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Abstract

Batch processes are widely used in the chemical industry.

Recently, much attention has been given to the monitoring and analysis

of batch measurement data, or profiles, with an emphasis on the

detection of problems. Similarly, methods to improve the final product

quality in batch processes have multiplied in the literature. However,

an area that is virtually unexplored is the utilization of the data

mining techniques for monitoring and analysis of batch profiles for

better understanding batch processes, rather than identifying problems

in batches, in order to improve the process. The thrust of this work is

to apply a systematic method to increase batch process understanding by

sifting through the existing historical database of past batches, to

discern directions for process improvement from the increased

understanding, and to subsequently demonstrate better quality control

through the use of online recipe adjustments.

A database of past batches is generated from a simulated nylon-6, 6

process, with the main quality variable of interest being the number

average molecular weight. The time and measurement variability in raw

batch measurement profiles is characterized through scale parameters.

These scale parameters are subjected to a standard principal component

analysis (PCA) to understand the principal sources of variation present

in a historical database of past batches. Directions for process

improvement are discovered from the data mining study and appropriate

manipulated variables to implement recipe adjustments are identified.

Online predictions of the molecular weight are demonstrated which

indicate off-target quality batches well before the end of the batch. A

split-range linear molecular weight-based controller is developed that

is able to reduce the variability in the quality around the target.

IV



Further process improvement is accomplished by reducing the cycle time

in addition to tightly controlling the final quality.

The approach for systematically analyzing batch process data is

general and can be applied to any batch system, including non-reactive

systems.
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Chapter 1

Scope of Work

Introduction

One of the primary objectives of batch manufacturing in the

chemical industry is the consistent production of on-target quality

batches. This is due to the premium on the quality of the value-added

chemicals manufactured in batch processes. Online quality measurements

are seldom available and the batch operation is typically based on a

fixed recipe, with variables considered important, such as reactor

temperature, being controlled to a pre-specifled trajectory. In the

absence of online quality measurements, a completed batch is

characterized as either on-spec or poor quality based on laborious

analytical measurements on a sample of the product.

Common cause variation, such as variability in the raw material

quality, changes in equipment characteristics, etc., can have a

significant impact on the final product quality and is not compensated

for in the recipe-based operation. The principal sources of common

cause variation can usually be inferred from the various online

measurements, such as temperatures, pressures, flows, etc. Existing

historical databases of the measurement trajectories (profiles) are a

rich source of information on the sources of common cause variation

affecting the process. The database can be systematically studied to

understand these sources of variability and also the correlation of the

measurement profiles with the final product quality. Historical data

mining is thus a powerful tool that can be used to enhance process



understanding. The increased understanding can lead to process

improvement through appropriate modifications for improved quality

control. Process improvement is defined as making modifications to the

process such that the quality more consistently reaches the target with

lower variability in less time. In particular, strategies for online

recipe adjustments can be proposed when good quality / disturbance

predictions from the measurement profiles are obtained much before the

completion of the batch. These adjustments compensate for the effect of

the disturbances on the product quality so that tighter quality control

is achieved. This is referred to as within batch control.

Objectives

The objectives of this work are as follows: 1. To utilize data

mining tools in order to understand both the primary disturbances

affecting the process and their effect(s) on the product quality, 2. To

develop effective within batch control schemes to compensate for the

primary disturbances and resulting in on-target quality batches with

reduced quality variability, and 3. To reduce the batch production time

in addition to tightly controlling the product quality. A batch

polymerization reactor simulation is used to demonstrate these

obj ectives.

Con'brlbu'tlons

The contributions of .this work are as follows: 1. Development of

a methodology to systematically mine the historical database for

increased understanding of the principal sources of common cause

variability in batch processes, 2. Development of a systematic method

for online predictions of a final quality variable, 3. Demonstration of



each methodology on the example batch process. For the example process,

non-linear online predictions of the output quality and primary

disturbances are demonstrated well before the end of the batch. An

online recipe adjustment strategy is developed from the results of the

data mining studies that improves the process by reducing the output

variability in the quality. Reduced cycle time for the process with

good quality control is also demonstrated.

Dissertation Layout

The dissertation is organized as follows. Chapter 2 gives a brief

introduction to batch processes. Chapter 3 provides a survey of general

batch processing literature, as well as giving an extensive review of

batch monitoring and control literature. Chapter 4 describes the nylon-

6,6 process simulation that is used to demonstrate process improvement

through data mining. The historical profile database for fixed recipe

operation is generated and described. The dynamic material and energy

balances, batch operation recipe, available measurements and batch

quality parameters are presented in the appendix.

In chapter 5, a systematic method is developed to examine the

database of past batches for greater process understanding. In

particular, existing multivariate methods are used to study and compare

the correlation of the measurement profiles with the final product

quality and to infer the primary disturbances affecting the process.

Emphasis is placed on understanding the relation of the empirical

parameters characterizing the profiles in a batch to the physics of the

process. Offline predictions of the quality and primary disturbances

are obtained using the methodology proposed by Kaistha [72] and

incorporating non-linear terms in the regression.



In chapter 6, a methodology is developed for online predictions of

the final quality. It is shown that good online predictions of the

quality and primary disturbances are obtained much before the completion

of the batch. Non-linear terms are used in the regression to develop

the best predictions. These good online predictions open the

possibility of within batch control. A within batch quality control

strategy is proposed that is based on the final quality predictions.

Simple proportional and non-linear algorithms for recipe adjustments are

studied. The improvement in quality control over the recipe-based

operation is quantified.

In addition to tight product quality control, a secondary

objective in batch manufacturing is reduction in the batch production

time representing increased yields. Chapter 7 broadens the scope of

process improvement for the nylon-6,6 process to reducing the cycle time

in addition to quality control. 'Appropriate within batch recipe

adjustments are proposed for achieving both on-target product quality

and reduced cycle time. The novel feature of the study is the

manipulation of the batch end time in addition to the adjustments used

in chapter 6. Results show that the cycle time can be significantly

reduced while achieving tight product quality control.

The dissertation ends in chapter 8 with a brief summary of the

work and the conclusions that can be drawn. Tentative suggestions for

further research are also given.



Chapter 2

Batch Processes

Introduction

Properties of Batch Processes

In recent years, batch processing has received increased attention

in the chemical industry. Batch processes are used for the manufacture

of finite quantities of material, and are commonly used in the

production of high value added chemicals, such as biochemicals, food

products, pharmaceuticals, polymers, and specialty chemicals. Batch

processes are also popular because of their flexibility in

manufacturing. The competition from increased use of batch processes

has generated a great deal of interest in improving batch operations in

order to achieve consistent product quality, maximize production,

increase the reliability of batch operations, and speed up process and

product development. Improving batch operations depends on knowledge of

current and past process operations. Current operations are monitored

through field instruments that collect data about process conditions

through the batch cycle. Monitoring these data is important for the

purposes of within batch control, batch-to-batch control, problem

detection, and problem diagnosis. Current process measurements are

typically archived. These collected measurements form a rich historical

database that can be mined for valuable insight for batch control and

operation, problem detection and problem diagnosis, and process design

and improvement.



Measurements and Process Profiles

Process measurements are important to batch processing for

monitoring initial conditions (e.g., weights, volumes, raw material

purities, etc.), process conditions (e.g., temperatures, pressures,

flows, agitator speeds, etc.), and batch outcomes (e.g., compositions,

yields, viscosities, densities, etc.). Unfortunately, product quality

measurements are usually determined by laboratory analysis only at the

end of the batch. Often, these analyses take time and are not available

before a new batch starts. Although indirect, other batch data, if

analyzed properly, can provide insight into the progress of a batch.

Measurements during the batch (batch profiles) are an indication of

variability, which affects batch operation. Variability arises from

sources such as material balances, energy balances, kinetics,

measurement uncertainty, process noise, equipment problems, etc. Some

variability is to be expected and does not necessarily lead to poor

operations, however, some sources of variability can affect quality,

throughput, yield, etc. Analyzing and interpreting the time-related

variability of profiles can provide significant insight. One of the

problems in analyzing variability in a batch is separating variability

which is inherent to the batch from variability which reflects unusual,

or abnormal, behavior. Batch monitoring and analysis methods are useful

for determining which profiles exhibit the inherent, or consistent,

variability and which profiles exhibit abnormal, or inconsistent,

variability.

Process Improvement

The various batch monitoring and analysis techniques have been

very useful for determining when process problems occur in batches.

However, very little or no research has been done to utilize those tools



to mine the historical database for the purpose of improving batch

processes. The focus of this research is to utilize the batch

monitoring and analysis techniques in order to extract cause and effect

relationships leading to process improvement. Chapter 3 gives an

extensive literature survey on general batch processing, batch

monitoring and analysis tools, and batch process control research.



Chapter 3

Literature Review

Introduction

The literature review is divided into six broad areas: 1. Batch

processing, 2. Engineering process control (EPC) and statistical process

control (SPC), 3. projection methods, 4. Batch monitoring and control,

5. Time-alignment issues, and 6. Batch polymerization reactor

simulation.

Batch Processing

Levels of Batch Control

This review emphasizes batch control and related topics. Batch

control can be divided into roughly three levels. At the highest level

of control is production planning and scheduling, which involves

assignment of particular plants to meet production needs, as well as

allocating plant resources to a particular batch unit. The next level

of control is recipe management and implementation. The appropriate

instructions regarding the ingredients, sequence of operations, and

process conditions are implemented at the process. The bottom level is

within batch and batch-to-batch control. Literature regarding these

three levels of batch control mentioned is covered, as well as some

other issues related to, batch processing.



Batch Processes

A definition for a batch process can be found in Fisher [1, p.l],

where Shaw is quoted as saying that "a process is considered to be batch

in nature if, due to physical structuring of the process equipment or

due to other factors, the process consists of a sequence of one or more

steps (or phases) that must be performed in a defined order. [The]

completion of this sequence of steps creates a finite quantity of

finished product." Fisher gives an exhaustive treatment of the issues

in batch control. Burton [2] gives historical perspective on the

development of batch control since the early 1960's. Dean [3]

summarizes the fundamental requirements of a batch control system as

follows: 1. It "must be able to perform sequence and continuous

control," 2. "It must provide a workstation interface for interaction •

with process designers, process and commissioning engineers, production

managers, production operators, maintenance personnel, and plant

managers, 3. "It must provide records of production, material usage, and

a level of traceability of the production process of each batch for use

by all the plant and production personnel, quality assurance department,

and the accounting system." In the mid 1990's, batch processing

standards were introduced by the Instrument Society of America's SP88

Batch Control Systems standards committee. Fisher [I, p.xiv] states

that the purpose of the standards committee, which began working in

October 1988, was to "provide standards and recommended practices, as

appropriate, for the design and specification of batch control systems

as used in the process industries." Bunch et al [4] summarize the

major aspects of the SP88.01 standard and identify several important

issues. Recommendations for better implementing the standard are given

by Nelson et al in [5]. Various aspects of batch automation illumined

by the standard are given in [6-8]. Owen et al [9] discuss benefits of



implementing the standard in the bulk pharmaceutical industry. Schaefer

[10] looks at the how the standard has impacted the design and

implementation of batch control projects. The SP88.01 standard has been

supplemented by two additional standards, the SP88.02 and SP95.01.

Nowicki et al [11] note that the SP88.01 standard "focused on the models

and terminology of batch control," but that the new SP88.02's purpose is

"to standardize the electronic exchange of batch information."

Furthermore, the SP95.01 standard was introduced for the purpose of

integrating not just batch manufacturing, but also continuous processes

into the larger business system. Nowicki gives a summary of the

SP88.02 standard as well as reviewing the key concepts of SP95.01. Lau

[12] discusses the advantages of integrating batch manufacturing into a

systems approach to business.

Batch Scheduling

Reklaitis [13] gives a summary of the major issues involved in the

scheduling control problem in batch processing. Reklaitis defines

scheduling as "the decision procedures and processes under which

resources are allocated to activities so as to achieve desired outcomes

in a timely and / or cost effective fashion." Approaches to the

scheduling problem can be grouped into five categories: 1. Rule based

methods, 2. Search methods, 3. Artificial intelligence related methods,

4. Simulation methods, and 5. Model-based optimization. Reklaitis

suggests that "batch process scheduling problems are most appropriately

solved using model based optimization methodology, supplemented with

simulation as a schedule disaggregation and validation tool." Several

scheduling methods are covered in [14-18] . A scheduling method that

takes into account the equipment failure uncertainty is given by

Sanmarti et al in [19] .
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Batch Recipe Management

Wang et al [20] note that recipe management has not been given

much attention and then proceed to give detailed treatment to the

development of a recipe management system. Ar^en et al [21] present how

object-oriented sequential function charts can be used to implement a

batch recipe management system. In recipe implementation, the reactor

charging issues of target setting and alarm generation are given

detailed treatment by Tsai et al in [22]. Another recipe implementation

issue, cleaning of batch equipment in-place is covered in Sakmar et al

[23] .

Miscellaneous Issues

In other miscellaneous issues. Read [24] offers several

suggestions to improve batch operations. Also in operational

improvement, Srinivasan et al [25] cover an automated approach to

perform a batch process Hazard and Operability (HAZOP) study. Allgor et

al [26] offer a "systematic process development methodology" for

performing optimal batch process development. Soroush et al [27-28]

present a theoretical framework for the design and operation of batch

reactors and demonstrate the framework in a case study. Troy et al [29]

present a development environment for the development of software for

programmable logic controllers (PLCs) in batch process control.

