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Abstract

In this dissertation, we consider the inverse problem for a second-order hyperbolic equation

of recovering n+3 unknown coefficients defined on an open bounded domain with a smooth enough

boundary. We also consider the inverse problem of recovering an unknown coefficient on the Euler-

Bernoulli plate equation on a lower-order term again defined on an open bounded domain with a

smooth enough boundary. For the second-order hyperbolic equation, we show that we can uniquely

and (Lipschitz) stably recover all these coefficients from only using half of the corresponding bound-

ary measurements of their solutions, and for the plate equation, we show that we can uniquely and

stably recover the coefficient by using two measurements on the boundary. The proofs for solving

both inverse problems are based on a post-Carleman estimate strategy developed by Isakov in [19],

continuous observability inequalities, and regularity theory.
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Chapter 1

Introduction

The primary focus of this dissertation is to solve the inverse problem of recovering coefficients

from second-order hyperbolic partial differential equations (PDEs) and the Euler-Bernoulli plate

equations under hinged boundary conditions. Our approach utilizes a sharp Carleman estimate for

second-order hyperbolic equations [31, 37, 46] and a Carleman estimate for the plate equation derived

using similar techniques as in [1, 47]. To use the Carleman estimates, we first convert the original

inverse problems to inverse source problems and prove uniqueness and stability for the system of

second-order hyperbolic equations and the plate equation. An crucial result used in the proofs is

a “post-Carleman estimate” technique from [19, Theorem 8.2.2]. This result creates a strategy to

prove uniqueness for the inverse source problems. To prove stability, we use corresponding continuous

observability inequalities from [27, 40, 41, 42, 46]. In this chapter, we provide a brief overview of

Carleman estimates as they pertain to inverse problem for systems of PDEs. We also provide the

underlying assumptions used for each inverse problem.

1.1 Carleman Estimates

The origin of Carleman estimates and their namesake is from the mathematician Carleman

in 1939. In [9], he formed a technique to prove uniqueness to the Cauchy problem in two variables.

Years later, Hörmander generalized Carleman’s method to work on a more general class of differential
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operators [15]. The general representation is the following:

∑
|α|<m

τ2(m−|α|−1)

∫ ∣∣Dαue2τφ
∣∣ dx ≤ C

∫
|P (x,D)ue2τφ|2 dx, u ∈ C∞

0 (1.1)

where φ is a weight function, P (x,D) is a partial differential operator, α is multi-index notation,

and τ is a sufficiently large parameter. Hörmander used (1.1) to prove the Unique Continuation

Property : given u as a solution to the PDE P (x,D)u = 0 on a bounded domain Ω ⊂ Rn and u = 0

for some φ(x) > 0, where the function φ : Ω → R defines a smooth hypersurface in Ω, then this

implies that u = 0 on a neighborhood of φ = 0.

The main setback of early results on Carleman estimates, however, is that they were only

applicable when the solutions to the PDE system were compactly supported. By this assumption,

early Carleman estimates did not contain boundary terms, which limits their usefulness in applica-

tions to control theory and inverse problems. To exacerbate the issue, homogenizing the Cauchy

data produced a term on the right-hand side of the estimate with norms of boundary traces a half

derivative higher than the norm of u on the left-hand side of the estimate [30]. Hence, early Car-

leman estimates failed in provided decent results when applied to boundary value problems. Thus,

the need to develop improved Carleman-type inequalities that produce good results for solutions of

boundary value problems increased.

The improvement to Carleman estimates that include boundary terms is credited to two

sources. The first source is credited to Daniel Tataru [45] at the University of California, Berkeley.

He proposed extending the main Carleman estimate to general pseudo-differential operators. To

establish this, specific geometric properties must be met with the domain, including a surface that

must be pseudo-convex. Tataru’s work was inspired by Lasiecka and Triggiani [34] where they

developed a sharp Carleman estimate for second-order hyperbolic equations by using the multiplier

method, which refers to multiplying the governing PDE by differential multipliers. These multipliers

differ depending on the PDE they were used on. The other method of providing useful Carleman

estimates for boundary value problems is credited to Lavrentiev, Romanov, and Shishatski [39].

They first establish an initial pointwise Carleman estimate with the resulting integral form aiding

them in producing boundary terms. Lasiecka, Triggiani, and Zhang extended their work in [37]

where they established a pointwise inequality for general second-order hyperbolic equations. They

applied similar techniques in the papers [34, 36, 38].
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1.2 Geometric Assumptions

In this section we present the main geometrical assumptions necessary to establish the

Carleman estimates used throughout this paper. These assumptions are well known, and they can

be found in [4, 5, 7, 22, 26, 29, 30, 37, 41, 42, 43, 46] and the numerous sources cited within.

1.2.1 Second-Order System of Hyperbolic Equations

Let Ω ⊂ Rn, n ≥ 2, be an open bounded domain with smooth enough boundary Γ = ∂Ω =

Γ0 ∪ Γ1, where Γ0 ∩ Γ1 = ∅. We refer Γ1 as the observed part of the boundary where boundary

measurements are taken, and Γ0 as the unobserved part of the boundary,, which is left alone during

boundary measurements. We consider the following general second-order hyperbolic equation for

w = w(x, t) defined on Q = Ω × [−T, T ] with initial conditions {w0, w1} and Dirichlet boundary

condition w|Σ = h on Σ = Γ× [−T, T ]:



wtt − c2(x)∆w + q1(x)wt + q0(x)w + q(x) · ∇w = 0 in Q

w (x, 0) = w0(x); wt (x, 0) = w1(x) in Ω

(x, t) = h(x, t) in Σ.

(1.2)

Here q1 ∈ L∞(Ω), q0 ∈ L∞(Ω), and q ∈ (L∞(Ω))
n

are the damping, potential, and gradient

coefficients, respectively, and wave speed c(x) satisfies

c ∈ C = {c ∈ C1(Ω) : c−1
0 ≤ c(x) ≤ c0, for some c0 > 0}.

Because the wave speed is on the principal part of (1.2), our geometrical assumptions are made with

respect to Riemannian geometry so we can define a metric to make the principle part constant. The

definitions and some identities are given in Appendix B of this paper. Given the triplet {Ω,Γ0,Γ1},

we make the following assumptions on the unobserved part Γ0:

(A.1) There exists a strictly convex function d : Ω → R in the metric g = c−2(x)dx2, and

of class C3(Ω), such that the following two properties hold true (through translation and rescaling

if necessary):

(i) The normal derivative of d on the unobserved part Γ0 of the boundary is non-positive.

3



Namely,

∂d

∂ν
= ⟨Dd(x), ν(x)⟩ ≤ 0, ∀x ∈ Γ0,

where Dd = ∇gd is the gradient vector field on Ω with respect to g, and ⟨X,Y ⟩ = g(X,Y ) for all

X,Y ∈Mx, where Mx is the tangent space at x ∈ Ω.

(ii) The Hessian of d, denoted as D2d(X,X), is strictly positive definite,

D2d(X,X) = ⟨DX(Dd), X⟩g ≥ 2|X|2g, ∀X ∈Mx, min
x∈Ω

d(x) = m0 > 0

where DX is the covariant derivative of a vector field with respect to X.

(A.2) d(x) has no critical point on Ω. In other words,

inf
x∈Ω

|Dd| > 0, so that we may take inf
x∈Ω

|Dd|2

d
> 4.

Remark 1.2.1. The geometrical assumptions above permit the construction of a vector field that

enables a pseudo-convex function necessary for allowing a Carleman estimate containing no lower-

order terms for the general second-order equation (1.1). These assumptions were first formulated in

[37] under the framework of a Euclidean metric, with [46] employing them under the more general

Riemannian framework. The reader can find examples and illustrations of large general classes of

domains {Ω,Γ1,Γ0} satisfying (A.1) and (A.2) in [46, Appendix B]. One canonical example is to

take d(x) = |x− x0|2, with x0 being a point outside Ω, if the wave speed c satisfies

∣∣∣∣∇c(x) · (x− x0)

2c(x)

∣∣∣∣ ≤ rc < 1 for some rc ∈ (0, 1). (1.3)

More details are provided in [7, Theorem 6.1], [17, Theorem 1], and [19, Theorem 3.2.1]. Condition

(1.3) on c may be improved to the following condition given in [22, Theorem 2.5.1]:

∇c−2(x) · (x− x0) ≥ 0, x ∈ Ω (1.4)

To illustrate the geometric examples and their importance, we will present a few examples

to the geometrical examples (A.1) and (A.2) where c is constant. More details can be found in

[30, 37, 46].

4



Example 1.2.2. Here let the dimension of Ω be greater than or equal to two. Here the unobserved

portion of the boundary Γ0 is flat.

For any point x0 in the hyperplane of Γ0, then d(x) = ∥x− x0∥2 and h(x) = ∇d(x) = 2(x− x0).

Example 1.2.3. Again let Ω be a domain with dimension greater than or equal to two, but now

let Γ0 be convex, subtended by a common point x0. The specific d(x) can be found in [37, Theorem

A.4.1]. Under this setting, Γ0 = ℓ(x) = level set and (x− x0) · ∇ℓ(x) ≤ 0 on Γ0.

Example 1.2.4. Now let Γ0 be concave, subtended by a common point x0. Again, the specific d(x)

can be found in [37, Theorem A.4.1].

5



Example 1.2.5. Fix the dimension of Ω to 2, and let Γ0 be neither convex or concave. Γ0 can be

described by the graph

y =


f1(x) x0 < x < x1, y ≥ 0;

f2(x) x2 < x < x1, y < 0,

Here, f1 and f2 are logarithmic concave on x0 < x < x1, i.e. sin(x) + 1, −π
2 < x < π

2 ; cos(x) + 1,

0 < x < π.

The function d(x) can be found in [37, Equation (A.2.7)].

1.2.2 Plate Equation

As before, let Ω ⊂ Rn, n ≥ 2, be an open bounded domain with smooth enough boundary

Γ = ∂Ω = Γ0 ∪ Γ1, where Γ0 ∩ Γ1 = ∅. In this subsection, we consider the geometrical assumptions

for the following plate equation for w = w(x, t) defined on Q with initial conditions {w0, w1} and

hinged boundary conditions h1 and h2 on Σ:



wtt +∆2w + q(x)w = 0 in Q

w(x, 0) = w0(x) wt(x, 0) = w1(x) in Ω

w(x, t) = h1(x, t), ∆w(x, t) = h2(x, t) on Σ

(1.5)

with q ∈ L∞(Ω). The geometric assumptions for problem (1.5) are similar to the geometrical

assumptions for (1.2); however, since the coefficient of interest is not on the principal part of the

equation, our assumptions are stated in the Euclidean framework Rn:

(A.1’) There exists a strictly convex function d : Ω → R of class C3(Ω), such that h ≡ ∇d for every

x ∈ Ω (h is radial) and the following properties hold:

(i) We have ∇d · ν = h · ν ≤ 0 for all x ∈ Γ0 in the Dirichlet B.C. case. If (1.5) has Neumann

B.C., our assumption changes to h · ν = 0 for all x ∈ Γ0.
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(ii) The Hessian matrix of d(x) (the Jacobian matrix of h(x)) is strictly positive definite on Ω:

there exists constant ρ > 0 such that for all x ∈ Ω

Hd(x) = Jh(x) =


dx1x1 · · · dx1xn

...
. . .

...

dxnx1 · · · dxnxn

 =


∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...

∂hn
∂h1

· · · ∂hn
∂xn

 ≥ ρI (1.6)

(A.2’) d(x) has no critical points within Ω:

inf
x∈Ω

|h(x)| = inf
x∈Ω

|∇d(x)| = p > 0. (1.7)

1.3 Weight Functions

The reason for assuming the geometrical assumptions (A.1) and (A.2) for (1.2) and (A.1’)

and (A.2’) for (1.5) is because it allows us to construct a pseudo-convex (weight) function necessary

to obtain Carleman estimates for our equations. We list the corresponding weight functions and

their properties in this section. The weight functions below are standard, and they can be found in

[13, 37, 38, 41, 42, 46], and the papers cited within these works.

1.3.1 Second Order Hyperbolic Equation

Having chosen, on the strength of geometrical assumption (A.1) for (1.2), a strictly convex

function d(x), we can define the function φ(x, t) : Ω× R → R of class C3 by setting

φ(x, t) = d(x)− αt2, x ∈ Ω, t ∈ [−T, T ], (1.8)

where T > T0. The threshold time T0 is set by

T 2
0 ≡ 4max

x∈Ω
d(x). (1.9)

This definition is due to the assumption in (A.1) from [37] where it is assumed that c = 1. Notice

that T0 is affected by the scaling of d(x). Thus, a smaller threshold time permits a smaller (forces
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a larger) final time T . We also assume that d(x) > 0, x ∈ Ω since otherwise we can translate d(x)

so that positivity over the domain is satisfied. So from (1.9), we have the existence of δ > 0, fixed,

that satisfies

T 2 > 4max
x∈Ω

d(x) + 4δ. (1.10)

Now let α ∈ (0, 1) be selected as follows: for T > T0, for the δ fixed satisfying (1.10), there exists a

constant α ∈ (0, 1), such that

αT 2 > 4max
x∈Ω

d(x) + 4δ. (1.11)

From our definition of the weight function (1.8) and related definitions(1.9)-(1.11), φ has the follow-

ing properties:

(a) For the constant δ > 0 fixed above, we have

φ(x,−T ) = φ(x, T ) ≤ max
x∈Ω

d(x)− αT 2 ≤ −δ uniformly in x ∈ Ω; (1.12)

and

φ(x, t) ≤ φ (x, 0) , for any t ∈ [−T, T ] and any x ∈ Ω. (1.13)

(b) There are t0 and t1, with −T < t0 < 0 < t1 < T , say, chosen symmetrically about 0, such that

min
x∈Ω,t∈[t0,t1]

φ(x, t) ≥ σ, where 0 < σ < m0 = min
x∈Ω

d(x). (1.14)

Moreover, let Q(σ) be the subset of Q = Ω× [−T, T ] defined by

Q(σ) = {(x, t) : φ(x, t) ≥ σ > 0, x ∈ Ω,−T ≤ t ≤ T}, (1.15)

Then we have

Ω× [t0, t1] ⊂ Q(σ) ⊂ Q. (1.16)

The region Q(σ) in (1.15) will be relevant when proving Theorem 3.1.3 in Chapter 3.

Remark 1.3.1. Property (1.14) is only required for the Carleman estimate for (1.2). For the

Carleman estimate (1.5), it upholds the assumption w(x,−T ) = w(x, T ) = 0, which circumvents the

need of Q(σ). See [30] for details.
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1.3.2 Plate Equation

A key ingredient for the Carleman estimate of the plate equation is to use the Carleman

estimate for the Schrödinger equation. Hence, our weight function for the plate equation is made

to be compatible with the Schrödinger equation. Having chosen a convex function d(x) under the

assumption (A.1’), we define our weight function as follows:

φ(x, t) = d(x)− βt2; x ∈ Ω, t ∈ [−T, T ]. (1.17)

Unlike the weight function defined in (1.8), we let T > 0 be arbitrary since we do not need to satisfy

finite propagation speed. Likewise, we choose the constant β = βT large enough to such that

βT 2 > 4max
x∈Ω

d(x). (1.18)

From (1.18), we fix a small δ > 0 such that

βT 2 > 4max
x∈Ω

d(x) + 4δ. (1.19)

This specific weight function has the following properties:

(a) For the constant δ fixed in (1.18), we have the following:

φ(x,−T ) = φ(x, T ) = d(x)− βT 2 ≤ −δ uniformly in x ∈ Ω; (1.20)

and

φ(x, t) ≤ φ(x, 0) for all t ∈ [−T, T ] and x ∈ Ω. (1.21)

(b) There are t0 and t1, with −T < t0 < 0 < t1 < T , such that

min
x∈Ω;[t0,t1]

φ(x, t) ≥ −δ
2

(1.22)

since φ(x, 0) = d(x) ≥ 0 for all x ∈ Ω.
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1.4 Controllability and Observability

On an evolution system modeled by a PDE, (exact) controllability is defined as the existence

of a control function that drives the system, within some time T , from an initial state to a desired

final state [44]. For a hyperbolic system, this can be summarized by steering any initial condition

to 0 at the target time T through the use of a control function [30]. The control function may act

on either the boundary (entire or a portion) or a region contained within an open bounded domain.

A standard reference in the controllability of PDE systems is Lions’ paper [40], where he

used the Hilbert Uniqueness Method (HUM) to establish exact boundary controllability for both hy-

perbolic and Petrowsky-type systems using both Dirichlet and Neumann boundary control functions.

To summarize, HUM transforms the exact controllability problem into an observability problem for

the dual of the PDE system. Lasiecka and Triggiani also demonstrated the exact controllability of

second order hyperbolic equations under Dirichlet and Neumann boundary controls using the rela-

tionship between controllability of the original system and observability of its dual system in [32].

In this paper, they focused on the surjectivity of the “control-to-solution” operator that maps the

boundary control to the final state of the solution under a target space [30].

The observability problem for the dual system refers to establishing an observability inequal-

ity on an energy term. This inequality can be interpreted as the initial energy being “observed”

through a suitable boundary trace of the solution to the dual system, which is homogeneous on

the boundary in the same boundary condition. For interior control, the observed data occurs in

the specified region within the domain. Observability inequalities for both hyperbolic equations and

plate equations have traditionally been established via the moment method in one dimension [27, 44]

and the multiplier method for general dimensions, see [13, 32, 40, 49, 50] and the references within.

Recently, Green, Liu, and Mitkovski in [11] extended the moment method to general dimensions

for the viscoelastic wave equation. However, these methods are not strong enough to accommodate

PDE systems with lower-order terms or variable coefficients. These issues were solved by using

Carleman estimates on these system, which yields sharper inequalities that include boundary terms.

See for example [7, 30, 34, 35, 37, 38] and the numerous sources cited within.
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1.5 Inverse Problems

Inverse problems can be phrased as finding the cause of an event given knowledge of their

effects. The field has been motivated by practical applications in various areas of science and engi-

neering such as geophysical explorations, biomedical imaging, weather predictions, mine detection,

and civil engineering [48]. In the context of a PDE system, solving the inverse problem usually means

recovering coefficients, either a single or multiple coefficients, of the system over some measurement

taken in a region either within the domain or on the boundary (observed part). Specific applications

for inverse problems of hyperbolic systems of PDEs include electromagnetic, acoustics, and elastic

waves [30], while applications to the inverse problem of plate equation include the elastic bending

of thin plates, determination of magnitude of contact force produced during impact of objects, and

determining the time-history of wind pressure on exposed surfaces [20].

Both inverse problems in this dissertation were inspired by the multidimensional inverse

problem for second-order hyperbolic equations where one measurement is taken on the boundary.

This problem was pioneered by Bukhgeim and Kilbanov in [8], which was one of the first papers to

use Carleman estimates to solve the inverse problem. This was further expanded on by Klibanov

in [21]. The development in the field has improved the process for determining the uniqueness

of coefficients, establishing a procedure when working with second-order hyperbolic equations or

parabolic equations [30].

The typical method of solving the inverse problem involves the use of appropriate Carleman

estimates for the underlying system. Most papers determining uniqueness and stability of coefficients

of PDE systems typically use one of the two primary techniques. Imanuvilov and Yamamoto in [16]

used Carleman estimates directly to show the stability of recovering the coefficients of the wave

equation. They focused on stability since it implies uniqueness of recovering the coefficient. The

downside of this process is that there must be increased restrictions on the unknown coefficient of

the system. The unknown coefficient is typically denoted as q, which represents either the damping

or potential coefficient. In particular, along with the typical requirement that q ∈ L∞(Ω), their

technique also requires q to be in an admissible set that imposed more regularity [30]. A second

approach developed by Isakov, found in [19, Theorem 8.2.2], uses a post-Carleman technique to first

demonstrate that q is uniquely recoverable, and afterwards uses the observability inequality for the

system to demonstrate stability separately. More details about the inverse problems with a single
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measurement formulation can be found in [7, 18, 22, 24, 25, 43] and the numerous references within

the works.

The main focus of this thesis is to solve the inverse problems of the second-order hyperbolic

equation (1.1) and the plate equation (1.5). Our approach follows Isakov’s approach of first proving

that our unknown coefficients are uniquely recoverable, and then we demonstrate stability using

the resulting observability inequalities. We organize the paper as follows: Chapter 2 discusses the

Carleman estimates used in this paper. Chapter 3 solves the inverse problem for the second-order

hyperbolic equation, while Chapter 4 solves an inverse problem for the plate equation. Appendix

A of this dissertation includes a pointwise estimate for a Carleman estimate of the Schrödinger

equation, which is used to derive the Carleman estimate for the plate equation, and Appendix B

includes some definitions and properties of Riemannian geometry.
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Chapter 2

Carleman Estimates for

Riemannian Wave Equation and

Plate Equations

In this chapter, we discuss the Carleman estimates used throughout this paper to solve the

inverse problems for (1.2) and (1.5). We begin this chapter with the Carleman estimates for second-

order hyperbolic equations. As mentioned in Remark 1.2.1, the Carleman estimates for second-order

hyperbolic equations were first formulated in [37] under an Euclidean setting and later formulated

under the Riemannian manifold setting in [46]. Because one of the coefficients we are interested

in recovering is the wave speed c and it is on the principle part of the equation, we discuss the

Carleman estimate for second-order hyperbolic equation in the setting of Riemannian geometry. It

is straightforward to convert the Carleman estimate to a Euclidean setting if we were not interested

in recovering wave speed. Definitions for the terms used can be found in Appendix B.

For the plate equation, we follow a similar strategy to [1] and [47] to obtain a Carleman

estimate by using Carleman estimates of Schrödinger operators. As mentioned previously, since the

coefficient we are interested in lies on the lower-order terms and not on the principle part of the

plate equation, our estimate remains in terms of Euclidean geometry. We also discuss the continuous

observability inequalities related to the Carleman estimates.
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2.1 Carleman Estimates for Second-Order Hyperbolic Equa-

tion

Consider a Riemannian metric g(·, ·) = ⟨·, ·⟩ and squared norm |X|2 = g(X,X) on a smooth

finite-dimensional manifold M . Define Ω as an open bounded, connected set of M with smooth

boundary Γ = Γ0 ∪ Γ1, where Γ0 ∩ Γ1 = ∅. Let ν be the unit outward normal field with boundary

Γ. Denote ∆g as the Laplace-Beltrami operator on manifold M and D as Levi-Civita connection on

M .

