoption in the U.S. Such data is essential to understanding the 'additionality' and 

'spillover effects' of government cost-shared funding on cover crop adoption over time and 

identifying factors and crop rotations that could encourage farmers to adopt cover crops 

independent of government funding (Mezzatesta et al., 2013). To address the data gaps and 

generate new information for the MAP study region, Landsat 8 satellite images were combined 

with yearly USDA-NRCS cover crop location data, serving as training data for the random forest 

machine learning model. This model was implemented using Google Earth Engine (GEE), 

enabling the identification and mapping of cover crop and non-cover crop areas, along with their 

corresponding acreage, over seven years.  

The USDA-NRCS government cover crop dataset along with the NASA Landsat 8 

Operational Land Imager (OLI) Top of Atmosphere (TOA) 30-m spatial and 16-day temporal 

resolution remote sensing, and CDL data was used to identify and map wintertime cover crops in 
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the MAP study region from 2013 to 2019 (Ahmed et al., 2023). Following Ahmed et al. (2023), a 

pixel-based method was employed to distinguish between pixels associated with cover crops and 

those not. The methodology for identifying cover and non-cover crop areas consisted of three 

steps. Initially, the ground-cover months for the cover crop were identified, which extended from 

November to March. Next, cloud cover was eliminated from the Landsat satellite data. Finally, a 

machine learning algorithm was utilized to identify the cover crop, employing multiple spectral 

reflectance bands and indices. The USDA-NRCS cover crop ground-truthed data were split into 

training (70%) and validation (30%) sets for the final classification. This classification process 

was performed using the GEE platform. The nonparametric Random Forest (RF) machine 

learning classifier was employed to categorize the final image composites into a binary - cover 

crops and non-cover crop areas (Kc et al., 2021; Ok et al., 2012; Pal, 2005). A limitation 

encountered while using the USDA-NRCS database was the occasional lack of GPS accuracy for 

specific cover crop locations. This issue arises when producers record their GPS location from 

their home or farm shop rather than the actual site of the cover crop cultivation on their farm. A 

rule or threshold-based approach for filtering cover crop point data was employed to overcome 

this problem and ensure quality training data for machine learning models, as Ghazaryan et al. 

(2018) suggested. Locations within cover crop fields were filtered and pinpointed by applying an 

NDVI threshold value greater than 0.3, aligning with prior studies' methodologies (Hively et al., 

2015; Kc et al., 2021; Thieme et al., 2020). Using the GEE platform, pixels with an NDVI value 

exceeding 0.3 were classified as cover crops.1 In contrast, pixels falling below this value were 

 
1 For this analysis, it was assumed that winter wheat was a cover crop, not for grain, within the MAP study area 

since specific cover crop information was unavailable from the USDA-NRCS dataset. To estimate how this 

assumption may affect the results (quantifying total cover crop area), the USDA-NASS data on winter wheat 

harvested for grain in Arkansas was used as a proxy. This allowed the calculation of the percentage of winter wheat 

for grain by dividing the USDA-NASS winter wheat area harvested yearly by the area of total cropland. The 

findings indicate that only a small yearly percentage (ranging from 0.8% to 9.7%) of the winter wheat for grain may 

have been identified in the model as a cover crop. 
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categorized as "non-cover crop" pixels. This non-cover crop category encompasses bare soil 

areas, farm-built zones, shallow and sparse vegetation (NDVI < 0.3), winter weeds, and some 

non-green crop residue pixels. By leveraging the CDL cultivated data layer to exclude non-

cultivated fields, a significant portion of these non-cover crop pixels were ensured to represent 

bare soil areas or fallow lands, thereby enhancing the accuracy of the classification process. 

Finally, the classified map data were exported and processed using ArcGIS and R-Studio for 

visualization and subsequent analysis. In adherence to USDA-NRCS data sharing agreements 

and to ensure data privacy, acre ranges were aggregated at the county level for subsequent 

mapping activities. 

4.2.4. Voluntary cover crop adoption 

While several programs like CSP and EQIP subsidize producers to grow cover crops and 

participate in conservation efforts, not all producers who adopt cover crops receive government 

support for adoption (Dunn et al., 2016). To identify the voluntary adoption of cover crops at the 

county level, the total model-predicted wintertime cover crop location data and the USDA-

NRCS total county-level acreage data for government-subsidized cover crops from 2013 to 2019 

were utilized. The total model-predicted wintertime cover crop location data were aggregated at 

the county level for further analysis. Next, the difference was calculated between the total model-

predicted cover crop acreage and the acreage of cover crops that received government subsidies. 

This calculation allowed the isolation and the identification of the voluntary adoption of cover 

crops in each county for each year of the study period. This methodology provided insights into 

the patterns and trends of voluntary cover crop adoption at the county level, shedding light on the 

role of government incentives in promoting cover crop adoption versus producers voluntarily 

adopting them.   
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4.2.5. Analysis of cover crop rotations 

Different crop rotations for Arkansas's portion of the MAP were identified using multi-

temporal satellite imagery capabilities. The large and exhaustive CDL crop-specific layer dataset 

contains information on 133 different crops and non-crop raster data. Utilizing this data would 

have resulted in 35,378 unique combinations of cropping rotations/patterns and/or sequences to 

analyze. The study focused on the reclassified CDL layer data to streamline the analysis process 

and account for limited acreage in other categories (as discussed in section 4.2.2). This specific 

dataset was chosen to facilitate a more manageable analysis of cropping patterns, allowing the 

efficient examination and interpretation of the data in subsequent steps. Specifically, the study 

focused on three cropping patterns revolving around cash crops and their sequential cultivation 

following cover and non-cover crops. These patterns include (1) finding which cash crops are 

planted prior to the planting of cover crops, (2) identifying which cash crops followed cover 

crops, and (3) mapping all potential cash-cover-cash rotations by area. This analytical 

undertaking employs classified cover and non-cover crops map data and the reclassified USDA- 

CDL data layers from 2013 to 2020.   

