

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Doctoral Dissertations

Graduate School

5-2001

Biodegradation of TCE in fractured shale and saprolite

Melissa E. Lenczewski

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Lenczewski, Melissa E., "Biodegradation of TCE in fractured shale and saprolite. " PhD diss., University of Tennessee, 2001.

https://trace.tennessee.edu/utk_graddiss/8537

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a dissertation written by Melissa E. Lenczewski entitled "Biodegradation of TCE in fractured shale and saprolite." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology.

Larry D. McKay, Major Professor

We have read this dissertation and recommend its acceptance:

Steve Driese, Gary Sayler, Phil Jardine, Larry McKay

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Melissa E. Lenczewski entitled "Biodegradation of TCE in Fractured Shale and Saprolite." I have examined the final copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology.

Larry D. McKay, Major Professor

We have read this dissertation And recommend its acceptance:

hia

Ę

Accepted for the Council:

Interim Vice Provost and Dean of The Graduate School

BIODEGRADATION OF TCE IN FRACTURED SHALE AND SAPROLITE

.

A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville

,

Melissa E. Lenczewski May 2001

> -''

> > .

Acknowledgments

This research was funded by a major grant from the Department of Energy EMSP Project (Number 55083) with additional funding was provided by the Waste Management Research and Education Institute (WMREI), the Center for Environmental Biotechnology (CEB), and the Geological Society of America (GSA).

I would like to thank my committee: Larry McKay, Steve Driese, Phil Jardine, Gary Sayler, and Alice Layton.

I am most grateful to my family and friends that saw me through all these years at the University of Tennessee. Without there love and assistances I would never had made it.

Abstract

A series of investigations were conducted to examine biodegradation of trichloroethylene (TCE) contamination in fractured shale and in saprolite (formed from weathered sedimentary rocks). A plume of groundwater contaminated with trichloroethylene (TCE) was detected at the Oak Ridge Reservation (ORR) in eastern Tennessee adjacent to shallow waste trenches in fractured shale. Monitoring wells at the site indicated a downgradient decline in concentration of TCE and the appearance of its daughter products (cis-dichloroethylene (cDCE) and vinyl chloride (VC)), which suggests the likelihood that anaerobic biodegradation of TCE was occurring. This hypothesis is further supported by the existence of redox conditions, including iron reduction, sulfate reduction, and possibly methanogenesis, which are favorable for anaerobic biodegradation. Microbial community analysis using conventional enrichment methods and molecular methods also support this hypothesis by showing the presence of bacteria previously implicated in the anaerobic biodegradation of chlorinated solvents. This is believed to be the first study to show strong evidence of biodegradation of TCE in shale bedrock.

Additional investigations were performed using large undisturbed columns of fractured saprolite from an uncontaminated site about 1 km from the waste trenches. The experiment involved continuous pumping of groundwater containing dissolved phase TCE through one column containing the natural microbial communities (the biotic column), and through a second column in which the microorganisms had been inhibited. In effluent from the biotic column evidence of anaerobic biodegradation TCE appeared

iii

within a few months. This included decreasing concentration of TCE in the effluent, appearance of daughter products (cDCE and VC), development of iron and sulfate reducing conditions, and appearance of iron and sulfate reducing bacteria. In the inhibited column there were no indicators of TCE degradation. It appears that TCE biodegradation processes in the shale and saprolite are very similar, and that they can occur spontaneously and rapidly without amendments to enhance biodegradation. Current Air Force Center for Environmental Excellence (AFCEE) protocols for determination of natural attenuation, which are based on monitoring of geochemical parameters, are appropriate for assessing the potential for TCE attenuation in the shale and shale saprolite found at the Oak Ridge Reservation.

Table of Contents

Chapter 1. Introduction	1
1.1. TCE in Fractured Porous Materials	1
1.2. Biodegradation of TCE in Groundwater	2
1.3. Natural Attenuation of TCE	5
1.4. Goals, Hypotheses, and Objectives	7
Chapter 2. Natural Attenuation of Trichloroethylene in Fractured	Shale Bedrock 10
2.1. Introduction	10
2.2. Site Description and Hydrology	14
2.3. Sample Collection and Analysis	17
2.4. Results and Discussion	23
2.5. Conclusions	42
Chapter 3. Biodegradation of TCE in Undisturbed Columns of Fra	ctured Saprolite
	44
3.1. Introduction	44
3.2. Material and Methods	46
3.3. Results and Discussion	55
3.4. Conclusions and Implications	72
Chapter 4. Preliminary Investigations of Biodegradation of TCE in	I Fractured
Saprolite	75
4.1. Introduction	75
4.2. Material and Methods	76
4.3. Results	84
	v

.

4.4. Discussion and Conclusions	97
Chapter 5. Conclusions and Implications	105
Chapter 6. Future Research	108
6.1. Investigations of Microbial Community Structure in Groundwater	108
6.2. Investigations of Microbial Community Structure in Saprolite	108
References	110
Appendices	122
Vita	173

.

.

L.

.

,

.

List of Tables

.

.

.

.

.

,

.

2-1. Physical properties of fractured and weathered shale at WAG5
2-2. Range chemical properties of the groundwater at WAG5 over a period of a year20
2-3. VOC, chemical results, and AFCEE score from 5 wells at the WAG5 site25
2-4. Most probable number (MPN) of bacteria in wells at WAG5 (CFU/mL)34
2-5. Clone libraries from wells 10 and 11
3-1. 16S rDNA-targeted PCR primer sequences specific for methanogens, iron reducing
bacteria, and sulfate reducing bacteria subgroups
3-2. VOC, chemical results, and AFCEE score for selected time points in effluent from
the biotic column
4-1. 16S rDNA-targeted PCR primer sequences specific for SRB subgroups83
4-2. Clone libraries constructed from influent and effluent water
4-3. Clone library of influent and effluent water prior to TCE injection94
4-4. Clone library of influent and effluent water after to TCE injection96

List of Figures

.

1-1. Conceptual model for DNAPL migration in the groundwater in fractured material3
2-1. Location of waste trenches and well field at waste area grouping 5
(WAG5) at the Oak Ridge Reservation, Oak Ridge, TN (Jardine et al., 1999)15
2-2. Cross-section of experimental field facility at WAG5 showing location and
sampling depth of all groundwater monitoring wells (Jardine et al., 1999)16
2-3. TCE plume morphology during three sampling points in 1999 at WAG524
2-4. cDCE and VC plumes in February at WAG527
2-5. Concentrations of VOC relative to each other from sampling wells at WAG528
2-6. Distance matrix trees showing phylogenetic relationships of 16S rDNA clones from
wells 10 and 11
3-1. Site location within the Oak Ridge Reservation
3-2. Column setup for biotic and inhibited column
3-3. Relative concentration of TCE in effluent from biotic and abiotic columns with
elapsed time since injection of TCE56
3-4. VOC concentrations in the biotic column
3-5. VOC concentrations in the inhibited column
3-6. pH/Eh stability diagram for the influent water showing equilbria for the Fe-
$(OH)_3/Fe^{2+}$, SO ₄ /HS ⁻ redox couples (Chapelle et al., 1996)62
3-7. pH/Eh stability diagram for effluent water from the biotic column showing equilbria
for the Fe-(OH) ₃ /Fe ²⁺ , SO ₄ /HS ⁻ redox couples (Chapelle et al., 1996). Elapsed time
refers to the time since the introduction of TCE to the influent water

,

.

viii

.

,

3-8. pH/Eh stability diagram for effluent water from the inhibited column showing
equilbria for the Fe-(OH) ₃ /Fe ²⁺ , SO ₄ /HS ⁻ redox couples (Chapelle et al., 1996)64
3-9. Fe(II) and sulfide concentrations in the effluent of the biotic column
3-10. Sulfate Reducing bacteria group 5 Desulfococcus-Desulfonema-Desulfosarcina
from the effluent of the biotic column
4-1. Site location within the Oak Ridge Reservation77
4-2. Column setup
4-3. VOC concentration in effluent water samples
4-4. pH/Eh stability diagram showing equilbria for the Fe-(OH) ₃ /Fe ²⁺ , SO ₄ /HS ⁻ redox
couples (Chapelle et al., 1996)
4-5. Redox conditions of the effluent water during the course of the experiment
4-6. RISA gel with 250bp ladders with lanes labeled with elapsed time91
4-7. Distance matrix trees showing phylogenetic relationships of 16S rDNA clones from
prior and after TCE injection98

.

,

••

Chapter 1

Introduction

1.1 TCE in Fractured Porous Materials

÷

Dense nonaqueous phase liquids (DNAPLs), especially chlorinated solvents such as trichloroethylene or trichloroethene (TCE), have been widely used as industrial solvents since the 1960s (Pankow and Cherry, 1996). Many of these solvents are frequently found in groundwater at industrial sites or landfills (Westrick et al., 1984). To date, most research on DNAPL behavior in the subsurface has been carried out in granular aquifer materials or fractured, low porosity rock. Very little research has been performed on DNAPLs in fractured shales or saprolite (formed from weathered sedimentary rock, which retains features from the parent bedrocks).

TCE was selected as the DNAPL for this research project for several reasons. First, it is a "typical" DNAPL, with respect to its physical and chemical properties, and can act as a model compound for behavior of other DNAPLs. Second, TCE is frequently found in high concentrations in groundwater at industrial sites and landfills (Westrick et al., 1984; Pankow and Cherry, 1996). Third, TCE is detrimental to human health and the environment at very low concentrations (5 ppb is the drinking water standard) (Environmental Protection Agency, 1985). Fourth, TCE is the most extensively studied DNAPL, with an extensive literature base on TCE biodegradation. Finally, a plume of groundwater contaminated with TCE was detected in fractured shale at Waste Area

Grouping 5 (WAG5), on the Oak Ridge Reservation (ORR), which was the inspiration for part of the research described in this dissertation (Chapter 2).

Most previous studies of transport and biodegradation of chlorinated solvents in groundwater have been carried out in relatively simple hydrogeologic settings, typically sand and gravel aquifers. In fractured and relatively porous materials, such as shale or saprolite, transport of immiscible and dissolved phase chlorinated solvents is strongly influenced by fracture and matrix pore structure. The immiscible DNAPL tends to follow the largest aperture fracture or pores (Kueper and McWorther, 1991; Pankow and Cherry, 1996; Cropper, 1998). The immiscible phase then rapidly dissolved (Figure 1-1) and diffuses into the fine-grained matrix (Parker et al., 1994; Pitner, 2000). The TCE can also diffuse back out of the matrix into the fractures, which slows the rate at which the contaminant is flushed out of the soil and rock, and greatly reduces the prospects for successful remediation using conventional source removal or "pump and treat" methods. Since pore structure and "matrix diffusion" play a major role in controlling distribution and concentration of TCE in fractured materials, it is quite possible that they may also influence biodegradation of TCE in these materials.

1.2 Biodegradation of TCE in Groundwater

In groundwater, the dissolved phase of many chlorinated solvents tends to slowly biodegrade under either aerobic or anaerobic conditions. The rate of biodegradation of chlorinated solvents is variable and depends on the properties of the contaminant, its distribution and the microbiological and geochemical environments in the subsurface.

Figure 1-1. Conceptual model for DNAPL migration in the groundwater in fractured material.

Differences in TCE biodegradation are expected between fractured shale or saprolite and granular materials because of their differences in physical and geochemical properties.

Microbial dechlorination can be categorized into aerobic and anaerobic biodegradation pathways (Lee et al., 1998). In aerobic environments some bacteria, like methanotrophs, can cometabolically transform TCE to CO_2 and H_2O . Cometabolism is the transformation of a compound by organisms that do not obtain energy or carbon for cell growth from the transformation of the compound, and hence require an alternative source of carbon and energy. Methanotrophic bacteria use methane as the sole carbon source. Aerobic biodegradation generally prefers less chlorinated compounds like dichloroethylene (DCE) and vinyl chloride (VC) (Vogel, 1994).

Anaerobic biodegradation transforms TCE to lesser-chlorinated compounds by reductive dechlorination, which involves the transfer of electrons to chlorinated ethylenes. The general transformation pathway is:

$TCE \Rightarrow cDCE \Rightarrow VC \Rightarrow ethylene$

As the number of chlorines decreases, the rate of dechlorination decreases and lesserchlorinated compounds such as vinyl chloride accumulate (Fathepure and Tiedje, 1994). There are three different classes of anaerobic metabolism involved in reductive dechlorination of TCE. First, anaerobic iron reducing bacteria, such as *Geobacter* sp., utilize a wide range of hydrocarbon compounds to support microbial growth (Lovely and

Anderson, 2000; Lee et al., 1998; Krumholz et al., 1996). Some but not all Geobacter sp. also dehalogenate chlorinated solvents. Evidence for this metabolism includes the accumulation of reduced iron (Fe(II)) and the presence of these microorganisms in systems where biodegradation appears to be occurring. Second, certain dehalorespiring strains such as *Desulfitobacterium chlororespirans*, can use TCE as an electron acceptor for biologically useful energy generation (Sanford et al., 1996; Lee et al., 1998). These bacteria may produce cDCE as a final end product or may carry out complete dechlorination to ethylene. Lastly, TCE can be reductively dechlorinated by methanogens, sulfate reducing bacteria, and some iron reducting bacteria (Bagley and Gossett, 1990; Maymo-Gatell et al., 1997). These reactions are not thought to be energy vielding, but rather cometabolic, because only a small fraction of the total reducing equivalents derived from the oxidation of electron donors is used to reduce the solvent. Multiple dechlorination pathways are likely to operate at a site in heterogeneous materials like fractured shale and saprolite at the same time, thus in the natural environment is likely that some of these mechanisms will act together to naturally attenuate TCE.

1.3 Natural Attenuation of TCE

Natural attenuation is a remediation strategy that relies on existing physical, chemical, and microbial processes to reduce the concentration of a contaminant without human intervention (Brady et al., 1999). Loss of TCE mass through natural attenuation at contaminated sites is a commonly proposed strategy for remediation, but because of the importance of site-specific variations in the hydrogeological, geochemical, and microbial environments, predictions of biodegradation often have a high degree of uncertainty.

This is especially important in fractured material because of the erratic contaminant distribution and large seasonal variations in dilution and redox conditions that make it difficult to determine whether the plume is growing, stable or shrinking.

One critical step in natural attenuation is demonstrating whether contaminant mass and/or concentration is decreasing over time. This decrease may be due to contaminant sorption, dilution, volatilization, and biodegradation. During biodegradation the contaminant is destroyed or transformed into daughter products, instead of just changing states. Methods for determining whether or not anaerobic biodegradation of TCE is occurring in groundwater at a site include sampling for the presence of the daughter products cDCE and VC (discussed above), the presence of appropriate reducing conditions required for biodegradation, and identification of microbial communities that have the potential to carry out biodegradation (Lee et al., 1998).

Understanding the presence and distribution of redox conditions is fundamental to predicting the fate and transport of TCE in groundwater systems. Microbially mediated redox reactions affect the rate and extent of biodegradation processes, which in turn affect the mobility of organic contaminants. In anaerobic respiration, a series of alternative electron acceptors in the environment are used from the most oxidized to the most reducing (Pepper et al., 1996). In the case of TCE biodegradation, Fe(III), sulfate, and carbonate are used as electron acceptors forming Fe(II), sulfide, and methane, respectively (Bouwer, 1994). Chapelle and Bradley (1998) used redox conditions such as the occurrence of sulfate reducing and iron reducing environments as indicators of the

potential for natural attenuation of TCE and to determine the extent of anaerobic biodegradation at a site.

The presence of microorganisms that have the potential to biodegrade TCE can be determined by isolating the organisms directly from environmental samples or microcosms (Fries et al., 1997b; Wild et al., 1996; Sharma and McCarty, 1996; Maymo-Gatell et al., 1997) or through identification by molecular techniques (Fries et al., 1997a; Stapleton et al., 2000). Methanogenic, iron reducing and sulfate reducing bacteria have all been implicated in TCE reductive dechlorination and consortia of bacteria are often involved in complete biodegradation of TCE (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990; Lovely and Anderson, 2000; De Wever et al., 2000). For example, in a contaminated sandy aquifer Dojka et al. (1998) were able to link the presence of a methanogenic zone, through chemical analysis and molecular techniques, to the microorganism potentially responsible for the biodegradation. The combination of chemical and microbiological techniques can be used effectively to determine whether natural attenuation of chlorinated solvents is occurring at a site even though neither of these techniques may, by itself, provide definitive proof.

1.4 Goals, Hypotheses, and Objectives

The primary goal of this investigation was to determine whether TCE could biodegrade to cDCE and VC in fractured shale and saprolite. The research program was inspired by preliminary indications of *in situ* TCE biodegradation in groundwater in fractured shale bedrock near a waste pit at the WAG5 site on the ORR, Oak Ridge, TN (Jardine, personal

communication). The overall hypothesis was that microbial and geochemical conditions in the fractured shale and the overlaying mantle of saprolite are favorable for anaerobic biodegradation of TCE, so that once TCE is introduced, it will biodegrade "naturally" without addition of specially-selected bacteria, cometabolites or other chemicals.

The major chapters of this dissertation address this hypothesis from different perspectives, and are briefly outlined below.

Chapter 2- Natural Attenuation of Trichloroethylene in Fractured Shale Bedrock:

The primary objective of this field-based investigation was to determine whether biodegradation of TCE was occurring under natural conditions in a plume of organic contaminants in fractured shale bedrock at the WAG5 site at ORR. A multiple analytical approach consisting of measurement of VOC concentration/distribution, redox conditions, and microbial techniques (enrichment and molecular techniques) was used. A second objective was to determine whether current monitored natural attenuation guidelines are effective in this type of complex geological setting.

Chapter 3- Biodegradation of TCE in Undisturbed Columns of Fractured Saprolite:

This research is based on the hypothesis that microbially mediated anaerobic degradation of TCE in fractured shale saprolite can occur without any amendments to the system, other than the introduction of TCE. Redox conditions and microbial community composition in the saprolite and groundwater will naturally shift after the introduction of TCE to become favorable for biodegradation of TCE. The specific objectives of the

research are: 1) to determine if relative TCE mass loss occurs under biotic or inhibited conditions; 2) to determine if daughter products of anaerobic TCE degradation (cDCE and VC) appear in the effluent from the biotic and inhibited columns; 3) to determine if reducing conditions such as iron reduction or sulfate reduction, which are indicative of anaerobic biodegradation of TCE, develop with time after introduction of TCE in the biotic column; 4) to characterize the microbial community in the groundwater prior to and after introduction of TCE in order to determine if shifts in the community which favor biodegradation of TCE, occur; and 5) to determine whether current natural attenuation protocols are effective in this type of complex setting.

Chapter 4- Preliminary Investigations of Biodegradation of TCE in Fractured Saprolite: This chapter describes a preliminary biodegradation study that was carried out in a column of saprolite from ORR. The objectives were similar to those outlined in Chapter 3, but several problems were encountered that prevented the researcher from meeting all of these objectives. However, findings of this study, including methods development, were still valuable because they aided in the successful design of the subsequent experiment (Chapter 3). As well, more in-depth investigations of microbial community structure were carried out for the preliminary column experiment, which are expected to be relevant to future investigations. For these reasons, the preliminary experiment is presented as a separate chapter in the dissertation, rather than being incorporated in Chapter 3, or relegated to an appendix.

Chapter 2

Natural Attenuation of Trichloroethylene in Fractured Shale Bedrock

2.1 Introduction

Dense nonaqueous phase liquids (DNAPLs), especially chlorinated solvents such as trichloroethylene (TCE), have been widely used as industrial solvents since the 1960s. Many of these solvents are commonly found in groundwater at industrial sites or landfills (Pankow and Cherry, 1996). Natural attenuation of chlorinated solvents has been shown to occur in granular aquifer materials (Dojka et al., 1998; Chapelle et al., 1996; Kleopfer et al., 1985; Clement et al., 2000), but only a few studies have examined natural attenuation in fractured rock (Yager et al., 1997; Mobarry et al., 1999). To date, there have been no *in situ* studies of biodegradation of TCE in fractured shale bedrock, which is one of most commonly occurring rock types. As a result, the potential for biodegradation in this material must be largely inferred from studies in other materials. Although these comparisons are very useful, TCE biodegradation in fractured shale could be substantially different because of the different physical and geochemical properties of this material. Particularly, unconfined fractured bedrock aquifers are often subject to larger seasonal and short term variations in water table elevation, flow rate and redox conditions, which could influence biodegradation.

Anaerobic biodegradation transforms TCE to lesser-chlorinated compounds by reductive dechlorination. The general pathway is: TCE \Rightarrow cDCE \Rightarrow VC \Rightarrow ethylene. The presence

of cDCE as a product of TCE breakdown is indicative of biodegradation while the presence of mixed cDCE and tDCE would indicate inhibited chemical breakdown. The rate of dechlorination decreases as the number of chlorine atoms decreases, thus lesser-chlorinated compounds such as vinyl chloride may accumulate in groundwater (Fathepure et al., 1994). Vinyl chloride (VC) is more carcinogenic than TCE, so biodegradation of TCE under anaerobic conditions would not be sufficient to eliminate health risks. Diverse microorganisms have been shown to anaerobically biodegrade TCE through different pathways, and consortia of bacteria are often involved in biodegradation of TCE. These include methanogenic, Fe (III)-reducing and sulfate reducing bacteria that have been implicated in TCE dechlorination (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990; Lovely and Anderson, 2000).

TCE is generally resistant to biodegradation in aerobic subsurface environments, contributing to its persistence in shallow polluted groundwater (Pankow and Cherry, 1996). Some aerobic bacteria, like methanotrophs, which utilize methane as a sole carbon source, can cometabolically transform TCE to CO₂. Cometabolism is the partial oxidation of the substrate, but the energy derived from oxidation is not used to support microbial growth, and thus an alternative source of carbon and energy is required. Aerobic biodegradation is generally more effective for less chlorinated compounds like DCE and VC (Vogel, 1994). Other aerobic bacteria cometabolize TCE using aromatic compounds such as phenol and toluene (McCarty et al., 1998; Harker and Kim, 1990; Fries et al., 1997b).

Monitored natural attenuation (MNA) is an alternative remediation strategy that relies on existing physical, chemical and microbiological processes to reduce the concentration of a contaminant without human intervention (Brady et al., 1999). To determine if MNA is a viable alternative for contaminated groundwater at a site, different site screening and technical guidelines have been established (Brady et al., 1999; Wiedemeier et al., 1998). The utilization of these screening tools leads to the development of a conceptual model for natural attenuation and can aid regulators in determining if natural attenuation is a viable alternative for remediation of a site. One of these screening tools is the Air Force Center for Environmental Excellence (AFCEE) protocol (Wiedemeier et al., 1998) for assessing biodegradation. The AFCEE protocol uses input parameters describing site redox conditions and daughter product concentrations to determine a numerical "score" for conditions at a site. This score serves only to indicate the likelihood of natural attenuation and provides site managers with a clear identification of likely data needed for MNA implementation.

Successful implementation of MNA strategy often requires an assortment of different types of monitoring and characterization data. One critical step is evidence of historical groundwater and/or soil chemistry data demonstrating decreasing contaminant mass and/or concentration over time at relevant sampling points. This decrease may be due to contaminant sorption, dilution, volatilization, and nonbiological or biological breakdown. Obtaining such data may take many years, especially in complex flow systems where long-term concentration trends may vary substantially in different parts of the system, or where they may be masked by seasonal variations. As a result, methods that assess the

microbial and geochemical conditions needed for degradation can also play an important role.

Methods for demonstrating biological activity at a site include sampling for intermediates of biological metabolism, demonstration of the presence of electron acceptors/donors. and description of the microbial community at the site, especially identifying organisms believed to be responsible for the metabolism of contaminants (Dojka et al., 1998). Chapelle and Bradley (1998) used redox conditions such as sulfate reducing and Fe (III) reducing environments, as indicators of the potential for natural attenuation of TCE and PCE in a sandy aquifer. Microorganisms that biodegrade TCE can be isolated directly from environmental samples or microcosms (Fries et al., 1997b; Wild et al., 1996; Sharma and McCarty, 1996; Maymo-Gatell et al., 1997) and their presence in groundwater can be used as indicators of the potential for biodegradation. The ability to monitor changes in microbial communities reflecting contaminant exposure has advanced with development of molecular based techniques. Only a few studies have been performed using molecular techniques to characterize microbial communities at field sites in which natural attenuation may be occurring (Fries et al., 1997a; Stapleton et al., 2000; Dojka et al., 1998). Using chemical analyses and molecular techniques Dojka et al. (1998) linked the presence of a methanogenic zone in a chlorinated solvent contaminated aquifer with the microorganism potentially responsible for the biodegradation. These studies show that a combination of chemical, microbiological and molecular techniques can be used effectively to assess natural attenuation of TCE in granular aquifers, but no

work has been carried out to determine if these procedures are equally effective in more complex hydrogeological environments, such as fractured shale aquifers.

The primary objective of this investigation is to determine whether TCE can biodegrade under existing conditions in contaminated fractured shale bedrock aquifer at the Oak Ridge Reservation in East Tennessee. A multiple analytical approach involving determination of VOC concentration/distribution, redox conditions, and microbial community structure (using enrichment and molecular techniques) was used to determine if biodegradation of TCE is occurring. A second objective is to determine whether current MNA guidelines are effective for assessing the potential for TCE biodegradation in a complex hydrogeological setting.

2.2 Site Descriptions and Hydrology

This study was conducted in the southeastern portion of Waste Area Group 5 (WAG5) on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Figure 2-1). The reservation is located in the Valley and Ridge geologic province and the study site consists of 0.5 to 2.5 m of saprolite (highly weathered bedrock) on top of interbedded shale and limestone of the Upper Cambrian age Dismal Gap Formation. Bedding dips towards the southeast at 30-35°. Approximately 30 wells were installed along a 35 m long transect between a cluster of waste-filled trenches and a seep along a stream (Figure 2-2). Three of the drilled wells were equipped with multilevel piezometers and an additional 24 drive-point wells were installed with a truck-mounted pneumatic hammer. The wells were installed as part of a previous study of groundwater flow and transport

Figure 2-2. Cross-section of experimental field facility at WAG5 showing location and sampling depth of all groundwater monitoring wells (Jardine et al., 1999).

,

(Jardine et al., 1999). The studies by Jardine et al. (1999) revealed two different flow regimes within the bedrock at the site (Table 2-1 and Figure 2-2): a 2 m thick highly fractured zone, characterized by rapid flow, with specific discharge rates as high as 300 to 500m/yr, and a less fractured "matrix" zone above and below the fractured zone with specific discharge rates that were 3 to 10 times less than in the fracture zone. Hydraulic head values were continuously measured in the piezometers for periods of 180-550 days, indicating an average hydraulic gradient of 0.06 to 0.1 along the transect. Most of the fractures are less than a meter in length, but they are numerous and highly interconnected, resulting in fracture densities of up to 5/m in the unweathered bedrock (Dreier et al., 1987; Sledz and Huff, 1981). Hydrogeological investigations at WAG5 (Jardine et al., 1999) indicate that the groundwater flow direction is generally west to east, roughly along geologic strike of local bedding, and towards a crosscutting perennial stream. Previous investigations at ORR indicate that conductive fractures tend to be oriented along strike of bedding and that preferential flow tends to develop along strike (Lee et al., 1992).

2.3 Sample Collection and Analysis

2.3.1 Volatile Organic Carbon (VOC) and Dissolved Gases

Groundwater samples were collected from wells positioned in the trenches and downgradient from the well field (Figure 2-2). Groundwater samples for volatile organic carbon (VOC) analysis were collected in 40 mL vials with Teflon coated septa. The samples were taken so that the vials contained zero headspace and they were stored upside-down and submerged in water for no longer than 24 hours to prevent loss of any

Table 2-1: Physical properties of fractured and weathered shale at WAG5 (¹Jardine et al., 1999;²Jardine et al., 1989).

Hydraulic conductivity ¹ :	1.1x10 ⁻⁷ to 1.5x10 ⁻⁵ m/s
Hydraulic gradient ¹ :	0.06 to 0.1
Infiltration rate (m/y) ¹ :	1.33
Porosity ¹ :	10 to25%
Fracture aperture ¹ :	30 to 102µm
Fracture density ¹ :	5 to 200/m
Fraction organic carbon ² :	0.006

.

VOC by diffusion or volatilization. The VOC samples were analyzed using a Tekmar 3000 Purge and Trap system (Vernon, BC, Canada) with a VOCARB 3000 trap and a Hewlett Packard 5890-series II gas chromatograph with DB-624 column (Palo Alto, CA). The inlet temperature on the gas chromatograph was 180°C and on the detector was 300°C, with the column temperature held initially at 35°C for 5 minutes, then increased 5°C/minute to a final temperature of 90°C, where it was held constant for 2 minutes.

Groundwater was also sampled for measurements of dissolved concentrations of methane, ethane, and ethylene gas from the same wells where the VOC samples were collected. The samples were collected in 40 mL vials with Teflon-coated septa, with each vial containing a measurable amount of headspace. Sample and headspace volumes were determined by weight. The samples were vigorously agitated and stored upside-down and submerged in water, and were generally analyzed within four hours of collection. Sample analysis involved the direct injection of 25-500 μ L of headspace gas, depending on concentration, from each vial into a Hewlett Packard 5890-series II gas chromatograph with a chrompak coated Poraplot Q column (Palo Alto, CA).

2.3.2 Inorganic Chemical Analysis

Groundwater from each well was analyzed for concentration of inorganic solutes at the same time as the VOC and dissolved gases. Average chemical properties of the groundwater are presented in Table 2-2. Dissolved oxygen (DO) was determined in the field using colorimetric indicators. For concentrations between 0 and 2 ppm, DO was analyzed with a Hach DR2000 field spectrophotometer (Loveland, CO). For DO

pН	6.4-7.3
Temperature	12°C
Dissolved Oxygen	0.02-3 ppm
Sulfate	0.5 to 5 ppm
Sulfide	0.01-0.2 ppm
Total Iron	1 to 13 ppm
Iron (II)	0.5-13 ppm
Chloride	12-17 ppm
Phosphate	0 ppm
Alkalinity	500 ppm CaCO ₃
Nitrate	<0.1 ppm
Nitrite	<0.05 ppm
Hydrogen	est. <1 nM
TOC	1-2 ppm
TCE	0-34 ppb
cDCE	0-50 ppb
VC	0-18 ppb
Methane	0-14 ppm

.

·

Table 2-2: Range chemical properties of the groundwater at WAG5 over a period of a year

concentrations greater than 2 ppm, a colorimetric method using Chemetrics ampoules (Calverton, VA) was used. Nitrate, nitrite, total iron, Fe (II), and sulfide were also determined colorimetrically in the field using Hach (Loveland, CO) kits. Chloride, nitrate, sulfate, and phosphate were determined using an ion chromatograph (Dionex DX300, AS4A column, Sunnyvale, CA) using a spectral array detector at 190 nm. Major cations were determined using Inductively Coupled Plasma (ICP) and total organic carbon (TOC) was determined with a Shimadzu 5000 TOC analyzer. Alkalinity was determined in the field using the Gran titration method.

2.3.3. Microbiological Analysis and Molecular Analysis

Groundwater samples were collected in sterile 40 mL vials with Teflon coated septa for microbial enrichment studies. Samples from well numbers 1, 2, 10, 11, 14, 2-4, 2-5, 19c, and I (waste trench well) were tested. The samples were taken so that the vials contained zero headspace and they were stored upside-down for no longer than 72 hours at 5°C prior to testing. BART-IRB and BART-SRB media were obtained from Hach (Loveland, CO) for determination of iron- and sulfate-reducing bacteria. The methanogens were incubated in methanogen media (Atlas, 1995) and methanotrophs were incubated in media described by Pfiffner et al. (1997).

Molecular analysis for identification of microbial communities was determined at the same time that the enrichments were done from wells 10 and 11, and from positive enrichments for iron-reducing and sulfate-reducing bacteria. In this approach, the 16S rDNA was amplified from DNA extracted from groundwater samples and cloned to

create 16S rDNA libraries. Water was collected in sterile 40 mL vials with Teflon coated septa and filtered through a 0.2µm filter (Durapore, Millipore, Bedford, MY) then stored at -80°C until further processing. DNA was extracted by bead beating filters with a lysing matrix (Bio101, Carlsbad, CA) and STE buffer (10mM Tris (pH 8), 1 mM ETDA, and 100 mM NaCl) for 20 s and 4 m/s. Samples were then centrifuged for 2 minutes at 10,000 rpm with the supernatant liquid placed into a new sterile microcentrifuge tube and stored at -80°C until further processing.

To generate clone libraries, community rDNA was amplified by PCR with a eubacteria reverse oligonucleotide primer 1492R (5'-GGT TAC CTT GTT ACG ACT T-3') and a eubacteria forward oligonucleotide primer 27F (5'-AGA GTT TGA TCM TGG CTC AG -3') or the universal primer 530F (5'-GTG CCA GCM GCC GCG G-3') and the universal oligonucleotide reserve primer of 1392R (5'-ACG GGC GGT GTG TRC-3') (Lane et al., 1985). Extracted DNA was amplified in a reaction mixture with PCR beads (Amersham Pharmacia Biotech Inc. Piscataway, NJ) and a 20 nM concentration of each forward and reverse primer. Reaction mixtures were incubated in a Perkin Elmer Gene Amp PCR system 2400 thermal cycler (Wellesley, MA) at 94°C for 5 minutes followed by 15 cycles at 94°C for 30 seconds, 60°C for 45 seconds, and 72°C for 2 minutes and followed by a final extension period of 7 minutes at 72°C. Ten µL of DNA was visualized with a 2% agarose gel with ethidium bromide to determine if the reaction was successful. PCR products were cloned with the TOPO TA Cloning kit (Invitrogen Corp., Carlsbad, CA). Plasmids containing the correct DNA inserts were prepared for sequencing using RPM AFS Midi plasmid preparation kit (Bio 101, Carlsbad, CA).

Sequences were determined using 530F primer by the Molecular Biology Sequencing Facility located on the University of Tennessee campus, which is equipped with an Applied Biosystems 373A Automated Sequencer (Foster City, CA). Analysis of sequences was done using the GenBank (http://www.ncbi.nlm.nih.gov/) basic Blast search. Sequence alignments were performed using ClustalX (v. 1.64b) and the trees were constructed using TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

2.4 Results and Discussion

2.4.1 VOC Concentration and Distribution

Observation wells indicate the presence of VOCs in the trenches and a trend towards lower concentrations of TCE and other VOCs with increasing distance from the contaminated trenches (Figure 2-3, Table 2-3). The origin and the types of waste disposed at WAG5 are unknown, so to determine which trench was most likely to be the source of the VOC, sampling wells were situated along the downgradient side of the waste trenches (Figure 2-1). Three of these wells (G, H and I) were the only wells with any detectable concentrations of TCE (0.003-0.3 μ M), which suggests that the waste trenches located directly up gradient of the transect of monitoring wells (Figure 2-2) are the likeliest source of the TCE plume. The presence of the anaerobic daughter products of TCE (cDCE, VC, and ethylene) in the plume is a probable indicator that natural attenuation is occurring at the site (Table 2-3). Chemical DCE can exist as either a *cis* or *trans* mixture, however, in the wells only cDCE was observed, which is indicative of biological reductive chlorination of TCE. The highest concentration of TCE in the monitoring wells was 0.1 μ M (well 11) with concentrations in most of the plume between

Figure 2-3. TCE plume morphology during three sampling points in 1999 (A. February, B. June, and C. August) at WAG5.
,	
e 2-3: VOC, chemical results, and AFCEE score from 5 wells at the WAG5 site.	
Table	
-	۰.

Well	1		10		11		17a		19a	
Date	February	August								
O ₂ (ppm)	0.74	2.00	0.39	1.21	0.02	1.96	0.01	1.46	0.28	3.00
Fe(II) (ppm)	2.00	2.06	6.08	2.60	1.82	1.59	4.26	3.20	8.56	5.94
SO4 (ppm)	3.15	1.99	3.75	2.79	4.49	3.54	5.61	4.36	6.26	6.14
S ²⁻ (ppm)	0.01	0.01	0.00	0.00	0.05	0.14	0.05	0.05	0.01	0.01
CH_4 (ppm)	6.27	1.95	2.78	2.00	1.61	1.03	0.20	0.25	0.92	0.99
CI- (C/Co)*	28.63	41.11	24.69	43.00	18.95	44.15	25.26	39.13	27.91	43.97
TCE (ppb)	3.50	0.46	0.00	0.00	13.20	34.20	0.00	0.00	0.00	0.00
cDCE (ppb)	12.50	5.02	5.80	3.22	49.14	28.80	23.94	14.05	0.00	0.80
VC (ppb)	13.76	4.10	10.14	2.90	20.71	5.55	17.40	3.32	12.14	1.70
AFCEE Score	19	14	20	12	22	14	19	11	17	11
						-		-		-

* Co = 0.4 ppm

 $0.004-0.05 \ \mu$ M. The DCE and VC plumes are both longer than the TCE plumes, and DCE and VC concentrations are higher than the TCE concentrations throughout the site (Figure 2-4). These observations are both consistent with a conceptual model of anaerobic biodegradation of TCE, and the absence of TCE in the downgradient portion of the plume suggests that the process has either been occurring for many years or is very efficient. The temporal variations seen for TCE are also mimicked by the other VOCs (not shown), and are likely due to seasonal variations in recharge.

The amount of dechlorinated daughter products relative to TCE increased dramatically with increased distance from the trenches, again suggesting anaerobic biodegradation is occurring (Table 2-3). Reductive dechlorination of TCE in groundwater is pronounced with nearly 10 times more cDCE present relative to TCE (Figure 2-5a). Conversion of cDCE to VC appears to be the rate-limiting step in the dechlorination process as evidenced by the higher molar ratio of cDCE to VC (Figure 2-5b). The accumulation of cDCE in groundwater due to rate limiting VC production is a common occurrence during anaerobic biodegradation (Fathepure and Tiedje, 1994). Either VC persists in groundwater with essentially no ethylene production, or it is effectively dechlorinated with the production of ethylene (Figure 2-5c). The presence of significant amounts of groundwater cDCE and the additional presence of VC and ethylene strongly suggests that anaerobic biodegradation is a key process responsible for dechlorination of TCE at the site. This anaerobic biodegradation most likely follows the well-described pathway of TCE \Rightarrow cDCE \Rightarrow VC.

Figure 2-4. cDCE and VC plumes in February at WAG5.

Figure 2-5. Concentrations of VOC relative to each other from sampling wells at WAG5. A) TCE vs. cDCE; B) cDCE vs. VC; and C) VC and ethylene.

Samples were taken over the course of a year to determine temporal variation in the plumes. A shrinking or stable plume is an indication of a natural attenuation of TCE. Figure 2-3 shows the shape of the TCE plume taken during February, June and August of 1999. The plume is changing seasonally, but there is not a clearly defined trend over this time period, thus concentration changes cannot alone be used as indicators of biodegradation. The trends observed for the VOCs are similar to those observed for tritium, in which concentrations were at a minimum in early April and highest in December (Jardine et al., 1999). Jardine et al. (1999) speculated that the decrease of tritium is due to seasonal increases in rainfall during the early spring, which cause fluctuations in the amount of dilution in the plume and could explain the rise and fall in the TCE concentrations. A "hot spot" of TCE was located down gradient from the suspected source zone at well 11 (Table 2-3). This region is located in the matrix flow zone as described by Jardine et al. (1999) and may not be as susceptible to seasonal variations in flow and dilution.

The methane concentrations across the field site are 1000 times higher than the concentrations of the other VOCs. The high concentration of methane in the waste trenches is suspected to be the result of biological waste buried at the site (Clapp, 1992). Some of the methane might be due to dechlorination of the chlorinated solvents, but this could be masked by the high concentrations of methane from other sources in trenches.

2.4.2 Redox Conditions

Redox conditions can be used as an indicator of the potential for natural attenuation of TCE (Chapelle and Brady, 1998). Reductive dechlorination of TCE occurs under anaerobic conditions in which Fe (III), SO₄, or CO₂ acts as the alternative electron acceptor (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990). Observations of anaerobic conditions (dissolved oxygen < 1 mg/L), decreasing concentrations of the alternative electron acceptors, and appearance of the reduced form of the alternative electron acceptors (Fe(II), S², and CH₄) can indicate a high probability that reductive dechlorination is likely to occur at a site. If the site is aerobic and a cometabolite, such as methane, is present then less chlorinated compounds can be completely mineralized to CO₂. The WAG5 site is generally anaerobic throughout the year (Tables 2-2 and 2-3), which supports reductive dechlorinated compounds. At different times of the year some wells switch between anaerobic and aerobic conditions (Table 2-3), thereby allowing for transformation of the chlorinated solvents to CO₂ in some areas.

Different types of redox indicators have been implicated in anaerobic biodegradation of TCE such as iron reduction, sulfate reduction, and methanogenesis. The concentrations of reduced iron (Fe (II)) and sulfide were determined both spatially and temporally (Tables 2-2 and 2-3). Reduced iron concentrations range from 1-7 ppm throughout the site and overlap the sulfide plume with concentrations ranging from 10-50 ppb. The exception is at well 2-4 where the concentration of sulfide exceeds 200 ppb. The sulfide and Fe (II) plume (not shown) are roughly the same size and shape as the VC and

ethylene plumes (not shown). The iron reducing bacteria are the least sensitive to changing redox conditions (which can switch from anaerobic to aerobic) at the site and could account for much of the reductive dechlorination of the highly chlorinated solvents (Lovely and Anderson, 2000). This is supported by the higher concentration of reduced iron compared to the sulfide concentrations. Sulfate reducing bacteria may also be active in the same wells as the iron reducing bacteria, but would be more affected by the switching from aerobic to anaerobic conditions. As described earlier, evidence of methanogenesis cannot be obtained because of high background concentrations of methane at the site.

Another possible indicator of natural attenuation is an increase in the concentration of chloride, which is a product of reductive dechlorination of the chlorinated solvents. Chloride concentrations at the site range from 12-17 ppm and are above the typical background concentrations of 0.4-1.0 ppm measured in nearby uncontaminated areas (Table 2-2 and 2-3). Chloride concentrations in the waste trenches are much lower than in the plume suggesting that the chloride in the groundwater was not due to disposal of salt-rich wastes.

2.4.3 Monitored Natural Attenuation Evaluation

The potential for utilization of monitored natural attenuation (MNA) at the site was evaluated using the guidelines described by Brady et al. (1999) and Wiedemeier et al. (1998). The first step is to determine the potential for anaerobic biodegradation. The AFCEE protocol (Wiedemeier et al., 1998) uses different weighed analytical parameters

to determine a potential for biodegradation. Table 2-3 lists the values for different geochemical parameters from 5 selected wells during 2 different time periods with the AFCEE score. A score of -1 to 5 points shows inadequate evidence for anaerobic biodegradation; a score of 6 to 14 point shows limited evidence for anaerobic biodegradation; a score of 15 to 20 points is adequate evidence for anaerobic biodegradation, whereas a score greater than 20 point is strong evidence for anaerobic biodegradation. None of the samples showed inadequate evidence for anaerobic biodegradation. In February all of the wells showed strong to adequate evidence for anaerobic biodegradation whereas in August all the wells showed only limited evidence for anaerobic biodegradation. The main factor that influenced the shift was the change in dissolved oxygen concentration, which went from very reducing to aerobic. Depending on the time of year that an assessment is done a different potential for biodegradation will be obtained. This is especially likely to occur in fractured bedrock aquifers, where seasonal water table levels and flow rates are largely controlled by the fracture porosity, which is often much lower than the total porosity. This indicates that site evaluations for MNA in fractured rock aquifers should be carried out several times, to include both seasonally wet and seasonally dry periods.

2.4.4 Microbial Community Structure

Assessment of the microbial community structure also supports the hypothesis that anaerobic biodegradation is occurring at the WAG5 field site. Indirect evidence for the presence of iron-reducing bacteria, sulfate-reducing bacteria, methanogens, and methanotrophs was provided using geochemical redox indicators, as previously

described. Assessment of the microbial community at the site can also be done by direct enrichment of bacteria or identification of bacteria via detection of nucleic acid. Most probable numbers (MPN) is a form of enrichment. The MPN data for methanogens, ironreducing bacteria, sulfate-reducing bacteria, and methanotrophs are presented in Table 2-4. The tested wells comprised 8 wells in total, with one well located in the trench. In most of the wells, the assays indicate that microorganisms capable of iron-reduction, sulfate-reduction, methanogenesis and aerobic cometabolism of TCE are present. At well 2-4 there was both a high concentration of sulfide and a high number of sulfate reducing bacteria. 16S rDNA from iron reducing and sulfate reducing enrichments were cloned to determine the identity of the microorganisms. The organisms were identified as either *Pseudomonas* or *Alcaligenes*. These organisms are not known to be iron- or sulfatereducing bacteria, which suggests that enrichments may not accurately reflect the identity of the microorganisms present at a site.

