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PARTI.

LITERATURE REVIEW



Tmplafitatmn and gTowth of the placcnta requires extensive angiogenesis in fetal

villi and maternal decidua to form vascular structures involved in placental exchange.

Vascular development, cell proliferation, differentiation and invasiveness are required for

proper development of the placenta. Many growth factors and receptors are involved in

these processes. The human placenta is a rich source of angiogenic growth fectors and

their receptors, which are known to control vascular changes and control trophoblast

function [1,2]. Within the placenta, trophoblast are a source of angiogenic growth

factors like transforming growth factor-a and P (TGF-a and P), epidermal growth factor

(EGF), fibroblast growth fector (FGF-1 and 2), vascular endothelial growth foctor

(VEGF) and placenta growth factor (PIGF) [3].

GROWTH FACTORS

Vascular Endothelial Growth Factor (VEGF)

Vascular endothelial growth fector is a 40-45 kDa disulfide-linked homodimeric

glycoprotein. There are four known isoforms of human VEGF (VEGF121, VEGF165,

VEGF189 and VEGF 206) generated by akemative splicing of mRNA [4]. The VEGF

gene is organized into eight exons, and is localized to chromosome 6p21.3. VEGF 165

lacks the residues encoded by exon 6, and VEGF 121 lacks the residues encoded by exon

6 and 7. VEGF 189 has a 24 ammo acid insertion, while VEGF 206 has an additional

insertion of 17 aminn acids. VEGF 121 and VEGF 165 are difiusable, while the two

larger forms (VEGF 189, VEGF 206) have a heparin binding domain and remain

associated with the cell membrane [5].



VEGF is a potent mitogen for endothelial cells, but unlike other angiogenic

factors, it does not promote proliferation of fibroblasts, vascular smooth muscle cells,

comeal endothelial cells or other epithelial cells [6]. VEGF is also a known vascular

permeability factor and it is 50,000 times more potent than histamine in inducing vascular

permeability [7]. Several studies indicate that VEGF plays a crucial role in angiogenesis.

Two independent gene knockout studies in mice have shown that ejq)ression of both

alleles of VEGF is required for vasculogenesis/angiogenesis during embryogenesis [8,9].

Inhibition of VEGF function by VEGF neutralizing antibody [10], anti-sense VEGF

ejqjression [11], or expression of a dominant-negative receptor [12] inhibited tumor cell

(glioma) growth In addition, VEGF receptor gene knockout resulted in an embryonic

lethal phenotype [13]. Collectively these studies showed that VEGF plays an important

role in normal and pathological vascular growth Recently, several studies have indicated

that VEGF acts as a survival factor in that it protects endothelial cells from apoptosis [14,

15].

Several studies showed that VEGF is e^ressed in small amounts in first trimester

cytotrophoblast and syncytiotrophoblast and term syncytiotrophoblast (Fig 1) [16], while

others [2,17,18] detected VEGF in first trimester villous trophoblast with very little in

syncytiotrophoblast. However, some found VEGF expressed at higher levels in

syncytiotrophoblast [17,19], while others [2,18] found cytotrophoblast to express higher

levels of VEGF protein. Fmthermore, basal expression of VEGF seems to be much

lower in conqjarison to PIGF, but VEGF expression increased greatly in trophoblast

cultured under hypoxic conditions [20].



PIGF VEGF flt-1 KDR

HUVE -i-h- +/- +++ +++

1st Trimester

Trophoblast

Term +++ +/-

Trophoblast

Figure 1: PIGFATEGF and KDR/Fit-1 Expression In Trophoblast and HUVE Cells.
+ = low expression, ++ = moderate e3q)ression, +++ = high expression



Several factors regulate VEGF gene expression including hypoxia, cytokines,

cellular differentiation, and transformation. Among these, o:?Q^gen tension plays a major

role both in vitro and in vivo [21]. VEGF e3q)ression is up-regulated rapidly and

reversibly by hypoxia in many normal and transformed cell types [22,23]. Several

growth &.ctors like EGF, PDGF, TGF-P, FGF-2 and IGF-1 [24-27] and cjtokines like

TNF-a [28], and IL-1 [29] can up-regulate VEGF ejqpression in certain cell types.

Placenta Growth Factor (PIGFl

Placenta growth fector (PIGF) is a member of the VEGF femily of growth factors.

