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ABSTRACT 

 

As modern electric power distribution systems (MEPDS) continue to grow in complexity, largely 

due to the ever-increasing penetration of Distributed Energy Resources (DERs), particularly solar 

photovoltaics (PVs) at the distribution level, there is a need to facilitate advanced operational and 

management tasks in the system driven by this complexity, especially in systems with high renewable 

penetration dependent on complex weather phenomena.  

Digital twins (DTs) or virtual replicas of the system and its assets, enhanced with AI paradigms 

can add enormous value to tasks performed by regulators, distribution system operators and energy 

market analysts, thereby providing cognition to the system. DTs of MEPDS assets and the system can be 

utilized for real-time and faster-than-real-time operational and management task support, planning 

studies, scenario analysis, data analytics and other distribution system studies.  

This study leverages DT and AI to enhance DER integration in an MEPDS as well as operational 

and management (O&M) tasks and distribution system studies based on a system with high PV 

penetration.  DTs have been used to both estimate and predict the behavior of an existing 1 MW plant in 

Clemson University by developing asset digital twins of the physical system. Solar irradiance, 

temperature and wind-speed variations in the area have been modeled using physical weather stations 

located in and around the Clemson region to develop ten virtual weather stations. Finally, DTs of the 

system along with virtual and physical weather stations are used to both estimate and predict, in short 

time intervals, the real-time behavior of potential PV plant installations over the region. Ten virtual PV 

plants and three hybrid PV plants are studied, for enhanced cognition in the system. These physical, 

hybrid and virtual PV sources enable situational awareness and situational intelligence of real-time PV 

production in a distribution system. 
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CHAPTER ONE 

INTRODUCTION 

 

With the continuous modernization and changes in the Electric Distribution system comes new 

difficulties, increased complexities and needs for supporting infrastructure and technology. Historically, 

the distribution system used to require comparatively less comprehensive design, and include less 

operational and maintenance complexity, especially when compared to the transmission or generation 

side of the grid. However, with the advent of distributed energy resource penetration (DER) at the 

distribution level, new operational and management challenges began to quickly arise. DERs have led to 

significant hardware upgrades and other infrastructural changes, opened new opportunities for 

distributed generation, microgrids and the like and quickly led to changing attitudes with respect to the 

distribution system. 

Prior to 2018, DERs were to be quickly disconnected during abnormal voltage conditions as per 

IEEE 1547-2003 standard. However, new standards have been defined as per IEEE 1547-2018 [1] and 

1547a-2020 [2] defining DER interconnection and integration standards. FERC 2222 [3] additionally 

bolstered the change, allowing the participation of aggregated DERs in wholesale markets. A large 

portion of DERs consist of distributed photovoltaics (DPV), additionally supported by the ever 

decreasing prices of PV panel production. PV is however inherently dependent on climatic phenomena, 

while being a non-dispatchable, grid-following source when connected to the grid [4]. 

DER integration and by extension DPV, have become therefore, an area where extensive 

research, system modeling at various time-scales and real-time simulations are to be performed, enabling 

distribution system operator support for volt-var control and optimization. New products in the 

distribution automation space such as ADMS and DERMS systems, STATCOMS and smart inverters 

have become commonly employed. DSOs need short and long-term PV power forecasts to enable 

intraday and next-day energy market trading, and enhanced volt-var control (VVC) and volt-var-

optimization (VVO) for day-ahead planning and system management, needed to mitigate power and 
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voltage instability common in PV sources [5]. These studies are also required by regulatory and utility 

support for planning, reliability and resilience studies analyzing the impact of utility scale PV 

installations on the grid, hosting capacity of the system and the setting of VVC control points and 

sophisticated control strategies for DPV O&M optimization [6].  

Essentially situational awareness, or real-time awareness of the system’s behavior and situational 

intelligence, and predictive awareness or data-based, informed behavioral analysis of how the system 

will continue to behave over time is needed. This means a highly complex, dynamic, non-stochastic 

system’s behavior is to be modeled, often at varying time scales from real-time to faster than real-time 

over long periods.  

Digital Twin (DT) technology is therefore an emerging avenue of research in this area [9]. DTs, 

or a dynamic real-time virtual model of a process, system or asset, However, given the complexity, cost 

and modeling hardware, software and other resource requirements involved in DT development, the 

employment of physics-based DT creates added challenges, especially when a physics-driven DT may 

be highly area and installation specific. Data-driven approaches to DT modeling, however, can be a 

solution to this issue. Data-driven DTs and hybrid DTs that are physics-based with artificial intelligence 

paradigms are scalable, easily optimizable, can be applied to new and varying installation types and 

locations, and can be comparatively cost-effective to design and deploy. 

Objectives of the Thesis 

 The objectives of this thesis were to primarily mitigate the complexity and costs involved 

with PV power behavior modeling and develop a scalable, cost-effective means to generate realistic PV 

plant data streams using available measurement sites. Additionally, a means to enable estimation and 

predictive analysis of PV plant behavior in real-time and PV power production over a region was a 

focus, to further produce situational awareness and situational awareness of PV power production with 

the eventual aim of easier integration of DPVs in an MEPDS. 
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Objectives of Chapter 2 

An explorative review of the emerging MEPDS and needs in the system is needed to identify 

gaps, potential use-cases and typical applications currently utilized for leveraging DTs and AI enabled 

support in MEPDS  

Objectives of Chapter 3 

PV power prediction and estimation is an area of constant research. DSOs need support for 

operational and management needs, especially for PV power forecasting, both over short and long-term. 

For instance, cloud-cover drops with over 50% of peak power over a minute can generate fluctuations in 

PV power generation, leading to power quality issues and other reliability challenges. Voltage regulation 

at the distribution level is additionally increasingly challenging if there are DPVs. Estimation and short-

term prediction of PV power over an entire area is necessary for optimized DPV and PV plant operation 

and employment of effective VVC strategies. 

Objectives of Chapter 4 

Solar irradiance and solar irradiance variations based on climate defines PV power generation, 

while effective decision making and DT modeling needs high fidelity data at small timesteps in real time 

at various regions  

Objectives of Chapter 5 

Prediction and estimation of PV power generation in the area, in various placement locations is 

needed for enhanced observability and monitoring of the system. 

Contributions of the Thesis 

• A careful review of the major challenges with the changing MEPDS and the use-case for DT 

technology for common O&M challenges, especially as pertains to DPV and PV power production is 

provided. AI is identified as an enabler of cost-effective, scalable and optimizable DT design, 

particularly suited to the behavior modeling of PV plants and further enabling advanced applications 

in the MEPDS. In particular, the use-cases of data-driven DT models for DPV optimization and 

integration are presented. 
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• A DT approach was utilized for scalable, low cost and reliable PV plant behavior estimation and 

prediction in real-time, accurately estimating and predicting PV power production over various cloud 

cover patterns utilizing multi-layer perceptrons and echo state networks to model its behavior and 

was tested over a period of 3 months of solar PV data. The DTs developed can be utilized for 

traditional DT use cases. For instance, PV power estimation and prediction can be used for fault 

detection, condition monitoring and predictive analysis in a PV site with available measurements and 

for missed data imputation in a PV site with missing or erroneous PMU measurements.  

• Intelligent mutation consisting of mathematical based models such as inverse distance weighting as 

well as data-driven inferences of solar irradiance, temperature and wind speed variations between 

three existing weather stations were used to identify trends and predict weather at user-selected 

locations over the region. Using this information, 10 new virtual weather stations (VWS) were 

developed, providing estimated solar irradiance, temperature and associated wind speed and 

direction in those locations in real-time. 

• A multi-DT methodology for estimating and forecasting PV power over the selected region in real-

time is developed supporting various scenarios and purposes, enabling situational awareness and 

situational intelligence of PV power generation in a distribution system. PV plants are generated are 

of three types and are categorized as Case 1: Traditional PV sources, where a physical weather 

station and prediction or estimation DT of an existing PV plant is developed, Case 2: Hybrid PV 

sources where an existing PV plant and these scenarios can be further validated and optimized as 

needed for PV power prediction or estimation in locations where measurement data is available, and 

in locations with non-existing measurements where data imputation is necessary. 

Publications 

• A paper titled “Digital Twins and AI for Photovoltaic Plant Power Estimation and Prediction in 

Electric Power Distribution Systems”, consisting of chapters 2 and 3 of the thesis have been 

submitted to the 33rd Australasian Universities Power Engineering Conference (AUPEC2023). 
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• A paper titled “Situational Awareness and situational intelligence for distributed PV plants”, 

consisting of parts of chapters 3,4 and 5 has been submitted to the 2023 IEEE Symposium Series on 

Computational Intelligence. 

Organization of the Thesis 

The rest of the thesis is outlined as follows:  

• Chapter 2: A comprehensive review of DT technology, the beneficial inclusion of data-driven, here 

AI, paradigms in its design particularly as a means to mitigate complexity and support O&M 

challenges in the MEPDS and DPV integration is presented.  

• Chapter 3: ESNs and MLP based methodologies for data-driven DT design is employed for PV 

power estimation and prediction acting as a DT of a physical system, Clemson’s R06 site. The DT 

performance is validated and tested against real-time behavior of the site over the spring.  

• Chapter 4: Virtual weather stations that generate real-time input streams of solar irradiance and 

temperature based on spatial variations over the site and three existing physical weather stations are 

then developed. 

• Chapter 5: Finally, all weather station sources available at the site, now including new virtual 

weather stations are fed into the tested, designed DT model, enabling estimation and prediction of 

PV power and real-time PV plant behavior, resulting in “Virtual Real-Time Photovoltaic Plants” or 

V-RT-PVPs. 

• Chapter 6: The conclusions drawn by the work, summarized results and future work to be done in 

this area is presented. 
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CHAPTER TWO 

DIGITAL TWINS FOR SOLAR PHOTOVOLTAIC PLANTS 

 

Introduction 

In recent years, the modern electric power distribution system (MEPDS) has undergone 

significant changes due to the increased penetration of distributed energy resources (DERs) and the 

growing presence of electric vehicles (EVs) with grid charging capabilities. These developments have 

brought about planning and design challenges to regulators and energy market changes as well as new 

operational and management challenges for and distribution system operators. Among the many 

complexities that arise from DER inclusion, renewable energy sources, particularly photovoltaic (PV) 

such as Distributed PV (DPV) systems, from rooftop solar to utility scale installations have played a 

crucial role [8]. 

By harnessing data-driven models and artificial intelligence-based approaches, DTs, or high-

fidelity virtual replicas of the system or system assets can offer a comprehensive, intelligent support 

infrastructure for PV plant integration in the MEPDS. MEPDS DTs can facilitate real-time system 

observability, condition monitoring, fault recognition, and predictive analysis [9]. DTs enhanced with AI 

capabilities can leverage DT models as platforms for AI based DT services supporting MEPDS 

operational and management tasks, and further enable cognition in the MEPDS. The potential of Digital 

Twins in addressing operational and management challenges accompanying PV integration in the 

MEPDS is further explored.   

MEPDS O&M Challenges  

The traditional distribution system is in a transitional stage, with complexity and its associated 

needs growing exponentially alongside the incorporation of DERs in the system. New infrastructures 

such as enhanced sensing, decision making, intelligent control and optimized communication protocols 

thereby becomes integral in an MEPDS. These distribution system changes lead to added operational 

and management complexity explored below.  
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Transformation of the MEPDS 

There is a progressive shift from traditional power distribution systems with unidirectional power 

flows to a modern electric power distribution system (MEPDS) with bidirectional power flows. MEPDS 

are characterized by their increased decentralization of power generation due to the penetration of DERs 

which further enables active distribution networks (ADNs) and microgrids. Supporting cyber physical 

system infrastructure is needed to handle this transition, which can be considered as 3C or 

Computational, Communication and Control frameworks. This includes intelligent information and 

communication technology (ICT) to support advanced metering infrastructure (AMI), micro-PMUs and 

PDCs, and accompanying optimal decision-making support such as DERMS and DRMS. With the 

inclusion of new technologies to support various MEPDS complexities, the system can support or 

integrate advanced functionality, enabling efficient, secure, reliable and resilient operation with 

improved power quality [10]. A diagrammatic representation of the MEPDS can be seen in Figure 2.1, 

adapted from [11]. 