Methodologies for batch process development, which takes into

consideration the impact on the environment, are given in [30-31] . A

new method for the batch process design, which considers heat

integration, utility system design, and water minimization along with

constraints on time, is given in [32]. The design of energy storage

systems for batch processes in covered in [33]. At the within batch and

11



batch-to-batch control level, the literature of batch monitoring and

control, which is a primary thrust of this work, will be covered in a

subsequent section.

Engineering Process Control and Statistical Process Control

Engineering Process Control

The two bodies of literature that exist in process control can be

sorted into the areas of either statistics or engineering systems. The

term engineering process control (EPC) is used to distinguish the

engineering systems literature from the statistics based methods.

Marlin [34] provides an introduction to engineering process control.

Marlin [34, p. 6] defines control as follows: "To maintain desired

conditions in a physical system by adjusting selected variables in the

system." An important type of control is feedback control, which Marlin

[34, p. 6] defines as follows: "Feedback control makes use of an output

of a system to influence an input to the same system." The inputs that

are influenced by feedback are the manipulated variables (MV). A

manipulated variable is used by an automatic control system to transfer

variability from one part of the process to another. Ogunnaike and Ray

[35] provide an advanced treatment of engineering process control.

Statistical Process Control

Oakland [36] provides an introduction to the concepts and

applications of statistical process control (SPC). SPG is a process

monitoring technique, which considers the statistics of measurements in

order to determine if a process exhibits normal variation. Each product

manufactured by a system shows variability. Oakland [36, p. 52] defines

'common' cause variability as the "complex interaction of 'random' ...

12



causes, each of which is slight, [and which cannot] be traced to a

single cause." Excessive variation is referred to as ''special' cause

variability. A process showing only common cause variability is said to

be 'in control' . Oakland [36, p. 70] states that "To control a process

using variable data, it is necessary to keep a check on the current

state of the accuracy (central tendency) and precision (spread) of the

distribution." Control charts are used to monitor the current state of

the process. SPG that is applied to more than one variable at a time

for the same system is called multivariate analysis. Tatsuoka [37] gives

an exhaustive exposition of the methods of multivariate statistical

analysis, which also incorporates methods of linear algebra that are

covered later. Furthermore, SPG has the capability of giving process

insight leading to process improvement.

SPG Literature

Vander Wiel et al [38] detail a new methodology, algorithmic

statistical process control (ASPG), which is "an integrated approach to

quality improvement ... that realizes quality gains through appropriate

process adjustment (i.e., process control) and through elimination of

root causes of variability signaled by statistical process monitors."

Guh et al [39] apply a neural network model for the recognition of

abnormal SPG charts. Saraiva et al [40] develop a methodology with the

goal "not to detect and diagnose 'abnormal' situations, but rather to

uncover improvement opportunities form the large amounts of 'normal'

operation data that are collected from the process but often end up not

being explored at all." Saraiva cites estimates that only 6-20 % of

production problems arise from special causes with the remaining bulk of

80-94 % being due to common causes, which are addressed through process

improvement. Reducing the common cause variability to improvement the

13



process is a main thrust of this work. Finally, Marsh and Tucker [41]

have investigated the application of SPC techniques to batch units.

However, as shown later, the authors make a major assumption about the

time dependence that typically does not hold for batch processes.

Projection-based Methods

Linear Algebra Background

Strang [42] gives a treatment of the subject that covers not only

the basics of linear algebra, but also provides a geometric

interpretation of linear operations. The fundamental problem of linear

algebra is the solution of the matrix equation,

Y = XP (3.1)

Where: P = an m (rows) x n (columns) transformation matrix
X = an n X p input matrix
Y = an m X p output matrix

This system of equations has an exact solution, p, only if Y can be

expressed as a combination of the columns of X, given that the columns

of X are linearly independent. The columns of X are linearly

independent if no column can be expressed as a combination of the

others. In this case, X is said to be full rank. If X is not full

rank, then two other solution possibilities exist: 1. an

underdetermined case in which infinitely many solutions exist, or 2. the

overdetermined, or inconsistent, case in which no solution exists. The

second case can effectively be dealt with using projection methods.

When a system of equations is inconsistent, a "best" solution may still

be found by minimizing an error criterion; e.g., a least squares

regression of the data. In regression, the columns of the original Y

are projected onto the column space, or set of all possible exact
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solutions, of the original X. The solution closest to the original Y in

the column space of X is the projected matrix Y. The appropriate £ that

finds Y is expressed by the following equation:

£ = (X^^Xj-^X^Y (3.2)

Where: X'^ = X transposed
X^X = a matrix product
(  } "^ = the matrix inverse

The projected Y is given by:

Y = X£ (3.3)

The distance, Q, from the original Y to Y is the perpendicular distance,

or error, which is orthogonal to the column space of X. Note that, in

the special case that the columns of X are orthogonal, the product

(X'^X) becomes the identity matrix, I, and the regression coefficients

are found by:

g = X^Y (3.4)

The above method is used in multiple linear regression (MLR). Higher

order terms may augment the X matrix, if a non-linear regression is

desired. For example, if quadratic terms are included, the input

augmented matrix, X^^g, can be written as:

Xa„g = [X X.2] (3.5)

Where: X.^ = Squared terms from X matrix.

Linear terms may also be excluded for an exclusively non-linear

regression. For example, in a second-order case, the input matrix, X2,

is written as:

X2 = X.^ (3.6)

Furthermore, the method of least squares is only one of many types of

error minimization. A more general discussion of optimization, which

also applies to neural networks, can be found in Chong and Zak [43].
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Principal Component Analysis

Wold [44] describes principal component analysis (PGA) as the

decomposition of a data matrix as follows:

X = TP'' (3.7)

Where: X = an m x n data matrix of row vectors

T = an m X n scores matrix ( = XP)
P''= an n X n loadings, or principal directions, matrix

The T matrix is a set column vector scores, or projection magnitudes,

arising from the projection of X onto the loadings. The loadings in P"

are row vectors that are also called principal components (PCs). The

first PC is in the direction of maximum variance, the second is in the

second highest direction of variance, and so on, until the last PC,

which is in the direction of the least variance. The loadings and

scores are orthogonal; = 0, i <> j, and Pi^Pj = 0, i <> j . In

essence, when the decomposition is performed, the frame of reference has

been rotated such that X is represented by decorrelated variables, i.e.,

the scores. PCA is effective when the primary information about the

data can be expressed using the first few PCs, with the remaining PCs

representing the noise in the data. Thus, equation (3.7) could be

better expressed as follows:

X = T^-Pr" + E (3.8)

Where: r = the retained PCs

E = an m X n residual matrix representing noise

Data typically need some pre-processing, such as mean-centering and

scaling, before PCA is done. The NIPALS algorithm for finding the PCs

and scores is given in Wold [44] . Linear PCA is sufficient for the

purposes of this work.

Strang [42] discusses a different method of doing PCA that is very

closely related to the above. The method of singular value
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decomposition (SVD) as described is used for calculating the loadings

and scores. The singular value decomposition is expressed as follows:

X = U E (3.9)

Where: U = Left singular vectors

E = Singular values
= Right singular vectors

The right singular vectors are the principal components ( = from

(3.7)). The scores matrix in (3.7) can be found as follows:

T = U E (3.10)

Where: U = Left singular vectors

E = Singular values
T = Scores

Alternatively, the scores may be found by:

T = X V (3.11)

Where: V = Right singular vectors
X = Original data
T = Scores

As in (3.8), PCA is effective when the data are highly collinear and

only a few PCs need to be retained. This is expressed as follows:

X = U,: E,: + E (3.12)

Where: r = the retained PCs

E = an m X n residual matrix representing noise

The singular value decomposition is related to the eigendecomposition

[42]. The singular values are simply the square roots of the

corresponding eigenvalues [42] . The singular values are arranged in

descending order by most software and measure the variance explained by

each respective loading. The first loading, or principal component

(PC), describes the largest direction of variation and has the largest

singular value, the second PC describes the second largest direction of

variation and has the second largest singular value, etc. The scree

plot is commonly used to visually express the amount of variance
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explained by the singular values. The scree plot is shown in two plots

as a cumulative sum of the squared singular values expressed as a

percentage of the total variance and as the percentage variance

explained for a given PC.

Further information on PGA is given in Jackson [45-47]. Wise et

al [48] explore a theoretical basis for using PGA to monitor

multivariate processes. Wachs et al [49] propose an improved PGA method

for monitoring time-dependent relationships by recursively summing the

last s PGA scores. Dong et al [50] extend PGA for non-linear analyses.

Partial Least Squares

While MLR explains the variance in the output data and PGA

explains the variance in the input data, a third method, partial least

squares (PLS), is used to explain the covariance between the input and

output data. Essentially, the covariance between the input data matrix,

X, and the output data matrix, Y, is maximized. A set of latent

vectors, similar to principal components, are then available for

predictions. The X and Y matrices are decomposed in the following form:

X = TP^ + E (3.13)
Y = + F (3.14)

with an inner relation consisting of a linear regression between U and
T:

U = TP (3.15)

Where: X = input data matrix
T = score matrix

P = latent vectors from X

E = residual matrix

U = score matrix

Q = latent vectors from Y

F = residual matrix

P = regression coefficients

For a detailed discussion of the algorithm for performing PLS, as well

as other background information, see Hoskuldsson [51]. Qin et al [52]

18



extend the framework of PLS by the embedding of neural networks. Phatak

et al [53] provide insight into the geometric interpretation of two

common algorithms for performing PLS. Westerhuis et al [54] compare

multiblock and hierarchical PCA and PLS models. Simoglou et al [55]

present a comparison of PLS with a conceptually similar technique,

canonical variates analysis (CVA), that is receiving increased interest

in linear modeling.

Overview Literature

Wise et al [56] provide a technical review of several popular

techniques in the field of chemometrics. Brown [57] gives an excellent

qualitative overview of the state of the field in information and data

handling techniques from a chemometrics point of view.

Batch Monitoring and Control

The major focus of this section will be the literature of batch

monitoring with special emphasis given to the works of Nomikos and

MacGregor [58-59], Darnell [71], and Kaistha [72]. Subsequently, within

batch modeling and within batch and batch-to-batch control applications

are reviewed.

Batch Monitoring using Projection Methods

Method of Nomikos and MacGregor

Nomikos and MacGregor [58-59] show that multiway PCA (MPCA), a

technique from the field of image analysis, is appropriate for analyzing

batch profiles in a multivariate sense. The MPCA method is performed by

taking a 3-D array of batch data, which consists of multiple batches

having multivariate measurements across time, and unfolding it into a 2-
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D matrix that is subsequently analyzed by PCA. The form of the 2-D

matrix is that the rows correspond to the batches and the columns are

the measurements grouped together by time sample. For example, 20

batches and 5 measurements across a time of 300 minutes, when unfolded

to a 2-D matrix, would have dimensions 20 x 1500, with every fifth

column being the same variable at each time sample. The data are first

mean-centered and the columns are scaled to unit variance, to eliminate

the effects of differing engineering units. Since batch data variables

are highly correlated, MPCA serves to identify the correlation,structure

as well as allowing data reduction. Only the first few principal

components are kept in order to capture the major sources of variability

in the batch. Two statistical measures are used to identify abnormal

operation: the standard prediction error and the Hotelling's t^-

statistic. The SPE is the remaining sum-of-squared error (SSE) after a

new batch's trajectory has been projected onto the retained principal

.components. It provides a measure of the perpendicular distance of the

projection from the hyperplane and indicates the lack of fit. The

Hotelling's t^-statistic is a measure within the principal plane of how

far away the projection is from the origin. Abnormal t^ indicate a

deviation that is too great, but not a different model regime. To use

the technique for problem detection, a database of normal, or ^good',

batches must first be assembled. From these batches, a PCA model is

built to characterize the nominal correlation in the profiles. Standard

statistical control limits are constructed in order to identify abnormal

performance of new batches. Normal control limits can be constructed on

each PC profile, on the Hotelling's t^-statistic, and the SPE.

Ellipsoidal limits can be constructed on the PC scores to identify

abnormal batches. An on-line framework is proposed which assumes that

future deviations in the new batch trajectories will remain at their
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current values for the duration of the batch. The problem with the

method of MPCA is that time-axis variability is not considered.

Furthermore, as presented, the method is designed to detect special

cause variation in batches, but does not address the detection of

sources of common cause variation in batches for the purpose of process

understanding.

Literature of Batch Monitoring

Nomikos [60] and Martin et al [61] give concise overviews of the

MPCA technique. Martin et al [62] present an alternative, called the M^

statistic, to the Hotelling's t-statistic to construct control limits

whose form and shape are dictated by the data. Martin et al [63] review

several issues and concerns in batch monitoring. An inverse PLS (IPLS)

model is reviewed that generates a large number of nominal trajectories

from a small number of complete batches such that a monitoring scheme

can be adequately tested. Furthermore, a multi-group PGA model, which

encompasses a range of product grades and recipes, is discussed. Dong

et al [64] extend the MPCA technique by using non-linear PCA. Boque et

al [65] explore using multiway covariates regression models to predict

final product quality from process variable information. All these

works utilize data mining tools to detect the special cause variation in

batch processes, but say nothing about understanding the sources of

common cause variation in those batches. Furthermore, none of the above

consider variation along the time-axis.

Neogi et al [66] apply multivariate statistical methods to a real

industrial process and use the reaction extent to align the batches in

time. The difficulty with the time-scaling method used is that, for

most industrial processes, the reaction extent is not available. The

time-scaling information is not incorporated in the predictions of
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product quality. Neogi et al to some extent utilize data mining tools

to gain process insight, for improving the process under consideration.

