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Abstract

Today’s military logistics officers face a difficult challenge, generating route plans for mass

deployments within contested environments. The current method of generating route plans is ineffi-

cient and does not assess the vulnerability within supply networks and chains. There are few models

within the current literature that provide risk-averse solutions for multi-commodity flow models. In

this thesis, we discuss two models that have the potential to aid military planners in creating route

plans that account for risk and uncertainty. The first model we introduce is a continuous time model

with chance constraints. The second model is a two-stage discrete time model with random attack

scenarios. Both models demonstrate an ability to yield optimal route plans that are resilient in a

contested environment.
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Chapter 1

Introduction

Today, logistics officers in the United States Navy face a significant challenge: developing

timely, optimal, and risk-averse logistics deployment plans within a reasonable time frame. For any

major conflict, Military Supply Chains (MSCs) are critical to mission success [Sani et al., 2022].

To meet theater demand, military planners use a combination of rule-based planning software and

provided data to generate routing plans. However, these plans are not guaranteed to be optimal. In

addition, there is no systematic way to generate plans resilient against uncertain attacks within a

contested environment [Salmeron et al., 2009]. For these reasons, finding both optimal and resilient

routing plans is of great importance, with the ultimate goal of developing a model that can provide

resilient routing plans for large-scale deployments under uncertainty. The work of this thesis extends

two deterministic models in an effort to provide a more robust solution when generating route plans

for operations within contested environments.

1.1 Contested Environments

The United States defines a contested logistics environment as “an environment in which the

armed forces engage in conflict with an adversary that presents challenges in all domains and directly

targets logistics operations, facilities, and activities in the United States, abroad, or in transit from

one location to the other” [Serrano et al., 2023]. This definition highlights that within a contested

environment, operations can be targeted at any point along the supply chain. With modern ad-

vances in technology, the deployment of military assets is increasingly more “visible and vulnerable”
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[Koprowski, 2005]. We define connectors to be the ships and aircraft that can transport personnel

and cargo. While there are connectors that have increased stealth capabilities, the survivability of

a connector does not directly imply mission success. Often the “most survivable assets” are too

slow and have the lowest capacity for PMC [Bengigi et al., 2020]. Therefore, successful wide-scale

deployments require more than just relying on the stealth capabilities of connectors; they demand

robust and risk-averse logistics planning to bridge this gap.

1.2 Modern Military Logistics in Contested Environments

As described in [Yakıcı et al., 2018], the current logistics planning process is inefficient.

When planning large-scale deployments, planners sometimes require up to of 12 hours to generate

manual solutions. To make routing decisions, planners are provided with Time Phase Force Deploy-

ment Data (TPFDD) and the Joint Flow Analysis System for Transportation (JFAST) as tools to

aid in creating deployment plans. The TPFDD typically provides a comprehensive list of all military

personnel units and cargo (PMC) required for deployment. The JFAST then acts as a rule-based

planning software that generates plans using heuristics [Yakıcı et al., 2018]. However, these heuris-

tics are unreliable, assessing PMC and connector vehicle pairings by priorities and schedules. This

process yields results of an “unknown quality” that do not consider vulnerability within the network

[Koprowski, 2005]. Despite the lack of optimality, these solutions may be acceptable when providing

routing plans within the Continental United States, (CONUS) since at this current time we can be

sure that these routes are not transiting within contested environments. Accepting these solutions

when creating routing plans outside the continental United States, however, has the potential to

result in costly consequences.

In any conflict, the on-time delivery of PMC is critical to executing the mission. Failure to

move assets in theater before the onset of conflict can leave troops vulnerable and, in some cases,

ill-equipped to engage effectively. In [Sani et al., 2022], the authors emphasize that “a conflict can

be lost due to a disruption in the supply chain”. They also define the disruption of a MSC as a

“a combination of an unanticipated triggering event and the subsequent effects that risk material

flow and normal business operations significantly”. Since MSCs are critical to mission success, they

become a prime target for adversaries. While a disruption in a MSC may be initially problem-

atic, this disruption can propagate and become even more critical as time passes [Sani et al., 2022].
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This makes risk-averse logistics planning the backbone for successful operations when routing in a

contested environment.

Currently, there is no mathematical way to handle risk when planning wide-scale deploy-

ments. Commanders rely on their logistics officers’ intuition and expertise to generate risk-averse

plans. There have been publications that offer differing approaches to generate resilient routing

plans when encountered with a contested environment. For instance, this following cycle is shown

as one example to mitigating risk within MSCs while generating routing plans in [Sani et al., 2022]:

Figure 1.1: MSC Risk Mitigation Loop [Sani et al., 2022]

While this is not the only process proposed to achieve a greater resilience in MSCs, most

processes presented propose a general plan to achieve greater resilience. For example, the “dis-

tributed fleet architecture” proposed in [Bengigi et al., 2020], which advocates distributing risk by

employing a larger number of less expensive connectors. While these processes have potential, they

also present another problem, further burdening military logistics officers and extending the already

extensive time it takes to produce a route plan.

In examining the tactics proposed across the literature, it is clear that generating optimal,

robust, and risk-averse routing plans for operations within contested environments is the “new

frontier” of military logistics planning. This is the problem that motivates the remainder of this
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thesis. In Chapter 2 we explore what has been published and explored in respect to this problem. We

then move to Chapter 3, where we introduce a continuous time model with chance constraints and

Chapter 4 where we introduce a two-stage discrete time model under random attacks. In Chapter

5 we discuss how we tested these models and the results of those tests. Finally, in Chapter 6 we

conclude and discuss the potential for future work.

.
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Chapter 2

Literature Review

2.1 Modelling Methodology

Using optimization models to model military logistics is not a new concept and has been done

for quite some time. Modeling military logistics within contested environments or under uncertainty,

however, is far less common. Models available in the literature solve the problem of routing within

contested environments in multiple different ways. A few of these models are presented in this

chapter. The authors of [Sani et al., 2022] present a comprehensive study of logistics models that

aim to increase resilience in MSCs. The following three models are discussed in this paper, along

with others that aim to reduce risk in MSCs.

In [Koprowski, 2005] the authors present a two-sided optimization model that searches for

the best deployment plan while considering “worst-case interdiction”. In this formulation, the first

integer linear program (ILP), titled LIFTER, takes the TPFDD as input and generates an optimal

routing plan. The second ILP, ATTACKER, is then run with an objective of maximally disrupting

the plan LIFTER has created. LIFTER is then re-optimized to generate the final deployment plan.

When compared to the JFAST solution under attack, the LIFTER solution delivers all cargo while

the JFAST solution only delivers 7%.

In [Xu et al., 2016], the authors present a defender-attacker model that targets military

supply chains. The defender first decides what pre-attack strategies they will take. Then the

attacker must decide what resources to “contest the defender” with. This process is repeated until

equilibrium is reached. This model considers the risk of enemy attack in order to mitigate risk in a

5



MSC [Sani et al., 2022].

We can look back as far as 1956 to find one of the first examples of a military logistics

model optimizing under stochastic uncertainty. In [Ferguson and Dantzig, 1956], the authors de-

velop a stochastic model to account for uncertainty in passenger demand in aircraft scheduling.

Since this publication computational power has increased, and with it, the ability to handle more

complex stochastic programming models. Despite these technological advancements, the utiliza-

tion of stochastic programming to generate routing solutions in military logistics remains relatively

scarce today. A few examples include the the work done in [Goggins, 1995], which uses a stochastic

optimization model to incorporate uncertainty in aircraft reliability to optimize aircraft through-

put. This formulation minimizes bottlenecks and allows users to assess the appropriate deployment

schedule from the deterministic model and the stochastic model. This model does not account for

routing within a contested environment but rather focuses on the idea of random and non-targeted

disruptions.

