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Abstract

The collection and interpretation of highway pavement distress data is an expensive

process. This process, in its traditional sense, required many man hours, as techni

cians have to survey the highway. This process is also quite dangerous and subject

to traffic and weather conditions.

Much research has been performed in order to automate the collection and inter

pretation phases. This research focuses on an alternative methodology for classifi

cation of highway pavement distresses. The Learning Vector Quantizer, an artificial

neural network architecture, was implemented to classify images of highway pave

ment according to the longitudinal, transverse, fatigue and block crack types. Data

was recorded from vectorized crack segments produced by a segmentation process.

The images were recursively broken into smaller blocks, forming a quad-tree type

structure. Each block in the image tree was then classified as to the major distress

prevalent.

This technique should allow for easier measurement of extent and severity. Also it

allows records to be kept on individual pieces of highway for corhparison with future

monitoring.

The overall results of the classification were satisfactory, with longitudinal and

transverse classification outperforming block and fatigue. This was to be expected as

block and fatigue crack types are harder to differentiate. With additional research,

this approach should prove to be very beneficial to the pavement management field.
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Chapter 1

Introduction

Each year the transportation departments of many states spend millions of dollars

investigating the conditions of the roadways in their states. This investigation is

necessary to insure the safety of the citizens. ,

While necessary this investigation is quite costly as there are several parts that

require the expertise of several people. One of the most expensive and time-consuming

stages in the process is the collection and analysis of pavement distress types. The

state hires several technicians who survey sections of the pavement and record the

distresses prevalent. When considering the average number of roads and the lengths

of these roads in the state, numerous individuals are needed for the job at a significant

cost to the state. And this considers only one area of concentration in the investigative

process.

The job of surveying and analyzing the road is also tedious and is subject to and

dictated by traffic and weather conditions. Data collection accuracy is affected by

high traffic volume, lighting, and severe weather conditions.



In the past few years, the transportation agencies have invested much money to

alleviate many of the problems associated with the investigative process including

reducing the overall cost. One company, ARAN, has designed a vehicle, which can

record video footage of highway pavement using several cameras, strategic strobe

lighting and various vibration sensitive devices. This solves the problem of using field

crews', labor for collection of the pavement conditions.

There have also been several successful attempts at improving the automated

classification of distresses in pavement. This is the primary focus of this research. The

following sections describe some of the previous research that have been performed

and discusses some topics related to pavement distress analysis. A brief description

of some of the previous research follows.

1.1 Previous Classification Techniques

Ohio Department of Transportation

Acosta, Figureroa and Mullen [1] developed a video image processing technique

for evaluating pavement surface distress for the Ohio Department of Transportation.

For the classification phase of this technique they used a rulebased approach. Several

distress types were identified for, classification, namely:

1. ravelling, .

2. bleeding,

3. patching,

4. rutting,



5. settlement,

6. corrugations,

7. wheel track cracking,

8. transverse cracking,

9. longitudinal cracking,

10. edge cracking,

11. and random cracking.

All or some combinations of these distress types can be found in flexible, jointed and

composite pavement.

The classification scheme was divided into 5 major steps:

1. depth related cluster classification,

2. cluster preliminary identification,

3. cluster classification,

4. and final classification.

Clusters are adjacent pixels of "foreground" and "maybe foreground." Foreground

pixels are those pixels believed to belong to a pavement distress shown in the image,

and "maybe foreground" pixels are ones that probably belong to a distress but are

still questionable. Several features are extracted from the crack based on the gray

values recorded for the pixels in the clusters. Most of the distress types found in the

test images were accurately recognized. No quantitative results were provided.



Chia-Pei, J. Chou and Tz-Kai Liau [4]

This classification approach involved using a Back Propagation Neural Network

for classifying the following distress types:

1. transverse cracks,

2. alligator cracking,

3. block cracking,

4. potholes,

5. and longitudinal cracks.

Images were divided into 32x32 pixel subimages. There were 3 phases to the

classification: first preliminary classification, second preliminary classification, and

final classification. The first preliminary classification classified each sub-image as

non-damaged, pothole, and linear/jointed. This was accomplished by observing the

number of distressed pixels P. Subimages were classified according to:

P < 40 non-damaged,

P > 550 pothole,

40 < P < 550, linear-jointed.

The second preliminary classification distinguished linear subimages from jointed

subimages. The Connected Component Labeling algorithm was used. This method

traced along the distressed pixels and assigned labels to non-distresses pixels. If the

number of different labels in the subimage was < 2, the subimage was considered



linear. If the number of different labels was at least 3, the subimage was jointed. Per

centages of the classification for each subimage from both preliminary classification

were used as input to the Back Propagation Neural Network. Final image classi

fication was determined by the neural network. Longitudinal, transverse, alligator,

and block crack types were classified with 100 percent accuracy. The classification of

potholes achieved an accuracy of 93 percent.

Chou, JaChing and Wende A. O'Neill [5]

This classification method also used a Back Propagation Neural Network. Longitu

dinal, transverse, combined longitudinal and transverse cracks, right and left diagonal

cracks, alligator, and non-distress types were the focus of this approach. The sizes of

the images were 482x512 pixels.

Hu's, Bamich and Zeurike moments were calculated using the gray values of the

pixels in the image and used as input to the neural network. The classification results

were 100 percent accurate.

El Sanhouri, Ibrahim Mahmoud [8]

Sanhouri's work focused on classifying alligator, block, longitudinal and transverse

crack types. The feature vectors were composed of three variables: density, inertia

ratio, and angle of inertia. These features were extracted from bounding boxes that

enclosed the distressed pixels within the image.

Decision trees and simultaneous approaches were implemented. The simultaneous

approach computes the Euclidean distance between the feature vector and a prototype

vector for each class. The prototype vector is the mean vector for a class. The class



of the prototype vector that yields the smallest Euclidean distance is assigned to the

feature vector in question.

The decision tree approach used different aspects of the feature vector in order to

determine if the distress type was ID or 2D. ID cracks are longitudinal and transverse

cracks. 2D cracks are alligator and block crack types. Once it was determined if the

type was ID or 2D, the classifier had to determine what specific type of crack it was.

The accuracy of classification achieved for simultaneous approach overall was 56

percent. The decision tree approach did slightly better with an accuracy of 70 percent.

The classifier was able to determine the difference between longitudinal and transverse

cracks, but did not differentiate well between alligator and block crack types.

1.2 Pavement Condition Rating

Most transportation departments base the pavement condition rating (PGR) on

two parameters: riding quality of the pavement surface and the extent and severity

of pavement surface distresses present. The extent and severity are an indicator of

the pavement structural condition.

Some distresses result in surface distortion and unevenness, which produces poor

riding quality. An example of this is fatigue cracking that has gone unrepaired and

has worsened to the point that pieces of the pavement become removed, leaving holes.

These holes eventually grow larger and more numerous reducing the riding quality of

that particular roadway.

Different distress manifestations may be grouped according to three categories

[3]. The primary focus of this research is the crack category. The manifestations



in each category are evaluated in terms of the extent and severity. This along with

the riding quality, which, is not discussed in this research, constitutes the basis for

rating of pavement condition. This rating should reflect the average condition of the

pavement.

The rating of the pavement should be carried out on pavement sections that

exhibit the same surface types. For example, if there is a strip of highway that is

constructed of flexible (asphalt) material, it should not be grouped and rated with a

following strip of highway that is possibly Portland cement concrete. This is because

different pavement types exhibit distresses differently. Thus, two different types of

highway with the similar traffic loading will result in different requiring different forms

of maintenance.

The rating should be performed regularly to ensure that maintenance and reha

bilitation is conducted as needed..

1.3 Extent and Severity

Severity refers to how bad the problem is. While, extent describes how much of

the pavement is effected by. the. distress manifestation. There are three degrees of

severity: low, moderate, and high. These descriptors are based on the width, length,

and other parameters as they pertain to the different distress types.

Extent also has three degrees: intermittent, frequent, and extensive. These de

scriptors are based on the percentage of pavement effected and how often the distress

occurs. For different distresses, the extent is defined similarly with a few variations as

they pertain to the distress type. The following definitions describe the extent rating:



1. intermittent: less than 20 percent of pavement surface is affected and is in

localized areas only,

2. frequent: 20 percent to 50 percent of pavement surface is affected and is evenly

spread out over the length of pavement or in localized areas,

3. extensive: more than 50 percent of pavement surface is affected and is evenly

spread out over the length of pavement.

1.4 Purpose of Research

The purpose of this research is to analyze a new technique of pavement image clas

sification. Classification will focus only on crack manifestations. More specifically,

alligator, block, longitudinal, transverse and miscellaneous crack types will be iden

tified. Like many of the previous research techniques, a neural network classifier was

implemented. The primary difference is the input data used. The data is extracted

from vectorized segments. The crack segments are represented as vectors of points.

Data extracted from vectors of (x,y) points that describe the crack segments are used

as input to the neural network classifier. These parameters that are extracted provide

information to researchers who may want to analyze the data for closer inspection.

The technique also uses a divide and conquer strategy. This strategy divides the

pavement image into many sections. Each section is classified as to the major distress

type prevalent. This serves two purposes. It should allow for ease in calculating the

severity and extent of distress types in the pavement image and allows a record to be

kept of individual sections of pavement. This is useful for future research of pavement

8



and their distresses.



Chapter 2

Pattern Classification

2.1 Preclassification techniques

Before images can be classified, certain techniques must be applied in order to

make the image more appropriate for classification. Most images are .degraded and

must be cleaned up before any further manipulation can be accomplished. Also in

order to perform the classification, certain features must be extracted that describe

the image. These topics are the subject of the following subsections.

2.1.1 Image Enhancement

There is a gray area between image enhancement and correcting image defects, but

for the purposes of this reseairch we will consider them the same. Image enhancement

is the process of improving a degraded image. A degraded image is generally one

that contains defects. Defects can be introduced into an image in a variety of ways.