 

Figure 2.1 3C framework for MEPDS design, adapted from [11] 
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A large portion of MEPDS challenges thereby lie in DER penetration, of which distributed 

photovoltaics (DPV) is a large aspect. Photovoltaic (PV) plants present new challenges, particularly in 

the context of distributed PV integration, surrounding system monitoring, state estimation, control and 

overall operation and management. Typical challenges involve lack of system visibility, non-

dispatchable nature and potential back-flow into transmission necessitating volt-var optimization and 

control, and distribution hardware upgrades driven by hosting capacity studies driven by understanding 

PV plant temporospatial dynamics [12]. 

 Achieving real-time system monitoring and dynamic state estimation is challenging due to the 

incorporation of DPV sources. DPVs can introduce bi-directional power flow and can hinder visibility of 

on-site network parameters. Significant cloud cover leading to power generation drops over 70% of peak 

expected power, can lead to sudden losses of PV generation, causing voltage fluctuations further leading 

to power quality issues [16], while DPV installations can additionally be behind the meter causing low 

visibility, i.e., impact of cloud cover and partial shading losses are bundled with home-owners’ power 

usage. Additionally, there is a need to compensate for missed and unavailable data measurements while 

visualizing PV plant performance in real-time for performance analysis and potential degradation or 

faults in the system. DPV estimation and forecasting is needed to ensure accurate monitoring and 

estimation using advanced sensing, monitoring, and communication protocols and new technologies. 

 Optimization and decision-making frameworks and decision-making for Distribution System 

Operators (DSOs) are crucial to effectively support interconnected DER systems with high renewable 

penetration. This involves intelligent volt-var optimization strategies based on neural network driven 

methodologies [39], optimal placement, utilization and control of smart inverters and other VVO 

equipment such as on-load tap changers (OLTC), switchable capacitor banks, static var compensator 

(SVC), and monitoring equipment, changes in equipment hosting capacity as necessary, and usage of 

supporting infrastructure such as centralized or decentralized Distributed Energy Resource Management 
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Systems (DERMS) [40] to manage and optimize reactive voltage injection and prevent network 

congestion. 

 Long-term O&M challenges accompanying PV integration include reliability estimation, optimal 

corrective and preventative actions, maintenance planning, and integration of legacy systems with newer 

equipment, line or feeder upgrades and voltage regulation and monitoring equipment such as smart 

inverters, D-FACTs, SVCs and other devices to support utility-scale PV installations at the distribution 

side [13]. Resilience evaluation of the MEPDS, particularly of feeders and feeder configuration, 

considering PV production in scenarios such as light load and peak PV production, voltage regulation 

during severe cloud cover impact, and asset management constraints such as power transfer management 

and microgrid stability once PV is integrated are crucial considerations [14]. 

 Finally, in a system where DERs, microgrids, and Active Distribution Networks (ADNs) coexist 

with high penetration of PVs, short and day-ahead forecasts of PV power are needed to support intra-day 

and day ahead trading in energy markets [15]. The MEPDS needs to accommodate multiple stakeholders 

and prosumers, ensure enhanced system security through access controls, and establish optimal 

regulatory requirements to balance revenue generation, power trading, and operational costs while 

maintaining optimal power dispatch. 

Digital Twins – Definition and Architecture 

The DT was originally devised as a parallel virtual space and a simulation tool in the field of product 

development and testing throughout its lifecycle. They have now evolved far beyond its original use case 

in product development, and are increasingly adopted in various industries such as the aerospace industry 

[18], automobile manufacturing and in the power industry. A Digital Twin is defined as a virtual model 

or representation of a physical system, asset or process enhanced with data connections enabling the 

transfer of data insights and process data from the virtual representation in real-time (RT) back to the 

physical system. The DT has three major components: the physical system, the virtual model or “twin” 

and a constant real-time informational or control flow exchange, enabling “twinning” of the digital model 
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with the changes in the physical system.  It thus acts as a self-evolving, multi-scale, multi-physical and 

hierarchical digitized simulation of a system or processes in real-world, dealing with both real-time data 

as well as historical data [19].  

DT models can be as simplistic as a 3D system representation to complex, high-fidelity twins of 

operational vehicles, for instance. The virtual model developed can be self-evolving, multi-scale, multi-

physical and hierarchical digitized simulation of a system, asset or processes in the real-world, dealing 

with both real-time data as well as historical data. DTs therefore can be classified on various levels and 

aspects with various user-defined nomenclatures on aspects ranging from the level of synchronization 

and fidelity with the physical system, time of creation of the DT, application type, and level of 

maturity[20]. 

DTs can be built using physics or mathematical based models, as well as using data-driven 

approaches such as Artificial Intelligence (AI) paradigms. The utilization of artificial intelligence (AI) 

paradigms for DT development, known as a data-driven DT [21] can significantly enhance the value-add 

of DTs while providing adaptivity, efficiency, reliability, scalability, memory, reasoning and 

perceptiveness of the linked physical system. These DTs enhanced with AI functionality are also known 

as Cognitive Digital Twins (CDTs). CDTs thereby interact with, learn and adapt to the physical system, 

as well as enable separate DT model entities to be linked together for enhanced O&M functionality [22].  

In the context of an MEPDS, two types of DTs can be built, when categorized based on the 

physical system:  

• System DTs or Digital Twins replicating the overall MEPDS behavior at various time-scales, levels 

of fidelity such as DTs of distribution network topology [25], network parameters such as current, 

voltage, frequency and active and reactive power [27] and so on  

• Asset DTs or Digital Twins replicating MEPDS assets, such as DTs of inverter dynamics [28], PV 

plants [29],[33], HVAC load models of a building, energy storage system capacity modeling and 

degradation, etc. 
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Digital Twins and the MEPDS  

A cohesive, constantly expanding digital entity or entities that reflects MEPDS complexity and 

leverages expanding, real-time flow of data in the system to effectively enable or improve grid long-term 

and short-term O&M operations is a valuable proposition. DTs that can mimic complex real-world 

systems, its operation, processes and behavior offer a promising means for an overarching intelligent 

support infrastructure, simulating system behavior, and a platform for facilitating computationally 

intelligent tasks and grid edge solutions in the MEPDS [23]. The availability of a digital model, or DT of 

distribution system entities and processes enables real-time system monitoring at required time-scales, 

data maintenance and data synchronization of archived data and processes, condition monitoring, fault 

recognition, alert generation, granularized views and enhanced visualization and predictive analysis of 

the MEPDS system and its assets [24]. 

Furthermore, utilization of a data-driven DT or AI-based simulated virtual replicas of a power 

system and associated processes can provide a cohesive platform or environment for further building of 

advanced AI based applications supporting MEPDS operation and management. Traditional DT services 

include: 

• Real-time condition and health monitoring of system and system assets 

• Predictive analysis  

• Data collection and archiving 

• System and equipment fault recognition, alert generation 

• Dynamic state estimation and advanced observability 

DT services can be deployed onto traditional DTs to utilize collected data and develop new 

inferences. DT services be developed using AI paradigms, creating a Cognitive Digital Twin (CDT). AI-

based DT services built onto an MEPDS can include:  

• Volt-var optimization and control 
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• Asset planning and allocation 

• Optimal decision support and parallel scenario testing  

• Distribution network or equipment fault detection 

• System topology monitoring 

• Optimizable load and source forecasting 

• Parallel scenario-testing 

• Creation of synthetic data and missed-data imputation 

• Distribution network fault identification, prediction and classification 

Exports of entity and process behavior from CDT and DT models provide valuable analyses, for 

instance, this data can be useful for business intelligence and reporting, energy markets, prosumers and 

planning operations. The DT thereby works in real-time to support and facilitate operation and 

management tasks in what will consequently evolve into a highly controllable, scalable, resilient and 

adaptable cyber physical MEPDS.  

Need for data-driven Digital Twins 

Designing DTs for an evolving, multi-stakeholder MEPDS system with high renewable 

penetration, accompanying complex behavior and process modeling requirements becomes highly 

computationally inefficient and resource expensive.  

In MEPDS systems with high penetrations of DPVs, physics-based or mathematical-based DT 

modeling will need to account for stochastic or non-linear behavior dependent on environment processes 

ranging from cloud cover variation, wind speed changes, shading losses, bundled behind-the-meter 

readings where load usage is to be predicted, seasonal variation, humidity, as well as PV panel 

degradation and aging, and other accompanying variables. Additionally, given the small-scale of rooftop 

PV installations for instance, intensive modeling and setting up accompanying measurement equipment 

and management of data streams may not be economically viable. 
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 Therefore, the accompanying costs and resources required to develop DTs for multi-dimensional 

and multi-stakeholder systems that are to be scalable, highly computationally efficient, multi-faceted, 

and cyber-secure, while serving the needs of multiple stakeholders, as in the case of MEPDS DTs, are 

exponential high. The incorporation of DT services can be another unwieldy piece in this puzzle, where 

facilitation of these services requires additional management and monitoring of service functionality by 

the respective stake-holder.  

Complexity mitigation and efficiency improvement of the DT design process can be 

accomplished through the utilization of data-driven DT models. DT services and applications can 

similarly be enhanced through the incorporation of AI based paradigms. AI paradigms enable function 

approximation and reasonably accurate estimation of non-linear and stochastic processes, require little 

maintenance and are easily adaptable and scalable compared to mathematical or physics-based DTs 

which may be system specific.  

 

Figure 2.2 Digital twin and AI collaboration for enhanced MEPDS operations and management 

Additionally, there is a unique, synergistic effect to utilizing data-driven DTs as a platform to 

deploy AI-based DT services in an MEPDS. Real-time data streams are available in data-driven DT 
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environments, that are typically pre-processed, synchronized and in an appropriate format, and are 

additionally archivable as needed, in comparison to physics-based DTs which are typically built onto 

separate modeling environments with their own proprietary tools such as MATLAB, RSCAD (RTDS) 

and the like. Applications built supporting MEPDS O&M tasks such as DERMS, DRMS or BI 

applications can easily utilize this data for greater insight of the system. Inferences made using these DT 

can also guide DSO or regulator decision making in real-time, or help with distribution system studies. 

The utilization of data-driven DTs and CDTs therefore facilitates high-quality data and an effective 

platform to develop plug-and-play tools or enhanced MEPDS support applications 

DTs for Solar Photovoltaic plants 

Much of current changes around the MEPDS can be directly attributed to the increased 

penetration of DERs at the distribution level along with additional impact of electric vehicles (EVs) and 

grid charging, leading to new O&M challenges. A large portion of this DER complexity can be 

attributed to renewable inclusion, especially photovoltaic (PV) and Distributed PV (DPV) penetration in 

the MEPDS. The integration of PV plants presents various operational and management challenges due 

to the non-dispatchable nature and associated operational and management issues arising from 

renewable penetration. This necessitates volt-var control and the inclusion of distribution automation 

technologies and distribution system upgrades to improve power quality, system reliability and 

resilience, enable effective monitoring, fault recognition, and predictive analysis. New standards have 

been developed to deal with DER interconnection, such as FERC 2222 and IEEE 1547.9-2022, 

permanently changing the distribution system landscape in the United States. 

A cohesive, constantly expanding digital entity or entities that reflects, in real-time, PV plant 

complexity and leverages expanding, real-time flow of data in the system to effectively support or 

optimize PV plant operational and control challenges and other long-term operations from planning and 

design to asset management and maintenance becomes a valuable proposition. DTs of distributed PV 
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sources and PV assets enables real-time system observability and monitoring at required time-scales, 

fault recognition and analysis, and advanced distribution system studies and analysis. 

The operational and management challenges faced by photovoltaic plants in the MEPDS can be 

effectively addressed through the utilization of DTs, with a particular focus on data-driven models and 

AI-based approaches. By enabling real-time system observability, fault recognition, and analysis, as well 

as supporting advanced distribution system studies, DTs offer significant potential for optimizing the 

performance of PV plants and enhancing the integration of renewable energy sources within the modern 

electric power distribution system. 

Digital Twin Applications 

 Digital models of the system, system assets and other entities itself provides support for DPV 

integration, operation and management in the MEPDS. Advanced DT services, or applications supporting 

various O&M tasks can then be built or supported by information from DTs. This includes specific 

operations of PV plants such as real time monitoring and control, dynamic state estimation, volt-var 

optimization and decision support, long and short-term forecasting, resilience and reliability testing, power 

quality improvement among others, that are usually modeled or optimized using AI paradigms. The DT 

therefore behaves as an optimized, dynamic, scalable and flexible environment for services or 

applications, testing and implementation of various AI enabled operation and management tasks.  

 Many implementations of DTs [28]-[52] and prototypal-DTs [39] currently exist in power 

distribution systems with AI-based applications. They support specific distribution system O&M needs 

surrounding PV integration and DPV or PV plant management at the distribution level. These are 

categorized in Table 2.1 and further explored below. 