Additional examples are cited in [Salmeron et al., 2009], however with limitations. The au-

thors state that the stochastic models presented by [Alexander, 1999] and [Loh, 2000] can only

handle small data-sets and are overly restrictive on attack recourse. The model presented in

[Salmeron et al., 2009], however, provides a good base for the work in this thesis. The model is

titled the Stochastic Sealift Model (SSDM) and focuses on the optimal routing of sealift connectors

subject to biological attack. In the model they present dynamic rerouting at the time of attack,

solving the issue of past models being overly restrictive. The model we present in chapter 4 is based

on the work done in this paper, with some significant changes. For any location attacked in the

SSDM model, that location shuts down for a period of time and then follows a recovery period

before reopening. Additionally, the severity for each attack is fixed. In our model the capacity at

each location is permanently reduced post-attack and these reductions are random, not fixed. Addi-

tionally, connectors in the SSDM operate between Seaports of Embarkation (SPOEs) and Seaports

of Debarkation (SPODs) with complex arrival and departure times. In our model, the connectors

operate on a three-layer network and have simple arrival and departure times. These differences are

shown explicitly in figure 2.1.
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Figure 2.1: Differences between the SSDM and the Two-Stage Discrete Time Model Under Random
Attack Scenarios

2.2 Network Interdiction and Chance Constraints

We can define network interdiction as “actions that serve to block or otherwise inhibit an ad-

versary’s operations, and often regards attacks against supply chain operations or communications”

[Smith and Song, 2020]. In the context of MSCs and contested environments, network interdiction

can range from adversaries targeting a source node so that PMC shipments can’t be made, to tar-

geting a connector en-route so that mission critical cargo does not arrive at its destination location.

Military planners classify areas for potential interdiction using threat rings and sensors. If a con-

nector enters a threat ring/sensor zone then there is an increased risk for possible interdiction. We

define risk as “the product of the probability of an event occurring and its consequences. . . risk is

about uncertainty and impact” [Kaddoussi et al., 2011].

To constrain the risk of an event occurring, say the possibility of interdiction within a

threat ring, we can use a chance constraint to restrict the probability that event occurring. Take

the following linear program:

min f(x) (2.1)

s.t. g(x, ζ) ≥ 0 (2.2)

where equation (2.1) is the objective function and (2.2) represents the constraint mapping of a

random vector ζ and decision variable x. We can reformulate this model to include a chance
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constraint as follows:

min f(x) (2.3)

s.t. P (g(x, ζ) ≥ 0) ≥ p, p ∈ [0, 1] (2.4)

where p is the tolerance probability and P (g(x, ζ) ≥ 0) is the probability of g(x, ζ) ≥ 0 occurring

[Cha, 2021]

2.3 Two-Stage Stochastic Programming

A two-stage stochastic programming model optimizes under some kind of uncertainty. It

requires decision makers to make decisions in two stages. The first stage decision represents the

“here and now” solution and the second stage solution represents the “wait and see” solution

[Upadhya, 2022]. In the context of operating in a contested environment, the “here and now”

decision would be a route plan without any attack considerations. The “wait and see” solution

would then be the recourse decisions a planner would make should a specific attack occur. The

second-stage solution is always based on what has happened in the first stage solution, which is

what makes the decisions made in the first stage solution vital to the overall output of the model.

There is a key factor that makes a two-stage stochastic model unique in comparison to

a multi-stage stochastic model. The two-stage model has at most one uncertain event for every

scenario, causing it to grow quadratically as opposed to exponentially with the number of time

periods [Salmeron et al., 2009]. A standard two-stage model can be written as:

min z = cTx+ EζQ(x, ζ) (2.5)

s.t. Ax = b (2.6)

x ≥ 0 (2.7)

where,

Q(x, ζ) = min{qty|Wy = h− Tx, y ≥ 0} (2.8)
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Here, the first term of equation (2.5) represents the first stage decisions and the second term repre-

sents the expectation of the second stage decisions. We define ζ to represent the uncertain data for

the second stage decisions and W to be the fixed recourse [Ahmed, 2019]. We define T , h and q to

be the realization of the random data [Ahmed, ]. If we let Z(x) = EζQ(x, ζ), then we arrive at our

final two-stage stochastic model:

min z = cTx+ Z(x) (2.9)

s.t. Ax = b (2.10)

x ≥ 0 (2.11)
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Chapter 3

Continuous Time Model with

Chance Constraints

3.1 Motivations and Assumptions

This work began by extending and modifying the deterministic model presented in [Yakıcı et al., 2018]

to incorporate a chance risk constraint that yields risk-averse solutions. In this model we have made

some key assumptions. The first assumption is that there is no transshipment. Once a connector

picks up a PMC load, this load will not be dropped off until arrival at its demand destination. Ad-

ditionally, we assume that each PMC request is unique. For instance, 20 pallets may be requested

for delivery at Naval Air Station (NAS), Pensacola and 20 pallets may be requested for delivery

at Camp Lejune. Request one will be defined as k1 and request two will be defined as k2, despite

the fact that they are both the same type of PMC. We also assume location distances are constant.

While in reality ships do have the ability to move during a deployment, we do not consider this for

simplicity. We also define “deck delay” to be the time required for each connector to remain on-site

before departing. It represents the time required for connector refueling, unloading, and loading.

Additionally, we restrict operations at each location to be conducted during two time blocks, defined

in the formulation as block one and block two.

With respect to our risk and chance constraints, we assume that sensor locations and their

relative risk factors for each connector are known. We also assume that we are provided an Opera-

10



tional Risk Management (ORM) matrix (shown in section 3.2.4). It is not unreasonable to assume

the ORM matrix is provided as this is regular practice in the military.

3.2 Formulation

As previously mentioned, this formulation is extended from [Yakıcı et al., 2018]. In our

extension, we rewrite the flow-balance constraints similar to those presented in

[Wolfinger and Salazar-González, 2021] when transshipment is explicitly concerned.

3.2.1 Sets, Parameters, and Variables

fake solution to getting sets not to tab
Sets:

h ∈ H Connector type
k ∈ K PMC type
i, j ∈ I Location (ships and airfields)
ℓ ∈ L := {1, 2, . . . , |L|} connector stops (index from one to |L|)
(i, j) ∈ ARCS All location pairings
(i, j) ∈ HARCh Allowable location pairings for connector h

Parameters:

caph,k Capacity for all connectors of type h with PMC type k
costh Operating cost for connectors of type h
costmℓ Penalty incurred for flying leg ℓ
delayℓ,h Minimum deck delay for connector h at stop ℓ
demk Demand for PMC type k, which is requested to be routed from location ipk to jpk
ich/j

c
h Starting point/destination of connector h

ipk/j
p
k Pickup/drop-off location of PMC type k

maxflt Max. time for flight operations [minutes]
net1i/net2i Earliest time location i can conduct flight operations in time block 1/block2
nethh/nlthh No earlier/later than operating time for connector h
neti,h/nlti,h No-earlier/later-than arrival time for connector h in location i in time block 1:

neti,h = max{nethh, net1i}, nlti,h = min{nlthh, nlt1i}
nlt2i,h No-later-than arrival time at location i for connector h in block 2:

nlt2i,h = min{nlthh, nlt2i}
penk Penalty for each unit of undelivered PMC type k from ipk to jpk
transi,j,h Connector h’s transit time from location i to j
Pi,j,h Probability of failure by attrition along arc (i, j) by connector h
Pi,h Probability of failure at location i (within the range of hostile weapons) by connector h
ϵh Maximum tolerable risk of failure for routing connector h
t0,h Start time for connector h, default value is zero
δh,k Risk threshold for connector h carrying PMC type k
ρk Risk value associated with the severity of loss of PMC type k
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Variables:

xi,j,ℓ,h If connector h goes from i to j as the ℓth leg (location j would be stop ℓ)
wℓ,h If connector h ever goes on the ℓth leg
tℓ,h Arrival time of connector h at the end of its ℓth leg (stop ℓ)
ek Amount of unserved demand, i.e., units of PMC type k not moved from location ipk to jpk
fi,j,ℓ,h,k Units of PMC type k moved on connector h from i as stop ℓ− 1 to j as stop ℓ

(so that arc (i, j) is the ℓth leg for connector h)
yi,j,ℓ,h,k One if PMC type k moved on connector h from i as stop ℓ− 1 to j as stop ℓ, zero otherwise
BLi,ℓ,h One if connector h flies to i as the ℓth leg landing in time Block 2, zero otherwise
BTi,ℓ,h One if connector h flies from i as the ℓth leg taking off in time Block 2, zero otherwise

