Khoiron Hidayah, Tedy Murtejo, Rulhendri Rulhendri, Nurul Chayati

Civil Engineering Study Program, Ibn Khaldun University Bogor, INDONESIA

E-mail: ironman.bic@gmail.com

	1	Submitted: February 18, 2021 Revised: March 09, 2021 Accepted: January 17, 2023
Published: October 01, 2023		Published: October 01, 2023

ABSTRACT

Several cities in Indonesia have implemented a Transit Oriented Zone system in integrating a sustainable transportation system, the area at the Sukaresmi point has become one of the areas developed with the Transit Oriented Development (TOD) concept in the Presidential Regulation of the Republic of Indonesia Number 55 of 2018 concerning the Plan Main Transportation Jakarta, Bogor, Depok Tangerang and Bekasi in 2018-2029. The development of this area will generate new movements in the surrounding road network. Of course, it will have a negative impact on the surrounding traffic. The negative impacts include an increase in the volume of traffic flow which can cause congestion, pollution, accidents, and other things that cannot be avoided on roads in the area where there is no traffic management arrangement around the area, it is necessary to conduct a study on traffic impact analysis, and analysis of generation and pull, the performance of roads in the operation stage in 2024, the development of the sukaresmi area has a total of 37.316 m2. With traffic engineering to minimize congestion due to area development plans. From the analysis result, the basic building coefficient is 70%, the building floor coefficient is 4.98. In the existing conditions, the highway has a saturation level of > 1. The generation and pull that occurs is 1240 cur/hour. Whereas the operation stage, the road saturation level becomes > 1. Recommendations given are the provision of safe public transportation facilities, realizing the importance of road traffic and road transportation and a study of land ownership around the Sukaresmi-oriented development plan is needed.

Keywords: Transit Oriented Development (TOD); traffic impact analysis; road; transportation; land.

INTRODUCTION

Transit Oriented Development also supports the use of sustainable modes of transportation such as public transportation, walking and cycling, as well as reducing travel distances that will reduce existing traffic congestion. With the development plan in this area, it will generate a new movement generation in the surrounding road network, of course, will have a negative impact on existing traffic, this negative impact can include an increase in the volume of traffic flow that can cause congestion, pollution, accidents, and other things others that cannot be avoided.

Traffic Management and Engineering

Traffic management and engineering is a series of businesses and activities that include planning, procurement, installation, regulation and maintenance of road equipment facilities in the context of realizing, supporting and maintaining traffic security, safety, order and smoothness (Regulation of the Minister of Transportation of the Republic of Indonesia Number PM 96 of 2015)

Trip and Generation

The definition of movement generation according to Ofyar Z Tamin is a modeling stage that estimates the number of movements originating from a zone or land use and the number of movements attracted to a land use or zone. Traffic movement is a land use function that produces traffic movements. This traffic generation includes:

- a. Traffic leaving a location and
- b. Traffic leading to or arriving at a location.

Traffic Impact Analysis

Traffic impact analysis is a series of study activities regarding the traffic impact of the construction of activity centers, settlements and infrastructure which will cause disturbances in security, safety, order and smoothness of traffic and transportation, the results of which are set forth in the form of documents resulting from traffic impact analysis (Ministerial Regulation Republic of Indonesia Transportation Number PM 75 of 2015)

Transit Oriented Development

According to Peter Calthrope (1993) the definition of Transit Oriented Development (TOD) is a mixed-used building community that encourages people to live and have activities in areas that have public transportation facilities and reduce the habit of people driving private cars. Therefore, Transit Oriented Development must be in the form of mixed land use or mixed-use because the existence of public transportation in mixed use areas will have direct implications for the level of activity in the area.