Usually defects are captured during image acquisition as a result of imperfect detec-
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Figure 2.1: Non-weighted 3x3 kernel for neighborhood averaging.

tors, inadequate or non-uniform illumination, or an undesirable viewpoint. The most

common defect associated with pavement images is noise as a result of non-uniform

lighting and particles in the pavement with varying coefficients of reflectivity. The

most common ways of removing noise from the images are neighborhood averaging

and ranking.

Neighborhood Averaging

The most common way to perform neighborhood averaging is to replace each

pixel by the average of itself and neighboring pixels. This is usually performed using

a non-weighted square kernel starting from 3x3 and up. Equation 2.1 describes the

calculation used to perform the averaging.

p*
W- P , n

V+P W- n
(2.1)

Each value in the square neighborhood is multiplied by a weight in the kernel W.

Figure 2.1 is an example of a non-weighted 3x3 kernel. In this flgure, the central

pixel would be replaced by the sum of the weighted, values divided by the sum of

the weights. The kernel would be applied for each pixel in the image, except those

along the edges of the image. For practical purposes, it is assumed that no useful

information is found in the edges.
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Figure 2.2: Weighted 3x3 kernel for neighborhood averaging.

Figure 2.3: 3x3 kernel for neighborhood ranking.

Noise is reduced, but blurring may and usually does result from the averaging

process. This can be overcome by using a weighted kernel as seen in Figure 2.2.

Weighted techniques are used to obtain averages which smooth or accent the possible

existence of linear features according to where the weights are placed in the kernel.

Neighborhood Ranking

Another technique used to smooth noise is neighborhood ranking. This method

ranks pixels in a neighborhood according to their brightness. The median filter (Fig

ure 2.3) is an example of neighborhood ranking.

The median value of the neighborhood pixels are used to replace the central pixel

values. There are many types of median filters that may be applied to images. The

selection of one is based on the type of the image in question. Median filters do not

degrade edges and thus, allow for repeated application if necessary. The mode filter

is another example of neighborhood ranking that uses the mode of the neighborhood

12



pixels as opposed to the median.

2.1.2 Image Segmentation

Image segmentation can be thought of as separating the foreground from the

background of an image. The foreground is usually the features and objects in the

image that are under examination for classification. Selection of these features or

objects is an important prerequisite for understanding an image

One of the most popular methods of segmentation is thresholding. The simplest

form of thresholding entails defining a range of brightness (threshold) for an image.

Any pixels in the image that belong to this range are labeled as foreground and all

other pixel values in the image are assigned to background. This image is usually

represented by a binary image. That is, pixels belonging to foreground are assigned

a value of 255 and background pixels are assigned zero or vise versa. Thus when

displayed, as in Figure 2.4 features show up as white against a black background.

Simple as this technique may seem, the selection of an appropriate threshold is not

trivial. This value depends largely on the image in question(i.e. the amount of noise

and types of feature being extracted). One method of setting the threshold involves

using the histogram of the image. Images utilized in this research were segmented

with a new segmentation technique that is discussed in detail by Hansen [10].

2.2 Classification Algorithms

Classification can be thought of as mapping unknown objects to certain classes

based on the features of the objects. Two types of classification are parametric and

13



i'
Figure 2.4: Portion of segmented image: Foreground is white.

non-parametric. Parametric techniques are used if you know or are willing to assume

the underlying probability density and distribution of the numeric data. Only the

parameters need to be estimated. Non-parametric techniques are based on classifying

using the information directly from a data set without regard to classical or statistical

assumptions and descriptors. A review of common classification techniques follows.

2.2.1 Bayes Classifier

A Bayes classifier is a statistical classification technique that chooses the most

probable class given certain features. Define F as a vector of n arbitrary features

(/i) f2, fnj • • •> fn)- Let C = (ci, C2, C3, • • •, Cm) be the set of m classes to which any

given feature vector can be classified. F is classified in class Cj if:

p{ci\F) > p{cj\F) for all j ̂ i.



These probabilities are calculated using Bayes rule:

,  , ^ P(0i)p{F\ci) , )
'  TZ,P(ci)p{F\ct) ^ '

The a priori probabilities P(ci) and the conditional densities p{F\ci) are assumed to

be known but usually are not. The prior probability can be estimated from training

data or from previous experiments. However, inferring conditional densities from

training data is not trivial. Some assumptions about the distribution of the data

must be made and an appropriate density function which best describes the data

must be selected. The parameters for the selected density function must then be

estimated.

The data are often assumed to be normally distributed and the feature vector

represents n > 1 features. Thus, a multivariate normal distribution should be a fairly

accurate representation of the conditional density of the data. There are several

ways to estimate the parameters: mean (//) and covariance (E), which include the

Method of Moments and Maximum Likelihood Estimators. The Maximum Likelihood

Estimator is the typical method employed.

The maximum likelihood estimate of a parameter is that value which, when sub

stituted into the density function, produces that density for which the joint density

of obtaining the entire observed set of samples is maximized [9]. To compute the

maximum likelihood estimate of parameter a, the derivative of the logarithm of the

density function with respect to a is computed. Setting this derivative to zero and

solving for a results in the maximum likelihood estimate of a.

If the random samples Fi,F2,Fz,- • ■,Fj are drawn independently from the popu-

15



lation then:

p{Fi,F2,Fs,- - ■,Fj) =p(F,) ■ - -piFj) = f[p(Fi).
1=1

Given this assumption, the estimated mean /x is as follows:

(2.4)
fc=l

and estimated covariance E is

S = 4 EiFt - pf (2.5)
fe=l

Having estimated the parameters fj, and E, the conditional density p{F\cj) can be

computed using:

p(F\ci) = —;=L=e~^ 2~ ^ ^ where n = the number of features (2.6)^detE(27r)"

2.2.2 K Nearest Neighbor Classifier

The k Nearest Neighbor(k-nn) algorithm is a non-parametric classification tech

nique. That is, it does not require knowledge or any assumptions of the underlying

probability density functions of the data. It is usually reasonable to assume sample

points that are in close proximity to each other will probably have the same classifica

tion. With this assumption, examining the neighbors of the sample point in question

should lead to the correct the classification. The k Nearest Neighbors algorithm takes

advantage of this assumption and assigns the unclassified sample to the class most

heavily represented by its k nearest neighbors.

The error rate of the k-nn technique approaches that of the Bayes classifier as

both k and k/n grow infinitely large, where n is the total number of samples in

16



the reference set. As the number of samples in a small area grows, the percentage

from each class also increases. This serves as an approximation of the posterior class

conditional probability P{C\X).

In any event, the probability of error for k-nn will never be more than twice the

upper bound of the error rate for the Bayes classifier.

2.2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are pattern classifiers motivated by natural

neural networks. Humans make most of their decisions based on the recognition and

interpretation of patterns. This was one of the primary motivations for the research

of ANN.

ANN have several desirable characteristics, the more relevant ones as they pertain

to classification being:

1. They are resistant to noise in the input data.

2. They possess the ability to generalize.

3. They are able to produce accurate solutions when only partial information is

available.

These situations are ones commonly faced in the field of pattern recognition and

classification.

Artificial Neural Networks also have been shown to outperform statistical pattern

classifiers. This is partially due to the fact that the underlying density functions,

which are required, for example, by Bayesian classification, are not required for clas

sification by ANN.

17



Artificial Neural Networks also have the potential for parallel processing. This is a

desirable characteristic since pattern classification can be computationally expensive.

ANN have shown to be a promising technique in the field of pattern classification.

A considerable amount of research is currently revolving around their use in this

field. A description of the technical details and architectures of ANN is presented in

Chapter 3.

18



Chapter 3

Neural Networks

3.1 Biological Background

Knowledge of the biological origins of Artificial Neural Networks is beneficial in

developing an understanding of the how one works and why much effort has been

devoted to implement them successfully.

A simple neuron in the human brain is a nerve cell with all of its processes. The

cell body of the neuron contains the nucleus. Leading into the cell body are one or

more dendrites. Dendrites are branched parts of the nerve cell that conduct impulses

toward the nucleus, while axons are nerve cell branches that conduct impulses away

from the cell body. Bundles of these simple neurons form nerve structures. The point

at which two neurons connect or more specifically where the axons of one neuron

come into close proximity with the dendrites of another neuron is referred to as a

synapse (Figure 3.1). Impulses generated by the first neuron may initiate an impulse

in the second neuron if the end of the second nerve fiber is stimulated to some point

19



above its sensitivity threshold level. When this impulse reaches the termination of the

nerve fiber, it may induce an impulse in another nerve cell. This process eventually

results in some physiological activity or inhibition.

GjJI kwj'

/ Sytiapsc

D(31'Cfc£lj5S

Axpn

Figure 3.1: Simple human neurons.

The synaptic activity requires further explanation. The signals that come into

different synapses are "weighted". According to the strength of each synapse, some

signals will be stronger than others will. Signals may be either of the excitatory

(positive) or inhibitory (negative) nature. The effects of the weighted inputs are

summed. If the sum of these weighted inputs is equal to or greater than the threshold

for the given neuron, the neuron will activate or fire (give output). However, if the

opposite holds true the neuron will produce no activation or output. The transmission

of these signals may be altered by activity in the nervous system [19]. Certain events

create a resistance to the passage of impulses from one neuron to another, while

other events that may increase firing activity. This ability to adjust the signals is a
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mechanism by which the neuron learns.

3.2 Artificial Neural Networks

Artificial neural networks(ANN), which are based loosely on biological neural

networks consist of. many simple processing elements(PE) or nodes, that represent

biological neurons; The PE's handle several basic functions which include evaluating

input signals and determining the strength.of each one, calculating the total combined

inputs, comparing the total to some specified threshold level and finally determining

what the output should be.

