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Abstract

Let R be a domain. We look at the algebraic and integral closure of a polynomial ring, R[x], in

its power series ring, R[[x]]. A power series α(x) ∈ R[[x]] is said to be an algebraic power series

if there exists F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0, where F (x, y) ̸= 0. If F (x, y) is monic,

then α(x) is said to be an integral power series. We characterize the units of algebraic and integral

power series. We show that the only algebraic power series with infinite radii of convergence are

polynomials. We also show which algebraic numbers appear as radii of convergence for algebraic

power series.

Additionally, we provide a new characterization of algebraic power series by showing that a conver-

gent power series, α(x), is algebraic over L if and only if α(a) is algebraic over L(a) for every a in

the domain of convergence of α(x), where L is a countable subfield of C.
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Chapter 1

Introduction

1.1 Historical Background

Algebraic power series have been studied from different perspectives. The first is through the lens of

functional analysis. Here, the singularities, cycles, double points, and analytic continuation are ana-

lyzed. For more details, we refer the reader to [1] and [13]. Newton’s Diagram is also given as a tool

to compute coefficients of algebraic power series. We look into Newton’s Diagram more in Chapter 3.

Algebraic power series have also been looked at from a combinatorical viewpoint for generating

functions. For example, the enumeration of plane binary trees with n internal nodes involves the

sequence: 1, 1, 2, 5, 14 . . . , the well known Catalan numbers [17]. The generating function of the

Catalan numbers is

f(x) = 1 + x+ 2x2 + 5x3 + 14x4 + · · · =
∞∑

n=0

1

n+ 1

(
2n

n

)
xn.

This power series satisfies the relation

F (x, y) = xy2 − y + 1 = 0.
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Additionally, the well-known Fibonacci generating function satisfies

F (x, y) = (1− x− x2)y − x.

It is known that the radius of convergence of an algebraic power series over Q is the root of a monic

polynomials with rational coefficients [1], [13] but it is still unknown which algebraic numbers appear

as a radius of convergence. Banderier and Drmota considered this question [2] and conjectured that

all algebraic numbers appear as a radii of convergence when the coefficients are taken over Q. We

investigate this further, show which radii of convergence are known so far, highlight some new results

and insights on the structure of algebraic power series, and give a new characterization of algebraic

power series over a countable field of characteristic 0.

1.2 Mathematical Background

In this section, we review some necessary background. Recall the definition of a polynomial and a

power series.

Definition 1.2.1. We say that f(x) is a polynomial if it has the form

f(x) =

n∑
i=0

aix
i = anx

n + an−1x
n−1 + · · ·+ a1x+ a0,

where each coefficient ai is in a ring R. We write f(x) ∈ R[x].

For example, 4x3 + 7
2x

2 + x + 1 ∈ Q[x], while
√
x+ 1 /∈ Q[x]. Given a polynomial f(x) ∈ R[x], a

root of f(x) is a number r such that f(r) = 0. The highest power of x with a nonzero coefficient of

f is the degree of f(x) which is written deg(f(x)). For example,

deg(f(x)) = deg(4x3 + 7
2x

2 + x+ 1) = 3.

By the fundamental theorem of algebra, if f(x) ∈ Q[x] has degree n ≥ 1 then it has n (not necessarily

distinct) roots in C. We will see that the rudimentary concept that the number of roots is equal to

the degree of the polynomial continues to hold when we introduce another variable and our roots

become fractional power series. In order to discuss power series as roots of polynomials, we need an

additional variable.

2



Definition 1.2.2. A polynomial in two variables has the form

f(x, y) =
∑

α=0,...,m
β=0,...,n

Aα,βx
αyβ

where m,n ∈ N0 and Aα,β ∈ R. A polynomial in two variables may also be referred to as a bivariate

polynomial, and we write R[x, y] for the ring of all such polynomials.

Example 1.2.3. The following are examples of bivariate polynomials:

1. f(x, y) = y3 − 6xy + x3

2. g(x, y) = (x2 + x+ 1)y5 − (5x− 1)y4 + 3y3 + (x4 − 1)y2 + (2x2 − 3x+ 1)y + x.

When working with bivariate polynomials, we will typically want them to have a similar form of

f(x, y) and g(x, y) in the previous example. That is, we will view a bivariate polynomial as a

polynomial in y with coefficients in R[x]. In general they will have the form,

F (x, y) = fn(x)y
n + fn−1y

n−1 + · · ·+ f1(x)y + f0(x).

When we want to view a bivariate polynomial in this way we denote it by writing F (x, y) ∈ R[x][y].

The rings R[x][y] and R[x, y] contain the same elements, but we use the notation R[x][y] to signal

that the variable is y while the coefficients come from R[x]. This idea generalizes to higher di-

mensions. For example, if we wanted a third variable z and wanted the coefficients to be bivariate

polynomials, we would notate the ring by R[x, y][z].

When we want to talk about the degree of a bivariate polynomial, we specify the variable by adding

a subscript. Given f(x, y) ∈ R[x, y], the highest power on the variable y is denoted degy(f(x, y))

and the highest power on the variable x is denoted degx(f(x, y)). For example, consider f(x, y) and

3



g(x, y) in Example 1.2.3. We have that

degy(f(x, y)) = degy(y
3 − 6xy + x3) = 3

degx(f(x, y)) = degy(y
3 − 6xy + x3) = 3

degy(g(x, y)) = degy((x
2 + x+ 1)y5 − (5x− 1)y4 + 3y3 + (x4 − 1)y2 + (2x2 − 3x+ 1)y + x) = 5

degx(g(x, y)) = degy((x
2 + x+ 1)y5 − (5x− 1)y4 + 3y3 + (x4 − 1)y2 + (2x2 − 3x+ 1)y + x) = 4

One key characteristic of a polynomial, in any number of variables, is that it only has a finite number

of terms. If we want to allow an infinite number of terms, then we have a power series.

Definition 1.2.4. We say that α(x) is a power series if it has the form

α(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · =
∞∑
i=0

aix
i,

where each ai is from a ring R. We write α(x) ∈ R[[x]].

Definition 1.2.5. Let α(x) =
∑∞

n=0 anx
n ∈ R[[x]]. When working over a subring of C, the radius

of convergence of α(x) is

r.o.c(α(x)) :=
1

lim sup
n→∞

n
√
|an|

,

where r.o.c(α(x)) = ∞ if lim sup
n→∞

n
√

|an| = 0.

Example 1.2.6. The following are examples of power series:

1. α(x) = 1 + x+ x2 + x3 + · · · =
∞∑
i=0

xi = 1
1−x for |x| < 1

2. β(x) = 1 + x
2 − x2

8 + x3

16 − 5x4

128 + · · · =
√
1 + x for |x| < 1.

We will later see that α(x) is an example of an algebraic power series, while β(x) is an an integral

power series. We can also discuss power series in more than one variable. If we want to allow two

variables, then it takes the form

α(x, y) =

∞∑
a1,a2=0

Aa1,a2x
a1ya2

where Aa1,a2 ∈ R. This concept can easily be generalized uniquely to any finite number of variables,

x1, . . . , xn.
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Remark 1.2.7. Though our discussion of polynomials and power series has only been over a finite

number of variables, we can allow an infinite number of variables. In the case of polynomials, the

ring R[x1, x2, x3, . . . ] is well defined, because each term of a polynomial is allowed finitely many

variables along with the fact that polynomials only have a finite number of terms. In the case of

power series, however, the ring R[[x1, x2, x3, . . . ]] has been generalized in at least three distinct ways

in the literature, but as it is far afield of our goals, we will not delve into this here.

In order to look at algebraic (or integral) power series, we shift from looking at the roots of polyno-

mials and view the the polynomials or power series as roots themselves. Recall the definition of an

algebraic element and properties of the set of algebraic elements.

Definition 1.2.8. Let R ⊂ T be integral domains. Then t ∈ T is said to be algebraic over R if it

is a root of a polynomial in R[x], i.e., there exists a polynomial f(x) ∈ R[x] such that

f(t) = rnt
n + rn−1t

n−1 + · · ·+ r1t+ r0 = 0.

If f(t) is monic, then t is said to be integral over R.

Definition 1.2.9. Let R ⊂ T be domains. If T is the quotient field of R then

RAlg := {t ∈ T | t is algebraic over R}

is called the algebraic closure of R in T and

RInt := {t ∈ T | t is integral over R}

is called the integral closure of R in T .

Example 1.2.10. Consider Z ⊂ Q. Observe that g(x) = 2x− 1 ∈ Z[x] and

g

(
1

2

)
= 2

(
1

2

)
− 1 = 1− 1 = 0.

Therefore, 1
2 is algebraic over Z. In fact, ZAlg = Q. By definition, we have that ZAlg ⊂ Q. Let
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p
q ∈ Q where p, q ∈ Z and q ̸= 0. We simply note that f(x) = qx− p ∈ Z[x] and

f

(
p

q

)
= q

(
p

q

)
− p = p− p = 0.

Hence Q ⊂ ZAlg, and thus ZAlg = Q.

For an example of an integral element, we consider Z ⊂ Z[
√
2]. Note that f(x) = x2 − 2 ∈ Z[x] is

monic and

f(
√
2) = (

√
2)2 − 2 = 2− 2 = 0.

Therefore
√
2 is integral over Z.

In order to show that the collection of all integral (or algebraic) elements form a ring, we establish

an equivalent condition of an element being integral.

Theorem 1.2.11. [16] Let R ⊂ T be domains and let t ∈ T . Then the following are equivalent.

1. t is integral over R.

2. There exists a finitely generated R-submodule A ⊂ T such that tA ⊂ A.

Proof. (1) ⇒ (2) By definition, there exists a monic polynomial

f(x) = xn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ R[x]

such that f(t) = tn + rn−1t
n−1 + · · ·+ r1t+ r0 = 0. We take A ⊂ T generated by {1, t, . . . , tn−1}.

(2) ⇒ (1) Let A ⊂ T be generated by {a1, . . . , an} where not all of the ai’s are zero. Then we have

the following set of equations

taj =

n∑
i=1

rj,iai

which leads to



(−t+ r1,1) r1,2 . . . r1,n−1 r1,n

r2,1 (−t+ r2,2) . . . r2,n−1 r2,n
...

. . .
...

...

rn,1 . . . . . . . . . (−t+ rn,n)





a1

a2
...

an


=



0

0

...

0


.

6



Since not all of the ai’s are zero, the determinant of the coefficient matrix is zero which leads to a

monic equation in t of degree n.

