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Abstract

This exposition presents the development and application of a methodology for control of unidi
rectional solidification of a binary alloy. In particular, it is desired to produce a casting that has
a uniform cast structure throughout its entire length. Furthermore, the methodology allows the
specification, a priori, of the cast structure with respect to both scale, i.e., fine or coarse, and mor
phology, i.e., dentritic or cellular. This specification is in the form of a map that relates solidification
characteristics, i.e., scale and morphology, to the solidification velocity and liquid-side interfacial
temperature gradient. Thus design is accomplished by controlling these two parameters during the
solidification process. With this in mind, the goal of what is termed the binary solidification design
problem is the prediction of a set of boundary temperatures and heat fluxes which when applied will
result in the desired interfacial motion and temperature gradient and therefore cast structure. Math
ematical models for problems of this type lead to what are termed ill-posed systems in that they
may not exhibit existence, uniqueness, or continuous dependence on boundary data. The resolution
of this class of problems requires advanced techniques to overcome the instabilities encountered due
to their ill-posed nature.

The methodology developed herein employs the classical weight residual approach in a innova
tive manner. Normally, in the solution of a parabolic partial differential equation, such as the heat
equation, a spatial series expansion with time varying coefficients is utilized along with a minimiza
tion technique to reduce the partial differential equation to a set of first order ordinary differential
equations. This set can be solved using any number of numerical technique, i.e., Runge-Kutta, to
obtain the temporal variation of the coefficients. These types of time stepping techniques eventually
lead to the onset of instability when employed for the resolution of ill-posed problems due to the
build—up of round—off errors. In this exposition, time stepping is replaced by the further expansion
of the time varying expansion coefficients into a series unto itself. Minimization in both space and
time is simultaneously applied leading to a set of algebraic equations whose solution leads to the
resolution of the entire space-time domain. This treatment of time in an elliptic fashion stabilizes
the solution of the ill-posed problem and forms the basis of what is termed the Global Time Method,
GTM.

The results obtained for the control boundaries indicate that the control measures required to
accomplish the design solidification are not only physically realistic but relatively undemanding
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to implement. Furthermore, under the design solidification conditions, it was observed that once

formed, a mushy zone of constant thickness was maintained throughout the transient. This obser

vation gave rise to a quasi-steady state analysis of the mushy zone which lead to the development

of a set of design tools.
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Chapter 1

Introduction

Even with the widespread use of polymers and synthetic fibers in many of todays manufactured

goods, there is still a large segment of the market that depends on the "classical" engineering

materials, e.g., steel, aluminum, copper etc. The manufacture of these type materials normally

involves the smelting of the raw inaterials, adding other components to alter its physical properties

and then "casting" this melt into some final form, e.g., bars, which then can be marketed. Similarly,

with the use of the semi-conductor becoming the rule instead of the exception, the pulling of silicone

crystals from a melt has received much attention and study. Thus with just these two examples,

it should be clear that the process of solidification from a melt is quite an important one. Many

techniques for optimizing this process have been developed over the years using a trial and error

type approach. Though this approach does produce a positive outcome, it can be time consuming

and thus expensive to undertake. The purpose of this exposition is to present a "proof of concept"

methodology for the control of a solidification process. For the purposes of this exposition, control

implies the ability to specify, a priori, a desired morphology for the final casting. This ability is

desirable due to the fact that, to some extend, the morphology of a material effects its material

properties.

The next logical question is, of course, what parameters of the solidification process affect the final

morphology of a cast material. Though there are countless variables which can be considered, the
main parameters effecting the final morphology of a casting for a pure material are the solidification

velocity, V, and the temperature gradient on the liquid side of the solid-liquid interface, Gi [1-
3]. We now recall that a binary alloy undergoing solidification can give rise to a two phase or
mushy region in which both solid and liquid are present. Thus two interfaces, termed the solidus

and liquidus, can exist within the solidification domain. For this case, it was determined that the

equivalent control parameters would consist of the liquidus interfacial velocity, and

the temperature gradient on the liquid side of the liquidus interface, Gf (t). In [1] the effect of these
two parameters on the interface kinetics is examined more closely. In general the product of the



1  1 I 1 111| 1—I I > I m[v. 1—i I I I MI j >—I I I 1 1 M

equicix^d dendritic " - ̂100

10 Fine

Coarse 10

oriented dendritic
0.1

Fine

^Kt10

0.01

oriented cellularCoarse

0.001 dO

Coarse

10 100
0.0001

1000

{mm/s)

Figure 1.1: VG map for a typical alloy undergoing unidirectional
solidification. Adapted from [1].

liquidus interfacial velocity and temperature gradient, V^Gf, which is termed the "cooling rate"
controls the morphology of the final casting, i.e., cellular or dendritic. The scale of the morphology,

i.e., fine or coarse, is, on the other hand, determined by the ratio of the liquidus temperature gradient

.and velocity, G[fV^. This relationship is more clearly illustrated by Fig. 1.1. Following a diagonal
line from the lower left to the upper right, i.e., Gf'/V^ =, const, leads to a refinement in the structure
of the casting without changing the morphology. Similarly, moving diagonally from the upper left

to the lower right leads to a change in the in the morphology of the structure while maintaining its

relative scale. Thus for a given alloy, a map similar to that in Fig. 1.1 could be constructed enabling

one to determine the needed design values of and Gf to obtain a desired structure. It can be
n further noted from this figure that to obtain a uniform microstructure throughout the casting, a

constant value of and Gf should be maintained. This is a very desirable effect in that the entire
casting can be utilized for the final product thus reducing waste material. Though the methodology
developed in this exposition is general in nature, we will specifically pursue the goal of predicting

the control strategy needed to produce a uniform cast structure.

Now that the control parameters have been established, i.e., and Gf, we must next determine
what "control knobs" are available in the problem by which these parameters can be effected and

thus produce the desired uniform cast structure. There are, as one can imagine, numerous ways in
which this control could be achieved. However, in order to facilitate the application of the control

schemes to a real world solidification process, i.e., in a laboratory environment, the choices become
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Figure 1.2: Solidification design problem schematic.

more limited. In general, the most straightforward manner in which a system can be controlled

is via its boundaries. Since, in this exposition, the solidification process is assumed unidirectional,

there are a total of two boundaries available for control. These boundaries are termed the cold wall

and the hot wall corresponding to x = 0 and x = L respectively. One can recall from the classical

pure-melt, two-phase Stefan problem, the solidification velocity is dependent upon the manner in

which the cooling at the cold wall is carried out and the amount of energy that must be absorbed

from the liquid due to its superheat. The same argument holds true for the solidification of a

binary alloy. Since the temperature gradient on the liquid side of the liquidus interface is a design

variable, it is not available for control purposes. Thus, the only parameter available for control

of the liquidus interfacial velocity is the cold wall temperature. Again from the classical Stefan

problem, the two factors that influence the temperature gradient on the liquid side of the interface

are the solidification velocity and the hot wall temperature. Since, in the binary solidification design

problem, the liquidus interfacial velocity is a design parameter, it cannot be utilized as a control

variable and thus we are left with the hot wall temperature. Therefore, the resolution of the binary
solidification design problem involves the determination of the hot and cold wall temperature and

heat flux histories that when applied will produce the desired liquidus interfacial velocity while

maintaining the desired temperature gradient on the liquid side of the liquidus. This is shown

schematically in Fig. 1.2.

The binary solidification design problem has many interesting points that can be discussed now

that we have a firm definition. First, we note that, as opposed to its direct counterpart, the binary
solidification design problem in the liquid region is linear. This is due to the fact that the location

of the liquidus interface is known a priori. The problem in the solid/mush region, however, remains
non-linear due to the dependence of the solid fraction, i.e., relative amount of solid present, on
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temperature. Secondly, the. inverse problems in the solid/mush and liquid regions can be solved
independently. This becomes apparent after considering an energy balance across the liquidus inter
face. This balance relates the temperature gradients on the liquid and mushy sides of the interface
to the liquidus interfacial velocity. Since the velocity and the temperature gradient on the liquid side
are known, the temperature gradient on the mushy side of the interface is also known. Thus, we have
two separate inverse problems each with the temperature and temperature gradient specified on the
moving liquidus interface. This is illustrated in Fig. 1.3. Though it is fortunate that the problem
in the liquid region is linear, this is not without a disadvantage. As noted above, both problems,
i.e., solid/mush and liquid, have two boundary conditions applied to one boundary and none to
the other. This type of problem is termed a one-sided inverse problem. This class of problems is
mildly ill-posed in the sense they do not exhibit continuous dependence on the boundary data. In
other word, small changes in the boundary information, i.e., liquidus interfacial temperature gra
dient, can cause large changes in the desired result, i.e., cold or hot wall temperature prediction.



Due to this ill-posed nature, their numerical resolution is no longer trivial and thus requires special
attention. This area of investigation is still active, and in the next chapter we will examine other

works pertaining to this type of problem and contrast their methodology to that presented in this
exposition.

The methodology developed in this work for the resolution of the one-sided inverse problems
in the solid/mush and liquid regions employs a classical technique applied in a novel manner. The
entire technique is based on a classical weighted residuals technique. For a typical application of

the weighted residuals methodology, the first step is the assumption of an infinite series expansion

for the unknown quantity in terms of a set of unknown expansion coefficients and related basis

functions. Since, in numerical computations, an infinite number of terms cannot be retained, the

series must be truncated. This truncated series now represents an approximation to the unknown

quantity. If desired, this series can be algebraically manipulated such that it identically satisfies any

ancillary conditions desired. Once complete, this series is substituted into the governing equation.

Recalling that this series is only an approximation to the true solution, a residual function must

be added to the governing equation in order to maintain the equality. The determination of the

unknown expansion coefficients is accomplished via a minimization of this residual function in some

sense. There are many methods by which this minimization can be accomplished with Orthogonal

Collocation, Least Squares and Galerkin being examples.

When the weighted residuals technique is applied to partial differential equations (PDEs) the

expansion for the unknown quantity is expressed in terms of a set of time varying expansion coeffi

cients and spatial basis functions. Continuing as described above, once the minimization has been

carried out one is left with a system of ordinary differential equations (ODEs) for the unknown time

varying expansion coefficients. These ODEs may then be solved using any number of numerical

techniques. It is in the treatment of temporal variation that the current methodology differs from

the classical application of the weighted residuals technique to PDEs. As discussed earlier, it is the

ill-posed nature of inverse problems that complicate their resolution. The accumulation of round-off

errors in a time marching scheme eventually results in the technique becoming unstable and thus

failing to properly resolve the problem. The methodology in this exposition precludes the need for

time marching by treating the temporal variation in an elliptic manner. In other words, once the

spatial manipulation of the series expansion is complete, the time varying expansion coefficients are
themselves expanded in a series in terms of a set of unknown, but constant, expansion coefficients
and related temporal basis functions. This space-time series expansion can then be manipulated

to identically match the initial condition if desired. As before, the residual function is constructed

via substitution of the space-time expansion into the governing equation and the addition of a a

residual function to maintain the equality. The residual function is then minimized over the entire

space-time domain using one or combination of the methods given above thus resulting in a set of
coupled algebraic equations that, once resolved, yield the desired expansion coefficients. It is the

elliptic treatment of time that lies at the heart of the methodology developed herein.



Chapter 2

Background

The body of literature concerned with solidification design problems is relatively limited especially
in the area of alloy solidification. Various methodologies have been proposed to resolve this class
of inverse problems with varying degrees of success [4-23]. The author is unaware, however, of
any studies that directly address the resolution of the binary solidification design problem in which
independent control of the interfacial velocity, and liquidus interfacial temperature gradient,
Gf(t), has been demonstrated. A short review of the literature related to this area'of research is
included below.

Zabaras, Mukherjee, and Richmond [4] investigated the application of an integral method com
bined with the sensitivity analysis technique of Beck, Blackwell, and St. Clair, Jr. [24] to resolve a
pure melt inverse solidification problem. In the resolution of the solid domain, overspecified inter
facial conditions of V{t) = C and Gi{t) = 0 were utilized. The exact solution for this problem is
given in [25]. The interfacial conditions used in the resolution of the liquid domain, however, where
unrelated to the solid domain. Specifically, the exact solution of a one—phase supercooled solidifica
tion problem, given in [25,26], was used to specify V{t) and Gi{t) for the liquid domain. The results
obtained utilizing the proposed methodology agreed well with the analytical solutions. However, the
problem investigated did not address the issue of independent control of the solidification velocity,
V{t), and the liquid-side interfacial temperature gradient, Gi{t).

In [5], Zabaras, Ruan, and Richmond develop a methodology based on a modification of the future
information method of Beck et al. [24] combine with spatial smoothing to resolve a two—dimensional
pure melt inverse solidification problem. Two example problems were presented consisting of a
nearly one-dimensional process with a spatially varying cold wall heat flux and solidification in
an infinite corner region. In the first example problem, a direct numerical solution is employed to
obtain the required overspecified interfacial data. This information is then utilized in the inverse
analysis to "re-predict" the previously assumed cold wall heat flux. The second problem involved
the solidification from an infinite corner at a uniform temperature. The analytical solution was again



utilized to generate the overspecified interfacial data, i.e., V{t) and Gi(t), which was then employed

in the inverses analysis in the prediction of the boundary heat flux. The combination of spatial

regularization and future information extends the stability of the solution while producing predictions

that agree well with their respective direct numerical and analytical counterparts. However, as before

the investigation does not directly address the independent control of the solidification velocity and

interfacial temperature gradient needed to control the solidification process.

Similarly, Zabaras in [6] applied a Finite Element technique coupled with the future information

method of Beck et al. [24] to resolve two types of pure melt inverse solidification problems. The flrst
type was identical to that discussed above in that overspecified interface conditions, i.e., V{t) and

were utilized to predict the unknown boundary conditions. The second type involved the use
of discrete data, i.e., thermocouple temperature measurements, to resolve the unknown boundary
conditions and interface information. Of these two, only the first type is of interest to this exposition.
The application of the proposed methodology was illustrated utilizing the same analytical solutions
described above [25,26]. That is, analytical solutions are used to generate the overspecifled interface
data, i.e., V(t) and Gi{t), for solution of the solid and liquid domains as well as to provide a measure
of accuracy for the results. Again, though the results matched well, the problem investigated did
not address the solidification design problem with independent V{t) and Gi(t) control.

The resolution of a pure melt one—dimensional solidification design problem is investigated by
Zabaras and Kang in [9] utilizing two minimization techniques. In the flrst, a parameter reconstruc
tion type approach is taken in which the optimal boundary flux is determined through minimization
of the interfacial temperature error in an L2 sense. The second approach employs the Adjoint
Method to determine the optimal boundary flux. Both of these approaches were employed to re
solve two unrelated inverse solidification problems. For the solid region, a single phase, semi-infinite
solidification process having an interfacial velocity of V(t) = C and a liquid—side interfacial tem
perature gradient of Gi{t) = 0 was considered for which the analytical solution is known [25]. The
liquid region involves the investigation of a one-phase supercooled solidiflcation process for which
the overspecifled interfacial data are obtained from the analytical solution [25,26]. It should be
noted that these are the same problems considered by Zabaras et al. in [4]. The results obtained
again agreed well with the corresponding analytical solutions. However, as stated earlier the interfa
cial data is unrelated and does not address directly the problem of independent control of V(t) and
Gi{t). Similarly, in [11] the authors extend the application of the Adjoint method to a pure-melt
two-dimensional solidiflcation design problem. The methodology was applied to the resolution of
a nearly unidirectional solidiflcation problem and solidification in an infinite corner region. The
overspecifled interfacial data for both cases was determined by solving the related direct problem.
In the case of the nearly unidirectional solidification, a spatially varying heat flux was applied on
one boundary while the remaining boundaries were insulted and the resulting interfacial velocity
and liquid-side temperature gradient were numerically obtained. This data was then employed in
the inverse analysis to reconstruct" the assumed boundary flux. The analytical solution for solidi-



fication from an infinite corner is given by [27] and was utilized to again construct the overspecified

interfacial data. The results again illustrate the Adjoint Method does a good job of "reproducing"

the boundary conditions imposed, but again the topic of independent control is left unaddressed.

Zabaras and Yuan in [10] resolve a two-dimensional pure melt solidification design problem,
approached as an optimization problem, utilizing a Dynamic Programming approach. The opti
mization is performed to find the boundary flux that minimizes the interfacial temperature error

and associated spatial regularization constraints. The Dynamic Programming approach is based on
Bellman's principle of optimality [28] from which optimal control theory is derived. The examples
to which this methodology was applied are the same as those presented by Zabaras et al. in [5]. The
boundary predictions obtained agreed relatively well when spatial regularization was employed, how
ever, without regularization the boundary predictions became unstable rather early in the transient.
As pointed out earlier, the examples considered do not directly address the independent control of
V (t) and Gi (t) needed to produce the desired uniform casting.

More recently, Yang and Zabaras have investigated the design of solidification processes in the
presence of natural convection in the liquid for both pure and binary melts. In [12] and [14] the
authors apply the Adjoint Method to resolve a pure melt solidification design problem for which the
goal is the preservation of a flat planar interface moving at a known time varying velocity. The design
scenario is constructed utilizing the direct solution of a one-dimensional two-phase Stefan problem
with no convection in the liquid. Since the solution to this type problem naturally gives rise to a fiat
planar interface, the resulting V(t) and Gi {t), when utilized in an inverse design analysis, will predict
the desired boundary conditions. It should be noted that both the interfacial velocity and liquid-side
interfacial temperature gradient vary in tiihe and will thus result in a non—uniform microstructure
in the final casting. Similarly, in [13] the authors apply the Adjoint Method to the resolution of
a binary melt solidification design problem in which again the goal is the preservation of a fiat
planar interface moving at a constant velocity. A combination of direct solidification analysis along
with the stability requirement that at any time there is no constitutional undercooling in the liquid
defines the design scenario for V{t) and Gi(t). The results given indicate that though a constant
solidification velocity is obtained, the liquid-side interfacial temperature gradient varies in time and
thus again gives rise to a non-uniform microstructure. Moreover, the resulting liquid-side interfacial
temperature gradient cannot be influenced to follow a desired path and is completely dependent on
the selected design scenario for the interfacial velocity. Lastly, in [16] the Adjoint Method is again
applied by the authors to a two-dimensional solidification design problem including the effects of
natural convection in the liquid region. In this exposition, the authors address the control of both
the interfacial velocity and liquid-side temperature gradient. As a basis for their design specification,
a direct solidification problem is solved in which the interface moves at constant velocity while the
opposite boundary remains insulated. The resulting liquid side interfacial temperature gradient is
then modified near the mid-point of the transient utilizing a "patching" technique. The interfacial
velocity design scenario is constructed such that it replicates the transient behavior of velocity



utilized in the direct analysis, i.e., V{t) = C till the point in time where the temperature gradient

is altered. Beyond this time, the velocity is determined by the requirement of retaining a sharp flat

interface, i.e., no constitutional supercooling. These design scenarios for V{t) and Gi(t) are then

utilized in the inverse analysis to predict the required boundary fluxes. This investigation is similar
in spirit to that presented herein, except the authors have chosen to enforce interface stability to

achieve a vertically, i.e., y-direction, consistent microstructure.