No details are given on how the process was improved. Gallagher et al

[67] also provide an example of the application of MPCA to nuclear

storage tank monitoring. Finally, several applications of multivariate

statistical analysis are given in [68-70]. With the exception of Neogi,

none of the applications address the time-scaling problem. Again it is

emphasized that most of these works apply multivariate SPC only for the

detection of special causes, not for determining the sources of common

cause variation.

The following works by Darnell [71] and Kaistha [72] include

insight into a problem that much of the research in the area of batch

monitoring has in the past ignored: the importance of scaling the time

axis first. The concept of time alignment is introduced and is further

discussed in the time alignment section.

Method of Darnell

Darnell [71] develops a technique for analyzing batch profiles

that quantifies the variability of batch profiles and allows an

increased sensitivity SPC analysis. Darnell shows that batch profiles

can be thought of in terms of a scaled reference profile. Three scaling

parameters and the residual SSE are used to oharacterize the behavior of

batch profiles. The initial condition (IC) and magnitude scale (MS),

quantify measurement axis behavior, and are equivalent to the slope and

intercept terms in a regression. The time scale (TS) measures the time

axis behavior of the profile. The TS is extracted first in order to

align batch profiles in time. The profiles in the study were linearly

interpolated to a common length and the difference in the number of

points gave a crude TS parameter. The IC and MS are subsequently
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extracted by projecting the reference profile onto a time-scaled

profile. The deviation between the reference and the projection is then

calculated, squared, and summed to get the SSE. Statistical limits are

then constructed for each of t)ie parameters as well as for the residual

error in order to detect process abnormalities.

SPC Framework of Kaistha

Kaistha [72] develops a general framework for characterizing batch

profiles. The framework is also detailed in Moore et al [73]. The

method was primarily developed from proprietary data from industry.

Kaistha covers three important areas: 1. Understanding the nature of

variability, 2. Time scaling, and 3. problem detection using projection

methods.

Partitioning Variability

Kaistha provides a refinement in understanding the different types

of variability that occur in batch profiles. Variability can be

partitioned into two types: consistent and inconsistent. The

consistent variability repeatedly occurs from batch-to-batch in a

particular way. The inconsistent variability arises due to process

noise and special causes. Furthermore, the consistent variability can

be partitioned into two types, measurement-axis and time-axis.

Time Alignment Methods

Batch profiles exhibit time-axis variability that projection-based

methods do not properly characterize. The batches must first be aligned

in time before any subsequent projection-based method is applied.

Kaistha considers three types of time scaling to perform the time

alignment: 1. Linear interpolation, 2. Dynamic time warping, and 3.
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Shapes and features. Linear interpolation is the simplest method, but

sometimes creates spurious features as an after effect of scaling.

Dynamic time warping (DTW) is a technique from speech recognition

that is investigated as a possible technique for aligning batch

profiles. Essentially, DTW calculates a non-linear mapping, or warping,

of either one profile onto another or two profiles to a fixed time

interval. In the mapping the optimum path is calculated subject to

local and global constraints on the path. At present, the computation

time to do DTW is .excessively lengthy, but should improve with

increasing processor speeds and parallel computing methods. Another

drawback to the method is the introduction of yet another profile, the

warping function, to analyze. The warping function is a historical

record of the steps taken to minimize the distance between two profiles.

These steps are subject to certain constraints in the DTW algorithm.

DTW works best whenever an indicator variable, e.g., reaction

conversion, is available, but such variables are rare in industry. DTW

does show promise, though, in that it does a good job of mapping a

profile onto another profile.

Kaistha develops the third technique, shapes and features, to

automatically time scale batches by extracting the consistently

occurring features in a profile. Each shape is translated and

projected and a normalized minimum SSE is calculated. After each shape

is tried, the minimum SSE for all shapes is used to locate the event

time of the feature. This method has a computational advantage over

DTW.
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Problem Detection

Kaistha covers the area of problem detection using projection-

based methods. Kaistha notes that PCA is a scaling dependent technique.

The correlation structure in batch data changes from phase to phase, and

so PCA is unable to explain the variability across an entire batch.

Furthermore, the resultant PCA loadings are difficult to interpret for

physical insight into the batch. Kaistha develops the method of moving

window PCA (MWPCA). MWPCA explains the process variability via PCA

loadings of time dependent regions of the data. These loadings, or

factors, develop according to the amount of variance explained by the

first principal loading within an extending time window. Whenever the

variability explained by the current factor decreases below a certain

threshold in the window, a new source of variability is identified. The

old factor is stored, and a new factor is calculated. Because the

factors explain zones of variability, they can be interpreted more

easily; e.g., each factor may correspond to a particular physical

phenomenon in a phase of a batch.

Within Batch and Batch-to-batch Control

Within Batch Modeling and Control

Kresta et al [74] develop a method for inferential process models

based on PLS for continuous processes. Although not for batch

processes, the principles in this paper can be extended to inferential

monitoring in batches. Care must be taken to consider the possibility

of time-axis variability. Shen et al [75] use a first order model to

analyze industrial batch data in order to see the change in the dynamics

both within a batch and from batch-to-batch. The goal of the study is to

improve the process by understanding the process dynamics. The process
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is modeled piecewise for the various phases, but no consideration to

time-variability within a particular phase is given. Also, conducting

the various step tests of manipulated variables for understanding' the

process is not typically acceptable in most industrial settings.

Espuna et al [76] use neural networks and genetic algorithms on snapshot

data to model the performance of an industrial process. The difficulty

with the method is that no process understanding can be developed from

the black box model in order to further improve the process.

Palanki et al [77] apply optimal control principles and neural

networks to optimize batch manipulated variables on-line. Ni et al [78]

use a fuzzy logic supervised neural network combined with a simple PI

controller to perform temperature control on an exothermic batch reactor

simulation. Martinez et al [79] introduce the concept of a performance

function that includes in its definition end-product guality constraints

and operational preferences. In each of these approaches, future process

improvement cannot be done due to the black box nature of the neural

network. None of the methods increases process understanding for the

purpose of process improvement. Soroush et al [80] use a global

linearizing controller (GLC) to control a non-linear polymerization

reactor. The main difficulty with the method is that it is dependent on

a detailed first principles model, which is not available for most

industrial processes.

Robertson et al [81] use historical profiles to supply the

setpoints for profile tracking controllers. However, this method is

found to be "insufficient to guarantee consistent product when the

process conditions change." Russell et al [82] implement a Kalman

filter with principal component regression (PGR) and PLS to predict-

quality outcomes on-line and use this information as feedback to a model

predictive controller. The difficulty with the practical implementation
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of the method is that numerous control moves were simulated along with

typical disturbances in order to develop the model. No consideration is

given to time-axis variability in the process. In [83], Russell et al

develop a scheduled proportional-integral-derivative (SPID) technique

which combines model-based inferential monitoring and control with

parameterization of normal setpoint trajectories. The problem with the

method is that the parameterization of the normal setpoint profiles is

not typically allowed in an industrial setting. Again, time-scaling is

not considered. Process improvement deriving from better process

understanding is not emphasized.

Joseph and Hanratty [84] develop a shrinking horizon model

predictive control for control of an autoclave process using a neural

network approach. The model is applied to a process with no time-axis

variability, and so does not consider such changes in general. Process

measurement trajectories are also ignored due to the nature of the

process under consideration. Process improvement possibilities through

improved process understanding are limited due to the black box nature
i

of the neural net model. The model does incorporate batch-to-batch

learning. Joseph, Tsen, et al [85] modify the approach in [84] by

generating training data from actual experimental measurements through

weighted estimates of unknown experimental points. The augmented

dataset is then used to train the neural network. A mid-course

correction policy is proposed for recipe adjustment. The method has the

potential to become complicated very quickly as only one primary

disturbance and one control action is considered. Furthermore, process

improvement through increased process understanding is discouraged due

to the nature of the neural net.

Kozub et al [86] develop an inferential feedback control scheme

for the control of a semi-batch free radical polymerization process.
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The approach depends on the availability of a detailed first-principles

model. Time-axis variability is not considered. Yabuki et al [87]

consider practical approaches for final quality control in an industrial

process. The first approach is to highly automate the various stages of

the process to introduce as little variation as possible into the batch.

However, unmeasured process disturbances are not considered in this

scheme. The second approach deals with such disturbances by using a

mid-course corrective action based on predictors that are developed from

a first-principles model. The drawback is that such models are not

typically available. Clarke-Pringle et al [88] proposes a nonlinear

adaptive controller based on general energy balances coupled with an

extended Kalman filter to control a semi-batch polymerization reactor.

Although the nonlinear adaptive controller performs well in this

application, fairly specific knowledge of the process is required for

the heat transfer model. The approach did not utilize past data for

process understanding in order to improve the process; rather, a

specific controller was implemented in order to obtain tighter control.

Yabuki et al [89] control product quality in a semi-batch reactor

by predicting the quality and, if necessary, using a mid-course

correction policy to bring the quality closer to target. If the

predicted quality is off-target, then a shot of either initiator or

inhibitor is injected into the reactor during the batch to bring the

quality closer to target. Predictive models are developed from both a

theoretical model and from empirical regressions. Since theoretical

models are not always available, the authors present the data-driven

approach as an alternative. The mid-course corrective policy is a

reasonable strategy to use because the natural course of the batch is

not altered unless a problem occurs. The simple control move proves to

be able to bring the quality closer to target when disturbances are
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present. However, the method is demonstrated on a process with no time-

axis variability, so potential problems arising from time

synchronization issues are not discussed. Also, the predictive model

depends on an intermediate measurement of the product quality, which is

seldom available in industry. Furthermore, the control law came from

the assuming that a database of batches is available in which the

effects of control actions on the product quality are known a priori.

This paper demonstrates a specific application of a control method

rather than systematically mining the existing historical database of

past batches to increase understanding of the process and leading to

process improvement.

Batch-to-batch Control

The method of Vander Wiel et al [38] is applied to a batch

polymerization process and removes batch-to-batch variability leaving

the stochastic within batch variability. However, the method assumes

that quality measurements are available before the next batch begins.

Lee et al [90] develop a model based controller referred to as batch

model predictive control (BMPC) for quality control. The method applies

iterative learning from past batches for better profile tracking.

However, the method applies to a fixed trajectory, and thus does not

allow for time-axis variability. Chin et al [91] and Chae et al [92]

expand on BMPC by incorporating quality into the framework. The unified

framework for batch process control is referred to as quality batch

model predictive control (QBMPC). However, as with BMPC, QBMPC assumes

that no time axis variability occurs. Furthermore, the tuning is

complicated as six separate tuning parameters must be set. Kaistha et

al [93] demonstrated improved quality from batch to batch on both a

simulated and industrial process by> utilizing time synchronization for
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quality predictions and control. However, the method assumes that the

quality outcomes are known before the end of the batch.

Time Alignment Issues

Time Alignment Literature

Methods in the literature, such as MPCA and MPLS, have the

assumption that batches are of equal duration and are synchronized.

This is not the case almost all of the time in real processes. Such

things as varying levels of impurities in the initial raw materials,

variation in the charge of raw materials, or heat transfer variation due

to seasonal changes all contribute to batch profiles that are not

aligned in time. Several works already mentioned, by Darnell [71] and

Kaistha [72], address this problem of scaling the time axis. A

description of Kaistha's method and its application for quality

predictions is given in [93-94]. Martin et al [63] give a brief

discussion on the practical limitations of applying MPCA to batches of

unequal duration. Kassidas et al [95] provide extensive details about

the DTW algorithm and apply the method to multivariate industrial batch

data with good results. To handle the multivariate case, a weight matrix

is calculated and used to give heavier weighting to those variables that

are more consistent from batch-to-batch, and, thus, provides a better

warping. In the case study, the data has the advantage of having a

smooth and strictly monotonic variable upon which 85 % of the weight was

given in the weight matrix. The problem with this study is that

indicator variables (e.g., conversion) are not common in industrial

data. A second criticism of the method is to raise the question of how

the method performs with multivariate data in the absence of a smooth,

monotonic indicator variable. Thirdly, Kassidas does not provide any
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analysis of the warping function to characterize the variability along

the time-axis. However, Darnell and Kaistha have shown that

characterizing the time-axis variability is not only important, but may

actually be the most important source of process variability.

Nevertheless, DTW appears to be emerging as a useful technique in the

batch synchronization problem. Further technical details of DTW are

given in [96-98].

Batch Polymerization Reactor Simulation

Fogler [99] provides a general introduction to reactor

engineering. Biesenberger et al [100] and Gupta et al [101] introduce

polymerization engineering and step growth polymerization, respectively.

The nylon-6,6 polymerization process is chosen to demonstrate the

methodology presented in this work. Nylon 6,6 is a common name for

poly(hexamethylene adipamide), or poly(iminohexamethyleneiminoadipoyl)

[102]. The chemical formulas for the two main components of the nylon-

6,6 reaction, adipic acid and hexamethylene diamine, are given as:

HO2C (CH2) 4CO2H (Adipic Acid)
H2N(CH2)6NH2 (Hexamethylene Diamine)

Where: H'= Hydrogen atom
0 = Oxygen atom
N = Nitrogen atom
(CH2)x = Chain of CH2 groups of length x

The main reaction is written as [102]:

n H2N(CH2)6NH2 + n HO2C (CHj) 4CO2H ->

n  [-02C(CH2) 4CO2- +H3N(CH2) 6NH3+] ->

H -[NH-(CH2)6-NHCO-(CH2)4C02]n-OH + (2n - 1) H2O

Where: n = Number of monomers present in solution
[-O2C (CH2) 4CO2- +H3N (CH2) 6NH3+] = Ammonium salt charged to reactor
H -[NH-(CH2)6-NHCO-(CH2)4C02]-OH = Nylon-6, 6 polymer
H2O = Water
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Steppan et al [103-105] provide a kinetic model of the nylon-6,6

process. Odian [102] and Jacobs et al [106] discuss the industrial

preparation of nylon-6,6. Robertson et al [81] and Russell et al [83]

develop a first principles model of a nylon-6,6 batch process from the

work of Steppan et al. The work of Russell et al will be simulated in

order to generate the batch data for this research. The reactor

simulation will be described in chapter 4.