The statement and proof of Theorem 1.2.7 and the following corollary can be adapted for an algebraic

element.

Corollary 1.2.12. Let R ⊂ T be domains. If t1, t2 ∈ T are integral (or algebraic) over R, then so

are t1 + t2 and t1t2.

Proof. Let R ⊂ T be domains. Suppose t1, t2 ∈ T are integral over R. Then there exists finitely

generated R-submodules A1, A2 ⊂ T such that t1A1 ⊂ A1 and t2A2 ⊂ A2. Then A := A1A2 is a

finitely generated R-submodule and

(t1 + t2)A ⊂ A

t1t2A ⊂ A

So t1 + t2 and t1t2 are integral over R.

As stated earlier, given a polynomial f(x) ∈ Q[x], the roots of f may or may not lie in the field Q.

This is because the field Q is not algebraically closed. In order to guarantee we have all our roots,

we must consider the algebraic closure of Q, denoted A.

We endeavor to discover the nature of power series as potential roots of polynomials in two variables.

To begin, we need to know in which ring all the roots of bivariate polynomials lie. The ring Q[[x]]

is not large enough as it does not contain the root of F (x, y) = xy − 1. If we include this root

by allowing division by x and consider the field Q[[x]][ 1x ], this is still not enough. The root of

F (x, y) = y2−x is not in Q[[x]][ 1x ]. We additionally need to allow fractional exponents on our power

series. These are called Puiseux series. The algebraic closure of A[[x]] is the ring of all Puiseux

series, denoted A⟨⟨x⟩⟩.

Remark 1.2.13. We make a quick note that not every power series can be a root of a polynomial

equation. This can be done by a simple cardinality argument. The number of power series over Q

is uncountable while the number roots of polynomial functions over Q[x] is countable, so there must

be uncountably many power series over Q which are not a root of a polynomial equation.

7



We summarize the previous sets and introduce any other relevant sets of power series along with

their notation.

Definition 1.2.14. If we consider an algebraic equation of the form

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x) (1.1)

where n ∈ N and fi(x) ∈ R[x] for 1 ≤ i ≤ n, the set of all power series solutions in R[[x]] to an

equation of the form (1.1) form a ring denoted RAlg[[x]].

All elements of RAlg[[x]] that are solutions to monic algebraic equations of the form (1.1) form the

ring of integral power series, denoted RInt[[x]]. In other words, all elements α(x) ∈ RInt[[x]] satisfy

an equation of the form

F (x, y) = yn + fn−1(x)y
n−1 + · · ·+ f1(x)y + f0(x) = 0. (1.2)

Definition 1.2.15. Let K be the algebraic closure of the quotient field of R. The algebraic closure

of K[[x]] consists of fractional power series called Puiseux series and are denoted K⟨⟨x⟩⟩ [17]. The

elements of K⟨⟨x⟩⟩ have the form
∞∑

i=m

rix
i/n

where ri ∈ k,m ∈ Z, n ∈ N are fixed.

Here are the notations that we will use for some central ring constructions:

The polynomial ring R[x] =

{
n∑

i=0

rix
i | ri ∈ R,n ∈ N0

}

The formal power series ring R[[x]] =

{ ∞∑
i=0

rix
i | ri ∈ R

}

The formal Laurent series ring R[[x]][ 1x ] =

{ ∞∑
i=m

rix
i | ri ∈ R,m ∈ Z

}

The Puiseux series ring R⟨⟨x⟩⟩ =

{ ∞∑
i=m

rix
i/n | ri ∈ R,m ∈ Z, n ∈ N fixed

}

The algebraic series ring RAlg[[x]] = {f(x) ∈ R[[x]] | f(x) is algebraic}

The integral series ring RInt[[x]] = {f(x) ∈ R[[x]] | f(x) is integral}

8



Example 1.2.16. Notice that

f(x) =
1

x2
+

1

x
+ 1 + x+ x2 + · · · =

∞∑
i=−2

xi ∈ R[[x]][ 1x ],

however,

g(x) = · · ·+ 1

x2
+

1

x
+ 1 + x+ x2 + · · · =

∞∑
i=−∞

xi /∈ R[[x]][ 1x ].

That is, the ring R[[x]][ 1x ] contains series which start at a given integer m.

Example 1.2.17. The denominator of the exponents in the powers of a Puiseux series is bounded

by a given natural number. For example,

f(x) = 1 + x1/2 + x+ x3/2 + x2 + · · · =
∞∑
i=0

xi/2

g(x) = x−1 + x−2/3 + x−1/2 + x−1/3 + 1 + x1/3 + x1/2 + x2/3 + x+ . . .

are both Puiseux series. It is worth pointing out that not all series with fractional exponents are

necessarily Puiseux series. For instance,

x+ x1/2 + x1/4 + x1/8 + . . . =

∞∑
i=0

x1/2i

x2 + x5/2 + x10/3 + x17/4 + . . . =

∞∑
n=1

x
n2+1

n

are not Puiseux series.

Example 1.2.18. We recall our first power series from Example 1.2.6

α(x) = 1 + x+ x2 + · · · = 1

1− x
.

This is an algebraic power series because it is a root of F (x, y) = (1− x)y − 1. We have

F (x, α(x)) = (1− x)(α(x))− 1 = (1− x)(
1

1− x
)− 1 = 1− 1 = 0.

9



The second power series from Example, 1.2.6

β(x) = 1 +
x

2
− x2

8
+

x3

16
− 5x4

128
+ · · · =

√
1 + x,

is a root of F (x, y) = y2 − (1 + x), because

F (x, β(x)) = (β(x))2 − (x+ 1) = (
√
1 + x)2 − (1 + x) = 1 + x− (1 + x) = 0.

Thus, β(x) is an integral power series.

Example 1.2.19. Notice that even though f(x) =
∞∑

i=−2

xi from Example 1.2.16 is a root of the

polynomial

F (x, y) = x2(1− x)y − 1 ∈ R[x][y],

f(x) /∈ RAlg[[x]] because f(x) is not a power series. In this case, we say that f(x) is an algebraic

Laurent series.

Similarly, the Puiseux series in Example 1.2.17 are all algebraic. For example, the first Puiseux

series given,
∞∑
i=0

xi/2,

satisfies

(1− x)y2 − 2y + 1 = 0.

Remark 1.2.20. Notice that R[x] ⊂ RInt[[x]] as f(x) ∈ R[x] is a root of

F (x, y) = y − f(x) = 0.

Also, f(x)
g(x) ∈ RAlg[[x]] given that g(0) ∈ U(R) since it satisfies

F (x, y) = g(x)y − f(x) = 0.

The condition g(0) ∈ U(R) assures that f(x)
g(x) ∈ R[[x]]. Also observe that RInt[[x]] is a proper subset

10



of RAlg[[x]] as
1

1−x ∈ RAlg[[x]] but
1

1−x /∈ RInt[[x]].

Observation 1.2.21. We observe that every algebraic power series is an integral power series

divided by a polynomial. To see this, let α(x) ∈ RAlg[[x]] and let

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x) (1.3)

be the bivariate polynomial such that fn(x) ̸= 0 and F (x, α(x)) = 0. Multiplying Equation (1.3) by

fn(x)
n−1 gives

fn(x)
nyn + fn(x)

n−1fn−1(x)y
n−1 + · · ·+ fn(x)

n−1f1(x)y + fn(x)
n−1f0(x).

Letting v = fn(x)y, we get

vn + fn−1(x)v
n−1 + fn(x)fn−2(x)v

n−2 + · · ·+ fn(x)
n−2f1(x)v + fn(x)

n−1f0(x). (1.4)

We notice that Equation (1.4) is monic and that fn(x)α(x) is a root of it. Therefore, fn(x)α(x) is

an integral power series.

Since we are concerned with power series solutions to equations of the form (1.1), it is good to

know when a given bivariate polynomial has a power series solution. In general, given an equation

of the form (1.1) it is difficult to tell whether a power series solution exists. There are some ways

to alleviate this problem, and one way is to use the implicit function theorem. We first recall the

following definitions.

Definition 1.2.22. A function f is holomorphic on an open set U ⊂ C if it is differentiable at every

point within U .

Definition 1.2.23. A function f is entire if it is holomorphic on all of C.

This statement of the implicit function theorem is taken from [18] and provided for completeness.

Theorem 1.2.24. (Implicit Function Theorem) Suppose that F (x, y) is holomorphic in the

bidisc D(x0, R1)×D(y0, R2) ∈ C2. If

F (x0, y0) = 0 and
∂F

∂y

∣∣∣∣
(x0,y0)

̸= 0,
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then there is a disc D(x0, r0) and a unique holomorphic function f(x) defined on D(x0, r0) with

f(x0) = y0 for which

F (x, f(x)) = 0

holds for x ∈ D(x0, r0). Moreover, that function f(x) is represented by

1

2πi

∮
Ci

y
Fy(x, y)

F (x, y)
dy, (1.5)

where C is the boundary of the disc D(y0, r1) is a suitably chosen circle.

The implicit function theorem also holds when working over the field R with the additional condition

that coefficients of F (x, y) come from R.

Remark 1.2.25. When working over Q or R, the implicit function theorem has a geometric inter-

pretation. If the graph of F (x, y) is differentiable at any point on the y-axis, then there exists a

power series solution to F (x, y).

Example 1.2.26. We consider

F (x, y) =
(
y2 + x2

)2 − (y2 − x2) = 0.

We note the graph (made in Desmos) of F (x, y) in R is:
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Its y-intercepts are y = 1, 0,−1. The relation F (x, y) has four power series solutions centered at

x = 0. Observe that

Fy(x, y) = 4y(x2 + y2)− 2y

and

Fy(0, 1) = −2, Fy(0,−1) = 2, Fy(0, 0) = 0.

By the implicit functional theorem, there are at least two power series solutions. When the partial

derivative is zero, more work needs to be done to find out if F (x, y) has additional power series

solutions. For this example, we simply use the transformation y = xv, yielding

F (x, xv) = −x2(1 + x2 − v2 + 2x2v2 + x2v4).

Dividing both sides by −x2 gives

G(x, v) = 1 + x2 − v2 + 2x2v2 + x2v4

which has v-intercepts v = −1, 1. Now,

Gv(x, v) = −2v + 4x2v + 4x2v3, Gv(0,−1) = 2, Gv(0, 1) = 2.

Thus G(x, y) has two power series solutions, g1(x) and g2(x) which means that xg1(x) and xg2(x)

are power series solutions for F (x, y), and F has four power series solutions in total.