In [15], Zabaras and Nguyen apply the Adjoint Method to a two-dimensional solidification design
problem in the presence of natural convection. Both the methodology employed in this investigation
and the example problem to which it is applied are very similar to those presented by Zabaras
and Yang in [12,14]. Thus similar results were obtained and similar arguments concerning the
independence of V {t) and Gi {t) can be made.

Though not directly applied to a solidification design problem, Alifanov and Artyukhin present
in [29] the resolution of a non-linear inverse heat conduction problem with moving boundaries. It
is desired to reconstruct the temperature history on a moving external boundary based upon data
from a moving internal temperature sensor and a known heat flux at the opposite wall. This is a
rather complex problem in that all the boundaries are moving in time and the physical properties
are dependent on temperature. A methodology is developed to stabilize the resolution of the inverse
problem in the presence of "noisy" sensor data utilizing Tikhonov regularization. This investiga
tion was informative with respect to alternate methods for resolving this class of ill-posed inverse
problems.

The application of an integral method in the resolution of a pure melt cylindrical solidification
design problem is presented by Zal'tsman and Kobyshev in [23]. The classical integral method
is employed to resolve a one-phase, one-dimensional pure melt solidification problem in which it
is desired to control the motion of the interface. Analytical solutions for the cases of a known
boundary tehiperature and convective boundary cooling were obtained. These analytical solutions
were employed to generate the interfacial location data. This information, along with the interfacial
energy balance, gives the needed overspecifled interfacial data. The inverse methodology developed
is then applied to reconstruct" the boundary conditions. One of the advantages of this approach is
that a closed form analytical solution is obtained for the boundary predictions. Though the results
obtained agreed well with the exact solutions, the topic of independent control of V{t) and Gi{t)
was not addressed.

Voller in [22] developed a methodology based on a combination of the enthalpy method and the
future information method of Beck et al. [24] to resolve a pure melt, one-dimensional solidification
design problem in which the goal is the prediction of the boundary history required to produce a
desired interfacial motion. An iterative procedure is utilized within a time step where a boundary
temperature is assumed and a direct problem is solved to determine the interfacial temperature. The
boundary guess is then updated utilizing a sensitivity type argument which requires the solution
of the corresponding sensitivity problem. This process is continued till the calculated temperature



at the interface matches the fusion temperature of the material. This methodology is applied to

the same example problems considered in [4], The results obtained agreed well with the analytical

solutions, however, the solid and liquid regions are unrelated and thus do not address the issue of
true solidification control.

In [21], T.F. Chen, Lin, Wang and T.J. Chen developed a Finite Difference scheme to resolve
a pure-melt one-dimensional inverse Stefan problem. To overcome the inherent instabilities due

to its ill-posed nature, a heat flux limiter is added to the solution methodology. The methodology

developed is applied to a problem in which the temperature and heat flux are specified on the external

boundary and it is desired to predict the interface location and the temperature at the opposite

external boundary. Specifically, the solution of a semi-infinite melting problem is utilized to generate

the boundary data for the inverse analysis. It is clear from the results presented with and without the

heat flux limiter that its inclusion greatly increases the stability of the predictions. The boundary

temperature results compare relatively well.. However, the interfacial location results are not as

accurate. This problem, though different in character than the solidification design problem provides

insight into another methodology employed for the resolution of inverse solidification problems.

To close this discussion of the relevant literature, it is evident that there have been several

methodologies proposed for the resolution of inverse solidification problems all with their own ad

vantages and disadvantages. However, none of these investigations have directly addressed the type

of solidification problem considered within this exposition where it is desired to obtain a uniform

cast structure during the solidification of a binary alloy. With this brief summary complete, we now

turn our attention to the formulation of the governing equations for the binary solidification design

problem.
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Chapter 3

Solidification Model

3.1 Introduction

The solidification of a binary alloy can be modeled using several approaches [30-42], These ap

proaches range from relatively simple, i.e., conduction based models, to extremely complex including

the effects of natural convection in the liquid region and individual floating crystals. Many of these

models were considered for use in this study, but it was felt that a simpler model of the solidification

process should be employed due to the inverse nature of the solidification design problem. These

models would add a great deal of complexity to an already difficult problem. As an indication of

this, even though the inverse heat conduction problem has a very simple mathematical model, it is

still an active area of research.

The intent of this research is to develop a mathematical model for uncoupled, unidirectional

solidification of a binary alloy including the effects of phasewise constant but unequal densities.

By employing an uncoupled model, the solidification process is viewed as being heat transfer, i.e.,

conduction, limited and thus the equations governing mass transport need not be modeled. This

assumption also reduces the complexity of the resulting model since it removes the link between the

solid fraction and the phase diagram of the material under consideration. This comes with a price
however in that an assumption must be made as to how the solid fraction varies with temperature

[26].

The consideration of unequal densities within the mathematical model results in a bulk motion

of the liquid that must be properly accounted for. Thus, equations governing mass, momentum, and
energy conservation within the solid, liquid, and mushy regions would have to be developed. Also,

due to the variation of the solid fraction across the mushy region, the effective density within the
mushy region becomes a function of temperature. This fact, as will be shown below, complicates

the expression for the internal energy within the mushy region, which lead to the decision for the

development of a mathematical model in which the phase densities are assumed equal.

11



3.2 Energy Relations

The first step in the formulation of a mathematical model for the binary solidification design problem

is the construction of a general equation of state for the binary alloy. This relation will be developed

under the following assumption:

• Phasewise constant densities.

• Phasewise constant specific heats.

• Concentration is uniform and constant throughout.

• Unequal densities lead to bulk motion of liquid.

• Solid fraction is only a function of temperature.

In general, the total energy (e) of an alloy is given by the sum of its internal (u), kinetic (ke), and

potential (pe) energies. Due to the scale of the problem under consideration, the potential energy

change will be negligible and thus only the internal and kinetic energies need be considered. The

differential form of the internal energy, u, is given by the Gibbs relation as

du = T ds —p d . (3.1)

If we consider that the entropy of the material is a function of temperature and pressure we can

write the total derivative as

ds = ■^^iT,p) dT+ dp. (3.2)
T

We know that by definition, the specific heat at constant pressure is given by Cp{T) = ^s{T,p)\^
and from Maxwell's relations that .^s{T,p) ■ With these, the total entropy derivative
can be written as

ds = ^^dT+ —T  dTpiT,p)

Substituting this into the. Gibbs relation for the internal energy gives

dp. (3.3)

du = Cp{T) dT + T
dTp{T,p) dp-pd . (3.4)

To obtain the internal energy at a particular temperature and pressure, Eqn. (3.4) is simply inte
grated from some reference point, i.e., Tref and Pref, to the desired point and thus to proceed further
a reference point must be chosen. For this purpose, we choose solid at the eutectic temperature and
some reference pressure, Uref = Us{Te,Pref)-

12



Firstly, we will obtain an expression for the solid internal energy. Since the solid density is

assumed constant, Eqn. (3.4) reduces to simply dus = Cp^{T) dT. Integrating this expression from

the reference state to some arbitrary state in the solid phase gives

T,p T

I dus{T,p) = I cp,{f) df, (3.5a)
^ejPre/

or evaluating the left hand side

T

UsiT,p) - Us{Te,Pref) = J Cp^{f) df. (3.5b)
"re/

Lastly, recalling the assumption that the solid specific heat is not a function of temperature, the

solid internal energy is given by

Us (T, p) =Uref+ Cp^- [T - Te] . (3.5c)

For the liquid, we again follow the same procedure recalling that the liquid density is assumed

constant giving

T,p T

j dUi{f,p) = JCp{T) df. (3.6a)
TejPref Te

The right hand side integral requires some special attention at this point. Between the eutectic

temperature, Te, and the liquidus temperature, Ti, the material is in a mushy state. Thus to

properly account for the . energy within this region, we assume that the mushy material has some

effective specific heat, Cp^{T), that will be a function of the relative amounts of solid and liquid
present at any given point. Thus

T, T

UliT,p) - Ui(Te,Pref) = j Cp^ (f) + J <^Pi i^) df. (3.6b)
T,

We next wish to relate the liquid internal energy at the reference conditions, ui{Te,Pref) to the
reference internal energy. This is accomplished via a simple addition and subtraction

'^s(^ejPre/)
"  V '

ILref
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We further recall the definition of the latent heat, or heat of fusion, of a material as the difference

between the solid and liquid enthalpies at a given temperature and pressure, i.e., hf = hi{Te,Pref) —

hs{Te,Pr.ef)- Utilizing this definition along with the knowledge of the relation of the internal energy
to the enthalpy, /i = u + p/p, we can rewrite the above as .

Uli^etPref^ — '^^ref "b hii^eiPref) hs(T'e,Pre/) "bfre/
1  ̂
Ps Pi

(3.6c)

and the liquid internal energy becomes

^li'^tP) — Href "b hf + Pref _ 1
Ps Pi

Ti T

+ /c,„(f)df+ |cp,(f)df. (3.6d)
Te T,

To proceed further, we must make an assumption as to how the mushy specific heat varies with

temperature. To this end, we employ a weighted average in which the weighting function is the

solid mass fraction, A^, which is assumed to be solely a function of temperature. With this, and the

assumption that the liquid specific heat is not a function of temperature

1 _ I
.Ps Pi.

Hi{T,p) — Uj-ef "b hf + Pref

T,

I [cp,{l-A.,(f)}+Cp,A,(f)]df.

+ Cpj [T — Ti] +

(3.6e)

Collecting terms and simplifying further leads to the final version of the liquid internal energy given

by

p) — Href "b hf + Pref

T,

i. _ I
Ps Pi.

+ Cp, [T — Te] +

ifips ^pi) J ̂siT)dT. (3.6f)

In the mushy region, the density can no longer be regarded as a constant. As with the specific heat,

the mushy density is assumed to be a weighted average of the solid and liquid values with respect
to the solid volume fraction, Recalling Eqn. (3.4) the differential mushy internal energy is given

by

dHm - Cp^ (T) dT + T
d  1

dT pm{T,p)
dp-pd[ — ) ,

p  \Pm,
(3.7a)
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or more specifically

dum = [{1 — ̂s{T)}cp, + As(r)cpJ dT + T

p d

d

dT{l-MT)}pi + <Ps{T)Ps
dp

{1 - (psiT)}Pi + <l)s{T)p,
(3.7b)

Performing the indicated differentiations and integrating the resulting differential statement from

the reference point to some arbitrary point gives

U"miT>P) UmiTejPref) —Cp, [T Tg] + (Cp^ Cp,) J Xs{T)
Te

Pi- Ps d

dT

T (

 +

P Pref)
{pi+MT) iPs-pi)r

MT)

1

'(Pt-Ps) j wMT)
{pi + ̂s{T) (Ps-Pi)}

rdT. (3.7c)

Following a procedure analogous to that used for the liquid region, the Internal energy of the mushy

at the reference temperature and pressure can be written in terms of the reference internal energy

and heat of fusion as

UmiTetPref) — Uj-ef + hf (1 Xg(T)) pref (1 ~ 0s(7^)) Pi Ps

Ps [Pl + (t)s{T) {ps - Pi}]
(3.7d)

Evaluating the last integral on the right hand side of Eqn. (3.7c) and substituting the above relation

for UmiTe,Pref) gives the final version of the mushy material internal energy relation:

fJ"miT,p) — Uref + hf (1 As(T)) + Pref (1 ~ ̂s(^)) Pl Ps

.Ps [Pl + <l>s{T) {ps - Pl}]
+

^Pi

1

[T — Tg] + (cp^ — Cp,) j As (T) dT +

7^ {P Pref)

P {Pl - Ps)

Te

Pl — Ps

ipi + MT) (Ps-Pi)}^ dT
4>s{T) -

MT) - MTe)
{pi + {ps - Pl) (t>s{T)} {pi + {ps - Pl) (j)siTe)}_

(3.7e)

As noted earlier, the inclusion of unequal phase densities leads to a complicated expression for
the internal energies in the mushy and liquid regions. This in turn would add to the overall non-

linearity of the resulting mathematical model. Because of this, and the fact that for most common
materials the solid and liquid phase densities differ by up to 10% [26], it was felt that the addition
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Figure 3.1: General control volume for derivation of the energy conservation equation.

of this secondary effect would not result in an increase in accuracy sufficient to warrant the added

difficulty. Thus, the remainder of the model derivation will assume that the solid and liquid densities

are equal, i.e., ps = pi, and thus the internal energy relations reduce to simply

Us{T,p) = Uref + Cp, [T - Te] ,

■Um{T,p) = Uref + hf {1 - Xs{T)) + Cp, [T - Te] +
T

(cp^ — Cp,) J Xa{T) dT,
r,

~ f^ref hf + Cp, [T Te] +
T,

(Cp^ — Cpi) J Xg{T)dT. (3.10)

3.3 Governing Equations

With the formulation of the internal energies complete, we now begin the derivation of the equations
governing energy conservation in each region. To aid in this development, a generic control volume
as shown in Fig. 3.1 was chosen which can be applied to each domain of interest. The models
that follow are developed under the assumptions of a one-dimensioned phenomenon with constant



phasewise thermal conductivity in addition to those given above. Due to the assumption of equal

phase densities, there is no bulk motion of any of the phases. Thus, the only mechanism by which

energy can enter or leave the control volume is via diffusion. With these assumptions stated, we can

proceed by recalling the most basic form of the sourceless energy conservation equation given by

dt
— Ein E.out' (3.11)

We begin with the construction of the energy conservation equation in the pure solid region.

Starting with the general form given above and recalling that the transport of energy by diffusion

is governed by Fourier's law, we have

'^E(;y^g(x,i) = dksdcs'g^'El^X, t)
0

-kgdcs'o^Tl^x, t) (3.12)
x+dx

As discussed previously, the total energy is given by the sum of the internal and kinetic energies.

However, since there is no bulk motion of the solid, the total energy contained within the control

volume is given by the internal energy, Eqn. (3.8). Therefore, substituting Eqn. (3.8) into the

conservation equation for Ecv,s, and utilizing a truncated Taylor series expansion to express the

heat flux term evaluated at a; + da; gives

dt
[p ̂ Uref + Cp^ {T{x, t) Tg)} flc^da;]

d
-kgdcs

Collecting terms in the above equation and cleaning up leads to

^sdcs (3.13)

/"'Pa ~ (3.14)

which can be recognized as the standard heat equation. A completely analogous process is employed
for the liquid region as was for the solid. Due to the similarities between the solid and liquid regions,
i.e., constant properties and no bulk motion, we expect energy conservation within the liquid to again
be given by the standard heat equation. Thus, we will simply give the final form of the equation as

/"'Pi ~ Qj.2 (3.15)

Lastly, we turn out attention to the mushy zone. The basic process is the same as that presented for
the solid and liquid regions. The main difference is the characterization of the incoming and outgoing
heat fluxes. It is assumed that the product of the solid volume fraction, and the cross-sectional
area gives the area available for diffusion in the solid. Furthermore, recalling the assumption of
equal phase densities, the solid mass and volume fractions become identical and therefore the area

17



for diffusion can be expressed as the product of the solid mass fraction, Xg, and cross-sectional area.

Thus, the general form of the energy equation for the mushy region is given by

Q^Ecv,m{x,t) —
o

-ki {1 - Xs{T{x,t))] acs-^T{x,t)

-ki {1 - \s{T{x,t))}acs-^T{x,t)
x-^dx

-ksXs{T{x, t))acs t)

-ksXs{T{x, t))acs -^T{x, t)
x-\-dx

(3.16)

A truncated Taylor series expansion is again utilized to express the heat fluxes evaluated at a; + dx.

Substituting for the control volume total energy from Eqn. (3.9) and cleaning up a we obtain

dt

dx

pl^Uref + hf{l-Xs{T{x,t))} + Cp,{T{x,t)-Te} + {cp^-Cp^} J As(r) drjCLnodX

{kgXs{T{x,t)) + ki(l- Xs{T{x,t)))} acs-^T{x,t) dx. (3.17)

Expanding the derivatives on both sides of the equation, utilizing Leibniz rule to differentiate the

integral, and cleaning up the result gives

d  d
p[cp, + As(r(a;, t)) {Cp^ ~Cp,}] —T{x,t) — phf—Xs{T(x,t)) =

[kt + - A:;} A5(r(a;,t))] ■^T{x,t) +
{Aig ki} Q^Xs{T{x,t)) (3.18)

Utilizing the chain rule of differential calculus, we can express the spatial and temporal derivatives
of the solid mass fraction in terms of temperature as

^A,(r(a:,t)) = -^XgiT{x,t))^T{x,t),
^^Xg{T{x,t)) = ^Xg{T{x,t))^T{x,t).

Substituting these expressions into Eqn. (3.18) and collecting terms gives the final form for the
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Figure 3.2: Control volume for derivation of the solidus interfacial energy balance.

mushy region governing equation:

Cp, ■{-Xs{T{x;t)) {cp^ Cp,} hf g^Xs{T{x,t))
dt

T{x,t) =

52[ki + {ks - k} Xs{T{x, t))] :^T{x, t) +
dx"^'

[ks-ki]—Xs{T{x,t)) (3.19)

It is worth noting at this point that the equation governing energy conservation in the mushy
region, Eqn. (3.19), indeed simplifies to the pure solid and liquid cases, Eqns. (3.14) and (3.15),
when examined at its limits. Thus, Eqn. (3.19) can be considered the general energy conservation
equation for all regions and thus only need be considered from hence.