These processing elements are connected with each other by weighted intercon

nections. Weights are adaptive coefficients within the network that are applied to

each input signal. Once the inputs to neurons have been weighted and summed, the

summation is presented to an activation function. The selection of an appropriate ac

tivation function is largely based on the architecture of the ANN being implemented.

Output of the overall network is based on the output of these activation functions.

Artificial neural networks possess the ability to "learn." The ability to change

weights allows that ANN to modify its behavior in response to inputs. How the ANN

"learns" is determined by it learning rule. Generally there are two types of learning:

supervised and unsupervised. Supervised learning ANN use a priori knowledge of the

desired output for each training input to learn. The input is presented several times to

the network. The network outputs an anticipated response, which is compared to the

given output. Weights are then adjusted as specified in response to the results of the

comparison. Contrarily, unsupervised networks must use self-organizing algorithms to
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capture the most salient features in'the input space ito determine the correct output.

The number of processing elements and ho-w they are arranged, the activation

function, and the learning function determine the architecture of the network. There

are several architectures that are suitable for the purposes of classification: Multi-

Layer Feed Forward, Self Organizing (Vector Quantizer), Piecewise Linear Classifier,

and variations of these.

3.3 Architectures arid Learning Algorithms

3.3.1 The Perceptron

The Perceptron, one of the most simple and least sophisticated examples of ANN

and pattern classifiers, was developed in 1958 by Frank Rosenblatt. A single node

perceptron (Figure 3.2) performs classification by computing the weighted sums of

the inputs, subtracting a threshold, and passing this result through a hard limiting

non-linearity. The output is designated as being one of two classes. An output of 1

indicates class A and output of-1 indicates class B [12, page 58]. This is done by using

a;step function as the transfer function. The perceptron forms two decision regions

separated by a straight line (Figure ,3.3). When the input vectors have mare than 2

dimensions, the separating, line becomes a plane or hyperplane. The equation of the

straight line is dependent upon the connection weights and threshold. Perceptrons

are usually implemented on two-category linearly separable cases.

The weights on the perceptron are updated by the "perceptron" learning rule

(PLR) or gradient descent techniques (GDT). Let y equal the output of the network
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and equal the desired value for the output. The PLR updates the weights

according to:

w = w — w{y — X where x is the input vector. (3.1)

Gradient Descent Techniques make changes according to the amount of error. The

surface of the error function is a bowl. GDT moves down the surface of this bowl to

find the bottom. Once this bottom is reached, the overall error of the network should

be at its minimum.

A perceptron using the PLR has severe restrictions. The class of tasks for which it

suited is limited to those, which can be solved in a linearly separable manner. While

the linear separability of the system does guarantee that the training algorithm will

converge to an optimal solution, the number of tasks that can be solved using this

network is minute [15, pp. 31-33]. This is not the case for non-linear systems such

as multiple layer networks.

3.3.2 Multi-layer Feed Forward Network and Backpropaga-

tion

The Multi-layer Feed Forward Network architecture is an extension of the single

layer Perceptron. It is one of the most popular and versatile forms of neural classifiers.

MLFN in their appropriate form have proven to be universal classifiers capable of

forming decision regions of arbitrary complexity [20, page 73].

The Multi-layer Feed Forward Network consists of three or more layers of neurons:

an input layer, one or more hidden layers and an output layer. Each of the hidden

layers receives its input from the layer directly preceeding and sends their output
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to the units in the layer directly following it. No interconnections exist within a

layer. The output of each hidden unit is a function of the sum of its weighted inputs

and an optional bias term. This bias term is included to move the discriminating

hyperplane(s) away from the origin. Output from one hidden layer is presented as

input to the next layer.

Multiple layer networks can overcome many of the restrictions limiting the single

layer perceptron. However, the introduction of a new layer presents the problem of

adaption of the weights leading into that layer. The adaptions on the weights con

nected to the output layer are a function of the error. Since, there are no supervised

training values for the hidden layer activations, there is no defined error associated

directly with the hidden layer. The backpropagation learning algorithm is a solution

to this problem and provides a means of updating the weights between the hidden

layer(s) and preceding layer (s). The idea is that the errors from the output layer

are back-propagated to the units in the hidden layer(s) to determine the error in the

units of the hidden layer.

Define the following to represent a MLFN in Figure 3.4 with one hidden layer:

1. X = {xi,X2-,X'i, ■■■iXn) = the input vector having n input features

2. yj = the unit in m hidden layer units

3. Vj — {vjo,Vji,Vj2, ■■■jVjn} = the weight vector from the input vector into node

j in the hidden layer

4- = fj{x - Vj) = the result of the non linear activation function /j" of hidden

unit j
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Figure 3.4: Multil-layer feed foward network.

b. Wi = {wio,Wii,Wi2, ...,Wim} = the weight vector from the output vector of the

hidden layer into node z on the output layer

6. Zi = the output unit

7. = fiiwi • the result of the activation function of output unit i

8. = the error associated with output unit i.

Weights are adjusted by:

g^^error'jQ

dWij
Awii — —a error ^out ^desired

i  Jwhere zr^^ = z^' - zf (3.2)
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where a is the learning rate constant and is the desired output value at output

unit -

Let be the dot product of the weights on the outputs of the hidden units:

Zj-" = Wi n y'^^. (3.3)

Then we can write:

d{zfrror)2 ̂  dzf'

dwj dz°^* dzf^ dwij'

With further simplification, equation 3.4 can be rewritten as:

^(^error)2 ̂  dfi{zf) d{Wi •

dwj dz^-^ dzf" dwij

d[zf'or)2 ̂  dfiizf") + '»^i2yr* + - + ̂ijVT^ + -)

dwj ~ dzf dwij .

where = z"^^ -

By differentiating equation 3.6, the following is obtained:

Q^^error^2

dwj

or

Define:

dWj

(3.4)

or (3.5)

(3.6)

= 2e(zrv(zr'mzr){yr') (3.7)

~error\2U  )- ^2{zt"nfl(4")(vr') (3.8)

zt=zr"f'(zr) (3.9)

and an update rule has been obtained. This update rule results in a gradient descent

on the error surface if the weight changes are made according to:

Awij = -azly'-^'K (3.10)
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It seems simple enough to calculate the change in weights that correspond to the

output layer. However, it is not obvious what effect units in the hidden layer have

on the output error of the network, due to a lack of supervised information for the

hidden layer. The error in this layer, however, can be computed by measuring it as

a function of the net inputs from the hidden to the output layer. The chain rule is

used to calculate this error. The chain rule distributes the error of an output unit to

all the hidden units that are connected to it.

The change in the weights corresponding to the hidden layer is defined as:

n v* (^error\2 a(„error\2

Avj, = ^ (3.11)
dVjk Y

Let Uin equal the dot product of the hidden layer weight vector and the input vector,

then:

^.g(^error)2 _ dy'^'dyf
^^jk i dzf^ dyf^ dvjk

Simplifying equation 3.12 yields:

i  dzfk

+ Wgj/Y + - + '^nyT + •••) 9fj{yr) d{vjoXo + Vj^xi + ... + VjkXk + -).
dy]^^ dyin dvjk

Differentiating equation 3.13 gives:

Ei d{zf'-°^y
dvijk

Define:

=  = (3.14)
i

i

zt = 2e{zr)f'iK) (3.15)

28



then the following update rule has been obtained for the weights on the hidden layer:

Avjk = -a ̂  z^Wijf- {y'pxk (3.16)
i

Theoretically, changes should be made to weights only after a full set of training

patterns have been presented (i.e. at the end of a training epoch). In practice,

however, the learning rule is applied to the weight after each training example.

Backpropagation can be applied to networks with any number of hidden layers.

However, only one layer of hidden units usually suffices to approximate any function

with finitely many discontinuities to arbitrary precision [15, page 33]. This is provided

that the activation functions of the hidden units are non-linear. Most applications of

backpropagation involve a three layer feed forward network using a sigmoid activation

function for the units in the hidden layer.

Much success has been found with the back propagation learning technique. There

are disadvantages associated with the algorithm. The learning process can be quite

cumbersome largely due to the selection of an improper learning rate. If the learning

rate is chosen too small, convergence is slow. If it is set too large, the network may

oscillate around the solution.

Training failures often result from local minima. The error surface of a neural

network contains many hills and valleys. Because the weights are moving down these

hills and valleys, it is possible that the network may become trapped in a local

minimum even if there is a deeper minimum in close proximity.

Another of complication is the selection of the number of hidden units. If too

many hidden units are used, the network may begin to memorize inputs and will fit

exactly with the training examples. This is known as "grandmothering" and results
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in the network being incapable of generalizing for other input sets. This could also

result in the network becoming trapped in local minima.

Ideally, the number of hidden units should be chosen to train the network to

generalize correctly. Input values that have not been presented as training examples

should be mapped to the correct output value.

3.3.3 Unsupervised Vector Quantizer

The Vector Quantizer (VQ) (Figure 3.5) is an unsupervised neural network ar

chitecture invented by T. Kohenen. The VQ learns by way of competitive learning.

Wll

WI2

pin

W21

S?2n

W,I

W,2

Figure 3.5: Vector quantizer.

Competitive learning is a "competition" among the output layer units to respond

to the given input. The network reduces the input into some n clusters that describe

redundancies in the data. The unit whose center vector is the closest to the input

sample usually in terms of its Euclidean distance is declared "winner".

In the VQ, there is a layer of input units and a layer of output units. The number of
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output units usually represents the number of classes for a given problem. The input

units are directly connected to the output units.. In one pass through the network, a

training example is presented to each output unit. The Euclidean distance between

the weight vector (which represents the center of the cluster) and the input vector is

computed for each output unit. The output unit obtaining the smallest distance is

said to be the winner. Thus, the winning unit is the weight vector which lies closest

to the input vector.