 DTs can be used for enhanced state estimation, or modeling system and system asset dynamics. In 

[29] AI and Digital Twin models were used to model asset DTs of PV panels, DC-DC converter and the 

final system, using IoT data to create a PV CDT capable of monitoring PV plant dynamics, utilized for 

condition monitoring of the system. DTs of regional multiple energy systems (RMES) on CloudPSS are 
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developed and tested on a PV system, where power flow and electromagnetic transient (EMT) models are 

utilized to monitor distribution system parameters and health in [30]. In [31], genetic algorithms and digital 

twins were used to identify PV dynamics of neighboring stations with weather data, using simple 

parameters such as tilt, albedo, solar irradiance and the like, creating a self-learning DT model. In [32] a 

DT of the maximum power point tracking (MPPT) algorithm was developed using mathematical 

approaches to model shading losses at each PV string, optimized using an Artificial Neural Network 

(ANN).   

 In [28], a DT of a distribution power transformer was used for state estimation of medium and low 

voltages in distribution feeders using waveform monitoring. In [41], A DT consisting of OpenDSS based 

time-series feeder measurements and particle swarm optimization (PSO) was utilized for dynamic state 

estimation and setting of optimized DER reactive power setpoints in the system. 

 In [40] a novel DERMS solution is proposed by adopting the real-time optimal power flow (OPF) 

for coordinated control of the distributed PV inverters in a real-time manner, creating a prototypal DT. In 

[45], a real-time digital simulator (RTDS) was used to create a DT of distribution power flow, with data 

imported with GridVis. 

 A large portion of DT applications deals with volt-var optimization. For instance, a DNN approach 

has been used for volt-var optimization in [36]. In [37], a DT was utilized to create an Automatic Voltage 

Regulation (AVR) hierarchical coordinated control strategy for PV inverters to keep voltages in low-

voltage (LV) distribution grids within specified limits during cloud cover and other scenarios affecting 

PV power generation. In [39] cellular computational networks (CCN) was used to create a data-driven DT 

for hierarchical DER optimization, at the individual node, zone level and at the distribution system level. 

 DTs have been used for PV forecasting for a distribution network in [17]. In [53], a DT based day-

ahead integrated energy system scheduling under load and renewable energy uncertainties using deep 

neural networks.  and decision support [20] using IoTs, edge computing and cloud architectures.  
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 An online analysis digital twin (OADT) approach is seen in [34], developed to support the 

realization of a new power grid online analysis solution architecture for DERs, and includes the usage of 

DTs to aid DSOs by automating distribution rules.  

 In [50] fog computing and IoT networks were used to develop a data-driven DT for probabilistic 

solar and load forecasting to improve system reliability. 

 A DT based Power-Hardware-in-the-Loop (PHiL) was utilized for distribution network topology 

assessment and fault detection in DERs in [35]. In [44] and [46] DTs of DPVs were used for fault 

identification and condition monitoring of the system. 

Table 2. 1  DT APPLICATIONS  IN MEPDS O&M TASKS 

O&M Task(s) DT Types 

 

Application(s) 

Modeling Asset And 

System DTs 

Situational Awareness [29], PV asset modeling [30], PV 

generation imputation [31], MPPT optimization [32] 

Monitoring And 

Estimation 

Asset DT Distribution network [28], Dynamic state estimation and DER 

setpoint optimization[41] 

Power Flow 

Analysis 

System DT Power flow calculation for PV inverter control [40], Power 

Flow Calculations [45] 

DERMS  

Support 

System DT Distribution network VVO [36], [39], Automatic voltage 

regulation for PV inverters [37] 

DRMS 

Optimization 

System DT Load and Energy Management [34] 

Forecasting Asset DT Demand [48], Network Reliability [50] 

Fault Diagnosis Asset DT Distribution network topology assessment[35], DPV fault 

diagnosis [44],[46] 
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DTs thus enable artificial intelligence paradigms that allow for increased efficiency and 

optimized control, reduction in process redundancy and costs involved with incorporation of automation 

and algorithmic improvements and standardized data processing across systems or management levels, 

while significantly reducing risk in planning and optimization tasks. The dual inclusion of digital twin 

(DT) technology paired with AI frameworks for DT modeling in MEPDS and DPVs is thereby highly 

advantageous 

Summary  

DTs are highly advantageous as supporting infrastructure for various MEPDS and DPV O&M 

tasks. Additionally, data-driven digital twins, or DTs developed using AI paradigms are highly suitable 

to employ in modeling systems dependent on non-linear or stochastic environmental processes such as 

PVs and therefore in an MEPDS with high PV penetration. AI methodologies further enable DT 

modelers to optimally model the virtual space, reduce time-to-market, and create computationally 

efficient virtual models.  

This shows that through the usage of AI algorithms in both the design phase of an MEPDS DT 

and in the development of advanced functionalities during the operational and working phase of the DT, 

DT and AI become enabling technologies for each other, facilitating grid-edge solutions and stake-

holder needs in an MEPDS, and further enabling cognition in the system. 
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CHAPTER THREE 

PV PLANT DIGITAL TWIN 

Introduction 

As detailed in chapter 2, data-driven digital twin models can be utilized to deploy advanced 

MEPDS operations. Towards this purpose, computationally efficient, scalable neural network 

architectures such as Multi-Layer Perceptrons (MLP) and Echo State Networks (ESN) have been 

utilized to develop asset digital twins for estimation and prediction of PV plant power outputs.  A 1 MW 

PV plant at Clemson University is utilized for these studies. The modeling, optimization and testing 

results of the PV DTs are further explored in this section.   

Digital Twins for PV Plants 

A DT of power distribution system assets such as generators, loads, transformers and DER 

sources can enable generation of realistic datasets of a system over a wide range of scenarios and further 

act as a valuable aid for estimating and predicting the behavior of a complex system for power system 

studies. For instance, volt-var optimization, energy management, planning studies, demand response 

studies and further forecasting, analysis and optimization of the physical system can be facilitated via 

DTs of the system integrated into testbeds or RTDS systems.  

Traditionally, physics-based [59], mathematical approaches [60], data-driven [61] or hybrid 

combinations [62], [63] of those methods can be used for creating DTs of DERs, in particular, of PV 

plants. Additionally, different PV plant entities, various levels of fidelity and varying time-scales can be 

modeled using these DTs based on the use-case requirements.  
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Figure 3.1. Digital Twin components for a PV plant 

Some distribution system assets, in particular DERs such as PV plants or wind turbines are 

complex in nature to model using physics-based approaches, especially in real-time, as is the case with 

traditional DTs. As PV penetration or in particular distributed PV (DPV) continues to rise in shares with 

both count of installations and by capacity now connected to the grid [6], PV power estimation and 

prediction is necessary.  

However, modeling the realistic behavior of PV DTs for various operational conditions and time-

scales requires the utilization of extensive resources. Additionally, once implemented, physics-based 

models can be difficult to maintain, operate and update, especially when advanced functionality or 

MEPDS application support is necessary from the model. For instance, typical operations performed in 

distribution systems studies include combinations different configurations, placements and scales of PV 

plants, while additionally accounting for climatic or external factors that are a result of these changes.  

A purely mathematical or physical model is therefore typically insufficient to account for 

growing system complexity and is time-consuming to model, while the current and future state and 

needs of the PV plant and MEPDS system as well as time dependent PV performance metrics such as 

panel ageing and degradation, shading losses and the like can be better captured by AI-paradigms, as 

detailed in chapter 2. Data-driven PV plant DTs can be used to support MEPDS planning operations or 

support a Distributed Energy Resource Management System (DERMS). PV DTs integrated into a 

distribution testbed can simulate system behavior due to addition, removal or scaling of new PV plants 
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in surrounding geographical areas, further allow estimation hosting capacity and network congestion, 

support reliability and resiliency testing and so on, all in real-time, faster-than-real-time or as time series, 

supporting quasi-static and time-series analyses. MEPDS O&M challenges such as volt-var optimization 

and scenario testing as well as simplistic operations load-relief and sizing analysis and the like can be 

simulated using PV DTs. 

PV Plant System 

A PV plant DT has been employed here to model PV power generation of an existing real-world 

PV-plant at a physical site, shown in Figure 3.1 and Figure 3.2. The physical site consists of a weather 

station which is a CR300 weather data logger that monitors and logs solar irradiance, temperature, wind 

speed and wind direction data for a second interval. This is placed accordingly to measure the input solar 

irradiance to a 1 MW PV array at Clemson University with corresponding solar power generation data 

streamed from micro-PMUs (μPMUs). This data is archived and timestamped in openHistorian, a back-

office No-SQL database used for streaming, archiving and integrating process control and synchro 

phasor data for further analysis or real-time querying of power generation flows.  
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Figure 3.1 1 MW PV plant at Clemson University’s R-06 carpark 

 

Figure 3.2 CR300 Campbell Scientific Measurement and Control Datalogger 
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System environment for DT development 

• The data-driven DT was developed on Python (3.9) and Jupyter Notebook.  

• A high performance computing (HPC) environment was used, run on the Palmetto 

Cluster, consisting of 8 CPUs with 2 resource chunks and 30gb memory per chunk. 2 

GPUs, V100, were used per CPU. 

• Data collection of weather data was done using CR300 web API over Python and pre-

processed for correct sample counts using Python’s pandas library. Python’s 

openHistorian library was used for reading data points archived on OpenHistorian’s 

noSQL database. 

• Real-time streaming was done over TCP/IP connections of weather station databases and 

openHistorian’s localhost instance. 

• Python packages used include numpy, pandas, pyESN, scikit-learn, openHistorian, Dash 

and Plotly. 

• Data from PMUs and CR300 was collected from February 27rd to May 16th , for the 

Clemson-Anderson-Pendleton region over spring, pre-processed to be a second interval. 

Unusable measurements and days with long periods of missing data were excluded from 

the training dataset. 

 

DT architecture for PV power estimation using MLPs 

DTs of DPVs, and further, of system assets are useful tools in power distribution 

system studies. The system behavior and actionable metrics related to a particular PV plant’s 

behavior such as condition monitoring, fault recognition, predictive maintenance and other 

traditional DT tasks can be enabled through DTs of a system. This enables enhanced 
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monitoring and visibility of the asset, which helps in front-of-the-meter PV installations and 

of the distribution system as a whole. 

Modeling PV plant behavior has its own challenges. A characteristic feature of DERs 

and particularly PV plants, is the system’s non-linear behavior. The equation defining typical 

PV power generated at time instant t is seen in equation 3.1, where Gstd and Tstd are the 

standard test conditions for solar radiation and cell temperature, respectively, and αT is the 

manufacturer temperature coefficient of a PV module. PV generation at a site therefore is 

dependent on temperature and solar irradiance received at the site over time, and panel 

material which defines panel degradation over time as well as PV panel installation size, tilt 

and type. Solar irradiance falling on the panel is additionally impacted by external variables 

affecting shading losses such as geospatial and atmospheric conditions, which further impacts 

PV plant performance. 

PV(t) = PPeak 
𝐺(𝑡)

𝐺𝑠𝑡𝑑
  − αT[Tc(t) – Tstd]  (3.1) 
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Figure 3. 3 Ideal I-V and P-V characteristic curves at 480 W/m2 irradiance 

 An MLP is used to model system behavior and estimate PV plant performance in a 

manner that reflects changing plant performance in near real-time. The MLP model is fed 

real-time data and is retrained appropriately to reflect changing PV plant conditions in real 

time.  

MLPs are feedforward neural networks that typically enable informational flow in one 

direction. MLPs have input layers, one or more hidden layers containing neurons with 

trainable and optimizable “weights”, and output layers. From the name, MLPs consist of 

neurons, or “perceptrons”. These perceptrons apply weighted sums to input samples that are 

passed through to an activation function to finally produce an output. These outputs can be 

then fed as inputs to the neurons in the subsequent layer, if more than one hidden layer is 

present. The architecture of the MLP used for data-driven DT modelling of PV power 

estimation is seen in Figure 3. 4. The equation used to train the MLP is in equation 3.2, where 
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y(t) is the output, obtained through tuning output weights Wout , reference weights Wref against 

an activation function h(t) and transfer function r(t) 

 

y(t)=f(Wouth(t)+Wrefr(t)).   (3.2) 

 

 

Figure 3. 4 MLP Model for PV power estimation at current time interval 

The weights and biases of the MLP are further adjusted iteratively using a process 

called backpropagation, enabling learning. Backpropagation calculates the gradient of the 

loss function with respect to the weights and biases and updates them in a way that minimizes 

the error between the predicted output and the true output. This process is typically 

performed using optimization techniques such as stochastic gradient descent (SGD) or its 

variants. 