3.4 Interface Conditions

Depending upon the material or conditions under which solidification occur, there is the possibil
ity that the solid fraction may experience a jump at either the solidus or liquidus interface, e.g.,
solidification of a eutectic alloy. Therefore, in order to assure that energy conservation is properly
maintained across the interfaces, a set of "jump" conditions must be developed. Beginning with the
interfacial condition on the solidus interface, we place a control volume of zero thickness about the
interface moving with it as shown in Fig. 3.2. Since this control volume has zero volume, it cannot
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store energy in any form and thus energy conservation reduces simply to Bin = Bout- Applying this

to the control volume of interest leads to

d sr^ , dpem{T{s^{t),t),p)acs-^^s^{t) - ksacs -^T{x,t)
x=sf{t)

= pes{T{s^{t),t),p)acs-Q^s^{t) -

ki{l -\s{T{s^{t),t))}acs ■^T{x,t) - ksXsiT{s^{t),t))acs ■^T{x,t)
.is ox

.  (3.20)

By definition, the temperature at the solidus interface is the eutectic temperature, i.e., T{s^{t),t) —
Tg, and thus the mushy and solid energies from Eqns. (3.8) and (3.9) reduce to

es{T{s^{t),p)) - Us{Te,p) = Uref,
em{T{s^{t),p)) - Um{Te,p) = Uref + hf {1 - Ag(Te)} .

Substituting these relations into the energy balance above, the final form of the solidus interface
condition is given by

phf{l-X,{Te)}-^/{t)=ks ^T{x,t)
x=sf{t)

{fc, + [A:g-A;(]Ag(Tg)} ^T{x,t)
x=s^{t)

(3.21)

In a completely analogous manner, we begin the construction of the liquidus interfacial energy
balance by placing a zero thickness control volume about the interface moving with it as shown in
Fig. 3.3. Applying the simplified form of the general energy balance to this control volume gives

pemiT{s^{t),t),p)aes-^s^{t) - kiUcs -^T{x,t)
x=sf'{t)

= pei{T{s^{t),t),p)acs-^s^it) -

ksXs{T{s'^{t),t))acs -^T{x,t)
x=s^(t)

- ki {1 - Xs{T{s^{t),t))} Qcs -^T{x,t) (3.22)

Again, by definition the temperature at the liquidus interface is identically the liquidus temperature,
i.e., T{s^{t),t) = Ti. With this, the liquid and mush energies from Eqns. (3.10) and (3.9) reduce to

T,ei{T{s^it),t),p) = ui{Ti,p) = Uref + hf + Cp, {Ti - Tg} + {cp, - Cp,} J Ag(f) df,
Te

T,em(T(s^(t), t),p)= u„,{Ti,p) = Uref + hf{l- XsiTi)} + Cp, {T, -Te} + {Cp^ -Cp,} I Ag(f) df.
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Figure 3.3: Control volume for derivation of the liquidus interfacial energy balance.

Substituting the above relations into the interfacial energy balance, and cleaning up leads to its final
form given by

= {h + [ks - fc,] A«(TO} ^T{x,t)
dx

1  ̂ rr,, \- k —T{x,t)X M dx a:=sf (t)
(3.23)

Equations (3.21) and (3.23) complete the simplified mathematical model developed for the binary
solidification design problem. Though constructed under somewhat restrictive assumptions com
pared to many models recently developed, it was felt that the difficulties inherent in inverse analysis
warranted this simplified approach.

3.5 Non-Dimensionalization

Before proceeding to the specification of the individual sub—problems involved in the overall resolu
tion of the binary solidification design problem, we wish to non-dimensionalize the problem. With
this complete, a parametric study of the problem will be presented later in this exposition. As indi
cated earlier, the mushy region energy conservation equation, Eqn. (3.19), is valid in all regions and
thus it is sufficient to consider its non-dimensionalization solely. We begin this process by choosing
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an initial set of dimensionless groups given by

f{x,t) =
T{xL, t) — Tg

Tl-Te
X

^ = T

Substituting these groups into Eqn. (3.19), utilizing the chain rule to transform the derivatives, and

cleaning up gives

Cp, + Xs{T{x,t){Ti - Te) + Te) {Cp, - Cp,} n
hf d

Ti - Te dT

[f{x, t) (Ti -Te)+Te] = [ki + {ks- -ki}\s if{x, t) (Ti - Te) + Te)]

kg - h

\s{T{x,t){Tl-Te)+Te)

dt

^-^[n£MTl-Te)+Te]^
^^[fix,m-Te)+Te

Tl-Te
^X,{T{x,t)iTi-Te)+Te)

(3.24)

Defining a new solid mass fraction as Xs{T{x,t)) = Xs{T{x,t){Ti - Tg) +Te), evaluating the deriva

tives, and rearranging leads to

PCpi 1 + A;

kl l + Ae(T)<j^-l

hf d

Cp, (Ti - Te) dT
A.(T) {Ti-Te)jf{x,t)^

kl

Tl-Te kl
§fUT)

t) +

Tl-Te '
T{

dx
x, t) (3.25)

Recalling the definition of the Stefan number as the ratio of sensible heat to the heat of fusion,i.e.,

St = CpAT/hf, dividing through both sides by ki{Ti - Te)/L'^, and defining the ratios of solid and
liquid thermal conductivity and specific heat as 7 = kg/ki and ̂  = Cpjcp, respectively, the general
energy conservation equation can be rewritten as

pCp,LP'
kl

l + Xs{f){d-l]--^Xs{f) liTd,0 =
[1 + A,{f) {7-1}] ̂t{x, i) + [7 - :] ̂A,(f)

dx
T{x,t) (3.26)

To remove the term multiplying the left hand side, we choose to define the dimensionless time via

the Fourier number given as

Fo='^
T2

kit

pcp,i2'
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which when applied to the above equation leads to

dFo
Tlx,

Fo£\
Oil )
d V[1 + \.(T] {7 -1)] (s, + [7 - 1] dx [' ai J (3.27)

Finally, defining 9{x,Fo) = T (^x, j and As(0) = As(T'), the general energy conservation equa
tion is given by

dFo
6ix,Fo) =

[1 -t- A,(0) {7 - 1}] ̂ e{x,Fo) + [7 - 1] ̂ A,(0) _a
dx

6{x, Fo) (3.28)

In an analogous manner, the solidus and liquidus interfacial energy balances, Eqns. (3.21) and (3.23),
can be cast into the new dimensionless variables. Defining the non-dimensional interface locations

as

S^{Fo) =

S^{Fo)_ (^)
L

and proceeding as with the governing equation leads to

l-As(O) d d d

x=SS{Fo)
-[1 + {7-1}A«(0)] ̂ 0{x,Fo)

St dFo^ [l + {7 l}As(l)] ̂ _0(a:,Eo)

$=SS(Fo)

i=Sf-{Fo)

(3.29)

(3.30)

With the non-dimensionalization of the energy conservation equations complete, our attention now
turns to the formal definition of the sub—problems required to resolve the overall binary solidification
design problem. These issues will be addressed in the following chapter.
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Chapter 4

Application of the Binary

Solidification Model

4.1 Introduction

The simplified binary solidification model developed in the previous chapter will now be employed
to resolve the solidification design problem as illustrated schematically in Fig. 4.1. The overall

resolution of the problem can be broken down into four sub-problems consisting of two direct

problems and two inverse problems: direct liquid cooldown, direct liquid solidification, inverse liquid
solidification, and inverse solid/mush solidification.

The direct liquid cooldown sub-problem is concerned with the removal of the initial liquid su
perheat at the cold wall, x = 0. The cold wall is cooled in some prescribed manner, e.g., linearly
in time, until it reaches the liquidus temperature of the alloy, T;. During this same period, the
temperature gradient at the hot wall, S = 1, is maintained at its initial value. Once the cold wall

reaches the liquidus temperature, any further cooling would result in the formation of the liquidus
interface which would separate from the surface and propagate into the liquid domain. The manner
in which the initial superheat is removed impacts the design scenario with respect to the magnitude
of liquidus interfacial temperature gradient that can be realistically achieved.

The direct liquid solidification sub-problem examines the liquid region during solidification where
the how wall boundary is again maintained at its initial temperature gradient value. The motion
of the liquidus interface during this time period is dictated by the interfacial design scenario, i.e.,
desired front motion, and is thus a known quantity. The result of this analysis provide two major
benefits. Firstly, we recall that it is desired to control the liquidus interfacial temperature gradient
by actively controlling the hot wall boundary temperature and heat fiux. Thus, consideration of the
liquid region is required since during the early part of the transient the hot wall and liquidus interface
are separated by the distance of the enclosure. Due to this separation, any control perturbations
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Figure 4.1: Schematic diagram of the binary solidification design problem.

applied to the hot wall boundary at some time t will not affect the interfacial temperature gradient
till time t + tp, where tp is the thermal penetration time. Thus, to properly account for the physics
involved in this type of control, any design scenario for the liquidus interfacial temperature gradient
must identically follow that which would naturally occur, i.e., under uncontrolled conditions, for
the first tp seconds after the initiation of solidification. Therefore, the direct solidification solution
must be obtained for at least this period of the transient to aid in the construction of the liquidus
interfacial temperature gradient design scenario. Secondly, it provides a good baseline against which
the active control measures at the hot wall boundary can be compared.

The inverse liquid solidification sub-problem seeks to predict the hot wall boundary temperature
and heat flux histories that when applied will result in the desired liquidus interfacial temperature
gradient. This problem has two inherent difficulties. Firstly, this is a one-sided inverse problem in
that two boundary conditions are specified on the known liquidus interface, i.e., temperature and
temperature gradient, while none are specified on the hot wall boundary. This type of inverse problem
is mildly ill-posed in the sense that small perturbations in the input data, i.e., the design gradient
information, can result in large changes in the output, i.e., the hot wall boundary temperature and
heat flux predictions. Secondly, as illustrated above, the diffusive nature of heat conduction in the
liquid requires that care be taken in the construction of the liquidus interfacial temperature gradient
design scenario such that the physics of the problem are not violated.

The final sub—problem of the solidification design problem is the inverse solid/mush region.
The goal of this analysis is the determination of the cold wall boundary temperature and heat flux
histories which when applied will result in the desired liquidus interfacial motion while absorbing heat
from the liquid region as dictated by the design liquidus interfacial temperature gradient scenario.
The analysis of the solid/mush region shares some of the difficulties of the liquid region analysis.
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Figure 4.2: Space-Time diagram for direct liquid cooldown problem.

i.e., mildly ill-posed nature, but has one that substantially complicates its resolution. As pointed

out before, the mushy region is a mixture of solid and liquid in thermal equilibrium. The relative

amounts in which these two phases exist at any point is characterized by the solid fraction. Since,

in the uncoupled binary model being employed for this analysis, the solid fraction is a function of

temperature, the properties of the mushy material are also functions of temperature. This combine

with the temperature dependent source term, i.e., the latent heat term, leads to non-linearities

within the mushy zone.

4.2 Mathematical Models

4.2.1 Direct Liquid — Cooldown

As outlined previously, the direct liquid sub-problem is concerned with the removal of the initial

superheat from the liquid at the cold wall. A schematic diagram for this sub-problem is shown
in Fig. 4.2. In the pure liquid region, the solid mass fraction. As, has a constant value of zero

throughout. Thus, the general non-dimensional energy conservation equation, Eqn. (3.28), given in
operator from reduces to

Ccd[e{x, Fo)] = 0 X e (0,1), Fo 6 (0, Foi],

_ d c»2
~ dFo dx^'

(4.1a)

(4.1b)
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The boundary conditions for this portion of the transient are given by a known cold wall temperature

and hot wall temperature gradient histories as

^mFc)
9{0,Fo) = ec{Fo), (4.1c)

= QhiPo), Fo e (0,Fo(], (4.1d)
X=1

where, utilizing the dimensionless variables previously defined,

t(o,^) -Te
edFo) = ,

J-l J-e

n"(r? ̂  ^ " fFoL^\

The initial condition is given by some arbitrary function of space by

0{x, 0) = 6i(x) X e [0,1], (4.1e)

where

TixL,0)-Te
Oi{x} =

Tl~Te

The direct cooldown problem is of course well-posed and can thus be rather easily resolved by any
number of methods, i.e. Finite Difference, Finite Element. A spectral method was employed in this
investigation to resolve this problem which produces a continuous solution in both space and time.

4.2.2 Direct Liquid - Solidification

As stated earlier, the direct liquid solidification sub-problem examines the liquid region under the
conditions of known liquidus interfacial motion, i.e., design scenario, and known hot wall boundary
temperature gradient as shown in Fig. 4.3. As before, the solid mass fraction. As, within the liquid
region remains constant at a value of zero throughout the entire transient. Thus, the general energy
conservation equation, Eqn. (3.28), reduces to, in operator form,

£di[0{x,Fo)] = 0 xEiS^{Fo),l), Foe{Foi,Fomax], (4.2a)
r - 9
~ dFo dx^ n

The hot wall boundary condition remains unchanged from that presented for the direct liquid
cooldown sub-problem, i.e., known gradient. The second boundary condition comes from the knowl
edge of the liquidus interface motion, part of the design specification, and the liquidus temperature
of the alloy. When these factors are combine, the condition takes the form of a given temperature
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Figure 4.3: Space-Time diagram for direct liquid solidification problem.

on a known moving boundary. Thus the boundary conditions are given by

0(5^(Fo),Fo) = l,

l-J(x.Fo) = Qhi^o), Fo G {Foi,Fo„

(4.2c)

(4.2d)
X = 1

where Q,^{Fo) is defined as before. The initial condition for the direct liquid solidification problem

comes from the requirement of temperature continuity between the direct liquid cooldown and

solidification transients. Formally, the initial condition is obtained by evaluating the direct liquid

cooldown solution at Foi and is given by

0{x,Foi) = Oi^iix) X € [5^(Foi),l], (4.2e)

where

T (xL, - Te
Oiiix) = .Ml )

As with the cooldown sub-problem, this problem is well-posed and is thus amenable to resolution

by any number of methods. A spectral method was again employed for its resolution.
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Figure 4.4; Space-Time diagram for inverse liquid solidification problem.

4.2.3 Inverse Liquid - Solidification

As indicated above, the inverse liquid sub-problem is concerned with the prediction of the hot wall

boundary temperature and heat flux which when applied will produce the desired liquidus interfacial

temperature gradient history. A schematic of this problem is shown in Fig. 4.4. Since the inverse

nature of this problem manifests itself in the specification of the boundary conditions, the equation
governing energy conservation is unchanged from that given for the case of uncontrolled, i.e., direct,
liquid solidification:

Cii[d{x,F6)\ = 0 X e (5^(Fo),l), Fo e {Foi,Fomax\,
d

~ dFo dx^ n

(4.3a)

(4.3b)

Recall that both boundary conditions are specified on the known liquidus interface in the form of
known temperature and known temperature gradient as

HS'-{Fo),Fo) = 1,

x=S^{Fo)
GtiFo), Foe(Fo,,Fo„

(4.3c)

(4.3d)
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while no conditions are applied on the hot wall boundary, x = 1. The dimensionless liquidus

interfacial temperature gradient is given by

As with the governing equation, the initial condition remains unchanged from that given for the

uncontrolled, i.e., direct, liquid solidification, given by

9{x,Foi) = 9i,i(x) X e IS^(Foi), 1]. n (4.3e)

Due to its mildly ill-posed nature, resolution of this type of problem is more problematic when

compared to direct, well-posed problems. Traditional Finite Difference and Finite Element meth

ods tend to break down as one increases the temporal resolution of these methods. This is mostly

attributed to round-off errors introduced by traditional temporal discretization methods. In tradi

tional "time marching" methods, round-off errors propagate and accumulate from one step to the

next and thus increasing the number of steps increases the total amount of round-off error encoun

tered. As indicated, this class of inverse problems is ill-posed in the sense that small errors on the

input data can lead to large errors in the resulting output. Thus, as these small round-off errors

accumulate over temporal iterations, the solution becomes unstable and meaningless. The spectral

method employed in this investigation circumvents this accumulation by treating time in an elliptic

manner and thus eliminating the need for time marching. The details of this methodology will be

examined in greater detail later in this chapter.

4.2.4 Inverse Solid/Mush — Solidification

The final sub-problem in the resolution of the solidification design problem is the inverse solid/mush
solidification. Its resolution requires the determination of the cold wall boundary temperature and

heat flux which when applied will produce the desired liquidus interfacial motion while absorbing
energy from the liquid as dictated by the liquidus interfacial temperature gradient design scenario.

A schematic of the solid/mush inverse sub-problem is shown in Fig. 4.5. Since the solid and mush
regions will be solved simultaneously, there is no simplification that can be made to the generalized

non-dimensional energy conservation equation, Eqn. (3.28). Thus, in operator form, the governing
equation in the solid/mush region is given by

Ari,[0(5,Eo)] = 0, X e (0,S^(Fo)), Fo E (Foi,Fo„,ax], (4.4a)

d
M l + As = ,(0)(/?-l)-l^A,(0)

dFo

(7-1)^A.W
d  '

dx
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Figure 4.5: Space-Time diagram for inverse solid/mush solidification problem.

As with the liquid inverse problem, both boundary conditions are specified on the known liquidus
interface and are given by

«t,S'-{Fo),Fo) = 1.

^m,Fo)
x=S^{Fo)

— Gm{Po), Foe (Foi,Fo„

(4.4c)

(4.4d)

where,

Gi{Fo) = ̂i-T(x/'^'^
Ti Oi— Te dx l J

. Recall from the direct cooldown sub-problem that it was specified that the cold wall boundary
reach the liquidus temperature at time Foi. This combine with the fact that the liquidus interface
coincides with the point where the temperature is the liquidus temperature gives an initial condition
for the solid inverse problem of the form

S'^iFoi) = 0. (4.4e)
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The liquid and mush side liquidus interfacial temperature gradients, Gf and G^, are related via the
liquidus interfacial energy balance given by Eqn. (3.30) as

^ qL5 (̂Eo) = [1 + (7-1)A,(1)]

x=Sl'iFo)x=S^{Fo)

St dFo
a  F)

(4.5)-^e(x,Fo)
G^{Fo) Gf{Fo)

To complete the specification of the solid/mush sub-problem, all that remains is the construction

of the functional form for the solid mass fraction as a function of temperature. This construction

has one major constraint due to the manner in which the solid/mush model was developed above.

Firstly, the equation governing energy conservation in this region, Eqn. (3.28), requires that the

solid mass fraction be continuous and have a continuous first derivative. Furthermore, as will be

seen later in Sec. 4.3.2.3, the resolution methodology employed further imposes the requirement of

a continuous second derivative. Thus it was decided to use a continuous function of the form

A,(«(S,ro)) = i (4.6)

It can readily be verified that for 0 > 1 the solid mass fraction approaches zero and for 0 < 0

approaches unity. Thus the function chosen is applicable throughout the entire solidification domain.

As with the liquid inverse solidification sub-problem, the mildly ill-posed nature of this sub-
problem requires special attention with respect to its resolution. Again, a spectral method was

employed for this purpose.