Define Wj to be the center of unit j of the output layer. Then, the weights on the

winning unit are updated by the following learning rule:

Wj = Wj + a{x — Wj) where a is the learning rate . (3-17)

The learning rate decreases linearly in successive passes over the training data.

3.3.4 Supervised Learning Vector Quantizer

The supervised learning vector quantizer adapted by Kohonen from the unsu-

pervised vector quantizer algorithm is much better suited for applications involving

classification [20]. The learning vector quantizer is nothing more than a supervised

learning version of the vector quantizer. For each tuple of input presented to the net

work, there is a corresponding desired classification (output). Like the original VQ

algorithm, input tuples are presented to the network, the Euclidean distance between

the output units' weights and input vector is calculated. The unit with the smallest

distance is chosen as the winner.

Unlike VQ, the output units are labeled as being one of a given set of predefined

classifications. The weights on the output units are modified in a similar manner to
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the VQ, but now consider the classification (label) of the output unit. Referring again

to Figure 3.5, let Cj be the classification label of unit j and be the classification

of input vector x, then:

Wj = Wj + a{x - Wj) if Cj = (3.18)

and

=  (3.19)

are the update rules for the weights. This particular training method moves the

weight vector of the correctly-classified unit closer to the input vector and moves it

away if the unit misclassifies The learning rate is adjusted in the same manner as the

original VQ algorithm.

3.3.5 LVQ2 Algorithm

The LVQ2 algorithm is an improvement of the learning vector quantizer algorithm.

The LVQ2 algorithm uses gradient descent to reduce classification error. Weight

adaptions can only take place if the following conditions hold true:

1. The closest weight vector Wi is not of the same class as the input vector, Xi.

2. The next closest vector W2 is of the same class as the input vector, Xi, and

lastly

3. The input vector Xi must lie within a window defined near the midpoint of

vectors Wi and W2.
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When these conditions are satisfied the incorrect weight vector Wi is moved away

from the input vector and correct vector W2 is moved closer to the input.

The selection of the optimal window mentioned in (3) is done by calculating the

relative distances di and dj measured from the weight vectors Wi and W2 respectively.

If the window is too narrow, the training will suffer from low statistical accuracy due

to a reduced number of corrections [13]. The vector Xi lies in the window if:

min(^, > 1 — e (3.20)
dj di

The value for e is determined by the number of training examples.

3.4 Related Research

In 1992, Mohamed Kaseko successfully integrated conventional image processing

techniques and artificial neural networks models [11]. His research focused on using

ANN as pattern classifiers for image interpretation and classification. Two ANN

models were investigated: the multi-layer feed-forward network and the two-stage

piecewise linear neural classifier. The two stage piecewise linear neural classifier

consists of two stages (1) competitive learning (unsupervised learning) phase to find

the approximate location of weight vectors that represent each class and (2) using

the vectors from stage 1 as initial vectors for the LVQ2 algorithm. The function of

the second stage is to fine tune the position of the weight vectors to achieve more

accurate classification results.

Approximately 250 images of asphalt concrete pavement were acquired for use

from PASCO USA INC. The images had to be digitized and segmented. Prom the
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segmented images, features were extracted. The features were extracted based on

"projection histograms" showing the number of distressed pixels in the binary images.

Because the histograms did not describe the position of the cracks relative to some

origin, the image was subdivided into tiles. Feature parameters were extracted from

the individual tiles.

The tiles were made small enough to minimize the chance of including more than

one crack segment in each tile. This was done so that feature parameters were able

to clearly distinguish between the different orientations of the crack segments. In

Kaseko's research, the image was subdivided into 256 tiles, resulting in 32 x 29 pixel-

sized tiles.

The parameters are computed based on the four directions of the projections. The

directions considered are transverse, longitudinal and the two diagonal directions. The

following parameters are computed based on the histograms:

1. x^ = the relative number of distressed pixels as a proportion of the total number

pixels in the tile;

2. \tr — variance of the number of distressed pixels per line in the transverse

direction;

3. vj„ = variance of number of distressed pixels per line in a longitudinal direction;

4- Vdi = variance of number of distressed pixels per line in a diagonal direction;

5. Vd2 = variance of number of distressed pixels per line in the diagonal direction;

6. Vtr = the mean number of "runs", i.e., uninterrupted sequence of distressed

pixels, in the transverse direction;
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7. iin = the mean number of "runs" in the longitudinal direction;

8. r^i = the mean number of "runs" in the diagonal direction;

9. rd,2 = the mean number of "runs" in the other diagonal direction;

10. Itr = the projected crack length in the transverse direction in proportion to the

length of the tile;

11. hn = the projected crack length in the longitudinal direction in proportion to

the width of the tile;

12. Idi = the projected crack length in a diagonal direction in proportion to the

length of diagonal;

13. Id2 = the projected crack length in the other diagonal direction in proportion

to the length of the diagonal.

Parameters 2 through 5 provide information on the general orientation of crack seg

ments in the tiles. According to Kaseko, the variance will generally be the highest in

the direction of the cracking, as illustrated in Figure 3.6. Parameters 6 through 9

provide information of the number of crack segments in the each tile. These param

eters, together with parameters 10 through 13 are used for image classification and

computation of crack severities and extents.

After the image had been segmented and the features had been extracted, the

next job was tile classification. In this stage, the orientation of any crack segments

that existed was determined. The first five feature parameters were used as input to

the neural network. Each of the tiles was classified into one of five categories:
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Figure 3.6: Variances in orientations of crack segments.

1. No cracking,

2. Transverse,

3. Longitudinal,

4. Diagonal and

5. "Combination" cracking.

Combination cracking was used to describe a tile that has two or more crack segments

with different orientations.

The Multi-Layer feed forward network had five input units (corresponding to five

feature parameters) and five output units corresponding to five classes. The data set

was generated from 20 images. The number of hidden units was chosen to be five.

This was selected after repeated tests. Five hidden units gave the best results in

terms of minimizing the sum of square error.

The training set achieved 96 percent classification accuracy; while, the test set
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achieved 93 percent accuracy. Traverse and Longitudinal cracks were the most distin

guishable, as to be expected. Most misclassification occurred during the classification

of diagonal and combination cracking.

The best results for the 2-stage piecewise linear neural network were obtained

using 2 units in the competitive learning and the LVQ phase. The 2-stage PLN

outperformed the MLFN, but not by very much. The results were 95.7 and 94 percent

accurate for training and testing sets respectively.

The output from the tile classification was used as input for the image classification

phases. Each 512 x 464 image is classified by the predominant crack type found in the

image. The feature parameters for this phase consist of a two dimensional matrix.

The elements of the matrix are based on the output of the tile classification stage.

The input parameters are also based on parameters 6 through 13 computed in the

feature extraction stage. These parameters were used to classify the image as one of

five type distress types:

1. Transverse

2. Longitudinal

3. Alligator-1

4. Alligator-2

5. Block

Again both architectures were used. Sixty-four (64) input units, 3 hidden units,

and 5 output units were used in the MLFN. This resulted in classification results of

93.3 and 85.7 percent for training and testing respectively.
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The same PLNC used for the tile classification, with the exception that 64 input

units were used, was implemented for this phase. This achieved 90.0 and 71.4 percent

for training and testing respectively.

3.5 Technical Plan

There are 4 major steps in the proposed technical plan. They are as follows:

1. calculation of crack segment descriptors,

2. connection/Growing of the crack segments,

3. recursive division of images into various block sizes,

4. classification of distress types.

The crack segment descriptors are basic parameters that describe the segments

extracted during feature extraction. These will be used to determine the proper

growing and connecting of the segments and also later on in the classification stage.

Growing/connecting refers to joining segments that were separated during the thin

ning process. After the final set of crack segments is obtained from step 3, the image

is recursively divided into smaller and smaller blocks. This stops at some minimum

block size. This step can be thought as forming a quad tree of the image. The av

erage of the crack segment descriptors of the crack segments found in each of the

above-mentioned blocks is used as input to the classifier. In step 4, each block will

be classified by a pattern classifier, more specifically an artificial neural network.
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Chapter 4

Technical Implementation

4.1 The Data

Highway images used to obtain data for this research were supplied by the Con

necticut Department of Transportation (CONN DOT). The images were recorded

by the ARAN System. The VGA output of the pavement cameras viewing have a

resolution of 640 x 480 which is equivalent to approximately 3.125 mm^ per pixel.

A total of nine images were used for training and testing purposes; 5 for training

and 4 for testing. The images were selected based on how well they represented the

different distress types to be classified. The distress types focused on were longitu

dinal, transverse, fatigue and block cracking. Also images were selected on the basis

of how well the distresses showed up. Some of the images that were provided by

CONN DOT did not show the distresses well due to initial imaging/processing ir

regularities. There were also no images that adequately represented fatigue cracking.

Diagonal cracks were used to represent fatigue cracking since fatigue cracking consists
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or many diagonal cracks [14]. Images that were damaged or had uneven lighting were

automatically eliminated as candidates.

Images were approximately 2.5m x 9.5m. representing approximately 10 meters

of single lane highway pavement.

To extract features needed for the classification, the images first were segmented.

The segmentation technique used for the purposes of this research was the effort of

a colleague's master thesis research. A general discussion of it follows. It should be

noted that this description is not technically thorough; a more technical description

can be found in [7].

4.2 Segmentation Technique

Pavement images are noisy and must be enhanced. Flexible pavement consists of

particles with varying reflectivity and this noise often shows up as light areas. To

eliminate the light areas, the image was clipped at its median value. The median

value of the pixels in the image was calculated. Every pixel image above this median

value was replaced by the median value.

Horizontal and vertical enhancement was performed using directionally biased me

dian filters. This was done to enhance linear features in the image. Segmentation

was then performed separately on these newly enhanced vertically and horizontally

enhanced images with each segmentation image later combined to form one segmen

tation image.