Another method to identify bacteria that are found in a water sample is with clone libraries. The clone libraries constructed in this study were prepared using the small subunit of rDNA (16S rDNA) and then compared to databases to determine the identity of microorganisms that might not be culturable with enrichments. Two rDNA clone libraries were prepared from bulk DNA extracted from aquifer samples and analyzed to determine the degree of microbial diversity associated with the WAG5 site. The libraries were prepared from wells 10 and 11 (Table 2-5), representing fracture and matrix zones, respectively, in the aquifer. Well 11 was in the zone in which TCE was present at the highest concentration (0.1 μ M), while well 10 was 2 meters below well 11 and was in a

Well	Methanogens	Iron Reducers	Sulfate Reducers	Methanotrophs
1	2.1	0.073	0.03	210
2-4	>24	1.5	4.6	39
2-5	>24	0.91	24	NA
2	2	0.036	2.4	NA
10	>24	0.15	0.15	>2400
11	4.3	0.036	4.6	NA
14	11	0.091	0	NA
19c	2.4	0.091	2.3	9.3

.

Table 2-4: Most probable number (MPN) of bacteria in wells at WAG5 (CFU/mL).

NA=not tested

,

.

.

,

Clone Numbers ^a	Putative Division	Database Match ^b
11u27	Euryarchaeota	97% uncultured Archaeon WCHA1-38 (AF050612)
11u20	Euryarchaeota	
10u12	Euryarchaeota	
l lu2	Euryarchaeota	
11u31	Euryarchaeota	
10u34	Euryarchaeota	
10u1, 11u5	Euryarchaeota	
11u30,37	Unidentified bacterium	
10u3	Unidentified bacterium	94% to clone group A17o from groundwater (X91440)
1005	Clone Group A51P	
1007.9.14.20.25.36	Clone Group A51P	
10e12 15 11e7 11u36	Clone Group A 51P	
10e2.10u26	Clone Group A51P	96% Clone group \$23 from groundwater (769327)
10u21	Cytophagales	
11e8	Cytophagales	94% Flavobacterium (M62798)
10e1, 11u18	Cytophagales	96% Clone BSV73 from anoxic soil (AJ229217)
11u32	Cytophagales	
10u4, 8, 15, 33	Cytophagales	
10e4	Cytophagales	
10u22	Cytophagales	98% Uncultured bacterium 81 (AF104275) Anaerobic benzene
		degradation in a petroleum contaminated aquifer
l1u25	Cytophagales	
10u27	Cytophagales	
10e5, 6	Cytophagales	
10e16 11e13	Firmicutes	98% tetrachloroethylene degrading Clasticidium bifermentans
10010, 11010	1	(Y18787)
10u16	OP11	
10u35	OP11	
10e3	OP11	
10u13	OP11	
11u4	OP11	
liul0	OPII	
11u3	OPII	
11014	OPII	
10018	OPII	
10019	OPII	·
10u24,25	OP12	94% Clone OPB54 from a Yellowstone hot spring (AF027087)
11e12	Planctomycetales	

Table 2-5: Clone libraries from well 10 and 11.

35

¢

r

10u23,11u29	Proteobacteria (β)	99% Ralstonia picketti (X67042)
10u29	Proteobacteria (β)	94% Dechlorimonas (AF170357)
10u30, 10e13	Proteobacteria (β)	
11u33	Proteobacteria (γ)	
11u7	Proteobacteria (δ)	
11u28	Proteobacteria (δ)	
10e17	Proteobacteria (δ)	
11e6,16	Proteobacteria (δ)	
11u38	Proteobacteria (δ)	98% WCHB1-12 uncultured bacterium form a hydrocarbon -and chlorinated-solvent contaminated aquifer (AF050534)
10e7,8,10,11,14	Proteobacteria (δ)	95% <i>Syntrophus</i> sp. Lyp (AF126282) anaerobic propionate- degrader
10u10	Proteobacteria (δ)	96% <i>Geobacter arculus</i> dissimilatory Fe(III)-reducing bacteria (U96917)
10u32	Undescribed	
11u25	Undescribed	t
11u8	Undescribed	-
10u6	Eukaryota	96% Clavulina cristata (AF026640)

^aClone number designations- All clones were from either well 10 or well 11, e= libraries constructed with PCR products using eubacterial primers 27f and 1492r, u= libraries constructed with PCR products using universal primers 530f and 1390r.

.

^bDatabase matches greater than or equal to 94%.

,

.

zone with high amounts of reduced iron. Table 2-5 summarizes the distribution of sequence types by divisions and percent abundance in each library. Comparative analyses of the WAG5 aquifer sequences to known 16S rDNA sequences revealed a broad spectrum of bacterial and archaeal diversity. Of the 76 clones, 7 were archaeal, 68 were bacterial and 1 was a eucaryote. Of the clones that were sequenced, 23 were \geq 94% identical to an rDNA sequence available in GenBank (http://www.ncbi.nlm.nih.gov/) as of March 2000. The profile of 16S rDNA sequences is consistent with an anaerobic environment. Many of the closest matches in Table 2-5 are with anaerobic bacteria. In addition, common bacteria in aerobic enrichments such as α , β , and γ subgroups of proteobacter are absent or low in abundance.

Figure 2-6 is an evolutionary distance tree of the bacterial domain showing the distribution of different divisions, which is a rough description of the bacterial biodiversity at this site. Phylogenetic groups represented include: Cytophaga (19.7%), Proteobacteria (β) (6.5%), Proteobacteria (γ) (1.3%), Proteobacteria (δ) (15.8%), Archeaon (9.2%), and Firmicutes (1.3%). Approximately 41% of the clone sequences from the WAG5 site could not be placed into known phylogenetic groups and 25 clones are affiliated with 2 candidate divisions that have no cultivated representatives (OP divisions) and A51P. A candidate division is a monophylogenetic group of rDNA sequences with no specific association with known divisions (Dojka et al., 1998). From this analysis is not possible to identify the microorganisms responsible for TCE biodegradation because microorganisms in different phylogenetic groups are capable of biodegrading TCE. However, some of the clones (10e16, 11e13, 10u29, and 11u38) are

Figure 2-6: Distance matrix trees showing phylogenetic relationships of 16S rDNA clones from wells 10 and 11. Putative divisions are listed outside the brackets for panels A, B, and C. Panel B was rooted with the Acidobacteria division, A. Proteobacteria and OP11, B. Cytophaga, Firmucutes, Clone group A51P, C. Archea. Numbers in brackets indicate number of nearly identical clones found in the same library. Branch points supported by bootstrap values (number trees with same branch order per 1000 trees generated) >75% are indicated by filled circles and those supported by >50% are indicated by open circles. Genbank accession numbers are in parenthesis and numbers of clones in the same library are in closed brackets.

ī

A.

similar to other clones or types of bacteria implicated in the anaerobic biodegradation of chlorinated solvents. A clone (11u38) was similar to a clone from a contaminated aquifer in which chlorinated-solvents were undergoing intrinsic bioremediation (Dojka et al., 1998). A *Clostridium bifermentans* has been identified as a PCE degrader (Change et al., 1999) and a *Dechlorimonas* has been identified as a chlorinated solvents degrader (Coates et al., 1999). Other identified organisms were sulfate-reducing bacteria and iron-reducing bacteria (>90% similarity) including *Thermodesulfovibrio, Geobacter sulferreducens* and *Geobacter arculus*. Different methanogen species were also identified. These cloned sequences provide a background database for future studies, including the enrichment and isolation of organisms involved in TCE transformation, and development of 16S rDNA oligonucleotide probes for monitoring specific populations.

2.5 Conclusions

The distribution of TCE, cDCE, and VC in monitoring wells at the WAG5 site on the Oak Ridge Reservation suggests that anaerobic biodegradation of TCE is occurring. Redox conditions are favorable for reductive dechlorination of TCE, cDCE and VC and the microbiological data reveal the presence of methanogens, iron-reducing and sulfate-reducing bacteria, all of which suggest that natural attenuation of TCE is occurring. Methanotrophs and dissolved oxygen are suggestive of potential aerobic biodegradation by cometabolism of TCE with methane. These data suggest two possible mechanisms for natural attenuation of TCE: first, anaerobic biodegradation of the highly chlorinated compounds and second, aerobic biodegradation in oxygenated zones, (e.g. seep, near the water table, and in fracture zones which receives periodic flushes of oxygenated storm

water). These processes result in nearly complete biodegradation of the TCE and its daughter products. This is believed to be the first field study to observe natural attenuation of TCE in fractured shale bedrock. It is unique, in that it combines VOC and redox potential data, with enrichment and molecular techniques, to examine natural attenuation at a hydrogeologically complex site. With only one of the techniques an incomplete view of natural attenuation at the site would be the result. With coupled geochemical-microbial analyses, it is possible to develop a more reliable conceptual model of natural attenuation. The large spatial and seasonal variations in geochemical conditions observed in this study are expected to occur in many shallow contaminant plumes in fractured aquifers and recognition of this is critical for successful assessment of the potential for remediation using monitored natural attenuation protocols.

Chapter 3

Biodegradation of TCE in Undisturbed Columns of Fractured Saprolite

3.1 Introduction

Most previous studies of natural attenuation and/or biodegradation of chlorinated solvents have been carried out in relatively simple aquifer materials, usually sand (Kleopfer et al., 1985; Chapelle et al., 1996; Dojka et al., 1998; Clement et al., 2000). The findings of these studies may not be appropriate for more complex physical/chemical systems. For example, groundwater systems in unconfined fractured rock aquifers are often subject to rapid changes in water table elevation, flow rate, and geochemistry, thus making it very difficult to use conventional indicators of biodegradation (such as mass or concentration decline and the presence of favorable redox conditions). Hence, there is a need for studies of biodegradation in complex materials like fractured shale.

Recent field studies of an existing plume of organic contaminants in fractured shale at the Oak Ridge Reservation (ORR) strongly suggest biodegradation of TCE can occur in this type of materials (Chapter 2). Sampling of wells at the field site indicated that TCE concentrations declined with distance from the waste pits and daughter products (cDCE and VC), which are suggestive of anaerobic biodegradation of TCE appeared further downgradient. Redox conditions at the field site indicated iron and sulfate reduction and possible methanogenesis, which were within the range typically considered favorable for anaerobic biodegradation of TCE (Bouwer, 1994; Chapelle and Bradley, 1998). Microorganisms found in groundwater at the field site include methanotrophs,

methanogens, iron and sulfate reducing bacteria, which have also previously been implicated in anaerobic biodegradation of chlorinated solvents (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990; Lovely and Anderson, 2000; De Wever et al., 2000).

Although the WAG5 study provides strong evidence for potential TCE biodegradation, there are still many unanswered questions, such as whether biodegradation could occur in both the shale bedrock (where the monitoring wells were located) and in the overlying 2 m of saprolite (highly weathered rock). As well, it is uncertain whether microbial communities and redox conditions in this environment can change quickly to support biodegradation or whether it take many years of exposure to contaminants. It is not currently feasible to carry out field experiments using TCE in uncontaminated bedrock/saprolite to answer these questions so methods are needed to represent these complex hydrogeological systems in the laboratory. Flow-through experiments in large undisturbed columns of saprolite from the Oak Ridge Reservation have proven successful for examination of solute transport (Reedy et al., 1996), colloid transport (Cumbie and McKay, 1998; Haun, 1998), DNAPL transport phenomena (Cropper, 1998; Pitner, 2000). and can be used for studying biodegradation of TCE. The advantages of undisturbed columns for determination of biodegradation of TCE are the following: the complex structure of saprolite is maintained in a controlled laboratory setting, flow-through systems mimic the natural environment, duration of experiments can be up to years, and a wide variety of geochemical and microbial characteristics can be tested.

This research is based on the hypothesis that microbially mediated anaerobic degradation of TCE in fractured shale saprolite can occur without any amendments to the system, other than the introduction of TCE. Redox conditions and microbial community composition in the saprolite and groundwater is expected to shift after the introduction of TCE to become favorable for biodegradation of TCE. The specific objectives of the research are: 1) to determine if relative TCE mass loss occurs under biotic or inhibited conditions; 2) to determine if daughter products of anaerobic TCE degradation (cDCE and VC) appear in the effluent from the biotic and inhibited columns; 3) to determine if reducing conditions such as iron reduction or sulfate reduction, which are indicative of anaerobic biodegradation of TCE, develop with time after introduction of TCE in the biotic column; 4) to characterize the microbial community in the groundwater prior to and after introduction of TCE, in order to determine if shifts in the community, which favor biodegradation of TCE occur; and 5) to determine whether current natural attenuation protocols are effective in this type of complex setting.

3.2 Material and Methods

3.2.1 Geological Setting

The experimental investigation was carried out using undisturbed samples of uncontaminated residual soil (saprolite) obtained from an existing research site in the proposed Solid Waste Storage Area #7 (SWSA7) at the ORR (Figure 3-1). The saprolite at SWSA7 has been extensively characterized from a physical and hydrogeological perspective (Solomon et al., 1992; Jardine et al., 1993; Cumbie and McKay, 1999; Driese

Figure 3-1. Site location within the Oak Ridge Reservation.

et al., in review). The saprolite is derived from in situ weathering of the underlying sedimentary bedrock, which is composed of interbedded shale, siltstone, and sandstones, which is part of the Dismal Gap Formation of the middle to upper Cambrian Conasauga Group (Hatcher et al., 1992). The carbonates have been leached, leaving a high porosity detrital matrix, which retains much of the structure of the parent bedrock. These structural features include bedding, which generally dips towards the southeast at 17 to 72°, and fractures caused by regional tectonic activity. Fractures occur both parallel and oblique to bedding with typical fracture spacing in the saprolite ranging from 0.005 to 0.9 m (Dreier et al., 1987; Solomon et al., 1992; Cumbie, 1997). Macropores formed by roots are also present in the saprolite to depths of >2 m in some places. The total porosity ranges from 15% to 58% (Dorsch and Katsube, 1999), with porosity due to fractures and biopores being approximately 1-2% (Cropper, 1998). In the upper portion of the saprolite many of these pores have been infilled with pedogenic clays or Fe/Mn oxides (Jardine et al., 1993; Driese et al., in review). Hydraulic conductivity values for columns previously collected at SWSA7 ranged from 2.7 x 10⁻⁴ to 4.5 x 10⁻⁹ m/s (Driese et al., in review).

3.2.2 Flow-through Experiments in Undisturbed Saprolite Columns

Two undisturbed saprolite columns, 23 cm in diameter and approximately 25 cm in length, were collected for use in this study. The columns were excavated with hand tools and setup for flow-through experiments generally following the methods of previous researchers working in saprolite at ORR (Reedy et al., 1996; Howard, 1997; Cumbie, 1997; Haun, 1998; Cropper, 1998; Pitner, 2000). The columns were collected at a depth

of 1.5 to 2.5 m below ground surface, and approximately 1 m above the bedrock contact, which crop out in a nearby stream. After excavation of each column, a 25 cm diameter PVC casing was fitted over the column and the annulus was filled with a TCE-resistant epoxy (Ureol 6414; Ciba, Helsinki, Finland). The columns were then taken to the laboratory and disturbed material was trimmed from the ends in preparation for fitting with solvent-resistant end caps. The finished flow-through columns were then sealed to prevent exposure to the atmosphere, and then placed in an environmental chamber that was maintained at approximately the ambient soil temperature (12°C).

The columns were set up to carry out saturated flow-through experiments as shown in Figure 3-2. The injection system for each column consisted of a Tedlar sampling bag (SKC, Eighty Four, PA) connected to an HPLC pump using all stainless steel fittings. The flow rate was set at 0.2 mL/min, which corresponds to a specific discharge rate of 0.7 cm/day. This is within the range of specific discharge rates determined in previous field studies in saprolite and weathered shale at ORR (Lee et al., 1992; McKay et al., 1997). Water used for saturating the columns for influent during the subsequent flow through experiment was collected from bedrock well at the site. Ultra high pure grade helium was bubbled through the well water for 40 minutes before it was used. After saturation of the columns, sodium azide (0.65 g/L) and mercuric chloride (0.33 g/L) were added to the influent water of the inhibited control column to inhibit microorganisms, and it is referred to as the inhibited column. Sodium azide was only added to the influent water of the inhibited column for the rest of the life of the experiment. For the first 56 days, influent containing no TCE was injected into both columns to allow for monitoring

Figure 3-2. Column setup for biotic and inhibited columns. Saprolite column was placed in a 12°C chamber. Influent was injected into the column at 0.2 mL/min. Effluent was monitored for VOC, redox conditions, and microbial community.

of background conditions prior to addition of TCE. TCE was obtained from Fisher Scientific and a stock solution was prepared by mixing excess amounts of TCE with distilled water to create a saturated water solution of 1100 ppm. Starting on January 24, 2000, TCE from the stock solution was added to the influent of both columns for a final concentration of 1000 ppb. Influent samples were measured (see below) as 800-2500 ppb with an average value of 1780 ppb.

3.2.3 Volatile Organic Carbon (VOC) Analyses and Redox Measurements

The influent and the effluent from both columns were monitored for dissolved solvent concentrations (TCE, cDCE, tDCE, 1,1 DCE, and VC), redox conditions, and microorganisms. Influent samples were collected directly from the influent Tedlar bag. Effluent samples were taken from each column using a port at the base of a 150 mL stainless steel sampling vessel (Swagelok, Solon, OH). The system was designed so that samples could be collected with minimal exposure to the atmosphere. The samples were collected in 40 mL vials with Teflon coated septa. The samples contained zero headspace, and were stored upside-down for no longer than 2 weeks before analysis to prevent any loss of VOC by diffusion or volatilization. The VOC samples were analyzed using a Tekmar 3000 Purge and Trap system (Vernon, BC, Canada) with a VOCARB 3000 trap and a Hewlett Packard 5890-series II gas chromatograph with DB-624 column (Palo Alto, CA) and a PID detector. The inlet temperature in the gas chromatograph was 180°C and in the detector was 300°C. The column temperature was held initially at 35°C for 5 minutes, and then increased at a rate of 5°C/minute to a final temperature of 90°C, which was maintained for 2 minutes.

Redox conditions were determined by monitoring the effluent for dissolved oxygen, Fe(II), sulfate, sulfide, pH, and Eh. Dissolved oxygen content was determined with a YSI dissolved oxygen meter (Yellow Spring, OH). Redox analyses for Fe (II), sulfate and sulfide were determined using Hach (Loveland, CO) kits for the specific chemicals. Chloride concentration was determined by an ion specific probe (Corning, Corning, NY). pH and Eh were measured in the effluent water using an Orion portable pH-Eh meter, model 250A (Boston, MA).

)

3.2.4 Microbial Analyses

The influent and effluent water were tested for the presence of iron reducing and sulfate reducing bacteria using BART-IRB and BART-SRB media obtained from Hach (Loveland, CO). Molecular analysis for identification of individual microbes in the microbial communities was carried out on selected effluent water samples. This involved collection of 50 mL of water in a sterile 50 mL vial, which was filtered through a 0.2µm filter (Durapore, Millipore, Bedford, MY) and then stored at -80°C until processed. DNA was extracted by bead beating filters with lysing matrix (Bio101, Carlsbad, CA) using 1 mL of STE buffer (10mM Tris (pH 8), 1 mM EDTA, and 100 mM NaCl) for 30 s and 4 m/s. Samples were then centrifuged for 2 minutes at 10,000 rpm, and the supernatant was placed into a new sterile microcentrifuge tube stored at -80°C until further processing. Effluent water samples were screened using rapid profiling techniques and specific primers. Extracted DNA from effluent water was amplified in a reaction mixture with Ready-to-GoTM PCR beads (Amstersham Pharmacia, Piscataway, NJ) and a 10 nM concentration of each of the primers listed below. Reaction mixtures

were incubated in a Perkin Elmer (Wellesley, MA) Gene Amp PCR system 2400 thermal cycler.

Confirmation that the PCR reactions from the effluent samples of the inhibited column were not inhibited by the presence of sodium azide and the biotic and inhibited effluent not by TCE was done. Previously negative inhibited effluent sample (elapsed time 189 days), positive biotic effluent sample (elapsed time 106 days), plus influent with and without TCE were spiked with DNA at different concentrations (200, 20, 2 and 0.2 ng/ μ L). All spiked samples were positive. This indicated that the PCR reactions effluent from the inhibited was truly negative and were not inhibited by the presence of TCE or sodium azide, and thus did not contain DNA down to concentrations of 0.2ng/ μ L.

Specific primer sets for different types of microorganisms were also tested (Table 3-1). PCR primer sets for the 16S rDNA gene of six phylogenetic groups of sulfate reducing bacteria were used as described by Daly et al. (2000). Determination of methanogens was done using specific PCR primer set (Shinzato et al., 1999) ME855F (5'-TTA AAG GAA TTG GCG GGG GA-3') and ME1354R (5'-TGA CGG GCG GTG TGT GCA AG-3'). The PCR amplification conditions comprised of 40 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 90 sec. Partial *Geobacteraceae* 16S rDNA sequences (Snoeyenbos-West et al., 2000) were amplified with bacterial forward primer 8F (5'-AGA GTT TGA TCC TGG CTC AG-3') and *Geobacteraceae*-specific reverse primer 825R (5'-TAC CCG CRA CAC CTA GT-3') in the first round of a semi-nested PCR protocol, followed by 530F and Geo 825R in the second round. The PCR condition was

Table 3-1. 16S rDNA-targeted PCR primer sequences specific for methanogens (Shinzato et al., 1999), iron reducing bacteria (Snoeyenbos-West et al., 2000) and sulfate reducing bacteria subgroups (Daly et al., 2000).

PRIMER	SEQUENCE 5'-3'	GROUP	TYPE	EXPECTED
				SIZE PRODUCT
ME855F	TTA AAG GAA TTG GCG GGG GA	NA	Methanogens	500bp
ME1354R	TGA CGG GCG GTG TGT GCA AG		I	
8F	AGA GTT TGA TCC TGG CTC AG	NA	Geobacteraceae	815bp
825R	TAC CCG CRA CAC CTA GT			-
Gx.182F	AGA CCT TCG GCT GGG ATG CT	NA	Geothrix	250bp
Gx.472R	AGG TAC CGT CAA GTA ACA SS			-
DFM140	TAG MCY GGG ATA ACR SYK G	Group 1	Desulfotomaculum	700bp
DFM842	ATA CCC SCW WCW CCT AGC AC		•	-
DBB121	CGC GTA GAT AAC CTG TCY TCA TG	Group 2	Desulfobulbus	1120bp
DBB1237	GTA GKA CGT GTG TAG CCC TGG TC		\$	-
DBM169	CTA ATR CCG GAT RAA GTC AG	Group 3	Desulfobacterium	840bp
DBM1006	ATT CTC ARG ATG TCA AGT CTG			
DSB127	GAT AAT CTG CCT TCA AGC CTG G	Group 4	Desulfobacter	1150bp
DSB1273	CYY YYY GCR RAG TCG STG CCC T		•	
DCC305	GAT CAG CCA CAC TGG RAC TGA CA	Group 5	Desulfococcus-	860bp
			Desulfonema-	
			Desulfosarcina	
DCC1165	GGG GCA GTA TCT TYA GAG TYC			
DSV230	GRG YCY GCG TYY CAT TAG C	Group 6	Desulfovibrio-	610bp
			Desulfomicrobium	
DSV838	SYC CGR CAY CTA GYR TYC ATC			
ſ				

^a16S rDNA positions, *E.coli* numbering ^bAmbiguities: R(G or A); Y(C or T); K(G or T); M(A or C); S(G or C); W(A or T) touchdown primer annealing from 65 to 55°C (decreasing 0.5°C), followed by 10 cycles at 55°C. *Geothrix* species were also determined with a semi-nested primer. The primers for the first round of PCR were 8F and the *Geothrix*-specific reverse primer Gx.472R (5'-AGG TAC CGT CAA GTA ACA SS-3'). The *Geothrix*-specific forward primer Gx.182F (5'-AGA CCT TCG GCT GGG ATG CT-3') and Gx.472R were the primers for the second round. 20 μ L of DNA from all reactions were then was visualized in a 2% agarose gel with ethidium bromide. Gels were visualized on an Alpha Innotech Corp. (San Leandro, CA) and software provided with the instrument was used to analyze the bands and determine the size of each band.

3.3 Results and Discussion

3.3.1 VOC Concentration Changes as Indicators of Biodegradation

The concentration of TCE in the effluent water reached the influent concentration (C/Co=1) after approximately 57 days for the biotic column and 75 days for the inhibited column (Figure 3-3). The differences in TCE arrival times likely reflect small variations in physical factors, such as the size or frequency of occurrence of fractures and root holes in the two columns. The relative concentration of TCE in effluent from the biotic column dropped below C/Co=1 after 60 days and continued to decrease until about 150 days, after which it remained relatively constant at a value of approximately 0.5 by 245 days. Concentration loss of TCE was not observed in effluent from the inhibited column, which maintained a relative concentration of approximately 1 throughout the remainder of the experiment. Because TCE concentration loss was only observed in the biotic column,

Figure 3-3. Relative concentration of TCE in effluent from biotic and abiotic columns with elapsed time since injection of TCE.

this indicates that the concentration loss most likely occurred due to microbial degradation of the TCE.

In the biotic column, cDCE was first detected in effluent after 31 days and concentrations stabilized at 30-100 ppb after 50 days (Figure 3-4). VC was detected in effluent after 234 days and the maximum VC concentration was 10 ppb (Figure 3-4). These compounds were not observed in the inhibited control column (Figure 3-5). Chloride concentrations were higher than influent concentrations (Table3-2), which would also indicate reductive dechlorination. The presence of the daughter products cDCE and VC in the biotic, but not the inhibited column, again indicates that anaerobic biodegradation of TCE was occurring. The rate of cDCE production, once cDCE was observed in the effluent was $0.6-\mu$ M cDCE/day. A mass balance for TCE over the life of the biotic column (250 days) indicated that 73% of the input TCE (12.5 mol) was observed in the effluent as TCE (9.1 mol), 3% (0.4 mol) as cDCE, and 0.1% (0.02 mol) as VC. In the inhibited control 76% of the input TCE (10.1 mol) has been accounted for in the effluent (7.6 mol). The unaccounted for TCE mass in both columns (24%) could be due to other natural attenuation processes such as sorption, diffusion, or volatilization.

3.3.2 Redox Indicators of Biodegradation

Measurements of redox conditions in effluent from the biotic and inhibited columns were utilized to assess the nature of TCE degradation in the saprolite. If anaerobic biodegradation is responsible for the observed VOC concentration changes, then the effluent should contain appropriate electron acceptors to facilitate this process. In the

Figure 3-4. VOC concentrations in the biotic column.

	Elapsed time (days)				
	-40	9	87	136	248
O ₂ (ppm)	3.41	1.54	2.3	1.5	1.42
Fe(II) (ppm)	0	0.4	1.2	1.2	1.6
SO ₄ (ppm)	53.7	53.7	56.18	58.7	62
S ²⁻ (ppm)	0	0	0.02	0.02	0.17
Cl- (C/Co)*	1	1	1	7.49	4.5
TCE (ppb)	0	263	1565	840	1703
cDCE (ppb)	0	0	25	58	112
VC (ppb)	0	0	0	0	10
AFCEE Score	0	2	6	8	15
AFCEE					
assessment of					
natural					
attenuation	inadequate	inadequate	limited	limited	adequate

3

Table 3-2: VOC, chemical results, and AFCEE score for selected time points in effluent from the biotic column.

*Co=0.667 ppm
case of TCE biodegradation, Fe(III), sulfate, and carbonate can all be used as electron acceptors (Bouwer, 1994). Two methods were used to determine which electron acceptors are being utilized in the columns. The first method is based on Eh-pH diagrams. As shown on Figure 3-6, the influent was above the Fe(OH)³/Fe²⁺ (iron reduction) stability line, indicating that the influent conditions were not iron reducing (Chapelle et al., 1996). Effluent water from the biotic column and the inhibited control column are shown in Figures 3-7 and 3-8, respectively. Eh-pH values in the effluent samples from the inhibited column were generally above the iron-reduction stability line, except for some early samples indicating that iron reduction was not occurring in the inhibited column. By comparison, the effluent from the biotic column showed a trend towards more reducing conditions, with longer exposure of TCE. This indicates that the environment within the biotic column is suitable for reductive dechlorination of TCE.

The second method used to determine which electron acceptors are involved in degradation is direct measurement of appropriate electron acceptors and their reduced form in the groundwater. To investigate this, influent and effluent water from both the biotic and inhibited columns were monitored for dissolved oxygen, reduced iron, sulfate and sulfide. For the inhibited column concentrations in the influent and the effluent water were approximately the same for dissolved oxygen (3.5-5.5 ppm), sulfate (49-68 ppm), reduced iron (below detect) and sulfide (below detect) indicating that these potential electron acceptors were not being utilized for degradation. This contrasts with effluent from the biotic column, which showed substantial differenced between influent and effluent for some of these indicators. The dissolved oxygen content of effluent from

400 J

Figure 3-6. pH/Eh stability diagram for the influent water showing equilbria for the Fe-(OH)₃/Fe²⁺, SO₄/HSredox couples (Chapeile et al., 1996).

Figure 3-7. pH/Eh stability diagram for effluent water from the biotic column showing equilbria for the Fe-(OH)₃/Fe²⁺, SO₄/HS- redox couples (Chapelle et al., 1996). Elapsed time refers to the time since the introduction of TCE to the influent water.

,

400 -

the biotic column prior to TCE injection was around 3.5 ppm, and it dropped to below 1.5 ppm after 9 days after injection of TCE. The drop in dissolved oxygen leads to anaerobic conditions, but is not necessarily associated with TCE biodegradation. Figure 3-9 shows concentrations of reduced iron and sulfide in the biotic column. Prior to TCE injection, Fe(II) was not observed in the effluent water but after injection of TCE the reduced iron concentration steadily increased, reaching a value of 1.6 ppm within 250 days. This suggests that Fe(III) was being utilized as the electron acceptor during biodegradation of TCE. Sulfide concentrations remained below detection until day 65, and then briefly increased to a concentration of 0.01 ppm, which is just above the detection limit. The concentration then decreased below detection limit again until day 136, at which point it increased to approximately 0.1 ppm. This suggests that the sulfate was also being utilized in biodegradation of TCE, even though a decrease in sulfate concentration was not detected.

3.3.3 Microbial Community Analysis

The last factor needed to verify if anaerobic biodegradation of TCE is occurring in the biotic column is to determine if appropriate microorganisms necessary for biodegradation are present. Methanogenic, iron reducing and sulfate reducing bacteria have all been implicated in TCE dechlorination and consortia of bacteria are often involved in biodegradation of TCE (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990). Effluent water was analyzed to determine the types of bacteria that were present by enrichment and molecular techniques using specific primers. Enrichments for sulfate and iron reducing bacteria were performed on effluent

samples from the biotic and inhibited column. As expected, all samples from the inhibited column were negative for the presence of iron reducing bacteria and sulfate reducing bacteria. In the biotic column, enrichments for iron reducing bacteria were positive in the effluent in every sample throughout the duration (205 days) of the experiment. Iron reducing bacteria were not present in the influent water. This indicates that iron reducing bacteria which are likely responsible for at least part of the TCE biodegradation, are naturally found in the saprolite and survived the injection of TCE. Sulfate reducing bacteria were detected only after 205 days. The presence of sulfide in the effluent water would indicate that sulfate reducing bacteria should be present after 65 days. The finding that iron reducing bacteria were present in the biotic column is similar to findings by Lovely and Anderson (2000). The observed that when anaerobic groundwater was exposed to organic contaminants, iron reducing bacteria came to dominant the community. However, the present study did not examine concentration or relative abundance of iron reducing bacteria, so we cannot determine whether they dominate the microbial community in the saprolite.

Using effluent samples from the columns, PCR products were obtained using specific primers for iron reducing bacteria (*Geobacter* and *Geothrix*) implicated in biodegradation of organic compounds, plus six different phylogenetic groups of sulfate reducing bacteria, and methanogens. The inhibited column effluent did not contain any of these organisms while effluent from the biotic column was positive for these organisms in every sample. This is consistent with the enrichment results for iron reducing bacteria, as described above. This indicates the presence of these organisms, but again, as was the

case for the enrichment investigations, does not provide measurements of concentration or relative abundance compared to the whole microbial community. Sulfate reducing bacteria PCR primers were used to determine the main type of sulfate reducing bacteria associated with exposure to TCE. Of the 6 primer sets tested, only group number 5 (Daly et al., 2000) produced a PCR product from effluent samples from the biotic column (Figure 3-10). Group number 5 consists of *Desulfococcus-Desulfonema-Desulfosarcina*, which are members of Proteobacteria δ subdivision and are likely responsible for sulfide observed in the effluent from the biotic column near the end of the experiment (Figure 3-9). The last group of microorganisms that have been implicated in TCE biodegradation is methanogens. These organisms were not detected in the effluent lines of either the biotic or inhibited column suggesting that reducing conditions in the columns were not acceptable for these organisms, or that they were not be present.

3.3.4 Natural Attenuation Evaluation

A method for assessing the potential for natural attenuation in groundwater was evaluated using the guidelines described by Brady et al. (1999) and Wiedemeier et al. (1998). The Air Force Center for Environmental Excellence (AFCEE) protocol (Wiedemeier et al., 1998) uses different weighed analytical parameters, such as redox conditions to determine potential for biodegradation of TCE. The score serves only to suggest the likelihood of natural attenuation in groundwater at a contaminated site and provides a clear identification of data needed for natural attenuation implementation. Table 3-2 lists the values for different geochemical parameters from five effluent samples taken from the biotic column at different times throughout the experiment along with the AFCEE score.

Elapsed time

A score of -1 to 5 shows inadequate evidence for anaerobic biodegradation; 6 to 14 points shows limited evidence for anaerobic biodegradation; a score of 15 to 20 points is adequate evidence for anaerobic biodegradation; and a score greater than 20 points is strong evidence for anaerobic biodegradation. The AFCEE score for the biotic column increased throughout the experiment, starting out as inadequate evidence for anaerobic biodegradation (-56 days to 84 days), limited evidence at 87 to 205 days and by the end of the experiment indicated that there was adequate evidence for anaerobic biodegradation. The AFCEE scores for the biotic column showed inadequate evidence for anaerobic biodegradation. The AFCEE scores are consistent with the previously described evidence of TCE biodegradation in the biotic, but not the inhibited column. The AFCEE score only indicated that anaerobic biodegradation was occurring after 87 days while other indicators (presence of daughter products, reducing conditions, redox indicators) suggested that biodegradation started earlier.

3.3.5 Comparison to Field-Scale Evidence of Biodegradation at WAG5

This investigations of TCE biodegradation described in this chapter were inspired by a previous field study (Chapter 2), which found strong evidence that biodegradation of TCE and its daughter products was taking place in an existing plume of organic contaminants in fractured and slightly weathered shale at the WAG5 site on the ORR. There are many similarities between the findings of the laboratory and field studies, as described below. The geologic settings at the WAG5 site and the nearby SWSA7 site are nearly identical, except that there is a thicker mantle of saprolite overlying bedrock at the

SWSA7 site. The field study focused on the fate of contaminants in the upper 3-4 m of the bedrock, while the lab study used columns collected in the saprolite approximately 1 m above the saprolite-bedrock contact. The lowermost saprolite and the upper bedrock are, in many respects, geochemically similar, so a comparison of the findings of the two studies is warranted.

At the WAG5 site, there is a decline in concentration of TCE with downgradient distance from the waste trench, and increases in concentration of compounds that are indicative of TCE biodegradation including cDCE and VC. In the biotic column TCE concentration decreased with time and cDCE and VC, which were not initially present, both appeared after TCE was added to the column and their concentrations were still rising at the end of the experiment. The production of ethylene and methane might also have occurred in the biotic column, given a longer period of time. Redox conditions at the WAG5 site indicated that iron reduction, sulfate reduction and possibly methanogenesis were occurring, and these conditions are favorable for anaerobic biodegradation of TCE. In the biotic column, redox conditions shifted towards a more reducing environment after the injection of TCE, with iron reduction occurring first followed by sulfate reducing conditions. This suggests that similar shifts in redox conditions might have occurred at the WAG5 site in the first few months or years after TCE was disposed of in the waste trenches. Methanogenesis was not observed in the biotic column, which could either be due to insufficient time for highly reducing conditions to develop, or it may be that methane observed at the WAG5 was from the presence of other wastes in the trenches. Microbial community analysis at WAG5 revealed the presence of methanotrophs,

methanogens, iron reducing bacteria, and sulfate reducing bacteria, whereas in the biotic column only iron reducing and sulfate reducing bacteria were present. Methanotrophs were not examined for in the biotic column because these organisms are aerobic bacteria and the columns were intended to examine only anaerobic biodegradation. Methanogens were not detected in this experiment but were detected at the field site, suggesting that either reducing conditions in the columns were not acceptable for these organisms, that they might not be present, or that the methanogens are associated with other organic waste at the WAG5 site. In both the field study and the lab study there is strong evidence of anaerobic biodegradation of TCE, and it appears that this process can occur in both the shale bedrock and the overlying saprolite.

3.4 Conclusions and Implications

This study demonstrates that microbially mediated degradation of TCE under iron reducing and sulfate reducing conditions can spontaneously occur in fractured saprolite derived from sedimentary rock. The decrease in TCE mass and the appearance of daughter products of TCE (cDCE and VC) in the biotic column, but not in the inhibited column, are evidence of anaerobic biodegradation of TCE. The earliest evidence of biodegradation (appearance of cDCE) occurred within 30 days of the introduction of TCE into the previously uncontaminated biotic column, indicating that the necessary shifts in microbial communities and redox conditions can occur rapidly. Within the biotic column relative concentration of TCE decreased by up to 50% after traveling through only 25 cm of saprolite and it is quite possible that for longer transport distances and residence times biodegradation would proceed to an even a greater extent than was observed.

The shift in redox conditions (appearance of Fe(II) and sulfide) that occurred during biodegradation of TCE in the biotic column suggestions that there might be a correlation between these conditions and processes. As well, iron reducing and sulfate reducing bacteria were detected in the effluent water in the biotic column. However, these factors do not necessarily imply that iron reduction or sulfate reduction were directly involved in TCE biodegradation. Iron reducing bacteria, such as Geobacter sp., have been implicated in the oxidation of TCE in several recent investigations (Lovely and Anderson, 2000; Krumholz et al., 1996). Evidence from this experiment suggest that these types of microorganisms may be involved in the biodegradation, but further research needs to be done to determine the direct link between these organisms and biodegradation of TCE. TCE can also be reductively dechlorinated by sulfate reducing bacteria through a process that is thought not to be energy yielding but rather co-metabolic because only a small fraction of the total reducing equivalents derived from the oxidation of electron donors is used to reduce the solvent (Bagley and Gossett, 1989; Maymo-Gatell et al., 1995). The concomitant presence of sulfate reducing bacteria, sulfide, and TCE daughter products (cDCE and VC) suggest that these organisms might also be involved the biodegradation of TCE, but again future research is needed to determine if there is a direct link.

There is a tendency to ascribe a single dominant dechlorination pathway to biodegradation in an aquifer or soil based on bulk parameters such as presence of Fe(II) or specific type of microorganism (Lee et al., 1998). However, field sites in fractured shale and saprolite are often complex heterogeneous mixtures of aerobic and anaerobic

microenvironments that result from seasonal water table fluctuations and differences in permeability, lithology, channeling of water flow, and contaminant source zone characteristics (Jardine et al., 1999; Lee et al., 1998). Hence, it is possible that multiple dechlorination pathways such as iron reduction and sulfate reduction could simultaneously or sequentially operate in heterogeneous materials.

This experimental study and a companion field study (Chapter 2) both indicate that the current AFCEE protocols for natural attenuation, which are based on monitoring of geochemical parameters, are appropriate for assessing the potential for TCE attenuation in the shale and shale saprolite found at the Oak Ridge Reservation. The two studies, one in the shale and the other in the overlying saprolite, indicate that these materials are geochemically and microbially similar, and that TCE biodegradation likely occurs in much the same manner in both materials.

Chapter 4

Preliminary Investigations of Biodegradation of TCE in Fractured Saprolite

4.1 Introduction

This chapter describes a preliminary biodegradation study that was carried out in a column of saprolite from ORR. The principal hypothesis of this research is that microbial and geochemical conditions in the uncontaminated saprolite are favorable for anaerobic biodegradation of TCE, so that upon introduction of TCE into the saprolite, it will biodegrade "naturally" without addition of specially selected bacteria, cometabolites or other chemicals. The objective of this preliminary study was to determine the adequacy of the experimental design for determination of biodegradation of TCE. Determination of potential for biodegradation was assessed by a multiple analytical approach consisting of monitoring VOC concentration, redox conditions, and evaluation of microbial techniques (enrichment and molecular techniques). Several problems were encountered during the study that prevented the researcher from clearly assessing the nature of biodegradation occurring in the column. However, this research did form the foundation of latter experiments to evaluate biodegradation of TCE in fractured saprolite (Chapter 3).

4.2 Material and Methods

4.2.1 Geological Setting

The experimental investigation was carried out using an undisturbed sample of uncontaminated residual soil (saprolite) obtained from an existing research site in the proposed Solid Waste Storage Area #7 (SWSA7) at the ORR (Figure 4-1). The saprolite at SWSA7 has been extensively characterized from a physical and hydrogeological perspective (Solomon et al., 1992; Jardine et al., 1993; Cumbie and McKay, 1999; Driese et al., in review). The saprolite is derived from *in situ* weathering of the underlying sedimentary bedrock, which is composed of interbedded shale, siltstone, and sandstone, which is part of the Dismal Gap Formation of the Middle to Upper Cambrian Conasauga Group (Hatcher et al., 1992). The carbonates have been leached, leaving a high porosity detrital matrix, which retains much of the structure of the parent bedrock. These structural features include bedding which generally dips towards the southeast at 17 to 72°, and fractures caused by regional tectonic activity. Fractures occur both parallel and oblique to bedding, with typical fracture spacing in the saprolite ranging from 0.005 to 0.9 m (Dreier et al., 1987; Solomon et al., 1992; Cumbie, 1997). Macropores formed by roots are also present in the saprolite to depths of >2 m in some places. The total porosity ranges from 15% to 58% (Dorsch and Katsube, 1999) with porosity due to fractures and biopores being approximately 1-2% (Cropper, 1998). In the upper portion of the saprolite many of these pores have been infilled with pedogenic clays or Fe/Mn oxides (Jardine et al., 1993; Driese et al., in review). Hydraulic conductivity values for columns previously collected at SWSA7 ranged from 2.7×10^{-4} to 4.5×10^{-9} m/s (Driese et al., in review).

Figure 4-1. Site location within the Oak Ridge Reservation.

4.2.2 Flow-through Experiments in Undisturbed Soil Column

The 23 cm diameter, undisturbed saprolite column collected for use in this study was excavated with hand tools and setup following the methods of previous researchers working in saprolite at ORR (Reedy et al., 1996; Howard, 1997; Cumbie, 1997; Haun, 1998). The method was modified to make the casings and endcaps TCE solvent-resistant (Cropper, 1998; Pitner, 2000). The column was collected at a depth of 1.5 to 2.5 m below ground surface, and approximately 1 m above the bedrock contact, which crop out in a nearby stream. The sample was excavated in the shape of a cylinder with hand tools to keep disturbance to a minimum. A 25 cm diameter PVC casing was fitted over the saprolite column and the annulus was filled with Ureol 6414 solvent-resistant epoxy (Ciba, Helsinki, Finland). After collection, the column was immediately taken to the laboratory and disturbed material was trimmed from the ends in preparation for fitting with solvent-resistant end caps. The final lengths of the columns were 25 cm. The column was placed in a 12°C environmental chamber and sealed to prevent exposure to the atmosphere.

The column was setup to carry out saturated flow-through experiment as shown in Figure 4-2. The injection system consisted of a Tedlar sampling bag (SKC, Eighty Four, PA) connected to an HPLC pump using all stainless steel fittings. The flow rate was set at 0.2 mL/min, which corresponds to a specific discharge rate of 0.7 cm/day. This is within the range of specific discharge rates determined in previous field studies in deep saprolite and weathered shale at ORR (McKay et al., 1997; Lee et al., 1992). The sample was

Figure 4-2. Column setup. Saprolite column was placed in a 12°C chamber. Various concentrations of TCE ranging from 0-13 ppm were injected into the column at 0.2 mL/min. Effluent was monitored for VOC, redox conditions, and microbial community.

saturated with groundwater from bedrock well at the SWSA7 site. Ultra high pure grade helium was bubbled through the well water for 40 minutes before it was used for the influent solution. After 48 days of injection of TCE-free influent water, the TCE injection started. All times in this experiment are elapsed times relative to the TCE injection. The TCE injection consist of 58 days at 0.1 ppm followed by around 21 days of 13 ppm (estimated) followed by 7 days of 0.1 ppm followed by 40 days of 1 ppm followed by 135 days of <0.01 ppm. Due to operational problems, exact documentation of injection concentration had to be estimated during the highest TCE concentration (Chris Knight, personal communication).