4.3 Model Resolution

4.3.1 Methodology Overview

To achieve an overall continuity to the design problem as a whole, a spectral method was utilized

in the resolution of each of the sub-problems illustrated above. The methodology is based on
the classical weighted residuals method. The major feature of the methodology developed for this
exposition is the treatment of both space and time as elliptic variables eliminating the need for
time marching and thus increasing the overall stability. It is this characteristic that makes this

methodology a prime candidate for application to this class of inverse problems.
Application of the weighted residuals method to direct problems is a relatively straightforward

task. The unknown temperature field is expressed in terms of a series expansion consisting of a set of
spatially varying basis functions and their related time varying expansion coefficients. The series can
then be algebraically manipulated such that it identically satisfies the stated boundary conditions.
This procedure assures that no error is introduced into the analysis at the boundaries. At this
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point, the time varying expansion coefficients are expressed in terms of their own series expansion

again consisting of a set of temporal basis functions and their related, now constant, expansion

coefficients. To determine these unknown expansion coefficients, a set of residual functions are

formulated which are then minimized in some respect. For direct problems, two residual statements
were needed. The first is the result of substituting the assumed series expansion into the governing
equation. Since the expansion is only an approximation, due to truncation, a residual function
must be added to maintain the equality. The second comes from the specification of the initial
condition. As before, the assumed series expansion is substituted into the initial condition and

a residual function added to maintain the equality. Once formulated, many options exist for the
minimization procedure including Orthogona,l Collocation, Galerkin and Least Squares. It should
be noted that the minimization procedure in space and time do not have to be the same. In some

cases, as will be illustrated below, it is beneficial that they not be. However, for the case of the
direct problems. Orthogonal Collocation was utilized as the minimization method in both space and
time. This methodology simply requires that the residual function be identically zero at a number of
predetermined points within the solution domain. These points are termed the Collocation points.
Once this minimization is applied to the residual functions, the expansion coefficients are determined
via a simple matrix inversion. Once complete, reconstruction of the solution at any point within the
domain is accomplished via the series expansion.

The application of the weighted residuals method to inverse problems is similar in spirit to that
presented above for the direct problems. A series expansion is again assumed for the unknown
temperature field in terms of a set of spatial basis functions and related time varying expansion
coefficients. The only algebraic modification made to the series is the incorporation of the liquidus
interfacial temperature condition. The liquidus interfacial temperature gradient condition is held
in reserve. The reason for this is related to the fact stated earlier that the first part of the design
scenario for the liquidus interfacial temperature gradient must follow exactly that which occurs under
uncontrolled conditions. Since incorporation into the series would require a continuous function, it
would be necessary to construct a scenario that continuously follows the uncontrolled behavior and
accomplishes the desired design behavior. Once the interfacial temperature condition has been

, incorporated, the time varying expansion coefficients are again expanded in a series of temporal
basis functions and related constant expansion coefficients. With the series construction complete,
the next step is the construction of the residual functions. For the inverse problems, three separate
residual functions are required. The first residual results from the substitution of the assumed series
expansion into the governing equation. As before the residual function must be added to maintain
the equality. The second residual function is the result of the substitution of the series expansion
into the reserved interfacial temperature gradient condition. The third and final residual employees
the unused initial condition. The minimization technique employed for the inverse problems is a
combination of Orthogonal Collocation in space and discrete Least Squares in time. The discrete
Lease Squares method was chosen for the reasons described above with respect to the specification of
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the liquidus interfacial temperature gradient design scenario. It was felt that using a discrete method

in time would afford a greater level of flexibility and reduce the complexity in the construction of the

Gf (Fo) scenario. This flexibility is not without a price however. Firstly, the discrete least squares
method is computationally intensive. Secondly, unlike the Collocation method where adding more

temporal Collocation points will improve the solution, the discrete Least Squares method will have

a "best fit" point above and below which the solution will be inferior. This point is dependent

on several factors not the least of which is the number of "data" points utilized in the discrete

representation of the liquidus interfacial temperature gradient.

4.3.2 Methodology Application

4.3.2.1 Direct Liquid — Cooldown/Solidification

The similarities between the direct liquid cooldown and direct liquid solidification problems allow

their resolution to be presented in a single exposition. To facilitate this unified treatment, we

construct a generalized governing equation and related ancillary conditions. The generalized energy

conservation equations is given by

Ggen[0{x, Fo)] = 0 X e {H[Fo), 1), Foe {Foa, Foi], (4.7a)

n  — d d'^
^  (4-7b)

subject to the boundary conditions

9{H{Fo),Fo) = 9oiFo), (4.7c)

= Q'hiPo), Fo e (Foa,Fot], (4.7d)
X = 1

and the initial condition

9{x) = 9i^g{x), X e [H(Foa), 1], (4.7e)
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where

Direct Cooldown <

OoiFo)

FOa

Fot

H[Fo)

= OciFo)

= &i{x)

= 0

= Foi

= 0

Direct Solidification <

OoiFo) = 1

^i,gix) = Oi,i{x)

FOa — Foi

Fob — FOmax

H{Fo)
\

= S^{Fo)

Due to the choice of Chebyshev polynomials of the first kind for the spatial and temporal basis

functions in the resolution of the generalized liquid direct problem, the deforming liquid domain must

be mapped onto a non-deforming/fixed domain bounded by [-1,1]. This is accomplished using a

set of linear coordinate transforms of the form

rii{x,Fo) =

^i{Fo) =

1 - H{Fo)

FOb - Foa

[x-H{Fo)]-\, xe[H{Fo),l],

[Fo - FOa] - 1, Foe [F0a,F0b].

(4.8a)

(4.8b)

Applying the chain rule of differential calculus and treating rji and as independent variables, the
governing equation, Eqn. (4.7a), can be recast as

Fgenl^iVhW] = 0 iVh^l) £ [-1,1],

where the mapped differential operator, Cgen, is given by

^  _ 52 [1 - 0-(^;)] im - 1] 9 [1 - cr(^0]^ 9
dr^f 2[Fob-Fo^] drji 2[Fob - Fo^]

and

<^(6) =h([Ci + 1] + Foa) ,

= e[[vi + i] ̂ -4^ + cr(eo, Kz +1] + Foa

(4.9a)

(4.9b)
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In a similar manner, the boundary conditions can be recast as

0(-l,6) = 0ote), (4.9c)

= T,(6), 6e(-l,l], (4.9d)
7)1=1

and the initial condition becomes

^{Vh -1) = Og,i{r}i), r]i e [-1,1], (4.9e)

where

m) = Oo ( [6 + 1] ] ,

T.(6) = Ql ([6 + + FOa^ ,
OiAm) = ei,g (h +1] + ̂7(6)1.

The next step in the resolution of the generalized direct liquid problem is the construction of a series

expansion for the unknown temperature field in terms of a set of global spatial basis functions and

a corresponding set of unknown time varying expansion coefficients of the form

00

€ [-1,1]. (4.10)
n=0

Since we cannot retain an infinite number of terms for numerical analysis, we must truncate the
series after say N + 2 terms. Denoting this approximation to 0{r]i,^i) as the series
expansion becomes

iV+l

^  M) £ [-1,1], (4.11)
n=0

where in the limit we expect limjv-^oo = o,n{^i)- To preclude the need for boundary residual
statements to enforce the boundary conditions, the series in Eqn. (4.11) can be modified to identically
satisfy these conditions. This procedure has the added benefit of preventing the introduction of errors
from the boundaries. However, it also requires that the boundary conditions be continuous and have
continuous first derivatives. While for the resolution of the liquid cooldown problem this constraint
presents no difficulties, it requires serious consideration when resolving the liquid inverse problem
(see Sec. 4.3.2.2). Forcing the series in Eqn. (4.11) to identically satisfy the boundary conditions in
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Eqns. (4.9c) and (4.9d) we obtain

where

N

71=1

(4.12)

Fta.6)=Cte);^ + r~iT
a;o(-l) drii T]l=l

Oj)i

fin(??0 = <^n+l(Vl) ~ (^n+l(-l)
OJqM
CJo(-l)

1)1=1

wi(i?)) -a;i(-l)
wo(-l)

^W„+i(7J;) w„+i(-i) a ,, ^

7)1=1

m=i 7)1=1

and (^j) = Next, we choose to expand the unknown time varying expansion coefficients

in terms of a set of unknown expansion coefficients and a set of global temporal basis functions.

This elliptical treatment of time is the hallmark of the GTM. The expansion takes the form of

M

m=l

Substituting this expansion into Eqn. (4.12) we obtain

N M

EE«

(4.13)

(4.14)
n=l m=l

Equation (4.14) represents the final form of the series expansion. With its formulation complete,
the next step in the resolution of the general liquid direct problem is the determination of the

expansion coefficients. As discussed earlier in this chapter, this requires the construction of the

residual functions followed by their minimization. The two required residual functions are formed

via the substitution of the assumed series expansion, Eqn. (4.14), into the governing equation,

Eqn. (4.9a), and the initial condition, Eqn. (4.9e). Mathematically speaking, the residual functions
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are given by

= Cgen[0''ivi, e;)], m e (-1, i), 6 e (-1,1]

n Ri{0'^{vi,^i)) = -09,i{vi), m e [-1,1], 6 = -i-

(4.15a)

(4.15b)

Next, we wish to apply Orthogonal Collocation in the spatial direction to the residual functions

given above. The distribution of the Collocation points within the mapped liquid domain is given

by the open rule as

7?(; = COS
{2i — l)7r
2N

,  i = l,2,...,N.

The application of Orthogonal Collocation can be written compactly using the inner product notation

as

Rii^i) = {R?{0^ivr,^i)),S{vi i = l,2,... ,N.

(4.16a)

(4.16b)

With the spatial direction completed, we now turn our attention to the application of Orthogonal

Collocation to the temporal direction. In this case, the residual function to be minimized depends

on the location of the Collocation points since Rf is only valid at = -1. Therefore we must
first establish the distribution of the Collocation points in the temporal direction. We choose to

arrange the points according to the closed rule given by

6, = cos
(i - 1)7!"
M-1

j = l,2,...,M.

With this, we note that = —1 corresponds to j = M and thus the application of Orthogonal
Collocation in the temporal direction becomes

{Rm,5iCi-^i,))^0, j = l,2,... ,M-1,

=  j = M,i = l,2,... ,N.

(4.17a)

n  (4.17b)

Finally, applying Eqns. (4.17a) and (4.17b) to Eqn. (4.14) we obtain the following explicit algebraic
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system for the unknown expansion coeiBcients

N M

X) (^n;m^gen[(f>m-l{^l)^n{m)]{'nii,%) = -tgen[F{'ni,^l)]{r}U,^lj), 3 = 1,2,... ,M- 1, .
n—1 m=l

(4.18a)
N M

E E = OgM - j = M,i = l,2,...,N.
n=l m=l

(4,18b)

Once Eqns. (4.18a) and (4.18b) have been resolved via direct matrix inversion, the unknown tem

perature field and boundary heat fluxes can be reconstructed via Eqn. (4.14). More importantly, we

can also reconstruct the liquidus interfacial temperature gradient on the liquid side, i.e., Gf (Fo).
It is this information that motivates the investigation of the direct liquid solidiflcation because it

will be employed in the construction of the design scenario for Gf{Fo) that will act as input for the
inverse analysis of the liquid solidification problem. It is to this that we now focus our attention.

4.3.2.2 Inverse Liquid — Solidification

As with the generalized direct liquid problem, the choice of Chebyshev polynomials of the first kind
for the temporal and spatial basis functions in the resolution of the inverse liquid solidification sub-
problem requires the mapping of the deforming liquid region onto a fixed domain. The mapping
functions required for this are the same as given above; rewritten here in terms of the liquid domain
geometric parameters

r]iiix, Fo) = - S^[Fo)] - 1, x& [S^{Fo), 1], (4.19a)

^ [FouFomax]. (4.19b)
^ ̂max ^

Similarly, the equation governing energy conservation during this part of the transient is identical
to that for the generalized direct liquid problem. Given both these factors, the mapped form of
the energy conservation equation will also be unchanged. Rewritten in terms of the liquid domain
parameters it becomes

= 0, ivihCii) e [-1,1], (4.20a)

where the mapped differential operator, jCu, is given by

=  5 [i-Zi'-fe)]' a
dril 2[Fo,nax-Fo,] dr^u 2 - Foj] 5^,'
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h\^ii) = 5^ f[6, + 1] +Foi),

and

0{vu,^ii) = 0 (^[riu + 1] + 1] + Fo^ .
The boundary condition of known temperature at the liquidus interface, i.e., T{S^{Fo),Fo) — Ti,
again remains unchanged from the direct liquid solidification problem. Thus, we can simply recall

the condition from the generalized direct liquid problem as being

0(-l,^i;) = l, e«6[-l,l]- (4.20c)

We recall from Eqn. (4.3d) that the second boundary condition specifies the temperature gradient on

the liquid side of the liquidus interface. This overspecified boundary condition, i.e., design condition,

can be mapped as before to give

OVil
= rf(^«), (4.20d)

where

rf (&) = ̂ ([& +1] ̂ ^ +FoA.f (: ^ 4 h f 1 11 FOjfiax Foi

The initial condition also remains unchanged from the direct liquid solidification problem and thus

can be rewritten in terms of the inverse liquid variables as

Oimu -1) = Oi,i{riu), Tjii G [-1,1], (4.20e)

where

hiim) = Oi,i (hi +1]
With the mapping of the governing equation and ancillary conditions complete, we now turn our
attention to the construction of the series expansion for the the unknown temperature field. We

assume a series in terms of a set of global spatial basis functions and related time varying expansion
coefficients of the form

00

OiVih^ii) = hi, in) e [-1, !]• (4.21)
n=0
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Truncating the series after N + 1 terms for numerical purposes, and denoting this approximation as

9^ gives

N

0 ivil, iVil. 60 - XI On (6i )(^n iVil), ivii, 60 G [-1.1] > (4-22)
n=0

where we expect limAr-^-oo (60 = an(60 t^us limjv-t-oo 60 We now wish

to force the series in Eqn. (4.22) to identically satisfy the desired boundary conditions. We recall

from the discussion above that the liquidus interfacial temperature gradient condition is held in

reserve and thus only the liquidus interfacial temperature condition need be incorporated. Recalling

this condition given by Eqn. (4.20c) and modifying the series to incorporate this leads to

N

= F{T}a) + X e [-1, i], (4.23)
n=l

where,

^oim)
FiVil) =

a;o(-l)'

Wo(??iO— ̂niVil) ^n( 1)
a;o(-l)"

The time varying expansion coefficients are now expanded in a series consisting of a set of global
temporal basis functions and related constant expansion coefficients as

M

«n(6/)=X^^m^— (4.24)
m=l

Substituting this expansion into the original series, Eqn. (4.23), gives

N M

O'^iVihCii) =F{r]ii) + EEC 71 0m—1 (6i)^n(^iO' (4-25)
n=l m=l

Equation (4.25) represents the final form of the series expansion for the inverse liquid solidification
problem. With the series construction complete, we now turn our attention to the determination of

the expansion coefficients. As before, we begin with the formulation of the residual functions. Prom

earlier discussions, a total of three residual functions are required. These result from the substitution
of the assurned series expansion, Eqn. (4.25), into the governing equation, Eqn. (4.20a), interfacial
temperature gradient condition, Eqn. (4.20d), and initial condition, Eqn. (4.20e). Mathematically
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speaking we have

Rx {e^imAii)) = til [e'^ivih^ii)] im, ̂u), ivu, e«) e (-1,1],

rfi^ii), m =-I, ̂ii e i-iM
riti = -l

R? {o""im,^ii)) = - kiim), m e [-1, i], & = -i-

(4.26a)

(4.26b)

(4.26c)

We will now apply Orthogonal Collocation in the spatial direction to the residual functions given

above. However, the residual statement to be employed depends on the location of the Collocation

points since R2 {6^{riUi^ii)) is only.valid at = -1. Thus the location of the Collocation points
within the domain must first be established. To this end, the closed rule given by

Viii : cos
{i — l)7r
iV-1

f = l,2,...,iV,

is employed. Noting that a,t i — N rju^ — 1 indicates that {ViU ̂ u)) is valid for i —
1,2,... ,N - I. Similarly, R^ {Vih ̂ u)) is valid for rju E [-1 : 1] and thus i — 1,2,... ,N.
Applying Collocation in the spatial direction gives, in inner product notation.

Rii^ii) = {Rx ,s{vii-mi)), i = i,2,... ,n-i,

Rii^ii) = {R2 &)) j ̂ ivii - mi,)), i = N, ̂ii E (-1,1],

Ri teO = {R? {O^'imuCii)) , Siriii - rju,)) , i = l,2,...,N.

(4.27a)

(4.27b)

(4.27c)

With spatial Collocation complete, our focus now turns to the temporal direction. Recall from the

discussion earlier that in order to simplify the construction of the liquidus interfacial temperature

gradient design scenario, we wish to employ the discrete Least Squares method in time. Thus, we

assume that design gradient data is available at P discrete points given by ,^4/3,... , ̂Up.
Evaluating the above residual statements at these discrete time points assuming that dimensionless

time Foi, i.e., = — 1, corresponds to p = 1 gives

Rii^iJ = (Rx (O^iVih^ii,)) ,S{m - rjiii)) , f = 1,2,... ,iV - 1, p = 2,3,... ,P, (4.28a)
Rii^Up) = {R2 ,S(r]ii-TjiiJ), i = N, p = 2,3,:.. ,F, (4.28b)
Rii^iip) = {R? i^'^imh^iip)) ,Sir]ii - rju.)) , i = 1,2,... ,W, p = 1. (4.28c)

We next recall that the discrete Least Square residual is given by the square of the L2 norm of the
residuals, in a discrete sense, or mathematically speaking

p

n  = f = l,2,... ,iV.
P=1
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However, since we have an independent residual statement for the initial condition, i.e., p=l, the

Least Squares residual is modified to give

+  f = 1,2,...,AT.
p=2

(4.29)

Substituting the residual statements, Eqns. (4.28a), (4.28b), and (4.28c), into the Least Square

statement, Eqn. (4.29), gives

5, = [« Ami - mu))t +

p=2

Si = [« - r,u,))f +

^ [{R^ {0^im,^iip)) ,s{m -Vzii))]^, i = N.
p=2

(4.30)

(4.31)

Next, to resolve the expansion coefficients, the Least Squares residual is minimized with respect to
the unknown expansion coefiicients, or more specifically

Q^M.iv ~ f = 1,2,... , iV; A: = 1,2,... , M.

