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Chapter 1

Introduction

Partial differential equations are frequently utilized in the mathematical formulation of

physical problems. Boundary conditions need to be applied in order to obtain the unique solution

to such problems. However, some type of boundary conditions do not lead to unique solutions

because the continuous problem has a nullspace. This non-uniqueness manifests when the problem

is discretized. For instance, Neumann boundary condition only fixes the normal derivative of the

solution on the boundary, which only determines the solution up to a constant. Here, we present

several methods to remove such null space for different problems: Laplace problem, Linear Elasticity

problem and Stokes problem.

The outline is as follows: We first review the foundation of all three problems and prove

that Laplace problem, linear elasticity problem and Stokes problem can be well posed if we restrict

the test and trail space in the continuous and discrete finite element setting.

Next, we introduce methods to solve the linear system and obtain a numerical solution.

We first explain how to compute a basis of the null space numerically. We will examine two types

of null space: translation and rotation. Then, we show how to remove such a null space from

the preconditioner, the right hand side and the discrete solution or to condense it into the linear

system. We will also utilize the method of fixing DoFs, which guarantees uniqueness of the linear

system. Moreover, we discuss the capability of CG and GMRES in solving resulting linear system

of equations.

Finally, we will present the numerical experiments conducted in the finite element library

deal.II. We compare the numerical and graphical output to evaluate the performance of each method,
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providing a more comprehensive understanding of the strengths and limitations.
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Chapter 2

Literature Review

In this section, we will discuss the null space and well posedness of Laplace problem, lin-

ear elasticity problem and Stokes problem with Neumann boundary condition in continuous level.

Discrete form and construction of linear system will also be mentioned as well as the corresponding

null space.

2.1 Laplace Problem

We start with Laplace problem with mixed boundary conditions [12, 34]:

−∆u = f in Ω

u = 0 on ΓD

∂nu = g on ΓN .

Let Ω ⊆ R, where ΓD ∪ΓN = ∂Ω is the boundary of Ω and f, g are real valued function that

represent external force. ∂nu is the normal derivative of u and g ∈ H1(∂Ω). To derive the weak

formulation, if we pick the test space and solution space to be H1
0 (Ω) = {u ∈ H1(Ω)|u = 0 on ΓD},

then for any v ∈ H1
0 (Ω):

3



∫
Ω

−∆uvdx =

∫
Ω

−∇ · (∇u)vdx

=

∫
Ω

∇u · ∇vdx−
∫
ΓD

(n · ∇u)vds−
∫
ΓN

gvds by green’s formula.

We define the bilinear form as a(u, v) =
∫
Ω
∇u · ∇vdx and L(v) =

∫
ΓN

gvdxds.

Now consider Laplace problem but with Neumann boundary conditions on H1(Ω), the

problem becomes:

−∆u = f in Ω

∂nu = g on ∂Ω.

So the bilinear form is

a(u, v) =

∫
Ω

∇u · ∇v

and the right hand side is

L(v) =

∫
Ω

fv +

∫
∂Ω

(n · ∇u)v =

∫
Ω

fv +

∫
∂Ω

gv

by Neumann boundary conditions. The compatibility condition for Neumann boundary

condition is: ∫
Ω

f +

∫
∂Ω

g = 0

The solution of the problem is determined up to a constant, which creates a null space. The

formulation of Laplace problem with Neumann boundary conditions only involves second derivative

and normal derivative. If a solution is found, add any constant to this solution will give us another

solution and both will satisify the formulation, see [14].

We can solve this issue by fixing the integral of solution over the domain. We impose∫
Ω
u = 0 onto H1(Ω). Denote V = {u ∈ H1(Ω) :

∫
Ω
udx = 0} with the same norm of H1(Ω) which

is || · ||1,Ω. The weak formulation we consider is:
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find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V.

To show uniqueness, we will apply Lax-Milgram, Banach-Necas-Babusk and Poincare-Friedrichs

inequality, by [1]:

Theorem 2.1.1. (Lax-Milgram): Assume V is a Hilbert space and a ∈ L(V × V,R) and let f ∈

L(V )′. If the bilinear form is coercive, i.e. ∃α > 0, ∀u ∈ V, a(u, u) ≥ α||u||2V , then the problem

is well-posedwith a priori bound of the solution:

∀f ∈ V ′ ||u||V ≤ 1

α
||f ||V ′ .

Theorem 2.1.2. (Banach-Necas-Babuska): Let W be a Banach space and V be a reflective Banach

space. Let a ∈ L(W × V,R), f ∈ V ′, then the problem is well-posediff

∃α > 0 inf
w∈W

sup
v∈V

a(w, v)

||w||W ||v||V
≥ α (BNB1)

∀v ∈ V (∀w ∈W,a(w, v) = 0) ⇒ (v = 0). (BNB2)

If the problem is well-posed, the following error estimate holds:

∀f ∈ V ′ ||u||W ≤ 1

α
||f ||V ′.

Remark 1. Assume W = V then Lax-Milgram implies BNB1 and BND2.

Theorem 2.1.3. (Poincare-Friedrichs) Let 1 ≤ p < ∞ and Ω be a bounded connected open set having

extension property. Let M be a linear form on W 1,p(Ω) whose restriction on constant function

is not zero, let W = {v ∈ W 1,p(Ω) M(v) = 0} then W is a closed subspace of W 1,p(Ω) and

∀v ∈ W, c||v||W 1,p(Ω) ≤ ||∇v||Lp(Ω).
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Theorem 2.1.4. (Well Posedness) The problem above is well-posed with the following error bound:

∀f ∈ L2(Ω) ∀g ∈ L2(∂Ω) ||u||1,Ω ≤ c(||f ||0,Ω + ||g||0,∂Ω).

Proof. We will try to take advantage of Poincare-Friedrichs inequality by applying it to

W = V . Define a linear form M(u) =
∫
∂Ω

u, then by construction of V , M(v) = 0 for all v in V ,

then Poincare-Friedrichs inequality implies the following:

∀u ∈ W, c||u||W ≤ ||∇u||L2(Ω).

Let v = u, then

a(u, u) =

∫
Ω

∇u · ∇u =

∫
Ω

(∇u)2 = |∇u|20,Ω = ||∇u||2L2(Ω) ≥ c2||u||2W for some c.