Remark 1.2.27. In the previous example, the partial derivative with respect to y at the origin is

zero because the graph intersects itself. The substitution y = xv is a type of blowing up a curve at

a point. The blow up separates the intersection into two curves referred to as the exceptional curve

(in this case, x = 0) and the blow up (in this case, 1 + x2 − v2 + 2x2v2 + x2v4 = 0). For additional

reading, we refer the reader to [12].

Example 1.2.28. We consider

F (x, y) = 2x
(
x2 + y2

)
+
(
x2 + y2

)2 − y2

and its graph.

13



We have that

Fy(x, y) = 2y − 4xy − 4y(x2 + y2), Fy(0, 1) = −2, Fy = (0,−1) = 2

which gives us two power series solutions. Because the graph has a cusp at the origin, the two

solutions at (0, 0) correspond to Puiseux series solutions.

In the previous examples, we are guaranteed power series solutions by the implicit function theorem

but we do not know what they are. If one wanted to compute the series solutions (power series of

Puiseux series) one can utilize Newton’s Diagram. We explore this concept further in Chapter 3,

so given an equation of the form (1.2), we will have a practical technique to determine power series

solutions, if any. The harder direction is trying to determine if a given power series is a solution

to an equation of the form (1.1). Excluding polynomials, the solutions to algebraic equations must

have finite radii of convergence, as a consequence of Theorem 1.2.24. In order to show where the

representation (1.5) in comes from, we recall some concepts from complex analysis. The following

argument closely follows from [1] and [13]. The theorems and definitions can be found in [19], [25],

or [29] some theorems are presented without proof.

Definition 1.2.29. If a function f fails to be analytic at a point z0, then this point is said to be

singular point. There are three classifications of singular points: removable singularities, poles of
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order n, and essential singularities. In order to define the type of singular point, we first write f in

its Laurent series expansion centered at z = z0, i.e.,

f(z) =

∞∑
k=1

a−k(z − z0)
−k +

∞∑
k=0

ak(z − z0)
k.

The point z = z0 is called:

1. a removable singularity if a−k = 0 for all k.

2. a pole of order n if a−n ̸= 0 and a−k = 0 for k > n.

3. an essential singularity if
∞∑
k=1

a−k(z − z0)
−k contains infinitely many nonzero terms.

Example 1.2.30. The function f(z) = cos(z)−1
z has a removable singularity at z = 0. To see this

we write

f(z) =
cos(z)− 1

z
=

z

2!
− z3

4!
+

z5

6!
− · · · =

∞∑
k=1

(−1)k−1 z
2k−1

(2k)!
.

As a−k = 0 for all k, f(z) has a removable singularity.

The function f(z) = 1
1−z has a pole of order 1 at z = 1 because it is equal to its Laurent se-

ries expansion at z = 1. That is,

f(z) = · · ·+ 0

(1− z)3
+

0

(1− z)2
+

1

(1− z)
.

The function sin( 1z ) has an essential singularity at z = 0. This can be seen by its Laurent series

expansion

f(z) = · · ·+ 1

5!z5
− 1

3!z3
+

1

z
=

∞∑
k=1

(−1)k−1

(2k − 1)!z2k−1
.

With poles being defined, we can now define a meromorphic function.

Definition 1.2.31. A function f defined on an open set U is said to be meromorphic on U if it is

analytic everywhere except at a discrete set of points which are poles.

Theorem 1.2.32. (ML Inequality) If f is continuous on a smooth curve C and if |f(z)| ≤ M for

all z on C, then |
∫
C
f(z)dz| ≤ ML, where L is the length of the curve C.
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We can now establish the theorems needed to see where (1.5) comes from.

Theorem 1.2.33. (Argument Principle) If f is meromorphic on and within a closed curve C

and if f(z) ̸= 0 on C, then

1

2πi

∮
C

f ′(z)

f(z)
dz = Z − P

where C is traversed counterclockwise, Z is the number of zeros of f within C, and P is the number

of poles within C.

Corollary 1.2.34. Let f have zeros zi and poles pj within the curve C. Assuming f satisfies the

conditions of the argument principle, an immediate consequence is

1

2πi

∮
C

g(z)
f ′(z)

f(z)
dz =

∑
zi

g(zi)n(C; zi)−
∑
pj

g(pj)n(C; pj) (1.6)

where n(C; zi) is the multiplicity of zi and n(C; pj) is the order of pj .

We use (1.6) when given a bivariate polynomial F (x, y) ∈ R[x][y]. Suppose degy(F (x, y)) = n and

that F (0, y) = 0 has n distinct solutions, say y1, . . . , yn ∈ C. Let

r =
1

2

(
min

1≤i<j≤n
{|yi − yj |}

)
.

Then the disks defined by |y− yi| ≤ r are pairwise disjoint. Let Ci be the circle |y− yi| = r. By the

argument principle we have that

1

2πi

∮
Ci

Fy(x, y)

F (x, y)
dy = 1,

because there is only one zero within Ci. Denote this zero as fi(x). Then by (1.6),

1

2πi

∮
Ci

y
Fy(x, y)

F (x, y)
dy = fi(x), (1.7)

which is the representation given in Theorem 1.2.24.

Now we have established that an algebraic power series must have a positive radius of convergence.

Additionally, we know that polynomials are algebraic power series and have an infinite radius of

convergence, and in fact, polynomials are the only algebraic power series that have an infinite radius
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of convergence. In order to show that having an infinite radius of convergence implies being a

polynomial, we establish the following lemma and proposition.

Lemma 1.2.35. (Cauchy’s inequality) Let

f(z) =

∞∑
i=0

ai(z − a)i

have radius of convergence R > 0. Then

∣∣∣∣f (n)(a)

n!

∣∣∣∣ ≤ M(r)

rn

for all 0 < r < R, where

M(r) = sup{|f(z)| : |z − a| = R}.

Proof. The theorem follows directly from

f (n)(a)

n!
=

1

2πi

∫
γ

f(t)

(t− a)n+1
dt

where γ(θ) = a+Reiθ for 0 ≤ θ ≤ 2π.

Proposition 1.2.36. If f(z) is entire and |f(z)| ≤ M |z|m for an M > 0, m ∈ N0 and for all z ∈ C

such that |z| ≥ R ∈ R, then f(z) is a polynomial of degree less than or equal to m.

Proof. Suppose f(z) is entire and |f(z)| ≤ N |z|m for some N > 0, m ∈ N0 and for all z ∈ C such

that |z| ≥ R ∈ R. Since f(z) is entire, it is equal to its Taylor series expansion centered at zero, i.e.,

f(z) =

∞∑
i=0

f (i)(0)

i!
zi.

Applying Lemma 1.2.35, we have that

|f (n)(0)| ≤ M(r)n!

rn

for r > 0. When r > R, we have that

M(r) ≤ N |z|m ≤ Nrm
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and thus

|f (n)(0)| ≤ M(r)n!

rn
≤ Nrmn!

rn
=

Nn!

rn−m
.

When n > m we have that

|f (n)(0)| ≤ Nr!

rn−m
→ 0 as r → ∞.

Therefore,

f(z) =

m∑
i=0

f (i)(0)

i!
zi ∈ R[z].

Remark 1.2.37. We point out that Liouville’s theorem is a direct corollary of Proposition 1.2.36

when m = 0.

We are now able to show that an algebraic power series has an infinite radius of convergence if and

only if it is a polynomial.

Theorem 1.2.38. Let R be a subfield of the complex numbers and α ∈ RAlg[[x]]. Then α(x) ∈ R[x]

if and only if r.o.c(α) = ∞.

Proof. The forward direction is trivial. Conversely, suppose that r.o.c(α(x)) = ∞. By definition

there exists an irreducible polynomial

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x) ∈ R[x][y]

such that F (x, α) = 0. Let m = max
0≤i≤n

{deg(fi(x))}. Then there exists M1 > 0 such that

n∑
i=0

|fi(x)| ≤ |x|m+1 for |x| ≥ M1.

Let

c =


|fn(0)| if fn(0) ̸= 0

1 otherwise.

There exists M2 > 0 such that c ≤ |fn(x)| for all |x| ≥ M . Let M = max{M1,M2}.
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We have that

fn(x)α(x)
n = −

(
n−1∑
i=0

fi(x)α(x)
i

)
⇒ |fn(x)||α(x)|n =

∣∣∣∣∣
n−1∑
i=0

fi(x)α(x)
i

∣∣∣∣∣ ≤
n−1∑
i=0

|fi(x)||α(x)|i.

If |α(x)| ≤ 1, then

|fn(x)||α(x)|n ≤ |fn(x)||α(x)| ≤ |fn(x)| ≤
n∑

i=0

|fi(x)|.

If |α(x)| > 1, then

|fn(x)||α(x)|n ≤
n−1∑
i=0

|fi(x)||α(x)|i ≤ |α(x)|n−1
n−1∑
i=0

|fi(x)|.

Therefore,

|fn(x)||α(x)| ≤
n−1∑
i=0

|fi(x)| ≤
n∑

i=0

|fi(x)|

holds regardless of the modulus of α(x). Thus, when |x| ≥ M , it is the case that

c|α(x)| ≤ |fn(x)||α(x)| ≤
n∑

i=0

|fi(x)|,

which implies that

|α(x)| ≤ 1

c

n∑
i=0

|fi(x)| ≤
1

c
|x|m+1.

We note that α(x) is entire because its radius of convergence is infinite. Therefore, by Proposition

1.2.36, we have that α(x) is a polynomial, i.e., α(x) ∈ R[x].

Corollary 1.2.39. Any power series with an infinite radius of convergence that is not a polynomial

is transcendental. For example, ex, sin(x), and cos(x) are transcendental functions.
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Chapter 2

Minimal Polynomials and Unitary

Elements

2.1 Preliminary Results

We will begin by establishing some preliminary results on minimal polynomials and units.

Definition 2.1.1. An element u in a ring R is a unit if there exists v ∈ R such that uv = 1. We

denote the set of all units of R by U(R).

For our context, the ring R will be an integral domain, typically Q.

Definition 2.1.2. We say that p(x, y) ∈ R[x][y] is irreducible if whenever p(x, y) = a(x, y)b(x, y),

either a(x, y) or b(x, y) is a unit.

Theorem 2.1.3. Given an algebraic power series α(x) ∈ RAlg[[x]], then there exists a unique (up to

scalar multiples) irreducible polynomial of minimal degree p(x, y) ∈ R[x][y], such that p(x, α(x)) = 0.

