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Abstract

Quadratically constrained quadratic programs (QCQPs) are a set of optimization problems

defined by a quadratic objective function and quadratic constraints. QCQPs cover a diverse set of

problems, but the nonconvexity and unboundedness of quadratic constraints lead to difficulties in

globally solving a QCQP. This thesis covers properties of unbounded quadratic constraints via a

description of the asymptotic cone of a set defined by a single quadratic constraint. A description of

the asymptotic cone is provided, including properties such as retractiveness and horizon directions.

Using the characterization of the asymptotic cone, we generalize existing results for bounded

quadratically defined regions with non-intersecting constraints. The newer result provides a sufficient

condition for when the intersection of the lifted convex hulls of quadratically defined sets equals the

lifted convex hull of the intersection. This document goes further by expanding the non-intersecting

property to cover affine linear constraints.

The Frank-Wolfe theorem provides conditions for when a problem defined by a quadratic

objective function over affine linear constraints has an optimal solution. Over time, this theorem

has been extended to cover cases involving convex quadratic constraints. We discuss more current

results through the lens of the asymptotic cone of a quadratically defined set. This discussion

expands current results and provides a sufficient condition for when a QCQP with one quadratic

constraint with an indefinite Hessian has an optimal solution.
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Chapter 1

Introduction

This dissertation focuses on asymptotic cones and their applications to solving quadratically

constrained quadratic programs, also known as QCQPs. A QCQP takes the general form as follows:

inf f(x) = xTA0x+ 2aT0 x (QCQP)

s.t. gi(x) = xTAix+ 2aTi x+ αi ≤ 0, i = 1, . . . ,m,

where Ai ∈ Sn are n× n real symmetric matrices, ai ∈ Rn are real vectors for all i = 0, . . . ,m, and

αi ∈ R are scalars for all i = 1, . . . ,m. For ease of notation, the feasible region will be denoted as

follows:

F := { x | gi(x) ≤ 0, i = 1, . . . ,m } .

This general problem structure connects linear programs (Ai = 0, i = 0, . . . ,m) to nonlinear pro-

grams. The general QCQP covers a diverse set of problems and applications such as the facility

location problem, the Max-Cut problem, the trust region method, binary programming, polynomial

programming, production planning, and the pooling problem. With this level of diversity, one can

expect that solving an arbitrary QCQP will be NP-Hard in general. This difficulty can arise from

several problems, such as nonconvexity or nonlinearity. In fact, the potential unboundedness of

quadratic constraints yields an extra level of difficulty occurs when determining if the QCQP has

an optimal solution.

In general, (QCQP) is not convex (requires Ai to be positive semidefinite for i = 0, 1, . . . ,m).
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This lack of convexity poses difficulty for finding a global solution. One approach to this is convexi-

fying (QCQP). Similar to other nonconvex problem types like integer programming, the initial step

is to find a convex relaxation and then apply valid inequalities. For (QCQP), this can be handled

using conic programming. An example of this is semidefinite programming. Many semidefinite re-

laxations and reformulations have been discussed such as using the cone of nonnegative functions

and matrix decompositions to transform (QCQP) to a linear conic programming problems [31].

The primary question that is addressed in this document is how the unboundedness of a

quadratic feasible region affects the existence of an optimal solution as well as the convexification of

a QCQP. Over a convex feasible region, the recession cone provides an understanding of how the set

behaves as it tends from the origin. Extending this to a nonconvex QCQP, this notion is extended

to asymptotic directions. Asymptotic directions are used to describe the end behavior of sets and

functions [17, 20, 28] as well as the horizon limits of sequences of lower level sets [5, 29].

In several cases, the exact semidefinite representable relaxations for F are straightforward.

For instance, when F is defined by a single inequality, a single equality, and an interval-bounded

inequality, then the relatively simple Shor relaxation provides an exact, convex reformulation to

(QCQP). Other semidefinite representable cases include when F is defined as a low dimensional

polyhedron or when F is defined by a convex quadratic constraint with multiple non-intersecting

constraints. Several of these results will be discussed in Chapter 2 and for more recent results on

the convexification of quadratically defined sets, refer to [9, 12, 14, 25, 30, 33].

The difficulty of globally solving (QCQP) begs the question of if an optimal solution exists.

While this is a straightforward question with linear programs, or in terms of the Weierstrass theorem,

solving over a compact feasible region. However, the general unboundedness and lack of convexity

may cause the optimal solution of (QCQP) to not exist. There is a wide variety of methods used

to determine optimality conditions of (QCQP) such as conic programming to verify KKT solutions

[21] and duality theory [40]. A more in-depth review of this topic is presented in Chapter 6.

1.1 Outline and Overview

This document highlights asymptotic cones and several applications of them in terms of

QCQPs. Chapter 2 discusses conic relaxations and convexification of (QCQP) and provides a

nonexhaustive list of results related to this topic. Chapter 3 provides an introduction to asymptotic
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cones and directions along with definitions and results. The chapter concludes with an analysis of

these definitions in regards a set defined by a single quadratic constraint. Chapter 4 describes the

convexification of sets that have an underlying set of non-intersecting constraints. This work relies

on a complete description of the asymptotic cones of sets defined by a single quadratic equality and a

partial understanding of the recession cone C(F). The proof generalizes existing results for bounded

quadratically defined sets with non-intersecting constraints and provides a sufficient condition for

when the lifted closed convex hull of the intersection equals the intersection of the lifted closed

convex hulls.

Chapter 5 extends the results of Chapter 4. Chapter 4 focuses on quadratic non-intersecting

sets and the proofs of the results show a gap when extended to affine linear constraints. This chapter

contains two sections. Section one explores the definition of non-intersecting in terms of an affine

linear constraint and the effect it has on the asymptotic cone of the intersection as well as the

recession cone of the lifted closed convex hull of the intersection. Section two explores whether the

intermediate step of homogenizing the original space can extend the results of Chapter 4.

Chapter 6 changes the focus of the document to instead consider whether an optimal solution

to (QCQP) exists when (QCQP) is defined by a constraint with an indefinite Hessian. While

asymptotic cones play an important role in results related to this question, this document poses

that the “center” of constraints could also play a vital role. Using asymptotic cones, this chapter

extends a result of Tam and Nghi [32] and provides conditions that coincide with the results of

Bertsekas and Tseng [5].

1.2 Notation

For a nonempty set S ⊆ Rn, denote its boundary, interior, and closure by bd(S), int(S), and

S, respectively. The cone generated by S is denoted by cone(S), and the conic hull of S is represented

as cone conv(S). Their closures are represented as cone(S) and cone conv(S), respectively. The

cardinality of S is denoted by |S| and ±S is the set S ∪ (−S). When S is convex, the recession cone

of S is denoted by Rec(S), and the set of extreme points of S is denoted by ext(S). For vectors x

and matrices X, x ≥ 0 and X ≥ 0 implies that x and X have only non-negative entries.

In proving some of the results in Chapter 2, copositive optimization is used. This can

arise when x ≥ 0 is a constraint defining F . When lifting this set into the matrix space, there are

3



relations to the set of completely positive matrices (CP). A matrix X is completely positive if and

only if X =
∑
k xix

T
i for some xi ≥ 0, i = 1, . . . , k. A completely positive matrix is always doubly

nonnegative. A matrix X is doubly nonnegative if and only if X � 0 and X ≥ 0.

Note: While results in Chapters 4 and 5 are focused over the set { (x, xxT ) | x ∈ S } for a

given set S, other results can be found for the set
{ (

1
x

)(
1
x

)T ∣∣∣ x ∈ S }. Some results in Chapter 2

will use the alternative notation.

4



Chapter 2

Literature on Convex Hull Results

Let F be a nonempty closed set. The majority of this document is interested in the structure

of the lifted closed convex hull

C(F) := conv { (x, xxT ) | x ∈ F } .

The set C(F) is related to optimization problems with quadratic objectives. Specifically, defining

Q ∈ Sn, where Sn is the set of n× n real symmetric matrices, and q ∈ Rn, a quadratic function of

x over F can be formulated as an optimization problem of the form:

v(q,F) := inf
x

xTQx+ 2qTx (2.1)

s.t. x ∈ F .

Introducing a new variable X = xxT , the objective function of (2.1) can be linearized as Q•X+2qTx

where Q •X := Trace(QTX) is the Frobenius inner product of Q and X. Due to the linearity of the

objective function, the next step is to convexify the feasible region and obtain the following convex

formulation (e.g. [17, 21]):

v(q, C(F)) = inf
(x,X)

Q •X + 2qTx (2.2)

s.t. (x,X) ∈ C(F).

5



To see that v(q,F) = v(q, C(F)), consider the following proposition.

Proposition 1. For all quadratic functions of the form q(x) = xTQx + 2qTx, the following holds

v(q,F) = v(q, C(F)).

Proof. The proof will consider two cases of the set C(F) = conv { (x, xxT ) | x ∈ F } since v(q, C(F)) =

v(q, C(F)). Case one is when v(q,F) = −∞ (the case of v(q, C(F)) = −∞ follows the same ap-

proach), and case two is when v(q,F) is bounded.

First, let v(q,F) = ∞. Then there exists a sequence {xi}i≥0 ⊆ F such that q(xi) =

xTi Qxi + 2qTxi →∞ as xi →∞. Otherwise, there exists M ∈ R such that q(x) ≥M for all x ∈ F .

In this case, for any (x,X) ∈ C(F),

Q •X + 2qTx =
∑
i

λi(Q • (xix
T
i ) + 2qTxi) ≥M,

where λi ≥ 0 and
∑
i λi = 1.

Now suppose that v(q,F) is attainable for some x̂ ∈ F . Then (x̂, x̂x̂T ) ∈ C(F) where

Q • (x̂x̂T ) + 2qT x̂ = v(q,F). If v(q, C(F)) < v(q,F), then there exists (x,X) ∈ C(F) such that

v(q, C(F)) ≤ Q •X + 2qTx < v(q,F). Decomposing (x,X) into a convex combination of elements

in C(F) results in (x̄, x̄x̄T ) ∈ C(F) where x̄ ∈ F and

Q • (x̄x̄T ) + 2qT x̄ = x̄TQx̄+ 2qT x̄+ qT x̄ = q(x̄) < q(x̂) = v(q,F).

Hence a contradiction since x̂ is the optimal solution. Therefore, v(q,F) = v(q, C(F)), and v(q, C(F))

is attained at (x̂, x̂x̂T ).

Due to the lack of explicit expressions for C(F), (2.2) is computationally intractable. There-

fore, even a partial understanding of C(F) is desired, as valid inequalities of C(F) can help tighten

the lower bounds of the convex relaxation of (2.1).

In this chapter, results relating to the lifted closed convex hull of different classes of quadratic

sets will be discussed. This class of problems is represented in (QCQP) with feasible region

F =
{
x
∣∣ xTAix+ 2aTi x+ αi ≤ 0, i = 1, . . . ,m

}
.

As mentioned earlier, calculating C(F) is a difficult task but the structure of F can provide insight

6



in the forms of valid cuts and inequalities. In general these cuts are applied to the Shor relaxation

of F , denoted below.

S(F) =
{

(x,X)
∣∣ Ai •X + 2aTi x+ α ≤ 0, i = 1, . . . ,m

}
,

The rest of the chapter serves as a survey of lifted convex hull results. If any of the following

structures can be found in a quadratically defined set under the assumptions in Chapter 4, they can

be applied to more convex sets, increasing the utility of these results. Before that, let’s look at a

one-dimensional set to have a graphical understanding of C(F). Consider F in

Fint = {x ∈ R | −2 ≤ x ≤ 1 } . (INT)

This set can be shifted and scaled to be an interval of any size. Optimizing a quadratic objec-

tive function over (INT) yields the same value as optimizing a linear function over C(Fint) =

conv { (x, x2) | x ∈ Fint }. Graphically, this is presented in Figure 2.1. This lifted set C(Fint) can

be defined using the convex inequalities x2 ≤ X and X ≤ 2 − x. It is importantly crucial to note

that for an optimal (x̂, X̂) ∈ C(Fint), x̂ might not be optimal for the original problem. This arises

because the set of optimal solutions over C(Fint) is the convex hull of optimal solutions in the set

{ (x, x2) | x ∈ Fint } [7]. Figure 2.1 illustrates this, where the boundary of C(F) is either an extreme

point (x, xxT ) or the convex combination of the points (−2, 4) and (1, 1). One sufficient condition

for x̂ to be an optimal solution to the original QCQP is to require X = x2, which is equivalent to

the nonconvex rank-one condition.

Figure 2.1, while in low dimensions, gives insights to the geometrical properties that need

to be considered. For example, in Figure 2.1, Fint is a bounded set, and thus C(Fint) = C(Fint) is

compact. This is not the case for when F is unbounded, say F = {x ∈ R | x ≤ 1 }. Consider Figure

2.2. The left plot is C(F) with Rec(C(F)) = {0}. Taking the closure of C(F), C(F), the recession

cone is non-empty and broadens the tools that can be used to analyze this set.

Section 2.1 gives a brief introduction to the S-Procedure [36] and a few derivations of the

Shor relaxation, S(F). Section 2.2 presents several results where, for a given set F , the Shor

relaxation S(F) provides an exact relaxation. There is a brief overview about sets defined by one

inequality, followed by a section about the generalized trust region subproblem, and then a small dive

7



Figure 2.1: Convexification of the lifted set { (x, x2) | x ∈ Fint } for F = {x | −2 ≤ x ≤ 1 }. The left
plot depicts the lifted set, and the right plot depicts the convex hull.

Figure 2.2: Two plots of C(F) (left) and C(F) (right) for F = {x ∈ R | x ≤ 1 }. The thickened
boundary on the right plot represents what is added when taking the closure.

into rank-one sets and non-intersecting constraints. Section 2.3 introduces results from copositive

programming where the lifted closed convex hull is not fully defined by the Shor relaxation. Most

results will focus on small dimensional polyhedron. Section 2.4 explores the two cases of bounded

sets with “non-intersecting” constraints.

2.1 Preliminaries

Lemma 1 (S-Lemma [36]). Let A,B ∈ Sn, a, b ∈ Rn, α, β ∈ R, and suppose there exists an x̂ with

x̂TBx̂+ 2bT x̂+ β < 0.

8



Then there exists an x ∈ Rn satisfying

xTAx+ 2aTx+ α < 0, xTBx+ 2bTx+ β ≤ 0

if and only if there exists no λ such that

λ ≥ 0,

α aT

a A

+ λ

β bT

b B

 � 0.

This theorem of alternatives has been used in many comparisons of quadratic sets and is

used to derive results relating objective functions to sets defined by one constraint. Lemma 1, under

convexity assumptions and Slater’s condition, has been combined with Farkas’ lemma to help find

hidden convexities for globally solving non-convex non-quadratic problems [39].

Given (QCQP), solving the lifted problem over the Shor relaxation provides a lower bound

on the optimal solution. This paper briefly introduces how to show that the Shor relaxation is a

valid relaxation of (QCQP). The first way is by lifting (QCQP) into a higher dimensional space

vR := min
(x,X)

Q •X + 2qTx (2.3)

s.t. Ai •X + 2aTi x+ α ≤ 0

X = xxT .

Here, (2.3) has a linear objective over linear constraints except for the nonconvex rank-one constraint

X = xxT . Relaxing the rank one constraint to X � xxT , (2.3) is now solving a linear objective

function over the Shor relaxation S(F). The second approach uses the Lagrangian dual. While not

as direct, it provides a deeper analysis into the structure of the problem with the Lagrangian dual

of (QCQP). The Lagrangian function is

L(x, λ) = xT

(
Q+

∑
i∈I

λiAi

)
x+ 2

(
q +

∑
i∈I

λiai

)T
x+

∑
i∈I

λiαi,

where λi ≥ 0. Using the Schur complement, the dual problem of (QCQP) can be expressed as the

9



semi-definite dual in the form of

max γ

s.t.

∑i∈I λiαi − γ qT +
∑
i∈I λia

T
i

q +
∑
i∈I λiai Q+

∑
i∈I Ai

 � 0

λi ≥ 0, i ∈ I.

For the QCQP and its Lagrangian dual to have the same optimal value, again Slater’s condition

must be satisfied. Taking the dual of the Lagrangian dual (in its SDP form) gives the following

formulation

v := min
(x,X)

Q •X + 2qTx

s.t. Ai •X + 2aTi x+ αi ≤ 0, i ∈ I

X � xxT ,

which is equivalent to

v := min
(x,X)

Q •X + 2qTx (2.4)

s.t. (x,X) ∈ S(F).

It is important to note that for the Langrangian dual and the SDP relaxation to have the same opti-

mal value, Slater’s condition must hold. This method is considered in Section 2.2.1 for determining

when the Shor relaxation is tight.

2.2 When the Shor Relaxation is Exact

The first result to be mentioned is that of Sturm and Zhang [31]. This paper analyzes the

structure of the cone of non-negative quadratic functions over a set, defined as follows for a set F :

D =

{
U ∈ Sn+1

∣∣∣∣∣
(

1

x

)T
U

(
1

x

)
≥ 0, ∀x ∈ F

}
. (2.5)

10



The dual cone of D, D∗, is defined as D∗ = cone(Z) where

Z =

{
Y ∈ Sn+1

∣∣∣∣∣ Y =

(
1

x

)(
1

x

)T
, x ∈ F

}
. (2.6)

In relation to the Shor relaxation, S(F), D∗ can be rewritten as

D∗ = cone(Z) = cone(S(F)),

which geometrically implies that S(F) is an affine slice of a closed convex cone. This result, used in

papers, can be presented in a different way. Interested in the two trust-region subproblem (FTTS),

[38] shows that finding an exact relaxation can be accomplished by finding the family of all quadratic

functions that are non-negative over FTTS . In fact, the optimal value over FTTS is equal to v(T )

where

T := { (R, r, ρ) ∈ Sn × Rn × R | xTRx+ 2rTx+ ρ ≥ 0 ∀x ∈ FTTS } .

In regards to [31], they provide a generalization of Lemma 1 and proves that the Shor relaxation of

a set defined by a single quadratic inequality constraint is tight. They use the fact that X ∈ Sn+ is

a positive semi-definite (psd) matrix of rank r if and only if, there exists xi ∈ Rn, i = 1, . . . , r, such

that

X =

r∑
i=1

xix
T
i . (2.7)

In other words, a psd matrix of rank r has a rank-one decomposition of r vectors. This results in

the following lemma.

Lemma 2 ([31]). Let X ∈ Sn be a positive semidefinite matrix of rank r and Q ∈ Sn be a given

matrix. Then, G •X ≤ 0 if and only if there exists xi ∈ Rn, i = 1, . . . , r, such that

X =

r∑
i=1

xix
T
i and xTi Qxi ≤ 0 for all i = 1, . . . , r.

Using this and the homogenized cone of F = {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 }, they prove

the following result.

Theorem 1 (Single Quadratic Inequality, [31]). Let F = {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 } be a

11



closed, nonempty set. Then

conv { (x, xxT ) | x ∈ F } = { (x,X) ∈ Rn × Sn | A •X + 2aTx+ α ≤ 0, X � xxT } . (2.8)

That is, C(F) = S(F).

This is not the only result where the Shor relaxation provides an exact reformulation. While

working with the interval bounded generalized trust region subproblem (GTRS), Pong and Wolkow-

icz [27] determined when the SDP relaxation is tight.

