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ABSTRACT

Previous studies have shown that manipulation of
the amplitude of a particular frequency region of the
consonantal portion of a syllable relative to the
amplitude of the samé frequency region in an adjacent
vowel influences the perception of place of
articulation. This manipulation has been called the
relative amplitude cue. The earlier studies examined
the effect of the relative amplitude manipulation upon
labeling place of articulation for fricatives and stop
consonants. This current study looked at the
influences of this manipulation upon labeling place of
articulation for the /m/ - /n/ nasal distinction.
Twenty-five listeners with normal hearing labeled
nasal place of articulation for the synthetic
syllables. Results show an influence of both relative
amplitude and formant transition manipulation upon
labeling behavior. These results add further evidence
to the importance of acoustic 'boundaries in processing

consonant place of articulation.
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CHAPTER I
INTRODUCTION

Background and Ratiomale

Nasal consonants are produced as a result of
bifurcation at the velopharyngeal port, allowing sound
energy to pass from the larynx through the nasal tract
while the oral cavity is closed. Thus, the nasal
radiation of the sound engrgY.produces an acoustic
effect called a nasal murmur. Nasal murmurs have
spectral properties similar to the formant, or
resonance patterns, of sustained vowels. Murmurs and
vowels share the same spectral broperties, such as
formants and antiformants. Antiformants are the
result of bifurcation or constriction of the vocal
tract, effectively blocking energy from transmission
through the system. This blockage creates zeros, or
regions where energy is severely attenuated (Kent and
Read, 1992). Fujimura (1962) stated that there are
three common properties of nasal murmurs: (1) all have
a first formant of approximately 300 Hz that is well
separated from higher formants, (2) the formants have
large bandwidths,"and (3) there is a high density of

formants with the presence of antiformants (Kent and



Read, 1992).

Like other consonants, nasals also produce
formant transitions when articulated consecutively
with other sounds. Nasals mimic stops in that their
place of articulation and formant transitions ére
similar such that the F2 transition correlates to the
place of articulation, and Fl transition correlates to
obstruction of the oral cavity (XKent and Read, 1992).
It is the nasal murmur and formant transitions that
are important for providing accurate information about
place of articulation (Kurowski and Blumstein, 1984;
Repp, 1986; Repp, 1987; Ohde, 1994; Ohde and Ochs,
1996; Ohde and Perry, 1994).

The Quantal Theory

Kenneth N. Stevens and colleagues have conducted
studies to determine the effects of articulatory
parameters on acoustic parameters. They also studied
the relationship between these acoustic parameters and
perception of sounds described by these acoustic
parameters. Stevens' Quantal Theory predicts that
there are small regions of articulator movement that
can result in large acoustical changes. Similarly,

there may be areas of small acoustic changes, which



result in large perceptual changes. This region where
large perceptual changes occur could be considered a
threshold region such that, as the acoustical
parameter changes through this region the perceptual
categorization shifts from one type of pattern to
another. The Quantal Theory also states that relative
acoustic amplitude changes between adjacent
consonantal and vocalic portions of a syllable may
result in perceptual shifts for labeling consonant
place of articulation (Stevens, 1989).

Ohde and Stevens (1983) provided supporting
evidence to the guantal theory by showing that
relative amplitude between a stop consonant and vowel
in a particular frequency region affects listeners’
perception.of stop consonant place of articulation.
Ohde and Stevens proposed identification of alveolar
or labial place of articulafion involved two acoustic
properties. One acoustic property is relative
amplitude which has been defined as "the amplitude of
a major peak in the spectrum of the consonantal
portion of a consonant vowel syllable relative to a
spectral peak in the same frequency region in the

onset of the adjacent vocalic portion" (Hedrick,



Schulte, and Jesteadt, 1995). In Ohde and Stevens'
study relative amplitude was compared between the
consonant and the adjacent vowel spectrum (Ohde and
Stevens, 1983). For example, equi&alent or higher
burst amplitude in the high frequency region cdmpared
tot he vowel designates an alveolar stop and
equivalent or lower burst amplitude in the high
frequency region compared to the vowel designates a
labial stop. The second acoustic property was the
proximity of F2 and F3 in relation to Fl in the
formant transition. For a labial stop, a close ‘
proximity between F2 and Fl is required, whereas a
critical distance is needed between F2 and Fl1 for
correct identification of an alveolar stop (Ohde &
Stevens, 1983).
Acoustic Analysis of Nasals