Proof. Let K be the quotient field of R. Since K(x) ⊂ K(x)[α(x)] is an algebraic field extension,

there exists a unique minimal polynomial, up to associates, G(x, y) ∈ K(x)[y] such that G(x, α(x)) =

0. We write

G(x, y) =
fn(x)

gn(x)
yn + · · ·+ f1(x)

g1(x)
y +

f0(x)

g0(x)
.

Let

g(x) = lcm
0≤i≤n(gi(x))
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and define F (x, y) = g(x) · G(x, y). Clearly F (x, y) ∈ R[x][y], so this is the minimal polynomial of

α(x). Uniqueness of F (x, y) follows from the uniqueness of G(x, y).

An alternative proof that does not assume the existence of a unique minimal polynomial for an

algebraic field extension is as follows:

Proof. Let

S = {degy(p(x, y)) | p(x, y) ̸= 0 is irreducible and p(x, α(x)) = 0}.

Since α(x) is algebraic, there exists an irreducible F [x][y] ∈ R[x][y] of the form

fm(x)ym + fm−1(x)y
m−1 + · · ·+ f1(x)y + f0

where fi ∈ R[x] and m ≥ 1 such that F (x, α(x)) = 0. Then m ∈ S, so it is nonempty. We observe

that S is in one to one correspondence with a subset of the natural numbers. By the well-ordering

principle, there exists a minimal element n > 0. Suppose there exists two irreducible polynomials

a(x, y) and b(x, y) of degree n in the variable y such that a(x, α(x)) = b(x, α(x)) = 0. Writing

a(x, y) = fn(x)y
n + · · ·+ f1(x)y + f0(x)

b(x, y) = gn(x)y
n + · · ·+ g1(x)y + g0(x),

we define r(x, y) = gn(x)a(x, y)−fn(x)b(x, y). Clearly, r(x, α(x)) = gn(x)a(x, α(x))−fn(x)b(x, α(x)) =

0 and degy(r(x, y)) < n. The only way this is possible is if r(x, y) = 0. This implies that

fn(x)gm(x) = gn(x)fm(x)

for all m < n. Therefore,

gm(x) =
gn(x)fm(x)

fn(x)
.

Let c(x) = gcd(fn(x), gn(x)). Writing gn(x) = c(x)g̃n(x) and fn(x) = c(x)f̃n(x), we see that

gm(x) = g̃n(x)

(
fm(x)

f̃n(x)

)
∈ R[x] ⇒ f̃n(x) | fm(x)

for all m < n. Since a(x, y) is irreducible, the only way this is possible is if f̃n(x) ∈ U(R). Similarly,
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g̃n(x) ∈ U(R), and therefore we have fn(x) = cgn(x) for some c ∈ U(R), which implies that

b(x, y) = ca(x, y), and this completes the proof.

We now characterize the units of integral power series and algebraic power series. We begin with

the algebraic power series.

Theorem 2.1.4. Let a(x) ∈ R[[x]]. We have that a(x) ∈ U(RAlg[[x]]) if and only if

a(x) ∈ U(R[[x]]) ∩RAlg[[x]].

Proof. (⇒) The forward direction is trivial.

(⇐) Suppose a(x) ∈ U(R[[x]]) ∩RAlg[[x]]. Since a(x) ∈ RAlg[[x]], there exists

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x)

such that

F (x, a(x)) = fn(x)(a(x))
n + fn−1(x)(a(x))

n−1 + · · ·+ f1(x)a(x) + f0(x) = 0. (2.1)

Since a(x) ∈ U(R[[x]]), there exists (a(x))−1 ∈ R[[x]] such that a(x)(a(x))−1 = 1. Multiplying both

sides of (2.1) by ((a(x))−1)n yields

fn(x) + fn−1(x)((a(x))
−1) + · · ·+ f1(x)((a(x))

−1)n−1 + f0(x)((a(x))
−1)n = 0.

Therefore (a(x))−1 satisfies G(x, y) := fn(x)+fn−1(x)y+ · · ·+f1(x)y
n−1+f0(x)y

n ∈ R[x][y]. Hence

a(x) ∈ U(RAlg[[x]]).

In other words, the unitary algebraic power series are precisely the unitary power series, which are

also algebraic. The same result does not hold for integral power series, because if a(x) ∈ U(R[[x]])∩

RInt[[x]], it is not necessarily true that a(x) ∈ U(RInt[[x]]). This is because the power series (a(x))
−1

is algebraic but often fails to be integral. The easiest example is if a(x) is a nonconstant polynomial.

Then (a(x))−1 is a root of a(x)y − 1, which implies that (a(x))−1 is algebraic and not integral. To

ensure the inverse is also integral, we have to impose a stronger restriction on the minimal polynomial

of a(x).
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Theorem 2.1.5. Let a(x) ∈ R[[x]] have minimal polynomial F (x, y). Then

a(x) ∈ U(RInt[[x]]) ⇐⇒ a(x) ∈ RInt[[x]] and F (x, 0) ∈ U(R).

Proof. Let

F (x, y) = yn + fn−1(x)y
n−1 + · · ·+ f1(x)y + f0(x) = 0

be the minimal polynomial of a(x).

(⇒) Let

G(x, y) = ym + gm−1(x)y
m−1 + · · ·+ g1(x)y + g0(x) = 0

be the minimal polynomial of a(x)−1. We have that

F (x, a) = an + fn−1(x)a
n−1 + · · ·+ f1(x)a+ f0(x) = 0,

which implies

1 + fn−1(x)a(x)
−1 + · · ·+ f1(x)a(x)

−(n−1) + f0(x)a(x)
−n = 0.

Since G(x, y) is the minimal polynomial of a(x)−1, we have that m ≤ n. Reversing the roles of a(x)

and (a(x))−1 gives us n ≤ m, hence n = m. Now we have that

an + fn−1(x)a
n−1 + · · ·+ f1(x)a+ f0(x) = 0

g0(x)a
n + g1(x)a

n−1 + · · ·+ gn−1(x)a+ 1 = 0

By uniqueness of minimal polynomials, the only way this is possible is if the two polynomials

yn + fn−1(x)y
n−1 + · · ·+ f1(x)y + f0(x) = 0

g0(x)y
n + g1(x)y

n−1 + · · ·+ gn−1(x)y + 1 = 0

are associates. Thus, it must be the case that g0(x), f0(x) ∈ U(R).

(⇐) We write f0(x) as f0 to emphasize that it is in U(R). We know that F (x, 0) ∈ U(R), which
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implies that a(0) ̸= 0. Therefore a(x)−1 ∈ R[[x]]. Additionally, we have that

1 + fn−1(x)a(x)
−1 + · · ·+ f1(x)a(x)

−(n−1) + f0a(x)
−n = 0.

Hence (a(x))−1 is a root of

G(x, y) = yn + gn−1y
n−1 + · · ·+ g1(x)y + g0(x) = 0,

where gi(x) = f−1
0 fn−i(x) ∈ R[x] for i = 0, 1, . . . , n− 1. Therefore, (a(x))−1 ∈ RInt[[x]].

Remark 2.1.6. We give a more sophisticated example to demonstrate that

a(x) ∈ U(R[[x]]) ∩RInt[[x]] ̸⇒ a(x) ∈ U(RInt[[x]]). We recall Example 1.2.26,

F (x, y) = (y2 + x2)2 − (y2 − x2) = 0,

which is a lemniscate. We previously showed that it has four power series solutions. We consider

the power series which passes through (0, 1). The first few terms are

a(x) = 1− 3x2

2
− 25x4

8
− 203x6

16
− 8181x8

128
− 92037x10

256
− · · · .

We notice that (a(x))−1 ∈ U(R[[x]]), however its minimal polynomial is

G(x, y) =
(
x2 + x4

)
y4 −

(
1− 2x2

)
y2 + 1,

which implies that (a(x))−1 ∈ RAlg[[x]] but (a(x))
−1 /∈ RInt[[x]].
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Chapter 3

Puiseux Series

3.1 Newton-Puiseux Algorithm

Let R be an integral domain and K its algebraic closure. We are interested in roots which satisfy

an equation of the form

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x) = 0. (3.1)

We have seen that if Fy(x0, y0) ̸= 0, then the implicit function theorem guarantees a power series

solution. However, the ring of power series R[[x]] is not enough to contain all of our roots. Even the

ring allowing division by x, R[[x]][ 1x ], does not contain all of the roots. We need to allow fractional

exponents on our series. The set of fractional Laurent series are called Puisuex series and are

denoted

R⟨⟨x⟩⟩ =

{ ∞∑
i=m

rix
i/n|ri ∈ R,m ∈ Z, n ∈ N fixed

}
.

The result that there are n roots which lie in K⟨⟨x⟩⟩ is due to Victor Puiseux [17].

Theorem 3.1.1. (Puiseux’s Theorem) The field K⟨⟨x⟩⟩ is algebraically closed.

Given an equation in the form of (3.1), the solutions can be obtained term by term using the Newton-

Puiseux algorithm, first used by Isaac Newton and then later by Victor Puiseux. We provide a loose

sketch of the algorithm, and we refer the reader to [4] for a more in-depth view. We will use an

example to establish working definitions needed to apply the algorithm.
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Example 3.1.2. We consider the set

S = {(1, 0), (3, 0), (0, 4), (0, 1), (1, 1), (4, 3), (2, 2)}

and its graph

.

The boundary of the convex hull is the boundary of the smallest convex polygon containing all of

S, which is given below in figure (a). The boundary of the lower hull is the boundary of the lower

section of the convex hull from the top left point to the lower right point of the convex hull, which is

given below in figure (b). An edge is a line of the convex hull that goes through at least two points,

an example is given below in figure (c).

(a) The boundary of the convex
hull

(b) The lower convex hull (c) An edge of the lower hull
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We will work over C. The Newton-Puisuex Algorithm applied to

F (x, y) =
∑

α=0,...,m
β=0,...,n

Aα,βx
αyβ ,

consists of the following steps:

1. Compute and plot ∆(F ) := {(α, β) | Aα,β ̸= 0}.

2. Compute the boundary of the convex hull.

3. Pick an edge, E, of the lower hull with a nonzero slope.

4. For every point E passes through, set the sum of the corresponding monomials equal to zero

and solve for y.

5. Use y = xa1 found in step four and repeat the algorithm for F (x, y + xa1).

Example 3.1.3. We will compute the first two terms of the power series expansion which goes

through the point (0, 1) from Example 1.2.16. We know this power series must satisfy f(0) = 1, so

we start the algorithm at 1 + y. We have that

F (x, 1 + y) = −3x2 − x4 − 2y − 4x2y − 5y2 − 2x2y2 − 4y3 − y4 = 0.