Sviinmary of Batch Monitoring and Control

Batch monitoring and analysis methods have concentrated on the

detection of special cause problems in batches. Data mining techniques

are not typically utilized to understand common cause variability in

batch processes. Further, much of the research in batch monitoring does

not consider time alignment issues in batch profiles.

In the area of batch process control, many strategies for product

quality control are developed with specific processes in mind. Several

approaches do not allow for further process improvement due to the black

box nature of the process models. Other approaches depend on normally

unavailable first-principles models. Also, some quality control schemes

are developed through normally unavailable prior knowledge about the

effects of control moves on the process.

There is a gap in the literature between data mining techniques

' used for problem detection and the application of corrective policies

for better quality control. Very little work has been done to increase

process understanding of batch processes by systematically examining the

historical database of profiles using data mining techniques and then

applying that knowledge for process improvement of batch processes in

general. Thus, a need exists for a general, data-driven methodology to
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facilitate batch understanding leading to process improvement. This

work is an attempt in that direction.
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Chapter 4

Nylon-6,6 Simulation

Introduction

The purpose of the current research is to systematically explore

the historical database of past batches using existing data mining tools

for process understanding that can suggest directions for process

improvement. An industrially relevant simulation of a nylon-6,6 process

is taken from the literature [81,83] and used to generate a database for

illustrating the approach. The simulation is coded for use in the

Matlab® computing environment.

Reactions

The main reaction given in chapter 3 is a reversible, second order

formation of nylon-6,6 polymer and water from both amine and carboxyl

groups and is written symbolically as:

A+C=L+W (4.1)

Where: A = Amine group derived from a component of the reaction,
hexamethylene diamine (HMD).
C = Carboxyl group derived from a component of the reaction,
adipic acid (AA).
L = Polymer link.
W = Water molecule.

Additional side reactions modeling degradation or depolymerization of

the polymer are given as:

C  >SE + W (4.2)

L  >SE + A (4.3)
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Where: SE = stabilized (cyclized) end groups [104-105].

The details of the kinetics and material and energy balances are given

in Appendix A.

Process Description

The polycondensation reaction is performed in a batch autoclave.

A jacket around the reactor supplies heat via Dowtherm. Dowtherm is a

commercial heat transfer fluid that allows for higher temperatures than

steam at a given pressure. The reactor has a vent valve for the venting

of volatile reaction components. A diagram of the process equipment is

shown in Figure 4.1.

VENT ̂

DOWTHERM < XJ

FI

t; 1. p

^

DOWTHERM

Figure 4.1 Nylon-6,6 Autoclave. Adapted from Fig. 1 of Russell, S. A.,
Robertson, D. G., Lee, J. H., and Ogunnaike, B. A., (1998), "Control of
product quality for batch nylon 6,6 autoclaves", Chem. Eng. Scl.,
53(21), 3685-3702.
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The reaction time is around 3-4 hours. The process has three heat

transfer zones: 1. convection, 2. boiling, and 3. conduction. After the

boiling phase begins, the reactor contents can be assumed to be well-

mixed [107]. The process is conveniently divided into 5 phases as shown

in Figure 4.2. Phase I is the convection zone. The middle 3 phases,

II-IV, are the boiling zones. Phase V, the curing phase, is the

conduction zone.

Available Measuremen-ts

The following variables are measured in the nylon-6,6 autoclave:

1. Reactor pressure (psia), 2. Jacket pressure (mmHg gauge), 3. Reactor

liquid temperature (K), and 4. Vapor vent rate (g / h). The reactor

pressure and jacket pressure trajectories are shown in Figures 4.3. and

4.4. The nominal temperature and vapor vent rate profiles are shown in

Figures 4.5. and 4.6. The batch reactor that is being simulated does not

have composition measurement capabilities. In the simulation, the jacket

temperature is calculated from the jacket pressure.

Control

The manipulated variables for controlling the batch to the given

recipe are the reactor and jacket pressures. Because pressure controller

dynamics are fast, perfect control is assumed (i.e., the setpoint is

equal to the current process value without any calculation of controller

action) . The control scheme is initiated based on the beginning of the

boiling. As soon as boiling begins, the jacket pressure is ramped up

from 1450 mmHg gauge to 1575 mmHg gauge. This is done to enhance the
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boiling. The reactor pressure setpoint is immediately ramped down at a

fixed rate from 240 psia to 205 psia. The reactor pressure remains at

this setpoint until the reactor temperature reaches 521 K. After the

521 K temperature is reached, the reactor pressure is ramped down at a

fixed rate to atmospheric pressure. The jacket pressure is held at 1575

mmHg gauge until the reactor drops to atmospheric pressure. The

Dowtherm inlet valve is then closed and the jacket pressure is allowed

to decay. This is modeled as a first order response. The final jacket

pressure is about 900 mmHg gauge.

Autocorrelated noise is added to the measurement data to more

closely simulate a real industrial process. The autocorrelated noise is

generated by passing identical independently distributed (iid) Gaussian

noise through a first order transfer function.

Quality Measures

The primary quality variable is the number average molecular

weight (MW). The maximum number average molecular weight attained by a

normal batch is 13,222 g/gmol. The MW from a nominal batch is shown in

Figure 4.7. The degradation reactions (4.1-4.2) are the reason that the

MW goes through a maximum and then begins to decrease.

Nominal and Disturbance Batches

The nominal case is generated in a reaction time of 4.5 hours. In

the process, excess water in the reactor charge and reduced heat

transfer are considered to be the primary disturbances for the purposes

of this work. The water disturbance is randomly varied between 0 - 5% of

the initial charge of water (350 kg). A 0 - 5% reduction in the heat
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transfer coefficient is effected through a scaling factor, f, which

varies between 0.95 and 1.

His-torical Database

A simulated database of batches covers. ICQ batches are simulated

in which the primary disturbances were randomly chosen. The

disturbances are uncorrelated and randomly chosen to illustrate the

expected nominal range of primary disturbances in the process. The

space of the disturbances is shown in Figure 4.8. As shown by Figure

4.8, the space is spanned fairly well by the randomly selected

disturbances.
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Batch Ending Recipe

The batches end at a fixed hold time of 1.84 hours after the end

of the reactor depressurization. A fixed hold is typical for industry,

as discussed by Jacobs et al. [104]. After the batch reactor is

depressurized, the contents are allowed to cure for a set time to

achieve the desired molecular weight. The hold time selected in this

work is based on the time that a nominal batch takes to reach its

maximum molecular weight.

Summary

A nylon-6,6 simulation is used in this research to generate batch

data. The results are qualitatively similar to Russell et al [83] in

both nominal and disturbance cases. A database is generated which is

subjected to data mining to uncover the disturbances and explore

opportunities for within batch control.
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Chapter 5

Process Understanding

Introduction

In order to gain process insight, data mining tools must be

utilized to explore the historical database. The common cause

variability caused by the process disturbances may be reflected in these

profiles-. The goal of mining the data is to uncover the signature of

these sources of common cause variability in the routine online

measurements. Analysis of the profile data via the data mining tools

can lead to increased process insight. Such process understanding can

then point to directions for improving the process. The objective of

this chapter is to demonstrate the application of data mining tools for

analyzing the historical database in order to gain process insight.

The chapter is arranged as follows. Background on data mining of

batch profiles is given. The variability along both the time and

measurement axes is extracted using the method of Kaistha [72]. The

data mining results are then interpreted using process knowledge to

identify the fingerprint of the primary disturbances. Physical

understanding is emphasized. Subsequently, correlations of the data

mining results with quality are presented and offline quality

predictions are developed. Predictions of the quality are compared with

quality predictions developed from other multivariate techniques.

Data Mining Background

As discussed in chapter 2, batch profiles exhibit two types of
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variability, consistent and inconsistent. The consistent variability

repeats from batch to batch in a particular way, while the inconsistent

arises from process noise and special causes. The consistent

variability occurs along both the time and measurement axes. The

variability along each axis can be characterized by scale parameters.

Data mining must begin by characterizing the time-axis variability

because variability in time is not properly characterized by projection-

based methods. In this work, the time-axis variability is characterized

via the time-scale (TS) parameters of [71,72]. These time-scale

parameters reflect the variation in time of segments of the batch

profiles. The segments are determined from a study of the important

events in the batch. After the time-axis variability is characterized,

the remaining consistent variability is due to variation along the

measurement axis. This measurement variability can be characterized by

projection-based methods, e.g., principal component analysis (PCA). In

this work, measurement variability is characterized by the magnitude-

scale (MS) parameters of [71,72]. Correlations of the extracted TS and

MS parameters can be developed with other variables of interest, such as

quality or known disturbances. These correlations can then be studied

by utilizing prior process knowledge in order to gain insight.

Characterization of Profiles

Time Axis Variability

The raw measurement profiles from the process are shown in Figure

5.1. As shown by the figure, these profiles exhibit clear variability

on the time axis. Significant events in the batch profiles are easily

identified. These events correspond to the phase behavior, as shown in

Figure 4.1. The event times for 5 events are recorded: 1. Time that

vaporization begins, 2. Time that reactor pressure reaches second
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setpoint (= 205 psia), 3. Time that polymer solution in the reactor

reaches a temperature setpoint (521 K), 4. Time at which the reactor

pressure reaches atmospheric pressure, and 5. Time at which the batch

ends.

The raw profiles are time-scaled by linearly interpolating'each

phase of each profile to a common length between the events [72, 93] .

Reference lengths are determined for each phase. The change in length of

the raw profile relative to the common or reference length provides the

time scale. Phases I and III vary in"length, and thus, contain useful

time-scale information. However, phases II, IV, and V are fixed in

length, and so the time scale is the same for all the batches. Time

scales for phase I (tsl) and phase III (ts2) are shown in terms of phase

ending time in Figures 5.2 and 5.3. The time-scaled profiles are shown

in Figure 5.4. The time axis shown is the reference time; that is, the

average time that the 100 batches take to finish.

Measurement Axis Variability-

After time-scaling the profiles, the MS parameters are extracted

in similar fashion to [72] by identifying the systematic zones of

variability, or factors, in the time-scaled measurement profiles. Since

the reactor pressure and the jacket pressure are assumed to be

maintained with perfect control, no new magnitude information is

contained in these profiles, as shown by Figure 5.2. Thus, the

temperature and vapor rate profiles are used to characterize the

measurement axis variability.

The methodology to extract the MS parameters is as follows. Let

row vector pi be the i*^^ time-scaled profile. A reference trajectory,

row vector r, is the mean of the time-scaled profiles. The measurement

variability remaining in Xi = (pi - r) is found by projecting Xi onto the
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columns of H, which contain the principal directions of variation. In

this work, H = F, the factor matrix. The factors are systematic zones

of variability observed in x. The MS scale parameter vector for Xj, is

found by:

msi = Xi F (5.1)

The residual error unexplained by projection is given by:

Si = Xi - msi F'^ (5.2)

For the whole set of i batches, the residual error is given by:

e = x-msFF'^ (5.3)

Figure 5.5 shows p, e, and F for each respective variable. n As shown by

the figure, the systematic measurement axis variability is explained

very well by the factors in each measured variable since the residuals

are small. The MS scale parameters for the vapor rate, msl-ms3, and the

temperature, ms4-ms6, correspond to the respective numbered factors

shown in the figure.

Data Mining for Process Insight

Since the goal of this work is to utilize data mining tools for

process insight, the scale parameters are interpreted using prior

process knowledge and engineering judgment. A greater understanding of

the process can then lead to process improvement by suggesting routes of

corrective action to reduce the common cause variability.

Since the idea of data mining is to connect the scale parameters

with the physics of the process, previous process knowledge is required

to interpret the scale parameters. The developed TS and MS parameters

are highly collinear so the interpretation of the scale parameters is

facilitated by performing PCA. Since PCA identifies the principal

directions of variation exhibited by a dataset, the technique may be

useful in determining the underlying sources of variation captured in
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the scale parameters.

The scale parameter matrix subjected to PCA is arranged as row

vectors (i.e.', [tsl, ts2, msl ms2 ms3 ms4 ms5 ms6] ) . The scale

parameters are first mean-centered and scaled to unit variance in order

to compensate for the difference in engineering units. Figure 5.6 shows

percentage variance scree plot obtained from an SVD analysis of the

mean-centered, unit variance data. As shown in the figure, 2 PCs are

sufficient to explain 93% of the variance in the scale parameter data.

3 PCs explain 99.7% of the variance. The PCs developed from this

analysis are interpreted below in light of process knowledge.

The first-two PCs are shown in Figure 5.7. PC 1 has high positive

loadings for tsl, ts2, and ms3 and low negative loadings for msl, ms2,

ms5, and ms6. Physically speaking, the high positive loading on tsl

reflects a longer preheat time. The high positive loading on ts2

signifies a longer boiling phase before the reactor depressurization.