Under these setting, we consider the following second-order hyperbolic equation with energy

level terms defined on Q = Ω× [−T, T ] for some T > 0:

wtt(x, t)−∆gw(x, t) + F (w) = G(x, t), (x, t) ∈ Q, (2.1)

where the forcing term G ∈ L2(Q) and the energy level differential term F (w) is given by

F (w) = ⟨P(x, t), Dw⟩+ P1(x, t)wt + P0(x, t)w, (2.2)

where P0 and P1 are functions on Q and P(x, t) is a vector field on M for t ∈ [−T, T ]. Further, we

assume that there exists a constant C > 0 such that

|F (w)| ≤ C[w2 + w2
t + |Dw|2], ∀(x, t) ∈ Q.

Now consider solutions w(x, t) in the class


w ∈ H1,1(Q) = L2(−T, T ;H1(Ω)) ∩H1(−T, T ;L2(Ω));

wt,
∂w
∂ν ∈ L2(−T, T ;L2(Γ)).

(2.3)

We now state the corresponding Carleman estimate for (2.1). This Carleman estimate was proven

by Triggiani and Yao in [46].

Theorem 2.1.1. Consider (2.1) and solutions in the class listed in (2.3). Then with the geometric

assumptions (A.1) and (A.2), on Ω, the following family of estimates hold true, where β > 0 being
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a suitable constant, for all τ > 0 sufficiently large and ϵ > 0 small:

BT (w) + 2

∫
Q

e2τφ|G|2 dQ+ Ce2τσ
∫
Q

w2 dQ+ Cτ3e−2τδ[Ew(−T ) + Ew(T )]

≥ C1,τ

∫
Q

e2τφ[w2
t + |Dw|2] dQ+ C2,τ

∫
Q(σ)

e2τφw2 dxdt (2.4)

where

C1,τ = τϵ(1− α)− 2C,

C2,τ = 2τ3β +O(τ2)− 2C.

(2.5)

In (2.4), δ, σ > 0 are the constants from Section 1.3, φ is the weight function defined in

(1.8), and C denotes a generic positive constant that may depend on T and d but independent of τ .

The energy function Ew(t) is defined as

Ew(t) =

∫
Ω

[
w2(x, t) + w2

t (x, t) + |Dw(x, t)|2
]
dΩ. (2.6)

The boundary terms, denoted as BT (w), can be explicitly calculated as

BT (w) = 2τ

∫
Σ

e2τφ
(
w2
t − |Dw|2

)
⟨Dd, ν⟩ dΣ

+ 4τ

∫
Σ

e2τφ⟨Dd,Dw⟩⟨Dw, ν⟩ dΣ+ 8ατ

∫
Σ

e2τφtwt⟨Dw, ν⟩ dΣ

+ 4τ2
∫
Σ

e2τφ
[
|Dd|2 − 4α2t2 +

∆d− α− 1

2τ

]
w⟨Dw, ν⟩ dΣ

+ 2τ

∫
Σ

e2τφ
[
2τ2

(
|Dd|2 − 4α2t2

)
+ τ(3α+ 1)

]
w2⟨Dd, ν⟩ dΣ.

Remark 2.1.1. If we have w|Γ×[−T,T ] = 0 and
∂w

∂ν
= ⟨Dw, ν⟩ = 0 on Γ1 × [−T, T ], then the

boundary terms may be simplified to

BT (w) = 2τ

∫
Σ0

e2τφ|Dw|2⟨Dd, ν⟩ dxdt ≤ 0, (2.7)

where Σ0 = Γ0 × [−T, T ]. The last inequality comes from assumption (A.1).
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As a corollary of the Carleman estimate, we have the following continuous observability

inequality for (2.1)

CTEw(0) ≤
∫
Σ1

(
∂w

∂ν

)2

dΓdt+ ∥G∥2L2(Q) (2.8)

with homogeneous Dirichlet boundary condition w|Σ = 0 and Σ1 = Γ1 × [−T, T ]. The way to inter-

pret (2.8) is that if the hyperbolic equation (2.1) has homogeneous Dirichlet boundary conditions,

nonhomogeneous forcing term G ∈ L2(Q), and Neumann boundary trace ∂w
∂ν ∈ L2(Σ1), then the

initial conditions {w(·, 0), wt(·, 0)} must lie in the space H1
0 (Ω)×L2(Ω). This fact is used in Chapter

3 when proving stability for the system.

For constant coefficient wave equations, inequality (2.8) can be proved using the multiplier

method, first showed by Ho in [14]. As mentioned in Section 1.4, observability for variable coefficients

in hyperbolic equations with lower-order terms is typically done with Carleman estimates pioneered

in [23]. More work on the continuous observability inequality for hyperbolic equations can be found

in [22, Theorem 2.7.1], [24, Theorem 2.4.1], [37, 46], and the sources cited in Section 1.4.

To remain compatible with our Dirichlet boundary conditions, the following interior and

boundary regularity results for the solution w in (2.1) must hold true: For γ ≥ 0 (not necessarily an

integer), if the given data satisfy the following regularity assumptions


G ∈ L1(0, T ;Hγ(Ω)), ∂

(γ)
t G ∈ L1(0, T ;L2(Ω)),

w0 ∈ Hγ+1(Ω), w1 ∈ Hγ(Ω), h ∈ Hγ+1(Σ)

(2.9)

with all compatibility conditions (trace coincidence). Then we have the following regularity for the

solution w:

w ∈ C([0, T ];Hγ+1(Ω)), ∂
(γ+1)
t w ∈ C([0, T ];L2(Ω));

∂w

∂ν
∈ Hγ(Σ). (2.10)

See [31] for further details.
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2.2 Carleman Estimates for Plate Equation

Consider the following version of the plate equation:



wtt +∆2w = q(x)w + f(x, t) in Q

w(x, 0) = w0(x), wt(x, 0) = w1(x) in Ω

w = h1(x, t), ∆w = h2(x, t) in Σ

(2.11)

with f ∈ L2(Q) as the forcing term. The goal is to construct a Carleman estimate for (2.11) to

solve the inverse problem of recovering the coefficient q ∈ L∞(Ω). Lasiecka and Triggiani derived

Carleman estimates for the plate equation in [13, 35] via the multiplier method; more specifically,

they multiplied (2.11) with the following operators:

eτφ(x,t)Dd(∆gw), div (e
τφDd)w. (2.12)

However, these Carleman estimates have two main issues when solving the inverse problem that the

Carleman estimate (2.4) does not have. The first is that there exist some constants on the larger

side of the inequality that depend on the parameter τ . The second issue is that the parameter τ

appears in the denominator of the smaller side of the inequality, which causes issues in solving the

inverse problem for sufficiently large τ . It is worth noting that the Carleman estimates presented

in these works are sufficient enough to prove observability and controllability of the plate equation,

which were the authors’ goals in the papers cited.

One paper that inspired our approach of obtaining the Carleman estimate for the plate

equation is [1]. In this paper, the author obtains a Carleman estimate for (2.11) by first decomposing

it as the product of two Schrödinger operators. They then proved Carleman estimates for each

Schrödinger operator from the decomposition and combined the two to obtain a Carleman estimate

for the plate equation. Their weight function is different from the one in (1.8), which is defined as

φ(x, t) = g(t)
(
eλψ(x) − 2eλΦ

)
, Φ = ∥ψ∥L∞(Ω) (2.13)

17



with

g(t) =
1

t(T − t)
, t ∈ [0, T ]. (2.14)

and ψ(x) being a function such that ∇ψ(x) ̸= 0 for all x ∈ Ω. The author chose this weight function

because they were interested in proving observability of the heat equation coupled with the plate

equation, so the weight function (2.13) was designed so that it approaches −∞ at time 0.

Another paper that inspired our approach of obtaining a Carleman estimate for (2.11) is

[47], which solved the inverse source problem for the following plate equation:



ytt(x, t) + ∆2y(x, t) = a0(x, t)y(x, t) + µ(t)f(x), (x, t) ∈ Ω× (0, T )

y(x, 0) = yt(x, 0) = 0, x ∈ Ω

y(x, t) = ∆y(x, t) = 0, (x, t) ∈ Σ = ∂Ω× (0, T )

(2.15)

where

µ ∈ C3[0, T ]; min
t∈[0,T ]

|µ(t)| > 0; a0 ∈W 1,∞ (0, T ;L∞(Ω)) (2.16)

In this paper, the author also used a Carleman estimate for the Schrödinger equation to obtain an

observability inequality for the following plate equation with memory:



ϕtt +∆2ϕ = b0(x, t)ϕ+ b1(x, t)ϕt + b2(x, t)

∫ s

0

ϕ(x, s) ds in Q

ϕ(x, 0) = 0, ϕt(x, 0) = ϕ1(x) in Ω

ϕ = ∆ϕ = 0 on Σ

(2.17)

where bi ∈ L∞ (Ω× (0, T )) for i = 0, 1, 2. The author then used the observability inequality of

(2.17) to uniquely determine the source term f in (2.15) using Neumann boundary trace data of

y and ∆y on a suitable subset of the boundary for an arbitrary small observation time using the

transformation ϕ = ∂
∂t

(
y
µ

)
. This work was extended in [2], where the authors proved identifiability

for the source term
∑N
j=1 λj(t)δξj , where λj are unknown functions of time and ξj ∈ Ω are unknown

for each j = 1, . . . , N . Numerical methods for recovering f(x, t) in (2.11) were discussed in [12].

Using a similar strategy as Albano and Wang, we derive a Carleman estimate for the plate

equation (2.11) using two Schrödinger operators. We will assume the geometrical assumptions (A.1’)
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and (A.2’) and define the weight function as in (1.8). Define the energy term Ew(t) as

Ew(t) =
∫
Ω

[
|∇w(t)|2 + |w(t)|2

]
dt = ∥w(t)∥2H1(Ω). (2.18)

Before we proceed to the Carleman estimate for the plate equation, we first list the corresponding

Carleman estimates for the two Schrödinger operators used. The first estimate can be found in

[13, 38], and the second estimate is obtained in Appendix A.

Theorem 2.2.1. Let T > 0 be arbitrary and β be a constant defined in (1.18). Let d(x) ∈ C3(Ω)

be the nonnegative, real, strictly convex function satisfying assumptions (A.1’) and (A.2’). Define

φ(x, t) by (1.17), and let w be a solution to

iw +∆w = f, (2.19)

where w ∈ H2,2(Q) ≡ L2(−T, T ;H2(Ω)) ∩H2(−T, T ;L2(Ω)) so that

∂w

∂w

∣∣∣∣
Γ

∈ L2(−T, T ;H 1
2 (Γ)); wt ∈ L2(−T, T ;H1(Ω)); wt|Γ ∈ L2(−T, T ;H 1

2 (Γ)). (2.20)

Then for all τ sufficiently large, we have the following estimate holds:

BT1(w) + 4

∫
Q

e2τφ|f |2 dQ

≥ C̃1,τ

∫
Q

e2τφ|∇w|2 dQ+ C̃2,τ

∫
Q

e2τφ|w|2 dQ− Cd,T τe
−2τδ [E(T ) + E(−T )]

≥ m

∫
Q

[
|∇w|2 + |w|2

]
dQ− Cτe−2τδ [E(T ) + E(−T )]

(2.21)

where

C̃1,τ = 2τρ− 1

2
− 4C (2.22)

C̃2,τ = 4τ3ρp2 +O(τ2)− 4C (2.23)

m = min{C̃1,τ , C̃2,τ} ↗ ∞ as τ → ∞, (2.24)

where ρ, p, δ > 0 are defined by (1.6), (1.7), (1.20), and C is a generic positive constant depending

on d and T but not on τ .
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Setting h ≡ ∇d, the boundary term BT1(w) are given as follows, where ξ = Re (w) and

η = Im (w):

BT1(w) = 2τ

∫
Σ

e2τφ
[
2τ2|h|2 +Φ

]
|w|2h · ν dΣ− 2βτ

∫
Σ

e2τφt

[
η
∂ξ

∂ν
− ξ

∂η

∂ν

]
dΣ

− 2τ

∫
Σ

e2τφ[ξtη − ξηt]h · ν dΣ+

∫
Σ

e2τφ[2τ2|h|2 − τ∆d]

[
w
∂w

∂ν
+ w

∂w

∂ν

]
dΣ

+ 2τ

∫
Σ

e2τφh ·
[
∇w∂w

∂ν
+∇w∂w

∂ν

]
dΣ− 2τ

∫
Σ

e2τφ|∇w|2h · ν dΣ,

(2.25)

where the function Φ may be taken to satisfy either Φ ≡ 0 or else Φ ≡ τ∆d.

Theorem 2.2.2. Let w be a solution to the following Schrödinger equation:

iwt −∆w = u. (2.26)

Then under the same conditions as Theorem 2.2.1, for all sufficiently large τ , we have the following

estimate holds:

BT1(w) + 4

∫
Q

e2τφ|u|2 dQ

≥ C̃3,τ

∫
Q

e2τφ|∇w|2 dQ+ C̃4,τ

∫
Q

e2τφ|w|2 dQ− Cd,T τe
−2τδ [E(T ) + E(−T )]

≥ m̃

∫
Q

[
|∇w|2 + |w|2

]
dQ− Cτe−2τδ [E(T ) + E(−T )]

(2.27)

where

C̃3,τ =

(
2τρ− 1

2

)
a− 4C (2.28)

C̃4,τ = 4τ3ρp2(2− k + 2c) +O(τ2)− 2C (2.29)

m̃ = min{C̃3,τ , C̃4,τ}. (2.30)

The constant a is such that 1 − 4∆d > a, and the boundary term BT1(w) is defined as in

(2.25). This and the 2− k − 2c term in (2.29) were originally specified in [37].

Using the Carleman estimates (2.21) and (2.27), we obtain the following Carleman estimate
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for the plate equation (2.11).

Theorem 2.2.3. Assume (A.1’) and (A.2’) and f ∈ L2(Ω). Let w be a solution to the plate equation

(2.11). Further assume that


{w,wt} ∈ L2

(
(−T, T );H3(Ω)×H1(Ω)

)
;

∂w

∂ν
,

∂∆w

∂ν
∈ L2(Σ)

Then for all sufficiently large τ , the following estimate holds:

BT ∗
1 (w) + C

∫
Q

e2τφ|f |2 dQ

≥ τ

∫
Q

e2τφ
[
|∇w|2 + |∇wt|2 + |∇∆w|2

]
dQ+ τ3

∫
Q

e2τφ
[
|w|2 + |wt|2 + |∆w|2

]
dQ

− Cd,T τe
−2τδ [E−iwt+∆w(T ) + E−iwt+∆w(−T ) + Ew(T ) + Ew(−T )]

(2.31)

where the boundary terms are defined as follows:

BT ∗
1 (w) = BT1(−iwt +∆w) +BT1(w). (2.32)

Note that C1,τ and C3,τ are similar to τ , and C2,τ and C4,τ are similar to τ3. For simplifying

our work, we replace these constants with τ and τ3.

Proof. Define u as follows:

u = −iwt +∆w. (2.33)

Notice that iut = wtt+ i∆wt and ∆u = −i∆wt+∆2w, so we readily have iut+∆u = wtt+∆2w =

qw + f . Applying Theorem 2.2.1 on iut +∆u yields the following:

C

∫
Q

e2τφ|w|2 dQ+ C

∫
Q

e2τφ|f |2 dQ+BT1(u)

≥ τ

∫
Q

e2τφ|∇u|2 dQ+ τ3
∫
Q

e2τϕ|u|2 dQ− τCe−2τδ [Eu(T ) + Eu(−T )]
(2.34)
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Similarly, we apply Theorem 2.2.2 to (2.33) and obtain the following:

C

∫
Q

e2τφ|u|2 dQ+BT1(w)

≥ τ

∫
Q

e2τφ|∇w|2 dQ+ τ3
∫
Q

e2τφ|w|2 dQ− τCd,T e
−2τδ [Ew(T ) + Ew(−T )]

(2.35)

We now add (2.34) and (2.35) together to obtain the following:

C

∫
Q

e2τφ|u|2 dQ+ C

∫
Q

e2τφ|w|2 dQ+ C

∫
Q

e2τφ|f |2 dQ+BT1(w) +BT1(u)

≥ τ

∫
Q

e2τφ
[
|∇u|2 + |∇w|2

]
dQ+ τ3

∫
Q

e2τφ
[
|u|2 + |w|2

]
dQ

− τCd,T e
−2τδ [Ew(T ) + Eu(T ) + Ew(−T ) + Eu(−T )]

(2.36)

Note that we can absorb the C

∫
Q

e2τφ|u|2 dQ and C

∫
Q

e2τφ|w|2 dQ terms on the LHS of (2.36)

with the τ3
∫
Q

e2τφ|u|2 dQ and τ3
∫
Q

e2τφ|w|2 dQ terms on the RHS of (2.36), respectively. Doing

this gives us the following:

C

∫
Q

e2τφ|f |2 dQ+BT1(w) +BT1(u)

≥ τ

∫
Q

e2τφ
[
|∇u|2 + |∇w|2

]
dQ+ τ3

∫
Q

e2τφ
[
|u|2 + |w|2

]
dQ

− τCd,T e
−2τδ [Ew(T )Eu(T ) + Ew(−T ) + Eu(−T )]

(2.37)

Converting the u− terms in (2.37) to terms of w, we have the following:

∫
Q

e2τφ|u|2 dQ =

∫
Q

e2τφ
[
|wt|2 + |∆w|2

]
dQ

∫
Q

e2τφ|∇u|2 dQ =

∫
Q

e2τφ
[
|∇wt|2 + |∇∆w|2

]
dQ

(2.38)

Applying (2.38) to (2.37) yields the desired result.

Remark 2.2.4. As with Remark 2.1.1, if we have w|Γ×[−T,T ] = ∆w|Γ×[−T,T ] = 0 and
∂w

∂ν

∣∣∣∣
Γ1×[−T,T ]

=
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∂∆w

∂ν

∣∣∣∣
Γ1×[−T,T ]

= 0, the boundary terms simplify to (recall that h ≡ ∇d)

BT ∗
1 (w) = 2τ

∫
Σ0

[∣∣∣∣∂w∂ν
∣∣∣∣2 + ∣∣∣∣∂wt∂ν

∣∣∣∣2 + ∣∣∣∣∂∆w∂ν
∣∣∣∣2
]
h · ν dxdt ≤ 0, (2.39)

where the last inequality comes from assumption (A.1’)

From our Carleman estimate, we obtain the following continuous observability inequality.

Corollary 2.2.5. Let w be a solution to (2.11). Then under assumptions (A.1’) and (A.2’), there

exists a constant C > 0 such that

CE′(0) ≤
∫
Σ1

[(
∂∆w

∂ν

)2

+

(
∂wt
∂ν

)2
]
dΓdt+ ∥f∥2L2(Q) (2.40)

where

E′(t) =

∫
Ω

[
|∇∆w(t)|2 + |∇wt(t)|2

]
dx (2.41)

with homogeneous Dirichlet boundary conditions w|Σ = ∆w|Σ = 0.

Proof. Again, let u = −iwt + ∆w. Under the Dirichlet boundary conditions, the boundary terms

BT1(u) and BT1(w) simplifies to the following after using assumption (A.1’) and [38, Theorem 8.2]:

BT1(u) = 2τ

∫
Σ

e2τφ
∣∣∣∣∂u∂ν

∣∣∣∣2 h · ν dΣ ≤ 2τ

∫
Σ1

e2τφ

[∣∣∣∣∂∆w∂ν
∣∣∣∣2 + ∣∣∣∣∂wt∂ν

∣∣∣∣2
]
dΣ1

BT1(w) = 2τ

∫
Σ

e2τφ
∣∣∣∣∂w∂ν

∣∣∣∣2 h · ν dΣ ≤ 2τ

∫
Σ1

e2τφ
∣∣∣∣∂w∂ν

∣∣∣∣2 dΣ1.

(2.42)

Via the properties of the pseudo-convex function φ, assumptions (A.1’) and (A.2’), and since

w(x, 0) = 0 in Ω, (2.42) can be rewritten as follows:

BT ∗
1 (w) ≤ τeCτ

∫
Σ1

[∣∣∣∣∂∆w∂ν
∣∣∣∣2 + ∣∣∣∣∂wt∂ν

∣∣∣∣2
]
dΣ1, (2.43)

where C is a constant that depends on d. Apply (2.43) to (2.31) then, after dropping unnecessary

terms (assuming f ≡ 0), gives us the following:

τ

∫
Q

e2τφ
[
|∇w|2 + |∇∆w|2

]
dQ ≤ τeCτ

∫
Σ1

[∣∣∣∣∂∆w∂ν
∣∣∣∣2 + ∣∣∣∣∂wt∂ν

∣∣∣∣2
]
dΣ1. (2.44)
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Now we bound the LHS of (2.44). Notice that φ(x, 0) ≥ R := min
x∈Ω

d(x) for all x ∈ Ω. Thus,

there exists ϵ ∈ (0, 1) such that φ(x, t) ≥ R
2 . Define T̃ = ϵT and Q0 = Ω× [−T̃ , T̃ ]. Since Q0 ⊂ Q,

we have

τ

∫
Q

e2τφ
[
|∇w|2 + |∇∆w|2

]
dQ ≥ τ

∫
Q0

e2τφ
[
|∇w|2 + |∇∆w|2

]
dQ0

≥ τeRτ
∫
Q0

[|∇w|2 + |∇∆w|2] dQ0.

Apply this to (2.44) and using Lemma 3.2 in [47], we have the following:

CτeRτE′(0) ≤ CτeRτE′(t) ≤ τeCτ
∫
Σ1

[∣∣∣∣∂∆w∂ν
∣∣∣∣2 + ∣∣∣∣∂wt∂ν

∣∣∣∣2
]
dΣ1. (2.45)

Taking τ large enough yields the desired result.

As with the other observability inequality (2.8), we can interpret (2.40) as follows: if the plate

equation has homogeneous Dirichlet boundary conditions, nonhomogeneous forcing term f ∈ L2(Q),

and Neumann boundary traces
∂w

∂ν
,
∂∆w

∂ν
∈ L2(Σ1), then the initial conditions {w(·, 0), wt(·, 0)}

must lie in the space H3(Ω)×H1(Ω). We will use this in Chapter 4 when proving stability.

The observability inequality (2.40) can be proven using the multiplier method, as shown by

Lasiecka and Triggiani in [35] and Lions in [40], and by using the Carleman estimate for Schrödinger

equation as done by Lasiecka, Triggiani, and Zhang in [38] and Wang in [47]. Our observability

inequality remains consistent with those derived in the literature. More work on the continuous

observability inequality can be found in these works and the references cited within.