4.2.3 Monitoring of VOC and Redox Conditions

The effluent from the column was used for monitoring of dissolved solvent output, biodegradation products, redox conditions, and microorganisms. Samples were taken from a sampling port at the base of 150 mL stainless steal sampling vessel (Swagelok, Solon, OH) fitted at the effluent end of the column and sealed to an Erlenmeyer flask for overflow. Care was taken to collect VOC samples with minimal loss. The samples were collected in 40 mL vials with Teflon coated septa for VOC. The samples contained zero headspace, and were stored upside-down for no longer than 2 weeks to prevent any loss of VOC by diffusion or volatilization. The samples were analyzed using a Shimadzu GC-14A (Japan) gas chromatograph (GC). The inlet temperature for the gas chromatograph was 200°C and the detector was 200°C. The initial column temperature was 35°C for 5 minutes then increased 5°C/minutes to a final temperature of 100°C for 5 minutes. Dissolved oxygen was determined with YSI dissolved oxygen meter (Yellow Spring, OH). Redox analysis for Fe (II), sulfate and sulfide were determine using Hach (Loveland, CO) kits for the specific chemical, following manufacture's directions. Chloride was determined by ion specific probe (Corning, Corning, NY). pH and Eh were measured in effluent water using an Orion portable pH-Eh meter model 250A (Boston, MA).

4.2.4 Microbial Community Structure Analysis

۱

Iron reducing and sulfate reducing bacteria were tested in the influent and effluent water. BART-IRB and BART-SRB media obtained from Hach (Loveland, CO) were used for determination of iron and sulfate reducing bacteria, respectively. Molecular analysis for identification of individual microbes in the microbial communities was determined from effluent water samples. 25-500 mL of effluent water was collected in sterile vials and then filtered through a 0.2µm filter (Durapore, Millipore, Bedford, MY). Samples were then stored at --80°C until further processing. DNA was extracted by bead beating filters with lysing matrix (Bio101, Carlsbad, CA) and 1 mL of STE buffer (10mM Tris (pH 8), 1 mM EDTA, and 100 mM NaCl) for 20 s and 4 m/s. Samples were centrifuged for 2 minutes at 10,000 rpm. The supernatant was placed into a new sterile microcentrifuge tube and stored at --80°C until further processing.

In this experiment, PCR products were obtained from effluent samples using specific primers for target organisms. Extracted DNA from effluent water was amplified in a reaction mixture with Ready-to-Go[™] PCR beads (Amstersham Pharmacia, Piscataway, NJ) and a 10 nM concentration of each of the primers listed below. Reaction mixtures

were incubated in a Perkin Elmer (Wellesley, MA) Gene Amp PCR system 2400 thermal cycler. PCR primer sets for the 16S rDNA gene of six phylogenetic groups of sulfate reducing bacteria were used as described by Daly et al. (2000; Table 4-1). 10 μ L of template DNA from each PCR reaction was then was visualized in a 2% agarose gel with ethidium bromide. Gels were visualized on an Alpha Innotech Corp. (San Leandro, CA) and software provided with the instrument was used to analyze the band patterns and determine the size of each band.

Clonal libraries were constructed from community rDNA PCR-amplified used Ready-to-Go™ PCR beads (Amstersham Pharamicia, Piscataway, NJ) and 10 nM of 16S forward primer 530F (5'-GTG CCA GCM GCC GCG GTA A-3') (Lane et al., 1985) and the 16S reverse primer of 1392R (5'-ACG GGC GGT GTG TRC-3') or with RISA primers (Cook et al., 1999). Reaction mixtures were incubated at 94°C for 5 minutes followed by 15 cycles 94°C for 30 seconds, 60°C for 45 seconds, and 72°C for 2 minutes and then by a final extension period of 7 minutes at 72°C. 10 µL of PCR product then was visualized in a 2% agarose gel with ethidium bromide. RISA fragment size for 5 of the RISA clones (40R-1, 40R-6, 40R-4, 40R-9, and 40R-10) were determined by amplifying plasmid preparations with RISA primers. PCR products were cloned with a TOPO TA Cloning kit (Invitrogen Corp., Carlsbad, CA) in accordance with manufacturer's directions. Plasmid DNAs containing inserts were prepared for sequencing using RPM AFS Midi plasmid preparation kit (Bio 101, Carlsbad, CA). Clones were screened prior to sequencing using random fragment length polymorphism (RFLP) to determine unique clones. The enzyme Hha and Rsa1 (0.2 μ L) were added to 18 μ L plasmid preparations

Lable 4-1.	TADCET	-targeted PCK primer sequences specific	tor SKB sub	groups (Daly et al., 2	2000).
FKINEK	IAKGEI	SEQUENCE 5'-3'	GROUP	TYPE	EXPECTED
	SITE				SIZE PRODUCT
DFM140	140-158	TAG MCY GGG ATA ACR SYK G	Group 1	Desulfotomaculum	700bp
DFM842	842-823	ATA CCC SCW WCW CCT AGC AC		2	-
DBB121	121-142	CGC GTA GAT AAC CTG TCY TCA TG	Group 2	Desulfobulbus	1120bp
DBB1237	1237-1215	GTA GKA CGT GTG TAG CCC TGG TC			-
DBM169	169-183	CTA ATR CCG GAT RAA GTC AG	Group 3	Desulfobacterium	840bp
DBM1006	1006-986	ATT CTC ARG ATG TCA AGT CTG		5	-
DSB127	127-148	GAT AAT CTG CCT TCA AGC CTG G	Group 4	Desulfobacter	1150bp
DSB1273	1273-1252	CYY YYY GCR RAG TCG STG CCC T		5	-
DCC305	305-327	GAT CAG CCA CAC TGG RAC TGA CA	Group 5	Desulfococcus-	860bp
				Desulfonema-	
				Desulfosarcina	
DCC1165	1165-1144	GGG GCA GTA TCT TYA GAG TYC			
DSV230	230-248	GRG YCY GCG TYY CAT TAG C	Group 6	Desulfovibrio-	610bp
DSV838	838-818	SYC CGR CAY CTA GYR TYC ATC		Desulfomicrobium	

t •

^a16S rDNA positions, *E.coli* numbering ^bAmbiguities: R(G or A); Y(C or T); K(G or T); M(A or C); S(G or C); W(A or T)

.

and incubated at 30°C overnight. Samples were then visualized on a 2% agarose gel and compared to other clones that had been sequenced and screened using RFLP. Unique fingerprints were then sequenced. Sequences were obtained by the molecular biology sequencing facility, located on the University of Tennessee campus, equipped with an Applied Biosystems (Foster City, CA) 373A Automated Sequencer. Analysis of sequences was done using the GenBank (http://www.ncbi.nlm.nih.gov/) basic Blast search. Sequence alignments were performed using ClustalX (v. 1.64b) and the trees were constructed using TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html).

4.3 Results

4.3.1 VOC Concentration

The effluent water concentration was monitored for the presence of VOCs (Figure 4-3). Concentrations of TCE in the effluent increased to 0.1 ppm by 39 days after the injection of TCE began. After 58 days elapsed time, the influent concentration was inadvertently increased to a much higher concentration of around 13 ppm for 2 weeks, then was dropped to 0.1 ppm for 1 week, then raised to 1 ppm until day 135. The effluent concentration remained around 13 ppm during the period of fluctuating influent concentration. After 135 elapsed days, TCE-free influent water was injected into the column and the concentration of TCE in the effluent decreased slowly with time. The slow decline in concentration is most likely due to diffusive exchange of TCE between the matrix and the fractures. This type of behavior is characteristic of solute transport in fractured saprolite (Reedy et al., 1996; McKay et al., 1997).

Figure 4-3. VOC concentration in effluent water samples. Elapsed time is days after TCE injection.

One indicator of biodegradation is whether there is a decrease in the concentration of TCE along a groundwater flow path. The decrease in concentration of TCE observed after day 135 cannot be attributed to biodegradation but is mostly due to the flushing with the lower concentration influent water. A mass balance was attempted to determine if there was an overall mass loss of TCE in the column that could be ascribed to biodegradation but the calculated mass of TCE recovered in the effluent (20 mol) was actually greater than the mass estimated from the influent. This result reflects a high degree of uncertainty in the TCE concentration in the influent.

A potential indicator of biodegradation was the appearance of one of the daughter products of TCE biodegradation, cDCE. cDCE was first detected after 102 days (Figure 4-3) and was detected in few effluent samples. At day 135, contaminant-free influent water was injected into the column, possibly diluting cDCE below the detection limit. The presence of cDCE, however, provides evidence that reductive dechlorination of TCE had occurred in the column and therefore biodegradation may occur in fractured saprolite.

4.3.2 Redox conditions

Redox conditions can be used to indicate the potential for natural attenuation of TCE (Chapelle and Brady, 1998). Reductive dechlorination of TCE occurs under anaerobic conditions in which Fe(III), SO₄, or CO₂ acts as the alternative electron acceptor, forming Fe(II), sulfide, and methane, respectively (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and Gossett, 1990). There are two methods to

determine which electron acceptors are being utilized. The Eh-pH diagram for the influent and the effluent water is shown on Figure 4-4. The influent is above the $Fe(OH)_3/Fe^{2+}$ stability line (Chapelle et al., 1996) indicating that it was not under iron reducing conditions , whereas all the effluent samples remain below the iron reduction stability line, thus indicating iron reducing conditions.

The determination of appropriate electron acceptors can also be directly measured in the effluent water. Influent concentrations of sulfate were 47.3 ± 17.2 ppm, whereas Fe(II) and sulfide were below detection. Figure 4-5 indicates the concentration of Fe(II) and sulfide for the effluent water in elapsed time after the injection of TCE. Fe(II) was not observed for the 48 days prior to injection of TCE, but only after the start of 0.1 ppm TCE injection into the column. The concentration of reduced iron increased during the first 30 days and then reached a steady state concentration of 1.2 ppm. After day 138 levels of Fe(II) increased until the end of the experiment at a concentration of 3.5 ppm. This indicates that iron reduction was occurring in the column. Sulfate concentration varied throughout the study (42.0 ± 10.8 ppm), corresponding to the natural fluctuations in the influent water. Sulfide was only detected in one sample from the effluent, which may or may not indicate sulfate reducing conditions.

4.3.3 Microbial community structure

Methanogenic, iron reducing and sulfate reducing bacteria have all been implicated in biodegradation of TCE and consortia of bacteria are often involved in biodegradation of TCE (Wilson et al., 1986; Freedman and Gossett, 1989; Smatlak et al., 1996; Bagley and

ł

days after TCE injection. Prior to TCE injection Fe (II) was not observed in effluent.

Gossett, 1990; De Wever et al., 2000). Assessment of the microbial community was done by direct enrichment of bacteria and identification of bacteria via detection of nucleic acid.

Enrichments for iron reducing bacteria were positive in every sample throughout the duration of the experiment. Lovely and Anderson (2000) showed that after exposure of a microbial community to an organic contaminant such as hydrocarbons under anaerobic conditions, iron reducing bacteria were dominant. This result confirms the presence of iron reducing bacteria, but does not provide a concentration or abundance relative to the entire microbial community, therefore after a TCE spill it is not clear if these organisms dominate the system from this analysis. This evidence is also consistent with the Fe(II) data, which also suggest iron reducing conditions.

Sulfate reducing bacteria were detected by enrichment and by specific primers. The enrichments were positive during the course of the experiment, thus indicating the presence of these organisms. Specific primers were used to determine the main type of sulfate reducing bacteria found in this column with exposure to TCE (Daly et al., 2000). Of the 6 phylogenetic groups tested, only group number 5 produced a band from the effluent after exposure to TCE (Figure 4-6). Group number 5 consists of *Desulfococcus-Desulfonema-Desulfosarcina* which are members of Proteobacteria δ subdivision. This suggests that sulfate reducing bacteria are present, although reducing conditions in the column were not suitable for these organisms, as indicated by the lack of sulfide.

Figure 4-6. RISA gel with 250bp ladders with lanes labelled with elapsed time.

Clonal libraries were constructed to identify bacteria in the influent and effluent water samples. Clonal libraries in this experiment were constructed using universal primers (530f & 1392r) for 16S rDNA and RISA primers (1055f & 23Sr) for the intergenic region between the 16S and the 23S rDNA. Eight rDNA clonal libraries (Table 4-2) were prepared from bulk DNA extracted from influent and effluent samples and analyzed to determine microbial diversity. Tables 4-3 and 4-4 summarize the distribution by phylogenetic divisions for libraries obtained prior to TCE injection (and influent water) and after TCE injection, respectively. The size of the ribosomal interspace spacer region was determined for five of the RISA clones. It was determined that *Geobacter, Geothrix* and *Trichlorobacter* had a fragment size of 1350 bp, *Dechlorimosa* was 1262 bp and *Desulfitobacterium* was 1095 bp (Figure 4-6).

Based on the clonal sequences, a broad spectrum of bacterial and archaeal diversity was observed prior to TCE injection and in the influent water, with a shift towards diminished diversity occurring after the injection of TCE. Prior to TCE injection 2 clones were archaeal and 40 clones were bacterial. 26 clones were $\geq 94\%$ identical to rDNA sequences available in GenBank as of August 2000 (Table 4-4). Phylogenetic groups represented included: Cytophaga (19%), Plantomycetales (9.5%), Proteobacteria (α) (21%), Proteobacteria (β) (12%), Proteobacteria (γ) (14%), Proteobacteria (δ) (4.7%), Firmicutes (9.5%), and Archeaon (4.7%). Approximately 1.8% of the clone sequences could not be placed into known phylogenetic groups and 1 clone was affiliated with a candidate division with no cultivated representatives (TM7 division) (Dojka et al., 1998).

		Source of	Number of Clones		Influent Concentration
Clone Library	Primers	water	Sequenced	Elapsed time	of TCE (ppm)
778	530f-1392r	influent	25	-40	0
716	530f-1392r	influent	7	-40	0
5	530f-1392r	effluent	10	-6	0
16	530f-1392r	effluent	12	34	0.1
22	530f-1392r	effluent	11	74	13
40	530f-1392r	effluent	15	136	0
40b	530f-1392r	effluent	16	136	0
40R	1055f-23S	effluent	11	136	0

Table 4-2. Clone libraries constructed from influent and effluent water.

.

v

Clone Number ^a	Putative Division	Database Match ^b
778-18, 778-29	Crenarchaeota	99% 94% uncultured archaeon WCHA1-38 (AE050613)
	Crentil Underlia	>>/0, >+/0 uncultured archaeoli wCrA1-30 (Ar030013)
778-26	Inidentified bacterium	
110-20	Omdentified Dacterfulli	
5-11	Candidate division TM7	
5-11		
778-17 778-31 778-	Cutonhagalas	
37 716 15 716 115	Cytophagates	
779 1 779 74	Cutanhanalan	049(un sultured as it has to D. ED14 (AE60760)
770-1, 770-24	Cylophagales	94% uncultured soil bacteria DgEP16 (AF59759)
//8-39	Cytophagales	95% uncultured bacterium BURTON-31 (AF142849)
5 13	Firmieutes	000/ Bladeness and the baster of the sector
5-15	rirmicules	(A F2200876)
778-40	Firmiautas	(Ar2509870)
776-40	<i>Firmicules</i>	98% High mol%0+C Gram positive bacterial (AJ225339)
710-13	Firmicules	
/10-12	Firmicules	95% unidentified eubacterium clone BSV76 (AJ229220)
778-21	Plantomucatalas	
770-21	Plantomycetales	
//8-33, //8-30;/10-10	Plantomycetales	
778-25	Protechacteria S	
110 25	Subdivision	
5 10	Buotoo kastavia S	
5-10		
	Subdivision	
778-5	Proteobacteria v	96% Providements on CAEP ID4 6 first hydrocarbon contaminated
	Subdivision	2011 Seauchionas sp. CAI D-51 4-0 Incl-hydrocarbon containinated
778-3	Proteobacteria v	25% Unaultrad gamma material Sur 0001 (U.C. A.240007)
	Subdivision	95% Onculred gamma proteobacteria Sva0091 (OGA240987)
716-14	Brotochastoria v	
/10-14	Subdivision	95% Iron-oxidizing lithotroph ES-1 (AF012541)
770 77	Subdivision	
//8-2/	Proteobacteria y	95% Xanthomonas axonopodis (AF123091)
770 6	Subdivision Destachesterie	
//8-0	Proteodacteria y	97% Pseudomonas sp. J1 isolated from creosote contaminated soil
770.22	Subdivision	(AF195877)
//8-32	Proteobacteria y	
	Subdivision	
778-38	Protochastoria B	000/ upper land and the land in 1405 0 (UDD 7450)
//0-00	Proteobaciena p	98% uncultured proteobacterium 1405-9 (UPR/650)
716 114	Subdivision	
/10-114	Proteobacteria p	
770 0	Subdivision	
//0-0	Proteobacteria p	97% Raistonia pickettii aerobic, toluene-degrading bacteria (L37367)
5 10	Subdivision	
5-12	Proteobacteria p	98% Herbaspirillum seropedicae (AJ238361)
5.04	Subdivision	
J-U4	Proteobacteria β	99% Ferribacterium limneticum Fe(III)-reducing mining-impacted
	Subdivision	freshwater lake (Y17060)
778 10	Dratashastasis -	070/ (1-1-1
//0-17	rroteopacteria a	91% Caulobacter sp. (AJ227773)
778-20 778 34	Brotechecteric ~	07.00% Couldbaster manager (AF126104)
//0-20, //0-34	Subdivision	71-7970 Caulobacter crescentus (AF125194)
	SUDUIVISION	

.

Table 4-3: Clone library of influent and effluent water prior to TCE injection.

09-May	Proteobacteria α Subdivision	98% uncultured eubacteria (AJ224988)
778-41	Proteobacteria α	97% Afipia genosp. 12 (U87783)
5-08	Proteobacteria α	100% Methylobacterium mesophilicum (D32225)
5-06	Subdivision Proteobacteria α	98% Rhodobacter capsulatus (D16427)
5-03,5-07	Subdivision Proteobacteria α Subdivision	100% Sphingomonas (X89909)

^aClone number=clone library-clone number

^bDatabase matches greater than or equal to 94%

. .

.

.

.

.

Clone Number ^a	Putative Division	Database Match ^b
40-37	Unidentified bacterium	
16-30 . 40R-9	Firmicutes Firmicutes	99% Microbacterium keratanolyticum (Y17233) 96% Desulfitobacterium chlororespirans reductive dechlorination of 3-chloro-4-hydroxybenzoate (U68528)
40-47	Cytophagales	95% uncultured eubacterium WCHB1-69 from chlorinated-
40b-16	Cytophagales	solvent-contaminated aquifer (AF050545)
22-02; 40R-1, 40R-6, 40R-11	Fibrobacter/Acidobacteria group	99% Geothrix fermentans dissimilatory Fe(III)-reducing bacteria (U41563)
16-6,16-7,16-8,16-14,16- 23,16-25,16-27,16-28;22- 3,22-4,22-6;40-49,40b-1,40b- 4,40b-10,40b-11,40b-13,40b- 14,40b-15,40b-20,40b-21	Proteobacteria δ Subdivision	96-99% Trichlorobacter thiogenes Reductive dehalogenation of trichloroacetic acid (AF223382)
22-1	Proteobacteria δ Subdivision	
1612 16-18; 40-23,40-33,40-42,40- 46, 40b-8,40b-9	Proteobacteria δ Subdivision Proteobacteria δ Subdivision	97% uncultured bacterium SJA-113 anaerobic, trichlorobenzene-transforming microbial
22-18, 40R-4	Proteobacteria δ Subdivision	96-98% Geobacter arculus (U96917)
40b-3 40b-12, 40R-8,40R-12 40b-19, 40R-10	Proteobacteria β Subdivision Proteobacteria β Subdivision Proteobacteria β Subdivision	94% unidentified beta proteobacterium (AB013258) 97% uncultured bacterium S28 (AF072922) 95% Dechlorisoma dissimilatory (per)chlorate-reducing (AF170349)
40b-24	Proteobacteria β Subdivision	98% nitrogen-fixing bacterium COL (AF214642)
40R-2	Proteobacteria β Subdivision	99% Duganella zoogloeoides (D14256)
40R-7	Proteobacteria a Subdivision	96% Hyphomonas sp (AJ224047)

,

Table 4-4: Clone library of effluent water after to TCE injection.

.

^bDatabase matches greater than or equal to 94%.

ι
This profile of 16S rDNA sequences is consistent with a soil and groundwater environment.

An analysis of the 16S rDNA sequences from effluent water after TCE exposure indicates a decline in microbial diversity population. Of the 65 clones sequenced, 0 clones were archaeal and 65 clones were bacterial. 61 clones were \geq 94% identical to rDNA sequences available in GenBank as of August 2000. Many of the closest matches in Table 4-5 were anaerobic organisms. The phylogenetic groups represented include: Cytophaga (3%), Plantomycetales (0%), Proteobacteria (α) (1.5%), Proteobacteria (β) (16.6%), Proteobacteria (δ) (68%), Firmicutes (3%), and Fibrobacter/Acidobacteria (7.7%). Approximately 1.5% of the clone sequences could not be placed into known phylogenetic groups. The profile of 16S rDNA sequences is consistent with other reported Fe(III) reducing environments with organic contaminant degradation (Snoeyenbos-West et al., 2000; DeWever et al., 2000; Lovely and Anderson, 2000). The diversity of the microbial community prior to and after TCE injection is shown in an evolutionary distance tree of the bacterial domain (Figure 4-7).

4.4 Discussion and Conclusions

Results from this preliminary investigation suggest that microbial and geochemical conditions in the uncontaminated saprolite were favorable for anaerobic biodegradation of TCE. Changes in the influent TCE concentrations prohibited determination of the amount of mass loss of TCE due to biodegradation. Reductive dechlorination of TCE by microorganisms results in the formation of the daughter product (cDCE). Thus the

Figure 4-7: Distance matrix trees showing phylogenetic relationships of 16S rDNA clones from prior and after TCE injection. Putative divisions are listed outside the brackets for panels A, B, and C. A) *Cytophaga, Firmucutes, Plantomycetales, Holophaga/Acidobacterium*, and TM7. B) *Proteobacteria*; and C) *Archea*. Numbers in brackets indicated number of nearly identical clones found in the same library. Brach points supported by bootstrap values (number tree with same branch order per 1000 tree generated) >75% are indicated by filled circles and those supported by >50% are indicated by open circles. Genbank accession numbers are in parenthesis.

presence of cDCE in the effluent indicates that anaerobic biodegradation of TCE had occurred in the saprolite.

Redox conditions in the column effluent indicated that iron reducing conditions developed after exposure to TCE. Fe(II) was not observed for the 48 days prior to injection of TCE but only after 4 days the start of 0.1 ppm TCE injection into the column. The switching of the influent water from the high concentration to a TCE-free influent water caused an increase in the concentration of Fe(II) in the effluent. This suggests that the high concentration of TCE was semi-inhibitory to the iron reducing bacteria, and once the concentration of TCE decreased, bacterial activity increased leading to enhanced production of Fe(II). Alternatively, it could also signify a time dependent reaction not influenced by changing TCE concentrations. The presence of Fe(II) does indicate that reducing conditions favoring TCE biodegradation existed in the saprolite, however this does not provide conclusive evidence of a link between iron reductions and biodegradation of TCE.

Microbial community diversity decreased after the TCE injection. A larger number of clones of *Geothrix* and *Proteobacteria* δ Subdivision (*Geobacter* sp. and *Trichlorobacter*) were after exposure to TCE. These organisms have been have been implicated in iron reduction. The role of iron reducing bacteria, such as *Geobacter* sp., in the oxidation of TCE has been observed (Krumholz et al., 1996; Lovely and Anderson, 2000). These organisms have been shown to dominate 16S rDNA sequences in laboratory studies in which Fe(III) reduction was stimulated with introduction of various

organic electron donors (Snoeyenbos-West et al., 2000). *Trichlorobacter* was also found to be important in reductive dechlorination of organic compounds like trichloroacetic acid, but experiments with TCE were found to be inconclusive (De Wever et al., 2000). Molecular analysis in both field and laboratory studies have demonstrated that microorganisms of the genus *Geobacter* become dominant members of the microbial community when Fe(III) reducing conditions develop as the result of the presence of organic contaminants such as hydrocarbons (Lovely and Anderson, 2000). The injection of TCE may have initiated a shift in the microbial community to one dominated by iron reducing bacteria known to be involved in the biodegradation of organic compounds (Snoeyenbos-West et al., 2000; Lovely and Anderson, 2000; De Wever et al., 2000).

Comparative analysis of 16S rDNA sequences does not allow for definitive determination of which microorganisms are responsible for TCE biodegradation (Rooney-Varga et al., 1999). Based on these results, it is proposed that iron reducing bacteria like *Geobacter* spp. and *Geothrix* are associated with reductive dechlorination of TCE. The results from this study supporting this finding include: 1) the significant increase in iron reducing bacteria upon the addition of TCE to the column, 2) the specific enrichment of a tight phylogenetic cluster of *Geobacter* spp. and *Geothrix* not found in the uncontaminated groundwater, 3) the presence of anaerobic daughter product (cDCE), and 4) the fact that the genus *Geobacter* and *Geothrix* contains organisms known to be able to perform reductive dechlorination of organic compounds using Fe(III) as the electron acceptor. This appears to be the first study to have a potential link between these organisms and biodegradation of TCE.

In conclusion, this preliminary study tested the adequacy of the experimental design and methodologies, and provided preliminary indications that biodegradation of TCE could occur in the saprolite. The experience gained from this led to improvements in the subsequent experiment, Chapter 3, including addition of an inhibited control column. The concentration of TCE in this preliminary study ranged from 0.1 to 13 ppm and showed that even at the highest level there was some evidence of biodegradation (appearance of cDCE). Therefore in the later experiment (Chapter 3) a midrange level of 1 ppm was used. It was also determined that the Shimadzu GC-14A GC was not effective in detection of low levels of cDCE and could not detect VC. A different GC located at ORR was used for the experiment described in Chapter 3 because it has a better detection limit (10 ppb) and could analyze larger sample volumes (5 mL). The methods for determination of redox conditions were found to be adequate and were not changed for the latter experiment. Methods for determination of microbial community structure were developed during this experiment and were applied to the latter experiments. The clonal libraries indicated the dominant microorganism after exposure to TCE to be Geobacter, Geothrix and Trichlorobacter. This information was used to find primers for these organisms and will later be used to examine and develop probes for these important organisms. Overall, this preliminary study indicated that biodegradation of TCE can occur in fractured saprolite and aided in development of methodologies for construction of a latter study in biodegradation of TCE (Chapter 3).

Chapter 5

Conclusions and Implications

This research demonstrated that anaerobic biodegradation of TCE can occur in both fractured shale (Chapter 2) and saprolite (Chapters 3 and 4) at the Oak Ridge Reservation. In both materials, the presence or appearance of daughter products of reductive dechlorination of TCE coincide with the existence or development of redox conditions and microbial communities thought to be related to anaerobic biodegradation of TCE. Similar trends were observed in both the fractured shale and saprolite, thus indicating that biodegradation pathways in both materials are similar. This study also demonstrated that a combination of geochemical and microbiological techniques could be used effectively to determine whether or not biodegradation of TCE was occurring. This is the first scientific study into biodegradation of TCE in fractured shale and saprolite that the author is aware of, and the findings should be of interest to many regulators, consultants and researchers working in this field.

At the WAG5 site, located in fractured shale, it appears that all of the TCE and most of daughter products are removed by biodegradation within 50 m of the suspected source area (Chapter 2). Because the contaminant source history and the background conditions are uncertain, it is not clear whether biodegrading conditions developed rapidly, or only developed after many years of exposure to contamination. The laboratory experiments (Chapters 3 and 4) indicate that biodegradation of TCE is efficient in saprolite. Within 30-230 days of introducing TCE to the previously uncontaminated biotic column,

different indicators of biodegradation appeared and by the end of the experiment (250 days) the effluent concentration of TCE had been reduced by 50%. This suggests that in the shale, which is geochemically and microbiologically similar to the saprolite, biodegradation conditions can also develop rapidly. These studies imply that for TCE in shale and saprolite, natural attenuation via biodegradation will likely be an effective remediation strategy.

There is a tendency to ascribe a single dominant dechlorination pathway to an aquifer based on bulk parameters such as the presence of Fe(II), or the isolation of a microorganism (Lee et al., 1998). However many aquifers, especially in fractured shale and saprolite, can be complex heterogeneous mixtures of aerobic and anaerobic microenvironments that result from fluctuations in the water table and differences in permeability, lithology, channeling of water flow, and frequently, proximity to sources of contamination. Multiple dechlorination pathways are likely to operate in heterogeneous aquifers at the same time as indicated by the types of microorganisms and the redox conditions that were identified in this research. Thus in the natural environment TCE biodegradation is likely to be a completed by different processes.

Data obtained from this research will be applied towards creating a conceptual model for TCE biodegradation in fractured clay-rich materials. This model can then be used to predict the potential for TCE degradation in bedrock and saprolite at ORR, and in similar materials at other sites. A better understanding of the fate and transport of DNAPL in fractured clay-rich materials may allow for development of more efficient treatment or

containment strategies. Heterogeneities in the geologic materials (especially fractured materials) strongly influence DNAPL distribution and can severely limit the performance of remediation technologies. Hence, the first steps in the clean up of a contaminated site are to characterizing the geological and hydrogeological aspects of the site and determine the extent of the DNAPL contamination. Biological characterization is also needed to determine if natural attenuation via biodegradation is occurring. Techniques developed in this study could be used to help characterize sites and better understand biodegradation processes occurring in fractured shale and saprolite.

Chapter 6

Future Research

6.1 Investigations of Microbial Community Structure in Groundwater

Preliminary investigations into biodegradation of TCE (Chapter 4) developed strategies to determine the microbial communities structure via clonal libraries. The clonal library from the preliminary investigation indicated the types of microorganisms that potentially develop after exposure of saprolite to TCE. Following completion of this dissertation, clonal libraries will be constructed following methods in Chapter 4 on influent and effluent samples from the biotic column in Chapter 3. Influent water samples prior to addition of TCE and one week after exposure to TCE will be done to determine if exposing the groundwater to TCE will cause a shift in the microbiological community. Effluent water sample prior to TCE injection and 16, 64, and 141 days after exposure to TCE will also be analyzed. It is expected that the microbial community will shift and develop into a community dominated by organisms able to biodegrade TCE and will be similar to clonal libraries from the preliminary investigation.

6.2 Investigations of Microbial Community Structure in Saprolite

Additional research on the biotic column from Chapter 3 will also be done to determine if microbial communities in the column effluent (Chapter 3 and Section 6.1 above) are representative of communities in the saprolite. As well, we will examine the distribution of different microbial communities to determine the influence of fractures and geological materials on microbial community structure. This work will be conducted utilizing the

biotic column from Chapter 3. The column will be disassembled and soil lithologies mapped. The saprolite will then be sampled using microcores on a grid-like fashion (Pitner, 2000) to determine microbial community structure throughout the saprolite. Methods for determining microbial community will be done by screening samples with probes and specific primers. Clonal libraries will be used to analyze selected samples. Areas adjacent to the microcore samples will be prepared for thin sections to determine mineralogy, lithology, and fracture distribution so that correlations between microbial community and lithology can be made. It is expected that there will be systematic differences in the microbial communities, according to the type of saprolite (sandstone, siltstone, or shale). Identification of microorganisms responsible for biodegradation of TCE and correlations with effluent water, lithology, mineralogy, and fracture distribution are to aid in the remediation efforts of contaminated sites in similar geologic materials. This future research, plus clonal libraries from the preliminary experiment (Chapter 4), will lead to an additional publication from this dissertation research. References

Atlas, R. 1995. Handbook of media for environmental microbiology. CRC Press.

Bagley, D. and J. Gossett. 1990. Tetrachloroethene transformation to trichloroethene and cis-dichloroethene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56:2511-2516.

Bouwer, E. 1994. Bioremediation of chlorinated solvents using alternate electron acceptors. *In* Hand book of remediation. *Ed* Norris, R., R. Hinchee, R. Brown, P. McCarty and L. Semprini. Boca Raton, FL.

Brady, P., B. Spalding, K. Krupka, R. Waters, P. Zhang, D. Borns, and W. Brady. 1999. Site screening and technical guidance for monitored natural attenuation at DOE sites. Sandia Report. SAND99-0464.

Chang Y.C., Hatsu M., Jung K., Yoo Y.S., Okeke B.C., and Takamizawa K. 1999. Characterization of a tetrachloroethylene degrading bacterium clostridium bifermentans DPH-1. Genbank accession number Y18787.

Chapelle, F., S. Haack, P. Adriaens, M. Henry, and P. Bradley. 1996. Comparison of Eh and H₂ measurements for delineating redox processes in a contaminated aquifer. Environ. Sci. Technol. 30:3565-3569.

Chapelle, F. and P. Bradley. 1998. Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems. Bioremed. J. 2: 227-238.

Clapp, R. 1992. Annual report of the environmental restoration monitoring and
assessment program at Oak Ridge National Laboratory for FY 1992. ESD Publication
3945, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN.

Clement, T., C. Johnson, Y. Sun, G. Klecka, and C. Bartlett. 2000. Natural attenuation of chlorinated ethane compounds: model development and field-scale application at the Dover site. J. Cont. Hydro. 42:113-140.

Coates, J. D., Michaelidou, U., Bruce, R. A., O'Connor, S. M., Crespi, J. N. and Achenbach, L. A. 1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65:5234-5241.

Cook, K., A. Hay, A. Layton, J. Garland, and G. Sayler. 1999. Molecular characterization of a microbial community isolated from the rhizosphere of plants used to recycle graywater. Annual meeting of the American Society for Microbiology, Chicago, IL.

Cropper, S. C. 1998. Investigation of air and DNAPL entry and migration through a saturated column of fractured shale saprolite. MS Thesis. University of Tennessee, Knoxville, TN.

Cumbie, D. 1997. Laboratory scale investigations into the influence of particle diameter on colloid transport in highly weathered and fractured shale saprolite. MS Thesis. University of Tennessee, Knoxville, TN.

Cumbie, D. and L. McKay. 1999. Influence of diameter on particle transport in a fractured shale saprolite. J. Cont. Hydro. 37:139-157.

Daly, K., R. Sharp, and A. McCarthy. 2000. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiol. 146:1693-1705.

De Wever, H., J. Cole, M. Fettig, D. Hogan, and J. Tiedje. 2000. Reductive dehalogenation of trichloroacetic acid by *Trichlorobacter thiogenes* gen. nov., sp. nov. Appl. Environ. Microbiol. 66:2297-2301.

Dojka, M., P. Hugenholtz, S. Haack, and N. Pace. 1998. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64:1575-1583.

Dorsh, J. and T. Katsube. 1999. Porosity characteristics of Cambrian mudrocks (Oak Ridge, East Tennessee, USA) and their implications for contaminant transport. *In* Muds and Mudstones: Physical and Fluid Flow Properties. *Eds* A. Aplin, C. Fleet, and J. Macquaker. Geological Society of London. Dreier, R., D. Solomon, and C. Beaudoin. 1987. Fracture characterization in the unsaturated zone of a shallow land burial facility. *In* Flow and transport through unsaturated rock, Geophys. Monogr. Ser. Vol. 42. *Ed* D. Evans and T. Nicholson.

Driese, S.G., C.P. Penfield, and L.D. McKay. In review. Lithologic and pedogenic influences on porosity distribution and groundwater flow in fractured sedimentary saprolite: A new application of environmental sedimentology: J. Sed. Res.

Environmental Protection Agency. 1985. Guidelines establishing national drinking water regulations, volatile synthetic organic chemicals in drinking water, final rule and proposed rule. Federal Register. 50:46880-46933.

Fathepure, B. Z. and J. M. Tiedje. 1994. Reductive dechlorination of tetrachloroethylene by a chlorobenzoate-enriched biofilm reactor. Env. Sci. Tech. 28:746-752.

Freedman, D. L. and J. M. Gossett. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55:2144-2151.

Fries, M. R., G. D. Hopkins, P. L. McCarty, L. J. Forney, and J. M. Tiedje. 1997a. Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethylene cometabolism. Appl. Environ. Microbiol. 63:1515-1522. Fries, M. R., L. J. Forney, and J. M. Tiedje. 1997b. Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63:1523-1530.

Harker, A. R. and Y. Kim. 1990. Trichloroethylene degradation by two independent aromatic degrading pathways in *Alcoigenes eutrophus* JMP134. Appl. Environ. Microbiol. 56:1179-1181.

Hatcher, R. P. Lemiszki, R. Dreier, R. Ketelle, R. Lee, D. Lietzke, W. McMaster, J. Foreman, and S. Lee. 1992. Status report on the geology of Oak Ridge reservation. Oak Ridge National Laboratory, ORNL/TM-12074.

Haun, D. 1998. Influence of ionic strength and cation valence on transport of colloidsized microspheres in fractured shale saprolite. MS Thesis. University of Tennessee, Knoxville, TN.

Howard, P., R. Boethling, W. Jarvis, W. Meylan, and E. Michalenko. 1991. Handbook of Environmental Degradation Rates. Lewis, Chelsea, MI.

Howard, K. 1997. Behavior of fluorobenzoic acid groundwater tracers in a highly fractured shale saprolite. MS Thesis. University of Tennessee, Knoxville, TN.

Jardine, P., N. Weber, J. McCarthy, 1989. Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Amer. 53: 1378-1385.

Jardine, P., G. Jacobs, and G. Wilson. 1993. Unsaturated transport processes in undisturbed heterogeneous porous media: I. Inorganic contaminants. Soil. Sci. Soc. Am. J. 57:945-853.

Jardine, P., W. Sanford, J. Gwo, O. Reedy, D. Hicks, J. Riggs, and W. Bailey. 1999. Quantifying diffusive mass transfer in fractured shale bedrock. Water Res. Research. 35:2015-2030.

Kleopfer, R. D., D. M. Easley, B. B. Haas, T. G. Deihl, D. E. Jackson, and C. J. Wurrey. 1985. Anaerobic degradation of trichloroethylene in soil. Env. Sci. Tech. 19: 277-280.

Krumholz, L., R. Sharp, and S. Fishbain. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl. Environ. Microbiol. 62:4108-4113.

Kueper, B. and D. McWhorter. 1991. The behavior of dense, nonaqueous phase liquids in fractured rock and clay; theory and case history. Canadian Geotech. J. 29:234-244.

Lane, D., B. Pace, G. Olsen, D. Stahl, M. Sogin, and N. Pace. 1985. Rapid-determination of 16S ribosomal-RNA sequences for phylogenetic analyses. Pro. Nat. Aca. Sci. USA. 82:6955-6959.

Lee, R. Kettelle, R., J. Bownds, and T. Rizk. 1992. Aquifer analysis and modeling in a fractured homogeneous medium. Ground Water. 30:589-597.

Lee, M., J. Odom, and R. Buchanan. 1998. New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu. Rev. Microbiol. 52: 423-452.

Lovely, D. and R. Anderson. 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol. J. 8:77-88.

Maymo-Gatell X., Y. Chien, J. M. Gossett, and S. H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276:1568-1571.

McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. W. Dolan, J. P. Allan, B. T. Kawakami, and T. J. Carrothers. 1998. Full scale evaluation of *in situ* cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Technol. 32: 105-110. McKay, L., P. Stafford, and L. Toran. 1997. EPM modeling of a field-scale tritium tracer experiment in fractured, weathered shale. Ground Water. 35:997-1007.

Mobarry, B., E. Griffiths, R. Ely, and R. Crawford. 1999. Diversity of TCE-degrading bacteria from a contaminated basalt aquifer as determined by enrichment culturing and PCR-DGGE. 4th International Symposium on Subsurface Microbiology. Vail, CO.

Pankow, and J. Cherry. 1996. Dense nonaqueous phase liquids in the groundwater. Waterloo Press.

Parker, B., R. Gillham, and J. Cherry. 1994. Diffusive disappearance of immiscible-phase organic liquids in fractured geological media. Ground Water. 32:805-820.

Pepper, I. L., C. P. Gerba, and M. L. Brusseau. 1996. Pollution Science. Academic Press, New York, NY.

Pfiffner, S., A. Palumbo, T. Phelps, and T. Hazen. 1997. Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. J. Indust. Microbiol. Biotech. 18:204-212.

Pitner, A. 2000. Experimental investigations of factors controlling the spread of DNAPL contamination in undisturbed columns of fractured saprolite. MS Thesis. University of Tennessee, Knoxville, TN.

Reedy, O., P. Jardine, G. Wilson, and H. Selim. 1996. Quantifying the diffusive mass transfer of nonreactive solutes in columns of fractured saprolite using flow interruption. Soil Sci. Soc. Of America. J. 60:1376-1384.

Rooney-Varga, J., R. Anderson, J. Fraga, D. Rindelberg, and D. Lovely.1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65:3056-3063.

Sanford, R., J. Cole, F. Loeffler, and J. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grow by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62:3800-3808.

Sharma, P. and P. McCarty. 1996. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62:761-765.

Shinzato, N., T. Matsunoto, I. Yamaoka, T. Oshima, and A. Yamagishi. 1999. Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite *Reticuliternes speratus* analyzed by PCR and in situ hybridization. Appl. Environ. Microbiol. 65:837-840. Sledz, J. and D. Huff. 1981. Computer model for determining fracture porosity and permeability in the Conasauga Group. ORNL/TM7695, Oak Ridge National Laboratory, Oak Ridge, TN.

Smatlak, C., J. Gossett, and S. Zinder. 1996. Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Env. Sci. Tech. 30: 2850-2858.

Snoeyenbos-West, O., K. Nevin, R. Anderson, and D. Lovely. 2000. Enrichment of *Geobacter* species in response to stimulation of Fe(II) reduction in sandy aquifer sediments. Microbiol. Ecology. 39:153-167.

Solomon, K., R. Moore, A. Toran, R. Dreier, and W. McMaster. 1992. Status report: a hydrogeologic framework for the Oak Ridge Reservation. Oak Ridge National Laboratory. ORNL/TM-12026.

Stapleton R.D., Sayler G.S., Boggs J.M., Libelo E.L., Stauffer T., and Macintyre W.G. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Env. Sci. Tech. 34:1991-1999.

Vogel, T.M. 1994. Natural bioremediation of chlorinated solvents. *In* Handbook of bioremediation. Norris ed. CRC Press, Inc., 201-224.

Westrick, J., J. Mellow, and R. Thomas. 1984. The Groundwater supply survey. J. Am Water Works Assoc. 76:52-59.

Wiedemeier, T. H., M. Swanson, D. Moutoux, E. Gordon, J. Wilson, B. Wilson, D. Kampbell, P. Haas, R. Miller, J. Hansen, and F. Chapelle. 1998. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. EPA/600/R-98/128.

Wild, A., R. Herman, and T. Leisinger. 1996. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegrad. 7:507-511.

Wilson, B., G. Smith, and J. Rees. 1986. Biotransformation of selecte alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ. Sci. Technol. 20: 997-1002.

Yager, R., S. Bilotta, C. Mann, and E. Madsen. 1997. Metaboliv adaption and *in situ* attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York. Environ. Sci. Technol. 31:3138-3147.

Appendices

.

r

Appendix 1: VOC and redox data from WAG5 collected during 1998 and 1999.

.

,

.