3.2.2 Model

Minimize z =
∑
h∈H

∑
(i,j)∈HARCh,ℓ∈L

costh · transi,j,h · xi,j,ℓ,h +
∑
k∈K

penk · ek

+
∑
h∈H

∑
ℓ∈L

costmℓ · wℓ,h (3.1)

s.t. tℓ,h ≥ tℓ−1,h +
∑

(i,j)∈HARCh

(transi,j,h + delayℓ,h)xi,j,ℓ,h − nlthh(1− wℓ,h),

∀h ∈ H,∀ℓ = 1, 2, . . . , L (3.2)

BLj,ℓ,h ≤
∑

i|(i,j)∈HARCh

xi,j,ℓ,h, ∀j ∈ I, ℓ ∈ L, h ∈ H (3.3)

BTi,ℓ,h ≤
∑

j|(i,j)∈HARCh

xi,j,ℓ,h, ∀i ∈ I, ℓ ∈ L, h ∈ H (3.4)

tℓ,h ≥
∑

(i,j)∈HARCh

netj,hxi,j,ℓ,h +
∑
j

max(0, net2j − netj,h)BLj,ℓ,h,

∀ℓ ∈ L, h ∈ H (3.5)

tℓ,h ≤
∑

(i,j)∈HARCh

nltj,hxi,j,ℓ,h +
∑
j

max(0, nlt2j,h − nltj,h)BLj,ℓ,h,

∀ℓ ∈ L, h ∈ H (3.6)

tℓ,h ≥
∑

(i,j)∈HARCh

(neti,h + transi,j,h)xi,j,ℓ,h +
∑
i

max(0, net2i − neti,h)BTi,ℓ,h,

∀ℓ ∈ L, h ∈ H (3.7)

tℓ,h ≤
∑

(i,j)∈HARCh

(nlti,h + transi,j,h)xi,j,ℓ,h +
∑
i

max(0, nlt2i,h − nlti,h)BTi,ℓ,h,

∀ℓ ∈ L, h ∈ H (3.8)∑
j|(ich,j)∈HARCh

xich,j,1,h
= w1,h =

∑
ℓ∈L

∑
i|(i,jch)∈HARCh

xi,jch,ℓ,h
, ∀h ∈ H (3.9)

wℓ,h =
∑

(i,j)∈HARCh

xi,j,ℓ,h, ∀h ∈ H, ℓ ∈ L (3.10)
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wℓ,h ≥ wℓ+1,h, ∀ℓ = 1, 2, . . . , |L| − 1,∀h ∈ H (3.11)

wℓ+1,h ≥ wℓ,h −
∑

(i,jch)∈HARCh

xi,jch,ℓ,h
, ∀ℓ = 1, 2, . . . , |L| − 1,∀h ∈ H (3.12)

∑
i|(i,j)∈HARCh

xi,j,ℓ,h + 1− wℓ+1,h ≥
∑

i|(j,i)∈HARCh

xj,i,ℓ+1,h,

∀j ∈ I, h ∈ H, ℓ = 1, 2, . . . , |L| − 1 (3.13)∑
i|(i,j)∈HARCh

xi,j,ℓ,h ≤
∑

i|(j,i)∈HARCh

xj,i,ℓ+1,h + 1− wℓ+1,h,

∀j ∈ I, h ∈ H, ℓ = 1, 2, . . . , |L| − 1 (3.14)∑
h∈H

∑
i|(i,jpk)∈HARCh

∑
ℓ∈L

fi,jpk ,ℓ,h,k ≥ demk − ek, ∀k (3.15)

fi,j,ℓ,h,k ≤ caph,k · xi,j,ℓ,h, ∀h ∈ H, k ∈ K, ℓ ∈ L, (i, j) ∈ HARCh (3.16)∑
h∈H

∑
j|(j,ipk)∈HARCh

∑
ℓ∈L

fj,ipk,ℓ,h,k =
∑
h∈H

∑
i|(jpk ,i,h)∈HARCh

∑
ℓ∈L

fjpk ,i,ℓ,h,k = 0, ∀k ∈ K

(3.17)∑
j|(j,i)∈HARCh

fj,i,ℓ,h,k =
∑

j|(i,j)∈HARCh

fi,j,ℓ+1,h,k,

∀h ∈ H,∀k ∈ K, ∀i ∈ I \ {ipk, j
p
k},∀ℓ = 1, 2, . . . , |L| − 1 (3.18)∑

h∈H

∑
ℓ∈L

∑
j|(ipk,j)∈HARCh

fipk,j,ℓ,h,k ≤ demk, ∀k ∈ K (3.19)

∑
j|(i,j)∈HARCh

fi,j,0,h,k = 0, ∀h ∈ H,∀i ̸= ipk,∀k ∈ K (3.20)

∑
(i,j)∈HARCh

∑
ℓ∈L

ln(1− Pi,j,h)xi,j,ℓ,h +
∑
i∈I

∑
ℓ∈L

ln(1− Pi,h)
∑

j|(i,j)∈HARCh

xi,j,ℓ,h

≥ ln(1− ϵh), ∀h ∈ H (3.21)

fi,j,ℓ,h,k ≤ caph,k · yi,j,ℓ,h,k, ∀h ∈ H, k ∈ K, ℓ ∈ L, (i, j) ∈ HARCh (3.22)

Pi,j,h ·
∑
k∈K

ρkfi,j,ℓ,k,h ≤ δk,h, ∀ℓ ∈ L, (i, j) ∈ HARCh, h ∈ H (3.23)

xi,j,ℓ,h ∈ {0, 1}, ∀h ∈ H, ℓ ∈ L, (i, j) ∈ HARCh (3.24)

yi,j,ℓ,h,k ∈ {0, 1}, ∀h ∈ H, ℓ ∈ L, k ∈ K, (i, j) ∈ HARCh (3.25)

wℓ,h ∈ {0, 1}, ∀h ∈ H, ℓ ∈ L (3.26)

0 ≤ tl,h ≤ maxflt, ∀ℓ ∈ L, h ∈ H (3.27)

ek ≥ 0, ∀k ∈ K (3.28)

fi,j,ℓ,h,k ≥ 0, ∀h ∈ H, ℓ ∈ L, k ∈ K, (i, j) ∈ HARCh (3.29)

BLi,ℓ,h ∈ {0, 1}, ∀i ∈ I, ℓ ∈ L, h ∈ H (3.30)

BTi,ℓ,h ∈ {0, 1}, ∀i ∈ I, ℓ ∈ L, h ∈ H. (3.31)
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3.2.3 Constraint Descriptions

Equation (3.1) minimizes the total connector operating cost, the penalty for unmet PMC

demand, and the additional cost added to “encourage early use of legs”. Constraint (3.2) restricts the

earliest landing time for connector h on leg ℓ (note that for ℓ = 1, tℓ−1,h = 0, and delayℓ−1,h = 0).

Constraints (3.3) and (3.4) ensure that in Block 2, BLj,ℓ,h = 1 / BTj,ℓ,h = 1 (respectively) only

when connector h is routed appropriately. Constraints (3.5) and (3.6) restrict the earliest/latest

possible landing times for connector h in block 2 at location j. Constraints (3.7) and (3.8) restrict

the earliest/latest possible takeoff times for connector h in block 2 at location j. Constraint (3.9)

ensures that connector h’s first take off occurs at a “PMC coordinator-defined” location (HARC).

Constraint (3.10) builds the relationship between x variables and w variables. Constraint (3.11)

ensures connector h takes consecutive active legs. Constraint (3.12) models the logical constraint: if

connector h has an active leg ℓ and it does not travel to its destination jch, then there must be another

active leg ℓ+1. Constraints (3.13) and (3.14) ensure conservation of flow for connector h from leg ℓ to

ℓ+1. Constraint (3.15) measures unmet PMC demand. Constraint (3.16) restricts the total amount

of PMC departing each destination. Constraint (3.17) forbids a load of PMC demand to enter

(leave) its own origin (destination). Constraint (3.18) ensures flow balance of PMC. Constraint

(3.19) ensures that the total amount of PMC picked up does not exceed the requested amount.

