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Abstract

This research analyzes the feasibility of developing a Multivariate

Statistical Process Control (MSPC) framework for monitoring and diagnosing a

biological wastewater treatment plant. MSPC makes use of historical database of

past successtul operations as a reference to judge the normality of future

operations. The projection method, Principal Component Analysis (PCA), is

utilized not only to compress the originally correlated data but also to extract

statistically meaningful information, by projecting the multivariate trajectory data

onto a lower dimensional space, spanned by the Principal Components (PC s)

retained. From the established 'normal' operation domain, departure of new

operating points from that of 'normal' domain can be detected by the use of several

MSPC monitoring plots.

The proposed methodology generates monitoring charts by analyzing the

process variables gathered in a reference database; new observations are analyzed

by contrasting their projections onto the reference PC s space against that of

normal, using a variety of monitoring charts. Possible root causes can sometimes be

identified when abnormal deviations have been detected. The capability of such

MSPC scheme in monitoring and assessing the behavior of new wastewater

treatment operations against the reference is illustrated through simulations of the

bio-wastewater treatment plant under a variety of operating conditions.

The research first reviews the concepts and techniques of MSPC and the

Activated Sludge Model No. 1. It then utilizes these techniques in creating the
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monitoring and diagnosis framework for a wastewater bio-treatment plant using the

activated sludge model No. 1 description as the process model. Simulation is

carried out using the Matlab (version 4.2c) and Simulink"^" as the programming

platform. The MSPC framework is able to detect abnormal process deviations by

comparing the projection of new observations onto the principal component

subspace to the 'normal operation' region established from base case data. If current

operating points fall inside this region, it implies that the current operation is

'normal'; If they fall or show a trend of migrating toward outside of the region, it

implies emergence of abnormal operations. Usually, it is possible to trace back

from the abnormal behavior to their assignable causes by analyzing contribution

plots.

In this study, a reference database is generated based on the simulation of a

large number of variations in the process operating conditions in the neighborhood

of a nominal operating condition. These variations include: -21% to +21% changes

in the influent nitrate concentration, [NO3"], in the maximum growth rate of the

heterotrophic biomass, pm, h, in the half-saturation constant of COD, Kg, [cod] and -

15% to +15% changes in the influent ammonia concentration, [NH4'^]. These

deviations are defined as 'normal operation' deviations. Monitoring charts are

obtained based on this simulated database. Acceptable regions are identified in

these charts as the standards for monitoring all future processes. Three abnormal

cases are simulated to validate the established base case PGA model. They

represent 1) bigger than normal amount of changes in the operating conditions not



affecting the biological model; 2) bigger than normal amount of changes in the bio-

process parameters altering the process model; 3) new biological event causing

plant/model mismatch. Analysis results show that the indication of the migration,

over time, toward a state of abnormality is clear and direct. Diagnosis is carried out

by analyzing the contribution plot for each of the three abnormal cases. Results

show that the PCA method can also identify the possible root causes for the

observed abnormality. In addition, the interpretation of the principal components

provides more insights to the behavior of the process variables. However, important

implementation issues remain that must be addressed before it can proved to be

effective when brought on line.
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Chapter 1

Introduction

This is a feasibility study for a new tool of monitoring and diagnosing for

an industrial prototype wastewater treatment plant. The focus of this study is to

explore the effectiveness of Multivariate Statistical Process Control (MSPC)

method as a handle for the plant personnel to assess whether the process operation

is proper or not.

A MSPC monitoring and diagnosis framework is to be developed for a

multi-stage biological wastewater treatment plant, in an attempt to offer an early

warning of abnormal operation and to assign possible root-cause for the observed

abnormality. The MSPC methodology applied in this study is Principal Component

Analysis (PCA) - a strong component of the bag of tools used in MSPC. Provided

that a historical operating profile data set is available, PCA then is able to reduce its

data size, to extract statistically significant information and to establish a 'normal

operation' region as a reference for assessing the state of future operation. The

reference trajectory is used to represent the normal operation of the process and to

evaluate the performance of new observations. New process observations are to be

contrasted against this reference model and be classified as either normal or

abnormal.

1.1 Motivation

The major purpose of an industrial wastewater treatment plant is to purify

the quality of the wastewater by removing undesirable compounds (such as the

1



carbonaceous wastes and nitrogen compounds) in the waste stream coming from an

upstream manufacturing plant. The waste streams entering the treatment plant will

have some vmavoidable fluctuations in both the feed rate and their various waste

concentrations. Further, unknovra differences between the process parameters of

the real process and the model used to develop feedback controllers always exist.

Therefore it is essential to have monitoring capability to detect, in time, significant

deviation of actual performance of plant from that of expected. Thus, possible root

cause can be identified and actions can then be taken to correct for these deviations,

in an attempt to drive the system back to the region of 'normal operation', in order

to meet effluent discharge standards.

The usual method to correct for output deviation from that of setpoint is to

put in local feedback control loops. The outputs are fed back, to be compared with

the desired value of the controlled variables. Any differences are then fed into the

controller as error signals. Thus, control actions calculated from a specified control

law can be implemented to compensate for the process deviation.

But for a complicated plant, local feedback control loops alone are not

adequate. It is well established that feedback control loops eliminate the symptoms

but not the root causes of a process upset. Its major deficiencies lie in the following

aspects: 1) Using feedback loops, the system counteracts the output deviations by

acting on non-zero errors. These errors go through the controller and change the

inputs to the process. Hence, the cost of compensating for any deviation in the

process output is a deviation in the process input from that of nominal. The system

2



deviation is now shifted from the output to that of the input. The cause for the

deviation still exists. 2) In order to maintain the output at the desired value,

corresponding input has to be changed. Suppose the output deviation becomes

worse and worse, then the responsible input will also have to become more and

more aggressive in an attempt to bring the system back to a normal state of

operation. This might result in meeting against system constraints. For example, a

ceiling coolant flow rate might be met and the plant can not be brought back to the

normal reactor temperature state. 3) Feedback control only takes care of correcting

for the deviation in the output. It does not take into accoimt the effect on the input

and intermediate variables. For a complex system, there are not only a large

number of input and output variables, but also many correlated intermediate

variables, whose effect on the system may not be known exactly. The entire

operation profile, including the output, input and intermediate variables, needs to

be compared to that of the 'normal' trend. Such that, even though the output

appears to be normal, the monitoring system is still able to detect an overall shift

over time from that of 'normality' and to recommend the operation personnel to

take adjustment steps in time, before the effect becomes irreversible. Therefore, a

tight monitoring and diagnosis of the overall plant operation is urgently needed to

ensure the long-term success of the operation of the treatment system. Without

timely and accurate measurements, local feedback control is unlikely to achieve the

desired specific process goals. In the chemical industry, timely and accurate

measurements are not always available. For instance, the biological process in this
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study, most of the monitored variables are composition measurements.

Composition sampling and analysis are usually made off-line in the laboratory,

probably once or twice a day. In this case, local on-line feedback control loops

designed to feedback directly these compositions are not feasible. In addition,

control actions are usually based on off-line and intermittent measurements. Thus,

tight control of the effluent concentrations, even when possible, is not feasible.

To achieve MSPC, the following implementation is envisioned. This

implementation is considered for future application, only after practical

implementation issues have been addressed and resolved. This is a possibility to

achieve process monitoring in the future. Figure 1-1 is a block diagram of the

layout for the envisioned MSPC scheme. It shows the relationship between the

classical feedback control loop and the additional monitoring element riding on top

of it. The new part is the "Multivariate Statistical Data Analysis" block. Plant-wide

information is to be fed into this block. Through data reduction, multivariate

analysis and model fitting, abnormal operation profiles can usually be detected and

analyzed. Possible causes can then be attempted to be removed before the feedback

control capacity is overwhelmed. The removal of the causes for deviation is to be

carried out by an operator. The "Multivariate Statistical Data Analysis" acts as an

alarm to warn the operators the existence of possible process 'abnormality' that

may have emerged during the course of the operation of the treatment plant.



setpoint error

Operator

Controller
►
w

input

Multivariate
Statistical

Data Analysis

Process

output

Local Feedback Loop

Figure 1-1. Implementation of Multivariate Statistical Process Control
Scheme Envisioned for a Process.

1.2 Statement of Research Problem

The focus of this study is to develop a multivariate statistical monitoring

and diagnostic framework for a wastewater hiotreatment plant by using the

principal component analysis methods. This framework can provide an early

warning for abnormal operations and suggest process variables responsible for the

deviation.

First, based on- the historical operation data, a 'normal operation' PGA

model will be developed and a desired multi-dimensional acceptable region for

normal performance will be constructed using multivariate statistical method. If

future process behavior lies inside the 'normal' region, process with good output

will be indicated. Operation departing from this region represents possible faults.
5



Actions will be recommended to be taken to drive the process back to the 'normal'

region. In this study, according to this logic, several perturbed cases with deviations

larger than those used to develop the reference database, and those not included in

the base case generation, will be simulated in order to assess the feasibility of the

MSPC model developed. Variables that contribute to the deviation will be

attempted to be identified.



Chapter 2

Background

2.1 Multivariate Statistical Process Control (MSEC) and Recent Applications

2.1.1 Statistical Process Control (SPC)

Modem plants have become more and more complex and vast amount of

process data is usually available due to the advancements in automation and

distributed control systems. These large quantities of data are an excellent

information resource if significant and pertinent process information could be

extracted from them easily and timely. Converting process data into useful

operating information in a timely manner would greatly improve process quality

and safety. Traditional data analysis methods may not be adequate when faced with

stringent requirements for output product quality. This situation led to the

application of statistical methods into the process control fields.

The objective of Statistical Process Control (SPC) is primarily to monitor

the performance of a process over time to detect if it remains in a 'normal' state of

operation according to that foretold by the historical data. Early warning and

identification can be provided if any potential production problems, such as

malfunctions, abnormal operations or significant disturbances, are present. Based

on the warning, adjustment steps can be taken in time to reduce the off-

specification production in order to maintain the product quality. The abnormal

performance of a plant can cause many significant problems, such as bad product

quality, low productivity, increased environmental problem and even plant
7



shutdowns. That is why quality control has become an extremely important part of

today's plant operation programs.

2.1.2 A Comparison between Univariate Statistical Process Control (USPC)

and Multivariate Statistical Process Control (MSPC)

Until recently, classical Univariate Statistical Process Control (USPC)

method plays a major role in the quality control field. USPC monitors one quality

variable at a time and ignores the collinear behavior between the variables. If a

small set of variables are measured and all of them are independent, experimental

results show that USPC approach is suitable for quality control. But with the

advancement of modem technology and the power of computers, as industrial

plants with complex structure being the norm, vast data set across a wide range of

variables can still be logged and is available for analysis. It is less possible that they

are all independent of each other. USPC is based only on the magnitude of the

deviation of one variable and does not take into account the interactions among the

variables. This method does not provide appropriate and adequate information

about the overall state of the process if variable correlation exists. Therefore, it is

not surprising that Multivariate Statistical Process Control (MSPC) approach has

become more and more popular during the last few years. Figure 2-1 is an example

to show the feasibility of MSPC.

This example is based on the semi-batch emulsion polymerization of

Styrene-Butadiene in making latex mbber (SBR) (Nomikos, 1995). In this figure,

both normal operation data and abnormal operation data are present. Since this is a

8
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USPC monitoring chart, each of the six figures shows the trajectories for several

operations of one variable over time. Correlation among variables can not be

depicted. In the figure, the solid line represents a successful batch; the dashed line

and dotted line represent two unsuccessful batches. Apparently, there is not much

observable difference among the good runs and the bad nms. Therefore, fault of the

unsuccessful batches is not easily detectable by examining the plots of the

individual variables.

Conversely, Multivariate Statistical Process Control (MSPC) handles data

of this type very well. Visual inspection of the MSPC charts will be sufficient to

detect the abnormal cases. Figure 2-2 is a monitoring chart showing the scores of

data from fifty-two batch runs. By adding two unsuccessful batches, batch 51 and

52, to the reference batch database consisting of fifty successful batches, MSPC

chart indicates the difference between these two sets clearly. In this figure, all fifty-

two batches are projected onto the scores plane spanned by the first two principal

components. The fifty good batches cluster more tightly in a region as shown in

this plane. The two batches with fault fall well outside the cluster of the good

batches. Therefore, while USPC is not adequate for fault detection graphically,

MSPC works well in indicating process abnormalities. Through this example, it is

shown that MSPC is appropriate for analysis of processes characterized by

correlated measurements.
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2.1.3 Multivariate Statistical Process Control (MSPC)

2.1.3.1 General Information for MSPC and Principal Component Analysis

(PCA)

MSPC provides a systematic approach to the treatment of correlated process

data. From the original data set, it extracts information that contributes the most to

the variation of the data; it defines a set of new and fewer, so called, principal

components or latent variables, and projects the original process variable

measurements onto the much smaller dimensional space spanned by these principal

component axes.

The basis of MSPC is the projection theory. One popular MSPC method is

the Principal Components Analysis (PCA) (Wold, Wise, MacGregor, 1980's).

Through MSPC, interrelated process data can be reduced to a much lower

dimensional space, which reflects the truer dimensionality or the degree of freedom

of the process, and are to be represented by a set of principal components. These

principal components are formed by linear combinations of the original process

variables. Principal Components are orthogonal to each other, therefore

representing independent information. Usually, tens of process variables can be

represented by just a few principal components without missing out on any

significant system information. The highly correlated original data set can then be

expressed by a reduced set of uncorrelated new variables, with a better insight into

the process. MSPC may aid in separating the important information which

12



contributes the most to the variation of the process from noises and thus capturing

the essence of the information.

PCA has a long history dating back to the beginning of the twentieth

century (Pearson, 1901). It was first used in the field of social studies, psychology

and anthropology. Recently, it has been used in the fields of data reduction,

variable classification and providing early warning and identification of

malfunctions, abnormal operations, significant process disturbances or impending

equipment failure (Wold, 1987).

The essence of MSPC, including PCA, can be considered as practices in

chemometrics application. Chemometrics is the 'science of relating measurements

made on a chemical system to the state of the system, via application of

mathematical or statistical methods' (Wise, 1996). As the use of modem

instrumentation systems becomes more common, more and more data are recorded

more frequently in the chemical processes. Therefore, the use of PCA emerged to

be a powerful tool to analyze the chemical data. Chemometrics applies most

effectively to inter-related data. PCA not only performs data compression but also

extracts systematic information from the data set. PCA is a favorite tool of

chemometricians for these purposes. PCA is chosen in this thesis work.

2.1.3.2 Applications of MSPC into Chemical Engineering Field

MSPC of chemical processes is an approach first shown possible by

MacGregor, J. F. in the 1980's (MacGregor, et al., 1987) and has since become an

area for cutting-edge research and application during this decade. Recent popularity



is due to its applicability to more and more complex processes and showing success

in detecting process abnormalities.

MacGregor as well as other investigators have already shown many results

of application of MSPC method in the process industry. The MSPC method has

been applied to a variety of different processes. Some recent applications include:

1) monitoring of fluidized bed reactors and extractive distillation columns (Kresta

and MacGregor et al, 1991) (Chen and Mcavoy et al, 1998); 2) quality control of

polypropylene production (Skagerberg and Lehtinen et al, 1992); 3) monitoring of

low density polyethylene reactors (MacGregor and Skagerberg, 1994); 4)

monitoring of batch and continuous processes (MacGregor and Koutodi, 1995); 5)

study of batch polymerization reactors (Martin and Morris, 1996); 6) control of

high-temperature short-time milk pasteurization process (Negiz and Cinar,1997); 7)

solving of registration problems in fine pitch components for Printed Circuit

Boards (Colon, GonzalezBarteto, 1997); 8) quality control of industrial titanium

dioxide white pigment (Majcen and Rius et al, 1997); 9) analysis of polar

compound of virgin olive oils (Evangelisti, Zunin et al, 1997); 10) analysis of the

effect of inflow disturbances for fed-batch fermentative production of recombinant

beta-galactosidase (Patnaik, 1997); 11) monitoring of emulsion batch processes

(Neogi and Schlags, 1998); 12) investigation of the feasibility of monitoring sensor

accuracy (Leger and Garland et al, 1998); 13) quality control of electrolysis process

which produces extremely pure copper (Wikstrom, Albano et al, 1998); 14) real

time monitoring and detection of after-burning hazards of continuous catalyst
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regenerators (You, 1998); 15) control of powder blending with near-infrared

spectroscopy (Demaesschalck and Sanchez et al, 1998); 16) optimizing of oil spill

dispersants as a function of oil type and weathering degree (Brandvik, Baling,

1998).

All of these applications show that the multivariate statistical analysis

method is a very promising approach in the following two aspects: 1) identification

of the occurrence of process deviation from that of 'normal operation' region; 2)

identification of the combination of the process variables reflecting the deviation.

2.2 Configuration and Microbiology of the Wastewater Treatment Plant

2.2.1 Configuration of the Biological Wastewater Treatment Plant

Wastewater treatment in the United States is based mainly on the activated

sludge process (Grady and Lim, 1980). An anoxic/oxic system is an example of this

process and is a part of the wastewater bio-treatment plant in this study. This plant

is the prototype for future treatment of industrial wastewater being considered by a

major chemical company in the Gulf Coast, with the potential of several other

similar plants being built in the near future.