Therefore, the bilinear form a(u, v) is coercive on V = {u = H1(Ω)|
∫
Ω
u = 0}. Following

Lax-Milgram, we may claim the problem is well posed [1].

Remark 2. We fix the integral over the domain by mean value constraint, i.e, impose
∫
Ω
u = 0 onto

H1(Ω). An alternative way to do so is, instead of imposing mean value constraint, we impose mean

value over the boundary. It can be shown that this constraint will make the problem well-posed as

well, see [1] for more details. The proof is similar to the one with mean value constraint.

2.1.1 Discrete Problems

Consider the following discrete form of Laplace problem with Neumann boundary conditions.

Seek uh ∈ Vh such that :

a(uh, vh) = L(vh) ∀vh ∈ Vh

Let Vh be a finite dimensional subspace of V with basis {ϕi}. Since a is coercive in V , then

a is also coercive in Vh. It has shown in [1] that with Q1 finite element, the constraint will be

satisified and the discrete form is well-posed.
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2.2 Linear Elasticity Problem

Linear elasticity problem is formulated as follows: Consider a deformable object and some

external load f , where if we apply the load to the object, it will start to deform. Our interest is the

displacement field u when the object reaches equilibrium again. Denote Ω ⊆ R3 to be the initial

stage, then define stress tensor σ so that at equilibrium stage, ∇ · σ + f = 0 and define the strain

tensor ϵ = 1
2 (∇u + ∇uT ). By linear isotropic elasticity, the stress strain tensor can be related as

follows:σ(u) = λ(tr(ϵ(u)))I+2µϵ(u). Where λ, µ are called Lame coefficient and I is identity matrix.

Combining the two definitions, we have σ(u) = λ(∇ · u)I + µ(∇u+∇uT ), see [13, 19].

For boundary conditions, Mixed boundary conditions and Neumann boundary conditions

are mostly considered. For Mixed boundary conditions, we split the boundary condition into two:

u = 0 for u ∈ Γ1 and ∂nu = g for u ∈ Γ2 where Γ1,Γ2 together form the whole boundary. For

Neumann boundary conditions, we only have ∂nu = g for u ∈ Γ. Such problem is also referred to the

pure traction problem. Later we will refer to the mixed boundary condition linear elasticity problem

as mixed boundary problem and linear elasticity problem with Neumann boundary condition as pure

traction problem.

The mixed boundary problem is defined as:

−∇ · (σ(u)) = f in Ω

u = 0 on Γ1

∂nu = g on Γ2.

The pure traction problem is defined as:

−∇ · (σ(u)) = f in Ω

∂nu = g u on Γ.

To derive the bilinear form, we will start with:

−∇ · (σ(u)) = f.
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If we multiply the test function v on both side and take integral, we will have:

∫
Ω

−∇ · (σ(u)) · v =

∫
Ω

f · v.

If we do integration by parts, we will have:

∫
Ω

σ(u) : ∇v =

∫
Ω

f · v +
∫
Γ

n · σ(u) · v.

Moreover, plug in the relationship between two tensors into the bilinear form, we have

a(u, v) =

∫
Ω

σ(u) : ∇(v) =

∫
Ω

(λ(∇ · u)I + µ(∇u+∇uT )) : ∇(v)dx

=

∫
Ω

λ∇ · u(I : ∇(v)) + 2µϵ(u) : ∇(v)dx

=

∫
Ω

λ(∇ · u)(∇ · v) + 2µ(ϵ(u) : ∇(v))dx.

We are more interested in the pure traction problem. Choosing [H1(Ω)]3 = {(u1, u2, u3) :

u1, u2, u3 ∈ H1(Ω)} as test and solution space, we may derive the weak formula as follows:

Seek u ∈ [H1(Ω)]3such that

a(u, v) =

∫
Ω

f · v +
∫
Γ

g · v,∀v ∈ [H1(Ω)]3

With a(u, v) =

∫
σ(u) : ∇(v) =

∫
Ω

λ(∇ · u)(∇ · v) +
∫
Ω

2µϵ(u) : ∇(v).

However, this weak form is not well-posed. The idea is as following: The physical law

described by pure traction problem does not require a specific location of object in three-dimensional

space, therefore, without further restriction, we will have infintely many solutions, i.e., there’s a null

space generated by rigid body movement. To remove this null space, we need to first understand the

behavior of rigid body movement. In a three-dimensional environment, the translation of an object

has a three-dimensional basis, namely, translate along x-axis, y-axis and z-axis. Moreover, rotation

of an object also has a three-dimensional basis, rotation around x-axis, y-axis and z-axis.

One way to take care of the null space generated by rigid body motion is to choose H1
⊥(Ω)
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as test and solution space.

H1
⊥(Ω) = {u ∈ H1(Ω) |

∫
Ω

u = 0

∫
Ω

∇× u = 0}

To show that the pure traction problem is well-posed under H1
⊥(Ω), we will need the fol-

lowing Lemma:

Theorem 2.2.1. (Petree-Tartar Lemma) Let X,Y, Z be banach spaces, let A ∈ L(X,Y ) be an

injective operator and T ∈ L(X,Z) be a compact operator. If there exists a constant c such that

c||x||X ≤ ||Ax||Y + ||Tx||Z , then there exist an α > 0 such that α||x||X ≤ ||Ax||Y .

Now we present the proof of uniqueness, let RM = {α + β × x}, where α, β ∈ Rd, x =

{x1, x2, ..., xd}, d is the dimension of the problem:

Theorem 2.2.2. Let Ω ⊆ R3, assume f ∈ [L2(Ω)]3, g ∈ [L2(∂Ω)]3 such that

∫
Ω

f · v +
∫
∂Ω

g · v = 0 ∀v ∈ RM.

Then the pure traction problem is well-posed in H1
⊥(Ω) and there exists a constant c such that:

||u||1,Ω ≤ c(||f ||0,Ω + ||g||0,∂Ω).

Proof. Let X = H1
⊥(Ω) and Y = [L2(Ω)]3,3 then we define A : X → Y by Au = ϵ(u). Let

u1, u2 ∈ X and assume A(u1) = A(u2), then Au1−Au2 = 0, which mean A(u1−u2) = 0 by gradient

operator is a linear operator and linear combination of linear operator is again a linear operator.