To remain compatible with the boundary conditions, we assume the following interior and

boundary regularity results for solution w of (2.11): If the given data satisfies the following regularity

assumptions: 
f ∈ L1(0, T ;H1

0 (Ω)), ∂tf ∈ L1(0, T ;L2(Ω)),

{w0, w1} ∈ X, {h1, h2} ∈ L2(Σ)×H2(Σ),

(2.46)

where

X = H−1(Ω)× V (2.47)

V =
{
v ∈ H3(Ω) : v|Γ = ∆v|Γ = 0

}
, (2.48)
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then we have the following:

{w,wt} ∈ C ([0, T ];X) ,

{
∂w

∂ν
,
∂∆w

∂ν

}
∈ L2(Σ) (2.49)

See [32, 40, 47] for details.
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Chapter 3

Inverse Problem for Second-Order

Hyperbolic Equations

In this chapter, we provide the main theorems and proofs for the uniqueness and stability

of the inverse problem of recovering the coefficients of the second-order hyperbolic equation (1.2),

which is restated below:

wtt − c2(x)∆w + q1(x)wt + q0(x)w + q(x) · ∇w = 0 in Q

w (x, 0) = w0(x); wt (x, 0) = w1(x) in Ω

w(x, t) = h(x, t) in Σ.

(3.1)

Recall that we assume q1, q0 ∈ L∞(Ω), q ∈ (L∞(Ω))n, and the wave speed c(x) satisfies

c ∈ C = {c ∈ C1(Ω) : c−1
0 ≤ c(x) ≤ c0, for some c0 > 0}.

For the inverse problem of (3.1), we are recovering n + 3 unknown functions: n from the

gradient coefficient q and 3 from recovering the damping, potential, and wave speed coefficients q1,

q0, and c, respectively. Since we have n + 3 unknown coefficients, one would expect to solve the

inverse problem by making n+3 measurements on the boundary. In the following theorems, we show

that it is possible to solve the inverse problem using only half of the measurements; more explicitly,
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by appropriately choosing
⌊
n+4
2

⌋
pairs of initial conditions {w0, w1} and a boundary condition h, we

can uniquely and stably recover all unknown coefficients at once from the corresponding Neumann

boundary measurements of their solutions.

Previous works that addressed similar results were [6] and [7, Chapter 9]. In these works, the

authors considered recovering the coefficient matrix of the principle part in an anisotropic hyperbolic

equation from a finite set of measurements on a portion of the boundary. What differs from the

results below is that the number of unknown functions is n(n+1)
2 and the number of measurements

is n(n+3)
2 .

3.1 Statement of Theorems

We state the uniqueness and stability theorems associated with solving the inverse problem

of (3.1). The proofs of the results will be given in the subsequent sections.

Theorem 3.1.1. Under the geometrical assumptions (A.1) and (A.2), let

T > T0 = 2
√
max
x∈Ω

d(x). (3.2)

Suppose the initial and boundary conditions are in the following function spaces

{w0, w1} ∈ Hγ+1(Ω)×Hγ(Ω), h ∈ Hγ+1(Σ), where γ >
n

2
+ 4 (3.3)

along with all compatibility conditions (trace coincidence) which make sense. Let w(i)(c, q1, q0,q) and

w(i)(c̃, p1, p0,p) be the corresponding solutions of equation (3.1) with different coefficients {c, q1, q0,q}

and {c̃, p1, p0,p}, as well as the initial and boundary conditions {w(i)
0 , w

(i)
1 , h}, i = 1, · · · ,m+ 2. In

addition, depending on the dimension n of the space, we assume the following positivity condition:

There exists r0 > 0 such that

Case I: If n is odd, i.e., n = 2m+1 for some m ∈ N, then we choose m+2 pairs of initial conditions

{w(i)
0 , w

(i)
1 }, i = 1, . . . ,m+ 2, and a boundary condition h so satisfying (3.3) and

|detW (x)| ≥ r0, a.e. x ∈ Ω (3.4)
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where W (x) is the (n+ 3)× (n+ 3) matrix defined by

W (x) =



w
(1)
0 (x) w

(1)
1 (x) ∂x1

w
(1)
0 (x) · · · ∂xn

w
(1)
0 (x) ∆w

(1)
0 (x)

w
(1)
1 (x) w

(1)
tt (x, 0) ∂x1w

(1)
1 (x) · · · ∂xnw

(1)
1 (x) ∆w

(1)
1 (x)

...
...

...
. . .

...
...

w
(m+2)
0 (x) w

(m+2)
1 (x) ∂x1

w
(m+2)
0 (x) · · · ∂xn

w
(m+2)
0 (x) ∆w

(m+2)
0 (x)

w
(m+2)
1 (x) w

(m+2)
tt (x, 0) ∂x1

w
(m+2)
1 (x) · · · ∂xn

w
(m+2)
1 (x) ∆w

(m+2)
1 (x)


(3.5)

Case II: If n is even, i.e., n = 2m for some m ∈ N, then we choose m+2 pairs of initial conditions

{w(i)
0 , w

(i)
1 }, i = 1, . . . ,m+ 2, and a boundary condition h so that they satisfy (3.3) and

|det W̃ (x)| ≥ r0, a.e. x ∈ Ω (3.6)

where W̃ (x) is the (n+ 3)× (n+ 3) matrix defined by

W̃ (x) =



w
(1)
0 (x) w

(1)
1 (x) ∂x1

w
(1)
0 (x) · · · ∂xn

w
(1)
0 (x) ∆w

(1)
0 (x)

w
(1)
1 (x) w

(1)
tt (x, 0) ∂x1

w
(1)
1 (x) · · · ∂xn

w
(1)
1 (x) ∆w

(1)
1 (x)

...
...

...
. . .

...
...

w
(m+1)
0 (x) w

(m+1)
1 (x) ∂x1w

(m+1)
0 (x) · · · ∂xnw

(m+1)
0 (x) ∆w

(m+1)
0 (x)

w
(m+1)
1 (x) w

(m+1)
tt (x, 0) ∂x1

w
(m+1)
1 (x) · · · ∂xn

w
(m+1)
1 (x) ∆w

(m+1)
1 (x)

w
(m+2)
0 (x) w

(m+2)
1 (x) ∂x1

w
(m+2)
0 (x) · · · ∂xn

w
(m+2)
0 (x) ∆w

(m+2)
0 (x)



(3.7)

If we have the same Neumann boundary traces over the observed part Γ1 of the boundary

and over the time interval [−T, T ], i.e., for i = 1, · · · ,m+ 2,

∂w(i)(c, q1, q0,q)

∂ν
(x, t) =

∂w(i)(c̃, p1, p0,p)

∂ν
(x, t), (x, t) ∈ Γ1 × [−T, T ], (3.8)

then we must have that all the coefficients coincide,

c(x) = c̃(x), q1(x) = p1(x), q0(x) = p0(x), q(x) = p(x) a.e. x ∈ Ω. (3.9)
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Remark 3.1.1. The matrices W (x) and W̃ (x) defined in (3.5) and (3.7) both contain the w
(i)
tt (x, 0)

terms, i = 1, . . . ,m+2, in the second column, which contains unknown coefficients due to the initial

conditions of (3.1). However, if we choose the first pair of initial conditions {w(1)
0 , w

(1)
1 } = {0, 1}

while having the other m+1 pairs of initial conditions satisfy that the (n+1)× (n+1) sub-matrices

on the lower right corner of W (x) and W̃ (x) has determinants that are bounded away from 0, then

we prevent this issue from affecting the positivitity assumptions.

After proving the above uniqueness theorem, we may also get the following Lipschitz stabil-

ity result for recovering all coefficients {c, q1, q0,q} from the corresponding finite sets of boundary

measurements. The full theorem is stated below.

Theorem 3.1.2. Under the assumptions in Theorem 3.1.1, again let w(i)(c, q1, q0,q) and w
(i)(c̃, p1, p0,p)

denote the corresponding solutions of equation (3.1) with coefficients {c, q1, q0,q} and {c̃, p1, p0,p},

as well as the initial and boundary conditions {w(i)
0 , w

(i)
1 , h}, i = 1, · · · ,m + 2 (either n is odd or

even). Then there exists C > 0 depends on Ω, T , Γ1, c, q1, q0, q, w
(i)
0 , w

(i)
1 , h such that

∥c2 − c̃2∥2L2(Ω) + ∥q1 − p1∥2L2(Ω) + ∥q0 − p0∥2L2(Ω) + ∥q− p∥2L2(Ω)

≤ C

m+2∑
i=1

∥∥∥∥∥∂w(i)
tt (c, q1, q0,q)

∂ν
− ∂w

(i)
tt (c̃, p1, p0,p)

∂ν

∥∥∥∥∥
2

L2(Σ1)

, (3.10)

for all such coefficients c, c̃, q1, q0, p1, p0 ∈ H1
0 (Ω), q,p ∈

(
H1

0 (Ω)
)n

, where ∥ · ∥L2(Ω) is defined as

∥r∥L2(Ω) =

(∫
Ω

n∑
i=1

|ri(x)|2 dx

) 1
2

, for r(x) = (r1(x), · · · , rn(x)).

The first step to solve the inverse problem is to first convert this into an inverse source

problem. To accomplish this, let

f2(x) = c2(x)− c̃2(x), f1(x) = p1(x)− q1(x),

f0(x) = p0(x)− q0(x), f(x) = p(x)− q(x);

u(x, t) = w(c, q1, q0,q)− w(c̃, p1, p0,p), R(x, t) = w(c̃, p1, p0,p)(x, t),

(3.11)
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then u = u(x, t) is readily seen to satisfy the following homogeneous mixed problem



utt − c2(x)∆u+ q1(x)ut + q0(x)u+ q(x) · ∇u = S(x, t) in Q

u (x, 0) = ut (x, 0) = 0 in Ω

u(x, t) = 0 in Σ,

(3.12)

where

S(x, t) = f0(x)R(x, t) + f1(x)Rt(x, t) + f(x) · ∇R(x, t) + f2(x)∆R(x, t). (3.13)

In this setting, we assume that c ∈ C, q0, q1 ∈ L∞(Ω) and q ∈ (L∞(Ω))
n
are given and

fixed, and we assume that R = R(x, t) is a given function that can be suitably chosen. On the other

hand, the source coefficients f0, f1, f2 ∈ L2(Ω) and f ∈
(
L2(Ω)

)n
are assumed to be unknown. This

transforms the inverse problem of (3.1) to the following inverse source problem for (3.12): determine

f0, f1, f2 and f from the Neumann boundary measurements of u over the observed part Γ1 of the

boundary and over a sufficiently long time interval [−T, T ].

Because our new inverse problem is now an inverse source problem, corresponding to The-

orems 3.1.1 and 3.1.2, we prove the following uniqueness and stability theorems:

Theorem 3.1.3. Under geometrical assumptions (A.1) and (A.2) and let T satisfy (3.2). Depending

on the dimension n, we assume the following regularity and positivity conditions:

Case I: If n is odd, i.e., n = 2m+1 for some m ∈ N, then we choose m+2 functions R(1),

· · · , R(m+2) such that they satisfy

R(i), R
(i)
t , R

(i)
tt , R

(i)
ttt ∈W 2,∞(Q), i = 1, · · · ,m+ 2 (3.14)

and there exists r0 > 0 such that

|detU(x)| ≥ r0, a.e. x ∈ Ω (3.15)
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where U(x) is the (n+ 3)× (n+ 3) matrix defined by

U(x) =



R(1)(x, 0) R
(1)
t (x, 0) ∂x1

R(1)(x, 0) · · · ∂xn
R(1)(x, 0) ∆R(1)(x, 0)

R
(1)
t (x, 0) R

(1)
tt (x, 0) ∂x1R

(1)
t (x, 0) · · · ∂xnR

(1)
t (x, 0) ∆R

(1)
t (x, 0)

...
...

...
. . .

...
...

R(m+2)(x, 0) R
(m+2)
t (x, 0) ∂x1

R(m+2)(x, 0) · · · ∂xn
R(m+2)(x, 0) ∆R(m+2)(x, 0)

R
(m+2)
t (x, 0) R

(m+2)
tt (x, 0) ∂x1

R
(m+2)
t (x, 0) · · · ∂xn

R
(m+2)
t (x, 0) ∆R

(m+2)
t (x, 0)


(3.16)

Case II: If n is even, i.e., n = 2m for some m ∈ N, then we choose m + 2 functions R(1),

· · · , R(m+2) such that they satisfy (3.14) and there exists r0 > 0 such that

|det Ũ(x)| ≥ r0, a.e. x ∈ Ω (3.17)

where Ũ(x) is the (n+ 3)× (n+ 3) matrix defined by

Ũ(x) =



R(1)(x, 0) R
(1)
t (x, 0) ∂x1R

(1)(x, 0) · · · ∂xnR
(1)(x, 0) ∆R(1)(x, 0)

R
(1)
t (x, 0) R

(1)
tt (x, 0) ∂x1

R
(1)
t (x, 0) · · · ∂xn

R
(1)
t (x, 0) ∆R

(1)
t (x, 0)

...
...

...
. . .

...
...

R(m+1)(x, 0) R
(m+1)
t (x, 0) ∂x1

R(m+1)(x, 0) · · · ∂xn
R(m+1)(x, 0) ∆R(m+1)(x, 0)

R
(m+1)
t (x, 0) R

(m+1)
tt (x, 0) ∂x1R

(m+1)
t (x, 0) · · · ∂xnR

(m+1)
t (x, 0) ∆R

(m+1)
t (x, 0)

R(m+2)(x, 0) R
(m+2)
t (x, 0) ∂x1

R(m+2)(x, 0) · · · ∂xn
R(m+2)(x, 0) ∆R(m+2)(x, 0)


(3.18)

Let u(i)(f0, f1, f2, f) be the solutions of equation (3.12) with the functions R(i), i = 1, · · · ,m+ 2. If

∂u(i)(f0, f1, f2, f)

∂ν
(x, t) = 0, (x, t) ∈ Γ1 × [−T, T ], i = 1, · · · ,m+ 2, (3.19)

then we must have

f0(x) = f1(x) = f2(x) = f(x) = 0, a.e. x ∈ Ω. (3.20)
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Theorem 3.1.4. Under the assumptions in Theorem 3.1.3, again let u(i)(f0, f1, f2, f) denote the

solutions of equation (3.12) with the functions R(i), i = 1, · · · ,m+2 (either n is odd or even). Then

there exists C > 0 depends on Ω, T , Γ1, c, q1, q0, q, w
(i)
0 , w

(i)
1 , h such that

∥f0∥2L2(Ω) + ∥f1∥2L2(Ω) + ∥f2∥2L2(Ω) + ∥f∥2L2(Ω) ≤ C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt (f0, f1, f2, f)∂ν

∥∥∥∥∥
2

L2(Σ1)

(3.21)

for all f0, f1, f2 ∈ H1
0 (Ω) and f ∈

(
H1

0 (Ω)
)n

.

It is straightfoward to see that Theorems 3.1.1 and 3.1.2 are immediate corollaries of The-

orems 3.1.3 and 3.1.4, respectively. Therefore, we will shift our focus to prove Theorems 3.1.3 and

3.1.4, and then use them to prove Theorems 3.1.1 and 3.1.2.

3.2 Uniqueness of Inverse Source Problem: Proof of Theo-

rem 3.1.3

We now prove Theorem 3.1.3 to show uniqueness for the inverse source problem of (3.12).

We will divide this proof into various steps so that the proof is clear. For convenience, we use C

to denote a generic positive constant which may depend on Ω, T , c, q1, q0, q, r0, w
(i), u(i), R(i),

i = 1, · · · ,m+2, but independent of the free large parameter τ appearing in the Carleman estimate.

Step 1 : Consider the case when n is odd, i.e. n = 2m + 1, m ∈ N. Corresponding with the choice

of R(i), i = 1, · · · ,m+ 2, we have m+ 2 equations of the form (3.12) with solutions u(i) = u(i)(x, t)

that satisfy



u
(i)
tt − c2(x)∆u(i) + q1(x)u

(i)
t + q0(x)u

(i) + q(x) · ∇u(i) = S(i)(x, t) in Q

u(i)(x, 0) = u
(i)
t (x, 0) = 0 in Ω

u(i)|Γ×[−T,T ] = 0,
∂u(i)

∂ν
|Γ1×[−T,T ] = 0 in Σ,Σ1,

(3.22)

where

S(i)(x, t) = f0(x)R
(i)(x, t) + f1(x)R

(i)
t (x, t) + f(x) · ∇R(i)(x, t) + f2(x)∆R

(i)(x, t), (3.23)
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for i = 1, . . . ,m+ 2. In other words, S(i)(x, t) is in (3.13) with R being replaced by R(i).

Since c ∈ C, q1, q0 ∈ L∞(Ω) and q ∈ (L∞(Ω))
n
, equation (3.22) can be written as a

Riemannian wave equation with respect to the metric g = c−2(x)dx2, modulo lower-order terms

u
(i)
tt −∆gu

(i) + “lower-order terms” = S(i)(x, t).

By the regularity assumption (3.14), we have that S(i) ∈ L2(Q) for each i = 1, . . . ,m + 2, and by

the Cauchy–Schwartz inequality we have

|S(i)(x, t)|2 ≤ C
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
.

Thus, can apply the Carleman estimate (2.4) for solution u(i) in the class (2.3) and get the following

inequality for sufficiently large τ :

τ

∫
Q

e2τφ[(u
(i)
t )2 + |Du(i)|2]dQ+ τ3

∫
Q(σ)

e2τφ(u(i))2dxdt

≤ C

∫
Q

e2τφ
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ+ Ce2τσ.

(3.24)

Note here we have dropped the unnecessary terms in the Carleman estimate (2.4) as well as the

boundary terms BT (u(i)) since the homogeneous boundary data u(i)|Γ×[−T,T ] =
∂u(i)

∂ν |Γ1×[−T,T ] = 0

implies that BT (u(i)) ≤ 0, as mentioned in Remark 2.1.1.

Step 2 : We now differentiate the u(i)-system (3.22) with respect to time t. This results in the

following u
(i)
t -system:



(u
(i)
t )tt − c2(x)∆(u

(i)
t ) + q1(x)(u

(i)
t )t + q0(x)(u

(i)
t ) + q(x) · ∇(u

(i)
t ) = S

(i)
t (x, t) in Q

(u
(i)
t )(x, 0) = 0, (u

(i)
t )t(x, 0) = S(i)(x, 0) in Ω

(u
(i)
t )|Γ×[−T,T ] = 0,

∂u
(i)
t

∂ν
|Γ1×[−T,T ] = 0 in Σ,Σ1.

(3.25)

By our regularity assumptions (3.14), we have S
(i)
t ∈ L2(Q), and by Cauchy–Schwartz inequality,

we obtain the following:

|S(i)
t (x, t)|2 ≤ C

(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
.
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In addition, BT (u
(i)
t ) ≤ 0 by Remark 2.1.1 since u

(i)
t |Γ×[−T,T ] =

∂u
(i)
t

∂ν |Γ1×[−T,T ] = 0.

Thus, similar to (3.24) we can apply Carleman estimate (2.4) for solutions u
(i)
t and get the

following inequality for sufficiently large τ :

τ

∫
Q

e2τφ[(u
(i)
tt )

2 + |Du(i)t |2]dQ+ τ3
∫
Q(σ)

e2τφ(u
(i)
t )2dxdt

≤ C

∫
Q

e2τφ
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ+ Ce2τσ.

(3.26)

Step 3 : Repeating this process, we differentiate (3.22) in t two more times, and we get the corre-

sponding u
(i)
tt and u

(i)
ttt-systems:



(u
(i)
tt )tt − c2(x)∆(u

(i)
tt ) + q1(x)(u

(i)
tt )t + q0(x)(u

(i)
tt ) + q(x) · ∇(u

(i)
tt ) = S

(i)
tt (x, t)

(u
(i)
tt )(x, 0) = S(i)(x, 0), (u

(i)
tt )t(x, 0) = S

(i)
t (x, 0)− q1(x)S

(i)(x, 0)

(u
(i)
tt )|Γ×[−T,T ] = 0,

∂u
(i)
tt

∂ν
|Γ1×[−T,T ] = 0

(3.27)



(u
(i)
ttt)tt − c2(x)∆(u

(i)
ttt) + q1(x)(u

(i)
ttt)t + q0(x)(u

(i)
ttt) + q(x) · ∇(u

(i)
ttt) = S

(i)
ttt(x, t)

(u
(i)
ttt)(x, 0) = S

(i)
t (x, 0)− q1(x)S

(i)(x, 0)

(u
(i)
ttt)t(x, 0) = S

(i)
tt (x, 0) + c2∆S(i)(x, 0)− q1S

(i)
t (x, 0)− q0S

(i)(x, 0)− q · ∇S(i)(x, 0)

(u
(i)
ttt)|Γ×[−T,T ] = 0,

∂u
(i)
ttt

∂ν
|Γ1×[−T,T ] = 0.

(3.28)

Again by (3.14), Cauchy–Schwartz inequality and the homogeneous Dirichlet and Neumann

boundary data, we can apply Carleman estimate (2.4) to the corresponding u
(i)
tt , u

(i)
ttt-systems above

and get the following inequalities that are similar to (3.24) and (3.26), for τ sufficiently large

τ

∫
Q

e2τφ[(u
(i)
ttt)

2 + |Du(i)tt |2]dQ+ τ3
∫
Q(σ)

e2τφ(u
(i)
tt )

2dxdt

≤ C

∫
Q

e2τφ
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ+ Ce2τσ.

(3.29)
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τ

∫
Q

e2τφ[(u
(i)
tttt)

2 + |Du(i)ttt|2]dQ+ τ3
∫
Q(σ)

e2τφ(u
(i)
ttt)

2dxdt

≤ C

∫
Q

e2τφ
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ+ Ce2τσ.

(3.30)

Adding (3.24), (3.26), (3.29), and (3.30) yields the overall inequality

τ

∫
Q

e2τφ
[
(u

(i)
tttt)

2 + (u
(i)
ttt)

2 + (u
(i)
tt )

2 + (u
(i)
t )2 + |Du(i)ttt|2 + |Du(i)tt |2 + |Du(i)t |2 + |Du(i)|2

]
dQ

+ τ3
∫
Q(σ)

e2τφ
[
(u

(i)
ttt)

2 + (u
(i)
tt )

2 + (u
(i)
t )2 + (u(i))2

]
dxdt

≤ C

∫
Q

e2τφ
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ+ Ce2τσ.