Applying this minimization to the residual statement in Eqn. (4.30) gives

0 = {Rf {9''{riu,^uA^Simi-mu))
Q

o N,M ) ̂iVil ~ mu)) +
i,k

P r

{R^{e''{vu,^iip)),s{rju-mu))
p=2 L

%{R^{9''ivii,^iO),Sivu-mu))
dc,

i.k

f = 1,2,... ,N-I, A; = l,2,... ,M. (4.32)
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Substituting for the residual statements from Eqns. (4.26a) and (4.26c) into the above and rearrang

ing leads to

0 = [0^(jjai,6ii) - Oi,i{r]iii)] {fliUiiiii) +

P r

iVil I ^il)] (llili, ̂ Up )
p=2 L
d
^

dc:
N,M
iyk

il [^^(%,6/)] {llil,,^ilp)

i = l,2,... ,N-1, k = l,2,... ,M. (4.33)

Similarly, applying the minimization to the residual function in Eqn. (4.31) and substituting from

Eqns. (4.26b) and (4.26c) into the result leads to

Vii=niii

d  \ d :̂n

l
iVih^ilp)

'nii='niti

,  i = N, k = l,2,... ,M. (4.34)

Recalling that the mapped differential operator, Eqn. (4.20b), is linear, and substituting the assumed

series Eqn. (4.25) into the minimized residual function, Eqn. (4.33), after considerable manipulations,

leads to

N M

0= sFiViii) - hiiViii) + EE
I. n=l m=l )

P r N M . ^
< til [FiVil)] imi,^Up) + X] ^n,m^u ['l>m-li^il)^n{Vil)] {Vili,^Up) [

p=2 i. n=l 171=1 )

^tii \^k—l{^il)^i{,'nit)\ iVilii^ilp)^ • (4.35)
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Collecting further and cleaning up leads to

N MIVl . ^

EE
n=l m=l ^

P

m—1

p=2

P

~  {'Pk-l{^ili)^ii'nili)} ~ ̂  ̂ ̂ il i^iVil)] ̂il iVili r ^ilp):
p=2

i = 1,2,... , iV - 1, A; = 1,2,... , M. (4.36)

Lastly, recalling the assumed series expansion, Eqn. (4.25), noting that the first spatial derivative is

given by

Q  O ^ ̂  Q

and substituting these into the minimized residual statement, Eqn. (4.34), gives

N M ,

n=l m=l

P

^ ̂ 4'm—l {^ilp ) ̂ ^niVil)
p=2 riii=niii

'Pk—li^ilp) o
OVil

d

Vii=ilil,

-rf(6,J
Vil=Vili

,  i = N, k = l,2,... ,M. (4.37)

Equations (4.36) and (4.37) represent a linear system of MxN algebraic equations. It can clearly be
seen that in the case of the discrete Least Squares method, the construction of the matrix require
a greater computational effort as compared with the Orthogonal Collocation method. However,
once constructed, the solution of the system requires no more effort in comparison. The solution
of this system can be accomplished via a direct matrix inversion method. Once completed, the
desired expansion coefficients are determined. Furthermore, since the series expansion is valid over
the entire liquid domain, it is a simple matter of evaluating the series and its first derivative at the
hot wall boundary, x = 1, to obtain the desired temperature and heat flux histories.
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4.3.2.3 Inverse Solid/Mush — Solidification

As with the liquid domain presented earlier, the expanding solid domain must be mapped onto a

fixed domain of [—1,1] as required by the choice of Chebyshev polynomials of the first kind for
the spatial and temporal basis functions. This is again accomplished via a set of linear coordinate

transforms of the form

r]is{x,Fo) =

^isix,Fo) =

.  2

S^{Fo}
2

FOr,

x — 1, a; e [0,5''"(Fo)],

[Fo - Foi] - 1, Foe [Foi, FOmax]-
Foi

(4.38a)

(4.38b)

Utilizing these transforms along with the chain rule of differential calculus, assuming rjis and are

independent variables, leads to the following mapped form of the governing equation

■^is [^(lis) ̂ is)] — Oj iVist^is) & [ Ij 1])

where the mapped non-linear differential operator. A/is, is given by

2A/i
2 g2

s = [l + As {0{riis,^is)) {7 - 1}]

[7-1] ^As(l9(7?is,^is)) d

Hs
+

drii,

F Ojjiax Foi
2

FOmax ~ Foi

Vis "t" 1 d

1 di + Xs{dillis>^is)) {P 1} ^^As(0(77is, ̂ is-))

1 + Xs{9{Vis,^is)) - 1} - ̂ ^As(%s,eis))
d^i.

+

drjis'

(4.39a)

(4.39b)
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and

Hti: {<.)=»( {m. +1} {6. +1} + Fo,

A (»(%.,&.)) = A (»({,„ + 1} {& + 1} + Fo,

Ifdu) = S' ( {£„ + 1} ^°' + Fo,

St =
Cpi (?) ?e)

D = ̂.
h

In an analogous manner, the interfacial boundary conditions can be mapped onto the new domain

to give

dn

eil,^is) = l, (4.39c)

= r^(fi«), ^^Fe(-l,l] (4.39d)
riis=l

where

r^L (f \ _ (/f I 1\ POmax FoiJ- m(&) = —^ I (?is + 1) 2 '

The mapped interfacial energy conservation equation is given by

'•"F;"'"FoJ-Fo,^^^fe)-= [1+ h-
h^i^is) dr],

^{Vist ̂ is) (4.39e)

With the mapping of the governing equation and ancillary conditions complete, we recall from

previous discussion that this system is non-linear due to the dependence of the mushy material
properties, i.e., thermal conductivity and specific heat, and latent heat release in the mushy zone
on temperature. We, therefore, must choose to either first linearize the governing system itself and
work with this linearized form of the problem, or proceed with the problem as is and choose a

method for resolving the resulting system of non-linear algebraic equations. It was felt that the
overall analysis process would be simplified if the governing system was linearized first. Thus, the
method of Quasi-Linearization was employed. We begin by rearranging the governing equation into
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the standard form of a function, ip, which must equal to zero given by

= C2{e)6r,uvu + Cs{S) {OriS ' Cl +
frjis + l d i

CiW h'^iiis) = 0, (4.40)

where

m =
2  „

^ O-max P

C2{6) = [1 + Xs

l + A#){/3-l}-i£A,(0)

C3(0) = [7-1]^A,(0)
2

In the above, the subscript on 6 represents partial differentiation with respect to that variable, i.e.,

= -^0, and the functional dependencies have been temporarily dropped for brevity. We now
expand ip in a Taylor series expansion about the current iterate, it, to give

d
-  i/)®* H =ihV  ̂ ^ 06 ^Qit+l _ Qit-^ ^ d

86^
-ip

d
-ip KS,. -

gu+l _ 0
S*s S»s

+ H.O.T. (4.41)

Substituting from Eqn. (4.40) into the above and neglecting the higher order terms, H.O.T., leads

to

8

[0it+l _ Qitl^ +

86

di,

[C2(^")],, - [cMu [C' -^1

6is "b 1 d ,L(/- \f\ _n

(4.42)
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Forcing the equation to be satisfied at each iteration, i.e., ■0^'+^ = = 0, and expanding the last
three terms on the right hand side leads to

0 = Q^C^i^Writsrits + QgCsi^) Ks)' + h''i^is)0r,u
[0it+i _ Qit^ + [2C3(0)0,..J,, - eU +

+ Ue)\ML + -

-«£..}
0!f+^ -

(4.43)

Recalling the definition of ip from Eqn. (4.40), the underbraced term A can be seen to be identically

Applying this to Eqn. (4.43) and recalling the assumption that Eqn. (4.40) is satisfied at each
iteration, i.e., 0 = 0, gives

0 = QQC2{0)0r,unis + ihu) + iUOrjts

n + m0%.]u - ̂ t] + 0".+^ -
'Il3

Ki(»)li. C + feWloCi. + [&{«)]„ K? ■ (4.44)

We will now drop the index on the current iterate, it, collect terms, and solve for the up iterate,
it + 1, to give the final version of the linearized governing equation given in operator form as

£is W'^'-{Vis,iis)] = [C4(%«,6.))] eir,is,^is)
d[C

dm
3{9{Vis,^is))]

where the mapped linearized operator is given by

Ci, =

>  iVis: ^is) £ [ 1 • 1]) (4.45a)

^nis fl Clqis dm

[Cl(^'(??is,6«))] ^ + [C2(^(j7is,6s))] + [C4(6'(?yis,6s))] ,
C?is

(4.45b)
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and

C'ii^ {Vis 1 ^is)) — QQ^i^iVisj^is)) {j 1}

{l - ̂} ■^^siO{r]is,^is))

92

dril ^{Visi ~t~

d X
^(

dr}i
j)is> ^is} +

Fo„ - Foi {P -1} ̂ K{Oims,U) - ji^\s{6{ms,^is))
d- ̂ KmsMs)

^ (sis) ^sis ^Vis ^sis

Since the boundary conditions are linear in their original form, we simply repeat them here for
completeness

dr],̂ e''+'iVis,^is) = r^(6«), 6. e[-i,i].
TJia — 1

Similarly, the initial condition also remains unchanged as

(4.45c)

(4.45d)

(4.45e)

With the linearization process complete, we can proceed with the resolution of the solid/mush
design problem. As with the other sub-problems, we begin by assuming a series expansion for the
unknown temperature field at the up iterate in terms of a set of global spatial basis functions and
related time varying expansion coefficients of the form

^ ^ ^ 0"n.i^is)^niVis) i iVisj^is) € [—1,1]. (4.46)
n=0

Since, as before, an infinite number of terms cannot be retained for numerical purposes, we must
truncate the series. Retaining say W + 1 terms and denoting this approximation as gj^gg

N

0'*^' {riis, ^is) = E (Vis, ^is) € [-1,1]. (4.47)
n=0

We now wish to force the series above to identically satisfy the desired boundary conditions. For
the case of the solid/mush inverse problem, we have a choice with respect to the application of the
liquidus interfacial temperature gradient condition. This is due to the fact that the application of the
discrete Least Squares method for the liquid inverse problem produces a continuous function for this
interfacial condition. We therefore have two options from which to choose. Firstly, we can choose
to utilize this continuous function for along with the liquidus interfacial energy balance.
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Eqn. (4.39e), to construct a continuous function for which can be directly incorporated into
the series. Secondly, we can employ the original discrete data for Ff along with the interfacial
energy balance, Eqn. (4.39e), to construct a set of discrete data for r^(^is) and again employ
discrete Least Squares in time to resolve the problem. Each of these options have their good and
bad points but it was felt that the discrete Least Squares approach would be the better choice. The
ill-posed nature of the problem was the main reason for this choice since any small perturbations

in the continuous liquidus interfacial temperature gradient function from the liquid problem could

cause large errors in the resulting solid/mush prediction. Thus, only the interfacial temperature

condition, Eqn. (4.45c), need be incorporated into the series. As before, this is accomplished simply

via algebraic manipulation of the series to give

N

= F(ms) + X] (^is)^n(ms), (ms,^is) e [-1, i], (4.48)
n=l

where

^o(Vis)
F(Vis) =

c^o(l) '
l^oiVis)

^niVis) — ̂niVis} ''^ra(l)
wo(l)

We now expand the time varying expansion coefficients in a series expansion in terms of a set of

global temporal basis functions and related, now constant, expansion coefficients:

M

(4-49)
7n=l

Substituting this into the original series expansion, Eqn. (4.48), produces the final version of the

series expansion given by

N M

EE ̂n,'m 1 (^is)^^n(%s)) iVist^is) £ [~lj !]• (4.50)
n=l m=l

To proceed with the resolution of the solid/mush problem, we turn our attention to the determination

of the unknown expansion coefficients. As explained earlier we will be employing discrete Least

Squares for the temporal minimization and Orthogonal Collocation for the spatial minimization.

We begin by constructing the residual statements via the substitution of the assumed temperature

field, Eqn. (4.50), into the quasi-linearized governing equation, Eqn. (4.45a), interfacial gradient
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boundary condition, Eqn. (4.45d), and initial condition, Eqn. (4.45e);

tdN
Xto

Vis £ [ l)l)i ^is € ( 1,1])

»7is=l

(4.51a)

^m(^«s)' ^is — 1, ̂ is £ [~1) Ij)

(4.51b)

R? (F+b(iV,M) ^ 1 _ Qit+1,{N,M) _1), 6 [_1_ 1], = _1. (4.51c)

Before Orthogonal Collocation can be applied, we must first establish the distribution of the collo

cation points within the spatial domain. The closed rule given by

riisi = cos
{i — l)7r
N-1

1,2,... ,N,

will again be employed for this purpose. With the points established, we can now proceed with the

application of Orthogonal Collocation in the spatial direction which gives, in inner product notation

Rii^is) = (< ,SiT}is - Visj) , i = 2,3,... , AT, (4.52a)
Rii^is) = {R^ ,S{riis - Vis,)) , ^ = 1, e (-1,1], (4.52b)
Rfi^is) = {R^ ,6{vis-Vis,), i = 1,2,... ,iV, e,. = -1. (4.52c)

We now recall from the previous discussion that the discrete Least Squares method will be employed

in the temporal direction. Again, it is assumed that gradient data is available at P discrete time

points given by ,■ ■ ■ , ^isp where ^jg^ = -1. We thus begin by evaluating the residual
statements, Eqns. (4.52a), (4.52b), and (4.52c), at each of these discrete points to give

Rii^is^) = (< {e''+''^'''''Hvis,^isp)) ,5{Vis-Vis,)) , f = 2,3,. . . ,iV, (4.53a)
Rii^isp) = {r^ {0''^^'^^'^Hvis,^isp)) ,S{riu - Vis,)) , i - 1, p = 2,3,. . . ,P, (4.53b)
Rfi^isp) = {R^ {0''+''^'''''Hvis,^isp)) ,S{vis-Vis,), i = 1,2, . . . ,iV, p=. 1. (4.53c)

From the inverse liquid problem, we recall that the Least Squares residual, in a discrete sense, is
given by

= [Rl {^isr)] ' + [Rii^isp )]\ i = 1, 2,. . . , iV.
p-2

(4.54)
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Substituting the residual functions, Eqns. (4.53a) and (4.53c), into the Least Squares residual ex

pression above, recalling that the operator is now linear, and minimizing this residual with respect

to the unknown expansion coefficients gives

0 =

p

N M

1 - nVis,) -EE &^'+''(^'^Vm-l(-l)nn(»7i...)
n~l m=l

[ ̂ k—li "I"

E
p=2

N M

n=l m=l

[C4 (^ iVisi 5 ̂ isp ) )] ̂  iViSi I ^isp ) [Cs (^ {Visi j ̂ isp ) )]

^is [4'k—l{^is)^i{Vis)] iVisa^iSp)

dn ^{Vis) ̂isp )
"His —

,  i = 2,3,... , N, k = 1,2,... , M. (4.55a)

Similarly, applying the minimization to the residual functions given in Eqns. (4.53b) and (4.53b)
gives

0 =

p

N M

1 - FiVis.) -EE
n=l m=l

[  ̂h—l{ (^isi )] "H

E
p=2 Ldm

-F{ms)

N M

+ E E —^nims)
Vis—'Hisi n=l m=l Vts—Vis^

d
'Pk—l{^iSp) o ^iiVis)

dms
,  z = 1, A: = 1,2,... ,M. (4.55b)

Collecting terms and rearranging the above equations gives the final set of linear algebraic equations
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for solution of the unknown expansion coefficients:

N M

E E ^m—l{ ^)^n{Vis,)^k—l{
71=1 m=l

-^is ['/'m—1 (Cis)^7i(^is)] (^isi j CiSp )
P=2

1 (^is)^i('7is)] (fis, j^isp) = [1 - FiT]is,)]

E
p=2 .

Fis [F{r]is)] {ViStT^iSp) [C4(^(^is;) ̂iSp))] ̂ {Visi y ^iSp) [Cs ; ̂iSp ))]
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Once this system is solved, Eqns. (4.56a) and (4.56b), we obtain a new set of expansion coefficients.
These coefficients are then used to update the algebraic system, i.e., temperature dependent param
eters, and solved again for a new set of expansion coefficients. This process is continued until the
maximum temporal iterative error at the cold wall boundary, rjis — -1, falls below a predetermined
level.
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Chapter 5

Results of the Model

5.1 Introduction

To test and illustrate the capabilities of the overall resolution methodology developed for the binary

solidification design problem, there are several possible avenues which could be explored. Rather than

choose a particular binary alloy for investigation, it was decided to perform a parametric analysis

utilizing values encountered in typical engineering practice. One of the main benefits of this form of

analysis is that it allows one to determine the strong and weak points of the current methodology.

Furthermore, this information can provide insight into future improvements that could be made to

the solution technique.

The non-dimensionalization of the problem carried out earlier makes the choice of the parameters

relatively straightforward. However, an exhaustive investigation of all these parameters would be

prohibitively lengthy for this exposition. Therefore, the parameters deemed as most relevant to the

process were chosen for this investigation. The chosen parameters and the ranges over which they

were varied are shown in Table 5.1. The remaining parameters are the maximum Fourier number

and the ratios of solid and liquid specific heats and thermal conductivities. The maximum transient

length, Fomax, which is limited by a combination of the design liquidus interfacial velocity and the
geometric extent of the problem, was chosen such that the liquidus interface just reaches the hot

wall boundary. The values assumed for P and 7 of 1.119 and 1.131 respectively are taken from a

Table 5.1: Parameters chosen for parametric study.
Parameter Comment Range
Si Initial liquid superheat 1.695,2.391
Foi Initial cooling period 0.124,0.247

Dimensionless liquidus interfacial velocity 0.212, 0.424, 0.849
St Stefan number 0.5, 1.0, 10.0
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Table 5.2: Result legend key for direct liquid runs.
Symbol Oi Foi

A 1.695 0.124

B 1.695 0.247

C 2.391 0.124

D 2.391 0.247

typical binary metallic alloy. . .

Before proceeding with the presentation of the binary solidification design problem results, it
should be noted that the basic methodology developed in this investigation is equally applicable to
the design of pure melt solidification process. The author has investigated problems of this type
and the results are included in Appendices B and C since their inclusion in the main body seemed
inappropriate.

