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ABSTRACT

A dosimetery-based Bayesian methodology for forecasting astronaut

radiation doses in deep space due to radiologically significant solar particle event

proton fluences is developed. Three non-linear sigmoidal growth curves

(Gompertz, Weibull, logistic) are used with hierarchical, non-linear, regression

models to forecast solar particle event dose-time profiles from doses obtained

early in the development of the event. Since there are no detailed measurements

of dose versus time for actual events, surrogate dose data are provided by

calculational methods. Proton fluence data are used as input to the deterministic,

coupled neutron-proton space radiation computer code, BRYNTRN, for

2  3 3transporting protons and their reaction products (protons, neutrons, H, H, He,

and '^He) through aluminum shielding rhatefial and water. Calculated doses and

dose rates for ten historical solar particle events are used as the input data by

grouping similar historical solar particle events, using asymptotic dose and

maximum dose rate as the grouping criteria. These historical data are then used to

lend strength to predictions of dose and dose rate-time profiles for new solar

particle events. Bayesian inference techniques are used to make parameter

estimates and predictive forecasts. Due to the difficulty in performing the

numerical integrations necessary to calculate posterior parameter distributions and

posterior predictive distributions, Markov Chain Monte Carlo (MCMC) methods

are used to sample from the posterior distributions.



Hierarchical, non-linear regression models provide useful predictions of

asymptotic dose and dose-time profiles for the November 8, 2000 and August 12,

1989 solar particle events. Predicted dose rate-time profiles are adequate for the

November 8, 2000 solar particle event. Predicitions of dose rate-time profiles for

the August 12, 1989 solar particle event suffer due to a more complex dose rate-

time profile. Model assessment indicates adequate fits of the data. Model

comparison results clearly indicate preference for the Weibull model for both

events.

Forecasts provide a valuable tool to space operations planners when

making recommendations concerning operations in which radiological exposure

might jeopardize personal safety or mission completion. This work demonstrates

that Bayesian inference methods can be used to make forecasts of dose and dose

rate-time profiles early in the evolution of solar particle events. Bayesian

inference methods provide a coherent methodology for quantifying uncertainty.

Hierarchical models provide a natural JBramework for the prediction of new solar

particle event dose and dose rate-time profiles.
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CHAPTER 1

INTRODUCTION

1.1 General

As humans extend their presence in space, the need to understand the

space radiation environment and the resultant radiological consequences grows

more critical. Galactic Cosmic Radiation (GCR) may provide an annual chronic

dose of up to 13.3 cGy (38.4 eSv) to an astronaut's bone marrow assuming a

spacecraft aluminum shield thickness of 3.0 g/cm^ (Townsend, Cucinotta and

Wilson, 1992). Recent calculations of dose due to Solar Particle Event (SPE)

protons include absorbed dose of 40 cGy to the bone marrow behind 5 g/cm^ of

aluminum shielding for the August 1972 SPE (Parsons and Townsend, 2000), up

to 22 cGy to the blood forming organs (BFO) behind 2 g/em^ of aluminum

shielding for four of the major SPEs that occurred between August 1989 and

December 1989 (Zapp et al., 1998), and approximately 25 cGy to the BFO

behind 5 g/cm^ of aluminum shielding for the October 1989 SPE (Townsend and

Zapp, 1999). As such, SPEs are the most important radiation hazard for short-

duration missions of two to three months (Wilson, et al., 1991). The ability to

provide forecasts of individual SPEs and to estimate event sizes and rise times is

currently inadequate. Necessary predictions include dose-time profiles,

asymptotic dose, and dose rate-time profiles. These predictions may allow better-



informed decisions concerning activities such as Extra-Vehicular Activity (EVA)

and planet surface exploration.

In the context of space radiation protection and prediction, forecasting can

be divided into two general categories: space weather forecasting and

climatological forecasting (Turner, 1997). Space weather forecasts attempt to

predict the probability that an SPE will occur within weeks, days, or hours.

NASA's Space Radiation Analysis Group (SRAG) uses space weather forecast

information to predict the magnitude and duration of an SPE as well as time to

reach dose limits and time until dose rate returns to a safe level. Climatological

forecasts are concerned with the statistical distribution of SPEs over years,

decades, or longer. This forecast information is then used for radiation effects

analysis, total dose estimates, and spacecraft shielding design.

There is no currently adequate capability to predict SPEs weeks in

advance. One to three day forecasts prepared by the National Oceanic and

Atmospheric Administration (NOAA) Space Environment Center (SEC) predict

the probability that an SPE will occur. These forecasts are largely based on

forecaster judgement from review of solar observables such as sunspots, and

predictions consistently overestimate the likelihood of a large SPE (Turner, 1997).

Near-term forecasts predict the probability that an SPE will occur as well as its

peak particle flux. Near-term forecasts are based on real-time data such as soft x-

ray fluence, solar radio burst data, and locations of solar flares. These forecasts



require forecaster judgement but also use computer programs to aid in

development of the forecast: PROTONS and the Proton Prediction System.

PROTONS model output includes the probability that there will be an SPE, start

time and time of maximum flux, and magnitude of the peak flux. The Proton

Prediction System (PPS) generates forecasts within 15 minutes after the

oeeurrenee of a significant solar flare or after observation of an increase in proton

flux. PPS produces a 300 hour time-flux intensity profile for 20 proton energy

channels. Currently, space weather forecasts correctly predict the oeeurrenee or

non-occurrence of an SPE, after observation of a significant x-ray event, eighty

percent of the time. Approximately fifty percent of the predicted SPEs, however,

failed to occur. An event occurs approximately five to ten percent of the times

when non-occurrence is predicted. Predicted peak particle flux is generally within

an order of magnitude, and longer term (one to three days) predictions

consistently overestimate the likelihood of a large SPE (Heckman, et al., 1992).

Other prediction techniques have considered correlation of SPE fluence

with solar observables, such as solar flare activity, radio and X-ray radiation

characteristics, SPE fluxes of different energies, and characteristics of active

regions of the sun (Kovtunenko, et al., 1994). One of the most recent

developments is the recognition of S-shaped patterns (sigmoids) in X-ray images

of the sun which may help forecast large coronal mass ejections (CME) (Canfield,

1999).



Recent efforts have included parameterization of dose-time profiles

(Lamarche and Poston, 1996; Zapp et al, 1998) and the use of artificial neural

networks (Tehrani, 1998) to predict asymptotic dose early in an SPE, To date,

I

parameterizations of dose-time profiles have not considered the asymptotic dose

as a parameter, but rather, as a knc wn value. While these efforts do not enable

one to make predictions about future doses within an ongoing SPE, Zapp's work

has provided information regarding the range of the parameter space when

considering a Weibull growth model. Initial investigations utilizing artificial

neural networks have predicted asymptotic dose early in an SPE, but these

investigations provide no dose-time profile information, no measure of the

uncertainty in predictions, and have only considered a small portion of the

available parameter space.

1.2 Objective of the Work

The purpose of this research is to develop statistical models which utUize

Bayesian methods to predict fixture doses and dose rates. Doses calculated fi-om

SPE proton fluence data early in an event are used in the models to predict

asymptotic dose and future dose and dose rates. This methodology utilizes model

assessment techniques to determine how well the model fits the data and model

comparison techniques in order to make judgements as to which is the "best"

model.



1.3 Impact and Originality of the Work

Previous work has considered prediction of flux through correlation with

related observables, parameterization of dose-time profiles given the asymptotic

dose, and the prediction of asymptotic dose using artificial neural networks. This

research is the first work to employ Bayesian inference techniques implemented

by Markov Chain Monte Carlo methods for forecasting SPE dose-time profiles,

asymptotic dose, and dose rate-time profiles. This work also considers long-term

growth models not utilized in prior work.

1.4 Outline of Dissertation

Chapter two reviews the space radiation environment. Chapter three

provides an overview of charged particle transport, the implementing transport

computer code, and the sources of data for this investigation. Chapter four

discusses Bayesian inference, prediction, and model assessment/comparison.

Chapter five reviews Markov Chain Monte Carlo techniques. Chapter six

describes the methodology and results associated with individual non-linear

regression models. Chapter seven describes the methodology and results

associated with hierarchical non-linear regression models. Chapter eight provides

conclusions and recommendations for future work.



CHAPTER 2

SPACE RADIATION ENVIRONMENT

2.1 General

The radiation environment outside the Earth's geomagnetie field is

dominated by two sources: OCR and SPEs. The OCR source flux is

approximately constant (with factors of 2-3 variation at most) and comprised of

particles ranging from protons to uranium nuclei of low flux but high energy.

Particles heavier than iron are of little radiation protection concern because their

fluxes are too small. The SPE source is comprised of protons and other heavy

nuclei that can vary in intensity by several orders of magnitude over time. While

these SPE particles are generally of lower energy than OCR particles, the flux is

typically orders of magnitude greater with SPE occurring over periods of hours to

days. Radiations with energies below 100 keV and SPE protons with energies

below 10 MeV are considered biologically unimportant.

2.2 Galactic Cosmic Rays

The GCR flux varies over the approximate 11-year solar cycle due to the

changing interplanetary plasma resulting from the changes in the solar corona.

The GCR background is a relatively high energy, isotropie field composed of

approximately 88 percent protons, 10 percent helium nuclei, and 2 percent heavy



ions. The most abundant elements include helium, carbon, oxygen, magnesium,

silicon, and iron (Wilson et al., 1991). These seven ions and protons provide over

80 percent of the unshielded GCR dose. Abundances of elements heavier than

iron are generally 2 to 4 orders of magnitude smaller than iron (Adams et al,

1981). These GCR particles may provide an annual chronic dose of up to 13.3

cGy (38.4 cSv) to an astronaut's bone marrow (Townsend et al., 1992) assuming a

3.0 g/cm^ aluminum shield thickness.

The major concern associated with GCR is the potential for spallation or

fragmentation reactions within the shielding material. Reaction products could

provide a high energy radiation source within the shielding material.

Additionally, the biological implications of relatively rare, high energy, heavy

ions are not well understood. As such, GCR are assumed to provide a chronic

dose to astronauts.

2.3 Solar Particle Events

The NOAA SEC defines an SPE as occurring when the number of

particles with energy greater than 10 MeV exceeds 10 particles-s''-cm'^-sr"^ for

more than 15 minutes (SESC Users Guide, 1993). An idealized flux versus time

profile (Turner, 1996) reveals the nominal characteristics of SPEs: a propagation

delay between initial acceleration and onset of particle increase (20-90 minutes); a

relatively rapid rise in intensity to a maximum value (1-3 hours); and a slow



decay to background level (roughly exponential decay, typically dropping to 1/e

within 10-14 hours). A period of flux enhancement may occur as a fast, powerful

interplanetary shock passes over the observer.

SPEs are classified as belonging to one of two categories: impulsive

events and gradual events. Impulsive events are electron-rich, relatively short

lived (hours) and dominated by acceleration at the flaring site. Impulsive events

have enhanced heavy isotopic abundances and a He-3/He-4 ratio which is orders

of magnitude larger than for gradual events. Gradual events are proton-rich and

long-lived (days) and are believed to be associated with the shock produced

during CMEs (Kahler, 1994; Reames, 1996).

Large SPE are a concern to planners of crewed, deep space, exploratory

missions. These SPE may present a significant health hazard to crews and could

be mission-threatening unless adequate shielding is provided. The largest

recorded SPE (in terms of particle fluence) occurred in August 1972. The

spectrum was relatively soft (rapid decrease in fluence with increasing particle

energy) and would have been easily shielded by a reasonably thick spacecraft.

The February 1956 SPE probably had the hardest spectrum but approximately one

tenth of the August 1972 SPE fluence and may not have been mission or hfe-

threatening. Recent calculations of dose due to SPE protons include absorbed

dose of 40 cGy to the bone marrow behind 5 g/cm^ of aluminum shielding and

maximum skin dose rates of 21 cGy/hr for the August 1972 SPE (Parsons and



Townsend, 2000), up to 22 cGy to the Blood Forming Organs (BFO) (Zapp et al.,

1998) behind 2 g/cm^ of aluminum shielding for four of the major SPE that

occurred between August 1989 and December 1989, and approximately 25 cGy to

the BFO (Townsend and Zapp, 1999) behind 5 g/cm^ of aluminum shielding and

11 cGy/hr skin dose rate behind 2 g/cm^ (Zapp et al, 1999) for the October 1989

SPE. Crew operations involving little shielding may result in acute effects which

are known to be dose and dose rate dependent. These calculated doses and dose

rates clearly indicate the necessity for development of models to forecast dose-

time profiles, asymptotic dose, and dose rate-time profiles.