Python’s scikit-learn module is used to define the MLP architecture, here 

“MLPRegressor”. A single layer MLP, with a logistic or “sigmoid” activation function, with 

neurons ranging from 10 to 25, learning rates of 0.04 to 0.001, bias of 1 and quasi-newton 
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solver Limited-memory BFGS was used to estimate the output at the 1 MW PV plant, R06. 

The training function is set such that up to 5000 epochs can be used, with early stopping and 

validation practiced when value has converged to <0.0001 tolerance. The parameters were 

chosen for optimal computational efficiency with acceptable accuracy, enabling near-real-

time DT estimations of PV power. The results of a grid search for optimal hyperparameters 

can be seen in Table 3.1. 

Table 3.1 Tuned Hyperparameters for best DT performance 

Model 

Category 

Day Category Neurons(n) Activation 

function 

Solver Learning 

rate (α) 

Estimation Sunny 10 Logistic LM-

BFGS 

0.04 

Estimation Moderately 

cloudy 

20 Logistic LM-

BFGS 

0.002 

Estimation Cloudy 20 Logistic LM-

BFGS 

0.001 

 

Three MLPs are separately trained offline on historical data, categorized by daily 

cumulative solar irradiance received at R06 into “cloudy”, “moderately cloudy” and “sunny” 

days. Input data used as features for the network are solar irradiance, temperature and bias, 

with a measurement interval of one second. These MLPs are used for near-real-time 

estimation of PV plant performance and are therefore PV plant estimation DTs that can be 

optimized for increased system complexity and knowledge depth, as well as granularity 

required. 
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Online training and predictions are then done to utilize the PV DT for estimation as in 

Figure 3.5. Real-time data obtained from the weather data monitor at the PV plant is used as 

inputs to each MLP model, pre-trained on historical data, estimating PV power output at the 

current time interval in real-time for each day category. The MSE of MLP predictions from 

each day category is compared and monitored at every minute to ensure the selected MLP 

model category’s estimation accuracy or MSE does not fall below 98%. If it does, the MLP 

model is switched to the model with the lowest MSE amongst the three. The predictions with 

the lowest MSE is visualized, archived and finally averaged to identify the type of cloud 

coverage over the day.  
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Figure 3. 5 MLP Real-Time estimation flowchart 

DT architecture for PV power prediction using ESNs 

Short term PV power forecasts can be useful for DSO needs and applications such as 

cloud cover impact identification, inverter voltage regulation and volt-var optimization and 
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fault prediction. To effectively model plant performance in real-time and faster-than-real-

time, ESNs were used. 

An ESN is a form of a recurrent neural network (RNN), created by Herbert Jaeger as 

a paradigm falling under the category of reservoir computing. The ESN’s architecture allows 

for quick solutions of non-linear, complex function approximations, along with the advantage 

of simpler training processes and lower computational requirements compared to a traditional 

RNN. Since ESNs are adapted from RNN concepts, ESNs have a type of memory or 

reservoir that retains an internal state that holds the non-linear transformation of previous 

input states. ESN architectures enable modeling non-linear or stochastic system behavior by 

mapping low dimension input values into high dimensional spaces, capturing the temporal 

patterns of a system [64]. 

The architecture of the ESNs, shown in Figure 3. 6, consists of two main features, the 

reservoir weights and the readout weights. The ESN reservoir consists of randomly initialized 

sparsely connected synaptic neurons, connected to other weights and input weights in its 

hidden layer. Its weights are randomly assigned and fixed. The second ESN feature is the 

readout layer. The connection between the reservoir neurons and the outputs are called 

readout weights and are adapted during the training of the network to give the ESN outputs 

the best approximation of the measured target values. The read-out layer thereby decodes the 

reservoir activations, and furthermore can be trained using linear regression without 

backpropagation as in a typical feed-forward neural network, with activations that can be fed 

back to the reservoir, as in the case of a feedback connection. 
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Figure 3. 6 ESN Model Architecture for PV power prediction for 60 (a), 120 (b) and 180 (c) 

seconds ahead 

All these factors allow ESN to be frequently employed in AI models for time series 

data prediction with accompanying inherent uncertainty such as PV power generation [65]. 

For PV power prediction, two parameters are needed to accurately model the PV array's 

power generation or approximate the equation in 3.3, the solar irradiance and cell 

temperature.  

x(n+1)=f(Wx(n)+Winu(n+1)+Wfby(n))      (3.3) 
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The equation for ESNs can be represented in Equation 3.2 where x(n) is the n-

dimensional reservoir state, f is an activation function, W is the (n x n) reservoir weight 

matrix, Win is the (n x k) input weight matrix, u(n) is the k-dimensional input signal, Wfb is 

the (n x m) output feedback matrix, and y(n) is the m-dimensional output signal. 

For PV power prediction, three parameters are needed to accurately model the PV 

array's power generation; the solar irradiance, temperature, and the output power of the PV 

array. A training data set consisting of historical solar irradiance and temperature for 30 days 

over various operational conditions is collected from the physical system, categorized and 

utilized to train and test the accuracy of ESN operation. Training data is categorized into 3 

main categories based on solar irradiance waveforms from cloud coverage; sunny, 

moderately cloudy and extremely cloudy. Each training data set category is used to fit a 

different ESN model, each with three different read-out weight sets allowing for the system 

to iteratively predict 60, 120 and 180 seconds ahead.  

Three ESNs are trained separately with cloudy, moderately cloudy and sunny days 

datasets and are further utilized in the DT model. Each ESN structure consists of one input, 

350 to 550 neurons in the reservoir and one output. Hyperparameters such as optimal leaking 

rates, or sparsity, and spectral radius were adaptively selected and optimized based on 

differing solar irradiance profiles, and weights for the ESN were generated randomly, using a 

random seed to prevent variation over trials. For prediction, 350, 500 and 550 neurons were 

identified to have the highest accuracy for all sunny, moderately cloudy and cloudy days. 

There is no introduction of noise to this model for prediction, however, a feedback was 

introduced. 
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Table 3.2 Tuned Hyperparameters for best DT performance 

Model 

Category 

Day Category Reservoir 

neurons (n) 

Sparsity Spectral 

Radius 

Noise Feedback 

Prediction Sunny 350 0.2 0.3 0 True 

Prediction Moderately 

cloudy 

500 0.1 0.25 0 True 

Prediction Cloudy 550 0.1 0.4 0 True 

 

Online training and predictions are then done to realize the PV DT as in Figure 3.7. 

Real-time data obtained from the weather data monitor at the PV plant is used as inputs to 

each ESN model category, predicting PV power output for 60, 120 and 180 seconds ahead. 

The MSE of ESN predictions from each model category is compared and constantly 

monitored to make sure the selected ESN model category doesn’t let prediction accuracy or 

MSE fall below 98% before being switched. The predictions with the lowest MSE, is 

visualized, archived and finally averaged to identify the type of cloud coverage over the day.  
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Figure 3. 7 ESN Real-Time prediction flowchart 

Results and Discussion 

DT performance for PV power estimation 

The MLP-DT for estimation is implemented on Python 3.9 and Jupyter Notebook 

using the sklearn library. A multi-layer perceptron regressor (MLP) model was used. The 

neurons, learning rate, solver and activation function has been selected to obtain maximum 

accuracy while maintaining near real-time estimation 
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The estimation PV DT is used to estimate or “twin” the real time PV performance at 

the 1 MW physical PV plant. The DT is run for online estimation over moderately cloudy, 

cloudy and sunny conditions. Results of the MLP model for three day categories with training 

and testing estimations are depicted in Figures 3.8 and 3.9. 
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Figure 3. 8 DT estimation for cloudy (a), sunny (b) and moderately cloudy (c) days plotted 

for testing dataset 
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Figure 3. 9 DT estimation for cloudy (a), sunny (b) and moderately cloudy (c) days plotted 

for training dataset 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑛

𝑖 𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝑊̃𝑝𝑟𝑒𝑑(𝑖))2  (3.4) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑛

𝑖 𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝑊̃𝑝𝑟𝑒𝑑(𝑖))2  (3.5) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝑊̃𝑝𝑟𝑒𝑑(𝑖)|𝑛

𝑖   (3.6) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)−𝑊̃𝑝𝑟𝑒𝑑(𝑖)

𝑊𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)
|𝑛

𝑖   (3.7) 
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25 trials were performed to ensure DT consistency for each day category. Each 

model’s output performance with accompanying neuron counts can be seen in Table 3.3, 

where mean squared error (MSE) (3.4) and root mean squared error (RMSE) (3.5), mean 

absolute error (MAE) (3.6), and mean absolute percentage error (MAPE) (3.7) of the 

predicted vs actual values during testing the model are calculated along with average 

prediction interval time.  

Table 3.3 DT performance for PV power estimation 

Day 

Category 

Dataset 

type 

Neurons MAE MSE RMSE MAPE 

Sunny Training 10 0.0002 0.0003 0.0173 0.0049 

Moderately 

Cloudy 

Training 20 0.0087 0.009 0.0949 0.0089 

Cloudy Training 20 0.0092 0.0098 0.0990 0.0135 

Sunny Testing 10 0.0003 0.0002 0.0141 0.0064 

Moderately 

Cloudy 

Testing 20 0.0075 0.0087 0.0933 0.0112 

Cloudy Testing 20 0.009 0.0095 0.0975 0.0142 

DT performance for PV power prediction 

The prediction PV DT is used for short term forecasts of the real-time PV power 

generation at the 1 MW physical PV plant, allowing PV DT monitoring in real-time or faster-

than-real-time. The DT is tested for online prediction over moderately cloudy, cloudy and 

sunny conditions. Results of the ESN model for 60, 120 and 180 seconds ahead estimation 

for training dataset for each cloud category is depicted in Figures. 3.10, 3.11 and 3.12  
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Figure 3. 10 DT prediction for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for training 

dataset for a cloudy day 
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Figure 3. 11 DT prediction for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for training 

dataset for a sunny day 
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Figure 3. 12 DT estimation for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for training 

dataset for a moderately cloudy day 

 

 Results of the average ESN performance for training data over 25 trials can be seen in 

Table 3.4. Bolded results show the best results of prediction interval accuracy. The DT 

predicts best 60 seconds ahead, with 120 seconds and 180 seconds showing similar results. 

The highest accuracy is for a sunny day, as expected, due to the comparatively lower 

complexity of solar irradiance waveform over the day. Moderately cloudy and cloudy days 

have similar prediction accuracies. 
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Table 3.4 ESN model performance for Training data 

Day Category Reservoir neurons 

(n) 

Metric 60 

seconds 

120 

seconds 

180 

seconds 

Sunny 200 MAE 0.0006 0.0008 0.0010 

 
200 MAPE 0.0250 0.0336 0.0404 

 
200 MSE 0.0007 0.0009 0.0012 

 
200 RMSE 0.0265 0.0300 0.0346 

Moderately 

Cloudy 

550 MAE 0.0069 0.0082 0.0100 

 
550 MAPE 0.2466 0.3997 0.3803 

 
550 MSE 0.0089 0.0108 0.0119 

 
550 RMSE 0.0943 0.1039 0.1091 

Cloudy 450 MAE 0.0158 0.0168 0.0176 

 
450 MAPE 0.2342 0.2482 0.2211 

 
450 MSE 0.0183 0.0197 0.0190 

 
450 RMSE 0.1353 0.1404 0.1378 

 

Results of the ESN model for 60, 120 and 180 seconds ahead estimation for testing 

dataset for each cloud category is depicted in Figures. 3.13, 3.14 and 3.15. 
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Figure 3.13 DT predicted for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for testing 

dataset for a cloudy day 
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Figure 3. 14 DT estimation for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for testing 

dataset for a sunny day 
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Figure 3. 15 DT estimation for 60 (a), 120 (b) and 180 (c) seconds ahead plotted for testing 

dataset for a moderately cloudy day 

The model’s performance is averaged over 25 trials. The model’s performance with 

varying reservoir sizes, compared to the actual PV output for the testing dataset can be seen 

in Table 3.5, where mean squared error (MSE) (3.2), mean absolute error (MAE) (3.3), and 

mean absolute percentage error (MAPE) (3.4) of the predicted vs actual values during testing 
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the model are calculated along with average prediction interval time. Bolded values show the 

best performance of the models. 