The Bardenpho activated sludge process (Metcalf and Eddy, 1991) in this

study consists of a biological system in series with a physical settlement system.

They work together to reduce the waste material and to separate the solid and liquid

fraction of the treated waste. The biological system features an anoxic reactor

(without oxygen) followed by an aerobic reactor (with oxygen). Waste

carbonaceous material degradation and nitrogen removal are carried out in this

15



system accompanied by biomass growth. Nitrogen removal in the Bardenpho

process is through a two-step procedure - nitrification and denitrification. N-

NH3/NH4'^ is first converted to N-NOa'/NOs" during nitrification in the aerobic

reactor. N-NO3" is then converted into nitrogen gas and released to the atmosphere

during denitrification in the anoxic reactor. The aerobic stage also removes almost

all the organic matters of the wastewater stream. The third unit in the process is a

physical settling system, the clarifier. The final step - separation of the suspended

biomass solids and liquids is carried out in this unit by the force of gravity. No

biochemical reactions take place in the settling tank. The clarified liquid is

discharged into the receiving waterway. The separated suspended solids are divided

into two parts. The majority of the solids are recycled back to the anoxic reactor.

The remaining fraction exits the process through a bottom wastage stream where

rate can be adjusted by the operator, and is an important manipulated variable for

control consideration. A plant configuration is shown in Figure 2-3.

The Activated Sludge Model No. 1 (Henze, et al., 1986) was used to develop

the simulator model for the bio-wastewater treatment plant (Grove, 1995). This

model utilizes Monod kinetics and accounts for carbonaceous degradation,

nitrification and denitrification through the growth of heterotrophic and autotrophic

microbes. It is assumed that all the reactors are well-mixed, continuously stirred

tank reactors (CSTR). The Activated Sludge Model No. 1 provides a series of

ordinary differential equations, representing the kinetic mass balances for each of

the thirteen process variables. Each equation represents the net generation rate of

16



one component in each of the two reactors. Depending on the stated dissolved

oxygen level in the jeactor, the model switches between aerobic and anoxic

processes. The system is usually subject to daily flow and load fluctuations, but

they can be assumed to operate at steady state when system stability is achieved in

the long-term against these short-term cyclic variations.

Tnfhient

Nitrosen

t

Aaoxic
Reactor

Carbon Dioxide

t

Oxygen

Aerobic

Reactor

EfEhient

■ Recircnlation

Clzii£er

Sludge Recycle

Figure 2-3. Flowsheet ofWastewater Bio-treatment Plant (Grove, 1995).

The objective of the bio-treatment is to reduce the amount of the

carbonaceous wastes and nitrogen compounds to those less harmful to the

environment when discharged, such as, water, carbon dioxide and nitrogen gas.

Variables to be controlled to meet discharge permit standard usually are the effluent

concentrations of carbonaceous waste-biological oxygen demand (BOD), ammonia,

and/or nitrate. Two significant wastewater characteristics are its flowrate and
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pollution load. Their ever-changing magnitude and model uncertainty and

complexity make the controlling of the treatment process challenging. Therefore,

the flow rate, the influent BOD, ammonia and nitrate concentrations are considered

to be the system's input variables. The sludge age and recirculation ratio are

selected as the manipulated variables for the design of feedback controllers. The

recirculation ratio is defined as the ratio of the recirculation flow rate from the

aerobic reactor to the anoxic reactor divided by the influent flow rate to the

wastewater plant (Refer to Figure 2-3). The sludge, age reflects the mean solids

residence time in the reactor. It is assumed that the volume of the reactor is

separately controlled to be constant at all times. Assuming the total mass of

biomass in the system is Xt, effluent flowrate and biomass concentration in the

effluent are Fe and Xe, sludge wastage flowrate and biomass concentration in the

wastage are Fw and Xw, respectively, the definition of the sludge age is;

sludge a^e = di
FX+FX..
W  )»■ -

For Xe«0, (1) becomes:

sludge age = — (2)
^  w

It is the ratio of the total biomass in the system to the rate of solid removal of the

system (Metcalf & Eddy, 1991; Orhon & Artan, 1994).
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2.2.2 Microbiology of the Treatment Processes

2.2.2.1 Fundamentals of Microbiology

The biological processes occuring in the Bardenpho system are similar to

the biological processes in other industrial applications. Microorganisms consume

substrate/nutrition and convert them into either biomass or energy for cellular

functions.

The growth rate of microorganisms with respect to the consumption of

substrate is formulated as Monod kinetics (Monod, 1942,1949, 1950):

^  ...
/^max,5 ^ ^

where: p.B = Specific growth rate of Biomass, day"'

|J.max,B = Maximum specific growth rate of Biomass, day"'

S  = Substrate concentration, mass (e.g., COD or N-NH4^) volume"'

Ks = Half velocity constant, same units as S, specific to that limiting

substrate and microbe (Grove, 1995)

The net accumulation rate of microbes in a system where both cell growth

and cell death are present has a first order exponential format (Shuler and Kargi,

1992):

dX S

^ = (4)

where: X = Concentration of microbial mass, mass (COD) volume"'

t  = Time, day
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kd = Endogenous decay coefficient, day"'

2.2.2.2 Carbonaceous Material Biodegradation

Large amount of carbonaceous material discharged into waterway is

harmful to the ecological balance. A major goal of a wastewater treatment plant is

to convert biodegradable organic compounds into chemical compounds which are

less toxic to the receiving waterway. In the studied system, the aerobic tank is the

primary unit for degradation of the carbonaceous compounds. It is designed to

consume the carbonaceous material through the action of some heterotrophic

microorganisms. They degrade organic carbon in wastewater as part of their food

and energy source and these biosynthesis reactions use oxygen as the electron

acceptor. The organic compounds are converted into carbon dioxide, cell mass, and

a few other end products. There is also hetorotrophic degradation going on in the

anoxic reactor, but at a slower rate. Microorganisms using CO2 as their principal

carbon source for biosynthesis are autotrophs and they are active in the nitrification

process in the aerobic reactor. Microorganisms using organic compounds for

biosynthesis are heterotrophs (Metcalf & Eddy, 1991; Orhon & Artan, 1994).

2.2.2.3 Nitrification

Similar to carbonaceous material, excessive amount of organically bound

nitrogen compounds entering a waterway can also have deleterious effects on the

ecological systems by imposing an oxygen load in the receiving water (Arcievala,

1981).
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Autotrophic bacteria are capable of performing respiratory metabolism

under aerobic conditions using inorganic compounds as their energy source. In this

study, NH3 and NO2" are oxidized to NO3" in the aerobic reactor, using HCO3" as

the primary source of carbon, providing energy and raw material for cell growth.

This process is called nitrification. The end product of nitrification is nitrate among

others. It is then converted into nitrogen gas in the anoxic reactor in the process of

denitrification and removed from the process.

Nitrification is carried out by two different physiological groups of

nitrifying bacteria in the following sequence of reactions (Orhon & Artan, 1994):

2iV//; + 36>2 ̂  2N01 + 4H^ + 2H^0 (5)

2N0; + O, ̂  2N0; (6)

The overall equation describing the aerobic growth of autotrophs in

association with nitrification of ammonia compounds can be expressed as (Metcalf

&Eddy, 1991):

A//; +1.8302 +1-98AC03" -> ̂ .Q2\C,H,N0^ +\M\H^0 + 0.9^0; +\MH^CO^

(7)

where C5H7NO2 represents microbial mass, and 4.3 mg of O2 per mg of ammonia-

nitrogen is required for its conversion to nitrate.

2.2.2.4 Denitrification

Denitrification and cell groAvth occur in the anoxic reactor in the absence of

oxygen. Instead, the nitrates produced in the aerobic reactor serve as an electron

acceptor. The heterotrophic microorganisms consume carbonaceous wastes present
21



for cell growth and generation of the nitrogen gas. The reduction of nitrate to

nitrogen gas takes place in a sequence of reactions (Orhon & Artan, 1994):

no; ̂  no; no ̂  n^o ̂  n^ (8)

These reactions provide energy for the heterotrophic biomass growth occurring in

the anoxic reactor. The overall nitrate removal as well as biomass synthesis can be

expressed as (Metcalf & Eddy, 1991):

no; + lMcarbonunit + H* -> O.OSSC^HyNOj +OA7N2 +O.76CO2 +2AAH2O

(9)

2.2.2.5 Mass Balance — the Construction of the Wastewater Plant Dynamic

Simulator

According to the Activated Sludge Model No. 1, there are thirteen

components of interest in the system. They are: soluble inert organic matter (Si),

readily biodegradable substrate (Ss), particulate inert organic matter (Xj), slowly

biodegradable substrate (Xs), active heterotrophic biomass (Xb,h), active

autotrophic biomass (Xb,a)5 particulate products arising from biomass decay (Xp),

oxygen (So), N-NO3/NO2' (Snq), N-NH4"^/NH3 (Snh), soluble biodegradable

organic nitrogen (Snd), particulate biodegradable organic nitrogen (Xnd) and

alkalinity (Salk)- For each of the thirteen components, a mass balance is carried out

in the anoxic reactor, in the aerobic reactor as well as in the clarifier. There are

eight major biological processes occurring in the system. They are: aerobic growth

of heterotrophs, anoxic growth of heterotrophs, aerobic growth of autotrophs,

'decay' of heterotrophs, 'decay' of autotrophs, ammonification of soluble organic
22



nitrogen, 'hydrolysis' of entrapped organics and 'hydrolysis' of entrapped organic

nitrogen.

Each mass balance is carried out by the formula of:

Input - Output + Generation - Constimption = Accumulation (10)

For such a system with multiple species as well as processes, the

(Generation-Consumption) term in the above mass balance is consisted of several

process kinetics and stoichiometry matrix, as presented in The Activated Sludge

Model No. 1, listed in Table 2-1. All the symbols encountered in this table are

noted on either the right or the left comer of the table.

In this table, rows represent the eight processes while columns represent the

thirteen components described previously. Elements within this matrix comprise

the stoichiometric coefficients, vy. They characterize the mass relationship between

each component and the individual process. The process rate, pj, is listed in the

last column of the matrix, depicting the reaction rate of each process. In the

S  K
expression of pj, the terms of ( ) and ( ——) serve as 'switching

^0,H ^0 ^0,H ^0

functions'. They are responsible for switching the reactions to either aerobic

reaction when oxygen is present or anoxic reaction when oxygen is absent. When

O2 is available, say, in the aerobic reactor. So is relatively large compared with

Ko,h- Then the first term above approximately equals to one and the second term is

almost zero. On the other hand, when O2 is not available in the reactor, say, in the

anoxic reactor, Sq approaches to zero. Then the first term equals to zero while the
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latter term could be approximated to be one. By means of this, the process rate

expression is applicable to both aerobic and anoxic reactor.

To calculate the (Generation-Consumption) term for, say, the component,

th

one needs to go down the j column and add up all the vypj (i =1 to 8) elements to

obtain the overall reaction term for the component. An example is presented

below to explain the procedure for calculating this term.

The fifth column represents the component of the active heterotrophic

biomass. The cell generation rate of aerobic growth of the heterotrophs is

S  S
—)( )^BH (Refer to Section 2.2.2.1, Monod equation); the

cell generation rate of the anoxic growth of the heterotrophs is

S  K S
1X Ah ' c » where pg is the correction factor

^NO'^^NO

for anoxic growth of the heterotrophs; the rate of decay is (-1) xb„Xgj^, where bn

is the decay coefficient for the heterotrophs. The overall (Generation-Consumption)

rate for the active heterotrophic biomass is:

^  ̂0,H O ^OH'^^0 ^NO'^^NO

(11)

To obtain the overall mass balance for the active heterotrophic biomass in

any unit operation, say, the aerobic reactor, input and output information are also

needed. Referring the Figure 2-3, the flowchart of the treatment plant, the influent
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flow of the aerobic reactor is the output of the anoxic reactor. This influent stream

includes heterotrophic biomass. The output of the aerobic reactor is divided into

two parts. One goes into the clarifier and the other goes back to the anoxic reactor

as the recirculation flow. Both parts of the stream contain heterotrophic biomass,

too. This wastewater treatment plant is considered to be a CSTR operation. The

flowrate is considered to be always controlled at a steady value, in order to avoid

overflow or washout conditions. Thus, every term in equation (10) is to be

computed using known parameter values and the mass balance expression is then

ready for the component of active heterotrophic biomass.

The dynamic simulator was built by carrying out the thirteen simultaneous

mass balances in the anoxic reactor, the aerobic reactor and the clarifire by

integrating the system of first-order differential equations derived by using the

reaction rate terms as shown in Table 2-1.

2.3 Application of MSPC to Wastewater Treatment Plant

This activated sludge wastewater bio-treatment plant is characterized by a

non-linear biological process with many bio-parameters. Several physical, chemical

and microbiological factors affect the treatment results of the plant simultaneously.

The biological processes are extremely sensitive to pH, temperature, and the

dissolved oxygen level. The process can easily diverge from the desired operation

profile. Thus, stringent monitoring is needed to more readily detect deviations, so

as to avoid irreversible impact on the wastewater treatment system's output quality.

Many variables are normally measured on and off-line in this process. They are
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usually highly correlated. There are also a number of intermediate variables that are

measurable. Since MSPC approach is suitable for dealing with correlated data, it is

feasible to apply MSPC to the analysis of the system at hand. It is usually possible

for this method to identify the process variable(s) accountable for the system's

departure from the 'normal' operating trajectory.

Some researchers have already shown a strong interest in applying MSPC to

the wastewater treatment field. Some recent reports are: 1) analysis of a waste

treatment process (Schlags and Anani, 1998); 2) monitoring of an activated-sludge

wastewater treatment plant (Teppola, Mujunen, 1998); 3) analysis of activated

sludge plant (Teppola and Mujtmen et al, 1997); 4) characterization of industrial

effluent cormected to municipal sewage treatment plants (Andren and Eklund et al,

1998). Their simulation results show the feasibility of applying MSPC for this type

of system. Previous investigations for MSPC in wastewater treatment field are

mostly carried out in Europe, Finland, Sweden, Denmark and Canada. Specific

research was based on the data obtained from specific plant under specific

operation condition and then was not able to represent the general case of the .

application of MSPC in wastewater treatment plant. In this study, MSPC is used in

the simulation of a prototype of industrial wastewater bio-treatment plant in the

United States. Effort will be made to make general discussions and conclusions.

More effluent variables as well as some of the intermediate variables are monitored

in this study to give more insight to the process at hand.

27



The activated sludge wastewater bio-treatment plant in this study is a

complex system with nonlinear dynamic structure. A model predictive control

strategy, the internal model control (IMC) (Morari, 1989), is applied. IMC has been

shown to be superior to traditional PID in dealing with system nonidealities. With a

2x2 local IMC control loops in place, MSPC attempts to detect and identify

occurrence of process operation deviating from that of acceptable limit. It is hoped

that corrective actions can be taken by the operator before irreversible effect

results.

2.4 Previous Work on the Wastewater Bio-treatment Plant

2.4.1 Grove's Work

Grove (1995) developed a dynamic simulator using the Matlab/Simulink™

platform for this multi-stage bio-wastewater plant. He studied the sensitivity of the

open-loop dynamic responses of this system to perturbations and identified

manipulated-eontrolled variable pairings, with respect to stability and performance

requirement. He considered two by two decentralized output-input pairing and

recommended desirable pairings based on the )Li-interaction measure index

(Grosdidier and Morari, 1985) for minimizing the effect of loop interactions.

2.4.2 Schmidt's Work

Based on Grove's work, Schmidt (1996) closed the two by two control loops

by taking the recommended pairings but used linearized process models in

designing for a feedback controller. He compared the performance of two base-

level controller design approaches, that of the classical Proportional-Integral
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Derivative (PID) tuned by traditional methods, and that of Internal Model Control

(IMC), with respect to long-term stability, performance and ease of tuning when

setpoint changed and when disturbances or plant/model mismatches were present.

First level unconstrained IMC was chosen in his study as the representing

Model Based Control strategy, because it was easy to design and to understand

after PID, but exhibited some nice control characteristics, not exhibited by the

conventional PID controllers (Ogunnaike and Ray, 1994). These features included

the built-in capability of compensating for process dead time, inverse response and

tolerance of some degree of plant-model mismatch. Thus, while PID failed in

stability when non-ideal process characteristics were encountered, IMC could

always yield stable operation.

Figure 2-4 is a block diagram of IMC control. The major difference

between classical feedback control and model-based control is that there is a model

block in parallel with the process block in the latter. Thus, inputs entering the

process will also go through the model. The outputs of the process and the model

will be compared and if they are different, the difference will be fedback to the

controller. Control actions will be taken to take care of this difference. For instance,

when there is a disturbance or plant/model mismatch, the outputs from the process

and from the model will not be the same. This deviation is the signal to be fedback.

The system is then able to sense the occurrence of the disturbance event in time.