The vapor rate is less as seen from the low negative loadings on msl and

ms2. The temperature is less as seen in the low negative loadings on

ms4 and ms5. The most likely cause for the combination of longer

preheat and boiling phases, coupled with low vaporization and low

temperature is low heat transfer. It is noted that the high loading on

ms3 can be interpreted as a consequence of low heat transfer. Since the

vaporization in the first part of the batch is very low, more material

is vaporized later in the reactor depressurization phase.

The second PC shown in Figure 5.7 shows that tsl has a high

positive loading and ms4 and ms5 have low negative loadings. In

physical terms, a high loading on tsl signifies that the preheat phase

is longer. The low loadings on ms4 and ms5 reflect a lower preheat

temperature and a temperature dip following the beginning of

vaporization. The presence of excess water in the reactor may possibly
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explain the pattern of these loadings. If water is present, the

reversible reaction (4.1) is shifted to the left, so HMD is consumed

less which initially reduces the reaction rate. As a result, the heat

released by the reaction is less, leading to a longer preheat time that

is reflected in tsl. Scale parameters ms4 and ms5 corroborate this

effect, as the temperature is lower, reflecting a slower reaction rate.

Since the loadings on msl-ms3 are close to normal, a heat transfer

problem is not considered to be the dominant source of variation.

Furthermore, ms6 is higher, which shows that the reaction rate

eventually recovered. These effects are consistent with those expected

from a water disturbance.

The third PC is shown with the first 2 PCs in Figure 5.8. The

third PC shows high positive loadings on tsl and ms4. Physically, a

high positive loading on tsl reflects a longer preheat time. A high

positive loading on ms5 shows a temperature rise after the beginning of

vaporization. Initially, these loadings do not conclusively point to a

particular disturbance. The long preheat phase suggested by tsl is not

distinctive, since tsl is long in both the heat transfer and water

disturbance cases. This PC will be further considered below.

The first two PCs have been tentatively identified as the

fingerprints of low heat transfer and excess water. The scores, or

projection of the data onto the respective PCs 1 and 2, are correlated

with the product quality to attempt to corroborate the hypotheses formed

from studying the loadings.

Correlations of Scores with Quality

The correlation of the scores on the first two PCs with the MW is

shown in Figure 5.9. As shown by column 1 in Figure 5.9, the MW is

higher when low heat transfer is suspected. This corroborates with
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process knowledge. Since the vapor rate is lower, less HMD vaporizes.

Since more monomer stays in solution, the polymerization continues

resulting in a higher MW than the target.

When a suspected water disturbance is present, i.e., the scores on

PC 2 are high, the MW is lower. HMD is consumed less due to the shift

in the reversible reaction (4.1). Additional monomer in solution

results in a greater loss of HMD during the boiling phase. Since less

monomer is present following the vaporization, the achievable MW is

less.

Figure 5.10 shows the correlation of the scores on the first 3 PCs

with the MW. The scores on PC 3 are negatively correlated to the MW, as

are the scores on PC 2. This similarity in the correlations of scores

on PCs 2 and 3 with the MW may indicate that the scores on PC 3 also

suggest the presence of a water disturbance. However, from the data,

this conclusion is tentative at best.

In summary, the scores on PC 1 seem to indicate a heat transfer

disturbance and the scores on PC 2, and possibly those on PC 3, seem to

indicate a water disturbance. The disturbances hypothesized to be

present in the process and reflected by.the data correspond to the

effects shown by the actual water and heat disturbances on the quality

outcomes. Thus, these hypotheses seem very reasonable.

Correlations from Process Studies

The disturbance hypotheses are verified from process studies.

Figure 5.11 shows the correlations of the scores on the first two PCs

with the disturbances generated in the process. As shown in Figure

5.11, the scores on the first PC are almost perfectly correlated with

the heat disturbance. If the heat transfer is less, the score on the

first PC is higher; i.e., the greater that the heat disturbance is, the
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lower the heat transfer rate is. This accounts for the difference in

sign. The scores on the second PC are strongly correlated to the water

disturbance. The greater the water disturbance is, the higher the score

on PC 2. A slight interaction with the heat disturbance is also seen,

but the dominant effect explained by PC 2 is that of a water

disturbance. Figure 5.12 shows the correlation of the first 3 PCs with

both simulated disturbances. The dominant effect of PC 3 is clearly

that of water disturbance.

To verify these observations, a linear regression model with each

disturbance is built from the scores of the first three PCs. The purpose

of the regression is simply to see the relation of each regression

coefficient to the scores on the PCs of interest, not to build a robust

predictive model. The regression relation is expressed by:

Y = (3.3)

with £ = (X'^X)"^X'^Y (3.2)

Where: X = Scores

Y = Simulated disturbances

Y = Predicted disturbances

Table 5.1 shows the regression coefficients from these predictions.

As shown by Table 5.1, PC 1 primarily explains the heat disturbance

since the magnitude of the regression coefficient for score 1 is

significantly higher than the magnitudes of the coefficients for scores

2 and 3. As shown by the regression coefficients for scores 2 and 3 as

compared to the coefficient for score 1, PCs 2 and 3 primarily explain

the water disturbance. Figure 5.13 shows that the scores on PC 1 and the

Table 5.1. Predictions of the Disturbances Using Scores from the First
3 PCs

Disturbance

Type
Regression Coefficients

Score 1 Score 2 Score 3

Heat Transfer -0.4071 0.0690 0.0467

Water 0.0509 0.7212 0.6499
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scores on a weighted PC, constructed by weighting PC 2 and 3 with their

respective regression coefficients, are strongly correlated with the

heat transfer and water disturbances, respectively. This again verifies

that PC 2 and PC 3 explain the water disturbance. The disturbances are

thus tentatively identified from data mining coupled with process

knowledge as excess water and low heat transfer, and verified from

process studies.

These disturbances are known to have definite effects on the

product quality. Since the effects of disturbances are seen in the MW,

in order to effect process improvement, the MW must be predictable from

the profile data. Predictions of the quality are now demonstrated

using the scores from the scale parameter data.

Quality and Disturbance Predictions from the Scores

A principal component regression (PCR) is used to develop a

predictive model of the quality from the scores. The measure of the

accuracy of the predictions is the commonly used root-mean square error

of prediction (RMSE). The RMSE is calculated as follows:

RMSE = V (I ( Ypredicted - Yactual )W n) (5.1)

Where: Ypredicted = the predicted value of the outcome
Yactuai = the actual outcome
n = number of samples

A training set of 50 batches is used to build the model. All of the

training inputs used in the predictions are first standardized by mean-

centering and scaling to unit variance to account for large magnitude

differences in the scores. After using the training set to develop the

model, the model is tested on the remaining 50 batches. Figure 5.14

shows the MW predictions from the scores from six retained PCs. The

addition' of quadratic terms, as in equation (3.5), improved the

predictions significantly. Table 5.2 summarizes the results.
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Table 5.2. Predictions of the Molecular Weight at Fixed Batch End Time
Using Scores (All PCs Retained: 8 - Linear; 16 - Non-linear) (Autoscaled
Data)

Data Type Training RMSE Test RMSE

With Linear Scores Only 0.0515 0.0626

With Quadratic Terms 0.0187 0.0230

As shown by Table 5.2, the MW at the end of the batch is predictable

using the scores. The predictions are very good as seen in Table 5.2

and Figure 5.14. Since the quality is predictable from the scale

parameter information, process improvement becomes a practical

possibility.

For further insight into the process, the simulated disturbances

are found to be predictable from the scores also. Figures 5.15 and 5.16

show the predictions from the scores of both the water and heat transfer

disturbances used in the process. Table 5.3 summarizes the results of

both the score predictions. As shown in Table 5.3, the predictions are

very good.

Although primarily presented here for academic interest, these

predictions may have a practical value in industry. It is not an

unreasonable suggestion in industry to catch a sample of the reactor

contents and measure for excess water. If samples of the reactor

contents can be obtained, a predictive model for the water disturbance

is very practical. Similarly, if a known quantity, e.g., the scores on

PC 1, is positively identified to be a signature of a heat transfer

disturbance, a predictive model of the heat transfer disturbance is also

very practical for use in process operation and process improvement.

Table 5.3. Predictions of the Actual Disturbances Using Scores (All PCs
Retained: 8 - Linear; 16 - Non-linear) (Autoscaled Data)
Data Type Disturbance

Type
Training
RMSE

Test

RMSE

With Linear Scores Only Heat Transfer 0.0069 0.0079

With Additional Quadratic Terms Heat Transfer 0.0059 0.0068

With Linear'Scores Only Water 0.0344 0.0404

With Additional Quadratic Terms Water 0.0143 0.0199
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Comparison with Predictions from Other Data Mining Methods

Many data mining techniques can be utilized in the monitoring and

analysis of batch profiles. The technique described above is based on

the method of Kaistha [72]. Two other methods are investigated in order

to compare their predictive methods to that described in this work. The

other methods studied in this work are multi-block multiway partial

least squares (MPLS) and multi-block MPCA. The loadings are determined

from time-scaled temperature and vapor rate profiles that are mean-

centered and scaled to unit variance, to account for differences in

engineering units. Only the non-zero portions of the vapor rate

profiles were used in building the model. The second block of

predictors used is a matrix of the phase ending times. These times

provide the time-scaling information. For the MPCA study, PGR is used

to develop the predictions. This is referred to as multiway principal

component regression (MPCR). In the predictions, two latent variables

(MPLS) or three retained PCs (MPCR) are used to obtain the best

predictions. The predictions for each method during the batch are shown

in Table 5.4. As shown in Table 5.4, the predictions of the scale

parameter-based method are much better than the predictions of other

multivariate techniques. Further, the scale parameter-based method

described in this work has the advantage that the scale parameters can

be interpreted more easily when attempting to understand the physics of

the process.

Table 5.4. Offline predictions of the MW Using MPCR (3 retained PCs),
MPLS (2 latent variables), and Scale Parameter-Based Method. (All PCs
Retained: 8 - Linear; 16 - Non-linear) (Autoscaled Data)

Method Training RMSE Test RMSE

MPCR 0.3135 0.3406

MPLS 0.2244 0.2657

Scale Parameter-Based Method 0.0187 0.0230
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Summary

This chapter discusses and demonstrates the use of a data mining

technique applied to batch profiles for increased process understanding.

The parameters extracted using the method of Kaistha [72] are studied to

determine their relationship to the quality and the primary disturbances

in the nylon-6,6 process. As a result of performing a PCA on the scale

parameters, and interpreting the loadings using process knowledge, the

sources of common cause variability affecting the process are better

understood. The scores of the data on the PCs are used to build offline

models for prediction of quality and the primary disturbances. The scale

parameter-based method for offline predictions furnishes better

predictions compared to those developed from other data mining

techniques, with the added benefit that the scale parameters are more

easily connected with the physics of the process. The subsequent

chapters 6 and 7 discuss online predictions and the development and

implementation of recipe adjustments to improve the process.
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Chapter 6

Within Batch Quality Control

Introduction

Improved process understanding can be obtained by mining the

historical database of past batches and utilizing prior process

knowledge to interpret the results. If the final quality can be

predicted online, this increased understanding directly leads to

suggestions for process improvement in the form of online recipe

adjustments. These recipe adjustments also require that suitable

manipulated variable handles be available. The goal of the online

recipe adjustments is tighter product quality control. This is referred

to as within batch quality control.

In this chapter, online quality predictions are demonstrated.

Suggestions for process improvement are developed from the results of

the data mining study on the offline data. A within batch quality

control strategy is presented and subsequently implemented for the

nylon-6, 6 process. The control strategy is presented along with a

discussion of the necessary handles for adjusting the recipe. In

specific, a linear MW-based controller is implemented and the results

are studied.

Soft-Sensor Quality Predictions

The goal of online recipe adjustments is to correct for the

effects of disturbances on the batch. To determine the need for such

adjustments, the quality must be predictable well before the end of the
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Table 6.1. Available Scale Parameters by Phase
Batch Phase Available Parameters at End of Phase

Time Scale

(TS)
Vapor Rate
(V)

Temperature
(T)

Preheat tsl ms4

Boiling, 1®*^ Pressure
Decrease

tsl ms4

Boiling, 2"^^ Reactor
Pressure Setpoint

tsl, ts2 msl ms4, ms5

Boiling, Reactor
Depressuriration

tsl, ts2 msl, ms2 ms4, ms5

Curing tsl, ts2 msl, ms2, ms3 ms4, ms5, ms6

batch. In developing online predictions of the MW, consideration must be

given to phase divisions. The studies in chapter 5 are done on

completed profiles. During the batch, only certain scale parameters

will be available to use in a predictive quality model. The scale

parameters that are available by phase are shown in Table 6.1.

Systematic Methodology

The best online predictions of the molecular weight should be used

as a basis for applying a corrective action to the batch. Thus,

predictions at the end of each phase should be done as described below

to determine when the best predictions are available. However, a trade

off exists between the availability of accurate predictions of the

quality and the physics of the process. A corrective action must be

applied with consideration to operational constraints of the given batch

process.

In the nylon-6, 6 process, operational difficulties with viscous

polymer late in the batch require that adjustments to the recipe be done

by no later than the end of the first boiling phase (phase III), since

the reactor is still well-mixed [81,107]. Therefore, it is imperative

that the MW at the end of the batch must be predictable by the end of

phase III. From Table 6.1, 5 scale parameters are available by the end

of phase III: tsl, ts2, msl, ms4, and ms5.
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Since only a partial number of scale parameters are available,

partial scores from the completed profiles have to be used in the online

quality predictions. The partial scores are calculated as follows:

Tp = X * Vp (6.1)

Where: Tp = Partial Scores
X = Available time-scaled data

Vp = PCs with partial loadings

The partial loadings omit contributions from scale parameters that

are not available by setting the respective loading(s) in each PC to

zero. It should be noted that if a predictive model is developed using

only the available parameters instead of zeroing the unavailable

loadings from the offline case, the model is different, but the

predictions are similar.