CHAPTER 3

PARTICLE TRANSPORT AND DOSE CALCULATIONS

3.1 Particle T ransport

In order to calculate the doses and dose rates used for growth curve

parameter inference, the incident particle fluxes and their secondaries must be

transported through a spacecraft's aluminum shielding. For this work, the

incident particles consist of protons produced during an SPE. The Boltzmann

transport equation is derived hy applying conservation principles to a particle

flux. Vector quantities are indicated by bold font in the text and by arrows in

equations. First, defme a small, spherical region of space of radius r, filled with

matter described by atomic and nuclear cross sections. The number of particles of

type j leaving a surface element r^dQ is given as (pj(x+rQ,Q3) where

(Pj(x,Q,E) is the particle flux density, x is a vector to the center of the sphere, Q is

normal to the surface element, and E is the particle energy. The projection of the

surface element through the sphere center to the opposite side of the sphere

defines a flux tube through which pass a number of particles of type j given as

(Pj(x-rQ,Q,E) i^dQ, which would equal the number leaving the opposite face if the

defined tube were a vacuum. Since the tube is filled with matter, the number of

particles passing by the opposite faces differs by gains and losses created by

atomic and nuclear collisions as follows:
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(Pj(^ + r^^E)r^^=(Pj{x-r€l,Cl,E)r^^ (3.1)
r

+r'dQ \dlY, \(Jjk{^^,E,E)(Pk{x+l^a,E)£tdE
-r ^

r

-  (.E)(Pj (^+lQ,Cl,E)
-r

where crj(E) and crjk(Q,Q',E,E') are shielding material macroscopic cross sections.

The (rjk(Q,Q',E,E') cross section describes all processes by which type k particles

moving in direction Q' with energy E' produce a type j particle in direction Q

with energy E. Several reactions may produce this result, and the appropriate

cross sections are the inclusive ones. The second term on the right hand side of

this equation is the source of secondary particles integrated over the total volume,

and the third term is the loss through nuclear reactions integrated over the total

volume. After expanding the terms on both sides of equation (3.1) to order r^ and

dividing by the flux tube volume, the resulting equation may be written as

Cl»V(pj{x,Cl,E) = Y, \(^jk(^. .E,E)(p^(jc,Q',E)dadE' (3.2)
k

- (7j {E)(pj (x, Q, E) + 0(r)

Equation (3.2) is a time independent form of the Boltzmann equation for a

tenuous gas. Collisions with atomic electrons preserve the identity of the particle

with both terms of the right-hand side contributing. Separation of Ojk into atomic

11



and nuclear contributions allows writing equation (3.3) in the continuous slowing

down approximation as

Q.V^/x,a£)--|:[5'/£)^/3c,a£)] + o-/£)<9,.(x,Q,£) (3.3)
j  oE

= JZ (^' ̂ ^<Pk (^'

where the cross sections contain only the nuclear contributions and Sj(E), the

stopping power, is written according to Bethe's theory (Bethe, 1930) as

=  )-A=] (3.4)
mv (1-p jIt

where N is the number of targets, Zi is the projectile charge, Z2 is the number of

electrons per target, m is the electron mass, v is the projectile velocity, c is the

velocity of light, P=v/c, and h is the mean excitation energy.

Now, assuming that space radiations are approximately isotropic and that

secondary ions are produced only in the direction of motion of the primary ions

(the straight ahead approximation), the transport equation may be simplified in

one dimension as
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[^-4;S,iE) + a,(E)y,i(.x.E) = Y.W(E,E)f,{,x,E')dE (3.5)
OX uh k E

The assumption of isotropic space radiation allows reduction of the transport

equation to one dimension. Particles which leave the sun move along the

interplanetary magnetic field lines which stream away from the sun in an

Archimedal spiral pattern (Smart and Shea, 1997). Charged particles follow

spiral paths along these lines with varying radii due to a spread in particle energy.

Due to a large number of magnetic field lines, some spiral paths will overlap.

Particle paths are also perturbed because of interactions with other charged

particles and irregularities in the interplanetary magnetic fields. Thus, incoming

particles to a spacecraft outside the Earth's magnetosphere will appear to be

isotropically distributed. The equivalence of calculations for dose in the center of

a spherical shield with isotropic incident radiation and a one-dimensional slab

shield with normally incident radiation allows reduction of the transport equation

to one dimension.

Equation (3.5) is solved using the method of characteristics. After

mapping solutions back to variables x and E, the differential fluence solution for

light ions is:

h  00

y/j {x + h, rj) « e~'^y/j (x, rj+h) + e~'^ jdz jjr' fj {Vj + z,r'+z)^^. {x, r'+h) (3.6)
0  r,
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where x|/j(x,rj)=Sj(E)(pj(x,E) and a is cj, the macroscopic cross section for j type

particles with energy greater than E to interact and produce particles of type j with

energy E. The variable ̂  is the nuclear contribution to the separated total cross

section Ojk. The range of a j-type particle with energy E is denoted by rj and the

numerical step size by h. Equation (3.6) is solved numerically by "marching"

through the shield material. This methodology is implemented in the BRYNTRN

computer code that is described in section 3.3.

3.2 GOES Data

The data used in this investigation are five minute proton flux averages

(particles/cm^-s-sr) and were measured by the Geosynchronous Operational Earth

Satellites (GOES), in this case, GOES-7 and GOES-8. Data are taken fi:om the

>30, >50, >60, and >100 MeV channels of the Energetic Particle Sensor (EPS)

instrument for GOES-7 and fî om the >10, >30, >50, and >100 MeV charmels for

GOES-8. The EPS consists of solid-state detectors with pulse-height

discrimination. The look direction of the EPS is perpendicular to the GOES spin

axis which is approximately aligned with the earth's rotation axis. The EPS

provides a spin averaged estimate of the local high-pitch-angle particle fluxes

(Wilkinson and Ushomirskiy, 1994).

Flux data are integrated over a spherical 4;r area and a 300 second

collection time yielding particle fiuence data (number-cm"^) for dose calculations.
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Flux data are integrated over a spherical 4n area yielding particle flux data

(number-cm'^-sec"') for dose rate calculations. Fluence and flux data are fit to an

exponential rigidity function, J=Joe"^°, using least squares regression techniques,

where J is the particle fluence and R is the particle rigidity. Particle rigidity is a

measure of proton momentum per unit charge at energy, E, given by

R = ^ (3.7)

where m is particle mass, c is the speed of light, E is particle energy, and e is the

electron charge. Jo and Ro are the fitting parameter inputs to the BRYNTRN

transport code.

3.3 BRYNTRN Transport Code

For this investigation, SPE incident protons are transported through the

shield material using the deterministic, coupled neutron-proton space radiation

computer code, BRYNTRN, which was developed at the NASA Langley

Research Center (Wilson et al., 1991). In addition to the incident primary

protons, secondary protons and neutrons, deuterons, tritons, ^He, and alpha

particles are transported through the shield material. BRYNTRN uses a marching

algorithm based on the integral solutions to a one-dimensional Boltzmann
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transport equation incorporating the straight-ahead approximation. Details of the

code are described elsewhere (Wilson et al., 1989; Wilson et al., 1991).

After inputting Jo and Ro, the parameters for the fluence spectrum, the

spectrum is differentiated in energy. This differential spectrum is used as the

incident spectrum. After transport, the fluence of particles of type j at a point x

with energy greater than or equal to E is

00

(pj{x,> E)= I i//j[x,r]dr (3.8)
Rj(E)

where \|/j corresponds to the Boltzmann equation solution (equation 3.6) above.

The dose, energy absorbed per gram of water, is calculated as

00

Dj{x,> E) = \Ajii/j[x,RjiE)W (3.9)
E

where Aj is the mass of the projectile, Rj(E) is the range of j-type particle with

energy E', and v|/j is the integral solution of equation (3.6).

It is important to note that the above-described calculations are necessary

as there is little or no dosimetric data available for SPE protons. Particle flux data

measured by GOES required extensive review and correction and are thus, not

available in real-time. As such, a surrogate data set, as calculated by BRYNTRN,

must be used in this work to demonstrate the potential use of real-time dosimetry

for predicting SPE dose and dose rate early in an event.
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CHAPTER 4

BAYESIAN STATISTICS

4.1 Bayes' Theorem

Probability is used as the fundamental measure of uncertainty in Bayesian

statistics. Bayes' Theorem is attributed to the Reverend Thomas Bayes (1701-

1760) and was communicated in 1763 to the Royal Society after Bayes' death

(Price, 1763). If H represents a hypothesis and D represents data, Bayes'

Theorem may be derived from consideration of the definition of conditional

probability:

p{H I D) = (4.1)
p{D)

Noting that p(H,D)=p(D,H), one may then set p(D|H)P(H)=p(H|D)p(D) and

rearrange to yield:

p(D)

where p(H|D) is a probabilistic statement about H after observing data (posterior

distribution), p(D|H) is the likelihood of the data given the hypothesis, p(H) is a

probabilistic statement of belief about H before observing the data (prior

distribution), and p(D) is the marginal distribution of the data. It is the
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conditioning on the data and consideration of a prior distribution that

distinguishes Bayesian statistics from other statistical methods.

If a hypothesis can be expressed as the parameters of a given model,

Bayes' Theorem allows one to update the probabilistic beliefs about model

parameters in a logical fashion as

=  (4.3)
p(y)

where 0 represents the parameter(s) and y represents the data.

4.2 Prior Distributions

Specification of the prior distribution captures the investigator's beliefs

about model parameters prior to observing the data. A large body of work exists

describing the specification of prior distributions. Methods include specification

based on information accumulated from past studies and from opinions of subject-

matter experts; by restricting the prior distribution to a familiar distribution; or by

using a non-informative distribution. Non-informative prior distributions are

often described as vague or diffuse.

Alternatively, one might choose a prior distribution that is conjugate to the

likelihood, that is, one that leads to a posterior distribution belonging to the same

distributional family as the prior distribution. Choice of such a prior distribution

leads to mathematically convenient solutions. It is important to note that as more
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data become available, the effect of the prior distribution becomes less important

allowing the likelihood function and thus, the data, to take a dominant role in

determining the posterior distribution (Le Cam, 1953).

4.3 Likelihood Function

Using Bayes' Theorem with a given probability model means that the data

affect posterior inferences only through the likelihood function. To model a time

series and thus, construct the likelihood function, consider observations sampled

at discrete times consisting of the sum of a growth model term, G\, and an error

term, Si.

y,=G,(e,t,) + s, (4.4)

The probability distribution of the error term, the difference between the model

term and the data, is then used to construct the likelihood fiinction. In the case of

a normally distributed error term when the Si are assumed independent, the

probability of obtaining a set of Si values is given as

The likelihood function is then written as

m « <7-" exrt-^-ZLf, - (4.6)
1=1



4.4 Hierarchical Models

Many statistical problems involve parameters that can be regarded as

related by the structure of the problem. This relationship may be modeled by

using a prior distribution in which the individual parameters are viewed as a

sample from a population distribution. This idea of exchangeability expresses an

unchanging distribution on parameters when the individual parameter suffixes are

permutated (Lindley and Smith, 1972).

When considering growth curve analysis where observations are obtained

at times for multiple individuals assumed to be drawn from a population, the

problem may be modeled hierarchically where parameters describing individual

growth are exchangeable under a common population parameter (Feam, 1975).

These models often assume independence between observations and allow

inference concerning both individual and population parameters.

4.5 Bayesian Inference

In the case of multiple parameter models, posterior distributions are joint

distributions in that they describe the probability distribution of a set of

parameters rather than a single parameter. From this joint distribution, marginal

distributions may be calculated through summation for discrete distributions or

integration for continuous distributions. As an example, given the continuous

joint distribution for parameters y £ind 0, p(y,0), the marginal distribution for y,

p(y), is given as
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p(r) = (4.7)

In practice, the integrations required to calculate marginal distributions are often

numerically challenging and seldom analytical.

4.5.1 Point Estimation

To obtain a point estimate of 0, one must select a summary statistic of

p(0|y) such as its mean, median, or mode. For example, the posterior mean is

calculated as

ju= ̂ 0 p{61 y)d9 (4.8)

It can be shown that the posterior mean is the Bayes estimate of 0 under squared

error loss and the posterior median is the Bayes estimate of 0 imder absolute error

loss (DeGroot, 1970). The mode is usually easiest to calculate since it does not

require normalization of the posterior distribution. If the prior distribution is flat,

the posterior mode will be equal to the maximum likelihood estimate of 0.