2.2.1 Generalized Trust Region Subproblem

The results pertaining to the generalized trust region subproblem (GTRS) relate the QCQP

to its SDP representation through the consideration of its Lagrangian dual. A more generalized

version of this approach was presented in Section 2.1. Here, [27, 35] explore the conditions needed

for the SDP relaxation of (GTRS) to be exact.

vGTRS = inf
x

xTQx− 2qTx (GTRS)

s.t. ` ≤ xTAx+ 2aTx ≤ u

This is a problem with two constraints but, since the constraints both relate to the same A and a,

they can be expressed as a single interval bounded constraint. A similar structure can be seen in

the relaxed SDP presented in (SDP-GTRS).

v∗ = inf
(x,X)

Q •X − 2qTx (SDP-GTRS)

s.t. ` ≤ A •X + 2aTx ≤ u

X � xxT .

In showing the exactness of this relaxation, the authors start with the dual of GTRS

dGTRS = sup
λ

h(λ) + `λ+ − uλ− (D-GTRS)

s.t. Q− λA � 0,
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for λ+ = max{λ, 0}, λ− = min{λ, 0}, and

h(λ) = inf
x
xT (Q− λA)x− 2(q − λa)Tx

=


−(q − λa)T (Q− λA)†(q − λa) if q − λa ∈ Range(Q− λA)

and Q− λA � 0,

− inf otherwise,

where (Q − λA)† is the pseudo inverse of Q − λA. This problem is then shown to have the exact

solution of the dual of (SDP-GTRS), stated below:

d∗ = sup
λ,γ

`λ+ − uλ− − γ (SDD-GTRS)

s.t.

 γ −(q − λa)T

(q − λa) Q− λA

 � 0.

The semidefinite dual of the GTRS, (SDD-GTRS), is used to show that (D-GTRS) is the dual of

(SDP-GTRS) under the assumptions listed in Assumption 1. There are multiple citations for this

set of assumptions, but the later two reduce the necessary list of conditions.

Assumption 1 (GTRS Assumptions, [27, 34, 35]).

1. A 6= 0

2. The following relative interior constraint qualification (RICQ) holds:

` < A • X̂ + 2aT x̂ < u for some X̂ � x̂x̂T .

3. (GTRS) is bounded below.

Under these assumptions, we have the following theorem,

Theorem 2 (Interval Bounded Quadratic Inequality, [27]). Suppose that Assumption 1 holds. Then

the following holds for GTRS:

1. The optimal values of GTRS and its SDP relaxation are equal, that is

vGTRS = v∗. (2.9)
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2. Strong duality holds for GTRS, i.e. vGTRS = dGTRS and the dual value dGTRS is attained.

Moreover,

dGTRS = d∗ = v∗ = vGTRS .

In other words, the Shor relaxation of a given set defined by a single interval bounded

quadratic constraint is exact (i.e. S(F) = C(F)) under mild assumptions. The path followed by

Pong and Wolkowicz can be seen in Figure 2.3. In this figure, it is seen that Slater’s condition is

required to show equality between the primal and its dual for both the original and lifted space. In

regards to what happens when ` = u, a more strict “double-sided” Slater’s condition is necessary.

Assumption 2 (Double-Sided Slater’s Condition, [35]). Given a function f : Rn → R, f(x) yields

both positive and negative values. That is, there exists x1, x2 ∈ Rn such that f(x1) < 0 < f(x2).

With this assumption and the S-Lemma with Equality, [34, 35] prove the following theorem.

Theorem 3 (Single Quadratic Equality Constraint, [34]). For a set F = {x ∈ Rn | xTAx+ 2aTx+

α = 0}, under Assumption 2 with A 6= 0, C(F) = S(F). That is, the Shor relaxation of F is exact.

Similar to [27], [34] also follows the path given in Figure 2.3.

GTRS D-GTRS

SDP-GTRS SDD-GTRS

(1) (3)

A 6= 0, Slater’s

(2)

(4)

Slater’s

Figure 2.3: A flowchart showing the approach used to prove SDP exactness. The method used in
[27, 34] traverses arcs (2),(3) and (4).

The results so far have shown that for a set defined by single quadratic constraint under

mild assumptions, the lifted convex hull can be represented by the Shor relaxation of that set. In

considering sets defined by multiple constraints, more assumptions are required for C(F) = S(F).
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2.2.2 Rank-One Generated Cones

This section focuses on the work of Argue et. al [3] concentrating on rank-one generated

(ROG) sets. That is, for a set S ⊂ Rn, S is ROG if

S = conv(S ∩ {xxT | x ∈ Rn }).

Equivalently, a set S is ROG if and only if it is equal to the closed convex hull of its rank-one

matrices. Thus, for a closed convex cone S ⊆ Sn, S is ROG. Also, if X ∈ S where rank(X) = 1,

then X is an extreme ray of S. The importance behind the ROG property is if the feasible region of

(ROG-SDP) is ROG, then the SDP relaxation is exact. That is, the feasible reason of (ROG-SDP)

is ROG if and only if there exists rank-one solutions in the feasible region that approach the optimal

value of any arbitrary objective function [3].

For this section, the quadratic constraints will be labeled differently for ease of presentation.

Given a quadratic constraint yTAiy + 2aTi y + αi ≤ 0 where y ∈ Rn−1, it is reexpressed as xTMix

where x =

1

y

 and Mi =

 1 aTi

ai Ai

. (QCQP) is rewritten as

inf
x∈Rn

xT

0 qT

q Q

x (ROG-QCQP)

s.t. xTMix ≤ 0, i ∈ I

x2
1 = 1,

with the SDP relaxation

inf
X∈Sn

0 qT

q Q

 •X (ROG-SDP)

s.t. Mi •X ≤ 0, i ∈ I

X1,1 = 1.

With ROG cones, there is an interest in the linear matrix inequalities (LMI) Mi •X ≤ 0. Denote

the set M ⊆ Sn as the collection of Mi’s, Mi ∈ M for i ∈ I. The interest of this paper [3] is to
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determine if S(M) is a ROG cone, where S(M) is defined as

S(M) := {X ∈ Sn+ |M •X ≤ 0, ∀M ∈M} .

The following lemma states the exactness of an SDP with a ROG feasible region.

Lemma 3 ([3]). Let M⊆ Sn. If S(M) is ROG, then

inf
x∈Rn

xT

0 qT

q Q

x

s.t. xTMix ≤ 0, i ∈ I

xTBx = 1

has the same optimal solution as

inf
X∈Sn

0 qT

q Q

 •X
s.t. Mi •X ≤ 0, i ∈ I

B •X = 1

X � 0

for all B,

0 qT

q Q

 ∈ Sn for which the optimum SDP objective value is bounded from below. In

particular, this equality holds whenever the SDP feasible domain is bounded.

Lemma 3 generalizes the constraints x2
1 = 1 andX1,1 = 1 in (ROG-QCQP) and (ROG-SDP),

respectively. Also, the lemma has the assumption that the SDP objective value is bounded from

below. The importance of this assumption is shown with Example 1.

Example 1. For matrix M , define Sym(M) = (M +MT )/2, and let ei be a vector where the only
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nonzero term is 1 in the ith entry. Let n = 2 and M = {Sym(e1e
T
2 ), −Sym(e1e

T
2 ) } so that

S(M) =


x2

1 0

0 x2
2


∣∣∣∣∣∣∣ x ∈ R2


= conv

({(
x1

0

)(
x1

0

)T ∣∣∣∣∣ x ∈ R2

})

∪ conv

({(
0

x2

)(
0

x2

)T ∣∣∣∣∣ x ∈ R2

})
.

The representation on the right shows that S(M) is ROG. On the other hand, setting B = e1e
T
1 and

Q = −e2e
T
2 ,

inf
x∈R2

 xTQx

∣∣∣∣∣∣∣
xxT ∈ S(M)

xTBx = 1

 = inf
x∈R2

 xTQx

∣∣∣∣∣∣∣
x1x2 = 0

x2
1 = 1

 = 0,

which is not equal to

inf
X∈S2

Q •X

∣∣∣∣∣∣∣
X ∈ S(M)

B •X = 1

 = inf
x∈R2

{
−x2

2

∣∣∣∣ x2
1 = 0

}
= −∞.

This discussion will now check if S(M) is ROG and highlight some operations that preserve

the ROG property.

Lemma 4 ([3]). For any M⊆ Sn, the following are equivalent:

1. S(M) is ROG.

2. Every face of S(M) is ROG.

3. S(M) ∩ T (M′) is ROG for every M′ ⊆M where

T (M) := {X ∈ Sn+ |M •X = 0, ∀M ∈M} .

As a byproduct of item 3 of Lemma 4, if S(M) is ROG, then so is T (M). With Lemma 4

and the nullspace, Null(M), the writers recover the result from [31] with the following lemma.
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Lemma 5 (One Inequality Constraint ROG [3]). Consider any M ∈ Sn and let M = {M}. Then

S(M) is ROG.

The operation of interest is the intersection of constraints, or in the sense of this paper, the

union of Mi’s.

Lemma 6 ([3]). Let M ⊂ Sn be a finite union of compact sets M = ∩ki=1Mi. Further, suppose

that for all nonzero X ∈ Sn+ and i = 1, . . . , k, if Mi •X = 0 for some Mj ∈ Mi, then M •X < 0

for all M ∈M \Mi. Then S(M) is ROG if and only if S(Mi) is ROG for all i = 1, . . . , k.

In terms of quadratic constraints, suppose F = {x | xTAix+ 2aTi + αi ≤ 0, i ∈ I }. Then

if there exists x̂ such that x̂TAj x̂+ 2aTj x̂+ αj = 0 for some j ∈ I, then x̂TAkx̂+ 2aTk x̂+ αk < 0 for

all k ∈ I \ j. Visually, this can be seen in Figure 2.4 where the boundaries of the constraints do not

intersect. This is formalized in the following theorem.

Theorem 4 (Non-Interacting Constraints, [3]). Consider F ∈ Rn to be a quadratically defined

set such that F = {x | xTAix+ 2aTi + αi ≤ 0, i ∈ I }. Then C(F) = S(F), where S(F) is the

Shor relaxation of F , if for all nonzero x ∈ Rn, if xTAi + 2aTi x + αi = 0 for some i ∈ I, then

xTAjx+ 2aTj x+ αj < 0 for all j ∈ I \ i.

Figure 2.4: Non-interacting constraints
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2.3 Other Reformulations of C(F)

As expected, not every quadratically defined set F has an exact Shor relaxation. The results

in this section, for the most part, come from different techniques to create new valid inequalities

through reformulation linearization technique (RLT) and through analyzing the geometry of a set

and its lifted space.

2.3.1 Low Dimensional Polyhedral Sets

Solving general nonconvex quadratic programs over polyhedral sets, i.e.

FP = {x ∈ Rn | Ax = b, x ≥ 0 } , (POLY)

can be difficult. In convexifying the problem, one can use copositive optimization to create families

of copositive cuts. Copositive optimization is linear optimization over the convex cone of copositive

matrices. The dual of this linear problem is a linear optimization problem of the cone of completely

positive matrices. One benefit of finding these copositive cuts is that the cuts have no dependence

on the objective or the values of A or b but instead on the constraint x ≥ 0 [7]. This approach

extends beyond polyhedrons to sets with binary constraints [6], ellipsoids [7], etc.

This section provides several results using copositive optimization with a focus on polyhedral

sets of dimension n ≤ 4. First, let’s look at a one-dimensional interval set.

Consider the standard simplex

FSimp = {x ∈ Rn+ | eTx = 1 } , (SIMP)

where n ≤ 4 and e ∈ Rn is the vector with each component being 1. Lifting (SIMP) into the

semi-definite matrix space, there is the following formulation

{ (x,X) | E •X = 1, x ≥ 0, X � xxT , X ∈ CP } , (SDP-SIMP)

where E = eeT and CP is the set of completely positive matrices, i.e. X ∈ CP if and only if

X =
∑k
i=1 xix

T
i , xi ≥ 0, i = 1, . . . , k. As expected, solving over CP is difficult. However, there

is a known relation between CP and the doubly non-negative cone DNN. For all dimensions n,
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CP ⊆ DNN with equality for n ≤ 4 [24], as seen in Lemma 7.

Lemma 7 ([24]). Let n ≤ 4, and let Sn be the space of n × n symmetric matrices. If Z ∈ Sn

is positive semidefinite with nonnegative entries, then there exists a collection of n-dimensional

nonnegative vectors {zi} such that Z =
∑
i ziz

T
i .

This leads to the following result.

Theorem 5 (Standard Simplex, n ≤ 4. [2]). For all n ≤ 4, if F = {x ∈ Rn | eTx = 1, x ≥ 0 } then

C(F) is defined by C(F) = { (x,X) | E •X = 1, x ≥ 0, X � xxT , X ≥ 0 }.

This section wraps up with convex hull results for triangles (tetrahedrons) and quadrilater-

als. That is,

Ftri = {x ∈ R2 | Ax ≤ b } , A ∈ R3×2 (TRI)

and

Fquad = {x ∈ R2 | Ax ≤ b } , A ∈ R4×2, (QUAD)

where both sets are bounded polygons with nonempty interior. For both sets, define C = (b,−A)

such that the inequality Cy ≥ 0 defines the polyhedral cone in R3, R4 respectively. The analysis of

both polygons follow the same idea by considering the set

K = conv { yyT | Cy ≥ 0 } ,

where K is the closed conic hull of matrices yyT with Cy ≥ 0. So K is the closure of all possible

sums of such matrices yyT . After an analysis of this set with Lemma 7, there is Lemma 8.

Lemma 8. Regarding (TRI) and (QUAD), K := conv { yyT | Cy ≥ 0 } = {Y � 0 | CY CT ≥ 0 },

where C := (b,−A).

Lemma 8 leads to the exact formulation of the lifted closed convex hull C(Ftri) and C(Fquad).

Before stating this result, recall that

Y (x,X) :=

1 xT

x X

 .
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Theorem 6 (Convex Hull of Triangles, Tetrahedron, and Quadrilaterals [7]). Regarding (TRI) and

(QUAD), it holds that

C(F) := conv { (x, xxT ) | x ∈ F }

= { (x,X) | Y (x,X) ∈ K}

=

 (x,X)

∣∣∣∣∣∣∣
Y = Y (x,X)

Y � 0, CY CT ≥ 0


where C := (b,−A).

Theorem 6 also applies to tetrahedrons, as this extension comes from n ≤ 4.

2.4 Non-Intersecting Constraints

In this section, the focus is on non-intersecting constraints. This term will be explored in

different contexts for the two subsections.

2.4.1 Ball Constraint with Non-Intersecting Linear Constraints

Before presenting the results for a set defined by a ball constraint with non-intersecting linear

constraints, there will be a re-derivation of the exactness when F is defined by a single constraint.

This focus is on an ellipsoidal set, (ELL). In this formulation, the set is defined by the unit ball

inequality ||x|| ≤ 1. Recall that this result was already presented in Theorem 1 for an arbitrary

set defined by one quadratic inequality. This follows the approach given by [7] with the focus on

ellipsoids (A � 0). This analysis is sufficient since, by affine transformations, any ellipsoid can be

expressed as (ELL).

Fell = {x ∈ Rn | ‖x‖ ≤ 1 } . (ELL)

This set is equivalent to the feasible region of the Trust Region Subproblem (TRS). Similar with the

previous results, the interest lies in determining the exact formulation of C(Fell). Displaying this
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result requires the introduction of the second-order cone in Rn+1:

L = { y ∈ Rn+1 |
√
y2

2 + y2
3 + · · ·+ y2

n+1 ≤ y1 }

= { y ∈ Rn+1 | y2
2 + y2

3 + · · ·+ y2
n+1 ≤ y2

1 }

= { y ∈ Rn+1 | y1 ≥ 0, yTLy ≥ 0 }

where L is a diagonal matrix with entries (1,−1, . . . ,−1). Similar to Theorem 6, the defined convex

hull of matrices yyT , where y ∈ L, is

K := conv { yyT | x ∈ L} = {Y � 0 | L • Y ≥ 0 } .

Using the set K, the results of [31] (a single quadratic inequality), are recovered for bounded sets

with Theorem 1.

Theorem 7 (Ellipsoids, [7]). Regarding (ELL), it holds that

C(Fell) := conv { (x, xxT ) | x ∈ F }

= { (x,X) | Y (x,X) ∈ K}

= { (x,X) | Y = Y (x,X), Y ≥ 0, L • Y ≥ 0 } .

Or in terms of (x,X), there is the alternate representation

C(Fell) := { (x,X) | X � xxT , In •X ≤ 1 } = S(Fell),

where In is the n× n identity matrix.

Recall that for two quadratic constraints q1(x) ≤ 0, q2(x) ≤ 0 to be non-interacting, then if

there exists x̂ such that q1(x̂) = 0, then q2(x̂) < 0. This can be relaxed to non-intersecting if there

exists x̂ such that q1(x̂) = 0, then q2(x̂) ≤ 0. Geometrically, this implies that the boundaries of both

constraints intersect at a given point.

The focus now shifts to the feasible region defining the extended trust region subproblem
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(eTRS), which is the trust region intersected by m linear inequality constraints, defined below as

Fm :=

 x ∈ Rn

∣∣∣∣∣∣∣
||x|| ≤ 1

aTi x ≤ αi, i = 1, . . . ,m

 . (Fm)

When m = 1, there are the results of [7, 31]. Adding a single linear constraint with m = 1

and denoting the SDP relaxation as R1, the relaxation requires a second-order cone (SOC) constraint

and has presentation:

R1 :=

 x ∈ Rn

∣∣∣∣∣∣∣
In •X ≤ 1, X � xxT

||α1x−Xa1|| ≤ α1 − aT1 x

 . (R1)

The SOC constraint ||α1x−Xa1|| ≤ α1−aT1 x is constructed by the second-order cone reformulation-

linearization technique (SOC-RLT) in combination with the constraints ||x|| ≤ 1 and aTi x ≤ αi

[8]. This is also shown to be an exact representation in [31]. Since the relaxation becomes more

complicated with extra constraints, it can be assumed that the generalization will contain more

constraints. For m = 2, [8, 41] derived the relaxation

R2 :=

 x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
In •X ≤ 1, X � xxT

||α1x−Xa1|| ≤ α1 − aT1 x, i = 1, 2

α1α2 − α2a
T
1 x− α1a

T
2 x+ aT1 Xa2 ≥ 0

 . (R2)

This result can be further generalized in [11] under an additional assumption. This assumption is

that the linear constraints are non-intersecting inside of the ball region.

Theorem 8 (Ball with Non-Intersecting Linear Constraints, [11]). In regards to Fm in (Fm), if for

all i < j, there exists no x ∈ Fm such that aTi = αi and aTj x = αj, then

C(Fm) :=

 (x,X) ∈ Rn × Sn

∣∣∣∣∣∣∣∣∣∣
In •X ≤ 1, X � xxT

||α1x−Xa1|| ≤ α1 − aT1 x, i = 1, . . . ,m

αiαj − αjaTi x− αiaTj x+ aTi Xaj ≥ 0, 1 ≤ i < j ≤ m

 .
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2.4.2 Bounded Quadratic Sets with Bounded Hollows

The previous section referred to non-intersecting constraints as linear constraints that can

only intersect outside of the ellipsoid. In [37], non-intersecting constraints are contained inside of

the larger set. The results of this paper consider a complicated, bounded, quadratically defined set

G that can be decomposed into two sets F and H such that

F :=
{
x ∈ Rn | xTAix+ 2aTi x+ αi ≤ 0, i = 1, . . .m

}
,

and

H :=
{
x ∈ Rn | xTWix+ 2wTi x+ ωi ≥ 0, i = 1, . . .m

}
where F is a bounded, full-dimensional set and H is defined by positive matrices Wi ∈ Sn, wi ∈ Rn,

and ωi ∈ R, and G = F ∩H. One way of expressing this is to say that “H induces non-intersecting

hollows in F”. Since this work is generalized in Chapter 4, only the result of this paper is presented.