Then we will have ϵ(u1−u2) = 0. By Korn’s inequality, we show that ϵ(u) = 0 if and only if u ∈ RM

but if u ∈ H1
⊥(Ω) then u ̸∈ RM by orthogonality in the definition, so ϵ(u1 − u2) = 0 ⇒ u1 = u2.

Therefore, A is injective.

Set Z = [L2(Ω)]3 and let T : X → Z be a compact embedding operator from H1 to L2

guaranteed to exist by Rellich Kondrachov theorem, then we may apply Korn’s second lemma to

show that

∀u ∈ X, ||u||X ≤ c(||Ax||Y + ||Tx||z).

This satisify the assumption of Petree-Tartar’s lemma, therefore, applying Petree-Tartar lemma we
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may further restrict our inequality:

∀u ∈ X ||u||X ≤ c||ϵ(u)||Y ⇒ ||u||1,Ω ≤ c||ϵ(u)||0,Ω.

Therefore, we have a(u, v) is coercive on H1
⊥(Ω). It can be shown that H1

⊥(Ω) is again

Hilbert since it’s a subset of H1(Ω) and it’s closed. Applying Lax-Milgram will then give us the

conclusion that the problem is well-posed, see [1].

2.2.1 Discrete Problems

Let Ĥ1
⊥ be a finite dimensional subspace of H1

⊥(Ω), we obtain Ĥ1
⊥ as introduced in [1, 33],

basically we use continuous Lagrange finite element to approximate the continuous bilinear form of

degree k ≥ 1. Then it can be shown that the finite element approximation is well-posed.

We would like to write the approximated solution uh as a linear combination of basis func-

tion, so we can use the same method as before to derive the linear system. Let Φi(x) be the basis

function of Ĥ1
⊥(Ω). Since linear elasticity problem is a vector-valued problem, the basis function

Φi(x) is also a vector-valued function. The dimension of Φi(x) is equal to the dimension of the solu-

tion. To number the basis function, denote Φi(x) = ϕi(x)ecomp(i), where comp(i) is the component

of i that is nonzero and ei is the ith unit vector. So we approximate each component with ϕi(x)

and combine them with ecomp(i). Hence, we can still represent the approximated solution uh as a

linear combination of basis function Φi(x). Therefore, we can derive the linear system as usual:

Recall the bilinear form is:

a(u, v) =

∫
Ω

λ(∇ · u)(∇ · v) +
∫
Ω

2µϵ(u) : ∇(v).
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If we substitute uh =
∑N

i=1 UiΦi and vh =
∑N

j=1 VjΦj , we will have:

a(uh, vh) = λ

∫
Ω

(∇ ·
N∑
i=1

UiΦi)(∇ ·
N∑
j=1

VjΦj) + 2µ

∫
Ω

ϵ(

N∑
i=1

UiΦi) : ∇(

N∑
j=1

VjΦj)

= λ

∫
Ω

(

N∑
i=1

Ui

∑
k

(Φi)k)(

N∑
j=1

Vj

∑
l

(Φi)l) + 2µ

∫
Ω

(∇U : ∇V ) + (∇UT : ∇V )

= λ

∫
Ω

(

N∑
i=1

Ui

∑
k

(Φi)k)(

N∑
j=1

Vj

∑
l

(Φi)l) + 2µ

∫
Ω

N∑
i=1

Ui

N∑
j=1

Vj(∇Φi : ∇Φj) +

N∑
i=1

Ui

N∑
j=1

Vj(∇ΦT
i : ∇Φj)

= λ

∫
Ω

(

N∑
i=1

Ui

∑
k

(Φi)k)(

N∑
j=1

Vj

∑
l

(Φi)l) + 2µ

∫
Ω

N∑
i=1

Ui

N∑
j=1

Vj(
∑
k

∑
l

∂k(Φi)l∂l(Φj)k) + (∂l(Φi)k∂l(Φj)k)

Here, (·)k, (·)l are the partial derivative with respect to xk, xl, k, l range from 1 to d, which

is the dimension of problem, we can compute each entry in linear system based on the last formula,

see [7] for more details. It has been shown in [27] that if we apply Q1 finite element to this weak

form, we will obtain well posedness.

2.3 Stokes Problem

The Stokes equation is defined as follows, see [15]:

−2∇ · (ϵ(u)) +∇p = f in Ω

−∇ · u = 0 in Ω

u = g on ∂Ω.

Where u : Ω → Rd is the velocity of the flow, p is the pressure and f is an external force.

By definition, u and f are vector-valued function and p is a scalar-valued function.

To derive the weak form of Stokes problem, let V,Q be the test space for u and p. Then for

v ∈ V, q ∈ Q:
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∫
Ω

−2∇ · (ϵ(u))v +∇pvdx =

∫
Ω

fvdx

−
∫
Ω

q∇ · u = 0.

Consider the first equation, by property of divergence, matrix-vector product and matrix-

matrix contractions:

∇ · (vϵ(u)) = ∇ · (ϵ(u))v +∇vϵ(u) ⇒ ∇ · (ϵ(u))v = ∇ · (vϵ(u))−∇vϵ(u).

Then

∫
Ω

−2∇ · (vϵ(u)) +
∫
Ω

2∇vϵ(u) +

∫
Ω

∇pv =

∫
Ω

fv.

By divergence theorem,

∫
Ω

−2∇ · (vϵ(u)) =
∫
∂Ω

−2n · vϵ(u).

So the weak form is

∫
∂Ω

−2n · vϵ(u) +
∫
Ω

2∇vϵ(u) +

∫
Ω

∇pv =

∫
Ω

fv.

Applying divergence theorem and property of divergence on second and third term:
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∫
∂Ω

−2n · vϵ(u) +
∫
Ω

2∇vϵ(u)−
∫
Ω

p∇ · v +
∫
∂Ω

n · vp =

∫
Ω

fv.

If we add first and second equation,

∫
∂Ω

−2n · vϵ(u) +
∫
Ω

2∇vϵ(u)−
∫
Ω

p∇ · v +
∫
∂Ω

n · vp−
∫
Ω

q∇ · u =

∫
Ω

fv.

Since we have u ∈ H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, we can remove the first and fourth

term. Therfore,the weak form is: Find u ∈ H1
0 (Ω), p ∈ L2(Ω) such that a((u, p), (v, q)) = L(v) for

all v ∈ H1
0 (Ω), q ∈ L2(Ω) where

a((u, p), (v, q)) =

∫
Ω

2∇vϵ(u)−
∫
Ω

p∇ · v −
∫
Ω

q∇ · u

L(v) =

∫
Ω

fv.