Research has shown that small, but systematic
changes in nasal murmur and formant transition can be
correlated with place of articulation. More
specifically, the starting frequency of the second
formant transition has been designated as the
distinguishing cue between the labial nasal consonant,

/m/, and alveolar nasal consonant, /n/. Kurowski and



Blumstein (1987) further suggest that it is the
relationship between the spectral properties of the
murmur and the formantktransitions that form a single
integrated perceptual cue for place of articulation.
In their study they found a spectral peak in the 11-15
Bark region (1170 Hz to 2500 Hz) at the onset of the
formant transition for the alveolar /n/. The spectral
peak for the labial /m/ at the onset of the formant
transition was discovered in the 5-7 Bark region (450
Hz to 700 Hz). There has been no systematic variation
of the amplitude of these spectral peaks to determine
if they are perceptually important. ﬁasals are
analogous to stop consonants, and relative amplitude
changes between the consonant and adjacent vowel
affect perception of stop consonant place of
articulation. It would follow, then, that perception
of nasal consonant place of articulation should be
affected by similar relative amplitude changes.
Therefore, the following questions will be the focus
of this research:
1) Do changes in relative amplitude at the consonant-
vowel boundary affect nasal place of articulation

perception?



2) Do systematic and simultaneous variations in the

second formant transition and relative amplitude

cues determine if relative amplitude cues provide a
significant contribution to perception of place of

articulation beyond the formant transition?



CHAPTER II
REVIEW OF LITERATURE

Previous studies have shown that formant
transitions, particularly F2, play a dominant role in
the perception of place of articulation of nasals
(Liberman, Delattre, Cooper, & Gerstman, 1954;
Malecot, 1956; Recasens, 1983). Later studies have
suggested that the murmur also provides important
information for perception of place of articulation
(Nakata, 1959; Carlson, Granstrom, and Pauli, 1972).
Most studies suggest that both murmur and formant
transition information is needed for accurate
identification of nasal place of articulation
(Kurowski and Blumstein, 1984; Repp, 1986; Repp, 1987;
Ohde, 1994; Ohde and Ochs, 1996; Ohde and Perry,

1994) .

Work by Stevens and colleagues has suggested that
variations in consonant amplitude relative to vowel
amplitude in a particular frequency region may be an
acoustic correlate for perception of place of
articulation for stop consonants (Ohde and Stevens,
1983; Hawkins and Stevens, 1987; Hedrick, Schulte, and

Jesteadt, 1995) and fricative consonants (Stevens,



1985; Hedrick and Ohde, 1993). According to the
guantal theory, variations in the relative amplitude
in discrete frequency regions between consonant and
vowel may be a basis‘for discerning place of
articulation of the consonant (Stevens, 1989).

Stevens further assumed that these changes in relative
amplitude would be most apparent near the consonant-
vowel boundary. Ohde and Stevens (1983) found that
manipulation of relative amplitude had a significant
effect on perception.of place of articulation for both
voiced and voiceless stop consonants, although the
effect size was larger for voiceless than for voiced
stops. There are two potential explanations for this
difference in effect size: greater salience of
spectral peaks in the region of formant transitions
for the voiced stops, or the use of steady-state vowel
amplitude as the amplitude reference point rather than
using vowel onset amplitude. If vowel onset would
have been used as the amplitude reference point, the
difference in effect.size could have been reduced
between voiced and voiceless stops. Because nasal
consonants can be considered nasalized voiced stops, a

relative amplitude manipulation near the murmur-vowel



boundary should affect pérception of nasal place of
articulation similar to that of voiced stops in the
Ohde and Stevens (1983) study.