Pattern of travel of people from one place to another

In road traffic planning, what needs to be considered is the compatibility between planning and supervision in the form of a basic concept. This concept is very dependent on activities that determine the appropriate steps in the behavior of motorized vehicle drivers (Ganda CF et.al, 2019; Karimah H, Akbardin J, 2019; Syaiful S et.al, 2022; Syaiful S et.al, 2022). The driver of this vehicle really depends on the purpose of the trip. This goal adjusts to a clear form in terms of activities as previously planned (Syaiful S, Rusfana H, 2022; Syaiful S, Pratama Y, 2019; Syaiful S, Hariyadi D, 2019; Syaiful S et.al, 2020). A person's journey depends on the strength that is exercised at the time of travel. A well-scheduled trip will create a sense of comfort while traveling. So that the right form can be carried out properly and directed. In accordance with the concept of travel in carrying out each activity (Syaiful S, Fadly A, 2020; Syaiful S et.al, 2021; Syaiful S et.al, 2023). Very diverse travel patterns will create a basic concept in calculating the number of people traveling. The number of trips that must be used by each person in making the trip according to a clear form in a very suitable form. Each travel activity can form a very directed pattern (Syaiful S et.al, 2023).

RESEARCH METHODS

The location of the research was carried out in an area-oriented development plan in the Sukaresmi area in Tanah Sereal District, Bogor City, the traffic assessment analysis was estimated at a radius of 1-2 km from the area based on traffic impact guidelines.

Volume 12, Issue 3, October 2023, pp.635-645 DOI: http://dx.doi.org/10.32832/astonjadro.v12i3

Figure 1. Research Location Source: Google Earth

The stages of this research are shown in the research flow diagram shown in Figure 2 as follows:

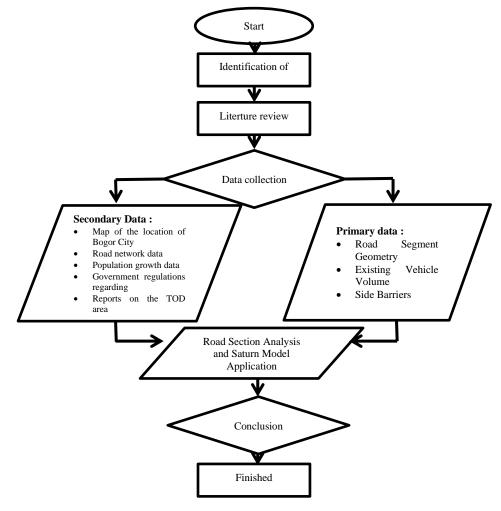


Figure 2. Research Flowchart

RESULTS AND DISCUSSION Land Use

This area has a land area of about 37,316 m2 and in this area there is also a plan to build a residential area, commercial area, parking building, green open space and roads.

Planning Area Area			Land area (Sqm)		
27.216	Residential A Apartement			7.993	
37.316	Residential B	Apartement		5.329	
	Comm		Hotel	3.108	
	Commercial A		Shopping Center	1.332	
			Shop house	888	
	Comm	ercial B	General Office Building	3.552	
	Reside	ential Parking Build	ling	2.351	
	Comm	ercial Parking Bui	lding	1.567	
	5	Sub- Total		26.121	
		RTH		3.732	
		Road		7.463	
	То	tal amount		37.316	

Source: Analysis results

Basic Building Coefficient (KDB)

The TOD Sukaresmi area includes the Sub-City TOD-City Service Sub-District. The following table shows the results of the analysis of the Basic Building Coefficient (KDB) based on the Regulation of the Minister of Agrarian Affairs and Spatial Planning / Head of the National Land Agency Number 16 No. 17 of 2017.

Table 2. Basic Coefficient of Building (KDB)

Planning Area			Building footprint		
Area	Zona	Amenities	Land area (Sqm)	KDB (%)	
	Residential A	Apartement	7.993	21%	
	Residential B	Apartement	5.329	14%	
	Commercial	Hotel	3.108	8%	
27.21.6	А	Shopping Center	1.332	4%	
37.316	Commercial	Shops house	888	2%	
	В	General Office Building	3.552	10%	
	Residential Par	king Building	2.351	6%	
	Commercial Pa	rking Building	1.567	4%	
Sub- Total			26.121	70%	
RTH			3.732	10%	
Road			7.463	20%	
	Total amo	ount	37.316	100%	

Source: Analysis results

Building Floor Coefficient (KLB)

The following table shows the results of the analysis of the Building Floor Coefficient (KLB) based on the Regulation of the Minister of Agrarian Affairs and Spatial Planning / Head of the National Land Agency Number 16 No. 17 of 2017.