4.2.5.1. Cropping pattern (CDL Cash Crops > Cover Crops) 

An ArcGIS combine tool was used to identify crop rotations (which cash crops were 

planted before the cultivation of cover crops), with inputs consisting of reclassified CDL imagery 

of a specific year, succeeded by classified cover vs. non-cover crop imagery from that same year 

(Fig. 2). This manipulation resulted in the generation of 14 unique crop rotation patterns per year 

from 2013 to 2019. 
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Fig. 2: Example of CDL crops planted prior to cover and non-cover crop areas within the same 

year. CDL layer with multiple colors representing different reclassified crop types (left) and 

classification of binary cover and non-cover areas (right). The green regions represent model-

predicted areas with cover crops, the yellow represent non-cover crop areas, while the white 

represent mask-out areas. 

 

4.2.5.2. Cropping pattern (Cover Crops > CDL Cash Crops) 

The same combination tool was applied to detect which cash crops followed cover crops. 

The initial input consisted of cover vs. non-cover crop imagery of a specific year, followed by 

reclassified CDL imagery of the following year (Fig. 3). This methodology allowed for a 

determination of which cash crops were grown after cover crops termination, generating another 

14 unique crop rotation patterns per year from 2013 to 2020. 

 
Fig. 3: Example of CDL crops planted after cover and non-cover crop areas in the following 

production year. Classification of binary cover and non-cover areas (left) and CDL layer with 

multiple colors representing different reclassified crop types (right). The green regions represent 

model-predicted areas with cover crops, the yellow represents non-cover crop areas, and the 

white represents mask out areas. 
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4.2.5.3. Crop rotations including cover crops (CDL Cash Crops > Cover Crops > CDL Cash 

Crops) 

The final cropping pattern encompasses an entire crop rotation cycle. The analysis began 

with the CDL cash crops of 2013, used the cover and non-cover crops of the same year to 

evaluate which cash crop fields were sown to cover crops, and concluded with the CDL layer of 

2014, and followed the same procedure for other study years (Fig. 4). This allowed the 

determination of which crop rotations were most frequently associated with the adoption of 

cover crops. As a result, 98 distinct cropping patterns were generated per year from 2013 to 

2020. 

 
Fig. 4: Example of cropping patterns depicting the sequence of CDL crops planted before cover 

and non-cover crop areas within the same production year and CDL crops planted after cover and 

non-cover crop areas in the following year. CDL layer with multiple colors representing different 

reclassified crop types in the previous year (left), classification of binary cover and non-cover 

areas of the same year (middle), and CDL layer with multiple colors representing different 

reclassified crop types in the following production year (right). The green regions represent 

model-predicted areas with cover crops, the yellow represents non-cover crop areas, and the 

white represents mask-out areas. 

 

4.2.6. Soil organic carbon (SOC) sequestration estimation 

The methodology used to estimate potential SOC sequestration through the adoption of 

cover crops incorporates several factors, such as total cover crop acreage, biomass allocation, 

residue cover thresholds, and carbon concentration in biomass. This estimation considered the 

total cover crop acreage across several years and delineated between government-funded and 

voluntarily adopted acreage. 
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Previous research has identified a variety of SOC sequestration rates associated with the 

adoption of cover crops, with these rates applicable to different soil depth intervals. For example, 

Poeplau and Don (2015) linked the use of cover crops to enhanced SOC sequestration and 

estimated a mean rate of 0.32 ± 0.08 Mg/ha/year (0.14 ± 0.04 tons/acre/year) at soil depth 

ranging from 0 to 30 cm. In contrast, Ruis & Blanco-Canqui, (2017) proposed a greater rate of 

0.49 Mg/ha/year (0.22 tons/acre/year), applicable to a soil depth of 0-30 cm. Jian et al. (2020) 

suggested a rate of 0.54 Mg/ha/year (0.24 tons/acre/year), which applied to varying soil depths in 

the 0-30 cm range. It should be noted that these SOC sequestration rates, as mentioned in 

previous studies, primarily originated from global meta-analyses. However, it is important to 

recognize that SOC sequestration can vary significantly based on factors such as soil texture, 

agricultural management practices, elevation, climate, and location (Bai et al., 2019; Herzfeld et 

al., 2021; Lessmann et al., 2022). 

Blanco-Canqui, (2022) discussed the effects of cover crops on SOC based on a review of 

studies conducted in the United States. The findings demonstrated that cover crops accumulated 

SOC between 0.2 and 0.92 Mg/ha/year (0.09- 0.41 tons/acre/year), with an average of 0.56 

Mg/ha/year (0.25 tons/acre/year), in the 22 instances where cover crops increased SOC. On a 

broader set of 77 comparisons conducted for the upper 30-cm soil depth, cover crops 

accumulated SOC between 0 and 0.92 Mg/ha/year (0-0.41 tons/acre/year), with an average of 

0.46 Mg/ha/year (0.21 tons/acre/year). Adding to the literature, Causarano et al. (2006) 

extensively analyzed 20 studies focusing on cotton production systems in the Southeastern 

United States. The review indicated that adopting no-tillage practices compared to conventional 

tillage led to an increase in SOC by an average of 0.48 ± 0.56 Mg/ha/year (0.21 ± 0.25 

tons/acre/year). Moreover, integrating high-residue-producing crops such as corn and small 
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grains into diverse crop rotations further augment SOC sequestration. Specifically, the 

combination of no-tillage practices with cover crops resulted in an average SOC sequestration 

rate of 0.67 ± 0.63 Mg/ha/year (0.30 ± 0.28 tons/acre/year), while employing no-tillage practices 

alone yielded 0.34 ± 0.47 Mg/ha/year (0.15 ± 0.21 tons/acre/year). This emphasizes the 

significant role that cover crops and tillage practices play in soil organic carbon sequestration. 

These findings emphasize the potential of cover crops to sequester carbon within 

agricultural systems, contributing to improved soil health and environmental sustainability. Two 

principal carbon reservoirs exist within a landscape: biomass carbon, which is the carbon stored 

within live vegetation, and soil carbon, referencing the humified carbon portion of the soil. SOC 

sequestration was approximated using the total acreage of cover crops estimated within the study 

area via remote sensing methods and the USDA-NRCS database. 