Theorem 9 (Bounded Quadratic Regions with Non-Intersecting Hollows, [37]). If H induces non-

intersecting hollows in F , then C(G) = C(F) ∩H.
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Chapter 3

Asymptotic Cones

This chapter focuses on describing the end behavior of unbounded, nonconvex sets. For a

nonempty set F ⊆ Rn, the asymptotic cone of F is defined as

F∞ :=

{
d ∈ Rn

∣∣∣∣ ∃ tk →∞, {xk}k≥0 ⊆ F such that lim
k→∞

xk
tk

= d

}
.

We define the nonzero elements of F∞ as asymptotic directions. These directions appear in many

applications, such as defining cosmic compactness in [29], convexifying sets defined by quadratic

functions [15, 20], and determining the existence of optimal solutions of QCQPs [5, 32]. Throughout

this document, a more direct definition of asymptotic directions will be used. Setting the sequence

tk = ‖xk‖, the following expression for F∞ can be used.

Proposition 2 (Normalized Set [4]). Let F ⊆ Rn be nonempty. Then F∞ = { λd | λ ≥ 0, d ∈ FN }

where

FN :=

{
d ∈ Rn

∣∣∣∣ ∃{xk} ⊆ F , ‖xk‖ → ∞ with lim
k→∞

xk
‖xk‖

= d

}
.

Using Proposition 2, it is easier to see that the asymptotic cone F∞ provides insight about

the end behavior at infinity. The generalization of the recession cone of F can be considered as F∞.

In particular, when F is convex, F∞ is the recession cone of F . For a more detailed discussion on

F∞ and the behavior of an asymptotic function through its epigraph, the reader is referred to [4].

However, the following lemma includes properties of F∞ that will be utilized and expanded upon in

this document.
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Lemma 9 ([4]). Let F ⊆ Rn be nonempty. Then:

1. F∞ is a closed cone;

2. (clF)∞ = F∞;

3. if F is a cone, then F∞ = clF ;

4. F is bounded if and only if F∞ = {0};

5. for any ∅ 6= T ⊆ F , T∞ ⊆ F∞;

6. for any T ⊆ Rn such that F ∩ T 6= ∅, (F ∩ T )∞ ⊆ F∞ ∩ T∞;

7. if S is a closed convex set that contains no line, then F = conv(ext(F)) + F∞.

The asymptotic cone can have properties that relate to those of the recession cone. Consider

a convex set F with recession direction d and point x ∈ F . Since d is a recession direction, for all

λ ≥ 0, x + λd ∈ F . For a nonconvex set F , the direction d can carry x + λd out of F for large

enough lambda. However, there may be a positive interval of λ, say (λ1, λ2) such that for x ∈ F and

asymptotic direction d, then x + λd /∈ F for λ ∈ (λ1, λ2). This phenomena can be seen in Figure

3.1. In subfigure 3.1c, one can see that as they follow the d = (1, 0) direction, the red interval is

the set of λ′s such that x+ λd /∈ F . These directions are called horizon directions described in the

following definition.

(a) F (b) F∞ (c) Horizon Direction Example

Figure 3.1: Three graphs describing properties of a quadratically defined set F . 3.1a is a graphical
image of F . 3.1b is the asymptotic cone of F presented over F . 3.1c is an example of a local horizon
direction of F where the red interval is the interval with x+ λd /∈ F .

Definition 1 (Horizon Directions [5]). Given a closed set F ⊆ Rn, an asymptotic direction d ∈ F∞

is a horizon direction with respect to a set S, if, for every x ∈ S, there exists a scalar µ̄ ≥ 0 such
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that x + µd ∈ F for all µ ≥ µ̄. We say that d is a global horizon direction if S = Rn, and it is a

local horizon direction if S = F .

The last definition to be discussed is the idea of retractiveness. This property is used in

the discussion of the existence of an optimal solution for a given problem by guaranteeing that an

intersection of retractive nested sequence of nonempty closed sets has nonempty intersection [5].

Definition 2 (Retractive Directions [5]). Given a closed set F ⊆ Rn, an asymptotic direction

d ∈ F∞ is a retractive direction if, for every corresponding asymptotic sequence { xk }k ⊆ F , there

exists an integer k̄ such that

xk − d ∈ F , ∀k ≥ k̄.

A set F is called retractive if all its asymptotic directions are retractive.

There exists a weaker definition for retractiveness: d is retractive if for every corresponding

asymptotic sequence { xk }, there exists a bounded sequence of positive scalars { γk } and k̄ ≥ 0 such

that xk − γkd ∈ F for all k ≥ k̄. While this definition is present in literature [32], it does not work

well when intersecting multiple sets [5]. As such, Definition 2 will be the preferred choice for this

document. This property of retractiveness is used primarily in determining the existence of optimal

solutions [5, 32], and the benefits of retractive directions will be discussed in Chapter 6.

3.1 Sets Defined by One Quadratic Constraint

It is well known that when F is a polyhedron, F∞ (i.e. Rec(F)) can be explicitly defined.

To the author’s knowledge, there are no current results about the general characterization of F∞ for

F defined by multiple quadratic constraints. However, Dickinson et al [15] provided the following

characterization for F defined by a single quadratic constraint.

Proposition 3 ([15]). For F = {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 } 6= ∅, we have

F∞ =


{ d ∈ Rn | dTAd ≤ 0 } , if A 6� 0

{ d ∈ Rn | dTAd ≤ 0, aT d ≤ 0 } , if A � 0.

As can be expected, the asymptotic cone depends on the definiteness of the Hessian A with

an included linear term for A � 0. Chapter 4 works with the boundary of a quadratically defined set
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and requires the asymptotic cone of a set defined by an equality constraint. Similar to the positive

semidefinite case of Proposition 3, the linear term of F has an impact on the asymptotic cone of the

boundary.

Lemma 10 ([20]). Suppose that F = {x ∈ Rn | xTAx+ 2aTx+ α = 0 } is nonempty and A has a

positive eigenvalue. If d satisfies dTAd = 0 and aT d < 0, then d ∈ S∞.

Proof. Let v be any vector such that vTAv > 0. Consider the following bivariate quadratic function

f(k,∆) : = (kd+ ∆v)TA(kd+ ∆v) + 2aT (kd+ ∆v) + α

= (vTAv)∆2 + 2(kdTAv + aT v)∆ + (2kaT d+ α).

Since aT d < 0, there exists K ∈ R such that f(k, 0) = 2kaT d+α < 0 for all k ≥ K. For each k ≥ K,

let δk := aT v + kdTAv and

∆k :=


(
−δk +

√
δ2
k − (vTAv)(2kaT d+ α)

)
/
(
vTAv

)
, if δk ≥ 0(

−δk −
√
δ2
k − (vTAv)(2kaT d+ α)

)
/
(
vTAv

)
, if δk < 0.

(3.1)

Then f(k,∆k) = 0 and limk→∞∆k/k = 0. This implies that d ∈ F∞ as kd + ∆kv ∈ S and

limk→∞(kd+∆kv)/k = d. (See Figure 3.2 for the three cases of the level set { (k,∆) | f(k,∆) = 0 }.)

Figure 3.2: Plots of possible level sets { (k,∆) | f(k,∆) = 0 } in the proof of Lemma 10. The solid
segments represent how ∆k is defined in (3.1)

.

Lemma 11 ([20]). Suppose S = {x ∈ Rn | xTAx+ 2aTx+ α = 0 } is nonempty. If d satisfies

dTAd = 0 and aT d = 0, then ±d ∈ S∞.

28



Proof. The proof is straightforward when A = 0. Now suppose that A 6= 0, and v is a vector in S.

Similar to the proof of Lemma 10, let

f(k,∆) : = (kd+ ∆v)TA(kd+ ∆v) + 2aT (kd+ ∆v) + α

= (vTAv)∆2 + 2(kdTAv + aT v)∆ + α.

We consider two cases. First, if dTAv = 0, then f(k, 1) = vTAv + 2aT v + α = 0 for all k ∈

R. Therefore, d ∈ S∞ as kd + v ∈ S and limk→∞(kd + v)/k = d. Second, if dTAv 6= 0, then

|kdTAv + aT v| → ∞ as k →∞. For sufficiently large k, if vTAv 6= 0, we set ∆k as defined in (3.1)

(with aT d = 0). If vTAv = 0, we set ∆k := −α/(2kdTAv + 2aT v). With either definition of ∆k,

kd+ ∆k ∈ S and limk→∞∆k = 0. Therefore, d ∈ S∞. Replacing d with −d in the above proof, we

have −d ∈ S∞.

Lemmas 10 and 11 add an additional level of focus on the linear term a ∈ Rn. In the positive

semidefinite and negative semidefinite cases, the linear term helps determine the shape of the feasible

region. In Figure 3.3, A is positive semidefinite and there are two cases. In (a), a /∈ Range(A) and

as such, d ∈ (bdF)∞ does not guarantee that −d ∈ (bdF)∞. Likewise, in (b), a ∈ Range(A) and F

contains a lineality space. This effect when A is semidefinite is shown in the following proposition.

Proposition 4 ([20]). For F = {x ∈ Rn | xTAx+ 2aTx+ α = 0 } 6= ∅, we have

F∞ =



{ d ∈ Rn | dTAd = 0, aT d ≤ 0 } , if A � 0 and A 6= 0

{ d ∈ Rn | dTAd = 0, aT d ≥ 0 } , if A � 0 and A 6= 0

{ d ∈ Rn | dTAd = 0 } , if A is indefinite

{ d ∈ Rn | aT d = 0 } , if A = 0.

29



Proof. For the forward containment, note that

S∞ =
(
{x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 } ∩ {x ∈ Rn | xTAx+ 2aTx+ α ≥ 0 }

)
∞

⊆ {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 }∞ ∩ {x ∈ Rn | xTAx+ 2aTx+ α ≥ 0 }∞

=



{ d ∈ Rn | dTAd = 0, aT d ≤ 0 } , if A � 0 and A 6= 0

{ d ∈ Rn | dTAd = 0, aT d ≥ 0 } , if A � 0 and A 6= 0

{ d ∈ Rn | dTAd = 0 } , if A is indefinite

{ d ∈ Rn | aT d = 0 } , if A = 0,

where the last equality comes from Proposition 3.

For the reverse containment, note that A has a positive eigenvalue in the first and third

cases, and −A has a positive eigenvalue in the second and third cases. Then the reverse containment

is a direct consequence of Lemmas 10 and 11.

With formal definitions describing the geometry of the asymptotic cone of F , the horizon

and retractive directions of F can be understood. Since the definitions relied on the definiteness of

the Hessian A, it is expected that additional properties of F∞ may also rely on A.

3.1.1 Horizon Directions and Retractive Direcions

Recall that for d ∈ F∞ to be a local (global) horizon direction, starting at any point x ∈ F

(x ∈ Rn), there exists λ̄ ≥ 0 such that x + λd ∈ F , for all λ ≥ λ̄, and for d to be a retractive

direction, for all corresponding asymptotic sequences {xk}k ⊆ F , xk − d ∈ F for all k ≥ k̄ ≥ 0.

Similar to partitioning F∞ by the definiteness of the Hessian A, a similar approach applies

to both horizon and retractive directions. Before considering A 6= 0, if A = 0, then F is a halfspace,

which is a retractive set [5]. In fact, if F = {x | aTx+ α ≤ 0 }, then F∞ = {x | aTx ≤ 0 }. With

this in mind, {x | aTx < 0 } is the set of global horizon directions while {x | aTx = 0 } is the set of

local horizon directions. Extending this to A 6= 0, we have the following propositions.

Proposition 5 (A � 0, A 6= 0). Let F = {x | xTAx+ 2aTx+ α ≤ 0 } be a nonempty set such that

A � 0 nonzero. Then

1. (F∞)= := { d 6= 0 | Ad = 0, aT d = 0 } is the set of retractive local horizon directions.
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2. (F∞)< := { d 6= 0 | Ad = 0, aT d < 0 } is the set of non-retractive, global horizon directions.

Proof. Let d ∈ F∞ with corresponding asymptotic sequence { xk } ⊆ F , γ > 0, and note that

f(x+ γd) = xTAx+ 2aTx+ α+ 2γaT d.

If d is a retractive direction then for asymptotic sequences { xk } ⊆ F , f(xk − d) = f(xk)−

2aT d ≤ 0 for k ≥ k̄. By Propositions 3 and 4, F∞ = bd(F)∞ for A � 0. Then there exists

{ x̂k } ⊆ bd(F) ⊆ F such that { x̂k } is a corresponding asymptotic sequence to d. Then for all k,

f(x̂k − d) = f(x̂k)− 2aT d = −2aT d ≤ 0 for all k ≥ k̂. Therefore, aT d = 0 and d ∈ (F∞)=.

If d is a global horizon direction then for all x /∈ F , there exists γ̄ ≥ 0 such that for all

γ ≥ γ̄,

f(x+ γd) = f(x)︸︷︷︸
>0

+2γaT d ≤ 0.

Therefore, aT d < 0 and d ∈ (F∞)<. If d is a local horizon direction that is not global then for all

x ∈ F , there exists γ̂ ≥ 0 such that for all γ ≥ γ̂,

f(x+ γd) = f(x)︸︷︷︸
≤0

+2γaT d ≤ 0.

Therefore, aT d = 0 and d ∈ (F∞)=.

If d ∈ (F∞)=, then for all γ > 0, f(x + γd) = f(x). This implies that d is a local horizon

direction and not a global horizon direction since f(x+ γd) ≤ 0 if and only if f(x) ≤ 0. To see that

d is retractive, f(xk − γd) = f(xk) ≤ 0.

If d ∈ (F∞)<, then for all γ > 0, f(x+ γd) < f(x). Therefore, for any x ∈ Rn, there exists

γ∗ > 0 such that f(x+ γd) ≤ 0 for all γ ≥ γ∗. To see that d is not retractive, note that

(F∞)< ⊆
{
d
∣∣ dTAd = 0, aT d ≤ 0

}
=
({
x
∣∣ xTAx+ 2aTx+ α = 0

})
∞ .

Therefore, for any d ∈ (F∞)<, d is an asymptotic direction of
{
x
∣∣ xTAx+ 2aTx+ α = 0

}
. That

is, there is a sequence {xk} such that xTkAxk + 2aTxk + α = 0 for every k, limk→∞ ‖xk‖ =∞, and
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limk→∞
xk

‖xk‖ = d. We show that f(xk − d) > 0 for all k. In fact, since f(xk) = 0,

f(xk − d) = xTkAxk − 2xTk Ad︸︷︷︸
=0

+dT Ad︸︷︷︸
=0

+2aTxk − 2aT d+ a

= −2aT d > 0.

Therefore, d is not retractive.

The two cases in Proposition 5 give geometric insight to what makes a direction retractive.

Consider the cases with Figure 3.3. In (b), the case describes when a ∈ Range(A) and the boundary

of the quadratically defined set has linear features. Since the asymptotic directions are linear and

are defined by the set and its boundary, all directions are local directions and xk − d ∈ F for all k.

However, the case in (a), covers when the boundary of F is asymptotically sublinear. Then for every

sequence {xk} along the boundary of F , xk − d /∈ F for all k. Therefore, all asymptotic directions

of this case are global horizon directions but not retractive.

Figure 3.3: The two 2D cases when A is positive semidefinite. In (a), a /∈ Range(A) and the
boundary of F has a curved behavior. In (b), a ∈ Range(A) and as a result, the boundary of F is
linear.

In terms of semidefinite sets, the positive semidefinite case is more interesting than that of

the negative semidefinite. WhenA � 0 is nonzero, Proposition 3 states that F∞ =
{
x
∣∣ xTAx ≤ 0

}
=

Rn. Even though the asymptotic cone contains all real vectors, F does not cover Rn, and the fol-

lowing proposition provides a geometric intuition to how the set behaves.

Proposition 6 (A � 0, A 6= 0). Let F = {x | xTAx+ 2aTx+ α ≤ 0 } be a nonempty set such that

A � 0 nonzero. Then F is retractive [5] and
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1. (F∞)1 :=
{
d 6= 0

∣∣ dTAd < 0
}
∪
{
d 6= 0

∣∣ Ad = 0, aT d < 0
}

is the set of global horizon

directions

2. (F∞)2 :=
{
d 6= 0

∣∣ Ad = 0, aT d = 0
}

is the set of local horizon directions that are not global.

3. (F∞)3 :=
{
d 6= 0

∣∣ Ad = 0, aT d > 0
}

is the set of directions that are not local horizon di-

rections.

Proof. Since the complement of F is convex, then by [5], F is retractive.

Let d ∈ F∞, γ > 0, and note that

f(x+ γd) = xTAx+ 2aTx+ α+ 2γaT d+ γ2dTAd.

If d is a global horizon direction. Then for all x /∈ F and λ ≥ 0,

f(x+ γd) = f(x)︸︷︷︸
>0

+2γaT d+ γ2dTAd ≤ 0,

for all γ ≥ γ̄ ≥ 0. Since f(x) > 0, then

1. if dTAd < 0, for large enough γ, f(x+ γd) ≤ 0 and d ∈ (F∞)1 ;

2. if dTAd = 0, aT d < 0 and d ∈ (F∞)1.

If d is a local horizon direction that is not global, then for all x ∈ F ,

f(x+ γd) = f(x)︸︷︷︸
≤0

+2γaT d+ γ2dTAd ≤ 0,

for all γ ≥ γ̂ ≥ 0. Then, since d is not a global horizon direction, dTAd = 0, aT d = 0 and d ∈ (F∞)2.

Let d be a direction that is not a local horizon direction, then d can not be an element of

(F∞)1 or (F∞)2. Therefore, since d ∈ F∞, d ∈ (F∞)3.

If f(x) > 0, then x /∈ F . For d to be a global horizon direction, one needs γ(2aT d+γdTAd) <

0 for all γ ≥ γ∗ > 0. If d ∈ (F∞)1, then the inequality holds.

If f(x) ≤ 0, then x ∈ F . For d to be a local horizon direction, one needs γ(2aT d+γdTAd) ≤ 0

for all γ ≥ γ∗ > 0. While this is satisfied for d ∈ (F∞)1, d ∈ (F∞)2 also satisfies the inequality.

Let d ∈ (F∞)3, then γ(2aT d + γdTAd) > 0 since γ > 0. Therefore, (F∞)3 is the set of

directions that are not local horizon directions.
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Overall, determining if a direction is a horizon direction is not a difficult task as seen

above. In fact, based off of the analysis above, one would imagine determining retractiveness to be

straightforward. This changes slightly when the Hessian, A, is indefinite. Unlike the semi-definite

cases, having an indefinite Hessian A decomposes the analysis to both the interior and boundary of

the asymptotic cone F∞. Before beginning this analysis, it is best to note that the interior of F∞,

int(F∞), is not the asymptotic cone of int(F). In fact, since F∞ is a closed cone, F∞ is not only

the asymptotic cone of F but also the asymptotic cone of the interior, int(F).

Proposition 7. Let F =
{
x ∈ Rn

∣∣ xTAx+ 2aTx+ α ≤ 0
}

. Then int(F∞) is the set of retractive,

global horizon directions.