1. In the first step, we compute and graph

∆(F ) = {(2, 0), (4, 0), (0, 1), (2, 1), (0, 2), (2, 2), (0, 3), (0, 4)}.
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2. Next we compute the boundary of the convex hull.

(a) The boundary of the convex hull (b) The boundary of the lower hull

3. Next we pick an edge of the boundary of the lower hull with a nonzero slope. We are forced

to choose the edge which passes through (0, 1) and (2, 0).

4. The point (0, 1) corresponds to −2y and the point (2, 0) corresponds to −3x2. Setting the sum

of the corresponding monomials gives

−2y − 3x2 = 0 ⇒ y = −3

2
x2.

We repeat the process with F (x, 1− 3
2x

2+y) = −x2+(1− (3x2)/2+y)2− (x2+(1− (3x2)/2+y)2)2:

1. We compute and graph

∆(F ) = {(4, 0), (6, 0), (8, 0), (0, 1), (2, 1), (4, 1), (6, 1), (0, 2), (2, 2), (4, 2), (0, 3), (2, 3), (0, 4)}.
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2. Next we compute the boundary of the convex hull.

(a) The boundary of the convex hull (b) The boundary of the lower hull

3. We pick an edge of the boundary of the lower hull with a nonzero slope. We are forced to take

the edge which passes through (0, 1) and (4, 0).

4. The point (0, 1) corresponds to the term −2y and the point (4, 0) corresponds to the term

25
4 x4. Setting the sum of these monomials to zero yields

−2y − 25

4
x4 ⇒ y = −25

8
x4.

Thus far we have determined that y = 1 − 3/2x2 − 25/8x4 are the first three terms of the

power series solution. Graphically we have:

29



This algorithm also works for fractional power series. We will demonstrate this with our second

example.

Example 3.1.4. We consider the curve in Example 1.2.17

F (x, y) = 2x
(
x2 + y2

)
+
(
x2 + y2

)2 − y2.

1. We compute ∆(F ) = {(3, 0), (4, 0), (0, 2), (1, 2), (2, 2), (0, 4)} and provide its graph.

2. Next we compute the boundary of the convex hull.

(a) The boundary of the convex hull (b) The boundary of the lower hull

3. We are forced to choose the edge which passes through (0, 2) and (3, 0).
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4. The point (0, 2) corresponds to −y2 and the point (3, 0) corresponds to 2x3. Setting the sum

of these monomials to zero yields

−y2 + 2x3 = 0 ⇒ y = ±
√
2x3/2.

Now we repeat the algorithm with F (x, y +
√
2x3/2):

1. We compute ∆(F ) = {(4, 0), (5, 0), (6, 0), (3/2, 1), (5/2, 1), (7/2, 1), (9/2, 1), (0, 2), (1, 2), (2, 2), (3, 2), (3/2, 3), (0, 4)}

and provide its graph.

2. Next we compute the boundary of the convex hull.

(a) The boundary of the convex hull (b) The boundary of the lower hull
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3. Picking the edge which passes through (0, 2), ( 32 , 1) leads us back to the negative Puiseux

solution. Instead, we choose the second edge which passes through ( 32 , 1), (4, 0).

4. The point ( 32 , 1) corresponds to 2
√
2x3/2y and the point (4, 0) corresponds to −5x4. Setting

the sum of these monomials to zero yields

−5x4 + 2
√
2x3/2y = 0 ⇒ y =

5x5/2

2
√
2
.

So we have that y =
√
2x3/2+ 5x5/2

2
√
2

are the first two terms of the power series solution. Graphically

we have:

It has been shown in [4] that every solution to F (x, y) = 0 can be found by using this algorithm.
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Chapter 4

Radius of Convergence

4.1 Radii of Convergence for Algebraic Power Series

In this section, we investigate the radii of convergence of algebraic power series. Recall that α(x) is

an algebraic power series if there exists F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0. We write

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x),

where fn(x) ̸= 0, and we denote the partial derivative of F with respect to x and y as Fx(x, y) and

Fy(x, y) respectively. We first establish that the radius of convergence for an algebraic power series

is indeed an algebraic number. In order to show this, we recall the resultant of two polynomials and

the discriminate of polynomial. We refer the reader to [5] and [7] for more details. Let R denote an

integral domain.

Definition 4.1.1. The resultant of f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i in R[x] is the determi-

nant of the Sylvester matrix:
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

an bm

an−1 an bm−1 bm

an−2 an−1
. . . bm−2 bm−1

. . .

... a2
. . . an

... bm−2
. . . bm

a0
...

. . . an−1 b0
...

. . . bm−1

a0 an−2 b0 bm−2

. . .
...

. . .
...

a0 b0


We denote the result of f and g by Res(f, g).

The resultant has many useful properties [7]. One property we highlight is that Res(f, g) = 0 if and

only if f and g have a common root in C.

Example 4.1.2. The resultant of f(x) = 1 + 2x+ x2 and g(x) = 3 + 3x is

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣
1 3 0

2 3 3

1 0 3

∣∣∣∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣∣∣
3 3

0 3

∣∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣∣
2 3

1 3

∣∣∣∣∣∣∣ = 9− 3(6− 3) = 9− 9 = 0

This shows that f and g have a common root. Upon inspection, one sees that x = −1 is a shared

root of f and g.

The resultant of f(x) = 2 + x and g(x) = x− 5 is

Res(f, g) =

∣∣∣∣∣∣∣
1 1

2 −5

∣∣∣∣∣∣∣ = −5− 2 = −7.

When working with polynomials in two variables, we specify which indeterminate is viewed as the

variable by adding a subscript and treating the other variable as a coefficient.
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Example 4.1.3. Let F (x, y) = x2y2 + 1 and G(x, y) = (x+ 1)y. Then

Resy(F,G) =

∣∣∣∣∣∣∣∣∣∣
x2 x+ 1 0

0 0 x+ 1

1 0 0

∣∣∣∣∣∣∣∣∣∣
= x2 ·

∣∣∣∣∣∣∣
0 x+ 1

0 0

∣∣∣∣∣∣∣− (x+ 1) ·

∣∣∣∣∣∣∣
0 x+ 1

1 0

∣∣∣∣∣∣∣ = 0 + (x+ 1)2 = (x+ 1)2

and

Resx(F,G) =

∣∣∣∣∣∣∣∣∣∣
y2 y 0

0 y y

1 0 y

∣∣∣∣∣∣∣∣∣∣
= y2 ·

∣∣∣∣∣∣∣
y y

0 y

∣∣∣∣∣∣∣− y ·

∣∣∣∣∣∣∣
0 y

1 y

∣∣∣∣∣∣∣ = y4 + y2

With the resultant defined we can now define the discriminant [14].

Definition 4.1.4. Given a polynomial f(x) = a0 + a1x+ · · ·+ anx
n, the discriminant of f is

Disc(f) =
(−1)n(n−1)/2

an
Res(f, f ′).

Because the discriminant is defined via the resultant, it inherits the property that Disc(f) = 0 if

and only if f and f ′ have a common root.

Observation 4.1.5. An equivalent condition that f and f ′ have a common root is that f has a

repeated root. To see this, let deg(f) = d and denote the roots of f as ri, i = 1, . . . , d. Then we

have that

f(x) =

d∏
i=1

(x− ri) and f ′(x) =

d∑
i=1

∏
1≤j≤d
j ̸=i

(x− rj).

Hence,

f(x) and f ′(x) have a repeated root ri ⇐⇒ f ′(ri) =
∏

1≤j≤d
j ̸=i

(ri − rj) = 0

⇐⇒ rj = ri for some j ̸= i

⇐⇒ ri has multiplicity at least 2.
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Example 4.1.6. The derivative of f(x) = ax2 + bx+ c is f ′(x) = 2ax+ b, and then

Disc(f) =
(−1)3

a

∣∣∣∣∣∣∣∣∣∣
a 2a 0

b b 2a

c 0 b

∣∣∣∣∣∣∣∣∣∣
=

−1

a

a ·

∣∣∣∣∣∣∣
b 2a

0 b

∣∣∣∣∣∣∣− 2a ·

∣∣∣∣∣∣∣
b 2a

c b

∣∣∣∣∣∣∣
 =

−1

a
(ab2−(2ab2−4a2c)) = b2−4ac

Example 4.1.7. Let F (x, y) = y2 − x2 + x3. Then Fx(x, y) = −2x + 3x2 and Fy(x, y) = 2y. We

have

Discy(F ) =
(−1)3

1

∣∣∣∣∣∣∣∣∣∣
1 2 0

0 0 2

−x2 + x3 0 0

∣∣∣∣∣∣∣∣∣∣
= −1(−2(0− 2(−x2 + x3))) = −4(−x2 + x3)

Discx(F ) =
(−1)10

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 3 0 0

−1 1 −2 3 0

0 −1 0 −2 3

y2 0 0 0 −2

0 y2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −y2(−4 + 27y2).

Remark 4.1.8. Given a bivariate polynomial F (x, y) ∈ R[x][y] with degy(F ) = n and degx(F ) = m,

deg(Discy(F )) ≤ 2m(n− 1). We write

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x).

The degree of the discriminant being bounded by 2m(n− 1) follows from the fact that the resultant
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comes from taking the determinant of the 2n− 1× 2n− 1 matrix



fn(x) nfn(x)

fn−1(x) fn(x) (n− 1)fn−1(x) nfn(x)

fn−2(x) fn−1(x)
. . . (n− 2)fn−2(x) (n− 1)fn−1(x)

. . .

... f2(x)
. . . fn(x)

... (n− 2)fn−2(x)
. . . nfn(x)

f0(x)
...

. . . fn−1(x) f1(x)
...

. . . (n− 1)fn−1(x)

f0(x) fn−2(x) f1(x) (n− 2)fn−2(x)

. . .
...

. . .
...

f0(x) f1(x)


By writing

Res(F, Fy) =
∑

π∈S2n−1

sign(π)a1,π(1), a2,π(2) . . . an,π(n)

We see that fn(x) must divide every term of the sum of Res(F, Fy). Since the highest degree on

any fi(x) is m, the largest degree from the determinant is m(2n− 2) + deg(fn). Upon dividing the

discriminant by fn(x), the highest possible degree of Discy(F ) is 2m(n− 1).

With the definition of discriminant established, we return to showing that the radius of convergence

for an algebraic power series is an algebraic number. Every algebraic power series is a root of a

bivariate polynomial of the form

F (x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f1(x)y + f0(x).