The primary sequence of PIGF shows significant homology (53%) to the PDGF-like

domain of VEGF. PIGF, a 46-50 kDa protein, like VEGF, is a secreted N-glycosylated

homodimeric protein. The PIGF gene is localized to chromosome 14 and has seven

exons [30,31]. There are three known isoforms of PIGF that result from alternative

splicing of mRNA, named PlGF-1 (PLGF131), PlGF-2 (PIGF 152) and PlGF-3 (PIGF

221); however recently, a new isoform of PIGF (PlGF-4) has been characterized [32

(unpublished data)]. The PlGF-2 gene consists of all seven exons, while PlGF-1 has six

exons (exon six is missing) and PlGF-3 has the same six exons as PlGF-1 plus an

flHHTtional 72-aimno-acid-sequence inserted between exon IV and V. Exon VI encodes a

heparin-binding domain and this allows PlGF-2 to bind heparin [33-35]. PlGF-4 has the

same exons as PlGF-3, plus exon VI (similar to PlGF-2) [32]. PlGF-1 and PlGF-3 are

diffusable, while PlGF-2 remains cell-associated. Biological activity of PlGF-2 is

reported to be greater than that of PlGF-1, suggesting heparin binding may fecilitate PIGF



activity [35, 36].

In contrast to widespread distribution of VEGF, prominent expression of PIGF is

restricted to the placenta and human iimbilical vein endothelial cells [33, 37].

Additionally, choriocarcinoma cell lines and some other carcinoma cells have been

shown to express PIGF [38, 39]. The major site of synthesis of PIGF in the placenta is

the trophoblast. Both normal cytotrophoblast and syncytiotrophoblast express PIGF [20,

1]. Until recently, it was not known which isoform of PIGF was e3q>ressed in trophoblast.

However, a recent report showed that all three isoforms of PIGF, and a novel isoform

(PlGF-4) are expressed by trophoblast (unpublished data). The restricted expression of

PIGF suggests that it plays a significant role in the development and/or function of

placentae.

PIGF has been shown to have mitogenic activity in endothelial cells [33,40,41],

and is able to induce angiogenesis and endothelial migration in vivo [41]. VEGF and

PIGF are known to form VEGF/PIGF heterodimers, which are highly potent endothelial

cell mitogens [42].

Regulation of PIGF expression is not very well understood. Unlike VEGF, which

is known to be regulated by cytokines and growth &ctors, it is not known whether

cytokines affect PIGF ejqpression. However, a recent study indicated that several

cjrtokines and growth fectors regulate PIGF ejqiression; TNF-a seems to down-regulate

PIGF expression in trophoblast, while EGF and VEGF up-regulate PIGF expression in

hiunan umbilical endothelial cells (HUVE cells) [32 (unpublished data)]. Ejqjression of

VEGF and PIGF seems to be differentially regulated. In some thyroid tumor lines, VEGF



e^qpression is up-regulated while PIGF e^ipression is down-regulated [43]. Similarly, in

normal cells like cytotrophoblast, syncytiotrophoblast and HUVE cells, basal level of

VEGF expression is less than that of PIGF [20, lorry et al (unpublished data)].

Differential expression of both these growth factors seems to be due to regulatory effects

of oxygen tension. In normal trophoblast, hypoxia upregulates VEGF and downregulates

PIGF [20]. A recent report showed that hypoxia down-regulates PIGF while obstetrical

con^lication like fetal growth restriction upregulates it. This study also showed that

PIGF protein levels increase and VEGF protein levels decrease throughout pregnancy,

consistent with placental oxygenation [44].

RECEPTORS OF VEGF AND PIGF

KDRandFft-1

Receptors for the PIGFA^GF femily of growth fectors include the fins-like

tyrosine kinase Flt-1 (VEGFR-l) [45,46] and the kinase insert domain containing (split

kmase domain) receptor KDR (VEGR-2) [46,47]. These receptors are homodimeric,

tyrosine kinase receptors and have structural homology with PDGF receptors. Both Fit

and KDR have seven immunoglobulin (Ig)-like extracellular domains, a single

transmemhrane region and a split intracellular tyrosine kinase domain [48]. Flt-1 and

KDR expression is primarily restricted to vascular endothelial cells [49], although recent

evidence shows that a few other cell types e3q)ress one or both of these receptors. Flt-1 is

expressed in trophoblast [1,20], monocytes [50,51] and renal mesengial cells [52], while

KDR is ejqpressed in hematopoietic stem cells, megakaryocytes and retinal progenitor



cells [53,54]. Additionally, some tumor cells express Flt-1 or KDR. Fh-l is e:q)ressed

in placenta throughout gestation (Fig. 1). It is expressed in first trimester trophoblast,

with slight down-regulation during the second trimester, and at low levels in term

trophoblast [18]. This finding is further supported by another study, which indicates that

term trophoblast e7q)ress Flt-1 but not KDR [20], while endothelial cells e3q)ress both Flt-

1 and KDR [18,20].