ţ

و		0.7 8.6 6.26		00	00	13	0.5	9.2	200	1.758	0	10	c		0	0	0
a 17	0.614 0.4 5.12 0.092	0 13.57 5.45		0 7 51	2.3	c10 0	0.9	4.26	5.6053 0.05	0.2	0	1 0	10.09) c	23.94	17.4	0
16 17	0.02 0.5 1.02 0.11	0 4.41 4.36		0	13.82	14	7	1.42	3.1901 0.01	0.649	0	10	10.6352 0	• c	10.05	13.37	0
15	0.02 0.5 0.24 0.24 0.015	1.6 13.56 5.19		1.92 16.56	15.55	0.016	0.4	0.24	4.4191 0.03	0.916	0	10	11.2221	3.77	29.15	19.36	0
14	0.02 0.4 6.1 0.101	1.44 11.29 5.39		1.82 11.05	14.52	163	4.0	8.28	4.508	1.046	0	10	11.6062 0	3.18	26.15	19.2	0
13	0.564 0.4 2.96 0.14	3.48 17.8 4.65		3.66 18.89	16 01	000	0.4 4	3.66	4.23	3.46	0	10	11.3626 D	6.62	34.006	20.52	a
12	0.016 0.3 10.75 0.035	1.78 8.71 5.1		2.87	14.52	1 23	0.4	4.26	2.763 0.05	7.843	0	9	11.5907 D	4.74	25.69	19.74	0
11	4.3 0.4 2.05 0.104	5.97 24.17 5.47		6.95 25.97	13.95	0.02	0.4	1.82	4.4853 0.05	1.613	0	9	7.5845 0	13.16	49.14	20.71	0
10	0.03 3.16 0.005	0.32 3.02 4.08		3.58	9.84	0.397	05	6.08	3.7536 0	2.781	0	9	9.8/65 D	• •	5.88	10.14	0
6	0.7957 0.4.4 4.08 0.01	0.32 2.96 4.01		0 3.97	10.83	0 5487	0.6	7.04	3.407 0.01	3.17	0	10	9.9066 0	0	5.87	10.62	0
8	1.54 0.3 0.76 0.006	0.52 6.32 3.84		0 7.03	11.62	0.832	0.5	0.64	3.9075 0	1.367	•	10	10.2204	1.4	15.64	16.32	0
7	474.8 0.4 2.96 0.007	0.55 5.88 3		0.7 8.26	12.85	0.548	0.5	3.68	3.171 0.02	1.245	•	10	12.1442 0	1.33	10.61	13.12	0
9	1.2 0.4 1.2 0.017	0.83 7.92 5.27		1.23 11.09	15.85	0.505	0.5	1.06	2.7236 0.04	1.78	0	10	0	2.22	20.17	18.04	0
S	0.02 0.3 0.99 0.004	0 82 2.14 2.46		0 3 49	8.54	0.02	0.4	0.99	3.3372 0.01	5.227	0	2	0.10	1.65	4.58	97.7	0
4	0.74 0.4 1.47 0.015	1.43 7.67 4.05		1.9 9.6	13.66	0.5563	0.4	1.61	2.2533	2.926	•	10	0	3.22	13.58	11.57	0
ო	0.02 0.4 1.07 0.002	0.8 197 1.51		0.68 1.81	4 82	0.016	0.3	1.04	1.6188 0	3.853	0	10		1.67	3.26	5.43	0
2	0.016 0.3 1.88 0.027	4.04 16.35 5.15		4.22 15.74	17.78	0.02	0.3	1.81	3.3498 0.04	4.857	0	10 10 100	0	7.31	24.37	19.09	0
1	0.582 0.3 2.12 2.12 0.003	2.49 9.48 0	12/01/1997	1.73 7.32	5.08	&3/98 0.744	0.143	2	3.1449 0.01	6.267	0	11 4630	0	3.51	12.5	13.76	0
Well	Concernent NO3 Fe(II) S S C4 CH4 FI	Temp CI BTEX TCE ppb DCE ppb CA CA	Date 0.02 (ppm) Fe(II) S S 4 CH4 Eh T Temp BTEX	TCE ppb DCE ppb	VC ppb CA	Date 2 02 (ppm)	NO3	Fe(II)	504(3/99) S	CH4	Eh (not te	1 emp	BTEX	TCE ppb	DCE ppb	VC ppb	CA

.

		0 0 1.07													•	2	c	•			0
	0.227	0 8.67 3.51		0.193	0	9 94	3.93		1.46	4	3.2	4.3644	0.047	0.2487	•	10	7000.01	.	14 0499	3.3173	0
	0.884	0 2.75 1.43		0.243	0	3.23	2.2		1.62	с,	0.53	2.3105	0.012	0.5771	- 9	10	1671.11		5 5522	2.1448	0
	1.028	0 10.16 3.97		0.671	1.22	10.34	3.85		1.33	4.3	0.2	3.5779	0.077	0.9835)	1U 11 74 6 6	001 /·/	1 1355	13 4261	2.8572	0
	1.835	0 9.39 3.71		1.101	1.06	9.45	3.74		e	4.3	1.93	3.0606	0.046	0.905	2 9	17 1110		1 5066	15.4537	3.5697	0
	4.136	0 10.7 4.01		1.683	1.97	11.1	4.3		1.37	4.3	3.29	3.2905	0.018	1.3865	- ç	10 1 2 3		2 4479	17.0343	4.3063	0
	6.289	0 7.83 3.86		6.173	1.08	5.06	3.94		2.05	3.6	3.84	1.7664	0.0055	1.0/2/	9	18 6878	0	2 0347	11.2921	4.0119	0
	1.909	5.49 15.94 3.77		1.741	5.15	18.46	4.94		1.96	S	1.59	3.5406	0.143	1.0322	9	17 6604		34.2779	28.8869	5.5584	0
	3.609	0 0.5 1.68		1.266	0	2.23	2.27		1.21	4.6	2.6	2.7881	0.004	1.9905	e é	17 2007	0		3.2214	2.932	0
	3.481	0 0.53 1.93		1.978	0	2 12	2.21		0.98	4.3	2.55	2.5604	0.01	3.3838 0	Ş	16 9112	0	0	3.2138	1.989	0
	606.0	0 4.74 2.58		0.552	0	5.67	2.81		e	36	0.72	2.2843	0.002	6007'0	ç	17.4767	•	0	6.4994	1.0697	0
	1.014	0 2.96 2		0.647	0	4.04	2.45		1.51	2.6	2.34	2.5537	0.138	80/C'I	ţ	16.6559	•	0	5.902	2.648	0
	1.08	0 6.09 3.03		0.464	0.76	6.91	2.59		4	3.6	1.27	2.5359	0.061	+07t-0	, t	15.8961	0	0.7147	9.4054	3.4971	0
	3.098	0 0.71 1.08		3.214	0	1.5	1.73		2	e	1.1	1.3653	0.008		, 5	15.9829	0	0	2.4557	0	0
	2.46	0 3.02 1.54		1.818	0.9	3.74	2.3		1.68	3.6	1.53	2.2514	0.003 4 2464	0	, t	16.52	0	0.7615	5.3906	2.4454	0
	3 319	0 0.66 0.83		2.203	0	1.12	1.14		1.62	3.6	1.07	/196.0	0.UU4		ę	14.1441	0	0	1.4858	0	0
	3.908	0 16.09 2.99		3.758	2.41	23.37	4.52		e	4	1.53	3.3464	0.047 1 6027	0	Ę	18.0375	0	1.7304	9.8961	5.0777	0
May-98	4.176	0 22.77 2.38	86-unr	3.194	0	4.56	3.15 C	8/99	2	33	2.06	13967	0.000	0	10	16.4458	0	0.4609	5.0257	4.1513	0
Date O2 (ppm) NO3 Fe(II) SO4 S	CH4 Eh Temp CI BTEX	TCE ppb DCE ppb VC ppb CA	Date O2 (ppm) NO3 Fe(II) SO4 S	CH4 Eh Temp BTEX	TCE ppb	DCE ppb	CA CA	Date 68	O2 (ppm)	NO3	Fe(II)	50 6	CH4	Eh (not te	Temp	5	BTEX	TCE ppb	DCE ppb	VC ppb	č

•

																													2.081					0	1.92	1.04	
¥																													7.66					0	0	0	
-7																													4.145					1.8	10.05	9.64	
-																													1.153					25.31	25.89	13.01	
Ι																													2.466					0.8	0.3	1.8	
U																													2.227					0	0	0	
ц.															•														2.377					0.8	1.94	6.82	
ш																													3.72					0	0.48	2.42	
۵																								-					1.59					0	0	1.2	
U																													709					0	0	0	
в																													33 1.					0	0	0	
۲	9	9	9	6	:															0	0	0		5	u u	ι.Ω	6	Ξ	0.1	0	0	3	0	0	2	5	0
4-4	0.01	a	2.6	0.04																				47	0	4.3	2.210	0.0			-	9.537			3.8	9.6	
ę	0.487	0.4	2.24	0.002																0	0	0		1.18	0.4	4.89	3.3021	0		0	5	9 8885	0	0	6.16	8.48	0
5		0.4	3.68	0.072																0	۵	0		1.49	0.4	2.48	2.2377	0.04		0	9	10.0209	0	0	0	3.18	0
4	0.4205	0.5	1.34	0 347																0	•	o		0.873	0.5	1.18	2.8574	0.3		0	5	10.638	0	0	0	0	0
с 5	0.02	0.7	5.25	0.052																0	0.27	6.31		0.012	0.5	5.88	5 5503	0.09	1.426	0	9	11.3479	0	•	0	6.83	0
b 19																				0	0	•		0.016	0.5	5.27			0.989	0	9	•	0	•	0	7.79	0
19	0.018	0.5	7.55	0.015				c	2	4.0	2.48											9.68		0.28	0.5	8.56	6.2601	0.01	0.923	0	₽	1.1628	0	0	0	12.14	0
195	134	0.9	1.23	0.031				c	5 2	0.00	3.93									0	4.28	14.41		1.33	0.5	S	1.0386	0.04	1.875	0	<u>0</u>	10.917 1	0	0	14.76	16	0
Well 18a	02 (ppm)	NO3	Fe(II) S04	s	Б Ш	Temp	а 2017	BIEX Tre ach			CA PPB	5	Date	02 (ppm)	SO4	 CH4	ដ៍	Temp	BTEX	TCE ppb	DCE ppb	VC ppb CA	Date	02 (com)	NO3	Fe(II)	SO4(3/99)	s	CH4	Eh (not te	Temp	CI (3/88)	BTEX	TCE ppb	DCE ppb	VC ppb	GA

	2.815								5.51			0	2.99	2.61			3	1.9	6.56	0.999	0.224	1.9298	0	₽	23.1757	0	0 4517	2.6759	0 8656	2
	11.115								19.032			0	2.36	2.56									0	5		0	0	3 2631	1 8997	5
	1.699								2.542			5.13	2301	12.28			4	4	6.36	3.1267	0.752	2.3286	0	10	15.1128	0	7.391	34.5786	16.9276	•
	2.626								3.892			0	44.1	23.75			4	•	12.52	0.6713	0.047	5.0916	o	₽	5.4138	0	3.4832	31.8239	14.8222	Ð
	1.896								1.708			0	0	1.11			e	1.9	4	0.5268	0.022	1.4369	0	10	18.4727	0	0.3613	2.6643	0.9125	5
	1.52								1.203			0	0.7	2.59			с	4.4	13.92	1.8098	0.006	2.725	0	₽	8.9815	0		4.3572	3 9239 0	5
	1.595								1.676			0	3.07	5.15			ę	5.4	15.04	2.1009	0.074	2.1055	0	₽	11.0711	0	0	5.2956	2.3893	5
	2.839								3.718			0	0	1.65			4	0	13.68	0	0.021	2.1461	0	5	2.0567	0	0 0			>
	0.55								3.93			0	0	0.87			4	ç	7.68	0.2815	0.005	0.8627	0	9	3.1841	0	0 1) (- -	Þ
	0.758								0.658			0	0	0			2.05	-	13.68	0.366	0.012	1.2892	0	10	4.1551	0	0	1.028		Þ
	0.607								0.736			0	1.59	0									0	₽		0			c	2
	5.939	0	0.66	1.59					3.817			4.05	7.9	2.07			4	-	3.1	0 6907	0.017	1.3276	0	9	17.4717	0	0	2.9/4Z	3.14/6	5
	1.439	0	1.55	1.59					2.847			0	1.98	2.06			0.85	3.6	4.16	2.1312	0.027	2.4738	0	10	16.6846	0	0	3.4994	3.3013	2
	3.536	0	0	1.36					2.671								4	4.6	2.15	0.195	0.082	3.3899	0	5	15.4847	0	0		-	2
									3.142	,		0	0.64	1.54			1.74	5.6	0.99	3.3808	0.384	13.8628	0	0	10.5921	0	0	1.2988		2
	1.162	0	0	1.48					0.712			0	0	1.71			1.81	-	4.1	4.9822	0.02	0.3211	0	9	17.2855	•			4	>
		0	0	1.27	:				0.665			•	0	1.91									0	6		0			c	2
	0.635	0	0	2.54					0.504			0	0	2.97			n	-	5.94	6.135	0.011	0.9878	•	9	17.589	0	0 100		1./31	>
	1.123	0	4.66	3.45					0.942			0	5.57	3.98			4	2.3	3.54	1.8163	0.033 -	1.8247	0	5	16.3869	0	0	1./609	2.5421	2
Date O2 (ppm) N03 Fe(II) SO4 S	CH4 Eh Temp BTEX	TCE ppb	DCE ppb	VC ppb CA	Date	02 (ppm) NO3	Fe(II)	s04 s	E H	Temp C	BTEX	TCE ppb	DCE ppb	VC ppb	A S	Date	02 (ppm)	NO3	Fe(II)	S04	S	CH4	Eh (not te	Temp	ច	BTEX	TCE ppb	DUCE PPD	VC ppp	C A

.

127

,

Appendix 2: WAG5 ICAP analysis for samples collected 9/29/99.

• .

ICAP Analysis for samples collected 9/2/99 ** All concentrations are in ppm

.

Well	AI	Са	Cd	Со	Fe	к	Mg	Mn	Na	Si
1	0.0487	98.45	0.0539	0.3470	2.711	3.702	13.49	9.133	30.75	11.30
2	0.0516	112.5	0.0434	0.2026	1.329	3.567	14.34	5.958	35.31	10.29
3	0.0611	123.6	0.0398	0.1765	0.9785	2.933	12.41	1.270	25.96	11.87
4										
5	0.0506	129.3	0.0420	0.1565	0.8765	3.232	12.35	8.370	29.29	11.93
6	0.0497	129.9	0.0421	0.0800	0.0000	3.450	14.18	8.752	34.90	10.55
7	0.0344	135.2	0.0521	0.3524	2.324	2.601	13.54	5.042	33.26	11.92
8	0.0626	131.1	0.1061	0.1691	0.1864	3.539	14.25	11.01	36.09	9.985
9	0.0397	131.2	0.0541	0.4290	2.647	3.729	14.06	5.323	33.94	12.39
10	0.0311	134.8	0.2809	0.4502	2.686	3.931	14.29	5.375	34.54	12.56
11	0.0740	124.0	0.0470	0.1380	0.5281	2.864	14.17	16.83	30.85	12.19
12	0.0392	117.2	0.0451	1.5970	13.73	2.477	14.58	5.140	36.45	9.951
13	0.0358	127.5	0.0414	0.9569	8.091	2.347	14.50	5.863	34.95	11.38
14	0.0406	134.4	0.0406	0.0791	0.0339	3.091	14.88	8.428	36.82	10.10
15	0.0483	134.8	0.0372	0.0807	0.0481	3.056	14.81	8.625	34.72	10.28
16	0.0702	135.8	0.1571	0.2851	0.6979	2.836	14.17	6,303	36.13	11.79
17a	0.0239	162.2	0.0430	0.4509	2.135	3.701	13.99	1.093	28.65	8.731
18a	0.0420	144.1	0.0442	0.3574	1.446	4.293	14.03	5.220	26.18	7.622
19a	0.0339	155.5	0.0423	0.3010	2.186	4.699	22.12	0.3866	16.01	11.62
19c	0.0568	156.4	0.0424	0.3953	2.982	4.722	22.14	0.3954	17.20	11.61
2d4	0.0368	165.8	0.0745	0.6038	2.936	3.927	16.71	1.306	23.82	9.769
2d5	0.0387	178.2	0.0420	0.3120	2.208	3.897	16.04	1.385	18.25	9.853
4d3	0.0210	137.5	0.1360	0.3930	2.760	2.959	13.85	7.121	30.33	13.49
4d4	0.0487	152.7	0.0700	0.5150	3.715	4.811	13.64	4.807	26.87	12.95
А	*	D	R	Y	*	W	E	L	L	*
В	0.1112	43.97	0.0472	3.209	28.86	8.258	13.85	12.39	4.208	3.449
С	0.052	41.98	0.0457	1.82	16.02	9.597	16.28	15.41	3.806	3.710
D	0.3518	32.45	0.0503	2.706	24.88	20.90	14.04	6.80	1.946	4.516
Е	0.0774	73.79	0.0495	3.562	32.94	5.304	15.59	8.247	17.61	5.556
F	0.074	74.94	0.0467	1.473	13.57	6.767	15.00	13.63	18.62	8.769
G	0.3399	37.29	0.0452	8.2210	8.991	3.703	16.97	18.60	33.58	4.529
Н	0.0263	95.58	0.0434	0.7687	7.061	7.426	51.23	0.5368	18.48	13.25
1	0.0258	146.7	0.0421	0.4101	3.549	3.786	12.71	1.507	25.37	7.081
J	*	D	R	Y	*	W	Е	L	L	*
K	0.0225	105.5	0.0456	1.52	15.05	5.948	15.65	1.506	8.164	3,507

x

Appendix 3: WAG5 sequence alignment from Archae clone library from well 10 and 11. Reference strains are listed with accession numbers.

, -

,

.

.

Ň

· .

CLUSTAL X (1.64b) multiple sequence alignment

Dp11u5 Dp10u34 Dp11u25 pGrfc26 U59986 pLemB390 U59996 WCHA1-38 AF050613 WCHD3-30_AF050612_ Dp11u27 Dp10U1 Dpllu2 Dp10u12 Methanoccoidesburtonii X65537_ Methanosarani_L48408_ Soyang1Af-1100Ar_AF056368 Methanobrevibacter_AB009827_ Dp11u31 WCHD3-33_AF050619_ Dp11u20 Dpl1u5 Dp10u34 Dp11u25 pGrfc26_U59986_ pLemB390 U59996 WCHA1-38_AF050613_ WCHD3-30 AF050612 Dp11u27 Dp10U1 Dp11u2 Dp10u12 Methanoccoidesburtonii X65537 Methanosarani L48408_ SoyanglAf-1100Ar_AF056368 Methanobrevibacter AB009827 Dp11u31 WCHD3-33_AF050619_ Dp11u20 Dp11u5 Dp10u34 Dp11u25 pGrfc26_U59986_ pLemB390_U59996 WCHA1-38 AF050613 WCHD3-30 AF050612_ Dp11u27 Dp10U1 Dp11u2 Dp10u12 Methanoccoidesburtonii X65537_ Methanosarani_L48408_

CACAAGTGGTAGTCGGGTTTTATTGGGCCTAAAGCGTTCGTAGCCGGGCA CACAAGTGGTAGTCGG-TTTTATTGGGCCTAAAGCGTTCGTAGCCGGGCA CACTAGTAGT-GTCCGTGAATATTGCGTTTAAAGCGTTCGTAGCCGGCTA TCCGAGT-GGTGTGGATGTTTATTGGGCCTAAAGCATCCGTAGCTGGCTA TCCGAGT-GGTGTGGATGTTTATTGGGCCTAAAGCATCCGTAGCTGGCTA CTCAAGT-GGTCAGGATGATTATTGGGGCCTAAAGCATCCGTAGCTCGTTT CATAAGT-TGTGTCCACTAATATTGGGCCTAAAGCGTCTGTAGCCTGTCC CTCTAGT-GGTA-CCATTTTTATTGGGCCTAAAGCGTTCGTAGCCGGTTT -GCCGAT-GGTAACCGTTTTATTGGGTTTAAAGGGTCCGTAGCCGGCTT CCCGAGT-GGTAATCACTTTTATTGGGTCTAAAGGGTCCGTAGCCGGTTT CTCAAGT-GGTGGCCGCTATTATTGGGCTTAAAGGGTCCGTAGCCGGACC CTCGAGTTGGTGGCCACTATTACTGGGCTTAAAGCGTTCGTAGCTGGTCT CTCTAGT-GGTAGCCATTTTTATTGGGCCTAAAGCGTTCGTAGCCGGTTT CACGAGT-GGCAACCGATATTATTGGGCCTAAAGCGTTCGTAGCTGGCCT CCCGAGT-GGTGGTCGATATTATTGAGCCTAAAACGTTCGTAGCCGGTCT CCCAAGT-GGTGATCACGTATATTGGGTCTAAAGCATTCGTAGCCGGTTT ** ** * **** * *****

TTCAAGTCCTTGGGTAAATTCGGCAGCTCAACTG--TCGGAATTCCGAGG TTCAAGTCCTTGGGTAAATTCGGCAGCTCAACTG - TCGGAATTCCGAGG AGCAAGTTTTCTGTGAAATCTTTCGGCTCAACCGAATAGGCTTGCAGAAA GGTCAGTCCCTTGTTAAATCCACCGAATTAATCGT-T-GGATTGCGGGGGG GGTCAGTCCCTTGTTAAATCCACCGAATTAATCGT-T-GGATTGCGGGGGG TGTAAGTTTTCGGTTAAATCCATGCGCTTAACGTA-T-GGGCTGCCGGGA ATTAAGTTTCTTGTGAAATCTTATCTCTTAAGGAT-AAGGCGTGCAAGAA AATAAGTTCCTTGTGAAATCTCATCTCTTAAGGAT-GAGGCGTGCAAGGA AAAAAGTTTTTGGTGAAATCTACAAGCCTAACTTG-TAGGCGAGCCAAAA GATAAGTCTCTGGTGAAATCCTATAGCTTAACTGT-GGGACTTGCTGGAG ACTAAGTCTCTTGGGAAATCTGGCGGCTCAATCGT - CAGGCGGCCAAGAG GATCAGTTCTTCGGGAAATCTGACAGCTCAACTGT-TAGGCTTCCGGGGA AGTTAGTCCATTGGGAAATCTTACGGCTTAACCGT-AAGGCTGCCAGTGG GTTAAGTCTCTGGGGAAATCTACTGGCTTAACCDA-TAGGCGTCTCAGGG AATAAGTCTCTGGTGAAATCCTACAGCTTAACTGT-GGGAATTGCTGGAG TGTAAATCCTCTGTGAAATCGTTTTGCTTAACATA-ACGGCGCGCAGGGG TGTAAATCCTTGGGTAAATCGGCCAGCTTAACTGT-CCGAAGTCC-GGGG GTTAAGTCTTCTGTGAAATCTGATAGAÁ-AACTAT-CAGGCGTGCAGGAG * **** **

ATACTGTTTGTCTTGAGGTCGGGTGAAGGTGTGGGCACTTCTGGAGTAGG ATACTGTTTGTCTTGAGGTCGGGTGAAGGTGTGGGTACTTCTGGAGTAGG ATACTACTTGGCTCGAGAGTGGGGGGAAGCTAAAGGTACTGTANGGGGAGC ATACTGCTTGGCTAGGGGACGAGAGAGGGCAGACGGTATTTTCGGGGGTAGG ATACTGCTTGGCTAGGGGGGGGGGAGAGAGGGCAGACGGTATTTTCGGGGGTAGG ATACTGCATAACTAGGAAGTGGGAGAGGTAGACGGTACTCGGTAGGAAGG ATACTGTTAAGCTAGAGACTGGAAGACGTAGAAAGTATGTCTAAAGTAGC ATACTCTTGGACTCGAGGCCGGGAGAAGTCAAAGGAATTCCTGAGGTAGC ATACTATTAGACTTGAGGTCGGGAGAGGCCCGCGGTACTCCCAGGGTAGG ATACTGGTAGGCTTGGGACCGGGAGAGGTGGGAGGTACTCCAGGGGTAGG ATACTGTCAGACTTGGGACCGGGAGAGGTAAGAGGTACTACAGGGGTAGG ATACTGCTGGTCTTGGGACCGGGAGAGGGCAAGAGGTACTTCAGGGGTAGG ATACTGGCAGACTAGGGACCGGGAGAGGGTGAGGGGTACTCCAGGGGTAGG ATACTATTAGACTTGAGGTCGGGAGAGGTTAGAGGTACTCCCAGGGTAGG ACACTGCTTGGCTTGGGACCGGGAGAGGTAGGGGGGTATTTCTTGGGGAGC AGACTGCAAGACTTGGGATCGGGAGAGGTCAGAGGTACTTCTGGGGTAGG GTACTGGCAAGCTTGGAACCGGGAGGAGCCTGGAGTACTTTTAGGGTAGG *** ** * * * * * * * **

Dp11u5

Dp11u31

Dp11u20

Soyang1Af-1100Ar_AF056368_ Methanobrevibacter AB009827_

WCHD3-33_AF050619_

GGTGAAATCTTCTGATTCCAGGGGGGCCGCCTGTGGTGAAAACGCACACT

```
Dp10u34
 Dpl1u25
 pGrfc26 U59986
 pLemB390 U59996
 WCHA1-38_AF050613
 WCHD3-30_AF050612_
 Dp11u27
Dp10U1
Dp11u2
 Dp10u12
Methanoccoidesburtonii_X65537
Methanosarani_L48408_
SoyanglAf-1100Ar_AF056368_
Methanobrevibacter_AB009827
Dp11u31
WCHD3-33_AF050619_
Dp11u20
Dp11u5
Dp10u34
Dp11u25
pGrfc26_U59986_
pLemB390_U59996
WCHA1-38_AF050613
WCHD3-30_AF050612_
Dp11u27
Dp10U1
Dp11u2
Dp10u12
Methanoccoidesburtonii_X65537_
Methanosarani L48408
SoyanglAf-1100Ar_AF056368
Methanobrevibacter_AB009827_
Dp11u31
WCHD3-33_AF050619
Dp11u20
```

```
Dp10u34
Dp11u25
pGrfc26_U59986
pLemB390_U59996
WCHA1-38_AF050613
WCHD3-30_AF050612
Dp11u27
Dp10U1
Dp11u2
Dp10u12
Methanoccoidesburtonii_X65537
Methanosarani_L48408
SoyanglAf-1100Ar AF056368
Methanobrevibacter_AB009827_
Dp11u31
WCHD3-33_AF050619
Dp11u20
```

Dp11u5 Dp10u34 Dp11u25 pGrfc26_U59986_ pLemB390_U59996_

Dp11u5

GGTGAAATCTTCTGATTCCAGGGGGGCCGCCTGTGGTGAAAACGCACACC GGTAAAATGCTGTAATCCTTGCAGGACCACCAGTGGCGAAGGCGTTTATC GGTGAAATCCTATAATCCCGGGAAGACCACCAGTGGCGAAGGCTGTCTGC GGTGAAATCCTATAATCCCGGGAAGACCACCAGTGGCGAAGGCTGTCTGC GGTAAAATCCTTTGATCTATCGATGACCACCTGTGGCGAAAGCGGTCTAC GGTAAAATGTGTTAATCTTAGGCAGACTCACAACAGCGAAGGCATTCTAC GGTAAAATGTGTTAATCTTATGCAGACTCACAACAGCGAAGGCATTCTAC GGTGAAATGCTATGATCTTAGGAGGACCACCAGTAGCGAAGGCGTTTGAC GGTGAAATCCCGTAATCCTGGGAGGACCACCTATGGCGAAGGCGGCTCAC GGTGAAATCTCGTAACCCTTGGGGGACCACCGATGGCGAAGGCATCCCAC AGTGAAATCTTGTAATCCCTGTGGGACCACCAGTGGCGAAGGCGTCTTAC AGTGAAATCCTGTAATCCTTGAGGGACCGCCAGTGGCGAAGGCGTCTTGC AGTGAAATCCTGTAATCCTTGGGGGGACCACCTGTGGCGAAGGCGCCTCAC GGTGAAATCCTGTAATCCTGGGAGGACCACCTGTGGCGAAGGCGTCTAAC GGTAAAATGTTATAATCCAAGAAGGACCACCTGTGGCGAAGGCGCCCTAC GGTAAAATCCTGTAATCCTAGAAGGACCACCGGTGGCGAAGGCGTCTGAC GGTAAAATCCTGTAATCCTAAAGGGACTACCTGTGGCGAAGGCGCCAGGC ** **** * * *** * ***

TAGAACGAGCCTGACGGTGAGGAACGAAACCCAGGGGAGCGAACGGGATT TAGAACGAGCCTGACGGTGAGGAACGAAACCCAGGGGAGCGAACGGGATT TAAAACACGTCTGACGGTGAGGGACGAAAGCTATGGGAGCAAACGGGATT GAGGACAGTTCTGACAGTAAAGGATGAAGGCTAGGGGCGCAAAGTGGATT GAGGACAGTTCTGACAGTAAAGGATGAAGGCTAGGGGCGCAAAATGGATT TAGAACGGACCTGACGGTGAGAGACGAAAGCTGGGGGGATCGACCCGGATT TGGAACGAGTCCGACGGTGAGGGACGAAAGCCGGGGGGCGCGAACCGGATT CAGAACGGGTCCGACGGTGAGGGACGAAAGCTGGGGGGCACGAACCGGATT CAGAACGGGTCCGACGGTGAGGGACGAAAGCTGGGGGGCACGAACCGGATT TAGAACGGGTCCGACGGTGAGGGACGAAAGCTAGGGGCACGAACCGGATT TGGAACGAACCTGACGGTGAGGGACGAAAGCTAGGGGCGCGAACCGGATT TAGAACGGATCCGACAGTGAGGAACGAAAGCCAGGGGAGCAAAATGGATT TAGAACGAATTCGACGGTGAGGAACGAAGCCCTGGGGCGCAAACGGGATT TAGAACGGATTCGACGGTGAGGAATGAAAGCGAGGGGAGCAAAGGGGATT ** *** ** * * * * * * *** * * *****

AGATACCCCGGTAGTCCTGGGC----GTAAACGATGTCCGTTTGGTGTTG AGATACCCCGGTAGTCCTGGGC----GTAAACGATGTCCGTTTGGTGATG AGATACCCCGGTAGTCCTGGGC----GTNAACGATGTCCGTTTGGTGTTG AGATACCCGGGTAGTCCCAGCT---GTAAACGATGCAGACTAGGTGTTT AGATACCCGGGTAGTCCCAGCT----GTAAACGATGCAGACTAGGTGTTT AGATACCCGGGTAGTCCCAGCT----GTAAACTATGCAAACTCAGTGATG AGATACCCATGTAGTCCTAGCA----GTAAACACTGCACACTAAACATTA AGATACCCATGTAGTCCTAGCA----GTAAACACTGCACACTAAACATTA AGATACCCGGTTAGTCCCAGCT----GTAAACGATGCAGACTAGGTGTCC AGATACCCGGGTAGTCCCAGCT---GTAAACGATGCTCGCTAGGTGTCA AGATACCCGGGTAGTCCCAGCT----GTAAACGATGCTCGCTAGGTGTCA AGATACCCGGGTAGTCCCAGCC----GTAAACGATGTTCGCTAGGTGTCA AGATACCCGGGTAGTCCTAGCC----GTAAACGATGCGAGCTAGGTGTCA AGATACCCGGGTAGTCCCAGCT---GTAAACGATGTGCGTTAGGTGTAT AGATACCCGGGTAGTCCTAGCC----GTAAACGATGCGGACTTGGTGTTA AGATACCCACGTAGTCCTGGCC----GTAAACGCTGTGAGCTAGGTGTTG AGATACCCCGGTAGTCAGGGT----GTAAACGCTGCGGGCTTGGTGTTG AGATTGAAGAGAAGTCGCGGAAAATTTTTAAGTCTTATCACTAATAAGTG **** **** * **

CACACTCTACGTGGGTGTGCAGTGCCGTAGCGTANGCGTTA-AACGGACC CACACTCTACGTGGGTGTGCAGTGCCGTAGCGTAAGCGTTA-AACGGACC CACACTCTACGTGGGTGTGCAGTGCCGTANCGTANGCGT-A-AACGGACC GGACGGCCACGTGCCGTTCTAGTGCCGCAGGGAAGCTGTTA-AGTCTGCC GGACGGCCACGTGCCGTTCTAGTGCCGCAGGGAAGCTGTTA-AGTCTGCC
WCHA1-38 AF050613 WCHD3-30_AF050612_ Dp11u27 Dp10U1 Dp11u2 Dp10112 Methanoccoidesburtonii_X65537_ Methanosarani L48408 SoyanglAf-1100Ar AF056368 Methanobrevibacter_AB009827_ Dp11u31 WCHD3-33_AF050619_ Dp11u20 Dp11u5 Dp10u34 Dpl1u25 pGrfc26_U59986 pLemB390_U59996 WCHA1-38_AF050613 WCHD3-30_AF050612_ Dp11u27 Dp10U1 Dpl1u2 Dp10u12 Methanoccoidesburtonii X65537 Methanosarani L48408 Soyang1Af-1100Ar_AF056368 Methanobrevibacter_AB009827_ Dp11u31 WCHD3-33_AF050619_ Dp11u20 Dp11u5 Dp10u34 Dp11u25 pGrfc26 U59986 pLemB390 U59996 WCHA1-38_AF050613_ WCHD3-30_AF050612_ Dp11u27 Dp10U1 Dp11u2 Dp10u12 Methanoccoidesburtonii_X65537_ Methanosarani L48408 SoyanglAf-1100Ar_AF056368 Methanobrevibacter_AB009827_ Dp11u31 WCHD3-33_AF050619_ Dp11u20 Dp11u5 Dp10u34 Dp11u25 pGrfc26 U59986 pLemB390 U59996 WCHA1-38 AF050613 WCHD3-30_AF050612_ Dpllu27 Dp10U1

CATTGGCTTGTGGCCAATGCAGTGCTGCAGGGAAGCCGTTA-AGTTTGCC GTACCTCTTCGAGAGGGTATTAGTGCTGTAGAGAAGTCGAAG-AGTGTGCT GTACCTCTTCGAGAGGGTATTAGTGCTGTAGAGAAGTCGA-G-AGTGTGCT TATCAGCTATAAGCTGTAGGGGGTGCCGAAGGGAAGCCATTA-ATTCTGCC GGTGCGGTGCGACCGCATCTGGTGCCGCAGTGAAAACTTGA-AGCGAGTC GGGGCGGTGCGACCGCATCTGGTGCCGCAGTGAAAACTTGA-AGCGAGTC GGGGCGGTGCGACCGCATCTGGTGCCGTAGGGAAACCGTGA-AGCGAGCC CGTGGATTGCGAATCCATGTGGTGCCGTAGGGAAACCGTGA-AGCGACC CGTGGCTTTGAGCCGCAGGTGCCGAAGAGAAACCGTGA-AACGTACC GGATGCCTTTGAGCCGCCTAGTGCCGAAGAGAAACCGTGA-AACGTACC GGATGGCTTTGAGCCGCCTAGTGCCGAAGAGAAACCGTGA-AACGTACC GGATGGCTTTGAGCCGCCAGGTGCCGAAGAGAAACCGTGA-AACGTACC CATATCTATATGAATGTGCAGTGCCGGAGGGAAGCTGTTA-AGCCCGCC ATATTGTAGTGGCGCCCAGTGCCGGAGGAGAGTGTTA-AGCCCGCT ATATGGCTAAATTTCAAACGTACATTGGAGGAACCCCAGAGAATTCAAC * * * * * GCCTGGGGAGT--ATGACTGCAAGGTTGAAACTTAAAGGAATTGACGGGGG

GCCTGGGGAGT - - ATGACTGCAAGGTTGAAACTTAAAGGAATTGACGGGG GCCTGGGGAGT - - ATGACTGCNAGGCTGAAACTCCNAGGAATTGACGGGG GCCTGGGGAGT - - ACGATCGCAAGATTGAAACTTAAAGGAATTGGCGGGG GCCTGGGGAGT--ACGATCGCAAGATTGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACGTACGCAAGTATGAAACTTAAAGGAATTGGCGGGG ACCTGGGAAGT--ATAGCCGCAAGGCCGAAACTTAAAGGAATTGGCGGGG ACCTGGGAAGT--ATAGCCGCAAGGCCGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACGGCCGCAAGACTGAAACTTAATGGAATTGGCGGGG ACCTGGGAAGT - - ACGGTCGCAAGGCTGAAACTTAAAGGAATTGGCGGGG ACCTGGGAAGTT-ACGGTCGCAAGGCTGAAACTTAAAGGAATTGGCGGGG ACCTGGGAAGT--ACGGCCGCAAGGCTGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACGGCCGCAAGGCTGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACGGTCGCAAGGCTGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACGGTCGCAAGACTGAAACTTAAAGGAATTGGCGGGG GCCTGGGAAGT--ACNGTCGCAAGACTGAAACTTAAAGGAATTGGCGGGG GCTTGGGGAGT--ATGTCCGCAAGGATGAAACTTAAAGGAATTGGCGGGG ACAGTGAATGTATATGAATTCGATAA-GAAATTTACAG--ATTGGTACAA ** * * * * **** * * ****

GAGCACCNCAAGGGGTTGGAGGCTGCGGTTTAATTGGATT-CAACGCCGG GAGCACCACAAGGGGT-GGAGGCTGCGGTTTAATTGGATT-CAACGCCGG GCTCGC-ACAAGCGGT-GGAGTATGTGGTTTTATTCCAAAACAACGCGCA GAGCACCACAAGGGGT-GAAGCTTGCGGTTTAATTGGAGT-CAACGCCGG GAGCACCACAAGGGGT-GAAGCTTGCGGTTTAATTGGAGT-CAACGCCGG GAGCACCACAAGGGGT-GAAGCCTGCGGTTCAATTGGAGT-CAACGCCAG AGACACTACAACAGGT-GACGCGTGCGGTTCAATTAGATT-CTACACCGT AGACACTACAACAGGT-GACGCGTGCGGTTCAATTAGATT-CTACACCGT GCGCACTACAAGGGTG-GATGC-TGCCGTTTAATTGGATA-CGACGCCAG GAGCACTACAACGGGT-GGAGCCTGCGGTTCAATTGGATT-CAACGCCGG GAGCACTACAACCGGTTGGACCCTGCGGTTCAATTGGATT-CAACGCCCG GAGCACTACAACGGGT-GGAGCCTGCGGTTTAATTGGACT-CAACGCCGG GAGCACCACAACGGGT-GGAGCCTGCGGTTTAATTGGACT-CAACGCCGG GAGCACCACAACGGGT-GGAGCCTGCGGTTTAATCGGACT-CAACGCCGG -AGCACCACAACGCGT-GGAGCCTGCGGTTTAATTGGATT-CAACGCCGG GAGCACCACAA-GGGT-GCGGCGTGCGGTTTAATCCAACT-CAACGCGGA GAGCACCGCAACGGGA-GGAGCGTGCGGTTTAATTGGATT-CAACACCGG TAATAC--CTATCTGATGGTCTGTTCTTCTGCAACAGAAT---TTGCAGG * * * * * * +

AA-ATCTCACTGGGCGTTGACAGCAGTATGATGTTCAAGCTGACGACTT AA-ATCTCACTGGGCGT-GACAGCAGTATGATGTTCAAGCTGACGACTT GA-ANCTTACCTGGGCTTGACATGCTTGA-ATTAACCATCTGAAAAGAT AA-ATCTCACCGGGAGCG-ACAGCAGTATGAAGGCCCAGATTAAAGGTCT AA-ATCTCACCGGGAGGG-ACAGCAGAATGAAGGCCCGATTAAAGGTCT GA-ACCTCACCGGGAGGG-ACAGCAGGATGAAGGTCAGCTGAAGGGCT GA-ACCTCACCAGGAGGG-ACAGCAGGATGAAGGTCAGTCTGAAGGGCT AT-ATTTACCAAGGGGTTACAGCCGAATGATGA-CA-TCTGAAGGGCT Dp1lu2 Dp10u12 Methanoccoidesburtonii_X65537_ Methanosarani_L48408_ Soyang1Af-1100Ar_AF056368_ Methanobrevibacter_AB009827_ Dp11u31 WCHD3-33_AF050619_ Dp11u20

AA-AGCTTACCGGGTCAG-ACAGCAATATGAAGT-CAAGCTAAAACTT-GA-AACTTACCGGACTCG-ACAGCACTATGAAATTCAGGCTAAAAACTT-AA-AACTCACCGGGGGCG-ACAGCAAAATGTAAGGTCAAGCATAAAGACTT AA-AGCTCACCGGAGACG-ACAGCGGGATGAGGGCCAGGCTGATGACCT AA-ATCTCACCGGATAAG-ACAGCGGAATGATGGCCAGGCTGAGAGACTC AC-ATCTCACCAGGGGCG-ACAGCAGTATGATGGCCAGGTTGATGGTCT GA-ATCTCACCATGGGCG-ACCGCAGGATGAAGGTCCAGGTTGATGGCTT AC-AACTCACCAGGAGCG-ACCGCAGGATGAAGTCCAGCTGATGACTT AC-AACTCACCAGGAGCG-ACCACTATTACATGAAGACCCAGGCTGATGACCT ATTATTTGAGGCGCCCAATTTCAGCACTTTTAGCATGCAAGGGCGTCCA- Appendix 4: WAG5 sequence alignment from Cytophaga and Firmucutes sequence clone library from well 10 and 11. Reference strains are listed with accession numbers.

.

.

,

.

.

.

CLUSTAL X (1.64b) multiple sequence alignment

.