The singularities of F (x, y) are of three types [1], [13]:

1. roots of fn(x)

2. x0 ∈ C such that F (x0, y) has a root of multiplicity greater than one.

3. points at infinity.

We have already established a necessary and sufficient condition for an algebraic power series to

have an infinite radius of convergence, so we will consider algebraic power series which are not a

polynomials. Thus, we only focus on the first two scenarios. The singularities from the first two
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scenarios will mark potential radii of convergence for algebraic power series [13]. The first are all

the roots of fn(x). If F (x, y) has a repeated root, then Discy(F ) = 0. By Remark 4.1.8, there are

only finitely many x-values that satisfy this condition. Because the singularities mark the potential

radii of convergence and they are either roots of fn(x) or Discy(F ), the radius of convergence must

be an algebraic number.

4.2 The C-set

It is natural to ask if every algebraic number appears as the radius of convergence of an algebraic

power series. The question was asked under a different context by Banderier and Drmota in [2]. In

that paper, the authors conjecture this to be true when working over the rational numbers. In order

to establish which algebraic numbers appear as radii of convergence of algebraic power series, we

first establish some definitions and observations. Throughout, let F be a field.

Definition 4.2.1. A field F is said to have characteristic n if n is the smallest positive integer such

that n1F = 0. If no such n exists, the field is said to have characteristic 0.

Definition 4.2.2. The splitting field of f(x) ∈ F [x] is the smallest extension field L of F such that

f(x) splits into linear factors, i.e.,

f(x) = a(x− α1)(x− α2) . . . (x− αn) where a ∈ F, αi ∈ L.

Definition 4.2.3. A nonconstant irreducible polynomial f(x) ∈ R[x] is separable if its factorization

in a splitting field has distinct linear factors.

A field extension F ⊆ L is separable if for every α ∈ L, the minimal polynomial of α is separable

over F .

Definition 4.2.4. Let F ⊂ L be a field extension. The separable closure of F in L is the set

{α ∈ L | α is separable over F}.

The separable closure of F is the separable closure of F in its algebraic closure.

Remark 4.2.5. When working over a field of characteristic zero, every algebraic extension of F is

separable [14]. Therefore, the algebraic closure and the separable closure are equal.
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Definition 4.2.6. The absolute Galois closure of a field K is the set of all automorphisms of the

separable closure of K that fix K.

Let F ⊂ E be a field extension. Fraleigh showed in [10] that every isomorphism on E can be lifted

to an isomorphism on the algebraic closure of F . In particular, if E is a splitting field, then every

automorphism of E leaving F fixed can be extended to an automorphism of F which leaves F fixed.

In this paper, we are only concerned with the absolute Galois closure of Q denoted G := Gal(A/Q).

Since Q has characteristic zero, by Remark 4.2.5 its separable closure is the algebraic closure of Q.

We note that any automorphism σ in a Galois group can be lifted to an automorphism σ̂ ∈ G [10].

Let a ∈ A. Throughout the rest of this paper, we denote the minimal polynomial of a over Q by fa,

and we the set of roots by Ra, i.e., Ra = {r ∈ C|fa(r) = 0}. Every field automorphism that fixes

the coefficient field permutes the roots of a polynomial, because if σ ∈ Gal(fa),

f(σ(a)) =

n∑
i=0

aiσ(a)
i =

n∑
i=0

aiσ(a
i) =

n∑
i=0

σ(aia
i) = σ

(
n∑

i=0

aia
i

)
= σ(f(a)) = σ(0) = 0.

Hence, there is a natural action of Gal(K/Q) on the set of roots of any f(x) ∈ Q[x] with Q ⊂ K ⊂ A.

This action is transitive, i.e.,

Ra = orbG(a) := {g(a) | g ∈ G}.

We are interested in the set of algebraic numbers that have minimal modulus over all common roots

of their minimal polynomial. Formally, this set is

C := {a ∈ A : |a| = min
r∈Ra

|r|},

and we call C the C-set. Another set of interest is the modulus of every element of C, i.e.,

mod(C) := {|a| : a ∈ C}.

It is not obvious from the definition that mod(C) is a proper subset of mod(A). We prove this claim

now.

Theorem 4.2.7. If a ∈ C, then |a| ∈ C.
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Proof. Let a ∈ C. We first consider the cause of a ∈ R. If a > 0 we are done. If a < 0, then

|a| = −a > 0. Since −a is a root of fa(−x) and the roots of fa(−x) and fa(x) have the same moduli,

|a| ∈ C. Next assume a /∈ R, and let α = |a|. We first note that α is algebraic. Suppose that α /∈ C.

Then there exists β ∈ Rα such that |β| < α. Since fα is irreducible, there exists g ∈ G such that

g(α) = β. Writing a = αeiθ and a = αe−iθ, we have

g(a) = g(αeiθ) = g(α)g(eiθ) = βg(eiθ)

g(a) = g(αe−iθ) =
g(α)

g(eiθ)
=

β

g(eiθ)
.

Taking the modulus yields

|g(a)| = |g(αeiθ)| = |g(α)||g(eiθ)| = |β||g(eiθ)|

|g(a)| = |g(αe−iθ)| = | g(α)
g(eiθ)

| = |β|
|g(eiθ)|

.

To reach our conclusion, we simply look at the modulus of g(eiθ). If |g(eiθ)| ≥ 1, then |g(a)| ≤

|β| < α. If |g(eiθ)| < 1, then |g(a)| < |β| < α. Observing that g(a), g(a) ∈ Ra, we conclude that Ra

contains an element of modulus less than α. Therefore a /∈ C.

Remark 4.2.8. An immediate consequence of Theorem 4.2.7 is that

mod(C) ⊊ mod(A).

For example, note that f(x) = x2 − 2x − 1 is irreducible and has roots 1 +
√
2, 1 −

√
2. Since

|1−
√
2| < |1+

√
2|, by the previous theorem, there does not exist any polynomial with the smallest

root having modulus |1 +
√
2|, i.e., (1 +

√
2)eiθ /∈ C for 0 ≤ θ < 2π.

Theorem 4.2.9. The C-set is closed under multiplication.

Proof. Let a, b ∈ C. Then |a| ≤ |g(a)| and |b| ≤ |g(b)| for all g ∈ G. Therefore, if c ∈ Rab, then

c = g(ab) for some g ∈ G. Thus, we have that

|c| = |g(ab)| = |g(a)g(b)| = |g(a)||g(b)| ≥ |a||b| = |ab|
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and thus, ab ∈ C.

Remark 4.2.10. We can alternatively look at the set with maximum modulus, i.e.,

D := {a ∈ A : |a| = max
r∈Ra

|r|}.

By a similar argument, the same results hold for this set as well. That is, if a ∈ D, then |a| ∈ D and

D is closed under multiplication.

Remark 4.2.11. Let a ∈ C. In order to see that there exists an algebraic power series with radius

of convergence |a|, we simply consider

F (x, y) = fa(x)y − 1 = 0.

Notice that y = 1
fa(x)

∈ RAlg[[x]] and has radius of convergence |a|.

If we require that F (x, y) is monic, then we are working with integral power series. We can also

achieve an integral power series with radius of convergence |a| by considering

F (x, y) = y3 − fa(x) = 0.

Then y = 3
√
fa(x) ∈ RInt[[x]] and has radius of convergence |a|.

4.3 Rational Power Series and Hadamard Product

We have already established that the radius of convergence of an algebraic power series is an algebraic

number. In [2], the authors conjecture which algebraic numbers appear as the radii of convergence

for algebraic power series, but this remains an open problem. The authors conjecture that if R = Q,

then every positive algebraic number appears as a radius of convergence. We look at the known

results so far. First, we establish some necessary machinery such as properties of rational functions

and the Hadamard product.

Definition 4.3.1. A rational power series r(x) is of the form f(x)
g(x) where f(x), g(x) ∈ R[[x]] and
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g(0) ∈ U(R). It satisfies

F (x, y) = g(x)y − f(x).

We begin with a well-known property of rational power series, from [27].

Theorem 4.3.2. Let A1, . . . , Ad be a fixed sequence of complex numbers, d ≥ 1, and Ad ̸= 0. The

following conditions on a function f : N → C are equivalent:

1.
∞∑
i=0

f(i)xi =
P (x)

Q(x)

where Q(x) = 1 +A1x+A2x
2 + · · ·+Adx

d and P (x) is a polynomial of degree less than d.

2. For all n ≥ 0,

f(n+ d) +A1f(n+ d− 1) +A2f(n+ d− 2) + · · ·+Adf(n) = 0.

3. For all n ≥ 0,

f(n) =

k∑
i=1

Pi(n)γ
n
i ,

where 1+A1x+ · · ·+Adx
d =

∏k
i=1(1− γix)

di , the γi’s are distinct and nonzero, and Pi(n) is

a polynomial of degree less than di.

The previous theorem was proven by Richard Stanley in [27] using vector spaces. We provide an

algebraic proof. We only consider the case where Q(x) is irreducible, i.e., for the case when di = 1

for every i = 1, . . . , k. First, we recall that if γ ∈ C and n ∈ N, then

1

(1− γx)n
=

∞∑
i=0

(−γ)i
(
−n

i

)
xi =

∞∑
i=0

(
n+ i− 1

n

)
γixi. (4.1)

Remark 4.3.3. The binomial coefficient
(
n+i−1

n

)
is a polynomial in i of degree n. To see this, we

write

(
n+ i− 1

n

)
=

(n+ i− 1)!

n!(i− 1)!
=

(n+ i− 1)(n+ i− 2) . . . (n+ i− (n− 1))(n+ i− n)(i− 1)!

n!(i− 1)!

=
(n+ i− 1)(n+ i− 2) . . . (i+ 1)i

n!
.
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Since there are n factors in the numerator, it can be viewed as a polynomial in i of degree n.

For future notational convenience, given a power series a(x) =
∑∞

i=0 aix
i, we denote the coefficient

on xk where k > 0 by [xk] : ak. For example, if a(x) = 1 + 2x2, then [x2] : 2.

Proof. (2 ⇒ 1) Assume that the following holds for n ≥ 0:

f(n+ d) +A1f(n+ d− 1) +A2f(n+ d− 2) + · · ·+Adf(n) = 0.

Let r(x) =
∞∑

n=0
f(n)xn. Recall that

Q(x) = 1 +A1x+A2x
2 + · · ·+Adx

d,

and define the following polynomial

P (x) :=

d−1∑
k=0

 ∑
i+j=k

Aif(j)x
k


where A0 := 1. Then r(x) satisfies F (x, y) = Q(x)y − P (x).