4.5.2 Prediction

To make inferences about unknown observables, often called predictive

inferences, the same methodology as used for point estimates is utilized. Before

considering the data, the distribution of the observable but unknown y is

pi.y) = \p(y,e)de (4.9)
= jpWpiy I e)d0
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This is sometimes called the marginal distribution of y or the prior predictive

distribution. After observing y, an unknown observable yf can be predicted using

the same method. The distribution of yf is called the posterior predictive

distribution and may be expressed as

p{yf I y) = \p{yf,o \ y)de (4.10)
= \p{yf 10)p(01 y)d9

where the second equation shows that the posterior predictive distribution may be

expressed as an average of conditional predictions over the posterior distribution

of 0. As such, one can consider parameter inference as an intermediate step in the

process of observable prediction. Many statisticians argue that the emphasis on

parameter inference is misguided in that reparameterization of a given model

leads to different ranges of values for parameters which are in the final analysis,

unobservable.

4.6 Model Assessment and Comparison

Previous sections have provided a brief overview of the Bayesian

methodology. Upon choosing the model likelihood function and prior

distribution, questions arise concerning these choices. The first question concerns

the determination of whether a model is providing an adequate fit to the data, also

22



referred to as model assessment. The next question concerns the choice of a

model among a group of models and may be referred to as model comparison.

Each of these questions has a wide literature base, Bayesian and non-Bayesian

alike. Sections 4.6.1 and 4.6.2 will briefly examine each of these questions in

turn.

4.6.1 Model Assessment

Model assessment attempts to answer the question as to adequate fit of the

data. As an example, in standard linear regression, the assumptions of normality,

independence, linearity, and homogeneity of variance may be investigated. Some

have advocated the use of the marginal distribution of the data, p(y). Values of

p(yi) which are small are considered unlikely and thus, the associated yi values

may be considered as outliers. Too many outliers suggest model inadequacy.

Criticisms of this approach include defining "small" and "too many." As such,

many investigators have chosen to work with predictive distributions of which

several variations have been proposed.

A model may be fit with a fitting sample of data, z, and then checked with

an independent validation sample, y. Residuals, the difference between observed

and fitted values, may be calculated as

r,=y-E{Y,\z) (4.11)
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Plotting residuals versus fitted values may reveal failure in normality or

homogeneity of variance assumptions, and plotting residuals versus time may

reveal a failure of independence. Summing the squares of residuals may provide

an overall measure of fit. If independent data samples, z and y, are not available,

an alternative may be a "cross-validatory" (or leave one out) approach (Stone,

1974; Gelfand et al, 1992). The fitted value for yi is calculated conditional on all

the data except yi, written as y(i). Again, residuals may be calculated as

r,=y,-E{Y,\y,,) (4.12)

Cross-validation predictive densities are usually calculated by

PiYi I T(,)) = \piy, I I (4-13)

where values of p(yi|y(i)) evaluated at the observed data are referred to as the

Conditional Predictive Ordinates (CPOs). These can be plotted versus i to test

for outliers. Additional expectations of functions using cross-validation

techniques have been proposed (Gelfand et al, 1992) for model assessment.

Another approach for using predictive densities is that of posterior

predictive checks (Rubin, 1984). The posterior predictive density, p(y|yobs), is the
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predictive density of a new independent set of observables given the aetual

observables:

p(y I yobs) = \piy I 1 yobs)d^ (4-i4)

4.6.2 Model Comparison

Model eomparison, like model assessment, teehniques span a wide speetrum

ranging from strietly formal ealculation of Bayes faetors to various uses of other

predictive distributions, to somewhat informal graphical techniques. Box

described the role of predictive distributions as enabling "criticism of the

entertained model in the light of current data" (Box, 1980). Several eritieisms

have arisen concerning the use of Bayes faetors. Smith argued that a Bayes factor

approach is strictly appropriate only when one of the entertained models is

believed to be the "true" model (Smith, 1991). Another critieism concerns the use

of improper prior distributions which then lead to improper marginal densities and

either undefined or "uncalibrated" Bayes factors. Sensitivity to prior variance is

yet another potential downside of the use of Bayes faetors.

For these reasons, some investigators have turned to predictive densities.

One sueh predietive density is the eross-validation predictive density as discussed

in seetion 4.6.1. The product of CPOs has heen used as a surrogate for the

marginal density, expressed as the pseudo-Bayes factor (Geisser and Eddy, 1979;

Gelfand et al., 1992)
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/  I \ P^yi,obs \ y(i),obs^^\) ( i1 l/'U I ;^(o) = i 1^ ^ ^ TT\ (4-15)M  i=\ p{yi,obAy{i\obs^^2)

Likewise, comparison of models can be based on the negative cross-validatory

log-likelihood

n

-YMp(y i,obs I ^(0,o6s))
;=1

Plots of the conditional predictive ordinates for both models versus i can also

indicate model preference.

Model assessment and comparison techniques span a wide range of formal

and informal methodologies. The previous discussion is but a brief overview of

some of the techniques found in the literature.

26



CHAPTERS

MARKOV CHAIN MONTE CARLO TECHNIQUES

5.1 General

The single largest impediment to implementing the Bayesian statistical

methodology for complex statistical problems has been the difficulty in

performing required integrations for parameter and predictive inference.

Revolutions in both computing hardware and software algorithms in the 1990's

have allowed ever-more coihplex analyses. Methods for numerical integration

include Gaussian quadrature, asymptotic approximation methods, lattice

integration methods, and non-iterative Monte Carlo methods. Markov Chain

Monte Carlo (MCMC) methods provide a powerful alternative to execute the

integrations necessary for inference.

The most widely used MCMC simulation methods are the generalized

Metropolis algorithm (Metropolis, et al., 1953; Hastings, 1970) and the Gibbs

sampler (Geman and Geman, 1984). Gelfand and Smith pointed out the Gibbs

sampler to the general statistics community as a method for sampling posterior

distributions (Gelfand and Smith, 1990). The following sections provide a brief

overview of Markov chain properties, distribution sampling methods, and MCMC

convergence diagnostic techniques.
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5.2 Markov Chains

Most simply stated, a Markov chain is a stochastic process where given

the present state, past and future states are independent. This may be written

more formally as

p{X, G A I = p[X, e A \ X,_,] (5.1)

for a discrete time stochastic process {Xo,Xi,...}. If the distribution of Xt is to

converge to a stationary distribution, the Markov chain must satisfy three

properties (Roberts, 1996). The first property to be satisfied is that of

irreducibility. That is, from all starting values, the Markov chain can reach any

non-empty set with positive probability in some number of iterations. The second

property to be satisfied is that of aperiodicity. That is, the chain does not oscillate

between states in a regular periodic movement. The last property is that a chain

must be positive recurrent, which can be expressed in terms of the existence of a

stationary distribution 7t(.). If the initial value, Xq, is sampled from 7:(.), all

subsequent iterates will be distributed according to 7t(.) or written as

= <j) (5.2)
I

for all j and t > 0. For all aperiodic positive-recurrent Markov chains, the

stationary distribution is the limiting distribution of iterates from the chain.
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Under these conditions, ergodic averages, written as

N

_

(5.3)

converge to their expectations under the stationary distribution. MCMC output is

usually summarized in terms of ergodic averages. This ergodic theorem,

however, offers no solution as to how long the Markov chain must be run before

iterations are distributed according to 7i(.). Additional discussion of chain

convergence will be addressed in section 5.6.

The goal of MCMC simulation is to create a Markov process for which the

stationary distribution is the joint posterior distribution and to then run the

simulation long enough such that the distribution of iterates is close to the

stationary distribution. After constructing a model and its associated

distributions, the next step is to sample from those distributions. The following

sections describe three methodologies for sampling.

5.3 Gibbs Sampler

5.3.1 General

The Gibbs sampler is one of the most-widely used MCMC methodologies.

This method was given its name (Geman and Geman, 1984) as it was used for

analyzing Gibbs distributions on lattices. The Gibbs distribution may be

described by its transition kernel, the density of going from one point, X, to
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another, Y. The transition kernel is formed from the full conditional distributions,

7r(Xi|X.i), the distribution of the i"" component of X conditioning on all remaining

components. Full conditional distributions are formed as

The transition kernel is then given as

K{X,Y) = I {Y,,m,{X,,j>i))) (5.5)
1=1

the product of the conditional densities of the individual steps required to produce

an iteration of the Gibbs sampler.

An important result is the derivation that the stationary distribution of a

chain with the transition kernel given by equation (5.5) is the joint distribution of

interest. Examples for both discrete and continuous cases are given by

Gamerman (Gamerman, 1997). Under very mild conditions, the set of all frill

conditional distributions determine the joint distribution. Thus, the Markov chain

with transition kernel given by equation (5.5) converges to the distribution of

interest. Given an arbitrary set of starting values

/□(O) i3(0) ^(0) ^(0)C7i ,C72
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for the unknown quantities where the iteration number is given in parentheses,

Gibbs sampling may be implemented using the following iterative procedure:

draw from p{9^ \ x,02^

draw02^from p{02 \

drawO^^^from p{9^ \ x,9l^\...,9l^}i)

draw9l^^from p{9^ \ x,92^,...,9]^^)

These iterations are continued until convergence is reached with the resulting

values of 0 drawn from the stationary distribution. While this iterative procedure

seems straightforward, sampling or drawing from the frill conditional densities

may not be easy.

5.3.2 Sampling from Full Conditional Densities

An important result for simplifying sampling from full conditional

densities is that to construct the full conditional density for a given unknown, one

only needs to consider terms from the joint density which contain the unknown.

This may be shown with a simple application of the definition of conditional
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densities. As an example, for a two parameter model with parameters, a and (3,

with observed data, y, the joint posterior of a and P, is given as

=  (5,6)
p{y)

The full conditional density of a is given by

(5.7)
piP I y)

_ p{a,P,y)

PiP,y)

cizp{a,p,y)

where the denominator does not depend on a. Although this property greatly

simplifies calculations, sampling from this less complex density still presents a

computational challenge. Since full conditionals change from iteration to

iteration as the conditioning changes, each full conditional calculation is used

only once. As such, sampling methods must be as computationally efficient as

possible. The following sections briefly describe some of these sampling

methods.
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5.3.3 Rejection Sampling

To perform rejection sampling, an envelope function, g(0), must be

defmed for all 0 for which p(0,y)>O. Samples are drawn from the density

proportional to g(0) with each sampled 0 tested for acceptance or rejection.

Draws are accepted with probability p(0|y)/g(0) or else are rejected. This

sampling continues until the required number of draws have been accepted. To

reduce the number of rejections, the envelope function should be close to p(0|y).

Computational efficiencies may be gained by using "squeezing functions", a(0)

and b(0), such that a(0)>g(0)>b(0) where a(0) and b(0) are more efficiently

evaluated than g(0).

5.3.4 Adaptive Rejection Sampling

For those densities which are log-concave, envelope fimctions may be

constructed with the aid of graphical techniques (Gilks and Wild, 1992). A

density, 7t(x), is said to be log-concave if the vector of the derivatives of its

logarithm exists and has non-inereasing components in x. Log-eoncavity may

also be defined, in the univariate sense, as

log;r(xi) -log;r(x2) < \og7r(x2) - log^r^x^) (5.8)

for xi<X2<X3. Gilks and Wild showed that for univariate X an envelope function

could be constructed by drawing tangents to log7i(.) at each given abscissa. The
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envelope is constructed from these tangents. An alternative which does not

require the calculation of derivatives was developed by Gilks (Gilks, 1992). This

method uses secants rather than tangents. Both methods require starting abscissae

to be placed on both sides of the mode. The adaptive portion of the algorithm

stems from the use of sampling points, 7i:(x), calculated during the rejection step.

Rejected points can be used for "tightening" the envelope by incorporating a new

tangent line. The envelope function then better approximates 7t(x) and thus,

reduces the number of rejections. The use of tangent lines in the univariate case

may be extended to tangent planes and hyperplanes for higher dimension cases.