Therefore, the capability of disturbance rejection and mismatch tolerance of the

system is improved by applying model-based control strategy.
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Setpoint

—►O
+

Controller Input
Plant

Model

Disturbance

+

xO
+

Oiitput

>0
+

The IMC Controller

Figure 2-4. Internal Model Control Structure (Morari and Zafiriou, 1989)

Both PI and IMC control schemes in his study were decentralized multiple-

loop controllers, which were simpler to design than a true multivariable controller

by ignoring the inter-loop interactions. The drawback was that it would reduce the

stability margin of the process. Decentralized controller is defined as follows:

consider each manipulated variable paired with one process output variable on

which it is deemed to have the most effect. The calculation for the manipulated

variable is based only on the output variable to which it is paired. This is in contrast

to that of the true multivariable controller, in which the calculation of each

manipulated variable is based on all of the output or controlled variables. The

decentralized control structure of this bio-wastewater treatment plant is shown in

Figure 2-5. It is the top-level block diagram of the plant. In this figure, the
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controlled variables are the effluent [BOD] and [NH4'^]. The two manipulated

variables, recirculation ratio and sludge age, are paired with the effluent [BOD] and

[NH4'*'], respectively. The complex Multiple Input Multiple Output (MIMO) system

is approximated by a decentralized two by two system, therefore much easier to

handle. What is being sacrificed is the tight performance only a true MIMO

controller will deliver.

Results of his study showed that: PI controller alone was not adequate in

keeping long-term stability, for systems where non-ideal element was encountered

(inverse response occurred in cases where ammonia was one of the two variables to

be controlled, as the case in this thesis work). The performance of the 2x2 PI

controllers became unstable even when the controller was detuned to increase the

stability margin. Detuning only delays the onset of the instability after an

introduction of either a setpoint or a disturbance step change. IMC had the obvious

advantage in maintaining long-term stability under the same conditions. It was also

easier to retune IMC to meet the performance criteria, because IMC had only one

tuning parameter per loop, with built-in capability of compensating for process

dead time and inverse response (Morari, 1989); while a PI loop had three

parameters even before the addition of inverse-response compensator or Smith

Predictors, in order to compensate for the process non-ideal characteristics.

Schmidt attributed some model inaccuracies to the linear representation of the

nonlinear process. However, because IMC did not take any input constraint
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explicitly into consideration, it sometimes led to unrealistically big input actions,

which could not be implemented in practice.

2.4.3 Fu's Prior Work

The last phase of the previous study was the incorporation of the original

nonlinear model of the wastewater treatment plant into the process block in the

feedback control loop. Results again showed that IMC was much more able to

achieve long-term stability in the face of perturbation, compared with that of the PI

controller. Detuning the PI controller could not avoid the onset of instability for

cases with inverse response or long delay in the model. When plant-model

mismatch was introduced into the process, PI controller would lead to impractical

results. The performance of IMC could always meet the stability criteria by

retuning, although IMC at times generated control actions that were too big or too

rapidly changing to be practical. Again, since IMC had less tuning parameters than

a PI controller does, the advantages in the ease of tuning were apparent.

Selected simulation results are shown here to display the advantage of IMC

over PI controller with respect to long-term stability and performance, using

nonlinear process model and a linear controller. Figures 2-6 to 2-11 are simulation

results with the effluent [BOD] and [NH4^] being the controlled variables, with

respect to setpoint tracking, disturbance rejection and plant-model mismatch
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tolerance, respectively. Setpoint tracking is the ability of the process output to track

the specified setpoint. Disturbance rejection is the ability of a controller to

minimize the effect of perturbation on the process output. Plant-model mismatch is

the difference in the dynamics that describes the actual plant and that that describes

the model which was used for the controller design. Two primary goals of

controller design are long-term stability and output performance.

Figures 2-6 and 2-7 are subject to a -5% setpoint change in the effluent

[BOD]. As all the other operating conditions are same in the two figures, their

difference is that. Figure 2-6 is the response curve when a PI controller is

incorporated while Figure 2-7 shows the results when an IMC controller is

incorporated. Apparently, for the former case, the system is still not stable at 1000

days. The recirculation ratio keeps increasing and the effluent [NO3"] keeps

decreasing. In the contrary, for the IMC case, within 100 days, system settles down

completely. Figures 2-8 and 2-9 show the result when a -15% disturbance in the

influent [NH4"^] is introduced. Again, the system with PI controller can' t achieve

stability even after 1000 days. System with IMC, after a short-term transient

response, settles down at around 100 days. Figures 2-10 and 2-11 are subject to a

plant-model mismatch on biological constants, pm, h and Ks, cod- The results show

again that PI fails in long-term stability while IMC yields stability within a

reasonable time frame.
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Based on the long-term stability requirement of the system, IMC has

obvious advantages over PI. Therefore, IMC will be selected as the control

algorithm for this study.
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Chapter 3

Study Approaches

The objective of this study is to develop a multivariate statistical monitoring

and diagnostic framework, for a multi-stage wastewater bio-treatment plant by

using the principal component approach. Monitoring and diagnostic capability can

provide an early waming for abnormal operational trend and to suggest process

variables responsible for the observed deviations.

This study is carried out using the bio-wastewater treatment plant simulator

developed by Grove (1995) in the Matlab'^'*' platform. First, a controller seheme has

to be chosen in order to provide feedback control capability, to correct for

immediate and direct process deviation. Comparison of control design strategy

between traditional PID controller and Internal Model Controller (IMC) was

carried out by Schmidt (1996) and Fu (1998). They showed that IMC is superior to

PID in the key aspect of maintaining stability, in the face of disturbance and plant-

model mismatch. Therefore, IMC is chosen in this study as the default controller in

the 2x2 feedback loops. The pairing of input to output variables were chosen based

on the p-interaction measure (Grosdidier and Morari, 1986) as well as on the

system's steady state gains (Grosdidier, Morari and Holt, 1985). Two single-loop

feedback controllers were designed.

In Schmidt's study, three cases, ease I, II and III, with different controlled

variables were chosen for study. In case I, effluent [BOD] and [NH4"^] are the

controlled variables. They are paired with recirculation ratio and sludge age,
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respectively as the manipulated variables. In case II, effluent [BOD] and [NO3"] are

under control whereas [Nlht"^] and [NOs'] are controlled in case III. In this study,

case I with effluent [BOD] and [NH4'^] as the controlled variables is chosen to carry

out the MSPC procedure development. The motivation for this choice is explained

further below.

In industrial wastewater treatment process, the major forms of nitrogen are:

organic nitrogen, ammonia nitrogen, nitrite nitrogen and nitrate nitrogen. Among

them, only the first two forms are significant for wastewater nitrogenous loading

considerations, except for a few specific industrial discharges.

The primary impact of ammonia nitrogen in wastewater is the impairment

of the dissolved oxygen balance in the receiving waters. The term NOD is created

to refer to Nitrogenous Oxygen Demand. In the presence of nitrifying bacteria, for

instance, in the aerobic reactor of the wastewater treatment system under this study,

ammonia is readily converted into nitrate, and in the process consumes 4.3 gOa/gN-

NH3. If the ammonia concentration is too high in the waterway, it will overload the

oxygen balance, therefore upsetting the ecological system. Another significant

impact of ammonia is that it is toxic to aquatic life, especially the free ammonia

NH3 form. Free ammonia NH3 and ionized ammonia NH4"^ are inter-convertible in

wastewater. Ammonia nitrogen is also a major nutrient that will stimulate aquatic

plant growth. Based on these considerations, the effluent standard guideline for

nitrogen element was implemented together with an NH4"^ concentration restriction
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for many industrial bio-wastewater plants all over the world (Orhon & Artan,

1994).

Carbonaceous material removal is one of the major objectives of wastewater

treatment. It is no doubt that effluent [BOD] is a significant quality variable for

such plants. Besides [BOD], due to the importance of effluent concentration of

ammonia to the receiving waterway, effluent [NH4"^] is also chosen for monitoring

the efficiency of the waste treatment plant. Case I is the case whose controlled

variables are effluent [BOD] and [NH4'^]. Therefore, case I is the case under study

in this research.

The goal of a process monitoring system is to give warning when the

operation starts to exhibit a trend of becoming 'out of control'. The reference

domain, indicating 'normal operation', is established using historical data gathered

when the process operation is deemed in a state of control under a variety of

operating conditions, that will not be regarded as 'abnormal' if encountered again.

This would be considered as the base case against which future observations will be

compared. A series of PCA is to be carried out for data gathered to be included in

the reference domain, and a desired multi-dimensional acceptable region defining

the normal performance is to be constructed using multivariate statistical method. If

future process behavior lies inside this region, then process with good output

product quality will most probably result. Operation departing from this region

represents possible abnormal operation. Actions would be recommended to be

taken to drive the process back to the 'normal' region. According to this logic,
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several perturbed cases with deviations larger than those used to develop the base

case model, or not encountered by the base model operation will be simulated as

well as analyzed and variables that contribute to the deviation will be attempted to

be identified.

Several steps are involved in the research strategy to accomplish the study

objectives. These steps are shown in the flow chart in Figure 3-1.

3.1 Generating Base Case Data Profile

Many effluent and intermediate process variables exist in this bio-

wastewater treatment plant. Monitored variables are chosen from them so as to

reflect their ready availability on either on-line or off-line basis. Each column of the

data matrix, Xq, represents one monitored variable. In this study, the chosen

process measurements (variables) (assumed to be available on a routine basis)

consist of the following variables: the outlet concentrations of heterotrophic

biomass, autotrophic biomass, BOD, NH/ and NO3" from the anoxic reactor; the

effluent concentrations of heterotrophic biomass, autotrophic biomass, BOD, NH4"*'

and NO3" from the clarifier; as well as the manipulated variables, the recirculation

ratio and sludge age. They form the twelve colunms of Xq, xl to xl2 in that order.

The effluent concentrations of the various compounds from the clarifier are the key

indicators of a wastewater treatment's efficiency. They are to meet some

established specific discharge standard. Especially BOD and the nitrogen

compound, they need to strictly meet the environmental legislation guidelines.

These variables have to be monitored and logged constantly. A second class of
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Figure 3-1. Flow Chart of the thesis work
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variables that will also be monitored in this study consists of the intermediate

variables. They are the effluent concentrations from the anoxic reactor. As

mentioned in the previous chapters, one of the advantages of MSPC is that it takes

into account all of the variables of interest from the process for the analysis, and

not just the system outcomes. In this marmer, the inter-relationship among the

variables can be elucidated, and possible root causes for observed deviations can be

identified, by observing which set of variables exhibit the deviant behavior.

Therefore, if there is an abnormal shift occurring in some of the intermediate and

non-monitored variables, it will manifest itself in the monitored process variables

and actions can then be taken to remedy it if the cause variables are identifiable.

The third group of the process variables included in the base case data matrix Xq

includes the process inputs, or the manipulated variables, which respond to

disturbance to the process and internal model change, so as to maintain the output

variables at the desired setpoint. Thus, the reference database has a wide coverage

of the plant information from variables representing the output, the input and the

intermediate processes. Table 3-1 is a list of the twelve process variables chosen to

be monitored.

Measurements represented in Xo are generated using a central composite

design around a nominal operating point in the process variables xl to xl2.

The measured process variables in the Xo represent the steady-state process

responses to changes in a few chosen operating conditions. In this study, these

chosen operating conditions are: 1) disturbance: changes in the influent ammonia
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Table 3-1. Process Variables Incorporated in Reference Database
Generation

Variable

Name

Component Name Symbol

xl Heterotrophic biomass (an) Nb,H (Anoxic Reactor Effluent)

x2 Autotrophic biomass (an) Nb,A (Anoxic Reactor Effluent)

x3 Readily biodegradable substrate (an) Ss (Anoxic Reactor Effluent)

x4 NH4'^ and NH3 nitrogen (ah) SnH (Anoxic Reactor Effluent)

x5 Nitrate and nitrite nitrogen (an) SnO (Anoxic Reactor Effluent)

x6 Heterotrophic biomass (c) Nb,H (Clarifier Effluent)

x7 Autotrophic biomass (c) Nb.A (Clarifier Effluent)

x8 Readily biodegradable substrate (c) Ss (Clarifier Effluent)

x9 NH4"^ and NH3 nitrogen (c) Snh (Clarifier Effluent)

xlO Nitrate and nitrite nitrogen (c) SnO (Clarifier Effluent)

xll Recirculation Ratio Recirculation Ratio

xl2 Sludge Age Sludge Age

an: anoxic reactor

c: clarifier
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concentration; changes in the influent nitrate concentration; 2) plant/model

mismatches (Biological parameters being different from their values at the nominal

operating point.): the maximum growth rate of the heterotrophs, pm, h and the half-

saturation constant of the heterotrophic consumption of COD, Ks, [cod] in the

aerobic reactor. Table 3-2 provides detailed information about these operating

condition changes.

The database representing the nominal case was generated by simulation

based on the factorial design approach (Montgomery, 1994). In each complete trial

or replicate of the simulation, effect of operating under all possible combinations of

the seven levels from 79% to 121% (85% to 115% for influent ammonia

concentration), of each of the factors are investigated. The seven levels ranging

from 79% to 121% are evenly distributed. They are set at 79%, 86%, 93%, 100%,

107%, 114% and 121%, respectively (similar division approach for the 85% to

115% case). Therefore, there are 7'', or 2401 sets of simulation observations to be

included in the reference database. They form the 2401 rows of the Xq matrix. Each

row represents one sample in the twelve variables of interest, obtained from

operating under one of the 2401 sets of operation conditions.

3.2 Adding Measurement Noise

There are basically two types of noises, input noise and measurement noise.

Input noise is added at the input end of the process and the noise goes through the

dynamics of the process. Measurement noise occurs at the output end of the

process. For measurement noise, it might be caused by some problems of the
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Table 3-2. Variations of the Operating Conditions in the Reference
Database Generation

Scenario Conditions to vary Symbol Nominal Amount of

Number Value variation

1 Influent Nitrate [NOx] 1000 mg 79%-121%

Concentration N-NO3 "/liter xlOOO

2 Influent Ammonia [NH4] 300 mg 85%-115%

Concentration N-NH4''/liter x300 (*)

3 Maximum growth rate,

heterotrophs

M'tnax, H 4 day"' 79% -121%

x4

4 Half-saturation constant. Ks, [COD] 10 mg 79% -121%

heterotrophic [COD]/liter xlO

consumption of [COD]

* Larger amount of change in the influent ammonia concentration caused

numerical integration error in the simulation. Therefore, instead of 79% -

121% changes in the inlet ammonia, 85% - 115% was chosen.
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laboratory instrumental analysis. In this study, only measurement noise is added to

the raw values contained in the original data set Xq, and Xo-n denotes the noisy data

set.

An amount of ±2.5% of the nominal level Gaussian random noise has been

added to each column of the values in the simulated base case data matrix

respectively to form the noisy database, Xo-n- With a relatively big data set of

dimension 2401x12, noises of both positive and negative magnitudes are present on

a more or less statistically equal basis. The ±2.5% level of noise is calculated based

on the historically nominal steady-state values of each variable.

In practice, if the historical operating documents are available covering a

wide range of operation conditions, the reference database can be obtained by

including all the accessible data when the process was operated in a 'normal' state

under statistical control. Therefore, it is very important that operating condition that

should not be identified as 'abnormal' being present as part of the normal operation

profile during the construction and data gathering phase of the base case.

3.3 The Methodology of Principal Component Analysis (PCA)

3.3.1 Background Concepts of PCA

3.3.1.1 Covariance Matrix

PCA is a method for modeling a set of data collected in a matrix X, in this

study, the matrix, Xo-n. Data matrix X is made up with n column vectors xl, x2, x3,

..., xn, which characterize steady state process variables collected under different

sets of operating conditions. The rows of X represent different observations. The
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dimension of X depends on how many samples and how many process variables

are to be monitored. The number of measured variables is chosen such that they

fully represent the 'state' of the process operation. If the process is characterized by

n variables and m samples are collected, X will be an mxn matrix, usually with

m»n. The data matrix is usually column mean centered to zero mean and scaled to

unit variance, such that its covariance matrix is the same as its correlation matrix.

Covariance matrix of mean-centered and scaled X with m samples and n variables

can be formulated as:

cov ariance{X) = correlation{X) = X ̂ X (1)

where: X = mean-centered and scaled matrix, mxn

X = transpose of the X matrix, nxm

3.3.1.2 Singular Value Decomposition (SVD)

PCA finds the combination of the process variables that represents the

major variation in the data set. Mathematically, PCA is carried out by using the

Singular Value Decomposition (SVD) (Strang, 1976) of the data matrix X,

representing the process. An X matrix of dimension mxn, with m>n (more rows

than columns) is decomposed by SVD into:

A = (2)

where, X = mean-centered and scaled data matrix, mxn

U = a matrix with orthonormal columns, mxn (the columns are referred to

as the left singular vectors.)

Z = diagonal matrix with positive and descending singular values, a's, nxn
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P = a matrix with orthonormal columns, nxn (the columns are referred to as

the right singular vectors.)