Constraint (3.20) ensures PMC is loaded at its source location. Constraint (3.21) constrains the

maximum tolerable risk of failure for routing connector h. Constraint (3.22) ensures that binary

variable yi,j,ℓ,h,k has value 1 when a positive amount of PMC type k is transported from i to j on

connector h’s ℓth leg. Constraint (3.23) constrains the maximum tolerable risk of failure for routing

PMC type k. Constraints (3.24), (3.25), (3.26), (3.30), and (3.31) ensure the appropriate variables

are binary. Constraint (3.27) ensures the departure time of a connector is within the maximum

flight time of that connector. Constraints (3.28) and (3.29) ensure the appropriate variables are

non-negative.

3.2.4 Derivation of Risk Constraints

Incorporating Connector Risk In [Bengigi et al., 2020], the total probability of detection by

a red sensor is defined to be Ps =
∏n

i=0(1 − Pf,q), where Pf,q is the probability of detection along

route q, visually shown in figure 3.1.
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Figure 3.1: Illustration of Arc-Based Risk [Bengigi et al., 2020]

We extend this concept and define the success rate for each potential route by connector h,

dictated by the xi,j,ℓ,h variables, to be computed as follows:

∏
(i,j)|(i,j)∈HARCh

ℓ∈L

(1− Pi,j,hxi,j,ℓ,h)×
∏

i∈I,ℓ∈L

1− Pi,h

∑
j|(i,j)∈HARCh

xi,j,ℓ,h

 , (3.32)

where the first product term computes the probability of success in traveling on all the arcs on the

route, and the second product term computes the probability of success in traveling through all the

locations on the route. Now, given ϵh, the maximum tolerable risk of failure for routing connector

h, we impose the following constraint:

∏
(i,j)|(i,j)∈HARCh

ℓ∈L

(1− Pi,j,hxi,j,ℓ,h)×
∏

i∈I,ℓ∈L

1− Pi,h

∑
j|(i,j)∈HARCh

xi,j,ℓ,h

 ≥ 1− ϵh (3.33)

We notice that this constraint is not linear. To solve this issue, we perform the following modification:

ln

 ∏
(i,j)|(i,j)∈HARCh

ℓ∈L

(1− Pi,j,hxi,j,ℓ,h)×
∏

i∈I,ℓ∈L

1− Pi,h

∑
j|(i,j)∈HARCh

xi,j,ℓ,h


 ≥ ln(1− ϵh),

(3.34)

which simplifies to:
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∑
(i,j)|(i,j)∈HARCh

ℓ∈L

ln(1−Pi,j,hxi,j,ℓ,h) +
∑

j∈I,ℓ∈L

ln

1− Pi,h

∑
j|(i,j)∈HARCh

xi,j,ℓ,h

 ≥ ln(1− ϵh) (3.35)

Since xi,j,ℓ,h is binary we know xi,j,ℓ,h = 0 or xi,j,ℓ,h = 1.

When xi,j,ℓ,h = 0 : ln(1− Pi,j,h × 0) = ln(1) = 0 = ln(1− Pi,j,h)× 0 = ln(1− Pi,j,h)xi,j,ℓ,h

When xi,j,ℓ,h = 1 : ln(1− Pi,j,hxi,j,ℓ,h) = ln(1− Pi,j,h)× 1 = ln(1− Pi,j,h)xi,j,ℓ,h

Thus, ∑
(i,j)|(i,j)∈HARCh

ℓ∈L

ln(1− Pi,j,hxi,j,ℓ,h) =
∑

(i,j)|(i,j)∈HARCh

ℓ∈L

ln(1− Pi,j,h)xi,j,ℓ,h (3.37)

Additionally, let’s consider the second term in this constraint. The sum
∑

j|(i,j)∈HARCh
xi,j,ℓ,h

tells us whether connector h has traveled from i to j on a specific leg ℓ. As such, this sum is either

1 or 0 given a fixed leg ℓ. Because of this fact, we are able to rewrite the second term in the same

way we rewrite (3.37). Thus, this second term simplifies to the following:

∑
i∈I,ℓ∈L

ln

1− Pi,h

∑
j|(i,j)∈HARCh

xi,j,ℓ,h

 =
∑

i∈I,ℓ∈L

ln(1− Pi,h)
∑

j|(i,j)∈HARCh

xi,j,ℓ,h. (3.38)

Combining (3.37) and (3.38), we arrive at a linear representation of the original risk constraint

(3.33), constraining the risk of each potential connector route as follows,

∑
(i,j)|(i,j)∈HARCh

ℓ∈L

ln(1− Pi,j,h)xi,j,ℓ,h +
∑

i∈I,ℓ∈L

ln(1− Pi,h)
∑

j|(i,j)∈HARCh

xi,j,ℓ,h ≥ ln(1− ϵh) (3.39)

written as (3.21) in the MIP formulation.

Calculating Pi,j,h and Pi,h To calculate the probability of failure at a location i or along a

route from i to j, we consider the situation where the probability of failure is given by the sensors
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deployed by the red team, and the failure probability is understood as the detection probability, which

depends on the sensor proximity and strength in relation to location and connector respectively.

Given a set of sensors s ∈ S deployed by the red team, let (is, js) be the two endpoints of the line

segment corresponding to the intersection of arc (i, j) in the coverage area with respect to sensor

s [Zabarankin et al., 2006] (see Figure 4.2 for an illustration), the location-based risk value Pi,h for

connector h at node i can be computed as:

Pi,h =
∑
s∈S

ρs,h × 1

d(s, i)2
(3.40)

where ρs,h represents the risk factor associated with a particular sensor s ∈ S to connector h ∈ H,

and d(·, ·) gives the Euclidean distance between two points (for notational convenience, we use s to

denote both the index of a target and its location).

Figure 3.2: Coverage area associated with a connector k surrounding a sensor s [Margolis et al., 2022]

For the arc-based risk value Pi,j,h for connector h to travel from node i to node j, similar

to [Zabarankin et al., 2006], we calculate it as

Pi,j,h =
∑
s∈S

ρs,hci,j,s, (3.41)

and:

ci,j,s :=


θ̄s
ij

sin θ̄s
ijd(i

s
h,s)d(j

s
h,s)

, if d(ish, j
s
h) > 0,

0 otherwise,

(3.42)

where θ̄sij represents the angle between two vectors, from s to ish and from s to jsh, as illustrated in

Figure 4.2.
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Incorporating PMC Risk To incorporate the risk for potential PMC loss while traveling from

i to j, we utilize the Operational Risk Management (ORM) matrix concept, shown in figure 3.3

[ORM, 2004]. This diagram is frequently used in the military to illustrate risk levels for specific

actions or events. This matrix incorporates both the probability of an event occurring, such as the

Figure 3.3: Operational Risk Management(ORM) Matrix [ORM, 2004]

disruption of flow from i to j, and the severity of this event occurring. Here we use this to distinguish

the risk associated with carrying varying types of PMC, in addition to the risk associated with flying

on a particular connector through a given route.

We’ve already defined the probability Pi,j,h to denote the probability of failure along the

route from i to j. Here, we incorporate the ORM concept to account for the severity of losing a

certain amount of a specific PMC type k (weighted by the severity of loss value ρk). Instead of a

risk accruement perspective, we define δh,k to be the maximum allowed risk for any PMC loss that

could occur at any arc:

Pi,j,h ×
∑
k∈K

ρkfi,j,ℓ,h,k ≤ δk,h, ∀ℓ ∈ L, (i, j) ∈ HARCh, h ∈ H

written as (3.23) in the formulation. This process is unique as it brings the decision maker into the

routing process.
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Chapter 4

Two-Stage Discrete Time Model

with Random Attack Scenarios

4.1 Motivations and Assumptions

In this chapter we present a two-stage stochastic model. The first stage model is based on a

deterministic model presented in [Tan, 2023]. The second stage model extends the first stage model

to incorporate recourse decisions made post-attack for a specific attack scenario s.