5.4 Metropolis-Hastings Sampling

The Metropolis-Hastings algorithm (Hastings, 1970) is a generalization of

the Metropolis method. At each time, t, the next state Xt+i is chosen by sampling

a candidate point, Y, from a proposal distribution q(.|Xt). The candidate point Y

is accepted with probability a(Xt, Y) given by

a{X,Y) = min(l,^^^^^^ffl^) (5.9)
7viX)q(Y\X)

If the candidate point is accepted, Xt+]=Y. If the candidate point is rejected,

Xt+i=Xt. Variations of the Metropolis-Hastings algorithm are usually defined by

the properties of the proposal distribution. Two widely-used versions are the

independence sampler and the random walk Metropolis algorithms.
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The independence sampler uses q(X,Y)=q(Y). Although it seems that the

independence from the previous state, X, disagrees with the Markov property of

the chain, q is a proposal distribution that must be combined with an acceptance

probability to give the transition kernel. As such, the Markov property remains

valid.

The random walk algorithm uses q(X,Y)=fw(Y-X) where fw is symmetric

around the current state. The most widely used choices for fw are the normal

(Muller, 1991) and the Student's t (Geweke, 1992) distributions. The magnitude

of the variances then dictate the efficiency of the chain for reaching convergence

to the stationary distribution. A large variance allows wide moves in the

parameter space with high rejection rates, and a small variance allows small

moves in the parameter space with low acceptance rates.

5.5 Slice Sampling

To utilize Gibbs sampling, methods must be developed to sample from

non-standard, univariate, frill conditional distributions. To utilize Metropolis-

Hastings sampling, an appropriate proposal distribution must be found. An

alternative class of sampling methods, called "slice sampling", has been

developed (Neal, 1997) to overcome these potential disadvantages. Slice

sampling methods originate from the idea that a univariate distribution may be

sampled uniformly from the region imder the curve of its density function.

Subsequently, only the horizontal coordinates of the sample points need to be

35



considered. A Markov chain that converges to this uniform distribution can be

constructed by alternately sampling uniformly from the vertical interval defined

by the density at the current point and from the horizontal slice defined by the

union of intervals through the density at the point chosen from the vertical

interval, Multivariate distributions can be sampled by looking at each variable in

turn.

If f(x) is a function proportional to the probability density for variable X,

the procedure to update the current value xq with a new value x, is as follows:

(1) Draw a value y uniformly from (0,f(xo)). This defines a horizontal

slice, S={x:y<f(x)}

(2) Find an interval I={L,R} around xo that contains a large part of the

slice

(3) Draw the new point, xi, from the part of the slice within the

interval, I.

The slice sampling method provides a valuable tool, in addition to the Gibbs and

Metropolis-Hastings methods, for sampling complex distributions.

5.6 Convergence Diagnostics

Convergence diagnostics are used to determine if the MCMC simulation

has been run for enough iterations to allow convergence to the stationary

distribution. These initial iterations are often referred to as "bum-in". Some

convergence diagnostic algorithms have been constmcted to consider not only
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whether convergence has been reached but also to consider the independence of

successive iterates. Two general methods have been developed to study the

convergence of Markov chains. The first method is theoretical and attempts to

measure variation distances and establish bovmds on distribution functions

generated by a Markov chain. In general, this approach is difficult and has not

been fully explored. Most practical work has approached the study of

convergence from a statistical approach in that properties of the chain output are

analysed. Three such approaches are briefly discussed next.

The Gelman-Rubin convergence diagnostic may be used for the analysis

of two or more parallel chains. This diagnostic (Gelman and Rubin, 1992) is

based on the comparison of the within and between chain variance for each

variable. The comparison is used to estimate the potential scale reduction factor,

the multiplicative factor by which the estimate of the posterior distribution scale

parameter might be reduced if the chains were run to infinity. Calculation of

these reduction factors is based on analysis of variance and sampling from the

normal distribution.

The Raferty-Lewis convergence diagnostic (Raferty and Lewis, 1992)

attempts to detect convergence to the stationary distribution and to provide a way

of bounding the variance of estimates of quantiles of functions of parameters.

This approach is based on two-state Markov chain theory and standard sample

size formulas involving binomial variance. A binary sequence is formed with a
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0/1 indicator for each iteration as to whether the quantity of interest is less than

the specified cutoff. This diagnostic provides the smallest skip interval for which

the behavior of a new binary sequence approximates that of a first-order Markov

chain, as well as the number of iterations to approach within some specified value

of the estimated stationary distribution.

The Heidelberger-Welch convergence diagnostic (Heidelberger and

Welch, 1983) may also be used for the analysis of single chains. This stationarity

test is based on Brownian bridge theory. A halfwidth test is performed on the

portion of the chain that passes the stationarity test. Spectral density estimation is

used to compute the asymptotic standard error of the mean. This mean is

estimated with acceptable accuracy if the halfwidth of the confidence interval for

the mean is less than a specified accuracy of the mean.

5.7 Forming the Sample

After choosing the method of sampling the target distribution and

determining the convergence diagnostic to be utilized, one must decide how to

form the sample. Several methods have been proposed, with no consensus

reached by the statistics community. The independent sampling approach

(Gelfand and Smith, 1990) forms n chains in parallel until convergence, with the

last iterate fi-om each of the n chains used to form the sample. Using independent

initial values with large dispersion helps to establish independent values in the

sample.
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Another method is to form a single chain and utilize ergodic results

(Geyer, 1992). All chain values have marginal distributions given by the

equilibrium distribution, and the sample is formed from the n successive iterates

(after bum-in) of the chain. These sample iterates are not independent due to

chain dependence, but ergodic theorems ensure that inference based on the sample

is valid. If chain autocorrelation is too high, this method may take a long time to

adequately sample the parameter space.

Yet another method to consider is to "thin" the chain (Raferty and Lewis,

1992) by taking every k"* iteration of the chain after convergence. For larger k,

chain values become less correlated, and the samples may be said to be "quasi-

independent". This method is advantageous if computer storage is limited

although there is no gain in efficiency as compared to retaining all chain values.

Single chain proponents argue that independent samples are not required for

ergodic averages. Multiple chain proponents argue that multiple chains may

reveal that chains have not reached stationarity. Debate continues as to the need

for running multiple chains versus a single chain.
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CHAPTER 6

METHODOLOGY AND RESULTS FOR INDIVroUAL SPE

NON-LINEAR REGRESSION MODELS

6.1 Computational Techniques

MCMC techniques for sampling distributions of interest were

implemented with the Bayesian Inference Using Gibbs Sampling (BUGS)

software package (Spiegelhalter, et al., 1999; Spiegelhalter, et al., 2000). BUGS

allows construction of a probability model consisting of a joint distribution over

all observed and unobserved quantities. BUGS allows many standard

distributions and utilizes a variety of sampling techniques including (1) direct

sampling using standard algorithms, (2) derivative-fi"ee adaptive rejection

sampling, (3) slice sampling, and (4) point Metropolis. The method of sampling

depends on the mathematical form of the full conditional distributions.

MCMC convergence diagnostics were implemented with either

BUGS or the Bayesian Output Analysis (BOA) software package (Smith, 2000).

The modified Gelman-Rubin diagnostic, as revised by Brooks and Gelman

(Gelman and Rubin, 1992; Brooks and Gelman, 1998) is included in the BUGS

software package. The Raferty-Lewis diagnostic (Raferty and Lewis, 1992) and

the Heidelberger-Welch diagnostic (Heidelberger and Welch, 1983) are included

in the BOA software package.
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Posterior predictive intervals and checking functions, as described in

section 4.6.2, were used for model assessment and were calculated using BUGS.

Conditional predictive ordinates for model comparison/selection were calculated

using BUGS. A Monte Carlo estimate of p(yi|y(i)) is obtained as a harmonic mean

ofp(yi|y(i),0) using

1  r 1

piyAy^i)) ^p(ji \y(i)>0)

(Gelfand and Dey, 1994) which may be sampled using BUGS. Negative cross-

validatory log-likelihood values and pseudo Bayes factors were used for model

comparison/selection.

6.2 Investigations Utilizing Individual SPE Non-Linear Regression Models

Initial efforts at fitting and prediction of asymptotic dose, dose-time

profiles, and dose rate-time profiles utilized individual SPE non-linear regression

models. Data from an individual SPE, a growth curve model likelihood as

described in section 4.3, imiform growth curve parameter prior distributions

formed from estimations of the parameter space based on earlier work, and

normally distributed errors are used to form models in these preliminary

investigations.
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6.2.1 Fitting of Organ Doses Using Alternative Growth Curves

Previous work (Zapp et al., 1998) had fit various organ doses using a

Weibull growth curve and least squares regression techniques. The asymptotic

dose was treated as a known rather than as an unknown parameter. As there was

nothing to suggest a preference for any given member of the non-linear sigmoidal

curve family, investigations to examine the adequacy of other non-linear

sigmoidal growth curves were conducted (Neal and Townsend, 2000). Weibull,

Gompertz, and logistic growth curves

D = DJl-exp(-(car)) (6.2)

D = exp(a - Py') (6.3)

D = (6.4)
1 + C exp(-/'^)

were used in conjunction with non-linear regression models for fitting individual

skin and eye data sets for the (1) March 23, 1991, (2) June 4, 1991, and (3)

August 4, 1972 SPEs. Proton flux was transported through 2 g/cm^ of aluminum

and 100 cm of water (assumed to be soft tissue equivalent) prior to entering the

organs of interest. Data sets are presented in Tables A.1 through A.3. Raferty -

Lewis and Heidelberger-Welch convergence diagnostics were used for

convergence monitoring.
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Assuming a Weibull growth curve, the model may be represented as

7, = ̂00 (1 - exp(-a?,)'')) + s, (6.5)

~ 17(0,10000)

« ~ t/(0,5)

r ~ c/(0,20)

r~Gfl(0.001,0.001)

where N(.), U(.), and Ga(.) indicate the Normal, Uniform, and Gamma probability

distributions, respectively. Assuming a Gompertz growth curve, the model may

be represented as

=exp(a-/?r'') + '^, (6.6)
^,~iV(0,r)

a~t/(-5,10)

P ~ t/(0,50)

r ~ ̂/(o,i)

r~Ga(0.001,0.001)

Assuming a logistic growth curve, the model may be represented as

yi= +S, (6.7)
1 + Cexp(-A-U)

s,~N{0,r)

K ~ U(0,10000 )

C ~ [7(0,40000 )

r ~ [7(0,20)

r ~ Gfl(0.001,0.001)
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Tables 6.1 through 6.6 present posterior parameter mean values for each of the

three growth curves. Dose time profiles were generated using posterior parameter

mean values and the respective growth curve function. Figures 6.1 through 6.6

present dose-time profiles.

Model assessment was originally performed (Neal and Townsend, 2000)

using (1) the standardized residual, (2) the chance of getting a more extreme

observation, and (3) the predictive ordinate of each observation. The same data

sets were analyzed again using posterior predictive checks. The percentage of

observations which fell into the 50% and 95% predictive intervals are presented in

Table A.4. These models generally support the predictive intervals and indicate

adequate fits of the data.

Model comparison used the negative cross-validatory log-likelihood

statistic. As this statistic is an accumulation of the negative logarithm of

likelihoods over observations, a smaller value of the negative cross-validatory

log-likelihood indicates preference for a model. Table 6.7 presents the model

comparison statistics. The Weibull model was preferred for the March 23, 1991

and the August 4, 1972 SPEs for both skin and eye dose. The Gompertz model

was preferred for the June 4, 1991 SPE for both skin and eye dose.
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Table 6.1. Weibull growth curve posterior parameter means and 95%
confidence intervals for skin dose.

SPE Doc
(cGy)

a r

March 23, 1991 140.8 .9540 5.865

(139.6,142.0) (.9467, .9611) (5.584, 6.169)

June 4, 1991 22.10 1.025 2.141

(21.54,22.66) (.9849,1.067) (1.940,2.364)

August 4, 1972 707.6 .09588 2.536

(688.4, 727.2) (.09278, .09896) (2.306, 2.777)

Table 6.2. Weibull growth curve posterior parameter means and 95%
confidence intervals for eye dose.

SPE Doc
(cGy)

a r

March 23, 1991 81.64 .9526 5.856

(81.08, 82.22) (.9469, .9583) (5.643, 6.079)

June 4, 1991 16.34 1.058 2.097

(15.91,16.77) (1.012,1.103) (1.894,2.324)

August 4, 1972 529.3 .09849 2.527

(517.0, 541.9) (.09572, .1014) (2.317,2.739)
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Table 6.3. Gompertz growth curve posterior parameter means and 95%
confidence intervals for skin dose.