Discussions			Building floors					
Planning Area Area	Zona	Amenities	Land area (Sqm)	Number floors	Sub - Total Floor Area (Sqm)	KLB	Nett Saleable Area	Unit / Room
	Residential A	Apartement	7.993	10	79.931	2,14	59.948	2.398
	Residential B	Apartement	5.329	10	53.287	1,43	39.965	1.599
	Commercial A	Hotel	3.108	8	24.867	0,67	18.651	789
37.316		Shopping Center	1.332	3	3.997	0,11	2.398	160
57.510		Shops house	888	2	1.776	0,05	1.066	30
	Commercial B	General Office Building	3.552	4	14.210	0,38	8.526	568
	Residential Parking Building		2.351	2	4.702	0,13	2.821	-
	Commercial Parking Building		1.567	2	3.135	0,08	1.881	-
	Sub- Tot	al	26.121			4,98		

Table 3.	Building	Floor	Coefficient	(KLB))
Table 5.	Dunung	1 1001	Counterent	$(\mathbf{L}\mathbf{L}\mathbf{D})$,

Source: Analysis results

Geometric Paths

Based on direct observations, measurements, and documentation that have been carried out on traffic infrastructure in the form of geometrical existing roads, the road sections are geometrically shown in Table 4.

No.	Street name	Street type	Length street	Street function
1	Jalan Raya Bogor	4/2T	14,55	Jalan Arteri Primer
2	Jalan Kedung Halang	4/2T	19,55	Jalan Arteri Primer
3	Jalan Raya Cilebut	2/2TT	5	Jalan Lokal Primer
4	Jalan KH. Soleh Iskandar. 1	4/2T	7	Jalan Kolektor Primer
5	Jalan Kebon Pedes	2/2TT	6	Jalan Kolektor Sekunder
6	Jalan KH. Soleh Iskandar. 2	4/2T	7	Jalan Kolektor Primer
7	Jalan KS Tubun	4/2T	23,5	Jalan Arteri Primer
8	JalanAchmad Adnawijaya	4/2T	16	JalanKolektor Sekunder
9	Jalan Pajajaran	4/2T	21,7	Jalan Arteri Primer

Table 4. Geometric road sections

Source: Analysis results

Based on the traffic impact analysis report Transit Oriented Development Sukaresmi PT. BIA, the capacity of roads is shown in Table 5.

No	Street name	Street	Basic	Width	capacity

		type	capacity (Co)	Factor Lane/Lane	Direction Separation	Side Barriers Factor (HS)			City size	(C) skr/hour
					(PA)	Level	Kind of way	numbers		
1	Jl. Raya Bogor	4/2T	6600	1	0,97	high	Kereb	0,89	1	5698
2	Jl. Kedung Halang	4/2T	6600	1,25	0,97	high	Kereb	0,89	1	7122
3	Jl Raya Cilebut	2/2TT	2900	0,56	1,00	low	Kereb	0,9	1	1462
4	Jl. KH. Soleh Iskandar. 1	2/2TT	2900	1	1,00	high	Kereb	0,84	1	2436
5	Jl. Kebon Pedes	2/2TT	2900	0,87	1,00	low	Kereb	0,9	1	2271
6	Jl. KH. Soleh Iskandar. 2	2/2TT	2900	1	1,00	high	Kereb	0,84	1	2436
7	Jl. KS Tubun	6/2T	9900	1,36	0,91	high	Kereb	0,92	1	11272
8	Jl. Achmad Adnawijaya	4/2T	6600	1	1,00	high	Kereb	0,92	1	6072
9	Jalan Pajajaran	4/2T	6600	1,24	0,94	high	Kereb	0,92	1	7078