The images were divided into tiles and a threshold was calculated for each tile in

order to segment them. Supervised training was selected to generate the segmentation
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parameters necessary to calculate this threshold. Supervised training involved using a

human interpreter to select areas in a training image to delineate distressed regions.

A binary subimage was generated from the ground truth. An optimum threshold

value was determined for the ground truth tile.

Once the optimal threshold for these tiles was selected, estimators that approx

imated the optimal threshold without the use of the ground truth were obtained.

This was done by calculating statistical values for each tile such as the minimum,

maximum, and mean. These can be compared with the optimal threshold in order to

estimate a tile threshold value.

An all-possible regression analysis is performed on the statistical data for the tiles.

This is done to determine the best combination of estimators to predict the optimum

threshold value. Once a proper combination is determined, a multiple regression

analysis is performed to obtain values for the estimators, which form the independent

variables in the regression equation.

The segmentation resulting from the threshold calculated with these parameters

is still noisey. An optimization technique is performed on the parameters to further

minimize the threshold value while still maintaining an optimal value.

Once the image has been segmented, it is thinned. Areas determined to be crack

segments are reduced to a single pixel line width. The centers of the crack segments

are found and the segments are eroded to the central line of the segment. After this,

the newly thinned segment is traversed and at every n pixels a (x,y) point is recorded.

Thus, the crack segments are reduced to a series of (x,y) points for each crack segment

according to where they are located in the image. The lower left-hand corner is the

origin and point coordinates are calculated according to this.
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4.3 Preprocessing

After completing the segmentation of Section 4.2, the data for each crack segment

consists of pairs of (x, y) coordinates in two-dimensional space. When visualized,

these descriptors provide much information to a human observer as to the nature of

a crack. However, if presented to an Artificial Neural Network in this form, the data

would mean very little. Most of the cracks in this research can lie almost anywhere

in the image. Thus, a description of the whereabouts of the crack would not supply

enough information to allow an ANN to yield accurate results.

However, it can be seen from examining the data, .that certain parameters that

define different crack types can be calculated from this data with simple algorithms.

These parameters, more specifically; the variance from linear, orientation, length and

width, should provide enough information to the ANN to allow it to distinguish be

tween different crack types [17]. Most prack types have distinguishable characteristics

that can be described by one or a combination of these parameters.

4.3.1 Calculating Initial Parameters

The following parameters must be calculated for each crack segment found in the

image:

1. variance from linear (VFL),

2. orientation,

3. length,

4. and average width.
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These parameters are calculated initially for later use by the preprocessing algorithm.

VFL

The VFL describes how straight the crack segment is and is used for connect

ing/growing. This is discussed later in this paper. The VFL is the ratio

point to point path length ^ summing the distance from point
endpomt to endpomt distance j t'

to point within the crack segment and dividing it by the Euclidean distance between

the two crack endpoints. Let Xi and yihe the coordinates of the first endpoint of any

given segment and Xn and be the coordinates of the last endpoint in the segment

where there are n nodes (points), then:

dx = Xk — Xk+i and dy = yk — yk+i for all n points (4.1)

The VFL is now defined as:

Efc-i Jdxl + dylVFL = fc-i V fc yk ^^ 2)
\l{Xn - Xif + {yn - yiY

There is a special case to be considered when calculating the VFL. If the total

length from endpoint to endpoint distance is zero, the shape of the segment being

investigated approximates a closed path. In this unusual circumstance the VFL is

assigned a negative constant less than minus one. For the purpose of this research,

the VFL for a closed path was set to —5. By setting the VFL to —5 for example,

a human investigating the data can easily detect the anomaly and determine the

segment in question is a closed path. Using —1 for example, would blend in too much

with the normal values of the VFL. Normal VFLs have been empirically determined

to lie in the range of 1.00 to 1.1, where 1.0 is the straightest and 1.1 is considerably
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wavy. By setting the VFL to —5 for example, a human investigating the data can

easily detect the anomaly and determine the segment in question is a circle. While

this does not occur much in this research, it could prove to be beneficial in future

endeavors if highway distresses that have circular characteristics (e.g. potholes...) are

added to the list of distress types to be classified.

Orientation

The orientation describes the angle the crack segment forms with respect to a line

parallel to the centerline of pavement passing through the beginning of each crack

segment. While examining crack types it is apparent that this is one of the most

important features. Most cracks can be determined by simply observing the orienta

tion. For example, the two most common cracks found in pavement, longitudinal and

transverse, form approximately 0 and 90 degree angles respectively with reference

to the pavement centerline. That is, they are parallel and perpendicular with the

centerline. Other crack types, namely alligator and block cracking are a combination

of these two types of cracks. Thus the orientation of a crack segment is crucial in

determining crack types.

Again let (xi^yi) and {xn,yn) be the coordinates of the first and last endpoints

respectively of a crack segment with n points. The orientation is found by:

arctan^^^— (4.3)
Xi - Xn

In the event that the difference between the x values of the two coordinates is equal

to zero, the orientation is assigned a value of 90 degrees.

The orientation is mapped into the range of 0 and 90 degrees by refiection with
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respect to the centerline. Initially crack segments may take on values between 0 and

180 degrees. Any value greater than 180 degrees was mirrored into the first quadrant

by:

OrientationQo = 180 — Orientation (4.4)

This is done to obtain meaningful averages. For example, during the averaging phase

(which is to be discussed later), a transverse crack recorded at 175 degrees and another

transverse crack recorded at 5 degrees will average to 90 degrees. This orientation

does not reflect a transverse crack but a longitudinal crack.

This was also done to reduce the amount of variation recorded in the standard

deviations calculated values that is used as input to the neural network. The major

concern is to obtain the general orientation of the crack. The precise angle of the

crack is not important.

Length

The length of the crack is another important variable to consider during classifi

cation. Random cracking consists of diminutive transverse and longitudinal cracks.

Alligator cracks, while progressing to a higher severity, are composed of random

cracks. Block cracking is composed of longer transverse and longitudinal cracks.

The length of the crack is found by taking the Euclidean distance from (xi, yi) to

{xn,yn) of a crack segment.

Length = (4.5)
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Average Width

The width of a crack is more used for determining the severity of a crack type

than for classification. The average width of the crack segment is found by averaging

the widths recorded at each point during the thinning process.

AverageWidth — jg point (4.6)
n

Making note of the width could also prove to be beneficial when this research

incorporates crack width to complete extent and severity portion of the crack classi

fication.

4.3.2 Growing/Connecting Cracks and Removing Spurs

Crack information may be lost or incomplete for a number of reasons. A crack

may not be entirely distinguished during the segmentation phase. Cracks have the

tendency to change density and width. The threshold determined for the segmenta-
f

tion of the pavement image may be set such that some of crack with a lower density

rhay not be distinguished. For this reason there may be, an interruption in the crack

segment. Also for the specific purposes of this research, crack segments were also

broken up during the image vectorization phase. While traversing the path of the

segments, if an angle 9 degrees was incurred, an endpoint was inserted at that point

and a new crack segment was formed. Even so, not all cracks are contiguous initially,

yet upon examination of the crack segments, it is intuitively obvious to the human

observer that the segments form one crack. Separate segments in the data could de

scribe a single noncontiguous crack and thus need to be "connected" or "grown" to

form one crack segment
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"Connecting" cracks is the joining of two or more crack segments that share com

mon endpoints and have similar initial parameters. "Growing" refers to joining cracks

that lie within a certain proximity of one another and also ha-ve similar initial param

eters. The task of connecting/growing cracks is accomplished by comparing certain

properties of the crack. Before any connecting/growing can take place, the segments

are examined to identify some that may be "spurs". Spurs are short segments sharing

an endpoint with 2 or more other segments and are of a very small length (Figure

4.1). These spurious segments are a side effect of the thinning phase.

Figure 4.1: Shorter segments are spurs.

If any segment has a common endpoint. with two or more segments, it is marked

as a possible spur. Later on in the. connecting/growing process, the length of the

marked segment is compared against some maximum spur length. If the segment is

less than this threshold and has not been connected with some other segment, it is

removed from the data.

Once this has been determined, the distance separating each crack is examined.

Define S = {Si, 82^ Ss, ...-S'^} to be the set of n segments in a given image. Let

d be the Euclidean distance between Si and Sn and k and In be the lengths for Sj
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and Sn respectively. Also let L = li + In + d. If the ratio of the d to L is less than

20 percent, the two segments are likely candidates for connection or growing to each

other. It was empirically determined that the separating distance(d) should not make

up more than 20 percent of the total segment length of the two segments once they

have been connected. Also this distance, should not be more that 15 cms. This is to

ensure that segments are properly connected.

All segment pairs that are candidates for connection or growing are recorded

and tentatively joined. The tentatively connected segments form the set TS =

{TSi,TS2,TS3i ...,TSj, The segment, TSj having the smallest VFL is chosen

as the "winning" candidate. However, this does not guarantee that any connect

ing/joining will occur. If the winning segment's VFL is less than some specified

threshold, meaning the newly formed segment will not be too wavy, the two seg

ments are permanently joined. Otherwise, the segments remain as they were. This is

performed for each segment and its succeeding segments.

Segments are deleted from the data when necessary and new segments recorded.

Parameters and information are updated. This entire process is performed until it

is determined that no remaining segments can be joined. Using big 0 notation, the

order of this entire process was O(n^).

If no remaining segments can be joined, the lengths of all segments present after

the joining process are checked against some minimum length. The minimum length

determined by tests was set at .63 cms for use in this research. Any segments shorter

than this are eliminated from the data. This new set of segments serves as the data

from which global input values used by the classifier are obtained.
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4.3.3 Multiple Resolution Data

The principle purpose of this research is to identify, classify, and quantify distress

types in images of highway pavement. This approach uses an ANN classifier. Infor

mation from the images must be presented to the classifier. In the preceding section,

certain parameters that describe the crack segments in an image were extracted to

obtain this information. It would be difficult to present each segment and its data to

the classifier. Also, it is likely that the classifier would not produce accurate results

using input in this form.