The aboveground (AG) and belowground (BG) biomass were estimated without specific 

cover crop species information. The AG biomass was assumed to be 2/3 of the total biomass (B), 

and the BG biomass was estimated to be 1/3 of B. These assumptions were applied to a 

conservative estimate of 3500 lbs/acre for AG and 1747 lbs/acre for BG (Brye, 2012; USDA-

NRCS, 2018). 

The total AG and BG biomass in tons/acre (T_AG and T_BG, respectively) were then 

calculated using the respective yearly cover crop acreage (CCA) and the conversion factor from 

lbs to tons [Equations 1 and 2]. The combined total of AG and BG biomass (T_AG&BG) was 

then calculated [Equation 3]. 

T_AG = (AG * CCA)/2000 …………………………………………..(Equation 1) 

T_BG = (BG * CCA)/2000 …………………………………….……..(Equation 2) 

T_AG&BG = T_AG + T_BG …………………………………………(Equation 3)  
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The assumption was made that 70% of the total aboveground biomass (T_AG) would be 

mixed into the soil (I_AG), leaving the remaining 30% as surface residue (P) to satisfy the 

USDA-NRCS guidelines for conservation tillage (CT) (Prabhakara et al., 2015) [Equation 4]. 

The 30% surface residue is the minimum threshold needed to qualify as CT. It is important to 

note that the estimated annual SOC sequestration rate might be higher than the actual rate. This is 

because CT practices can also include no-tillage (NT), where 100% of the crop residue remains 

on the surface. However, estimating the annual SOC rate from a range of surface residue 

coverage was beyond the scope of the study. 

I_AG = T_AG * (1-P) ………………………………………………... (Equation 4) 

The total biomass in the soil (T_BS) was computed by summing I_AG and T_BG 

[Equation 5]. The total carbon input to the soil (C_S) from the cover crop biomass was then 

calculated by assuming a carbon concentration (C) of 50% (Popp et al., 2011) [Equation 6]. 

T_BS = T_BG + I_AG ………………………………………………. (Equation 5) 

C_S = T_BS * C……………………………………………………… (Equation 6) 

The biomass carbon requires microbial processing to achieve humification, so a microbial 

efficiency (E) of 50% was assumed (Keiblinger et al., 2010; Saifuddin et al., 2019; Sinsabaugh et 

al., 2016). Based on this assumption, the total soil carbon after microbial processing (T_SCM) 

was calculated [Equation 7]. 

T_SCM = C_S * E……………………………………………….…… (Equation 7) 

The final step involved calculating the SOC sequestration rate (R) tons/acre/year by 

dividing T_SCM by CCA [Equation 8]. 

R = T_SCM / CCA……………………………………………………(Equation 8) 
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This approach, though mindful of uncertainties, aims to estimate the SOC sequestration 

capacity of cover crops conservatively. The accuracy and applicability of these estimations 

depend on various factors, including the quality and representativeness of the data used, specific 

conditions within the study area, and management practices. Thus, more research and validation 

are needed to refine the estimates and enhance the understanding of the actual impact of cover 

crops on SOC sequestration. This will allow for a more accurate depiction of SOC sequestration 

rates and how they may vary across different geographies, cover crop species, and management 

practices. Such research would contribute to optimizing sustainable agriculture practices and 

climate change mitigation strategies, further underlining the value of cover crops in achieving 

environmental sustainability, farm profitability, and soil health improvement. 

 

4.3 Results and discussion 

4.3.1. Voluntary adoption of cover crops  

Both government-subsidized and voluntary cover crop adoption increased in the study 

area over time. According to NRCS provided data, the government-funded total cover crop acres 

were lowest in 2013 (9,617 acres) and remained low until 2017 (24,386 acres) but increased in 

2018 (94,464 acres) and 2019 (201,361 acres) in the MAP region. The total voluntary adoption 

of cover crop acreage in 2013 was 667,655 acres and increased by 5.33% (35,608 acres) in 2019 

(Fig. 5). The total cover crop acres that received government cost-sharing across all counties and 

years amounted to 402,839 acre-years. In contrast, the accumulated total of cover crop acres 

through voluntary adoption from 2013 to 2019 was estimated at 4,486,197 acre-years (Pearson's 

R=0.46, P=0.015). The fluctuations in cover crop acreage from year to year, observed in both 

government-subsidized and voluntary adoption, could be attributed to a combination of external 
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factors. Notably, government-subsidized cover crop acreage in the study area saw a surge post-

2013 and 2018, which may be related to policy changes. The Farm Bills of 2014 and 2018 likely 

played a role in this uptick as they provided farmers with financial incentives and technical 

assistance to adopt conservation practices, including cover cropping (USDA ERS, 2014, 2018). 

Additionally, it is worth noting that even farmers who are big supporters of cover crops might 

not use them on all their fields every year. Furthermore, due to variations in crop rotation and/or 

cropping patterns from year to year, there is not always a guarantee that cover crops will be 

present during the winter period. It is important to note that this study provides estimates and 

observations regarding the adoption of cover crops, but a definitive understanding of the reasons 

behind these fluctuations would require targeted surveys and interviews with farmers in both the 

government-subsidized and voluntary adoption categories. 

These findings indicate a positive correlation between the amount of government cost-

shared cover crop acres and the voluntary adoption of cover crops in the MAP counties. This 

signifies that in the study area, producers either voluntarily chose to adopt cover crops on their 

land without government assistance or subsidies, or there were cases where farmers had 

originally adopted cover crops with government support and chose to continue using them after 

the government assistance ended. Counties with higher government-funded cover crop acreage 

tend to have higher levels of voluntary adoption. This could have to do with similar cropping 

rotations in which producers (both those who are federally funded and who voluntarily adopted) 

would find cover crops beneficial. This finding suggests that the financial support provided 

through programs like EQIP and CSP may have played a role in encouraging increased adoption 

of cover crops, which is backed by previous literature (Mezzatesta et al., 2013; Sawadgo & 

Plastina, 2021). Furthermore, study results suggest the presence of "spillover effects" wherein the 
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practices adopted by farmers benefiting from government programs could influence and inspire 

other farmers to adopt cover crops voluntarily. 