In this model we make some assumptions. The first being that there is a set of attack

scenarios S available, where for each attack s ∈ S the attack time and attack outcome is random. We

assume that all attacks are “worst case”, meaning that whatever percentage of capacity is destroyed

is the same as the percentage connectors/PMC destroyed in inventory. Once an attack occurs, we

assume that the reaction time is instantaneous for all connectors, meaning there is no delay for

recourse decision making. We assume that connectors and PMC operate on a three-layer network.

Connectors can travel between starting and destination layers and to and from the transshipment

layer. PMC can travel to and from the transshipment layer, but not between layers. This is shown

visually in figure 4.1:
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Figure 4.1: Three Layer Network for PMC and Connectors

4.2 Model Formulation

4.2.1 Deterministic Formulation

4.2.1.1 Sets, Parameters, and Variables

fake solution to tabbing issue

Sets:

h ∈ H Connector vehicle type
k ∈ K PMC type
i, j ∈ I Set of all locations in the network
Istarts ⊂ I Set of all starting locations
Itrans ⊂ I Set of all transshipment locations
Idests ⊂ I Set of all destination locations
(i, j) ∈ ARCSh Allowable arcs for connector h based upon three-layer network definition
(i, j) ∈ ARCSk Allowable arcs for PMC k based upon three-layer network definition
t ∈ T := {1, 2, . . . , |T |} Time periods of operation
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Parameters:

caph,k Maximum amount of PMC k allowed on connector h
capvh Maximum volume for connector h
capwh Maximum weight for connector h
volk Volume of PMC type k
weightk Weight of PMC type k
costh Operating cost of connector h
demi,t,k Demand for PMC type k at time t at location i
supi,k Initial supply for PMC type k at location i
starti,h Initial number of connectors h at location i
trans(i,j),h Transit time from location i to j for connector h
penk Penalty parameter for each unit of undelivered PMC type k

Variables:

x(i,j),t,h Number of connectors h beginning a route from locations i to j at time t
IXi,t,h Inventory of connectors h at location i at the start of time t
y(i,j),t,h,k Units of PMC type k transported on connector h from locations i to j beginning at time period t
IYi,t,k Inventory of PMC type k at location i at the start of time t
ei,t,k Demand for PMC type k at location i during time period t
zi,t,k Units of demanded PMC k delivered by time t at location i

4.2.1.2 Deterministic Model

Minimize z =
∑
h∈H

∑
i∈I

∑
j∈I

∑
t∈T

cost(i,j),t,h · x(i,j),t,h +
∑
t∈T

∑
k∈K

penk ·
∑
i∈I

(ei,t,k − zi,t,k) (4.1)

s.t. IXi,t+1,h = IXi,t,h −
∑

j∈I|(i,j)∈ARCSh

x(i,j),t,h +
∑

j∈I|(j,i)∈ARCSh

x(j,i),t−trans(j,i),h+1,h

∀h ∈ H, t ∈ T, i ∈ I (4.2)∑
j∈I|(i,j)∈ARCSh

x(i,j),t,h ≤ IXi,t,h, ∀i ∈ I, t ∈ T, h ∈ H (4.3)

IYi,t+1,k = IYi,t,k −
∑

j∈I|(i,j)∈ARCSk

∑
h∈H

y(i,j),t,h,k

+
∑

j∈I|(j,i)∈ARCSk

∑
h∈H

y(j,i),t−trans(j,i),h+1,h,k − zi,t,k,

∀i ∈ I, t ∈ T, k ∈ K (4.4)
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∑
j∈I|(i,j)∈ARCSk

∑
h∈H

y(i,j),t,h,k ≤ IYi,t,k − zi,t,k, ∀t ∈ T, k ∈ K, i ∈ I (4.5)

y(i,j),t,h,k ≤ caph,k · x(i,j),t,h

∀(i, j) ∈ I, t ∈ T, h ∈ H, k ∈ K (4.6)

y(i,j),t,h,k · volk ≤ capvh · x(i,j),t,h

∀(i, j) ∈ I, t ∈ T, h ∈ H, k ∈ K (4.7)

y(i,j),t,h,k · weightk ≤ capwh · x(i,j),t,h

∀(i, j) ∈ I, t ∈ T, h ∈ H, k ∈ K (4.8)

IYi,0,k = supi,k, ∀i ∈ I, k ∈ K (4.9)

IXi,0,h = starti,h, ∀i ∈ I, h ∈ H (4.10)

ei,0,k = demi,0,k, ∀i ∈ I, k ∈ K (4.11)

ei,t,k = ei,t−1,k − zi,t−1,k + demi,t,k, ∀i ∈ I, t ∈ T \ {0}, k ∈ K (4.12)

zi,t,k ≤ IYi,t,k, ∀i ∈ I, t ∈ T, k ∈ K (4.13)

zi,t,k ≤ ei,t,k, ∀i ∈ I, t ∈ T, k ∈ K (4.14)

ei,t,k, zi,t,k, y(i,j),t,h,k, IYi,t,k, x(i,j),t,h, IXi,t,k ≥ 0,

∀(i, j) ∈ I, t ∈ T, h ∈ H, k ∈ K (4.15)

x(i,j),t,h, IXi,t,h ∈ Z+, ∀(i, j) ∈ I, t ∈ T, h ∈ H (4.16)

4.2.1.3 Constraint Explanations

Equation (4.1) is the deterministic model objective. It minimizes the overall connector

operating cost and penalizes unmet demand to prioritize the delivery of requested items. Constraint

(4.2) ensures the balance of connectors in inventory at each location from t to t+1. It is important

to note that inventory for the t + 1 time period is counted after connectors arrive at time t + 1

but before connectors depart at time t + 1. Constraint (4.3) requires the number of connectors

h leaving a location to be no larger than the number of connectors h in inventory at the time of

departure. Constraint (4.5), like constraint (4.2), ensures the balance of PMC units in inventory

at each location from t to t + 1. Constraint (4.4), like constraint (4.3), requires the amount of

PMC k leaving a location to be no larger than the amount of PMC k in inventory at the time of

departure. Constraints (4.6), (4.7), and (4.8) ensure connectors are within their unit, volume, and
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weight capacity limits for PMC items travelling onboard. Constraints (4.10) and (4.9) store the

initial inventory for connectors and PMC at t = 0. Constraint (4.11) stores the initial PMC demand

signals at t = 0 for each location. Constraint (4.12) tracks demand remaining to be satisfied for

each time period. Constraints (4.13) and (4.14) restrict the satisfied demand to be no more than the

inventory at each location and the demand requested at each location. Constraint (4.15) requires

all variables to be non-negative and constraint (4.16) requires the connector routing and inventory

variables to be integer.

4.2.2 Second Stage Formulation

Understanding the sequence of events at the time of attack, ts is critical to understating the

link between the first stage variables and second stage model.

4.2.2.1 Sequence of Events

1. Begins with the starting inventory at ts − 1

2. Connectors and PMC arrive at the location (from the original plan) at ts

3. Attack occurs at ts

4. Inventory for PMC & Connectors is recounted to account for lost connectors and PMC

5. Recourse routing begins

4.2.2.2 Sets, Parameters, and Variables

fake solution to tabbing issue
Scenario-Based Sets:

s ∈ S Attack scenario
i, j ∈ Is ⊂ M Locations targeted by attack s
t ∈ T ∗

s ⊂ T Time periods, starting from ts to |T | where ts is the time period of the
attack (T ∗

s := {ts, . . . , |T |}

Scenario-Based Parameters:

ps The probability that attack s occurs
δi,h,s/δi,k,s Percentage of connectors h/PMC k at location i ∈ Is destroyed during attack s
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Scenario-Based Recourse Decision Variables:

x(i,j),t,h,s Number of connectors h beginning a route from locations i to j at time t
under attack scenario s

IXi,t,h,s Inventory of connectors h at location i at the start of time t under
attack scenario s

y(i,j),t,h,k,s Units of PMC type k transported on connector h from locations i to j
beginning at time period t under attack scenario s

IYi,t,k,s Inventory of PMC type k at location i at the start of time t
under attack scenario s

ei,t,k,s Demand for PMC type k at location i during time period t under
attack scenario s

zi,t,k,s Units of demanded PMC k delivered by time t at location i under
attack scenario s