Rather than present the classifier with each segment's information, the input is

aggregated over various block sizes. The average and standard deviation of all the

segments' parameters is calculated and used as input. It is not expected that the

averages computed over the entire image will lend insight into the distress types

found in the entire image. However, examining different portions of the image and

the information local to each portion could prove beneficial to classification. By

subdividing the images into blocks, the distress types found in the image can be

localized. Information aggregating the segments found in a given block can lead to

the accurate classification of the distress type found there and ultimately the entire

image. Recording the position of the block relative to the entire image and distress

type prevalent can provide an easy route to calculating the extent and severity of the

of distress types found in an image. This method allows examination of exactly where

the distress types are positioned and what percentage of the highway they encompass.

The division of the image also provides additional data. Each block is treated

as if were an image itself. This is very important, because it provides more training
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examples for each crack type. This solves the problem of not having many training

images. This also reduces the large data storage requirements of using many training

images.

The original images were recursively divided into smaller blocks (Figure 4.2). The

first set of divisions (level 1 divisions) divides the rectangle image vertically into three

or four approximately square blocks based on the size of the image. The following

divisions divide each of those blocks into four blocks. The twelve blocks that result

from the division comprise, the level 2 divisions. This is repeated for each block in

level 2 leading to level 3. The divisions formed nearly square quadrants in each block

in each level past level 1.

1 1 1

/  .,  \
2  2 2  2 2

1 1̂

2 2 2 2 2 2

Figure 4.2: Division of the image. Level 0 is the entire image.
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Any portion of a segment found in a block is considered local to that block. If the

segment is not encapsulated entirely by the block, new endpoints must be inserted

on the boundary(ies) the segment crosses. The segment is then bound by these new

endpoints. A segment may cross the bpundary(ies) of a block in several locations as

shown in Figure 4.3.

Example Block

3 /

Figure 4.3: A crack segment that crosses boundaries of block.

If Figure 4.3 is used as an example, this segment would create three segments

within the example block. The "initial" parameters for each of these new segments

must be recalculated. Division occurs until information has been extracted form the

smallest block allowed. The minimum block size chosen approximately 30 x 30cms.

These dimensions were chosen because engineers and surveyors in the field usually do

not consider information from areas of highway smaller than this.

Information extracted from each block is used as input to our classifier. The mean

and standard deviation of the segments' parameters local to the block in question are

calculated. For each block the following are obtained:

1. weighted average VFL of all segments,

2. standard .deviation of VFL for all segments,
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3. weighted average orientation of all segments,

4. standard deviation of orientation for all segments,

5. weighted average length of all segments,

6. standard deviation of length for all segments,

7. weighted average of the average width of all segments, and

8. standard deviation of the average width of all segments.

The average were weighted by the lengths of the segments local to the blocks. The

longer the crack segment, the more influence it had on the average. This was per

formed because surveyors in the fleld pay more attention to longer cracks in their

rating of the pavement. Weighting was carried out by the following means:

For(1=1 to number of segments)

Find minimum length of all segments

For(1=1 to number of segments)

Weight[I] = (length[I]/minimum length)+0.5

For(1=1 to number of segments){

Average = Average + Weight[I]*input_parameter

N=N+1

}

Weighted_Average=Average/N

For(1=1 to number of segments)■[
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Std_Devl = (input.parameter-average)2

For(J=0 J<Weight[I])

Std.Dev = Std.Dev + Std.Devl

}

Std.Dev = sqrt(Std_Dev/N)

4.3.4 Ground Truthing

The input examples used for training must be assigned a classification. This is

necessary because the ANN classifier learns in a supervised mode. The classification

is obtained by means of human observation of the ground truth image from which

the input was obtained. Training input examples are assigned a classification based

on the area the observed example represents. This classification takes the form of an

integer from 1 to 5, which represents the four types of distresses and a miscellaneous

category:

1. Transverse

2. Longitudinal

3. Alligator

4. Block

5. Miscellaneous

This was accomplished by examining the image with a overlaid grid (Figure 4.4).
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Figure 4.4: A portion of image with overlaid grid.

4.4 Classification

The Learning Vector Quanitizer(LVQ) was selected as the classifier to be used in

this research. It is one of the simplest architectures whose main purpose is to perform

classification in the supervised mode. Because each distress type has certain charac

teristics in common as they pertain to the input parameters, clusters can easily be

formed from the data. The LVQ is also a relatively simple architecture to understand

and train. It requires fewer iterations to train than most architectures. The neural

network classification was implemented using a Sparc work station. The software was

provided by the University of Tennessee Space Institute. The software, titled Ebtide,



allowed the display up of to three dimensions in the input space of the data, as well

as the training center nodes. Ebtide also provided a means of determining how well

the neural network was converging to a correct classification [2].

The parameters selected as input to the classifier for each block discussed in

section 4.3.1 were the average orientation and its corresponding standard deviation

and the average length and its corresponding standard deviation. The average VFL,

average width and their standard deviations were not used as input features. This is

because the VFL for all the crack segments were between 1.0 and 1.06. When tested

in the classifier, these values being so close, did not appear to lend discriminating

information to the classifier. The width also does not appear to lend much information

as to what type the sample belongs.

Certain parameters in the feature vectors were scaled. The values of the average

orientation took the range of 0 to 90 degrees. The standard deviation also took the

same range. It is not ideal that the deviation be that high, yet it is still possible. The

average length and corresponding standard deviation took on the range from approx

imately .03m to 10m. The numbers are based on the smallest crack segment allowed

and the length of the image used for input. Because there is a considerable difference

between the values that the orientation variables can take and length variables, the

length variables were scaled. They were scaled to lie between 0 and 100, approxi

mately the range of the orientation variables. This was done by applying equation

4.7;

100 (4.7)
^max ^min

where Xmin and Xmax represented the minimum and maximum values for feature x.
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Scaling the data did help the performance of the classifier. However it proved to

be more beneficial for analyzing the training process. Scaling allowed classifications

to be observed as regions in the input space (Figures 4.5 and 4.6).

Figure 4.5: Unsealed data. It is difficult to determine decision regions in the data

because it is so compact

Recalling from section 3.3.4, certain parameters must be initialized to allow the

LVQ to train. These parameters such as the number of output nodes(center nodes

for the purposes of this research) and learning rate constant were to be determined

empirically. The initial center vectors were selected randomly, but due to poor perfor

mance of the classifier, they were changed to the mean values of their corresponding

classes with the exception of those initial vectors that pertained to the miscellaneous

crack type.

Miscellaneous cracks are short cracks that may take on the orientations of any

of the other four classes. More specifically, they are cracks that are approximately

10 cms or less and are usually lone cracks. They are usually the result of some
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Figure 4.6: Scaled data from Figure 4.5. Decision regions can now be determined

because the data is less compact.

random noise, improper connection, or the results of block lines chopping off the

crack segments extremely close to their endpoints. This was included as a distress

because all cracks had to be assigned to some class and these short cracks did not

entirely fit the other classes.

It is true that severe cases of fatigue cracking are composed of short crack segment.

However, the fact that a crack segment may be fatigue crack should be reflected in

the standard deviation. The standard deviation of miscellaneous cracks is normally

0 or some very small number. These short lone cracks do not provide any useful

information to the PGR. Because of this, there are only four centers assigned to the

miscellaneous class. Each center is initialized to one of the other, four classes. .

There was also a small, amount of noise injected into the initial centers to offset

them from their means. This is performed by equation 4.8. The overall concept of

assigning the initial center vectors to those of the means provides a reasonable initial

state for training. The designer of the LVQ algorithm suggests this [22].
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.  . . , . ..std-deviation. , , ^
imUal-center = input + (( ) * [random-uum — O.ojj (4.8)

Th

where is equal to the number of examples in the class and

input is the input value with the specified class

Recalling from Chapter 3, the LVQ algorithm learns by attracting a center whose

label correctly classifies the input and repelling a center whose label is incorrect. A

repulsion factor, j3 was added to the architecture, so that a losing weight vector was

updated with the following rule:

Wj —Wj — ̂  * a{x — Wj) if Cj / Qdesired

This appeared to improve the convergence of the algorithm.

Once the network had been trained a final set of center vectors were in place

for unsupervised classification. Testing and final classification is accomplished by

presenting new unclassified examples to the network.

A confidence test was added to the final classification phase. This was performed

by placing a gaussian radial basis function (equation 4.10) around each center.

f{x) = (4.10)

Each unclassified input sample was presented to each center. The center obtaining

the highest output from equation 4.10 was chosen as the winner and that input

sample was assigned the classification of the winning center vector. The higher the

confidence, the more likely the classification was correct and conversely. The gaussian

radial basis function is symmetric about its center(Figure 4.7). It takes on its highest

58



value at the center. So, input samples that lie extremely close to the center will take

on very high confidence values.