Kurowski and Blumstein (1987) found a spectral
peak in the 11-15 Bark region (1170 to 2500 Hz) at the
initiation of formant transitions for the alveolar
/n/. The spectral peak for the /m/ at formant
transition onset was at a lower frequency (5-7 Bark,
or 450 to 700 Hz). Thus, there appears to be an
acoustic basis in naturally produced speech for
changes in resonance and potential changes in relative
amplitude between /m/ and /n/. The perceptual
importance of this relative amplitude change between
nasals and adjacent vowels has not been investigated.

Most perceptual.studies investigating nasal place
of articulation used naturally produced speech and
therefore did not attempt to systematically vary the
spectral relations or relative amplitude between the
murmur and the vowel. The studies that did use
synthetic syllables (Larkey, Wald, and Strange, 1978;
Nakata, 1959; Recasens, 1983) did not employ a
relative amplitude manipulation. The acoustic

analysis study by Kurowski and Blumstein (1987), and



the previous work by Ohde and Stevens (1983), however,
does provide a framework for synthesizing nasal
consonant-vowel (CV) syllables that include variations
in the relative amplitude between the murmur and the
vowel. Thus, the first aim of the present study is to
determine if variations in relative amplitude between
the murmur and the vowel of CV syllables influenced
listeners’ perception of the /m/-/n/ contrast. The
second aim is to systematically and simultaneously
vary second formant Eransition and relative amplitude
cues to ascerﬁain if relative amplitude cues provide a
significant contribution to perception of place of

articulation beyond the formant transition.
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CHAPTER III
METHODS

Subjects

Twenty-five subjects ranging in age from 22-35
years participated in this experiment. Inclusion
criteria were: (i) hearing sensitivity less than or
equal to 15 dB HL (ANSI S$3.6-1989) for 250-8000 Hz in
the right ear and (ii) no evidence of abnormality of
the pinna or ear canal. There was one experimental
session for each listener and all listeners were
unpaid volunteers. All subjects were given a
criterion test using continua endpoints. Subjects had
to classify the most /m/ - like and the most /n/ -
like stimuli with at least 80% accuracy before
inclusion in the study. The criterion test was
presented at a comfortable listening level.
Stimuli

The stimuli for this investigation were synthetic
consonant-vowel (CV) syllables generated by a PC
software version of Klatt’s cascade/parallel formant
synthesizer (Klatt, 1980) using a sampling rate of 10

kHz. All syllables contained the /a/ vowel. Two

different acoustic cues were manipulated in the
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synthetic stimuli: F2 transition onset freguencies
and relative amplitude. To test the specific aims of
this project, three stimulus conditions were
constructed.? Following is a brief summary of stimulus
synthesis for each condition.
Condition One

This condition tested the first aim of this
project; namely, whether variations in relative
amplitude between the murmur and the vowel of CV
syllables influenced listeners’ perception of the /m/
- /n/ contrast. To test this aim, two stimulus
continua were synthesized. The stimuli in the first
continuum had a second formant (F2) transition onset
frequency appropriate for /m/ (F2=900 Hz).. In the
second continuum, all stimuli had an F2 transition
onset frequency appropriate for /n/ (F2=1500 Hz).
These formant transition onset values were modified
from the Klatt (1980) synthesis protocols. Within a
continuum, the amplitude levels of the formants at
vowel onset were changed. This was done using the
parallel option on the synthesizer. For an /m/:— like

percept, the Al synthesis parameter (controlling the

'Parameters of the end point stimuli are in Appendix B.
j

12



amplitude level of the first formant) was set at a
high dB level at vowel onset, with low initial
amplitude levels for A2 and A3 (amplitude levels of
second and third formants). For an /n/ - like
percept, amplitude levels of A2 and A3 at vowel onset
were set at a high dB level. These changes were made
to simulate findings from acoustic analyses of
bilabial and alveolar nasals, which show more high-
frequency energy at vowel onset for the alveolar than
the bilabial (Kurowski and Blumstein, 1987).