Dp10u22	TGCTAGCGTTGTCCGGAATTACTGGG-TGTAAAGGGAGCGCAGGCGGATTATTAAGTC
uncultured	CCCAAGCGTTGTCCGGATTTACTGGG-TGTAAAGGGAGCGCAGGCGGATTATTAAGTC
Dp10e4	CGTTGTCCGGAATCACTGGG-TGTAA-GGGAGCGCAGGCGGGTCAGCAAGTC
Bsv40 AJ229196	GGTTAGCGTTGTCCGGATTTACTGGG-TGTAAAGGGCGCGTAGGCGGGTTTGTAAGTC
Dp10u3	GGCAGGCGTTACTCGGGGATTGATTGGG-TGTAAAGGGCGTGTAGGTGGCGGATTAAGTC
a17o	TGTAGGTGGTGAATTAAGTC
dP11U37	-GGCGACGTTACTCGGATTTACTAGG-CGTAAAGCGCATGTAGGTGGTTGAATAAGTC
Dp10e15	GGCAAGCGTTACTCGGATTTATTGGG-TGTAAAGGGCAGGTAGGCGTTCCACCAAGTT
Dplle7	GGCAAGCGTTACTCGGATTTATTGGGGTGTAAAGGGCAGGTANGCGTTCCACCAAGTT
Dp10u20	GGCGAGCGTTACTCGGATTTATTGGG-TGTAAAGGGCAGGTAGGTGTTTCATCAAGTT
Dp10u5	GGCGAGCGTTACTCGGATTTATTGGG-TGTAAAGGGCAGGTAGGTGTCCTATCAAGTT
	GGCGAGCGTTACTCGGATTTATTGGG-TGTAAAGGGCAGGTAGGCGTCTTAACAAGTT
Dp10026	GGCGAG-GTTACTCGGATTTATTGGG-TGTAAAGGGCAGGTAGGCGTCTTAACAAGTT
523	TGCNNNNATTACTCGATTTATTGGG-TGTAAAGGGCAAGTAGGCGTCTTGACAAGTT
Dp10132	CCCCAC-CTTACTCCC-TTTCACTCCCC-TCTAAACCCCCCCC
Dp10u25	CCCCACCCTTCTCCCC
OP854 Af027087 1	GCCGAGCGTGTCCCGGAATTACTGGG-CGTAAAGGGCGTGTAGGCGGCCCTTTAAGTC
DP10e16	
	GGGCIACGIIAICCGGAAIIACIGGG-CGIAAAGGGIGGIGGIGGIIIIIIIAAGIC
Clostizidium	
MUG4_ABUII296_	GGCGAGCGTTGTTCGGAATTACTGGG-CTTAAAGGGCGCGTGGGGGGGGGG
m62798	
dplie8	TGCAA-CGTTATCCCGGG-ATTCACTGGG-TTTAAAGGGTGCGTANGTGGGTTGGGTAAGTC
Dp11u32	TGCAAGCGTTATCCGG - ATTTATTGGG - TTTAAAGGGTCCGTAGGCGGACTAGTAAGTC
Dpl0el	TGCAAGCGTTATCCGGATTTATTGGG-TTTAAAGGGTGCGTAGGCGGTAGTTTAAGTC
Dp11u18	TGCAA-CGTTATCCGGATTTATTGGG-TTTAAAGGGTGCGTAGGCGGTAGTTTAAGTC
clone	TGCAAGCGTTATCCGGATTTATTGGG-TTTAAAGGGTGCGTAGGCGGTATTTTAAGTC
Dp10u8	- CCAAGCGTTATCCGG ATTTATTGGG - TTTAAAGGGTGCGTAGGCGGCTTGCTAAGTC
Dp10u21	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC
Dp10u21	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * ****
Dp10u21	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC
Dp10u21	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG
Dp10u21 Dp10u22 uncultured	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG
Dp10u21 Dp10u22 uncultured Dp10e4	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG ATTGGTGAAATCCGGAGGCTTAACCTCAGGA-CTGCCAATGATACTGCCGATCTTGAGTA
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG ATTGGTGAAATCCTGCGGAGCTTAACCTCCAGGA-CTGCCAATGATACTGCCGATCTTGAGTA AGAGGTGAAATCCTGCAGCTTAACTGCAGAG-CTGCCTTTGATACTGCCAAATCTTGAGTT
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG ATTGGTGAAATCCGGAGGCTTAACCCCAGGA-CTGCCAATGATACTGCCGATCTTGAGTA AGAGGTGAAATCCTGCAGCTTAACTGCAGGG-CTGCCTTTGATACTGCCAAATCTTGAGTT GGGTGTGAAATCCCTTGGCTCAACCAAGGAAACTGCATTCGATACTGCTTGAGTG
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG ATTGGTGAAATCCGGAGGCTTAACCCCAGGA-CTGCCATGATACTGCCGATCTTGAGTT GGGTGTGAAATCCCTTGGCTCAACCAAGGAAACTGCATTCGATACTGCTTGAGTG GATTGTGAAATCCCTTGGCTTAACCAAGGAA-CTGCATTCGAATCTGCTTGAGTG
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp11e7	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp11e7 Dp10u20	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp11e7 Dp10u20 Dp10u5	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a17o dP11U37 Dp10e15 Dp10e15 Dp11e7 Dp10u20 Dp10u5 Dp10e2	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp11e7 Dp10u20 Dp10u20 Dp10u5 Dp10e2 Dp10u26	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCTAAATCTTGAGTG ATTGGTGAAATCCGGAGGCTTAACCCCAGGA-CTGCCATGGATACTGCCGATCTTGAGTA GGGTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAATCTGGCTGAGTG GATTGTGAAATCCCTTGGCTTAACCAAGGAA-CTGCATTCGAATCTGGCTGAGTG AGAGTGAAATCCTTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGATGGCGGAATTGAGGC AGAAGTGAAATCCTGTGGGCTTAACCACAAGAA-CTGCTTCTAAAACTGATGGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCAACGAA-CTGCTTCTAAAACTGATGGAGATTGAGGC AGAAGTGAAATCCTGCGCGCCCAACGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp11e7 Dp10u20 Dp10u20 Dp10u5 Dp10e2 Dp10u26 S23	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCTAAATCTTGAGTG ATTGGTGAAATCCGGGGCTTAACCTCCAGGA-CTGCCATGGATACTGCCGATCTTGAGTA GGGTGTGAAATCCCTTGGCTCAACGACACGGAACTGCATCGGATACTGCATGGCGGAT GGGTGGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCTGCTTGAGTG GATTGTGAAATCCCTTGGCTTAACCAAGGAA-CTGCATTCGAACTGATCGGCTGAGTG GGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGGCTGAGTG AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGATGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCAACGAA-CTGCTTCTAAAACTGATGAGAGTGAGGC AGAAGTGAAATCCTGCGCGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp11e7 Dp10u20 Dp10u5 Dp10u25 Dp10u26 S23 Dp10u32	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGCTAATCTTGAGTG ATTGGTGAAATCCGGGGCTTAACCTCCAGGA-CTGCCATGATACTGCCGATCTTGAGTA GGGTGTGAAATCCCTGGCGCTAACCGCAGGG-CTGCCTTTGATACTGCCGAATCTGGGT GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCTGCTTGAGTG GATGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCGGCTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGATGAAATTGAGGC AGAAGTGAAATCCTGTGGCTTAACCACAAGAA-CTGCTTCTAAAACTGATGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCAGCTCAACTGCCAGAA-CTGCTTTTAAAACTGTTAGAGATTGAGGC AGAAGTGAAATCCTGCCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTGCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTGCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e25 Dp10u26 S23 Dp10u22 Dp10u25	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGCTAATCTTGAGTG ATTGGTGAAATCCGGGGCTTAACCTCCAGGA-CTGCCATGATACTGCCGATCTTGAGTA GGGTGTGAAATCCCTGGCGCTAACCGCAGGG-CTGCCTTTGATACTGCCGAATCTGGGT GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCTGCTTGAGTG GATGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCGGCTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGATGAAATGAGGC AGAAGTGAAATCCTGTGGCTTAACCACAAGAA-CTGCTTCTAAAACTGATGAGAGTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGCGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTTCGGCCTCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTTCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTTCGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTTCGGCTCAACCGCGAGAA-TTGCCTTTCAAAACTGTTAAGATTGAGGC AGAAGTGAAATCCTTCGGCTCAACCGCGGAAA-TTGCCTTTACAAACTGTTTGACTAGAGGC AGAAGTGAAAACCCCGGGCTCAACCGGGAAA-TTGCCTTACAAACTGTTTGACTAGAGGC AGAAGTGAAAACCCCGGGCTCAACCCGGGAAA-CTGCTTTACCAACTGTTTGACTAGAGGC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u22 Dp10u25 OPB54_Af027087.1_	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e25 Dp10u20 Dp10u26 S23 Dp10u26 S23 Dp10u225 OPB54_Af027087.1_ DP10e16	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGATATTAAGTC * * * * * * * * * * * * * * * * * * *
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u22 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCGATACTGCAGATCTGAGTG ATTGGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCCGATCTTGAGTG GGGTGTGAAATCCCTGGCGCTTAACCCCAGGAACTGCATTCGATACTGCCGATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAAACTGCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTTAACCCAAGGAAA-CTGCATTCGAAACTGATTCGGCTGAGTG AGAAGTGAAATCCCTTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGTGGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCCAAAGAA-CTGCTTCTAAAACTGTTGAGATGAGGC AGAAGTGAAATCCTGCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGCGCCCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTTCGGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTTCGGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTTCGGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCCTGCAGGCCCAACCGCAGAA-CTGCGTTTGAGACTGGAGGCTTGAGGG AGAAGTGAAACCCCGGGCTCAACCCGCGGAA-CTGCGTTTGAGACTGGAGGGCTTGAGGG AGAAGTGAAAGCCCGGGCTCAACCCGCGAGAA-CTGCGTTTGAAACTGGTGGAGGCTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTGGTGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG ATTGGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCGATACTGGAGAT GGGTGTGAAATCCTGCGGGCTTAACCTCAGGA-CTGCCATGGATACTGCCGATCTTGAGTT GGGTGTGAAATCCCTGGCTCAACCAAGGAACTGCATTCGATACTGCCGATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAACTGCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTTAACTGAAGAA-CTGCATTCGAAACTGGCTGAGTG AGAAGTGAAATCCTTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCCAAAGAA-CTGCTTCTAAAACTGATGAGAGC AGAAGTGAAATCCTGCGAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGAGAA-TTGCCTTTCAAAACTGTTAGAAGTGAGGC AGAAGTGAAACCCCGGGGCTCAACCGCGGAA-CTGCGTTTGAACTGGTGAGGGCTTGAGGG AGAAGTGAAACCCCGGGCTCAACCCGCAGAA-CTGCGTTTGAACTGGAGGGCTTGAGGG AGAAGTGAAAGCCTCGGGCTCAACCCGGGAA-CTGCGTTGAGACTGGAGGGCTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAACTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTTGAGGG AGAAGTGAAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGGAGGT
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp10e5	- CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCGATACTGGAGAT AGAGGTGAAATCCTGCGGGCTCAACCACGGAAACTGCCATTGATACTGCCGATCTTGAGTT GGGTGGAAATCCCTTGGCTCAACCAAGGAAACTGCATTCGATACTGCCGATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAAACTGCATTCGATACTGCAAATCTGGCTGAGTG GATTGTGAAATCCCTTGGCTTAACCAAGGAA-CTGCATTCGAAACTGGTTGAGTG GGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTGGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGTGGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGGAA-TTGCCTTTCAAAACTGTTAAGATGAGGC AGAAGTGAAAACCCCGGGGCTCAACCGCGGAA-TTGCCTTTGAAACTGTTGAGAGCTGAGGG AGAAGTGAAAACCCCGGGCTCAACCGCGGAA-CTGCCTTTGAAACTGGTGAGGGCATGGGGGCTTGAGGG AGAAGTGAAAGCCTCGGGCTCAACCCGGGAA-CTGCCTTGGAACTGGAGGGCTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAACTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGAGGT
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp10e5 Dp10u27	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTGAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG ATTGGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCCGATCTTGAGTA AGAGGTGAAATCCTGCGGGCTCAACCCGCAAGGA-CTGCCATTGATACTGCCGATCTTGAGTG GGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGTTGGATG GGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTGGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTGCGAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTTGCGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAGTGAAGC AGAGGTGAAATCCTTGGGCTCAACCGCGAGAA-CTGCTTTTAAAACTGTTGAGAGCTAAGGG AGAAGTGAAACCCCGGGGCTCAACCCGGAGAA-CTGCTTTTAAAACTGTGAGAGCTGAGGG AGAAGTGAAAGCCTACGGCTCAACCCGGAGAA-CTGCTTTGAAACTAGAGAACTGGAGGG AGAAGTGAAAGCCTACGGCTCAACCCGGAGAA-CTGCTTTGAAACTAGAGAACTGGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAGAA-CTGCTTTGAAACTAGAGAACTGGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAAACTAGCTTGAGAACTAGAGAACTGGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGAAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGAAACTAGAGAACTGAGGT AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGAAACTAGAGAACTGAGGG GGTGGTAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGAAACTAGAGAACTGAGGT AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGAAACTAGAGAACTGAGGGC GGTGGTAAAACCCTATGGCTTAACCCATAGAA-TGCCTGGAAACTGGCTTACTTACTGAGGT CGTGGTGAAATCCTATGGCTTAACCATAGAA-TTGCCTTGGAAACTGGCTTACTTACTGAGTC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGCGATCTTGAGTA AGAGGTGAAATCCGGAGGCTTAACCTCAGGA-CTGCCATTGATACTGCCGATCTTGAGTG GGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCCTTGGATACTGCAAATCTTGGGT GATTGTGAAATCCCTTGGCTTAACCAAGGAA-CTGCATTCGAAACTGATTCGGCTGAGTG CGTGGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAACTGATCGGCTGAGTG AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCAAAGAA-CTGCTTTTAAAACTGATGGAGATGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAATGAGGC AGGAGGGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTGAAACTGTTGAGAGTGAAGC TAAGGTGAAATCCTTGCGGCTCAACCGCGGGAA-TGGCTTTGAGACTGGGGGGCTTGAGGA AGGCGTGGAAAACCCCGGGGCTCAACCGGAGAA-CTGCTTTTGAACTGTGAGAGGCTAGAGGC AGAAGTGAAAGCCCCGGGCTCAACCCGGAGAA-CTGCTTTTGAACTAGAGAGCTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAGAA-CTGCCTTGGAACTGGGGGGCTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGGAGAA-CTGCCTTGGAACTAGAGAACTGGAGG AGAAGTGAAAGGCTACGGCTCAACCGGAGAA-CTGCCTTGGAACTAGAGAACTGGGGT AGAAGTGAAAGGCTACGGCTCAACCGGAGAA-CTGCCTTGGAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTGGGGTGAGGG CGTGGTGAAATCCTTATGGCTTAACCATAGAA-TGCCTTGGAAACTAGAGAACTGAGGT CGGGGTGAAATCCTTATGGCTTAACCCATAGAA-TGCCTTGGAAACTAGAGAACTGGATCATGAGTC TGAGGTGAAATCCTTATGGCTTAACCATAGAA-TGCCTTGGAAACTGCATTACTTGAGTC CGGGGTGAAATCCTATGGCTTAACCATAGAA-TGCCTTGGAAACTGCATTACTTGAGTC CGGGGTGAAATCCTATGGCTTAACCATAGAA-TGCCTTGGAAACTGCATTACTTTACT
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 al7o dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296_ m62798	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGGATATTAAGTC ***** GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGTAATCTTGAGTG ATTGGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGCATACTGCTAAATCTGAGTG GGTGGGAAATCCTGGCGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTGAGTG GGTGGTGAAATCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGCTTGAGTG GGTGGTGAAATCCTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTGGGCTCAACCACAAGAA-CTGCTTCTAAAACTGGTGGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGGAGGAAAATCCTGCGGCTCAACCGCGAGAA-CTGCTTTTAAAACTGTTGAGAATTGAGGC AGGAGGAAAATCCTGCGGCTCAACCCGGAGAA-CTGCTTTGAAAACTGGTGAGACTGAGGGC AGGAGGAAAATCCTGCGGCTCAACCCGGAGAA-CTGCCTTGGAAACTGGTGAGACTTGAGGC AGAAGTGAAAACCCCGGGCTCAACCCGGAGAA-CTGCCTTGGAAACTGGAGAGGCAAGGG AGAAGTGAAAGCCACGGGCTCAACCCGGAGAA-CTGCCTTGGAAACTGGAGAACTTGAGGG AGAAGTGAAAGCCACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGGAACTTGAGGG AGAAGTGAAAGCCACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGCCACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGCCACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG GGTGGTGAAATCCTATGGCTTAACCATAGAA-TGCCTTGGAAACTGGCTTAACTAGAGGC CGGGGTGAAATCCTATGGCTTAACCATAGAA-TGCCTTGGAAACTGGCTTAACTAGAGTC CGGGGTGGAAATCCTATGGCTTAACCATAGAA-TTGCCTTGGAAACTGCTTTACTTGAGTC CGGGGTGGAAATCCTACGGCTCAACCGTAGAA-TGCCTTGGAAACTGCATTACTTGAGTC AGTGGTGAAATCCTACGGCTCAACCGTAGAA-CTGCCTTGGAAACTGCATTACTTGAGTC AGTGGTGAAATCCTACGGCTCAACCGTAGAA-CTGCCTTGGAAACTGCATTACTTGAGTC AGTGGTGAAATCCTACGGCTCAACCGAAGAA-CTGCCTTGGAAACTGCATTACTTGAGTC
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u26 S23 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296_ m62798 dp11e8	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGGGGGGATATTAAGTC **** GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATATCTGAGTG GATGGTGAAATCCTGGAGCTTAACTGCAGGA-CTGCCTTTGATACTGCCGATCTTGAGTT GGGTGTGAAATCCCTGGGCTTAACCGCAGGAA-CTGCCTTGGATACTGACTGCGGTGGAAATCCTTGGCTTAACCAAGGAA-CTGCATTCGAACTGATTCGGCTGAGTG GATGTGAAATCCCTTGGCTTAACCGAAGGAA-CTGCATTCGAAACTGGATTCGGCTGAGTG AGAAGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAGAA-CTGCTTCTAAAACTGGCGGGAATTGAGGC AGAAGTGAAATCCTTGGGCTCAACCAAGAA-CTGCTTCTAAAACTGATGGAGAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCAAGAA-CTGCTTTTAAAACTGATGGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCACGAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGAGAA-CTGCTTTTAAAACTGTTGAGATGGAGC AGAAGTGAAATCCTGCGGCTCAACCGCGAGAA-CTGCTTTTAAAACTGTTGAACTAGAGGC AGACGTGAAAATCCTGCGGCTCAACCGGGAAA-CTGCCTTTTGAAAACTGGTGAAGTGAA
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u26 S23 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296_ m62798 dp11u32	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC **** GATTGTGANATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGANATCTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG ATTGGTGANATCCGGAGGCTTAACCTCAGGA-CTGCCATGGATACTGCAAATCTTGAGTG GGGTGTGANATCCCTTGGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTTGAGTG GGTGTGANATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGATTCGGCTGAGTG AGAAGTGANATCCTTTGGCTCAACCAAGGAA-CTGCATTCTAAAACTGGCGGAATTGAGGC AGAAGTGANATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAANACTGGCGGAATTGAGGC AGAAGTGANATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAANACTGGCGGAATTGAGGC AGAAGTGANATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAANACTGGCGGAATTGAGGC AGAAGTGANATCCTTGGGCTCAACCAAAGAA-CTGCTTCTAANACTGATGGCGAATTGAGGC AGAAGTGANATCCTTGGGCTCAACCACAGAA-CTGCTTTTAANACTGTTGAGATTGAGGC AGAAGTGANATCCTGCGGCTCAACTGCAGAA-CTGCTTTTAANACTGTTGAGATTGAGGC AGAAGTGANATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAANACTGTTGAGATTGAGGC AGGAGGAAAATCCTGCGGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGGAGGAAAATCCTGCGGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGGAGGAAAATCCTGCGGGCTCAACCGCGGAGAA-TTGCCTTACAAACTGTTTGAGATGAGGC AGGAGGAAAATCCTTGGGCTCAACCGGAGAA-CTGCTTTTGAAACTGGTGGAGGCTTGAGGC AGGAGGAAAACCCCGGGCTCAACCGGAGAA-CTGCTTTGAAACTGGTGAGAGCTTGAGGC AGAAGTGAAACCCCGGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGCCACGGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGGG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGAA-TGCCTTGGAAACTGCTTACTGAGTC CGGGGTGAAATCCTTAGGCTTAACCATAGAA-TTGCCTTGGAAACTGTTTTACTTGAGTC CGGGGTGAAATCTTCGAGCTTAACCATAGAA-CTGCCTTGGAAACTGCTTTACTTGAGTC AGTGGTGAAATCTCCGAGGCTTAACCATGGAAA-CTGCCTTGGAAACTGCATTACTGAGTC AGTGGTGAAATCTCCGAGCTTAACCGACGGAAA-CTGCCATTGATACATCAGGTCTAGAGT AGTGGTGAAATCTCCGAGCTTAACCATGGAA-CTGCCATTGATTACTACGACTTGAATA AGTGGTGAAATCCTCGCAGCTAACCTGGAAA-CTGCCATTGATTACTACAGTCTTGAATA
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296_ m62798 dp11e8 Dp11u32 Dp10e1	-CCAAGCGTTATCCGGG-ATTCACTGGG-TTTAAAGGGTGTGTAGGCGGGATATTAAGTC **** GATTGTGAAATCTTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG GATTGTGAAATCCTGCGGCTCAACCGCAAAA-CAGCAGTCGATACTGATGATCTTGAGTG ATTGGTGAAATCCGGAGGCTTAACTCAGGA-CTGCCATGATACTGCCGAATCTTGAGTT GGGTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGATACTGCAAATCTGAGTG GATTGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGCTGAGAG GATGTGAAATCCCTTGGCTCAACCAAGGAA-CTGCATTCGAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGTGGAGATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCACAGAA-CTGCTTTTAAAACTGATGGCGAATTGAGGC AGAAGTGAAATCCTTGCGGCTCAACCACAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGAGAA-TTGCCTTTGAGACTGGTGGAGGCTTGAGGC AGAAGTGAAAGCCCCGGGCTCAACCGGCGAGAA-CTGCTTTTGAGACTGTGTAGAGAC TAAGGTGAAAGCCCCGGGCTCAACCGGAGAA-CTGCTTTGAGACTGGAGGGCTTGAGGC GGAGGGAAAACCCCGGGCTCAACCGGAGAA-CTGCTTTGAAACTGGGAGGCTTGAGGC GGGGTGGAAACCCCGGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAAGCTACGGCTCAACCGTAGTA-A-GCTTTTGAACTAGAGAACTCGAGTG AGAAGTGAAAACCCCAGGCTCAACCGTAGAA-TGCCTTGGAAACTGCATTACTTGAGTC AGGGTGAAATCCTTGGGCTTAACCATAGAA-TGCCTTGGAAACTGCATTACTATCAGCTTGAGTC AGTGGTGAAATCCTGCGAGCTAAACTGGAAA-CTGCCATTGAACTATCAGCTTGAGTC AGTGGTGAAATCCTGCGAGCTAAACTGGAAA-CTGCCATTGAACTATCAGTCTTGAATA AGTGGTGAAATCCTGCGAGCTAAACTGTAACATGAAA-CTGCCATTGAACTATCAGTCTTGAATA
Dp10u21 Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3 a170 dP11U37 Dp10e15 Dp10e15 Dp10e2 Dp10u20 Dp10u26 S23 Dp10u25 OPB54_Af027087.1_ DP10e16 Dp11e13 Clostiridium Dp10e5 Dp10u27 MUG4_AB011296_ m62798 dp11e8 Dp11u32 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp10e1 Dp11u38	-CCAAGCGTTATCCGGG-ATTCACTGGG-ATTCAAGGGTGTTTAAGGGGGGATATTAAGTC **** GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGTAATCTTGAGTG GATTGTGAAATCTTGCGGGCTCAACCGCAAAA-CAGCAGTCGATACTGTTAATCTTGAGTG ATTGGTGAAATCCTGCGCGCTTAACCTCAGGA-CTGCCATGATACTGCCGATCTTGAGTA AGAGGTGAAATCCTTGGCTTAACCACGAGAA-CTGCCATTGATACTGCATACTGGCTGAGTG GATTGTGAAATCCTTTGGCTTAACCAAGGAA-CTGCCATTCGATACTGGCTGAGTG AGAAGTGAAATCCTTTGGCTTAACCAAGGAA-CTGCATTCGAAACTGGCTGAGTG AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTTGGCTCAACCAAAGAA-CTGCTTCTAAAACTGGCGGAATTGAGGC AGAAGTGAAATCCTTGGGCTCAACCACAAGAA-CTGCTTCTAAAACTGGTGGAAATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGCGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCAGCTCAACTGCAGAA-CTGCTTTTAAAACTGTTGAGATTGAGGC AGAAGTGAAATCCTGCGGCTCAACCGCGGAA-CTGCCTTTTGAAAACTGGTGAGATTGAGGC AGAAGTGAAACCCCGGGCTCAACCGCGGAA-CTGCCTTTGAAAACTGGAGGGGGGCTTGAGGA AGACGTGAAACCCCGGGCTCAACCCGGGAA-CTGCCTTTGAAAACTGGAGGGGGGCTTGAGGA AGACGTGAAAGCCTCGGGCTCAACCCGGAGA-CTGCCTTGGAAACTGGAGGGGGGCTTGAGGG AGAAGTGAAAGGCTACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTTGAGTG AGAAGTGAAAGGCTACGGCTCAACCCGTAGTA-A-GCTTTTGAAACTAGAGAACTGGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTTGAAACTAGAGAACTGGAGTG AGAAGTGAAAGGCTACGGCTCAACCGTAGTA-A-GCTTTGGAAACTAGAGAACTGGAGTG AGAAGTGAAATCCTATGGCTTAACCATAGAA-TTGCCCTGGAAACTGCATTACTTGAGTC CGGGGTGAAATCCTATGGCTTAACCATAGAA-TTGCCTTGGAAACTGCATTACTTGAGTC AGTGGTGAAATCCTACGGACTAACTGCAACGAGAA-CTGCCATTGATACTACAGTCTTGAATA AGTGGTGAAATCCTGCAGCTCAACTGTAGAA-CTGCCATTGAACTGCATTACTTGAGTT AGTGGTGAAATCCTGCAGCTCAACTGTAGAA-CTGCCATTGAACTGAAC

clone Dp10u8 Dp10u21	AGTGGTGAAAACTTGCAGCTTAACTGTAAGA-CTGCCATTGAAACTGAAGTACTTGAGTT AGTGGTGAAAGTTTGCAGCTTAACTGTAAAA-TTGCCATTGATACTGACGAGCTTGAATA AGTGGTGAAATCCTACAGCTTAACTGTAGAA-CTGCCATAGAAACTGATGTTCTTGAATG
	* * ** *** *** * * * * * * *
Dp10u22 uncultured Dp10e4 Bsv40_AJ229196_ Dp10u3	TGGAAGAGAGTGGCGGAATTCATGGTGTAGCAGTGAAATGCGTAGATATCATGAAGAACA TGGAAGAGAGTGGCGGAATTCATGGTGTAGCAGTGAAATGCGTAGATATCATGAAGAACA CAGAAGAGGAAGACGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACA CAGAAGAGAGATGGAATTCCAGGTGTAGTGGTGGAAATACGTAGATATCTGGAAGAACA ATAGAGAGGTAAGCGGAATTCCCGGTGTAACAGTGAAATGTGTAGATATCGGGAGGAACA
a170	ATAGAGAGGTAAGTGGAATTCCCCGGTGTAACAGTGAAATGTGTAGATATCGGGAGGAACA
dP11U37	TGGCAGGGGGAGACGGAATTCCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAGGAACA
Dp10e15	
Dplle7	TATAAGAGAGAGAGGGGAATTCCCGGTGTAAGGGTGAAATCTGTAGATATCGGGAGGAGCACA
	TAGAAGAGGAGAGCGGAATTCCCCGGTGTAAGGGTGAAATCTGTAGATATCGGGAGGAACA
Dp10e2	TGGGAGAGGAGAGCGGAATTCTCGGTGTAAGAGTGAAATCTGTAGATATCGAGAGGAACA
Dp10u26	TGGGAGAGGAGAGCGGAATTCTCGGTGTAAGAGTGAAATCTGTAGATATCGAGAGGAACA
S23	TGGGAGAGGAGAGTGGAATTCTCGGTGTAAGAGTGAAATCTGTAGATATCGAGAGGAACA
Dp10u32	TAGGAGAGGAGAACGGAACTGCCGGTGTAAGGGTGAAATCTGTGGATATCGGCAGGAACG
Dp10u25	
DPB54_AF027087.1_	CAGGAGAGGGAAGIGGAATICCCGGIGIAGCGGIGAAAIGCGIAGATATAGGGAGGAGAATA
Dpiteis Dpiteis	CAGGAGAGAGAGAGTATATTTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAGTA
Clostiridium	CAGGAGAGAGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATA
Dp10e5	AGCGAGGGGATGGTGGAATTCCTGGTGTAGCAGTGAAATGCGTAGATATCAGGAGGAAGG
Dp10u27	AGCGAGGGGATGGTGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAGGAAGG
MUG4_AB011296_	
m62798	TTGTGGGGGTTAGCGGAATATGTCATGTAGCGGTGAAATGCTTAGATATGACATAGAACA
apires	CGGTTGAAGTGGGCGGGAATATGGCATGTAGCGGTGAAATGCTTAGATATGCCATAGAACA
Dp10e1	TTCTTGAGGTAGGCGGAATGTGTAGTGTAGCGGTGAAATGCTTAGATATTACACAGAACA
Dpllu18	ATCTTGAGGTAGGCGGAATGTGTAGTGTAGCGGTGAAATGCTTAGATATTACACAGAACA
clone	ATCTTGAGGTAGGCGGAATGTGTAGTGTAGCGGTGAAATGCTTAGATATTACACAGAACA
Dp10u8	TAGTTGAGGTAGGCGGAATGAGTCAAGTAGCGGTGAAATGCATAGATATGACTCAGAACA
Dp10u21	* * *** ****** * *****
Dp10u22	CCGGTTGCGAAGGCGGCCACTTAGTCCATTACTGACGCTCATGCTCGAAAGCGTGGGGAT
uncultured	CCGGTTGCGAAGGCGGCCACTTAGTCCATTACTGACGCTCATGCTCGAAAGCGTGGGGAT
Dp10e4	CCGGTGGCGAAGGCGGTCTTCTGGTCTGTAACTGACGCTCATGCTCGAAAGCGTGGGGAG
Bsv40_AJ229196_	
Dp10u3	CCACTGGCGAAGGCGGCTTACTGGCTATCTACTGACACTGAAACGCGAGAGCTAGGGGGAG
dP11U37	CCAATGGCGAAAACAGTCTCCTGGGCCAATACTGACACTGAGGTGCGAAAGCTAGGGGAG
Dp10e15	CCAGTGGCGAAAGCGGCTCTCTAGTTTTGTCCTGACGCTGAGCTGCGAAAGCTAGGGGAG
Dplle7	CCAGTGGCGAAAGCGGCTCTCTAGTTTTGTCCTGACGCTGAGCTGCGAAAGCTAGGGGAG
Dp10u20	CCAGTGGCGAAAGCGGCTCTCTGGTTTAGTCCTGACACTGAGCTGCGAAAGCTAGGGGAG
Dp10u5	CCAGTAGCGAAAGCGGCTCTCTGGTCTGGCCCTGACGCTGAACTGCGAAAGCTAGGGGAG
Dp10e2	CCAGIGGCGAAGGCGGCTCTCTGGCTCCAGCTCTGACGCGAACTGCGAAGCTAGGGGGGG CCAGTGGCGAAGGCGGCTCTCTGGCTCCAGCTCTGACGCGGAACTGCGAAAGCTAGGGGGGG
S23	CCAGTGGCGAAGGCGGCTCTCTGGTCCAGTTCTGACGCTGAATTGCGAAAGCTAGGGGAG
Dp10u32	CCCGTGGAATAATCGGTTCTCTGGTCCAGTCCTGACGCTCAGGAACGAAAGCTAGGGGAG
Dp10u25	CCAGTGGCGAAGGCGGCTTTCTGGACCGTCCCTGACGCTGAGGCGCGAAAGCCAGGGGAG
OPB54_Af027087.1_	CCAGTGGCGAAGGCGGCTTCCTGGACTGTTCCTGACGCTGAGGCGCGAAAGCCAGGGGAG
DP10e16	CCAGTAGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAG
Dplle13	
CLOSCIFICIUM Dolle5	CCGGTGGCGAAGGCGACCATCTGGCGCTGAACTGACGCTGAGGCGCGAAAGCGTGGGTAG
Dp10u27	CCGGTGGCGAAGGCGGCCATCTGGCGCTGAACTGACGCTGAGGCGCGAAAGCGTGGGTAG
MUG4 AB011296	TCTGTGGCGAAGGCGGCCTTCTGGCACTTGACTGACGCTGAGGCGCGAAAGCGTGGGGAG
m62798	CCAATTGCGAAGGCAGCTGGCTACACATATATTGACACTGAGGCTCGAAAGCGTGGGGAT
dp11e8	CCAATTGCGAAGGCAGCTGGCTACACATATATTGACACTGAGGCACGAAAGCGTGGGGAT
Dpl1u32	CCGATTGCGTAGGCAGCTCACTAAGCCTGGATTGACGCTGAGGGACGAAAGCGTGGGGAG
	105

ı.

.

Dp10e1	
DD11018	
clone	CCGATTGCGAAGGCAGCTTACTAAGGGTTTACTGACGCTGATGCACGAAAGCGTGGGGGAT
Dp10u8	CCGATTGCGAAGGCAGCTTACTAAGGATACACTGACGCTCAGGCACGAAAGCGTGGGGAT
Dp10121	CCGAIIGCGAAGGCAGCTTACTAAGCTATTATTGACGCTGAGGCACGAAAGCGTGGGGAT
	CCIRIIGCGAAGGCAGCIIGCIAAGCCATGATTGACGCTGAGACACGAAAGCGTGGGGGAT
	······································
Dp10u22	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGAATACTCCCTCT
uncultured	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGAATACTCGGTGT-CCGG
Dp10e4	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGATACTCGGTGTCGG
Bsv40 AJ229196	CAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGGATACTCGATGTCGG
Dp10u3	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGAATACTAGATGITGG
a170	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGTTCACTAGGTGTCGG
dP11U37	CAAACAGGATTAGATACCCTGGTAGTCCTGGCCGTAAACGATGTTCACTAGGTGTCGG
Dp10e15	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGGIGAACACIAGGIGIATCCT
Dplle7	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGAGCACTAGGTGITGG
Dp10u20	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGAGCACTAGGTGITGG
Dp10u5	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACTATGAGCACTAGGTGTTGG
Dp10e2	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGACGACTAGGTGTTGG
Dp10u26	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACTATGAGCACTAGGTGTTGG
S23	CAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACTATGAGMACTAGGTGTTGG
Dp10u32	CAAACAGAATTAGATACTCTGGTAGTCCTAGCCGTAAACGATGGGCACTAGGTGTTGG
Dp10u25	CGAACAGGATTAGATACCCCCGGTAGTCCTGGCCGTAAACGATGGGTACTANGTGT11G
OPB54_Af027087.1_	CGAACGGGATTAGATACCCCGGTAGTCCTGGCTGTAAACGATGGGTACTAGTGTGGGG
DP10e16	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGTGTGGG
Dp11e13	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGTGTCGG
Clostiridium	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTACGTGTCCG
Dp10e5	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGGTGGGCATTAGGTGT
Dp10u27	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGGTGGGTATTAGGTGT
MUG4_AB011296_	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGGTGGGTATTAGGTGTCCC
m62798	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACTATGGATACTCGACATAC
dp11e8	CAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACTATGGATACTCGACAT
Dpllu32	CGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACTCGACATTA
Dp10e1	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATGACTCGCTGATG
Dp11u18	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATGACTCGCTGTTG
clone	CGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATGACTCGCTGTTG
Dp10u8	CGAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGATTACTCGATGTCG
Dp10u21	CAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATAACTAGTTGTTG
	* *** * ******* * ******* ** ***** ** *
D=1000	
bpiouzz	GTCGCAAGATTCGGCGCCT-AAGCAAACGCATTAAGT-ATTCCACCTG
	GTCGCAAGATTCGGCGCCT-AAGCAAACGCATTAAGT-ATTCCACCTG
Berra AT22010C	GCCGCAAGGCCCGGTGTCC-AAGCTAACGCGTTAAGT-ATCCCACCTG
DD1013	GUUTGAGGGUTCAGTGTCG-CAGUTAACGCATTAAGT-ATTCCACUTG
a170	GCCCTCTGGGTTCCGGTGCCG-CAGTAAACACATTAAGT-GAGCCACCTG
dP111137	GCCCTCTGGGTTCGGTGCCG-CCGTTAACACATTAAGT-GAACCGCCTG
Dp10e15	GAGITATCGGGATG-TGCCG-AAGCTAACGCATTAAGT-GTTCCGCCTG
Dp11e7	GGGGTTTCCCTTCAGCGCCGCAAGATAACTCGTTAAGT-GCTCCACCTG
Dp10u20	GGGGTTICCCTTCAGCGCCGCAAGATAACTCGTTAAGT-GCTCCACCTG
Dp10u5	GGG-TAACC-TTCAGCGCCGTAAGATAACTCGTTAAGT-GCTCCACCTG
Dp10e2	AGGTTTA = = = CC = TTCAGCGCCGTAAGATAACTCGTTAAGTTGCTCCACCTG = = = = = = = = = = = = = = = = = = =
Dp10u26	GGGTTTACC-TTCAGCGCCGTAAGTTAACACGTTAAGT-GCTCCACCTG
523	GGGTTTACC-TTCAGCGCCGCAAGTTAACACGTTAACT-GCTCCACCTG
Dp10u32	TCCGTAAGG-ATGGGTGCCG-AAGTTAACACGTTAAGT-GCCCCACC
Dp10u25	GGGTATCGACCCCCTCCGTGCCG-GAGTTAACACATAAGI-GCCCCACCIG
OPB54_Af027087.1	GGGTATCGACCCCTCCCGTGCCG-GAGTTAACACAATAACT-ACCCCGCCTGCCCACA
DP10e16	GGGTTACCCCCCTCGGTGCCG-CAGCTAACGCATTAACT-ACCCCGCCTGGGGAGT
Dp1le13	GGGTTACCCCCCTCGGTGCTG-CAGCTAACGCATTAAGT-ACTCCGCCTG
Clostiridium	GGGTTACCCCCCTCGGTGCCG-CAGCTAACGCATTAAGT-ACTCCGCCTG
Dp10e5	GCTCGTAAGGGTTCTGTGCCG-TAGGGCAACCATTAAAT-GCCCCGCCTG
Dp10u27	GCTCGTAAGGGTTCTGTGCCG-AAGGGAAACCATTAAAT-ACCCCGCCTG
MUG4_AB011296_	GCCTTCATGGGTTCCGTGCCG-TAGCGAAAGCATTAAAT-ACCCCGCCTG
m62798	GCGATACACTGTGTGTGTC-TGAGCGAAAGCATTAAGTAT-CCCACCTG

.

•

138

dp11e8 GCGATAAA---CTGTGTGTGTC-TGAGCGAAAGCATTAGGTAT-CCCACCTG-----Dpllu32 GCGATACA---CGGTTAGTGTCATAAGCGAAAGCATTAAGTAA-TCCACCTG-----Dp10e1 GCGATATA---CAGTCAGCGGC-TTAGCGAAAGCGTTAAGTCA-TCCACCTG-----Dp11u18 GCGATATA---CAGTCCNCCGC-TTAGCGAAAGCGTTAAGTCA-TCCACCTG----clone GCGATACA---CAGTCAGCGGC-TTAGCGAAAGCGTTAAGTCA-TCCACCTG-----Dp10u8 Dp10u21 GCGATATA---CAGTCAGCGAC-AAAGCGAAAGCATTAAGTTA-TCCACCTG-----* * * ** * ** **

.

,

1

.

.

139

Appendix 5: WAG5 sequence alignment from Proteobacteria and OP11 clone library from well 10 and 11. Reference strains are listed with accession numbers.

.

ι,

· .

.

N

-

Dplle12	CCGTTGTTCGGAATCACTGGGCTTAAAGGGC-ATGTAGGCCCTCCCCCAAACTTGTTC
Sva0503	GCGTTATTCGGAATCACTGGGCTTAAAGAGT-ACGTACGCGGATGCGCCAAGTGTCTTGTG
Dp10u35	GCGTTATCCGGATTTATTGGGCGTAAAGCCT CCGTAGGCGGATGGCCAAGTATCTTGTG
dp10u16	GCGTTATCCGGATTTATTCGCCCCTAACGGGI-CCGIAGCCGGTCTTGTAAGTCTTTGGTT
Dp10u13	GCGTTATCCGGATTTATTCCCCCCTTAAAGCGC-ATGTAGGAGGTTTTGTGCGTCCTTGGTT
Dp11u4	GCGTTATCCCCGAAC. ATTCGGCCGTAAAGGGT-GTGTAGGTGGTTTTGTTAGTCTTTCGTT
Dp10e3	CCGTTATCCCCCATTER TRGGCCGTAAAGGGT-GTGTANGCGGTTTCGTTAGTCTTCCGTT
Dp11e14	ACCTTA CTOGGATTTATTGGGCGTAAAGCGT-CTGCAGACGGTAAGGCATGTTCGGGGGTT
OPd3	ACGITACTCGGAATTACTGGGCGTAAAGCGT-CTGCAGGCGTCCTAAAAAGTCTGGTGTA
	GCATTATCCGGATTTACTGGGCGTAAAGCGT-CCGCAGGCGGTTTTGAAAGTCATTCGCC
Dp11u10	CGGATTTACTGGGTGTAAAGCGT-CTCTAGGCGGCTTAATAAATTTTTAGTT
Dpiidi0	CGTTACCGGATTTA-TGGGCGTAAAGCGT-ATGTAGGCAGTTTATNATGTCAATGGTT
	GCGTTATCCGGATTTATTGGGCGTAAAGCGT-TCGTAGGCGGTTTTGTAAGTCGTTTGTT
uncultured	GCGTTGTTCGGAATCACTGGGCGTAAAGCGC-GTGCAGGCGGCCTATTAAGTCAGATGTG
apivel7	ACGTTGTTCGGAATTATTGGGCGTAAAGGGC-GCGCAGGCGGTAAGATAAGTCAGACGTC
WCHB1-12	GCGTTGTTCGGAATTATTGGGCGTAAAGAGC-GTGTAGGCGGCTGAATAAGTCAGATGTG
Dp11u38	GCGTTGTTCGGAATTATTGGGCGTAAAGAGC-GTGTAGGCGGCTGAATAAGTCAGATGTG
Syntrophus	GCGTTGTTCGGAATCATTGGGCGTAAAGAGC-GTGTAGGCGGCCTGGATAAGTCAGATGTG
DP10e14	ACGTTGTTCGGAATTATTGGGCGTAAAGAGC-GTGTAGGCGGCCTGATCTGTCAGATGTG
dp10u10	GCGTTGTTCGGAATTATTGGGCGTAAAGCGC-GTGTAGCGCGCGTCTGATGTGTCAGATGTG
Geobacter	GCGTTGTTCGGATTTATTGGGCGTAAAGCGC-GTGTAGGCGGTCTGATTAGTCTGATGTG
Dplle16	ACGTTGTTCGGAATTATTGGGCGTAAAGGGC-GCGTAGGCGCGCCTTTATAGTCTGATGTG
Dpllu7	ACGTTGTTCGGAATTATTGGGCGTAAAGCGC-GTGTAGGCGGCCTTATAAGTCAGATGTG
Dpllu28	AAGTTGTTCGGAATTACTGGGCGTALLGCGC-GTGCACGCGGTCCTGTGTCAGATGTG
Dp10u25	GCGTTGTCCGGAATTATTGGGCGTAAAGGCGCC-GTGCAGGCGGTCCTGTAAGAGAGTTGTG
Dp11u8	ACATTGTTCGGATTTACTACGCGTAAACGCGA - CCCTACCTGGCCTTTTAAGTCAGACGTG
Dpl1u33	GCGTTAATCGGAATTATTGGGCGTAAAGGGCG-ACGTAGGIGGCTTTGTAAGTTGGAAGTG
BPC023	GCGTTAATCGGAATTACTCGCCCTAAAGGGC-ACGTAGGTGGTTGAATAAGTTAGGTGTA
Dp10u23	GCGTTAATCGGAATTACTCGCCCTAAAGCGC-TCGTAGGTGGATGTTTAAGTCGATTGTG
Ralstonia	GCGTTAATCGGAATTACTCGGCCTAAAGCGI-GCGCAGGCGGTTGTGCAAGACCGATGTG
Dp11u29	GCGTTAATCGGAATTACTCGCGCCTTAAGCGT-GCGCAGGCGGTTGTGCAAGACCGATGTG
Dp10u30	GCGTTAATCGGANTTACTGGGCGTAAAGCGT-GCGCAGGCGGTTGTGCAAGACCGATGTG
dp10e13	ACGATAATCGGAATTACTGGGCGTAAAGCGT-GCGCAGGCGGTTTTGTAAGACAGATGTG
Dp10u29	GCGTTAATCCGAATTACTGGGCGTAAAGCGT-GCGCAGGCGGTTTTGTAAGACAGGCGTG
SBR1001	GCGTTAATCCGAATTACTCGGCCNTAAAGCGT-GCGCAGGCGGTTTTGTAAGACAGACGTG
Azoarcus	GCGTTAATCCGAATTACTGGGCGTAAAGCGT-GCGCAGGCGCTTTGTAAGACAGGTGTG
Dp11u25	GTAGTGTCCCTCA ATATTCCCCTTAAGCCGTAAGCCGT-GCGCAGGCGGTTTTTTAAGACAGGCGTG
Lqd10	GCATTATCCCCGTTTTTATCCCCGTTTAAAGCGT-TCGTAGCCGGCTAAGCAAGTTTTCTGTG
DP10u18	GCGTTATCCGGATTGACGGGCGTAAAGGGTCGTGTAGGCGGTTTGGCAAGTTATCTTTG
Dp10u19	SCGTTATCCGGATTCACTGGGCGTAAAGTGTCGTGTAGGCGGTCTACCGCATCATACCTG
•	CCOTTATCCGGATTCACTGGGCGTAAAGA-TCGTGTAGGCGGTTCACCGCATCGCACTTG
	··· · · · · · · · · · · · · · · · · ·
Dplle12	
Sva0503	ANA-TECCTEGGETCAACEGAGGAATTGCTGGGCAAA-CTGGCGCACTTGAGGCAG
Dp10u35	AMA-TECCTEGGETCAACCGAGGAATTGCAGGGTAAA-CTGGTCGTCTTGAGGCAG
dp10u16	AAAIGCCAGAAGCTCAACTTTTGGAATGCCAGGGNAAACTGCAGGACTTGAGGGTG
Dp10113	AAA-GCCCACCGCTCAACGGTGGAANTGCCCCGGGATA-CGGCAGAACTAGAGGGAG
Dp11u4	AAA-GCTCTCGGCTTAACCGGGAAAGTGCGAAGGAAA-CGGCAAGACTAGAGGGTG
Dp10e3	AAA-IICIICGGCTCAACCGGGGGCATGCGGAGGAAA-CGGCGAAACTT-AGAGGACG
Dplle14	AAA-GACCCAGGCTCAACCTGGGGAAAGCGTCGAAAA-CTACCTTGCTT-AGAGGACA
OPd3	AAA-IITCGGAGCTCAACTCCGGAAGCGTGCCGGAAA-CTCTTAGGATCGAGTCAC
Dnllu3	AAA-TCCCGAAGCTCAACTTCGGAACCGCGAATGATA-CTTCAAAACTAGAGGCCG
	AAA-ICTITGGGCTTAACCTAAAGTTTGCTAAAAACA-CTGTTAAGCTAGAGACCG
Lans	AAA-TCCTTCGGCTCAACCGAGGAACCGCTGTTGAAA-CTGGTAAACTAGAGTATG
uncultured	ANA-ICITCAGGCTTAACCTGGAGGCTGCAGGTGATA-CTGCAAGACTTGAGTGTG
dn10e17	AAA-GUUTUGGCTCAACCAAGGAACTGCATCTGAAA-CTGGCAGGCTTGAGTACG
WCHR1_10	AAA-GCCCTCGGCTTAACTGAGGAATTGCGTTTGAAA-CTGTTTTGCTTGAGTACA
DD111129	AAA-TUCCTGGGCTTAACCCAGGACGTGCATTTGAAA-CTATTCAGCTTGAGTAGG
Syntrophys	AAA-TCCCTGGGCTTAACTCAGGAAGTGCATTTGAAA-CTATTCAGCTTGAGTAGG
DP10e14	AAA-GCCCTGGGGCTTAACCCAGGAAGTGCATTTGAAA-CTGTTCAGCTTGAGTAAG
dp10v10	AAA-GCCCTGGGCTTAACCCAGGAAGTGCATTTGAAA-CTGTCAGGCTTGAGTAGG
Geobacter-	AAA-GCCCTGGGGCTCAACCCAGGAAGTGCATTGGATA-CTGTCAGACTTGAATACG
ccobacter	AAA-GUUCTGGGCTCAACCCAGGAAGTGCATTGGATA-CTGGGAGACTTGAATACG