Figure 4.7: Gaussian Radial Basis Function

4.5 Algorithm

1. Calculate Initial Parameters

VFL, Orientation, Length, Width

2. Meurk Potential Spurs

For(1=1 to number of segments){

For(J=l to number of segments){

If(I != J){

Determine if segment I eind segment J have common endpoint

If(segment I has 2 or more common endpoints)

Mark as possible spur



3. Grow/Connect Crack Segments

Do-C

For(1=1 to number of segments){

For(J=I+l to number of segments-l}{

Find endpoints of segment I and segment J that produce

Smallest separating distance(d)

Ratio = lenth of segment I + length of segment J + d

If(ratio < max_ratio and d < .15)

Tentatively join segment I to segment J

}

For(J=I+l to number of segments-1)

Find pair of tentatively joined segments with smallest VFL

This is "winner"

If(VFL of winning segment pair < max_VFL){

Permanently join segments

Update parameters for newly formed segment

>

}until(no more segments can be joined)

For(1=1 to number or segments)■[

If(segment I not connected and marked as possible spur

and < maximum spur length)

Discard segment

}

For(1=1 to number of segments)■[
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If(segment I < min_length)

Discard segment

}

4. Create Multiple Resolution Data

Divide original image 3 or 4 times according to width

Determine if segments exist in each block

If(no segments)

Discard block

If(segments cross boundaries of block){

Insert endpoints at intersection

Recalculate parameters for each segment in block

}

Calculate weighted mean and standard deviation of all segments

In each block

Do{

For (each block obtained from previous division)-[

Divide 4 times

If(block < min_block_size)

Stop

Determine is segments exist in each block

If(no segments)

Discard block

If(segments cross boundaries of block){

Insert endpoints at intersection
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Recalculate parameters for each segment in block

.  } . n ;

Calculate weighted mean and standard deviation of all segments

In each block

} untiKmin block size reached)

Write out mean euid standard deviation for each block to a file

(This is input to neural network)

5. Ground truth Data

Assign classification to each block, in the images according to the^

major distress prevalent

1 - Transverse

2 - Longitudinal

3 - Fatigue ' : -V' ' ' " ' '

4 - Block '

5 - Miscellaneous

6. Scale length parameters of input set so values will be in range of

^  0-100 , ' \ '

7. Train cind test Supervised Learning Vector Quantizer Neural Network

Initialized centers to. means of sample values of. each class from

Supervised training data (For misc. crack type set each of 4

centers to one of the mean vectors of the other 4 crack types.)

Train

For(1=1 to number of training epochs){

Present each training example to each center(output) node
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Take Euclidean distance of center node and input

Select node with smallest distance as "winner"

If(class of node = desired class)

Move center closer to input sample

If(class of node != desired class)

Move center away from input sample

}

Repeat until best accuracy achieved

Test

Present each unclassified input sample to each center

Choose class of the center node that receives highest confidence

Table 4.1 is a listing of the constants and their .corresponding values used in this

algorithm.

Table 4.1: Table of constant values used in algorithm.

max_ratio 0.20

max-VFL 1.06

max_spurJength 0.01

minJength 0.0635

min_block_size fa0.30x0.30
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Chapter 5

Results

The success of any classification scheme is due largely in part to the segmentation

of the image. Segmentation played a very crucial role in this research. Because of

this, considerable attention was placed on improving the segmentation achieved. For

example, Figure 5.1, an original image, is recognized to a human, as a well defined

crack. However the segmentation algorithm as shown in Figure 5.2 did not pick up

all of it.

Humans can determine even faint linear features and often interpret crack contin

uance where little or no image density evidence exists. In order for the segmentation

algorithm to pick up the lighter cracks (Figure 5.3), the threshold had to be in

creased. But increasing the threshold increases the noise levels as is shown in the full

image Figure 5.4. This noise is detrimental to the performance of the classifier.

After segmentation was optimized by the procedures previously discussed, the

performance of the ANN was evaluated by comparing it to the performance of a

human observer classifying the vectorized images that resulted from the segmentation.
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Figure 5.2: Segmentation of Figure 5.1. Note how that some of the crack does

appear.



Figure 5.3: Segmentation of figure 5.1. More of the crack is connected, but the noise

level is also increased.
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Figure 5.5: Portion of vectorized image used for human interpretation of distress

types in the image.

The vectorized image was one in which the cracks were reduced to points as shown

in partial image Figure 5.5. A human interpreter then used the samples classify crack

types. Since input parameters for the neural networks were actually extracted from

this image, a direct comparison between human interpretation and the neural network

classifier could be made based on the same data. Therefore, information on how well

the neural network was doing with the information presented to it could be obtained.

Both the human interpreter and neural network were given partial data. The human

interpreter did not have the benefit of the numeric segment descriptors. Both the

human and the neural network did not have the benefit of original image. Training

and testing of the neural network was performed on the data supplied by the ground

truth of the original images. A discussion of the parameters necessary for this training

and the results of the training follows.

The Supervised Learning Vector Quantizer requires that certain parameters be



set in order to achieve optimum classification accuracy. The proper number of center

nodes, learning rate and number of epochs had to be determined. Combinations of

these values were tested during the training phase. The selection of these parameters

was based on the accuracy of final classification and a term called the Total Squared

Quantization Error(TE). This error at any epoch i is defined as:

n

TE{i) — y^Xcwinnerji) — where u is total number of training examples. (5.1)
k=l

The TE is not a true measure of the error of the LVQ because the LVQ's error is

determined by how accurate the final output is. However, it did provide a means to

determine if the network was converging while training. The set of parameters that

produced the smallest classification error and allowed the network to converge at a

steady rate was chosen.

Repeated training and testing of the network was performed in order to determine

the proper number of centers. The longitudinal, transverse, fatigue, and block classes

were represented by five centers. The miscellaneous class was represented by 4 centers.

Figure 5.6 shows a plot of the accuracy as a function of the number of nodes.

Under normal circumstances, the number of centers would have a great effect on

the accuracy of the network. Initializing too few centers can cause the network to

underfit the data, and too many can cause the network to overfit. It can be seen that

the number of center nodes does not have a great effect on the overall classification

accuracy. However, upon close inspection of the individual classes, it is observed that

the miscellaneous classification improves when either 1 center or 10 centers are used.

To understand why this is so requires examination of the data.
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Figure 5.6: Plot of accuracy as function of the number of iterations used to train the

neural network.

Miscellaneous cracks are small crack segments resulting from improper connect

ing of the crack segments (discussed in Section 4.3.2) or a block intersecting a crack

segment near an endpoint of the segment. Their orientations will take on the values

of the orientations of the other four classes. The lengths are « 10 cms or less. Any

segment ss 10 cms or less, except for those belonging to fatigue cracking, are assigned

to the miscellaneous class.

The problem generally arises from the segmentation issue that was discussed pre

viously in this section. A crack that shows up in the original image may not show

up well in the segmentation. A human interpreter has no knowlege of this unless he

is examining the segmented binary image. So, crack segments are being labeled as

one of the other four classes when the actual calculated parameters really support

the miscellaneous class. The results of this is "speckled" data. The term "speckled"



is used because the other classes are mixed into the miscellaneous class region in the

length dimension of the input. Taking Figures 5.7 and 5.8 for example, samples in

the length dimension of the examples in the transverse class should have a length of

at least 6. However some fall below this number and lie in the miscellaneous class

region (Figure 5.8). Because of this, a good decision region can not be formed for

the miscellaneous class.

♦ Transverse

II

10 20 30 40 50

Scaled Length

Figure 5.7: Plot of orientation vs. standard deviations of the lengths of the transverse

crack type. Anything between 0 and 8 can be considered relatively small.

This does not allow the miscellaneous class to train well. The neural network trains

by attracting and repelling the centers according to the accuracy of the classification.

The miscellaneous centers are often repelled from their region. This is due to the fact

that there are samples of other classification in their region that push them away.

Even when the miscellaneous centers are initialized so that they lie directly in their

region, they are repelled. So, when initializing the number of centers to 1 for each
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Figure 5.8: Plot of orientation vs. standard deviations of the lengths of the miscella

neous crack type. Anything between 0 and 8 can be considered relatively small.

of the other classes, the miscellaneous class has a greater chance of capturing more

samples because it competes with fewer centers of the other classes. When initializing

the number of centers to 10 for each of the other classes, the centers of the other classes

sit right on top of each other and do not disperse. This allows some of the random

centers namely, the one located near the transverse class region, to train better.

Five centers were allowed for each of the other four classes. This seemed to

represent the dispersion and shape of the data(Figure 5.9).

The learning rate was chosen to be 0.01. A small learning rate was required

because the training was very sensitive. Choosing too large of a training rate caused

the centers to either oscillate in the different regions or to leave the regions altogether.

This small learning rate allowed the centers to move into the ideal locations in a

smooth and steady manner.

The number of epochs was chosen to be 1000. The nature of the LVQ allows

it to converge rapidly. Figure 5.10 shows a plot of the TE as a function of the
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Figure 5.9: Centers placed in the length dimension of the input of the training data.
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Figure 5.10: Plot of the TE as a function of the number of epochs.

number of iterations. Usually, selection of the number of iterations is also impor

tant to the outcome of the classifications. This is because the learning rate is a

function of the number of iterations. Recall from Section 3.4 that the learning rate

decreases linearly. The learning rate in this research was decremented each epoch

by learning-rate-Constant/epoch-to stop. Figure 5.11 is a plot of the classification

accuracy as a function of the number of epochs. There seems to be no significant dif

ference between the outcomes. However the miscellaneous class does seem to perform

better when a lower number of epochs is specified. This is because the other centers

have not optimally placed themselves. It seems that the reason that the number of

epochs to train does not play a considerable role in this research is because the centers

are either in or very close to their corresponding decision regions

Tables 5.1 displays the outcome of training and testing with parameters discussed

above based on the groundtruth of the original image. For training the neural net

work performed crack type classification best for longitudinal, transverse, and block

cracking producing respectively correct values of 86.3, 90.9, and 78.0 percent. Fatigue



Figure 5.11: Plot of the accuracy of the classifier as a function of the number of

epochs.



Table 5.1: Results for training on the data from the ground truth of original image.

The results of human interpretation of the corresponding vectorized image were also

Neural Network Human Interpreter

Type Num. Num. Correct % Correct Num. Correct % Correct

Fatigue 132 76 57.6% 70 49.6%

Block 100 78 78.0% 71 74.5%

Longitudinal 249 224 90.0% 207 78.5%

Transverse 73 63 86.3% 73 100.0%

Miscellaneous 71 18 25.4% 63 86.7%

Total 625 459 73.4% 484 77.4%

and miscellaneous cracking performed the worse.