Flt-1 binds VEGF and PIGF with high affinity, vsiiile KDR binds only VEGF

[31]. The differences in ligand specificity and the ability of Flt-1 to bind PIGF

homodimers and VEGF/PIGF heterodimers [55] suggest that each receptor may convey

unique signal transduction responses [56]. Recent studies demonstrated that both Flt-1

and KDR are essential for normal development of embryonic vasculature. Disruption or

knockout of Fh-l and KDR genes resuh in severe abnormalities of blood vessel

formation and embryonic lethal phenotype [12,13]. The expression of both Fh-l and

KDR seems to be affected by hypoxia. Transcription of both Fh-l [57] and KDR [58]

are enhanced by hypoxia, but the mechanism responsible for KDR up-regulation seems to

be post-transcriptional. Up-regulation of these receptors by hypoxia may occur indirectly

via VEGF, since VEGF regulates the expression of both of hs receptors [59,60].

Neuropilin

Recently, a new receptor for VEGF and PIGF has been characterized. Neuropilin-

1, a 130-135 kDa glycoprotein is a receptor for semaphorin/collapsin family of proteins

and is associated with neuronal cell guidance in the developing nervous system. In



addition to neuronal cells, neuropilin is expressed in endothelial cells. Neuropilin binds

select isofonns of VEGF and PIGF, VEGF 165 and PlGF-2, and binding of PlGF-2 is

heparin-dq)endent [61,62]. Several studies indicate that neuropilin receptors have a

short intracellular domain and are unlikely to function as independent receptors.

Neuropilin receptors alone do not elicit any responses when boimd to VEGF 165. KDR

binds VEGF 165 more efficiently in cells ejqjressing neuropilin-1, and elicits a stronger

response to VEGF 165, suggesting neuropilin-1 serves as a coreceptor for KDR [62]. In

contrast, neuropilin did not augment the biological activity of PlGF-2, indicating that

neuropilin does not function as a Flt-1 coreceptor [61]. Nevertheless, neuropilin-1 seems

to be an important regulator of blood vessel development because gene knockout studies

in mice showed that embryos lacking neuropilin-1 gene die because of improper

development of the cardiovascular system [63].

VEGF/KDR/Flt-1 and PlGF/Flt-1 Signal Transduction

VEGF/PlGF/KDR/Flt-1 signaling is quite complex. The reasons for this are at

least two fold. Firstly, KDR and Fk-l have individual specificities, where Flt-1 binds

both VEGF and PIGF, while KDR binds VEGF only. Secondly, VEGF and PIGF form

homo- and heterodimers that can activate different signal transduction pathways. Unlike

VEGF/KDR signal transduction, VEGF/ PIGF/Fk signal transduction is not clearly

understood.

Fit and KDR appear to have different signal transduction properties. Binding of

VEGF to KDR/Fh-l and PIGF to Flt-1 induces autophosphorylation of both receptors



[64, 65]on tyrosine residues. Both VEGF and PIGF promote association and

phosphorylation of SH2-SH3-containing domain proteins. Phospholipase C-y (PLC-y),

Nek, GTPase-activating protein (GAP), Grb2 (Growth fector-bound protein). She and

Phosphatidylinositol 3 (PI-3)-kinase are phosphorylated and become associated with

KDR in response to VEGF [66-68], while Nek, PLC-y, and Grb2 seem to be associated

with Flt-1 [66,69, 70]. Biological responses induced by VEGF appear to be different in

BvDR- and Flt-1-expressing ceUs. KDR-transfected porcine aortic endothelial cells (PAE

cells) exhibited changes in cell morphology, membrane ruffling, chemotaxis,

mitogenesis, and MAPK activation in response to VEGF [64,66,71]. However, VEGF-

induced activation of Flt-1 did not induce chemotaxis or mitogenesis in Flt-l-e3q)ressing

PAE cells [64]. On the other hand, PIGF activated MAP kinase and stimulated

mitogenicity, but did not activate PLC-y or induce migration in Flt-l-e3q)ressing PAE

cells [72]. Recent studies showed that both VEGF and PIGF stimulate proliferation but

not migration and invasiveness in human &st trimester trophoblast cell lines [73,74],

although the signaling pathways for this response are not known. Recently, VEGF has

been implicated in protecting endothelial cells against serum withdrawal-induced

apoptosis. KDR mediates this effect in endothelial cells through PI-3 kinase/Akt-

dependent pathways, while both PIGF and Flt-1 ffiiled to promote cell survival in

endothelial cells [15].