Source: Analysis results

Recapitulation of the service level of the existing roads

For generation analysis, only 1 data is needed in the form of peak hour traffic, where this data is the largest traffic data per unit time. Therefore, researchers only took 1 data, in the form of peak or greatest hourly traffic per unit time.

				orking	Off work		
No.	Street name	lane	Total Q	Capacity	Total Q	capacity	
			(skr/hour)	(C)	(skr/hour)	(C)	
1. Jl. Ra	Jl. Raya Cilebut	South - North	761	1462	-	1462	
	si. Ruyu Chobut	North - South	860	1102	-	1102	
2	Jl. KH. Soleh Iskandar. 1	West - East	4745	2436	3680	2436	
2 JI. K	JI. KH. SOIEH ISKallual. I	East -West	5150	2430	3598	2430	
3	Jl. Kebon Pedes	South - North	723	2271	-	2271	
5 JI.	1. Kebon Pedes	North - South	687	2271	-	2271	
4	II VII Calab Jahan dan 2	East -West	3576	2426	-	2436	
4 Jl. KH	Jl. KH. Soleh Iskandar. 2	West - East	3763	2436	-	2430	
F	II Davis Da ann	East -West	1814	5(00	-	5,000	
5	Jl. Raya Bogor	West - East	2117	5698	-	5698	
(Il Vedere Helene	East -West	2737	7100	934	7122	
6 Jl. Kedu	Jl. Kedung Halang	West - East	2360	7122	1259		
7	IL VC Tubur	South - North	3556	11070	2582	11070	
7	Jl. KS Tubun	North - South	3879	11272	3686	11272	
0	II Ashmad Advantic	East -West	1545	(072	1128	(072	
8	Jl. Achmad Adnawijaya	East -West	1316	6072	968	6072	

Table 6. Recapitulation of vehicle volume

ASTONJADRO

-

http://ejournal.uika-bogor.ac.id/index.php/ASTONJADRO

9 J	Il Deiejeren	South - North	South - North 1962		1651	7078
	JI. Pajajaran	North - South	1881	7078	1856	7078

Source: Analysis results

			Busy wo	rking	Off we	ork
No.	Street name	Lane	degree of saturation	LOS	Degree of saturation	LOS
1.	Il Rova Cilabut	South - North	0,52	В	-	-
1.	Jl Raya Cilebut	North - South	0,59	С	-	-
2	Jl. KH. Soleh Iskandar. 1	West - East	1,95	F	1,51	F
2	JI. KH. SOleli Iskalidal. I	East -West	2,11	F	1,48	F
3	Jl. Kebon Pedes	South - North	0,21	А	-	-
	JI. Keboli Pedes	North - South	0,20	А	-	-
4	Jl. KH. Soleh Iskandar. 2	East -West	1,47	F	-	-
	JI. KH. Soleli Iskalidar. 2	West - East	1,54	F	-	-
5	Jl. Raya Bogor	East -West	0,32	А	-	-
5		West - East	0,37	В	-	-
6	Jl. Kedung Halang	West - East	0,38	В	0,13	А
6		East -West	0,33	А	0,18	А
7	Jl. KS Tubun	South - North	0,32	А	0,23	А
/		North - South	0,34	А	0,33	А
8	I Ashmad Adnowing	East -West	0,25	А	0,19	А
	Jl. Achmad Adnawijaya	West - East	0,22	А	0,16	А
0	Il Deisianen	South - North	0,28	А	0,23	А
9	Jl. Pajajaran	North - South	0,27	А	0,26	А