Z is a diagonal matrix containing the positive singular values, cr's, arranged

in a descending order. The ratio of each of the a's squared to the summation of all

the cj's squared is an indication of how much variation each principal component

represents compared with the overall process variation. More detail will be

presented in Section 3.4.2.

The column vectors of U and P are the singular vectors. Singular vectors in

U are called the left singular vectors and singular vectors in P are called the right

singular vectors. Singular vectors are orthogonal to each other and with unit length.

PCA provides a projection of the original data matrix X onto a reduced-

dimensional subspace defined by the span of a chosen first few (k) right singular

vectors of the data matrix. This set of chosen singular vectors from matrix P are

called the PCA loadings. The PCA loadings are orthogonal to each other.

Therefore, PCA mapping reduces the original matrix X into a lower-dimensional

subspace of dimension, say, k, spanned by a set of known, orthogonal unit vectors,

the first k right singular vectors. These singular vectors are weighted linear

combinations of the original process variables, and the space they span captures the

most dominant variations exhibited by the X matrix. These singular vectors are also

referred to as the Principal Components (PC's) of a PCA model. The set of k

specified principle components constitutes the process PCA model. All future

process measurements will be 'fitted' by this model (i.e. be projected onto the
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subspace spanned by these k principal axes). The residual will be assessed as to be

within or out of the base case acceptable bounds.

3.3.1.3 Loadings and Scores of the PCA Model

The principal components can be identified by the resulting matrices of

SVD of X, the U, S and P. The first principal component, or the first loadings, is

given by the first colunm of the matrix P, pi. It lies in the direction describing the

largest amoimt of variation of the process data of X. The first scores vector is

obtained by: tl=X*pl, which has m elements. These m elements are the projections

of the original m data points, or the m rows of X, onto the vector pi. The second

PC is given by the second column vector of P, p2. It lies in the direction describing

the second largest amount of variability in X and is orthogonal to pi. The elements

of the second scores vector, t2=X*p2, represent the projections of the m sample

objects onto p2, respectively. This procedure is repeated n times until all the scores

vectors are calculated. The sum of the squares of the lengths of the projections of

all the sample points onto the i"^ principal component, is equal to the square of the

i"^ singular value. Thus the i''^ singular value indicates the relative amount of

variability of the data points along the i^ principal component.

Since the ti and pi pairs are arranged in the order according to the associated

descending singular values of the data matrix, the first few ti and pi represent the

directions of the biggest amount of the systematic variation exhibited by X. The

first pair captures the largest amount of variability among all the pairs in the

decomposition form. The second pair captures the second largest amount of
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variation, and so on for the subsequent pairs. Therefore, among these n PC's, only

the first k PC's will be retained. The rest are considered to represent noise and are

lumped into an error matrix E. Decomposition of X ends up with the following

formation:

X = TkPk'' + E=X^,T?r +E (3)
/=i

where Tk = scores matrix with the first k columns retained, mxk

Pk = loadings matrix with the first k columns retained, nxk

E = residual matrix, mxn

ti = i'*^ column of scores matrix, mxl

Pi = i"^ column of loadings matrix, nxl

E represents the residual matrix after k PC's are extracted to approximate

the original data set. The product of the data measurements with the loadings are

the scores. The scores of all samples onto the i"^ PC, is given by:

t,=X*p, (4)

where: ti = scores onto the i"^ principal component, mxl

Pi = the i"' loadings vector of the PCA model, nxl

Loadings vectors as well as loadings plots give the information of the

relative contributions of the original process variables to the specific PC's, thereby

showing the correlation pattern among the process variables. This information will

be very valuable in diagnosing the possible cause of malfunctions, as to what

process variables are associated with the detected fault. The Tk matrix as well as the
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scores plots represent the clustering pattern of the samples. Typically, just a few

PC's are deemed enough to represent the original data information, due to the

usually high degree of correlation among the process variables.

Thus, PGA provides an approximation of a data matrix, X, in terms of the

product of two simpler matrices Tk and Pk, both with orthonormal columns. Tk

captures the essential data pattern for the observations in X; Pk captures the

essential pattern for inter-variable relationships. Plotting the column vectors of Tk

and Pk against its index gives geometrical interpretation of the data matrix X;

therefore the process (Refer to Section 3.11).

3.3.2 A Simplified Illustration of PGA

A simplified two-dimensional example is shown in Figure 3-2 to illustrate

the interpretation of PGA. In this example, two original process variables are

measured. Therefore, the data matrix X has two columns. It has been mean-

centered, scaled and PGA has been carried out for it.

It is observed that these two variables are linearly correlated. Increasing one

variable causes the increasing of the other, in general. The first right singular vector

pi (PGl) of the data matrix, indicates the direction in which the data has the

greatest variability. The second right singular vector p2 (PG2), is orthogonal to pi

and represents the direction along which it is reasonable to assume that the data

exhibit the next greatest variability. In this example, the p2 represents noise and

inaccuracy in the measurements. Projections along the p2 direction should not be

retained. By means of this, the original two-dimensional variable space is projected
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into a one-dimensional subspace spanned by pi, the first principal component axis.

th

Now let' s consider the i observation labeled as 'sample i' in Figure 3-2. The

distance between its projection point onto pi and the new origin is referred to as the

scores of sample i along PCI, the i"^ element in the first scores vector, tl. The

vector between sample point i and its projection onto vector pi is the residual

vector, Ci for the i"^ sample.

This example shows the application of PGA in reducing a two-dimensional

data set to one-dimensional, without missing significant system variation

information. What PCA ignores is considered to be the system noise. The principal

component axes represent a new coordinate system onto which the data points are

projected. And this reduced-space is spanned by the first k PC's, if k PC's are

retained. The elements of the i"^ scores vector represent the length of the projections

of all the sample points onto the f'' principal component axis.

3.4 Determining the Number of PC's to Retain

3.4.1 Pretreatment

Before PCA is carried out, the noise-added reference matrix needs to be

pretreated. The major steps for the pretreatment are mean-centering and scaling.

Centering to zero mean is carried out by subtracting the mean of each

column of X from the corresponding elements of that column, such that the new

mean of each column is zero. Scaling to unit variance is carried out by dividing

each mean-centered column by the variance of the corresponding column, such that

the new variance of each column is one. The usual purpose of scaling is to
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standardize the measurement units between variables and to give equal weight to

each variable's span in forming the new PC's.

The scaling is significant for the reason that PGA is a least-squares method,

making variables with larger variance resulting in larger contributions to the

loadings in the PGA model, an artifact of the magnitude of the numbers themselves.

In order to avoid this, it is necessary to normalize the data matrix in some way so as

to do away with the differences in scales. Variance scaling gives each variable the

same influence on the model. Without scaling, problems similar to the following

example will be met during PGA modeling. In a chemical process, one process

variable can be pressure with the unit of Pascal. A magnitude in the order of 10^ is

normal for this. The other process variable can be the concentration of a very

diluted solution, which can be a number as small as one in the order of 10"^. In this

case, without scaling, the latter variable is very likely to be neglected in the

building of a process model since its absolute value is too little compared with that

of the former variable. Therefore, its variance would seem insignificant in the

process data. Systematic information may be lost due to the non-scaled data matrix

representation. Therefore, the mean centered matrix needs to be normalized to, say,

unity variance. After this normalization, the data matrix is now ready for singular

value decomposition and subsequent PGA.

3.4.2 Determining How Many PC's to retain

The first and most significant step of PGA modeling is to decide how many

Principal Gomponents (PG's) to retain. In their studies, many investigators used
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cross-validation method (Efron, 1983) to make this decision. In this study, a

simpler and more intuitive method, via the scree plot, is applied.

Scree plot helps one to decide how many PC's to keep. It can be obtained

by SVD to the mean-centered and scaled data set. As mentioned in Section 3.3.1.2,

the data matrix X is decomposed into three simpler and more informative matrix,

the U, E and P. The diagonal elements- in E are the singular values, c's. The

percentage of process variation captured by each PC is computed by:

2

% variation captured by the i"^ PC = :—— x 100 (5)

E-]
>1

where ct = singular value obtained by SVD of the data matrix X

The contribution of each PC to the overall variation is determined by the

ratio of the square of each singular value to the sum of squares of all the singular

values. The faster the rate of the magnitude of the singular values' decreases, the

lesser number of PC's needs to be retained, and the more powerful the PCA

approach is in the reduction of the dimensionality of the original data set. It implies

that the original data is much more heavily correlated than otherwise.

3.5 Establishing 'Normal Operation' Domain: Reference Scores and Squared

Predictive Error (SPE) Charts

The use of PCA monitoring charts is similar to that for Shewhart and

EMWA control charts in the Univariate Statistical Process Control (USPC)

(Shewhart, 1931). In USPC, sample data are collected and used to construct the
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control chart, if a new sample value falls within the control limits and does not

exhibit any systematic pattern, the process is deemed in control at the level

indicated by the USPC control charts. A PCA model as well as MSPC control

charts are derived from the similar philosophy, using the historical data that

represent the normal operation profile. Under 'normal' operation, the process

measurements usually cluster in a well-defined region of the 2-dimensional scores

space spanned by tl-t2/t2-t3 or tj-tj, or the 3-dimensional scores space spanned by

tj-tj-ti, where i, j, 1 < k (k is the number of PC's retained), with correspondingly

small values of Squared Prediction Error (SPE). This well-defined region is

established as the 'normal operation' domain. Future process observations are then

projected onto this 'normal operation' domain, and the associated SPE's are

assessed. The two most popular graphical depictions of the reference model are the

monitoring charts of two/three dimensional plots of the scores, and the SPE plot.

These two types of Statistical Process Control charts are used in this study to

monitor the process and to reflect potential deviations.

3.5.1 the Scores Chart

Perhaps the most attractive feature of PCA is that it converts a data matrix

to a few informative plots, which lend themselves to some nice geometric

interpretations. For instance, by plotting the columns tj in the scores matrix Tk

against each other, one obtains a picture of the objects and their configuration in k-

dimensional scores space spanned by the k PC's retained. The first few component

plots, tl-t2, tl-t3 or tl-t2-t3, etc., display the dominant patterns in X.
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Two/three dimensional scores plot is obtained by plotting the projections of

each sample onto the first two/three PC's. The columns of the scores plot are

calculated by equation (4) mentioned in the previous section. The coordinate of

each point in this type of scores plot is given by the first few elements of each row

ofXPk.

Scores of the i"' sample = XjPk (6)

Where Xi = the i"^ row of the X matrix, Ixn

Pk = P matrix with the first k column retained, nxk

The result of equation (6) is a vector with k elements. It gives the

coordinates of sample i in the k-dimensional PC space. For instance, if the scores

plot of tl-t2-t3 is to be created, the first three elements of the result of equation (6)

are used as the coordinates for the i"^ sample point in the three-dimensional

subspace spanned by PCI, PC2 and PCS.

3.5.2 the SPE Chart

SPE plot is obtained by the following approach. Each pretreated sample

point is projected onto the subspace spanned by the k PC's to arrive at the

representative scores. The error vector between the pretreated sample point and its

projection onto the k-dimensional subspace is referred to as the residual vector for

that sample point. The residual matrix E is formulated as:

E = X(I-P,P[) (7)

where: E = error matrix defined in equation (3), mxn

I  = identity matrix, nxn
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Pk = the matrix of the first k loadings vectors retained in the PCA model,

nxk

Pk = the transpose of Pk, kxn

X  • • • •

PkPk = projection matrix onto the k-dimensional subspace, nxn

Where the i"' row of E represents the residual vector for the i'*^ sample.

A vivid graphical description of the errors is shown in Figure 3-3 (Nomikos,

1995). In this figure, the shaded plane represents the k-dimensional PCA subspace.

Solid balls represent the original observations. Stars on the shaded plane represent

the projection of observations onto the k-dimensional subspace. Distance between

the ball and the corresponding star is the magnitude of the residual for each sample

point.

The sum of squares of the elements in each sample row of the residual

matrix forms the corresponding entry in the SPE vector. It represents the degree of

misfit of that sample by the base PCA model. It can be expressed as:

SPE, = Z (^!/ - ̂,J,projac„onf )xj (8)
7=1

where: SPEj = SPE of the i"^ sample, 1x1

Xij = element on the i'*^ row and j'*' column of the mean-centered,

scaled matrix X, 1x1

Xij, projection ~ element on the i"^ row and j"^ column of the projected X matrix,

1x1

Ci = i"' row of the E matrix, Ixn
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Figure 3-3. Graphical Representation of Projection of Samples onto Reduced
Space of PCA (Nomikos, 1995)



Xj = row of the X matrix, Ixn

SPE vs. PC1-PC2 plot is one of the most informative plots in monitoring

the process performance. It contains both residual and scores information. Besides

detecting and giving early warning of abnormal deviations in the process, this plot

is also able to provide a handle to diagnose the type of process behavior that may

have caused the present system's non-conforming behavior.

There are two categories of abnormalities that the SPE versus PC1-PC2 plot

can show: 1) Process abnormality caused by a larger than normal shift in one or

more of the process inputs, but the model itself remains unchanged. It means that,

the relationship between the process variables and the product quality is not

changed, but the associated values are all larger. In this case, a translation of the

projected points in the scores plane will occur, because the new points are still

normalized by the old variance for that column. But the SPE will remain inside the

acceptable domain, because the PCA model should still fit the new points relatively

well. For this type of process deviation, tl-t2-t3 should give a better detection of.

process behavior. 2) Process abnormality is caused by the participation of a new

event which is not incorporated into the reference model development or the

existence of plant/model mismatch unencountered previously in the base model

development. In this case, the relationship among the process input and product

variables has changed. Therefore, the associated SPE after fitting with the PCA

model will increase, because the 'normal' PCA model does not fit or describe the

new process data as well as before. This may or may not impact on the scores plot.
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SPE plot is the best choice for this kind of abnormality detection. By means of

identifying these two categories of abnormality, SPE versus PCI and 2 plot

classifies the two major directions in which deviation occurs. Root causes

responsible for these abnormalities can sometimes be traced and identified.

3.6 Monitoring Transient Responses

Transient response plot is a display of the state of the process as a function

of time under a certain operating condition. The location of the observation on the

t-scores and the SPE charts exhibits the whole intermediate projection trajectory of

such a sample onto the t-scores and the SPE reference domain, from the original

steady state, being adjusted by the system to a new steady state. The final location

of the observation in the transient response chart is determinant for assessing this

specific operation, either in-control or out-of-control. Any transient response curve

in this study starts at the origin, because the simulation of each case begins at the

original nominal steady state, condition being used to carry out the mean-centering

and scaling procedures.

First, the transient response simulation is carried out for a perturbed case

included in the base case generation. That is, moderate changes in the influent

[NO3 ] and [NH4^]. Since this scenario is deemed as a normal operation when the

reference database is generated, the steady state value of this case should be within

the 'normal operation' domain. The perturbation is entered at t=10 days. System

may exhibit large, even abnormal transient deviations soon after that time point.

But in this study, only the final steady state value is of interest. Therefore one
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should examine the behavior of process variables within the time window spanning

at least the duration of the process time constant before an assessment of in or out-

of-control is made.

Transient response test is also carried out to all the abnormal cases

simulated in this study. For instance, a perturbed case with a new event that is not

considered in the base case creation, is, a larger influent flow rate. If this new event

makes the plant model to be mismatched from the real process, then out-of-bound

operation will be expected in the SPE plot. If the new event does not result in

plant/model mismatch, then it will not result in an increased SPE. And it may or

may not exhibit abnormal deviation in the scores chart. Since the influent flow rate

only appears in the forcing function term in the mass balance of all the twelve

monitored variables, an increase in the flow rate will not result in a plant-model

mismatch. Therefore, an abnormal deviation in SPE plot is not expected.

3.7 Simulating 'Abnormal Operations'

To evaluate the capability of such a series of multivariate statistical process

control charts to detect abnormal operating deviations, several cases of faults would

be simulated.

As explained previously, abnormalities can enter the system through two

different ways. The first type of abnormalities is generated by having a larger than

normal change in one or more of the process input variables. In this case, the

essential relationship among the process variables has not been altered. Therefore,

this type of the abnormality is expected to cause a possible shift only in the ti-t2 -ts

67



scores trajectory plot. The second type of abnormalities is the introduction of a new

perturbation to the system that was not encountered in the generation of the

reference data set. It may change the t-scores plot, if it results in changing the

magnitude of the monitored variables. It may or may not influence the SPE plot,

depending on whether this perturbation occurs in the forcing function terms or the

state variable coefficient terms in the mass balance kinetic equations. The third and

fourth type of abnormalities result from the presence of additional plant/model

mismatches and events of different nature not included in those used in the

construction of the reference data, respectively. These classes of abnormality will

invariably increase the associated SPE values and cause the migration of the SPE

trajectory from within the acceptable region toward that of without. For these cases,

the reference PCA model no longer 'fits' the new data as well as before, because

some model parameters would most probably have changed. Therefore, the

associated SPE would increase.

In this study, four 'abnormal' cases representing the above four types of

abnormality are simulated and diagnosed.