The following is a generic description of
synthetic parameter settings and changes over time.
Initially, the frequency of the lower nasal pole (FNP)
was set at 250 Hz and the frequency of the nasal zero
(FNZ) was set at 550 Hz. To create the pole-zero-pole
complex for nasal synthesis described in Klatt (1980),
Fl also was set at 600 Hz to simulate the second pole
in the murmur. The total duration of the murmur was
100 ms. Near the murmur/vowel boundary, the value of
FNZ was moved to 250 Hz to coincide with FNP. At the
beginning of the vowel, Al through A3 were initiated
at a starting level in the parallel synthesis mode:

Formant transitions began at this time and were

13



completed in 40 ms. The amplitudes of the lower three

formants rose within 40 ms to these steady-state
values: Al=60, A2=55, A3=50. The formant amplitudes
remained at these levels for 160 ms. The entire
vocalic portion was 200 ms, and total stimulus
duration was 300 ms (100 ms murmur plus 200 ms vowel).
Fundamental frequency was initiated at 100 Hz at
murmur onset, rose to 130 Hz at vowel onset, and
déclined to 100 Hz throughout the vowel. Steady-state
vowel formant frequency values were F1=700 Hz, F2=1220
Hz, F3=2440 Hz, F4=3600 Hz, and F5=4500 Hz.

Figure 1 depicts the waveform and spectrogram for
the stimulus in continuum number one having an F2
transition onset frequency appropriate for /m/ and a
relative amplitude value appropriate for /m/. Figure
2 shows the waveform and spectrogram for the stimulus
in continuum number one having an F2 transition onset
appropriate frequency for /m/, but a more /n/ -like
relative amplitude value. Figure 3 shows overlapping
vowel onset frequency spectra from these two stimuli,
and illustrates how relative amplitude or spectral
shape was varied along the continuum. These and

succeeding frequency spectra were obtained using
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linear predictive coding (LPC) and a 25.6 ms Hanning
window which began at the vowel onset.

Similarly, Figure 4 shows the waveform and
spectrogram of the end point stimulus in continuum
number two having an F2 transition onset apbropriate
for /n/ and a relatiye amplitude value appropriate for
/n/. Figure 5 shows the waveform and spectrogram for
the stimulus in continuum number two having an F2
transition onset appropriate for /n/ but a more /m/ -
like relative amplitude value. Figure 6 shows
overlapping vowel onset frequency spectra from these
two stimuli, and illustrates how relative amplitude or
spectral shape was varied along continuum number two.
Condition Two

This condition also tested the first aim of the
study; that is, could the overall amplitude at wvowel
onset, irreépective of the spectral shape of the vowel
onset, influence listeners’ perception of nasal place
of articulation? To test this assumption, two
additional continua were synthesized. Stimuli in one
continuum had an F2 transition onset frequency value
appropriate for /m/ (F2=900 Hz), and stimuli in the

other continuum had an F2 transition onset frequency
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value appropriate for /n/ (F2=1500 Hz). Within each
of the two continua, the overall amplitude levels of
the first three formants were decreased uniformly at
vowel onset. That is, for one endpoint stimulus of a
continuum, the amplitude levels at vowel onset were as
follows: Al=55 dB, A2=50 dB, and A3=50 dB. For the
other endpoint stimulus, the amplitude levels at vowel
onset were as follows: Al=30 dB, A2=25 dB, and A3=25
dB. All other synthesis parameters were as in
condition one.