Table 7. Recapitulation of service levels

Source: Analysis results

_

Table 8. Final recapitulation of road service levels

			Busy working			
No.	Street name	Lane	Degree of saturation	LOS		
1.	Il Dovo Cilabut	South - North	0,52	В		
1.	Jl. Raya Cilebut	North - South	0,59	С		
2	Jl. KH. Soleh Iskandar. 1	West - East	1,95	F		
2	JI. KH. Soleli Iskalidal. I	East -West	2,11	F		
3	Jl. Kebon Pedes	South - North	0,21	А		
3	JI. Kebbli Fedes	North - South	0,20	А		
4	Jl. KH. Soleh Iskandar. 2	East -West	1,47	F		
4	JI. KH. Soleli Iskalidal. 2	West - East	1,54	F		
5	Jl. Raya Bogor	East -West	0,32	А		
5	JI. Kaya Dogol	West - East	0,37	В		
6	II Kadung Halang	West - East	0,38	В		
0	Jl. Kedung Halang	East -West	0,33	А		
7	Jl. KS Tubun	South - North	0,32	А		
7	JI. KS Tubuli	North - South	0,34	А		
8	II Achmod Adnowijovo	East -West	0,25	А		
0	Jl. Achmad Adnawijaya	West - East	0,22	А		
9	Jl. Pajajaran	South - North	0,28	А		
9	51. i ajajaran	North - South	0,27	Α		

Source: Analysis results

Obtaining Generation and Withdrawal

Amenities		Area (m2)	Area SF	Unit	Coeffisien ITE	ITE Generation (trip/jam)	
F	Residential A	7.993	86.037	2.398	0,58	1.391	
ŀ	Residential B	5.329	57.358	1.599	0,58	927	
Commercial	Hotel	3.108	33.459	789	0,60	473	
А	Shopping Center	1.332	14.339	160	3,71	593	
C	Ruko	888	9.560	30	3,71	113	
Commercial B	General Office Building	3.552	38.239	426	1,49	635	
	Total	22.203	238.991			4.132	

Table 9. Generation and Attraction of Sukaresmi Transit Oriented Development Area

Source: Analysis results

Table 10. Generation and Attraction of the Sukaresmi Transit Oriented Development Area

		Generation + trip			
Moda proportion	Assumtion %	ITE (Trip/hour)	ITE (Smp/hour)		
Proportion		4.132	1.240		
Motorcycle	32%	1322	397		
Car	60%	2479	744		
Operation	8%	331	99		
Total	100%	4132	1240		

Source: Analysis results

Therefore, the total attraction and generation from the Sukaresmi Transit Oriented Development area is 1240 pcu/hour. This generation and attraction will be charged to the road network in the largest peak traffic flow.

Obtaining the Performance of the Road Section of the Sukaresmi Transit Oriented Development Area operation

Table 11. Recapitulation of LOS comparisons before and after generation and pull loading on

roads

No.	Street name	Trip	Capacity	Total Q (skr/hour)	DJ	LOS	Total Q (skr/hour) + Generation	DJ + Generation	LOS + Generation
1.	Il Dava Cilabut	S - U	1462	761	0,52	В	1221	0,84	D
1.	Jl. Raya Cilebut	U - S	1402	860	0,59	С	1319	0,90	D
2	Il Davia Cilabut	B - T	2436	4745	1,95	F	5204	2,14	F
2	Jl. Raya Cilebut	T - B	2450	5150	2,11	F	5609	2,30	F
3	Jl. KH. Soleh	S - U	2271	723	0,21	А	1183	0,52	В
3	Iskandar. 1	U - S		687	0,20	А	1146	0,50	В
4	Jl. Kebon Pedes	T - B	2436	3576	1,47	F	4035	1,66	F
4	JI. Keboli redes	B - T		3763	1,54	F	4222	1,73	F
5	Jl. KH. Soleh	T - B	5698	1814	0,32	А	2273	0,40	В
3	Iskandar. 2	B - T		2117	0,37	В	2577	0,45	В
6	II Dava Dogon	B - T	7122	2737	0,38	В	3196	0,45	В
6	Jl. Raya Bogor	T - B		2360	0,33	А	2819	0,40	В
7	Jl. Kedung Halang	S - U	11070	3556	0,32	А	4015	0,36	В
/		U - S	11272	3879	0,34	А	4338	0,38	В
0	II VC Tahar	T - B	(072	1545	0,25	А	2004	0,33	А
8	Jl. KS Tubun	B - T	6072	1316	0,22	А	1776	0,29	А