SPE a )8 r

March 23, 1991 4.968 43.81 .01413

(4.929, 5.007) (31.05,49.82) (.0110, .0206)

June 4, 1991 3.103 6.6 .06326

(3.086, 3.120) (5.727, 7.582) (.0518, .0768)

August 4, 1972 6.586 8.399 .7585

(6.55, 6.62) (6.551,11.34) (.7291, .7821)

Table 6.4. Gompertz growth curve posterior parameter means and 95%
confidence intervals for eye dose.

SPE a P 7

March 23,1991 4.424

(4.386, 4.461)

43.93

(30.07, 49.82)

.01423

(.01112, .02134)

June 4, 1991 2.801

(2.782,2.820)

6.4

(5.441, 7.497)

.05997

(.0470, .0748)

August 4, 1972 6.294

(6.263, 6.323)

8.51

(6.736,10.98)

.7512

(.7261, .7734)
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Table 6.5. Logistic growth curve posterior parameter means and 95%
confidence intervals for skin dose.

SPE K

(cGy)

C r

March 23, 1991 141.2 5331 8.709

(139.4,143.1) (2882,10590) (8.132, 9.469)

June 4,1991 21.74 38.07 4.355

(20.97,22.53) (22.21, 67.24) (3.72,5.136)

August 4, 1972 707.8 45.72 .4174

(687.8,728.3) (32.13, 64.44) (.3782, .4589)

Table 6.6. Logistic growth curve posterior parameter means and 95%
confidence intervals for eye dose.

SPE K

(cGy)
C r

March 23, 1991 81.89 5367 8.713

(80.98, 82.79) (3058, 9814) (8.179, 9.38)

June 4,1991 16.07 36.31 4.421

(15.47,16.68) (20.07,71.39) (3.708, 5.414)

August 4,1972 529.1 45.81 .4293

(514.7,543.4) (31.87,65.81) (.3881, .474)
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Figure 6.1. Skin dose-time profile fits using posterior parameter means for the
March 23, 1991 SPE.
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Figure 6.2. Eye dose-time profile fits using posterior parameter means for the
March 23,1991 SPE.
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Figure 6.3. Skin dose-time profile fits using posterior parameter means for the
June 4,1991 SPE.
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Figure 6.4. Eye dose-time profile fits using posterior parameter means for the
June 4, 1991 SPE.
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Figure 6.5. Skin dose-time profile fits using posterior parameter means for the
August 4, 1972 SPE.
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Figure 6.6. Eye dose-time profile fits using posterior parameter means for the
August 4,1972 SPE.
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Table 6.7. Calculated negative cross-validatory log-likelihood values of skin
and eye dose-time profile fits. Smaller values indicate model
preference.

SPE Weibull Gompertz Logistic

March 23,1991 skin 31.28 57.6 38.61

June 4,1991 skin 21.08 14.08 29.21

August 4, 1972 skin 75.37 78.36 76.56

March 23, 1991 eye 19.43 46.63 27.97

June 4, 1991 eye 16.36 10.72 24.42

August 4, 1972 eye 68.41 71.44 71.08

Results indicate the adequacy of the three growth curves for fitting individual SPE

dose-time profiles. As such, it iseems reasonable to consider all of these growth

curves in future efforts to make parameter inferences and to predict dose and dose

rate-time profiles.

6.2.2 Calculation of Doses in Water

In addition to investigating alternative growth curves, doses in water

were calculated in order to determine if the non-linear sigmoidal shape of dose-

time profiles was unique to organ dose-time profiles. Proton fluxes were

transported through 1 g/cm^ of aluminum shielding prior to the water. Non-linear

regression models using growth curves, as given by equations (6.2) and (6.4), as
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well as a reparameterized version of equation (6.3),

D = exp(a - p exp(-/1)) (6.8)

were used to fit dose data for the (1) May 6, 1989, (2) January 31, 1991, (3)

March 23, 1991, (4) June 4, 1991, and (5) August 26, 1991 SPEs. Data sets are

presented in Tables B.l through B.5. Raferty-Lewis and Heidelberger-Welch

convergence diagnostics were used for convergence monitoring. Assuming a

Weibull growth curve, the model may be represented as

y, =D„(l-exp(-ar,)'')) + ̂, (6.9)

~ N{0,z)

~ C/(0,10000 )

a ~ C/(0,5)

y ~ [7(0,20)

T ~Ga (2,0.001 )

Assuming a Gompertz growth curve, the model may be represented as

= exp( exp( 7,.) + £•, (6.10)

~iV(0,r)

a~[/(-5,10)

y0~C/(O,5O)

y ~ t/(o,i)

r~G^)r(2,0.001)
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Assuming a logistic growth curve, the model may be represented as

7,= (6.11)
'  l + Cexp(-r/.)

~ iV(0,T)

K ~ t/(0,10000 )

C ~ C/(0,40000 )

r ~ t/(0,20)

T ~ Ga (2,0.001 )

Tables 6.8 through 6.10 present parameter posterior mean sample values for each

of the three growth eurves. Dose-time profiles were generated using posterior

parameter mean values and the respective growth curve function. Figures 6.7

through 6.11 present these dose-time profiles. These results indieate the adequacy

of the non-linear sigmoidal growth curves for fitting water dose data. Further

efforts to predict dose and dose rate-time profiles using these growth curves

seems reasonable.
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Table 6.8. Weibull growth curve posterior parameter means and 95%
confidence intervals for water dose.

SPE Dcx,
(cGy)

or y

May 6,1989 .1113

(.09927, .1283)
.02585

(.01921, .0317)
1.131

(.9754,1.301)

January 31,1991 .3325

(.3201, .3449)
.142

(.1201, .1696)
1.542

(.9744,2.346)

March 23, 1991 799.8

(791.2, 808.6)
.05089

(.05032, .05147)
3.985

(3.792,4.198)

June 4, 1991 55.52

(54.05, 57.17)
.01029

(.009998, .01057)
2.988

(2.82,3.164)

August 26,1991 .873

(.8076, .9413)
.03536

(.03148, .03939)
2.362

(1.621,3.526)
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Table 6.9. Gompertz growth curve posterior parameter means and 95%
confidence intervals for water dose.

SPE a r

May 6, 1989 -2.309

(-2.383, -2.233)
2.921

(2.572, 3.357)
.06016

(.0501, .07138)

January 31, 1991 -1.106

(-1.14,-1.075)
4.757

(2.352,13.9)
.3224

(.2175, .5693)

March 23,1991 6.702

(6.682, 6.722)
21.59

(16.02, 29.98)
.1919

(.1743, .2129)

Jime 4, 1991 4.13

(4.075,4.192)
8.779

(7.387,10.69)
.02796

(.02487, .03142)

August 26, 1991 -.1218

(-.2049, -.04519)
9.477

(3.744, 34.64)
.101

(.06822, .1635)
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Table 6.10. Logistic growth curve posterior parameter means and 95%
confidence intervals for water dose.

SPE K

(cGy)
C r

May 6,1989 .09444

(.08704, .1024)
10.35

(7.649,14.44)
.1018

(.08194, .1256)

January 31, 1991 .3239

(.3064, .3399)
11450

(8.358, 33510)
1.585

(.3635,2.517)

March 23, 1991 802.5

(794.1,811.1)
396.6

(312.5,498.8)
.3336

(.3198, .3482)

Jime 4, 1991 55.5

(54.65, 56.37)
107.2

(92.98,123.3)
.0541 .

(.0521, .05619)

August 26, 1991 .8651

(.7989, .9194)
665.5

(17.04, 8532)
.164

(.1144, .3685)
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Figure 6.7. Water dose-time profile fits using posterior parameter means for
the May 6, 1989 SPE.
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Figure 6.8. Water dose-time profile fits using posterior parameter means for
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Figure 6.9. Water dose-time profile fits using posterior parameter means for
theMareh23, 1991 SPE.
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Figure 6.10. Water dose-time profile fits using posterior parameter means for
the June 4,1991 SPE.
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Figure 6.11. Water dose-time profile fits using posterior parameter means for
the August 26,1991 SPE.
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6.2.3 Prediction of Dose-Time Profiles

Data for dose in water from the March 23,1991 and September 29,1989

SPEs were used to make parameter inferences and predictions of dose-time

profiles (Townsend et al., 2001) at various times in the evolution of the SPEs.

Proton flux was transported through 1 g/cm^ of aluminum shielding prior to

transport through the water. Prediction of asymptotic doses was inadequate and a

lack of convergence for several runs precluded prediction.

Instead of using a single long chain of iterates, the November 8, 2000 and

September 29, 1989 SPE data sets were next analyzed using three chains and the

Gelman-Rubin convergence diagnostic for convergence monitoring. Data are

presented in Tables C.l and C.2. Models are represented by Equations (6.9)

through (6.11). Dose time profiles were generated using dose predictive mean

values rather than using parameter posterior means and the respective growth

curves. Figures 6.12 through 6.17 present these dose-time profiles. These

figures display the data throughout the event and the predicted dose-time

profile(s) at the specified dose and time. Individual curves are labeled by the

dose/time to indicate at what point in the evolution of the SPE the prediction was

made. As an example, the curve labeled "178.2cGy/5h" in Figure 6.12 indicates

the predicted dose-time profile when the observed dose was 178.2 cGy which

occurred 5 hours into the event.
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Figure 6.12. Water dose-time profile prediction using posterior predictive
means for the November 8, 2000 SPE and Weibull growth curves.
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Figure 6.14. Water dose-time profile prediction using posterior predictive
means for the November 8, 2000 SPE and logistic growth curves.
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Figure 6.15. Water dose-time profile prediction using posterior predictive
means for the September 29, 1989 SPE and Weibull growth
curves.
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Figure 6.16. Water dose-time profile prediction using posterior predictive
means for the September 29, 1989 SPE and Gompertz growth
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Model assessment was performed using posterior predictive checks. The

percentage of observations which fell into the 50% and 95% predictive intervals

are presented in Tables C.3 and C.4. All models generally supported the

predictive intervals for the November 8, 2000 and September 29, 1989 SPEs and

thus indicated adequate fits for the data.

Model comparison used the pseudo Bayes factor or the ratio of the product

of conditional predictive ordinates. Tables 6.11 and 6.12 present the model

comparison results for the November 8, 2000 and September 29, 1989 SPEs.

Table 6.11. Calculated product of conditional predictive ordinate values for
November 8, 2000 SPE predictions. NC indicates Non
Convergence of the chain.

Hours into event Weibull Gompertz Logistic

2 NC 1.46e-2 7.42e-l

3 NC 9.75e-5 8.76e-7

4 NC 4.16e-6 1.89e-9

5 1.93e-3 2.41e-8 1.28e-10
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Table 6.12. Calculated product of conditional predictive ordinate values for
September 29, 1989 SPE predictions. NC indicates Non
Convergence of the chain.

Hours into event Weibull Gompertz Logistic

4.25 NC 1.58 1.27e-4

6 NC 2.11 6.76e-12

9 2.32e-19 5.62e-24 2.21e-35

19 1.06e-37 1.33e-46 1.22e-121

27 2.96e-66 9.56e-77 l.lle-90

Model comparison results indicate that the Weibull model, when chain

convergence criteria were met, consistently best met the comparison criteria for

both the November 8, 2000 and September 29, 1989 SPEs. The Gompertz model

better meets the comparison criteria than the logistic model for both SPEs, with

the exception of the first prediction for the November 8, 2000 SPE at 2 hours.

Prediction of dose-time profiles indicates a limited forecasting ability for

these models. The predicted asymptotic dose is typically greater than the current

dose value by 5-20% of the actual asymptotic dose. Convergence of MCMC

sampling chains is inadequate for some of the runs.
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6.2.4 Conclusions on the Use of Individual Non-Linear Regression Models

While the Weibull, Gompertz, and logistie growth curves seemed to

provide adequate fits of SPE data, it was not clear that the individual non-linear

regression models adequately used information from other SPEs, as expressed by

uniform prior distributions based on previous estimations of parameters, to make

foreeasts of future doses. As such, it seems reasonable to investigate hierarchical

models which assume partial exchangeability among data sets and allow new

predictions to borrow strength from previous similar SPEs. Individual SPE model

parameters would then be viewed as samples from population distributions for

similar SPEs.
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CHAPTER 7

METHODOLOGY AND RESULTS FOR HIERARCHICAL
NON-LINEAR REGRESSION MODELS

7.1 Investigations Utilizing Hierarchical Non-Linear Regression Models

7.1.1 Categorization of SPE

Upon fiirther examination of SPE water dose and dose rate-time profiles

and a review of previous organ dose and dose rate-time profiles, it was noted that

SPEs with relatively large asymptotic doses were associated with (1) relatively

large dose rates early in an event and (2) relatively large maximum dose rates. As

such, SPE dose in water data were placed in one of four groups as determined by

the asymptotic dose and maximum dose rate for the SPE. Group characteristics

and initial SPE members are presented in Table 7.1. Tables D.l through D.IO
I

present data for these initial SPE members.