 

Table 3.5 ESN model performance for Testing data 

Day Category Reservoir neurons 

(n) 

Metric 60 

seconds 

120 

seconds 

180 

seconds 

Sunny 200 MAE 0.0005 0.0006 0.0011 

 
200 MAPE 0.023 0.0353 0.0423 

 
200 MSE 0.001 0.0013 0.0014 

 
200 RMSE 0.0316 0.0361 0.0374 

Moderately 

Cloudy 

550 MAE 

0.0063 0.0089 0.012 

 
550 MAPE 0.2456 0.3571 0.3345 

 
550 MSE 0.0079 0.0123 0.0149 

 
550 RMSE 0.0889 0.1109 0.1221 

Cloudy 450 MAE 0.016 0.0168 0.0194 

 
450 MAPE 0.2124 0.2232 0.2361 

 
450 MSE 0.0183 0.019 0.0204 

 
450 RMSE 0.1353 0.1378 0.1428 
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Summary 

 3 data-driven PV DTs of a 1 MW plant were developed using MLPs and ESNs for 

each day type and tested for real-time estimation and prediction accuracy over multiple 

cloud-coverage patterns for the months of February to April. The DTs operate with 

reasonable accuracy while being computationally efficient, and are able to predict or estimate 

data alongside the physical system. PV DT streams of data are additionally archived and 

categorized for future optimization and analysis of the system. This methodology can be 

easily adapted to support new PV installations, rooftop or utility-scale, with varying levels of 

granularity, complexity, different tilts or new surrounding environmental factors as per 

availability. Different AI algorithms or frameworks can be utilized if improved accuracy is 

possible. 
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CHAPTER FOUR 

VIRTUAL WEATHER STATIONS 

Introduction 

  Modeling regional variation in weather over a localized area is an important aspect of 

DER resource planning and distribution system studies. Optimizing and analyzing the spatial 

variances in DERs, and in this study, distributed PV (DPV plants), integrated into a 

distribution network necessitates the availability of high quality, high resolution, 

spatiotemporal weather data. This data is to further be harnessed for real time or time-series 

distribution system studies, where minutes or even seconds resolution is needed. Volt-var 

optimization, power flow studies and DPV planning operations such as voltage profile 

analysis, hosting capacity studies among others often require quick and easily available 

estimations of realistic DPV power production over a region, in different configurations, 

time-scales or placement regions.  

Thereby, to provide real-time, multi-time scale weather station measurement inputs to 

a PV DT and enable quick, computationally efficient estimations of PV power prediction 

over an area, a means to develop virtual weather stations (VWS) at any location, supported 

by locally available measurement sites through data reanalysis and intelligent mutations is 

designed. 
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Figure 4. 1 Schematic block diagram for creation of virtual weather stations. 

Spatially Distributed Physical Weather Stations (PWS) 

While mathematical estimations and interpolations of solar irradiance profiles over 

geographical locations can be calculated using various solar irradiance models, an intelligent 

mutation-based approach using reanalysis data is proposed. Reanalysis typically uses 

numerical models and observational data to generate a numerical weather prediction model 

that creates a representation of the system. This methodology is less dependent on satellite-

based weather forecasting models, can be optimized and restructured for new locations and 

can be adapted for developing new DERs or load profiles at local regions with similar levels 

of uncertainty but highly complex process dynamics. 

Parameters such as latitude, elevation, surface coverage and meteorological 

conditions such as cloud coverage, cloud transmissivity, aerosols, relative humidity, and 

column water vapor typically affect solar irradiance across a large geographical region. They 

are therefore environmental or climate factors that affect solar irradiance falling on PV 

panels.  

For a smaller, localized area in the range of 20-25 km radius however, fewer variables 

cause significant variation in solar irradiance as affects potential new PV plants in the area. 
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The behavior of three important factors affecting solar irradiance over the selected region: 

cloud cover depth, cloud cover variance and temperature with respect to spatial distribution is 

identified as main variational factors in the selected region for PV power generation [66]. 

These parameters are analyzed and leveraged to generate real-time synthetic weather station 

data streams at new locations. Three existing weather stations that measure wind speed and 

direction, solar irradiance and temperature are then used as physical systems to develop 

VWSs at new, user selected geographical locations with intelligently mutated solar irradiance 

profiles, generating new weather station data in real-time through the development of weather 

station DTs. 

The original dataset utilized to form base inferences is the weather the three stations 

recorded over a period of 72 days in the spring-summer months. The weather stations use 

three Campbell Scientific CR300 dataloggers, cables and network links to measure weather 

data, along with measurement equipment such as pyranometers, anemometers, thermometers 

and so on. A TCP/IP connection is established with the datalogger servers to query data at 

required time intervals. The hardware of each weather station can be seen in Figure 4.2. 
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Figure 4.2 Physical Weather stations  

Mutation of real-time solar irradiance data instances collected at the weather stations 

at a geographical location is done through utilizing weighted combination of geographical 

and meteorological variables such as cloud coverage, cloud depth and temperature. These 

parameters are utilized to modify the parent datasets, to generate child populations of real-

time irradiance data distributed over an estimated geographical location. The child datasets 

are visualized on a map at the user given locations, creating virtual real-time weather stations 

as necessary [66]. A single parent irradiance data set can essentially be used to generate 

multiple realistic offspring data sets and be further used to estimate corresponding power 

generation over a geographical distribution of virtual PV plant sites. The physical locations of 

the weather stations and their distance from each other are shown in Figure 4.3, called 

“Ravenel”, “R06” and “Airport”. The 1 MW PV plant is at site R06, as explained in chapter 

3. A circle surrounding the three sites shows the area of potential VWS location placements. 
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Figure 4. 3 PWSs and distances from each other (Label as ‘Airport’) 

Data Analysis 

The real-time behavior of the weather stations with respect to each other has been 

observed and modeled for a particular day using three-month averages of historical data to 

capture long term trends and daily data to analyze short term trends between the stations.  

The resultant graphs are as seen in Figures 4.4 to 4.12. R06, on average, measures 

slightly more solar irradiance, while Ravenel and the Airport stations experience nearly 

similar amounts. However, daily measurements show the inherent uncertainty in cloud 

coverage across the three sites for second or minute intervals along with the variance in 

overall cloud coverage patterns across the three sites.  
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Figure 4. 4 Daily solar irradiance trends for a sunny day 

 

 
Figure 4. 5 Daily solar irradiance trends for a cloudy day 

 

 
Figure 4. 6 Daily solar irradiance trends for a moderately cloudy day 
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Figure 4. 7 Historical average solar irradiance for sunny days 

 

 
Figure 4. 8 Historical average solar irradiance for moderately cloudy days 

 

 
Figure 4. 9 Historical average solar irradiance for cloudy days 
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Figure 4. 10 Comparative analysis of variance between stations for sunny days 

 
Figure 4. 11 Comparative analysis of variance between stations for moderately cloudy days 

 
Figure 4. 12 Comparative analysis of variance between stations for cloudy days 

 

The variation of windspeed is additionally unpredictable. However, R06 seems to 

show, on average, higher wind speeds compared to the other three sites. The temperature 

variances at the site also lie between 1-3 degrees Celsius variations. 
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Figure 4. 13 Wind speed variation between the stations Ravenel (a), Airport(b) and RO6 (c) 
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Figure 4. 14 Temperature variation between the stations  Ravenel (a), Airport(b) and RO6 (c) 
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Figure 4. 15 Average Historical Wind speed variation between the stations Ravenel (a), 

Airport(b) and RO6 (c) 
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Figure 4. 16 Average Historical Temperature variance between the stations Ravenel (a), 

Airport(b) and RO6 (c) 

Mutation procedure  

An arbitrary number of user-selected regions from this area, here 10, are utilized as 

the locations of the VWSs. Latitudes and longitudes of their locations are needed. The overall 

procedure involved for mutation is explained in Figure 4. 17 
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Figure 4. 17 Flowchart for VWSs’ data generation  

The parameters utilized for and important to VWS data generation are as shown in Table 4.1. 

 

Table 4.1 Parameters utilized for VWS data generation 

Sl 

No. 

Parameters Notation 

1 Solar irradiance arrays of 3 stations consisting of t seconds data, here 

60,90 and 120 seconds 

Sp  (4.1) 
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2 Cloud coverage depth, categorized as “sunny”, “cloudy” and 

“moderately cloudy” 

Cd 

3 Cloud coverage variance, with temporospatial variances dependent 

on location from original site and cloud coverage depth 

Cm (4.4) 

4 IDW obtained Wind speed in meters/second and wind direction in 

degrees 

Wmsi (4.6), 

Wmdi (4.7) 

5 Temporospatial temperature scale from wind-speed vs temperature 

look-up table 

Ti 

6 IDW estimations of solar irradiance data at VWS locations at t 

seconds, here 60,90 and 120 seconds 

Spred 

7 Mutated solar irradiance data arrays of VWS at t seconds, here 60,90 

and 120 seconds 

Sm (4.5) 

 

Solar irradiance Sp consists of arrays of solar irradiance measurements, Si in kW/m2, 

from each station over a period of time t, for example, 60,120 or 180 seconds as shown in 

(4.1). Inverse Distance Weighting (IDW) is used to estimate base solar irradiance values at 

VWS based on the approach used in [67]. The formula for IDW can be expressed as in 

equation where: V(u) is the estimated value at the unknown location, Vi is the value at the 

known location i and wi is the weight assigned to the known location i, calculated based on 

the distance between the known and unknown locations as a squared or cubic distance. Once 

IDW is applied, 10 Spred arrays with t lengths will be identified for each VWS. Here, 3 

locations are known and p is set to 2. 

𝑆𝑝  = [𝑆1, 𝑆2, … 𝑆𝑖]           (4.1) 

𝑉(𝑢)  =  
∑ (𝑉𝑖 ∗ 𝑊𝑖)

∑ 𝑉𝑖
  (4.2) 

𝑉𝑝 =  1 / (𝑥1 − 𝑥2)𝑝 (4.3) 
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Spred is the base solar irradiance estimation at each VWS to which the impact of cloud 

coverage and depth is to be added. To account for cloud impact, historical data as well as 

parameter inferences obtained from the National Solar Radiation Database (NSRDB) [66] is 

referenced in the mutation procedure. Two mutation parameters are identified for cloud 

impact on solar irradiance, the depth of cloud coverage (Cd) and the movement of cloud 

coverage (Cm).  

Cd is a scale ranging from between 0 to 1, where the solar irradiance at time t is 

divided by the maximum historical solar irradiance for a sunny day at that time step, updated 

to match real-time conditions at the PWS as the day progresses. For a sunny day identified 

from physical readings at the weather station, Cd will be closer to 0, indicating lower cloud 

depth and therefore little to no impact caused by movement of cloud coverage Cm on all 

virtual weather station output streams. The Cd over a seconds’ interval is shown in Table 4.2 

and can be further categorized based on best performing PV DT model as explained in 

chapter 2 into “cloudy”, “moderately cloudy” and “sunny” days. 
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Figure 4. 18 The average of solar irradiance categories over 72 days 

Table 4.2 Hourly cloud coverage percentage variations for each day category 

Hour of 

the day  

(24 hour 

clock) 

Sunny day 

(%) 

Moderately  

Cloudy day 

(%) 

Cloudy day 

(%) 

7 0.00 33.74 12.86 

8 1.00 43.35 62.24 

9 0.20 30.87 67.18 

10 0.00 29.07 66.50 

11 0.00 17.21 36.63 

12 0.00 22.89 32.30 

13 0.00 32.01 86.38 

14 0.30 34.74 86.88 

15 0.05 31.48 85.05 

16 0.00 41.45 65.45 
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17 0.30 52.90 78.60 

18 0.00 73.97 84.25 

 

 

 Based on the random number generator model referenced in [66], a scaled random 

distribution based on estimated distance from the plant is used to mimic Cm (4.4) over 

geographical locations within <20 kms of each other. Cm is obtained from combinations of 

controlled random sampling of t second IDW solar irradiance estimations, Spred and the 

addition of up to 5% Gaussian noise as seen in (4.5) 

 

𝐶𝑚  = 𝑟𝑎𝑛𝑑(𝑆𝑝𝑟𝑒𝑑)  +
0.05

σ √ 2π
𝑒−(𝑆𝑝𝑟𝑒𝑑−µ)2 /2σ2    (4.4) 

 

Solar irradiance 𝑆𝑚at a given n interval is then mutated with the effect of Cm as shown 

in (4.4). 