3.8 Modeling 'Abnormal Operations' with Base Case Profile

Base case data have been generated. Cases of several abnormal operations

have been simulated. Projection of the new data onto the reference PC A axes will

then be carried out. They are to be projected onto both the two/three dimensional

scores chart and the SPE chart. If the new operating points are located away from

the bulk of the acceptable region in either chart, it would indicate that an abnormal
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condition may exist and the computer can then issue a warning to the operating

personnel to take actions. Further analysis of these drifts in the monitoring charts

may help in finding out the root cause of the abnormal deviation, by identifying the

combination of the process variables responsible for the misfit.

3.9 Diagnosing 'Abnormal Operations' Using Contribution Plots

When abnormality is detected, causes of the deviation need to be

investigated. Process variables responsible for large t-scores and SPE can be found

by plotting the contribution of each measurement variable to the deviation. This

kind of plot is called contribution plot. Although contribution plot alone may not

provide complete diagnostic information the operating personnel need in order to

adjust the operation of the process, it will clearly identify the group of

measurement variables responsible the most for the detected deviation (Nomikos,

1995).

The percentage of contribution of the i"^ process variables to the F'' t-scores

is given by:

% contribution of the i"' vaiiahle = (9)
^ r

where Xabnormai = a new abnormal observation, Ixn row vector

Xabnormal(i) = the i"^ element in the Xabnormal vector, 1x1

Pr = the r"^ principal component, nxl

Pr(i) = the i"' element of the r"^ principal component, 1x1

i' r ~ Xabnormal *Prj 1x1
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The percentage of the contribution of the i"^ process variables to this SPE is

given by:

% contribution of the i"' variable = ^^e'(i) (10)

where e == Xabnormai(I-PkPk ) according to equation (5), I is a nxn identity matrix, Ixn

e(i) = the f element in the error vector

Q = ee^, 1x1

By plotting each of the two '% contribution' of all the variables versus

variable number, one obtains an approach to trace back the possible root causes of

the current unacceptable deviation. Examples of making use of the contribution

plots to diagnose abnormality will be shown in the next chapter.

3.10 A Literature Example for Fault-Detection by MSPC Monitoring Chart

A simulation study presented by Nomikos and MacGregor (1995) of

monitoring the process mentioned in Chapter two, a semi-batch emulsion

polymerization of Styrene-Butadiene in making a latex rubber (SBR), results in the

following monitoring charts as seen in Figures 3-4 and 3-5.

In these figures, the t-scores and SPE charts are presented with their 95%

and 99% control limits. These limits were established from analyzing the historical

data set when the variations were considered 'normal'.

The t-scores charts are plotted using the first two PC's in both cases.

Nominal t-scores operation region is represented by the area inside their 95% and

99% control limits, respectively. SPE charts are plotted over time. Acceptable
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operation region for SPE is represented by the area within their 95% and 99%

control limits. The interpretation of the monitoring charts is straightforward.

Figure 3-4 shows the projection of a new SBR batch onto the reference

region. The projected points are all well within the control limits for both the SPE

and the t-scores. This indicates that the new batch is considered a 'normal' batch.

While in Figure 3-5, the situation is different. Several sample values exceed the

99% SPE control limit, starting from about t=140 units of time. A detection of the

abnormality is also obtained from examining the corresponding t-scores plot. Since

the abnormal batch has a problem present from the very beginning, the

observations in the t-scores starts at origin and gradually drifts out of the control

limit and stays outside the 'normal operation' region as time goes on. This is a clear

indication for the existence of a process fault. In this example, MSPC provides an

intuitive way of analyzing and viewing originally complicated process data and

effectively indicating process abnormality.

3.11 Interpreting Principal Components

The essential purpose of PGA is to reduce a large number of correlated

process variables to a much smaller number of PC's while retaining as much as

possible variation exhibited by the original process data.

In addition to substantially reducing the dimensionality of the problem,

MSPC produces decoupled process vectors more readily interpretable. In the PCA

approach, these process vectors are those principal components retained. PCA is

more satisfying if intuitively reasonable interpretations can be provided for the
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make-up of the first few PC's or even to all of the PC's that have been retained.

More insights to the process can generally be obtained by observing and

understanding the pattern of data distribution as well as clustering in a lower k-

dimensional subspace, where k denotes the number of PC's retained.

There are several types of graphical approach to interpret the process data,

such as the loadings plot, the variance-retention plot, the Gabriel's plot and the

scores plot.

3.11.1 Loadings Plot

Plots of the coefficients of the loadings vectors are called the 'loadings

plots'. Loadings plot tells us the contribution of the original variables to each of the

principle components retained. In addition, loadings plot shows the correlation

between the original process variables in the database. For the first few principal

components representing most of the system variability, the interpretation of

correlations among the process variables is generally easier and more apparent.

These process variables who contribute more highly to each principle component

are regarded to be more correlated to each other.

Referring to Figure 4-9 in the next chapter, it is an example of the loadings

plot. It is the loadings plot for the second PC in the PGA model of this study.

Obviously, the two original process variables that contribute the most to this

principal component are X2 and X7, the autotrophic concentration from anoxic

reactor and from clarifier. PC2 is primarily made up by these two variables.
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Meanwhile, this figure shows that X2 and X7 are highly positively correlated with

each other.

3.11.2 Variance-Retention Plot

Variance-retention plot essentially delivers information similar to the

loadings plot. They differ in that the variance-retention plot provides a handle for

the graph-reader on the exact amount of variation contributed by each of the

process variables for each PC rather than only knowing which variable contributes

more onto each PC. In other words, variance-retention plot is quantitative while

loadings plot is more qualitative. In variance-retention plot, the height of each bar

stands for the weight of that variable in its contribution to that particular PC.

Compared with the loadings plot, the deficiency of variance-retention plot is that it

is able to show which variables are correlated without delivering the information

whether they are positively correlated or negatively correlated.

Figure 4-18 can be referred to as an example of the variance-retention plot.

This is the variance-retention plot for the same PC used to interpret the loadings

plot in the previous section. Covariance matrix is calculated by

X^X=(UEP^)^(USP^)=PE^P^ (11). Variance-retention plot for a specific PC (the i"^

PC) is generated by plotting the i"" column of the product of the i"' column of the

loadings matrix P, the square of the i"' singular value and the transpose of the i""

column of loadings matrix P versus the index number. As shown, PC2 explains

more than 90% of the overall variation of X2 and X7. The variables X2 and X7 are

dominant in constructing PC2 compared with the rest ten process variables.
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3.11.3 Gabriel's Plot for PCI, PC2 and PC3

There is another graphical representation of the PC loadings, the Gabriel's

plot (Gabriel, 1971,1972, 1978). Different from the loadings plot and the variance-

retention plot, Gabriel's plot gives correlation information of the process variables

over the first three PC's instead of one PC at a time. The Gabriel's plot is created in

a 3-dimensional subspace spanned by PCI, 2 and 3. The twelve Gabriel's vectors

(GV) in 3-d space are calculated by the following formula:

GV = i:,P,'=U,'X (12)

where GV represents Gabriel's vectors, 3x12

Ss is obtained from SYD in equation (2), 3x3

P3 is the first three loadings vectors, 12x3

U3 is obtained from SYD with the first three columns retained, 2401x3

X is the mean-centered, scaled data matrix, 2401x12

Each vector in the 3-dimensional Gabriel's plot represents the portion of the

corresponding original process variables represented by the first three PC's. The

directions and lengths of the vectors lend themselves to meaningful interpretation.

Since the data has been normalized in the original n-dimensional space, the

variable length as retained by the k PC's retained can be compared with each other

to arrive at the following conclusions; 1) Vectors with relatively longer vector

lengths are well represented by the retained PC's; relationship of these vectors can

be discerned from this plot. 2) Vectors with appreciably shorter vector length imply

they are poorly represented by the retained PC's; It also implies that these variables
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are highly correlated with those who exhibit longer vector lengths in the Gabriel's

plot. Gabriel's plots in a subspace spanned by other principal components should

be used to study variable relationships involving those vectors. 3) The proximity of

the Gabriel's vectors to each other indicates the correlation among them. 4) Both

positive and negative correlation pattems can be detected by examining the

clustering pattern of the vectors in the Gabriel's plot.

Beside the length of the vectors, the angle between any two vectors also

possesses important process information. The angle between two vectors implies

their pairwise correlation. The smaller the angle, the stronger the linear correlation

between the two variables. When the angle is close to 0°, these two variables give

more or less the same information. One of the two variables is therefore redundant.

One variable can be deleted without losing much independent information. When

the angle is close to 180°, the corresponding two variables are strongly negatively

correlated. When the angle is 90°, the two vectors are orthogonal to each other,

which implies the two variables are totally independent. If variables are all

orthogonal to each other, then the original set of process variables can be

considered as independent of each other. There is no redundant information. For

this kind of system, PGA will not reduce the system dimensionality. Conversely, if

variables are closely related to each other, either positively correlated or negatively

correlated, PGA will be a powerful approach to reduce the size of the original data

to a much lower dimensional set without missing out on much system information.
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3.11.4 Scores Plot

Other than the scores plot discussed in Section 3.5, scores of all the samples

can be plotted for each PC one at a time. This is the type II scores plot. The x-axis

for this plot is sample index numbers, from, say, 1 to 2401. The y-axis is the scores

of each sample for that particular PC. Each scores plot corresponds to one PC.

Since the scores are orthogonal to each other, each scores plot is independent of all

the other scores plots. This type of plot delivers information on which samples are

more similar to each other with respect to each principal component.

The approach to obtain this type of PC is to use the result of equation (4).

The vector tj is the scores of all samples onto the i'^ principal component. Plotting

the components of each tj over sample number gives the scores plot for the i"^ PC.
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Chapter 4

Results and Discussions

Using the Principal Component Analysis (PGA) approach, Multivariate

Statistical Process Control (MSPC) scheme with monitoring and fault diagnostic

capability is developed for a prototype of an industrial biological wastewater

treatment plant,.

The study is carried out using the bio-wastewater treatment plant simulator

developed by Grove (1995). Simulation is carried out in the Simulink"'''^ platform of

Matlab. The MSPC is implemented on top of the plant with a 2x2 decentralized

local feed back controller in place. Comparison of control design strategy between

traditional PID controller and Internal Model Controller (IMC) has been carried out

by Schmidt (1996) and Fu (1998). These studies show that IMC is superior to PID

in many respects, especially with respect to stability issues. Therefore, IMC is

chosen in this study as the controllers used in the feedback loops.

The detailed chronological steps of this thesis work was in the flow chart in

Figure 3-1. The major tasks include generating base case profile, carrying out PCA,

establishing 'normal operating' domain, simulating abnormal cases and fitting

abnormal cases with PCA model.

4.1 Generating Base Case Data Profile

Process variables chosen in this study consist of the process input, output

and intermediate variables. The twelve variables to be monitored are: 1) outlet

concentrations from the anoxic reactor: heterotrophic biomass, autotrophic
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biomass, BOD, NH4"^ and NO3"; 2) treatment effluent concentrations from the

clarifier: heterotrophic biomass, autotrophic biomass, BOD, and NO3"; 3) the

manipulated variables: recirculation ratio and sludge age (refer to Table 3-1 for a

listing of these variables). Each of the twelve columns of the original data matrix

Xo represents one monitored variable.

These twelve process variables' behavior is monitored under changes made

to a few chosen operating conditions. In this study, the controlled variables are the

effluent [BOD] and [NH4"^]. They are paired with the manipulated variables,

recirculation ratio and sludge age, respectively (Grove, 1995, Schmidt, 1996). The

chosen operating conditions undergoing changes are the influent [NH4"^], the

influent [NO3'], the maximum growth rate of heterotrophs, pm, h and the half-

saturation constant Ks, [cod] for the heterotrophic consumption of COD. Using a

central composite design around the nominal operating point (Refer to Table 3-2),

the amount of change is -21% to +21% from their nominal values except for the

influent [NIU"^], which is from -15% to +15% change from the nominal influent

[NH4"^] value. Based on factorial design principle, with seven levels of each of

these four variables, 2401 operating conditions are simulated. Each of the 2401

rows of the original data matrix Xo represents the steady state results of one

operating condition, and constitutes, one sample.

In this study, the simulation time has been chosen to be 500 days. At this

time, the system is guaranteed to have reached steady state, as shown in Figures 4-1

and 4-2. In these cases, the operating conditions consist of the most challenging
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combinations. Challenging condition refers to the combination of operating

condition that is likely to cause systematic instability if the controller used is not an

effective one. If 500 days is sufficient for the system with the most challenging

conditions to achieve steady state, it will be more than sufficient for systems under

other operating conditions to reach stability. Some disturbance simulations are

presented below to support this assumption.

Figure 4-1 is the time response curve of the 2x2 decentralized IMC closed-

loop controller for a -1-21% increase in the influent pSlOa"] and a -Hl5% increase in

the influent [NKU""] initiated at t=10 days. The levels of-H21% and +15% are the

maximum changes of the influent [NOs'] and [NH4"^] in the base case, respectively.

The top plot of Figure 4-1 is a plot of the normalized manipulated variables over

time. The manipulated variables are recirculation ratio and sludge age in this study.

The middle plot shows the five normalized outlet concentrations of the stream from

the anoxic reactor. The bottom plot shows the relationship between the normalized

effluent concentrations and the simulation time. From the observation of all the

twelve process variables, it is concluded that; the system is disturbed at the tenth

day when the influent [NH4^] and [NO3"] are changed to larger values; It takes the

process variables around 50 days to reach their new steady-state values. Therefore,

500 days are more than enough to reach new steady state for this case.

The operating condition of Figure 4-2 is a +21% increase in the influent

[NO3"], a +15% increase in the influent [NH4"^] starting at t=10 days and a -21%

variation in pm, h and a +21% variation in Ks, [cod] starting at t=0 day. More
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variations from the nominal case yield bigger overshoot after ten days when

disturbance is introduced by positive changes in the influent [NOs'] and [NH4"^].

But it does not vary the relative time period in which the process reaches new

steady state. This time period is less than 50 days.

Figures 4-1 and 4-2 show that the system reaches steady-state around 50

days in the worst scenario. Therefore, all the other conditions are assumed to lead

to new steady state even sooner. Based on these tests, 500 days is more than

enough for the process to achieve a new steady state. Therefore, the measurements

in the matrix Xq reflect the steady state values for each sample and each variable.

4.2 Adding Measurement Noise

A ±2.5% Gaussian-distributed random noise has been added to each of the

simulated data matrix Xq to form the noisy matrix Xo-n. Noise added directly to the

system measurement is considered to be the measurement noise.

4.3 Determining the Number of Principal Components to Retain

Before PGA is carried out, data matrix Xo-n needs to be mean-centered and

scaled. Centering is carried out by subtracting the mean of each variable from the

corresponding measurement of each sample; Scaling is carried out by normalizing

the mean-centered data with the variance of each variable. Data matrix is now

ready for PGA.

The scree plot is obtained using equation (5) in Section 3.4.2. Figure 4-3 is

the scree plot from which the number of principal components to be retained is

determined.
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Figure 4-3 shows that the first PC captures 37% of the original variance.

The second PC captures an additional 20%. These two PC's alone have already

retained more than half of the system variability. Each of the subsequent PC's

represents less than 10% of the overall variability. It is decided that the first six

PC's are to be retained in building the PCA model. They together reflect 91% of

the original data variance. The last six principal components are considered to

provide no additional statistical significance. They are regarded as arising from

noise. The dimensionality and the effective rank of the database are then reduced to

SIX.

The base case PCA model has been built using the projection of the original

data to the 6-dimensional subspace representing the majority of the total variance of

the original data. The principal component axes come from the first six right

singular vectors of the SVD of the pretreated data matrix, as shown in Equation (2)

of Section 3.3.1.2.

Because four independent process inputs/parameters are changed during the

simulation to obtain the base case process variable values that represent the

'normal' operation profile, the degree of freedom of the base case should be three

(because the data is mean-centered, which takes away one degree of freedom). But

the number of PC's kept in this study is six. Normally, one does not know the true

degree of freedom exhibited by the base case data. Therefore, the number of PC's

to be retained may sometimes exceed that of the true degree of freedom of the
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process. The additional dimension is assumed to have come from noise. This is one
t

source of possible model misfit for assessing future data.

To test the hypothesis, a second database was generated by the same

method of simulation but without additional noise. After similar pretreatment, PCA

is also carried out on this database. The scree plot of this database shows that the

first three PC's capture 61.10%, 21.90% and 12.60% of the total system variance,

respectively. The forth PC represents only 2.36% variance (probably from round

off error effect of the computer computation). This result conforms the fact that the

inherent process degree of freedom is 4. The two additional PC's in the noisy data

modeling are therefore attributable to the addition of measurement noise.

4.4 Interpreting Principal Components

The essential purpose of PCA is to reduce a large number of correlated

process variables to a much smaller number of PC's while retaining as much as

possible variation of the original process through the associated process variables.