Figure 7 depicts the waveform and spectrogram for
the stimulus in continuum number one having an F2
transition onset frequency appropriate for /m/ and Al,
A2, and A3 onset amplitudes of 55, 50, and 50 dB,
respectively. Figure 8 shows the waveform and
spectrogram for. the stimulus in continuum number one
having an F2 transition onset frequency appropriate
for /m/ and Al, A2, and A3 onset amplitudes of 30, 25,
and 25 dB, respectively. Figure 9 shows overlapping
vowel onset frequency spectra from these two stimuli,
and illustrates how the overall amplitudes of the

formants were changed across the continuum.
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Similarly, Figure 10 shows the waveform and

spectrogram for the stimulus in continuum number two
having an F2 transition onset frequency appropriate
for /n/ and Al, A2, and A3 onset amplitudes of 55, 50
and 50 dB, respectively. Figure 11 shows the waveform
and spectrogram for the stimulus in continuum number
two having an F2 traﬁsition onset frequency
appropriate for /n/ and Al, A2, and A3 onset
-amplitudes of 30, 25, and 25 dB, respectively. Figure
12 shows overlapping vowel onset fregquency spectra
from these two stimuli, and illustrates how the
overall amplitudes of the formants were changed across
the continuum.
Condition Three

This condition tested the second aim of the
project; that is, to determine the result of
systematically and simultaneously varying second
formant transition and relative amplitude cues to
determine if relative amplitude or spectral shape
influences listeners’ perception of nasal place of
articulation beyond simple F2 transition frequency
values. To test this assumption, three stimulus

continua were constructed. In the first continuum,
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all stimuli had a vowel onset spectral shape like that

of /n/. Within the continuum, F2 transition onset
frequency values vary from /m/ - like (900 Hz) to /n/
- like (1500 Hz) in 100 Hz steps. In the second
continuum, all stimuli had a vowel onset spectral
shape like that of /m/, and again F2 transition onset
frequency valﬁes were varied from 900 to 1500 Hz. 1In
the third continuum, all stimuli had a vowel onset
spectral shape that was arithmetically neutral, and F2
transition onset frequency values were again varied
from 900 to 1500 Hz. All other synthesis parameter
values were as in conditions one and two.

Figure 13 depicts the waveform and spectrbgram
for the stimulus in .continuum number one having /m/ -
like relative amplitude values and an F2 transition
onset frequency appropriate for /m/. Figure 14 shows
the waveform and spectrogram for the stimulus in
continuum number one having /m/ -like relative
amplitude values and an F2 transition onset frequency
appropriate for /n/. Figure 15 shows overlapping
vowel onset frequency spectra from these two stimuli,
and illustrates how the F2 transition onset

frequencies were changed across the continuum.
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Similarly, Figure 16 depicts the waveform and
spectrogram for the stimulus in continuum number two
having /n/ -like relative amplitude values and an F2
transition onset frequency appropriate for /m/.
Figure 17 shows the waveform and spectrogram for the
stimulus in continuum number two having /n/ -like
relative amplitude values and an F2 transition onset
frequency appropriate for /n/. Figure 18 shows
overlapping vowel onset frequency spectra from these
two stimuli, and illustrates how the F2 transition
onset frequencies were changed across the continuum.

Likewise, Figure 19 depicts the waveform and
spectrogram for the stimuli in continuum number three
having arithmetically neutral relative amplitude
values and an F2 transition onset frequency
appropriate for /m/. Figure 20 shows the waveform and
the spectrogram for the stimulus in continuum number
three having neutral relative amplitude values and an
F2 transition onset frequency appropriate for /n/.
Figure 21 shows overlappiné vowel onset frequency
spectra from these two stimuli, and illustrates how

the F2 transition onset frequencies were changed

across the continuum.
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Procedure

The stimuli were synthesized and the research
protocol was implemented using interactive signal
generation and control software (CSRE version 4.5,
with a Compag 2000 586 microcomputer). The stimuli
were synthesized at a 10 kHz sampling rate, output by
a Tucker-Davis DD1 D/A converter, low-pass filtered at
4.9 kHz (Tucker-Davis PFl), sent to a final attenuator
(Tucker-Davis PA4), routed to a headphone buffer
(Tucker-Davis HB), and sent to Sennheiser HD 265
headphones inside an IAC sound booth.