(3.31)

Step 4 : We now analyze the integral term on the right-hand side of (3.31). By estimating the

u(i)-equation in (3.22) and u
(i)
t -equation in (3.25) at time t = 0, we get


u
(i)
tt (x, 0) = S(i)(x, 0)

u
(i)
ttt(x, 0) = S

(i)
t (x, 0)− q1(x)S

(i)(x, 0).

(3.32)

Since (3.32) holds for any i = 1, . . . ,m+2, putting the m+2 systems together gives us the

following (n+ 3)× (n+ 3) linear system

[
u
(1)
tt (x, 0), u

(1)
ttt (x, 0), · · · , u

(m+2)
tt (x, 0), u

(m+2)
ttt (x, 0)

]T
= Uq1(x) [f0(x), f1(x), f(x), f2(x)]

T
(3.33)
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where Uq1(x) is the (n+ 3)× (n+ 3) coefficient matrix:

Uq1(x) =



R(1)(x, 0) R
(1)
t (x, 0) ∂x1R

(1)(x, 0) · · · ∂xnR
(1)(x, 0) ∆R(1)(x, 0)

ã(1)(x) b̃(1)(x) m̃
(1)
1 (x) · · · m̃

(1)
n (x) ℓ̃(1)(x)

...
...

...
. . .

...
...

R(m+2)(x, 0) R
(m+2)
t (x, 0) ∂x1

R(m+2)(x, 0) · · · ∂xn
R(m+2)(x, 0) ∆R(m+2)(x, 0)

ã(m+2)(x) b̃(m+2)(x) m̃
(m+2)
1 (x) · · · m̃

(m+2)
n (x) ℓ̃(m+2)(x)


(3.34)

with

ã(i)(x) = R
(i)
t (x, 0)− q1(x)R

(i)(x, 0), b̃(i)(x) = R
(i)
tt (x, 0)− q1(x)R

(i)
t (x, 0),

m̃
(i)
k (x) = ∂xk

R
(i)
t (x, 0)− q1(x)∂xk

R(i)(x), ℓ̃(i)(x, 0) = ∆R
(i)
t (x, 0)− q1(x)∆R

(i)(x, 0).

(3.35)

Notice that by doing elementary row operations, specifically, adding q1 multiplied by an

odd row to the subsequent even row, the matrix Uq1(x) and U(x) as defined in (3.16) have the same

determinant. Thus the positivity assumption (3.15) implies that we may invert Uq1(x) in (3.34) to

obtain

|f0(x)|2 + |f1(x)|2 + |f2(x)|2 + |f(x)|2 ≤ C

m+2∑
i=1

(
|u(i)tt (x, 0)|2 + |u(i)ttt(x, 0)|2

)

= C
(
|utt(x, 0)|2 + |uttt(x, 0)|2

) (3.36)

where we denote u(x, t) =
(
u(1)(x, t), u(2)(x, t), · · · , u(m+2)(x, t)

)
.

Step 5 : By using properties of the pseudo-convex function φ(x) as defined in (1.8), we have the

following estimate of the right-hand side of (3.31):

∫
Q

e2τφ(x,t)
(
|f0(x)|2 + |f1(x)|2 + |f(x)|2 + |f2(x)|2

)
dQ (3.37)

≤ C

∫
Ω

e2τφ(x,0)
(
|utt(x, 0)|2 + |uttt(x, 0)|2

)
dx

≤ C

(∫
Ω

∫ 0

−T

d

ds
[e2τφ(x,s)

(
|utt(x, s)|2 + |uttt(x, s)|2

)
]ds dx
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+

∫
Ω

e2τφ(x,−T )
(
|utt(x,−T )|2 + |uttt(x,−T )|2

)
dx

)

≤ C

(
τ

∫
Ω

∫ 0

−T
e2τφ(x,s)

(
|utt(x, s)|2 + |uttt(x, s)|2

)
]ds dx

+ 2

∫
Ω

∫ 0

−T
e2τφ(x,s) (utt · uttt + uttt · utttt)]ds dx

+

∫
Ω

e2τφ(x,−T )
(
|utt(x,−T )|2 + |uttt(x,−T )|2

)
dx

)

≤ C

(
τ

∫
Q

e2τφ|utt|2dQ+ τ

∫
Q

e2τφ|uttt|2dQ+

∫
Q

e2τφ|utttt|2dQ
)
.

Since (3.31) holds for all i = 1, · · ·m + 2, summing over i in (3.31) and dropping the non-

negative gradient terms on the left-hand side, we can apply (3.37) to (3.31) and get that for τ

sufficiently large

τ

∫
Q

e2τφ
(
|utttt|2 + |uttt|2 + |utt|2 + |ut|2

)
dQ (3.38)

+ τ3
∫
Q(σ)

e2τφ
(
|uttt|2 + |utt|2 + |ut|2 + |u|2

)
dx dt

≤ Cτ

∫
Q

e2τφ(|utt|2 + |uttt|2)dQ+ C

∫
Q

e2τφ|utttt|2dQ+ Ce2τσ.

Step 6 : Since e2τφ < e2τσ on Q\Q(σ) from the definition of Q(σ) (1.15), we have the following

∫
Q

e2τφ
(
|utt|2 + |uttt|2

)
dQ

=

∫
Q(σ)

e2τφ
(
|utt|2 + |uttt|2

)
dx dt+

∫
Q\Q(σ)

e2τφ
(
|utt|2 + |uttt|2

)
dx dt

≤
∫
Q(σ)

e2τφ
(
|utt|2 + |uttt|2

)
dx dt+ e2τσ

∫
Q\Q(σ)

(
|utt|2 + |uttt|2

)
dx dt
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This transforms (3.38) into

τ

∫
Q

e2τφ
(
|utttt|2 + |uttt|2 + |utt|2 + |ut|2

)
dQ (3.39)

+ τ3
∫
Q(σ)

e2τφ
(
|uttt|2 + |utt|2 + |ut|2 + |u|2

)
dx dt

≤ Cτ

∫
Q(σ)

e2τφ
(
|utt|2 + |uttt|2

)
dx dt+ C

∫
Q

e2τφ|utttt|2dQ+ Ce2τσ.

Step 7 : The first and second terms on the right-hand side (RHS) of (3.39) can be absorbed by the

corresponding terms on the left-hand side (LHS) when τ is taken large enough. This yields the

following estimate for sufficiently large τ :

τ3
∫
Q(σ)

e2τφ
(
|uttt|2 + |utt|2 + |ut|2 + |u|2

)
dx dt ≤ Cτe2τσ.

Since φ(x, t) ≥ σ on Q(σ), we get

τ2
∫
Q(σ)

|uttt|2 + |utt|2 + |ut|2 + |u|2 dx dt ≤ C.

Since τ > 0 in a free large parameter and the constants C do not depend on τ , the above inequality

implies we must have u = 0 a.e. on Q(σ).

Step 8 : From (1.16) the subspaceQ(σ) satisfies the property Ω×[t0, t1] ⊂ Q(σ) ⊂ Q with t0 < 0 < t1,

therefore by evaluating the u and ut-systems of equations at t = 0, we get the (n + 3) × (n + 3)

linear system by (3.33):

Uq1(x)[f0(x), f1(x), f(x), f2(x)]
T = 0, a.e. x ∈ Ω.

As the coefficient matrix Uq1(x) is invertible from assumption (3.15), we must have

f0(x) = f1(x) = f2(x) = f(x) = 0, a.e. x ∈ Ω,

as desired.

Step 9 : For the case when n is even, i.e., n = 2m, m ∈ N, the above proof can be repeated with
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obvious adjustments. The only difference worth mentioning is that since n = 2m is even, the linear

system (3.33) contains an odd number (n + 3) of equations. Therefore we only need m + 1 pairs

of equations from (3.32) plus one more equation from u
(m+2)
tt (x, 0). Doing this yields the matrix

Ũq1(x), where

Ũq1(x) =



R(1)(x, 0) R
(1)
t (x, 0) ∂x1R

(1)(x, 0) · · · ∂xnR
(1)(x, 0) ∆R(1)(x, 0)

ã(1)(x) b̃(1)(x) m̃
(1)
1 (x) · · · m̃

(1)
n (x) ℓ̃(1)(x)

...
...

...
. . .

...
...

R(m+1)(x, 0) R
(m+1)
t (x, 0) ∂x1

R(m+1)(x, 0) · · · ∂xn
R(m+1)(x, 0) ∆R(m+1)(x, 0)

ã(m+1)(x) b̃(m+1)(x) m̃
(m+1)
1 (x) · · · m̃

(m+1)
n (x) ℓ̃(m+1)(x)

R(m+2)(x, 0) R
(m+2)
t (x, 0) ∂x1

R(m+2)(x, 0) · · · ∂xn
R(m+2)(x, 0) ∆R(m+2)(x, 0)


(3.40)

with ã(i), b̃(i), m̃
(i)
k and ℓ̃(i) defined as in (3.35). Again, since elementary row operations does not

change the determinant, Ũq1(x) will have the same determinant as the matrix Ũ(x), thus giving us

the positivity assumption (3.17). This completes the proof of Theorem 3.1.3.

3.3 Uniqueness of Inverse Problem: Proof of Theorem 3.1.1

As in (3.11), for x ∈ Ω, t ∈ [−T, T ], set

f2(x) = c2(x)− c̃2(x), f1(x) = p1(x)− q1(x),

f0(x) = p0(x)− q0(x), f(x) = p(x)− q(x);

u(x, t) = w(c, q1, q0,q)− w(c̃, p1, p0,p), R(x, t) = w(c̃, p1, p0,p)(x, t),

(3.41)

Then u(x, t) solves (3.12). By (3.41), f0, f1 ∈ L∞(Ω) ⊂ L2(Ω), f2(x) ∈ L2(Ω), f ∈ (L∞(Ω))n ⊂

(L2(Ω))n. Moreover, by assumption (3.3), we have (3.14).

We also have that positivity assumptions (3.4) and (3.6) imply the positivity assumptions

(3.15) and (3.17). In addition, by assumption (3.8) that the traces coincide:

∂w(i)(c, q1, q0,q)

∂ν
(x, t) =

∂w(i)(c̃, p1, p0,p)

∂ν
(x, t), (x, t) ∈ Γ1 × [−T, T ], (3.42)
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implies via (3.41) that we have

∂u(i)(f0, f1, f2, f)

∂ν
(x, t) = 0, (x, t) ∈ Γ1 × [−T, T ], i = 1, · · · ,m+ 2. (3.43)

Therefore, Theorem 3.1.3 applies, and we have (3.20), which yields our desired relation (3.9).

3.4 Stability of Inverse Source Problem: Proof of Theorem

3.1.4

Now we prove Theorem 3.1.4 to show stability of the inverse source problem (3.12). As with

the proof of Theorem 3.1.3, we will break the proof into various steps to make the argument clear.

The proof for the cases whether n is even or odd is essentially the same; the only difference is in the

choices of R(i), i = 1, 2, . . . ,m+ 2. Hence, without loss of generality, let n be odd.

Step 1 : We return to inequality (3.36) from Section 3.2. Integrating over Ω yields

∥f0∥2L2(Ω) + ∥f1∥2L2(Ω) + ∥f2∥2L2(Ω) + ∥f∥2L2(Ω) ≤ C

m+2∑
i=1

(
∥u(i)tt (·, 0)∥2L2(Ω) + ∥u(i)ttt(·, 0)∥2L2(Ω)

)
(3.44)

For each i, 1 ≤ i ≤ m+ 2, (3.44) suggests we return to the u
(i)
tt -system:



(u
(i)
tt )tt − c2(x)∆(u

(i)
tt ) + q1(x)(u

(i)
tt )t + q0(x)(u

(i)
tt ) + q(x) · ∇(u

(i)
tt ) = S

(i)
tt (x, t)

(u
(i)
tt )(x, 0) = S(i)(x, 0), (u

(i)
tt )t(x, 0) = S

(i)
t (x, 0)− q1(x)S

(i)(x, 0)

(u
(i)
tt )|Γ×[−T,T ] = 0

(3.45)

Again we assume

c ∈ C, q0, q1, q2 ∈ L∞(Ω), q ∈ (L∞(Ω))
n
, f0, f1, f2 ∈ H1

0 (Ω), f ∈
(
H1

0 (Ω)
)n

(3.46)

and R(i) satisfies (3.14) and (3.15) (or (3.17) if n is even).

Step 2 : By linearity of the solution u
(i)
tt , we split u

(i)
tt into two systems, u

(i)
tt = y(i) + z(i), where
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y(i) = y(i)(x, t) satisfies the homogeneous forcing term and nonhomogeneous initial conditions



y
(i)
tt − c2(x)∆y(i) + q1(x)y

(i)
t + q0(x)y

(i) + q(x) · ∇y(i) = 0 in Q

y(i)(x, 0) = u
(i)
tt (x, 0) = S(i)(x, 0) in Ω

y
(i)
t (x, 0) = (u

(i)
tt )t(x, 0) = S

(i)
t (x, 0)− q1(x)S

(i)(x, 0) in Ω

y(i)|Γ×[−T,T ] = 0 in Σ

(3.47)

and z(i) = z(i)(x, t) has the nonhomogeneous forcing term and homogeneous initial conditions



z
(i)
tt − c2(x)∆z(i) + q1(x)z

(i)
t + q0(x)z

(i) + q(x) · ∇z(i) = S
(i)
tt (x, t) in Q

z(i)(x, 0) = z
(i)
t (x, 0) = 0 in Ω

z(i)|Γ×[−T,T ] = 0 in Σ.

(3.48)

For the y(i)-system, note by assumptions (3.46) and (3.14) we have that S(i)(·, 0) ∈ H1
0 (Ω) and S

(i)
t (·, 0)−

q1(·)S(i)(·, 0) ∈ L2(Ω).

Step 3 : From this, we may apply the continuous observability inequality (2.8) (with g = c−2(x)dx2)

to get

∥y(i)(·, 0)∥2H1
0 (Ω) + ∥y(i)t (·, 0)∥2L2(Ω) = ∥u(i)tt (·, 0)∥2H1

0 (Ω) + ∥u(i)ttt(·, 0)∥2L2(Ω) ≤ C

∥∥∥∥∂y(i)∂ν

∥∥∥∥2
L2(Σ1)

. (3.49)

Sum the above inequality over i, using (3.44) and the decomposition u
(i)
tt = y(i) + z(i), and applying
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Poincaré’s inequality, we have

∥f0∥2L2(Ω) + ∥f1∥2L2(Ω) + ∥f2∥2L2(Ω) + ∥f∥2L2(Ω) (3.50)

≤ C

m+2∑
i=1

(
∥u(i)ttt(·, 0)∥2H1

0 (Ω) + ∥u(i)ttt(·, 0)∥2L2(Ω)

)

≤ C

m+2∑
i=1

∥∥∥∥∂y(i)∂ν

∥∥∥∥2
L2(Σ1)

= C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt∂ν
− ∂z(i)

∂ν

∥∥∥∥∥
2

L2(Σ1)

≤ C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt∂ν

∥∥∥∥∥
2

L2(Σ1)

+ C

m+2∑
i=1

∥∥∥∥∂z(i)∂ν

∥∥∥∥2
L2(Σ1)

.

Step 4 : Notice from the previous step that the right-hand side of (3.50) is our desired stability

estimate (3.21) for Theorem 3.1.4 polluted by the z(i) terms. To obtain our desired result, we will

show that the polluted terms can be absorbed by relying on a compactness-uniqueness argument.

The uniqueness portion of this argument relies on Theorem 3.1.3.

To accomplish this, we first prove a related result regarding the z(i)−system (3.48). In par-

ticular, the lemma shows the polluted terms in (3.50) are compact operators for each i = 1, . . . ,m+2.

Lemma 3.4.1. For each i = 1, · · · ,m+ 2, the operator define by

Ki : L2(Ω)× L2(Ω)× L2(Ω)×
(
L2(Ω)

)n → L2(Σ1) (3.51)

(f0, f1, f2, f) 7→ ∂z(i)

∂ν

∣∣∣∣
Σ1

,

is a compact operator.

Proof. By assumptions (3.46) and (3.14), we have that S
(i)
tt ∈ H1(Q). Using the regularity result

(2.10), we have that

S
(i)
tt ∈ H1(Q) ⇒ ∂z(i)

∂ν
∈ H1(Σ1) continuously.

This then implies the map (f0, f1, f2, f) 7→ Ki(f0, f1, f2, f) ∈ H1(Σ1) is continuous and hence

(f0, f1, f2, f) 7→ Ki(f0, f1, f2, f) ∈ L2(Σ1) is compact.
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Step 5 : Thanks to Lemma 3.4.1, we may drop the z(i) terms in (3.50) to get the desired stability

estimate (3.21) using a compact-uniqueness argument. This direction is inspired by [41] and [42].

Suppose, to the contrary, that the stability estimate (3.21) does not hold. Then there exist

sequences {fk0 }, {fk1 }, {fk2 } and {fk}, with fk0 , fk1 , fk2 ∈ H1
0 (Ω) and fk ∈

(
H1

0 (Ω)
)n

, ∀k ∈ N, such

that ∥∥fk0 ∥∥2L2(Ω)
+
∥∥fk1 ∥∥2L2(Ω)

+
∥∥fk2 ∥∥2L2(Ω)

+
∥∥fk∥∥2

L2(Ω)
= 1 (3.52)

lim
k→∞

m+2∑
i=1

∥∥∥∥∥∂u(i)tt (fk0 , fk1 , fk2 , fk)∂ν

∥∥∥∥∥
L2(Σ1)

= 0 (3.53)

where u(i)(fk0 , f
k
1 , f

k
2 , f

k) solves the system (3.22) with f0 = fk0 , f1 = fk1 , f2 = fk2 and f = fk.

From (3.52), there exist subsequences, still denoted as {fk0 }, {fk1 }, {fk2 } and {fk}, such that

fi
k ⇀ f∗i and fk ⇀ f∗ weakly for some f∗i ∈ L2(Ω) and f∗ ∈

(
L2(Ω)

)n
, i = 0, 1, 2. (3.54)

Moreover, since the operators Ki, i = 1, · · · ,m+ 2, are compact by Lemma 3.4.1, we also have the

strong convergence below ([3, Theorem 3.2.3], [28, Theorem 8.1-7]):

lim
k,l→∞

∥∥Ki(fk0 , fk1 , fk2 , fk)−Ki(f l0, f l1, f l2, f l)
∥∥
L2(Σ1)

= 0, ∀i = 1, · · · ,m+ 2. (3.55)

Step 6 : Since the map (f0, f1, f2, f) 7→ u(i)(f0, f1, f2, f) is linear, we have from (3.50) that

∥∥fk0 − f l0
∥∥2
L2(Ω)

+
∥∥fk1 − f l1

∥∥2
L2(Ω)

+
∥∥fk2 − f l2

∥∥2
L2(Ω)

+
∥∥fk − f l

∥∥2
L2(Ω)

≤ C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt (fk0 , fk1 , fk2 , fk)∂ν
− ∂u

(i)
tt (f

l
0, f

l
1, f

l
2, f

l)

∂ν

∥∥∥∥∥
2

L2(Σ1)

+C

m+2∑
i=1

∥∥Ki(fk0 , fk1 , fk2 , fk)−Ki(f l0, f l1, f l2, f l)
∥∥2
L2(Σ1)

≤ C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt (fk0 , fk1 , fk2 , fk)∂ν

∥∥∥∥∥
2

L2(Σ1)

+ C

m+2∑
i=1

∥∥∥∥∥∂u(i)tt (f l0, f l1, f l2, f l)∂ν

∥∥∥∥∥
2

L2(Σ1)

+C

m+2∑
i=1

∥∥Ki(fk0 , fk1 , fk2 , fk)−Ki(f l0, f l1, f l2, f l)
∥∥2
L2(Σ1)
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Therefore, by (3.53) and (3.55) we get

lim
k,l→∞

∥∥fki − f li
∥∥
L2(Ω)

= lim
k,l→∞

∥∥fk − f l
∥∥
L2(Ω)

= 0, i = 0, 1, 2.

Namely, {fk0 }, {fk1 }, {fk2 } are Cauchy sequences in L2(Ω) and {fk} is a Cauchy sequence in (L2(Ω))n.

By uniqueness of limits and (3.54), we must have {fki } converges to f∗i strongly, i = 0, 1, 2, and {fk}

converges to f∗ strongly. Hence we have from (3.52)

∥f∗0 ∥2L2(Ω) + ∥f∗1 ∥2L2(Ω) + ∥f∗2 ∥2L2(Ω) + ∥f∗∥2L2(Ω) = 1. (3.56)

Step 7 : We now return to the u
(i)
tt -system (3.45). By the regularity theory (2.10), we have that the

map (f0, f1, f2, f) 7→ ∂u
(i)
tt (f0,f1,f2,f)

∂ν ∈ L2(Σ) is continuous and hence

∥∥∥∥∥∂u(i)tt (f0, f1, f2, f)∂ν

∥∥∥∥∥
2

L2(Σ)

≤ C
(
∥f0∥2L2(Ω) + ∥f1∥2L2(Ω) + ∥f2∥2L2(Ω) + ∥f∥2L2(Ω)

)
. (3.57)

Since the map (f0, f1, f2, f) 7→ u
(i)
tt (f0, f1, f2, f)|Σ is linear, then it follows from that we have

∥∥∥∥∥∂u(i)tt (fk0 , fk1 , fk2 , fk)∂ν
− ∂u

(i)
tt (f

∗
0 , f

∗
1 , f

∗
2 , f

∗)

∂ν

∥∥∥∥∥
2

L2(Σ1)

(3.58)

≤ C
(
∥fk0 − f∗0 ∥2L2(Ω) + ∥fk1 − f∗1 ∥2L2(Ω) + ∥fk2 − f∗2 ∥2L2(Ω) + ∥fk − f∗∥2L2(Ω)

)
.

Because fki → f∗i , i = 0, 1, 2 and fk → f∗ strongly, (3.58) implies

lim
k→∞

∥∥∥∥∥∂u(i)tt (fk0 , fk1 , fk2 , fk)∂ν
− ∂u

(i)
tt (f

∗
0 , f

∗
1 , f

∗
2 , f

∗)

∂ν

∥∥∥∥∥
L2(Σ1)

= 0

and hence
∂u

(i)
tt (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν = 0 in L2(Σ1) in view of (3.53). In other words,

∂u
(i)
t (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν is

constant in t ∈ [−T, T ].