In this study, six PC's are retained to keep 91% of the total variation exhibited by

the original data set. The dimensionality of the problem is thus reduced from

twelve to six. This methodology has not only simplified the analysis for the

process, but also extracted the most significant information of the system. SVD

creates scores vectors as well as loadings vectors (Principal Components). More

insights to the process can be obtained by observing and understanding the

distribution and clustering pattern of these vectors in the lower dimensional space.
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Graphical representations for the six retained principal components are given in the

following section.

The loadings plots, the variance-retention plots, the Gabriel's plots and the

scores plot for the base case will now be presented and discussed.

4.4.1 Loadings Plot

A loadings plot tells us the relative weights of the original process variables

in the make-up of each of the retained principal components. It also gives

information for the correlation between the process variables.

4.4.1.1 Principal Component 1

Figure 4-4 is the loadings plot for PCI, which contributes 37% to the

overall variation. It shows that PCI is heavily loaded with x3 (Ss (Anoxic Reactor

Effluent))? x4 (Snh (Anoxic Reactor Effluent)}? x8 (Ss (System Effluent)}? xlO (SnO (System Effluent)} and

xll (Recirculation Ratio}. Among them, x3, x4, x8 and xlO are positively

correlated. They are negatively correlated with xll. Other process variables'

contribution to PCI is negligible compared with them. Therefore, PCI represents a

linear combination of x3, x4, x8, xlO and xl 1. This correlation pattem implies that

the manipulated variable of recirculation ratio mainly has an impact on x3, x4, x8

and xlO under the set of operating conditions chosen for the construction of the

base case data. Opposing variations are expected between xll and x3, x4, x8 and

xlO. In other words, an increase in x3, x4, x8 and xlO results in a decrease in the

recirculation ratio, xll.
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4.4.1.1.1 Open-Loop Time Response

Variable correlation observed from Figure 4-4 is tested by the simulation of

the wastewater treatment plant with respect to the changes exhibited by these

variables. Figures 4-5 and 4-6 are the open-loop time response curves for changes

made in the recirculation ratio. For a process without disturbance, the relationship

between the manipulated variables and the process outputs do not change when the

loop is closed to form a closed-loop control. Open-loop response gives important

information to the system's sensitivity to the manipulated variables. Therefore,

open-loop response has been carried out first in this study to validate the variable

correlation relationship.

Figure 4-5 shows the open-loop time response when the input variable of

the recirculation ratio has a -10% change initiated at t=10 days from its nominal

value. The two groups of curves represent the anoxic reactor's effluent

concentrations of biomass, [BOD], [NH4"*"], [NO3"] and the system's effluent

concentrations of biomass, [BOD], [NRj"^] and [NOs'], respectively. In Figure (a)

(anoxic reactor effluent), the normalized anoxic effluent [BOD] (x3) and [NH4'^]

(x4) concentrations are observed to deviate from their nominal values greatly,

starting at t=10 days. Responding to the 10% negative change in the manipulated

variable - recirculation ratio, xl 1, these two variables yield less than 10% positive

changes of their original values. In Figure (b), for system effluent, shows that

normalized [NO3'] (xlO) has a +7% change with respect to the -10% change in the

recirculation ratio. In addition, normalized [BOD] concentration from the effluent
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(x8) has also some positive response in Figure (b). But it is not as obvious as that of

x3, x4 and xlO. But recall that each variable in the base case data matrix is scaled

by the variance of each process variable in the data set. Since the levels of response

observed in the open-loop simulation are unsealed, one can not compare directly

the relative magnitude between the scaled and unsealed contributions made by each

process variable. It was found that the scaling factor for x8 is 100 times smaller

than all the other variables. Therefore, it is concluded that a -10% change in xll

leads to a poshive change in x3, x4, x8 and xlO. These observations support the

correlation pattern observed from the loadings plot for PC 1.

Similarly, Figure 4-6 shows the time response trends of the ten process

concentration variables in response to a positive 10% change in the recirculation

ratio at t=10 days. Monitored variables x3, x4, x8 and xlO result in negative shifts

from that of nominal. This figure also supports that x3, x4, x8, xlO and xll are

correlated and it is a negative correlation between these two groups.

4.4.1.1.2 Closed-Loop Time Response

Figure 4-7 is the closed-loop time response of sample 301 in the reference

database. The effluent [BOD] and [NH4^] are under control. This is the sample with

the heaviest score coefficient onto PCI among all the 2401 samples. Its operating

conditions are: -21% change in the influent [NO3"], +15% [NIL"^], -21% pm, h and

+21% Ks, [COD]- Apparently, recirculation ratio (xll) drops to zero (no

recirculation) as a function of time, while the anoxic reactor effluent concentrations
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of [BOD] (x3) and [NH4^] (x4) increase enormously. They rise to five to seven

times of their nominal steady state values. For system effluent concentrations,

[NO3'] (xlO) climbs to more than five folds of its original value. The effluent

[BOD] (x8) increases by 50%. These observations also properly support the

correlation pattern obtained from the loadings plot, Figure 4-4.

The wastewater treatment process in this study consists of an anoxic

reactor, an aerobic reactor and finally a clarifier. Denitrification is carried out in the

anoxic reactor. Ammonia concentration is not changed in this section. The high

loading of the influent [NH/] in sample 301 leads to the large ammonia

concentration in the anoxic reactor effluent, which is x4 in the database. Ammonia

is consumed in the nitrification reaction occurring in the aerobic reactor to produce

nitrate; the more ammonia entering the reactor, the more ammonia is converted into

nitrate. Therefore, xlO, the nitrate concentration in the effluent also increases, and it

is not one of the controlled variables. These are the major effects of the bigger

influent ammonia concentration on the overall process. Both low value of the pm, h

and high value of the Kg, [cod] decrease the rate of biomass growth, therefore the

rate of BOD degradation. Sample 301 was simulated with -21% change in the pm, h

and +21% change in the Ks, [cod]- [BOD] under these operating conditions varies

from their nominal values. [BOD] coming out from the anoxic reactor is variable

x3 and the effluent [BOD] is variable x8. The variables, x3, x4, x8 and x 10, are all

primary loadings variables for PCI according to Figure 4-4. Therefore, the time

response plot supports the observation obtained from the loadings and scores plots.
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Some of the previous time response figures can also be referred to in

showing the correlation pattern of the loadings plot 4-4. Figure 4-1 is such an

example. The top figure exhibits about 30% increase in the recirculation ratio. The

middle figure shows -45% and -20% decrease in x3 and x4, respectively. The

bottom figure shows a negative variation in x8 and a positive variation in xlO.

Ignoring the uncontrolled variable, xlO, this case could be a very good physical

interpretation to the mathematical PCA model. Besides Figure 4-1 and Figures 4-2,

later figure shown on page 135 and 141 tell the same story for the relationship

between the process variables of x3, x4, x8, xlO and xll. On page 135, the final

recirculation ratio (xl 1) increases while x3, x4 and x8 decrease. XlO again does not

follow the correlation pattern implied by Figure 4-4. It is not a controlled variable.

In the figure on page 141, although the final steady-state value of the recirculation

ratio stays at unity, it has a transient period from t= 10 to 30 days. Behaviors of

those variables in the transient period also follow the correlation pattern. It is

concluded that these variables do exhibit strong collinear relationship among them.

Therefore, multivariate statistical process control approach reflects the interactive

pattern among variables in analyzing the correlated system data.

4.4.1.2 Principal Component 2

Figures 4-8 shows the variable loadings for PC2, which contributes 20% to

the overall variability. The second PC is loaded mainly with autotrophic biomass

concentration in both of the effluent streams, x2 (Xb, a (Anoxic Reactor Effluent)) and x7

(Xb, a (System Effluent)}- It Is also somewhat loaded by xlO (Sno (System Effluent)}- They are
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positively correlated. This trend can also be observed in the variance-retention plot

shown later. PC2 may be readily interpreted as measuring the autotrophic biomass

concentrations in the effluent stream from the anoxic reactor (x2) and the clarifier

(x7). Any factors that might impact the growth of autotrophic biomass will affect

the scores onto the PC2 loadings. For instance, in a later figure on page 158, the

abnormal case deviates in the scores on PC2. This is an alarm for the operating

persormel. Whenever this kind of behavior is observed, attention should be paid to

the root causes that might lead to factors that have impact on the autotrophic

biomass kinetics. As will be shown, in this specific case depicted by the figure on

page 158, the abnormality is caused by the introduction of a minus change in ixm, a,

the maximum specific growth rate of autotrophic biomass. This change will

directly impact the growth rate of the autotrophic biomass, thus its steady state

value in the process streams. By means of interpreting the PCA plots, the operating

personnel can more effectively gain a handle in isolating a probable root cause for

the abnormal process operations.

From the loadings plot, one notes that x2 and x7 are highly positively

correlated. This correlation can be easily observed in all the closed-loop time

response simulation plots as shown previously in Figures 4-1 and 4-2 and later, in

the figures on pages 135 and 141. In each case, x2 and x7 correlated response

trajectories. They increase/decrease concordantly. Their changes are comparable in

magnitudes.
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Simulation has been carried out for the open-loop system with a change in

the sludge age to demonstrate this pattern. Figures 4-9 and 4-10 are the open-loop

response to the -10% and +10% changes occurring in the sludge age at t=10 days.

Figure 4-9 shows that -10% change of sludge age causes about -12% variation in

both x2 and x7. Figure 4-10 shows that +10% change in sludge age causes about

+12% variation in both x2 and x7. Monitored variables x2 and x7 in the two figures

have similar time response trajectories. This supports the correlation pattern

observed in the loadings plot for PC2.

4.4.1.3 Principal Component 3

Figures 4-11 is the loadings plot for PCS, which contributes 10% to the

overall variation. According to the plot, the third PC is loaded mainly with x5 (Sno

(Anoxic Reactor Effluent))? 3nd a bit with xl (Xb, H (Anoxic Reactor Effluent}) and Xl2 (SludgC

Age). PCS can be interpreted as a measurement of x5, the effluent concentration of

[NO3"] from the anoxic reactor, which is independent of the loadings in PCI and

PC2 (the loadings vectors are mutually orthogonal).

Deviation from the acceptable region along the PCS direction indicates

possible root causes related to a deviation in x5, the anoxic effluent concentration

of [NO3"]. The figure on page 152 will be such an example. In this figure, abnormal

observations deviate from the 'normal operation' region along the directions of PCI

and PCS. The abnormality occurring along PCS is caused by introducing a bigger

than normal values in p-m, h and Ks, [cod]- These bigger than normal bio-parameter
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changes in the hetorotrophic biomass growth and COD degradation will affect the

heterotrophic biomass growth in the anoxic reactor correspondingly. The bio-

growth is associated with the denitrification in the same reactor occurring

simultaneously. Biomass uses nitrate as energy and nitrogen supplement for

growth. Therefore, the anoxic effluent nitrate concentration is closely related to the

rate of bio-growth. Factors that might impact the biological growth that depends on

nitrate will then influence the anoxic effluent nitrate concentration, x5.

Figure 4-12 is the closed-loop time response of the system with -50%

change in [Xm, h and -f-60% change in Kg, [cod]- It corresponds to the sample with the

maximum deviation in the figure on page 152. According to this figure, it deviates

along both PCI and PCS direction. In the time response figure, x5 increases to 2.5

times of its original value, which causes the observation to migrate out of the

acceptable region along the PCS direction. Apparently, there are other process

variables deviating greatly from their nominal values, such as, x3, x4, x8, xlO and

xll. These variables are exactly the ones loaded in PCI. Appreciable amount of

variations in these variables will lead to a large shift in PCI. That is why the

observation in the figure on page 152 has bigger than normal deviation along PCI

as well. Observation and analysis of Figure 4-12 curves again support the

interpretation of PCI's make-up.

Variables that load heavily onto PC4, PC5 and PC6 (x6, x9 and xl2) as will

be seen below, are the very ones that are not represented well by the first three

PC's, which together capture 68% of the overall variation exhibited by the base
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case data. Therefore, the interpretation is that these variables are relatively resilient

to changes introduced in the construction of the base case data, and their variation

in the base case data may reflect more of the noise nature than real process

variation. As a result, physically valid interpretation of these PC's are more elusive

and probably less meaningful.

4.4.1.4 Principal Component 4 and 5

Figure 4-13 is the loadings plot for PC4, which contributes 7% to the

overall system variation.

Figures 4-14 is the loadings plot for PCS. For this PC, x6 (Xb, h (System

Effluent)) is the dominant variable. Besides x6, xl2 (Sludge Age) also contributions a

little to this PC. The correlation pattern between x6 and xl2 is supported by their

open-loop correlated time responses as shown in Figures 4-9 and 4-10 when the

sludge age (xl2) is changed. When there is a +10% change in the sludge age,

heterotrophic biomass concentration from the clarier, x6, yields a +4% change;

when there is a -10% change in the sludge age, x6 yields a —4% change.

Considering PC4 and PCS together, they can be readily represented as the

measurement of x6 and xl2. Other variables' contribution to these two PC's is

negligible.

4.4.1.5 Principal Component 6

Figures 4-15 is the loadings plot for PC6. Apparently, x9 (Snh (System Effluent})

is dominant in explaining PC6. Other variables have little contribution to PC6.
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Therefore, PC6 information of observations ean readily reflect the behavior of the

N-NH//NH3 in the system effluent.

4.4.2 Variance-Retention Plot

The variance-retention plot delivers similar information as the loadings plot,

but with more emphasis on the quantitative information for variables that contribute

to by each PC.

4.4.2.1 Principal Component 1

Figure 4-16 is the variance-retention plot for PCI. It is similar to the

loadings plot in showing how much each variable contributes to the first PC. The

most heavily loaded ones are again x3 (Ss (Anoxic Reactor Effluent)), x4 (Snh (Anoxic Reactor

Effluent)}, x8 (Ss (System Effluent)} and xl 1 (Rechculation Ratio}. PCI explains more than

80% of the normalized overall variation of each of these four process variables.

PCI explains 60% variation of xlO (Sno (System Effluent)}- Variance-retention graph is

more informative in that it is able to tell exactly how much each variable

contributes to each PC. Loadings plot is more informative in that it provides

correlation pattern information for the process variables. Therefore, a combination

of these two plots provides a elear indication of the contributions of the process

variables to the principal components' construetion as well as of the correlation

between the variables.

4.4.2.2 Principal Component 2

Figures 4-17 is the variance-retention plot for PC2. Consistent with the

previous conclusion for loadings plot in Section 4.4.1.2, this PC is loaded mainly
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with autotrophic biomass concentration in both effluent streams, x2 (Xb. a

(Anoxic Reactor Effluent))? x7 (Xb, a (System Effluent)} a bit with xlO (Sno (System Effluent)}-

The contribution of xlO on PC2 is not comparable to that of x2 and x7. This trend

is apparent in Figure 4-17. PC2 captures more than 90% of the overall variation of

x2 and x7 while it can explain only 30% of xlO. Therefore, x2 and x7 are dominant

variables for PC2 construction. PC2 can be readily interpreted as measuring the

autotrophic biomass concentrations in the effluent stream of the anoxic reactor (x2)

and of the clarifier (x7}.

4.4.2.3 Principal Component 3

Figure 4-18 is the variance-retention plot for PCS. According to it, xl, x5

and xl2 have contribution to PCS and x5 (Sno (Anoxic Reactor Effluent)} contributes much

more than xl (Xb, h (Anoxic Reactor Effluent)} and xl2 (Sludge Age}. Therefore, PCS is

readily interpreted as a measurement of x5, the effluent concentration of [NO3"]

from the anoxic reactor.

4.4.2.4 Principal Component 4

Figure 4-19 is the variance-retention plot for PC4. It is observed that the

fourth PC is most heavily loaded by xl2 (Sludge Age}. x6 (Xb, h (System Effluent)}, xl

and x5 also have some contributions on PC4. More than 50% of the variation for

xl2 is explained while other variables retain 10% to 25% of their overall variation

by PC4. Compared with xl2, the contribution of these variables onto the make-up

of PC4 is not significant. Therefore, PC4 is readily interpreted by xl2.
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4.4.2.5 Principal Component 5

Figure 4-20 is the variance-retention plot for PCS. For this PC, x6 (Xb, h

(System Effluent)) and xl2 (Sludgc Age) havc some contribution on it. But xl2 has only

less than half of the contribution as x6 does on PCS. Therefore, x6 is the dominant

variable on PCS.

4.4.2.6 Principal Component 6

Figure 4-21 is the variance-retention plot for PC6. Apparently, the variable

x9 (Snh (System Effluent}) is the Only dominant variable in PC6 construction.

4.4.3 Gabriel's Plot for PCI, PC2 and PC3

Three-dimensional Gabriel's plots for the first three PC's of the base PCA

model are shown in Figures 4-22 and 4-23. Figure 4-23 is the same plot as Figure

4-22 but with a different view. Figure 4-22 shows that except for x6, xl2, x9 and

xl, vectors representing other variables have relatively long vector lengths. Since

all the vectors plotted in the Gabriel's plot are normalized, the longer length

implies the better interpretation of this variable by this specific plot. Figure 4-22

shows the relationship between x2 to x5, x7, x8, xlO and xll. Although Figure 4-

22 is not sufficient in explaining xl, x6, x9 and xl2, more information is available

for these process variables in the later figures plotted for other PC's.