To illustrate online prediotions at the end of phase III, the

contributions from ms2, ms3, and ms6 are set to zero because they occur

after the phase is over. Since the loadings in Vp are the columns, rows

4, 5, and 8 are set to zero. If additional quadratic terms are used,

then rows 12, 13, and 16 are also set to zero. The partial scores

obtained by projection of the online data onto the partial PCs are used

as a 'soft-sensor' for quality predictions.

Online Prediction Results

Table 6.2 shows a summary of the prediction results at the end of

each phase.
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Table 6.2 Summary of Predictions at the end
(Autoscaled Data)

of each phase using PGR.

Batch Phase Retained

PCs

Training
RMSE

Test

RMSE

Linear Terms Only
Preheat 2 0.9370 0.9120 '

Boiling, 1®"^ Pressure Decrease 2 0.9370 0.9120

Boiling, 2"^ Reactor Pressure
Setpoint

5 0.067 0.0877

Boiling, Reactor
Depressurization

6 0.0659 0.0842

Curing 8 0.0515 0.0626

Linear and Quadratic Terms

Preheat 3 0.9363 0.9143

Boiling, Pressure Decrease 3 0.9363 0.9143

Boiling, 2"° Reactor Pressure
Setpoint

9 0.0261 0.0360

Boiling, Reactor
Depressurization

12 0.0247 0.0352

Curing 16 0.0187 0.0230

As shown in Table 6.2, the predictions through the end of phase II

exhibit too high a spread to allow for reliable early verification of a

deviation of the MW from the target. Therefore, due to the operational

constraints in the process, the predictions are performed at the end of

phase III. Figure 6.1 shows the predicted values at the end of phase

III of the MW closely match the actual MW values. Note that the

addition of quadratic terms dramatically reduces the RMSE. In the

quadratic case, the scores are mean-centered and scaled to unit variance

before performing the predictions.

The partial scores are also used to predict the simulated

disturbances at the end of phase III. Figures 6.2 and 6.3 show the

predictions from the scores on the partially completed data for both the

water and heat transfer disturbances used in the process. Table 6.3

summarizes the results of the predictions from the partial scores. As

shown in Table 6.3, additional quadratic terms improved the predictions.
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Table 6.3. Online predictions of the disturbances at end of Phase III
using partial scores (9 Retained PCs). (Autoscaled Data)
Data Type Disturbance

Type
Training
RMSE

Test

RMSE

With Linear Scores Only Heat Transfer 0.0126 0.0193

With Additional Quadratic Terms Heat Transfer 0.0130 0.0174

With Linear Scores Only Water 0.0418 0.0469
With Additional Quadratic Terms Water 0.0247 0.0331

These predictions from the partially ,completed data show that the

disturbances can be reasonably estimated during the batch. As mentioned

earlier, these predictions may turn out to be practical in industry. A

comparison with online predictions developed using MPCA and MPLS is now

done.

Comparison with Predictions from Other Data Mining Methods

The loadings are determined from time-scaled temperature and vapor

rate profiles through the end of phase III that are mean-centered and

scaled to unit variance, to account for differences in engineering

units. Only the non-zero portions of the vapor rate profiles were used

in building the model. The second block of predictors used is a matrix

of the phase ending times through the end of phase III. Three latent

variables (MPLS) and seven retained PCs (MPCR) were used for the

predictions. The predictions for each method during the batch are shown

in Table 6.4. As shown in Table 6.4, the predictions are better for the

scale parameter-based method in this work. As shown in Table 6.4, the

online scale parameter-based method of predicting the quality provides

better online predictions than those from MPCR and MPLS. As

Table 6.4. Online predictions of the MW at the end of Phase III using
MPCR (7 Retained PCs), MPLS (3 Latent Variables), and Scale Parameter-
Based Method (9 Retained PCs). (Autoscaled Data)
Method Training Test

RMSE RMSE

MPCR 0.2543 0.2773

MPLS 0.2107 0.2711

Scale Parameter-Based Method 0.0261 0.0360
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from MPCR and MPLS. As mentioned in chapter 5, the scale parameter-

based method described in this work also has the advantage that the

scale parameters can be interpreted more easily when attempting to

understand the physics of the process.

Recommendations.for Process Improvement Through Recipe

Adjustments

Since the quality is predictable online and since the scale

parameters have been tentatively connected to the physics of the

process, directions for process improvement are clearly indicated. If

the process has low heat transfer, the data mining study in chapter 5

suggests that more HMD remains in solution to polymerize, resulting in a

higher MW. To prevent this overshoot, the heat must be further reduced

in order to reduce the rate of reaction,. A reduced reaction rate means

that the polycondensation proceeds slower, resulting in a lower MW when

the batch is ended. In this case, the appropriate adjustment handle, or

manipulated variable, for improving the process is the jacket pressure

setpoint.

If a water disturbance is present, the study in chapter 5 suggests

that more HMD will volatilize, resulting in a lower MW. Therefore, more

monomer must be added to replace the volatilized HMD. The addition of

more HMD means that more monomer is present to replace that lost due to

vaporization. Adding HMD raises the achievable MW and allows the target

to be attained. In this case, the appropriate adjustment handle for

improving the process is the amount of HMD.

However, correcting for the presence of water and low heat

transfer is more subtle than simply adding HMD for a water disturbance

and reducing the heat for low heat transfer. Interactions between the
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disturbance effects must also be considered to give guidance on when to

perform the respective corrections for low heat transfer and water

disturbances. For example, if low heat transfer occurs, yet a

sufficiently high water disturbance is present, the batch may still

reach the target. Low heat transfer reduces the amount of monomer that

is volatilized, but the presence of water consumes HMD less, allowing

more monomer to volatilize. These effects tend to cancel each other.

The batches as implied by the data mining study naturally subdivide

between those batches that would reach the target without a recipe

adjustment, and those that would not. This insight, provided by the

data mining study, gives the key to implementing the online recipe

adjustments.

Figure 6.4 confirms these effects in the disturbance space with

each disturbance combination labeled as to whether the batch reached the

target or not. As shown by the figure, a high degree of interaction is

present among the disturbances. Note that the disturbance space

naturally subdivides into those batches in which the MW reached the

target and those that did not. Therefore, this interaction is easily

taken into account by a prediction of the MW for a given batch.

The suggested manipulated variables, the jacket pressure setpoint

and the amount of HMD, are readily available for performing the recipe

adjustments. Furthermore, the appropriate corrective action is

suggested by a prediction of the MW. Thus, online recipe adjustments

for the process are a practical possibility. A strategy for performing

the online recipe adjustments based on the MW is now presented.

A MW-based Approach for Recipe Adjustments

The MW can be predicted before the end of the batch. Furthermore,

the appropriate corrective action to apply depends on whether the fixed
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Where: + = Batches with MW < MWtarget
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recipe batch quality will reach the target or not. Therefore, the

deviation of the predicted fixed recipe MW from the target MW is a

natural choice for performing a recipe adjustment. The simplest recipe

adjustment based on such a deviation is a linear correction. Expressed

mathematically,

AU = Kc * AY (6.2)

Where: AU = Calculated change in the manipulated variable, or handle
Kc = Controller Gain

Ay = M^predicted ~ ^^target

In the absence of a first-principles model, the controller gain must be

determined from experimentation, as detailed below.

Since different corrective actions are required depending on the

direction of the deviation from the target in the nylon-6,6 process, a

split-range controller is proposed to handle each type of deviation. If

the deviation is negative, a shortage of HMD is suggested from the data

mining study. If the deviation of the predicted MW from the target is

positive, a dominant low heat transfer effect is indicated from the data

mining study. The appropriate manipulated variables identified above

for correcting these deviations are the amount of HMD and the jacket

pressure setpoint, respectively.

The split-range controller is proposed mathematically as follows:

AHMD = K„md * AMWest, MW < target (6.3)

APjsp = Kpj * AMWest , MW >= target (6.4)

Where: AHMD = Amount of HMD to add

APjsp = Amount to change jacket pressure setpoint
Khmd = HMD gain
Kpj = Pj gain
AMWgg^; (MWpj-edicted MW^arget)

Two gains are necessary for the MW deviation-based strategy: 1. The

gain to adjust the amount of HMD to be added, if the MW is predicted to

be less than the target, and 2. The gain to lower the jacket pressure

setpoint, if the MW is predicted to be higher than the target. Since
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the methodology for gaining process insight is data driven,

experimentation on real batches is the principal option for finding the

gains necessary.

Gain Detezmiina'tion

A simple way to provide a reasonable initial estimate for each

gain is a process step test. A manipulated variable, U is varied in

order to see the effect on the quality, Y. Since good final quality

predictions are available, the quality for the given process conditions

in a fixed recipe batch is known. The real outcome of the batch

reflects the effect of varying U. The process gain, K, can be

determined from the step test. The process gain is given by:

K = AY / AU (6.5)

Where : AY = MWpredicted ~ ^^actual
AU = Uadjusted ~ dfj_xed-recipe

The controller gain is related to the process gain by:

Kc = 1 / K (6.6)

yielding:

Kc = AU / AY (6.7)

The controller can then be implemented using the estimated gains. As

the controlled batches accumulate, the tuning can be refined by re-

estimating the gain(s) from recent batches.

Practically speaking, an estimate of a single gain can be made

from a step test on a single batch. Two gains are necessary for the

split-range controller, so step tests on two batches are required for

initial estimates of Kpj and Khmd- Two step tests are very reasonable in

an industrial setting since only two batches need to be altered to

obtain an estimate of the controller gain. The best conditions to

determine Kpj are during a batch with quality that is predicted to be
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greater than the target; i.e., a dominant low heat transfer effect is

present. The reason is that a conservative step test should yield

improved quality compared to fixed recipe operation, since the

disturbance is slightly compensated for by the step test. Similarly,

determining Khmd during a batch with predicted quality less than the

target should improve the final quality that would result from the fixed

recipe. Very little off-spec product would be generated as a result, so

plant management can be sold on the idea more readily given that much

better quality control may result. In case the controller does happen

to fail, there is minimal waste of product involved and insignificant

loss of profitability.

The gains are estimated and used in the split-range controller.

The linear split-range controller for adjusting the recipe during a

batch is implemented to illustrate recipe adjustments for the nylon-6,6

process.

Linear Split-Range Recipe Adjustments

Table 6.5 shows the results of the linear split-range controller

for a set of 100 batches having the same disturbances as the fixed

recipe-. The batch is ended at the fixed hold. The results are compared

with the fixed recipe case in Table 6.5. As shown by Table 6.5, the

linear split-range controller was able to significantly reduce

variability seen in the MW from the fixed recipe case.

Table 6.5. Results of Linear Split-Range Controller
Method RMSE from Target

(= 13,250 g/gmol)

Fixed Recipe 55.19

Linear Split-Range Controller 9.93

Gains Used

Pressure Gain (mmHg gauge / (g/gmol) ) -0. 68

HMD Gain (g HMD / (g/gmol) ) -4.72
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Figure 6.5 shows a plot of the molecular weights obtained from control

with those of the fixed recipe case. The reduction in variability is

clearly illustrated by the figure.

Extension of the Linear Split-Range Controller

An extension to the linear split-range controller is to

incorporate quadratic terms into the prediction of the pressure n

adjustment. The relationship of the change in jacket pressure to the

change in the molecular weight is non-linear. Testing has shown that

quadratic MW terms slightly improve the split-range controller's

performance. A secondary non-linear effect is explained by the water

disturbance. Since the water disturbance used in the process can be

reasonably predicted using the scores on PCs 2 and 3, these estimates

are available for incorporation into the split-range controller. When

both linear and quadratic MW and water disturbance terms are used to

create a non-linear split-range controller, the performance noticeably

improves, as shown in Table 6.6. Figure 6.6 shows a plot of the

molecular weights obtained from control with those of the fixed recipe

case. The reduction in variability is clearly illustrated by the

figure. The difficulty with implementing the non-linear, split-range

controller in industry is twofold. Unless the water disturbance at the

Table 6.6. Results of Non-Linear Split-Range Controller. (Autoscaled
Data)

Method RMSE from Target
(= 13,250 g/gmol)

Fixed Recipe 55.19

Non-linear Split-Range Controller 3. 67

Regression Coefficients By Term (on Autoscaled Predictors)

Linear Molecular Weight 0.3702

Non-linear Molecular Weight -1.0199

Linear Water Disturbance -0.0324

Non-linear Water Disturbance 0.4842
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beginning of the batch is known, it cannot be confidently predicted

during the batch. As mentioned in chapter 5, though, it is reasonable

in industry practice to request catching a sample of the reactor

contents and measuring for excess water. If samples are collected, a

predictive model for the water disturbance can be constructed. Non

linear adjustments may become possible if sufficiently rich data become

available. Therefore, until further studies are done, this controller is

not practical for industry.

Discussion

From a control perspective, the within batch recipe adjustment

strategy is feedforward in nature. That is, the corrective action is

based on knowing the product quality that is likely to result from the

current batch. In this case, the MW is predicted before the batch ends,

and a subsequent recipe adjustment is performed. Further recipe

adjustments after a midcourse corrective action are not possible since

the correlation structure of the profiles changes due to the recipe

adjustment. In order to perform other recipe adjustments subsequent to

the midcourse correction, a new predictive quality model is required

that incorporates the effects of the various recipe-adjusted batches on

the product quality. Such a model for predicting quality allows for

further recipe adjustments and is possible as sufficient data is

available.