To see this, we write the coefficient on xi for Q(x)r(x). For k < d, we have that

[xk] :
∑

i+j=k

Aif(j).

So the coefficient on Q(x)r(x)− P (x) is

[xk] :
∑

i+j=k

Aif(j)−
∑

i+j=k

Aif(j) = 0.

For k ≥ d the coefficient on Q(x)r(x) is

[xk] :

d∑
i=0

Aif(k + d− i) = 0.

Since deg(P (x)) = d − 1, P (x) contributes no terms to the kth coefficient of Q(x)r(x) − P (x).
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Therefore, the coefficient on xk is 0 for k > d. This proves that

Q(x)r(x)− P (x) = 0 ⇒ r(x) =
P (x)

Q(x)
.

(1 ⇒ 3) Let

r(x) =
P (x)

Q(x)
=

∞∑
i=0

f(i)xi

be a rational power series. By partial fraction decomposition and using Equation (4.1), we write

r(x) =

ℓ∑
k=1

bk
(1− γkx)dk

=

ℓ∑
k=1

∞∑
i=0

bk

(
dk + i− 1

dk − 1

)
γi
kx

i =

∞∑
i=0

ℓ∑
k=1

bk

(
dk + i− 1

dk − 1

)
γi
kx

i.

Using Remark 6.1.8, we let Pk(i) = bk
(
dk+i−1
dk−1

)
, and so we have

r(x) =

∞∑
i=0

aix
i =

∞∑
i=0

ℓ∑
k=1

Pk(i)γ
i
kx

i,

which implies ai =
∑ℓ

k=1 Pk(i)γ
i
k.

(3) ⇒ (2) Since di = 1 for i = 1, . . . , k, Pi(n) is a constant polynomial, and we write Pi(n) = pi.

Now we have that

f(n+ d) +A1f(n+ d− 1) + · · ·+Adf(n) =

ℓ∑
i=1

piγ
n+d
i +A1

ℓ∑
i=1

piγ
n+d−1
i + · · ·+Ad

ℓ∑
i=1

piγ
n
i

=

ℓ∑
i=1

(
piγ

n+d
i +A1γ

n+d−1
i + · · ·+ piAdγ

n
i

)
.

(4.2)

Fix 1 ≤ j ≤ ℓ and consider the jth index of the sum on the right-hand-side of Equation (4.2). We

have that

pjγ
n+d
j +A1pjγ

n+d−1
j + · · ·+Adpjγ

n
j = pjγ

n
(
1 +A1γj +d γ

d
j

)
= pjγ

n(0) = 0.
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As j was arbitrary, this holds for every 1 ≤ j ≤ ℓ and

f(n+ d) +A1f(n+ d− 1) + · · ·+Adf(n) =

ℓ∑
i=1

piγ
n+d
i +A1

ℓ∑
i=1

piγ
n+d−1
i + · · ·+Ad

ℓ∑
i=1

piγ
n
i

=

ℓ∑
i=1

(
piγ

n+d
i +A1γ

n+d−1
i + · · ·+ piAdγ

n
i

)
= 0.

Rational power series play an important role in determining which algebraic numbers appear as a

radii of convergence for algebraic power series. We introduce an operation for power series called

the Hadamard product [27].

Definition 4.3.4. Let f(x) =
∑∞

i=0 aix
i and g(x) =

∑∞
i=0 bix

i be power series. The Hadamard

product of f and g, denoted f ∗ g, is

f ∗ g =

∞∑
i=0

aibix
i.

The radius of conbergence is multiplicative in the following sense.

Theorem 4.3.5. If f, g ∈ R[[x]] with nonzero finite radii of convergence R1 and R2 respectively,

then r.o.c(f ∗ g) = R1R2 [2].

Proof. Suppose f(x) =
∑∞

i=0 aix
i, g(x) =

∑∞
i=0 bix

i ∈ R[[x]] with radii of convergence R1 and R2

respectively. Then

R1 =
1

lim sup
n→∞

n
√

|an|
and R2 =

1

lim sup
n→∞

n
√

|bn|
.
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Hence,

r.o.c(f ∗ g) = 1

lim sup
n→∞

n
√
|(ab))n|

=
1

lim sup
n→∞

n
√
|anbn|

=
1

lim sup
n→∞

(
n
√
|an| n

√
|bn|
)

=
1

lim sup
n→∞

n
√
|an|

1

lim sup
n→∞

n
√
|bn|

= R1R2.

Given two rational functions, then their Hadamard product is also a rational function [27]. The

same question can be asked of algebraic power series. Unfortunately, the Hadamard product of two

algebraic functions is not necessarily algebraic. The Hadamard product of an algebraic power series

and a rational function, however, is algebraic [27]. To show this, we first establish some lemmas.

Lemma 4.3.6. Algebraic power series are closed under differentiation. That is, if α(x) ∈ RAlg[[x]],

then d
dx (α(x)) ∈ RAlg[[x]].

Proof. Assume that α(x) ∈ RAlg[[x]]. Then there exists F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0.

It is easy to show that by implicit differentiation,

dF

dx
=

∂F

∂x
+

dy

dx

∂F

∂y
= 0 ⇒ dy

dx
=

−∂F
∂x

∂F
∂y

,

hence,

dy

dx

∣∣∣∣
y=α(x)

=

(
−∂F

∂x
∂F
∂y

)∣∣∣∣∣
y=α(x)

. (4.3)

On the right-hand-side of Equation (4.3) we notice that both−∂F
∂x |y=α(x) and

∂F
∂y |y=α(x) involve terms

of the form xnα(x)m, where n,m ∈ N0. Since algebraic power series are closed under multiplication

and addition, −∂F
∂x |y=α(x) and

∂F
∂y |y=α(x) are algebraic power series themselves. It is not the case that

algebraic power series are closed under division, however, we can consider dy
dx |y=α(x) in its quotient
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field R[[x]][ 1x ]. Since we are working over a field,

(
−∂F

∂x
∂F
∂y

)∣∣∣∣∣
y=α(x)

∈ R[[x]][ 1x ]

and hence dy
dx |y=α(x) ∈ R[[x]][ 1x ]. Therefore,

d
dx (α(x)) is an algebraic Laurent series and hence it is a

root of some G(x, y) ∈ R(x)[y]. This is equivalent to dy
dx |y=α(x) satisfying a bivariate polynomial in

R[x][y], sayH(x, y). To see this, simply multiply G by the least common multiple of all denominators

of its coefficients. We also know

d

dx
(α(x)) =

∞∑
n=1

nanx
n−1,

which is a power series. Therefore, d
dx (α(x)) ∈ RAlg[[x]].

Remark 4.3.7. We point out that algebraic power series are not necessarily closed under integration.

The simplest example is the geometric series

f(x) =
1

1− x
.

We have that, ∫
f(x) dx =

∫
1

1− x
dx = − ln(|1− x|) + C.

As the natural logarithm is not algebraic,
∫
f(x)dx /∈ RAlg[[x]]. Notice that h(x) = − ln(1−x) does

satisfy the differential equation

(1− x)y′ − 1 = 0.

Any type of function which satisfies a differential equation in y with coefficients in R[x] is said to

be D-finite. D-finite series are closed under integration. For more on the topic of D-finite series, we

refer the reader to [20], [21], and [27].

It is worth noting that some algebraic power series are closed under integration. For example, let

g(x) = −
√
1− x. For simplicity we will assume C = 0. Integrating g(x) gives

G(1)(x) :=

∫
g(x)dx =

∫
−
√
1− x dx =

1

2
√
1− x

.
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G(1)(x) satisfies

4(1− x)y2 − 1 = 0.

Let G(n)(x) denote the nth integral of of g(x). Then, assuming C = 0 for each integral,

G(n)(x) =

∏n
i=1(2i− 1)

2n(1− x)(2n−1)/2

satisfies

4n(1− x)2n−1

(
∏n

i=1(2i− 1)2)
y2 − 1 = 0.

Lemma 4.3.8. If α(x) ∈ RAlg[[x]], then α(γx) ∈ RAlg[[x]] for γ ∈ R.

Proof. Suppose α(x) ∈ RAlg[[x]]. By definition, there exists F (x, y) ∈ R[x][y] such that

F (x, α(x)) = 0. One can easily verify that F (γx, α(γx)) = 0. Clearly α(γx) ∈ R[[x]] and thus

α(γx) ∈ RAlg[[x]].

Remark 4.3.9. If the radius of convergence for a(x) is 0 < R < ∞, then the radius of convergence

of a(γx) is R
|γ| .

We are now ready to prove our result that the Hadamard product between an algebraic power series

and a rational function is an algebraic power series. This proof follows the one given by Stanley in

[27], but we will expand on some concepts.

Theorem 4.3.10. If α(x) ∈ RAlg[[x]] and r(x) is a rational power series, then (a∗ r)(x) ∈ RAlg[[x]].

Proof. Write α(x) =
∞∑
i=0

aix
i, and r(x) =

∞∑
i=0

rix
i. By Theorem 4.3.2, there exists polynomials Pi(x)

and γ1, γ2, . . . , γℓ ∈ C such that

rk =

ℓ∑
i=1

Pi(k)γ
k
i . (4.4)

Let Ps(n) = pdn
d + pd−1n

d−1 + · · · + p1n + p0, where 1 ≤ s ≤ ℓ. By Lemma 4.3.6, nxn−1 is an

algebraic power series and therefore so is x ·nxn−1 = nxn. Consequently, nkxn is an algebraic power

series for any k ∈ N0. Therefore,

∞∑
n=0

anPs(n)x
n =

∞∑
n=0

an
(
pdn

dxn + pd−1n
d−1xn + · · ·+ p1nx

n + p0x
n
)
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is an algebraic power series. By Lemma 4.3.8,

∞∑
n=0

anPs(n)γ
n
s x

n

is an algebraic power series. Since s is arbitrary, we have that

ℓ∑
i=1

anPi(n)γ
n
i x

n

is a finite sum of algebraic power series and hence is algebraic. Therefore (a ∗ r)(x) ∈ RAlg[[x]].

This theorem shows that rational power series play a crucial role in the radii of convergence of

algebraic power series. It is worth noting that Remark 4.2.11 tells us that there exists rational

power series with radii of convergence |c| for any c ∈ C. In fact, mod(C) could alternatively be

defined this way. We state the following without proof.