 

𝑆𝑚  = {

[𝑆𝑝𝑟𝑒𝑑]              𝑆𝑝𝑟𝑒𝑑 > 0 𝑎𝑛𝑑 𝐶𝑑 ≤ 10%

[ 𝐶𝑚]                𝑆𝑝𝑟𝑒𝑑 > 0 𝑎𝑛𝑑 𝐶𝑑 > 10%

0                                                  𝑆𝑝𝑟𝑒𝑑 = 0
    

  (4.5) 

 

Wind speed and direction is a separate parameter that is seen to be very weakly 

correlated to cloud cover and thereby does not directly impact solar irradiance patterns 

affected by cloud coverage [68]. A weak correlation is seen, where for both rural and urban 

areas, highly windy days are slightly more likely to be clear [69]. However, wind speed 

affects the temperature at the weather station. IDW is used to calculate Wmsi and Wmdi, or 

overall wind speed and wind direction at various geographical locations for a given solar 
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irradiance. The weight is equal to the count of actual weather stations with available real-time 

measurements, here, 3. The distance calculated is the cubic distance and not the least squared 

distance.  

 

𝑊𝑚𝑠𝑖  = √(
1

𝑤𝑠
∑ 𝑊𝑠𝑖 cos(𝑊𝑑𝑖)

𝑛
𝑖 )2 + (

1

𝑤𝑠
∑ 𝑊𝑠𝑖 sin(𝑊𝑑𝑖)

𝑛
𝑖 )2  (4.6) 

𝑊𝑚𝑑𝑖  = arctan (
∑ 𝑊𝑠𝑖 cos(𝑊𝑑𝑖)𝑛

𝑖

∑ 𝑊𝑠𝑖 sin(𝑊𝑑𝑖)𝑛
𝑖

)  (4.7) 

 

A cooling effect factor, We, is obtained to vary temperature data obtained at each 

VWS based on estimated wind speed effects. Wdiff is the wind speed difference at the VWS 

station from the average wind speeds at the three PWS at instant t, divided by the average 

wind speeds at the PWS. Wdiff  is used to look up values in the Table 4.3, where each range in 

Wdiff corresponds to a cooling effect factor We. If Wdiff is positive at time t, the We is added to 

temperature Ti, and if negative, it is subtracted. In this manner real time temperature data is 

estimated at the VWS locations. A hysteresis-like loop is observed for wind speed variation 

over temperatures throughout the day, as seen in Figure 4.19. Additionally, a maximum and 

minimum range of temperature variation of + or - 3 degrees for this site, as observed from 

historical data analysis of temperature trends, seen in Figure 4.7. From this, based on average 

values seen in Table 4.3, a look up table is derived, shown in Table 4.4, for average wind 

speed variation ranges corresponding to drops in VWS temperature 

 

𝑊𝑑𝑖𝑓𝑓  =
𝑎𝑣𝑔(𝑊𝑚𝑠𝑖(𝑃𝑊𝑆))−𝑊𝑚𝑠𝑖(𝑉𝑊𝑆)

𝑎𝑣𝑔(𝑊𝑚𝑠𝑖(𝑃𝑊𝑆))
  (4.8) 
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Figure 4. 19 VWS Temperature measurements over a day 

Table 4.3 Average temperature difference vs wind speed difference for three stations over 

ranges        

Sl 

No

. 

Wind Speed 

Range 

Average Temperature 

difference 

between stations (degrees 

celsius) 

Average wind Speed 

difference between stations 

(m/s) 

1 0.1 - 0.2 0.10729 -0.4988 

2 0.2 - 0.3 0.47286 -0.2846 

3 0.4 - 0.5 0.56056 -0.1592 

4 0.6 - 0.7 0.57554 -0.1053 

5 0.8 - 0.9 0.88953 0.04419 

6 1.1 - 1.2 1.06719 0.05597 

7 1.2 - 1.3 1.22857 0.21896 

8 1.2 - 1.3 1.25787 0.27621 

9 1.3 - 1.4 1.31845 0.32393 

10 1.8 - 1.9 1.85432 0.3945 

11 2.0 - 2.1 2.09749 0.40099 

12 2.5 - 2.6 2.52157 0.49461 

13 2.5 - 2.6 2.5886 0.50103 

14 2.8 - 2.9 2.8348 0.62554 

15 2.8 - 2.9 2.85343 0.66242 

16 3.1 - 3.2 3.17831 0.66504 

          

Table 4.4 Look up table 

Sl No. Wdiff scale (+/-) Temperature Variation  

(degrees Celsius) Ti (+/-) 
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0 (0.1, 0.4] -0.3323 

1 (0.4, 0.7] -0.20232 

2 (0.7, 1.0] -0.1258 

3 (1.0, 1.3] 0.062736 

4 (1.3, 1.8] 0.332292 

6 (1.8, 2.1] 0.396208 

7 (2.1, 2.4] 0.440125 

8 (2.4, 2.6] 0.486667 

9 (2.6, 2.9] 0.544938 

10 (2.9, 3.2] 0.594583 

 

Results and Discussion 

The ten selected locations for VWS are as seen in Table 4.5. The locations plotted 

onto a map are seen in Figure 4.20. 

 

 

Figure 4.20 Location of PWSs and VWS generated in the region 
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Table 4.5 Selected locations for VWSs 

Station no. Latitude (°N) Longitude (°W) 

1 34.685 -82.863 

2 34.672 -82.886 

3 34.678 -82.818 

4 34.667 -82.87 

5 34.668 -82.845 

6 34.673 -82.863 

6 34.669 -82.874 

7 34.67 -82.85 

8 34.677 -82.832 

9 34.6724 -82.8804 

10 34.673 -82.874 

 

 

Validation of proposed approach 

 The mutation approach explained in the previous section is used to generate weather 

station DTs at the PWS site locations, and compare estimated vs actual solar irradiance and 

temperature results. This is to further validate the inferences used in the previous section. 

 To test the results of the weather station DTs, the locations of the sites are set to the 

original site locations from Table 4.5. The results of estimated temperature variations can be 

seen in Figure 4.21. Here, the effects of IDW for solar irradiance estimation are not applied 

as the distance between the PWS and VWS is 0. The effect of estimated Cm is therefore seen 
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in the Figures 4.21-4.22. The comparison results of estimated vs actual solar irradiance at a 

site are seen in Table 4.6. 

Some limitations of the validation procedure apply as below: 

• IDW cannot be utilized when the distance between the PWS and locations for VWS is 

0, i.e., when the same location is set for a PWS and VWS. Therefore, wind speed 

(Wmsi) IDW weighting and solar irradiance base inference (Spred) IDW weighting has 

not been applied. 

• Mutation factor (Cm) for sunny day is set to an insignificantly low value. Solar 

irradiance comparisons when VWS is set to a PWS location are therefore not 

meaningful for a sunny day 

• Temperature (Ti) lookups are performed based on a Wdiff of the next nearest PWS, 

which means a larger variance is seen than typical. 
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Figure 4.21 PWS vs estimated VWS Temperature measurements over a day for Ravenel (a), 

Airport (b) and R06 (c) 
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Figure 4. 22 PWS vs estimated VWS solar irradiance measurements over a cloudy day for 

R06 (a), Ravenel (b) and Airport (c) 
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Figure 4. 23 PWS vs estimated VWS solar irradiance measurements for a moderately cloudy 

Day at each PWS, R06 (a), Ravenel (b) and Airport (c) 
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Table 4.6 Validation results of VWS weather estimation for solar irradiance 

Site Day  

Category 

MSE MAPE MAE RMSE 

Ravenel Moderately 

cloudy 

16.8340 11.0596 17.0600 4.1029 

R06 Moderately 

 cloudy 

15.0150 13.0594 15.0590 3.8749 

Airport Moderately 

 cloudy 

13.0160 24.6000 14.0060 3.6078 

Ravenel Cloudy 23.0204 18.1596 21.0160 4.7980 

R06 Cloudy 22.0192 14.1594 25.0159 4.6925 

Airport Cloudy 21.0196 19.1600 22.0160 4.5847 

 

VWS are then developed using the methodology outlined in previous sections. The 

selected stations and their locations are shown as in Table 4.5.  

 

Estimation of Wind speed and Direction 

 

The measured wind speed for each PWS is as shown in Figure 4.24. Wind speed is 

mutated through the usage of IDW weighting as previously explained. Cubic distances are 

used to calculate IDW for locations given in Table 4.5.  

 

 
 
d 
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Figure 4. 24 PWS wind speed measurements over a day for Ravenel (a), Airport (b) and R06 

(c)  

 

These values are converted to vector values for IDW calculation. A temperature scale 

variation ranging from ±3°C based on the lookup table for wind speed at time t in Table 4.3 is 

used to change temperature values at the site. The wind speed values obtained at each time 
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instant t used to look up temperature cooling effect. Wind speed and direction is obtained in 

m/s and angles in degrees respectively, shown in Figures 4.25- 4.34. 

 

 

 

 
Figure 4.25 VWS wind speed measurements over a day for locations (a)-(c) 
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Figure 4.26 VWS wind speed measurements over a day for locations (d)-(f) 
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Figure 4.27 VWS wind speed measurements over a day for locations (g)-(gi) 
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Figure 4.28 VWS wind speed measurements over a day for locations (j) 
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Figure 4.29 PWS wind speed measurements over a day for Ravenel (a), Airport (b) and R06 

(c) 
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Figure 4.30 VWS wind speed directions over a day for locations (a)-(b) 
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Figure 4.31 VWS wind speed directions over a day for locations (c)-(d) 
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Figure 4.32 VWS wind speed directions over a day for locations (e)-(f) 
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Figure 4.33 VWS wind speed directions over a day for locations (g)-(h) 
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Figure 4.34 VWS wind speed directions over a day for locations (i)-(j) 

 

 

 

Figure 4. 35 Physical (blue) vs Virtual (red) weather stations wind directions and speed for a 

single instant 

Estimation of Temperature 

 Temperature is estimated through the application of a +/- difference of temperature 

with the measurement obtained from the nearest PWS site. The temperature difference to be 

applied is looked up from the corresponding wind speed difference from the given nearest 

PWS, through the lookup table, Table 4.4 
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The results of applying We to temperature, resulting in Ti measurements at the given 

locations are seen in figure 4.15, 4.16 and 4.17 for a given day 

 

 
Figure 4. 36 VWS Temperature measurements over a day for locations (a) 
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Figure 4. 37 VWS Temperature measurements over a day for locations (b) - (d) 
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Figure 4.38 VWS Temperature measurements over a day for locations (e) - (g) 
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Figure 4.39 VWS Temperature measurements over a day for locations (i) - (j) 

Estimation of solar irradiance 

 

10 output mutated solar irradiance populations are therefore obtained through 

mutating data streamed from the PWS using the equations described previously, above at 60, 

90 and 120 second intervals. 

The outputs from IDW estimations, Spred and cloud impact Cd for a corresponding, 

mutated solar irradiance output Sm for a single time instant t over the 10 locations are as 

shown in Table 4.6. 