However, it is important to note that the moderate correlation coefficient suggests that 

other factors may also significantly influence the voluntary adoption of cover crops. Therefore, 

further research is necessary to fully understand the factors involved in farmers' decision-making 

process regarding cover crop adoption. 

 
Fig. 5: Estimated voluntary cover crop adoption acres by county. Note: the lower right corner 

map represents the cumulative total of voluntary adoption of cover crop acres for all counties and 

years from 2013 to 2019. 

 

Counties in the eastern section of the MAP region, especially those near the Mississippi 

River, exhibit a notable prevalence of cover crop adoption. This can likely be attributed to the 
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kinds of crops typically cultivated in this region and the cropping rotations employed. For 

example, this area is renowned for its abundant production of soybeans, corn, and cotton. A study 

that spanned several states in the upper midwestern Mississippi River Basin found that 34% to 

81% of agricultural land in select counties had the potential for integrating cover crops into corn 

and soybean crop systems (Kladivko et al., 2014). The study highlighted that changes in tillage 

practices might be necessary for this integration to occur, and greater use of no-till and mulch-till 

could further enhance adoption rates. Other potential contributing factors to cover crop adoption 

in the eastern MAP region include farmer conservation attitudes, regional climate conditions, 

local geographical features, agricultural market dynamics, incentive programs, and the influences 

of social networks. A wealth of research studies focusing on the Mississippi region have 

highlighted the advantages of integrating cover crops into these farming systems, notably 

enhancing soil health and mitigating soil erosion (Adler et al., 2020; Jacobs et al., 2022; Reba et 

al., 2020). 

The government's support for environmentally conscious production practices and the 

interjection of government programs into subsidizing cover crops may have motivated farmers to 

embrace these practices voluntarily (Park et al., 2022). Voluntary adopters may have recognized 

the long-term benefits of cover crops regarding soil health, environmental conservation, and 

lowering farming expenses (Lee & McCann, 2019; Thompson et al., 2021). However, the 

complex and time-consuming application procedures and detailed record-keeping associated 

with government assistance and incentive programs may have discouraged many farmers from 

seeking financial support (Reimer & Prokopy, 2014). 

This trend may highlight a growing awareness among producers regarding the potential 

benefits and value associated with cover crops. Producers could be motivated to voluntarily 
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increase adoption, even without financial incentives. Moreover, producers may have come to 

realize that these practices, such as using cover crops, could contribute to carbon offset initiatives 

and potentially generate carbon credits, further adding to their appeal (Bowman & Lynch, 2019; 

Plastina & Sawadgo, 2021; Weinberg & Claassen, 2006; Winsten & Hunter, 2011). One 

significant aspect of this recognition is understanding the value of carbon sequestration in 

increasing SOC levels and its positive externalities for both the environment and the productivity 

of producers. 

4.3.2. Adoption of cover crops on cash crop fields (CDL Cash Crops > Cover Crops) and 

(Cover Crops > CDL Cash Crops) 

The dataset provides information on the area in acres and the percentage of cover and 

non-cover crops for the major cash crops, namely soybean, corn, and cotton, from 2013 to 2019. 

However, the analysis of this data reveals trends in the adoption of winter cover crops on these 

specific cash crops, shedding light on the evolving agricultural practices of producers (Fig. 6). 

The results indicate the adoption of cover crops in soybean production systems. In 2013, 4.63% 

of total MAP production acreage was under the cropping rotation of soybeans, followed by cover 

crops. Over the subsequent years, the percentage of soybean acreage planted with cover crops 

rose, reaching a peak of 8.07% in 2018, before declining to 5.75% in 2019. These findings 

indicate growth in the utilization of cover crops among soybean producers. Soybean cropping 

systems benefit greatly from cover crop use to keep soil in place because soybeans are generally 

considered a low-biomass-producing crop that does not return enough residue after harvest to 

provide adequate soil protection.  

Likewise, the adoption of cover crops on corn fields has increased throughout the study. 

In 2013, cover crops were planted between corn crops, representing approximately 1.41% of the 
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total cropland acreage. Over the study period, the corn acreage with cover crops increased, 

reaching 1.78% in 2019. Although the adoption rate of cover crops on corn fields remained lower 

than on soybeans fields, the findings suggest an increasing acceptance of this practice among 

corn producers. The increased adoption of cover crops on corn acres could be attributed to 

farmers' acknowledgment of the production advantages they provide specifically for corn 

cultivation. In contrast to soybeans, corn is a large biomass-producing crop, thus requiring 

greater soil manipulation by tillage to manage the greater amount of surface residue when no-

tillage practices are not used, thus increasing the likelihood of soil disturbance and the potential 

for off-site soil transport. Consequently, cover crop use provides additional protection from 

potential soil erosion. In addition, as a crop that requires large fertilizer-N additions for optimal 

production, using legumes in a cover crop mix can increase soil N for subsequent crop use.  

The adoption of cover crops on cotton fields also exhibited an upward trend, albeit with 

some variations. In 2013, cover crops accounted for 0.42% of the total cropland acreage; by 

2018, this figure had risen to 2.71%. However, in 2019, the percentage of cotton acreage with 

cover crops decreased to 2.48%. The remaining crops from the dataset (including rice, sorghum, 

double crops, and other minor crops) have been combined into an "Other Crops" category to 

provide a comprehensive perspective. The adoption of cover crops on these crop fields displayed 

diverse patterns, ranging from low adoption rates to fluctuating trends. In 2013, the adoption rate 

for other cash crops was 4.34%, which decreased to 2.57% in 2014. However, there was a slight 

increase in adoption to 3.34% in 2015. In 2016, the adoption rate declined to 2.24%, followed by 

a further decrease to 0.8% in 2017. In 2018 a notable increase in adoption to 2.12% before 

experiencing a slight rise to 4.32% in 2019. These statistics highlight the varying trends in the 

adoption of cover crops among different types of cash crops. Further research and analysis are 
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required to delve deeper into the specific dynamics and patterns of cover crop adoption in 

relation to other cash crops. 