Proof. Let d ∈ D< with corresponding asymptotic sequence { xk }, ‖xk‖ → ∞, and x ∈ Rn. Then

f(x+ γd) = f(x) + γ2dTAd+ 2γ(Ax+ a)T d.

Since dTAd < 0, there exists γ∗ such that γ2dTAd < 2γ(Ax+ a)T d for all γ ≥ γ∗. Therefore, d is a

global horizon direction.

For d to be retractive, then f(xk − d) ≤ 0 for k ≥ k∗. Note that

lim
k→∞

f(xk − d)

‖xk‖2
= lim
k→∞

xTkAxk + 2aTxk + α− dTAd− 2(Axk + a)T d

‖xk‖2

= dTAkd < 0.

Therefore, there must exists k∗ > 0 such that f(xk − d) < 0 for all k ≥ k∗ and d is

retractive.

Proposition 7 can be visualized in Figure 3.4. In this figure, F =
{
x ∈ R2

∣∣ xTAx+ α ≤ 0
}

.

Both (a) and (c) describe the possible shapes of F ⊆ R2 when α is negative (a) or positive (c) with

the shared asymptotic cone in (b). In terms of Proposition 7, following any path along a direction d

from the interior of F∞ in (b), you will either stay in F or enter F and never leave for both (a) and

(c). This occurs because the boundary of F converges to the boundary of F∞ in both cases, and

d ∈ int(F∞) will cross that threshold if the path starts outside of F∞. Likewise, d ∈ bd(F∞) is not

even a local horizon direction. Consider any point in the left side of (a), say x where x1 < 0. Then

choose d ∈ bd(F∞) such that d > 0. At some value γ ≥ 0, x + γd will leave F and since it travels
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parallel to bd(F∞), x+ γ̂d /∈ F for all γ̂ ≥ γ.

Figure 3.4: Graphs depicting the sets: (a) F1 =
{
x
∣∣ −x2

1 + x2
2 − 1 ≤ 0

}
, (c) F2 ={

x
∣∣ −x2

1 + x2
2 + 1 ≤ 0

}
, and (b) their shared asymptotic cone.

Next, to discuss the retractiveness of the boundary of the asymptotic cone first requires

simplifying the set in a similar way to Figure 3.4. Consider F =
{
x
∣∣ xTAx+ α ≤ 0

}
such that there

is no linear term a ∈ Rn. In this form, F is similar to its asymptotic cone F∞ =
{
x
∣∣ xTAx ≤ 0

}
with a minor transformation to accommodate α. Upon quick observation, the α term may have

impact in determining the retractiveness for the set F . However, this does not extend to higher

dimensions. Consider the following propositions.

Proposition 8. Let F =
{
x
∣∣ xTAx+ α ≤ 0

}
, where A ∈ Sn is an invertible, indefinite, diagonal

matrix and n ≥ 3. For any nonzero d ∈ bd(F∞), d is not retractive.

Proof. For d to not be retractive, it suffices to show that there exists a sequence { xk } corresponding

to d such that xk − d /∈ F for every large enough k. That is, (xk − d)TA(xk − d) +α > 0 for k ≥ k′.

Since A is an indefinite, diagonal matrix with P nonnegative entries and N = n−P negative

entries, without loss of generality, assume that the first P entries of A are nonnegative with the first

entry being positive. That is, A = diag(λ1, λ2, . . . , λP ,−λ(P+1), . . . ,−λ(P+N)) where λi ≥ 0 and

λ1 > 0.
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Denote d = (d1, d2, . . . , dn)T and then consider xk ∈ bd(F) such that

xk =



kd1 + µ
k

kd2

...

kdP

γkdP+1

...

γkdP+N



, (3.2)

where

γk = k

√√√√α+ 2µλ1d1 + λ1
µ2

k2

k2
∑N
j=1 λP+jd2

P+j

+ 1.

Setting ck = α + 2µλ1d1 + λ1
µ2

k2 , for γk to exists choose µ, k̄ ∈ R such that ck > 0 for all k ≥ k̄. It

is easy to verify that xk ∈ bd(F). However, to see that {xk } is an asymptotic sequence of d, note

that

γk =

√√√√ck + k2
∑P
i=1 λid

2
i∑N

j=1 λP+jd2
P+j

=

√√√√ ck∑N
j=1 λP+jd2

P+j

+
k2
∑N
j=1 λP+jd2

P+j∑N
j=1 λP+jd2

P+j

= k

√
ck

k2
∑N
j=1 λP+jd2

P+j

+ 1, (3.3)

where the second equality comes from the fact that dTAd = 0 and

‖xk‖2 = k2
P∑
i=1

d2
i +

ck + k2
∑P
i=1 λid

2
i∑N

j=1 λP+jd2
P+j

N∑
j=1

d2
P+j

= k2
P∑
i=1

d2
i +

ck + k2
∑N
j=1 λP+jd

2
P+j∑N

j=1 λP+j(P+j)d
2
P+j

N∑
j=1

d2
P+j

= k2
n∑
i=1

d2
i +

ck∑N
j=1 λP+jd2

P+j

N∑
j=1

d2
P+j ,
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where γk → k and ‖xk‖ → k‖d‖ as k →∞. Then ‖xk‖ → ∞ and xk‖xk‖−1 → d‖d‖−1 and { xk } is

an asymptotic sequence converging to d.

Then,

xTkAd = k

P∑
i=1

λid
2
i −

N∑
j=1

λP+jd
2
P+j

√√√√ck + k2
∑P
i=1 λid

2
i∑N

j=1 λP+jd2
P+j

=
k2
(∑P

i=1 λid
2
i

)2

−
(∑N

j=1 λP+jd
2
P+j

)2
ck+k2

∑P
i=1 λid

2
i∑N

j=1 λP+jd2P+j

k
∑P
i=1 λid

2
i + γk

∑N
j=1 λP+jd2

P+j

=
k2
(∑P

i=1 λid
2
i

)2

− k2
(∑P

i=1 λid
2
i

)∑N
j=1 λP+jd

2
P+j − ck

∑N
j=1 λP+jd

2
P+j

k
∑P
i=1 λid

2
i + γk

∑N
j=1 λP+jd2

P+j

=
k2
∑P
i=1 λid

2
i

(∑P
i=1 λid

2
i −

∑N
j=1 λP+jd

2
P+j

)
− ck

∑N
j=1 λP+jd

2
P+j

k
∑P
i=1 λid

2
i + γk

∑N
j=1 λP+jd2

P+j

=
k2(dTAd)

∑P
i=1 λid

2
i − ck

∑N
j=1 λP+jd

2
P+j

k
∑P
i=1 λid

2
i + γk

∑N
j=1 λP+jd2

P+j

=
−ck

∑N
j=1 λP+jd

2
P+j

k
∑P
i=1 λid

2
i + γk

∑N
j=1 λP+jd2

P+j

< 0,

where the final inequality comes from ck > 0 for all k ≥ k̂. Therefore, for all k, xTkAd < 0. As a

result, for sequence { xk } defined in (3.2) and γk defined in (3.3), { xk } is a converging sequence of

d and

(xk − d)TA(xk − d) + α = xTkAxk + α+ dTAd− 2xTkAd > 0.

That is, d is not retractive.

When n = 2, there will be at least one case when F is retractive. In order to describe the

entire set F as retractive, consider the following proposition from Bertsekas and Tseng [5] followed

by an additional result.

Proposition 9 ([5]). Let F be a nonempty, closed set. Then the following hold:

1. If F is the complement of an open convex set, then F is retractive.

2. If F is the union or cross product of retractive sets, then F is retractive.

3. If F is the nonempty intersection of retractive sets, then F is retractive.
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Proposition 10. Let F =
{
x
∣∣ xTAx+ α ≤ 0

}
, where A ∈ Sn is an indefinite, diagonal matrix,

n = 2, and nonzero d ∈ bd(F∞). Then the following hold:

1. If α > 0, then d is not retractive.

2. If α ≤ 0, then d is retractive.

Proof. Let d ∈ bd(F∞), that is, dTAd = 0. If α > 0, then consider the sequence

xk =

 kd1

kd2

√
α

k2A22d22
+ 1

 .

From the same process of Proposition 8, it can be seen that xTkAd < 0 and d is not retractive.

If α = 0, then F = F∞ and can be decomposed into two, 2D polyhedral cones. Since each

of the two cones are the intersection of halfspaces, by Proposition 9, they are retractive. Also, by

Proposition 9, since F is the union of two retractive sets, F is retractive .

If α < 0, F ⊆ F∞ we follow the same approach as when α = 0. Consider the closure of the

complement of F , clFC =
{
x
∣∣ xTAx− α ≤ 0

}
. As in Figure 3.5, there exists c ∈ R2 such that

FC can be decomposed into two sets,

F̂1 =
{
x
∣∣ cTx ≤ 0

}
∩ clFC , F̂2 =

{
x
∣∣ cTx > 0

}
∩ clFC ,

where both F̂1 and F̂2 are convex sets that are symmetric over {x | cTx = 0 } [42], and by Proposition

9, cl F̂C1 and cl F̂C2 are retractive. By Proposition 9, it suffices to show that F = cl F̂C1 ∩ cl F̂C2 .

cl F̂C1 ∩ cl F̂C2 =
{
x
∣∣ xTAx− α ≤ 0, cTx ≤ 0

}C ∩ { x ∣∣ xTAx− α ≤ 0, cTx > 0
}C

= F ∪ (F ∩
{
x
∣∣ cTx > 0

}
) ∪ (F ∩

{
x
∣∣ cTx ≤ 0

}
)

= F .

Therefore, since the intersection of closed, retractive sets are retractive, F is retractive.

Both Propositions 8 and 10 cover cases when A is an indefinite, diagonal matrix with no

linear term. When A is not diagonal, consider Corollary 1 below. Extending this to include linear
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Figure 3.5: In the 2D case when A is indefinite and α > 0, there exists a vector such that F is
symmetric over that vector. In fact, the partitioning in (b) decomposes F into two convex sets.

terms will be a two part process. First consider a ∈ Range(A) in Proposition 11. Geometrically,

this is translating a set F =
{
x
∣∣ xTAx+ α ≤ 0

}
by −c.

Corollary 1. Let F =
{
x
∣∣ xTAx+ α ≤ 0

}
, where A ∈ Sn is an invertible, indefinite matrix and

n ≥ 3. For any nonzero d ∈ bd(F)∞, d is not retractive.

Proof. Similar to Proposition 8, it suffices to find a sequence { xk } corresponding to d ∈ bd(F)∞

such that xk − d /∈ F for every large enough k. Since A is a symmetric matrix, there exists an

orthogonal matrix U and diagonal matrix D such that A = UTDU . Without loss of generality,

assume that the first P entries of D are nonnegative and the remaining N = n − P entries are

negative. Since d ∈ bd(F∞),

dTAd = 0 ⇒ dTUTDUd = 0 ⇒ (Ud)TD(Ud) = 0,

and (Ud) ∈ bd(
{
x
∣∣ xTDx+ α ≤ 0

}
∞). Denote y = Ud = (y1, y2, . . . , yn)T and then consider
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xk ∈ bd(
{
x
∣∣ xTDx+ α ≤ 0

}
) such that

xk =



ky1 + µ
k

ky2

...

kyP

γkyP+1

...

γkyP+N



. (3.4)

With this sequence, the proof follows similarly to that of Proposition 8.

Proposition 11. Let F =
{
x
∣∣ (x+ c)TA(x+ c) + α ≤ 0

}
, where A ∈ Sn is an invertible, indefi-

nite matrix, c ∈ Rn, and n ≥ 3. For any nonzero d ∈ bd(F∞), d is not retractive.

Proof. Let F ′ := { y | yTAy + α ≤ 0 }. By Corollary 1, for any d ∈ F∞ = (F ′)∞, there exists

{yk} ⊆ F ′ and k′ > 0 such that yk − d /∈ F ′ for all k > k′, ‖yk‖ → ∞, and (yk/‖yk‖)→ (d/‖d‖) as

k →∞. Let {xk} := {yk}− c. It is clear that {xk} ⊆ F and xk−d /∈ F for all k > k′. To show that

d is not retractive, it suffices to show that ‖xk‖ → ∞ and (xk/‖xk‖) → (d/‖d‖) as k → ∞. Since

‖xk‖ ≥ ‖yk‖ − ‖c‖,
‖yk‖ − ‖c‖
‖yk‖

≤ ‖xk‖
‖yk‖

≤ ‖yk‖+ ‖c‖
‖yk‖

,

and ‖yk‖ → ∞ as k →∞, we have ‖xk‖ → ∞ and ‖xk‖/‖yk‖ → 1 as k →∞. Therefore,

xk
‖xk‖

=
yk − c
‖yk‖

· ‖yk‖
‖xk‖

=

(
yk
‖yk‖

− c

‖yk‖

)
‖yk‖
‖xk‖

→
(

d

‖d‖
− 0

)
· 1 =

d

‖d‖
as k →∞.

Corollary 2. Let F =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
, where A ∈ Sn is an invertible, indefinite

matrix with ai ∈ Rn, and n ≥ 3. For any nonzero d ∈ bd(F∞), d is not retractive.

After this analysis, for the general quadratically defined feasible region, the boundary of that

set is most likely not retractive. This consideration is explored in Chapter 6 where retractiveness

can be used to determine the existence of an optimal solution.
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3.2 Non-Intersecting Constraints

While this section has focused on the properties of a set defined by one quadratic constraint,

there is an increased difficulty when adding addtional constraints. If given a nonempty intersection

of sets, then the asymptotic cone of the intersection is a subset of the intersection of asymptotic

cones. One instance of this being equality is when the sets are convex. This subsection explores

the case where F2 induces a non-intersecting constraint in F1. That is, bd(F2) ⊆ F1. The non-

intersecting property is examined more in Chapter 4 in terms of convexifying sets in the lifted matrix

space Sn+1. In terms of asymptotic cones, this property leads to the following result.

Proposition 12. Let F1 ⊆ Rn be a closed, nonempty set and let F2 =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
where bd(F2) ⊆ F1. Then

(F1 ∩ F2)∞ = (F1)∞ ∩ (F2)∞.

Proof. The forward containment follows from Proposition 9. For the reverse containment, let d ∈

(F1)∞∩ (F2)∞. Then there exists a sequence { xk }k ⊆ F1 such that ‖xk‖ → ∞ and xk‖xk‖−1 → d.

Since d ∈ (F2)∞, dTWd ≤ 0. These two cases are discussed below.

If d ∈ int(F2)∞, then there exists some k̄ ∈ Z+ such that for all k ≥ k̄, xTkAxk+2aTxk+α <

0. Therefore there exists a subsequence { xk }k≥k̄ ⊆ F2 such that ‖xk‖ → ∞ and xk‖xk‖−1 → d

thus {xk }k≥x̄ ⊆ F1 ∩ F2. Hence d ∈ (F1 ∩ F2)∞.

If d ∈ bd(F2)∞, since F2 induces a non-intersecting constraint in F1, there exists { xk }k ⊆

bd(F2) ⊆ F1. Therefore { xk }k ⊆ F1 ∩ F2 and d ∈ (F1 ∩ F2)∞.

If F1 is defined by a single quadratic constraint, Proposition 12 can be checked by using

the S-Procedure [36]. Otherwise, if F1 is defined by multiple quadratic constraints, say F1 =

{x | xTAix+ 2aTi x+ αi ≤ 0, i = 1, . . . ,m } and F2 = {x | xTWx+ 2wTx+ ω ≤ 0 }, this property

holds if an only if

max
{
xTAix+ 2aTi x+ αi ≤ 0

∣∣ xTWx+ 2wTx+ ω ≤ 0
}
.

This procedure is discussed more in Chapter 4 addition of multiple non-intersecting constraints and

the impact of the Proposition 12 when F2 is defined by an affine linear constraint is examined in

Chapter 5.
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Chapter 4

Convex Hull Results on Quadratic

Programs with Non-Intersecting

Constraints

Chapter 2 introduced the idea of the convexification of a nonconvex set F , denoted C(F).

While finding this higher dimensional set can be computationally difficult in general, F can have

structural properties that provide easy to generate inequalities. In fact, there could be non-trivial

constraints with certain properties that, when added to F , do not add extra levels of difficulty

to finding C(F). This chapter focuses on adding an additional constraint to F , H, that has a

non-intersecting boundary with F .

4.1 Introduction

To explore the lifted closed convex hull for more sets, we take a small step and consider a

closed set G ∈ Rn resulting by adding one more constraint to an F with known C(F). Specifically,

suppose that G := F ∩ H where H is defined by a single inequality, we hope to derive C(G) based

on C(F) and the simple structure of H. If this is successful, we can repeat the process to generate

more convex hull results in the lifted space.

We are interested in the relation between C(G), C(F) and C(H). By definition, it is clear
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that

C(G) = C(F ∩H) ⊆ C(F) ∩ C(H).

On the other hand, C(G) can be a proper subset of C(F) ∩ C(H) in general. Such an example can

be found even when F and H are as simple as two intersecting ellipsoids [8].

In this paper, we propose a sufficient condition for C(G) = C(F)∩C(H). Specifically, we show

that the equation holds when H is defined by a non-intersecting quadratic inequality with nonzero

Hessian. For the rest of the paper, unless stated otherwise, we focus on sets with the following

structure:

• F is a nonempty closed set in Rn;

• H := {x ∈ Rn | xTWx+ 2wTx+ ω ≤ 0 } is a nonempty proper subset of Rn, where W ∈ Sn,

w ∈ Rn, ω ∈ R;

• G = F ∩H.

Note that although the study is motivated by and primarily applied to quadratically defined sets,

our approach does not rely on the quadratic structure of F or G. Moreover, we omit the trivial cases

when H = ∅ or Rn in the discussion. We show in the paper that C(G) = C(F) ∩ C(H) under the

following assumptions.

Assumption 3 (nonzero). W 6= 0.

The nonzero assumption assures that H is not linearly defined. The necessity of the as-

sumption is demonstrated by Example 2 in Section 4.2.

Assumption 4 (non-intersecting).

xTWx+ 2wTx+ ω = 0 =⇒ x ∈ F . (4.1)

Geometrically, the non-intersecting assumption is satisfied if and only if the boundary of H is

contained in F (and equivalently contained in G).

When F is quadratically defined , the non-intersecting assumption (4.1) holds if and only if

sup {xTAix+ 2aTi x+ αi | h(x) = 0 } ≤ 0 ∀ i ∈ I. (4.2)
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where h(x) := xTWx + 2wTx + ω. If there exist x̂ and x̄ such that h(x̂) < 0 < h(x̄), then the

optimization problem in (4.2) enjoys exact Shor relaxations due to the S-Lemma with equality [35].

Therefore, the non-intersecting assumption (4.1) can be checked by solving semidefinite programs.

On the other hand, if h(x) ≥ 0 for all x ∈ Rn and H 6= ∅, then W � 0 and w ∈ Range(W ). In this

case, h(x) = (x+b)TW (x+b)T +β for some b ∈ Rn and β ∈ R. We observe that β ≥ 0 since h(x) ≥ 0

for all x ∈ Rn, and that β ≤ 0 since H 6= ∅. Therefore, the constraint h(x) = 0 is equivalent to the

affine equality constraint W 1/2(x+ b) = 0. With suitable substitution, the optimization problem in

(4.2) can be transformed to unconstrained quadratic problems and solved easily.

Concepts similar to Assumption 4 have been mentioned in [37] and [3]. We restate those

concepts here to avoid possible confusion. In [37], two linear constraints are called “non-intersecting”

if the hyperplanes defined by the constraints do not intersect inside the unit ball. In [3], “non-

interacting” constraints are explained as that if any of the constraints is active at a certain point x,

then all the other constraints are satisfied strictly at x.