  Table 4.6  Mutation parameters for various cloud coverage categories for 60 seconds data 

Mutation 

parameter 

Sunny day Moderately 

Cloudy day 

Cloudy 

Day 

Spred0 59.72 95.9 652.4 

Sm0 59.718 95.955 652.544 

Spred1 58.14 85.5 584 

Sm1 58.145 85.346 583.853 

Spred2 55.98 95.9 581.2 

Sm2 56.043 95.861 581.236 

Spred3 58.14 85.5 584 
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Sm3 58.203 85.461 584.036 

Spred4 58.14 85.5 652.4 

Sm4 58.109 85.433 652.323 

Spred5 58.14 95.9 584 

Sm5 58.141 85.68 652.293 

Spred6 59.72 85.5 584 

Sm6 58.141 96.08 583.893 

Spred7 58.14 95.9 652.4 

Sm7 58.116 95.766 584.195 

Spred8 55.98 95.9 584 

Sm8 56.064 96.031 584.115 

Spred9 59.72 85.5 584 

Sm9 59.709 85.678 584.158 

 

The solar irradiance finally obtained through the impact of cloud coverage is shown in 

Figures 4.18, 4.19 and 4.20 
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Figure 4.40 VWS Temperature measurements over a moderately cloudy day for locations (a) 

– (c) 
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Figure 4.41 VWS Temperature measurements over a moderately cloudy day for locations (d) 

– (f) 
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Figure 4.42 VWS Temperature measurements over a moderately cloudy day for locations (g) 

– (i) 

 

Figure 4.43 VWS Temperature measurements over a moderately cloudy day for locations (j) 

 



 112 

 

 

 

Figure 4.44 VWS Temperature measurements over a cloudy day for locations (a) – (c) 
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Figure 4.45 VWS Temperature measurements over a cloudy day for locations (d) - (f) 
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Figure 4.46 VWS Temperature measurements over a cloudy day for locations (g) - (i) 
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Figure 4.47 VWS Temperature measurements over a cloudy day for locations (j) 

 

 

Figure 4.48 VWS Temperature measurements over a sunny day for locations (a)-(b) 
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Figure 4.49 VWS Temperature measurements over a sunny day for locations (c)-(e) 
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Figure 4.50 VWS Temperature measurements over a sunny day for locations (f)-(h) 
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Figure 4.51 VWS Temperature measurements over a sunny day for locations (i)-(j) 

Virtual real-time weather stations are developed from these physical data stations by 

mutating real-time solar irradiance streams from these three locations for real-time 

simulations and studies. These VWSs are projected to exist at localized geographical 

locations around the original site as seen in a map in Fig. 4.21, with accompanying real-time 

output streams. 
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Summary 

 
Figure 4.52 VWS and PWS developed over the area, graded from dark to light for closest 

similarity to the original PWS to furthest 

 

 Ten virtual weather station DTs of three existing physical weather stations were 

developed using intelligent mutations; incorporating inverse distance weighting and data 

analysis of historical and current data at the site. These VWS generate wind speed, wind 

direction, temperature and solar irradiance data streams in real-time with respect to real-time 

data measured at the PWS. This method can incorporate other weather station parameters in 

the mutation algorithm such as elevation, temperature or humidity by estimating its impact 

and variance over the location and fine-tuning the estimated output of these VWS compared 

to the PWS. This approach is additionally simplistic and requires little hardware investment 

and maintenance in the form of new measurement devices, for instance to infer solar 

irradiance at the location. 

 

  



 120 

CHAPTER FIVE 

SITUATIONAL AWARENESS AND INTELLIGENCE FOR DISTRIBUTED PV PLANTS 

 

Introduction 

  Amidst the constantly evolving modern electric power distribution system (MEPDS), 

the high penetration of distributed energy resources (DERs), particularly PV and DPV has 

been a driving factor of significant operational, management, and planning challenges in the 

system. This calls for the integration of new technologies and frameworks to effectively 

address the complexities presented by DPVs through advanced monitoring and control 

through the leveraging of data-driven DTs, as explored in chapter 2. As further shown in 

Chapter 3, individual digital twin (DT) models of system entities provide valuable 

information about PV plant conditions. By utilizing photovoltaic (PV) plant DTs used for 

estimation and prediction of PV power at a physical site and harnessing data from 

geographically distributed weather stations (PWS), virtual weather stations (VWS) developed 

in chapter 4, spatial distribution of PV sites or Virtual RT photovoltaic plants (V-RT-PVPs) 

can be generated.  

V-RT-PVPs can be used to create real-time estimations and short-term forecasts of 

PV plant power production over the region. Through the exploration of various scenarios 

involving the availability of VWS, PWS, PV plants, and PV DTs, diverse types of Distributed 

PV (DPV) sources can be generated, generating situational awareness and situational 

intelligence of PV sources within the MEPDS that can be harnessed to create CDTs and 

further provide cognition in the system. 
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DTs for DPV Situational Awareness and Situational Intelligence 

 The creation of CDTs for DPV situational awareness and situational intelligence is 

broken down into three cases:  

• Where both PWS and PMU data is available, called the physical PV source 

• Where only PWS may be available, or hybrid PV sources 

• Where neither PWS or PMU data is available, called virtual PV sources, and DPV 

power generation needs to be estimated or forecasted in the region. 

 

Here, the Clemson region, (<20 km radius) is chosen as a localized area over which 

spatial estimations or predictions of PV power is needed. Target Locations for VWS and 

PWS are seen on the map diagram, in Figure 5.1 

 

 

Figure 5.1 Target locations for DT based PV power estimation on a map 

The exact latitudes and longitudes for these chosen locations for PV power estimation 

are seen in Table 5.1. 
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Table 5.1 Target locations for DT based PV power estimation and prediction 

 

 

Assumptions made for this study: 

While the general approach to creating hybrid and virtual PV sources for a selected 

geographical region may remain, some generalizations and assumptions have been made for 

this study 

• PV plant panel material, tilt placement, configuration and power capacity of the new 

PV sources are identical over the location, i.e., a 1 MW PV plant with identical 

configuration parameters and inverter configuration to the physical R06 site.  

• The VWS parameters are tuned to the geographical site selected. In this study, the 

Clemson-Anderson-Pendleton region with little variation in elevation and good 

amount of solar irradiance received at the site is chosen. 

Station no. Location Latitude (°N) Longitude (°W) 

1 (a) 34.685 -82.863 

2 (b) 34.672 -82.886 

3 (c) 34.678 -82.818 

4 (d) 34.667 -82.87 

5 (e) 34.668 -82.845 

6 (f) 34.673 -82.863 

7 (g) 34.669 -82.874 

8 (h) 34.67 -82.85 

9 (i) 34.677 -82.832 

10 (j) 34.6724 -82.8804 
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• Data collection has taken place over spring, meaning the historical data used to train 

AI models and make mathematical inferences are over spring. Seasonal variations 

can be incorporated into the model when more amounts of data are collected over the 

year. 

 

Situational Awareness of PV Power Generation using Estimation DTs 

Chapter 2 presents some of the operational and management challenges in an 

MEPDS. A significant challenge is the growing lack of observability and difficulty in 

forecasting and planning in active distribution networks, for instance [73]. This means that 

situational awareness of real-time behavior of various DERs in the system is often difficult to 

monitor, especially due to lack of measurement data. PV Plant DTs that obtain real-time data 

from physical and virtual weather stations are fed into PV DT estimation models to facilitate 

both real-time monitoring and DSO operator situational awareness of PV sources in a system. 

Data collection over a day can further allow for PV integration into distribution system 

studies or time series analysis to be performed in the system. 

Multiple scenarios may be applicable while trying to obtain realistic PV plant data 

over a geographical area, for both distribution system studies and for DSO operators as seen 

in Figure 5.2. 
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Figure 5. 2 Scenarios for DPV data generation using PV plants, hybrid PV plants and virtual 

PV plants 

Case 1: Physical weather station data streams feeding into existing DPVs or PV locations 

with measurement data 

This case study is used to validate the proposed DT based approach. Here, 

measurements are present for both PWS streams as well as microPMUs or PMU data from 

DPVs. The developed PV DTs to estimate DER behavior at these locations can be used to 

validate and optimize the PV DT performance over long term operation, such as test 

seasonality, granular process modeling, as well as test new AI, hybrid-AI or physics-based 

models to better simulate DER behavior in real-time. Additionally, once fully tested, these 

PV DTs can be used similarly to traditional DTs and utilized for prognostics, condition 

monitoring and fault detection and faster-than-real-time operation analysis.  

The PV DT for estimation of PV power at R06, developed in Chapter 2, is run 

alongside the physical system and is fed with temperature and solar irradiance from the PWS 
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at R06 in real-time. The results of PV DT power estimations with real PV plant data, here, 1 

MW PV plant at R06 for various day categories is seen in Figure 5.3 and Table 5.2. 
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Figure 5. 3 Case 1, Estimated PV power at R06 using PWS for a sunny (a), cloudy (b) and 

moderately cloudy (c) day 

 

Table 5.2 DT performance for PV power estimation 

Day 

Category 

Dataset 

type 

Neurons MAE MSE RMSE MAPE 

Sunny Training 10 0.0002 0.0003 0.0173 0.0049 

Moderately 

Cloudy 

Training 20 0.0087 0.009 0.0949 0.0089 

Cloudy Training 20 0.0092 0.0098 0.0990 0.0135 

Sunny Testing 10 0.0003 0.0002 0.0141 0.0064 

Moderately 

Cloudy 

Testing 20 0.0075 0.0087 0.0933 0.0112 

Cloudy Testing 20 0.0090 0.0001 0.0097 0.0142 
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Case 2: Physical weather station data streams feeding into unknown PV locations or DPVs 

without measurement data 

There is often a need to estimate PV power and its impact over the distribution system 

for locations where micro-PMU, separate meter readings or other measurement data is 

unavailable or where a PV plant hasn’t been setup yet. In this scenario, PWS may be present 

at the site, or other weather models may be available for estimation of solar irradiance and 

temperature at the site.  This occurs in the case of planning new PV installations or for 

generation of time-series data for distribution system studies. In such scenarios, realistic 

spatial estimations of weather data over a given area is necessary to model PV behavior. 

 To support this scenario, the two available PWS, “Ravenel” and “Airport”, locations, 

seen in Table 5.3, are used to generate spatial estimations of temperature and solar irradiance 

over the PWS locations, and are used as inputs to estimate DPV performance in real-time. 

DPV streams obtained through this method can be easily integrated into a distribution testbed 

or used for advanced monitoring and analysis of PV system behavior and patterns over the 

region. 

 

Table 5.3 PWS locations  

Station no. Latitude (°N) Longitude (°W) 

Ravenel 34.69 -82.87 

Airport 34.68 -82.82 

  

Estimated PV power over the region for PWS locations at Ravenel and the Airport 

can be seen in Figures 5.4-5.6 
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Figure 5.4 Case 2, Estimated PV power using PWS at R06 for Ravenel (a), Airport (b) for a 

sunny day 
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Figure 5.5 Case 2, Estimated PV power using PWS at R06 for Ravenel (a), Airport (b) for a 

moderately cloudy day 
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Figure 5.6 Case 2, Estimated PV power using PWS at R06 for Ravenel (a), Airport (b) for a 

cloudy day 

 

Case 3: Virtual weather station data streams feeding into unknown DPV locations or DPVs 

without measurement data 

Distribution system studies such as in planning studies for hosting capacity, network 

congestion and the like requires realistic time-series data and estimation of DER behavior in 

various placement locations. In this scenario both measurement data and PV plant 
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installations or micro-PMU, separate meter readings or other measurement data is not present 

in the selected location. 

To support this scenario, VWS developed in Chapter 4 can be used to generate spatial 

estimations of temperature and solar irradiance over the location, and are used as inputs to PV 

DTs to estimate potential DPV installation behavior in a particular area, and estimate overall 

PV production in the area in real-time. DPV streams obtained through this method can be 

further integrated into a distribution testbed for quasi-static time-series analysis to establish 

benchmarks, perform hosting capacity studies, feeder voltage profile analysis, create 

generation profiles and so on, in various PV placements and configurations in the area.  

Spatial PV power estimations are generated using VWS and PV DTs. Data streams 

generated over various day categories are seen in Figures 5.7-5.22 

 

Figure 5.7 Case 3, Estimated PV power using VWS for locations (a) for a sunny day 
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Figure 5.8 Case 3, Estimated PV power using VWS for locations (b)-(c) for a sunny day 
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Figure 5.9 Case 3, Estimated PV power using VWS for locations (d)-(e) for a sunny day 
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Figure 5.10 Case 3, Estimated PV power using VWS for locations (f)-(g) for a sunny day 
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Figure 5.11 Case 3, Estimated PV power using VWS for locations (h)-(i) for a sunny day 
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Figure 5.12 Case 3, Estimated PV power using VWS for locations (a)-(j) for a sunny day 
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Figure 5.13 Case 3, Estimated PV power using VWS for locations (a)-(b) for a moderately 

cloudy day 
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Figure 5.14 Case 3, Estimated PV power using VWS for locations (c)-(d) for a moderately 

cloudy day 
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Figure 5.15 Case 3, Estimated PV power using VWS for locations (e)-(f) for a moderately 

cloudy day 
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Figure 5.16 Case 3, Estimated PV power using VWS for locations (g)-(h) for a moderately 

cloudy day 
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Figure 5.17 Case 3, Estimated PV power using VWS for locations (i)-(j) for a moderately 

cloudy day 
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Figure 5.18 Case 3, Estimated PV power using VWS for locations (a)-(b) for a cloudy day 



 143 

 

  

Figure 5.19 Case 3, Estimated PV power using VWS for locations (c)-(d) for a cloudy day 
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Figure 5.20 Case 3, Estimated PV power using VWS for locations (e)-(f) for a cloudy day 
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Figure 5.21 Case 3, Estimated PV power using VWS for locations (g)-(h) for a cloudy day 
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Figure 5.22 Case 3, Estimated PV power using VWS for locations (h)-(i) for a cloudy day 

 

Situational Intelligence of PV Power Generation using Prediction DTs 

 Operator situational awareness can be established through behavioral modeling of 

DPVs in various data availability scenarios. However, situational intelligence, or predictive 

analysis is often needed in the system, especially for short term PV production generation 
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forecast, feeder voltage analysis, scenario analysis or DSO decision-making wherein multiple 

DT models can be run in parallel for predictive analysis and volt-var algorithm optimization 

or control, among other use cases. Here, short term forecasts of PV power production support 

DERMS applications and other distribution system analyses involved in resiliency, reliability 

and planning such as hosting capacity studies, voltage profile analyses, distribution system 

behavior in peak load and light generation, light load and peak generation, and other long-

term or time-series analysis performed on DER/ DPV sources integrated into the grid. 