The adoption of winter cover crops has shown an increasing trend across the United 

States, according to the survey data analysis conducted by Wallander et al. (2021). 

Approximately 5 percent of corn acreage (as of 2016) had implemented cover crops, while the 

adoption rate was slightly higher for soybeans at 8 percent (as of 2018). As of 2015, the adoption 

rate of cover crops in cotton fields was roughly 13 percent. In contrast, corn-for-silage showed 

the highest cover crop adoption rate of nearly 25 percent (as of 2016). The findings align with 

the rising trend observed in this research regarding the adoption of cover crops, suggesting that 

farmers are increasingly aware of the potential benefits of their use.  

While Fig. 6 highlights the importance of cover crops in rotation relative to the entire 

MAP region, it fails to highlight the relative importance of cover crops to individual cash crops. 

This is important to delineate as the acreage of individual cash crops fluctuates yearly. Fig. A1 in 

the appendix shows the temporal trend of the percentage of each crop in the MAP region, which 

was followed by a cover crop. In terms of total cash crop percentage followed by a cover crop, 

corn, and cotton have the highest percentage with a peak of 17% and 39%, respectively. While 

Figure 6 highlights the importance of total cover crops in soybeans, Figure A1 indicates that the 

maximum percentage of soybean area planted to cover crops after soybeans was 14%. 

Comparing Figures 6 and A1 highlights that while cotton may have less area planted to it in the 

MAP region, a higher percentage of total cotton acres are followed by a cover crop than 

soybeans for the four years of the study. Since cotton is a woody perennial, the residue left 

behind after harvest is typically low in quality. Cover crops diversify this residue's quality and 

augment the substrate quantity that enhances soil health and soil organic matter (SOM) 
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(Causarano et al., 2006). This substrate can boost soil health through SOC sequestration more 

quickly than without cover crops. Moreover, numerous cotton producers utilize cover crops to 

enhance soil moisture and conserve water during the cotton growing season. Fig. A1 is important 

for policy-making as it shows which type of crop is most likely to adopt cover crops in terms of 

percentage adoption, not total area of adoption. 

 
Fig. 6: Adoption of cover crops on major summer cash crop fields. Note: This figure illustrates 

the percentage of acreage with cover crop over time relative to the total MAP cropland area. The 

calculation considers the specific cash crop planted before the cover crops in the same fields. 

 

Fig. 7 presents the type of cash crop which follows cover crop production, capturing the 

evolving trends over time. The dataset emphasizes the adoption rates of three major cash crops - 

soybean, corn, and cotton - following winter cover crops. Soybean fields that followed winter 

cover crops exhibited varying cover crop adoption rates across time. In 2013, soybean fields that 

succeeded winter cover crops accounted for 3.89% of the total cropland acreage. The proportion 

of soybean planting on cover crop fields fluctuated, reaching a peak of 5.99% in 2019. Still, a 

majority of soybean acreage does not involve the prior use of winter cover crops, suggesting the 

continued prevalence of conventional cropping practices and the land remaining fallow. 
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Similarly, corn fields that followed winter cover crops exhibited varying planting rates. In 

2013, corn fields that followed winter cover crops comprised 0.52% of the total cropland 

acreage. Over time, the proportion of corn planting on cover crop fields gradually increased, 

reaching a peak of 1.62% in 2018. The planting of cotton following winter cover crops also 

displayed varying rates. In 2013, cotton fields that succeeded in winter cover crops comprised 

0.47% of the total cropland acreage. Over the analyzed years, the proportion of cotton planting 

on cover crop fields gradually increased, reaching a peak of 2.99% in 2018. Based on the 

combined data for other cash crops, the “Other Crops” planting rate following winter cover crops 

exhibited variations over the years. In 2013, the planting rate was 5.95%, which decreased to 

3.56% in 2014. It remained relatively stable at 3.44% in 2015 and declined to 2.73% in 2016. 

The planting rate showed a marginal rise to 1.53% in 2017. However, there was a significant 

surge in adoption in 2018, reaching 4.96%, followed by a slight decrease to 4.68% in 2019. 

These statistics illustrate the diverse planting patterns for "Other Crops" following winter cover 

crops, underscoring the need for further investigation to comprehensively understand the specific 

cropping sequences and factors influencing their incorporation. 

Fig. A2 in the appendix shows the temporal trend of the percentage of each crop in the 

MAP region which followed a cover crop. Like the results in Figure A1, corn and cotton have the 

highest percentage of their relative crop following a cover crop with a maximum of 18% and 

34%, respectively. This is important from a policy perspective, as Fig. A2 suggests that cotton 

and corn producers have higher adoption rates than soybean producers.  

The analysis unveils varying planting rates of cash crops following winter cover crops, 

supported by findings from previous studies (Almoussawi et al., 2020; Marcillo & Miguez, 2017; 

Wauters et al., 2021; Wyland et al., 1996). The observed increasing trend in the incorporation of 
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winter cover crops within soybean, corn, and cotton cropping systems demonstrates farmers' 

recognition of the potential benefits, including enhanced soil health and the promotion of 

sustainable agricultural practices (Blanco-Canqui et al., 2015; Kuo et al., 2001; Sarrantonio & 

Gallandt, 2003). Encouraging more comprehensive implementation of winter cover crops across 

these major cash crops can significantly contribute to agricultural systems' overall sustainability 

and resilience. However, further research is necessary to investigate the factors influencing 

adoption rates and evaluate the long-term impacts of integrating cover crops into cash crop 

rotations (Bergtold et al., 2012; Thompson et al., 2021). 

 
Fig. 7: Cash crop succession following winter cover crop fields. Note: This figure showcases the 

percentage of acreage with cover crop over time, meaning cash crops planted exclusively to 

winter cover crop fields in relation to the MAP total cropland area. The analysis considers the 

specific cash crops planted after the termination of winter cover crops in the same fields. 