ASTONJADRO

Volume 12, Issue 3, October 2023, pp.635-645 DOI: http://dx.doi.org/10.32832/astonjadro.v12i3

9	Jl. Achmad	S - U	7078	1962	0,28	А	2421	0,34	А
	Adnawijaya	U - S	/0/8	1881	0,27	А	2340	0,33	А

Source: Analysis results

Road Network Modeling

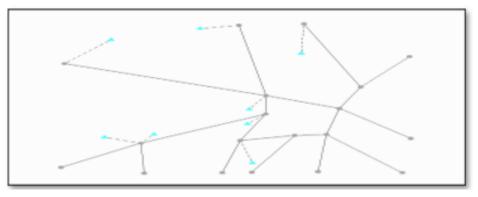


Figure 3. Road Network Modeling Source: Analysis Results

Road Loading Modeling

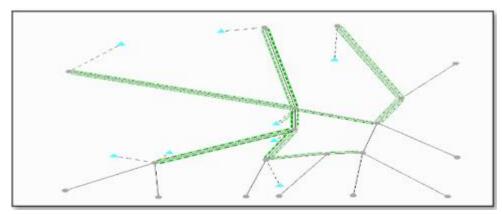


Figure 4. Road Load Modeling Source: Analysis Results

Road Capacity Modeling

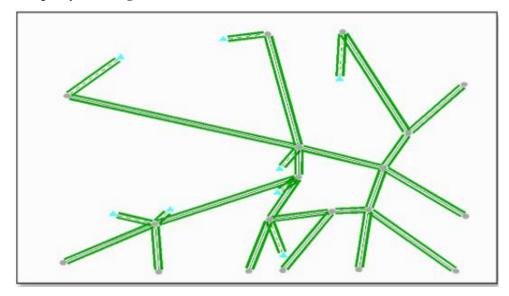


Figure 5. Road Capacity Modeling Source: Analysis Results

CONCLUSION

As for the results of the analysis and discussion, the following conclusions can be drawn, the performance of the existing road sections. On Jalan Raya Cilebut, the south to north direction has a total Q of 761, the degree of saturation is 0.52 and the service level is B, while from north to south it has a total Q of 860, the degree of saturation is 0.59 and the level of service is C. KH. Soleh Iskandar. 1 west to east direction has a total Q of 4745 degrees of saturation of 1.59 and a service level of F, while from east to west has a total Q of 5150 degrees of saturation of 2.11 and a level of service F. On Jalan Kebon Pedes, the direction south to north has a total Q of 723, a degree of saturation of 0.21 and a service level of A, while from north to south has a total of Q of 687, a degree of saturation of 0.20 and a level of service A. On Jalan KH. Soleh Iskandar. 2 east to west direction has a total Q of 3576 degrees of saturation of 1.47 and the level of service is F while from west to east has a total Q of 3763 degrees of saturation of 1.54 and the level of service is F. On Jalan Raya Bogor east to west has the total Q is 1814, the degree of saturation is 0.32 and the service level is A, while from west to east it has a total Q of 2117, the degree of saturation is 0.37 and the level of service B. On Jalan Kedung Halang from west to east has a total Q of 2737, the degree of saturation is 0.38 and the service level is B, while from east to west it has a total Q of 2360, the degree of saturation is 0.33 and the service level is A. On Jalan KS Tubun, the south to north direction has a total Q of 3556, the degree of saturation is 0.32 and the service level is A, while from north to south it has a total Q of 3879 degrees of saturation of 0.34 and the level of service is A. On Jalan Achmad Adnawijaya east to west has a total Q of 1545, the degree of saturation is 0.25 and the service level is A, while from west to east it has a total Q of 1316, the degree of saturation is 0.22 and the level of service is A. On the Pajajaran road south to north has a total Q of 1962, the degree of saturation is 0.28 and the level of service is A, while from north to south it has a total Q of 1882, the degree of saturation is 0.27 and the level of service A. The results of the analysis of movement of the Transit Oriented Development Area Sukaresmi amounting to 1240 cur / hour. The performance of roads during the operation stage of the Sukaresmi Transit Oriented Development. On Jalan Raya Cilebut, the south to north direction has a total Q of 1221, the degree of saturation is 0.84 and the service level is D, while from north to south it has a total Q of 1319, the degree of saturation is 0.90 and the level of service is D. KH. Soleh Iskandar. 1 west to east has a total Q of 5204, the degree of saturation is 2.14 and the service level is F, while from east to west it has a total Q of 5609, 2.30 degrees of saturation and service level of F. On Jalan Kebon Pedes, the south to north direction has a total Q of 1183, the degree of