 The overall workflow for PV ESN predictions at the region using DTs can be seen in 

Figure 5.10, for a geographical location seen in Figure 5.11. 
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Figure 5.23 Scenarios for DPV power forecasting using PV plant DTs, hybrid PV plants and 

virtual PV plants 

Case 1: Physical weather station data streams feeding into existing DPVs or PV locations 

with measurement data 

 In a similar workflow to Case 1 in situational intelligence, short term forecasts can be 

made over for the PV Plant at R06 utilizing the PV DTs for predictions using input 

measurements from the PWS present at the site. This is useful for studies such as cloud cover 

impact, volt-var regulation and optimization support, and parallelized scenario-testing as well 

as useful information for energy markets, when longer time-scale predictions are made.  

The results for various day types and different time-scales are seen in Figures 5.24- 

5.46 and in Table 5.5. 
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Figure 5.24 Case 1: 60 (a), 120 (b) and 180 (c) seconds ahead predicted PV power at R06 

using PWS for a sunny day 
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Figure 5.25 Case 1: 60 (a), 120 (b) and 180 (c) seconds ahead predicted PV power at R06 

using PWS for a moderately cloudy day 
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Figure 5.26 Case 1: 60 (a), 120 (b) and 180 (c) seconds ahead predicted PV power at R06 

using PWS for a cloudy day 
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Table 5.4 DT performance for PV power prediction 

Day Category Reservoir neurons Metric 60 seconds 120 seconds 180 seconds 

Sunny 200 MAE 0.0005 0.0006 0.0011 

 
200 MAPE 0.023 0.0353 0.0423 

 
200 MSE 0.001 0.0013 0.0014 

 
200 RMSE 0.0316 0.0361 0.0374 

Moderately Cloudy 550 MAE 0.0063 0.0089 0.012 

 
550 MAPE 0.2456 0.3571 0.3345 

 
550 MSE 0.0079 0.0123 0.0149 

 
550 RMSE 0.0889 0.1109 0.1221 

Cloudy 450 MAE 0.016 0.0168 0.0194 

 
450 MAPE 0.2124 0.2232 0.2361 

 
450 MSE 0.0183 0.019 0.0204 

 
450 RMSE 0.1353 0.1378 0.1428 

Case 2: Physical weather station data streams feeding into unknown DPVs or PV locations 

without measurement data 

 As in Case 2 for situational intelligence, PV power prediction can be done on 

“hybrid” sites, where a PWS is present, but PV plants have not been installed in the area 

where PMU, separate meter readings or other measurement data is unavailable. This allows 

for detailed analysis of PV dynamics for distribution system studies. Figures 5.27- 5.32 show 

PV predictions at the Ravenel and Airport PWS for various day types and over different 

prediction intervals. 

 



 153 

 

Figure 5.27 Case 2, 60, 120, 180 seconds ahead predicted PV power at Ravenel using PWS 
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for a sunny day 
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Figure 5.28 Case 2, 60, 120, 180 seconds ahead predicted PV power at Airport using PWS for 

a sunny day 
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Figure 5.29 Case 2, 60 (a), 120 (b), 180 (c) seconds ahead predicted PV power at Airport 

using PWS for a moderately cloudy day 
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Figure 5.30 Case 2, 60 (a), 120 (b), 180 (c) seconds ahead predicted PV power at Ravenel 

using PWS for a moderately cloudy day 
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Figure 5.31 Case 2, 60 (a), 120 (b), 180 (c) seconds ahead predicted PV power at Airport 

using PWS for a cloudy day 
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Figure 5.32 Case 2, 60 (a), 120 (b), 180 (c) seconds ahead predicted PV power at Ravenel 

using PWS for a moderately cloudy day 
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Case 3: Virtual weather station data streams feeding into unknown DPVs locations or PV 

locations without measurement data 

  Finally, as in case 3, PV power can be predicted at VWS sites, where no PV plant has 

yet been installed or where micro-PMU, separate meter readings or other measurement data is 

unavailable. These virtual PV sources can be easily adapted to be integrated into a 

distribution testbed for short term PV forecasts, data collection and general situational 

intelligence of PV power generation in the area. The results of the study for virtual PV sites 

for various day types and different time-scales can be seen in Figures 5.33-5.64. 
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Figure 5.33 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 1 

using VWS for a sunny day 
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Figure 5.34 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 2 

using VWS for a sunny day 
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Figure 5.35 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 3 

using VWS for a sunny day 
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Figure 5.36 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 4 

using VWS for a sunny day 
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Figure 5.37 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 5 

using VWS for a sunny day 
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Figure 5.38 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 6 

using VWS for a sunny day 
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Figure 5.39 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 7 

using VWS for a sunny day 



 168 

 
Figure 5.40 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 8 

using VWS for a sunny day 
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Figure 5.41 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 9 

using VWS for a sunny day 
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Figure 5.42 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 10 

using VWS for a sunny day 
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Figure 5.43 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 1 

using VWS for a moderately cloudy day 
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Figure 5.44 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 2 

using VWS for a moderately cloudy day 
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Figure 5.45 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 3 

using VWS for a moderately cloudy day 
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Figure 5.46 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 4 

using VWS for a moderately cloudy day 
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Figure 5.47 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 5 

using VWS for a moderately cloudy day 



 176 

 
Figure 5.48 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 6 

using VWS for a moderately cloudy day 
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Figure 5.49 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 7 

using VWS for a moderately cloudy day 
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Figure 5.50 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 8 

using VWS for a moderately cloudy day 
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Figure 5.51 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 9 

using VWS for a moderately cloudy day 
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Figure 5.52 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 10 

using VWS for a moderately cloudy day 
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Figure 5.53 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 1 

using VWS for a cloudy day 
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Figure 5.54 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 2 

using VWS for a cloudy day 
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Figure 5.55 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 3 

using VWS for a cloudy day 
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Figure 5.56 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 4 

using VWS for a cloudy day 
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Figure 5.57 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 5 

using VWS for a cloudy day 
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Figure 5.58 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 6 

using VWS for a cloudy day 
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Figure 5.59 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 7 

using VWS for a cloudy day 
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Figure 5.60 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 8 

using VWS for a cloudy day 
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Figure 5.61 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 9 

using VWS for a cloudy day 
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Figure 5.62 Case 2, 60 (a), 120 (b), 180(c) seconds ahead predicted PV power at location 10 

using VWS for a cloudy day 
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Figure 5.63 Physical, Virtual and Hybrid PV plant forecasting sites  

 

Summary 

 

Figure 5.64 Weather Stations and corresponding DPV Sources 
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Figure 5.65 PV plants and PV DTs correspondingly graded from light to dark for accuracy of 

PV estimation and forecasting DTs 

 10 CDTs of 3 physical weather stations and 10 virtual weather stations were 

developed using mathematical models and intelligent mutations as seen in Figure 5.64. A 

similar method can be used to improve visibilities of other DERs sources and loads.  

 Three cases were examined, where PV sources and measurements are present, where 

no PVs are present, and where neither PV plants or weather stations are present at the site. 

Estimation of overall PV production over the region in real-time, considering spatiotemporal 

and environmental characteristics for user selected locations, provides enhanced observability 

and situational awareness of PV sources DSO operator or regulator situational awareness. 

Prediction of overall PV power generation over a region in real-time can additionally be 

done. Insights generated can be utilized for cloud cover impact mitigation and volt-var 

optimization, scenario testing and other predictive studies, providing situational intelligence 

of PV power generation in the area. 
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CHAPTER SIX 

CONCLUSION 

 

Introduction 

 Data-driven and hybrid DT technology for MEPDS system complexity mitigation, 

particularly for PV plant integration at the distribution level is necessary. Advanced 

applications enabling situational awareness and situational intelligence at the MEPDS level 

are possible through leveraging DT and AI paradigms, in a quick, cost-effective, low 

complexity manner through available data measurements of weather and PV power outputs at 

the PV plant sites. 

Chapter Summaries 

Chapter 1 presented the introduction, problem statement, objectives and chapter-wise 

contributions of the study and presented a brief, general overview of the thesis  

Chapter 2 covered the need for data-driven DTs to truly encapsulate the complexity of 

system DTs and Asset DTs of systems dependent on stochastic processes such as PV power 

production for instance. Additionally, the potential of enhancing DTs with AI and utilizing 

DTs for advanced MEPDS applications to produce cognition in a system was presented 

Chapter 3 presented the design and development of a data-driven DT for estimation of 

PV power at a 1 MW PV plant using multi-layer perceptrons (MLP) and a DT for prediction 

of PV power at the same site 60,90 and 180 seconds ahead using an echo state network 

(ESN). The DTs were trained for 72 days worth of historical data collected at the site over the 

spring and validated against real-time behavior of the plant. These DTs can be further used 

for condition and alert monitoring, predictive analysis, scenario analysis and for other long-

term data collection purposes for future studies. 
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Chapter 4 presented the design of 10 virtual weather stations producing real-time 

wind speed and direction, temperature and solar irradiance measurements across a selected 

region. Historical data, or descriptive analysis was first performed to understand weather 

station variations of the existing (three) physical weather stations, and further leveraging 

those inferences to perform calculations such as inverse distance weighting, generate look up 

tables, and intelligent mutations of actual recorded measurements at the site in real-time.  

 

Chapter 5 showed the utilization of the 10 virtual weather stations and prediction and 

estimation DTs to generate situational awareness and situational intelligence of PV sources in 

the distribution system. Various cases, such as prediction and estimation DTs of PV power 

where a PV plant already exists, at regions where only PWSs exists and at regions where 

neither PWS or PV plant exists are supported. This enables a DSO, regulator or distribution 

system planner to understand or predict PV power over a region in real-time, based on their 

requirements and available equipment. This further enables advanced studies of distribution 

systems with high PV penetration once integrated into a testbed or RTDS system. The 

operator can, at a glance, be able to monitor potential behavior of PV sources at different 

placement locations connected to feeders and understand voltage profiles, distribution system 

hosting capacity, and system behavior in different loading conditions, along with performing 

fine-tuned volt-var analysis. 

 

Conclusions of this Thesis 

 The work can be split into three main focus areas. The first part of the thesis shows 

the design and development of data-driven DTs using echo state networks and multi-layer 

perceptrons for PV power estimation and prediction. The second part of this work deals with 

mathematical and data-driven weather modeling, particularly solar irradiance and temperature 
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based on wind speed variations to develop virtual weather station and virtual weather station 

measurements. The third part of the work utilizes combinations of available sources, DT 

models, and physical, virtual and hybrid stations to show an efficient, scalable means to 

estimate and forecast PV power production over an area. This supports advanced 

applications, studies and analyses by enabling situational awareness as well as situational 

intelligence in the MEPDS. 

Future work 

Different AI paradigms can be used for DT design along with hybrid-AI 

methodology, based on system requirements. The fidelity and complexity of the system can 

be expanded to support new PV plant configurations and sizes. 

The modeling of virtual weather stations can be expanded to include new parameters 

such as elevation, humidity, pollution and dust. AI methodologies can be used to approximate 

complex functions to generate hybrid weather station DTs and virtual weather station 

measurements while maintaining a similar approach. 

The Physical, Hybrid and Virtual PV plants developed in chapter 5 can be easily 

integrated into an RTDS model such as RT-Lab or RSCAD in a similar manner to real 

sources. A TCP/IP connection can be made over Python, sending data into the system. A 34-

bus distribution system and network representation can be seen in Figure 6.1. The three cases 

are as shown. 
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Figure 6.1 Modified IEEE 34 Bus system with DER input 

 

Distribution testbed studies can thereby be done in real-time. The data can also be 

collected over a long period and integrated with distribution planning tools like OpenDSS or 

WindMil for time-series simulation supporting, long-term studies. 
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