However, the Stokes problem runs into the same issue as Laplace problem with Neumann

boundary condition, which is pressure is fixed up to a constant. We may use the same method

to take care of constant of pressure. The test space for u is [H1
0 (Ω)]

3 and test space for p is

{q ∈ L2(Ω),
∫
Ω
q = 0}. Well posedness is shown in [1].

2.3.1 Discrete Problems

The weak form is: let Xh ⊂ [H1
0 (Ω)]

d,Mh ⊂ L2∫
=0

(Ω) be the finite element spaces. We seek

uh ∈ Xh, ph ∈ Mh such that

a(uh, vh) + b(vh, ph) = f(vh) ∀vh ∈ Xh

b(uh, qh) = g(qh) ∀qh ∈ Mh
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Based on [1, 22], this weak form is well-posed if Q2 ×Q1 finite element is applied. We will

examine the well posedness property of such finite element in numerical experiment section. We will

be applying the same method as laplace problem to solve a solution with mean value constraint.
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Chapter 3

Methods for Remove Null Space

In this section, we will discuss how to implement exact null space for all three problems,

then discuss how to remove such null space in the linear system. We will introduce three methods in

this section, all of them are specifically about solving the problem in linear system level: Apply affine

constraints, solve singular system and null space removal operator. We will analyze each method

and present corresponding numerical experiments in the next section.

Other than these three methods, there is another method that could also solve the problem

with a null space, it is the Lagrange multiplier, see [5, 10]. This method requires different weak

formulations and therefore is not discussed in this thesis.

3.1 Exact Null Space

For Laplace and Stokes problem, the solution is determined up to a constant. Therefore,

the null space consists of all constant functions. Thanks to the partition of unity property, this

continuous null space is exactly approximated by the one-dimensional subspace spanned by e =

{1, 1, ..., 1}.

For linear elasticity problem, the null space is RM = {u ∈ [H1(Ω)]d|u(x) = α + β × x}

α, β ∈ Rd , where d is the dimension of u, x = {x1, x2, ..., xd} and × is cross product, we can show

RM is the null space of a(u, v) based on u.

Theorem 3.1.1. Let a(u, v) be the bilinear form of linear elasticity problem with Neumann boundary

condition, then (u ∈ RM) ⇔ a(u, v) = 0, ∀v ∈ [H1(Ω)]3.
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Proof. (⇒) If u ∈ RM then we have u =


α1 + β2x3 − β3x2

α2 + β3x1 − β1x3

α3 + β1x2 − β2x1

. Note that the strain of u

is zero by skew symmetry, we will have zero matrix. Therefore, ϵ(u) = 0. Similarly ∇ · u = 0 which

directly imply that a(u, v) = 0.

(⇐) If a(u, v) = 0 for all v ∈ [H1(Ω)]3, we take v = u, then by definition, a(u, u) =
∫
σ(u) :

ϵ(u)dx =
∫
Ω
λ(∇ · u)(∇ · u) +

∫
Ω
2µϵ(u) : ϵ(u)dx = 0 Since integral is non-negative, we can further

claim
∫
Ω
λ∇u · ∇u =

∫
Ω
2µϵ(u) : ϵ(u)dx = 0.

On one hand,
∫
Ω
λ∇·u∇·udx = 0 ⇒

∫
Ω
(∇·u)(∇·u)dx = 0 ⇒ λ

∫
Ω
(∇·u)2dx = 0 ⇒ ∇·u = 0.

On the other hand, the second part of integral implies ϵ(u) = 0.

Now consider the following

∂2ui

∂xj∂xk
= ∂jkui = ∂k(∂jui) = ∂k(∂jui + ∂iuj − ∂iuj) = ∂k(2ϵij)− ∂k∂iuj

∂2ui

∂xj∂xk
= ∂jkui = ∂j(∂kui) = ∂j(2ϵik)− ∂j∂iuk.

Adding two equations, by ϵ(u) = 0, we have:

∂k(2ϵij)− ∂k∂iuj + ∂j(2ϵik)− ∂j∂iuk = 2∂k(ϵij) + 2∂j(ϵik)− ∂i(∂kuj + ∂juk)

2∂k(ϵij) + 2∂j(ϵik)− ∂i(2ϵjk) = 0.

In short, ∂jkui = ∂k(∂jui) = 0 for all 1 ≤ i, j, k ≤ 3, therefore we may claim that u is a

linear functional of x, i.e. u = α + Bx. Moreover, ϵ(u) = ∇u +∇uT = B + BT = 0 ⇒ B = −BT

By property of skew symmetric matrix, there exist another vector β such that Bx = β × x. Hence

proved.

Skew symmetric matrix has a general form, for any scalar b, b1, b2, b3 ∈ R:

B =

0 −b

b 0

 or B =


0 b1 b2

−b1 0 b3

−b2 −b3 0

 .

For simplicity purpose, we will use (x, y) and (x, y, z) as variables in two dimension and

16



three dimension in this section. The discrete null space basis come from RM. Recall by definition

of RM, each function in RM can be represented by α + Bx and B is a skew symmetric matrix.

Therefore, Bx can be written explicitly as a vector. In two dimension,

Bx =

0 −b

b 0


x

y

 = b

−y

x


Hence, the basis of RM for the two-dimensional case is:

Translation:

1

0


0

1

 and Rotation:

−y

x

 .

In order to discretize x and y, we need to locate support points in the mesh as they are

the discretization of x and y. The discrete basis is then: ex = {1, 0, 1, 0, ...}, ey = {0, 1, 0, 1, ...}

and r = {−y1, x1,−y2, x2...}, where xi and yi are the x, y coefficient of support points in the mesh.

Similarly, for three-dimensional problem, the basis is then: {1, 0, 0, 1, 0, 0, ...}, {0, 1, 0, 0, 1, 0, ...},

{0, 0, 1, 0, 0, 1, ...} for translation and {y1,−x1, 0, y2, ...}, {z1, 0, x1, z2, ...} and {0, z1, y1, 0, ...}.

We will discuss several approaches for working with this null space on the discrete level

in next section. One common procedure among all methods is the orthogonal projection onto the

null space. The process of projecting out the null space from the solution involves several steps.