http://ejournal.uika-bogor.ac.id/index.php/ASTONJADRO

saturation is 0.52 and the service level is B, while from north to south it has a total Q of 1146, the degree of saturation is 0.50 and the level of service is B. KH. Soleh Iskandar. 2 east to west direction has a total Q of 4112, the degree of saturation is 1.69 and the service level is F, while from west to east it has a total Q of 4222, the degree of saturation is 1.73 and the level of service is F. to the west it has a total Q of 2273, the degree of saturation is 0.40 and the level of service is B, while from west to east it has a total Q of 2577, the degree of saturation is 0.45 and the level of service B. On Jalan Kedung Halang, west to east has the total Q is 3196, the degree of saturation is 0.45 and the service level is B, while from east to west it has a total O of 2819 degrees of saturation of 0.40 and the level of service B. On Jalan KS Tubun, south to north has a total Q of 4015, the degree of saturation is 0.36 and the service level is B, while from north to south it has a total Q of 4338, the degree of saturation is 0.38 and the level of service is B. On Jalan Achmad Adnawijaya ara h east to west has a total Q of 2004, the degree of saturation is 0.33 and the service level is A, while from west to east it has a total Q of 1776, the degree of saturation is 0.29 and the level of service is A. On Jalan Pajajaran, south to north has a total Q of 2421, the degree of saturation is 0.34 and the service level is A, while from north to south it has a total Q of 2340, the degree of saturation is 0.33 and the service level is A.

REFERENCES

Badan Pusat Statistik Kota Bogor. 2020, Jumlah Penduduk dan Laju Pertumbuhan Penduduk Menurut Kecamatan di Kota Bogor.

Kota Bogor 2010, 2016, dan 2017, Badan Pusat Statistik Kota Bogor, 1 Oktober 2018, [Online]. *Tersedia:* https://bogorkota.bps.go.id/statictable/2018/10/01/183/jumlah-penduduk-dan-laju-pertumbuhan-penduduk-menurut-kecamatan-di-kota-bogor-2010-2016-dan-2017.html [Diakses : 05 Juli 2020]

Institute Transportation Development Policy, 2014, TOD Standard v2.1, New York, ITDP.

Peraturan Menteri Agraria dan Tata Ruang. 2017. PP No 16, *tentang*, *Pedoman Pengembangan Kawasan Berorientasi Transit*, Jakarta, Menteri Agraria dan Tata Ruang.

Peraturan Menteri Perhubungan Republik Indonesia 2015. PM Nomor 96, 2015, *tentang. Pedoman Pelaksanaan Kegiatan Manajemen dan Rekayasa Lalu Lintas*, Jakarta, Menteri Perhubungan Republik Indonesia.

Peraturan Menteri Perhubungan Republik Indonesia. 2015. PM Nomor PM 75, 2015, *tentang Penyelenggaraan Analisis Dampak Lalu Lintas*, Jakarta, Menteri Perhubungan Republik Indonesia.