5.2 Direct Liquid - Cooldown

We begin the in-depth discussion of the results with the direct liquid cooldown sub-problem. The
only parameters affecting the solution of this portion of the transient are the initial liquid superheat,
di, and the corresponding length of the transient, Foi. Thus, a total of four runs will be needed for its
complete investigation. These runs will be identified according to the legend presented in Table 5.2;
There are two basic purposes for the investigation of the liquid cooldown sub-problem. Firstly, the
cooldown result will be required as the initial condition for the direct liquid solidification problem.
Secondly, the transient results can be utilized to obtain an estimation of the penetration time required
for a thermal perturbation initiated one boundary to reach the opposite boundary. This information
is needed for the construction of the design scenario for the liquidus interfacial temperature gradient.
Referring to Fig. 5.1(a) and estimating the point at which the hot wall temperature begins to deviate
from its initial value, gives an estimation of the normalized dimensionless penetration time, FolFoi,
for cases B and D of ~ 0.4 and fs 0.8 for cases A and C. Thus, the dimensionless penetration time "
is approximated by Fop ss 0.099.

The slight differences in the cold wall cooling curves for cases A and B are due to the assumption
of a fixed value for the "time constant" utilized in their construction. Though at first these curves
appear to be discontinuous, they in fact are continuous functions constructed utilizing a of pair error
functions. The error functions contain a "time constant" which dictates how quickly they transition
from their asymptotic values at the origin. Thus, unless the time constant is adjusted for each case
slight differences will be seen. The same argument holds for the differences in the curves for cases
C and D.

The cold wall heat flux results are shown in Fig. 5.1(b). As expected, the higher initial liquid
superheat combine with the shorter transient cooldown time produces a higher heat flux value at
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Figure 5.1: Results of the direct liquid cooldown transient. Note:
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Figure 5.2: Liquidus interfacial velocity design scenarios, V^{{Fo-
Foi)/{Fomax Foi)).

the cold wall. This is an important trend to note at this point since, as will be shown shortly, this

has an impact on the upper limit of the design liquid interfacial temperature gradient that can be

realistically attained.

5.3 Direct Liquid - Solidification

We next turn our attention to the direct liquid solidification sub-problem. Indirectly, its solution is

effected by the initial liquid superheat, 6i and the length of the cooldown transient, Foi. This is due
to its dependence on the cooldown sub-problem for the specification of its initial condition. More

directly, the solution is influenced by the liquidus interfacial velocity design scenario. We recall from

the introduction, that it is desired to produce a casting with a uniform microstructure. According
to Fig. 1.1, this is accomplished via maintenance of a constant solidification design velocity and
interfacial temperature gradient. With this in mind, the liquidus interfacial velocity design scenario
was constructed such that the interface quickly accelerated to its design value, F/', and remains
constant for the balance of the transient as shown in Fig. 5.2.

As previously stated, the purpose for considering the direct liquid solidification sub-problem
was two fold. The primary reason is that the early transient portion of the liquidus interfacial
temperature gradient under direct, i.e., uncontrolled, conditions is needed in the construction of the

desired design scenario. We recall that this is necessitated by the fact that a finite amount of time
is required for a thermal front initiated at the hot wall to reach the liquidus interface. Thus, till
the penetration time has elapsed no alteration to Gf can be physically accomplished. Secondly,
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the direct problem provides a "baseline" solution against which the "complexity" of the design, i.e.,

inverse, result can be judged.

Hot wall temperature results, 6h, for a dimensionless liquidus interfacial design velocity of V/ =
0.424 are shown in Fig. 5.3(b) for various values of 9i and Foi. Similar results for design velocities

of Vj' = 0.212 and 0.849 are shown in Figs. 5.3(a) and 5.3(c). As required, the solution at the
beginning of the transient, Foi, corresponds to the value at the end of the cooldown transient, Foi,

and thus continuity has been preserved. Since the hot wall was assumed insulated for the direct

analysis, i.e., maintained at its initial gradient value, as the liquidus interface moves into the liquid

the hot wall begins cooling towards the liquidus temperature. The effect that the interfacial velocity

has on the solution can clearly be seen by comparing Figs. 5.3(a), 5.3(b), and 5.3(c). Increasing

the value of the solidification design velocity delays the cooling of the hot wall till later in the the

transient. This effect is expected due to the overall faster nature of the transient which allows less

time for the effects of the presence of the liquidus interface to influence the hot wall.

The transient behavior of the liquidus interfacial temperature gradient results, shown in Figs. 5.4(a),

5.4(b), and 5.4(c), are as expected in that the value matches the cooldown sub-problem results at

Foi and approaches the hot wall boundary condition of = 0 as the interface reaches the hot wall.

The effect of the liquidus interfacial design velocity, F/, is again clearly visible from the figures
in that higher values tend to delay the "falloff" of the gradient value. This again is due the the

effects of the quicker transient as described above. This delayed "falloff" of the interfacial gradient

has another, not so obvious effect, on the construction of the design liquidus interfacial temperature

gradient scenario and the resulting boundary prediction. Since the material and geometry are the

same for all the cases presented, the penetration time remains constant. Thus, for an equal "control

effort" at the hot wall boundary, a higher value for Gf^ can be accomplished at a higher interfacial
velocity V^.

5.4 Design Scenarios

With the previous sub-problems resolved, the construction of the liquidus interfacial temperature
gradient design scenario can be undertaken. There are, of course, any number of approaches that
can be employed for this purpose which would be exhaustive if not impossible to consider. However,

recalling again the desire of a uniform microstructure throughout the domain, and thus a constant
and Gf, the choices become more limited due to required asymptotic behavior. On the other

hand, however, the manner in which the resolution methodology was formulated, i.e., discrete Least
Squares in time, removes the requirement of a continuously differentiable function and thus simplifies
the construction.

It was decided to employ a relatively simple process to construct the desired liquidus interfacial
temperature gradient design scenario. A quick observation of the direct results. Figs. 5.4(a), 5.4(b),
and 5.4(c), suggest an exponential "falloff" of the gradient value from its initial value to the hot wall
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Figure 5.3: Hot wall boundary temperature results for the direct liquid solidification transient,
9hi{Fo - Foi)/{Fomax -Foi)).

60



2

2  1.5

0 2 0.4 0 6 0 8 1

Normalized Dimensionless Time [(Fo-Fo,)/(FOn^-Fo,)l

4

io
i" 3.5
6

■3 3
£

I
E
0

1  2
CO

i1  ̂ 5
1  1
5"

o  0 5
c
g

o  0

0.2 0.4 0.6 0 8 1
Normalized Dimensionless Time [(Fo-FO|)/(FOfnaj|-FO|)]

(a) Dimensionless liquidus interfacial velocity of
V/ = 0.212.

(b) Dimensionless liquidus interfacial velocity of
y/ = 0.424.

S  25

U  2

2  1.5

0.2 0.4 0 6 0 8 1
Normalized Dimensionless Time [(Fo-Fo,)/(F0max-FOi)]

(c) Dimensionless liquidus interfacial velocity of
y/ = 0.849.

Figure 5.4: Liquidus interfacial temperature gradient results for the direct liquid solidification tran
sient, Gf{{Fo - Foi)l{Fo^ax - Foi)).

61



Table 5.3: Liquidus interfacial temperature gradient design parameters.
ei Foi Vi' Gt Fog

1.695 0.124

0.212 0.621 0.265

0.424 0.700 0.258

0.849 0.871 0.248

1.695 0.247

0.212 0.551 0.389

0.424 0.623 0.382

0.849 0.779 0.371

2.391 0.124

0.212 1.241 0.265

0.424 1.400 0.258

0.849 1.742 0.248

2.391 0.247

0.212 1.103 0.389

0.424 1.247 0.382

0.849 1.558 0.371

value. Thus, it was felt that an exponential function could be "grafted" onto the direct result at

some time, Fog, past the penetration time, Fop, and made to asymptotically approach the design

value, To this end, a function of the form

GtdesiFo) = Gt,iriFOg) + f ̂ Gld

dFo
',dir

FOn

1  / FOg1 - exp —-
Fo

Fo > Fo,
fl! (5.1)

was employed where Fog ss Foi + Fop and the time constant, t, was chosen such that the transition

time to the design value was minimal. Specifically, for the time period, Foi < Fo < Fog the design
data comes from the direct analysis, i.e., Gfg^^^{Fo) - Gf^^^^iFo), and for Fog < Fo < Fomax the
design data comes from Eqn. (5.1). The penetration time, Fop, utilized above was estimated from
the liquid cooldown result. The remaining parameters utilized in the construction of the design
scenario for the liquidus interfacial temperature gradient are shown in Table 5.3. Furthermore, a
comparison of the direct and design liquidus interfacial temperature gradient are shown in Fig. 5.5
for a dimensionless design velocity of Vj' = 0.242. The curves for the remaining cases are included
in Appendix A. Lastly, before proceeding to the results of the design analysis, we wish to give
some sense of scale to the dimensionless parameters. Consider the case of Oi = 1.695, Foi = 0.124,
Fg = 0.424, = 0.700, and Fomax = 2.35 for which the corresponding dimensional parameters
are given in Table 5.4.

5.5 Inverse Liquid - Solidification

With the design specification completed in the previous section, i.e., liquidus interfacial velocity
and interfacial temperature gradient, our attention now turns to the hot wall boundary conditions
that must be imposed to produce these desired results. However, before the actual design runs were
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Table 5.4: Illustrative dimensional parameters.
Parameter Value Units

Design Velocity 0.2 mm/s
Superheat 10.0 °C
Liquidus Temperature 197.38 °C

Eutectic Temperature 183.00 °C

Cooldown time 10.0 sec

Maximum time 190 sec

Design Gradient 0.383 K/mm
Length 38.1 mm

Thermal Diffusivity 17.96 mm?' j sec
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considered, it was desired to somehow verify the function of the numerical methodology. Thus, it was

decided to utilize the results of the direct liquid solidification sub-problem to test the inverse analysis.

Specifically, the liquidus interfacial velocity design scenario. Fig. 5.2, and the results obtained for

the liquidus interfacial temperature gradient from the direct analysis. Fig. 5.4, were utilized as a

test "design" scenario. Given this set of "design" conditions, the inverse analysis should predict

the direct boundary condition of an insulated hot wall and corresponding hot wall temperature. A

representative set of results for this analysis are shown in Fig. 5.6 while the remaining are shown in

Appendix A. Examining Fig. 5.6(a) illustrates clearly that the inverse prediction for the hot wall

temperature, dh, shows excellent agreement with the corresponding direct results. In this case, the

two curves are indistinguishable. In comparison, at first inspection the prediction for the hot wall

heat flux, Q'I^, shown in Fig. 5.6(b) does not appear to match as well. However, one important
point must be taken into account before this conclusion can be drawn. Recalling that the inverse

prediction utilizes a series expansion consisting of a set of oscillatory basis functions, it should be

clear that replicating the constant valued boundary condition at the hot wall, i.e., = 0, will

be difficult. This type of behavior is often seen when employing series expansions to approximate

these types of single valued functions. Thus, the facts that the magnitude of the oscillations of the

prediction are small and are centered about the correct solution, it was felt the agreement was quite

acceptable. These results instilled a good deal of confidence in the solution methodology developed
with which the analysis of the design runs could be undertaken.

To begin the presentation of the hot wall binary design results, we note that a particular design
run is defined through the specification of the liquidus interfacial velocity and temperature gradient
design scenarios. Thus each design curve in Fig. 5.5 together with its corresponding interfacial

velocity design will, once analyzed, have a set of corresponding hot wall boundary history predictions.
As with any numerical investigation, the issue of convergence is an important one. However, the
manner in which to define convergence for this class of problems in not a simple one. This is due

to the inverse nature of the solidification design problem and the temporally discrete nature of
the solution methodology. Thus, an in-depth analysis of the convergence characteristics was not
undertaken. However, to obtain some idea of the convergence character, a simplified approach was
taken in which the number of spatial and temporal terms retained, N and M respectively, was
systematically adjusted to observe the changes in the solution. Typical results obtained for this
analysis are shown in Fig. 5.7 for a dimensionless velocity of V/ = 0.424. Similar results for the
remaining velocities are shown in Appendix A. It can clearly be seen that for the combinations of

M and N considered, the hot wall temperature prediction is not greatly effected. Only near the
end of the transient can the curves be seen to deviate. For the hot wall heat flux, the effects of
N and M are more visible but still show good agreement. As with the temperature results, the
curves show a higher deviation near the end of the transient. Also, during the early transient, when
the design liquidus interfacial temperature gradient scenario replicates the direct results deviation
is also seen. This is again for the reasons explained earlier with respect to replication of a constant
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Figure 5.6: Inverse liquid verification run for dimensionless values
of F/ = 0.424, Oi = 1.695, Gf^ = 0.623, and Foi = 0.247.
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characteristics of the liquid inverse solution for dimensionless pa
rameters y/ = 0.424, 9i = 2.391, Foi = 0.124, and = 1.400.

function with a series expansion. Thus, small changes in the order of the approximation can clearly
be seen. Henceforth, the hot wall results shown are the "best case" converged results using iV = 12
and M = 40.

Hot wall temperature and heat flux boundary histories for a dimensionless interfacial velocity of

— 0.424 are shown in Fig. 5.8. To consolidate the presentation, the balance of the results are
shown in Appendix A. For comparative purposes, the results of the direct liquid sub-problem are
also shown in these figures. The first thing that can be observed from the results is that the inverse

predictions, i.e., hot wall temperature and heat fiux, replicate the direct results during the initial
stages of the transient, i.e., Foi < Fo < Fop, which, as we recall, is necessitated by the diffusive
nature of the problem. To clearly illustrate the need for this transient "matching", Fig. 5.9 was
developed in which the hot wall temperature and liquidus interfacial temperature gradient results,
both controlled and uncontrolled, are shown. This figure clearly shows that initiation of the hot
wall control, i.e., the point at which the inverse and direct curves deviate, takes place approximately
^Fo = OA(Fojnax ~ Foi) prior to the deviation of the controlled liquidus interfacial temperature
gradient from the uncontrolled. Thus attempting control without accounting for this lag would
violate the physics of the problem.

The character of the hot wall active control measures, i.e., 6h and Qy^, predicted by the inverse
analysis is as expected. To force the liquidus interfacial temperature gradient to follow the design
scenario, instead of asymptotically approaching zero, energy must be added to the liquid region
to maintain the necessary superheat at the liquidus interface. The control perturbation, i.e.,
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0.424, = 0.700.

required at the hot wall to effect the initial change in Gf is rapid and relatively large in nature. Once
Gf has been "grabbed" only a steady increase in Q'I^ is necessary to maintain the design value. In
an analogous manner, the hot wall temperature decreases at a slower rate due to the higher energy

levels in the liquid region.

One final point should be made before, moving on. The results show that in order for one to

control the liquidus interfacial temperature gradient, one need only be able to supply additional
heat at the hot wall. This point is important from an implementation point of view since providing
control in only one mode, i.e., heating or cooling, is simpler than if one must accomplish both.

5.6 Inverse Mush/Solid - Solidification

Lastly, we turn our attention to the results for the inverse solid/mush solidification sub-problem.
The resolution of this portion of the binary solidification design problem was, for many reasons, the
most problematic. This is mostly due to its inverse nature and its inherent non-linearity. With
this in mind. Fig. 5.10 shows the required cold wall boundary histories, temperature and heat fiux,
required to effect the desired design solidification with respect to the liquidus interfacial velocity for
= 0.424. As before, for brevity the balance of the results are shown in Appendix A. For each

Vj' and G^ combination, the effect of the Stefan number on the resulting boundary predictions was
considered. We recall that the Stefan number represents a materials relative ability to store energy

68



Heat Flux —-

Temperature —

5  0.4

c  02

Stv /

Heat Flux

Temperature

Stv /

0  02 0 4 0 6 0 8 1

Normalized Dimensionless Time [(Fo-FO|)/(Fo^-FO|)]
0  0 2 0.4 0 6 0 8 1

Normalized Dimensionless Time I(Fo-FO|)/(FOmax-FO|)]

(a) Oi = 1.695, Foi = 0.124, and Gf = 0.700. (b) Oi = 1.695, Foi = 0.247, and Gf = 0.623.

Heat Flux -—
Temperature —

0.2 0.4 0.6 08 1

Normalized Dimensionless Time ((Fo-FO|)/(FOn^-FO|))

08

012

'-a
Z.

s

0.6

0,11
u.

3

04

01

o
X

S.
E
p 0.2

s
T3

O T3

0

0.09
O O

O
« -0.2

O
(B
c

008 c
o

E
g

-0.4

G
G •0.6

0 07

-0 8

0.06 ■1

0.1

0 095

0.09

0.085

0 08

0.075

0.07

0 065

0.06

D.055

Heat Flux -—

Temperature —

0.05
0.2 0 4 0 6 0 8

Normalized Dimensionless Time ((Fo-FO|)/(FOfnaj,-Fo,)]

(c) 0, = 2.391, Foi = 0.124, and Gf = 1.400. (d) 0, = 2.391, Foi = 0.247, and Gf^ = 1.247.

Figure 5.10: Cold wall boundary temperature and heat flux results under design (controlled) condi
tions for a dimensionless liquidus interfacial velocity of Vj' = 0.424. Note: Arrow indicates direction
of increasing Stefan number, St=0.5, 1.0 and 10.0.

69



in the form of sensible and latent heat. Thus, a high Stefan number indicates that a material can

store a great deal of heat in sensible form and thus the process is conduction dominated, whereas, a

low Stefan number indicates a process dominated by phase change. Though certainly not exhaustive,

three values of the Stefan number were considered, St=0.5, 1.0, and 10. The cold wall temperature

exhibits an exponential type decrease throughout which is similar in character to the exact solution

for a single phase, pure melt, constant velocity solidification problem [25]. The cold wall heat flux

results clearly illustrate the fact that a smaller Stefan number implies a greater cooling demand at

the cold boundary. This is as expected since, for a given Vj" and Gf^, a larger amount of energy, in
the form of latent heat, must be removed to effect the solidification. As was the case with the hot

wall control, the cold wall requires only one mode of control which in this case is cooling.

Before proceeding to the solidus interface prediction results, the results obtained for = 0.849,

specifically , need to be touched upon. As seen in Fig. A.9, the temporal characteristics appear

different than those of the other cases. This is due to convergence difficulties associated with the

combination of a low Stefan number and high liquidus interfacial velocity. These two factors result

in a highly non-linear phenomenon undergoing a rapid transient. Though not as well behaved as

the other results, it was felt that the cold wall temperature predictions warranted their inclusion for

comparison sake. It also helps' to identify the limitations of the current methodology not so much

in theory but execution, i.e., linearization procedure.