Step 8 : We now claim that
∂u

(i)
t (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν = 0 on Σ1. To see this, consider now the u

(i)
t (fk0 , f

k
1 , f

k
2 , f

k)-
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system



(u
(i)
t )tt − c2(x)∆(u

(i)
t ) + q1(x)(u

(i)
t )t + q0(x)(u

(i)
t ) + q(x) · ∇u(i)t = (S

(i)
k )t(x, t) in Q

(u
(i)
t )(x, 0) = 0, (u

(i)
t )t(x, 0) = S

(i)
k (x, 0) in Ω

u
(i)
t |Γ×[−T,T ] = 0 in Σ

(3.59)

where for i = 1, · · · ,m+ 2, R(i) = R(i)(x, t) and

S
(i)
k (x, t) = fk0 (x)R

(i) + fk1 (x)R
(i)
t + fk(x) · ∇R(i) + fk2 (x)∆R

(i).

The regularity theory (2.10) and trace theory imply

∥∥∥u(i)t (fk0 , f
k
1 , f

k
2 , f

k)− u
(i)
t (f∗0 , f

∗
1 , f

∗
2 , f

∗)
∥∥∥2
C([0,T ];H1

0 (Ω))

≤ C
(
∥fk0 − f∗0 ∥2L2(Ω) + ∥fk1 − f∗1 ∥2L2(Ω) + ∥fk2 − f∗2 ∥2L2(Ω) + ∥fk − f∗∥2L2(Ω)

)
∥∥∥u(i)t (fk0 , f

k
1 , f

k
2 , f

k)− u
(i)
t (f∗0 , f

∗
1 , f

∗
2 , f

∗)
∥∥∥2
C([0,T ];H

1
2 (Σ)

≤ C
(
∥fk0 − f∗0 ∥2L2(Ω) + ∥fk1 − f∗1 ∥2L2(Ω) + ∥fk2 − f∗2 ∥2L2(Ω) + ∥fk − f∗∥2L2(Ω)

)
.

By the initial conditions in (3.59), u
(i)
t (fk0 , f

k
1 , f

k
2 , f

k)(x, 0) = 0 for all k ∈ N. Combining

this, the inequalities above, and the strong convergence fki → f∗i for i = 0, 1, 2, and fk → f∗,

letting k → ∞ yields u
(i)
t (f∗0 , f

∗
1 , f

∗
2 , f

∗)(x, 0) = 0 in Ω and u
(i)
t (f∗0 , f

∗
1 , f

∗
2 , f

∗)|Σ = 0. Hence

∂u
(i)
t (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν (x, 0) = 0 on Σ. Since we know

∂u
(i)
t (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν is a constant in t, we must have

∂u
(i)
t (f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν = 0 on Σ1, as desired.

The conclusion above implies
∂u(i)(f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν is also a constant in t. By repeating the same

argument, this time using the regularity theory for the u(i)(fk0 , f
k
1 , f

k
2 , f

k)-system and taking limit

k → ∞, we finally get
∂u(i)(f∗

0 ,f
∗
1 ,f

∗
2 ,f

∗)
∂ν = 0 on Σ1.
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Step 9 : From our previous step, we have that u(i)(f∗0 , f
∗
1 , f

∗
2 , f

∗) satisfies the following system



u
(i)
tt − c2(x)∆u(i) + q1(x)u

(i)
t + q0(x)u

(i) + q(x) · ∇u(i) = S
(i)
∗ (x, t) in Q

u(i)(x, 0) = u
(i)
t (x, 0) = 0 in Ω

u(i)|Γ×[−T,T ] = 0,
∂u(i)

∂ν

∣∣∣∣
Γ1×[−T,T ]

= 0 in Σ,Σ1

(3.60)

with

S
(i)
∗ (x, t) = f∗0 (x)R

(i) + f∗1 (x)R
(i)
t + f∗(x) · ∇R(i) + f∗2 (x)∆R

(i), i = 1, · · · ,m+ 2.

By the uniqueness result Theorem 3.1.3, this implies f∗0 = f∗1 = f∗2 = f∗ = 0, which contradicts with

(3.56). Therefore we must be able to drop the z(i) terms in (3.50), completing the proof of Theorem

3.1.4.

3.5 Stability of Inverse Problem: Proof of Theorem 3.1.2

By the regularity theory (2.10) the assumption (3.3) on the initial and boundary conditions

{w(i)
0 , w

(i)
1 , h} implies the solutions w(i), i = 1, · · · ,m+ 2, satisfy

{w(i), w
(i)
t , w

(i)
tt , w

(i)
ttt} ∈ C

(
[−T, T ];Hγ+1(Ω)×Hγ(Ω)×Hγ−1(Ω)×Hγ−2(Ω)

)
.

As γ > n
2 + 4, we have the following embedding Hγ−2(Ω) ↪→ W 2,∞(Ω) and hence the regular-

ity assumption (3.3) implies the corresponding regularity assumption (3.14) for the inverse source

problem. Therefore, we have Theorem 3.1.2 as an immediate consequence of Theorem 3.1.4.
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Chapter 4

Inverse Problem for the Plate

Equation

In this chapter, we solve the inverse problem for recovering q ∈ L∞(Ω) for the plate equation

(1.5) using finite measurements on the boundary. We restate it below for convenience:



wtt +∆2w + q(x)w = 0 in Q

w(x, 0) = w0(x) wt(x, 0) = w1(x) in Ω

w(x, t) = h1(x, t), ∆w(x, t) = h2(x, t) on Σ

(4.1)

As in Chapter 3, we will solve the inverse problem following a post-Carleman estimate approach.

In particular, we will show that we can recover the coefficient q using two measurements on the

boundary. The two measurements is needed due the the boundary terms BT ∗
1 (w) in (2.32) and

Remark 2.2.4.

The major contribution of our inverse problem of recovering q in (4.1) is that the recovery

is on a lower-order term. Most inverse problems of the plate equation are inverse source problems

because of the decomposition into two Schrödinger equations being on the principal part of the equa-

tion. Our decomposition allows us to incorporate lower-order terms with our Carleman estimates,

which allows us to solve the inverse problem on lower-order terms.
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Similar to the previous chapter, we start by listing our major theorems followed by giving

the proofs in the subsequent sections.

4.1 Statement of Theorems

We now state the main theorems of uniqueness of solving the inverse problem associated

with (4.1).

Theorem 4.1.1. Assume the geometrical assumptions (A.1’) and (A.2’) are satisfied, and let T > 0.

Suppose the initial and boundary conditions satisfy the following:

{w0, w1} ∈ Hγ+3(Ω)×Hγ+1(Ω), {h1, h2} ∈ Hγ+3(Σ), for γ >
n

2
+ 3, (4.2)

along with all compatability conditions. Moreover, assume that the initial condition has the following

positivity condition:

|w0(x)| ≥ r0 > 0, (4.3)

for some constant r0 > 0 and x ∈ Ω. Let w(q) and w(p) be solutions of equation (4.1) with coefficients

q and p, respectively. If we have the same Neumann boundary traces over Γ1 and the time interval:

∂w(q)

∂ν
=
∂w(p)

∂ν

∂∆w(q)

∂ν
=
∂∆w(p)

∂ν
,

(4.4)

then the coefficients coincide:

q(x) = p(x) a.e x ∈ Ω. (4.5)

Just as before, after proving Theorem 4.1.1 giving us uniqueness, we may also obtain the

following stability result for recovering q from a single measurement on the boundary.

Theorem 4.1.2. Under the assumptions listed in Theorem 4.1.1, let w(q) and w(p) denote the solu-

tions of equation (4.1) with coefficients q and p with initial and boundary conditions {w0, w1, h1, h2}.

Then there exists C > 0 that depends on Ω, T , Γ1, q, w0, w1, h1, h2 such that

∥q − p∥2L2(Ω) ≤
∥∥∥∥∂wtt(q)∂ν

− ∂wtt(p)

∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆wt(q)∂ν
− ∂∆wt(p)

∂ν

∥∥∥∥2
L2(Σ1)

(4.6)
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for all p, q ∈ H3(Ω) ∩H1
0 (Ω).

Our first step is to convert convert our inverse problem into an inverse source problem. Let

f(x) = q(x)− p(x)

u(x, t) = w(q)(x, t)− w(p)(x, t)

R(x, t) = w(p)(x, t),

(4.7)

then u = u(x, t) satisfies the following homogeneous mixed problem



utt +∆2u = q(x)u+ f(x)R(x, t) in Q

u(x, 0) = ut(x, 0) = 0 in Ω

u(x, t) = ∆u(x, t) = 0, on Σ.

(4.8)

Assume q ∈ L∞(Ω) is given and fixed and R = R(x, t) is a given function suitably chosen, and

the source coefficient f ∈ L2(Ω) is assumed to be unknown. This transforms the inverse problem

of (4.1) into the following inverse source problem for (4.8): determine f from Neumann boundary

measurements of u over the observed part Γ1 of the boundary and over the time interval [−T, T ].

Converting our inverse problem into an inverse source problem yields the following theorems

for the inverse source problem.

Theorem 4.1.3. Assume (A.1’) and (A.2’), and let T > 0. We also assume the following regularity

conditions:

q ∈ L∞(Ω); R,Rt, Rtt ∈W 2,∞(Q). (4.9)

Further, suppose we have the following positivity condition:

|R(x, 0)| ≥ r0 > 0 (4.10)

for some constant r0 > 0 and x ∈ Ω. Let u(f) be the solution to (4.8). If

∂u(f)

∂ν
=
∂∆u(f)

∂ν
= 0, (x, t) ∈ Γ1 × [−T, T ], (4.11)
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then we must have f(x) = 0 a.e. x ∈ Ω.

Theorem 4.1.4. Under the assumptions in Theorem 4.1.3, let u(f) denote the solutions of (4.8)

with function R. Then there exists C > 0 that depends on Ω, T , Γ1, q, w0, w1, h1, and h2 such that

∥f∥2L2(Ω) ≤ C

∥∥∥∥∂utt(f)∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆ut(f)∂ν

∥∥∥∥2
L2(Σ1)

(4.12)

for f ∈ H3(Ω) ∩H1
0 (Ω).

Since Theorems 4.1.1 and 4.1.2 are immediate from Theorems 4.1.3 and 4.1.4, we first prove

the theorems for the inverse source problem and then prove the theorems to the original inverse

problem.

4.2 Uniqueness of Inverse Source Problem: Proof of Theo-

rem 4.1.3

In this section, we show uniqueness for the inverse source problem of (4.8). As with the

proof of Theorem 3.1.3, we divide the proof into various steps to make the proof clear. For the

remainder of this chapter, C will denote a generic constant that may depend on Ω, T , β, q, w, u,

and R, but remains independent of the parameter τ .

Step 1 : We return to (4.8) under the assumptions given in the theorem statement of Theorem 4.1.3.

Adding our measurement on the boundary gives us the u-system below



utt +∆2u = q(x)u+ f(x)R(x, t) in Q

u(x, 0) = ut(x, 0) = 0 in Ω

u(x, t) = ∆u(x, t) = 0, on Σ

∂u

∂ν

∣∣∣∣
Σ1

=
∂∆u

∂ν

∣∣∣∣
Σ1

= 0, on Σ1.

(4.13)

Because of regularity assumptions (4.9), we can apply the Carleman estimate (2.31) for the solution
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(4.13) and get the following for sufficiently large τ , after dropping unnecessary terms:

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |∆u|2

]
dQ+τ

∫
Q

e2τφ
[
|∇u|2 + |∇ut|2 + |∇∆u|2

]
dQ ≤ C

∫
Q

e2τφ|fR|2 dQ

(4.14)

Here we dropped the unnecessary terms in the Carleman estimate (2.31). We also dropped the

boundary terms BT ∗
1 (u) since the homogeneous boundary data

u|Σ = ∆u|Σ =
∂u

∂ν

∣∣∣∣
Σ1

=
∂∆u

∂ν

∣∣∣∣
Σ1

= 0 (4.15)

implies BT ∗
1 (u) ≤ 0 (see Remark 2.2.4). Also, since R ∈W 2,∞(Q), we have that fR ∈ L2(Q). Thus,

we have the following:

|fR|2 ≤ C̃|f |2

where C̃ = ∥R∥L∞(Q). Apply this to (4.14) yields

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |∆u|2

]
dQ+ τ

∫
Q

e2τφ
[
|∇u|2 + |∇ut|2 + |∇∆u|2

]
dQ ≤ C

∫
Q

e2τφ|f |2 dQ,

(4.16)

where we combined C̃ with the generic constant C originally in front of the integral on the RHS of

(4.14).

Step 2 : We now differentiate the u−system (4.13) with respect to time to get the following ut−system:



(ut)tt +∆2(ut) = q(x)(ut) + f(x)Rt(x, t) in Q

(ut)(x, 0) = 0; (ut)t(x, 0) = f(x)R(x, 0) in Ω

(ut)(x, t) = ∆(ut)(x, t) = 0, on Σ

∂(ut)

∂ν

∣∣∣∣
Σ1

=
∂∆(ut)

∂ν

∣∣∣∣
Σ1

= 0, on Σ1.

(4.17)

Notice that f(x)Rt(x, t) ∈ L2(Q) since Rt ∈W 2,∞(Q), so we have

|f(x)Rt(x, t)|2 ≤ C̃ ′|f(x)|2

where C̃ ′ = ∥Rt∥L∞(Q). We can again apply the Carleman estimate (2.31) for solution ut in (4.17)
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to get the following for sufficiently large τ :

τ3
∫
Q

e2τφ
[
|ut|2 + |utt|2 + |∆ut|2

]
dQ+τ

∫
Q

e2τφ
[
|∇ut|2 + |∇utt|2 + |∇∆ut|2

]
dQ ≤ C

∫
Q

e2τφ|f |2 dQ

(4.18)

Since the boundary terms and boundary data are zero, BT ∗(ut) ≤ 0. Again, we absorb C̃ ′ with the

C in the RHS of (4.18).

Step 3 : Repeating this process, we differentiate (4.17) with respect to time to get the following

utt-system: 

(utt)tt +∆2(utt) = q((utt) + f(x)Rtt(x, t) in Q

(utt)(x, 0) = f(x)R(x, 0); (utt)t(x, 0) = f(x)Rt(x, 0) in Ω

(utt)(x, t) = ∆(utt)(x, t) = 0, on Σ

∂(utt)

∂ν

∣∣∣∣
Σ1

=
∂∆(utt)

∂ν

∣∣∣∣
Σ1

= 0, on Σ1.

(4.19)

As before, we can apply the Carleman estimate (2.31) for solution utt and get the following for

sufficiently large τ :

τ3
∫
Q

e2τφ
[
|utt|2 + |uttt|2 + |∆utt|2

]
dQ+τ

∫
Q

e2τφ
[
|∇utt|2 + |∇uttt|2 + |∇∆utt|2

]
dQ ≤ C

∫
Q

e2τφ|f |2 dQ

(4.20)

Adding inequalities (4.16), (4.18), and (4.20) yields the overall estimate:

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |utt|2 + |uttt|2 + |∆u|2 + |∆ut|2 + |∆utt|2

]
dQ

+ τ

∫
Q

e2τφ
[
|∇u|2 + |∇ut|2 + |∇utt|2 + |∇uttt|2 + |∇∆u|2 + |∇∆ut|2 + |∇∆utt|2

]
dQ

≤ C

∫
Q

e2τφ|f |2 dQ

(4.21)

Step 4 : We now analyze the integral term on the right-hand side of (4.21). We return to the

u−system (4.13) and evaluate u at the initial time t = 0. Doing this gives us the following after
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applying the positivity assumption (4.10):

|utt(x, 0) + ∆2u(x, 0)︸ ︷︷ ︸
=0

| = | q(x)u(x, 0)︸ ︷︷ ︸
=0

+f(x)R(x, 0)| = |f(x)| |R(x, 0)| ≥ r0|f(x)| (4.22)

for r0 > 0. Thus, we readily obtain the following estimate for f :

|f(x)| ≤ 1

r0
|utt(x, 0)|, x ∈ Ω. (4.23)

Step 5 : Using (4.23) and properties of the weight function φ defined in (1.17), we obtain the

following:

∫
Q

e2τφ|f |2 dQ ≤ 1

r20

∫
Q

e2τφ|utt(x, 0)|2 dQ

≤ 1

r20

∫
Q

e2τφ(x,0)|utt(x, 0)|2 dQ

=
2T

r20

∫
Ω

e2τφ(x,0)|utt(x, 0)|2 dx

=
2T

r20

∫
Ω

∫ 0

−T

d

ds

(
e2τφ(x,s)|utt(x, s)|2

)
dtdx+

2T

r20

∫
Ω

e2τφ(x,−T )|utt(x,−T )|2 dx

= τ
8βT

r20

∫
Ω

∫ 0

−T
(−s)e2τφ(x,s)|utt(x, s)|2 dxdt+

4T

r20

∫
Ω

∫ 0

−T
e2τφ(x,s)(|utt(x, s)| |uttt(x, s)|) dsdx

+
2T

r20

∫
Ω

e2τφ(x,−T )|utt(x,−T )|2 dx

≤ τ
8βT 2

r20

∫
Ω

∫ 0

−T
e2τφ(x,s)|utt(x, s)|2 dsdx+

4T

r20

∫
Ω

∫ 0

−T
e2τφ(x,s)(|utt(x, s)| |uttt(x, s)|) dsdx

+
2T

r20

∫
Ω

|utt(x,−T )|2 dx (4.24)

≤ τ
8βT 2

r20

∫
Ω

∫ 0

−T
e2τφ(x,s)|utt(x, s)|2 dsdx+

2T

r20

∫
Ω

∫ 0

−T
e2τφ(x,s)

[
|utt(x, s)|2 + |uttt(x, s)|2

]
dsdx

+
2T

r20

∫
Ω

|utt(x,−T )|2 dx

≤ C

(
(τ + 1)

∫
Q

e2τφ|utt|2 dQ+

∫
Q

e2τφ|uttt|2 dQ+

∫
Ω

|utt(x,−T )|2 dx
)

(4.25)

where C is a constant that depends on β, r0, and T but independent of τ . We obtain inequality
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(4.24) by recalling φ(x,−T ) ≤ −δ from (1.20), which makes e2τφ(x,−T ) ≤ 1.

Step 6 : We substitute (4.25) for the integral term of (4.21) and obtain the following:

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |utt|2 + |uttt|2 + |∆u|2 + |∆ut|2 + |∆utt|2

]
dQ

+ τ

∫
Q

e2τφ
[
|∇u|2 + |∇ut|2 + |∇utt|2 + |∇uttt|2 + |∇∆u|2 + |∇∆ut|2 + |∇∆utt|2

]
dQ

≤ C

(
(τ + 1)

∫
Q

e2τφ|utt|2 dQ+

∫
Q

e2τφ|uttt|2 dQ+ ku

)
(4.26)

where we set

ku =

∫
Ω

|utt(x,−T )|2 dx. (4.27)

The RHS term C (τ + 1)

∫
Q

e2τφ|utt|2 of (4.26) absorbed by the LHS term τ3
∫
Q

e2τφ|utt|2

when τ is large enough. Likewise, the RHS term C

∫
Q

e2τφ|uttt|2 can be absorbed by the LHS term

τ3
∫
Q

e2τφ|uttt|2 when τ is large enough. This simplifies (4.26) into the following:

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |utt|2 + |uttt|2 + |∆u|2 + |∆ut|2 + |∆utt|2

]
dQ

+ τ

∫
Q

e2τφ
[
|∇u|2 + |∇ut|2 + |∇utt|2 + |∇uttt|2 + |∇∆u|2 + |∇∆ut|2 + |∇∆utt|2

]
dQ

≤ Cku

(4.28)

Step 7 : We can simplify inequality (4.28) into the following inequality by dropping the second

positive term on the LHS of (4.28):

τ3
∫
Q

e2τφ
[
|u|2 + |ut|2 + |utt|2 + |uttt|2 + |∆u|2 + |∆ut|2 + |∆utt|2

]
dQ ≤ Cku (4.29)

where the constants C and ku are independent of τ . Since τ is an arbitrary large parameter, letting

τ → ∞ shows that u = 0 on Q since ku does not depend on τ . Returning to (4.23) implies

|f(x)| ≤ 1

r0
|utt(x, 0)| = 0 =⇒ f(x) = 0 a.e x ∈ Ω.

as desired. This completes the proof of Theorem 4.1.3.
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4.3 Uniqueness of Inverse Problem: Proof of Theorem 4.1.1

The proof of Theorem 4.1.1 reduces to Theorem 4.1.3 after slight transformations. For any

(x, t) ∈ Q, set

u(x, t) = w(q)(x, t)− w(p)(x, t); R(x, t) = w(p)(x, t); f(x) = q(x)− p(x). (4.30)

After the transformation (4.30), u solves (4.8). Moreover, by the regularity assumption on the initial

conditions (4.2), we readily have (4.9).

It is obvious that the positivity assumption (4.3) implies the positivity assumption (4.10).

Moreover, since q, p ∈ L∞(Ω), we have that f(x) ∈ L∞(Ω) ⊂ L2(Ω), and by assumption (4.2) on

the I.C. {w0, w1} and B.C {h1, h2} , we have the regularity properties

R,Rt, Rtt ∈W 2,∞(Q). (4.31)

Furthermore, assumption (4.4) that

∂w(q)

∂ν
=
∂w(p)

∂ν

∂∆w(q)

∂ν
=
∂∆w(p)

∂ν
,

(4.32)

implies via (4.30) that we have

∂u(f)

∂ν
= 0

∂∆u(f)

∂ν
= 0,

(4.33)

for any (x, t) ∈ Σ1 = Γ1 × [−T, T ]. Therefore, Theorem 4.1.3 applies, and we conclude f(x) =

q(x)− p(x) = 0, or q(x) = p(x) a.e. x ∈ Ω. This finishes the proof of Theorem 4.1.1.
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4.4 Stability of Inverse Source Problem: Proof of Theorem

4.1.4

We now prove the stability of the inverse source problem (4.8). The proof has a similar

strategy to the proof of Theorem 3.1.4 where we perform a compact-uniqueness argument.