Dplle16	AAA-TCCCTCGGCTTAATCGAGGAA-GTGCATTTGAAA-CTGTGAGGCTTGAGTATG
Dp11u7	AAA-TCCTCGGGCTCAACCCGGGACGGGCATTTGAAA-CTGCAGGACTTGAGTACG
Dp11u28	AAA-TGCCCTGGCTCAACCAGGGAAATGCACCTCTGA-CTGCAGGACTTGAGTATG
Dp10u25	AAA-ACCCCGGGCTCAACCCGGGAACTGCGTTTGAGA-CTGGAGGGCTTGAGGACG
Dp11u8	AAA-TTCCATGGCTTAACCATGGAACTGCTTCCAAGA-CTGCTTAGCTTGAGTATA
Dp11u33	AAA-TTCCCGGGCTTAACCCGGGGTGGTCGCCTGATA-CTGTTTAACTAGAGTAGG
BPC023	AAA-GCCCCGGGCTTAACCTGGGAACTGCAGTCGAAA-CTGGGCATCTAGAGTATG
Dp10u23	AAA-TCCCCGAGCTTAACTTGGGAATTGCATTGGTGA-CTGCACGGCTAGAGTGTG
Ralstonia	AAA-TCCCCGAGCTTAACTTGGGAATTGCATTGGTGA-CTGCACGGCTAGAGTGTG
Dp11u29	AAA-TCCCCGAGCTTAACTTGGGAATTGCATTGGTGA-CTGCACGGCTAGAGTGTG
Dp10u30	AAA-TCCCCGGGCTTAACCTGGGNAA-CTGCATTTGTGA-CTGCAAGGCTAGAGTATG
dp10e13	AAA-TCCCCGGGCTTAACCTGGGAACTGCGTTTGTGA-CTGCAAGGCTAGAGTATG
Dp10u29	AAA-TCCCCGGGCTTAACCTGGGAACTGCGTTTGTGA-CTGCAAGGCTAGAGTGCG
SBRIOUL	AAA-TCCCCCGGCTTAACCTGGGAA-CTGCGCTTGTGA-CTGCAAGGCT-CGAGTGCG
Azoarcus	AAA-TCCCCGGGCTTAACCTGGGAACTGCGCTTGTGA-CTGGAAGACTAGAGTATG
	AAA-TCTTTCGGCTCAACCGAATAGGCTTGCAGAAAATA-CTACTTGGCT-CGAGAGTG
	AAA-TTCCAATGCCTAACATTGGAA-TTGGAGATAAAA-CTGTCATACT-AGAGTTTT
DPIUUI8	AAA-GUUUGAGGUTTAACUTUGGUGTTGGGTATGAGA-TGGGTAGACTCGAGGGAG
DDIOUIA	AAA-GCACGAGGCTTAACCTCGTCGTTGGGTGCGAGA-TGGGTAGACTTCTGAGGGCA
	*** ** **
Dn11e12	
Sva0503	GTAGA-GGTAACGCAGCGCAGCGCCCCCCCCCCCCCCCCC
Dp10u35	TTAGA-GGITARCIGGAACICAIGGIGGAGCGGIGGAAIGCGIAGAIAICAIGGGGGGAACG
dp10u16	TTAGA-GGTGA ATGGA ACCACCGGTGGAGGGGTGAAATCCGTGATATCGTGCGGC-AACA
Dp10u13	CAAGA-GGCTTATGGAACTCATGGTGTAGGGGGGGGAAACCGIIGATAICGIGGGG-AACA
Dp11u4	GAAGATGGNNNCTGGAACTCATGGTGTAGCGCTGAAATCCGTTGATATCATGGGG-AACA
Dp10e3	TAAGA-GGCCAATAGAACTCATGGTGTAGGGGTGAAATCCGTTGATACCATGGGG-AATA
Dp11e14	TCAGAGGCCCCCGGAATGTCGTGTGTGTGGGGGTAAAATCCGTTGATCCACGATGG-AACG
OPd3	GGAGA-GGCAAGTGGAACTACCGGTGTAGCGGTAAAATGCGTTAATATCCGTAGG-AACA
Dpl1u3	GGAGA-GGCCAGTGGANNAGCCGGTGTAGTAGTAGTTAAATGCGTTAATATCGGCTAG-AACA
Dpllu10	GGAGA-GGCAAGCGGAATTGCCGGTGTAGGGGTCAAATCCGTTAATATCGGCAGG-AACA
LgD8	GGAGA-GGCAAGCGGAATGCCCGGTGTAGCGGTAGAATGTGTTAATATCGGGTAG-AACA
uncultured	GGAGA-GGAGAGTGGAATTCCCGGTGTAGAGGTGAAATTCGTAGATATCGGGAAG-AACA
dp10e17	GGAGA-GGAGAGTGGAATTCCCAGTGTAGCGGTGAAATGCGTAGATATTGGGAGG-AACA
WCHB1-12	GGAGA-GGAAAGTGGAATTCCTGGTGTAGAGGTGAAATTCGTAGATATCAGGAGG-AACA
Dpllu38	GGAGA-GGAAAGTGGAATTCCTGGTGTAGAGGTGAAATTCGTAGATATCAGGAGG-AACA
Syntrophus	GGAGA-GGAAAGTGGAATTCCTGGTGTAGAGGTGAAATTCGTAGATATCAGGAGG-AACA
DP10e14	GGAGA-GGGAAGTGGAATTCCTGGTGTAGAGGTGAAATTCGTAGATATCAGGAGG-AACA
dp10u10	GGAGA-GGGTAGTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGATATTAGGAGG-AACA
Geobacter	GGAGA-GGGTAGTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGATATTAGGAGG-AACA
Dp11e16	GGAGA-GGAAAGTCGGANNCCTAGTGTAGAGGTGAAATTCGTAGATATTAGGAAG-AACA
Dpllu7	AGAGA-GGGAAGCGGAATTCCCCGGTGTAGCAGTGAAATGCGTAGATATCGGGAGG-AACA
Dpllu28	GGAGA-GGATGGGGGGAATTCCCCGGTGTAGCGGTGAAATGCATTGATATCGGGAGG-AACA
Dp10u25	GGAGA-GGAAAGTGGAATTCCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAGG-AACA
	GGAGA-GGGAAATGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAG-AACA
DDII033	
Dp10u23	TCACA-GGAAAGIGGAAIICCCGGIGTAGCGGTGAAATGCGTAGATATCGGGAGG-AACA
Ralstonia	TCAGA-GGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGG-AATA
Dpllu29	TCAGA-GGGGGGTAGAATTCCACGTGTAGCAGTGAATGCGTAGAGATGTGGAGG-AATA
Dp10u30	GCAGA-GGGGGGTAGAATTCCACGTGTAGCAGTGAATGCGTAGATATGTGGAGG-AATA
dp10e13	GCAGA-GGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGG-AATA
Dp10u29	GCAGA-GGGGGGTAGAATTCCGCGTGTAGCAGTGAAACGCGTAGATATGCGGAGG-AATA
SBR1001	GCAGA-GGGGGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGG-AACA
Azoarcus	GCAGA-GGGGGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGG-AACA
Dp11u25	GGGGA-AGCTAAAGGTACTGTAGGGGGGGGGGGGGGGGGG
Lgd10	CTTTAGTGGGACTGGAACTCAAGGAGGAGTAGTGAAATGCGTTGATACCTCGGGG-AACA
DP10u18	GTAGA-GGAAAGGGGAACTGACGGTGGAGCAGTGAAATGCGTTGATATCGTCAGG-AACA
Dp10u19	GTAGA-GGAAAGGGGAACTGATGGTGGAGCAGTGAAATGCGTTGATATCATCAGG-AACA
	* * * * * * * * * * *
Dplle12	CCGGTGGTGAAGACGACTCACTGGGCCTGTCCTGACGCTGAGG-TGCGAAAGCCAGGGGA
Sva0503	CCAAAGGTGANGACAAGTTACTGGGCCTGTCCTGACGCTGAGG-TACGAAAGCGTGGGTA

.

e12	CCGGTGGTGAAGACGACTCACTGGGCCTGTCCTGACGCTGAGG-TGCGAAAGCCAGGGGA
503	${\tt CCAAAGGTGANGACAAGTTACTGGGCCTGTCCTGACGCTGAGG-TACGAAAGCGTGGGTA$

.

i

•

ļ

Dp10u35	CCAAAAGCGAAAGCATTCAGCTGGGGGCAACCCTGACGGTGAGG-GACGAAAGCGTGGGGA
dp10u16	CCAAAGGCGAAGGCAGTTCACTGGGACTTTCCTGACTCTGANA - TGCGA A AGCGTGGGGA
Dp10u13	CCGAAGGCGAAGGCAATAAGCTGGTGCATTTCTGACACTGAAA-CACGAAGCCGACGCGA
Dpllu4	CCGAAAGCGAAGGCAAGAAACTGGTCCGCTCCTGACGCTGAAA-CACGAAAGCGIGGGIN
Dp10e3	CCAAGGGCGAAGGCATTTGGCTGGTGTGTCCTGACGTCAGA_CACGAAGCGTGGGTC
Dp11e14	CCAAAAGCGAAGGCAGGGTGCTGCGCGCGCTCTACCGTCAGA~GACGAAAGCGTGGGTC
OPd3	CCAAAAGCGAAGCGCAGCTTCCTAGAACGCCTCCGCACGAAGCGTGGGGGA
Dp11u3	CCAAAGCGAAGCCAAGCTIGCTAGAACGGTCCTGACGCTCAGG-GACGAAAGCGTGGGGGA
Dp11u10	CCAAAGCGAAGGCAACTGGCTAGAACGGTTCTGACGCTCATAAGACGAAAGCGTGGGTA
LaDa	CCAAATGCGAAGGCAGUTTGCTACAACATCACTGACGCTGAGA-TACGAAAGCGTGGGGA
uncultured	CCAAAGGCGAAGGCAGCTTGCTGGAACACAACTGACGCTCAGTGAACGAAAGCGTGGGGA
dneureu dn10o17	CCGGTGGCGAAGGCGGCTCTCTGGACCGATACTGACGCTGAGA-CGCGAAAGCGTGGGGA
uproer/	CCGGTGGCGAAGGCGGCTCTCTGGACTGTTACTGACGCTGAGG-CGCGAAAGCATGGGGA
WCHBI-12	CCGGTGGCGAAGGCGACTTTCTGGCCCTATACTGACGCTGAGA-CGCGAGAGCGTGGGTA
Dp11u38	CCGGTGGCGAAGGCGACTTTCTGGCCCTATACTGACGCTGAGA-CGCGAGAGCGTGGGTA
Syntrophus	CCGGTGGCGAAGGCGACTTTCTGGCCCTATACTGACGCTGAGA-CGCGAGAGCGTGGGTA
DP10e14	CCGGTGGCGAAGGCGACTTCCTGGCCCTATACTGACGCTGAGA-CGCGAGAGCGTGGGTA
dp10u10	CCGGTGGCGAAGGCGGCTACCTGGACCGATATTGACGCTGAGA-CGCGAAAGCGTGGGTA
Geobacter	CCGGTGGCGAAGGCGGCTACCTGGACCGATATTGACGCTGAGA-CGCGAAAGCCTGGCGA
Dplle16	TCGGTGGCGAAGGCGGCTTTCTGGACCAATACTGACGCTAAGG-CGCGAACCGTGGGGA
Dp11u7	CCAGTGGCGAAGGCGGCTTCCTGGATCGCAACTGACGCTGACA-CCCCAAAGCATGGGGA
Dp11u28	CCAGTAGCGAAGGCGGCTCTCTGGACTGATACTCACCCCCGAAAGCGIGGGTA
Dp10u25	CCAGTGGCGAAGGCGGCTTTCTGCACCCTCACGCCTCACG-CGCGAAGGCTTGGGGA
Dpllu8	
Dp11u33	CONSTRUCTANOGCOAT TICCIGGCCTAACACTGACACTGAGG-CTCGAAAGCTAGGGGA
BPC023	CCAGTGGCGAAGGCGGCTTCCTGGTCCACTACTGACACTCAAG-TGCGAGAGCGTGGGGA
Dn10123	CCABTGGCGAAGGCGGCTTTTCTGGACCAATACTGACACTGAGG-AGCGAAAGCGTGGGGA
Paletonia	CCGAIGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATG-CACGAAAGCGTGGGGA
Raisconia Dellugo	CCGATGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATG-CACGAAAGCGTGGGGA
Dp11u29	CCGATGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATG-CACGAAAGCGTGGGGA
DDTOU30	CCGATGGCGAAGGCAGCCCCCTGGGTCAATACTGACGCTCATG-CACGAAAGCGTGGGGA
dp10e13	CCGATGGCGAAGGCAGCCCCCTGGGTCAATACTGACGCTCATG-CACGAAAGCGTGGGGA
Dp10u29	CCGATGGCGAAGGCAGCCCCCTGGGTCGACACTGACGCTCATG-CACGAAAGCGTGGGGA
SBR1001	CCGATGGCGAAGGCAGCCCCCTGGGTCGACACTGACGCTCATG-CACGAAAGCGTGGGTA
Azoarcus	CCGATGGCGAAGGCAGCCCCCTGGGCCAATACTGACGCTCATG-CACGAAAGCGTGGGGA
Dp11u25	CCAGTGGCGAAGGCGTTTATCTAAAACACGTCTGACGGTGAGG-GACGAAGGCGAAGGCGA
Lgd10	CCAATGGTGAAGACAAGTCCCTGGGAGATAACTGACGCTGAGA-CACGAAAGCTATGGGA
DP10u18	CCAAAGGCGAAGGCACCTTTCTGGACCTCTCCTAACGCTGAGA-CACCAAAGCTAGGGGA
Dp10u19	CCAAAGGCGAAGGCACCTTTCTGGACTGTACGCTGACGACA-CACGAAAGCTAGGGGG
	* * ** * * ** ** ** ***
	ं ं ं ं मन तक धेव
Dp11e12	GCAAACGGGATTAGATACCCCCCTACTCCTCCTCCCCCCTAAACGCCCCC
Sva0503	GCAACGATTACATACCCCGGTAGTCCTGGCCCTAAACGA-TGTCTACTAGATCGG
Dp10u35	CCANACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTATACTAGTCCCGG
dp10u16	SCAMAAAGGATTAGATACCUTTGTAGTCCACGCTGTAAACTA-TGGATGCTAGCTATGTG
	GCAAAAAGGATTAGATACCCTTGTAGTCCACGCCCTAAACGA-TGCCTGTTAGCTGTTTC
Dplaud	GCGAATGGGATTAGATACCCCCAGTAGTCCACGCCCTAAACGA-TGTTCTCTAGTTTTTCG
Dp1102	GCGAATGGGATTAGATACCCCAGTAGTCCACGCCCTAAACGA-TGATCTCTAGCTTTGAG
Dp10e3	GCGAATGGGATTAGATACCCCAGTAGTCCACGCCCTAAACTA-TGGATGCTAGCTGTGGG
opile14	GCAAAGGGGATTAGATACCCCCGTAGTCCACGCCCTAAACGA-TGCGTGCTCGGTGTAGG
OPa3	GCGAATAGGATTAGATACCCTAGTAGTCCACGCCCTAAACGA-TGAGTGNTAGGCATTGG
Dp11u3	GCGAATGGGATTAGATACCCCAGTAGTCCACGCTGTAAACGA-AGGGCACTAAGCATTGG
Dp11u10	GCGAAGCGGATTAGATACCCGCGTAGTCCACGCCGTAAACGA-TGGATACTANGCATTGA
LgD8	GCGAAAGGGATTAGATACCCCTGTAGTCCACGCTGTAAGCTA-TGGCTACTAGATTTTGG
uncultured	GCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA-TGGGCACTAGGTGTGCA
dp10e17	GCAAACGGGATTAGATACCCCGGTAGTCCATGCTGTAAACGA-TGGGCACTAGGTGTAGA
WCHB1-12	GCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA_TGTTCACTAGGTGTAGA
Dpllu38	GCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA TGTTCACTAGGTGTTGG
Syntrophus	GCANACAGGATTAGATACCCTGGTAGTCCACCCCTGTAAACGA-IGIICACIAGGTGTTGG
DP10e14	GCAAACAGGATTAGATACCCTGGTACTCCACCCCCTAAACGA-IGITCACTAGGTGTTGG
dp10u10	GCAAACAGGATTAGATACCCTGGTAGTCCACGCGGTAAACGA-TGTTCACTAGGTGTTGG
Geobacter	GCAAACAGGATTAGATACCCCCCCCCCCCCCCCCCCCCC
Dplle16	GCAAACAGGATTAGATACCCTGGTAGACGACGACGACTAGGTGTTGC
Dpllu7	
	GTAAACAGATTAGATACCCIGGIAGICCATGCCGTAAACTA-TGAACACTAGGTGTTGA
Dp11u28	GTAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACTA-TGAACACTAGGTGTTGA GTAAACAGGATTAGATACCCTGGTAATCCACGCCCTAAACGA-TGGGTACTAGGTGTTGT
Dp11u28 Dp10u25	GTAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACTA-TGAACACTAGGTGTTGA GTAAACAGGATTAGATACCCTGGTAATCCACGCCCTAAACGA-TGGGTACTAGGTGTTGT GCAAACAGGACTAGATACCCTGGTAGTCCAAGCGGTAAACTA-TGGGTACTAGGTGTCGG
Dp11u28 Dp10u25	GTAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACTA-TGAACACTAGGTGTTGA GTAAACAGGATTAGATACCCTGGTAATCCACGCCCTAAACGA-TGGGTACTAGGTGTTGT GCAAACAGGACTAGATACCCTGGTAGTCCAAGCGGTAAACTA-TGGGTACTAGGTGTCGG GCGAACAGGATTAGATACCCCCGGTAGTCCTGGCCGTAAACGA-TGGGTACTANGTGTGGGG

BPC023 GCAAACAGGATTAGAGACCCCONTACTURACIGA TOAGAACTAGGGTT Dp10u23 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGGGTTGTT Ralstonia GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGTGTTGT Dp10u30 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGTGTTGT Dp10u30 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGGTGTTG Dp10u30 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGGTGTTG Dp10u30 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCTAAAGGA TOTCAACTAGGTGTTG Dp10u35 GCAAACAGGATTAGATACCCCGGTAGTCCTAGCCCTAAAGGA TOTCACTAGGGTGTG Dp10u35 GCAAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAAGGA TOTCGCTAGGTGTC Dp10u14 GCGAAGCAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGCTGCTAGTGCTCGTGCTAGGTGTC Dp10u15 GCGAAGCAGGTTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGGTGCTGCTGCTGGTGCTCGTGCTAGGTGTTAGGT Dp10u14 GCGAAGCAGGTTAGGCGTCCAACGCGGAAATGAAAACGGTAGGT Sva0503 AGGAACTCGAGCGTTTTTCCO-GACGGAAGCTAACCGCTTAAAC Dp10u13 G-AATTC-GACCTCT-CAGGTGGCGAAGCTAACCGCTTAAAC Dp10u13 G-AATTC-GACCTCT-CCGGGGGGTAGCTAACCGCTTAAAC Dp11u14 G-AATTC-GACCTCT-CCGGGGGGTAGCTAACCGCTTAAAC Dp11u14 G-AATTC-GACCTCT-CCGGGGGGTAGCTAACCGCGTAAAGG Dp11u14	Dp11u33	GCAAACAGGATTAGATACCCTGGTAGTCCACGCTCTCAACCA
Dp10u23 GCAAACAGGATTAGATACCCGGTAGTCCAGGCCCTAACGA-TGCAGTAGGTTGTT Ralstonia GCAAACAGGATTAGATACCCGGTAGTCCAGGCCCTAACGA-TGTCAGCTAGGTGTTGT Dp11u29 GCAAACAGGATTAGATACCCGGTAGTCCAGGCCCTAACGA-TGTCAACTAGGTGTTG Dp10u30 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCCTAACGA-TGTCAACTAGGTGTTG Dp10u39 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCCTAACGA-TGTCAACTAGGTGTTG Dp10u39 GCAAACAGGATTAGATACCCTGGTAGTCCAGGCCTAACGA-TGTCAACTAGGTGTTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCTAGCGCTAACGA-TGTCCAACTAGGTGTTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCTAGCCCTAACGA-TGTCCACTAGGTGTGT Lgd10 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAACGA-TGTCCACTAGGTGTGTC Dp11u15 GCAAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAACGA-TGTCTAGTGCTGCAGGTCA Dp10u18 GCGAAGCAGATTAGAGACCTGCGTGGTGTCTAGCCCTAACGGATGTCTGCTAGGTGTGTC Dp10u18 GCGAAGCAGATTAGAGACCTGCGTGGCGAAATGAAACGGTTAGC Dp10u19 AAGTGTC-GACCTCT-CAGGTGGGT	BPC023	GCAAACAGGATTAGAGACCCTGGTAGTCCACGCTGTGAACGA-TGAAAACTAGACGTTGG
Ralstonia GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGGTTGTT Dp11u29 GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGGTTGTT Dp10u30 GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGAGTGTGTGT dp10u30 GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGAGTGTGTG Dp10u30 GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGAGGTGTG SBR1001 GCAMCAGGATTAGATACCCTGGTAGTCCAGGCCTAAGGA-TGTCAGTGGGTGTG Dp11u25 GCAMCAGGATTAGATACCCTGGTAGTCCTAGCCCTAAGGA-TGTCGTGGCAGTGGTGTG Jp11u25 GCAMCAGGATTAGAGACTGCGTGAGTCCTAGCCCTAAGGATGTGTGGTGGGGTAGGC Jp11u25 GCAMCAGGATTAGAGACTGCGTGAGTCCTAGCCCTAAGGATGTGTGGTGGTGGCGC Jp10u13 GCGAMGCAGATTAGAGACCTGGGTAGTCCTAGCCCTAAAGGATGTGTGGTGGGTAGGC Jp10u13 GCGAMGCAGATTAGAGACTGGGGGGAAGTGAAGCGATTAGG Dp10u13 GCGAMGCAGATTAGAGCCTGCGGGGGAAGTGAAGCGGTAGGC Dp10u13 GCGAMGCAGATTAGAGCTGCGGGGGGAAGGTAAGCGCTTAAGC Dp10u13 GCAAGCGGGTTGGCCTC-CGGGGGGGGGGAAGGTAAGCGGTTAAGC Dp10u13 G-AGTATC-GACCTTCGAGGTGGGGAAGGTAAGCGCTTAAGA Dp10u13 G-AGTATC-GACCTTCGAGGTGGGGAAGGTAAGCGGTTAAGC Dp10u13 G-AGTATC-GACCTTCCGGGGGGAAGGTAAGCGGTTAAGC Dp10u13 G-AGTATC-GACCTTCCGGGGGGAAGGTAAGCGGTAAGC Dp10u13 <td>Dp10u23</td> <td>GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGA-TGAGAACTAGGCGTTGG</td>	Dp10u23	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGA-TGAGAACTAGGCGTTGG
Dp11u29 GCAAACAGGATTAGATACCTUGGTAGTCCACGCCCTAAACGA - TGTCAACTAGTTGTTC Dp10u30 GCAAACAGGATTAGATACCTUGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTG Dp10u29 GCAAACAGGATTAGATACCTUGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTC Dp10u29 GCAAACAGGATTAGATACCTUGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTG Dp11u29 GCAAACAGGATTAGATACCTUGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTG Dp11u29 GCAAACAGGATTAGATACCCTUGGTAGTCCACGCCCTAAACGA - TGTCCATGGTGGTTGGTTGTC Dp11u29 GCAAACAGGATTAGATACCCCUGGTAGTCCTGAGCCTAAACGA- TGTCCATGGTCGTCAGTGCCTGACGTGGTTGGTTGGTTGG	Ralstonia	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGTTGTTGG
Dp10u30 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGTGTTT dp10e13 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG dp10u29 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG dp10u29 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGCCAACTAGGTGTTG dp10u29 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGCCAACTAGGTGTTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCTAGGCCTAAACGA-TGCTCGTCAGTGCTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCTGCGCCTAAACGATGCTGCTGCAGTGTGTCGTCAGTGGTG Dp11u29 GCGAACAGGATTAGAACCCTGCGTAGTCCTCGGGCCTAAACGATGCTGCTGCTGCAGTGTGCTGCTGCTGCTGAGTGTGCCCCTAAACGCATGCCGTGTCCCGCAGTGTCCTGCAGGTAGTCCGCGCTGCCTGC	Dp11u29	GCAAACAGGATTAGATACCCTGGTACTCCACGCCCTAAACGA-TGTCAACTAGTTGTTGG
dp10e13 GCAAACAGGATTAGATACCTOGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTC Dp10u29 GCAAACAGGATTAGATACCTOGGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTC Dp11u29 GCAAACAGGATTAGATACCTOGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTC Lgd10 GCAAACAGGATTAGATACCTOGTAGTCCACGCCCTAAACGA - TGTCAACTAGGTGTTC Lgd10 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGA-TGTCGTCATGGTCGTAGTCCT Lgd10 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGTCTGCTAGATGTCC Dp11u29 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGTCTGCTAGATGTCC Dp10u19 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGTCTGCTAGATGTCC Dp10u19 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCGCTAAACGATGTCGCTAGATGTCC Dp10u19 GCGAACAGGATTAGAGACCTGCGTAGTCCTAGCGCTAAACGGTTAGGT Dp10u19 GCGAACAGGTTTTTTCG-GCGGAAATGAAACGGTTAAGT Dp10u19 AAGTATC-GACCCTCGGGTGGGCTAGCTAACGCGTTAAGC Dp10u14 G-AGTATC-GACCCTCCGGGGGGAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTTCGGGGCGAAGCTAACGCGTTAAGC Dp11u3 G-AGTATC-GACCCTTCGGGCGCAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTTCGTGCGCAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTTCGTGCCGAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTTCGTGCCGAAGCTAACGCGTTAAGC Dp11u3 <td>Dp10u30</td> <td>GCAAACAGGATTAGATACCCTGGTACTCCACGCCCTAAACGA-TGTCAACTAGTTGTTGG</td>	Dp10u30	GCAAACAGGATTAGATACCCTGGTACTCCACGCCCTAAACGA-TGTCAACTAGTTGTTGG
Dp10u29 GCAAACAGGATTAGATACCTIGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG SBR1001 GCAAACAGGATTAGATACCTIGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG SACARCUS GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCTGGGCCTAAACGA-TGTCACTAGCTGTGTGTGTG Dp11u25 GCGAACGAGATTAGAGACCTGCGTAGTCCTGCGCCTAAACGACTGTCGTCATCCTCACT Dp10u19 GCGAACGAGATTAGAGACCTGCGTAGTCCTGCGCCTAAACGACTGTCGTCATCCTCCACT Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTGCAGCCTAAACGCATGTCGTCATCCTGCATG Dp10u19 GCGAAGCAGATTAGAGACCTGCGGTAGTCCTGCAGCCTAAACGCATGTCGCCTAACGCATGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCCCTAAAGCGTTAAGC Dp10u19 GCGAAGCAGATTAGAGACCTGCGGCGCAAGCTAACGCGTTAAGC Dp10u19 GCGAAGCAGCTCT-GAGGCGGTAGCTAACGCGTTAAGC Dp10u13 G-AGTATC-GACCCTCT-GAGGTGGCGAGCTAACGCGTTAAGC Dp10u13 G-AGTATC-GACCCTT-CGAGGCGGAAGCTAACGCGATTAAGC Dp11u1 G-AGTATC-GACCCTT-CGAGGCGCAAGCTAACGCGATTAAGC Dp11u2 G-AGTATC-GACCCTT-CGAGGCGGAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTT-CGTGTCGCAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTT-CGTGTCGCGAAGCTAACGCGTTAAGC Dp11u3 A-AGTATC-GACCCTT-CGTGTCGCGCAGCTAACGCGTTAAGC Dp11	dp10e13	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTGG
SBR1001 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGCCAACTAGGTGTTG Aboarcus GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGTCCACTAGGTGTTG Dp11u25 GCAAACAGGATTAGATACCCTGGTAGTCCAGGCCTAAACGA-TGTCCACTGCAGTGGTTGGTGTGG Lgd10 GCGAAGCAGATTAGATACCCTGGTAGTCCTAGCCCTAAACGA-TGTCACTGGTAGTGTGGTGGTG Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGGTAGATGTCC Dp10u19 GCGAAGCAGATTAGAGACTGCGTAGTCCTAGCCCTAAACGCATTGTGCTGGTAGATGTC Dp10u19 GCGAAGCAGATTAGAGACTGCGTAGTCCTAGCCCTAAACGCATTAGGTGTGGCA Dp10u19 GCGAAGCAGCTGGAGGTTTTTCG-GACGAT	Dp10u29	GCAAACAGGATTAGATACCCIGGIAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTGG
Azoarcus GCAAACAGGATTAGATACCCCTGGTAGTCCACGCCCTAAACGA-TGTCAACTAGGTGTTG Dpl1u25 GCAAACAGGATTAGATACCCCGGTAGTCCAGGCCCTAAACGA-TGTCACGTAGGTGTG Dpl0u18 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGAATGTCTGCTAGATGTCTGCTAGTGCTGC Dpl1u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGAATGTCTGCTAGATGTCTGCTAGTGCTGCTAGTCCTUGCTAGTCCTGCAGCCTTAACGCATGTAGTGCTAGTGCTGCTGCTGCTGCTGCTGCTGCTAGTCCTGCAGGTCTAACGCATAACGGTAGT Dpl1u18 GCGAAGCAGATTAGAGACCTGCGGGGGCTAATGAAACCGGTAAGT Sva0503 AGGAACTCTGACGTTTTTCG-GCGCGAAGTAACGCGTTAAGC Dpl0u13 G-AGTATC-GACCCTCT-GGGGGGCT	SBR1001	GCAAACAGGATTAGATACCCTGGTACTCCACGCCCTAAACGA-TGTCAACTAGGTGTTGG
Dp11u25 GCAAACGGATTAGATACCCGGTAATCCTGGCGTAAACGA-TGTCGAACTAGGTGTG GGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCTAAACGA-TGTCGGTAGTGCGCACGTGGCGACCTGGCAAACGGATGTCTGGCACCGCACCCGAA Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGCTAGATGTCC GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGGCAACTGCC T * * * * * * * * * * * * * * * * * * *	Azoarcus	GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGA-TGCCAACTAGGTGTTGG
Lgd10 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCGTAAGCGAATGTCTGCTAGCTCTGCATA Dp10u18 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGCTAGATGTCC Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGCTAGATGTCC Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGCTAGATGTCC Dp10u19 GCGAAGCAGATTAGAGACCTGCGAGCGAAGTGAGACGCATAAGT Dp10u10 AGTCACTCTGACGTGTTTCCG-GCGGAAGTAACGCGTTAAGC dp10u11 G-AGTATC-GACCCTCC-CGGGGGGGAAGCTAACGCGTTAAGC Dp11u1 G-AGTATC-GACCCTCT-CGGGGGGGAAGCTAACGCGTTAAGC Dp11u2 G-AGTATC-GACCCTCT-CGGGGGGGAAGCTAACGCGATTAAGC Dp11u3 G-AGTATC-GACCCTCT-CGGGGGGGAAGCTAACGCGATTAAGC Dp11u3 G-AGTATC-GACCCTT-CTGTGCCGAAGCTAACGCGATTAAGC Dp11u3 A-AGTATC-GACCCTT-CTGTGTCGTAAAACAAGTAACGCGTTAAGT Dp11u3 A-AGTATC-GACCCTT-CTGTGTCGCGAAGCTAACGCGTTAAGT Dp11u3 A-AGTATC-GACCCTT-CTGTGTCGCGAAGCTAACGCGTTAAGT LgD8 G-AGTTT-GACCCTT-CAGTGCCGCAGCTAACGCGTTAAGT Dp11u3 A-AGTATC-GACCCTT-CAGTGCCGG	Dp11u25	GCAAACGGGATTAGATACCCIGGIAGICCACGCCCTAAACGA-TGTCAACTAGGTGTTGG
DP10u18 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGATGCTGCTAGTGCTAGAGTGCC Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGCTGCAGAGTGCC Dp10u19 GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGCTGCAGATGTCG Dp11u12 AGTCACTCTGACGTTTTCCG-GCGGAAGTCAAACGCATGAGT Dp10u13 AGGAACTCTGACGTTTTCCG-GCGGAAGCTAACGCGTTAACC Dp10u14 G-AGTATC-GACCCTCT-GGAGGGCGAAGCTAACGCGTTAACC Dp10u15 G-AGTATC-GACCCTCT-CGGGGGGCGAAGCTAACGCGTTAACC Dp10u16 G-AGTATC-GACCCTCT-CGGGGGCGAAGCTAACGCGTTAACC Dp10u13 G-AGTATC-GACCCTT-CGGGGGGCAAGCTAACGCGATTAAGC Dp10u14 G-AGTATC-GACCCTT-CGTGTCGTTCTAAAGTAACGCGTTAAGC Dp11u14 A-AGTATC-GACCCTT-CGTGTCGACGAAACAAGCTAACGCGTTAAGC Dp11u10 G-AGTATC-GACCCTT-CGTGTCGACGAAACAAGCTAACGCGTTAAGT Dp11u10 G-AGTATC-GACCCTT-CGTGTCGCGAAGCTAACGCATTAAGT Dp11u10 G-AGTATC-GACCCTT-CGTGTCGCGAGCTAACGCATTAAGT Dp11u10 G-GGTATT-GACCCTT-CGTGCCGC	Lgd10	GCGAAGCAGATTAGAGACCTGCCTTACTCCTACGCGTAAACGA-TGTCCGTTTGGTGTTGC
Dp10u19 GCGAAGCAGATTAGAGACCTGCTAAGCCTAGAGCCTAGAGCGTGACAGGTGCTGCTAGTGCCC ************************************	DP10u18	GCGAAGCAGATTAGAGACCTGCGTACTCCTACGCGTACTGCTACCTGCATG
Dp11e12 AGTCACTCTGACGTGTTTCCG-GCCGAAATGAAAACGGTAAGT Sva0503 AGGAACTCTGACGTTTTTTCG-GACGAAATGAAAACGGTAAGT Dp10u35 A-AGTGTC-GACCTTC-ACGTGGCGAAGCTAACGCGTAAGC Dp10u16 G-AGTATC-GACCCTC-CAGGGGGGGGCT	Dp10u19	GCGAAGCAGATTAGAGACCTGCGTAGTCCTAGCCCTAAACGCATGTCTGCTAGATGTCCC
Dpl1e12 AGTCACTCTGACGTTTTCCG-GCCGAAATGAAAACGTAAGT Sva0503 AGGAACTCTGACGTTTTTCG-GACGAAATGAAAACGTTAAGT Dp10u35 A-AGTGTC-GACCCTTC-ACGTGGCGGA		* * ** *** ***
Dp1le12 AGTCACTCTGACGTTTTCCG-GCCGAAATGAAAACGGTAAGT Sva0503 AGGAACTCTGACGTTTTTCG-GACGAAACTAAACGGTTAAGC Dp10013 A-AGTGC-GACCCTCG-GGGTGGCGAAGCTAACGCGTTAAAC Dp10013 G-AGTATC-GACCCTCT-GAGANACAAAGCTAACGCGTTAAAC Dp10013 G-AGTATC-GACCCTCT-CGGGGCGA		
Sva0503 AGGAACTCTGACGTTTTTTGCGACGAAATGAAAACGTTAAGT Dp10u35 A-AGTGTC-GACCCTTC-ACGTGCGAAGCTAACGCGTTAAGC dp10u16 G-AGTATC-GACCCTCT-GAGANACAA	Dplle12	AGTCACTCTGACGTGTTTCCG-GCCGAAATGAAAACGGTAAGT
Dp10u35 A-AGTGTC-GACCCTTC-ACGTGGCGAAGCTAACGCGTTAAGC dp10u16 G-AGTATC-GACCCTC-CAGGTGGCGTAGCTAACGCGTTAAGC Dp10u13 G-AGTATC-GACCCTC-CAGGAGCAAAGCTAACGCGATAAGA Dp10u14 G-AGTATC-GACCCTC-CGAGGCGAAGCTAACGCCGATAAGC Dp10e3 G-AGTATC-GACCCTC-CCGGGCGAAGCTAACGCCGTTAAGC OPd3 A-AGTATC-GACCCTT-CCGGGCGCAAGCTAACGCGTAAGC OPd3 A-AGTATC-GACCCTT-CGGGCGGTTCTAAAAACCTAACGCGTTAAGC Dp11u10 G-AGTATC-GACCCTT-CTGTGTGTGTTAAAAACGTAACGCGTTAAGT Dp11u10 G-AGTATC-GACCCTT-CTGTGCCGGAGCTAACGCGTTAAGT uncultured G-GGTATT-GACCCCTT-CTGTGCCGGAGCTAACGCATTAAGT dp10e17 G-GGTATT-GACCCCTT-CAGTGCCGC	Sva0503	AGGAACTCTGACGTTTTTTCG-GACGAAATGAAAACGTTAAGT
dp10u16 G-AGTATC-GACCCTCG-GGGTGGCGTTAGCTAACGCGTTAAAC Dp10u13 G-AGTATC-GACCCTCT-CGAGANACAAAGCTAACGCGTTAAGA Dp11u4 G-AGTATC-GACCCTT-TCGAGGCTAAGCTAACGCGTTAAGA Dp10e3 G-AGTATC-GACCCTT-CGGGGCGAAGCTAACGCGGTAAGC Dp11u4 A-GTTTC-AATGCTC-CGTGGCCAAGCTAACGCGGTAAGC Dp11u3 A-AGTATC-GACCCTT-CAGTGCTGTTTAACTAAGCTAACGCGTTAAGT Dp11u10 G-AGTATC-GACCCTT-CGTGTCGTCTCAAAAAGCTAACGGTTAAGT Dp11u10 G-AGTATC-GACCCTT-CTGTGCCGCAAGCTAACGCGTTAAGT Dp11u10 G-AGTATC-GACCCTT-CTGTGCCGCAAGCTAACGCATTAAGT Dp11u10 G-AGTATT-GACCCTT-CTGTGCCGCAAGCTAACGCATTAAGT dp10e17 G-GGTATT-GACCCTT-CAGTGCCGCAGCTAACGCATTAAGT Dp11u38 G-GGTATT-GACCCTT-CAGTGCCGC	Dp10u35	A-AGTGTC-GACCCTTC-ACGTGGCGAAGCTAACGCGTTAAGC
Dp10u13 G-AGTATC-GACCTCT-GAGANACAAGCTAACGCNTTAAGA Dp11u4 G-AGTATC-GACCCTCT-TCGAGGCTAAGCTAACGCCATTAAGA Dp10e3 G-AGTATC-GACCCTT-CCGGGCGGCAAGCTAACGCCATAAGA Dp11e14 A-GTTTC-AATTGCTC-CGTGGCCCAAGCTAACGCCATAAGC Dp11u10 G-AGTATC-GACCCTT-CGTGTCCCTT	dp10u16	G-AGTATC-GACCCTCG-GGGTGGCGTTAGCTAACGCGTTAAAC
Dpl1u4 G-AGTATC-GACCCTCT-TCGAGGCTAAGCTAACGCGATAAGA Dpl0e3 G-AGTATC-GACCCTT-CCGGCGGCGAAGCTAACGCGATAAGC Dpl1e14 A-GTATC-GACCCTTT-CAGTGCCGTAGCTAACGCGATAAGC OPd3 A-AGTATC-GACCCTTT-CAGTGCCGTAGCTAACGCGGTAAGC Dpl1u1 A-AGTATC-GACCCTT-CAGTGCCGTAGCTAACGCGTTAAGC Dpl1u1 A-AGTATC-GACCCTT-CTGTGCCGACGAAACAAGCTAACGCCGTTAAGT Dpl1u10 G-AGTTC-GACCCTT-CTGTGCCGGAGCTAACGCCGTTAAGT Uncultured G-GGTATT-GACCCCTT-CTGTGCCGGAGCTAACGCATTAAGT dpl0e17 G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGT Dpl1u38 G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGT Dpl1u38 G-GGTATT-GACCCCTC-CAGTGCCGC	Dp10u13	G-AGTATC-GACCCTCT-GAGANACAAAGCTAACGCUTTAACA
Dpl0e3 G-AGTATC-GACCCTCT-CCGCGGCGGAAGCTAACGCCATTAAGC Dpl1e14 A-GTTTC-AATTGCTC-CTGTGCCCAAGCTAACGCCGTAAGC Dpl1u3 A-AGTATC-GACCCTTA-CAGTGCCGTTAGCTAACGCCGTAAGC Dpl1u3 A-AGTATC-GACCCTTA-CAGTGCCGTTTAACTAAGCCCGTTAAGT Dpl1u10 G-AGTATC-GACCCCTT-CTGTGCCGGAGCTAACGCCGTTAAGT LgD8 G-AGTATC-GACCCCTT-CTGTGCCGGAGCTAACGCATTAAGT dpl0e17 G-GGTATT-GACCCCTT-CTGTGCCGGAGCTAACGCATTAAGT dpl0e17 G-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGT Syntrophus G-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGT Dpl1u38 G-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGT Dpl0e14 G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGT Dpl10e15 G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGT Dpl10e16 G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGT Dpl10e17 G-GGTATT-GACCCCTG-CAGTGCCGA	Dp11u4	G-AGTATC-GACCCTCT-TCGAGGCTAAGCTAACGCCATAACA
Dplle14 A-GTTTTC-AATTGCTC-CTGTGCCCAAGCTAACGCGTAAGC Opd3 A-AGTATC-GACCCTTT-CAGTGCCGTAGCTAACGCGTAAGC Dpllu1 A-AGTATC-GACCCTTT-CAGTGCCGTTAGCTAACGCCGTAAGC Dpllu10 G-AGTATC-GACCCTT-CTGTGTCGTTTAAATAGCTAACGCGTTAAGT LgD8 G-AGTTTC-GACCCTT-CTGTGTCGACGAAACAAGCTAACGCGTTAAGT uncultured G-GGTATT-GACCCCTT-CTGTGCCGAAGCTAACGCATTAAGT Dpllu2 G-GGTATT-GACCCTCT-CAGTGCCGA	Dp10e3	G-AGTATC-GACCCTCT-CCGCGGCGAAGCTAACCCATTAACA
OPd3A-AGTATC-GACCCTTT-CAGTGCCGTTAGGTAACCCGTTAAGCDp11u3A-AGTATC-GACCCTTT-CAGTGCTGTTTAACTAAGTAACCCGTTAAGTDp11u10G-AGTATC-GACCCTT-CTGTGCGTCGTCTAAAAAGCTAACGCGTTAAGTLgD8G-AGTTTC-GACCCTT-CTGTGCCGGAGCTAACGCGTTAAGTdp10e17G-GGTATT-GACCCTT-CTGTGCCGAAGCTAACGCATTAAGTdp10e17G-GGTATT-GACCCTT-CTGTGCCGAAGCTAACGCATTAAGTdp10e17G-GGTATT-GACCCTT-CAGTGCCGAAGCTAACGCATTAAGTdp10e17G-GGTATT-GACCCTT-CAGTGCCGCAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCTT-CAGTGCCGCAGCTAACGCATTAAGTdp10e14G-GGTATT-GACCCCTC-CAGTGCCGGAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGC	Dpllel4	A-GTTTTC-AATTGCTC-CTGTGCCCAAGCTAACGCGTAAGC
Dp11u3A-AGTATC - GACCCTTA - CAGTGCTGTTTAACTAAGCTAACGCCTTAAGTDp11u10G-AGTATC - GACCCTCT - CTGTGTCGTTCTAAAAAGCTAACGCGTTAAGTLgD8G-AGTATC - GACCCTCT - CTGTGCCGG AGCTAACGCATTAAGTdp10e17G-GGTATT - GACCCCTT - CTGTGCCGG AGCTAACGCATTAAGTWCHB1-12G-GGTATT - GACCCTCT - CAGTGCCGC AGCTAACGCATTAAGTDp11u38G-GGTATT - GACCCTCT - CAGTGCCGC AGCTAACGCATTAAGTDp10e14G-GGTATT - GACCCCTT - CAGTGCCGG AGCTAACGCATTAAGTDp10e15G-GGTATT - GACCCCCT - CAGTGCCGG AGCTAACGCATTAAGTDp10e14G-GGTATT - GACCCCCT - CAGTGCCGG AGCTAACGCATTAAGTDp10e15G-GGTATT - GACCCCCT - CAGTGCCGG AGCTAACGCATTAAGTDp11e16G-GGTATT - GACCCCCT - CAGTGCCGG AGCTAACGCATTAAGTDp11u28G-GGTATT - GACCCCCT - CGGTGCCGA AGCTAACGCATTAAGTDp11u28G-GGTATC - GACCCCCT - CGGTGCCGG AGCTAACGCATAAGTDp11u3G-GGGTATC - GACCCCCT - CGGTGCCGG AGCTAACGCATAAGTDp11u3G-GGTATC - GACCCCCT - CGTGCCGG AGCTAACGCATAAGTDp11u3G-GGTATC - GACCCCT - CTGTGCCGC AGCTAACGCATAAGTDp11u3G-GGTATC - GACCCCT - CTGTGCCGC AGCTAACGCATAAGTDp11u3G-GGATCA TTCCT - TAGTGCCGT	OPd3	A-AGTATC-GACCCTTT-CAGTGCCGTTAAGGTAAGC
Dp11u10G-AGTATC-GACCCTCT-CTGTGTCGTTCTAAAAAGCTAACGCGTTAAGTLgD8G-AGTTTC-GACCCTCT-CAGAGTCGACGAACAAGCTAACGCGTAAGTunculturedG-GGTATT-GACCCTT-CTGTGCCGGAGCTAACGCATTAAGTdp10e17G-GGTATT-GACCCTT-CAGTGCCGGAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCTCT-CAGTGCCGGAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCTCT-CAGTGCCGGAGCTAACGCATTAAGTDp10e14G-GGTATT-GACCCCTC-CAGTGCCGGAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGGAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGGAGCTAACGCATTAAGTDp11e16G-GGTATT-GACCCCTG-CAGTGCCGAAGCTAACGCATTAAGTDp11e16G-GGTATT-GACCCCCT-CGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCT-CGGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCT-CTGTGCCGGAGCTAACGCATTAAGTDp11u29G-GGTATC-GACCCCT-CTGTGCCGCAGCTAACGCATTAAGTDp11u29G-GGTATC-GACCCCT-CTGTGCCGCAGCTAACGCATTAAGTDp11u3G-GGTATC-GACCCCT-CTGTGCCGC	Dp11u3	A-AGTATC-GACCCTTA-CAGTGCTGTTTAACTAAGCTAAG
LgD8G-AGTTTC-GACCCTCT-CAGAGTCGACGAAACAAGCTAACGCGTTAAGTunculturedG-GGTATT-GACCCTT-CTGTGCCGGAGCTAACGCATTAAGTdp10e17G-GGTATT-GACCCTT-CAGTGCCGCAGCTAACGCATTAAGTWCHB1-12G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCTCT-CAGTGCCGGAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCCTC-CAGTGCCGGAGCTAACGCATTAAGTDp10e14G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDp11e16G-GGAGTT-AAACCTT-CAGTGCCGCAGCTAACGCATTAAGTDp11u7G-GGTGTTTGACCCCG-CAGTGCCGCAGCTAACGCATTAAGTDp11u8G-GGTATC-GACCCCTC-CGGTGCCGA	Dp11u10	G-AGTATC-GACCCTCT-CTGTGTCGTTCTAAAAAGCTAACGCCTTAAGT
unculturedG-GGTATT-GACCCCTT-CTGTGCCGGAGCTAACGCATTAAGTdpl0e17G-GGTATT-GACCCCTT-CTGTGCCGAAGCTAACGCATTAAGTWCHB1-12G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDpl1u38G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDpl1u10G-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGTDpl10e14G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDpl10e14G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDpl10e14G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDpl10e14G-GGTATT-GACCCCTG-CAGTGCCGC	LgD8	G-AGTTTC-GACCCTCT-CAGAGTCGACGAAACAACCTAACGCGTTAAGT
dp10e17G-GGTTTC-AACCCCTT-CTGTGCCGAAGCTAACGCATTAAGTWCHB1-12G-GGTATT-GACCCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDp11u38G-GGTATT-GACCCCTCT-CAGTGCCGCAGCTAACGCATTAAGTSyntrophusG-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTGeobacterG-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDp11e16G-GGTATT-GACCCCCG-CAGTGCCGAAGCTAACGCATTAAGTDp11u7G-GGTATC-GACCCCT-CGGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCATTAAGTDp11u3G-GGCTT-GT-CCCCT-CGTGCCGGAGCTAACGCATTAAGTDp11u3G-GGGTATC-GACCCCT-CTGTGCCGCAGCTAACGCGATAAGTDp11u3G-GGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp11u3G-GGGTTC-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp11u3G-GGGTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp11u3G-GGGTTC-GT-CCCT-TAGTACGTAGCTAACGCGTGAAGTDp11u3G-GGATCA-T-TTCCT-TAGTACGTAGCTAACGCGTGAAGTDp10u2G-GATCA-T-TTCCT-TAGTACGTAGCTAACGCGTGAAGTDp10u3G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u3G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GAAGGA-GACTTCCT-TAGTACCGCTAGCTAACGCGTGAAGTDp10u29G-GAAGGA-GACTTCCT-TAGTACCGCTAGCTAACGCGTGA	uncultured	G-GGTATT-GACCCCTT-CTGTGCCGGBCCTDACCCCATTDACT
WCHB1-12G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDpl1u38G-GGTATT-GACCCTCT-CAGTGCCGGAGCTAACGCATTAAGTSyntrophusG-GGTATT-GACCCCTC-CAGTGCCGCAGCTAACGCATTAAGTDpl0e14G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDp11e16G-GGAGTT-AACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDp11e16G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCT-CGGTGCCGAAGCTAACGCATTAAGTDp11u25G-GGTATC-GACCCCCT-CCGTGCCGGAGCTAACGCATTAAGTDp11u3G-GGGCTT-GT-CCCCT-CGTGCCGGAGCTAACGCGATAAGTDp11u3G-GGGCTT-GT-CCCCT-TGTGTCTTAGCTAACGCGATAAGTDp10u25G-GGTATC-GACCCCTT-TGTGGTCGCGAGCTAACGCGATAAGTDp11u3G-GGGCTT-GT-CCCCT-TGTGGCCGCAGCTAACGCGATAAGTDp10u25G-GGGATT-GA-CTCT-TAGTGCCGC	dp10e17	G-GGTTTC-AACCCCTT-CTGTGCCGAACCTDACGCATTAGT
Dpl1u38G-GGTATT-GACCTCT-CAGTGCCGAAGCTAACGCATTAAGTSyntrophusG-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDpl0e14G-GGTATT-GACCCCTG-CAGTGCCGGAGCTAACGCATTAAGTdpl0u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDpl1e16G-GGAGTT-AACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDpl1u28G-GGTATT-GACCCCCG-CAGTGCCGAAGCTAACGCATTAAGTDpl1u28G-GGTATC-GACCCCT-CGGTGCCGGAGCTAACGCATTAAGTDpl1u23G-GGTATC-GACCCCT-CGTGCCGGAGCTAACGCATTAAGTDpl1u3G-GGTATC-GACCCCT-CCGTGCCGGAGCTAACGCATTAAGTDpl1u25G-GGTATC-GACCCCT-CTGTGCCGCAGCTAACGCCATAAGTDpl1u3G-GGCTT-GT-CCCCT-TGTGCCGCAGCTAACGCCGATAAGTDpl1u3G-GGATCA-TTTCCT-TAGTGCCGTAGCTAACGCGTGAAGTDpl0u23G-GATCA-TTTCCT-TAGTACGTAGCTAACGCGTGAAGTDpl1u29G-GATCA-TTTCCT-TAGTACGC	WCHB1-12	G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGT
SyntrophusG-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGTDP10e14G-GGTATT-GACCCCTG-CAGTGCCGGAGCTAACGCGTTAAGTdp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCGATTAA-TGeobacterG-GGGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDp11e16G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCGATAAGTDp11u7G-GGTGTTGACCCCGC-CGGTGCCGAAGCTAACGCCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGAAGCTAACGCCATTAAGTDp11u29G-GGTATC-GACCCCCT-CTGTGCCGCAGCTAACGCCATTAAGTDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGC	Dpllu38	G-GGTATT-GACCCTCT-CAGTGCCGAAGCTAACGCATTAAGT
DP10e14G-GGTATT-GACCCCCT-CAGTGCCGGAGCTAACGCGTTAAGTdp10u10G-GGTATT-GACCCCCTG-CAGTGCCGGAGCTAACGCATTAAGTGeobacterG-GGTATT-GACCCCCTG-CAGTGCCGGAGCTAACGCATTAAGTDp11e16G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDp11u7G-GGTGTTGACCCCCG-CAGTGCCGAAGCTAACGCGATAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGTGCCGGAGCTAACGCATTAAGTDp11u3G-GGTATC-GACCCCCT-CGTGCCGGAGCTAACGCATTAAGTDp11u3G-GGGTT-GT-CCCCT-TGTGCCGCAGCTAACGCGATAAGTDp11u3G-GGGCTT-GT-CCCCT-TGTGCCGTAGCTAACGCGATAAGTDp10u25G-AAGCTT-GA-CTTCT-TAGTACGCT	Syntrophus	G-GGTATT-GACCCTCT-CAGTGCCGCAGCTAACGCATTAAGT
dp10u10G-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAA-TGeobacterG-GGTATT-GACCCCTG-CAGTGCCGCAGCTAACGCATTAAGTDp11e16G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDp11u7G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCATTAAGTDp10u25G-GGTATC-GACCCCCT-CGTGCCGGAGCTAACGCATTAAATDp11u3G-GGGCT-GT-CCCCT-TGGTGCCGCAGCTAACGCATAAGTDp10u25G-GGGTT-GT-CCCCT-TGGTGCCGCAGCTAACGCGATAAGTDp10u25G-GGGCT-GT-CTCCT-TAGTGCCGTAGCTAACGCGATAAGTDp10u23G-GGATTC-ACCTT-TAGTGCCGTAGCTAACGCGTGAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GATCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp10u25ACACTCTACGTGGGGTGTGCAGTGCCGT	DP10e14	G-GGTATT-GACCCCCT-CAGTGCCGGAGCTAACGCATTAAGT
GeobacterG-GGTATT-GACCCCTG-CAGTGCGGCAGCTAACGCATTAAGTDp11e16G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDp11u7G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCGATAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCGATAAGTDp10u25G-GGTATC-GACCCCCT-CGTGCCGGAGTTAACACAATAAGTDp11u8A-GGTATC-GACCCCCT-CTGTGCCGCAGCTAACGCATTAAATDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp10u23G-GATTCA-T-TTCCT-TAGTGCCGTAGCTAACGCGTGAAGTDp10u23G-GATTCA-T-TTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GATTCA-T-TTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGT	dp10u10	G-GGTATT-GACCCCTG-CAGTGCCGC AGCTAACGCGTTAAGT
Dp11e16G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCATTAAGTDp11u7G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCGATAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCGATAAGTDp10u25G-GGTATC-GACCCCCT-CCGTGCCGGAGCTAACGCCATTAAATDp11u8A-GGTATC-GACCCCCT-CTGTGCCGCAGCTAACGCGATAAGTDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTDp10u23G-GAGTTCA-T-TTCCT-TAGTGCCGTAGCTAACGCGGAAGTDp10u23G-GATTCA-T-TTCCT-TAGTACGTAGCTAACGCGTGAAGTDp10u29G-GATTCA-T-TTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GATCA-T-TCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGTAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGTAGCTAACGCGTGAAGTDp10u29G-GAAGGA-GACTTCCT-TAGTACCGT	Geobacter	G-GGTATT-GACCCCTG-CAGTGCCGC
Dp11u7G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCATTAAGTDp11u28G-GGTATC-GACCCCCT-CGGTGCCGGAGCTAACGCGATAAGTDp10u25G-GGTATC-GACCCCCT-CCGTGCCGGAGCTAACGCATTAAGTDp11u8A-GGTATC-GACCCCCT-CTGTGCCGCAGCTAACGCATTAAATDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTBPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGGTGAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u29G-GATCA-TTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGTAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGT	Dplle16	G-GGAGTT-AAACCCTT-CAGTGCCGAAGCTAACGCATTAAGT
Dp11u28G-GGTATC-GACCCCCT-CGGTGCCGAAGCTAACGCGATAAGTDp10u25G-GGTATC-GACCCCCT-CGTGCCGGAGCTAACGCATTAAGTDp11u8A-GGTATC-GACCCCTT-CTGTGCCGCAGCTAACGCATTAAATDp11u3G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTBPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp11u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGGTGTGCAGTGCCGTAGCTAACGCGTAAACLgd10AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dp11u7	G-GGTGTTTGACCCCCG-CAGTGCCGAAGCTAACGCAITAAGT
Dp10u25G-GGTATC-GACCCCCT-CCGTGCCGGAGTTAACACAATAAGTDp11u8A-GGTATC-GACCCCCT-CTGTGCCGGAGTTAACACAATAAGTDp11u33G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCAATAAGTBPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp1u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGC	Dpllu28	G-GGTATC-GACCCCCT-CGGTGCCGAAGCTAACGCGATAAGT
Dp11u8A-GGTATC-GACCCCTT-CTGTGCCGCAGCTAACGCATTAAGTDp11u33G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCGATAAGTBPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTRalstoniaG-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGCDp10u18GCGCGAAGTGGGGGTGTCGTAAG-CTAACGCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dp10u25	G-GGTATC-GACCCCCT-CCGTGCCGGAGTTAAGT
Dp11u33G-GGGCTT-GT-CCCCT-TTGTGTGTCTTAGCTAACGCATAAGTBPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTRalstoniaG-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTAACGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGGTGTGCAGTGCCGTAGCTAACGCGTTAAACLgd10AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dpllu8	A-GGTATC-GACCCCTT-CTGTGCCGCAGCTAACACAATAAGT
BPC023G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGATAAGTDp10u23G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTRalstoniaG-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp11u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTSBR1001G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGGTGTGCAGTGCCGTAGCTAACGCGTTAAACLgd10AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dpllu33	G-GGGCTT-GT-CCCCT-TTGTGTCTTAGCTAACGCATTAAAT
Dp10u23G-GATTCA-TTTCCT-TAGTAACGT-AGCTAACGCGTTAAGTRalstoniaG-GATTCA-TTTCCT-TAGTAACGT-AGCTAACGCGTGAAGTDp11u29G-GATTCA-TTTCCT-TAGTAACGT-AGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGC-AGCTAACGCGTGAAGTdp10e13G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTSBR1001G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTTAAACLgd10AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	BPC023	G-AAGCTT-GA-CTTCT-TAGTGCCGTAGCTAACGCGATAAGT
RalstoniaG-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp11u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTdp10e13G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTSBR1001G-GGAGGA-GACTTCCT-TAGTACCGCTAGCTAACGCGTGAAGTDp1u25ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGTDp1u25ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGTDp10u18GCGCCAAGTGGGGGTGTCGTAAG-CTAACGCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dp10u23	G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGATAAGT
Dp11u29G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGTDp10u30G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTdp10e13G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTDp10u29G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGTSBR1001G-GGAGGA-GACTTCCT-TAGTACCGCTAGCTAACGCGTGAAGTAzoarcusG-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGTDp11u25ACACTCTACGTGGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGCLgd10AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGCDP10u18GCGCGAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGCDp10u19GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGC-ACGAAATACGA	Ralstonia	G-GATTCA-TTTCCT-TAGTAACGTAGCTAACGCGTGAAGT
Dp10u30 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT dp10e13 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT Dp10u29 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT SBR1001 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT Azoarcus G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT Dp1u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGT Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCCAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGGAGAAATT-CGAAGCACGAAATACGA	Dp11u29	G-GATTCA-T-TTCCT-TAGTAACGT-TTCCT-AGCTAACGCGTGAAGT
dp10e13 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT Dp10u29 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT SBR1001 G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT Azoarcus G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT Dp11u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGT Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCCAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGGAGAAATT-CGAAGCACGAAATACGA	Dp10u30	G-GGAGGA-GACTTCCT-TAGTACCCCC-TAGCCTAACGCGTGAAGT
Dp10u29 G-GGAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT SBR1001 G-GAAGGA-GACTTCCT-TAGTACCGCAGCTAACGCGTGAAGT Azoarcus G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT Dp11u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGT Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCCAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	dp10e13	G-GGAGGA-GACTTCCT-TAGTACCGC
SBR1001 G-GAAGGA-GACTTCCT-TAGTACCGTAGCTAACGCGTGAAGT Azoarcus G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT Dp11u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGT Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCAAGTGGGGTGTCGTAAG-CTAAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Dp10u29	G-GGAGGA-GACTTCCT-TAGTACCGC-TAGCTAACGCGTGAAGT
Azoarcus G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT Dp11u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCTAACGCGTGAAGT Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCAAGTGGGGTGTCCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGC-ACGAAATACGA	SBR1001	G-GAAGGA-GACTTCCT-TAGTACCGTAGCTAACGCGTGAAGT
Dp11u25 ACACTCTACGTGGGTGTGCAGTGCCGTAGCGTANGCGTTAAAC Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC Dp10u18 GCGCAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGC-ACGAAATACGA	Azoarcus	G-TGGGTA-AAACCATT-TAGTACCGTAGCTAACGCGTGAAGT
Lgd10 AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCCGTTAAGC DP10u18 GCGCAAGTGGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGC-ACGAAATACGA	Dp11u25	ACACTCTACGTGGGTGTGCAGTGCCGTACCTAACGCGTGAGT
DP10u18 GCGCAAGTGGGGTGTCGTAAG-CTAACGCGTTAAGC Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	Lgd10	AATCATG-CTTTTGCATGACTCGTGTGGGAAAGGTAACCGTTAAC
Dp10u19 GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGCACGAAATACGA	DP10u18	GCGCAAGTGGGGTGTCGTAAG-CTAACGCCTTAAGC
	Dp10u19	GGA-TCAAAGCGCACACGCTTTGAGAAATT-CGAAGC-ACGAAATACCA
* +		* *