Peraturan Presiden. 2018. PP No.55 tentang Rencana Induk Transportasi Jakarta, Bogor, Depok, Tangerang, Dan Bekasi Tahun 2018 -2029, Jakarta.

Peraturan Menteri Agraria dan Tata Ruang. 2017. PM No 16, tentang, *Pedoman Pengembangan Kawasan Berorientasi Transit*, Jakarta, Menteri Agraria dan Tata Ruang.

Murtejo, T & Hediansyah, R. 2019. Analisis Dampak Lalu Lintas Pembangunan Transit Oriented Development (TOD) Green Walk Station Bekasi Timur, Bogor, Universitas Ibn Khaldun Bogor.

Cicilia Fransisca Ganda, Hary Moetriono, Sri Wiwoho Mudjanarko, (2019). Analisis Alternatif Pembiayaan Penyeberangan Asdp Ujung-Kamal Akibat Dibangunnya Jembatan Surabaya-Madura. ASTONJADRO, 8(2),pp.103-109. http://ejournal.uikabogor.ac.id/index.php/ASTONJADRO/article/view/2801/1681

Hana Karimah, Juang Akbardin, (2019). Kajian Tentang Model Bangkitan Pergerakan Permukiman Kawasan Ciwastra Kota Bandung, ASTONJADRO, 8(2),pp.97-102. http://ejournal.uika-bogor.ac.id/index.php/ASTONJADRO/article/view/2799.

Syaiful Syaiful, Hermanto Siregar, Ernan Rustiadi, Eri Susanto Hariyadi. (2022). Performance Of Three Arms Signalized Intersection At Salabenda In Bogor Regency, ASTONJADRO, 11(1),pp.13-29.

S Syaiful, H Siregar, E Rustiadi, ES Hariyadi. (2022). Model Rekayasa Lalu lintas dalam Sistem Transportasi dengan Pola Kerjasama antar Wilayah Berkelanjutan di Kota Bogor. IPB University.

S Syaiful, H Rusfana. 2022. Rigid Pavement Planning In Traffic: Case Study In Ciherang Road And Pemuda Road, Bogor Regency, Indonesia. Journal of Applied Engineering Science, 1-13.

S Syaiful, Y Pratama. 2019. Sustainable Studies about General Public Transport Performance in the City Of Bogor, ARPN Journal of Engineering and Applied Sciences 14 (18), 3241-3247.

S Syaiful, D Hariyadi. 2019. Case Study on Sustainable T-Jungtion Cibinong City Mall (CCM) in Bogor Indonesia, ARPN Journal of Engineering and Applied Sciences 14 (17), 2960-2971.

S Syaiful, H Prayoga, J Akbardin. 2020. Sustainable about the Need of Parking Systems at the Mall RDS Bogor, ARPN Journal of Engineering and Applied Sciences 15 (22), 2620-2626.

S Syaiful, A Fadly. 2020. Analysis of the Effectiveness of Bus Services Outside of Campus IPB Dramaga Bogor. ASTONJADRO, 9 (2), 173-186.

S Syaiful, H Siregar, E Rustiadi, ES Hariyadi. 2021. Traffic Improvement Strategy in Transportation System Using AHP Method. ARPN Journal of Engineering and Applied Sciences 16 (22), 2431-2439.

Syaiful Syaiful, Renea Shinta Aminda, Yuggo Afrianto, 2023. Influence motor cycle density on noise sound at the highway. ASTONJADRO, 12 (1), 304-313.

S Syaiful, P Pratikso, SW Mudjanarko, 2023. Literature Study of the Sustainability Model of Transportation Facilities and Infrastructure in the Management of Public Transportation with the Concept of Inter-Regional Cooperation (Case in the City and District of Bogor). ASTONJADRO 12 (2), 613-634.

Tamin, O. 2000. Perencanaan & Pemodelan Transportasi. Edisi Kedua. Bandung: ITB.