Generation of random orderings and online data
collection were performed using the interactive
software. Subjects were instructed to identify the
consonant perceived by selecting the appropriate
symbol (“"M” or “N”) displayed on a computer monitor
via a mouse. In condition one, ail 14 stimuli were
presented together to each listener in 10 rahdom
orders. In condition two, all 12 stimuli were
presented together to each listener in 10 random
orders. Finally, in condition three, all 21 stimuli

were presented together to each listener in 10 random

orders. Stimuli were presented at a peak level of 80
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dB SPL as measured using a Larson-Davis 800B sound

level meter with a 6cc coupler.




' CHAPTER IV
RESULTS

Condition One

Figure 22 illustrates the mean percent /m/
responses plotted as a function of the above relative
amplitude variations, with F2 transition onset held
constant. The triangles represent results from the
stimuli of continuum number one, in which the F2
transition onset was appropriate for /m/ and the
relative amplitude or spectral shape was varied from
/m/ -like to /n/ —like by decreasing the amplitude
level of Al. The squares represent results from the
stimuli of continuum number two, in which the F2
transition onset was appropriate for /n/ and the
relative amplitude or spectral shape Qas varied from
/m/ -like to /n/ -like by increasing the amplitude
levels of A2 and A3.

Figure 22 shows that for stimuli with /m/ F2
transitions, relativé amplitude did not influence
labeling of nasal place of articulation. 1In referriﬁg
back to Figure 3, noﬁe that the F1 and F2 formant
peaks appear as a\complex peak and this proximity

evidently results in a labial percept.
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Condition Two

Figure 23 illustrates mean percent /m/ responses
plotted as a function of overall amplitude variations,
with overall formant amplitudes increasing in dB
moving from left to right along the x-axis. F2
transition onset is Held constant. The triangles
represent results from the stimuli of continuum number
one, in which the F2 transition onset was appropriate
for /m/. The squares represent results from the
stimuli of continuum number two, in which the F2
transition onset was appropriate for /n/.

Condition two was designed to determine if
overall amplitude at vowel onset, instead of relative
amplitude or spectral shape changes, is responsible
for the perceptual effects illustrated in Figure 22.
Figure 23 shows that‘overall amﬁlitude without
correspondipg relative amplitude or spectral shape had.
little influence in the subjects' perceptual judgment
of the stimuli.

Condition Three

Figure 24 illustrates the percent /m/ responses

plotted as a function of F2 transition onset

frequency, with F2 transition onset frequency
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increasing in Hertz (Hz) moving from left to right

along the x-axis. Relative amplitude values were held
constant. The triangles represent results from the
stimuli in continuum number one, in which relative
amplitude values were appropriate for /m/. The
squares represent results from the stimuli in
continuum number two, in which relative amplitude
values wereAappropriate for /n/. The circles
represent results from the stimuli in continuum number
three, in which relative amplitude values were
arithmetically neutral.

Figure 24 illustrates that formant transition and
relative amplitude influence place of articulation
judgments particularly for the neutral and the /n/
relative amplitudes in the region of F2 onset formant
transition at 1100 Hz and 1200 Hz. With /m/ relative
amplitude, no critical threshold of loudness for F2
was reached in order to make a perceptual difference
in normal hearing listeners.

Because not all subjects showed a clear phonemic
boundary for all psyéhometric functions, the area
under each'function was estimated by adding the number

of /m/ responses for a continuum and then dividing by
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the total possible number of responses from the

continuum. This 'average percent /m/' was then used
as the dependent variable in a repeated measures one-
way ANOVA, with relative amplitude (/m/ - like, /n/ -
like, and neutral) és the factor. Results showed a
significant effect of relative amplitude [F(1,24) =
76.4; p<0.001].