Categorization for new events was based on observed dose rates from

times early in the event. The maximum dose rate observed by the fifth hour of the

event was used to categorize the new event. Since Group 1 SPEs are the most

significant events from a radiological standpoint, it was considered prudent to

begin making predictions for these events earlier in the evolution of the SPE. If

the observed dose rate exceeded the initial categorization criterion for Group 1

prior to the fifth hour of the SPE, predictions would be made before the fifth hour

of the event. Criteria for categorization of new events are presented in Table 7.2.
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Table 7.1. Hierarchical model group characteristics and initial SPE members.

Group
Number

Asymptotic Dose
Range (cGy)

Maximum Dose

Rate(cGy/hr)
Initial SPE Members

1 500-5000 >40 July 14, 2000
March 23, 1991

2 100-500 10-40 October 19,1989
September 29, 1989

3 1-100 0.1-10 June 4,1991
March 19, 1990

November 30, 1989

4 0-1 0-0.1 August 26, 1991
January 31, 1991
November 8, 1987

Table 7.2. Criteria for categorization of new events.

Group Number Maximum Dose Rate after 5 Hours

into Event (cGy/hr)

1 >15

2 0.1-15

3 0.05-0.1

4 0-0.05
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7.1.2 Hierarchical Non-Linear Regression Models

A hierarchical, non-linear regression model was assumed for each of the

four groups. Assuming a Weibull growth curve, the model may be represented by

the following:

y, j = £)„ (1 - exp(-a/^.)''')) + s, ̂ (7.1)

^00, ~
a, ~ N{a./i,a.T)

Y, ~

T, ~ Ga{T.shape,T.scale)

D^.p-U{a,b)

D^.T-U{c,d)

a.p-U{e,f)

a.T-U{g,h)

Y.p-U{k,l)

Y-T ~ U(m,n)

r.shape ~U{[e- 4,le3)

T.scale ~ Ga{2,le - 3)

Hyperprior distribution constants for the Weibull growth curve hierarchical model

are presented in Table 7.3.
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Table 7.3. Hyperpriors distribution for groups 1 through 4 Weibull growth
curve hierarchical models.

Distribution

constant

Group 1 Group 2 Group 3 Group 4

a 500 100 1 0

b 10000 500 100 1

c 0.00001 0.00001 0.00001 0.00001

d 1000 1000 1000 1000

e 0.00001 0.00001 0.00001 0.00001

f 10 10 10 10

g 0.00001 0.00001 0.00001 0.00001

h 1000 1000 1000 1000

k 0.00001 0.00001 0.00001 0.00001

1 20 20 20 20

m 0.00001 0.00001 0.00001 0.00001

n 1000 1000 1000 1000
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Assuming a Gompertz growth curve, the model may be represented by the

following:

y., j = exp(«, - p, exp(-y/^.)) + s^ j (7.2)

s, j ~ A^(0,r,.)

a, ~ N{a.ju,a.T)

P,-Nip.u,p.r)

Yi ~ N{y./u,Y.T)

Tj ~ Ga{T.shape, T.scale)

a.p~U{p,q)

a.T ~ U{r,s)

p.p~U(t,u)

P.T ~ U (v, w)

Y.p~U{x,z)

Y-T ~ U{aa,bb)

T.shape ~ C/(le - 4,le3)

T.scale ~ Ga(2,\e - 3)

Hyperprior distribution constants for the Gompertz growth curve hierarchical

model are presented in Table 7.4.
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Table 7.4. Hyperpriors distribution for groups 1 through 4 Gompertz growth
curve hierarchical models.

Distribution

constant

Group 1 Group 2 Group 3 Group 4

P 6.215 4.605 0 -5

q 8.517 6.215 4.605 0

r 0.0001 0.00001 0.00001 0.00001

s 1000 1000 1000 1000

t 0.00001 0.00001 0.00001 0.00001

u 100 100 100 100

V 0.00001 0.00001 0.00001 0.00001

w 1000 1000 1000 1000

X 0.00001 0.00001 0.00001 0.00001

z 1 1 1 1

aa 0.00001 0.00001 0.00001 . 0.00001

bb 1000 1000 1000 1000
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Assuming a logistic growth curve, the model may be represented by the

following:

K,

1 + C,exp(-?;./^)

K, ~ N{K./^,K.'u)

C,. ~ N{C.fi,C-r)

Vj ~ N(r.ju,r.T)

T, ~ Ga{r.shape,r.scale)

+  (7.3)

K.p ~ U(cc,dd)

K.T-U(ee,ff)

C.p~U(gg,hh)

C.t ~ U{kk,ll)

r.p ~ U{mm,nn)

r.T~U{pp,qq)

T.shape ~ f/(le - 4,le3)

T.scale ~ Ga(2,le - 3)

Hyperprior distribution constants for the logistic growth curve hierarchical model

are presented in Table 7.5.

81



Table 7.5. Hyperpriors distribution for groups 1 through 4 logistic growth
curve hierarchical models.

Distribution

constant

Group 1 Group 2 Group 3 Group 4

cc 500 100 1 0

dd 5000 500 100 1

ee 0.00001 0.00001 0.00001 0.00001

ff 1000 1000 1000 1000

gg 0.0001 0.0001 0.0001 0.0001

hh 40000 40000 40000 40000

kk 0.00001 0.00001 0.00001 0.00001

11 1000 1000 1000 1000

mm 0.00001 0.00001 0.00001 0.00001

nn 20 20 20 20

PP 0.00001 0.00001 0.00001
1

0.00001

qq 1000 1000 1000 1000
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Initial efforts with the logistic model indicated convergence difficulties for the Ci

and ri parameters. Posterior distributions appeared to be insensitive to a wide

range of values for Cj. The logistic growth curve represented by equation (7.3)

was reparameterized to a two parameter growth curve by assuming Ci=20000.

Convergence diagnosis was performed using the modified Gelman-Rubin

diagnostic for three sampling chains. At least 4000 iterations were used for bum-

in for all runs. Each of the three parallel chains was run for 5000 iterations. Plots

of parameter iterates were reviewed for each run as an informal determination of

convergence.

Model assessment utilized posterior predictive intervals, 50% and 95%, to

assess the percentage of water dose observations that fell within these predictive

intervals. Model comparison/selection utilized the pseudo Bayes factor from

section 4.6.3 to determine which of the three growth curve models best met the

comparison criteria at each prediction step. Predictive 50% and 95% interval

widths were examined to determine if (1) interval widths increased as predictions

were made farther into the future for a set time in the evolution of an SPE and (2)

interval widths decreased for predictions made later in the evolution of an SPE.

7.2 November 2000 SPE

The November 8,2000 SPE started at 2350 Universal Time (UT).

Particle flux reached a maximum of 14,800 particle flux units (pfu=l proton-cm'^-

sf'-s"') at 1600 UT on November 9, 2000. The associated solar flare reached a
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maximum at 2328 UT on November 8, 2000. The associated coronal mass

ejection was first observed at 2306 UT as a large, bright loop jfront over the

northwest limb and later developed into a full halo (Schenk, 2000). The average

plane-of-sky speed was estimated to be 2035 km/s.

Data used in this analysis were collected by the GOES-8 satellite and are

presented in Table D.l 1. Dose rate data used for categorization of the event are

presented in Table D.l2. The dose rate exceeded the 15 cGy/hr threshold for

Group 1 one hour into the event.

Individual curves are labeled by the dose/time to indicate at what point in

the evolution of the SPE the prediction was made. As an example, the curve

labeled "39.2cGy/2h" in Figure 7.1 indicates the predicted dose-time profile when

the observed dose was 39.2 cGy which occurred 2 hours into the event. As the

posterior predictive distributions for dose were highly skewed to the right for the

Gompertz models, posterior predictive median values were used in the dose and

dose rate-time profiles.

The Weibull model dose-time profiles provided a fairly tight grouping of

predictions, within approximately ± 10% of the observed data, up to hour 20 of

the event with the exception of the 39.2cGy/2h prediction. The Weibull model

consistently over-predicted the asymptotic dose, which would be considered

conservative from a radiological standpoint. Dose rate-time profiles reflected the
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tight grouping of the dose time profiles up to hour 20 and over-prediction later in

the event.

Gompertz model dose-time profiles first under-predicted, then over-

predicted, then gradually decreased toward the observed asymptotic dose.

Asymptotic dose predictions were within ± 10% of the observed asymptotic dose.

With the exception of the 39.2cGy/2h prediction, dose rate-time profiles over-

predicted up to hour 10 and then provided a mixture of over and under-prediction

later in the event.

The logistic model under-predicted the asymptotic dose by 1% to 3% of

the observed asymptotic dose. While the two parameter logistic model provided

outstanding asymptotic dose predictions, a lag in forecasting the dose-time profile

provided poor predictions early in the event. Dose rate predictions up to hour 28

were poor with significant over-prediction of maximum dose rate for several of

the predictions. Dose rate predictions after hour 28 were reasonable as the event

had nearly reached asymptotic dose values. Dose and dose rate time profiles for

each of the three growth curve models are presented in Figures 7.1 through 7.6.

Model assessment results are presented in Tables D.13 through D.15.

Model assessment indicated that all of the models supported the predictive

intervals for the November 8, 2000 SPE. These statistics indicate that the models

adequately fit the data.
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Model comparison results are presented in Table 7.6. As this statistic is

an accumulation of likelihoods over observations, a larger value of the product of

conditional predictive ordinates indicates preference between two models.

Because this statistic is uncalibrated, its magnitude has no meaning other than in a

relative sense for comparison of two models. The ratio of the product of

conditional predictive ordinate values, the pseudo Bayes factor, indicated that the

Weibull model was preferred to the Gompertz and logistic models. The

Gompertz model was consistently preferred over the logistic model. It is

important to note that the comparison criteria are a measure of internal

consistency for a given model for observed data and not a measure of forecasting

ability.

Predictive dose 50% and 95% interval widths are presented in Figures 7.7

through 7.12. Predictive interval widths for the Weibull and Gompertz models

indicated that interval widths increased, as expected, as predictions were made

farther into the future with a given set of data. Predictive interval widths

mimicked the asymptotic nature of the growth curves. Predictive interval widths

generally decreased, as expected, as more data became available. Notable

exceptions were the 50% and 95% interval widths for the Gompertz model at

three hours into the SPE.
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Table 7.6 Calculated product of conditional predictive ordinate values for

Hours into event Weibull Gompertz Logistic

2 1.23e-134 1.96e-145 1.85e-166

3 1.03e-135 5.06e-148 1.67e-169

4 8.30e-137 4.12e-149 l.OOe-172

5 1.39e-138 1.40e-150 6.03e-176

6 1.32e-139 1.05e-152 3.75e-179
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Predictive interval widths for the logistic model decreased after forecast number

15, contrary to expectations, as predictions were made farther in the future with a

given set of data. An examination of the posterior predictive distributions

revealed shapes that were initially symmetric, then became skewed to the right as

the distribution gained mass near the predicted asymptote, and then tended

towards symmetric. This behavior is reflected in the initial gain in uncertainty, as

expected, and then decreasing uncertainties after forecast number 15. Contrary to

expectations, predictive interval widths increased as more data became available.

Posterior predictive distributions made later in the evolution of the event tended to

look bimodal. This spreading out of the distribution mass led to larger predictive

intervals as more data became available.

7.3 August 1989 SPE

The August 12, 1989 SPE started at 1600 UT. Particle flux reached a

maximum of 9,200 pfti at 0710 UT on August 13, 1989. The associated flare

began at 1357 UT and reached a maximum at 1424 UT. The first associated CME

was observed at 1445 UT, centered at approximately 3° South with a width of at

least 85° (Kahler, 1993). A lower limit on the CME speed was established to be

1200km/s. A second CME was observed with a calculated onset time of 1645-

1710 UT and a plane-of-sky speed of -304 km/s. The -90 MeV proton flux

began a significant increase about 1820 UT. As the second CME intrinsic speed

may have been significantly higher than the plane-of-sky speed, it has been
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suggested that additional particle acceleration was caused by shocks driven by the

second CME. This occurrence of two CMEs from the same spatial region in a

short period of time is unusual. These conditions resulted in a complex SPE flux

profile (Kahler, 1993).