First, The Gram-Schmidt method will be utilized to ensure that the basis of the null space is

orthonormal. Then the null space can be removed by applying orthogonal projection. Specifically,

if N = {n1, n2, ..., nk} represents the set of orthonormal basis and we want to project N out of any

vector b, we will apply projection operator PN , defined as:

PN (b) = b− (

k∑
i=1

⟨b, ni⟩ni) ∀ni ∈ N.

Note, PN (b) is orthogonal to RM under all finite element functions.

3.2 Constraints

In this section, we will discuss how to interpolate constraints numerically and how to con-

dense such constraints into a linear system, see [17, 23]. Then we will discuss why condensing such
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constraints is not good idea and an alternative way, fix DoFs.

3.2.1 Affine Constraints

Two constraints are considered in this paper: Translational constraint:
∫
Ω
u = 0 and ro-

tational constraint:
∫
Ω
∇ × u = 0 We have shown that for Laplace problem and Stokes problem,

imposing translational constraint will give us a unique solution and for linear elasticity problem,

imposing translational and rotational null space will give us a unique solution.

In order to apply these constraints in linear system, we need to convert them into vector.

In discrete level, we interpolate uh with basis in finite dimensional space ϕi(x). Therefore,

uh =

N∑
i=1

uiϕi(x)

∫
Ω

uh =

∫
Ω

N∑
i=1

uiϕi(x) =

N∑
i=1

ui

∫
Ω

ϕi(x).

Similarly, to interpolate
∫
Ω
∇ × u, we will interpolate each component and put them together, in

two dimension:

∫
Ω

∇× u =

∫
Ω

∇×

u1

u2

 =

∫
Ω

∂2u1 − ∂1u2

=

∫
Ω

(
∂2

∑N
i=1 Ui(Φi)1 − ∂1

∑N
i=1 Ui(Φi)2

)
=

N∑
i=1

Ui

∫
Ω

∂2(Φi)1 − ∂1(Φi)2.

Since each shape function is explicitly know, we can compute the integral of shape function.

Hence, we can convert continuous constraints into affine constraints and condense them into linear

system.

3.2.2 Condensing Constraints into Linear System

Condensing a constraint into a linear system is one way to increase the rank of a matrix and

hence obtain a unique solution. There are two major goals we wish to accomplish after condensing
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extra vectors: maintain the symmetry of the matrix, keep all existing information of the matrix and

adding information from the constraint to the matrix or solution.

We will take advantage of Gauss elimination. Recall in Gauss elimination, we take one row

each time then do elimination based on the pivoting point in each step. The solution before and

after elimination will not change since elimination is nothing but linear combination of each row.

Hence, if we manipulate the matrix based on Gauss elimination method then the solution will not

change.

On the other hand, symmetry of a matrix is also critical if we wish to apply iterative solvers

like the conjugate gradient method. If we just condense the vector into a symmetric matrix, then

symmetry is unlikely to remain. To prevent this, some preprocessing is required. Denote the linear

system as Ax = b, A ∈ Rn×n, b ∈ Rn the augmented matrix Q = [A b], the algorithm is as follows:

1. Pick a pivoting column: Without loss of generality, we pick column L.

2. Transform the constraint
∑n

i=1 kiui = 0 ⇒ uL =
∑

i ̸=L
ki

kL
ui, denote C = {ci} = { ki

kL
} as the

constraint vector.

3. Denote each row in A as Ai, do Ai = Ai − ciAL for i ̸= L.

4. Eliminate Lth column of A using the constraint and replace Lth row with zero. So after

elimination, Lth column should have all zero entries as well as Lth row.

5. Replace AL,L with with the mean of diagonal to improve condition number.

Theorem 3.2.1. Condensing constraint with the above method will not break the symmetry of A

Proof. We take L as constrainted degree of freedom, i.e. cL = 1 , constraint is then

C = { k1

kL
, k2

kL
, ..., kn

kL
} = {ci}

Based on the method, let Ai be the row of A. Do

Âi = Ai − ciAL = Ai − ciAL

Elementwise, we have

Âij = Aij − ciALj = Aij − ciALj
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Then eliminate column L of Â:

A∗
i = Âi −

ÂiL

cL
C i ̸= L

Elementwise, we have

A∗
ij = Âij −

ÂiL

cL
ci = Aij − ciALj − (AiL − ciALL)cj

= Aij − ciALj −AiLcj + cicjALL

If we interchange i and j, we will have

A∗
ji = Aji − cjALi −AjLci + cjciALL

Therefore,

A∗
ij −A∗

ji = (Aij −Aji) + (−ciALj −AiLcj)− (−cjALi −AjLci) + (cicjALL − cjciALL)

By symmetry of A, it’s clear that the difference is zero, hence A∗
ij = A∗

ji, therefore, con-

densing will maintain symmetry.

Note, there is no restriction about which DoF to isolate and condense. But one needs to

choose one, do the elimination and process forward.

The linear system of finite element often involves sparse matrix. However, the interpolation

we have are likely to be full vectors. Based on the algorithm, using Gauss elimination with a full

vector onto a sparse system will turn a sparse matrix into a full matrix, which is not what we wish

to see. On the other hand, Computing
∫
Ω
u =

∫
Ω
∇× u = 0 in each cell and iteration is expensive

and not necessary, we may just remove these null space after obtaining a solution. Therefore, we

will consider an alternative way, the method of fixing DoFs.

3.2.3 Fixing DoFs method

As we discussed before, the null space exists because of translation and rotation of the object

and we can impose
∫
Ω
u = 0 and

∫
Ω
∇× u = 0 to prevent such null space. However, a more direct

20



approach to prevent the object from translating and rotating is fixing specific points of the object.

Since points doesn’t exist in linear system, we need to locate the DoFs associated with the points we

wish to fix, then set those DoFs to specific values in terms of constraint. Therefore, the constraint

is sparse, it only contains one nonzero coefficient. Condensing such constraint will be much cheaper

compared to condensing full constraints.

The number of DoFs we fix depends on the dimension of null space. For Laplace problem,

since the null space is one-dimensional, fixing exactly one DoF restores the uniqueness of the prob-

lem. For two-dimensional linear elasticity problem, the null space is three-dimensional as there are

translation in the x and y directions and rotation. One possible method for selecting these DoFs

involves selecting a point p1, identifying the corresponding DoFs associated with its x and y values,

and fix them to zero. At this point, translation is prevented, but rotation is still possible. Therefore,

another point p2 with the same x-value as p1 is selected, and the degree of freedom associated with

the y-value of p2 will be fixed to zero. By adopting this approach, the null space is completely

removed. For Stokes problem, we will apply the same method as Laplace problem. We fix one

pressure DoFs to remove the null space in pressure.