Under Assumptions 3 and 4, we show in this paper that C(G) = C(F)∩L(H) (Theorem 10),

where

L(H) :=
{

(x,X)
∣∣W •X + 2wTx+ ω ≤ 0

}
.

Since H is defined by a single quadratic inequality, it is known that C(H) = S(H). We then have

C(G) = C(F) ∩ L(H) = C(F) ∩ S(H) = C(F) ∩ C(H). Our proof approach is motivated by the prior

work on bounded quadratic programs with hollows [37]. When F is bounded, so is G, and C(G) is

reduced to

C(G) := conv
{

(x, xxT )
∣∣ x ∈ G } .

When F is bounded and quadratically defined, it is shown in [37] that C(G) = C(F) ∩ L(H) under

the non-intersecting assumption. (The non-intersecting assumption implies the nonzero assumption

in the bounded case.) In this paper, we generalize the result to allow general unbounded closed F .

This generalization allows more intriguing applications. We provide four quadratically defined1

We remark here that the proofs in [37] do not generalize to the unbounded case directly. In

particular, two proofs are provided in [37]. The first one relies on discussing the locations of optimal

solutions of min {xTQx+ 2cTx | x ∈ F }, while the second considers the extreme points of C(F) ∩
1The examples are all quadratically defined because little is known about C(F) when F is non-quadratic. examples

in Section 4.3.
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L(H). For the first proof, when F is compact, an optimal solution of min {xTQx+ 2cTx | x ∈ F }

always exists due to the Weierstrass extreme value theorem. However, in the unbounded case, an

optimal solution may be unattainable even if the optimal value is finite. For the second, when F is

bounded, C(G) is closed and is generated by its extreme points, which are in the form of (x, xxT ).

When F is unbounded, C(G) is not necessarily closed, and C(G) is generated by both its extreme

points and its extreme directions. However, characterizing the extreme directions of C(G) seems not

to be an easy task.

To overcome the difficulty, we tailor a technical lemma by Dickinson et al. [15] to build a

connection between C(G) and C(G). As the connection is related to the asymptotic cone of G, we

use basic properties of the asymptotic cones and utilize their properties that are listed in Chapter

3. In Section 4.2, we use the connection to build the proof of C(G) = C(F) ∩ L(H), for which two

nontrivial pieces of the claim are considered sequentially. To show the necessity of the assumptions,

a counterexample is provided after the proof. Three corollaries follow the main result with a gen-

eralization of the non-intersecting concept to allow multiple constraints in H. In Section 4.3, we

provide four examples where the theory can be applied. The paper is concluded in Section 4.4.

4.2 The closed convex hull result

In this section, we prove C(G) = C(F)∩L(H) under Assumptions 3 and 4. We start from a

simple observation. Let T := {Y ∈ Sn+1 | Y11 = 1 }. By definition, it is easy to check that

conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

= cone conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}
∩ T,

where Y11 is the top left element of Y . We observe that the same statement also holds for the

corresponding closures.

Lemma 12. Let S ⊆ Rn be a nonempty closed set. Then

conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

= cone conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}
∩ T.

Proof. The forward containment “⊆” is straightforward. Now let Y be a matrix of the set on the

right side of the equation. Then Y11 = 1, and there exists a sequence {Ym}m such that Ym → Y as
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m→∞ and

Ym =

km∑
i=1

λmi

(
1

xmi

)(
1

xmi

)T
for some km ≥ 0, λmi and xmi ∈ S. In particular, λm :=

∑km
i=1 λmi

→ 1 as m → ∞. Then Ỹm :=

Ym/λm ∈ conv {
(

1
x

)(
1
x

)T | x ∈ S } and Ỹm → Y as m→∞. Therefore, Y ∈ conv {
(

1
x

)(
1
x

)T | x ∈ S }.

The following lemma from [15] is crucial to characterize the closed convex hull.

Lemma 13 ([15]). Let S ⊆ Rn be a nonempty closed set. Then

cone conv { yyT | y ∈ {1} × S } = conv { yyT | y ∈ cone({1} × S) ∪ ({0} × S∞) } .

Interpreting Lemma 13 by rewriting the equation in equivalent forms, we have the following

lemma to characterize the difference between the convex hull C(F) and its closure C(F).

Lemma 14. Let S ⊆ Rn be a nonempty closed set. Then

C(S) = C(S) + conv { (0, ddT ) | d ∈ S∞ } .

Proof. By Lemma 13,

cone conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

= conv
{
yyT

∣∣ y ∈ cone({ 1 } × S) ∪ ({ 0 } × S∞)
}

= conv
{
yyT

∣∣ y ∈ cone({ 1 } × S)
}

+ conv
{
yyT

∣∣ y ∈ { 0 } × S∞
}

= cone conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

+ conv

{(
0

d

)(
0

d

)T ∣∣∣∣∣ d ∈ S∞
}
.

Intersecting both sides of the equation with T , we have

conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

= conv

{(
1

x

)(
1

x

)T ∣∣∣∣∣ x ∈ S
}

+ conv

{(
0

d

)(
0

d

)T ∣∣∣∣∣ d ∈ S∞
}
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by Lemma 12. Dropping the first component of the matrices, which is fixed to 1, the above equation

is equivalent to C(S) = C(S) + conv{(0, ddT ) | d ∈ S∞}.

In fact, Lemma 14 helps build a connection between Rec(C(S)) and S∞. Applying the

description of the asymptotic cone in Chapter 3 to bd(H) = {x ∈ Rn | xTWx+ 2wTx+ ω = 0 }, we

have the following key observation.

Proposition 13. If dTWd = 0, then (0, ddT ) ∈ Rec(C(G)).

Proof. Since W 6= 0 by Assumption 3, Proposition 4 indicates that {d ∈ Rn | dTWd = 0} =

±(bd(H))∞. By Assumption 4, bd(H) is contained in G. Consequently, ±(bd(H))∞ ⊆ ±G∞

by Lemma 9. Therefore, for any (x,X) ∈ C(G), λ ≥ 0 and d ∈ Rn such that dTWd = 0,

(x,X) + λ(0, ddT ) ∈ C(G) + conv { (0, ddT ) | d ∈ ±G∞ }

= C(G) + conv { (0, ddT ) | d ∈ G∞ }

= C(G) + conv { (0, ddT ) | d ∈ G∞ } = C(G),

where the second equation holds because of Lemma 14. That is, (0, ddT ) ∈ Rec(C(G)).

With the help of Assumption 3 and Proposition 4, Proposition 13 establishes a connection

between {d ∈ Rn | dTWd = 0} and bd(H). Without Assumption 3, {d ∈ Rn | dTWd = 0} is equal to

Rn and provides no information about H. In addition, the proof of Proposition 13 is the only place

where Assumption 3 and Proposition 4 are explicitly used in the proof of the main result (Theorem

10).

As another technical lemma for the main proof, we restate the famous rank-1 decomposition

by Sturm and Zhang.

Lemma 15 ([31]). Let V be a symmetric matrix, and suppose Y � 0 with V •Y = 0 and rank(Y ) = r.

Then there exists a rank-1 decomposition Y =
∑r
i=1 y

i(yi)T such that yi 6= 0 and (yi)TV yi = 0 for

all i = 1, . . . , r.

The proof of our main theorem is constructed by the following two propositions. In the first

proposition, we show that C(F) ∩ bd(L(H)) ⊆ C(G) by proving a more general statement.

Proposition 14. If X � xxT and W •X + 2wTx+ ω = 0, then (x,X) ∈ C(G).
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Proof. Since

1 xT

x X

 � 0 and

ω wT

w W

 •
1 xT

x X

 = 0, by Lemma 15, there exist nonzero

yj =

zj0
zj

 ∈ R1+n for j = 1, . . . , r such that

0 =

zj0
zj


T ω wT

w W


zj0
zj

 = (zj)TWzj + 2zj0w
T zj + ω(zj0)2 (4.3)

and 1 xT

x X

 =

r∑
i=1

yi(yi)T =
∑
j∈J

(zj0)2

(
1

xj

)(
1

xj

)T
+
∑
j /∈J

(
0

zj

)(
0

zj

)T
,

where J := { j | yj1 6= 0 } and xj = zj/(zj0) for j ∈ J . Equivalently,
∑
j∈J(zj0)2 = 1 and

(x,X) =
∑
j∈J

(zj0)2(xj , xj(xj)T ) +
∑
j /∈J

(0, zj(zj)T ).

By (4.3), (zj)TWzj = 0 for j /∈ J . Therefore, Proposition 13 indicates that
∑
j /∈J(0, zj(zj)T ) ∈

Rec(C(G)). Also by (4.3), xj ∈ bd(H) ⊆ G for all j ∈ J . Therefore, (x,X) ∈ C(G) + Rec(C(G)) ⊆

C(G).

We remark here that when W is (positive or negative) definite, |J | = r and the proof of

Proposition 14 reduces to the alternative proof of Corollary 1 in [37]. When W is not definite, the

term
∑
j /∈j(0, z

j(zj)T ) is related to Rec(C(G)) in our proof by the prior discussion on the asymptotic

cones, which helps generalize the result.

Leveraging Proposition 14, we show in the following proposition that C(F) ∩ int(L(H)) ⊆

C(G). In [37], this case is trivial as it suffices to consider the extreme points of C(F) ∩ L(H) when

F is compact. Here, we need to adopt a different approach due to the unboundedness of F . We

consider an arbitrary point (x,X) in C(F) ∩ int(L(H)) and decompose it into “rank-1” points in

C(F). If all the “rank-1” points are in L(H), then (x,X) is in C(G); if some “rank-1” point is not

in L(H), we construct a convex combination of the point and (x,X) which is in bd(L(H)), and

consider the convex combination instead.

Proposition 15. If (x,X) ∈ C(F) and W •X + 2wTx+ ω < 0, then (x,X) ∈ C(G).
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Proof. Since (x,X) ∈ C(F), there exist xj ∈ F , µj > 0 for j = 1, . . . , p, such that
∑
µj = 1 and

(x,X) =

p∑
j=1

µj(x
j , xj(xj)T ).

Let J := { j | (xj)TWxj + 2wTxj + ω ≤ 0 }. If |J | = p, then xj ∈ F ∩ H = G for j = 1, . . . , p, and

therefore (x,X) ∈ C(G) ⊆ C(G). If |J | < p, then for each j /∈ J , we have W •(xj(xj)T )+2wTxj+ω >

0. Since the hyperplane { (x,X) |W •X + 2wTx+ ω = 0 } separates (xj , xj(xj)T ) and (x,X), there

exists γj ∈ (0, 1) such that

(x̂j , X̂j) := γj(x,X) + (1− γj)(xj , xj(xj)T )

satisfies W • X̂j + wT x̂j + ω = 0. Moreover, as a convex combination of two points (x,X) and

(xj , xj(xj)T ) in C(F), (x̂j , X̂j) is in C(F). Since X̂j � x̂j(x̂j)T , Proposition 14 indicates that

(x̂j , X̂j) ∈ C(G). By the definition of (x̂j , X̂j),

(x,X) =
∑
j∈J

µj(x
j , xj(xj)T ) +

∑
j /∈J

µj(x
j , xj(xj)T )

=
∑
j∈J

µj(x
j , xj(xj)T ) +

∑
j /∈J

µj

(
1

1− γj
(x̂j , X̂j)− γj

1− γj
(x,X)

)
.

Let σ := 1 +
∑
j /∈J

µjγj
1−γj , then

(x,X) =
∑
j∈J

µj
σ

(xj , xj(xj)T ) +
∑
j /∈J

µj
σ(1− γj)

(x̂j , X̂j),

which is a convex combination of points in C(G). Therefore, (x,X) ∈ C(G).

Using a continuity argument, Proposition 15 can be generalized to C(F)∩ int(L(H)) ⊆ C(G).

Corollary 3. If (x,X) ∈ C(F) and W •X + 2wTx+ ω < 0, then (x,X) ∈ C(G).

Proof. If (x,X) ∈ C(F), there exists a sequence { (xt, Xt) }t ⊆ C(F) such that (xt, Xt) → (x,X)

as t → ∞. Since W • X + 2wTx + ω < 0, for sufficiently large t, W • Xt + 2wTxt + ω < 0. By

Proposition 15, (xt, Xt) ∈ C(G). The proof is completed by taking t→∞.

Summarizing the above, we state the main theorem of this section as follows.
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Figure 4.1: In Example 2, C(G) is a bounded set while C(F) ∩ L(H) is unbounded.

Theorem 10. Under Assumptions 3 and 4, C(G) = C(F) ∩ L(H).

Proof. The forward direction “⊆” is easy since C(G) ⊆ C(F) ∩ C(H) ⊆ C(F) ∩ L(H). The other

direction is given by combining Proposition 14 and Corollary 3.

The non-intersecting assumption (Assumption 4) is essential in Theorem 10. We refer the

readers to [37] for counterexamples when W � 0 and the non-intersecting assumption is missing.

The following example shows that the nonzero assumption (Assumption 3) cannot be dropped.

Example 2. Let F = {x ∈ R | −x− 2 ≤ 0 } = [−2,∞), H = {x ∈ R | − x+ 1 ≥ 0} = (−∞, 1], and

G := F ∩H = [−2, 1]. Obviously, the non-intersecting assumption is satisfied as bd(H) = {1} ⊆ F .

However,

C(G) = { (x,X) ∈ R2 | X ≤ 2− x,X ≥ x2 } ,

which is a proper subset of

C(F) ∩ L(H) = { (x,X) ∈ R2 | −2 ≤ x ≤ 1, X ≥ x2 } .

We conclude this section with three corollaries of Theorem 10, which extend our main result

to sets defined by multiple quadratic constraints. LetH′ := {x ∈ Rn | xTWkx+ 2wTk x+ ωk ≤ 0, k ∈ K }

be a nonempty proper subset of Rn, where Wk ∈ Sn, wk ∈ Rn, ωk ∈ R, and K = {1, . . . , `}. Corre-

spondingly, we define

L(H′) :=
{

(x,X)
∣∣Wk •X + 2wTk x+ ωk ≤ 0, ∀ k ∈ K

}
.
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The first corollary is a direct extension of Theorem 10.

Corollary 4. For a nonempty closed set F ⊆ Rn and G = F ∩H′, C(G) = C(F) ∩ L(H′) under the

following assumptions.

Assumption 5. Wk 6= 0 for all k ∈ K.

Assumption 6. For all k ∈ K,

xTWkx+ 2wTk x+ ωk = 0 =⇒


x ∈ F ,

xTWjx+ 2wTj x+ ωj ≤ 0, ∀ j ∈ K \ {k}.

Proof. Let Hk := {x ∈ Rn | xTWkx+ 2wTk x+ ωk ≤ 0 } for each k ∈ K. We have H′ =
⋂
k∈K Hk.

When ` = 1, the statement is reduced to Theorem 10. For ` ≥ 2, the corollary can be proved by

repeatedly applying Theorem 10 to Hk and F ∩H1 ∩ · · · ∩ Hk−1.

The second corollary shows that C(G) = S(G) when G is defined by non-intersecting quadratic

constraints with nonzero Hessians. Special cases and variants of the corollary can be spotted in the

literature. To name a few: the non-binding constraints in [41], the generalized trust region subprob-

lem in [27], and the non-interacting constraints in [3].

Corollary 5. Let G = {x ∈ Rn | xTWkx+ 2wTk x+ ωk ≤ 0, k ∈ K } be a set defined by non-intersecting

quadratic inequalities with nonzero Hessian matrices. That is, for all k ∈ K, Wk 6= 0 and

xTWkx+ 2wTk x+ ωk = 0 =⇒ xTWjx+ 2wTj x+ ωj ≤ 0 ∀ j ∈ K \ {k}.

Then, C(G) = S(G) = { (x,X) |Wk •X + 2wTk x+ ωk ≤ 0, k ∈ K, X � xxT }.

Proof. Note that G can be decomposed as G = F∩H′, where F = Rn andH′ = G. Since Assumptions

5 and 6 are satisfied, Corollary 4 implies

C(G) = C(Rn) ∩ L(G)

= { (x,X) |Wk •X + 2wTk x+ ωk ≤ 0, k ∈ K, X � xxT }

= S(G).
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The last corollary can be interpreted as a sufficient condition for C(F ∩H′) = C(F)∩C(H′).

Note that C(F) ∩ L(H′) = C(F) ∩ S(H′). By Theorem 10 and Corollary 5, we have the following

statement.

Corollary 6. For a nonempty closed set F ⊆ Rn, C(F ∩H′) = C(F)∩ C(H′) under Assumptions 5

and 6.

4.3 Examples

In this section, we provide four examples to show how the theory in Section 4.2 can be

applied to derive new convex hull results in the lifted space. The first example is a toy example,

which is depicted in Figure 4.2.

Example 3. Let F := {x ∈ R2 | x1 ≥ 0, x2 ≥ 0 } be the nonnegative quadrant, H := {x ∈ R2| −

(x1 − x2)2 + 2x2 − 1 ≤ 0}, and G := F ∩ H. It is known that C(F) is the doubly nonnegative cone

[2], that is,

C(F) = { (x,X) | X � xxT , X ≥ 0, x ≥ 0 } .

Since bd(H) ⊆ G, the non-intersecting assumption (Assumption 4) is satisfied. Therefore, Theorem

10 indicates that

C(G) = C(F) ∩ L(H) =

 (x,X)

∣∣∣∣∣∣∣
−(X11 +X22) + 2X12 + 2x2 − 1 ≤ 0,

X � xxT , X ≥ 0, x ≥ 0

 .

The next example is a disjunctive mixed-integer set in R2. The closed convex hull of mixed-

integer sets in the lifted space have been widely studied, e.g. in [10] and [16]. We hope the derivation

the basic example can shed some light on future study of the geometry of the lifted closed convex

hull for more complicated mixed-integer sets.

Example 4. Let G := {x ∈ R2 | x1 − x2 ∈ {−1, 0, 1} } be a disjunctive set composed of the union of

three parallel lines, see Figure 4.3. We can rewrite G as a set defined by non-intersecting quadratic
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Figure 4.2: The first quadrant with a parabolic hollow.

inequalities. That is,

G =

 x ∈ R2

∣∣∣∣∣∣∣∣∣∣
(x1 − x2 − 1)(x1 − x2 + 1) ≤ 0,

−(x1 − x2 − 1)(x1 − x2) ≤ 0,

−(x1 − x2 + 1)(x1 − x2) ≤ 0

 .

Since the Hessians of the defining quadratic inequalites are nonzero, Corollary 5 indicates that

C(G) = S(G) =


(x,X)

∣∣∣∣∣∣∣∣∣∣∣∣∣

X11 +X22 − 2X12 − 1 ≤ 0

X11 +X22 − 2X12 − x1 + x2 ≥ 0

X11 +X22 − 2X12 + x1 − x2 ≥ 0

X � xxT


.

The problem we consider in the next example arises from an extension of the Weber Problem

[13] with restricted regions [1, 18].

Example 5. The Weber problem determines the location of a facility that minimizes the sum of the

transportation costs from this facility to n sites. In a traditional Weber problem, the transportation

costs are proportional to the Euclidean distance. However, in some realistic situations, it would be

more appropriate to assume that the transportation costs were proportional to the squared Euclidean

distance [13]. On the other hand, restricted regions have been taken into considerations for the
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Figure 4.3: Three parallel lines.

Weber problem and facility location problems [1, 18].