In Figure 4-22, it appears that x4 and xlO are highly collinear to each other,

and the same for x2 and x7. x8 and xll comprise a highly negatively correlated

group in this figure. Besides the correlation information between variables,

Gabriel's plot also tells relationships between the variables and the principal
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components. The vectors for the complex of the two negatively correlated

variables, x8 and 11, are closely aligned with the axis of the first principal

component. Variables x3, x4 and xlO are also more aligned with PCI axis.

Therefore, the first principal component is defined primarily by the five process

variables of x3, x4, x8, xlO and xll. This conclusion is consistent with those

obtained from the loadings plot and the variance-retention plot for PCI.

Figures 4-24 to 4-26 are the two-dimensional Gabriel's plots for PCI and

2, PCI and 3 and PC2 and 3, respectively. After observing all five figures, most

conclusions obtained by analyzing Figure 4-22 remain applicable.

Information supported by all of the five Gabriel's plots are: 1) x2 and x7 are

very highly correlated. They contribute strongly to PC2. 2) x5 is closely aligned

with PC3. PC3 is then primarily defined by x5. x5 has little contribution to PCI and

PC2. 3) x2, x7 are very much orthogonal to x5. This implies that their variations

are physically independent. 4) x8 and xll are closely aligned on principal

component 1. They are negatively correlated to each other. 5) x3 and x4, to some

extent, also contribute to PCI.

The physical interpretation for conclusion 3) above can be: that x2 and x7

are autotrophic biomass concentration from the anoxic reactor and the clarifier,

respectively. The growth of autotrophic biomass occurs in the aerobic reactor only

when oxygen is provided as the electron acceptor. Therefore, only the factors

relating to aerobic reactions will have impact on x2 and x7. x5 is the anoxic
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effluent of nitrate concentration. This amount of nitrate will pass through the

aerobic reactor imchanged. Therefore, x5 is independent of x2 and x7.

Most of the conclusion gained by analyzing Gabriel's plot supports the

conclusion obtained in the previous sections. Therefore, the same physical

phenomenon and interpretation can be obtained by several different types of the

PCA plots. They deliver consistent and complementary information

4.4.4 Scores Plot for Samples Projected onto PC's

Scores plot for samples projected onto PC's tells us information about how

the 2401 samples score onto each of the PC s, and patterns of similarity among the

samples can be discerned from them.

4.4.4.1 Principal Component 1

Figure 4-27 is the scores plot for PCI, plotted against index numbers, of the

2401 noisy samples. This figure exhibits the pattern of contributions of the 2401

samples to the construction of the first score. This pattern is consistent with the

original approach by which the reference database is generated - a factorial design

of points for simulation. The seven major groups from left to right represent the

seven levels of changes in the influent [NO3 ]. The seven subgroups inside each of

the seven major groups represent the seven levels of changes in the influent [NH4"^].

Close-up plot of each subgroup gives similar patterns. The larger the absolute score

value of each sample, the bigger is the associated projection of that sample onto

PCI. As shown, for PCI, sample 301 is the one with the maximum scores, -9. This

sample is simulated under the extremal operating condition of-21% change in the
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influent [NO3"], +15% [NH4"^], -21% |am, h and +21% Ks, [cod]- This is the reason

why sample 301 was chosen in Figure 4-7 to show the closed-loop collinear

relationship exhibited by PCI. The observation of the general trend for Figure 4-27

leads to the conclusion that: with all the other operating conditions fixed, the

combination of decreasing influent [NO3"], increasing influent pSrH4"^], decreasing

Pm, H and increasing Ks, [cod] lead to an increase in the corresponding sample

scores on PCI. This trend is well exhibited by sample 301 which has the biggest

scores onto PCI, because this sample is simulated with the lowest influent [NO3"],

Pm, H and highest influent [NH4'^] and Ks, [cod] among all the samples in base case.

4.4.4.2 Principal Component 2

Figure 4-28 shows the scores of the samples on the second principal

component. In contrast to the scores for PCI, there is no sample \vith extremely

large scores on PC2. Scores are distributed evenly between -3 to +4. It is clear that

there are again seven major groups of samples corresponding to the seven levels of

changes in the influent [NO3']. Samples within each group are differentiated by the

influent [NH4"*"]. The repeating pattern of the seven groups indicates that difference

of the influent [NO3 ] change does not cause big difference in the sample scores on

the PC2. Inside each group, the scores change gradually from positive scores to

ne^tive scores as the influent [NILt""] changes from -15% to +15% of its nominal

value. The bigger the deviations from the nominal cases, the bigger the sample

scores are on PC2.

124



CM 1
O
a.

o 0

o -1

-2

-3

-4

500 1000 1500

Sample Number
2000

Figure 4-28. Scores Plot for PC2

125



4.4.4.3 Principal Component 3

Figure 4-29 is the scores plot for PCS. The pattern is less clear for this case

than that for PCI and PC2 cases. The scores of samples are distributed around zero.

Similar to scores plot of PC2, there is no sample having much larger scores than

others.

4.4.4.4 Other Principal Components

Scores plot for PC4 to PC6 exhibit less trend than PCS. They will not be

discussed further here.

4.5 Establishing 'Nominal Operation' Domain

A PCA model is calculated from the historical data that represents the

nominal operation region. Under 'normal' operation, the process measurements are

shown to cluster in a well-defined region in the (tl-t2) and (tl-t2-tS) space with

small values of Squared-Prediction-Error (SPE). This clustering region is defined

as the 'nominal operation' region. Future process observations are then referenced

against this 'nominal' model. The two most popular graphical presentations of the

reference model are the monitoring charts of two/three dimensional plots of the

scores, and the SPE plots. These two types of MSPC charts are used in this study to

monitor the process.

A PCA model has been developed by keeping the first 6 principal

components. Pretreated base case data is projected onto the subspace spanned by

these 6 PC's. The error of fitting by the PCA model is defined as the length of the

difference vector between each sample in the original pretreated data and its
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corresponding projection in the 6-diniensional subspace. SPE for each sample is

calculated by equation (8) in Section 3.5.2.

Figure 4-30 is the scores plot of the 2401 samples onto PCI and PC2.

Figure 4-31 is the three-dimensional scores plot with scores on PC3 as well. A

highly clustering region around the origin exists in both figures. This clustering

region defines the 'nominal operation' domain for the monitoring scores chart.

Figures 4-32 and 4-33 are SPE plots. Figure 4-32 is the SPE versus PCI and

PC2 chart. Figure 4-33 is a chart of SPE versus indexed sample numbers. Both SPE

charts show that most of the samples cluster in the low residual area. This area has

higher sample density. The biggest SPE occurs at sample number 1915. Its SPE is

10.92. The operating conditions of this sample is +14% [NOs'], +5% [NH/] and -

21% pm, H and +7% Ks, [cod]- Different from expectation, the sample with

maximum error did not result from the combination of the extremal operating

conditions. It may be a result of the nonlinearity of the system.

4.6 Simulating 'Abnormal Operations'

To evaluate the capability of such a series of multivariate statistical process

control charts to detect abnormal operating deviations, several cases of faults have

been simulated. Abnormalities can enter the system in two different ways. The first

type of abnormalities is simulated by introducing a larger than normal change in

one or more of the operating variables, such as the influent flow rate or

concentrations. In this case, the essential relationship among the process
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variables has not been altered, only the forcing function terms are different.

Therefore, this type of abnormality will possibly result in a shift of the tl-t2-t3

scores to outside the normal operating region but should not result in a shift of the

SPE to outside of the acceptable region, indicating the PCA model still fit the new

data relatively well.

The second type of abnormality is simulated by introducing plant/model

mismatch. In this case, the relationship among the process variables is being

changed, because one or more of the process dynamic equations' parameters are

being changed. Therefore, after fitting with the base case PCA model, this type of

abnormality would most probably increase the associated SPE, possibly together

with a drift out of the normal tl-t2-t3 scores region.

In this study, four eases of abnormalities, belonging to the above two

categories, are simulated. The first two are non-plant/model mismatch

abnormalities. The last two are abnormalities related to model variation.

The first group is simulated by introducing a new disturbance to the system

that was not encountered in the reference database generation. The new disturbance

is a +20% change in the influent flow rate.

The second group is simulated by introducing bigger than 'normal'

disturbance to the system. An increase in the influent [NO3"] to 30% - 40% of its

nominal value and the influent flow rate to 10% - 20% of its nominal value was

introduced. The amount of changes for these two inputs in the base case are from -

21% to +21% and zero, respectively. All the other operating conditions remain at
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some values within the set regarded as normal. Factorial design is used to generate

a small data matrix of the abnormal operations based on varying the two factors:

the influent [NO3"] and the influent flow rate. The data matrix size for this group is

36x12, 36 observations in 12 variables.

The third group is generated by introducing larger than 'normal' biological

parameters with -50% to ̂ 0% change in the pm, h and +50% to +60% in the Ks,

[COD]- The amount of changes for these two parameters in the base case is from

-21% to +21%. The other two operating conditions taken into account in the base

case model, the influent [NOs'] and the influent [NRt"^], are fixed at their nominal

values in this case. The data size obtained is 100x12.

The fourth group is simulated with a new biological event: changes in the

maximum growth rate of autotrophic biomass, pm, a- This bio-parameter is the only

operating condition changed in this group of simulations. The other four operating

conditions varied in the base ease generation remain at their nominal values. The

parameter pm, a varies from -30% to -20% of its nominal value. The data size for

this group of abnormality is 51x12.

4.7 Validating PCA Model Using 'Normal'/'Abnormal' Cases and

Identifying Causes for 'Abnormal' Cases

Now the PCA model has been developed and different sets of data

corresponding to 'abnormal operations' have been generated. It is time to test how

good the base ease model is in serving as a reference to flag 'out of normal'

operations. The new observations, mean-centered and scaled with that used for the
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base case model, are projected onto the reference PCA model to assess its fitness.

Thus, abnormality is expected to be detected by plotting various monitoring charts

and possible root causes to be identified. Before testing the PGA model with

'abnormal cases', one case from the reference database development is displayed

below to show the performance of 'normal' case on the PGA monitoring charts.

Once an abnormality is detected, it is useful to find an assignable cause so

that the operating personnel will be advised as to which combination of variables to

look into to drive the system back to the normal situation. MSPG is much more

powerful than USPG and other process control methods in providing diagnostic

information in this regard. By observing the t-scores plot and the SPE plot, one can

distinguish between a bigger-than-normal disturbance and a plant/model mismatch.

Besides that, contribution plot discussed in Section 3.9 makes it possible to trace

back the responsible measurement variables for the deviation occurring in the t-

scores and SPE plot. For a well-developed monitoring and diagnostic system,

contribution plot can be made on-line, along with the monitoring charts. Once fault

is detected by either the t-scores or the SPE plot, contribution plot will indicate the

group of variables that might cause this abnormality and to help the operating

personnel to hypothesize for an assignable cause. Therefore, for some of the

following abnormal case studies, diagnostic plots (contribution plots) are shown in

association with the monitoring charts.
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4.7.1 Normal Case: +15% Changes in the Influent [NO3"] and [NH/]

Figures 4-34 to 4-37 correspond to the MSPC charts for a +15% change in

the influent [NO3"] and [NH4"^] initiated at time t=10 days. This set of operating

condition is one of the cases included in generating the reference database. The

maximum positive changes for the influent [NOs'] and [NH4"^] are +21% and +15%,

respectively. It is expected that the steady state scores and SPE of this sample

should fall inside the 'normal operation' region defined by the reference case.

Figures 4-34, 4-35 are the scores plot for PCI, 2, 3 and SPE plot for PCI, 2,

respectively, but also showing the transient response scores as well. Some of the

transient score observations fall outside of the 'normal operation' domain when

disturbance introduced in the base case enters the system. At t=0, the system is at

the original steady state. In both charts, the projection of the data corresponding to

t=0 appears around the origin. At t=10 days, disturbance is introduced into the

process which leads to eventual deviation from its original value. However, the

deviation starting at t=10 days is not big enough for the system data to drift out of

the acceptable region in both monitoring charts. At t=20 days, the projections of

new operating points result in out-of-the-normal-clustering in both figures. In the

scores plot, the projection at t=20 days deviates from the acceptable region

somewhat while in the SPE plot, the SPE rises to a value much larger than the

upper limit. After 20 days, the deviation decreases gradually and finally converges

toward a new steady state within the 'normal operation' region. Because the
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case development, the final steady state value of this case is expected to be inside

the 'normal operation' region, and is shown to be the case as seen in Figures 4-34

and 4-35.

Figure 4-36 is the SPE versus time plot. Its behavior is similar to that

displayed in the previous figures. The SPE starts to increase fi-om t=10 days, when

the disturbance is introduced and reaches a maximum at t=20 days, followed by a

decrease toward its new steady-state after 40 days.

In monitoring the system response, one may worry about the transient

observations that start to migrate out of the acceptable region, for instanee, starting

at t=20 days in Figures 4-34 to 4-36. Previous investigation of the process suggests

a time constant x around 40 days. Therefore, adjustment of the process operation

condition should not be undertaken more frequently for intervals shorter than that

of the time constant. Persistent deviations that last longer than time constant would

need attention from the operating personnel.

Figure 4-37 is the time response curve for each of the twelve process

variables. The transient response lasts from t=10 to 20 days, approaching steady

state thereafter by 50 days.

In this case, all observations after meeting new steady states are well within

the 'normal operation' region, for both the scores and the SPE. Transient behavior

is often out of the acceptable 'normal operation' region. This transient response

should not be regarded as the system being in a state of 'out of control'. Rather one

should assess the state of control when the system is more or less in a steady state
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mode and should wait out for a period of time beyond that of the system's time

constant before forming a conclusion.

4.7.2 Abnormal Case 1; +20% Changes in the Influent Flow Rate

Figures 4-38 to 4-42 are MSPC plots corresponding to the case with a +20%

change in the influent flow rate introduced at time t=10 days. This operating

condition is not included in the reference database generation. The flow rate term

appears in the forcing function of the set of 'kinetic equations' used by the

simulator development. Therefore, a change in the influent flow rate does not

constitute a change in the basic model structure. It is expected that the scores of the

new points may fall outside the 'normal' scores region but not the SPE. Instead of

one group of data being simulated, it is only one observation simulated in this case.

The migration of this new sample on the scores plot and SPE plot over time is

shown in the following figures.

Figures 4-38 and 4-39 are the scores plots for PCI, 2, 3 and PC2, 3,

respectively. The transient response curve starts aroimd the origin and migrates out

of the acceptable region, reaching a maximum at 20 days. After that time, the

scores come back toward the normal clustering, and settle at a new steady state

somewhat outside the 'normal operation' region. Figure 4-39 is a close up of Figure

4-38 showing the scores on PC2 and 3.

Figures 4-40 and 4-41 are the corresponding SPE plots. Figure 4-40 is the

SPE for PCI and PC2. Figure 4-41 is the SPE monitored over time. Both figures
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show that after a temporary out-of-'normal operation' occurring from around t=10

to t=45 days, the process settles down at a new steady state with a final SPE smaller

than the upper SPE limit. The temporary 'out of bound' takes place within the time

constant. These upsets should not be deemed as 'abnormal' and therefore the

operating personnel should not yet to take corrective action. These plots imply that

the new event does not reflect a change in the model itself. Otherwise, the new

steady state SPE will be larger than that of the upper control limit. The influent

flow rate shows up as a forcing term in the differential equations describing the

process dynamics. Therefore it does not alter the intrinsic model of the process

itself, but rather would result in the process operating at a higher (or lower) steady

state regime compared to that of the base case.

Figure 4-42 is the IMC closed-loop time response for this case - +20%

change in the influent flow rate introduced at t=10 days. The disturbance entering

the system causes some of the process variables to reach new steady state. It takes

30-50 days for process variables to settle down to new stable values.