4.2.2.3 Second Stage Recourse Model Under Attack s

Zs(x) : Minimize z =
∑
t≥ts

∑
h∈H

∑
i∈I

∑
j∈I|(i,j)∈ARCSh

costi,j,t,h · xi,j,t,h,s +
∑
i∈I

∑
k∈K

penk · (ei,t,k,s − zi,t,k,s)


−

∑
t≥ts

∑
h∈H

∑
i∈I

∑
j∈I|(i,j)∈ARCSh

costi,j,t,h · xi,j,t,h +
∑
i∈I

∑
k∈K

penk · (ei,t,k − zi,t,k)


(4.17)

s.t. IXi,t+1,h,s = IXi,t,h,s −
∑

j∈I|(i,j)∈ARCSh

xi,j,t,h,s

+
∑

j∈I|(j,i)∈ARCSh

xj,i,t−transj,i,h+1,h,s · 1t−transj,i,h+1≥ts ,

∀h ∈ H, t ≥ ts, i ∈ Itrans (4.18)

IXi,t+1,h,s = IXi,t,h,s −
∑

j∈I|(i,j)∈ARCSh

xi,j,t,h,s

+
∑

j∈I|(j,i)∈ARCSh

xj,i,t−transj,i,h+1,h,s · 1t−transj,i,h+1≥ts

+
∑

j∈Itrans|(i,j)∈ARCSh

xi,j,2ts−t−1,h · 1 2ts−t−1<ts,
2ts−t−1+transi,j,h>ts,

2ts−t−1≥0

+
∑
j∈I

xj,i,t−transj,i,h+1,h · 1t−transj,i,h+1<ts , (4.19)

∀h ∈ H, t ≥ ts, i ∈ Istarts ∪ Idests (4.20)

yi,ts,h,s ≤ (1− δi,h,s)yi,ts,h, ∀i ∈ Is, h ∈ H (4.21)

yi,ts,h,s ≥ (1− δi,h,s)yi,ts,h − 1 + 10−3, ∀i ∈ Is, h ∈ H (4.22)

yi,ts,h,s = yi,ts,h, ∀i ∈ I \ Is, h ∈ H (4.23)∑
j∈I|(i,j)∈ARCSh

xi,j,t,h,s ≤ IXi,t,h,s, ∀i ∈ I, t ≥ ts, h ∈ H (4.24)
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∑
j∈I|(i,j)∈ARCSk

∑
h∈H

yi,j,t,h,k,s ≤ IYi,t,k,s − zi,t,k,s, ∀t ≥ ts, k ∈ K, i ∈ I (4.25)

IYi,ts,k,s = (1− δi,k,s) ∗ IYi,ts,k, ∀i ∈ Is, k ∈ K (4.26)

IYi,ts,k,s = IYi,ts,k, ∀i ∈ I \ Is, k ∈ K (4.27)

IYi,t+1,k,s = IYi,t,k,s −
∑

j∈I|(i,j)∈ARCSk

∑
h∈H

yi,j,t,h,k,s

+
∑

j∈I|(j,i)∈ARCSk

∑
h∈H

yj,i,t−transi,j,h+1,h,k,s · 1t−transj,i,h+1≥ts ,

∀i ∈ Itrans, t ≥ ts, k ∈ K (4.28)

IYi,t+1,k,s = IYi,t,k,s −
∑

j∈I|(i,j)∈ARCSk

∑
h∈H

yi,j,t,h,k,s

+
∑

j∈I|(j,i)∈ARCSk

∑
h∈H

yj,i,t−transi,j,h+1,h,k,s · 1t−transj,i,h+1≥ts

+
∑
j∈I

yi,j,2ts−t−1,h,k · 1 2ts−t−1<ts,
2ts−t−1+transi,j,h>ts,

2ts−t−1≥0

+
∑
j∈I

yj,i,t−transj,i,h+1,h,k · 1t−transj,i,h+1<ts ,

∀i ∈ Istarts ∪ Idests, t ≥ ts, k ∈ K (4.29)

yi,j,t,h,k,s ≤ caph,k · xi,j,t,h,s

∀i, j ∈ I, t ≥ ts, h ∈ H, k ∈ K (4.30)

yi,j,t,h,k,s · volk ≤ capvh · xi,j,t,h,s

∀i, j ∈ I, t ≥ ts, h ∈ H, k ∈ K, s ∈ S (4.31)

yi,j,t,h,k,s · weightk ≤ capwh · xi,j,t,h,s

∀i, j ∈ I, t ≥ ts, h ∈ H, k ∈ K, s ∈ S (4.32)

IXi,t,h,s ≤ (1− δi,t,h,s) · capi,h,∀i ∈ Is, t ≥ ts, h ∈ H (4.33)

IXi,t,h,s ≤ capi,h, ∀i /∈ Is, t ≥ ts, h ∈ H (4.34)

IYi,t,k,s ≤ capi,k · (1− δi,t,k,s), ∀i ∈ Is, t ≥ ts, h ∈ H (4.35)

IYi,t,k,s ≤ capi,k, ∀i /∈ Is, t ≥ ts, h ∈ H (4.36)

ei,t,k,s = ei,t−1,k,s − zi,t−1,k,s + demi,t,k,s, ∀i ∈ I, t > ts, k ∈ K (4.37)

zi,t,k,s ≤ IYi,t,k,s, ∀i ∈ I, t ≥ ts, k ∈ K (4.38)

zi,t,k,s ≤ ei,t,k,s, ∀i ∈ I, t ≥ ts, k ∈ K (4.39)

ei,ts,k,s = ei,ts,k, ∀i ∈ I, k ∈ K (4.40)

ei,t,k,s, yi,j,t,h,k,s, zi,t,k,s, IYi,t,k,s ≥ 0, ∀i, j ∈ I, t ≥ ts, h ∈ H, k ∈ K (4.41)

xi,j,t,h,s, IXi,t,h,s ∈ Z+, ∀i, j ∈ I, t ≥ ts, h ∈ H (4.42)

4.2.2.4 Constraint Explanations

Equation (4.17) minimizes the cost of connector operation and unmet demand under scenario

s within the second stage formulation and “pays back” the cost of the first stage variables unused

for t ≥ ts. Constraint (4.18) represents the connector inventory balance constraint for connectors

25



at transshipment locations. Constraint (4.20) represents the connector inventory balance constraint

for starting and destination locations. This constraint includes the arrival of connectors that depart

before ts and arrive after ts. Constraints (4.21) and (4.22) enforce a reduction in connector inventory

for all attacked locations based on the percentage of connector capacity destroyed at location i and

the number of connectors in inventory at location i at ts. Constraint (4.23) Initializes the amount

of connectors in inventory at ts for non-attacked locations. Constraint (4.24) ensures the number of

connectors leaving location i is not greater than the number of connectors available in inventory at

location i. Constraint (4.25) ensures the amount of PMC leaving location i is not greater than the

amount of PMC available in inventory at location i. Constraint (4.26) enforces a reduction in PMC

inventory for all attacked locations based on the percentage of PMC capacity destroyed at location i

and the amount of PMC in inventory at location i at ts. Constraint (4.27) Initializes the amount of

PMC in inventory at ts for non-attacked locations. Constraint (4.28) represents the PMC inventory

balance constraint for connectors at transshipment locations. Constraint (4.29) represents the PMC

inventory balance constraint for starting and destination locations. This constraint includes the ar-

rival of PMC departing before ts and arriving after ts. Constraints (4.30), (4.31), and (4.32) ensure

connectors are within their unit, weight, and volume capacity limits for PMC items travelling on-

board. Constraint (4.33) enforces the new capacity for connectors at attacked locations. Constraint

(4.34) enforces the capacity for connectors at non-attacked locations. Constraint (4.35) enforces

the new capacity for PMC at attacked locations. Constraint (4.37) tracks demand remaining to be

satisfied for each time period. Constraints (4.38) and (4.39) restrict the satisfied demand to be no

more than the inventory at each location and the demand requested at each location. Constraint

(4.40) Sets the demand quota at ts. Constraint (4.41) requires all variables to be non-negative and

constraint (4.42) requires the connector routing and inventory variables to be integer.