After picking points and finding the corresponding DoFs in linear system, we will fix the

DoFs to zero. Therefore, each affine constraint only involves one nonzero DoF. We will condense

these constraints into the linear system. The sparsity pattern will not break in this case since these

constraint are sparse.

As discussed previously, fixing point will grant a solution, but it’s not necessaryly the correct

solution we need. Therefore, after obtaining a solution by fixing DoFs, we will remove exact null

space from solution by orthogonal projection as defined previously.

The DoFs we pick to fix depends on the topology to mesh. Normally we fix the DoFs

associated with corner point of the mesh so that when multilevel method or adaptive refinement are

applied, these points will always exist.

There are certain advantage of this method. If we use iterative solver, less computation

will be done in each iteration since we have less non-zero entries in matrix A because of sparse

constraint. There are also some disadvantages. The major disadvantage is that it takes more

iterations for iterative solver to converge. One possibility is the eigenvalue distribution is affected

when we condense the fixing DoF constraint.
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3.3 Preconditioned Singular System

Through this section, we denote the matrix obtained from finite element approximation is

A, A is positive semidefinite and right hand side is b, the linear system we need to solve is Au = b.

We have the information of null space of A as explained in previous sections.

3.3.1 Convergence of Singular system

While analyzing behaviors of iterative solver based on [32, 4, 18], we normally consider a

positive definite matrix or a non-singular matrix. However, matrix with a null space may converge

as well, see [20, 30]. Based on [26, 21, 25, 29], if CG is appled to solve a symmetric singular system

Au = b and b is in the range of A, then CG will converge. GMRES, by [31], does not require

stiffness matrix to be symmetric. It has been shown in [24] that GMRES will converge if b ∈ R(A)

and R(A) = R(AT ).

We have to keep the right hand side in the range of A for both iterative solvers. We

have previously discussed the vector form of exact null space, therefore, we can first compute the

orthonormal basis and use projection operator to remove the null space from right hand side.

A common approach to enhance the performance of iterative solver is to apply a precondi-

tioner. We have shown that the iterative solver will converge, but with preconditioner, the situation

is more complicated. If the range of preconditioner is equal to or is a subset of range of A, then

the proconditioner will not map any vector into the null space of A. Therefore, convergence can

be achieved. However, that’s not always the case. If a preconditioner maps a vector into the null

space of A because of the preconditioner has a larger range or round-off errors, then iterative solver

may diverge. In the next section, we will introduce an operator to prevent this divergence from

happening.

3.4 Null Space Removal Operator

Other than utilizing constraints to solve the linear system and solving singular system

directly, an alternative approach is to remove the null space in the process of solving linear system.

The approach is denoted as null space remove operator.
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3.4.1 Null space removal operator

In order to remove the null space from each matrix vector product, we need one additional

step in each iteration: project out the null space. Basically, operator PN with orthonormal null

space basis is applied to override matrix vector multiplication. Before applying CG solver, we

remove nullspace from right hand side and apply the removal operator to the preconditioner. Then,

every time we did matrix vector multiplication with preconditioner, we remove the null space from

the product by PN to ensure the product lies within the range of A. Hence, the assumption is

satisified and CG will converge. Note, we do not apply such operator around A simply because A

can only map a vector to its range. If CG failed to converge when the above implementation is

utilized, then the basis of null space is not accurately implemented.

The major advantage of null space removal operator is its accuracy. If the null space is

implementated correctly, it will take fewer iteration to converge compared to fix DoFs method as

we will see in the next section and it’s more stable than solving the singular system directly.
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Chapter 4

Numerical Experiments

The numerical experiment of this thesis is based on deal.II [2, 3, 9, 8], a C++ software library

supporting the creation of finite element codes and an open community of users and developers. The

code of numerical experiments can be found at: https://github.com/pengfej/dealii_cg_for_

null.

Compute mean value constraint

We integrate the solution over the whole domain, i.e., we do

Mean value =
1

|Ω|

∫
Ω

uh(x)dx

for each component of the solution, where Ω is the domain, uh(x) is the function representation of

the nodal vector. The value is evaluated numerically based on the given quadrature formula, see

[16] for more details. If mean value is not explicitly shown, then it’s zero.

Error Estimate

Throughout this section, we will use L2 norm to estimate errors. So within cell K, the

cellwise error estimate is

EK =

√∫
K

∑
(uh − u)2dx
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and the overall error estimate is then

E =

√∑
K

E2
K =

√∫
Ω

(u− uh)2 = ∥u− uh∥L2(Ω).

The integral on each cell is estimated by quadrature. In this thesis, we will use the same

numerical quadrature as implementing matrix A and right hand side vector b.

Linear Operator Implementations

To implement null space removal operator in deal.II, we will take advantage of the class

”LinearOperator” from [28].

A linear operator is applied to an object that contains the following four functions: matrix

vector multiplication, matrix vector multiplication with addition, transpose matrix vector multipli-

cation and transpose matrix vector multiplication with addition. Within the operator, we add extra

functionality to these functions. In our case, after doing matrix vector multiplication, we also do

projection with the result vector to keep the vector inside the range of A. Note, in order to make

this happen, the null space basis need to be explicitly known in the operator, this can be done by

adding an extra argument in the operator constructor.

Time Estimation

A timer will be initiated prior to the execution of the CG/GMRES solver and stopped after

the solver converges. In our analysis, fix DoFs results in reduced computation within each iteration

and require more iterations to achieve convergence. On the other hand, the removal operator entails

increased computation per iteration, but takes fewer iterations to converge. Therefore, it would be

interesting to compare their performance.

Rate of Convergence

The rate of convergence will also be calculated and subjected to comparison. Given that

the L2 error is estimated and global refinement is applied after each cycle, we expect quadratic

convergence for each case by [6]. In other words, when dividing the error in the current cycle by the

error in the previous cycle, we should expect a ratio value of 4 approximately. This specific column
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will be denoted as ”RoC” in the table of outputs in each numerical experiment.