4.7.3 Abnormal Case 2: +30% to +40% Changes in the Influent [NO3"] and

+10% to +20% Changes in the Influent Flow Rate

4.7.3.1 Modeling Abnormal Case 2

Figures 4-43 to 4-46 are the monitoring charts for this group of 'abnormal'

operations, with fixed influent [NH4^], pm, h and Ks, [cod], but bigger than normal

influent [NOs'] and a new disturbance - that of flow rate change. Figures 4-47 and

4-48 are the charts for the transient response of one sample of the observations
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from this group. Its operating condition is: +10% change in the influent flow rate,

+40% change in the influent [NO3"], +15% change in influent [NH/], +21%

change in the pm, h and -21% change in the Ks, [cod]-

In Figures 4-43 and 4-44, steady state values of the new observations

obtained at several new levels of the influent [NO3"] and feed rate conditions are

observed to be out of the 'normal operation' region, which is an early warning that

some kind of abnormal deviation has oeeurred. According to the previous section,

out-of-bound in the scores plot suggests a root cause of bigger than normal

variation in the operating condition. Whether this abnormality is associated with a

model shift or not is determined by the SPE plot. Figures 4-45 and 4-46 are the

corresponding SPE plots for this case. It seems that most of the observations lie

beyond the upper SPE limit, which suggests a model shift as well. A clearer view is

shown in Figure 4-46, in which sample index is in the x-axis. It is apparent that a

range of SPE variation exists, peaking at about 26 SPE units. Tracing the SPE

variation back, it is found that each of the six groups, from left to right, is in the

order of increasing influent [NO3"]; each of the six observations within a group,

from left to right, is in the order of increasing influent flow rate. It shows that

increasing the influent [NO3'] does not affect SPE much; but increasing influent

flow rate raises SPE drastically. In Figure 4-46, the six smallest SPE observations

are those with +10% change in the influent flow rate and different levels of the

influent [NO3"]. The highest six observations are those with +20% change in the

influent flow rate and different levels of [NO3"]. The twelve observations with
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smallest SPE in this figure are below the upper SPE limit. Compared with the

abnormal case 1 with +20% flow rate change alone, it is very possible that the

phenomenon of out of control limit in this case is caused by the nonlinearity of the

system. The +20% change in the flow rate alone does not alter the plant model, as

supported by the SPE plot in Figures 4-40 and 4-41. In the small neighborhood of

the nominal values, which are used to build the process model, the process model

describes the process well. Beyond this small neighborhood, plant/model mismatch

always exists. In Figures 4-45 and 4-46, the out-of-'normal operation' phenomenon

can be explained as the model shift caused by the variation of the operating

conditions beyond the linear region of the process model. This SPE deviation may

also be caused by the conjunction of two large perturbations to the operating

condition. In other words, although bigger than normal [NO3'] alone or feed rate

change alone will not cause SPE deviation, if they are combined, the overall effect

could exceed the upper SPE limit and display an abnormality pattern in the SPE

monitoring chart.

Monitoring charts 4-43 to 4-46 provide the information that there are larger

than 'normal' changes in the operating conditions because new observations move

out of the acceptable region of the scores plot. This is apparently caused by the

+30% to +40% change in the influent [NOs'] and +10% to +20% in the influent

flow rate. In the reference case, the influent [NOs'J is changed at most to +21% and

flow rate has zero change. It also appears that plant/model mismatch occurs when
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the above amount of variations are introduced to the process. It may be either due

to the nonlinearity or due to the conjunction of multi-operating condition changes.

Figures 4-47 and 4-48 show the transient scores response for one sample

from this case. Since the influent flow rate chosen in this transient study is +10%

change of its nominal value, it moves back to the 'normal operation' at its new

steady-state in SPE plot 4-48. Scores plot still shows the trend of moving out of the

normal region and staying out at steady state.

4.7.3.2 Identifying Cause for One Sample from Abnormal Case 2: +40%

Change in the Influent [NO3-] and +20% Change in the Influent Flow

Rate

Figures 4-49 and 4-50 are the contribution plots for one sample from the

abnormality case 2, when the influent flow rate has +20% change from its nominal

value and the influent [NOs'] has +40% change. The t-scores plots, Figures 4-43

and 4-44, show that the deviation in the scores plot occurs along the second

principal component direction. Therefore, contribution plot for PC2 is carried out

as shown in Figure 4-49. It shows that deviation in the second PC consists mostly

of x2 (Xb, a (Anoxic Reactor Effluent)) and x7 (Xb, A (System Effluent)}- Each Variable of the tWO

accounts for more than 30% of overall contribution of all twelve variables.

Consequently, deviation along PC2 can be assigned to the deviations in the

autotrophic biomass concentration from both the anoxic reactor and the clarifier.

This conclusion is consistent with the interpretation of loadings plot for PC2 shown
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earlier in Section 4.4.1.2. PC2 is highly contributed by x2 and x7. Therefore,

abnormality in PC2 direction implies an abnormality in either x2 or x7 or both.

Also based on Section 4.4.1.2, x2 and x7 are always highly correlated to each other.

Hence, deviation in PC2 can be reasonably assigned to x2 and x7.

The contribution plot in Figure 4-49 can suggest to the operating personnel

that some factors causing x2 and x7 to deviate from their nominal values are

undergoing some bigger than normal variation. Since autotrophic biomass growth

is occurring in the aerobic reactor together with the nitrification, its concentration is

closely related to the [NO3"] in the system. Therefore, this set of contribution plot

suggests a bigger than normal deviation in the influent [NOs']. Operating personnel

is then able to accordingly take corrective actions to this process input in an attempt

to drive the system back to 'normal'. Besides this, other inputs possibly responsible

for the abnormality are the influent flow rate and [NHi"^]. MSPC can not guarantee

to assign the root-cause for any abnormal operation. Instead, it can sometimes

provide a handle from where to trace back for those root-causes.

Figure 4-50 shows that the deviation in the corresponding SPE chart is

primarily caused by xl (Xb, h (Anoxic Reactor Effluent)), hetorotrophs concentration from

the anoxic reactor. Its contribution to the overall error is bigger than 65%.

According to Section 2.2.4, theories of denitrification, larger amount in the influent

flow rate as well as [NO3'] causes more nitrogen to be removed in the anoxic

reactor. More heterotrophic biomass will need to be produced in this reactor to

counterbalance against the increased nitrogenous load. Consequently, xl, which
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represents the heterotrophic biomass effluent concentration from the anoxic reactor,

will depart from its nominal value. That is the major reason causing model misfit

error in this case. By means of this, when the SPE monitoring chart indicates

unacceptable deviation, contribution plot for the SPE should be developed to

indicate responsible process variables. The operating personnel will observe the

deviation of xl from this contribution plot. A deviation on the SPE chart is

classified as 'a model shift'. Therefore, the root cause can be hypothesized

accordingly to either bio-parameter related to heterotroph growth, for instance,

or nonlinearity of the current operation. In our case, it is the nonlinearity or

the conjunction of two abnormal operating conditions that cause the abnormality.

4.7.4 Abnormal Case 3: -50% to -40% Changes in the |j.nij h and +50% to

+60% Changes in the Ks, [cod]

4.7.4.1 Modeling Abnormal Case 3

Figures 4-51 to 4-56 show the analysis results for abnormal case 3. In this

case, bigger than normal changes are made in the bio-parameters of the process,

which will change the process model. It is expected that at least a larger than

normal SPE will result.

Figures 4-51 and 4-52 show that the scores of the new observations

also move beyond the 'normal' region in PCI, 2 and 3. This trend implies larger

than normal changes in the process variables have taken place. In the base case, the

biggest negative change in pm, h is -21% from its nominal value and the biggest

positive change in Ks, [cod] is +21%. However, in this case, both biological
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constants are changed to a level mueh larger than their maximum changes in the

base case, forcing the growth of the heterotrophs to slow down thereby slowing the

breakdown of the carbonaceous components as well as the nitrification process.

This explains the migration of points to that of out-of-bound occurring in the t-

scores plot.

The more drastic impact of changing bio-parameters on the process

behavior is shovm in the SPE plot of Figures 4-53 and 4-54. The SPE increases to

as big as 35 units corresponding to a change of a -50% change in the h and a

+60% ehange in the Kg, [cod]- The upper SPE limit obtained from the reference case

is less than 11. From Figure 4-54, the SPE values are seen to be above the upper

limit for the entire range of parameter variation. This elearly indicates that a model

shift has oceurred. This is eaused by the biological parameter variation in the pm, h

and Ks, [cod] which occur in the terms involving the biomass as well as the organic

and nitrate coneentrations in the overall mass balance differential equations. In the

figure, it is evident that there are ten groups with ten observations in each group.

According to the simulation process, from left to right, the groups correspond to

increasing values of the pm, h; within eaeh group, from left to right, each sample

corresponds to increasing values of the Ks, [cod] parameter. The behavior of the

points illustrates that increasing Ks, [cod], the half saturation constant for

heterotrophs thus slowing down p, leads to larger errors in the system deseription;

whereas inereasing pm, H,the maximum specific growth rate of heterotrophs toward

that of nominal, leads to smaller model errors. In this case, pm, h is varied from
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-50% to -40% of its nominal value. Increasing h towards its nominal value will

certainly reduce the modeling error. In contrast, increasing Ks, cod from +50% to

+60% away from its nominal value, is expected to increase plant-model mismatch.

It is indeed reflected in the increasing SPE. The consistency between the

monitoring charts and the physical interpretation is one of the attractions of the

PCA methodology.

Figures 4-55 to 4-56 are the scores and SPE for the transient response for

the parameter combination that leads to the worst process deviation in this case of

abnormality. At t=0, each response starts from inside the 'normal operation'

domain around the origin. It then migrates out of the acceptable bound starting at

t=10 days and stays outside at steady state, in both the t-scores and the SPE charts.

4.7.4.2 Identifying Causes of One Sample from Abnormal Case 3: -50%

Change in the pm, h and +60% Change in the Ks, [cod]

In this case, instead of +21% and -21% maximum changes in the pm, h and

Ks, [COD], -50% change in the pm, h and +60% change in the Ks, [cod] are introduced,

respectively. Contribution plots are carried out for the sample with -50% change in

the Pm, H and +60% change in the Ks, [cod]- Figures 4-57 to 4-59 are the contribution

plots for this case.

According to figure 4-51 and 4-52, since new observations do not deviate

along the PC2 direction, contribution plot for PC2 is omitted. Figure 4-57 is the

contribution plot for PCI and Figure 4-58 is that for PC3. Figure 4-57 shows that

the deviation along PCI direction is mainly caused by the behavior of x8 (Ss (System
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Effluent)), effluent [BOD]. It is also somewhat associated with the deviation in x3 (Ss

(Anoxic Reactor Effluent}), x4 (Snh (Anoxic Reactor Effluent)), xlO (Snq (System Effluent)) ̂ d xl 1

(Recirculation Ratio). These variables are exactly those contributing the most to the

construction of PCI, as discussed earlier in Section 4.4.1.1. They are the

responsible variables for the PCI deviation. Figure 4-58 shows that deviation in

PCS is mainly caused by x5 (Sno (Anoxic Reactor Effluent))- This is also consistent with the

conclusion in Section 4.4.1.3.

The error in this case is obviously caused by the bigger amount of changes

in the bio-parameters of the system. Figure 4-59 shows that x8 is primarily

responsible for the residual of this case. It contributes more than 65% of the overall

error of the process, xl 1 (Recirculation Ratio) is more or less responsible, too. The

abnormal case studied here is simulated with a much smaller pm, h and much larger

Ks, [COD] compared with the reference model. Both reducing pm, h and increasing Kg,

COD will lead to slower biomass growth, therefore slower carbonaceous compound

degradation. This will definitely have strong impact on the effluent [BOD], x8. In

the biological wastewater plant under study, effluent [BOD] is paired with

recirculation ratio in the feedback control loop. Deviation in the effluent [BOD]

will automatically influence the recirculation ratio, xll, in an attempt to bring the

effluent [BOD] back to its setpoint value. Therefore, the error between that

predicted by the model and that from the abnormal observation is assignable to x8

and xll.
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4.7.5 Abnormal Case 4: New Biological Event - -30% to -20% Changes in

Pni) A

4.7.5.1 Modeling Abnormal Case 4

In this case, there is a completely new biological event not included in the

base case model development. The maximum specific growth rate of autotrophic

biomass, pm, a, is varied from -30% to -20% change from its original value. This

change in the bio-parameter constitutes a model shift. The following figures are the

associated monitoring charts for this case.

Figures 4-60 and 4-61 are monitoring charts for PCI, 2, 3 and PCI, 2,

respectively. This set of variation in pm, a results in out-of-bound changes in not

only the PCA scores, but also the corresponding SPE. This implies that not only the

base case model is a poor fit, but also that the corresponding scores are larger than

normal.

Figures 4-62 and 4-63 show the impact on SPE of introducing this

biological new event into the process. Clearly, SPE goes to a magnitude as high as

60 units. It is more than five times of the upper SPE limit. It is also about two folds

as much as the SPE value obtained from the previous two cases of abnormalities.

This large SPE is caused by a new type of biological constant change not

considered in the reference case. In Figure 4-63, the decreasing trend in SPE is

associated with a decreasing deviation of pm, a from that of nominal.
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Figure 4-62. Monitoring Chart. SPE Plot for Principal
Component 1 and 2 (. =Reference Data; + = Data of -30% to

20% pm? A Changes)



Figures 4-64 and 4-65 show the scores and SPE for the transient responses

for the case with the biggest variation in this group, when pnu a has a -30% change.

Both plots show that the final steady state values stay well outside the original

normal clustering region. This is a clear indication that the process is out of control.

Causes need to be identified and eliminated if possible. Contribution plots can

again be brought into suggest process variables responsible for the deviation.

4.7.5.2 Identifying Causes of One Sample from Abnormal Case 4: -30%

Change in the pm, a

Abnormality Case 4 is generated under a totally new biological event,

changes in pm, a- A -30% change in the pm, a is used to create contribution plots for

this case. Figures 4-66 and 4-67 are the contribution plots.

Figures 4-60 and 4-61 show that the deviation in the t-scores plot is along

the PC2 direction. The contribution plot for PC2 shows that this deviation is

consisted of x2, the autotrophic biomass concentration from the anoxic reactor, x7,

the autotrophic biomass concentration from the clarifier and x9, the effluent

[NH4"^], again due to the fact that PC2 is loaded by x2 and x7 mostly.

Figure 4-67 shows that error of this case is mainly caused by xl, the

hetorotrophic biomass concentration from the anoxic reactor. Since pm. a decreases,

the growth rate of autotrophic biomass in the aerobic reactor decreases accordingly.

Therefore, the rate of nitrification occurring in the aerobic reactor slows down, too.

Then less NO3" is produced in the aerobic reactor and fed into the anoxic reactor.

Consequently, the hetorotrophic biomass growth rate in the anoxic reactor will be
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affected, too. Therefore, xl, the hetorotrophic biomass concentration from the

anoxic reactor, will deviate from normal value as well.

4.7.6 Conclusion

In each of the above four case studies of abnormalities, various multivariate

statistical charts effectively detect abnormal deviations and deliver warnings to the

operating personnel. By observing the out-of-bound behavior depicted in each plot,

one can obtain some insight to the nature of the deviation. Larger-than-normal shift

in the process variables is usually reflected in a shift of the scores; whereas a model

shift is reflected by increased SPE. In addition, by observing the SPE plot, one can

assess how much the process deviates from its nominal condition. The larger the

SPE, the higher the disturbance or modeling error. These PGA charts correspond

well to the physical interpretation of the observed events. In addition, the usage of

contribution plots provides the potential to possibly identify the root causes for the

observed abnormal deviations.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

In this study, the development of a monitoring and diagnostic framework

using Multivariate Statistical Process Control (MSPC) methodology is presented

for a multi-stage industrial prototype biological wastewater treatment plant. Results

show that MSPC is capable of effectively detecting abnormality occurring during

plant operation, and sometimes is capable of identifying possible root-cause for the

abnormality. It is concluded that MSPC is a feasible tool for future application to

wastewater treatment plant operations to improve plant effluent quality and to

reduce process down times.

During the development of the MSPC monitoring and diagnostic

framework, close attention must be paid to the following three aspects. First, data

that are to be included in the base case profile should be from more or less steady

state values, because they are indicative of the true state of the process operation.

Transient data is not to be considered in the reference case. Second, the degree of

variation reflected by the historical data should be chosen with care, in that they

should be regarded as 'normal', arising from variations that are deemed normal. If

the variation chosen is too broad, some malfunction or fault may later be regarded

as 'normal', because it is within the boundary of the base case pattern. Conversely,

if the acceptable variation chosen is too narrow, some otherwise acceptable

operations will be judged as 'abnormal'. In addition, one should also be assured
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that the underlying feedback controllers are chosen appropriately and are properly

tuned to reach the control objective. Third, future data being monitored should be

pretreated with the same mean and scaling factor as used in the base case profile.

Otherwise, the two sets of data are not being compared with equal base line and

bounds.

Based on this study, future application of such a MSPC framework to

wastewater bio-treatment plant is expected to provide the operating personnel with

a visual detection of the occurrence as well as the possible cause of a process

abnormality. MSPC has the potential of detecting the onset of abnormal behavior of

the process and providing the operating persormel an opportunity to take timely

corrective step in the hope of driving the system back to that of normal.

5.2 Recommendations

Before this MSPC monitoring and diagnostic framework can be brought on

line in industry, implementation issues need to be addressed and analyzed. For

instance, how often should the measurements should be taken; how long should the

operator wait after observing from the MSPC charts, the onset of abnormal

deviation before they take actions in hopes of driving the system back to the normal

region; how often should the base case profile be updated to reflect recent changes

in operation practice; some variable behavior changes periodically with the season

or other operating conditions; therefore using multi-databases as the reference

database may be warranted. Another important consideration is the availability of

measurements for analysis. The question of how often, how feasible and how costly

169



for the additional measurement values required for MSPC are all very relevant and

practical issues that need to be addressed and well thought about.

In summary, a properly designed MSPC is expected to yield timely

information to the operating personnel, in regard to the 'state' of the process, thus

avoiding possible irreversible decay of the process, which implies, always,

additional time and resources that would be required to restore the process to that

of'normal'.
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