Step 1 : Let u(f) denote the solution to (4.13) with initial data

q ∈ L∞(Ω), R,Rt, Rtt ∈ L∞(Q), |R(x, 0)| ≥ r0 > 0

with unknown term f ∈ H3(Ω) ∩H1
0 (Ω). We return to (4.23). We integrate over Ω to obtain the

following inequality

∥f∥2L2(Ω) ≤ C∥utt(x, 0)∥2L2(Ω). (4.34)

This suggest that we return to the ut-system, which we rewrite below for convenience:



(ut)tt +∆2(ut) = q(x)(ut) + f(x)Rt(x, t) in Q

(ut)(x, 0) = 0; (ut)t(x, 0) = f(x)R(x, 0) in Ω

ut(x, t) = ∆ut(x, t) = 0, on Σ

(4.35)

Step 2 : By the linearity of the system, we split it into ut = y+z, where y = y(x, t) has homogeneous

forcing term 

ytt +∆2y = q(x)y in Q

y(x, 0) = ut(x, 0) in Ω

yt(x, 0) = f(x)R(x, 0) in Ω

y = ∆y = 0 on Σ

(4.36)
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and z = z(x, t) has homogeneous initial conditions



ztt +∆2z = q(x)z + f(x)Rt(x, t) in Q

z(x, 0) = zt(x, 0) = 0 in Ω

z = ∆z = 0 on Σ.

(4.37)

Step 3 : For the y-system, since f ∈ H3(Ω) ∩ H1
0 (Ω) and by the regularity assumptions on R, we

have that f(x)R(x, 0) ∈ H3(Ω) ∩H1
0 (Ω). Thus, we may apply the observability inequality (2.40) to

the y-system (4.36) after applying Poincaré’s inequality:

∥utt(x, 0)∥2L2(Ω) = ∥yt(x, 0)∥2L2(Ω) ≤ ∥∇yt(x, 0)∥2L2(Ω)+∥∇∆y(x, 0)∥2L2(Ω) ≤
∥∥∥∥∂yt∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆y∂ν

∥∥∥∥2
L2(Σ1)

(4.38)

Using the observability inequality and Poincaré’s inequality as in (4.38) yield the following inequal-

ities:

∥f∥2L2(Ω) ≤ C∥utt(x, 0)∥2L2(Ω)

≤ C
(
∥yt(x, 0)∥2L2(Ω) + ∥∆y(x, 0)∥2L2(Ω)

)
≤ C

(
∥∇yt(x, 0)∥2L2(Ω) + ∥∇∆y(x, 0)∥2L2(Ω)

)
≤ C

(∥∥∥∥∂yt∂ν
∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆y∂ν

∥∥∥∥2
L2(Σ1)

)

= C

(∥∥∥∥∂utt∂ν
− ∂zt
∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆ut∂ν
− ∂∆z

∂ν

∥∥∥∥2
L2(Σ1)

)

≤ C

(∥∥∥∥∂∆ut∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂utt∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂∆z∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂zt∂ν
∥∥∥∥2
L2(Σ1)

)

(4.39)

Step 4 : Notice that (4.39) our desired stability estimate polluted by the z−terms. We will now use

a compactness-uniqueness argument to absorb the polluted terms. We first proceed by proving the

polluted z− terms are compact operators.
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Lemma 4.4.1. The two operators defined by

G1 : L2(Ω) → L2(Σ1)

f 7→ ∂zt
∂ν

∣∣∣∣
Σ1

(4.40)

G2 : L2(Ω) → L2(Σ1)

f 7→ ∂∆z

∂ν

∣∣∣∣
Σ1

(4.41)

are compact operators.

Proof. Assumptions f ∈ H3(Ω)∩H1
0 (Ω) and R ∈ L∞(Q) imply that f(x)Rt(x, t) ∈ H3(Q)∩H1(Q),

so

f(x)R(x, t) ∈ H3(Q) ∩H1(Q) =⇒ ∂z

∂ν
∈ H1(Σ1) continuously.

Thus, f 7→ G1(f) ∈ H1(Σ1) is continuous, which implies that G1 is compact. The proof showing

that G2 is compact is similar.

Step 5 : We will now show that we may drop the z-terms in (4.39) to obtain our desired stability

estimate. Suppose, to the contrary, that the stability estimate does not hold. Then there exists a

sequence {fk}, fk ∈ L2(Ω) for all k ∈ N such that

∥fk∥2L2(Ω) = 1

lim
k→∞

(∥∥∥∥∂∆ut(fk)∂ν

∥∥∥∥2
L2(Σ1)

+

∥∥∥∥∂utt(fk)∂ν

∥∥∥∥2
L2(Σ1)

)
= 0.

(4.42)

Then there exists a subsequence, still denoted as {fk} such that

fk ⇀ f0 weakly to some f0 ∈ L2(Ω). (4.43)

Since G1 and G2 are compact operators by Lemma 4.4.1, we have the following strong convergence
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([3, Theorem 3.2.3], [28, Theorem 8.1-7]):

lim
k,l→∞

∥G1(fk)−G1(fl)∥2L2(Σ1)
= 0

lim
k,l→∞

∥G2(fk)−G2(fl)∥2L2(Σ1)
= 0

(4.44)

Step 6 : Since the map f 7→ u(f) is linear, we have from (4.39) that

∥fk − fl∥2L2(Ω ≤ C

(∥∥∥∥∂utt(fk)∂ν
− ∂utt(fl)

∂ν

∥∥∥∥2
L2(Σ1)

)
+ C

(∥∥∥∥∂∆ut(fk)∂ν
− ∂∆ut(fl)

∂ν

∥∥∥∥2
L2(Σ1

)

+ C∥G1(fk)−G1(fl)∥2L2(Σ1)
+ C∥G2(fk)−G2(fl)∥2L2(Σ1

≤ C

∥∥∥∥∂utt(fk)∂ν

∥∥∥∥2
L2(Σ1)

+ C

∥∥∥∥∂utt(fl)∂ν

∥∥∥∥2
L2(Σ1)

+ C

∥∥∥∥∂∆ut(fk)∂ν

∥∥∥∥
L2Σ1

2

+

∥∥∥∥∂∆ut(fl)∂ν

∥∥∥∥2
L2(Σ1

+ C∥G1(fk)−G1(fl)∥2L2(Σ1)
+ C∥G2(fk)−G2(fl)∥2L2(Σ1

.

Hence, by (4.42) and (4.44), letting k, l → ∞ gives us the following:

lim
k,l→∞

∥fk − fl∥2L2(Ω) = 0.

Thus, {fk} is a Cauchy sequence in L2(Ω). By the uniqueness of the limit, we must have

lim
k→∞

∥fk − f0∥L2(Ω) = 0, (4.45)

so we also have

∥f0∥2L2(Ω) = 1. (4.46)

Step 7 : By the regularity assumption, we have that f 7→ G1(f) ∈ L2(Σ1) is continuous. Hence,

∥∥∥∥∂utt(f)∂ν

∥∥∥∥2
L2(Σ)

≤ C∥f∥2L2(Ω).

Since the map f 7→ utt(f) is linear, we have

∥∥∥∥∂utt(fk)∂ν
− ∂utt(f0)

∂ν

∥∥∥∥2
L2(Σ)

≤ C∥fk − f0∥2L2(Ω). (4.47)
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Thus, by (4.45), we have that

lim
k→∞

∥∥∥∥∂utt(fk)∂ν
− ∂utt(f0)

∂ν

∥∥∥∥
L2(Σ)

= 0

and hence ∂utt(f0)
∂ν = 0 in L2(Σ1). This means that ∂ut(f0)

∂ν is constant with respect to t ∈ [−T, T ].

Step 8 : Similarly, by the regularity assumption, we have that f 7→ G2(f) ∈ L2(Σ1) is continuous.

Hence, ∥∥∥∥∂∆ut(f)∂ν

∥∥∥∥2
L2(Σ)

≤ C∥f∥2L2(Ω).

Since the map f 7→ ∆ut(f) is linear, we have

∥∥∥∥∂∆ut(fk)∂ν
− ∂∆ut(f0)

∂ν

∥∥∥∥2
L2(Σ)

≤ C∥fk − f0∥2L2(Ω). (4.48)

Thus, by (4.45), we have again that

lim
k→∞

∥∥∥∥∂∆ut(fk)∂ν
− ∂∆ut(f0)

∂ν

∥∥∥∥
L2(Σ)

= 0

and hence ∂∆ut(f0)
∂ν = 0 in L2(Σ1), meaning that ∂∆u(f0)

∂ν is constant with respect to t ∈ [−T, T ].

Step 9 : Now we show that ∂ut(f0)
∂ν = ∂∆u(f0)

∂ν = 0 on Σ1. Consider the original u-system with the

source term f replaced with fk:

utt +∆2u = q(x)u+ fk(x)R(x, t) in Q

u(x, 0) = ut(x, 0) = 0 in Ω

u(x, t) = ∆u(x, t) = 0, on Σ.

(4.49)

By the regularity theory (2.49) and trace theory, we have

∥ut(fk)− ut(f0)∥C[0,T ];H3(Ω) ≤ C∥fk − f0∥2L2(Ω)

∥∆u(fk)−∆u(f0)∥C[0,T ];H1(Ω) ≤ C∥fk − f0∥2L2(Ω)

(4.50)

Since ut(fk)(x, 0) = 0, by strong convergence of {fk} and by linearity, we must have ut(f0)(x, 0) =
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∆u(f0)(x, 0) = 0 in Ω and ut(f0)|Σ = ∆u(f0)|Σ = 0. Hence, we have that ∂ut(f)
∂ν (x, 0) = ∂∆u(f0)

∂ν = 0

on Σ1. However, since
∂ut(f)
∂ν and ∂∆u(f0)

∂ν are constant with respect to t, we must have that ∂ut(f0)
∂ν =

∂∆u(f0)
∂ν = 0 on Σ1. Also notice that since u(fk)(x, 0) = 0 in Ω and fk → f0, we also have that

∂u(f0)
∂ν = 0 on Σ1 by a similar argument.

Step 10 : Since we have ∂u(f0)
∂ν = ∂∆u(f0)

∂ν = 0 on Σ1, u(f0) satisfies the following:



utt +∆2u = q(x)u+ f0(x)R(x, t) in Q

u(x, 0) = ut(x, 0) = 0 in Ω

u(x, t) = ∆u(x, t) = 0 on Σ

∂u

∂ν
=
∂∆u

∂ν
= 0 on Σ1.

(4.51)

By the uniqueness result in Theorem 4.1.3, we must have that f0 = 0, which contradicts

(4.46). Therefore, we have that the z-terms in (4.39) must be dropped. This completes the proof of

Theorem 4.1.4.

4.5 Stability of Inverse Problem: Proof of Theorem 4.1.2

The result is an immediate consequence of Theorem 4.1.4. By the regularity assumption

(2.49) on the initial and boundary conditions {w0, w1, h1, h2} (4.2) imply that the solutions must

satisfy

{w,wt, wtt} ∈ C
(
[−T, T ];Hγ+3(Ω)×Hγ+1(Ω)×Hγ−1(Ω)

)
.

As γ > n
2 + 3, we have the embedding Hγ−1(Ω) ↪→ W 2,∞(Ω), so the regularity assumption (4.2)

implies the corresponding regularity assumption (4.9). Therefore, we obtain Theorem 4.1.2 from

Theorem 4.1.4.
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Chapter 5

Conclusions

To summarize our results, we have shown that we can solve the inverse problem of a second-

order hyperbolic system (1.2) of recovering n+3 unknown coefficients using half of the measurements

on the boundary. We also showed that we can solve the inverse problem of recovering an unknown

coefficient q from the plate equation (1.5) on the lower-order term via two measurements on the

boundary.

Below we leave a few remarks about each inverse problem that could lead to future research.

(1) For the second-order hyperbolic equations, one could also recover the n+3 unknown coefficients

by choosing n+3 initial conditions {w0, w1} and boundary condition h with their corresponding

boundary measurements. The positivity assumption will become |det(W ′)| ≥ r0 > 0, where

W ′ is the following (n+ 3)× (n+ 3) matrix:

W ′ =



w
(1)
0 (x) w

(1)
1 (x) ∂x1

w
(1)
0 (x) · · · ∂xn

w
(1)
0 (x) ∆w

(1)
0 (x)

w
(2)
0 (x) w

(2)
1 (x) ∂x1w

(2)
0 (x) · · · ∂xnw

(2)
0 (x) ∆w

(2)
0 (x)

...
...

...
. . .

...
...

w
(n+3)
0 (x) w

(n+3)
1 (x) ∂x1

w
(n+3)
0 (x) · · · ∂xn

w
(n+3)
0 (x) ∆w

(n+3)
0 (x)


(5.1)

The main difference in proving this inverse problem compared to using only half of the mea-

surements is that we only need to differentiate the u−equation (3.12) twice with respect to t

instead of three times. Since we reduce the number of times we need to differentiate, we also
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get a better stability estimate, which is provided below:

∥c2 − c̃2∥2L2(Ω) + ∥q1 − p1∥2L2(Ω) + ∥q0 − p0∥2L2(Ω) + ∥q− p∥2L2(Ω)

≤ C

m+2∑
i=1

∥∥∥∥∥∂w(i)
t (c, q1, q0,q)

∂ν
− ∂w

(i)
t (c̃, p1, p0,p)

∂ν

∥∥∥∥∥
2

L2(Σ1)

, (5.2)

(2) Using a similar strategy to the proofs in Chapter 4, it is possible to recover more unknown

coefficients of the plate equation on lower-order terms (wt,∆w,∆wt,∇∆w, etc.) under hinged

boundary conditions. The first step to accomplish this is to adapt the Carleman estimate

(2.31) for the lower-order terms with each of the desired coefficients. It is unknown whether

this requires more measurements on the boundary to successfully solve this inverse problem.

(3) The inverse problem for the plate equation (1.5) was conducted with hinged boundary condi-

tions. However, for the plate equation, one can also consider clamped boundary conditions:



wtt +∆2w + q(x)w = 0; in Q

w(x, 0) = w0, wt(x, 0) = w1; in Ω

w = h1,
∂w

∂ν
= h2; on Σ

(5.3)

Currently, it is unknown how working with clamped boundary conditions will affect the in-

verse problem of recovering the unknown coefficient q. Based on the boundary term BT ∗
1 (w)

in (2.32), we suspect that our measurements on the boundary should be the Dirichlet and

Neumann boundary traces of ∆w, ∆w|Σ1
,
∂∆w

∂ν

∣∣∣∣
Σ1

to solve this inverse problem.

(4) For both inverse problems, we used the time interval [−T, T ] and used t = 0 as the initial

time. For the plate equation, we could also work on the time interval [0, T ] as well. The main

difference is that we would have to incorporate an even extension from Ω× [0, T ] to Ω× [−T, T ]

via the change of variables t→ t− T .

For the second-order hyperbolic equation (1.2), we cannot perform the even extension due

to the damping coefficient term q1(x)wt. If we were not recovering the damping coefficient,

then we can also perform the even extension mentioned above. However, even if we were
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not recovering the damping coefficient, the current time interval allows us to recover all co-

efficients in the second-order hyperbolic problem with fewer choices of initial conditions and

fewer measurements on the boundary. This is because we can use both equations in (3.32)

simultaneously instead of only one equation if we initially assume the time interval [0, T ].

(5) The inverse problem for second-order hyperbolic equation can also be set up by assuming

Neumann boundary condition ∂w
∂ν on Σ by making measurements of Dirichlet boundary traces

of w on Σ1. This requires a more demanding geometrical assumption on the unobserved portion

of the boundary Γ0 by assuming ∂d
∂ν = ⟨Dd, ν⟩ = 0 on Γ0. In addition, more regularity theory

for second-order hyperbolic equation with nonhomogeneous Neumann boundary condition will

also need to be invoked, see [33, 35]. Besides that, the main ideas for solving the inverse

problems remain the same.
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Appendix A

Carleman type Estimates for the

Schrödinger Equation

In this appendix, we focus on the Carleman-type estimates for the Schrödinger equation in

(2.26) and provide a proof for Theorem 2.2.2. We first establish an initial pointwise inequality and

then restate the inequality after specializations are made.

A.1 Initial Pointwise Inequality

We first derive the following pointwise estimate for the Schrödinger equation iwt−∆w = f .

Lemma A.1.1. Let

w(x, t) ∈ C2(Rnx × Rt;C); ℓ(x, t) ∈ C3(Rnx × Rt,R);

Ψ(x, t), Φ(x, t) ∈ C1(Rnx × Rt,R)
(A.1.1)

Further, let

ℓtxj
≡ 0; θ(x, t) = eℓ(x,t); v(x, t) = θ(x, t)w(x, t). (A.1.2)
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Then we have the following pointwise inequality:

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
− 2(Ψ +∆ℓ)(|∇ℓ|2 −∆ℓ) + 4

∑
j,k

ℓxk
ℓxj
ℓxjxk

− 2∇Φ · ∇ℓ− 2∇ℓ · ∇∆ℓ− (Φ2 +Ψ2)

− 2Φ∆ℓ+ ℓtt − 4∇Ψ · ∇ℓ+ 2∇ℓ · ∇(Ψ−∆ℓ)− n

ϵ

∑
j,k

ℓ2xjxjxk
− ϵ(Ψ−∆ℓ)2 − 2|Ψ−∆ℓ||∇ℓ|2

]
|v|2

+ 2

∑
j

∇ℓxj
(vxj

∇v + vxj
∇v) + (Ψ +∆ℓ)|∇v|2

− 2θ2 ((Ψ−∆ℓ) + |Ψ−∆ℓ|) |∇w|2 − ϵ|∇v|2

(A.1.3)

where

M = −θ2
2
∑
j

(ℓxj
(ξxj

η − ξηxj
))− ℓt|w|2

 (A.1.4)

Vj = Vj(w) = 2θ2

(
− [2|∇ℓ|2 −∆ℓ+Φ−Ψ]ℓxj

|w|2 − [ℓt(ξxj
η − ξηxj

)− ℓxj
(ξtη − ξηt)]

+
1

2

(
2|∇ℓ|2 +∆ℓ

)
(wxjw + wxjw)−

[∑
k

[ℓxk
(wxjwxk

+ wxk
wxj )− ℓxj |∇w|2]

]})
(A.1.5)

Proof. The proof of Lemma A.1.1 is long, so we break the it into multiple steps to help make the

presentation clear.

Step 1 : Based on our definitions in (A.1.2), we immediately obtain the following identities:

θt = θℓt; vt = θtw + θwt (or θwt = vt − ℓtv) (A.1.6a)

θwxjxj
= vxjxj

− 2ℓxj
vxj

+ (ℓ2xj
− ℓxjxj

)v, j = 1, . . . , n (A.1.6b)

θ∆w = ∆v − 2∇ℓ · ∇v + (|∇ℓ|2 −∆ℓ)v (A.1.6c)

Multiplying the principle part by the exponential weight, squaring, and by (A.1.6a)-(A.1.6c), we
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have

|θ(iwt −∆w)|2 = |i(vt − ℓtv)−∆v + 2∇ℓ · ∇v − (|∇ℓ|2 −∆ℓ)v+Φv − Φv +Ψv −Ψv|2

= |(ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv)− (−2∇ℓ · ∇v +Φv + iℓtv) + (Φ + Ψ)v|2

= |I1 − I2 + I3|2

= |I1|2 + |I2|2 + |I3|2 − (I2I2 + I1I2)− (I3I2 + I3I2) + (I3I1 + I3I1)

(A.1.7)

where

I1 ≡ ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv

I2 ≡ −2∇ℓ · ∇v +Φv + iℓtv

I3 ≡ (Φ + Ψ)v

(A.1.8)

Remark A.1.2. The reason behind introducing Φ and Ψ will be shown in later sections once

specializations are made.

After dropping the |I1|2 + |I2|2 term in (A.1.7), we have

|θ(iwt −∆w)|2 ≥ |I3|2 − (I1I2 + I1I2)− (I3I2 + I3I2) + (I3I1 + I3I1) (A.1.9)

Step 2 : The goal now is to expand the cross-terms of (A.1.9). Let us start with the I1I3 + I1I3

cross-term. Expanding this cross-term yields

I3I1 + I3I1 = I1(Φ + Ψ)v + I1(Φ + Ψ)v

= Φ(I1v + I1v) + Ψ(I1v + I1v)

= Φ(I1v + I1v) + (−ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv)Ψv + (ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv)Ψv

= Φ(I1v + I1v) + iΨ(vvt − vtv)−Ψ(v∆v + v∆v)− 2Ψ(|∇ℓ|2 −∆ℓ+Ψ)|v|2. (A.1.10)
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Notice by direct computation we have the following identity:

∑
j

[Ψ(vxjv + vxjv)]xj =
∑
j

Ψ(vxjxjv + vxjvxj + vxjxjv + vxjvxj ) +
∑
j

Ψxj (vxjv + vxjv)

= Ψ[v∆v + v∆v] + 2Ψ|∇v|2 +∇Ψ · [∇vv +∇vv].

Apply this to the third term of (A.1.10) yields

I3I1 + I3I1 = Φ(I1v + I1v) + iΨ(vvt − vtv)−
∑
j

[Ψ(vxjv + vxjv)]xj

+ 2Ψ|∇v|2 +∇Ψ · [∇vv +∇vv]− 2Ψ(|∇ℓ|2 −∆ℓ+Ψ)|v|2.

(A.1.11)

Step 3 : We now expand the I2I3 + I2I3 cross-term. The work is provided below:

I2I3 + I2I3 = (−2∇ℓ · ∇v +Φv + iℓtv)(Φ + Ψ)v + (−2∇ℓ · ∇v +Φv − iℓtv)(Φ + Ψ)v

= −2(Φ + Ψ)[∇ℓ · ∇vv +∇ℓ · ∇vv] + 2Φ(Φ + Ψ)|v|2

= −2(Φ + Ψ)∇ℓ · ∇(|v|2) + 2Φ(Φ + Ψ)|v|2, (A.1.12)

after canceling the iℓt(Φ +Ψ)|v|2 terms. By direct computation, the next identity is easily verified:

−2
∑
j

[(Φ+Ψ)ℓxj |v|2]xj = −2∇(Φ+Ψ) ·∇ℓ|v|2 − 2(Φ+Ψ)∆ℓ|v|2 − 2(Φ+Ψ)∇ℓ ·∇(|v|2). (A.1.13)

Substitute (A.1.13) to the first term on the right-hand side of (A.1.12) yields

I2I3 + I2I3 = −2
∑
j

[(Φ + Ψ)ℓxj |v|2]xj + 2∇(Φ + Ψ) · ∇ℓ|v|2 + 2(Φ + Ψ)∆ℓ|v|2 + 2Φ(Φ + Ψ)|v|2

= −2
∑
j

[(Φ + Ψ)ℓxj
|v|2]xj

+ 2(Φ + Ψ)(Φ +∆ℓ)|v|2 + 2[∇(Φ + Ψ) · ∇ℓ]|v|2.