4.1 Q1 Finite Element for Laplace Problem

The manufactured solution of Laplace problem is u(x, y) = sinπx cosπy and the domain is

the square centered at origin with length 2. The gradient of u is

{∂u
∂x

,
∂u

∂y
} = {π cosπx cosπy,−π sinπx sinπy}.

To find the right hand side function f , we take the negative divergence of gradient of u:

f = −∇ · ∇u = −(−π2 sinπx cosπy − π2 sinπx cosπy) = 2π2 sinπx cosπy.

To compute the Neumann boundary conditions, we need to take the normal derivative of

u on the boundary of mesh. If we define the right boundary as boundary 1, the bottom boundary

as boundary 2, the left boundary as boundary three and the top boundary as boundary 4, the

corresponding normal vector is (1, 0), (0,−1), (−1, 0), (0, 1).

Multiplying the graident of u with corresponding normal vector, we will get Neumann

boundary condition:

∂u

∂n
=



π cosπx cosπy u ∈ Boundary 1

π sinπx sinπy u ∈ Boundary 2

−π cosπx cosπy u ∈ Boundary 3

−π sinπx sinπy u ∈ Boundary 4

Here’s a graphical output:
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Figure 4.1: Laplace Problem with Global Refinemet

We will use Q1 finite element to approximate the solution and after each iteration we will

do a global refinement. The initial mesh is refined twice so it contains 16 cells. We will test

among three cases: Solve the singular system with SSOR preconditioner, solve the same system

with removal operator applied on SSOR preconditioner and establish a constraint by fixing the first

DoF and condense this constraint. We will denote the result of each case by ”Singular System”,

”Removal Operator” and ”Fix dof” accordingly.

SSOR Singular System Removal Operator Fix DoF

cells error RoC CPU time Iterations error RoC CPU time Iterations error RoC CPU time Iterations

16 0.197 N/A 0.00 13 0.196166 N/A 0.00 23 0.196166 N/A 0.00 15

64 0.050889 3.87 0.00 19 0.050848 3.86 0.00 23 0.050848 3.86 0.00 21

256 0.012822 3.97 0.04 30 0.012816 3.97 0.02 35 0.012816 3.97 0.03 34

1024 0.003211 3.99 0.14 55 0.003211 3.99 0.14 64 0.003211 3.99 0.11 62

4096 0.000803 4.00 0.69 103 0.000803 4.00 0.78 109 0.000803 4.00 0.78 116

16384 0.000201 4.00 5.13 194 0.000201 4.00 5.39 208 0.000201 4.00 5.72 226

65536 0.00005 4.02 36.56 371 0.00005 4.02 36.77 371 0.00005 4.02 44.19 445

Table 4.1: L2 Error for Laplace problem with three approaches
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The interpolated null space basis,
∫
Ω
u = 0, is removed after solving with each method and

error is computed afterward. The mean value is not included since mean value for all solutions are

zero. Based on the output, all three method has similar errors. The number of iterations of fixing

DoFs are relatively larger. The convergence is quadratic, which is what we expected. The time spent

by solving singular system and removal operator are very close, but the time spent by fixing DoFs

are significantly higher, which mean the projections in each iteration didn’t take too long compared

to extra iterations.

4.2 Q1 Finite Element for Linear Elasticity Problem

The problem setup is as follows [11]:

f1(x, y) = −π2 sinπx sinπy + 2π2(
1

λ
+ 1) cosπx sinπy,

f2(x, y) = −π2 cosπx cosπy + 2π2(
1

λ
+ 1) sinπx cosπy.

The Neumann boundary conditions are:

g1(x, y) = (−π

λ
cos(πx), 0), g2(x, y) = (π sinπy,−π

λ
cos(πy)),

g3(x, y) = (−π

λ
cos(πx), 0), g4(x, y) = (π sinπy,−π

λ
cos(πy)).

The exact solution of the problem is:

u1(x, y) = (− sinπx+
1

λ
cosπx) sinπy +

1

4π2
,

u2(x, y) = (− cosπx+
1

λ
sinπx) cosπy.

If λ = 2 and µ = 0.5, then the graphical output is:
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Figure 4.2: u1(x, y) on the left and u2(x, y) on the right

Q1 finite element and global refinement is considered similar to Laplace problem. ILU

preconditioner is applied for comparision purpose. Note, SSOR and other preconditioner can be

applied as well. We will again compare between fixing DoF, solving singular system and and applying

null space removal operator. For fixing dofs, we will fix dof corresponding x and y of (0, 0) and dof

corresponding to y of (1, 0).

SSOR Singular System Removal Operator Fix DoFs

cells error RoC CPU time Iterations error RoC CPU time Iterations error RoC CPU time Iterations

4 0.263883 N/A 0.00 11 0.266663 N/A 0.00 11 0.266282 N/A 0.00 13

16 0.104667 2.52116713 0.00 19 0.107744 2.474968444 0.00 19 0.107724 2.471891129 0.00 26

64 0.036268 2.885932502 0.01 29 0.034054 3.163916133 0.02 29 0.034053 3.163421725 0.02 43

256 0.019274 1.881705925 0.09 54 0.010208 3.336010972 0.12 54 0.010208 3.335913009 0.15 75

1024 0.011842 1.62759669 0.67 98 0.003149 3.24166402 0.62 98 0.003149 3.24166402 0.98 140

4096 0.006766 1.750221697 4.49 186 0.001018 3.093320236 4.62 186 0.001018 3.093320236 6.52 270

Table 4.2: L2 Error for Linear Elasticity problem with three approaches

We were unable to achieve the optimal rate for all three cases in our study. The primary

reason for this outcome is that the manufactured solution is not exactly orthogonal to
∫
Ω
u1 = 0.

More specifically, the inner product between the manufactured solution and the interpolation of∫
Ω
u1 = 0 approaches zero with each cycle of global refinement. Consequently, even after projecting

out
∫
Ω
u = 0 and

∫
Ω
∇×u = 0 from our solution, non-zero inner products still introduce some error.

Furthermore, it is worth noting that the rate of convergence when solving the singular

system is worse than when applying the removal operator. This observation suggests that solving

the singular system is less robust compared to applying the removal operator. We will discuss this
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idea in greater detail in the next subsection. Additionally, the time required for each method is

similar to the numerical results obtained in the Laplace problem, where fixing DoFs takes longer

due to the increased number of iterations required for the iterative solver to converge.