Summary

Online quality predictions are demonstrated well before the batch

ends. The scale-parameter method for online predictions outperforms

online predictions developed from comparable data mining techniques.

Recommendations for improving the process are suggested as well as the
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appropriate manipulated variable handles. These handles are readily

available, which make online recipe adjustments possible. A practical

approach for performing the online recipe adjustments is a split-range

controller based on the deviation of the predicted molecular weight from

the target molecular weight. The online recipe adjustments performed by

the linear split-range controller are able to reduce the variability in

the product quality as well as to improve the consistency in reaching

the desired target molecular weight. Chapter 7 discusses the next

direction for further process improvement: reduction in the batch

production time in addition to good quality control.
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Chapter 7

Cycle Time Reduction

Introduction

Industry practice for ending batches is to stop the nylon-6, 6

batch at a fixed hold time after the depressurization of the reactor.

The reactor contents are cured during phase 5 and the batch is ended

after this fixed hold time. Therefore, each batch ends at roughly the

same time, with any variability in the total duration of the batch being

due to the effects of various disturbances on the batch, or from recipe

adjustments to the batch. The controller strategy developed in chapter

6 is for the fixed hold case. No further consideration is given to

reducing the batch production time. However, an opportunity exists to

further improve the process by reducing the batch production time in

addition to tight quality control. Pursuing reduced cycle time for the

batch results in a departure from the standard industry practice of

stopping batches at fixed hold. Specifically, for a fixed recipe, the

target quality is exceeded many times due to low heat transfer.

Stopping such batches at a fixed hold time after reactor

depressurization prevents the possibility of minimizing batch production

time.

In this chapter, issues in potentially reducing the batch

production time are discussed. An alternative recipe adjustment

strategy for reducing the cycle time and the accompanying necessary

batch ending strategy are proposed. In developing the ending strategy,

information from controlled batches is utilized in estimating the
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appropriate ending time for the batch. An extension to the proposed

controller is also presented. Before discussing the issues in reducing

the batch production time, some further process information concerning

the maximum achievable MW in a batch is given.

Peak Molecular Weight

A maximum achievable, or peak, MW is always observed in batches

generated by this process. In a batch, the polymer begins to degrade if

the cycle time is too long. For batches with quality that either meets

or falls short of the target MW, the time that the peak MW occurs

corresponds to the minimum possible time that the MW can' achieve the

target. For example, for a batch with predicted quality that will not

reach the target, the addition of sufficient monomer allows the batch

quality to achieve the target MW. In such a case, the batch quality has

its peak MW at the target MW, and the corresponding peak time is the

same as that of a fixed recipe batch which reaches the target, but does

not exceed it.

However, for batches with quality that exceeds the target MW, the

peak MW is higher and occurs later. The peak MW is higher since more

monomer stays in solution to polymerize. The peak MW occurs later

because low heat transfer slows the rate of reaction.

An additional side benefit occurs at the peak MW. A secondary

quality variable, the amine end group concentration, is found to be

minimized whenever the MW reaches its peak. This occurs because, at the

peak, the maximum amount of amine ends is consumed in the

polymerization. As degradation begins, more monomer returns to the

solution as given by (4.2-3).
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Issues in Reducing Batch Production Time

A trade off exists between quality and production time. For fixed

recipe batches with low heat transfer, the final quality exceeds the

target MW. Yet, standard practice is to stop the batch at a fixed hold

time after the end of reactor depressurization. If such low heat

transfer batches are stopped when the quality reaches the target,

quality control can be accomplished along with decreased production

time. Furthermore, an additional opportunity to reduce the cycle time

is evident, even if a low heat transfer batch is stopped at the target.

For such batches, the reaction rate is proceeding slower. In order to

reduce the cycle time further, the reaction must be carried out at a

faster rate.

To increase the rate of reaction, the temperature must be

increased. Increasing the temperature causes the batch to achieve its

peak MW earlier. For a precise temperature adjustment, the peak MW

occurs at the target MW. Furthermore, this peak MW occurs in the

minimum time that the target MW can be reached. However, if the

temperature is too high, two effects will prevent the polymer peak MW

from reaching the target MW: 1. Too much monomer will be driven off,

thus lowering the peak MW, and 2. Thermal degradation will accelerate,

also lowering the peak MW. These effects must be considered in

implementing a recipe adjustment for reducing the cycle time with tight

quality control.

To minimize the batch production time, the batch must be stopped

at precisely the point that the MW reaches the target. Thus, an online

measurement of the molecular weight must be available. This is seldom

the case in industry. However, better instrumentation is being

developed that can measure quality in batch processes online [108 -

111]. At present, such instrumentation is either unavailable, or is
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expensive to purchase and maintain. Companies that may have access to

such instrumentation, can utilize the techniques developed in this

chapter. Situations may even occur within a company in which an

advanced online quality measurement system may be available on limited

basis within a particular plant or process unit. In such cases, the

methods developed herein apply.

For batches adjusted by increasing the heat, the batch ending

strategy is simply to .stop the batch whenever the MW reaches the target.

As mentioned above, even if the instrumentation is available, it may

only be available for limited time for a given process. The strategy

outlined below proposes to'collect data from batches in which the MW

trajectory is measured, and utilize the regular available measurements

(temperature, vapor rate, etc.) to predict the time at which the batch

should end. Once a good model to predict the ending times is built, the

online analyzer may be taken offline. Predictions of the MW are

necessary in order to determine if a corrective action is needed for a

particular batch. The MW predictions are now considered.

MW Predictions

Predictions of the MW at the fixed hold time are used to decide

whether the recipe should be adjusted or not. The reason the hold MW

predictions are used is that, unlike the hold MW, the peak MW cannot be

predicted from fixed recipe data. The peak MW cannot be predicted

because, for batches in which the quality exceeds the target MW, the

peak occurs at a later time than the fixed hold. Therefore, the peak MW

is unavailable for these batches and so it cannot be predicted.

As demonstrated in chapters 5 and 6, the MW at the fixed hold time

is predictable from the measurement profiles normally available.

Furthermore, online predictions can be done by the end of phase III.
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The alternative recipe adjustment strategy is now presented in detail.

Recipe Adjustments for Reducing Cycle Time

As mentioned earlier, to reduce cycle time, the heat input to the

reactor must be increased. As studied in chapters 5 and 6, a shortage

of HMD means that the MW cannot achieve the target. Furthermore,

sufficiently low heat transfer means that the MW will exceed the target.

As formulated, the strategy for reducing the cycle time by increasing

the heat input to the reactor applies only to batches in which the MW

would have exceeded the target.

For a fixed batch ending time, the strategy used to compensate for

batches with quality that exceeds the target is to decrease the heat.

This strategy assumes that the batch ends at a fixed time. So, the

recipe adjustment strategy calls for decreasing the heat to further slow

the reaction in order to force the MW to reach the target at the fixed

hold time.

The strategy for reducing the cycle time calls for the heat to be

increased. This is reasonable, since the peak MW in a heat transfer

disturbance batch is higher than the target and occurs later. The

resultant MW is higher since more HMD remains in solution and

polymerizes. The peak MW occurs later since the reaction rate is

slower. In effect, by increasing the heat to compensate for such a

disturbance, more of the HMD remaining in solution is vaporized, which

decreases the maximum achievable MW. Furthermore, the reaction rate is

increased, causing the peak to occur sooner.

Cycle time reduction along with tight quality control can be done

via a split-range controller for adjusting the batches in midcourse

based on the hold MW. This is reasonable since different control

actions are taken depending on whether the MW deviation from the target
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is positive or negative. If negative, there is a shortage of HMD, so

the MW cannot reach the target unless more HMD is added. Since the

minimum time possible to reach the target MW occurs at the peak MW for

batches with predicted quality at or below the target, the cycle time

cannot be further reduced for a shortage of HMD. If the deviation of

the predicted MW from the target is positive, a recipe adjustment can be

used to reduce the cycle time by increasing the heat input.

The controller is implemented in similar fashion to the linear

split-range controller in chapter 6. The deviation of the predicted

fixed recipe MW from the target MW is used for adjusting the recipe and

is expressed in the equation:

AU = Kc * AY (6.2)

Where: AU = Calculated change in the manipulated variable
Kc = Controller Gain

Ay — MWp,-edicted " ̂̂target

The split-range controller is as follows:

AHMD = Khmd * AMWest/ MW < target (6.3)

APjsp = Kpj * AMWest / MW >= target (6.4)

Where: AHMD = Amount of HMD to add

APjsp = Amount to change jacket pressure setpoint
Khmd = HMD gain
Kpj = Pj gain
AMWggp — (MWpi-edicted ~ MW^arget)

The selection of appropriate gains for the controller is now

considered, before discussing the ending strategy for the heat-adjusted

batches.

Gain Selection for the Cycle Time Reduction Split-Range

Controller

In considering the gain for the HMD addition in the split-range

controller, the time of the peak MW for a nominal batch also corresponds
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I  to the time of the fixed hold (=1.84 hours) past depressurization.

I  Thus, the gain for the HMD addition in the split-range controller for

the hold case needs no adjustment. However, the jacket pressure gain

requires more attention.

The appropriate jacket pressure gain cannot be found from a simple

step test since no guidance is available to select a suitable pressure.

The consequences of blindly selecting a high pressure could be severe.

n  Therefore, a search is used to find the gain. The search criteria is
i

I  that the batch reach the target MW. The reason that the batch must

reach the target concerns the implementation of the batch ending

strategy. Since the batch MW must be known, an online MW analyzer is

necessary to do the search. Because a measurement of the MW is taken,

nominal noise is added to the molecular weight profiles in the gain

determination.

;  The search procedure is as follows. A gain of zero is used to

start the search; i.e., no jacket pressure adjustment during the batch.

If the batch reaches the target, the batch is stopped then and the time

is recorded. Subsequently, the gain is conservatively increased and the

procedure is repeated. If a batch does not reach the target, then it is

stopped at the peak to reduce quality variation.

i  When a batch does not reach the target, the gain is too high for

'  the given disturbance combination and is reduced to the previous gain.

The gain is held at this value for subsequent batches until another

batch does not reach the target. The procedure is repeated until no

batches fall below the target.

Since the batches are stopped at the target during the test, there

will be very little off-spec product generated. This is a significant

selling point in getting plant management and operations to buy into
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such testing, given that the production time may be decreased while

maintaining good quality control.

Discussion

The goal of this procedure is to search for the worst-case gain in

the presence of random disturbances. If, however, the disturbances are

autocorrelated instead of purely random, further opportunities may exist

to reduce the cycle time. In such cases, the best gain should vary with

the given disturbance combinations. The best gain could then be found

by a continuous search based on the quality results of previous batches.

In such a case, the cycle time can be reduced even further.

A second important issue concerns the batch ending strategy in the

absence of an analyzer. Since the worst-case gain is found, this

procedure provides a basis for accommodating times that the online MW

analyzer is available only temporarily. In implementing a complete

ending strategy, a method is needed to predict when to stop the batch.

Furthermore, even if online MW measurements continue to be available, an

estimate of the batch ending time in the cycle time reduction case would

provide additional guidance for operating the process. A model can be

built to predict the stopping times for future batches from the regular

measured variables. The methodology for predicting the batch ending

times is now described.

Methodology for Constructing a Predictive Model of the Batch

Ending Time

After many batches are collected in which the cycle time is

reduced by recipe adjustment of the jacket pressure, the times at which

the quality reached the target MW are known. Subsequently, a model can

be built to predict the ending times from such batches. The methodology
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for building a model to predict the ending times assumes that the

quality in all batches actually reaches the target. If the quality of a

batch does not reach the target, and if an online analyzer is

unavailable, the batch ending strategy cannot accurately predict the

appropriate ending time.

The methodology for building the ending time predictive model is

to apply Kaistha's method as illustrated in chapter 5 to the profiles of

these batches. By including batches with recipe adjustments, the

variability introduced to the measurements by the recipe adjustments is

captured in the systematic zones of variability. Because the

correlation structure of the process is changed in recipe-adjusted

batches, new factors and scale parameters for the modified batches must

be extracted in building a model for predicting the batch ending time.

It is important to note that only heat-adjusted batches should be used

in building the ending time prediction model. The reason is that

increasing the heat has a different effect on the profiles than the

addition of HMD. If the effects of HMD addition on the profiles are

studied, a separate model must be built.

The batches are first time-scaled and mean-centered. Figures 7.1

and 7.2 show the raw controlled batch data and the time-scaled,

controlled data for heat-adjusted batches in the cycle time reduction

case. The mean-centered, time-scaled data, residual errors after

projection, and the new factors are shown in Figure 7.3. The effects of

the recipe adjustments are captured by the factor(s) in phase IV as seen

in Figure 7.3. Since the correlation structure only changes after the

recipe adjustments, the factors prior to the 'beginning of phase IV are

the same as in the fixed recipe case.

In the prediction of the batch ending time, only factors through

the end of phase IV are considered. This is due to the fact that the
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Table 7.1. Available Scale Parameters by Phase for the Prediction of

Batch Phase Available Parameters at End of Phase

Time Scale

(TS)

Vapor Rate
(V)

Temperature
(T)

Preheat tsl ms4

Boiling, 1®"^ Pressure
Decrease

tsl ms4

Boiling, 2"° Reactor
Pressure Setpoint

tsl, ts2 msl ms4, ms5

Boiling, Reactor
Depressurization

tsl, ts2 msl, ms2*,
ms3*

ms4, ms5, ms6*

Curing tsl, ts2 msl, ms2*,
ms3*

ms4, ms5, ms6*

batch ends in phase V. The scale parameters that are available by phase

are shown in Table 7.1. The scale parameters labeled with a * reflect

projections onto factors that are different from the respective factors

seen in chapter 5.