(A.1.14)

Step 4 : We now proceed to expand the I1I2 + I1I2 cross-terms from (A.1.9). We claim that this
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cross-term has the following expansion:

I1I2 + I1I2 = Φ(I1v + I1v)− i

{
2 (∇ℓ · ∇vv)t − 2

∑
j

(
ℓxjvtv

)
xj

+ 2∆ℓ(vvt) +
∑
j

[ℓt(vvxj − vvxj )]xj

}

+ (ℓt|v|2)t − ℓtt|v|2 + (C)

(C) = (B)− 2
∑
j,k

[ℓxkxj (vxjvxk
− vxjvxk

)] + 2∆ℓ|∇v|2

− 2
∑
j

(∑
k

[2ℓxk
ℓxjxk

− ℓxkxkxj
]−Ψxj

)
ℓxj

|v|2 − 2[|∇ℓ|2 −∆ℓ+Ψ]∆ℓ|v|2

(B) = 2
∑
j

{∑
k

[ℓxk
(vxj

vxk
+ vxj

vxk
)− ℓxj

|vxk
|2] + [|∇ℓ|2 −∆ℓ+Ψ]ℓxj

|v|2
}
xj

(A.1.15)

Proof of (A.1.15): Establishing (A.1.15) requires more work than the other cross-terms of (A.1.9),

so we will break the proof into multiple steps.

(i) First, we obtain the following via direct computation:

I1I2 + I1I2 = I1(−2∇ℓ · ∇v +Φv − iℓtv) + I1(−2∇ℓ · ∇v +Φv + iℓtv)

= Φ(I1v + I1v) + (ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv)(−2∇ℓ · ∇v − iℓtv)

+ (−ivt −∆v − (|∇ℓ|2 −∆ℓ)v −Ψv)(−2∇ℓ · ∇v + iℓtv)

= Φ(I1v + I1v)− 2ivt∇ℓ · ∇v + ivt(−iℓtv) + 2ivt∇ℓ · ∇v + (−ivt)(iℓtv)

+ [−∆v − (|∇ℓ|2 −∆ℓ)v −Ψv](−2∇ℓ · ∇v) + [−∆v − (|∇ℓ|2 −∆ℓ)v −Ψv](−iℓtv)

+ [−∆v − (|∇ℓ|2 −∆ℓ)v −Ψv](−2∇ℓ · ∇v) + [−∆v − (|∇ℓ|2 −∆ℓ)v −Ψv](iℓtv)

= Φ(I1v + I1v)− 2i∇ℓ · (∇vvt −∇vvt) + ℓt [vtv + vtv] + 2∇ℓ · [∆v∇v +∆v∇v]

+ 2∇ℓ · (∇vv +∇vv) [|∇ℓ|2 −∆ℓ+Ψ]− iℓt[∆vv −∆vv] (A.1.16)

after a cancellation of the iℓt(|∇ℓ|2 −∆ℓ)|v|2 and iℓtΨ|v|2 terms.
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(ii) Next, after adding and subtracting terms, we have the following identities:

vxjvt − vxjvt = (vvxj )t − (vtv)xj (A.1.17a)

∇ℓ · [∇vvt −∇vvt] =
∑
j

ℓxj

[
(vvxj

)t − (vtv)xj

]
(A.1.17b)

vxkxk
vxj + vxkxk

vxj = (vxk
vxj + vxk

vxj )xk
−
(
|vxk

|2
)
xj

(A.1.18a)

∇ℓ · [∇v∆v +∇v∆v] =
∑
j,k

ℓxj

[
(vxk

vxj
+ vxk

vxj
)xk

−
(
|vxk

|2
)
xj

]
(A.1.18b)

vvxjxj − vvxjxj = (vvxj − vvxj )xj (A.1.19a)

v∆v − v∆v =
∑
j

(vvxj
− vvxj

)xj
(A.1.19b)

Substitute (A.1.17)-(A.1.19) to the second, fourth, and sixth terms of (A.1.16), respectively,

to obtain

I1I2 + I1I2 = Φ(I1v + I1v)− 2i
∑
j

{
ℓxj [(vvxj )t − (vtv)xj ]

}
+ ℓt(|v|2)t

+ 2
∑
j,k

ℓxj
[(vxk

vxj
+ vxk

vxj
)xk

]− 2∇ℓ · ∇(|∇v|2)

+ 2∇ℓ · ∇(|v|2)[|∇ℓ|2 −∆ℓ+Ψ]− iℓt
∑
j

(vvxj − vvxj )xj .

(A.1.20)

(iii) Since ℓtxj = 0 for j = 1, . . . , n, we also have the following identities:

(
ℓxj
vvxj

)
t
−
(
ℓxj
vtv
)
xj

+ ℓxjxj
vvt = ℓxj

[
(vvxj

)t − (vtv)xj

]
(A.1.21a)∑

j

{
(
ℓxj
vvxj

)
t
−
(
ℓxj
vtv
)
xj
}+∆ℓvvt =

∑
j

{
ℓxj

[(vvxj
)t − (vtv)xj

]
}

(A.1.21b)

ℓt(vvxj
− vvxj

)xj
= [ℓt(vvxj

− vvxj
)]xj

(A.1.22a)∑
j

ℓt(vvxj
− vvxj

)xj
=
∑
j

[ℓt(vvxj
− vvxj

)]xj
(A.1.22b)

After substituting (A.1.21)-(A.1.22) to the second and last terms of the right-hand side of
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(A.1.20), we obtain the following:

I1I2 + I1I2 = Φ(I1v + I1v)− 2i
∑
j

{
(
ℓxjvvxj

)
t
−
(
ℓxjvtv

)
xj
} − 2i∆ℓvvt + ℓt(|v|2)t

− i
∑
j

[ℓt(vvxj
− vvxj

)]xj
+ (A)

(A) = 2
∑
j,k

ℓxj [(vxk
vxj + vxk

vxj )xk
]− 2∇ℓ · ∇(|∇v|2) + 2∇ℓ · ∇(|v|2)[|∇ℓ|2 −∆ℓ+Ψ]

(A.1.23)

Recalling the definition of (B) in (A.1.15), we can relate it to (A) in the following manner:

(B) = 2
∑
j

{∑
k

[ℓxk
(vxj

vxk
+ vxj

vxk
)− ℓxj

|vxk
|2] + [|∇ℓ|2 −∆ℓ+Ψ]ℓxj

|v|2
}
xj

= (A) + 2
∑
j,k

[ℓxkxj (vxjvxk
+ vxjvxk

)]− 2∆ℓ|∇v|2

+ 2
∑
j

[|∇ℓ|2 −∆ℓ+Ψ]xj
ℓxj

|v|2 + 2[|∇ℓ|2 −∆ℓ+Ψ]∆ℓ|v|2

(A.1.24)

Substituting (A.1.24) to the right-hand side of (A.1.23) yields

I1I2 + I1I2 = Φ(I1v + I1v)− 2i
∑
j

{
(
ℓxj
vvxj

)
t
−
(
ℓxj
vtv
)
xj
} − 2i∆ℓvvt + ℓt(|v|2)t

− i
∑
j

[ℓt(vvxj − vvxj )]xj + (B)− 2
∑
j,k

[ℓxkxj (vxjvxk
+ vxjvxk

)]

+ 2∆ℓ|∇v|2 − 2
∑
j

[|∇ℓ|2 −∆ℓ+Ψ]xj
ℓxj

|v|2 − 2[|∇ℓ|2 −∆ℓ+Ψ]∆ℓ|v|2

(A.1.25)

Hence, using the following identities

ℓt(|v|2)t = (ℓt|v|2)t − ℓtt|v|2; [|∇ℓ|2 −∆−Ψ]xj
=
∑
k

[2ℓxk
ℓxjxk

− ℓxkxkxj
−Ψxj

]

gives us (A.1.15). ⋄

Step 5 : Now that we have expanded the cross-terms of (A.1.9), we will establish the following:

|θ(iwt −∆w)|2 ≥ |I3|2 − (I1I2 + I1I2)− (I3I2 + I3I2) + (I3I1 + I3I1)

= X1 +X2 +X3 +X4

(A.1.26)
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where

X1 =

[
− 2(Ψ +∆ℓ)(|∇ℓ|2 −∆ℓ) + 4

∑
j,k

ℓxk
ℓxj ℓxjxk

− 2∇Φ · ∇ℓ

− 2
∑
j,k

ℓxj ℓxjxkxk
− Φ2 −Ψ2 − 2Φ∆ℓ+ ℓtt + 4∇Ψ · ∇ℓ

]
|v|2

+ 2

∑
j,k

ℓxjxk
(vxjvxk

+ vxjvxk
) + (Ψ +∆ℓ)|∇v|2


(A.1.27)

X2 = − ∂

∂t
(ℓt|v|2) + 2

∑
j

∂

∂xj

{
[2Ψ− |∇ℓ|2 +∆ℓ− Φ]ℓxj

|v|2 − Ψ

2
(vxj

v + vxj
v)

−∇ℓ · (∇vvj +∇vvxj ) + ℓxj |∇v|2
} (A.1.28)

X3 = ∇Ψ · (∇vv +∇vv) + i(Ψ−∆ℓ)(vtv − vtv) (A.1.29)

X4 = i
∑
j

{
∂

∂t
[2ℓxj

vvxj
+ ℓxjxj

|v|2] + ∂

∂xj
[ℓt(vvxj

− vvxj
)− 2ℓxj

vtv]

}
(A.1.30)

Indeed, substituting (A.1.11), (A.1.14), and (A.1.15) into (A.1.9) yields

|θ(iwt −∆w)|2 ≥ |I3|2 − (I1I2 + I1I2)− (I3I2 + I3I2) + (I3I1 + I3I1)

= |(Φ + Ψ)v|2 −

{{
Φ(I1v + I1v)− i

{
2 (∇ℓ · ∇vv)t − 2

∑
j

(
ℓxjvtv

)
xj

+ 2∆ℓvvt

+
∑
j

[ℓt(vvxj
− vvxj

)]xj

}
+ (ℓt|v|2)t − ℓtt|v|2

+ 2
∑
j

{∑
k

[ℓxk
(vxj

vxk
+ vxj

vxk
)− ℓxj

|vxk
|2] + [|∇ℓ|2 −∆ℓ+Ψ]ℓxj

|v|2
}
xj

− 2
∑
j,k

[ℓxkxj (vxjvxk
− vxjvxk

)] + 2∆ℓ|∇v|2 − 2[|∇ℓ|2 −∆ℓ+Ψ]∆ℓ|v|2

− 2

{∑
j

(∑
k

[2ℓxk
ℓxjxk

− ℓxkxkxj
]

)
ℓxj

−∇Ψ · ∇ℓ
}
|v|2
}}

−

[[
− 2

∑
j

[(Φ + Ψ)ℓxj
|v|2]xj

+ 2(Φ + Ψ)(Φ +∆ℓ)|v|2 + 2[∇(Φ + Ψ) · ∇ℓ]|v|2
]]
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+

((
Φ(I1v + I1v) + iΨ(vvt − vtv)−

∑
j

[Ψ(vxjv + vxjv)]xj

+ 2Ψ|∇v|2 +∇Ψ · [∇vv +∇vv]− 2Ψ(|∇ℓ|2 −∆ℓ+Ψ)|v|2
))

= |(Φ + Ψ)v|2 −

{{
������
Φ(I1v + I1v)− i

{
2 (∇ℓ · ∇vv)t − 2

∑
j

(
ℓxj
vtv
)
xj

+ 2∆ℓvvt

+
∑
j

[ℓt(vvxj
− vvxj

)]xj

}
+ (ℓt|v|2)t − ℓtt|v|2

+ 2
∑
j

{∑
k

[ℓxk
(vxj

vxk
+ vxj

vxk
)− ℓxj

|vxk
|2] + [|∇ℓ|2 −∆ℓ]ℓxj

|v|2
}
xj

−2
∑
j

{Ψℓxj
|v|2}xj

− 2
∑
j,k

[ℓxkxj
(vxj

vxk
− vxj

vxk
)] + 2∆ℓ|∇v|2 − 2[|∇ℓ|2 −∆ℓ]∆ℓ|v|2 −XXXXX2Ψ∆ℓ|v|2

− 2

{∑
j

(∑
k

[2ℓxk
ℓxjxk

− ℓxkxkxj
]

)
ℓxj

−∇Ψ · ∇ℓ
}
|v|2
}}

−

[[
− 2

∑
j

[(Φ +Ψ)ℓxj
|v|2]xj

+ 2[Φ2 +Ψ2 +ΨΦ+∆ℓΨ+∇Φ · ∇ℓ+∇Ψ · ∇ℓ]|v|2
]]

+

((
������
Φ(I1v + I1v) + iΨ(vvt − vtv)−

∑
j

[Ψ(vxj
v + vxj

v)]xj

+ 2Ψ|∇v|2 +∇Ψ · [∇vv +∇vv]− 2Ψ[|∇ℓ|2 +Ψ]|v|2 −XXXXX2Ψ∆ℓ|v|2
))

. (A.1.31)

In (A.1.31), {{ }} refers to (A.1.15), [[ ]] refers to (A.1.14), and (( )) refers to (A.1.11). From

(A.1.31), we obtain X4 by collecting the terms pre-multiplied by i and using the identities

(vvt) = (|v|2)t − (vtv − vtv), ℓxjxj
(|v|2)t = (ℓxjxj

|v|2)t

by invoking ℓtxj
≡ 0. Likewise, if we collect the other terms, we obtain X1 +X2 +X3 in (A.1.27)-

(A.1.29). Thus, we obtain (A.1.26).

Step 6 : Our goal now is to convert (A.1.26) from v to w. To this extent, we use the following
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identities:

v = θw, θ = eℓ, θt = θℓt, vt = θ[wt + ℓtw], θxj
= θℓxj

vxj
= θ(wxj

+ ℓxj
w), |∇v|2 = θ2

∑
j

[wxj
+ ℓxj

w]2
(A.1.32)

We begin with X4. First, rewrite X4 as

X4 = i
∑
j

µj = i
∑
j

{
∂

∂t
[2ℓxj

vvxj
+ ℓxjxj

|v|2] + ∂

∂xj
[ℓt(vvxj

− vvxj
)− 2ℓxj

vtv]

}
(A.1.33)

We then obtain the following by using identities (A.1.32):

µj ≡ 2
(
(ℓxj

vvxj
)t − (ℓxj

vtv)xj

)
+
(
ℓxjxj

|v|2
)
t
+
(
ℓt(vvxj

− vvxj
)
)
xj

= 2
(
(θ2ℓ2xj

|w|2 + θ2ℓxj
wwxj

)t − (θ2ℓxj
ℓt|w|2 + θ2ℓxj

wwt)xj

)
+ (θ2ℓxjxj

|w|2)t +
(
θ2ℓt(wwxj

− wwxj
)
)
xj

(A.1.34)

Hence, we can rewrite X4 as follows:

X4 = − ∂

∂t

2
∑
j

(θ2ℓj(ξxj
η − ξηxj

))

−
∑
j

∂

∂xj
{2θ2[ℓt(ξxj

η − ξηxj
)− ℓxj

(ξtη − ξηt)]} (A.1.35)

Step 7 : Now we rewrite X3 in terms of w. First, we consider the last term of X3 in (A.1.29) and

prove the following identity:

i(Ψ−∆ℓ)(vtv − vtv) = θ2(Ψ−∆ℓ)
(
(Pw)w + w(Pw

)
− 2θ2(Ψ−∆ℓ)|∇w|2

+ θ2(Ψ−∆ℓ)
∑
k

(wxk
w + wxk

w)xk

(A.1.36)
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where P = iwt −∆w. To prove (A.1.36), direct computation gives us

i(Ψ−∆ℓ)(vtv − vtv) = i(Ψ−∆ℓ) (θ(wt + ℓtw)(θw)− θ(wt + ℓtw)(θw))

= θ2(Ψ−∆ℓ)(iwtw + (iwt)w) (A.1.37)

iwtw + (iwt)w = (Pw)w + (Pw)w + (∆ww +∆ww) (A.1.38)

∑
k

(wxk
w + wxk

w)xk
= ∆ww +∆ww + 2|∇w|2 (A.1.39)

Notice that (A.1.38) follows directly from the definition of P. Substituting (A.1.38) and (A.1.39)

into (A.1.37) gives us (A.1.36), as desired .

Step 8 : For the last term in (A.1.36), we have

θ2(Ψ−∆ℓ)
∑
k

(wxk
w + wxk

w)xk
=
∑
k

(
θ2(Ψ−∆ℓ)(wxk

w + wx)kw)
)
xk

− 2θ2(Ψ−∆ℓ)
∑
k

ℓxk
(wxk

w + wxk
w)−

∑
k

θ2(Ψxk
−∆ℓxk

)(wxk
w + wxk

w).

(A.1.40)

For the second term on the RHS of (A.1.40), since ℓ is real-valued, we have the following identity

from [38]:

∑
k

(
wxk

(ℓxk
w) + wxk

(ℓxk
w)
)
=
∑
k

2Re(wxk
(ℓxk

w)) ≥ −
∑
k

(|wxk
|2 + ℓ2xk

|w|2)

= −
(
|∇w|2 + |∇ℓ|2|w|2

)
.

(A.1.41)

Apply (A.1.41) to the second term on the right-hand side of (A.1.40) gives us the following:

i(Ψ−∆ℓ)(vtv − vtv) ≥ θ2(Ψ−∆ℓ)
(
(Pw)w + w(Pw)

)
+ 2θ2

(
(Ψ−∆ℓ)|∇w|2 + |Ψ−∆ℓ||∇w|2

)
+
∑
k

(
θ2(Ψ−∆ℓ)(wxk

w + wxk
w)
)
xk

− 2θ2|Ψ−∆ℓ| |∇ℓ|2|w|2

−
∑
k

(
θ2(Ψxk

−∆ℓxk
)(wxk

w + wxk
w)
)
.

(A.1.42)
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Step 9 : In this step, we establish the following estimate for X3:

X3 ≥ θ2(Ψ−∆ℓ)
(
(Pw)w + w(Pw)

)
+ 2θ2

(
(Ψ−∆ℓ)|∇w|2 + |Ψ−∆ℓ||∇w|2

)
+
∑
k

(
θ2Ψ(wxk

w + wxk
w)
)
xk

+
∑
k

(
θ2∆ℓ(wxk

w + wxk
w)
)
xk

+
∑
k

[∆ℓxk
(vxk

v + vxk
v)] + 2

∑
k

[(Ψxk
−∆ℓxk

)ℓxk
)] |v|2 − 2θ2|Ψ−∆ℓ||∇ℓ|2|w|2

(A.1.43)

To show (A.1.43), we use (A.1.42), leaving most of the identity unchanged. The exception is the

last term of (A.1.42), where we use the following identity from [38]:

∑
k

(Ψxk
−∆ℓxk

)(vxk
v + vxk

v − 2ℓxk
|v|2) =

∑
k

θ2[(Ψxk
−∆ℓxk

)(wxk
w + wxk

w)]. (A.1.44)

Identity (A.1.44) follows by direct computation, using (A.1.32). After substituting (A.1.44) into

(A.1.42) and recalling the definition of X3 (A.1.29), we get (A.1.43).

Step 10 : Now we rewrite X2 from (A.1.28) in terms of w. We claim

X2 = − ∂

∂t
(ℓtθ

2|w|2) + 2
∑
j

∂

∂xj

{
− θ2[2|∇ℓ|2 −∆ℓ+Φ−Ψ]ℓxj

|w|2 + θ2
(
|∇ℓ|2 − Ψ

2

)
(wxj

w + wxj
w)

− θ2

[∑
k

[ℓxk
(wxj

wxk
+ wxk

wxj
)− ℓxj

|∇w|2]

]}
.

(A.1.45)

To prove (A.1.45), we use the following identities from [38], which are immediate by direct compu-

tations.

vxj + v + vxjv = θ2[2ℓxj |w|2 + wxjw + wxjw]; (A.1.46)

vxj
vxk

+ vxj
vxk

= θ2
[
2ℓxj

ℓxk
|w|2 + ℓxj

(wwxk
+ wwxk

)

+ ℓxk
(wxjw + wxjw) + (wxjwxk

+ wxjwxk
)

]
;

(A.1.47)

|vxk
|2 = θ2[ℓ2xk

|w|2 + ℓxk
(wwxk

+ wwxk
) + |wxk

|2] (A.1.48)

Substitute (A.1.46)-(A.1.48) into (A.1.28), and we readily obtain (A.1.45).