•

•

,

.

.

•

۰,

144

¢

Appendix 6: VOC and redox conditions from influent for the biotic and inhibited columns.

,

.

	TCE (uM)										7.6				15.9828	0	0	0	0	0	0	0	14.1284	10.032	0	7.2352	8 5196	20.444	24.2592	24.2
TCE (an2	, (qaa										1000				2103								1859	1320		952	1121	2690	3192	
	TCE uM	-						0	0		0.4636	0	0	0	7.126444	0	16.8644	0	0	0	0	0	0	0	0	6.2016	0	0	22.5568	22.5
TCE (aer	(qaa							0			61				937.69		2219	,								816			2968	
sulfide	(maa)			0								0							0	0					0	0	0			0
Bromide	(mqq)											0.02		1.84		0.028														
Chloride 1) (mqq	•	0.16	0.109			0.376												0.9	0.03	0.01				0.01	0.012	0.05			1.46
U	H (mV) (•	166	213			-48					170				282			179	238					197		72			-12
	e		7.72	6.7			7.7					6.63				7.27			7.19	6.78					6.38	7.05	7.35			7
ate	Hq (n		67	65								64.6				65.4			58.7	68.7					ē 3.74	58.5	61.9			68.7
Sulf	idd)		0	0			0					0				0			0		0	0			0	0	0			0
Fe(II)	(mdd) (mdd)			8.59			3.23					5.72				3.96			4.91	2.83	1.36	3.25			3.2					3.95
l time	8	-82	-76	-68	ង	-54	-40	-38 -38	-18	-1	0	4	7	6	11	16	21	32	65	75	76	107	112	133	136	142	149	157	179	248
Elapsed	(days)				_	_																								
	late	36467	36473	36481	36486	36495	36509	36511	36531	36538	36549	36553	36556	36558	36560	36565	36570	36581	36614	36624	36625	36656	36661	36682	36685	36691	36698	36706	36728	36797
	date c	11/03/1999	11/09/1999	11/17/1999	11/22/1999	12/01/1999	12/15/1999	12/17/1999	01/06/2000	01/13/2000	01/24/2000	01/28/2000	01/31/2000	02/02/2000	02/04/2000	02/09/2000	02/14/2000	02/25/2000	03/29/2000	04/08/2000	04/09/2000	05/10/2000	05/15/2000	06/05/2000	06/08/2000	06/14/2000	06/21/2000	06/29/2000	07/21/2000	09/28/2000

146

Appendix 7: VOC and redox results from the inhibited column.

	Elapsed	time		Fe(II)	Sul	fate		U	Chloride	Bromide	sulfide			CDCE		
fate date	s (days)	Ĕ	ow rate DO (ppr	(mqq) (n	dd)	Hd (m	еH) (/m)	(mdd	(mad)	(maa)	TCE (ppb)	TCE (uM)	(qaa)	VC (pob)	
11/01/1999	36465	-84 se	t for 0.2 mL/min					•								
11/09/1999	36473	-76	0.2					•			•					
11/16/1999	36480	69-														
11/18/1999	36482	-67														
11/22/1999	36486	-63	0.22					١								
12/15/1999	36509	-40	-,	5.7	0		5.26	32.3	0.7							
12/17/1999	36511	-38										0.018	0.000137			
12/20/1999	36514	-35	0.2													
12/22/1999	36516	-33	S	23	0	26	5.7		52							
01/13/2000	36538	-11										35.6	0.27056			
01/19/2000	36544	ςγ	ιά	56	0		5.12	216	0.272							
01/24/2000	36549	0	0.16 6.	.65								0				
01/25/2000	36550	-										92	0.6992	-	0	_
01/27/2000	36552	ы										114	0.8664			
01/28/2000	36553	4										150	1.14	_		_
01/29/2000	36554	5	ίΩ.	72	0	587	5.98	207		0.627	0	81	0.6156			_
02/02/2000	36558	6	0.24 5.	38	0	63	5.37	294		1.19					,	
02/04/2000	36560	11										328	2.4928	-	0	_
02/09/2000	36565	16	0.155 4.	78	0	61.05	5.53	241		0.581						
02/11/2000	36567	18										244	1.8544			
02/14/2000	36570	21										309	2.3484	-	0	_
02/16/2000	36572	23	4	74	0	59.35	5.4	300		0.284						
02/17/2000	36573	24										318	2.4168			
02/25/2000	36581	32	0.199													
02/28/2000	36584	35										1597	12.1372	-	0	
03/01/2000	36586	37	.,	3.5	0	62.75	5.11			0.123						
03/08/2000	36593	44										657.	4.9932			
03/19/2000	36604	55										673	5.1148			
03/21/2000	36606	57										1017	7.7292	•	0	
03/27/2000	36612	63										2395	18.202			
03/29/2000	36614	65	4	91	0	58.7	7.19	286	0.7							
03/30/2000	36615	<u>66</u>										1696	12.8896	Ū	0	
04/03/2000	36619	20										1654	12.5704	Ū	0	
04/06/2000	36622	73	4.	<u> 96</u>	0		5.87	181	0.442							
· 04/09/2000	36625	76	0.11													
04/14/2000	36630	81										413	3.1388	0	0	
04/17/2000	36633	84										420	3.192	J	0	
04/20/2000	36636	87	ω,	5.4	0	50	6.38	162	0.03							
04/24/2000	36640	91	0.35													
05/01/2000	36647	98	0.4													
05/04/2000	36650	101	4	57	0	49 04	6.91		0.227							
05/08/2000	36654	105	0.25													

	(ddd) ;			0						0			0				0								0	0	0		
	Ş			0						0			0				0								0	0	0		
CCE	(qdd) (Wr			1284			384			3272			692				944								436	084	0.26		844
	TCE (I			16.0			g			6.6			10.7				12.4								12.2	12	Ŧ		12.6
	TCE (ppb)			2109			840			872			1417				1644								1611	1590	1350		1669
sulfide	(mqq)																												
Bromide	(mqq)																												
loride	(m							1.42	1.8		8.1	0.627				0.0		0.222										0.255	
5	1(mV) (pi	-8.5	128			130		104	72		148	104		87		29.3		34			28			32.7				61	
	е	7.25	6.28			6.07		6.43	6.52		6.64	6.58		6.48		6.23		6.31			6.31			6.3				5.68	
ılfate	Hd (md	52.82	53.6			57.02		63.74	65.42		75.4	60.38		60.38		61.33		57.8			62.9			67.1				67	
งี	٩	0	0			0			0		0	0		0		0		0			0			0				0	
Fe(II)	(mqq) (mqq) OC	3.25	6.66			3.8		4.14	4.26		4.5					5.45		3.16			3.48			3.92				5.31	
	ow rate 1				0.15			0.22	0.28		0.3	0.209			0.24					0.25		0.27	0.18						
time	Ē	107	114	119	120	121	133	136	142	143	149	155	157	163	165	176	182	184	186	187	191	193	203	205	234	235	239	248	326
Elapsed	(days)																												
	e	36656	36663	36668	36669	36670	36682	36685	36691	36692	36698	36704	36706	36712	36714	36725	36731	36733	36735	36736	36740	36742	36752	36754	36783	36784	36788	36797	36875
	date dat	05/10/2000	05/17/2000	05/22/2000	05/23/2000	05/24/2000	06/05/2000	06/08/2000	06/14/2000	06/15/2000	06/21/2000	06/27/2000	06/29/2000	07/05/2000	02/102/2000	07/18/2000	07/24/2000	07/26/2000	07/28/2000	07/29/2000	08/02/2000	08/04/2000	08/14/2000	08/16/2000	09/14/2000	09/15/2000	09/19/2000	09/28/2000	12/14/2000

149

Appendix 8: VOC and redox results from the biotic column.

.

da	elap: tume te (days	sed sed	AFCEE Score	Flow rate (mL/min)	DO (ppn	Fe(II) (ppm)	Sulfa (ppm)	e PH	e	Sm)	Chloride DDm)	Bromide (nom)	sulfide (nom)	TCE (oob	A TCF (uM)	cDCE	eDCE	TCF (IIII	VC (oob)
666	36493	26		·	-	-							(intro)		(ma)	(244)	1		(add) CA
666 666	36498 36518	<u> </u>																	
666	36509	5 4	7	`	3.4	11	0		5.92	56.2	0.7								
666	36516	93			3.5	74	0		6.4	280	16.1		-	0					
000	36536	-13												11.8	3 0.08968	0.05	0.000515	0.0896	
00	36544	ņ			,	3	0		58	172	0.677				U	_			
00	36549	0		0.1	6 1.1	21								J	0	-	0	-	•
00	36550	-												ŝ	3 0.02886		0	0.0288	0
000	36552	e												6	7 0.7372		0	0 737	~
80	36553	4												26	3 1.9986		•	1.998	0
88	36554 26556	ι CD	-	_	5.	25 (0.2	53.66	6.77	152		0.445	-			_			
	00000	- 0	Ŧ	Ċ				000		101						_			
	36560	÷ د	-	7.0	N N	*	4.0	13.00	6.37	18/		1.24		č		-			
	36565	: 9	-	0.19	6 33	-	4	60	6 73	110		30 0	-		4 2.0149		-	2.614	•
000	36567	8		2	; ,	-		3	57.0			C7.0	-	U OFC			c	ř	
000	36569	2												138-1	1 10 4956			10,405	
000	36572	23	*-		2	с С	0.5	32.75	6.85	123		0.149		1818	13.8169			13 8 8 1	
000	36573	24												1179	B.9604			8 060	
000	36577	28	,											,		,			
000	36578	29												1272	9.6672	0	0	9 667	
000	36580	31												1815	13.8168		0.103	12 8181	
00	36581	32		0.15	6											2	5	0.0.0	5
000	36584	35												1746	3 13.2696	0	0	13.269(0
00	36586	37	4	_	0.0	76 (0.6	60 2	6.03	186					0				
00	36593	4												1522	2 11.5672	0	0	11 5673	
8	36604	22												1752	2 13.3152	0	•	13.3152	
8	36606	22												2122	2 _ 16.1272	54	0.5562	16.127;	_
	36612	63												2173	3 16.5148	99	0.6798	16.5148	0
8	36614	65	e)	~	-	5. J	0.6	53.6	6.45	96	7		0.0	~	0				
8	36615	99												2285	3 17.366	62	0 6386	17.36	
	30019	2 ;	c					i		1	4		1	2164	16.4464	74	0.7622	16.446	
	00000	23	0	5		2	2.0	9.54	5 .96	ŝ	0.8		00	_	•				
	20020	5 3												1603	12.1828	18	0.1854	12.1828	0
	20030	5 6	د		•	,				:				1565	11.894	25	0.2575	11.89	
	20000	5 5	J		N 6	3	Ņ	0.0	0.12	R	0.138		00						
200	200400	- a			0 4														
	36650	8 5		5	- - -	ģ		100	01.0		1000				2 (
	36656	201	P			2 4		10.0 0 0 0	0.00	1 00	0.031				5 0				
	36661	5 5	r	_	2	2		70.0	60.0	4.07	700'0			1200	0 10 5006	2		0001.01	
00	36662	113		0.176	6											7 7	7147 N	10.0330	
00	36663	114	4		1.8	8	6.(50.3	6 02	-82				_					
000	36664	115								ł			•	1273	96748	<i>cc</i>	0 2266	97790	c
00	36669	120												1486	11.2936	19	0 1648	11 2036	>
000	36670	121	S	0.15	9 1.7	5	-	54.5	6.11	-120			0		0	2		0007-11	_
8	36682	133												840	6.384	58	0.5974	6.384	0
00	36685	136	8	0.11	7 1.	5 1	1.2	58.7	6.23	-200	514		0.02		0				1

.

151

		(dad)		o	,		0		c	•						C	•					c	. .	, c	4.0	<u>,</u>	2	16
		CE (nM) VC		5,6544		7.5164	9.6216		10.6704							16 210B						17 6776	14 6604	14 3184	11 6796	001011	0740.71	
	DCE	- (Mi		0.7416		0 8652	0.9991		0.824							1 3287						0 6695	0.3708	0.2575	0.0372	1 1626		0.4532
	ы Б			72		84	97		80							129						92	8	ц К	3 2	5 5	1	44
	G	E (uM) (pp		5.6544	0	7.5164	9.6216	0	0.6704	c) c		16.2108	0	• c		• o	c	17 6776	4 6604	4 3184	1 6736	80100	076.7	8.398
		CE (pob) TC		744		989	1266		1404							2133						2326 1	1929	1884	1536	1703	3	1105
	sulfide	(ppm) T(0.04	0 05			0.1		0,15		0.06		0.04				0.09			0.2						0.17	
	romide	(mq																										
	Iloride B	d) (mo		0.992	0.194			1.39		0.537				0.211				2.98	•		0.17						2.98	
	ъ	(mV) (pi		-143	-220			-22		-17				09-				-13.3									-24	
		Ч		6.37	6.32			6.06		6.31		9		6.04				6.26			5 92						6.77	
		Н		.15	8.5			52		54		.46		.66				4.5			38						62	
	Sulfate	(mqq)		49	5			-				49		1 53				2			80							
	e(II)	(mdo		1.2	<u> </u>			÷.		4. L		1.4		1.3				15			1.5						1.6	
	Ľ	(mqq) 0		1.54	-							0.73		1.7				0.91			1.06						1.42	
	ow rate	L/min) D		0.16	0.16			0.18			0.19		0.12				0.18		0.18	0.15								
	EE EE	u) u		60	1			8		=				7				5			9						15	
pa	AFC	Scol	141	143	149	151	154	155	157	163	165	176	179	185	186	182	187	191	193	203	205	217	234	235	239	245	248	326
elapsi	time	(days)	3690	3692	3698	2700	3703	5704	3706	5712	3714	3725	5728	5734	3735	3731	3736	3740	3742	1752	1754	3766	1783	1784	1788	1794	197	1875
		date	10 36	30 35	о Э	30	10 36	10 36	10 3£	10 3E	0 %	10 3£	ю ЭС	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36	0 36
		date	06/13/200	06/15/200	06/21/200	06/23/200	06/26/200	06/27/200	06/29/200	07/05/200	07/07/200	07/18/200	07/21/200	07/27/200	07/28/200	07/24/200	002/62/200	08/02/200	08/04/200	08/14/200	08/16/200	08/28/200	09/14/200	09/15/200	09/19/200	09/25/2001	09/28/200	12/14/200

,

,

152

Appendix 9: Bromide breakthrough for the preliminary column.

.

.

.

•

.

. '

ζ

154

Appendix 10: VOC results from the preliminary column.

.

•

Sample ID	Julain Time	Time elapsed (days)	TCE (ppm)	DCE(ppm)
04/02/1999	36252	1	0.0036	0
04/04/1999	36254	3	0.026	<i>.</i> 0
04/05/1999	36255	4	0.028	·0
04/07/1999	36257	6	0.029	0
04/12/1999	36262	11	0.03	0
04/14/1999	36264	13	0.025	0
04/15/1999	36265	14	0.043	0
04/18/1999	36268	17	0.054	0
04/19/1999	36269	18	0.046	0
04/21/1999	36271	20	0.04	0
04/22/1999	36272	21	0.039	0
04/26/1999	36276	25	0.036	0
04/27/1999	36277	26	0.036	0
04/28/1999	36278	27	0.035	0
04/30/1999	36280	29	0.035	0
05/03/1999	36283	32	0.06	0
05/10/1999	36290	39	0.117	0
05/14/1999	36294	43	0.13	0
05/18/1999	36298	47	0.104	0
05/19/1999	36299	48	0.13	0
05/21/1999	36301	50	0.304	0
05/25/1999	36305	54	0.08	0
05/26/1999	36306	55	0.11	0
05/27/1999	36307	56	0.57	0
06/02/1999	36313	62	5.98	0
06/07/1999	36318	67	8.3	0
06/11/1999	36322	71	11.6	0
06/15/1999	36326	75	11.7	0
06/24/1999	36335	84	9.15	0
06/27/1999	36338	87	10.61	0
06/29/1999	36341	90	7.805	0
06/30/1999	36341	90	8.58	0
07/06/1999	36347	96	8.88	0
07/12/1999.	36353	102	9.9	1.2
07/13/1999	36354	103	8.965	
07/14/1999	36355	104	9.4	
07/19/1999	36360	109	11.5	
07/25/1999	36366	115	8.41	
07/26/1999	36367	116	10.75	0.12
07/29/1999	36370	119	11.7	
07/28/1999	36369	118	9.56	0.1
08/08/1999	36380	129	10.4	
08/09/1999	36381	130	8.99	
08/20/1999	36392	141	3.16	
09/13/1999	36416	165	4.54	
09/15/1999	30418	107	5.4	0.00045
11/05/1000	36431	180	0.26092	0.06615
11/05/1999	30409	218	0.18556	
11/16/1999	304/2	221	0.10899	
11/22/1000	30480	229	0.34419	
12/20/1000	30400	230	0.4845	
12/23/1000	30014	203	0.097	
12/31/1000	36525	200	0.0724	
	00020	214	0.0000	

.

.

. ,

.

156

Appendix 11: Redox results from the influent and effluent from the preliminary column.

Source	date C	Elapsed	Time	ť	total	Бе Г	(II)e	s04		Ŭ	CI- (mmol		Depth to	Ammonia		
		ald udys	3	5	ndd) (vm)	6	(md	(bpm) S-	Hd (mdd).		rt CI-)	Temp °C	water (m)	mdd	Flow rate ml/min	
មា	04/05/1999	36255	4			0.4	0.2	30	0					:		
ш	04/27/1999	36277	26	2.6		1.2	1.2	36	0							
ш	05/11/1999	36291	40		63		-	}		5.66		4				
ш	05/17/1999	36297	46	ы		1.3		20		5 88		2		J		
ш	05/21/1999	36301	50	4		-	0.6	38.54	ı	6.16						
ш	05/24/1999	36304	53	2.4	58.8				0	5.75						
ш	06/03/1999	36314	63	5.46		1.2	1.2	33.5	0	5.47						
ш	06/14/1999	36325	74	1.74			4.		0							
ш	06/23/1999	36334	83	3.61			-	50.3		5 66						
ш	08/01/1999	36373	122	1.8		1.2	1.2	35		22	94					
ш	08/09/1999	36381	130	1.8		1.2	1.2	48	• c	0 0 0	5					
ш	08/15/1999	36387	136	2.03			1.2	!		2						
ш	08/17/1999	36389	138	1.85			1.3									
ш	11/03/1999	36467	216		91.4	0	7	58.7	0.1	5.86	0.05				0.156	
щ	11/10/1999	36474	223	0.06		7	1.7	53	C	5 27	0 187	10			001.0	
ш	11/15/1999	36479	228					})	14.0	5	2				
ш	11/17/1999	36481	230		132	2	~	48		5 86	1 36				C7'N	
ш	12/13/1999	36507	256			I	r	2		20.0	<u>.</u>					
ш	12/15/1999	36509	258	4.2	48	2.8	28		c		1 17		•		0.2	
ш	12/23/1999	36517	266	3.33	58.7	35	9 80 1 0	50	o c	5 87	c					
ш	01/10/2000	36535	284	27	112	35		4r 7r	o c	5 4	1.1.0					
_	02/18/1999	36209	42	i	37))		7		10.0	0.133	!	•			
-	03/04/1999	36223	4 C.	8 0	110	2	5		5	:		12	>55 ft	0		
	03/11/1000	36230	24 5	0.0	01	¢			I	6.98						
		20254	- 4		32	э ·	0	oresent	0	6.86		11.3	16.48	0		
	04/01/1233	10205	5		24	0	0		0	6.87		13.8	16.72	0		
 -	04/08/1999	36258	7	-									16 78	•		
_	04/19/1999	36269	18	0.8									16 7R			
-	04/28/1999	36278	27	1.25		0	0	40		7.12		14 9			7.0	
_	05/05/1999	36285	34	ı									16.21			
_	05/11/1999	36291	40	0.61									0.01			
_	05/21/1999	36301	50	1.2											0	
	05/28/1999	36308	57												0.2	
_	06/03/1999	36314	63	0.73									C 7 7 7			
-	06/18/1999	36329	78										11.12			
	06/21/1999	36332	81													
_	07/01/1999	36342	91	4.31												
-	07/26/1999	36367	116	1.2												
_	08/01/1999	36373	122	1.5		0	C	35	c	8	00800					
1	11/09/1999	36473	222	0.06	166.7	0		52 67		7 73	0.000	4 7 E				
_	4/1/99 (test ##	******	7			0	• c	; -) c	1	0.10	C.71				
						I	•)	þ						0.2	
								47 33333								

158

,

Appendix 12: Preliminary column sequence alignment for Archae clone library with reference strains are listed with accession numbers.

-

.

.

•

CLUSTAL X (1.64b) multiple sequence alignment

,

WCHA1-38	C-CTCAAGTGGTCAGGATGATTATTGGGCCTAAAGCATCCGTAGCTCGTTTTGTAAGTTT
778u18530f	CACTCAAGTGGTCAGGATGATTATTGGGCCTAAAGCATCCGTAGCTCGTTTTGTAAGTTT
7781129	- ACTCGAGTGGTCAGGAGGTTTATTGGGCCTAAAGCATCCGTAGCCGGCTGCTCAAGTTT
nLemB390	
Methanococcoider	
WCWD3 - 23	
WCHD3-33	
WCHD3-30	GGILLAAGILGCAGUCATCATTATIGGGILTAAAACATCUGTAGCITGCTTATTAAGITT
WCHAI-38	
778018530F	TCGGTTAAATCCATGCGCTTAACGTATGGGCTGCCGGGAAT-ACTGCATAACTAGGAAGT
778029	CCGGTTAAATCCACACGCTTAACGTATGGGCTGCCGGAAAT-ACTGTTCAGCTAGGGAGT
pLemB390	CTTGTTAAATCCACCGAATTAATCGTTGGATTGCGGGGGGAT-ACTGCTTGGCTAGGGGGG
Methanococcoides	TTCGGGAAATCTGACAGCTCAACTGTTAGGCTTCCGGGGAATACTGTCAGACTTGGGACC
WCHD3-33	TTGGGTAAATCGGCCAGCTTAACTGTCCGAAGTCCGGGGGAG-ACTGCAAGACTTGGGATC
WCHD3-30	CTTGTGAAATCTTATCTCTTAAGGATAAGGCGTGCAAGAAATACTGTTAAGCTAGAGACT
WCUA1-39	
WCHA1-38	
7780185301	GGGAGAGGTAGACGGTACTCGGTAGGAAGGGGTAAAATCCTTTGATCTATTGATGACCAC
//8029	GGGAGAGGTAGACGGTACTCNATAGGAAGGGGTAAAATCCTTTGATCTATTGATGACCAC
pLemB390	GAGAGAGGCAGACGGTATTTTCGGGGTAGGGGTGAAATCCTATAATCCCGGGAAGACCAC
Methanococcoides	GGGAGAGGTAAGAGGTACTACAGGGGTAGGAGTGAAATCTTGTAATCCCTGTGGGACCAC
WCHD3 - 3 3	GGGAGAGGTCAGAGGTACTTCTGGGGTAGGGGTAAAATCCTGTAATCCTAGAAGGACCAC
WCHD3-30	GGAAGACGTAGAAAGTATGTCTAAAGTAGCGGTAAAATGTGTTAATCTTAGGCAGACTCA
MCUT 1 - 2 0	
770.105205	
7780185301	
778029	
premB330	
Methanococcoides	CAGTGGCGAAGGCGTCTTACCAGAACGGGTCCGACGGTGAGGGACGAAAGCTGGGGGCAC
WCHD3-33	CGGTGGCGAAGGCGTCTGACTAGAACGAATTCGACGGTGAGGAACGAAGCCCTGGGGCGC
WCHD3 - 30	CAACAGCGAAGGCATTCTACGAGGACAGTTCTGACAGTAAAGGATGAAGGCTAGGGGCGC
WCHA1-38	AAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACTATGCAAACTCAGTGATGCATT
778u18530f	AAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACTATGCAAACTCAGTGATGCATT
778u29	AAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACTATGCAAACTCAGTGATGCATT
plemB390	GAACCGGATTAGATACCCGGGTAGTCCCAGCTGTAAACGATGCAGACTAGGTGTTTGGAC
Methanococcoides	GAACCGGATTAGATACCCGGGTAGTCCCAGCCGTAAACGATGCACCAGCTAGCT
WCHD3-33	
WCHD3-30	
NGIID9-30	AAAGIGGAIIAGAIACCCAIGIAGICCIAGCAGIAAACACIGCACACIAAACAIIAGIAC
WCHA1-38	GGCTTGTGGCCAATGCAGTGCTGCAGGGAAGCCGTTAAGTTTGCCGCCTGGGAAGTACGT
778u18530f	GGCTTGTGGCCAATGCAGTGCTGCAGGGAAGCCGTTAAGTTTGCCGCCTGGGAAGTACGT
778u29	GGCTTGTGGCCAATGCAGTGCTGCAGGGAAGCCGTTAAGTTTGCCGCCTGGGAAGTACGT
pLemB390	GGCCACGTGCCGTTCTAGTGCCGCAGGGAAGCTGTTAAGTCTGCCGCCTGGGGAGTACGA
Methanococcoides	CGGTGCGACCGCTTCTGGTGCCGTAGGGAAGCCGTGAAGCGAACCACCTGGGAAGTACGG
WCHD3-33	TCCTTAGTGGGCGCCCAGTGCCGGAGAGAAGTTGTTAAGCCTGCTGCTTGGGGAGTATGT
WCHD3-30	CTCTTCGAGAGGTATTAGTGCTGTAGAGAAGTCGAAGAGTGTGCTACCTGGGAAGTATAG
WCHA1-38	ACGCAAGT-ATGAAACTTAAAGGAATTGGCGGGGGGGGCACCACAAGGGGT-GAAGCCTGC
778u18530f	ACGCAAGTTATGAAACTTAAAGGAATTGGCGGGGGGGGCACCACAAGGGGTTGAAGCCTGC
778u29	ACGCAAGT-ATGAAACTTAAAGGAATTGGCGGGGGGGGGCACCACAAGGGGT-GAAGCCTGC
pLemB390	TCGCAAGA-TTGAAACTTAAAGGAATTGGCGGGGGGGGCACCACAAGGGGT-GAAGCTTGC
Methanococcoides	CCGCAAGG-CTGAAACTTAAAGGAATTGGCGGGGGGGGCACTACAACGGGT-GGAGCCTGC
WCHD3-33	CCGCAAGG-ATGAAACTTAAAGGAATTGGCGGGGGGGGCACCGCAACGGGA-GGAGCGTGC
WCHD3-30	CCGCAAGG-CCGAAACTTAAAGGAATTGGCGGGGAGACACTACAACAGGT-GACGCGTGC

•

WCHA1-38GGTTCAATTGGAGTCAACGCCAGAAATCTTACCCGGAGAGA778u18530fGGTTCAATTGGAGTCAACGCCAGAAATCTTACCCGGA----778u29GGTTCAATTGGAGTCNACGCCANAAATCTTACCCGGGAGAGApLemB390GGTTTAATTGGAGTCAACGCCGGAAATCTCACCGGGGGCGAMethanococcoidesGGTTTAATTGGACTCAACGCCGGAAACTCACCGGGGGCGAWCHD3-33GGTTTAATTGGATTCAACACCGGGACAACTCACCAGGAGCGAWCHD3-30GGTTCAATTAGATTCTACACCGTGAACCTCACCAGGAGCGA

.