Utilizing the temperature field obtained for the solid/mush region, the determination of the

location of the solidus interface, 5^, as a function of time is a relatively straightforward procedure.
This information enables us to calculate the thickness of the mushy zone, i.e., S^{Fo) - S^{Fo), as
a function of time. As hypothesized earlier in this exposition, a constant and Gf should give
rise to a mushy zone of constant thickness. The results of this procedure are shown in Fig. 5.11

for Vj' = 0.424 and in Appendix A for the remaining velocities. These figures clearly show that
indeed a mushy layer of approximately constant thickness forms as a result of the design solidification

parameters. Furthermore, they also indicate that lower values of Stefan number result in thinner

mushy zones. This verification of the formation of a constant mush thickness gives rise to the

consideration of a simplified mushy analysis in which a quasi-steady state approach is taken. This

simplified modeling is the subject of the following chapter.
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Chapter 6

Quasi—Steady Mush Analysis

6.1 Introduction

The results of the solidification design problem utilizing the full mathematical model suggest that

a simple rule of thumb type relation can be developed which approximates the thickness of the

mushy region. This conclusion is based on results obtained for the solidus interface position history.

Close examination of Fig. 5.11 reveals that the solidus and liquidus interfaces appear to move at

approximately the same velocity. This, along with the facts that the solidus and liquidus interface

temperatures are fixed and the design liquidus interfacial temperature gradient is a constant, indi

cates that the mushy region is undergoing a quasi-steady state process in that conditions within the

mushy region are not changing with time. Therefore, a simple steady state analysis of the mushy

zone was carried out to determine to what degree such an approximation would match the full model

results. This analysis was also viewed as providing an independent means by which the validity of

the full model could be examined. It is to this simplified model we now turn our attention.

6.2 Model

To begin, we construct a control volume within the mushy zone under these quasi-steady conditions

as shown in Fig. 6.1. Under steady state conditions, the most general form of the energy conservation
equation is again given by Ein = Eout- Applying this to the control volume above leads to

^rUdxTi.^) + [pVmem{T{x))] + [pKnem(T(a;))]^, (6.1)
x+dx

where is a representative constant value for the mush thermal conductivity and Vm is the velocity
at which the mushy region is traversing the domain. Utilizing a truncated Taylor series to evaluate
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Figure 6.1: Control volume for derivation of the quasi-steady state mush model.

the terms at a; + dx, substituting into the above relation, and cleaning up gives

— —km-Q^T{x). (6.2)

We again note that for this case the total energy is given by the internal energy due to the absence

of any bulk motion. The internal energy relation developed earlier for the mushy region, Eqn. (3.9),
is now modified by assuming that the solid and liquid specific heats are equal to some representative

mushy value, i.e., Cp, = Cp, = Cp„. With this, the modified internal energy is given by

emiTix)) = Uref + hf[l- A,(T(a:))] + Cp„ [T(a:) - T^]. (6.3)

Substituting this into Eqn. (6.2), performing the indicated differentiations and cleaning up produces

"b P^Prn-^m q^T{x) — pVmhf — Xs{T{x)) — 0. (6.4)

To proceed further, we must make an assumption with respect to how the solid mass firaction varies

with temperature. To maintain flexibility while maintaining the goal of ease of application, the
functional form chosen is given by

As(T(x))= (6.5)



Substituting this assumed relation into the energy balance and applying the chain rule leads to

km Q^2 P^m
hf iT{x)-Ti

Te

)-Ti]
-Ti ]

n—1

(6.6a)

Equation (6.6a) is the final form of the quasi-steady state mushy region energy conservation equation.

To finish the specification of the problem, it remains to specify the necessary boundary condition.

In total three conditions will be utilized. The first two result from the definitions of the solidus

and liquidus interface temperatures. The third is the overspecified liquidus interfacial temperature

gradient design value. Thus, mathematically speaking we have

T{x = 0) = Te,

T{x = A) = Ti,

dx
T{x) = Gd.

x=A

(6.6b)

(6.6c)

(6.6d)

With the specification of the quasi-steady mushy mathematical model complete, we now turn our

attention to its non-dimensionalization. We begin by defining the following dimensionless variables

_ T(7j^eA) T;
'1<JSJ fjp0{Vgs) =

Vqs —
A'

where A is the steady state thickness of the mushy region. Substituting these dimensionless groups
into Eqn. (6.6a) gives

km [^ivqs) {Te — T;} + T(] "Q^Vqe +
qs

P^m rnO" ^{T]gs)
Ti

d

qs

[6{7]qs) {Te - Ti} + Tl] -^Vqs = 0. (6.7)

Performing the indicated differentiations utilizing the chain rule, and rearranging considerably gives

^iVqs) + —
dp?qs

\  I nO"- \r)gs)
St Ot],q

'^{Vqs) — 0, (6.8a)
s

where,

Oim —
P^Pn

St =
m-Te.
hf
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In an analogous manner, the boundary conditions can be non-dimensionalized utilizing the previ

ously defined variables to give

dri,'g

d{flqs= 0) = 1, (6.8b)

dijlqg = 1) = 0, (6.8c)

-^iVqs) = -r<t, (6.8d)
s

where,

rd =

Tjqa—1

GdA

Ti-Te

As this point, we should note that since 0 is a function of x only, Eqn. (6.8a) is a non-linear ordinary

diflferential equation. Though the solution of this type can be accomplished relatively easily using

a numerical method, it is desired to have a closed form type solution. Thus, we will consider the

special case of n = 1, i.e., the solid mass fraction is a linear function of temperature. Applying this

to Eqn. (6.8a) gives the following'second order linear ODE

v'
1 +

St

d

dr],q
Oir]qs) = 0, (6.9)

a

where the dimensionless mush velocity is given by

Vm =

The solution of this differential equation is relatively straight forward. We begin by integrating both
sides with respect to T]qs to obtain a first order linear ODE of the form

d

drj,'q
^iVqs) T
s

OiVqs) = Cl, (6.10)

where ci is an unknown constant of integration. This equation can be solved utilizing the integrating
factor method. Carrying out this process gives

^iVgs) =
Cl

[1 + it]
-I- C2 exp ^ + St ̂ (6.11)

The unknown constants of integration are determined by enforcing the boundary conditions, Eqns. (6.8b)
and (6.8c), on the solution. Doing so leads to

^(llqs)
^ exp [-Vm {1 + jt}vqs] - exp [-Vm {l + ̂}]

l-exp[-u„{l +A}] (6.12)
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We now apply the as yet unused overspecified boundary condition, Eqn. (6.8d), to obtain the

desired relation between the mushy zone thickness and the design liquidus interfacial velocity and

temperature gradient. Differentiating Eqn. (6.12) with respect to x, evaluating the result at S = 1

and applying Eqn. (6.8d) leads to

+  + = Td (6 13)
l-exp[-u^{l + ̂}]

This is a transcendental algebraic equation which enables one to estimate the thickness of the mushy

zone based on the material properties and design parameters, since m-

To increase the applicability of the results of the quasi-steady state model, we can recast

Eqn. (6.13) in several different forms. We recall from Chapter 1 that the cooling rate, VG, and

the cooling ratio, VIG, are both parameters which can be directly related to the final microstruc-

ture of a casting. However, due to its functional form, Eqn. (6.13) does not lend itself well to

expression in cooling rate form. Thus, the cooling ratio was chosen and is given by

Cooling Rntio = C = li = [1 + A] [-o„ {1 + A)] j
Vm 1-exp [-Urn {1 + ̂}j

Similarly, Eqn. (6.14) can be rearranged to give the dimensionless mushy zone velocity as a function
of the cooling ratio given by

log
'^m —

.C
T

if +1
(6.15)

6.3 Results

We begin the presentation of the quasi-steady state results by showing some representative temper
ature distributions within the mushy zone as a function of the parameter re = Wm(l + I/St). An
increase in re, which can be associated to a decrease in the Stefan number, indicates the increasing
importance of phase change effects within the miishy zone. As Fig. 6.2 shows, small values of re

result in temperature distribution which is nearly linear indicating a conduction dominated process.
Similarly, as re increases, the temperature distribution becomes non-linear due to the increased phase
change effects.

To aid in the design of a binary solidification process , Eqns. (6.14) and (6.15) were developed.
These relations enable one to quickly determine design parameters required to effect a desired binary
alloy solidification. Figures 6.3(a) and 6.3(b) illustrate these relations graphically.

Figure 6.3(a) can be employed to calculate the required liquidus interfacial temperature gradient,
Gd, given the Stefan number for the alloy and the mushy zone velocity, Vm, and thickness, A.
Similarly, Fig. 6.3(b) enables one to calculate the required Gd given the Stefan number and the
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Figure 6.2: Representative temperature distributions utilizing the
quasi-steady state methodology.

cooling ratio. The procedure for utilizing these figures is given below:

Application of Fig. 6.3(a)

1. Choose the desired mushy zone velocity, Vm and thickness, A.

2. Calculate the dimensionless mushy zone velocity, Vm-

3. Determine the dimensionless cooling ratio from Fig. 6.3(a).

4. Utilize the dimensionless cooling ratio to calculate Gd-

Application of Fig. 6.3(b)

1. Choose dimensional cooling ratio,

2. Calculate dimensionless cooling ratio,

3. Determine the dimensionless mushy zone velocity from Fig. 6.3(b).

4. Choose the desired mushy zone thickness, A.

5. Calculate the mushy zone velocity, Vm-

6. Calculate Gd using the cooling ratio and Vm-

As stated earlier, one of the main reasons for the development of this approximate relation was
to help verify the results of the full mathematical model. Thus, the quasi-steady state model was
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Figure 6.3: Design parameter estimation based on the quasi-steady state analysis.

applied to all cases in which the full model predicted the presence of both a solidus and liquidus

interface. With respect to the full model results, the value of the mush region thickness given is

taken as the difference between the liquidus and solidus interface location at the time when the

solidus first appears. It was felt that this would give a worst case comparison with the quasi-steady
state model since in this case steady' state conditions have most likely not been achieved. The

results and comparisons between the two predictions are shown below in Table 6.1. As the table

clearly shows, the agreement between the two approaches is excellent showing a maximum difference
of approximately 8.5%. Considering that in the full numerical model the solid and liquid thermal

properties were considered unequal, i.e., kg 7^ k and Cp^ 7^ Cp,, and the functional form of the
solid mass fraction was non-linear in nature, i.e., an error function, the agreement between the two

approaches is noteworthy.
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Table 6.1: Comparison of Dimensionless Mush Thickness Results.
Oi Foi Gt St Model Quasi % DifF. re
1.695 0.124 0.424 0.700 0.50 0.8933 0.8275 7.37 1.048

1.695 0.124 0.849 0.871

0.50 0.5951 0.5475 8.00 1.387

1.00 0.6886 0.6454 6.27 1.090

10.00 0.8161 0.7826 4.11 0.727

1.695 0.247 0.849 0.779

0.50 0.6354 0.5817 8.46 1.473

1.00 0.7441 0.6907 7.18 1.166

10.00 0.8809 0.8464 3.92 0.786

0.212 1.241

0.50 0.6967 0.6554 5.93 0.387

1.00 0.7359 0.6961 5.41 0.294

10.00 0.7769 0.7388 4.90 1.715

2.391 0.124 0.424 1.400

0.50 0.5491 0.5139 6.41 0.651

1.00 0.5954 0.5623 5.57 0.475

10.00 0.6478 0.6174 4.69 0.287

0.849 1.742

0.50 0.3817 0.3590 5.95 0.909

1.00 0.4260 0.4044 5.05 0.683

10.00 0.4798 0.4605 4.02 0.428

0.212 1.103

0.50 0.7682 0.7220 6.01 0.457

1.00 0.8153 0.7711 5.43 0.325

10.00 0.8655 0.8234 4.86 0.191

2.391 0.247 0.424 1.247

0.50 0.5986 0.5594 6.54 0.708

1.00 0.6529 0.6163 5.61 0.520

10.00 0.7155 0.6823 4.64 0.317

0.849 1.558

0.50 0.4134 0.3863 6.65 0.978

1.00 0.4640 0.4382 5.52 0.740

10.00 0.5265 0.5039 4.29 0.468
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Chapter 7

Conclusions

7.1 Numerical Analysis

The resolution of the binary solidification problem presented a formidable challenge even under the

relatively simplified assumptions employed in this exposition. The ill-posed nature of the design

problems in solid/mush and liquid regions, physical limitations on the construction of the liquidus
interfacial temperature gradient design scenario, and the inherent non-linearity of the problem in

the solid/mush domain are only a few of the difiiculties encountered. Overcoming these difficulties
required a thorough understanding of the physics related to the solidification process and some

creative numerical analysis techniques.

The classical weighted residuals technique forms the basis on which the methodology for resolving

the binary solidification design problem was built. It is the treatment of the temporal variation in

an elliptic manner which enables this technique to effectively resolve this class of inverse problems.

However, the main drawback of this technique is the analytically challenging nature of its application
in that a good deal more "leg work" is required compared to say a Finite Difference type approach.

It is however felt that this additional work is easily justified by the benefits afforded by the technique.
In addition, this same basic approach can be adapted to other classes of inverse problems such as

parameter estimation and function reconstruction.

With respect to the solution methodology developed, the results obtained for the binary solidifi
cation design problem are very encouraging. They illustrate that the methodology overall, performed

well in the prediction of the hot and cold wall boundary histories required to effect the desired solid
ification behavior. The only exception to this statement appears in the resolution of the solid/mush
region at low value of the Stefan number when combine with a high liquidus interfacial velocity.
This, however, in not surprising since this combination leads to an increase in the severity of the
non-linear nature of the governing equation. Thus, in this regime the linearization process employed
becomes of increasing importance and may require a more advanced technique than utilized here to
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achieve the same quality of solution.

The predictions obtained for the hot wall boundary histories indicate that the control measures

necessary to effect the desired solidification characteristics with respect to the liquidus interfacial

temperature gradient are both physically realistic and relatively undemanding with respect to im

plementation. Once the gradient has been altered from its uncontrolled behavior, which requires the

maximum control effort, a gradual increase in the hot wall heat flux is all that is required to maintain

the design value. The cold wall boundary histories required to effect the desired liquidus interfacial

velocity, is, in a similar manner, relatively undemanding with respect to its implementation. Once

sufficient energy has been removed at the cold wall to initiate and accelerate the interface to its

design value, again the point of maximum control effort, a gradual increase in the cooling of the cold

wall is sufficient to maintain the desired motion. From these observations, one can conclude that the

independent control of the liquidus interfacial velocity and temperature gradient to produce a uni

form cast structure is, in theory at least, relatively straightforward with respect to implementation

and physically realistic in their behavior.

7.2 Quasi—Steady State Analysis

As indicated previously, the goal of the quasi-steady state analysis was to develop a rule of thumb
type relation which would relate the thickness of the mushy zone to the solidification design param
eters. As the comparison of the mushy zone thickness predictions clearly indicate, the full numerical
model and the quasi-steady state model show excellent agreement. This result supports a couple
of conclusions though somewhat circular in nature. Firstly, the excellent agreement between these
two different approaches provides the much needed independent verification for the full numerical

analysis. Secondly, the algebraic relation between the solidification design parameters and the thick
ness of the mushy zone, though transcendental in nature, provides a "back of the envelope" method
with which one can gain a priori knowledge of the solidification characteristics, e.g., given velocity
and mush thickness predict required interfacial temperature gradient, before expending the time to
perform a full analysis. This ability could prove very beneficial in the early stages of the design
process

7.3 Future Work

Due to the simplified nature of the mathematical model developed for this exposition, there are a
great deal of future improvements and additions that can be made. Among these are the inclusion
of unequal phase densities, pi ^ p^, and the effects of mass transfer on the binary solidification,
process, i.e., coupled modeling, either of which would represent a formidable challenge. Aside from
improvements to the numerical modeling, an experimental study of the binary solidification design
problem would also be an excellent expansion upon this work. By implementing the hot and cold
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wall boundary predictions in a laboratory setting, the resulting casting could be observed. This

information would be beneficial in both the development of a controlled solidification process and

the refinement of the numerical modeling. As a side note, development of an experimental set-up for

this type of study was undertaken and completed. However, due to an unfortunate accident beyond

the control of the author, the solidification test-cell was destroyed beyond repair before the final

data could be obtained. A schematic of the set-up designed and fabricated to provide independent

thermal control of the boundaries is shown in Appendix D.
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characteristics of the liquid inverse solution.
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Figure A.6. Comparison of design (controlled) and direct (uncontrolled) hot wall boundary temper
ature and heat flux for dimensionless liquidus interfacial velocity of V/ = 0.212.
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Appendix B

Pure Melt Solidification Design

Problem I: Uniform Initial

Temperature Gradient.

B.l Introduction

This section presents the resolution of a pure-melt solidification design problem in which there
is specified a uniform initial temperature gradient in the liquid region. Furthermore, the initial
temperature distribution is such that there in no initial superheat at the cold wall. A schematic for

this design problem is shown in Fig. B.l The methodology employed is similar to that presented
previously for the binary solidification design problem. The main difference is in the minimization

technique employed in time. Since the case of no initial superheat at the cold wall leads to a
"natural" interfacial temperature gradient that remains identically zero prior to the formation of
the solid—liquid interface, it is relatively straightforward to select a continuous function which can

transition from the required initial value, to match the initial condition, to the desired design value
for construction of the design scenario. To this end, a shifted error function was employed to
construct the liquid—side interfacial temperature gradient design scenario. The continuous nature of
this scenario allows Orthogonal Collocation to be used in both space and time as the minimization
technique. Details of this methodology are given in [19].

To illustrate the implementation of this methodology, a typical scenario will be discussed appli
cable to the current design problem. Consider a pure melt having an initial temperature distribution
Ti(x) at time t = 0, with 7^(0) > Tf where Tf is the fusion temperature of the material. For the time
period 0 < t < tp, the surface temperature at a: = 0, which corresponds to the interface position for
this time period, is maintained.at its initial value of Ti{0) as shown in Fig. B.2(a). Following this
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Figure B.l: Schematic of the pure melt solidification design prob
lem illustrating the splitting of the solid and liquid domains.

holding period, the surface is cooled from Tj(0) to T/ in the time period tp <t <tf. Once the sur

face temperature has reached T/, any further cooling would result in the initiation of solidification,

and the solid-liquid interface would separate from the bottom surface and its temperature would

remain at Tf as shown in Fig. B.2(a).