Step 11 : We return to (A.1.26) and apply (A.1.45) for X2, (A.1.43) for X3, and (A.1.35) for X4,
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leaving X1 untouched. Notice that the term

−
∑
j

∂

∂xj

{
θ2Ψ(wxjw + wxjw)

}

in (A.1.45) will cancel the term of opposite sign in (A.1.43). Afterwards, we obtain the following:

θ2|iwt −∆w|2 ≥ X1 +

((
− ∂

∂t
(ℓtθ

2|w|2) + 2
∑
j

∂

∂xj

{
− θ2[2|∇ℓ|2 −∆ℓ+Φ−Ψ]ℓxj |w|2

+ θ2|∇ℓ|2(wxj
w + wxj

w)− θ2

[∑
k

[ℓxk
(wxj

wxk
+ wxk

wxj
)− ℓxj

|∇w|2]

]}))

+

[[
θ2(Ψ−∆ℓ)

(
(Pw)w + w(Pw)

)
+ 2θ2

(
(Ψ−∆ℓ)|∇w|2 + |Ψ−∆ℓ||∇w|2

)
+
∑
k

(
θ2∆ℓ(wxk

w + wxk
w)
)
xk

+
∑
k

[∆ℓxk
(vxk

v + vxk
v)]

+ 2
∑
k

[(Ψxk
−∆ℓxk

)ℓxk
)] |v|2 − 2θ2|Ψ−∆ℓ||∇ℓ|2|w|2

]]

+

{{
− ∂

∂t

2
∑
j

(θ2ℓj(ξxj
η − ξηxj

))

−
∑
j

∂

∂xj
{2θ2[ℓt(ξxj

η − ξηxj
)− ℓxj

(ξtη − ξηt)]}

}}

(A.1.49)

To finish the proof, for any ϵ > 0, we use the following inequalities from [38]:

(Ψ−∆ℓ)
[
(Pw)w + (Pw)w

]
≥ −ϵ|Ψ−∆ℓ|2|w|2 − 1

ϵ
|Pw|2 (A.1.50)

∑
j

∆ℓxj

(
vxj

v + vxj
v
)
≥ −ϵ|∇v|2 − 1

ϵ

∑
j

|∆ℓxj
|2|v|2 (A.1.51)

Inequalities (A.1.50) and (A.1.51) are applications of the inequality |ab+ ab| = 2Re(ab) ≥ −ϵ|a|2 −
1
ϵ |b|

2. Thus, applying them to the first and fourth terms in the [[ ]] group of (A.1.49), recalling the

terms X1 in (A.1.27), to get

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 ≥

[
− 2(Ψ +∆ℓ)(|∇ℓ|2 −∆ℓ) + 4

∑
j,k

ℓxk
ℓxj
ℓxjxk

− 2∇Φ · ∇ℓ

− 2∇ℓ · ∇∆ℓ− (Φ2 +Ψ2)− 2Φ∆ℓ+ ℓtt + 4∇Ψ · ∇ℓ
]
|v|2
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+ 2

∑
j

∇ℓxj (vxj∇v + vxj∇v) + (Ψ +∆ℓ)|∇v|2


+

((
− ∂

∂t
(ℓtθ

2|w|2) + 2
∑
j

∂

∂xj

{
− θ2[2|∇ℓ|2 −∆ℓ+Φ−Ψ]ℓxj |w|2

+ θ2|∇ℓ|2(wxj
w + wxj

w)− θ2

[∑
k

[ℓxk
(wxj

wxk
+ wxk

wxj
)− ℓxj

|∇w|2]

]}))

+

[[
− ϵθ2|Ψ−∆ℓ|2 + 2θ2

(
(Ψ−∆ℓ)|∇w|2 + |Ψ−∆ℓ||∇w|2

)
+
∑
k

(
θ2∆ℓ(wxk

w + wxk
w)
)
xk

− ϵ|∇v|2 − n

ϵ

∑
j,k

ℓ2xjxjxk
|v|2

+ 2
∑
k

[(Ψxk
−∆ℓxk

)ℓxk
] |v|2 + 2θ2|Ψ−∆ℓ||∇ℓ|2|w|2

]]

+

{{
− ∂

∂t

2
∑
j

(θ2ℓj(ξxj
η − ξηxj

))

−
∑
j

∂

∂xj
{2θ2[ℓt(ξxj

η − ξηxj
)− ℓxj

(ξtη − ξηt)]}

}}

(A.1.52)

Finally, recalling M and V from (A.1.4) and (A.1.5), we can rewrite (A.1.52) as

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
− 2(Ψ +∆ℓ)(|∇ℓ|2 −∆ℓ) + 4

∑
j,k

ℓxk
ℓxj
ℓxjxk

− 2∇Φ · ∇ℓ− 2∇ℓ · ∇∆ℓ− (Φ2 +Ψ2)

− 2Φ∆ℓ+ ℓtt + 4∇Ψ · ∇ℓ+ 2∇ℓ · ∇(Ψ−∆ℓ)− n

ϵ

∑
j,k

ℓ2xjxjxk
− ϵ(Ψ−∆ℓ)2 − 2|Ψ−∆ℓ||∇ℓ|2

]
|v|2

+ 2

∑
j

∇ℓxj
(vxj

∇v + vxj
∇v) + (Ψ +∆ℓ)|∇v|2

+ 2θ2 ((Ψ−∆ℓ) + |Ψ−∆ℓ|) |∇w|2 − ϵ|∇v|2

(A.1.53)

which is our desired inequality (A.1.3).

A.2 Pointwise Inequality After Specializations

In this section, we convert (A.1.53) for specific choices of ℓ(x, t), Ψ(x, t), and Φ(x, t). These specifi-

cations are made to allow us to obtain our desired Carleman estimate.

Theorem A.2.1. Let w ∈ C2(Rnx × Rt;C) and d(x) ∈ C3(Rnx ;R). Let τ > 0 be a parameter, and
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we also make the following selections for ℓ(x, t), Ψ(x, t), and Φ(x, t):

ℓ(x, t) := τ

[
d(x)− β

(
t− T

2

)2
]
≡ τφ(x, t) ∈ C3(Rnx × Rt;R) (A.2.1)

Ψ(x, t) := −∆ℓ(x, t) ∈ C1(Rnx × Rt;R) (A.2.2)

Φ(x, t) := ∆ℓ(x, t) or Φ(x, t) := 0 (A.2.3)

(a) With the above choices,we get the following (set h ≡ ∇d)

ℓxj = τdxj ; |∇ℓ|2 = τ2|∇d|2; ℓxkxj = τdxkxj ; ℓxjxjxk
= τdxjxjxk

;
∑
j,k

ℓ2xjxjxk
= τ2

∑
j,k

d2xjxjxk

4Hℓ∇ℓ · ∇ℓ = 4
∑
j,k

ℓxjxk
ℓxj ℓxk

= 4τ3
∑
j,k

dxkxjdxjdxk
= 4τ3Hd∇d · ∇d

2Hℓ[∇v · ∇v +∇v · ∇v] = 2
∑
j,k

ℓxjxk
(vxjvxk

+ vxk
vxj ) = 2τ [Hd∇v · ∇v +Hd∇v · ∇v]

∇ℓ = τ∇d; ∆ℓ = τ∆d; ℓt = −2βτ

(
t− T

2

)
; ℓtt = −2βτ ; ℓtxj

= 0;

− (Ψ2 +Φ2)− 2Φ∆ℓ = −(Φ +∆ℓ)2

(A.2.4)

Further, we have the following identity:

2∇[Φ + ∆ℓ] · ∇ℓ+ (Φ +∆ℓ)2 =


4τ2[∇∆d · ∇d+ (∆d)2], Φ = ∆ℓ

τ2[2∇∆d · ∇d+ (∆d)2], Φ = 0

(A.2.5)

via equation (A.2.3).
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(b) Using (A.2.1)-(A.2.4), our estimate (A.1.53) becomes

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3Hd∇d · ∇d− (2∇(Φ +∆ℓ) · ∇ℓ+ (Φ +∆ℓ)2)− 2βτ

− n

ϵ
τ2
∑
j,k

d2xjxjxk
− 4ϵτ2(∆d)2 + 4τ3∆d|∇d|2

]
|v|2 + 2τ [Hd∇v · ∇v +Hd∇v · ∇v]− ϵ|∇v|2

(A.2.6)

(b1) If we assume Φ = ∆ℓ,

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3Hd∇d · ∇d− 4τ2[∇∆d · ∇d+ (∆d)2]− 2βτ − n

ϵ
τ2
∑
j,k

d2xjxjxk

− 4ϵτ2(∆d)2 + 4τ3∆d|∇d|2
]
|v|2 + 2τ [Hd∇v · ∇v +Hd∇v · ∇v]− ϵ|∇v|2

.

(A.2.7)

(b2) If we assume Φ = 0,

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3Hd∇d · ∇d− τ2[2∇∆d · ∇d+ (∆d)2]− 2βτ − n

ϵ
τ2
∑
j,k

d2xjxjxk

− 4ϵτ2(∆d)2 + 4τ3∆d|∇d|2
]
|v|2 + 2τ [Hd∇v · ∇v +Hd∇v · ∇v]− ϵ|∇v|2

(A.2.8)

(c) We can combine (A.2.7) and (A.2.8) as

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3Hd∇d · ∇d+O(τ2) + 4τ3∆d|∇d|2

]
|v|2 + 2τ [Hd∇v · ∇v +Hd∇v · ∇v]− ϵ|∇v|2

(A.2.9)
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where O depends on d, n, β, and ϵ.

(d) Using assumptions (A.1)-(A.2), (A.2.9) becomes

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3ρp2 +O(τ2) + 4τ3p2∆d

]
|v|2 + (4τρ− ϵ)|∇v|2

(A.2.10)

Proof. The proof is a direct verification based on (A.2.1)-(A.2.3). The reasoning behind the specific

choices of (A.2.1)-(A.2.3) are similar to the choices made in [38].

Remark A.2.2. Notice that the function φ above is similar to the function φ in (1.17). The t− T
2

term is on the time interval [0, T ]. Doing a transformation t→ t− T
2 returns to the pseudo-convex

function used previously.

With Theorem A.2.1, we can now obtain our pointwise estimate used to get the Carleman estimate

for the Schrödinger equation.

Corollary A.2.3. Let d(x) ∈ C3(Rnx) satisfy the geometric assumptions (A.1) and (A.2) in Chapter

1. Let ℓ, Ψ, and Φ be defined as in (A.2.1), (A.2.2), and (A.2.3).

(i) Inequality (A.2.9) becomes the following, for any ϵ > 0 and sufficiently large τ :

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3ρp2 +O(τ2) + 4τ3p2∆d

]
|v|2 + (4τρ− ϵ)(θ2|∇w|2 − 2τ2|∇d|2θ2|w|2)

≥ δ0

(
2τρ− ϵ

2
− 4∆d

)
θ2|∇w|2 +

(
4τ3ρp2(1− δ0 +∆d) +O(τ2)

)
θ2|w|2

(A.2.11)

for some 0 < δ0 < 1. Further, from [37], we can bound the second ∆d on the right-hand side
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of (A.2.11) to get the following:

θ2
(
1 +

1

ϵ

)
|iwt −∆w|2 − ∂M

∂t
− div V

≥
[
4τ3ρp2 +O(τ2) + 4τ3p2∆d

]
|v|2 + (4τρ− ϵ)(θ2|∇w|2 − 2τ2|∇d|2θ2|w|2)

≥ δ0

(
2τρ− ϵ

2
− 4∆d

)
θ2|∇w|2 +

(
4τ3ρp2(2− k + 2β − δ0) +O(τ2)

)
θ2|w|2

(A.2.12)

for some 0 < k < 1.

(ii) On the boundary, we have the following identity, where Φ is left uncommitted:

∫
Ω

div(V ) dx = −2

∫
Γ

θ2(2τ2|h|2 +Φ)τ |w|2h · ν dΓ + 2β

∫
Γ

θ2τ

(
t− T

2

)[
η
∂ξ

∂ν
− ξ

∂η

∂ν

]
dΓ

+ 2

∫
Γ

θ2 (ξtη − ξηt) τh · ν dΓ−
∫
Γ

θ2
[
2τ2|h|2 + τ∆d

](
w
∂w

∂ν
+ w

∂w

∂ν

)
dΓ

− 2

∫
Γ

τh ·
[
∇w∂w

∂ν
+∇w∂w

∂ν

]
dΓ + 2

∫
Γ

θ2|∇w|2h · ν dΓ

(A.2.13)

(iii) For the M term, we have the following:

∣∣∣∣∫
Q

∂M

∂t
dQ

∣∣∣∣ =
[∫

Ω

M dx

]T
0

≤ τCd,T

[∫
Ω

e2τφ[|∇w|2 + |w|2] dx

]T
0

≤ Cd,T τe
−2τδ[E(T )− E(0)].

(A.2.14)

Proof. (i) The first inequality in (A.2.11) follows from (A.2.9) as a direct consequence of the

geometric assumptions (A.1) and (A.2). The second inequality in (A.2.11) is obtained by the

following inequality from [37]:

2|∇v|2 ≥ θ2|∇w|2 = 2τ2|∇d|2|v|2 = θ2|∇w|2 − 2τ2|∇d|2θ2|w|2. (A.2.15)

83



(ii) Equation (A.2.13) is immediate from the Divergence Theorem and the definition of V in

(A.1.5).

(iii) Recalling (A.1.4),

∣∣∣∣∫
Q

∂M

∂t

∣∣∣∣ =
∣∣∣∣∣∣
[ ∫

Ω

M

]T
0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[ ∫

Ω

−θ2[2τ(∇d · ∇ξ)η − 2τ(∇d · ∇η)ξ + 2βτ

(
t− T

2

)
|w|2]

]T
0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[ ∫

Ω

θ2[2τ(∇d · ∇ξ)η − 2τ(∇d · ∇η)ξ + 2βτ

(
t− T

2

)
|w|2]

]T
0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[ ∫

Ω

θ2[2τ∇d · (η∇ξ − ξ∇η) + 2βτ

(
t− T

2

)
|w|2]

]T
0

∣∣∣∣∣∣
≤ τCd,T

∣∣∣∣∣∣
[ ∫

Ω

e2τφ[|∇w| |w|+ |w|2]

]T
0

∣∣∣∣∣∣
≤ τCd,T

∣∣∣∣∣∣
[ ∫

Ω

e2τφ[|∇w|2 + |w|2]

]T
0

∣∣∣∣∣∣
The next to last line above comes from the observation that ξ = Re(w) and η = Im(w).

Recalling property (1.20) and E(t) defined as

Ew(t) =
∫
Ω

[|w(t)|2 + |∇w(t)|2] dx = ∥w(t)∥2H1(Ω)

we obtain (A.2.14).

Now we have everything set to obtain the Carleman estimate in Theorem 2.2.2. Integrate

(A.2.12) over Q and using the Schrödinger equation along with equations (A.2.13) and (A.2.14).
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Notice that BT1(w) defined in (2.25) is equal to (A.2.13). This gives us the following:

(
1 +

1

ϵ

)∫
Q

θ2|f |2 dQ+ τCd,T e
−2τδ[E(T ) + E(0)] +BT1(w)

≥
(
1 +

1

ϵ

)∫
Q

|iwt −∆w|2 −
[∫

Ω

M dx

]T
0

− div V

≥ δ0

(
2τρ− ϵ

2
− 4∆d

)∫
Q

θ2|∇w|2 dQ

+
(
4τ3ρp2(2− k + 2β − δ0) +O(τ2)

) ∫
Q

θ2|w|2 dQ− τCd,T e
−2τδ[E(T ) + E(0)],

.

(A.2.16)

establishing the desired inequality in Theorem 2.2.1 by taking ϵ = 1.
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Appendix B

Terminology and Properties of

Riemannian Geometry

In this appendix, we provide some definitions and properties of Riemannian geometry ref-

erenced in this paper. These definitions are found in various works [7, 10, 35, 49] and the references

cited within, which we collected here for convenience.

B.1 Definitions

Definition B.1.1. Let M be a manifold. A Riemannian metric g on M is defined as a map which

associates to any vector fields X and Y on M a function g(X,Y ) on M such that the following

properties hold:

1. g(X1 +X2, Y ) = g(X1, Y ) + g(X2, Y )

2. g(X,Y1 + Y2) = g(X,Y1) + g(X,Y2)

3. g(fX, Y ) = fg(X,Y )

4. g(X,Y ) = g(Y,X)

for all real-valued functions f and vector fields X,X1, X2, Y, Y1, Y2, and g(X,X) > 0 when X ̸= 0.

A Riemannian manifold (M ,g) is a manifold M equipped with the Riemannian metric g.
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In terms of local coordinates, g is given by a positive definite and symmetric matrix function

g defined by

gjk = g(∂j , ∂k)

Definition B.1.2. For x ∈ M , the inner product ⟨X,Y ⟩ and the norm |X| for X,Y ∈ Mx are

defined by

g(X,Y ) = ⟨X,Y ⟩g = ⟨X,Y ⟩ :=
n∑

j,k=1

gjkαjβk (B.1.1)

|X|g = |X| := ⟨X,X⟩1/2g (B.1.2)

for X =

n∑
i=1

αi
∂

∂xi
and Y =

n∑
i=1

βi
∂

∂xi

where, for each x ∈M , Mx denotes the tangent space of M at x. Notice that the coefficients gij(x)

of g form a symmetric and positive definite for any x ∈M . The inverse matrix of (gij(x)) is denoted

by (gij(x)).

Definition B.1.3. Let f be a C1 scalar function on manifold M and let X be a vector field on M .

The Levi-Civita connection, denoted by D, is defined as follows: If f is a scalar C1−function on M

and X is a vector field on M , then the continuous linear functional X(f) (in this context, it defines

the derivative of f in the direction of X) is given by (via Riesz Representation Theorem)

X(f) = ⟨Df,X⟩ = ⟨∇f,X⟩ (B.1.3)

where ∇f is the gradient of f . Also, if H,X, and Y are vector fields on M , then DH denotes the

covariant differential of H. This determines a bilinear form on Mx ×Mx, for each x ∈ M , defined

by

DH(X,Y ) = ⟨DYH,X⟩, X, Y ∈Mx, x ∈M (B.1.4)

where DYH is the covariant derivative of H with respect to Y . The equation of calculating the

covariant derivative is provided below:

DYH =

n∑
k=1

Y (hk)
∂

∂xk
+

n∑
k,i=1

hkβiD∂/∂xi

(
∂

∂xk

)
(B.1.5)
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where

Y (hk) = ⟨∇hk, X⟩g

D∂/∂xi

(
∂

∂xk

)
=

n∑
l=1

Γlik
∂

∂xl

(B.1.6)

with Γlik being the connection coefficients of the connection D,

Γlik(x) =
1

2

n∑
p=1

gkp(x)

(
∂gji
∂xi

+
∂gip
∂xj

− ∂gik
∂xp

)
, 1 ≤ i, j, k ≤ n. (B.1.7)

Definition B.1.4. Given vector field X =

n∑
i=1

αi
∂

∂xi
and metric g, define the divergence of vector

field X as follows:

divgX =
1√
det g

n∑
i=1

∂

∂xi

(√
det g αi

)
=

n∑
i=1

[
D∂/∂xi

X

]
i

(B.1.8)

The Laplace-Beltrami operator is given by

∆gf = divg(Df). (B.1.9)

Similar to Euclidean space, if f and h are C2 functions, we have the following identity:

div (fDh) = f∆gh+ ⟨Df,Dh⟩.

If f is a C2 scalar function on M , then its Hessian D2f(·, ·) with respect to metric g is defined by

D2f(X,Y ) = ⟨DY (Df), X⟩. (B.1.10)

Moreover, if ν and ρ denote the unit normal and tangential vectors, respectively along the

boundary ∂Ω of Ω ⊂M , then

∂ ·
∂ν

= ⟨D ·, ν⟩

∂ ·
∂ρ

= ⟨D ·, ρ⟩
(B.1.11)
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B.2 Properties of Riemannian Geometry

In this section, we list some properties based on the definitions given in the previous section.

These are well-known results; hence, the proofs are omitted. The proofs can be found in the references

listed with each result.

Proposition B.2.1. ([36, 49, 50]) For any function f and vector field H on manifold M , the

following identity holds on each x ∈M :

⟨Df,D(H(f)))⟩ = DH(Df,Df) +
1

2

(
divg(|Df |2H)− |Df |2divgH

)
(B.2.12)

Proposition B.2.2. ([7]) Let u ∈ C1(M) satisfying u|∂M = 0and set ∂Nu = (∇u·ν). The following

properties hold:

∂Nu =
1

(g−1ν · ν)
∂u

∂ν
; ∇gu = (∂Nu)g

−1ν

|∇gu|2 = ⟨∇gu,∇gu⟩ =
1

g−1ν · ν

(
∂u

∂ν

)2

⟨∇gu,∇gψ⟩ =
1

(g−1ν · ν)
∂u

∂ν

∂ψ

∂ν
on ∂M for u, ψ ∈ C1(M) such that u|∂M = 0

⟨H,∇gu⟩ =
1

(g−1ν · ν)
(H · ν)∂u

∂ν
on ∂M for a vector field H.

(B.2.13)

Proposition B.2.3. Let A(x) and G(x) denote the n×n matrices with coordinates (gik) and (gik),

respectively for x ∈ Rn (i.e G(x) = [A(x)]−1). Let f, h ∈ C1(Ω) and H,X be vector fields. Then

⟨H(x), A(x)X(x)⟩g = H(x) ·X(x),

Df(x) = A(x)∇f, where ∇f denotes the regular Euclidean gradient,

⟨Df,Dh⟩g = ⟨A(x)∇f,Dh⟩g = ∇fDh = ∇fT ·A(x)∇h

D2f(X,X) =

n∑
i,j=1

αi

 n∑
l=1

∂fl
∂xi

glj +

n∑
k,l=1

fkgljΓ
l
ik

αj ,

(B.2.14)

where fl is the lth coordinate of Df .
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[15] L. Hörmander, Linear partial differential operators, vol. 116, Springer, 2013.

[16] O. Y. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coeffi-
cients of wave equations, Communications in Partial Differential Equations, 26 (2001), pp. 1409–
1425.

[17] O. Y. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation
with a single measurement, Inverse Problems, 19 (2003), pp. 157–171.

[18] V. Isakov, Inverse source problems, no. 34, American Mathematical Soc., 1990.

[19] , Inverse Problems for Partial Differential Equations, vol. 127, Springer International
Publishing, 2017.

[20] A. Kawano and A. Morassi, Uniqueness in the determination of loads in multi-span beams
and plates, European Journal of Applied Mathematics, 30 (2019), pp. 176–195.

[21] M. Klibanov, Carleman estimates and inverse problems, Inverse Problems, 8 (1992), pp. 575–
96.

[22] M. V. Klibanov and J. Li, Inverse problems and carleman estimates: global uniqueness,
global convergence and experimental data, vol. 63, Walter de Gruyter GmbH & Co KG, 2021.

[23] M. V. Klibanov and J. Malinsky, Newton-kantorovich method for three-dimensional poten-
tial inverse scattering problem and stability of the hyperbolic cauchy problem with time-dependent
data, Inverse problems, 7 (1991), pp. 577–595.

[24] M. V. Klibanov and A. A. Timonov, Carleman estimates for coefficient inverse problems
and numerical applications, de Gruyter, 2004.

[25] , Carleman estimates for coefficient inverse problems and numerical applications, in Carle-
man Estimates for Coefficient Inverse Problems and Numerical Applications, de Gruyter, 2012.

[26] M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic
equation, Applicable Analysis, 85 (2006), pp. 515–538.

[27] V. Komornik and P. Loreti, Fourier series in control theory, Springer, 2005.

[28] E. Kreyszig, Introductory functional analysis with applications, vol. 17, John Wiley & Sons,
1991.

[29] J. Kurz, S. Liu, and P. Pei, Recovering density for the mindlin–timoshenko system by means
of a single boundary measurement, Applicable Analysis, 101 (2022), pp. 1682–1698.

[30] J. A. Kurz, Exact Controllability and Inverse Problem for the Mindlin-Timoshenko System,
PhD thesis, Clemson University, 2021.

[31] I. Lasiecka, J.-L. Lions, and R. Triggiani, Non homogeneous boundary value problems for
second order hyperbolic operators, Journal de Mathématiques pures et Appliquées, 65 (1986),
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