.

~

Appendix 13: Preliminary column sequence alignment CFB clone library with reference strains are listed with accession numbers.

.

,

,

.

CLUSTAL X (1.64b) multiple sequence alignment

Rhodococcus GTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGAGT-TCGTAGGCGG 513 -----GTCCGGAATTACTGGGCGTAAAGAGT-TCGTAGGCGG Microbacterium GTAATACGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGC-TCGTAGGCGG 1630 -----AGCGTTGTTCGGATTTATTGGGCGTAAAGAGC-TCGTAGGCGG High -----CGTTGTCCGGATTTATTGGGCGTAAAGAGC-TCGTAGGTGG 778u40 ------GGGGCAACGTTGTCCGGATTTATTGGGCGTAAAGAGC-TCGTAGGTGG 71613 -----TACGGGGGGGGCAACGTTGTTCGGAATTACTGGGCGTAAAGGGC-GCGTANGCGG WCHA2-13 -----TACGGGGGGGCAAGCGTTGTTCGGAATTATTGGGCGTAAAGGGC-GCGTAGGCGG Sphingobacterium GTAATACGGAGGATCCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGT-GCGTAGGCGG 778u37 -----CCAAGCGTTATCCGGATTTATTGGGTTTAAAGGGT-GCGTAGGCGG 778u1 -----CGGAAGGTGCAAGCGTTATCCGGATTCACTGGGTTTAAAGGGT-GCGTAGGCGG 778u39 -----AAGAGTGGCGAGCGTTGTTCGGAATTACTGGGCTTAAAGGGC-GCGTAGGCGG uncultured GTAATACGGAAGGTGCAAGCGTTACTCGGAATTACTGGGCGTAAAGCGT-CCGCAGGCTT 778u21530f -----GGGATGCAA-CGTTACTCGGAATCACTGGGCGTAAAGCGT-CTGTAGGCGT 778u33 -----AGGCCGACGTTAATCGGAATCACTGGGCTTAAAGCGT-GCGTAGGCGG Pirellula GTAAGACGAACCGAACGTTATTCGGAATTACTGGGCTTAAAGGGT-GCGTAGGCGG X91291 -----AGAGGTGGCGAGCGTTACTCGGATTAATTGGGTGTAAAGGGC-AAGTAGGCGT 778u26 -----ANGTGGCGAGCGTTACTCGGATTTATTGGGTGTAAAGGGC-ANGTANGCGT Clostridium GTAATACGTAGGGGGCNNGCGTTATCCGGAATTACTGGGCGTAAAGGGT-GCGTAGGTGG 71612 -----TANGGGGCTA-CGTTATCCGGAATTACTGGGCGTAAAGGGT-GCGTAGGTGG Geothrix GTAATACAGAGGGGGGCAAGCGTTATTCGGAATTATTGGGCGTAAAGGGC-GCGTAGGCGG 2202 SJA-87 GTAATACAGAGGGGGGCAAGCGTTATTCGGAATTATTGGGCGTAAAGGGC-GCGTAGGCGG AJ241004 GTAATACGGAGGGGGGCTAGCGTTGTTCGGAATTATTGGGCGTAAAGGGC-GCGTAGGCGG candidate GTCATACGGAGGATCCAAGCGTTATCCGGAATTACTGGGCGTAAAGAGTTGCGTAGGTGG 511 -----ATCCGGAATTACTGGGCGTAAAGAGTTGCGTAGGTGG Rhodococcus TTTGTCGCGTCGT-TTGTGAAAA-CCAGCAGCTCAACTGCT-GGCTTGCAGGCGATACGG 513 TTTGTCGCGTCGT-TTGTGAAAA-CCAGCAGCTCAACTGCT-GGCTTGCAGGCGATACGG Microbacterium TTTGTCGCGTCTG-CTGTGAAAT-CTGGGGGGCTCAACCCCC-AGCCTGCAGTGGGTACGG 1630 TTTGTCGCGTCTG-CTGTGAAAT-CTGGGGGGCTCAACCCCC-AGCCTGCAGTGGGTACGG CTCGGTAAGTCGG-GTGTGAAAT-TTCGAGGCTCAACCTCG-AGACGCCACCTGATACTG High 778u40 CTCGGTAAGTCGG-GTGTGAAAT-TTCGAGGCTCAACCTCG-AGACGCCACCTGATACTG 71613 TCCGCTAAGTTGG-ATGTGAAAA-CTCTGGGCTTAACCCAG-AGCCTGCATTCAAAACTG WCHA2-13 TGCGGTAAGTCTT-CTGTGAAAC-CCCTGGGCTCAACCCAG-GGCCTGCAGGGGAAACTG Sphingobacterium CTTTTTAAGTCAG-GGGTGAAAG-ACGGTAGCTCAACTATC-GCAGTGCCCTTGATACTG 778u37 CGTTGTAAGTCAG-TGGTGAAAG-TTTGCAGCTTAACTGTA-AAATTGCCATTGATACTG 778ul GTAGGTAAGTCAGTGGGTGAAAT-CCTGGAGCTCAACTCCA-GAACTGCCATTGATACTA 778u39 TGAGATAAGTCCG-TGGTGAAAT-CCTATGGCTTAACCATAGNAATTGCCTCGGAAACTG uncultured TCTTCCAAGTCTG-GTGTAAAAG-CACGGAGCTCAACTCCG-TGTACGTACCGGAAACTA 778u21530f TTTGGAAAGTCTG-AGGTCAAAT-GTCGGGGGCCTAACCCCG-TCAACGTCTTGGAAACTT 778u33 ATCTTCAGGCCTG-TTGTGAAAT-CCCACGGCTCAACCGTG-GAATTGCGATGGGAACCG Pirellula CCATGCAAGTCAG-ATGTGAAAT-CCCACGGCTCAACCGTG-GAACTGCGTTTGAAACTG X91291 CTTGACAAGTTAG-GAGTGAAATTCCTGCAGCTCAACTGCA-GAACTGCTTTTAAAACTG 7781126 CTTAACAAGTTAG-AAGTGAAAT-CCTGCAGCTCAACTGCA-GAACTGCTTTTAAAACTG Clostridium TTTCTTAAGTCAG-AAGTGAAAG-GCTACGGCTCAACCGTA--GTAAGCTTTTGAAACTA 71612 TTTTTTAAGTCAG-AAGTGAAAG-GCTACGGCTCAACCGTA--GTAAGCTTTTGAAACTG Geothrix TTTTTTAAGTCAG-ATGTGTAAT-CCCCGAGCTCAACTTGG-GAACTGCATCTGAGACTG 2202 -----GCATCTGAGACTG SJA-87 TGTCTTAAGTGGG-ATGTGCAAT-CCCCGGGCTTAACCTGG-GAACTGCATCCCAGACTG AJ241004 CTAAGCAAGTCAA-AGGTGAAAT-CCCTCGGCTCAACCGAG-GAACTGCCCCTGAAACTG candidate CAGAGTAAGTTGA-TAGTGAAAG-CGTCCGGCTCAACCGGA-TATACATTATCAAAACTG 511 CATTGTAAGTCAA-TAGTGAAAG-CGTTCGGCTCAACCGAA-TATCCATTATTGAAACTG Rhodococcus GCA-GACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA 513 GCA-GACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA Microbacterium GCA-GACTAGAGTGCGGTAGGGGGAGATTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGA 1630 GCA-GACTAGAGTGCGGTAGGGGGAGATTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGA High CTGTGGCTTGAGTCCGGTAGGGGAGCGTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA

778u40 71613 WCHA2-13 Sphingobacterium 778u37 778ul 778u39 uncultured 778u21530f 778u33 Pirellula X91291 7781126 Clostridium 71612 Geothrix 2202 SJA-87 AJ241004 candidate 511 Rhodococcus 513 Microbacterium 1630 Hiqh 778u40 71613 WCHA2-13 Sphingobacterium 7781137 778u1 778u39 uncultured 778u21530f 778u33 Pirellula X91291 778u26 Clostridium 71612 Geothrix 2202 SJA-87 AJ241004 candidate 511 Rhodococcus 513 Microbacterium 1630 High 778u40 71613 WCHA2-13 CGAAAGCTAGGGGAGCAAACAGGATTAGÀTACCCTGGTAGTCCTAGCCTTAAACGATGAA Sphingobacterium CGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGAA 778u37 CGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGAT 778u1 CGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACTATGGA 778u39 CGAAAGCGTGGGGGGGGGGACCAGGATTAGATACCCTGGTAGTCCACGCCGTAAACTTTGAT uncultured CGAAAGCGTGGGGAGCGAACGGGATTAGATACCCCGGTAGTCCACGCCCTAAACTATGCG

CTGTGGCTAGAGTCCGGTAGGGGAGCGTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA ACG-GGCTAGAGTTCTGGAGGGGATAGCGGAATTCCTGGTGTAGCGGTGAAATGCGTAGA CCG-TGCTGGAGTGTGGGAGAGATGCGTGGAATTCCCGGTGTAGCGGTGAAATGCGTAGA AAG-AGCTTGAATGAACTAGAGGTAGGCGGAATGTGACAAGTAGCGGTGAAATGCATAGA CAG-TGCTTGAGTACAGATGAGGTGGGCGGAATGTGTCATGTAGCGGTGAAATGCATAGA TCT-ATCTTGAATATTGTGGAGGTAAGCGGAATATGTCATGTAGCGGTGAAATGCTTAGA TCT-TACTTGAGTCCAGTAGGGGAGCGTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGA GAA-GGATAGAGTCATACAGAGGCATCTGGAATTCCATGTGTAGGGGTAAAATCCGTTGA CCA-GAATTGAGCAATGGAGAGGCACCTGGAATGCCATGAGTAGGAGTAAAATCCGTAGA GAG-ATCTTGAGTCAGGTAGAGGCGGGTGGAACGATAGGTGGAGCGGTGAAATGCGTAGA CAT-GGCTTGAGGGAGATAGGGGTGAGCGGAACTGATGGTGGAGCGGTGAAATGCGTTGA TCA-AGATTGAGACTGGGAGAGGAAAGCGGAATTCTCGGTGTAAGAGTGAAATCTGTAGA TTG-AGATTGAGGCTGGGAGATNTNTNTNAATTCTCGGTGTAAGAGTGAAATCTGTAGA AGA-GACTTGAGTGCAGGAGAGGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGA AGA-AACTTGAGTGCAGGAGAGGAGGAGGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGA GAA-GGCTAGAGTACTGGAGAGGGGGGGGGGGAATTCCTCGTGTAGCGGTGAAATGCGTAGA GAA-GGCTAGAGTACTGGAGAGGGTGGTGGAATTCCTCGTGTAGCGĠTGAAATGCGTAGA GGA-CGCTGGAGTACTGGAGAGGGTGGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGA CTT-GGCTTGAGTCCCGGAGAGGGTAGTGGAATTCCCAGTGTAGCGGTGAAATGCGTAGA CTC-AGCTAGAGGATGAGAGAGGGTTATTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGA CAA-AGCTAGAGGACAAGAGAGGTTATTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGA TATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGCTGAG-GAA TATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGTTGAG-GAA TATCAGGAGGAACACCGATGGCGAAGGCAGATCTCTGGGCCGTAACTGACGCTGAG-GAG TATCAGGAGGAACACCGATGGCGAAGGCAGATCTCTGGGCCGTAACTGACGCTGAG-GAG TATCAGGAGGAACACCAGCGGCGAAGGCGGCGCTCTGGGCCGGTACTGACACTGAG-GAG TATCAGGAGGAACACCAGCGGCGAAGGCGGCGCTCTGGGCCGGTACTGACACTGAG-GAG TATCAGGAGGAACACCGGTGGCGAAGGCGGCTATCTGGACAGAGTCTGACGCTGAG-GCG TGTCGGGAGGAACACCTGCGGAGAAGACGGCGCACTGGACCACTACTGACGCTGAGAGCG TATGTCACAGAACACCGATTGCGAAGGCAGCTTACTATGGTTTTATTGACGCTGAG-GCA TATGACACAGAACACCGATTGCGAAGGCAGCTCACTAAACTGTAACTGACGCTGAG-GCA TATGACATAGAACACCCATTGCGAAGGCAGCTTACTACGCATATATTGACGCTGAG-GCA TATCAGGAGGAACACCAGCGGCGAAGGCGGCGCTCTGGGCTGGCACTGACGCTGAG-GAG TCCATGGAGGAACGCCAAAAGCGAAGGCAGGATGCTGGGTATGTACTGACGCTCAG-GGA TACATGGTAGAACGCCAAAAGCGAAGGCAGGGTGCTAGACATTCGCTGACGCTGAG-AGA TATCTATCGGAACGCCAAAGGAGAAATCAGCCCGCTGGGCCTGTTCTGACGCTGAG-GCA TATCATCAGGAACACCGGTGGCGAAGGCCGCTCACTGGGTCTCTTCTGACGCTGAG-GCA TATCGAGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGTCCAGTACTGACGCTGAA-TTG TATCGAGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCCAGCTCTGACGCTGAA-CTG

TATTAGGAGGAATACCAGTTGCGAAAGCGGCTCTCTGGACTGTAACTGACACTGAG-GCA

TATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAG-GCA

GATGAGGAGGAACACCAGTGGCGAAGGCGGCCACCTGGACAGTAACTGACGCTGAG-GCG

GATGAGGAGGAACACCAGTGGCGAAGGCGGCCACCTGGACAGTAACTGACGCTGAG-GCG

GATGTGGAGGAACACCAGTGGCGAAGGCGGCCACCTGGACAGTAACTGACGCTGAG-GCG

TACTGGGAGGAACACCGGTGGCGAAGGCGGCTACCTGGACGGGTACTGACGCTGAG-GCG

TATTAGGAGGAACACCGATGGCGTAGGCAGATAACTGGCTCATTCCTGACACTAAG-GCA

TATTAGGAGGAACACCGATGGCGTAGGCAGATAACTGGCTTGTTCCTGACACTAAG-GCA

CGAAAGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGG

CGAAAGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGG

CGAAAGGGTGGGGAGCAAACAGGCTTAGATACCCTGGTAGTCCACCCCGTAAACGTTGGG

CGAAAGGGTGGGGAGCAAACAGGCTTAGATACCCTGGTAGTCCACCCCGTAAACGTTGGG

CGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGTTGGG

CGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGTTGGG

CGAAAGCTAGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCTAGCCCTAAACGATGGA

778u21530f CGAAAGCGTGGGGGGGGGGGGGGGGGGTTAGATACCCCCGTAGTCCACGCCCTAAACGATGCG 778u33 CGAAAGCGTGGGTAGCAAACGGGATTAGATACCCCGGTAGTCCGCGCCGTAAACGATGCG Pirellula CGAAAGCTAGGGGAGCGAACGGGATTAGATACCCCGGTAGTCCTAGCTGTAAACGATGAG X91291 CGAAAGCTAGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGAG 778u26 CGAAAGCTAGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCTAGCCGTAAACGATGAG Clostridium CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAG 71612 CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAG Geothrix CGAAAGTGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAA 2202 CGAAAGTGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAA SJA-87 CGAAAGTGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAA AJ241004 CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGGG candidate CGAAAGCATGGGTAGCAAACGGGATTAGATACCCCGGTAGTCCATGCCGTAAACGATGGA CGAAAGCATGGGTAGCAAACGGGATTAGATACCCCGGTAGTCCATGCTGTAAACGATGGA Rhodococcus CGCTAGGTGTGGGTTCC-TTCCACGGAATCC--GTGCCG-TAGCTAACGCATTAAGCGCC CGCTAGGTGTGGGTTCC-TTCCACGGAATCC--GTGCCG-TAGCTAACGCATTAAGCGCC Microbacterium AACTAGTTGTGGGGTCCATTCCACGGATTCC--GTGACG-CAGCTAACGCATTAAGTTCC AACTAGTTGTGGGGTCCATTCCACGGATTCC--GTGACG-CAGCTAACGCATTAAGTTCC CACTAGGTGTGGGGTTCTATCAACGGACTCC--GTGCCG-AAGCTAACGCATNAAGTGCC 778u40 CACTAGGTGTGGGGGCTCTATCAACGGGCTCC--GTGCCG-AAGCTAACGCATTAAGTGCC 71613 TACTTGGTGTGACTGGGATTGAATCCAGTC---GTGCCG-AAGCTAACGCATTAAGTATC WCHA2-13 TGCTTGGTGTGACGGGTACCCAATCCCGCC---GTGCCG-GAGCTAACGCGATAAGCATT Sphingobacterium TACTCGCTGTTAGCGAT----ACACAGTTA--GCGGCT-AAGCGAAAGCGTTAAGTATT 778u37 TACTCGATGTTAGCGAT----ATACAGTTA--GCGTCA-AAGCGAAAGCGTTAAGTAAT 778u1 TACTCGACATACGCGAT----ACACAGTGT--GTGTCT-GAGCGAAAGCATTAAGTATC 778u39 TACTCGCTGTTGGCGAT----ACACTGTCA--GCGGCT-AAGCGAAAGCGTTAAGTAAT uncultured TGCTCGGTGTTGG-GAGTT--CAATCTTTCCCAGTGCCC-AAGCTAACGCGGTAAGCACG 778u21530f TGCTCGATGTAGGAGATTTT-CAATTGTCTCCTGTGTCC-AAGCTAACGCGGTAAGCACG 778u33 CACTAGACTGAGG-GAGCTT-GACGCTTTCTCAGT--CG-TAGCAAAAGTGCTAAGTGCG Pirellula CACTGGATCGAGG-GACCTCCCACAGTTTCTCGGT--CG-TAGCGAAAGTGTTAAGTGCT X91291 CACTAGGTGTTGGGGGGTTT----ACCCTTA--GCGCCGTAAGTTAACACGTTAAGTGCT 778u26 CACTAGGTGTTGGAGGTTT----ACCTTCA--GCGCCGTAAGTTAACACGTTAAGTGCT Clostridium TACTAGCTGTCGGNNNG--TTACCCCCCTCG--GTGGCG-CAGCTAACGCATTAAGTACT 71612 TACTAGGTGTCGGGGG---TTACCCCCCTCG--GTGCCG-CAGCTAACGCATTAAGTACT Geothrix CACTTGGTGTGGAGGGAGTT-GACCCCTTCC--GTGCCG-GAGCTAACGCGTTAAGTGTT CACTTGGTGTGGAGGGAGTT-GACCCCTTCC--GTGCCG-GAGCTAACGCGTTAAGTGTT SJA-87 CACTTGGTGTGGCGGGAGTT-GACCCCTGCC--ATGCCG-TAGCTAACGCGATAAGTGTT AJ241004 CACTTGGTGTTGCGGGTATC-GACCCCTGCA--GTGCCG-AAGCTAACGCATTAAGTGCC candidate TGCTAGCTGTTATCGGTATC-GACCCGG-TA--GTAGCG-AAGCTAACGCGT------TGCTAGCTGTTAGAGGTATC-GACCCCCCTA--GTAGCG-AAGCTAACGCGTTAAGCATC

Rhodococcus 513 Microbacterium 1630 High 778u40 71613 WCHA2-13 Sphingobacterium 778u37 778111 778u39 uncultured 778u21530f 778u33 Pirellula X91291 778u26 Clostridium 71612 Geothrix

С

C

Ċ

C

С

С

С

С

С

С

С

С

С

С

С

С

С

C

С

С

С

511

513

1630

High

2202

511

2202	c
SJA-87	c
AJ241004	c
candidate	-
511	c

.

Appendix 14: Preliminary column sequence alignment for Proteobacteria clone library with reference strains are listed with accession numbers.

1

.

,

.

T

.

.

,

CLUSTAL X (1.64b) multiple sequence alignment

Pseudomonas 512 Herbaspirillum 716114 504 Ferribacterium 40b19 Dechlorisoma 40b3 40b12 778u38 7781127 Xanthomonas 71614 778u3 778u5 PsAF210800 2202 Geothrix Sphingomonas 508 Methylobacterium 778u41 778u34 778u20530f Caulobacter 778u19530f 509 510 Bdellovibrio 1627 Trichlorobacter Myxococcales 778u32 778u25530f

778118

-----GTCCA-GCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTGT ATACGTAGGGTCCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTGT -----AATCGGAATTACTGGGCATAAAGCGTGCGCAGGCGGTTAT ATACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTGT ------GCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTCTT ------GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTG ATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTG ------CGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTT ATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTC ------GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTA ------GGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTCT -------GGTGCG-ACGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTGC ----CAAAGGTGCAA-CGTTACTCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGTGGTGGT -----GCAA-CGTTAATCGGAATTACTGGGCGTAAAGCGAGTGTAGGTGGCCGC -----GTGCAA-CGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTANGTGGTTTG ATACAGAAGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTTG ----ANGGGGCGN-CGTTATTCGGAATTATTGGGCGTAAAGGGCGCGTATGCGGTTTT ATACAGAGGGGGGCAAGCGTTATTCGGAATTATTGGGCGTAAAGGGCGCGTAGGCGGTTTT ATACGGAGGGAGCTAGCGTTATTCGGAATTACTGGGCGTAAAGCGCACGTAGGCGGCTTT ------GCTCGGAATCACTGGGCGTAAAGGGCGCGTAGGCGCGCGTT ATACGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGCGCGTAGGCGGCGTT -----AAGGGGCTA-CGTTGCTCGGAATCACTGGGCGTAAAGCGCACGTAGGCGGACTC -----AAGGGGCTA-CGTTGCTCGGAATTACTGGGCGTAAAGGGAGCGTAGGCGGACTG -----AGGGGGTA-CGTTGCTCGGAATTACTGGGCGTAAAGGGAGCGTANGCGGACTG ATACGAAGGGGGCTAGCGTTGCTCGGAATTACTGGGCGTAAAGGGAGCGTAGGCGGACTG -----AAGGTGCAAGCGTTAATCGGATTTACTGGGCGTAAAGCGCGCGTANGCGGCTAA -----TTATTCGGAATTACTGGGCGTAAAGCGCACGTAGGCGGATTA -----GTTCGGAATTATTGGGCGTAAAGCGGGTGTAGGTGGGCTT AGACGAGGGATCCTAGCGTTGTTCGGAATTATTGGGCGTAAAGCGGATGTAGGTGGCTTT -----AGCGTTGTTCGGATTTATTGGGCGTAAAGCGCGTGTAGGCGGTCTT ATACGGAGGGTGCAAGCGTTGTTCGGATTTATTGGGCGTAAAGCGCGTGTAGGCGGTTTG AGACAGAGGGTGCAAACGTTGTTCGGAATTACTGGGCGTAAAGCGCGTGTAGGCGGCTCG -----GGATGCAAGCGTTACTCGGAATCACTGGGCGTAAAGCGTCTGTAGGCGTCTTG

778118 Pseudomonas 512 Herbaspirillum 716114 504 Ferribacterium 40h19 Dechlorisoma 40b3 40b12 778u38 778u27 Xanthomonas 71614 778u3 778u5 PsAF210800 2202 Geothrix Sphingomonas 508 Methylobacterium

GCAAGACCGATGTGAAATCCCCGAGCTTAACTTG-GGAATTGCATTGGTGACTGCACGGC GCAAGACCGATGTGAAATCCCCGAGCTTAACTTG-GGAATTGCATTGGTGACTGCACGGC GTAAGACAGATGTGAAATGCCCGGGCTCAACCTG-GGAACTGCATTTGTGACTGCATGGC GTAAGACAGATGTGAAATCCCCGGGCTCAACCTG-GGAATTGCATTTGTGACTGCACGGC TTAAGTCAGATGTGAAATCCCCGGGCTTAACCTG-GGAACTGCGTTTGAAACTGGAAGGC TTAAGATAGGCGTGAAATCCCCGGGCTCAACCTG-GGAACTGCGTTTATGACTGGCAGGC TTAAGATAGGCGTGAAATCCCCGGGCTCAACCTG-GGAACTGCGTTTATGACTGGCAGGC GTAAGACAGACGTGAAATCCCCGGGCTTAACCTG-GGAACTGCGTTTGTGACTGCAAGGC GTAAGACAGACGTGAAATCCCCGGGCTCAACCTG-GGAACTGCGTTTGTGACTGCGAGGC . TCTAGTCTGATGTGAAAGCCCCGGGCTTAACCTG-GGAACTGCGTAGGAAACTGATAAAC ATAAGACAGATGTGAAATCCCCGGGCTTAACCTG-GGAACTGCGTTTGTGACTGTAGGAC GCAAGTCAGGCGTGAAATCCCCGGGCTTAACCTG-GGAATGGCGCTTGAAACTACGTGAC TTAAGTCTGCTGTGAAAGCCCTGGGCTCAACCTGGGAG-TTGCAGTGGATACTGGATCAC TTAAGTCTGTTGTGAAAGCCCTGGGCTCAACCTGGGAA-TTGCAGTGGATACTGGATCAC TTAAGTCTGATGTGAAAGCCCTGGGGCTCAACCTGGGAA-CTGCATTGGATACTGGCGATC ATAAGTCGGATGTGAAAGCCCTGGGCTTAACCTGGGAA-TGGCATTCGATACTGTGTGGC TTNAGTTGGATGTGAAAGCCCCGGGCTCGNCCTGNGAAACTGCATTCAAAACTGACAAGC TTAAGTTGAATGTGAAATCCCCGGGCTCAACCTGGGAAACTGCATCCAAAACTGGCAAGC TTAAGTCAGATGTGTAATCNCCNGGCTCNCCTAAAGGAAAAGCATCTGAGACTGGAAGGC TTAAGTCAGATGTGTAATCCCCGAGCTCAACTTG-GGAACTGCATCTGAGACTGGAAGGC GTAAGTTAGAGGTGAAAGCCTGGAGCTCAACTCC-AGAATTGCCTTTAAGACTGCATCGC TTAAGTCGGGGGTGAAAGCCTGTGGCTCAACCAC-AGAATGGCCTTCGATACTGGGACGC TTAAGTCGGGGGTGAAAGCCTGTGGCTCAACCAC-AGAATGGCCTTCGATACTGGGACGC

: ł
778u41 TTAAGTCGGGGGTGAAATCCTGGAGCTCAACTCC-AGAACTGCCTTCGATACTGGGAGTC 778u34 TTTAGTCAGAGGTGAAAGCCCAGGGCTCAACCTT-GGAATTGCCTTTGATACTGGCAGTC 778u20530f TTTAGTCAGAGGTGAAAGCCCAGGGCTCAACCTT-GGAATTGCCTTTGATACTGGCAGTC Caulobacter TTTAGTCAGAGGTGAAAGCCCAGGGCTCAACCTT-GGAATTGCCTTTGATACTGGCAGTC 778u19530f TTAAGTCAAATGTGAAATCCCCGAGCTTAACTTG-GGAATTGCATTCGATACTGGTTAGC 509 GAAAGTCAGAGGTGAAATCCCAGGGCTCAACCTT-GGAACTGCCTTTGAAACTCCTAGTC 510 ATAAGTCAGGTGTGAAATCCCAGGGCTCAACCCT-GGAAGTGCATTTGATACTGTAAGCC Bdellovibrio GTAAGTCAGATGTGAAAGCCCAGGGCTCAACCCT-GGAAGTGCATTTGATACTGCGAAGC 1627 TTAAGTCTGATGTGAAAGCCCCGGGCTCAACCTG-GGAAGTGCATTGGATACTGGGAGAC Trichlorobacter TTAAGTCTGATGTGAAAGCCCTGGGCTCAACCTG-GGAAGTGCATTGGAAACTGGCAGAC Myxococcales GAAAGTCGGATGTGAAAGCCCAGGGCTCAACCCT-GGAAGTGCACTCGAAACTCCCGAGC 778u32 ATAAGCCGGTCGTGAAATCCCCGGGCTTAACCTGGGNAATTGCGATCGGGACTGTGCGGC 778u25530f GAAAGTCTGAGGTGAAATTTCGGAGCCTAACTCC-GAACCCATCTTGGAAACTCCCGAGA 778u8 TA-GAGTGTGTCAGAGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG Pseudomonas TA-GAGTGTGTCAGAGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG 512 TA-GAGTGTGTCAGAGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTG Herbaspirillum TA-GAGTGTGTCAGAGGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTG 716114 TA-GAGTGTGGCAGAGGGGGGGGGGGGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTG 504 TA-GAGTATGGCAGAGGGGGGGGGGGGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG Ferribacterium TA-GAGTATGGCAGAGGGGGGGGGGGGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG 40b19 TA-GAGTGTGGCAGAGGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG Dechlorisoma TA-GAGTACGGCAGAGGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTG 40b3 TA-GAGTACGGCAGAGGGGGGGGGAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTG 40b12 TT-GAGTGTAGCAGAGGGGGGGGGGGGAATTCCACGTGTAGCAGTGAAATGCGGAGAGATGTG 7781138 TG-GAGTATGGCAGAGGGAGGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTG 778u27 TA-GAGTGTGGTAGAGGGATGCNTTTTTTCTGGTGTAGCAGTGAAATGCGTAGAGATCAG Xanthomonas TA-GAGTGTGGTAGAGGGTAGCGGAATTCCCGGTGTAGCAGTGAAATGCGTAGAGATCGG 71614 TG-GAGTGCGGTAGAGGGGTGCGGAATTCCCGGTGTAGCAGTGAAATGCGTANATATCGG 778u3 TA-GAGTCTGATAGAGGGAAGTGGAATTCCAGGTGTAGCGGTGAAATGCGTAGATATCTG 778115 TA-GAGTATGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG PsAF210800 TA-GAGTATGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG 2202 TA-GAGTACTGGAGAGGGTGGTGGAATTCCTCGTGTAGCGGTGAAATGCGTANAGATGAG Geothrix TA-GAGTACTGGAGAGGGTGGTGGAATTCCTCGTGTAGCGGTGAAATGCGTAGAGATGAG Sphingomonas TT-GAATCCAGGAGAGGTGAGTGGAATTCCGAGTGTAGAGGTGAAATTCGTAGATATTCG 508 TT-GAGTATGGTAGAGGTTGGTGGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCG Methylobacterium TT-GAGTATGGTAGAGGTTGGTGGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCG 778u41 TTCGAGTTCGGGAGAGGTGAGTGGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCG 778u34 TT-GAGTACGGAAGAGGTATGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCG 778u20530f TT-GAGTACGGAAGAGGTATGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCG Caulobacter TT-GAGTACGGAAGAGGTATGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCG 778u19530f TA-GAGTGTGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTG 509 TT-GAGGTCGAGAGAGGTGAGTGGAATTCCGAGTGTAGAGGTGAAATTCGTAGATATTCG 510 TT-GAATGTGGTAGAGGTTACTAGAATTCCTGGTGTAGTGGTGAAATACGTAGATATCAG Bdellovibrio TT-GAGTGTCGGAGAGGTTACTAGAATTGTTGGTGTAGTGGTGAAATACGTAGATATCAA 1627 TT-GAATACGGGAGAGGGTAGTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGATATTAG Trichlorobacter TT-GAATACGGGAGAGGGGTAGTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGATATTAG Myxococcales TT-GAGTCCCGGAGAGGAAGGCGGAATTCTCGGTGTAGAGGTGAAATTCGTAGATATCGA 778u32 TA-GAGTGTTGGAGAGAGAGAGGGAATTCCCGGTGTAGCAGTGAAATGCGTAGATATCGG 778u25530f TT-GAGCAATAGAGAGGCACCTGGAATGCCATGTGTAGGAGTAAAATCCGTAGATACATG 778u8 GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATGCACGAAAGC Pseudomonas GAGGAATACCGATGGCGAAGGCACCCCCTGGGATAACACTGACGCTCATGCACGAAAGC 512 GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATGCACGAAAGC Herbaspirillum GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGATAACACTGACGCTCATGCACGAAAGC 716114 GAGGAACACCGATGGCGAANGCAGCCCCCTGGGCTAACACTGACGCTCATGCACGAAAGC 504 GAGGAACACCGATGGCGAAGGCAGCCCCCTGGGCCAATACTGACGCTCATGCACGAAAGC Ferribacterium GAGGAACACCGATGGCGAAGGCAGCCCCTGGGCCAATACTGACGCTCATGCACGAAAGC 40b19 GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGCTAACACTGACGCTCATGCACGAAAGC

GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGTTAGTACTGACGCTCATGCACGAAAGC

GAGGAATACCGATGGCGAAGGCAGCCCCCTGGGTCGATACTGACGCTCATGCACGAAAGC

GAGGAACACCGATGGCGAAGGCAGCCCCCTGGGTTAACACTGACGCTCATGCACGAAAGC

Dechlorisoma

40b3

40b12

778u38 778u27 Xanthomonas 71614 778u3 778115 PsAF210800 2202 Geothrix Sphingomonas 508 Methylobacterium 778u41 778u34 778u20530f Caulobacter 778u19530f 509 510 Bdellovibrio 1627 Trichlorobacter Myxococcales 7781132 778u25530f 778118 Pseudomonas 512 Herbaspirillum 716114 504 Ferribacterium 40b19 Dechlorisoma 40b3 40b12 778u38 778u27 Xanthomonas 71614 778u3 778115 PsAF210800 2202 Geothrix Sphingomonas 508 Methylobacterium 778u41 778u34 778u20530f Caulobacter 778u19530f 509 510 Bdellovibrio 1627 Trichlorobacter Myxococcales 778u32 778u25530f

GAGGAACACCGATGGCGAAGGCAGCCTCCTGGGCCAATACTGACGCTCATGCACGAAAGC AAGGAACATCCGTGGCGAAGGCGGCATCCTGGGCCAACACTGACACTGAGGCACGAAAGC GAGGAACATCCGTGGCGAAGGCGGCTACCTGGACCAACACTGACACTGAGGCACGAAAGC GAGGAACATCCGTGGCGAAAGCGGCACCCTGGACCAGCACTGACACTGAGGCACGAAAGC GAGGAACATCAGTGGCGAAGGCGGCTTCCTGGATCAAGACTGACACTGAGGCTCGAAAGC AAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGC AAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGC GAGGAACACCANTGGCGAAGGCGGCCACCTGGACAGTAACTGACGCTGAGGCGCGAAAGT GAGGAACACCAGTGGCGAAGGCGGCCACCTGGACAGTAACTGACGCTGAGGCGCGAAAGT GAAGAACACCAGTGGCGAAGGCGGCTCACTGGACTGGTATTGACGCTGAGGTGCGAAAGC CAAGAACACCGGTGGCGAAGGCGGCCAACTGGACCATTACTGACGCTGAGGCGCGAAAGC CAAGAACACCGGTGGCGAAGGCGGCCAACTGGACCATTACTGACGCTGAGGCGCGAAAGC CAAGAACACCAGTGGCGAAGGCGGCTCACTGGCCCGATACTGACGCTGAGGTGCGAAAGC GAAGAACACCAGTGGCGAAGGCGACATACTGGTCCGTTACTGACGCTGAGGCTCGAAAGC GAAGAACACCAGTGGCGAAGGCGACATACTGGTCCGTTACTGACGCTGAGGCTCGAAAGC GAAGAACACCAGTGGCGAAGGCGACATACTGGTCCGTTACTGACGCTGAGGCTCGAAAGC GAAGAACACCAGTGGCGAAGGCGACATACTGGTCCGTTACTGACGCTGAGGCTCGAAAGC GAGGAACACCAGTGGCGAAGGCGGCTCACTGGCTCGATACTGACGCTGAGGTGCGAAAGC GAGGAATACCAGAGGCGAAGGCGGGGTAACTGGACCAACATTGACACTGAGACCCGAAAGC CAGGAATACCGGAGGCGAAGGCGGGGTAACTGGCCGAACACTGACACTGAGATCCGAAAGC GAGGAACACCGGTGGCGAAGGCGGCTACCTGGACCGATATTGACGCTGAGACGCGAAAGC GAGGAACACCGGTGGCGAAGGCGGCTACCTGGACCGATATTGACGCTGAGACGCGAAAGC GAGGAACATCAGTGGCGAAGGCGGCTGTCTGGCCAAACACTGACGCTCAGGTGCGAAAGC GTAGAACGCCAAAAGTGAAGACAGGGTGCTAGCTATTCGCTGACGCTGAGAGACGAAAGC

GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCTACTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCTACTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACTATGTCAACTGGT GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGG GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGG **GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGT** GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGCCAACTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGATGACTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGA GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGA GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGA GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACTATGTCAACTAGA GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGC GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGC GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAACACTTGG GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAACACTTGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATAACTAGC GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCCAGC GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCCAGC GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCCAGT GTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGGATACTTGT GTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGATACTTGT GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGGTGCTAGG GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGAACTAGA GTGGGGAGCAAAGCGGATTAGATACCCGCGTAGTCCACGCCCTAAACGATGTGTGCTCGG

778u8 Pseudomonas 512 Herbaspirillum 716114 504 Ferribacterium 40b19 Dechlorisoma 40b3 40b12 778u38 778u27 Xanthomonas 71614 778u3 778u5 PsAF210800 2202 Geothrix Sphingomonas 508 Methylobacterium 778u41 778u34 778u20530f Caulobacter 778u19530f 509 510 Bdellovibrio 1627 Trichlorobacter Myxococcales 778u32 778u25530f

	TGTTGGGGATTCATTTCCTTAGTAACGTAGCTAACGCGT-GAAGTTGACCGCCTGG
	TGTTGGGGATTCATTTCCTTAGTAACGTAGCTAACGCGT-GAAGTTGACCGCCTGG
	TGTCGGGTCTTAATTGACTTGGTAACGCAGCTAACGCGT-GAAGTAGACCGCCTGG
	TGTCGGGTC TTAA TTGACTTGGTAACGCAGCTAACGCGT-GAAGTAGACCGCCTGG
	TGTCGGGGAAGCAATTCCTTGGTAACGAAGCTAACGCGTTGAAGTTGACCGCCTGG
	TGTTGGGTGGGTAAAACCATTTAGTACCGGAGCTAACGCGT-GAAGTTGACCGCCTGG
	TGTTGGGAGGGTAAAACCTTTTAGTACCGGAGCTAACGCGT-GAAGTTGACCGCCTGG
	TGTTGGGAGGGTTAA ACCTTTTAGTACCGTAGCTAACGCGTTGAAGTTGACCGCCTG-
	TGTTGGAAGGGTTAA ACCTTTTAGTACCGCAGCTAACGCGT-GAAGTTGACCGCCTGG
	TGTTGGGGA-GGAGACCTCCTTAGTAACGCAGCTAACGCGT
	TGTTGGGGAAGGAGACTTCCTTAGTACCGTAGCTAACGCGT-GAAGTTGGCCGCCTGG
	TGTTGGAGGAGTTAAATCCTTTAGTAACGCAGCTAACGCGA-GAAGTCATCCGCCTGG
	TGTTGGGTGCAACTTGGCACCCAGTATCGAAGCTAACGCGT-TAAGTTCGCCGCCTGG
	TGTTGGGTGCAATTTGGCACGCAGTATCGAAGCTAACGCGT-TAAGTTCGCCGCCTGG
	TGTTGGGTGCAACTTGGCACTCAGTATCGAAGCTAACGCGT-TAAGTTCGCCGCCTGG
	CGTTGGGTTCTTTAATGAACTTAGTGTCGAAGCTAACGCGT-TAAGTTGACCGCCTGG
	CGTTGGGAGCC-TTGAGCTCTTAGTGGCGCAGCTAACGCAT-TAA-TTGACCGCCTGG
	CGTTGGGAGCC-TTGAGCTCTTAGTGGCGCAGCTAACGCAT-TAAGTTGACCGCCTGG
	TGTGGAGGGAGTTGACCCCTTCCGTGCCGGAGCTAACGCGT-TAAGTGTTCCGCCTGG
	TGTGGAGGGAGTTGA CCCCTTCCGTGCCGGAGCTAACGCGT - TAAGTGTTCCGCCTGG
	TGTCGGGGGCTCTTAGAGCTTCGGTGGCGCAGCTAACGCAT-TAAGTTATCCGCCTGG
	TGTTGGGGTGCTTGCA-CCTCAGTAGCGCAGCTAACGCTT-TGAGCATTCCGCCTGG
	TGTTGGGGTGCTTGCA-CCTCAGTAGCGCAGCTAACGCTT-TGAGCATTCCGCCTGG
	CGTTGGCGGGTTTACT-CGTCAGTGGCGCAGCTAACGCAT-TAAGCATCCCGCCTGG
	TGTCGGCATGCATGCA-TGTCGGTGACGCAGCTAACGCAT-TAAGCACTCCGCCTGG
	TGTCGGCATGCATGCA-TGTCGGTGACGCAGCTAACGCAT-TAAGCACTCCGCCTGG
	TGTCGGCATGCATGCA-TGTCGGTGACGCAGCTAACGCAT-TAAGCACTCCGCCTGG
	TGTCGGCATGCATGCA-TGTCGGTGACGCAGCTAACGCAT-TAAGCACTCCGCCTGG
	CGTCGGGTAGCATGCT-ATTCGGTGACACACCTAACGGAT-TAAGCATTCCGCCTGG
	TGTTAGGGGTATTGACCCCTCTAGTGACGGAGCTAACGCGT-TAAGTATCCCGCCTGG
	TGTTAGAGGTATTGACCCCTTTAGTGACGAAGCTAACGCGT-TAAGTATCCCGCCTGG
1	TGTTGCGGGTATTGACCCCTGCAGTGCCGCAGCTAACGCAT-TAAGTGCTCCGCCTGG
1	TGTTGCGGGTATTGACCCCTGCAGTGCCGCAGCTAACGCAT-TAAGTACTCCGCCTGG
•	TGTCGCGGGCTTTGACCCCTGCGGTGCCGTAGCTAACGCCT-TAAGCACCCCGCCTGG
l	CGTCGGAGGGGTCTGCT-CTTCGGTGTCGTAGCTAACGCGC-TAAGTTCTCCGCCTGG
1	TGTAGGAGGTTTTCAATTGCCTTCTGTGCCTTAGCTAACGCGG-TAAGCACACCGCCTGG

-G G G G G G G G G G G G G G G

.

171

Caulobacter	G
778u19530f	G
509	G
510	G
Bdellovibrio	G
1627	G
Trichlorobacter	G
Myxococcales	G
778u32	G
778u25530f	G

.

۰

.

AFCEE	air force center for environmental excellence
bp	base pair
DCE	dichloroethene
DNAPL	dense nonaqueous phase liquid
DO	dissolved oxygen
GC	gas chromatograph
HPLC	high pressure liquid chromatograph
ICP	inductively coupled plasma
IRB	iron reducing bacteria
MNA	monitored natural attenuation
MPN	most probable number
ORR	Oak Ridge reservation
PCR	polymerase chain reaction
ppb	parts per billion
ppm	parts per million
rDNA	ribosomal deoxyribonucleic acid
sp.	species
SRB	sulfate reducing bacteria
SWSA7	solid waste storage area 7
TCE	trichloroethylene
TOC	total organic carbon
VC	vinyl chloride
VOC	volatile organic carbon
WAG5	waste area grouping 5

Appendix 15: Nomenclature and abbreviations

~

.

.

Vita

Melissa E. Lenczewski was born in Garden City, Michigan. She became interested in biology and science while attending Northeast Middle School in Midland, MI. During the advance biology class at Midland High School, Mrs. Shields introduced her to microbiology. After finishing High School at Peoria High School, Peoria, Arizona decided to major in Microbiology at the University of Arizona. During her junior year got a job in an environmental microbiology laboratory under Dr. Charles Gerba. This experience gave her the opportunity to realize that a combination of microbiology and environment was for her. She graduated with a B.S. in 1991 and decided to stay with Dr. Gerba for a Master's degree but in the Soil, Water and Environmental Science program. The decision proved to be invaluable for learning more about the environment and how this related to microbiology. She spent two summers at Borden Air Force Base, Borden, Ontario, Canada investigating virus transport in sandy aquifers. During the second summer was asked to go to Denmark to aid in virus transport research with the Danish Geological Survey and Dr. Larry McKay. After graduating in 1993, worked for Amway Corporation as a Research Scientist examining personal and homecare products for microorganisms. This experience made her realize that industry was not for her and that a life in academia was her calling. In 1997, started a Ph.D. in Geological Sciences at the University of Tennessee under Dr. Larry McKay. She finished in December of 2000 with a job as an Assistant Professor at Northern Illinois University, DeKalb, IL to start in January of 2001. Her research goal is to always combine her love of the environment with microbiology.

174