 

4.3.3. Analysis of cropping patterns (CDL Cash Crops > Cover Crops > CDL Cash Crops) 

To investigate the dynamics of cropping patterns, an analysis was conducted on the cash 

crops planted before and after the winter cover crop between 2013 and 2019, as illustrated in Fig. 
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8. The results revealed changes in cropping sequences during this period, shedding light on the 

utilization of cover crops as an intermediate farming practice. 

In 2013, the predominant cropping pattern involved the cultivation of soybeans-soybeans 

without the use of cover crops, which accounted for 20.7% of the total cropland area. Rice 

emerged as the second most prominent cash crop after the non-cover crop, accounting for 14.7% 

of the total cropland area. Other combinations of cash crops and non-cover crops, such as rice 

followed by soybean and corn followed by soybean, were also predominant cropping patterns, 

representing 10.2% and 7.1% of the total cropland area, respectively. 

By 2019, there was a shift in crop rotations compared to 2013. Interestingly, the top 15 

cropping systems were used on a smaller percentage of the total cropland area than in 2013. 

Soybeans, though were still the most common crop grown after non-cover crops, dropped to 

17.95% of the cropland area, down from 20.72% in 2013. Rice, as well as combinations with 

soybeans and other non-cover crops, also saw a decline in the share of cropland. This decrease 

across the board suggests that farmers may have diversified their cropping patterns or possibly 

left more fields fallow during the summer. It also indicates that there could be a broader adoption 

of different systems that are not among the top 15, or that other factors were affecting planting 

decisions in 2019. 

The emergence of cover crops between soybean production, denoted as "Soybean - Cover 

Crops - Soybean," accounted for 3.43% of the total cropland area in 2019, is noteworthy. 

Additionally, combining cover crops with other cash crops, such as "Minor Crops - Cover Crops 

- Minor Crops," represented 2.33% of the total cropland area, further illustrating the adoption of 

cover crops between different cash crops. 
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Figure 9 demonstrates the evolution of the adoption of cover crops between cash crops. 

Notably, there has been an increase in cropping pattern variations, particularly in 2018 and 2019. 

A total of four unique cropping patterns incorporating cover crops were identified, namely 

Cotton - Cover Crop - Cotton, Minor Crops - Cover Crop - Minor Crops, Soybean - Cover Crops 

- Minor Crops, and Soybean - Cover Crops - Soybean, with the latter being the most 

predominant pattern. It is worth noting that while cover crops are present between cash crops 

every year, Figure 9 does not report other crop rotations with cover crops due to their limited 

acreage. A separate analysis is presented in the appendix, focusing on adopting non-cover crops 

between cash crops each year (Appendix Fig. A3). 

These findings indicate a shift in cropping patterns from 2013 to 2019, reflecting the 

increasing adoption of cover crops between cash crops. This trend signifies the evolving 

agricultural practices and the recognition of the numerous potential benefits of cover crops, 

including improved soil health and erosion control (Snapp et al., 2005). The observed changes in 

cropping patterns highlight the dynamic nature of the agricultural landscape in the MAP region, 

with farmers adapting their cash crop choices based on the presence of winter cover crops over 

time and the cash crops’ prices. These shifts may be influenced by market demands, agronomic 

considerations, and policy changes (Zhou et al., 2022). Market demands can significantly shape 

cropping patterns as farmers respond to changing market conditions. Agronomic considerations 

such as soil fertility, pest management, and crop rotation also influence crop choices and the 

integration of cover crops. Farmers may adjust their cropping patterns based on the need to 

replenish soil nutrients, control pests, or break disease cycles. 

Local, regional, or national policy changes can substantially impact cropping patterns 

(Chembezi & Womack, 1992). Government programs such as EQIP and CSP, incentives, or 
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regulations that promote the adoption of cover crops or sustainable agricultural practices can 

influence farmers' decision-making processes. Likewise, changes in agricultural policies related 

to subsidies, crop insurance, or conservation programs can incentivize or discourage specific 

cropping patterns. 

Understanding shifts in cropping patterns, including the increased adoption of cover 

crops, is crucial for stakeholders and policymakers in developing resilient and sustainable 

agriculture strategies. Recognizing the factors behind these changes allows for targeted 

interventions, such as financial incentives or educational programs, to foster sustainable farming 

practices. Collaboration between stakeholders like producers, researchers, and agricultural 

extension services in spreading information on cover crops' benefits can promote best practices, 

enhance knowledge-sharing, and facilitate implementation. This cooperative approach can 

augment agricultural systems' long-term viability and resilience. The evolving agricultural 

landscape reflects the acknowledged benefits of cover crops and sustainable farming. By 

comprehending these drivers, stakeholders and policymakers can devise strategies to ensure 

agriculture's enduring productivity and environmental sustainability. 
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Fig. 8: Cropping patterns for 2013 and 2019- Cash crops planted before and after winter cover 

and non-cover crop (the top 15 cropping pattern combinations). 

 

 
Fig 9: Percentage of total MAP area which consisted of crop rotations which included a cover 

crop from 2013 to 2019. 
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4.3.4. Estimation of SOC sequestration potential from cover crop acreage 

The analysis of SOC sequestration potential resulting from cover crop adoption reveals 

variation across years (Table 1). In 2013, it was estimated that a total of 355,346 tons of carbon 

were sequestered from a combined (government-funded and voluntary adoption) cover crop area 

of 677,272 acres after accounting for biomass allocation, residue cover thresholds, and carbon 

concentration in biomass after microbial processing. The estimated SOC sequestration associated 

with cover crops significantly increased over time. The total SOC sequestration increased from 

approximately 355,346 tons in 2013 to 474,631 tons in 2019, indicating a 33.57% increase. 

Notably, the contribution from government cover crop acres to SOC sequestration rose steeply, 

from 5,046 tons in 2013 to a substantial 105,648 tons in 2019. The voluntary SOC sequestration 

experienced a marginal upward trend, rising from 350,300 tons in 2013 to 368,982 tons in 2019. 