4.2.2.5 Special Recourse Cases at ts

There are a few special cases that prevent us from directly linking the first stage model

to the second stage model. These special cases occur when a connector departs prior to ts and is

not due to arrive until after ts. Because the attack occurs at ts, there is a reduction of capacity

for PMC and connectors at the attacked locations, thus if we allow connectors to continue routes

to these locations, there is a potential for there to be no space for them upon arrival. This causes

issues with the feasibility of the model. To avoid this, we send all connectors and PMC en-route
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to transshipment locations back to their starting locations (where there is no possibility of attack).

This solves the routing consistency issue for connectors en-route to transshipment locations. Now,

if a connector is departing a transshipment location, then sending it back to its starting location

at ts may also introduce a feasibility issue (due to the possibility of a reduced location capacity for

PMC and connectors). Since it’s already on a route away from danger, we allow it to continue its

route from the first to the second stage model. Additionally, if a connector is travelling between the

starting layer or between the destination layer, we also allow it to keep its route from the first to

the second stage model. Visually these cases are shown below, where td is the time of departure,

ts is the time of attack, and t is the original time of arrival in the second stage model prior to the

recourse:

Figure 4.2: Special Recourse Cases

It’s not difficult to link the first two special cases (connectors travelling between layers and

connectors departing transshipment nodes). Linking the third case however, requires some additional

thought. In order to determine the time of return, we need to know the total routing time. At ts

we know that xi,j,td,h has been transiting for ts − td time periods. We assume that it takes no
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additional time for the connector to turn around, hence the return time is also ts − td. Therefore

the total transit time is 2 · (ts − td). To get the time of return we add this value to the original time

of departure, td. Thus we get the following:

treturn = 2 · (ts − td) + td

treturn = 2ts − td

These recourse decisions are modeled in constraints (4.20) and (4.29).

4.2.3 Full Two-stage Stochastic Programming Model

Minimize z =
∑
h∈H

∑
i∈I

∑
j∈I

∑
t∈T

(costi,j,t,h · xi,j,t,h) +
∑
t∈T

∑
k∈K

∑
i∈I

penk · (ei,t,k − zi,t,k) +
∑
s∈S

psZs(x)

(4.43)

s.t. (4.2)−−(4.16)

4.2.3.1 Constraint Explanations

Equation (4.43) minimizes the objective of the deterministic model and the expectation of

second-the stage model under all scenarios s. Constraints (4.2) – (4.16) follow their descriptions in

section 4.2.1.3.
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Chapter 5

Experiment Setup

5.1 Continuous Time Model

With this model, our goal is to evaluate the effectiveness of the chance constraints for both

PMC and connectors. We need to know how they affect the routes of both connectors and PMC, as

well as how they affect the overall objective cost as we raise and lower the tolerable risk for PMC

and connector routing.

5.1.1 Data Preparation

We used scenario instances based on real military logistics scenarios to test the models.

While the real information is sensitive, the network instance, PMC demand requests, and available

connectors were created with actual military scenarios in mind. The specific information used to

test this formulation is shown in the table below:

Scenario Information
Amount of Connectors Number of Locations Total Packages of PMC Total Volume of PMC (ft3)

2 11 113 10767

Table 5.1: Continuous Time Scenario Information

Additionally, sensor locations and ranges are randomly selected. In this case, there are

two sensors selected. Since the actual scenario information is classified, the risk factor for each

connector and sensor is also randomly selected from 1 to 9 (as there is no way to know the actual
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value). For PMC, we assign each item a value from 1 to 4 to represent the severity of loss as

demonstrated in the ORM. Again, this is selected randomly as there is no way to know the actual

value. 1 represents a negligible item, 2 represents a marginal item, 3 represents a critical item, and

4 represents a catastrophic item. For all simulations, the model was run using optimization software

Gurobi 10.0.1.

5.1.2 Results

We begin by testing how the model behaves when exclusively raising and lowering the

maximum tolerable risk of failure for connectors, titled “eRiskTol” in the following tables. We test

this value at 0.25, 0.5, 0.75, and at 1 where 0.25 represents low tolerable risk and 1 represents higher

tolerable risk. The output of these runs is shown in tables 5.2 and 5.3.

eRiskTol fRiskTol OBJ Cost Connectors Used # of Packages Undelivered Vol. PMC Undelivered

1 100 12268.98 0, 1 (Air) 2 out of 113 595 out of 10767
0.75 100 46027.88 0, 1 (Air) 10 out of 113 2832 out of 10767
0.5 100 46076.88 0, 1 (Air) 10 out of 113 2832 out of 10767
0.25 100 66096.61 0, 1 (Air) 15 out of 113 2764 out of 10767

Table 5.2: Sensitivity Analysis on Constraint (3.21) Pt. 1

#of Pacakges Undelivered
eRiskTol fRiskTol

Negligible Marginal Critical Catastrophic
Legs Used Reason for OBJ Change

1 100 – 1 out of 3 – 1 out of 89 7,7 Increased Delivery
0.75 100 3 out of 19 3 out of 3 1 out of 2 3 out of 89 7,7 Route Change
0.5 100 3 out of 19 3 out of 3 1 out of 2 3 out of 89 7,7 Increased Delievery
0.25 100 9 out of 19 3 out of 3 1 out of 2 2 out of 89 7,7

Table 5.3: Sensitivity Analysis on Constraint (3.21) Pt. 2

We notice that as the tolerable risk increases, the objective value decreases. In this run we

hold the PMC tolerable risk constant at 100, unconstraining this constraint as we test the effects of

changing the connector tolerable risk. As the tolerable risk increases from low to medium low risk,

the objective cost decreases as we increase the number of PMC items delivered. We also notice a

drop in the objective due to item delivery from medium-high risk to high risk. As we increase the

tolerable risk, we also notice a route change for one of the connectors, which also contributes to the

drop in the objective value. The low-risk solution never enters the sensor zone. The medium-low

risk and medium-high risk solutions both enter the sensor zone once; however the medium-high risk

solution spends a greater amount of time in the sensor zone. The high risk solution enters the sensor

zone 3 times for sensor 0 and once for sensor 1. This demonstrates that as we raise the tolerable
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risk of failure for a given connector, that connector will choose riskier routes in order to achieve a

more cost-effective route. This visualization is shown in figure 5.1.

Figure 5.1: Visualization of the Sensitivity Analysis of Constraint (3.21)

Next we test how the model behaves when exclusively raising and lowering the maximum

tolerable risk of failure for PMC, titled “fRiskTol” in the following tables. We test this value at 1,

10, 40, and at 1000 where 1 represents low tolerable risk and 100 represents high tolerable risk. The
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output of these runs is shown in tables 5.4 and 5.5 .

eRiskTol fRiskTol OBJ Cost Connectors Used # of Packages Undelivered Vol. PMC Undelivered

1 100 12268.98 0, 1 (Air) 2 out of 113 595 out of 10767
1 40 40210.98 0, 1 (Air) 9 out of 113 1032 out of 10767
1 10 42588.06 0, 1 (Air) 9 out of 113 1032 out of 10767
1 1 46020.88 0, 1 (Air) 10 out of 113 2832 out of 10767

Table 5.4: Sensitivity Analysis on Constraint (3.23) Pt. 1

#of Pacakges Undelivered
eRiskTol fRiskTol

Negligible Marginal Critical Catastrophic
Legs Used Reason for OBJ Change

1 100 – 1 out of 3 – 1 out of 89 7,7 Increased Delivery
1 40 7 out of 19 1 out of 3 – 1 out of 89 7,7 Delivery Change
1 10 7 out of 19 – – 2 out of 89 7,7 Increased Delivery
1 1 3 out of 19 3 out of 3 1 out of 2 3 out of 89 7,7

Table 5.5: Sensitivity Analysis on Constraint (3.23) Pt. 2

Again, we notice that as the tolerable risk increases, the objective value decreases. In this

run we hold the connector tolerable risk constant at 1, unconstraining this constraint as we test the

effects of changing the PMC tolerable risk. As we increase the tolerable risk from low to medium-low,

we notice increased PMC delivery and a route change for connector 2 (connector 1’s route never

changes). Going from medium-low risk to medium-high risk there is no route change, however there

is a change in the items delivered. From medium-low risk to medium-high risk one less “marginal”

item is delivered and one more “catastrophic” item is delivered. Going from medium-high risk to

high risk, we again see an objective drop. This is due to an increase in the number of items delivered

and another route change. Because the connector tolerable risk is unconstrained, the connectors

enter the sensor zones in every route. That being said, as the PMC tolerable risk increases, the

number of times the connector enters the sensor zone increases as well. We also notice that as

the tolerable risk increases the distribution of negligible, marginal, critical, and catastrophic PMC

deliveries change as well. The route visualization for this run is shown in figure 5.2.