These restricted regions, while allowing travel through them, prohibit the placement of a

facility. Different shapes of the restricted regions have been considered, e.g. polyhedral restricted

regions and circular restricted regions [26].

In this example, we consider an extended Weber problem with squared Euclidean distance and

disjoint circular restricted regions. Let a1, . . . , an ∈ R2 be the location of n sites. The transportation

costs from a facility x ∈ R2 to ai (i = 1, . . . , n) is assumed to be wi‖x−ai‖22, where wi > 0 is a weight.

Let bk and rk be the center and radius, respectively, of the k-th restricted region (k = 1, . . . ,K). We

seek for an optimal location x of a facility, so that the total transportation costs are minimized and

x is not located in the interior of any of the K disjoint regions. The problem can be formulated as

a QCQP:

inf

n∑
i=1

wi‖x− ai‖22

s.t. ‖x− bk‖22 ≥ r2
k, k = 1, . . . ,K.

Despite of being nonconvex, the feasible region G := {x ∈ R2 | ‖x− bk‖22 ≥ r2
k } is defined by non-

intersecting quadratic inequalities with nonzero Hessians. Therefore, C(G) = S(G) by Corollary 5.
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The problem is then equivalent to a semidefinite program:

inf

n∑
i=1

wi(tr(X)− 2aTi x+ aTi ai)

s.t. tr(X)− 2bTk x+ bTk bk ≥ r2
k, k = 1, . . . ,K,

X � xxT .

In the last example, we regenerate a semidefinite reformulation for a generalized trust-region

subproblem with a milder assumption.

Example 6. The trust-region subproblem (TRS) minimizes a quadratic function over the unit ball.

It is well known that the standard semidefinite relaxation of TRS is exact. In this example, we

consider a generalized TRS with interval bounds.

inf xTQx+ 2qTx (GTRS)

s.t. ` ≤ xTAx+ 2aTx ≤ u,

where Q,A ∈ Sn, q, a ∈ Rn, and −∞ < ` ≤ u < ∞. Note that A is not necessarily positive

semidefinite.

This problem has been widely studied in the literature, e.g. [35, 27, 34]. It is shown in [34]

that the following semidefinite relaxation

inf Q •X + 2qTx (SDP-GTRS)

s.t. ` ≤ A •X + 2aTx ≤ u,

X � xxT

is exact under two assumptions:

1. (nonzero) A 6= 0;

2. (Slater’s condition) There exists x̂ such that ` < x̂TAx̂ + 2aT x̂ < u in the case when ` < u;

there exist x̂ and x̄ such that x̂TAx̂+ 2aT x̂ < 0 < x̄TAx̄+ 2aT x̄ in the case when ` = u.

With our approach, since G := {x ∈ Rn | ` ≤ xTAx+ 2aTx ≤ u } is defined by two non-
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intersecting quadratic inequalities, we have

C(G) = S(G) = { (x,X) | ` ≤ A •X + 2aTx ≤ u, X � xxT }

if A 6= 0. As a result, (SDP-GTRS) is exact as long as A 6= 0. Note that the second assumption

(Slater’s condition) in [34] is not required in our approach.

To illustrate the difference, we denote the Lagrangian dual problem of (GTRS) by (D-GTRS)

and denote the conic dual problem of (SDP-GTRS) by (SDD-GTRS). We also use v(·) to repre-

sent the optimal value of each problem. The approach in [34] proves that v(GTRS) = v(D-GTRS)

with both the nonzero assumption and the Slater’s condition. It is also shown in [34] that the

Slater’s condition for (GTRS) is equivalent to the one for (SDP-GTRS). Since v((SDP-GTRS)) =

v(SDD-GTRS) under the latter Slater’s condition and (SDD-GTRS) is an equivalent reformulation

of (D-GTRS), it is concluded that v((SDP-GTRS) = v(SDD-GTRS) = v(D-GTRS) = v(GTRS).

On the other hand, our approach directly connects (GTRS) and (SDP-GTRS) without consider-

ing the dual problem. Therefore, the Slater’s condition is not required to prove the exactness of

(SDP-GTRS). See Figure 4.4.

GTRS D-GTRS

SDP-GTRS SDD-GTRS

(1)A 6= 0 (3)

A 6= 0, Slater’s

(2)

(4)

Slater’s

Figure 4.4: A flowchart showing the two approaches mentioned in Example 6. Our direct approach
is only concerned with arc (1) whereas the method in [34] traverses arcs (2),(3) and (4).

4.4 Conclusion

For closed sets F and H′, we consider the relation between C(F ∩ H′) and C(F). We

show that C(F ∩ H′) = C(F) ∩ L(H′) = C(F) ∩ C(H′) when H′ is defined by quadratic constraints

with nonzero Hessians and the non-intersecting assumption is satisfied. This result generalizes the
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bounded case in [37] and other non-intersecting cases captured by Corollary 5. To prove the result,

we provide a complete characterization of the asymptotic cones of sets defined by a single quadratic

equality as a byproduct.
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Chapter 5

Sets with One Non-Intersecting

Linear Constraint

Chapter 4 decomposes a set G into two sets: F which possesses qualities with known results

and H, a quadratically defined complicating set defined by non-intersecting constraints (bd(H) ⊆

F). The method of proving these results fail when considering a non-intersecting affine constraint.

Example 2, in Chapter 4, highlights how the results in the previous chapter require refinement

in order to analyze the case with linear constraints. This chapter aims to approach this in two

directions. Direction one is the direct approach which considers the conditions for a halfspace to

induce a non-intersecting constraint. Under these conditions, the relation of asymptotic directions

between F and H can be used to extend the results of Chapter 4. The second approach is using

homogenizations mentioned in [31]. Defining a new non-intersecting relationship in the lifted, conic

space may produce more insight about the relationship between F and H.

5.1 Lifted Convex Hull Approach

Relaxing H to an affine linear constraint raises the question of if the boundary, bd(H), can

be contained in F . To simplify this analysis, unless stated otherwise, we assume F to be at most
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quadratic and define F , H as follows:

F =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
,

H =
{
x
∣∣ wTx+ ω ≤ 0

}
,

where, without loss of generality, ‖w‖ = 1. Answering this question is an application of the S-

Lemma [36], presented in Lemma 1 in Chapter 2. This theorem of alternatives has been used in

many comparisons of quadratic sets and is used to derive results relating objective functions to sets

defined by one constraint. Simplifying this to a quadratic constraint and a linear constraint, we have

the following lemma.

Lemma 16. Let F := {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 } and H := {x ∈ Rn | wTx+ ω ≤ 0 }. Then

H induces a non-intersecting constraint if and only if

 γ (a− ωAw)TB

(a− ωAw)BT BTAB

 � 0,

where γ = α − 2ωaTw + ω2wTAw and the columns of B ∈ Rn×(n−1) form an orthonormal basis of

the null space of w.

Proof. H induces a non-intersecting constraint in F if and only if

max {xTAx+ 2aTx+ α | wTx+ ω = 0 } ≤ 0. (5.1)

Using a null-space representation, we have that

{x ∈ Rn | wTx+ ω = 0 } = {By − ωw | y ∈ Rn−1 } .

We can rewrite (5.1) as

max { yTBTABy + 2(a− ωAw)TBy + γ } ≤ 0, (5.2)

where γ = α− 2ωaTw + ω2wTAw.
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From [31], we know that (5.2) is satisfied when

 γ (a− ωAw)TB

(a− ωAw)BT BTAB

 � 0.

Lemma 16 can be extended inductively to compare a set F defined by countably finite

quadratic inequalities by checking the requirement with each constraint individually. After deter-

mining whether H induces a non-intersecting constraint, the next goal is to define the relationship

of the asymptotic directions between F , H, and the intersection : G = F ∩H.

Proposition 16. Let H = {x ∈ Rn | wTx+ ω ≤ 0 }, and bd(H) ⊆ F , then F∞ ∩H∞ = G∞.

Proof. The reverse containment is trivial. Consider d ∈ F∞ ∩H∞. If wT d = 0, then d ∈ bd(H)∞ ⊆

G∞. Otherwise, wT d < 0. Then there exists a sequence {xi }i∈I ⊆ F such that ‖xi‖ → ∞ and

d = lim
i→∞

xi
‖xi‖

.

We have that

0 > lim
i→∞

1

‖xi‖
wTxi

= lim
i→∞

1

‖xi‖
(wTxi + ω).

Since wT d < 0 and ‖xi‖ > 0 for all i, there exists a subsequence {xj} such that wTxj + ω < 0.

Therefore, this subsequence is contained in G and d ∈ G∞.

Proposition 16 has no assumptions on the definition of the set F other than the containment

of the boundary of H. Recall that in Chapter 4, the asymptotic cone provides insight into the

recession cone of sets in the lifted space. That is, F∞ provides at least a partial understanding of

Rec(C(F)). In fact, since F is defined by a single quadratic constraint, the following proposition

provides a complete understanding of Rec(C(F)).
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Proposition 17. Let F := {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 }. Then

Rec(C(F)) = conv { (0, ddT ) | d ∈ F∞ } .

Proof. For the forward containment, note that

Rec(C(F)) = Rec(S(F)) = { (0, D) | A •D ≤ 0, D � 0 } ,

where S(F) is the Shor relaxation of F . Since D � 0, we can decompose D as

D =

r∑
i=1

did
T
i , where dTi Adi ≤ 0 ∀i = 1, . . . , r, r = rank(D).

Since dTi Adi ≤ 0, d ∈ F∞ for all i = 1, . . . , r and (0, D) ∈ conv
{

(0, ddT ) | d ∈ F∞
}
. To see the

reverse containment, note that for (0, D) ∈ conv
{

(0, ddT ) | d ∈ F∞
}

, D is a convex combination

of rank-one products of elements in F∞. Therefore D � 0 where

A •D = A •
r∑
i

λidid
T
i =

r∑
i

λiA • didTi ≤ 0.

Expanding Proposition 17 for an F defined by multiple constraints runs into issues for the

forward containment of the previous proof. That is, after performing a rank-one decomposition with

regard to one constraint, a relation for the remaining constraints has yet to be found.

For the analysis, F is a quadratically defined set. The non-intersecting assumption provides

a rather uninteresting case for when F is defined as an affine, linear set. Geometrically, the assump-

tion limits the boundaries of F and H to being parallel hyperplanes. Algebraically, we have that for

F =
{
x
∣∣ aTx+ α ≤ 0

}
, then H =

{
x
∣∣ βaTx+ ω ≤ 0

}
.

Proposition 18. Let F = {x ∈ Rn | aTx+ α ≤ 0 } and H = {x ∈ Rn | βaTx+ ω ≤ 0 } where,

a 6= 0, β ∈ R \ {0}, and G = F ∩H 6= ∅. If bd(H) ⊆ F , then one of the following is true:

1. β > 0 and G = F ∩H = H, or

2. β < 0 and C(G) 6= C(F) ∩ L(H),
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where

L(H) :=
{

(x,X)
∣∣W •X + βaTx+ ω ≤ 0

}
=
{

(x,X)
∣∣ βaTx+ ω ≤ 0

}
.

Proof. Item 1 is trivial since β > 0, so H ⊆ F . If β < 0, then, using Proposition 3, G∞ ={
d ∈ Rn

∣∣ aT d = 0
}

(
{
d ∈ Rn

∣∣ aT d ≤ 0
}

= F∞. Therefore, by Proposition 17, Rec(C(F)) 6=

Rec(C(G)) it is easy to see Rec(C(F) ∩ L(H)) 6= Rec(C(G)).

Therefore, in order for the results of Chapter 4 to hold when H is defined as a half-space, F ,

assuming F is defined by a single constraint, must either be defined by a strictly quadratic constraint

(A 6= 0) or G = H. In particular, Proposition 18 highlights the issue with Example 2 describing how

G, and C(G) as consequence, is bounded. However, for the sake of continuing an analysis, F will

be defined with A 6= 0. This leads to the question of under what conditions of (a,A) will H induce

a non-intersecting constraint in F . There are only three cases of F such that a half-space H may

possibly induce a non-intersecting constraint:

1. A � 0,

2. A indefinite, and

3. A � 0 and a ∈ Range(A).

Note that the case of A � 0 where a 6∈ Range(A) is not on the list of possible cases. This case can

be ruled out with the following proposition:

Proposition 19. Let F =
{
x ∈ Rn

∣∣ xTAx+ 2aTx+ α ≤ 0
}

be a nonempty set with A � 0

nonzero and H =
{
x ∈ Rn

∣∣ wTx+ ω ≤ 0
}

. Then bd(H) ⊆ F only if a ∈ Range(A) and rank(A) ≤

1.

Proof. Suppose that bd(H) ⊆ F . By Lemma 16, bd(H) ⊆ F if and only if

T =

 γ (a− ωAw)TB

(a− ωAw)BT BTAB

 � 0,

where γ = α − 2ωaTw + ω2wTAw and the columns of B ∈ Rn×(n−1) form an orthonormal basis of

the null space of w. This implies that the principal minor BTAB � 0. Combining this with A � 0,

we have that BTAB = 0 and AB = 0. This has two implications. First, since the columns of B
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form an orthonormal basis of w, rank(B) = n − 1 and as such, rank(A) ≤ 1 where A = κwwT for

some κ ≥ 0. Second, since T � 0 and BTAB = 0, then the corresponding rows and columns are

also 0, i.e (a− ωAw)TB = 0. Then

0 = (a− ωAw)TB = aTB − ωwTATB = aTB − ωwTAB = aTB.

As a result of this, a ∈ Range(A). Otherwise, aTB 6= 0 which is a contradiction to T � 0.

From Proposition 19, Case 3 is not as interesting as the previous two cases. From Proposition

19, we know that if bd(H) ⊆ F then A = κ1ww
T for some κ1 ≥ 0 and a = κ2w for κ2 ∈ R. If A = 0,

then F is reduced to a halfspace (assuming a = 0) which is discussed in Proposition 18. Otherwise,

F can be rewritten as follows:

F =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
=
{
x
∣∣ xTκ1ww

Tx+ 2κ2w
Tx+ α ≤ 0

}
=
{
x
∣∣ κ1(wTx)2 + 2κ2w

Tx+ α ≤ 0
}

=
{
x
∣∣ ` ≤ wTx ≤ u } , for some ` ≤ u.

That is, if bd(H) ⊆ F , then F can be described as the region between two parallel hyper-

planes. With this in mind, we only consider the case when A 6� 0 and have the following propositions

relating to the symmetry of the asymptotic directions of F and its impact on the recession cone

Rec(C(G)).

Proposition 20. Let F =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
such that A 6� 0. Then for H = {x ∈ Rn | wTx+ ω ≤ 0 }

such that H induces a non-intersecting constraint in F ,

{ (0, ddT ) | d ∈ F∞ } = { (0, ddT ) | d ∈ F∞ ∩H∞ } .

Proof. Since A 6� 0, by Proposition 3, if d ∈ F∞ then −d ∈ F∞. Since H is a halfspace, d ∈ H∞ or

−d ∈ H∞. Therefore,

(0, ddT ) ∈ { (0, ddT ) | d ∈ F∞ ∩H∞ } = { (0, ddT ) | d ∈ F∞ } .
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Proposition 20, along with Proposition 12, fills in the picture for when F is a quadrat-

ically defined set where A 6= 0 and H is defined by a halfspace where bd(H) ⊆ F , the set

{ (0, ddT ) | d ∈ F∞ ∩H∞ } is no more difficult to calculate than { (0, ddT ) | d ∈ F∞ }. This rela-

tionship helps define the recession cone of the lifted convex hull of the intersection.

Proposition 21. Let F := {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 } for A 6� 0,

H := {x ∈ Rn | wTx+ ω ≤ 0 }, and bd(H) ⊆ F . Then, for G = F ∩H, Rec(C(G)) = Rec(C(F)).

Proof. We know that Rec(C(G)) ⊆ Rec(C(F)). For the other direction,

Rec(C(F)) = conv { (0, ddT ) | d ∈ F∞ } = conv { (0, ddT ) | d ∈ G∞ } ⊆ Rec(C(G)),

where the second equality comes from Propositions 16 and 20.

With a complete understanding of Rec(C(G)) with regards to C(F), the relationship between

C(G) and C(F) can be completed with the following proposition.

Proposition 22. Let F := {x ∈ Rn | xTAx+ 2aTx+ α ≤ 0 }, A 6� 0, and H := {x ∈ Rn | wTx+ ω ≤ 0 }

where bd(H) ⊆ F . Then C(G) = C(F) ∩ L(H).

Proof. The forward containment is straightforward. For the reverse containment, let (x,X) ∈ C(F)∩

L(H). If X = xxT , then x ∈ F ∩H = G and (x, xxT ) ∈ C(G). Otherwise, since (x,X) ∈ C(F), then

(x,X) =
∑
i∈I

λi(x
i, xi(xi)T ) +

∑
j∈J

λj(x
j , xj(xj)T ),

where I = { i | wTxi + ω ≤ 0 }, J = { j | wTxj + ω > 0 }, and (x,X) is a convex combination of

(xi, xi(xi)T ) ∈ C(F) for all i ∈ I ∪ J . Since (x,X) ∈ L(H), |I| ≥ 1 where (xi, xi(xi)T ) ∈ L(H) for

i ∈ I. For any j ∈ J , say (xj , xj(xj)T ) /∈ L(H), then there exists (yj , Yj) ∈ bd(L(H)) such that

(yj , Y j) = µj(x,X) + (1− µj)(xj , xj(xj)T ),
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where µj ∈ [0, 1]. Solving for (x,X) for all j ∈ J , we have

(x,X) =
∑
i∈I

λi
σ

(xi, xi(xi)T ) +
∑
j∈J

λj
σ(1− µj)

(yj , Y j),

where σ := 1+
∑
j∈J

λjµj

1−µj
. Since bd(H) ⊆ F , for all j ∈ J , (yj , Y j) = (yj , yj(yj)T )+κj(0, D

j), where

(yj , yj(yj)T ) ∈ C(F) ∩ L(H), κj ≥ 0, and (0, Dj) ∈ Rec(C(F)). Since (yj , yj(yj)T ) ∈ C(F) ∩ L(H),

(yj , yj(yj)T ) ∈ C(G). Also, by Proposition 21, (0, Dj) ∈ Rec(C(G)). Therefore, since (x,X) can

be represented by a convex combination of extreme points and a conic combination of recession

directions of C(G), (x,X) ∈ C(G).

In conclusion, if the complicating set H is defined by a non-intersecting affine linear con-

straint, then the results of Chapter 4 hold. However, there are two drawbacks. The first is that as

F is composed of more constraints, the non-intersecting assumption becomes harder to attain. The

second is addressed with Proposition 18, when the addition of an affine linear constraint carries the

possibility of removing the unboundedness of G. This is the issue presented in Example 2.

5.2 Homogenizations

The previous section demonstrates the need for extra resources to extend the theory of

Chapter 4. Instead of applying concepts and theory directly to the intersection of sets, perhaps

an intermediary step can derive a more explicit description. For a given set F , we consider the

homogenization H (F) as follows:

Definition 3. [Homogenization] Let F be a closed set, then

H (F) := cl

{(
t

x

) ∣∣∣∣ t > 0,
x

t
∈ F

}
. (5.3)

This set has another representation with a more intuitive form.

Lemma 17 ([15]). Let F ⊆ Rn be a nonempty closed set. Then

H (F) = cl cone({ 1 } × F) = cone({ 1 } × F) ∪ ({ 0 } × F∞).