The test results based on the ground truth of the original image (Table 5.2)

showed similar results with transverse, longitudinal, and block cracking having the

best results, namely, 74.0, 70.0, and 67.7 percent correct. Fatigue cracking had a low

accuracy of 43.8 percent and the miscellaneous category was 8.4 percent correct.

An explanation for the miscellaneous class has already been provided. Most of the

error associated with the other classes can be attributed to 1 of 2 events. The first

event is simpler to explain. Samples that lie in between decision regions on the outer

edges were more prone to be misclassified. Centers are not found in these regions as

can be seen in Figure 5.9. This is because centers are repelled from these areas due

to the "speckled" nature of data in these regions.
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Table 5.2: Results for testing on the data from the ground truth of original image.

The results of human interpretation of the corresponding vectorized image are also

Neural Network Human Interpreter

Type Num. Num. Correct % Correct Num. Correct % Correct

Fatigue 105 46 43.8% 58 55.2% .

Block 65 44 67.7% 44 67.7%

Longitudinal 203 .  142 70.0% 148 72.9%

Transverse 96, 71 74.0% 70 72.9%

Miscellaneous 119 10 8.4%p 76 63.9%

Total 588 313 53.2% 396 67.3%

The other error can be attributed to mislabeling of the input samples, either

"accidentally" or "unknowingly." A human interpreter ground truthing the data

could mislabel the input samples "accidentally" because of lack of attention paid

while ground truthing or a .number of other reasons. The "unknowingly" mislabeling

is caused by the segmentation problem discussed earlier. It seems that crack segments

that show up in the original image may not show up in the segmented image. The

segmentation also detected objects that do not show up as linear feature in the original

image. So thus, when one is assigning classification for a particular segment in the

image(that does not show up in the segmentation) data could actually support another

crack type(that may or may not show up in the original image).

At first glance these results do not seem to be highly accurate. However earlier in
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the chapter we discussed the fact that a huiiian interpreter also would have difficulties

classifying the images using the vectorized images from which information for the

neural network was extracted. The human interpreter using this data, obtained results

comparable to the neural network on both the training and testing cases. The human

interpreter did perform significantly better when classifying the miscellaneous cracks.

A human interpreter can determine shorter crack segments on sight. However, as

explained previously in this chapter, the neural network could not find the optimum

decision region of the miscellaneous class. During testing, the neural network did not

perform as well as the human interpreter in distinguishing the fatigue class. Those

samples in the testing data did not lie in the fatigue crack region that was determined

in the training. Most of the examples fell along the edges of that region. Figure 5.12

shows a plot of the samples in their orientation dimension and Figure 5.13 shows the

centers placed in their decision regions. The centers in the middle belong mostly to

the fatigue class. However it can be seen that most of the samples in Figure 5.14 lie

along the edge of this decision region. This is further verified by Figure .5.15, which

is a class confusion matrix for the test samples.

For the sake of comparison, training of the neural network was also performed on

the data obtained from, ground truthing the vectorized images. This was done to get

some idea of how much the result may have been affected by the loss of information

inherent in the vectorization. It should be noted that one would not normally ground

truth using vectorized images. It is desirable that the ground truth accurately reflect

what it is in the original pavement images..
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Figure 5.12: Plot of the training samples in the orientation dimensions.
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Figure 5.13: Trained centers placed in the orientation dimensions of the input of

figure 5.12.
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Figure 5.14: Plot of the testing samples in the orientation dimensions. Notice how

most of the fatigue samples lie in the outer edges of the decision region displayed in

Figure 5.13.

Type Fatigue Block Long. Transverse Misc

Fatigue 0 14 15 24 4

Block 1 0 6 7 5

Long. 19 29 0 2 8

Transverse 6 9 4 0 4

Misc. 25 7 53 23 0

Figure 5.15: Confusion Matrix for the final classification of the testing data.



As seen in Tables 5.3 and 5.4, these results are significantly better than those

obtained from training and testing with data supplied from the ground truths of the

original data. However, the fatigue class in the testing samples exhibited the same

problem as it did earlier when using the data supplied by the ground truths of the

original images. Again referring to Figure 5.14, the lower correct percentages for the

fatigue cracking type is attributable to the fatigue sample falling along the edge of

the fatigue decision region. Recommendations for improvements and future research

are presented in the following chapter.

Table 5.3: Results for training with data obtained from the ground truth of the

Type Num. Num. Correct % Correct

Fatigue 78 62 79.4%

Block 77 69 89,6%

Longitudinal 251 220 87.6%

Transverse 78 78 100.0%

Miscellaneous 141 108 76.6%

Total 625 537 85.9%
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Table 5.4: Results for training with data obtained from the ground truth of the

vectorized images.

Type Num. n Num. Correct % Correct

Fatigue 92 T  28 30.4%

Block , 62 52 83.9%

Longitudinal 197 158 80.2%

Transverse 95 85 89.5%

Miscellaneous 142 77 54.2%

Total 588 400 68.0%
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Chapter 6

Conclusion

The results of this research demonstrate that the proposed classification technique

has potential as a classifier in an automated Pavement Management System. The

approach was able to distinguish the different distress types with reasonable accuracy.

A Learning Vector Quantizer was implemented to classify pavement images. Clas

sification was performed using simple parameters that were extracted from vectorized

crack segments. Classification of the original grey scale image was taken to be ground

truth for the training and testing of the neural network. Recalling from Chapter 5,

human interpretation of the vectorized images was used to measure the performance

of the classifier. This was done to determine how well the neural network could per

form with the given information. The results achieved by the neural network and the

human interpreter were comparable.

In the training phase, the neural network achieved an overall accuracy of 73.4

percent. For the same phase, the human interpreter achieved an accuracy of 77.4

percent. For testing, the neural network achieved an overall accuracy of 53.2 percent
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and the human and likewise, the human achieved 67.3 percent accuracy. These results

are reasonable, but show that more research needs to be invested in order to achieve

a higher accuracy. The following sections discuss areas that need to be explored in

order to improve the general classifier.'

Segmentation

Based on the results from the two different ground truths, it can be seen that

the segmentation plays a vital role in the classification. It can also be seen that the

neural network technique is very sensitive to the results of segmentation. Humans are

looking for essentially, linear, features within the image and can determine the rhost

faint ones. Because of this, it is very possible to see something that the segmentation

technique does not pick up.

n  In general, the segmentation technique used to produce data for this research is

well-esta;blished technique. However, there may not be the most appropriate tech

nique for this particular research.. \ ;

Fatigue Cracking

Prom the results, it can be seen that the fatigue cracking class , had the worse

. classification results. Fatigue cracking was not trained and tested on data that well

represented this class. Most of the images provided did not have examples of fatigue

cracking. Diagonal cracks were used to represent the fatigue distress. A region of

alligator cracks contains several cracks, mostly diagonal, along with a network of

fainter cracks [14].

In the future, images that contain actual examples of fatigue cracking should be
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used to train and test the classifier. However, the results from this research are not

to be dismissed. They demonstrate the feasibility of classifying fatigue cracks with

this method. It should also be noted that fatigue cracking is one of the most difficult

distress types to classify.

Gridding Technique

Grids were overlaid on the images to perform the ground truth. The sizes of the

grids were based on the division of the image. There was a small amount of error

that resulted from the gridding system. Because the grid values were converted from

decimal values to pixel integer values, some of the grids did not line up with each

other(Figure 6.1 ). This caused some of the crack segments to appear as if they were

lying in another block.

Figure 6.1: Portion of image with grids overlaid.



Weighted Averaging

A weighted average was calculated for each of the input parameters in each block.

This weighted average was more appropriate than a simple mean. However, this

approach still suffers from being more influenced by shorter crack segments. Take

Figure 6.2 for example, the predominate crack types is longitudinal, but there is a

smaller crack segment in the block as well. This crack segment was counted towards

the average as well. Though it had limited influence, it still affected the average in a

way that reduces the effect of the longer crack segment. This weighted average needs

to be investigated, technique used to

Figure 6.2: Portion of image showing longer crack segments with shorter crack seg

ments.



6.1 Recommendations for Future Research

This approach was proposed for several reasons, one of the most important being

the ease of calculating extent and severity of the distress types. This portion of this

research stills needs to be explored. The block boundary information is stored in a file

along with the input parameters for that block. Using this information and the quad

tree type structure, it should not be a problem to calculate the extent and severity.

Currently the classification approach can not distinguish sealed cracks from un

sealed cracks. Sealed cracks are those that have been repaired. On flexible pavement,

cracks are often filled with a black polymer. The gray average is recorded for each

crack segment. It might be possible to incorporate this data to add sealed cracks to

the distress classes. This is important, because a state transportation agency does

not want to invest planning time to repair a section of highway that has already been

repaired.

We have identified four distress types to classify. However, there are many more

distress types that can exist in highway pavement. Potholes are an example of another

type of distress. It may be possible to incorporate the VFL in order to distinguish

potholes. The feasibility of classifying other distress types should be researched in

order to increase the robustness of this technique.
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Images Used in Research
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Figure A.l: Training Image 1
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Figure A.2: Training Image 2
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Figure A.3: Training Image 3
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Figure A.4: Training Image 4
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Figure A.5: Training Image 5
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Figure A.6: Testing Image 1
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Figure A.7: Testing Image 2
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Figure A.9: Testing Image 4
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Figure B.l: Fatigue crack with alligator/chicken wire pattern typical in fatigue crack-
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Figure B.7: Moderate severity Longitudinal cracking.
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Figure B.8: High severity Longitudinal cracking.
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Figure B.9: Low severity Transverse cracking.
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Figure B.IO: Moderate severity Transverse cracking.
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