Figure 24 clearly shows a difference between the
/m/ - like relative amplitude versus the /n/ - like
and neutral relative amplitudé. Contrast tests showed
all three relative amplitude conditions to be

significantly different one from'another (p<0.001).
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CHAPTER V

SUMMARY

Discussion

The first aim of this study was to determine if
variations in relative amplitude between the murmur
and the vowel of CV syllables influenced listeners’
perception of the /m/-/n/ contrast. The results of
condition one show that for stimuli with F2 transition
appropriate for /m/, listeners judged the stimuli
without using the relative amplitude information. Part
of the reason /m/ was not affectéd may be related to
the setting of the second polé in the synthetic pole-
zero-pole complex. In previous research, when the
frequency of the second pole approached the zero at
450 Hz, listeners labeled more stimuli as /n/ (Hedrick
& Carney, 1994). Another factor could possibly be due
to the close proximity of the F1 and F2 peaks, as
shown in Figure 3.

Relative amplitude does appear to influence
listener place of articulation judgments with stimuli
having F2 transition appropriate for /n/. Figure 22

also shows that, for stimuli with /n/ F2 transitions,
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relative amplitude did influence labeling of nasal
place of articulation. This may be related to a
greater amplitude emphasis in A2 and a clearer
separation of F1l and F2 spectral peaks as depicted in
Figure 6.

In condition two, the overall amplitudes of the
first three formants were changed in conjunction, to
determine if overall amplitude alone, as'opposéd to
onset relative amplitude, was responsible for
perceptual shifts. This study shows cues other than
overall amplitude were used in labeling nasal place of
articulation.

The second aim was to systematically and
simultaneously vary second formant transition and
relative amplitude cues to ascertain if relative
amplitude cues provided a significant contribution to
perception of place of articulation beyond the formant
transition. Manipulations of second formant
transition cues provided little change in place of
articulation judgments for stimuli having relative
amplitude values appropriate for /m/. Significant
differences were noted, however, in place of

articulation judgments for changes in F2 transition
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onset for stimuli with neutral and /n/ appropriate

relative amplitude values. In terms of relative
amplitude, there were statistically significaﬁt
differences between /m/, neutral, and /n/ appropriate
relative amplitude stimuli. The biggest difference
between neutral and /n/ relative amplitude functions
was at 1100 Hz and 1200 Hz F2 values. These F2 ;alues
are neutral for the /m/ - /n/ contrast. Thus, a
stronger influence of rélétive ampiitude would be
expected.

There are two limitations of the current study
that should be mentioned. One is that only one vowel
context, /a/, was investigated. Repp (1987), has found
vowel context-specific effects on the relative
perceptual weight given cues; for example, he found
that formant transitions were weak cues for perception
of nasal placé of articulation in the /i/ vbwel
context. The second limitation is that used of a
forced-choice test with synthetic speech in only one
vowel context may yield trading relation between cues
that may not be generalizable to naturally produced

stimuli. . .
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Theoretical Implications

Results from the current study are partially in
agreement with earlier research using fricatives and
stop consonants which found that manipulations near
the consonant-vowel boundary affected perception of
consonant piace of articulation (Ohde and Stevens,
1983; Stevens, 1985; Hawkins and Stevens, 1987;
Hedrick and Ohde, 1993; Hedrick et al., 1995). The
current study does, however, add to the findings of
earlier work showing the importance of relational
information at phoneme boundaries (Stevens, 1985;
Furui, 1986; Hedrick and Ohde, 1993; Ohde and Perry,

1994).