After a quick inspection, it is easy to see that H (F) is a cone. In fact, H (F) has a
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similar decomposition to the closed positive hull described in [29]: one piece related to the set and

the second related to the asymptotic cone. Instances of the homogenization of a set has occurred

multiple times in literature. For example, describing the lifted convex hull of a set defined by a

single quadratic inequality [31] and in the analysis of the semidefinite representation of nonconvex

quadratic programs [15]. Using homogenizations in relation to Chapter 4 with the non-intersecting

assumption requires knowledge of the boundary of a homogenized set. Equation (5.3), while being

straightforward, does not provide a direct understanding of H (F) when t approaches 0. Consider

the following proposition:

Proposition 23. Let F ⊆ Rn be a closed nonempty set. Then

bd

{(
t

x

) ∣∣∣∣ xt ∈ F , t > 0

}
⊆
{(

t

x

) ∣∣∣∣ xt ∈ bd(F), t > 0

}
∪
{(

0

x

) ∣∣∣∣ x ∈ F∞ } .
Proof. Denote A =

{
(t, x)

∣∣ x
t ∈ F , t > 0

}
and let (t, x) ∈ bd(A). If

1. t = 0, then since H (F) = cl(A), bd(A) ⊆H (F) and (0, x) ∈ ({ 0 } × F∞).

2. t > 0, then y = x
t /∈ int(F). Otherwise, there exists ε > 0 such that Bε(xt ) ⊆ int(F). For M

being the minimum distance between x
t and the boundary of F , 0 < ε < M . Consider δ > 0

such that for any t > 0, tε < (t− δ)M and the set

B̂ = [t− δ, t+ δ]× tBε
(x
t

)
.

Then for any given t̂ ∈ [t−δ, t+δ], the distance between any point (t̂, y) ∈ B̂ and the boundary

of A is strictly greater than tε and B̂ ⊆ int(A). Hence, (t, x) is not a boundary point of A.

Therefore, x
t ∈ bd(F) and (t, x) ∈ cone({ 1 } × bd(F)).

Proposition 23 highlights that as t approaches 0, the behavior of H (F) is determined by

the asymptotic cone F∞. With this understanding, the boundary, bd(H (F)), can be fully defined.

Proposition 24. Let F ⊆ Rn be a closed nonempty set. Then

bd(H (F)) =

{(
t

x

) ∣∣∣∣ xt ∈ bd(F), t > 0

}
∪
{(

0

x

) ∣∣∣∣ x ∈ F∞ } .
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Proof. (⊆). From Proposition 23, we know that

bd cl

{(
t

x

) ∣∣∣∣ xt ∈ F , t > 0

}
= bd

{(
t

x

) ∣∣∣∣ xt ∈ F , t > 0

}
⊆
{(

t

x

) ∣∣∣∣ xt ∈ bd(F), t > 0

}
∪
{(

0

x

) ∣∣∣∣ x ∈ F∞ } .
(⊇). Let (t, x) ∈

{
(t, x)

∣∣ x
t ∈ bd(F), t > 0

}
. First, we show that (t, x) ∈ H (F). For

all ε > 0, Bε
(
x
t

)
∩ F 6= ∅ and Bε

(
x
t

)
∩ FC 6= ∅, where FC is the complement of F . Also, since

x
t ∈ bd(F), 1× x

t ∈ cone({ 1 } × bd(F)) ⊆ cone({ 1 } × F) ⊆H (F) and (t, x) ∈H (F).

To show that (t, x) ∈ bd H (F), note that Bε
(
x
t

)
∩ F 6= ∅, Bε

(
x
t

)
∩ FC 6= ∅, and there

exists ŷ ∈ Bε
(
x
t

)
∩ F and ȳ ∈ Bε

(
x
t

)
∩ FC . Consider the set

t× tBε(x) = t× Btε(x).

Since ŷ ∈ Bε
(
x
t

)
∩F 6= ∅, (t, tŷ) ∈ (t×Btε(x))∩H (F). Similarly, (t, tȳ) ∈ (t×Btε(x))∩ int H (FC).

Since int H (FC) ⊆H (F)C , (t, tȳ) /∈H (F). Therefore, (t, x) ∈ bd(H (F)).

Since { (0, x) | x ∈ F∞ } is an exposed face of H (F), any element (0, x) ∈ { (0, x) | x ∈ F∞ }

is in the boundary of H (F).

Proposition 24 quickly disproves the idea that bd(H (F)) = H (bd(F)). This only occurs

when F∞ = bd(F∞). In order to build a connection to Chapter

4 with the non-intersecting assumption, we need to understand how non-intersecting in the

homogenized space affects the original space.

Proposition 25. Let F , H be closed, nonempty sets. If bd(H (H)) ⊆H (F) then bd(H) ⊆ F .

Proof. Let x ∈ bd(H). Then, by Proposition 24, (t, tx) ∈ bd(H (H)) ⊆H (F) for all t > 0. Setting

t = 1, we have that (1, x) ∈H (F) and x
1 = x ∈ F .

Proposition 25 provides only one direction in the relation. This is due to the asymptotic

cone. Suppose there are two sets F , H such that

{(
0

x

) ∣∣∣∣ x ∈ H∞ } 6⊂ {(0

x

) ∣∣∣∣ x ∈ F∞ } ,
and thus bd(H (H)) is not contained in H (F). Viewing this directly in the scope of Chapter 4, the
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direct extension to homogenizations may not provide the same quality of results. However, there is

a level of symmetry in quadratic constraints that could be used.

5.2.1 Set Defined by a Single Quadratic Constraint

Focusing this analysis, let F ⊆ Rn be a closed, quadratically defined set,

F := {x | xTAix+ 2aTi x+ αi ≤ 0, i ∈ I } ,

with the following homogenization:

H (F) := cl

{(
t

x

) ∣∣∣∣ t > 0, xTAix+ 2taTi x+ αit
2 ≤ 0, i ∈ I

}
. (5.4)

For this discussion, set |I| = 1 such that F is defined by a single quadratic constraint with parameters

A ∈ Sn, a ∈ Rn, and α ∈ R. In general, describing the homogenization of F requires the closure

presented in (5.4). In terms of a quadratically defined set, this is due to the asymptotic cone, F∞,

and its relation to the Hessian A. Consider the inequality

xTAx+ 2taTx+ αt2 ≤ 0. (5.5)

When t = 0, xTAx ≤ 0. By Proposition 3, we know that F∞ ⊆
{
x
∣∣ xTAx ≤ 0

}
with equality if

and only if A 6� 0. This is due to, when A � 0, F∞ also depends on the linear inequality aTx ≤ 0.

This additional information is lost in (5.5) when t = 0. Therefore, when F is defined by a single

quadratic inequality, we have the following proposition:

Proposition 26. Let F =
{
x
∣∣ xTAx+ 2aTx+ α ≤ 0

}
be a nonempty set. Then

H (F) ⊆
{(

t

x

) ∣∣∣∣ t ≥ 0, xTAx+ 2taTx+ αt2 ≤ 0

}
,

with equality when A is not a positive semidefinite matrix.

Proof. It is straightforward that

cone({ 1 } × F) ⊆
{(

t

x

) ∣∣∣∣ t ≥ 0, xTAx+ 2taTx+ αt2 ≤ 0

}
.
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By Lemma 17, we only need to consider { 0 } × F∞. Let A be a non positive semidefinite matrix.

Then F∞ =
{
x
∣∣ xTAx ≤ 0

}
and

{(
t

x

) ∣∣∣∣ t = 0, xTAx ≤ 0

}
=

{(
0

x

) ∣∣∣∣ x ∈ F∞ } .
Otherwise, if A � 0 (A could be the zero matrix), then F∞ ⊆

{
x
∣∣ xTAx ≤ 0

}
and the claim

holds.

When F is defined by a single, quadratic constraint, H (F) can be explicitly defined by

two constraints. If the Hessian A is not positive-semidefinite, then its formulation is presented in

Proposition 26. Since Chapter 4 relied on the complicating set being defined a single constraint,

this implies that Theorem 10 may have difficulties extending to the homogenized case. Similar to

Chapter 4, the boundary of conv
{
yyT

∣∣ y ∈ G } ∩ conv
{
yyT

∣∣ y ∈H (F)
}

is defined in terms of

bd(H (F)) for some cone G. Then, when considering a point X in the interior of the intersection, a

rank one decomposition of X is used where the points are contained in conv
{
yyT

∣∣ y ∈ G }. If all

of the rank-1 points are contained in conv
{
yyT

∣∣ y ∈H (F)
}

, then X is contained in the convex

hull of the intersection. Otherwise, the rank-1 point will be written as a convex combination of X

and some point in bd conv
{
yyT

∣∣ y ∈H (F)
}
.

Proposition 27. Let G ⊆ Rn+1 be a cone and F =
{
x ∈ Rn

∣∣ xTAx+ 2aTx+ α ≤ 0
}

be a closed

set such that bd(H (F)) ⊆ G. Then

conv
{
yyT

∣∣ y ∈ G ∩H (F)
}

= conv
{
yyT

∣∣ y ∈ G } ∩ conv
{
yyT

∣∣ y ∈H (F)
}
.

Proof. For ease of notation, for any set S, let

Ĉ(S) =
{
yyT

∣∣ y ∈ S } .
The forward containment is straightforward. As for the reverse containment, denote

Â =

α aT

a A

 .

It suffices to show that Ĉ(G ∩H (F)) ⊇ Ĉ(G) ∩ S(H (F)), where S(H (F)) is the Shor Relaxation
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of H (F) defined below [31]:

S(H (F)) =
{
Y ∈ Sn+1

∣∣∣ Y • Â ≤ 0, Y � 0
}
.

First, consider elements of Ĉ(G) that exist along the boundary of S(H (F)) pertaining to
{
Y
∣∣∣ Â • Y = 0, Y � 0

}
.

Let Y ∈ Sn+1
+ with rank r such that Â • Y = 0. Since Y � 0, a rank-one decomposition yields

Y =

r∑
i=1

yiy
T
i , yi =

ti
xi

 , yTi Âyi = 0, i = 1, . . . , r.

If ti = 0, then xTi Axi = 0. If A 6� 0, then xi ∈ F∞ and, by Definition 24, yi ∈ bd(H (F)) ⊆ G.

Therefore, yi ∈ G ∩H (F). Otherwise, by Proposition 4, we have that xi ∈ F∞ or −xi ∈ F∞. Since

yiy
T
i = −yi(−yi)T , (5.6)

then

yiyi =

(
0

xi

)(
0

xi

)
=

(
0

−xi

)(
0

−xi

)
.

Without a loss of generality, choose xi or −xi such that yi ∈ G ∩ bd(H (F)).

If ti > 0, then

(
ti
xi

)
= ti

(
1
xi

ti

)
,

1

t2i
(xTi Axi + 2tia

Txi + αt2i ) = 0,

and yi ∈ cone({1} × bd(F)) ⊆ bd(H (F)) ⊆ G.

If ti < 0, then by using (5.6), choosing yi = −yi and following the ti > 0 case, yi ∈

cone({1} × bd(F)) ⊆ bd(H (F)) ⊆ G. Therefore, since Y is a conic combination of elements in

G ∩H (F), then Y ∈ Ĉ(G ∩ F).

Now, consider Y ∈ Ĉ(G) such that Â • Y < 0. Since Y ∈ Ĉ(G), then Y can be expressed by

the following conic combination

Y =
∑
i∈I

yiy
T
i +

∑
j∈J

yjy
T
j , (5.7)

where Â • yiyTi ≤ 0 for all i ∈ I and Â • yjyTj > 0 for all j ∈ J . For each j ∈ J , since the set
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bd(H (F)) separates yjy
T
j and Y , then there exists Ŷj ∈ bd(H (F)) ⊆ G such that

Ŷj = γjY + (1− γj)yjyTj , γ ∈ (0, 1).

Solving this for yjy
T
j = (1− γ)−1(Ŷj − γY ) and substituting this into (5.7), we have that

Y =

1 +
∑
j∈J

γj
(1− γj)

−1 ∑
i∈I

λiyiy
T
i +

∑
j∈J

Ŷj
(1− γj)

 .
Therefore, Y is a conic combination of elements in Ĉ(G ∩H (F)).

In relation to the results presented in Chapter 4, Proposition 27 requires the stronger as-

sumption of bd(H (F)) ⊆ G. In Chapter 4, only the boundary of H needs to be contained in F and

as such, bd(H)∞ ⊆ (F)∞. Under the assumption for Proposition 27, (H)∞ ⊆ (F)∞.

5.3 Conclusion

This chapter explored the non-intersecting linear constraint in two ways. First, a direct ap-

proach was utilized when the original set, F , is defined by a single quadratic constraint. This method

explored the symmetry of the asymptotic cone over a halfspace. However, with more constraints

defining F , this analysis falls short without an explicit description of the recession cone Rec(C(F)).

In the second section the non-intersecting assumption is explored in terms of the homogenization

H (F). This assumption led to a sufficient condition for when the closed, lifted convex hull of the

intersection of a cone and a non-intersecting homogenization is equal to the intersection of closed,

lifted convex hulls similar to Chapter 4. Despite providing a new result with a non-intersecting set

defined by two constraints, the downside of the strictness of the non-intersecting assumption in the

homogenized space makes finding applications more difficult.
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Chapter 6

Existence of Optimal Solutions

While the previous chapters were concerned with reformulating problems in order to find

an optimal solution, this chapter focuses on whether that optimal solution exists or not. According

to the Weierstrass Theorem, optimizing a continuous function over a compact set will attain it’s

optimal value. Extending this to unbounded feasible regions, there are three possibilities: the

objective function is unbounded over the set, the optimal solution can be attained, or the optimal

value is finite but it is not obtainable. Consider the following program

min f(x) (Opt)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

where the set defined by { x | gi(x) ≤ 0, i = 1, . . . ,m } is non-empty. If f and gi are affine linear

functions, then we are solving a linear program, which will always obtain its optimal solution if the

optimal value is finite. Extending this to a quadratic program with a quadratically defined objective

function over affine linear constraints, the Frank-Wolfe Theorem states that if min f(x) is bounded

over the feasible region then the optimal solution is obtained [23]. The goal of this chapter is to

explore and expand on the Frank-Wolfe theorem in terms of quadratically constrained quadratic

programs (QCQP) :
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inf f(x) = xTA0x+ 2aT0 x (QCQP)

s.t. gi(x) = xTAix+ 2aTi x+ αi ≤ 0, i = 1, . . . ,m;

where Ai ∈ Sn, ai ∈ Rn for i = 0, 1, . . . ,m, and αi ∈ R for i = 1, . . . ,m. For ease in describing the

asymptotic cones related to (QCQP), we define the lower level sets of f(x) as

Sk := {x | f(x) ≤ γk } ,

and the feasible region as

F := {x | gi(x) ≤ 0, i = 1, . . . ,m } .

For example, consider the QP1QC, an instance of (QCQP) where m = 1. Hsia, Lin, and Sheu [19]

provided results based on the matrix pencil, a tool used in the generalized eigenvalue problem, and

the set below.

I�(A0, A1) = { σ ∈ R | A0 + σA1 � 0 } .

When investigating the existence and attainability of optimal solutions for QP1QC, their results

are listed in Figure 6.1. Extending this to more than one constraint, Luo and Zhang [22] provided

I�(A0, A1)
QP1QC

unbounded attainable unattainable

∅ X x x
{σ } X X X

[σmin, σmax] X X x

Figure 6.1: Table of results from Hsia, Lin, and Sheu[19] using the matrix pencil to determine the
attainability of an optimal solution for QP1QC.

several positive and negative results in relation to the initial problem, (Opt), that also apply to

(QCQP).

1. If f(x) is convex and at least one of the constraint functions gi(x) is nonlinear and nonconvex,

then the optimal solution to (QCQP) is not attainable in general.

2. If f(x) is non-convex and at least two or more functions gi(x) are nonlinear (but convex), then

the optimal solution of (QCQP) is not attainable in general.
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3. If f(x) is non-convex and at most one of the constraint functions gi(x) is nonlinear (but convex),

then the problem is unbounded or the optimal solution to (QCQP) is always attained.

4. If f(x) is quasi-convex over the feasible region and all of the constraint functions gi(x) are

convex, then the problem is unbounded or the optimal solution of (QCQP) is always attained.

It requires mention that item 4 does not extend to the feasible region being convex. Consider the

problem

inf x2
1

s.t. x1x2 ≥ 1

x2 ≥ 0.

This problem is bounded below by 0, but the solution cannot be attained.

These results can be expanded upon even further. Tam and Nghi [32] provided existence

results based on a stronger relationship between the objective function and the quadratic constraints.

With Proposition 28 below, they extended the results for an arbitrary quadratic objective function

f(x) and a finite amount of quadratic constraints with a positive semidefinite Hessian. Consider the

following notation and proposition:

I1 = { i ≥ 1 | Ai 6= 0, Ai � 0 } .

Proposition 28 ([32]). Consider problem (QCQP). Assume that F is nonempty and fi(x) is

convex for all i = 1, . . . ,m, f(x) is bounded from below over F , and one of the following conditions

is satisfied:

1. The set I1 contains at most one element;

2. If v ∈ Rec(F) such that vTA0v = 0 then aTi v = 0 for all i ∈ I1.

Then (QCQP) has a solution.

When |I1| = 1, Proposition 28 is the same result as item 3 from [22]. When |I1| > 1, then

there is a relationship between the recession directions of the quadratic constraints gi(x), i ∈ I1 and

the asymptotic directions of the lower level sets Sk. While the proof of their result uses a modified
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definition of retractiveness mentioned earlier in Chapter 3, it can be recovered from [5] with the

following proposition:

Proposition 29 ([5]). Let f : Rn → (−∞,∞] be a closed proper function, and let F be a closed set

such that F ∩ dom(f) 6= ∅. Assume that:

1. All the asymptotic directions of F are retractive, local horizon directions.

2. For every decreasing scalar sequence { γk } such that the sets

Sk = F ∩ {x | f(x) ≤ γk } , k = 0, 1, . . . ,

are nonempty, for every asymptotic direction d of {Sk }, and for each x ∈ F , we either have

limα→∞f(x+ αd) = −∞, or else f(x− d) ≤ f(x).

Then f attains a minimum over F if and only if the optimal value infx∈F f(x) is finite.

With the analysis of asymptotic directions in Chapter 3, we know that for a quadratically

defined set, assumption 1 of Proposition 29 is not true in general. However, this assumption can be

relaxed to only requiring the asymptotic directions of F∩Sk to be retractive, local horizon directions

with respect to F . Also, assumption 2 is always true when f is defined as a quadratic function [5].

In this chapter, we are interested in (QCQP) when one of the quadratic constraints is

defined by an indefinite Hessian. In Section 6.1, the assumptions of Proposition 28 are analyzed

and expanded upon. In Section 6.2, we explore assumption 1 of Proposition 29. In particular, how

this assumption relates to the intersection of halfspaces and one quadratic constraint defined by an

indefinite Hessian. A specific instance of (QCQP) is examined under the lens of the “center” of a

quadratically defined set. A conjecture of this property will provide a means of checking assumption

1 of Proposition 29.