Now we test how the model behaves when raising and lowering both the maximum tolerable

risk of failure for connectors and for PMC. The results of this run are shown in tables 5.6 and 5.7.

In this run we notice that the connector routes, shown in figure 5.3, are exactly the same as those in

figure 5.1, the run where maximum tolerable risk of failure for connectors was exclusively modified.

The difference between that run and this run is the number of catastrophic items undelivered for the

low risk solution. This tells us that the PMC risk constraint is heavily influenced by the maximum

tolerable risk for the connector constraint.
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Figure 5.2: Visualization of the Sensitivity Analysis of Constraint (3.21)

eRiskTol fRiskTol OBJ Cost Connectors Used # of Packages Undelivered Vol. PMC Undelivered

1 100 12268.98 0, 1 (Air) 2 out of 113 595 out of 10767
0.75 80 46027.88 0, 1 (Air) 10 out of 113 2832 out of 10767
0.5 40 46076.88 0, 1 (Air) 10 out of 113 2832 out of 10767
0.25 10 66096.61 0, 1 (Air) 16 out of 113 2764 out of 10767

Table 5.6: Sensitivity Analysis of Constraint (3.21) and (3.23) Pt. 1
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#of Pacakges Undelivered
eRiskTol fRiskTol

Negligible Marginal Critical Catastrophic
Legs Used Reason for OBJ Change

1 100 – 1 out of 3 – 1 out of 5 7,7 Increased Delivery
0.75 80 3 out of 113 3 out of 3 1 out of 2 3 out of 5 7,7 Route Change
0.5 40 3 out of 113 3 out of 3 1 out of 2 3 out of 5 7,7 Increased Delivery
0.25 10 9 out of 113 3 out of 3 1 out of 2 3 out of 5 7,7

Table 5.7: Sensitivity Analysis of Constraint (3.21) and (3.23) Pt. 2

Figure 5.3: Visualization of the Constraints Sensitivity Analysis (3.21) & (3.23)
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5.2 Two-Stage Discrete Time Model

With this model, out goal is to evaluate the routing solutions of the two-stage model as

compared to the deterministic formulation. We need to know if the two-stage model generates

solutions that are more risk-averse when compared to a plain deterministic solution.

5.2.1 Data Preparation

Like with the continuous time model, we used scenarios based on real-world military logistics

scenarios. This data was modified to include capacities at locations for PMC and connectors. The

location coordinates were also modified to be based on real-world locations, as see in figure 5.4. The

specific information used to test this formulation is shown in table 5.8:

Scenario Information
Amount of Connectors Number of Locations Total Packages of PMC Total Volume of PMC (ft3)

2 9 450 244,730

Table 5.8: Discrete Time Scenario Information

In this scenario, the locations are broken up into the three-layer network where there are

three starting, transshipment, and destination locations. This network is shown in figure 5.4, where

the blue locations represent starting locations, the green locations represent transshipment locations,

and the dark blue locations represent destination locations. For each attack scenario, the attack time

and destruction values are randomly selected. We assume that each attack is equally likely to occur.

5.2.2 Results

To test the effectiveness of this model, the following solutions were compared: the deter-

ministic solution, the two-stage solution, the two-stage solution using the deterministic solution as

the first stage solution, and the average of the deterministic solution under known attacks. The de-

terministic solution was simply calculated by running the base deterministic model. The two-stage

model was tested by inputting three attack sets, one with 3 attacks, 5 attacks, and 7 attacks, and

then run until a 15%, 25 % and 30 % gap respectively. The two-stage model with the deterministic

solution as the first stage solution was run by taking the deterministic solution and setting it equal

to the first stage variables in the two stage model. Then the model was run with the 3 attack sets,

one with 3 scenarios, 5 scenarios, and 7 scenarios. The average of the deterministic solution under
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Figure 5.4: Discrete Time Scenario Three-Layer Network

known attacks was tested by running the deterministic solution with each attack scenario in each

attack set used as input into the model. For each attack set, the average of the returned objective

value was calculated to be weighted average of the deterministic solution under the known attacks.

The results of these tests are shown in figure 5.5.

Figure 5.5: Discrete Time Scenario Results

We notice that for every attack set, the lowest objective value is from the deterministic

model. This makes sense as this solution does not account for any attack scenarios and simply finds

the most optimal route plan. The next best solution for every attack set is the weighted average

of the deterministic model results under the known attacks. The third best objective value is the

two-stage model and the fourth best objective value is the two-stage model with the deterministic

model result inputted as the first stage solution. This tells us that when operating in a contested

environment, the two-stage model outperforms the deterministic model. Figure 5.6 better quantifies

36



this: We test the two-stage model with the deterministic model input to assess how well that routing

Figure 5.6: Two-Stage Results Comparison

plan would hold up under various possible attacks. As shown, the objective for the two-stage with

the deterministic model as input at best, performs 33 times worse than the two-stage model. It’s

worth nothing that for 7 attacks, the model gap is at 30% for the two-stage model and at 19.64% for

the two-stage model with the deterministic model, giving an advantage to the deterministic input.

However, even with this advantage it still significantly performs worse than the two-stage solution.
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

The goal of this work was to investigate two separate models that handle multi-commodity

logistics planning within in contested environments. The first model we investigated was a continuous

time model with chance constraints. We found that this model yielded risk-adverse solutions when

using the chance constraints. As the maximum tolerable risk of failure for PMC and connectors

decreased, the route changed to avoid sensor zones. The second model we investigated was the

two-stage discrete time model with random attack scenarios. On small-scale scenarios, this model

has demonstrated great promise. Solutions from the two-stage model when compared to those

of the deterministic base model were significantly more risk-adverse when routing in a contested

environment. The two-stage solutions avoided unnecessary PMC loss from potential attacks and

at worst, performed 33 times better than the deterministic model when the deterministic solution

was used as the first stage solution input. At this time it is unclear how the two-stage model will

perform using to-scale military logisitics scenarios, leaving the door open for future work.

6.2 Future Work

There is great potential for future work for both models. While the continuous time model

is not practical because it lacks transshipment, there is value in incorporating the chance constraints

for both PMC and connectors into the base deterministic model used in the Two-Stage model.
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While both the continuous time model and the two-stage model handle routing within a contested

environment, they go about it in different ways. Implementation of the deterministic model with

the chance constraints from the continuous time model would be beneficial in an environment where

sensor locations are known, but potential attacks are not. In a setting where routing without

detection is the greatest priority, using this model may be more beneficial than using that of the

two-stage model.

Additionally, there is still a great amount of exploration left to do with the two-stage model.

Due to limiting time factors, it remains to be tested on medium to large scale deployment instances

due to how long it takes to run. It also has been tested with up to 7 attack scenarios. There is an

opportunity to test model performance with an increasing number of attack scenarios to hone the

solutions. Right now the attack scenarios are considered equally likely. With more knowledge of

the contested environment and adversary, the set of attacks and likelihood that they occur could be

modified to more accurately reflect a real-world scenario.

6.3 Closing Thoughts

Routing in contested environments is a complicated process that does not have a “one-size

fits all” solution. This being said, models like the Continuous Time Model with Chance Constraints

and the Two-Stage Discrete Time Model with Random Attack Scenarios show potential for a new

way of generating route plans that are both optimal and risk-averse.
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