Practical Implications

Knowing that relative amplitude could be a cue
for nasal consonants and that hearing impaired
listeners use relative amplitude to make stop

consonant place of articulation judgments (Hedrick et

al., 1995), the relative amplitude cue should be taken

into account for future processing strategies of
prosthetic devices such as hearing aids and cochlear

implants.
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The current information may also add to the

understanding of clear speech. Based on the work of
Nabelek, Ovchinnikov; Czyzewski, and Crowley (1996),
the most intelligible speakers tend to have higher F2
transition amplitudes. Results from thé current study
suggest that higher F2 amplitudes for stimuli that had
/n/ transitions were more often labeled as /n/ than
stimuli with lower amplitude F2. This information
could lead to future improvements in prosthetic
devices. Furthermore; additional work could focus on
comparison of speaker intelligibility and the

proximity of F1-F2 for labial-alveolar contrasts.
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Consent From to Participate in the Following Project:
“Use of Second Formant Transition and Relative Amplitude Cues in Labeling
Nasal Place of Articulation”

You are being asked to participate in a study of speech perception. The
goal of this study is to learn what acoustic information persons use to
perceive speech sounds.

Procedures
If you take part in this study, you will have your hearing tested, unless
there is a record of an audiogram within the past year. Following the

hearing test, you will be given a criterion test. In the criterion test,
you will be asked to listen to and label approximately 20 speech sounds
presented by earphones while seated in a sound booth. The speech will be
presented at a comfortable loudness level. Completion of this experiment
will take one, 1 to 1 ¥ hour, session and you will be given breaks of two
to five minutes for every ten to fifteen minutes of listening.

Potential risk or discomfort

There are no significant risks associated with participation in this
study.

Benefits

The purpose of this research is to gain a better understanding of speech
perception, and how speech perception by listeners with a hearing loss
may differ from listeners with normal hearing. There are no immediate,
direct benefits to you from this study.

Assurance of confidentiality

Information learned about you will be kept confidential. When referring
to data collected from you in presentations or publications, we will use
a code number and will not use your name.

Alternatives

You do not have to take part in this study if you do not want to. Your
participation or non-participation in this project will in no way affect
any future treatment or services you seek in any department at any time.
Right to withdraw

You can stop taking part in the study at any time, even after you sign
this agreement. If you want to stop taking part in the study, simply
tell us. There is no penalty for quitting.

Right to inquire

If you have any questions about this study, you can write or call the
researchers listed at the bottom of this form.

Authorization

I have read this form in its entirety and feel I understand the possible
risks, discomforts, and benefits of this study. I agree to participate
in this study. I acknowledge that I have received a copy of this consent
from.

Participant’s signature Date

Investigator’s assurance

The person whose name appears below is responsible for carrying out this
research program. She will assure that all questions about this research
program are answered to the best of her ‘ability. She will assure that
you are informed of any changes in the procedures or the risks and
benefits if any should occur during or after the course of this study.
She will assure that all information remains confidential.

Susan Frisbee Mark Hedrick, Ph.D.
Graduate Student Faculty Advisor

Department of Audiology & Department of Audiology &
Speech Pathology Speech Pathology

The University of Tennessee The University of Tennessee
457 South Stadium Hall 457 South Stadium Hall
Knoxville, TN 37996-0740 Knoxville, TN 27996-0740
423/974-8105 423/974-8105
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APPENDIX B:

PARAMETERS OF THE END POINT STIMULI




The following tables illustrate the parameters

used in the synthesis of the stimuli. Each table
represents an endpoint of each continuum of stimuli
for each condition. The following is a legend of the

control parameters used in the synthesis of stimuli:

AV = Amplitude of voicing (dB),

F0 = Fundamental frequency of voicing (Hz),
Fl = First formant frequency (Hz),

F2 = Second formant frequency (Hz),

F3 = Third formant frequency (Hz),

F4 = Fourth formant frequency (Hz),

FNZ = Nasal zero frequency (Hz),

AN = Nasal formant amplitude (dB),
Al = First formant amplitude (dB),
A2 = Second formant amplitude (dB),
A3 = Third formant amplitude (dB),
Bl = First formant bandwidth (Hz),
B2 = Second formant bandwidth (Hz),
B3 = Third formant bandwidth (Hz),
B4 = Fourth formant bandwidth (Hz),
F5 = Fifth formant frequency,

B5 = Fifth formant bandwidth,

FNP = Nasal pole frequency (Hz),

65



(Hz) .

BNP = Nasal pole bandwidth
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