6.1 Convex Constraints and One Indefinite Constraint

With Proposition 28, Tam and Nghi find a relation between an arbitrary quadratic objective

function and a convex set defined by halfspaces and convex quadratic constraints. The interesting

part behind this proposition is assumption 2. That is, if v ∈ Rec(F) such that vTA0v = 0 then

aTi v = 0 for all i ∈ I1. In terms of asymptotic directions, if v ∈ Rec(F) then v is an asymptotic
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direction of F . Also, if vTA0v = 0, then v is possibly an asymptotic direction of the lower level

sets of the objective function (requires aT0 d ≤ 0 if A0 � 0). Combining these two concepts with

the idea of retractive, local directions, the assumption states that if on has an asymptotic direction

of the feasible region that is an asymptotic direction of the boundary of the lower level sets of the

objective function, then it should be a retractive, local horizon direction of F . This can be seen in

the following proof of Proposition 28 using Proposition 29.

Recovering Proposition 28 with Proposition 29. To show that Proposition 28 is a direct consequence

of Proposition 29, it suffices to prove that all the asymptotic directions of F that are also asymptotic

directions of some sub-level set of f are retractive local horizon directions of F . Since F is convex, all

asymptotic directions of F are local horizon directions. Therefore, we only show the retractiveness

of such a direction.

For any sub-level set Sk := {x | f(x) ≤ k } of f ,

(Sk)∞ = { d | dTQd ≤ 0 } .

Let v ∈ F∞ ∩ (Sk)∞ =
⋂
i∈I(Fi)∞ ∩ (Sk)∞, and let {xk} ⊆ F be a sequence such that

‖xk‖ → ∞ and lim
k→∞

xk
‖xk‖

=
v

‖v‖
.

For each i ∈ I \ I1, by item 1 of Proposition 9, Fi is retractive because it is a closed half space.

Therefore, v is a retractive direction of Fi. That is, there exists ki ≥ 0 such that

gi(xk − v) ≤ 0 ∀ k ≥ ki.

Now consider i ∈ I1. If vTQv < 0, for any x ∈ F , x+ αd ∈ F for all α ≥ 0 and

lim
α→∞

f(x+ αv) = −∞,

which contradicts to the assumption that f is bounded from below over F . If vTQv = 0, then the

assumption in Proposition 28 indicates that qTi v = 0 for all i ∈ I1. In this case, for any x ∈ F and

i ∈ I1,

gi(x− v) =
1

2
xTQix− xTQiv +

1

2
vTQiv + qTi x− qTi v + ci = gi(x) ≤ 0.
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In particular, gi(xk − v) ≤ 0 for all k. Overall, we have shown that v is a retractive direction of

F .

Geometrically, if v is a local horizon direction of F and an asymptotic direction in relation to

the objective function, then it must be a retractive direction in relation to all nonlinear constraints.

In theory, this proposition can be extended to cover feasible regions defined by two quadratic

constraints g1 and g2, where g1 is defined by an indefinite Hessian and g2 is defined by a positive

semidefinite Hessian. The first question is how do we define the asymptotic directions of their

intersection? Consider the following set of lemmas and propositions.

Lemma 18 ([5]). Let F1 and F2 be closed sets such that F1 ∩ F2 6= ∅. Then a vector which is a

horizon direction of both F1 and F2 with respect to a common set G is also a horizon direction of

F1 ∩ F2 with respect to G.

Proposition 30. Let F = {x | fi(x) ≤ 0, i = 1, 2 } 6= ∅ where A1 indefinite and A2 � 0. If d ∈ F∞

such that dTA1d < 0 then d is a local horizon direction of F .

Proof. We have shown in Proposition 7 that for any d ∈ (F1)∞ such that dTA1d < 0, d is a global

horizon direction of F1. Therefore, for any d ∈ (F1)∞ such that dTA1d < 0, d is a horizon direction

of F1 with respect to F . Now, since F2 is convex, any d ∈ (F2)∞ is a local horizon direction of F2,

and, thus, a horizon direction of F2 with respect to F . Combining the observation above with, for

any d ∈ F∞ ⊆ (F1)∞ ∩ (F2)∞, and Lemma 18 implies that d is a local horizon direction of F .

Proposition 30 builds the relation for when the regions F1 and F2 share local horizon

directions with respect to their intersection, then those directions are local horizon directions of

said intersection. This concept can be extended to having multiple indefinite constraints as long as

dTAjd < 0 for all indefinite Hessians Aj . Likewise, multiple positive semidefinite constraints can

be added with only the precaution that F can become bounded. However, being a local horizon

direction is only one requirement of Propositions 28 and 29 and the assumption of retractiveness

must be checked.

Proposition 31. Let F =
⋂
i Fi and d ∈ F∞ be a retractive asymptotic direction of Fi, i = 1, . . . ,m.

Then d is retractive direction of F .

Proof. Let d ∈ F = (
⋂
i Fi)∞ such that d is a retractive direction of Fi for all i = 1, . . . ,m. Since d

is a retractive direction of F1, then for every corresponding asymptotic sequence { xk } ⊆ F1 with
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respect to d, f1(xk − d) ≤ 0 for all k ≥ k̄. Since d ∈ F∞, then every corresponding asymptotic

sequence { x̄k } ⊆ F ⊆ F1 is a subsequence of some { xk } ⊆ F1. Therefore, for all k ≥ k̄1,

f1(xk − d) ≤ 0.

Continuing this process for all Fi, i = 1, . . . ,m. Then for all k ≥ max{k̄1, . . . , k̄m}, fi(xk −

d) ≤ 0 for all i = 1, . . . ,m. Therefore, d is a retractive asymptotic sequence of F .

With the previous proposition, a direction of the intersection of sets is a retractive direction

with respect to each of the components then the direction is retractive with respect to the intersec-

tion. If we are able to find properties that satisfy both Propositions 30 and 31 with respect to the

intersection, then we satisfy the assumptions of Proposition 29. From Chapter 3, we know that for

a quadratic set defined by an indefinite Hessian, d ∈ bd(F∞) is not retractive in general. Likewise,

if d is an asymptotic direction of a quadratic set defined by a positive semi-definite Hessian Ai, then

aTi d = 0 for d to be retractive. This leads to the following result.

Theorem 11. Let F = {x | fi(x) ≤ 0, i = 1, 2 } where A1 indefinite and A2 � 0. Assume that g(x)

is bounded from below over F and the following conditions are satisfied:

1. For all d ∈ F∞ such that dTQd = 0, if A2 6= 0, then aT2 d = 0. That is, if A2 is nonzero then{
d
∣∣ A2d = 0, aT2 d < 0, dTA1d ≤ 0, dTQd = 0

}
;

2. (F2)∞ ⊆ int(F1)∞, or
{
d
∣∣ A2d = 0, aT2 d ≤ 0, dTA1d = 0

}
= {0}.

Then min g(x) attains an optimal solution over F .

Proof. Denote the lower level sets of g(x) as Sk = {x | g(x) ≤ k } with asymptotic cone (Sk)∞ ⊆

{ d | dTQd ≤ 0 }.

By Proposition 29, it suffices to show that all asymptotic directions of F ∩Sk are retractive,

local horizon directions with respect to F . However, this can be further restricted. Let d ∈ F∞ 6=

{0}, then by condition 2, dTA1d < 0. By Proposition 30, all directions of F are local horizon

directions with respect to F . Hence, for all x ∈ F , there exists Λ > 0 such that

x+ λd ∈ F ,∀λ ≥ Λ.
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If dTQd < 0, then

g(x+ λd) = g(x) + λ2dTQd+ 2λqT d→ −∞ as λ→∞,

and g(x) is unbounded over F . Therefore, it suffices to consider the asymptotic directions when

dTQd = 0, that is, the directions in F∞ ∩ bd((Sk)∞).

Since dTA1d < 0, d is a retractive direction with respect to F1. If A2 = 0, then F2 is a

halfspace and is retractive. Then by Proposition 31, d is a retractive direction with respect to F .

Let 0 6= A2 � 0. Then by condition 1, aT2 d = 0, and d is a retractive direction of F2 because

f2 stays constant along the direction of d. Therefore, by Proposition 31, d is a retractive direction

with respect to F .

Therefore, any asymptotic direction of F ∩ bd(Sk) is a retractive, local horizon direction of

F and by Proposition 29, g(x) attains an optimal solution over F .

Example 7 explores the conditions of Theorem 11 while Figure 6.2 provides a graphical

representation of Example 7. In (a), the region of F2 (the band) is defined by a positive semidefinite

Hessian with a2 ∈ Range(A2). In this (F2)∞ ⊆ int(F1)∞. Both (b) and (c) highlight another

generalization with issues that need to be further addressed. In both cases, the asymptotic directions

of F2 are in the boundary of (F1)∞ and may not be retractive over F . If F2 ∩ bd(F1) is bounded

as in (b), then the directions of F are retractive. However, if F2 ∩ bd(F1) is unbounded as in (c),

then the boundary asymptotic directions are not retractive.

Example 7. Consider the following three formulations of F = F1 ∩ F2 graphically represented in

Figure 6.2:

1. Figure 6.2(a).

F1 = { x | x1x2 + 1 ≤ 0 } , F2 =
{
x
∣∣ x2

1 + x2
2 − 2x1x2 − 1 ≤ 0

}
.

The asymptotic cone is F∞ = cone
{

(1, 1)T , (−1,−1)T
}

. All nonzero directions are retractive

over F1, F2, and F .
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2. Figure 6.2(b).

F1 = { x | x1x2 + 1 ≤ 0 } , F2 =
{
x
∣∣ x2

2 − 4x2 − 3 ≤ 0
}
.

The asymptotic cone is F∞ = cone
{

(1, 0)T
}

. The nonzero direction d = (1, 0)T is not

retractive over F1 = { x | −x1x2 + 1 ≤ 0 } but is retractive over F .

3. Figure 6.2(c).

F1 = { x | x1x2 + 1 ≤ 0 } , F2 =
{
x
∣∣ x2

2 − 1 ≤ 0
}
.

The asymptotic cone is F∞ = cone
{

(−1, 0)T , (1, 0)T
}

. The nonzero direction d = (1, 0)T has

a corresponding asymptotic sequence { xk } ⊆ bd(F1) that is also contained in F . Therefore,

by Proposition 10, d is not retractive.

These examples can be seen in Figure 6.2.

Figure 6.2: 2D graphs of a feasible region (in purple) defined by two quadratic regions F1 and F2.
F1 is defined by an indefinite Hessian and F2 is defined by positive semidefinite Hessian such that
a2 ∈ Range(A2). (a) is an example of Theorem 11 where (F2)∞ ⊆ int(F1)∞.

For a better understanding of Figure 6.2, consider the following definition:

Definition 4 (Center of Quadratic Set Defined with Indefinite Hessian). Let F ⊆ Rn be a closed

nonempty set where F = {x | (x− c)TA(x− c) + α ≤ 0 } with A invertible, indefinite. Then c is

the center of F .

To see why this definition is important, consider the set F =
{
x
∣∣ xTAx+ α ≤ 0

}
where

A is indefinite. Then the boundary of F converges to F∞ as it tends further away from the origin.

Transforming this set to Fc =
{
x
∣∣ (x− c)TA(x− c) + α ≤ 0

}
is nothing more than a translation

in the c direction. Note that Fc has the same asymptotic cone as F , but the boundary of Fc no
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longer converges to F∞ as it tends away from the origin. Instead, it converges to F∞ that is also

shifted in the same manner as Fc. Consider 6.2 with figures (b) and (c). In (b), the asymptotic

directions, are retractive over F . However, there exists d ∈ F that is not retractive over the set F1

defined by the indefinite Hessian. This is due to the center of F1 not being contained in F2 and

the nonretractive behavior is lost in the intersection. This is not the case in (c). In (c), the center

c ∈ F2 and as such, the nonretractive behavior of F1 is in F .

6.2 Importance of the Center

The goal of this section is to understand the “center” of a quadratically defined set and

how it can provide more sufficient conditions for the existence of an optimal solution. Consider a

set in R2 defined as a hyperbola. Then the center of this set is the midpoint between the two foci

of that set. This same concept expands to higher dimensions with one consideration; the center of

a set may be a hyperplane. For example, consider a quadratic set F ∈ R2 where the Hessian is

positive semidefinite (A � 0) and a ∈ Range(A) (See Figure 3.3(b)). In this set, the center could

be interpreted as the hyperplane parallel to the boundary as well as equidistant from both bands

of the bounds. In general, the center of a quadratic set does not have an obvious definition. This

document focuses on the center of quadratic sets F with an indefinite, invertible Hessian that has a

definite center c of the form

F =
{
x
∣∣ (x− c)TA(x− c) + α ≤ 0

}
.

The rest of this section proceeds as follows: first we provide a low dimensional example showing how

the center of a quadratic curve can help identify the asymptotic directions related to the objective

function and feasible region. Next, with the concept of the center, a conjecture will be presented

that expands Theorem 11 to cover the cases in Figure 6.2.

Given an objective function and its lower level sets Sk, the goal is to use the center to define

the asymptotic directions of Sk∩F . Consider (QCQP) in the case where A1 is indefinite and Ai = 0
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for all i > 1. For example, consider the following 2D problem:

min f(x) = ax2
1 + 2bx1x2 + cx2

2 + dx1 + ex2 (P)

s.t. g1(x) = −x1x2 + 1 ≤ 0

g2(x) = −x1 ≤ 0,

where a, b, c, d, e ∈ R. In the case of (P), the feasible region F is a convex feasible region. While

there are many cases where (P) will be unbounded, there is a subset of values for a, b, c, d, e such

that ∇2f is indefinite and (P) attains an optimal solution over F . In particular,

min f(x) = x2
1 + x1x2 +

79

9
x1 +

1

9
x2 (Ind)

s.t. g1(x) = −x1x2 + 1 ≤ 0

g2(x) = −x1 ≤ 0,

has an attainable optimal solution of
(

1
9 , 9
)
. Applying Proposition 29 to this, we see that (Sk)∞ ∩

F∞ = cone{(0, 0)T , (0, 1)T } which is not retractive of F . However, (Sk ∩ F)∞ = {(0, 0)T } which

is trivially set and vacuously retractive over F . To answer how this is the case, recall Figure 3.1.

The feasible region F is defined by an indefinite Hessian and as such, the boundary of the region

approaches the boundary of the asymptotic cone F∞. This is because the center of F is the same as

the center of F∞. Now consider the case when the center of F is located at c. Then the boundary

of F converge to the boundary of the shifted asymptotic cone F∞,c, denoted as

F∞,c =
{
x
∣∣ (x− c)TA(x− c) ≤ 0

}
.

In relation to (Ind), the center of F1 = { x | g1(x) ≤ 0 } is located at the origin and the boundary

of F will converge to positive axes of R2. However, for the lower level sets Sk = { f(x) ≤ k }, the

center is located at c = 1
9 (−1,−81) and the boundary of Sk converges to (Sk)∞,c. With this in

mind, one can see that Sk ∩ F is a bounded set with the trivial element {0, 0}.

The result in Theorem 11 provided a check to make sure that d ∈ (Sk ∩ F)∞ is retractive

by removing the nonretractive directions that are related to the boundary of a quadratic set defined

by an indefinite Hessian. That is, if ∈ (Sk ∩ F)∞ then dTAid < 0 for all Ai indefinite. This case
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can be seen in Figure 6.2(a). Using the center of the indefinite constraint, however, we can begin to

allow directions d such that dTAid = 0 for Ai indefinite that are retractive over F . Consider Figure

6.2(b). The center of the indefinite constrait, say c, is not located in F2 defined by the positive

semidefinite constraint. In this case, the boundary of F does not approach the boundary of the

shifted asymptotic cone (F1)∞,c and F is retractive. This is not the case of (c). In this case, c ∈ F2

and as a result, there exists a sequence contained in the boundary of F1 that is also contained in F

and as a result, F is not retractive.

Consider the following conjecture:

Conjecture 1. Let F = {x | (x− c)TA1(x− c) + α1 ≤ 0, xTA2x+ 2aT2 x+ α2 ≤ 0 } be nonempty

where A1 indefinite and A2 � 0 with rank(A2) = n − 1. Assume that g(x) is bounded from below

over F and the following conditions are satisfied:

1. For all d ∈ F∞ such that dTQd = 0, if A2 6= 0, then aT2 d = 0;

2. For all d ∈ F∞ such that dTQd = 0, either

(a) dTA1d < 0, or

(b) if dTA1d = 0, then c /∈ F .

Then min g(x) attains an optimal solution over F .

This conjecture captures the usefulness of the center of a set defined by a quadratic con-

straint. The restriction of rank(A2) = n − 1 is to enforce that there is not a free variable in

F2 =
{
x
∣∣ xTA2x+ 2aT2 x+ α2 ≤ 0

}
that allows F to have a nonretractive boundary. This requires

showing that the assumptions restrict the asymptotic directions of Sk ∩F to being retractive, local

horizon directions over F . For simplicity and without loss of generality, we can consider F2 to be

centered at the origin ( i.e no a2 term ). For local horizon directions in assumption 2(b), it must

be shown that if d ∈ F∞ such that dTA1d = 0, then −d /∈ F∞. This may only require comparing

the asymptotic cone (F2)∞ to the shifted asymptotic cone (F1)∞,c. Under this consideration, there

could be the argument that F∞ = (F1)∞,c ∩ (F2)∞. Finally, showing the retractiveness of the

asymptotic directions only requires demonstrating that, for any sequence { xk } ⊂ bd(F1) ∩F2, the

norm ‖xk‖ is bounded as k →∞. This proves that there are no nonretractive directions in Sk ∩ F

for all k.

83



Chapter 7

Conclusion

Quadratically constrained quadratic programs are inherently difficult due to many factors.

Two of these factors that can be addressed are the nonconvexity and the unboundedness of the

feasible region. Both of these factors lend a necessity of the asymptotic cone. The asymptotic cone

provides a generalization of the recession cone for a nonconvex feasible region as well as describes the

behavior as the set tends away from the origin. Chapter 3 provides a description of the asymptotic

cone for a set defined by a single quadratic at inequality [15] and equality. This description is the

foundation for not only the document as a whole, but also for future research into the asymptotic

cone of the intersection of multiple quadratic constraints.

The results of Chapter 4 yield conditions for when the lifted convex hull of the intersection

equals the intersection of the lifted convex hull. The proofs behind these conditions show the direct

connection between the asymptotic cone of the original set and the recession cone of the lifted convex

hull. Not only does this expands and/or recovers results in Chapter 2, it also states that if one can

decompose a complicated problem into the non-intersecting intersection of already known results,

the lifted convex hull is no more difficult than that of the decomposition.

However, the proofs of Chapter 4 fall short if a complicating constraint is linear. Chapter 5

explored two paths, one is a direct approach using the symmetry of the asymptotic cone while the

other used homogenizations discussed in [31]. Under the direct approach, a modified S-Lemma is

used to provide necessary conditions for when a halfspace induces a non-intersecting constraint in

the feasible region. When the non-intersecting property is satisfied, the symmetry of the asymptotic

cone is used to give similar results to Chapter 4. To expand this further, finalizing the relationship
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convex cone generated by the lifted asymptotic cone and the recession cone of the lifted convex hull

would cover the case when the original set is defined by multiple quadratic constraints. With the

homogenization approach, the non-intersecting assumption is too strong in the homogenized space

and provided weaker results compared to the direct method.

Chapter 6 explored results for the existence of an optimal solution in regards to the asymp-

totic cone. The extension of the Frank-Wolfe theorem in [5] laid the groundwork for conditions to

check for QCQPs. This chapter extended the results in [32] to cover a feasible region with one convex

quadratic constraint and at most one quadratic constraint defined by an indefinite Hessian. Also,

the chapter guides future research into how the ”center“ of a constraint may be an important piece

to consider. Moving the center of a constraint shifts the end behavior of said constraint. This shift

influences how two constraints interact with each other and as a result, influences the asymptotic

cone of the intersection.
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