Data used in this analysis were collected by the GOES-7 satellite and are

presented in Table D.16. Dose rate data used for categorization of the event are

presented in Table D.17. Dose rate exceeded the 0.1 cGy/hr threshold for Group

2 two hours into the event.

The Weibull model consistently under-predicted the dose. The model

under-predicted dose rate up to hour 28 of the event. The 64.0cGy/llh

prediction, or when observed dose was 13% of asymptotic dose, vmder-predicted

the asymptotic dose by 4% of the observed asymptotic dose. The hour 5 to hour 9

predictions seem to group towards a common asymptote at approximately 300

cGy. The hour 10 and hour 11 predictions then increase towards the observed

asymptote of 484 cGy. This behavior may be attributed to the second CME

accelerating event and the subsequent complex flux profile.

Like the Weibull model, the Gompertz model consistently under-estimated

the dose throughout the event. The model under-predicted dose rate up to hour 24

for all of the predictions, but then closely matched observations for the

45.0cGy/10h and 64.0cGy/l Ih predictions. The 64.0cGy/l Ih prediction, or when

observed dose was 13% of asymptotic dose, imder-predicted the asymptotic dose
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by 9% of the observed asymptotic dose. Again, there is a grouping among the

hour 5 to hour 9 predictions towards an asymptote of approximately 300 cGy with

a subsequent increase towards the observed asymptote.

The logistic model did not exhibit the same initial grouping of predictions

towards an asymptote of approximately 300 cGy, but rather, provided a more

consistent increase towards the observed asymptote. The 33.5cGy/9h prediction,

or when observed dose was 7% of asymptotic dose, under-predicted the

asymptotic dose by 22% of the observed asymptotic dose. Initial predictions

under-predicted dose up to hour 24, and later predictions over-predicted dose up

to hour 24. Dose rate predictions were a mixture of under and over-predictions up

to hour 16. After hour 16, all predictions were significantly less than the observed

dose rate. Dose and dose rate time profiles for each of the three growth curve

models are presented in Figures 7.13 through 7.18.

Model assessment results are presented in Tables D.18 through D.20.

Model assessment indicated that the first three 95% predictive intervals for the

logistic model were too dispersed. Otherwise, the models supported the

predictive intervals for the August 12, 1989 SPE. These statistics indicate that the

models adequately fit the data.
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Model comparison results are presented in Table 7.7. The ratio of the

product of conditional predictive ordinates, the pseudo Bayes factor, indicated

that the Weibull model was preferred to the Gompertz and logistic models. The

Gompertz model was consistently preferred over the logistic model.

Predictive dose 50% and 95% interval widths are presented in Figures

7.19 through 7.24. Predictive interval widths for all models indicated that interval

widths increased, as expected, as predictions were made farther into the future

with a given set of data. Predictive intervals mimicked the asymptotic nature of

the growth curves. Predictive interval widths after 8 hours did not generally

decrease, but rather, oscillated as the SPE evolved. The complex nature of the

dose rate between 7 and 10 hours probably contributed to these anomalies.

7.4 Conclusions

The Weibull, Gompertz, and logistic models provided useful forecasts of

the dose-time profile for the November 8, 2000 SPE. Dose rate-time profiles for

the Weibull and Gompertz models were reasonable, but the logistic model

significantly over-predicted and temporally lagged dose rate observations.

Predictive interval widths for the Weibull and Gompertz models indicated more

certain forecasts as additional observations were made. The logistic model

indicated less certain forecasts as additional observations were made. This

behavior was due to skewed and/or bimodal posterior predictive distributions and

their associated imcertainties.
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Table 7.7 Calculated product of conditional predictive ordinate values for
August 12, 1989 SPE predictions. NC indicates non-convergence
of chain.

Hours into event Weibull Gompertz Logistic

5 3.41e-67 5.53e-71 6.1e-128

6 3.1e-63 2.31e-71 1.43e-129

7 4.4e-64 3.11e-72 2.66e-131

8 6.4e-64 1.67e-73 6.59e-133

9 1.33e-70 3.09e-75 2.87e-134

10 3.53e-73 2.82e-75 1.83e-136

11 3.61e-75 6.87e-80 NC
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All models provided adequate forecasts of the dose-time profile for the

August 12, 1989 SPE. The Weibull and Gompertz models exhibited grouping of

early predictions towards an asymptote of approximately 300 cGy, as compared to

the observed asymptote of 484 cGy. The logistic model provided predictions

which generally increased towards the observed asymptote. Weibull and

Gompertz models consistently under-predicted dose rate. Logistic model

predictions after the 11.3cGy/6h prediction over-predicted dose rate early in the

event and under-predicted dose rate late in the event. Predictive interval widths

did not consistently indicate less uncertainty in predictions as additional

observations were made. Forecasts of dose and dose rate were influenced by the

occurrence of a second CME which led to complex dose and dose-rate time

profiles.

The Weibull and Gompertz models provided similar dose and dose rate-

time profiles as well as predictive interval widths. Some of the differences in

logistic model results may be attributed to the use of fewer fitting parameters for

the logistic hierarchical non-linear regression model. Generally, fewer fitting

parameters allow less flexibility for fitting and subsequently, forecasting the

evolution of a curve. Reparameterization of the three parameter logistic growth

curve might avoid the convergence problems encountered with Equation 7.3

while allowing additional flexibility for fitting and forecasting.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

This work demonstrated the potential for Bayesian inference methods to

make forecasts of dose and dose rate-time profiles early in the evolution of SPEs.

Bayesian inference methods provide a coherent methodology for quantifying

uncertainty. Hierarchical models provide a natural framework to build an ever-

evolving historical database to be used for the prediction of new SPE dose and

dose rate-time profiles. Forecasts provide a valuable tool to space operations

planners when making recommendations concerning operations in which

radiation exposure might jeopardize personal safety or mission completion.

While a previous attempt to use artificial neural networks was successful in

predicting asymptotic dose, it provided no information concerning the imcertainty

of those predictions, the temporal evolution of the SPE, or the dose rate-time

profile of an event. These predictions are a new feature of this work.

Dose time profile predictions using hierarchical non-linear regression

models and Bayesian inference methods provided significant improvements in

forecasting over the individual SPE non-linear regression models discussed in

Chapter 6 of this work. This methodology provides prediction of the temporal

evolution of an event, dose rate prediction, and a measure of the uncertainty for

the predictions.
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Analysis of the November 8, 2000 SPE provided adequate forecasts of the

dose-time profile for the Weibull, Gompertz, and logistic growth curve models.

The Weibull and Gompertz models provided adequate forecasts of the dose rate-

time profile, while the logistic model forecasts lagged temporally and

significantly over-predicted the magnitudes of the observed dose rates. Predictive

interval widths for the Weibull and Gompertz models behaved as expected, while

the logistic model predictive interval widths indicated more uncertain forecasts as

additional data became available.

Analysis of the August 12, 1989, SPE provided adequate forecasts of the

dose-time profile for the Weibull, Gompertz, and logistic growth curve models.

While forecasts were not as accurate as those for the November 8, 2000, SPE,

these forecasts were influenced by a second CME accelerating event which led to

a complex flux profile and subsequently, complex dose and dose rate-time

profiles. The Weibull and Gompertz models under-predicted dose rate while the

logistic model significantly over-predicted the dose rate after seven hours into the

event. Predictive interval widths for all models reflected the complex nature of

the event, in that widths did not consistently indicate less uncertainty in

predictions as additional data became available.

The following research is recommended to improve and extend this

methodology:
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(1) Investigate convergence problems associated with the logistic growth

curve model to allow a three parameter model. This may provide better

flexibility in fitting and subsequent forecasting.

(2) Investigate other methods of model comparison in an attempt to capture a

given model's ability to forecast rather than to fit observed data.

(3) Investigate hierarchical, dynamic models in an attempt to capture the

temporal evolution of parameters.

(4) Continue the search for physical solar observables which relate to the

subsequent dose and dose rate evolution of an event.

(5) Graphically show the uncertainty for dose predictions for different times.
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Table A. 1. Skin and eye dose data for the March 23, 1991 SPE, estimated
using the BRYNTRN computer code.

Time Skin Dose Eye Dose
(days) (cGy) (cGy)
0.0833 0.0026 0.0021

0.1667 0.0044 0.0037

0.25 0.0066 0.0054

0.4167 0.41 0.25

0.5 1.8 1.0

0.5833 5.6 3.2

0.6667 10.7 6.1

0.75 18.8 10.7

0.9167 50.7 29.2

1.0833 98.5 57.2

1.25 134 76.8

1.6667 138 80.1

3 140 81.5

3.333 141 81.8

3.5833 141 82

10 143 82.6
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Table A.2. Skin and eye dose data for the June 4, 1991 SPE, estimated using
the BRYNTRN computer code.

Time Skin Dose Eye Dose
(days) (cGy) (cGy)

0.0833 0.02 0.01

0.25 0.05 0.03

0.3333 0.6 0.56

0.5 4.6 3.8

0.5833 6.4 5.2

0.75 9.9 7.8

0.8333 11.8 9.1

0.9167 13.5 10.3

1 14.8 11.3

1.1667 16.8 12.7

1.25 17.6 13.2

1.4167 19.3 14.4

1.5 20.1 15.0

1.667 20.4 15.2

1.75 21.3 15.8

2.0833 21.8 16.2

2.5 22.2 16.4

3.1667 22.5 16.6

5 22.5 16.6

8.0833 22.5 16.7
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Table A.3. Skin and eye dose data for August 4, 1972 SPE, estimated using
the BRYNTRN computer code.

Time Skin Dose Eye Dose
(days) (cGy) (cGy)

. 0.0417 5.8 4.5

0.125 31.2 23.2

0.2083 93.9 72.5

0.25 159 125

0.2917 226 179

0.3333 297 235

0.375 350 275

0.4167 402 316

0.4583 462 360

0.5 522 404

0.5417 606 461

0.5833 656 495

0.6667 666 502

0.75 671 505

0.8333 695 522

1.0417 705 528

1.625 724 541
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Table A.4. Percentage of observations that fall within 50% and 95%
predictive intervals of skin and eye dose-time profile fits.

SPE Model 50% Interval 95% Interval

March 23,1991 skin Weibull 69 100

March 23, 1991 skin Gompertz 50 94

March 23, 1991 skin Logistic 69 100

June 4, 1991 skin Weibull 90 100

June 4, 1991 skin Gompertz 30 95

June 4, 1991 skin Logistic 35 100

August 4, 1972 skin Weibull 53 100

August 4, 1972 skin Gompertz 76 94

August 4, 1972 skin Logistic 29 100

March 23, 1991 eye Weibull 69 94

March 23, 1991 eye Gompertz 75 94

March 23, 1991 eye Logistic 69 100

June 4, 1991 eye Weibull 75 95

June 4, 1991 eye Gompertz 75 100

June 4,1991 eye Logistic 45 100

August 4, 1972 eye Weibull 47 100

August 4, 1972 eye Gompertz 76 94

August 4, 1972 eye Logistic 35 100
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Table B. 1. Water dose data for the May 6, 1989 SPE, estimated using the
BRYNTRN computer code.