This represents a notable but modest increase of approximately 5.3% over the seven years.  

This study determined a conservative SOC sequestration rate of 0.52 tons/acre/year 

associated with cover crops in the MAP study area (Equation 1-8). This rate stands as a cautious 

approximation derived from the analyzed data. This process augments the soil's carbon content, 

enhances overall fertility, and strengthens the soil’s ability to maintain agricultural productivity. 

A more conservative estimate for potential SOC sequestration, derived from the work of Poeplau 

and Don (2015), has been reported at 0.14 tons/acre/year, as presented in Appendix Table A1 for 

readers to draw comparisons. 
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Table 1: Estimated Soil Organic Carbon (SOC) sequestration from cover crop adoption (2013-

2019) 

Year Government 

CCA 

(acres) 

Government 

SOC (tons) 

Voluntary 

CCA 

(acres) 

Voluntary 

SOC (tons) 

Total CCA 

(acres) 

Total SOC 

(tons) 

2013 9,617 5,046 667,655 350,300 677,272 355,346 

2014 18,758 9,842 421,908 221,363 440,666 231,205 

2015 30,364 15,931 584,722 306,787 615,086 322,718 

2016 23,889 12,534 537,644 282,087 561,533 294,621 

2017 24,386 12,795 382,446 200,659 406,832 213,453 

2018 94,465 49,563 785,720 412,245 880,185 461,808 

2019 201,361 105,648 703,263 368,982 904,624 474,631 

Note: Equation 1- 8 (section 2.6) was utilized to estimate the SOC sequestration values. The 

table only presents the total cover crop acres (CCA) and SOC tons value to ensure clarity and 

avoid excessive information. 

 

 

It is important to note that including the model-predicted total cover crop acreage, 

assumed biomass allocation, residue cover thresholds, and carbon concentration in biomass used 

for calculating the SOC tons in this study was primarily intended to provide a conservative 

estimate for context rather than represent a definitive estimate. The sequestration potential can 

vary significantly due to specific crop types, management practices, climatic conditions, and 

numerous soil characteristics, namely texture (Bai et al., 2019; Herzfeld et al., 2021; Lessmann 

et al., 2022). Future research should incorporate site-specific data and consider these influential 

factors carefully to obtain more precise SOC sequestration estimations. By doing so, the 
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accuracy and reliability of assessments regarding SOC sequestration in the context of cover crop 

adoption can be significantly enhanced. 

Further research, incorporating more advanced modeling approaches and considering 

site-specific factors, is needed to obtain a more accurate assessment of SOC dynamics and the 

true potential of cover crop adoption for soil C sequestration (Poeplau & Don, 2015). 

Additionally, it is crucial to expand the analysis beyond SOC sequestration and consider the 

broader ecosystem benefits associated with cover crop adoption. Cover crops are vital in 

enhancing soil health, improving water quality, reducing erosion, and promoting biodiversity. 

Understanding the interconnections between these ecological processes and SOC sequestration 

will provide a more comprehensive evaluation of the overall impact of cover crop adoption on 

ecosystem services. However, at present, SOC sequestration is important to at least estimate due 

to its implication for C credits as a tradeable commodity in developing markets. 

 

4.4 Summary and conclusion 

The combination of environmental sustainability, potential financial incentives from 

carbon markets, and potential yield improvements make cover crops an increasingly compelling 

agricultural strategy for future sustainability. The findings reveal an increasing trend in cover 

crop adoption through government subsidies and voluntary initiatives. Despite mapping and data 

availability challenges, remote sensing technologies and government data sources provided 

valuable information for analyzing cover crop adoption at the county level. The analysis of major 

summer cash crops demonstrated the growing recognition of the benefits associated with cover 

crops, with soybean fields leading the adoption. The study also revealed changes in cropping 

patterns over time, with increasing incorporation of cover crops between cash crops. 



185 
 

Estimating SOC sequestration potential from cover crop adoption highlights some of the 

environmental benefits of these practices. Although the estimations provide an approximate 

assessment, they underscore the potential of cover crops to contribute to carbon offset initiatives 

and promote sustainable farming systems. Future research should incorporate site-specific data 

and consider important factors to obtain more precise SOC sequestration estimations. 

The study's findings provide valuable insights for policymakers and stakeholders in 

developing strategies to support sustainable and resilient agricultural systems. By promoting 

cover crop adoption and optimizing cropping patterns, the agricultural sector can enhance soil 

health, mitigate erosion, improve water quality, and contribute to carbon sequestration. 

Collaborative efforts between policymakers, researchers, agricultural extension services, and 

farmers are essential to disseminate information, provide technical support, and maximize the 

benefits of cover crops. This holistic approach will contribute to the long-term viability, 

productivity, and environmental sustainability of the agricultural sector in the MAP region and 

beyond. Continued research in this area will be essential for understanding and maximizing the 

benefits of cover-crop systems for individual producers and broader environmental health. 
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Appendix 

 
Fig A1: Temporal trend of the percentage of each crop in the MAP region, which was followed 

by a cover crop. 

 

 
Fig A1: Temporal trend of the percentage of each crop in the MAP region which followed a 

cover crop. 
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Fig. A3: Change in cropping patterns from 2013 to 2019, specifically highlighting the adoption 

of non-cover crops between cash crops. The figure highlights the most prevalent patterns that 

incorporate non-cover crops, based on the analysis of the top 15 cropping pattern data per year.  

 
 

Table A1: Estimated Soil Organic Carbon (SOC) sequestration from cover crop adoption (2013-

2019) using a conservative SOC estimate of 0.14 tons/acre/year.  