Theorem 4.3.11. We have that

{
R | r(x) = f(x)

g(x)
∈ Q(x), g(0) ̸= 0, and r.o.c(r(x)) = R < ∞

}
= mod(C)

We now summarize the significance of the previous theorems with regards to their impact on the

possible radii of convergence an algebraic power series may have.

Theorem 4.3.12. Given an algebraic power series with radius of convergence R, there also exists

algebraic power series of radius of convergence of the following:

1. R1/n for n ∈ N.

2. |c|R where c ∈ C.

Proof. (1) Suppose α(x) ∈ RAlg[[x]] with radius of convergence R > 0. Then there exists

F (x, y) ∈ R[x][y] such that F (x, α(x)) = 0. Clearly,

F (xn, a(xn)) = 0 ⇒ a(xn) ∈ RAlg[[x]]

and a(xn) has radius of convergence R1/n.
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(2) Let α(x) ∈ RAlg[[x]] with r.o.c(a) = R. By Theorem 4.3.12, (a∗r)(x) ∈ RAlg[[x]] for any rational

power series r(x). By Remark 4.2.11, there exists a rational power series of radius of convergence

|c| for any c ∈ C. Using Theorem 4.3.10, we have that r.o.c(a ∗ r)(x) = |c|R.

We have already seen examples of finding an algebraic (or integral) power series with radius of

convergence |c|, where c ∈ C in Remark 4.2.11. It is difficult to find an algebraic power series with

radius of convergence |c| where c /∈ C. The authors of [2] attempt to do this for quadratic irrational

numbers. They provide a proof that all positive quadratic irrational numbers are radii of an algebraic

power series. Unfortunately, the proof contains an error which we point out.

Remark 4.3.13. We point out an error in [2, Theorem 7.4 (iii)]. The authors state that all positive

quadratic irrational numbers are radii of an algebraic power series. In the proof they incorrectly

factor

α+ β
√
m =

1

α2 − β2m
(α− β

√
m).

Observation 4.3.14. Although an error was found in the proof of [2], we provide numerical evidence

to support the claim. For example, if one considers,

F (x, y) = x+ (y)(y − 2)(y − 3),

then the roots of Discy(F ) are

x =
2(−10± 7

√
7)

27
≈ −2.113, 0.631.

By the implicit function theorem, all three roots of F (x, y) are power series. If we consider the

power series expansion at y = 0, then using Mathematica to estimate 1
|an|1/n

for n = 1000 yields an

approximate radius of convergence of 2.13594, suggesting that the radius of convergence is 2(10+7
√
7)

27 .

By changing the y-intercepts in the example above, we can get numerical evidence for other quadratic

numbers with larger magnitude appearing as radii of convergence of algebraic power series.
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Chapter 5

Characterization of Algebraic

Power Series

5.1 Algebraic Power Series

In this chapter we discuss an equivalent condition of a power series being algebraic. Let α(x) ∈ Q[[x]]

be a convergent power series with domain of convergence D ⊆ C. If α(x) is algebraic, then there

exist polynomials fi ∈ Q[x] where i = 1, . . . , n such that

fn(x)α(x)
n + · · ·+ f1(x)α(x) + f0(x) = 0. (5.1)

We would like to characterize this property in terms of the structure of the image of α(x). At first,

we notice that Equation (5.1) implies that α(a) is algebraic for every algebraic number a in D. If

this were not so, then α(a) would be transcendental, however, plugging in a into Equation (5.1)

yields

fn(a)α(a)
n + · · ·+ f1(a)α(a) + f0(a) = 0. (5.2)

This implies that α(a) is algebraic over the algebraic extension Q(a), a contradiction. Since the

algebraic numbers are dense in C, then it is natural to ask if this condition is enough to imply

that α(x) is algebraic. Unfortunately, we find that α(a) being algebraic for every a ∈ D ∩ A is not

enough to imply that α(x) is an algebraic power series. In [22], the authors prove that for every
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ρ ∈ (0,∞], there exists uncountably many transcendental and analytic functions β ∈ Q[[x]] with

radii of convergence ρ such that β(a) ∈ A for all algebraic numbers a in the domain of convergence

of β. This is due to the fact that although A is dense in C, they only form a countable set.

Instead, we notice that Equation (5.2) holds for all a ∈ D. In other words, α(a) is algebraic over

Q(a). This condition is sufficient for α(x) to be algebraic.

Theorem 5.1.1. Let α(x) ∈ C[[x]] be a power series with radius of convergence 0 < R ≤ ∞ and

let L be a countable subfield of C. Let D be the domain of convergence of α(x). The following

conditions are equivalent.

1. α(x) is algebraic over L[x].

2. For all a ∈ D, α(a) is algebraic over L(a).

3. There exists N ∈ N such that for all a ∈ D, α(a) is algebraic over L(a) of degree at most N .

Before proving this theorem, we establish the definitions of an isolated point and a discrete set as

well as two lemmas from complex analysis [19].

Definition 5.1.2. Let S ⊂ C be a set of points and z0 ∈ S. The point z0 is isolated if there exists

ϵ > 0 such that |z − z0| < ϵ does not contain any other points of S. We say that S is discrete if

every point of S is isolated.

Lemma 5.1.3. [19, Theorem 1.2 pg. 91] Let U be a connected open set. If f is analytic on U and

not constant, then the set of zeros of f is discrete.

Lemma 5.1.4. Any discrete set of points of C is countable.

Proof. Let S be a discrete set of points of C. Then for zi ∈ S, there exists ϵi > 0 such that

|z − zi| < ϵi contains no other point of S. Since Q is dense in R we select (ai, bi) ∈ Q×Q such that

ai ∈ (Re(zi) − ϵi
2 ,Re(zi) +

ϵi
2 ) and bi ∈ (Im(zi) − ϵi

2 , Im(zi) +
ϵi
2 ). Thus (ai, bi) is in the open disc

|z − zi| < ϵ. We associate the point zi with (ai, bi). Therefore, every point in S is associated with a

distinct point (ai, bi) ∈ Q×Q. Since Q×Q is countable, then so is S.

We now provide the proof of Theorem 5.1.1.
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Proof. (1) ⇒ (3). Assume f(x) is algebraic over L[x]. By definition, there exists polynomials

fn(x), . . . , f0(x) ∈ L[x] with fn(x) ̸= 0 such that

fn(x)α(x)
n + · · ·+ f1(x)α(x) + f0(x) = 0.

Given a ∈ D,

fn(a)α(a)
n + · · ·+ f1(a)α(a) + f0(a) = 0

which implies that α(a) is algebraic over L(a) of degree at most n ∈ N.

(3) ⇒ (2) This implication is trivial.

(2) ⇒ (1) Assume that α(a) is algebraic over L(a) for all a ∈ D. Define the function ϕ : L[x][y] → D

by

ϕ(F (x, y)) = {a ∈ D | F (a, f(a)) = 0}.

Since L is countable, L[x][y] is also countable. We note that D is uncountable. It must follow that

there exists at least one F (x, y) ∈ L[x][y] such that ϕ(F (x, y)) is uncountable. If this were not the

case, then ϕ(F (x, y)) would be countable for all F (x, y) ∈ L[x][y] and

D =
⋃

F (x,y)∈L[x][y]

ϕ(F (x, y)).

As the countable union of countable sets is countable, D is countable, giving us the desired contra-

diction.

Choose any F (x, y) ∈ L[x][y] such that ϕ(F (x, y)) is uncountable. Write

F (x, y) = fn(x)y
n + · · ·+ f1(x)y + f0(x).

The function

f(x) := fn(x)α(x)
n + · · ·+ f1(x)α(x) + f0(x)

is analytic in D. For every a ∈ ϕ(F (x, y)) we have that

f(a) = fn(a)α(a)
n + · · ·+ f1(a)α(a) + f0(a) = 0.
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Since f(x) is analytic and D is a connected open set, Lemma 5.1.3 implies that either ϕ(F (x, y)) is

discrete or f(x) is constant. By Lemma 5.1.4, ϕ(F (x, y)) is not discrete and it follows that f(x) is

constant. The only way this is possible is if f(x) is identically zero. Therefore,

f(x) = fn(x)α(x)
n + · · ·+ f1(x)α(x) + f0(x) = 0

and α(x) ∈ RAlg[[x]].

Observation 5.1.5. Given a Puiseux series p(x) ∈ R⟨⟨x⟩⟩, there exists m ∈ N such that p(xm) ∈

R[[x]][ 1x ], because every series in R⟨⟨x⟩⟩ has the form

p(x) =

∞∑
i=−ℓ

aix
i/k

for ℓ, k ∈ N. Letting m = k, we have that

p(xk) =

∞∑
i=−ℓ

ai(x
k)i/k =

∞∑
i=−ℓ

aix
i.

Theorem 5.1.6. Let p(x) ∈ C⟨⟨x⟩⟩ and L be a countable subfield of C. By Observation 5.1.5, there

exists m ∈ N such that p(xm) is a formal Laurent series. Let h(x) = p(xm). Assume that there

exists r,R > 0 such that r < R and h(x) is convergent on the annular disc r < |z| < R. Let D be the

domain of convergence of h(x), and let E = {z ∈ C | p(z) converges}. The following are equivalent.

1. p(x) is algebraic over L[x].

2. For all a ∈ E, p(a) is algebraic over L(a).

3. There exists N ∈ N such that for all a ∈ E, p(a) is algebraic over L(a) of degree at most N .

Proof. We note that (1) ⇒ (3) and (3) ⇒ (2) are identical to the proof given for Theorem 5.1.1. It

remains to show (2) ⇒ (1).

(2) ⇒ (1) Since h(x) is convergent on r < |z| < R, p(x) is convergent on r
1
m < |z| < R

1
m . Using the

same argument and notation as in Theorem 5.1.1 for p(x) on E, we choose any
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F (x, y) ∈ L[x][y] such that ϕ(F (x, y)) is uncountable. The Laurent series

g(x) = F (xk, h(x)) = ft(x
k)(h(x))t + · · ·+ f1(x

k)h(x) + f0(x
k)

is analytic on D, and for every a ∈ D we have that

g(a) = ft(a
k)(h(a))t + · · ·+ f1(a

k)h(a) + f0(a
k) = 0.

Since D is uncountable, then g(x) is identically zero and we have that

ft(x
k)(h(x))t + · · ·+ f1(x

k)h(x) + f0(x
k) = 0.

Replacing x with x1/k, we get

ft(x)(p(x))
t + · · ·+ f1(x)p(x) + f0(x) = 0.

Therefore p(x) is algebraic.
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