Time Dose Time Dose

(hours) (cGy) (hours) (cGy)

0.5 0.0023 15.5 0.033

1 0.0029 16 0.034

1.5 0.0037 16.5 0.036

2 0.0041 17 0.037

2.5 0.0046 17.5 0.038

3 0.0054 18 0.039

3.5 0.0065 18.5 0.040

4 0.0072 19 0.042

4.5 0.0077 19.5 0.043

5 0.0084 20 0.044

5.5 0.0092 20.5 0.045

6 0.0097 21 0.046

6.5 0.011 21.5 0.047

7 0.012 22 0.047

7.5 0.013 22.5 0.048

8 0.014 23 0.049

8.5 0.015 23.5 0.050

9 0.016 24 0.050

9.5 0.018 28 0.055

10 0.02 32 0.061

10.5 0.021 36 0.065

11 0.022 40 0.07

11.5 0.024 44 0.074

12 0.025 48 0.077

12.5 0.026 60 0.087

13 0.028 72 0.094

13.5 0.028 84 0.10

14 0.029 96 0.10

14.5 0.031 108 0.11

15 0.032 - -
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Table B.2. Water dose data for the January 31,1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.018

4 0.11

8 0.24

12 0.29

16 0.30

20 0.31

24 0.32

28 0.33

32 0.33

36 0.33

40 0.33

44 0.34

48 0.34

60 0.34

72 0.34

96 0.34
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Table B.3. Water dose data for the March 23,1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose Time Dose

(hours) (cGy) (hours) (cGy)

0.25 0.029 7.25 22.3

0.5 0.040 7.5 25.4

0.75 0.053 7.75 28.6

1 0.072 8 31.8

1.25 0.094 8.25 35.3

1.5 0.12 8.5 38.7

1.75 0.17 8.75 42.2

2 0.23 9 46.0

2.25 0.31 10 62.2

2.5 0.43 11 81.4

2.75 0.58 12 106

3 0.78 13 143

3.25 1.0 14 184

3.5 1.3 15 228

3.75 1.7 16 275

4 2.1 17 324

4.25 2.6 18 376

4.5 3.2 19 449

4.75 4.0 20 579

5 5.0 25 754

5.25 6.0 30 774

5.5 7.0 35 781

5.75 8.1 48 796

6 9.7 60 800

6.25 11.6 72 805

6.5 14.0 96 811

6.75 16.8 120 814

7 19.5 - -
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Table B.4. Water dose data for the June 4,1991, SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.10

4 0.19

8 0.28

12 0.42

16 0.77

20 1.3

24 1.9

28 2.3

32 2.7

36 3.3

40 4.1

44 5.1

48 6.2

60 10.9

72 18.5

96 33.9

120 48.2

144 52.8

156 54.5
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Table B.5. Water dose data for the August 26, 1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.067

4 0.092

8 0.13

12 0.17

16 0.21

20 0.24

24 0.34

28 0.60

32 0.70

36 0.74

40 0.77

44 0.79

48 0.80

60 0.84

72 0.86

96 0.90

120 0.91
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Table C. 1. Water dose data for the November 08, 2000 SPE, estimated using
the BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 .083

1 10.8

2 39.2

3 77.9

4 126

5 178

6 233

7 291

8 347

9 402

10 461

11 523

12 580

13 637

14 692

15 741

16 793

17 832

18 867

19 899

20 928

24 1011

28 1049

32 1071

36 1079

40 1088

44 1094

48 1098

60 1105

72 1106

142



Table C.2. Water dose data for the September 29, 1989 SPE, estimated using
the BRYNTRN computer code.

Time Dose Time Dose Time Dose

(hours) (cGy) (hours) (cGy) (hours) (cGy)
- '  - 5 31.4 13 149

0.25 0.078 5.25 34.5 14 163

0.5 0.15 5.5 37.6 15 179

0.75 0.29 5.75 40.7 16 193

1 0.52 6 43.7 17 207

1.25 0.93 6.25 46.9 19 220

1.5 1.5 6.5 50.6 20 235

1.75 2.4 6.75 54.2 21 250

2 3.4 7 57.4 22 266

2.25 4.6 7.25 60.7 23 280

2.5 6.1 7.5 64.3 24 293

2.75 7.6 7.75 68.3 25 304

3 9.2 8 72.2 26 315

3.25 11.2 8.25 76.6 27 324

3.5 13.9 8.5 81.3 30 349

3.75 16.8 8.75 83.7 48 419

4 19.8 9 87.5 60 426

4.25 22.8 10 103 72 429

4.5 25.7 11 119 96 432

4.75 28.5 12 134 120 432
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Table C.3. Percentage of observations that fall within 50% and 95%
predictive intervals for the November 8, 2000 SPE.

Model Hours into event 50% Interval 95% Interval

Weibull 5 50 100

Gompertz 2 67 100

Gompertz 3 75 100

Gompertz 4 40 100

Gompertz 5 33 100

Logistic 2 67 100

Logistic 3 50 100

Logistic 4 60 100

Logistic 5 33 100
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Table C.4. Percentage of observations that fall within 50% and 95%
predictive intervals for the September 29, 1989 SPE.

Model Hours into event 50% Interval 95% Interval

Weibull 9 35 97

Weibull 19 60 100

Weibull 27 45 100

Gompertz 4.25 47 100

Gompertz 6 54 96

Gompertz 9 33 100

Gompertz 19 33 98

Gompertz 27 43 98

Logistic 4.25 35 100

Logistic 6 46 ICQ

Logistic 9 33 100

Logistic 19 33 100

Logistic 27 42 91
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Table D. 1. Water dose data for the July 14, 2000 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.03

1 .15

2 3.0

3 11.0

4 25.6

5 42.5

6 63.9

7 103

8 142

9 186

10 226

11 266

12 308

13 351

14 391

15 434

16 477

17 525

18 584

19 654

20 718

24 989

28 1305

32 1469

36 1502

40 1509

44 1513

48 1517

60 1525

72 1530
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Table D.2. Water dose data for the March 23, 1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.02

1 0.07

2 0.23

3 0.78

4 2.1

5 5.0

6 9.7

7 19.5

8 31.8

9 46.0

10 62.2

11 81.4

12 106

13 143

14 184

15 228

16 275

17 324

18 376

19 449

20 579

24 734

28 772

32 111

36 781

40 789

44 793

48 796

60 800

72 805

96 811

120 814
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Table D.3. Water dose data for the October 19,1989 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.005

1 0.26

2 1.0

3 2.7

4 4.9

5 8.6

6 13.2

7 19.2

8 25.9

9 33.1

10 40.6

11 48.9

12 58.2

13 67.9

14 78.4

15 88.6

16 98.5

17 108

18 117

19 125

20 132

24 167
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Table D.4. Water dose data for the September 29,1989 SPE, estimated using
the BRYNTRN eomputer code.

Time Dose

(hours) (cGy)

0 0.03

1 0.52

2 3.4

3 9.2

4 19.8

5 31.4

6 43.7

7 57.4

8 72.2

9 87.5

10 103

11 119

12 135

13 149

14 163

15 179

16 194

17 207

19 220

20 235

24 293

28 333

32 366

36 389

40 409

44 414

48 419

60 426

72 429

96 432

120 432

150



Table D.5. Water dose data for the June 4, 1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)

0 0.10

4 0.19

8 0.28

12 0.42

16 0.77

20 1.3

24 1.9

28 2.3

32 2.7

36 3.3

40 4.1

44 5.0

48 6.2

60 10.9

72 18.5

96 33.3

120 48.2
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Table D.6. Water dose data for the March 19, 1990 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)

0 .015

4 0.29

8 1.1

12 3.0

16 4.8

20 6.1

24 6.7

28 6.9

32 7.1

36 7.1

40 7.1

44 7.1

48 7.1

60 7.0

72 18.455

96 33.28

120 48.166
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Table D.7. Water dose data for the November 30, 1989 SPE, estimated using
the BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.01

4 0.05

8 0.74

12 4.0

16 10.2

20 21.9

24 35.9

28 47.8

32 53.8

36 56.6

40 57.9

44 58.7

48 59.1
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Table D.8. Water dose data for the August 26,1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.067

1 0.072

2 0.080

3 0.086

4 0.092

5 0.10

6 0.11

7 0.12

8 0.13

9 0.14

10 0.15

11 0.16

12 0.17

13 0.18

14 0.19

15 0.20

16 0.21

17 0.21

18 0.22

19 0.23

20 0.24

24 0.34

28 0.60

32 0.70

36 0.74

40 0.77

44 0.79

48 0.80

60 0.84

72 0.86

96 0.90

120 0.91
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Table D.9. Water dose data for the January 31,1991 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.018

1 0.022

2 0.032

3 0.057

4 0.11

5 0.16

6 0.20

7 0.22

8 0.24

9 0.26

10 0.27

11 0.28

12 0.29

13 0.29

14 0.30

15 0.30

16 0.30

17 0.30

18 0.31

19 0.31

20 0.31

24 0.32

28 0.33

32 0.33

36 0.33

40 0.33

44 0.34

48 0.34

60 0.34

72 0.34

96 0.34
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Table D.IO. Water dose data for the November 8, 1987 SPE, estimated using
the BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.005

1 0.010

2 0.017

3 0.030

4 0.042

5 0.051

6 0.070

7 0.091

8 0.13

9 0.16

10 0.18

11 0.19

12 0.21

13 0.22

14 0.23

15 0.23

16 0.24

17 0.24

18 0.25

19 0.25

20 0.25

24 0.26

28 0.26

32 0.27

36 0.27

40 0.28

44 0.28

48 0.28

60 0.29
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Table D. 11. Water dose data for the November 8, 2000 SPE, estimated using
the BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.083

1 10.8

2 39.2

3 77.9

4 126

5 178

6 233

7 291

8 347

9 402

10 461

11 523

12 580

13 637

14 692

15 741

16 793

17 832

18 867

19 899

20 928

24 1011

28 1049

32 1071

36 1079

40 1088

44 1094

48 1098

60 1105

72 1106
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Table D. 12. Water dose rate data for the November 8, 2000 SPE, estimated
using the BRYNTRN computer code.

Time Dose Rate

(hours) (cGy/hr)
0 0.99

1 2.0

2 34.6

3 45.0

4 51.4

5 54.6

6 54.5

7 58.8

8 51.8

9 54.3

10 58.4

11 58.8

12 57.0

13 54.5

14 51.7

15 48.3

16 47.4

17 30.9

18 28.5

19 25.0

20 24.2

24 12.8

28 6.4

32 2.4

36 2.2
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Table D.13. Percentage of observations that fall within 50% and 95%
predictive intervals for the November 8, 2000 SPE using
hierarchical models and Weibull growth curves.

Hours into event 50% Interval 95% Interval

2 55 97

3 58 97

4 58 97

5 60 97

6 59 97
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Table D. 14. Percentage of observations that fall within 50% and 95%
predictive intervals for the November 8, 2000 SPE using
hierarchical models and Gompertz growth curves.

Hours into event 50% Interval 95% Interval

2 55 97

3 58 95

4 60 96

5 60 96

6 59 96
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Table D. 15. Percentage of observations that fall within 50% and 95%
predictive intervals for the November 8, 2000 SPE using
hierarchical models and logistic growth curves.

Hours into event 50% Interval 95% Interval

2 63 97

3 64 98

4 63 97

5 63 97

6 62 97
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Table D. 16. Water dose data for the August 12, 1989 SPE, estimated using the
BRYNTRN computer code.

Time Dose

(hours) (cGy)
0 0.024

1 0.074

2 0.31

3 1.3

4 3.7

5 7.1

6 11.3

7 15.9

8 21.1

9 33.5

10 45.0

11 64.0

12 89.9

13 122

14 154

15 188

16 222

17 251

18 277

19 300

20 321

24 374

28 418

32 446

36 463

40 470

44 476

48 480

60 483

72 485
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Table D.17. Water dose rate data for the August 12,1989 SPE, estimated using
the BRYNTRN computer code.

Time

(hours)
Dose Rate

(cGy/hr)
0 0.046

1 0.076

2 0.51

3 1.8

4 2.6

5 4.1

6 4.7

7 4.3

8 8.0

9 14.9

10 13.0

11 21.0

12 29.1

13 33.4

14 32.4

15 35.3

16 33.3

17 28.7

18 24.9

19 22.8

20 21.8

24 10.2

28 9.9

32 5.5
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Table D. 18. Percentage of observations that fall within 50% and 95%
predictive intervals for the August 12,1989 SPE using
hierarchical models and Weibull growth curves.

Hours into event 50% Interval 95% Interval

5 68 97

6 63 95

7 66 97

8 69 95

9 65 97

10 67 97

11 68 97
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Table D. 19. Percentage of observations that fall within 50% and 95%
predictive intervals for the August 12,1989 SPE using
hierarchical models and Gompertz growth curves.

Hours into event 50% Interval 95% Interval

5 61 98

6 59 98

7 63 98

8 58 98

9 63 98

10 62 98

11 60 98
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Table D.20. Percentage of observations that fall within 50% and 95%
predictive intervals for the August 12,1989 SPE using
hierarchical models and logistic growth curves.

Hours into event 50% Interval 95% Interval

5 54 100

6 53 100

7 54 100

8 53 97

9 54 98

10 52 97
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