Year Government 

CCA 

(acres) 

Government 

SOC (tons) 

Voluntary 

CCA 

(acres) 

Voluntary 

SOC (tons) 

Total CCA 

(acres) 

Total SOC 

(tons) 

2013  9,617   1,346   667,655   93,472   677,272   94,818  

2014  18,758   2,626   421,908   59,067   440,666   61,693  

2015  30,364   4,251   584,722   81,861   615,086   86,112  

2016  23,889   3,345   537,644   75,270   561,533   78,615  

2017  24,386   3,414   382,446   53,543   406,832   56,956  

2018  94,465   13,225   785,720   110,001   880,185   123,226  

2019  201,361   28,191   703,263   98,457   904,624   126,647  
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CHAPTER 5: SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

This dissertation focused on the application of remote sensing technologies in the context 

of conservation agriculture. The research aimed to examine thematic research, development, and 

trends in remote sensing applied to conservation agriculture, identify and map winter cover crops 

using a remote sensing-based methodological framework, and assess voluntary cover crop 

adoption and cropping patterns in Arkansas’s portion of the Mississippi Alluvial Plain (MAP) 

region. 

The examination of thematic research in Chapter 2 revealed a growing research interest 

in the application of remote sensing in conservation agriculture over the past three decades. The 

analysis highlighted pixel-based classification methods and the prevalence of spectral indices in 

identifying agricultural conservation practices. The findings provided valuable insights into the 

potential of remote sensing for improving conservation agriculture and identified future research 

needs. 

In Chapter 3, a remote sensing-based methodological framework was developed to 

identify and map winter cover crops. The framework utilized the Google Earth Engine platform, 

a Random Forest classifier, and Landsat 8 satellite data to achieve high classification accuracy. 

The analysis demonstrated an increase in model-predicted cover crop adoption over the study 

period, showcasing the framework’s effectiveness in generating new and rapid cover crop data. 

Additionally, the study explored spectral indices and temporal profile analysis to assess cover 

crop phenological characteristics. 

Chapter 4 focused on assessing voluntary cover crop adoption and cropping patterns in 

the MAP. Integrating remote sensing technologies, government data sources, and the USDA 

Cropland Data Layer, the study identified the voluntary adoption of winter cover crops and 
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evaluated associated cropping rotations. The findings revealed an increasing trend in cover crop 

adoption, with soybean production being the predominant adoption area. The analysis also 

highlighted changes in cropping rotations over time, emphasizing the potential for integrating 

cover crops into agricultural systems for soil health and environmental benefits. 

Overall, this research contributes to understanding the role of remote sensing in 

conservation agriculture. The findings underscore the potential of remote sensing technologies 

for improving the identification and mapping of conservation practices, monitoring cover crop 

adoption, and optimizing cropping patterns. These insights can inform policymakers, researchers, 

and stakeholders in developing strategies and programs to promote sustainable agricultural 

practices and enhance environmental stewardship. 

For future research, it is recommended to explore further and refine remote sensing 

techniques for conservation agriculture, considering factors such as site-specific data, influential 

factors affecting carbon sequestration, and improved estimations of soil organic carbon. 

Collaboration among researchers, policymakers, agricultural extension services, and farmers is 

crucial for disseminating information, providing technical support, and maximizing the benefits 

of cover crops. Continued efforts in promoting cover crop adoption and optimizing cropping 

patterns will enhance soil health, mitigate erosion, improve water quality, and contribute to 

carbon sequestration, thereby ensuring the long-term viability and sustainability of the 

agricultural sector. 

Overall, this dissertation has contributed to the advancement of remote sensing applied to 

conservation agriculture and provides a foundation for further research and policy development. 

The findings and recommendations presented here serve as a resource for scholars, researchers, 

policymakers, and stakeholders interested in conservation agriculture and its implementation.  
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Policymakers can make informed decisions and develop effective strategies to promote 

sustainable agricultural practices by leveraging remote sensing technologies. Researchers can 

further explore and refine remote sensing techniques, expanding their application to other 

regions and agricultural systems. 

In conclusion, this dissertation has comprehensively analyzed remote sensing 

applications in conservation agriculture. The systematic review highlighted the increasing 

interest in remote sensing technologies for conservation practices. At the same time, the 

methodological framework demonstrated the effectiveness of remote sensing in identifying and 

mapping winter cover crops. The assessment of voluntary cover crop adoption and cropping 

patterns offered insights into the current extent of cover crop use and its potential for expansion. 

Based on the findings, several recommendations can be made for future research and 

policy development: 

1. Foster collaboration and knowledge exchange: Encourage collaboration between 

researchers, policymakers, agricultural extension services, and farmers to share 

knowledge, experiences, and best practices related to conservation agriculture and remote 

sensing technologies. This collaboration can enhance the adoption and implementation of 

sustainable agricultural practices. 

2. Enhance data availability and accessibility: Improve access to remote sensing data, 

including satellite imagery, spectral indices, and other relevant datasets, to facilitate 

research and monitoring of conservation agriculture practices. Open data initiatives and 

partnerships with satellite providers can help overcome data limitations and support 

evidence-based decision-making. 
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3. Develop tailored tools and guidelines: Create user-friendly tools and guidelines that 

enable farmers and agricultural stakeholders to use remote sensing technologies for 

conservation agriculture effectively. These tools should provide practical insights and 

recommendations for cover crop adoption, cropping patterns, and soil health 

management. 

4. Invest in capacity building: Promote training programs and workshops to enhance the 

technical expertise of researchers, policymakers, and producers in utilizing remote 

sensing technologies for conservation agriculture. This investment will empower 

stakeholders to harness the full potential of remote sensing data and tools. 

5. Conduct site-specific studies: Conduct more site-specific studies to understand the 

regional variations in cover crop adoption, cropping patterns, and their impacts on soil 

health and ecosystem services. This localized knowledge will enable tailored 

interventions and strategies for different agricultural regions. 

6. Integrate socio-economic analysis: Combine remote sensing data with socio-economic 

indicators to assess conservation agriculture practices' economic viability and social 

acceptance. This integrated analysis will help identify barriers and incentives for farmers 

to adopt cover crops and implement sustainable farming systems. 

 

By implementing these recommendations, policymakers, researchers, and agricultural 

stakeholders can further advance the adoption of conservation agriculture practices and leverage 

the power of remote sensing technologies for sustainable land management. The findings and 

insights from this dissertation serve as a valuable resource for guiding future research, policy 

formulation, and on-the-ground interventions in conservation agriculture. 