4.3 Q2-Q1 Finite Elements for Stokes Problem

The linearized Kovasznay problem is the follows: If Ψ is a stream function, such that

u =
∂Ψ

∂y
, v =

∂Ψ

∂x
, ω = −∇2Ψ.

Let Ψ0 = y, we can describe the two-dimensional flow as below:

Ψ + Ψ0 = y − 1

2π
eλx sin(2πy),

1 + u = 1− eλx cos(2πy),

v = − λ

2π
eλx sin(2πy),

ω = λReλx sin(2πy),

p =
e3λ − e−λ

8λ
− e2λx

2
.

Where R is the Reynolds number, λ = R/2 −
√

R2/4 + 4π2 and p is the pressure term.

In this problem, we take R = 10. The domain we consider is the square: [−0.5, 1.5] × [−0.5, 1.5].

GMRES is utilized to solve the linear system with block Schur complement preconditioner.

The exact solution is shown in the following figure:
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Figure 4.3: Numerical Result of Stokes Problem.

The red and blue color defines the velocity and the black lines are the streamline.

To define the preconditioner, recall the matrix form of Stokes problem is:

A BT

B 0


U

P

 =

F

0

 .

Let S = −BA−1BT , then Schur complement preconditioner P−1
Schur is:

P−1
Schur =

A 0

0 S


−1

=

A−1 0

0 S−1

 .

The finite element we pick for Stokes problem is Q2 ×Q1 and global refinement is applied.

We will use a CG solver with the mass matrix in the pressure space for approximating the action of

S−1. For the approximation of the velocity block A we will perform a single AMG V-cycle. We will

test for three cases: solve preconditioned singular system, solve preconditoned singular system with

null space removal operator and fix DoF. We will fix the first pressure DoF in the experiment.

The numerical output is the following:
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Singular System

Cycle Error of U Error of P RoC - P Time Iter

0 0.080650 0.348625 N/A 0.0158 56

1 0.007945 0.090797 3.84 0.0414 63

2 0.000806 0.022607 4.02 0.186 66

3 0.000093 0.005629 4.02 1.26 70

4 0.000011 0.001405 4.01 5.38 72

Removal Operator

Cycle Error of U Error of P RoC - P Time Iter

0 0.080486 0.348565 N/A 0.0265 56

1 0.008031 0.090805 3.84 0.0458 63

2 0.000895 0.022612 4.02 0.173 66

3 0.000138 0.005631 4.02 1.28 70

4 0.000028 0.001406 4.00 5.73 72

Fix DoFs

Cycle Error of U Error of P RoC - P Time Iter

0 0.080651 0.348625 N/A 0.045 112

1 0.007945 0.090797 3.84 0.0831 139

2 0.000806 0.022607 4.02 0.344 172

3 0.000093 0.005629 4.02 3.7 233

4 0.000011 0.001405 4.01 59.9 982

Table 4.3: L2 Error for Stokes problem with three approaches

The mean value of pressure is computed after solving. We then removed the mean value

of pressure from solution and have the table above. The number of iterations for fixing DoFs is

slightly larger than all other methods. Time spent for fixing DoFs follows the pattern of iterations,

which is also much higher compared to the other two methods. For each methods, we are expecting

quadratic convergence and the results meet our expection.

4.4 Errors and Perturbations in Preconditioner

The singular system with preconditioner exhibit less robustness compared to the operators.

However, this aspect has not been demonstrated in the numerical experiments section yet, as the

singular system converges in each case. The preconditioners chosen for the experiments are well-

defined, the range of the preconditioner is either identical to the range of matrix A or a subset of it.
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In either case, convergence is guaranteed.

To emphasize the effect of round-off error and explore cases where the preconditioner maps

onto the null space of A, we will manually add some error into the preconditioner. In Laplace prob-

lem, we used the SSOR preconditioner. To introduce error, we will utilize the SSOR preconditioner

within a LinearOperator and add some errors to each entry in the product of matrix-vector multi-

plication (vmult) by preconditioner matrix. We then apply the removal operator to assess whether

the perturbations continue to impact the solver.

The result can be summarized as follows:

Errors Without Operator Operator

1.00E-14 Convergence Convergence

1.00E-13 Convergence Convergence

1.00E-12 Convergence Convergence

1.00E-11 Divergence Convergence

1.00E-10 Divergence Convergence

1.00E-09 Divergence Convergence

Table 4.4: Effect of Pertubation in Laplace Problem

The perturbations on the right hand side has been tested in [26] and the result is similar:

manually removing the null space in each iteration will remove the effect of perturbations. Con-

sequently, if the singular system fails to converge, the removal operator can effectively resolve the

problem. Therefore, it is reasonable to claim that null space removal operator should always be

implemented even if the singular system can be solved, because it is more robust.
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Chapter 5

Conclusions and Discussion

We discussed three problems in this thesis: Laplace problem, linear elasticity problem and

Stokes Problem. We proved how all three problems can be well posed given such setup.

Then, we discussed how to solve these problems numerically. There are three major options:

apply the method of fixing DoFs, solve the singular system or remove null space while solving. We

then examined the computational properties for all methods.

Lastly, numerical experiments are presented. All three methods of removing null space for

Laplace problem and linear elasticity problem are considered. We applied CG solver for Laplace

problem and linear elasticity problem, then inserted operator into manually constructed precondi-

tioner for Stokes problem and used GMRES solver.

To briefly summarize our findings in numerical experiment.

Condensing full constraints is very expensive in terms of computational costs.Therefore, it

will not work for problems at large scale. Fix DoFs may require more iterations to converge but it

takes less cost to setup. Solve singular system directly will work but not preferred since round off

error or a preconditioner with larger range compared to A will result in divergence, see 4.4. Null

space removal operator will prevent divergence in solving the singular system. But it will take more

computation in each iteration and it requires the knowledge of the discrete basis of exact null space.

The future work of this thesis can be expanded in the following directions:

Instead of applying global refinement, an alternative approach worth exploring is the im-

plementation of null space with adaptive refinement. Since the distribution of the grid is no longer

uniform, accurate implementation poses additional challenges.
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Another area for extension in this thesis is the behavior of multigrid or multilevel precon-

ditioners. Predicting the performance of each method when a multigrid preconditioner is applied is

difficult and requires further examination.
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