The solidification is specified to commence at t> tf, and proceed with a design velocity of V'(t),

which is specified to change from zero to a constant value of Vd during the time period tf <t<tv

as shown in Fig. B.2(b). For this design velocity, V{t), solidification of a region of length L would

require a time period of tmax — tf. To demonstrate the ability to independently control Gi{t) via

active control of Th{t), a design scenario for Gi{t) must be specified which is uncoupled from V{t).
The proposed design scenario for the temporal evolution of Gi{t) is illustrated in Fig. B.2(c). During

the time period 0 < t < tp, Gi{t) will be at its initial value of Gi, corresponding to the specified

initial distribution of Ti{x). Recall that for t > tp the surface at a; = 0 is being cooled resulting in
an immediate change in Gi{t). Therefore, we require Gi{t) to change from its initial value of Gi to

its design value of Ga in the time interval tp <t <tg.
At this point, the design scenario for inverse analysis of the liquid domain is complete. Namely,

in the time domain 0 < t < tmax, the solid-liquid interface must move with the design velocity,

V{t), and at a; = s{t) be subject to the overspecified interfacial conditions of temperature, To{t),
and temperature gradient, Gi{t). Based on this scenario, solidification proceeds with a constant

velocity of Vd for t >ty, and a constant liquid-side interfacial temperature gradient of Gd for t >tg.
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Figure B.2: Illustration of the temporal evolution of the pure melt solidification design problem.
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Figure B.3: Interfacial velocity design scenario utilized in the in
vestigation of the pure melt solidification design problem.

B.2 Results

To test the methodology presented above, two test cases were chosen to provide illustrative results.

For both cases, the spatial extent was chosen as L = 38.1mm. The initial superheat distribution

consisted of a linear profile with ri(0) =Tf and Gi = 0.5K/mm. With these choices, it can be seen
that tf = tp and the interfacial temperature history becomes To{t) = Tf. For the spatial extent
and melt material chosen, the penetration time was over-estimated as tp = 14 s. Design values
for the interfacial velocity and liquid-side interfacial temperature gradient of Vd = 0.2 mm/s, and

Gd — 0.94 K/mm, respectively, were utilized.

The two test cases are delineated by the temporal evolution of the interfacial velocity, V{t), and
the liquid-side interfacial temperature gradient, Gi{t). The cases presented are similar to those

investigated by the authors in [18] utilizing the Function Decomposition Method, FDM. The first

test case utilizes values for and tg of 64 s and 82 s, respectively. The second test case, using values
of tv = 37 s and tg = 58 s, explores the effects of shorter development times for the design velocity
and the interfacial temperature gradient on the required hot and cold wall active control measures

and the ability of the GTM to resolve these measures. To assure the majority of the domain would
be solidified, a maximum time of tmax ~ 205 s was chosen. The design velocity scenarios for both
cases are shown in Fig. B.3.

For the melt material, a Lead-Tin, PbSn, alloy of eutectic composition, 61.9t(;t%Sn, was se
lected. For this material, the following physical properties, evaluated at its eutectic temperature
of Tf = 183°C, were used [43]: k, = 28.530 W/miL, Cp^ = 165.72 J/kgK, k = 12.890 W/miL,
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Figure B.4: Liquid-side interfacial temperature gradient design
scenario utilized in the investigation of the pure melt solidification
design problem.

Cp, = 207.80 J/kgK, and hf = 27887.35 J/kg. Although the solid and liquid densities are unequal

[43], they are assumed equal to comply with the assumption of no bulk motion in the liquid region.
Thus a constant value of p = 8526.24 was utilized in the analysis.

A direct analysis of the liquid domain was conducted to provide a clear delineation between the

design liquid-side interfacial temperature gradient and that which would occur if no active measures

are taken on the hot wall, x = L. The direct analysis was based on the design interfacial velocity

scenario, V{t), interfacial temperature history of To{t) = T/, initial linear temperature distribution
with Ti{0) = Tf and Gi = 0.5K/mm, and a constant temperature gradient of 0.5K/mm at the
hot wall. Comparisons of the liquid-side interfacial temperature gradient, Gi{t), under controlled,

i.e., design scenario, and uncontrolled, i.e., direct analysis, conditions for both cases are presented

in Fig. B.4. The figure clearly illustrates the differences in the desired temporal behavior of Gi(t)
and the behavior if no active control measures are taken at x = L. It also illustrates that case 2

requires an earlier initiation of the control, due to the earlier deviation of the design Gi {t) from the
uncontrolled behavior of the interfacial temperature gradient.

The active measures required to achieve a controlled solidification with respect to the liquid-side
interfacial temperature gradient, Gi{t), are shown in Figs. B.5 and B.6 along with those obtained
by the authors utilizing the FDM [18]. Also, the results of the direct analysis discussed above are
included in these figures for comparison. These figures reveal several important points which should
be noted. Firstly, Figs. B.5(a) and B.5(b) clearly illustrate that the inclusion of the penetration
time in the design scenarios is necessary. This is evidenced by the fact that active measures must
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Figure B.5: Hot wall temperature history, Th{t), required to control solidification with respect to
the liquid-side interfacial temperature gradient, Gi{t).

be taken at the top wall, i.e., Th{t) deviates from the direct solution, almost immediately, t « Os, to
effect a change in the liquid-side interfacial temperature gradient some time later in the transient,
t TU 14 s. If, on the other hand, the penetration time had not been included, i.e., the design
liquid-side temperature gradient was chosen to deviate from the uncontrolled behavior at the start
of the transient, no solution would be obtained. This is due to the fact that active measures
required to effect this deviation would have occurred prior to the start of the analysis, i.e., at
"negative times". Secondly, it can be seen that the establishment of the design liquid-side interfacial
temperature gradient requires highly transient measures during the early parts of the transient, while
its maintenance during the latter parts of the transient requires subdued control measures.

A comparison of the results obtained for cases 1 and 2 illustrate an important point from the
standpoint of implementation. For case 1, Fig. B.6 clearly shows that the heat flux is positive
throughout the transient indicating that only heating is required at the top wall. However, for case
2 the figure clearly shows that the heat flux is negative for some portion of the transient indicating
that both heating and cooling are required at the top wall. This is an important consideration when
designing an apparatus to implement these control strategies. It is also noteworthy that even though
the scenarios for cases 1 and 2 are similar in many aspects, the control strategies required to achieve
the desired solidification, i.e., Th{t) and are markedly different and require varying levels of
complexity with regards to the hardware implementation.

To achieve the desired interfacial motion, s(f), during the solidification process, the active control
measures shown in Figs. B.7(a) and B.7(b) must be applied. These results illustrate that the
differences in the liquid-side interfacial temperature gradient scenarios for cases 1 and 2 have minimal
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Figure B.6: Hot wall heat flux history, required to control
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Figure B.7: Active measures required to control solidification with respect to the interfacial velocity,
V{t). Cases 1,2: N = 10, P = 100. Note: [t) < 0 indicates cooling.
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Figure B.8: Effect of N and P on the boundary heat flux prediction for case 2.

effect on the cold wall control strategy in that the overall character of the curves is maintained. This

is expected since the only difference between the two cases is the amount of time required for the
design velocity to reach its constant design value of 0.2 mm/s. Recall that the value of for case 2
is 27 s less than that for case 1.

To establish convergence of the results presented, numerical experiments were performed. The
results of these experiments for case 2 are shown in Fig. B.8. For the hot wall active control, increas
ing N from 12 to 14 and P from 150 to 175 show no effect on the solution indicating convergence.
Similarly, increasing N from 10 to 12 and P from 100 to 125 show no effect on the cold wall active

control solution again indicating that convergence has been obtained. For case 1, similar results
were obtained in that increasing the values of N and P above those presented provided no change
in the solution.

In addition to illustrating convergence, the results of these additional runs indicate that the

GTM is uneffected by the size of the "time step", i.e., increasing P does not induce instability into
the solution. This is a marked advantage of utilizing the GTM to solve this type of design problem
over more traditional methods.

B.3 Conclusions

Though the test cases chosen axe relatively simplified, they do illustrate the ability of the GTM to
resolve this type of solidification design problem. Furthermore, the results obtained suggest that
it is not only possible to independently control V{t) and Gi{t) during a casting process, but the
active measures required to do so are not only physically realistic but relatively undemanding to
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implement in a laboratory setting. The authors plan future work which will further illustrate the

application of the GTM to more complex solidification design problems. Effects such as unequal

phase densities, temperature dependent thermal properties, and the presence of a mushy zone, i.e.,

binary solidification, are currently under consideration. The inclusion of these effects will require the

extension of the basic GTM to handle non-linear effects further illustrating its inherent flexibility.
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Appendix C

Pure Melt Solidification Design

Problem II: Uniform Initial

Superheat.

C.l Introduction

This section again presents the resolution of a pure-melt solidification design problem. The differ
ence between this investigation and that presented in Appendix B is the assumption of a uniform
superheat distribution within the liquid region. The schematic for this design problem is identical
to that shown in Fig. B.l. The methodology employed for the resolution of this problem is the same
as that employed for the binary solidification design problem with the exception of the solid/mush
region being linear in nature due to the absence of a mushy zone.

To illustrate the application of the current methodology to a design problem of this type, a typical
scenario will be presented. Consider a melt having an uniform initial superheat ATsh — Tgh — Tf
at time, t = 0, where Tf is the fusion temperature of the material. At t = 0 the cold wall,
x = 0, is cooled in some prescribed manner from Tsh to Tf in the time period 0 <t <tf. Once
at Tf, any further cooling of the surface would result in the formation of a solid-liquid interface.
During this same time period, the hot wall, x = L, is maintained at its initial (Temperature or
Heat Flux). This temporal region is termed the cooldown period. The resolution of this temporal
region is straightforward, i.e., a direct,linear heat conduction problem, and thus warrants no further
discussion in this exposition. It is simply assumed that the solution is available which serves as the
initial condition for the design problem.

Solidification is specified to commence at t > tf, and proceed according to the design velocity
scenario, V{t). For this scenario the velocity is specified to change from its initial value of zero
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to a constant design value,-Vd,. in the time period tf < t < To demonstrate the ability to

independently control the liquid-side interfacial temperature gradient, Gi{t), a scenario must be

chosen which is uncoupled,from the design velocity scenario. Construction begins by recalling that

we must follow the "natural" temporal behavior of Gi{t) for the time period tf +tp. Beyond this

point, we are free to construct any scenario for Gi {t) that is physically realistic. Thus we choose to

smoothly transition Gi{t) to a constant value of This transition is specified to occur in the time

period tf +tp <t < tg.

With this, the design scenario for inverse analysis of the solid and liquid regions is complete.

Namely, the solid-liquid interface must move with the design velocity of V[t) subject to the over-

specified interfacial conditions of given temperature, Tf and liquid-side temperature gradient, Gi{t).

More specifically, solidification proceeds at a constant velocity of Vd for t and a constant liquid-

side interfacial temperature gradient of Gd for t>tg.

C.2 Results

To illustrate the capabilities of the methodology presented earlier, a set of test cases were chosen

which would provide representative results. For all cases, the spatial extent of the domain, L =

38.1 mm, initially contains liquid of a uniform superheat ATgh = 20 K. Prior to the start of

solidification, the problem of superheat removal at the cold wall, x = 0, must be addressed. To this

end, a direct , analysis of this cooldown period can be performed. This cooldown analysis assumes
that the hot wall temperature remains at its initial value of Tsh while the cold wall is linearly cooled

from its initial temperature of Tsh to the fusion temperature Tf in the time period 0 <t <tf. Once
complete, the cooldown analysis provides the necessary initial condition for the solidification design
problem.

The test cases chosen are delineated by three factors: cooldown time, solidification velocity, and

liquid-side interfacial temperature gradient. The length of the cooldown period was investigated to
determine what restrictions, if any, it would place on the physically realistic values for the design
parameters. This is an important consideration since we must construct design scenarios whose

required active measures will will be physically realistic. The values chosen for the cooldown period
along with other case specific information are shown in Table C.l. The design scenarios for the

interfacial velocity and liquid-side interfacial temperature gradient are shown in Fig. C.l.
A Lead-Tin, PbSn, alloy of eutectic composition, 61.9 wt% Sn, was selected as the melt material.

For this,material, the following physical properties, evaluated at its eutectic temperature of Tf =
183 °G, were used [43]: ks = 24.41 W/mk, Cp^ = m.35j/kgK, h = 21.12 W/mK, Cp, =
166.72 j/kgK, and hf = 29416.54 j/kg. In order to comply with the aforementioned assumption of
no bulk motion in the liquid region, the solid and liquid densities from [43] are assumed to be equal
at some average value. Thus a constant value of p = 8255.60 kgjm^ was employed in the analysis.

To illustrate convergence of the methodology presented, a systematic numerical study was con-
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Table C.l: Numerical Test Case Parameters.
Case tf ^9 iv tmax Va Gd Hot Wall Cold Wall

sec sec sec sec mm/sec K/mm N M N  M

1 20.0 36.709 22.996 115.0 0.4 0.891 12 60 10 20

2 10.0 30.528 12.996 105.0 0.4 0.923 12 60 10 20

3 20.0 43.520 34.979 200.0 0.2 0.703 12 60 10 30

4 10.0 37.140 24.979 190.0 0.2 0.718 12 60 10 30

5 20.0 50.583 22.996 400.0 0.1 0.629 12 60 10 30

6 10.0 44.372 44.372 390.0 0.1 0.635 12 60 10 30
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Figure C.l: Design scenarios for the various cases.

ducted. The results of this study for case 3 are shown in Fig. C.2. For the hot wall prediction,
increasing the the order of the spatial approximation, JV, from 10 to 12 terms and increasing the
order of the temporal approximation, M, from 40 to 60 terms shows no real effect on the solution.
This indicates that convergence has been achieved. However, due to the fact that the method of
Discrete Least-Squares was utilized in the temporal direction, there is an optimal number of terms
for a given number of data points. Therefore we would expect that increasing M beyond a given
number of terms would adversely effect the solution. In an analogous manner, increasing the spatial
and temporal order of approximation from 7 to 10 and 20 to 30 terms respectively results in no effect
on the predictions obtained for the cold wall. This again is taken as a sign of convergence in that
for the given amount of design data available the best solution has been obtained. Results similar
to those presented for case 3 were obtained for the other test cases in that increasing N and M
provide little or no improvement in the predictions. Thus the results hereafter presented represent
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Figure C.2: Effect of N and M on active control predictions for case 3.

converged solutions for the given set of parameters.

The first step in the resolution of the solidification design problem is the resolution of the
cooldown problem. As outlined earlier, during the period 0 < t < tf the cold wall is cooled
from its initial temperature of T^h to the fusion temperature in a linear fashion while the hot
wall temperature is maintained at its original temperature of Tgh- The GTM was also employed to
resolve this problem and the results are shown in Fig. C.3. Note that there are only two independent
cases that must be considered for the cooldown problem since the solidification velocity has no effect
on this region of the solution.

As noted earlier, due to the diffusive nature of heat conduction in the liquid, the design scenario
for Gi{t) must identical to that which would occur if no active measures were taken at the hot
wall. To this end, a direct analysis of the liquid domain was conducted. The direct analysis utilized
the design interfacial velocity scenario, V{t), interfacial temperature, Tf, uniform initial superheat,
ATsh = 20 AT, and a constant temperature of T^h at the hot wall. A comparison of the liquid-side
interfacial temperature gradient under controlled, i.e., design scenario, and uncontrolled, i.e., direct
analysis, for the various cases is shown in Fig. C.l(b). This figure clearly shows that the design
scenarios for Gi{t) and that which results when no active control measures are taken at the hot
wall, x = L differ markedly. In addition. Fig. C.l(b) provides insight into the effects that the length
of the cooldown period and the value of the design velocity, Vd, have on the design value of the
liquid-side interfacial temperature gradient, Gd, for the chosen method of construction. Firstly, it
suggests that for the range of values investigated the length of the cooldown period has little effect
on the interfacial temperature gradient design value, Gd- Secondly, the higher the value of the design
velocity, Vd, the higher the interfacial temperature gradient design value, Gd, possible.
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Figure C.3:, Results of the cooldown analysis.

The predictions for the required active hot wall control measures needed to achieve the desired

liquid-side interfacial temperature gradient Gi{t) are shown in Fig. C.4. In addition, the results
of the direct analysis discussed above are included for comparative purposes. It can be seen from

the figure that the active control measures needed for the cases examined are very similar. This is
not surprising however since the range of values for the design liquid-side interfacial temperature
gradient is limited. However, this is an artifact of the manner in which the design scenarios were
constructed. However, as discussed earlier the only limitation on the construction of a design scenario
is that it follow the uncontrolled case until the penetration time has elapsed. This effect can clearly
be seen in the results by comparing the time at which the design and direct liquid-side interfacial
temperature gradient diverge with the time that the direct and design hot wall conditions diverge.
For example, in case 2, altering the interfacial temperature gradient at t = tg = 30.528 sec requires
the hot wall condition be altered at t fs 27.2 sec which is approximately the penetration time which
is estimated to be 2 sec.

To achieve the desired interfacial motion, s{t), the active control measures shown in Fig. C.5
must be applied at the cold wall. These results illustrate the profound effect that the solidification

velocity has on the required active control measures. Higher solidification velocities require not
only a wider range of temperature control but also a more rapid control. For example, with Vd -
0.4 mm/s the cold wall control requires a AT = 183 degC in approximately 70 sec whereas for
Vd — 0.1 mm/s a control of AT = 70 degC in approximately 400 sec is all that is required. This
is an important observation from the standpoint of implementation since the range of solidification
velocities achievable will be limited by the design of the apparatus.
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Figure C.4: Active measures at the hot wall required to control solidification with respect to the
liquid-side interfacial temperature gradient, Gi{t). Note: > 0 indicates heating.

C.3 Conclusions

The test cases presented clearly illustrate that the proposed methodology is indeed capable of resolv
ing this type of solidification design problem. Furthermore, the application of discrete least squares
in the temporal direction does indeed afford a great deal of fiexibility in the construction of the
design liquid-side interfacial temperature gradient. This is most obvious in that we can easily force
the design Gi (t) to exactly follow that which would occur under the conditions of no active control
during the penetration period after which we are free to alter its behavior. Furthermore, the results
illustrate that what seem to be relatively small changes in the desired solidification velocity result
in radical changes in the type of control required at the cold wall. This indicates that the design of
a system for controlled solidification will have to operate under a fixed range of conditions and thus
must.be considered at the onset. However, they also suggest that within this range, implementation
of the required active control would be relatively undemanding in a laboratory setting. The authors
are in the process of construction an apparatus which will utilize some of the predictions presented
herein to perform actual controlled solidification experiments.
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interfacial motion, V{t). Note: q'^{t) < 0 indicates cooling.
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Appendix D

Experimental Set—Up
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Figure D.l: Schematic of experimental set-up constructed for study of the binary
solidification design problem.
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