Results of the Cycle Time Reduction Split-Range Controller

with Batch Ending Strategy

A PGR is used to develop a predictive model of the known batch

ending times from the scores through the end of phase IV. In the

prediction, the scale parameters are used as well as the jacket pressure

adjustment. The jacket pressure adjustment is included since it is the

primary variable affecting the ending time. As shown by Figure 7.4, the

predicted values of the batch ending times closely match the actual

times. The RMSE statistics are summarized in Table 7.2.

Figure 7.5 shows the quality obtained from the cycle time

reduction split-range controller coupled with the batch ending strategy

for a set of 100 batches having the same disturbances as the fixed

Table 7.2. Online Predictions of the Batch Ending Times (Autoscaled
Data)

Data Type Training RMSE Test RMSE

With Linear Scores Only 0.0589 0.0867

With Quadratic Terms 0.0245 0.0357
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recipe. Table 7.3 shows the RMSE statistics. As shown by the figure and

table, the alternative recipe adjustment strategy controls the quality

very well.

Table 7.4 shows the reduction in cycle time for the heat-adjusted

batches. Since the cycle time for,batches requiring the addition of HMD

cannot be further reduced, the net effect of the cycle time reduction

will be diluted. For a typical set of batches including both heat-

adjustments as well as HMD adjustments. Table 7.5 shows the net effect

of decreasing the cycle time for the heat-adjusted batches on the

average time to completion for all batches.

As shown by Tables 7.4 and 7.5, the split-range controller was

able to reduce the cycle time by around 50 minutes for those batches

which would have exceeded the target MW, and around 30 minutes for a

typical set of batches with both types of recipe adjustments. Thus, the

cycle time reduction split-range controller coupled with the batch

ending strategy is a practical alternative to the hold strategy.

STunmary

An alternative recipe adjustment strategy for reducing the cycle

time and the accompanying batch ending strategy is demonstrated by

utilizing online MW measurements. In developing the batch ending

strategy, information from controlled batches is utilized in estimating

the appropriate ending time for the batch. The controller performs very

well in reducing the variability seen in the final quality as compared

to the fixed recipe. Lastly, the cycle time is significantly reduced

using a conservative gain setting.
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Table 7.3. Results of Cycle Time Reduction Linear Split-Range
Controller

Method RMSE from Target
(=13,250 g/gmol)

Fixed Recipe 55.18

Linear Split-Range Controller with
Batch Ending Time Predictions

4 .58

Gains Used

Pressure Gain (mmHg gauge / (g/gmol) ) 6. 60

HMD Gain (g HMD / (g/gmol) ) -4.72

Table 7.4. Reduction in Cycle Time for Heat-Adjusted Batches
Reduction for Batches Requiring Heat
Manipulation Only

Average Ending
Time (hours)

Fixed Recipe 3.80

Cycle Time Reduction 2. 90

Percentage Reduction in Cycle Time 23. 68

Table 7.5. Overall Reduction in Cycle Time
Overall Reduction (All Batches) Average Ending

Time (hours)

Fixed Recipe 3.78

Cycle Time Reduction 3.25

Percentage Reduction in Cycle Time 14 . 02
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Chapter 8

Summary and Future Work

Stunmary and Conclusions

In this work, a historical database of past batches generated from

a nylon-6,6 simulation is subjected to data mining techniques and the

results are interpreted using process knowledge and engineering

judgment. The analysis of the database results in a greater

understanding of the principal sources of common cause variability

affecting the process. This understanding leads directly to process

improvement by suggesting appropriate corrective actions to compensate

.for the sources of variability affecting the process. The relevant

quality parameter, the MW, is shown to be predictable well before the

batch concludes which allows midcourse recipe adjustment strategies to

become a practical possibility.

The process is improved by implementing the suggested appropriate

corrective actions as a within batch recipe adjustment based on the

deviation of the predicted quality from a fixed recipe with the desired

target. Different control actions are required depending on whether the

deviation is positive or negative. The resultant approach to the

recipe adjustment strategy is a linear split-range controller that takes

appropriate corrective action depending on the direction of the

deviation. The strategy is demonstrated on the nylon-6,6 process for a

fixed batch ending time.

An alternative approach to performing recipe adjustments is

implemented in order to further improve the process by reducing the
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I  batch cycle time in addition to tightly controlling quality. This

n  approach is developed assuming the availability of online MW

measurements which is an emerging area of research and development. The

recipe adjustments are coupled with the necessary batch ending strategy,

j  in which prior controlled batches are used in constructing a model to

predict the appropriate batch ending time. The strategy demonstrates

j  that the cycle time can be reduced by increasing the heat to the nylon-

'  6,6 reactor and stopping the batch at the appropriate time. The ending
I

i  time is variable in this case.

Thus, data mining coupled with engineering judgment and process

!  knowledge is demonstrated to be a systematic approach to examining a

historical database of past batches for the purpose of greater process

1

understanding leading to recommended directions for process improvement

'  using within batch control. It is emphasized that the recipe adjustment

i  strategies were developed using only fixed recipe data; that is, no

prior control moves are reflected in the dataset. Both within batch

'  control strategies prove to be very successful in improving the example

I  nylon-6,6 process.

I

;  It must be mentioned that, even though demonstrated on a specific

process, the methods used to study the historical database are general

I  in nature. These methods, when coupled with process specific knowledge,

I  can be applied to a wide variety of batch processes, not limited to
I

I  reactive systems.
I

I  Future Directions for Research

I  The recommended improvements to the process are proposed in a

within batch structure; that is, the corrective actions are performed

based on the current batch only for uncorrelated disturbances.

;  Consideration needs to be given to autocorrelation in the disturbances
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that are present. The scope of the recipe adjustments can, therefore,

be broadened to include both batch-to-batch adjustments and within batch

adjustments. An integrated framework to integrate both types of

adjustments is a clear future direction to this research. The framework

should be developed by utilizing the same approach to process

improvement as that described herein: data mining coupled with process

knowledge and engineering judgment leading to process improvement.

A second area of research that remains to be explored is

multivariable control. In addition to the MW, other quality

measurements are used to measure the performance of the nylon-6,6

process, such as the concentration of amine end groups and the

viscosity. Minimization of the amine end group concentration was a by

product of the cycle time reduction strategy, given that the peak MW

occurs at the target. However, full multivariable control was not

investigated.

For the nylon-6,6 process, an area to explore involves the

availability of online molecular weight measurements. The availability

of such measurements provides an additional profile to analyze using

Kaistha's method. Scale parameters can be easily obtained from MW

profiles and studied for insight into the process. Furthermore, since a

MW profile is available, alternative control schemes can be explored.

As an example, the batch could be forced to match a reference MW

trajectory through continuous or discrete manipulations of an

appropriate handle(s).

Additional consideration needs to be given to an ending strategy

that is robust to batches with quality that does not reach the target.

The current strategy was accomplished by using a conservative gain

setting which reflects the worst-case gain in which no batches are

allowed to fall below the target. Improvements in the batch ending
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strategy provide a basis to optimize the gain for both uncorrelated and

autocorrelated disturbances.

The current ending strategy assumes that uncorrelated disturbances

are present. However, further reduction in the cycle time should be

possible in batches with autocorrelated disturbances. In this case, the

autocorrelation in the disturbances may be useful in developing an

online strategy to find the optimal gain for cycle time reduction.

Two disturbances are investigated in this work. However, many

disturbances occur in real processes. Additional disturbances known to

affect the process should be enumerated and studied to understand their

effects on the process. Special attention must be given to the selection

of appropriate recipe adjustments that do not adversely affect the

quality in the presence of multiple disturbances.

Finally, disturbance based control can be investigated. As

discussed, good disturbance predictions can be made during the'batch, if

sufficient data are available to construct a predictive model.

Disturbance based control is conceptually and practically familiar in

industry and provides a more intuitive basis for control. Care must be

taken, though, to prevent overcontrol, since the effects of low heat

transfer and excess water tend to cancel each other in certain regions

of the disturbance space.
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Appendix

Nylon-6,6 Reaction Model

This appendix gives the details of the nylon-6,6 simulation that

is adapted from Robertson et al [81] and Russell [83]. The work of

Steppan et al [102,103] is also cited.

The main reaction given in chapter 3 is a reversible, second order

formation of nylon-6,6 polymer and water from both amine and carboxyl

groups:

A + C = L + W (4.1)

Where; A = Amine group derived from a component of the reaction,
hexamethylene diamine (HMD).
C = Carboxyl group derived from a component of the reaction,
adipic acid (AA).
L = Polymer link.
W = Water molecule.

Additional side reactions modeling degradation or depolymerization of

the polymer are given as:

C  >SE + JV (4.2)

I  >SE + A (4.3)

Where: SE = stabilized end groups (cyclized) [104-105].

The kinetics of the simulation are based on the work of Steppan et

al [102-103]. In the first work [102], an activity-based kinetic model

of the nylon 6,6 polymerization reaction is given. In developing

equilibrium and rate constants, the equal-reactivity assumption is used.

In the equal-reactivity assumption, each end-group is assumed to react

at the same rate independent of the size of the end-group [102].

However, the authors also note that the nylon 6,6 solution is highly

non-ideal and this fact is accounted for in the model by composition
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dependence on the mole fraction of water. The reaction rate expressions

for the above equations (4.1-4.3) are as follows:

R,=CTk,X, (A.l)

Rj — X i{k2 +k2Q;X ̂
\

x,x^R^ = CTk \x,x,—f^
\  app J

(A.2)

(A.3)

Where: Ri = Reaction rate (gmol / h) of reaction i.
CT = Ca + Cc + Cl + Ch + CsE-
Xj = Mole fraction of component j given by [102] Xj = Cj / CT.
k); = Kinetic parameter (k = 1, 2, 2C) (h"^) .

The apparent rate constant, kapp (gmol / total gmol-h), and the apparent

equilibrium constant, Kapp (dimensionless), are given by empirical

relations derived from various experimental data. Kgpp depends on the

apparent heat of reaction, AHapp (cal / gmol). The apparent heat of

reaction is expressed in the following equation:

AHapp = AHl + AHw - AHa - AHc (A. 4)

Where: AHapp = The apparent heat of reaction (cal / gmol).
AHi = Partial molar heat of mixing of component i in the

liquid phase.

An empirical relationship for the heat of reaction that expresses the

non-ideality of the solution environment is developed from experimental

data. The heat of reaction is found to be a function of the mole

fraction of water present. The expression is given as:

0.065>'
-800 (A.5)= 7650tanh[6.5(x„ - 0.52)] + 6500exp

Where: x„ = Mole fraction water.

The main reaction appears to be endothermic for x„ > 0.52, and

exothermic at lower concentrations [102].
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Material Balances

The material balance relations are given below:

=  (A. 6)
dt Ĥ^fD

dVCr
^=-VR,-VRj (A. 7)

dt

dVCj^

dt

dVC,.. c;,

= VR.-VR. (A. 8:

= VR.+VR, (A. 9)
dt ' '

dVC.p
—= +F/?, (A. 10)

dt

dpV
—— = -V (A.11}
dt

Where: (0®i = The equilibrium mass fraction of
component i in the vapor phase

Mi = The molecular weight of component i
(g / gmol).

V = k{^P — = Mass vaporized, (A. 12)
with K = 25,000 gmol / psi-h,P = reactor

pressure (psia) , and Pvap the vapor
pressure above the reaction mixture (psia).

The heat balance is given by:

dT Ag.-v." ,
dt fC^ ' fC/ fC/ pC/

Where: T = Temperature (K)

AHv^ = heat of vaporization of component i (cal / gmol).
Vj," = molar vaporization rate of component i (gmol / h) .
p = density (g / 1); inverse of specific volume.
Cp = heat capacity (cal / g-°C) .

In this research, a cylindrical tank of equal height / diameter

ratio is assumed. The diameter was calculated by setting the initial

volume of the reaction mixture equal to the volume of the cylinder, and

solving for the diameter. Expressions for the specific volumes of

water, polymer, and the solution of water and polymer are supplied in

[83]. Two vapor pressure relations are given, with the larger of the two
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being kept as the estimate for the vapor pressure of the water / HMD

mixture.

Inl-bial Concentrations

The initial reaction mixture is 20% by weight water and 80% by

weight equimolar adipic acid and HMD. The initial weights used are 350

kg water and 1,400 kg of the equimolar mixture [105]. To account for the

loss of HMD due to vaporization during the reaction, an additional 1 kg

of HMD is added.

Quality Model

Three variables are given for the Mn quality model: the feed

ratio, r, of carboxyl groups to amine ends, the reaction extent, p (or

s) , and the fraction, ni, of polymer molecules that are HMD. The feed

ratio is set up in terms of the limiting end group. If r is less than

one (i.e., more amine than carboxyls), then one set of relations for p

and ni is used. However, when enough HMD vaporizes during the reaction,

and r becomes greater than one, r is recalculated by a different

relation and two different relations are used to calculate p and ni.

Subsequently, Mn is given as follows:

Where: Mn is the number average molecular weight (g / gmol).
Mo is the mass of one unit of the polymer chain (g / gmol).

The quality parameter model for Mn is explained in greater detail in

[81,83] .
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