10



SIGNAL TRANSDUCERS

Although many studies have focused on VEGF/BCDR signal transduction

pathways. Fit-1-mediated transduction is not clearly understood. Approaches to study

Flt-1 mediated events in different endothelial cell types are complicated by the presence

of KDR receptors. VEGF/KDR- and VEGF/PlGF/Flt-1-mediated signaling seems to be

different in endothelial cells. Additionally, despite binding to the same receptors (Flt-1)

(in HUVE cells), VEGF and PIGF activate different signaling pathways [75]. This

divergence in the signaling pathways upstream of MAPKs suggests that cell type-specific

upstream signaling molecules are present. Several potential regulatory molecules, like

Nek and PLC-y among others, may regulate and activate specific MAPK pathways.

Furthermore, Nek and PLC-y are known to associate with Flt-1 and KDR. Nek acts as a

mediator in the JNK/p38 pathway, but not in the ERKl/2 pathway [76, 77]. Additionally,

Nek seems to be involved in ERK activation in response to VEGF [68]. PLC-y associates

with Flt-1 and KDR receptors upon their activation, but also mediates many biological

responses.

Growth &ctor binding to receptor protein tyrosine kinases (R-PTKs) induces their

dimerization, resulting in activation of intrinsic protein tyrosine kinase activity and

receptor autophosphorylation [78]. Phosphorylated receptor kinases become docking

sites for proteins with SH2 and SH3 domains (Src homology 2 & 3 domains). This

interaction appears to be a crucial step by which receptor kinases relay signals to

downstream signaling pathways. The majority of SH2 and SH3 domain-containing

11



proteins possess intrinsic enzymatic activity, but there are other members of this femily

that lack intrinsic enzymatic activity and are therefore, called adapters. The major

functions of these adapters, such as Crk, Grb2, and Nek, is to recruit effector molecules

to tyrosine-phosphorylated kinases or their substrates.

Nek

Nek, a 47kDa oncoprotein composed of one SH2 and three SH3 domains is a

common target for various cell surface receptors. It is implicated in coordinating various

signaling pathways, including those of growth fector and cell adhesion receptors. Nek

functions as a linker between receptors, via its SH2 domain, and to downstream SH3-

binding effectors. Although Nek is known to mediate the formation of protein-protein

complexes flnring signaling, little is known about its exact fimction. The SH2 domain of

Nek has been known to bind to various growth fector receptors, including PDGF [79],

hepatocyte growth fector [80], EGF [78], VEGF [67,68], as well as Eph [81, 82], msuhn

receptor substrate, IRS-1 [83], and focal adhesion kinase [84]. There are several studies

demonstrating that Nek binds to activated tyrosine kinases via its SH2 domain. However,

little is known about the downstream effector pathways regulated by Nek via its SH3

domains. Recent studies have reported that the SH3 domains of Nek interact with several

protein kinases, including the Ser/Thr protein kinases PAK (p21-activated kinase) [85],

Prk2 [86], casein kinase I [87] and NIK (Nek interacting kinase) [77]. For the most part,

the biological significance of the Nek's interactions with these kinases is still not clear.

Overejipression of Nek in some cases leads to Ras activation via SOS, but dominant-

12



negative Nek does not block activation of Ras by cytokines [76]. Nek seems to act as a

mediator in JNK/SAPK pathways but not ERKl/2 pathways [76, 77]. Nek is known to

be associated with both KDR and Flt-1 receptors [65,66,68,70] and phosphorylated in

response to VEGF in endothelial cells [65, 67, 68]. However, PlGF/Flt-1 and Nek

interactions are not known.

NIK (Nek interacting kinase), a homologue of sterile 20 kinase (ste 20) binds to

Nek and MKKKl (Mhogen activated protein kinase-kinase-kinase) and activates the

JNK/SAPK pathway [76,77]. Recruitment of Nek to tyrosine kinase receptors seems to

couple ligand activation to c-Jim kinase. For exanq)le. Nek acts as an intermediary

linking Eph A signaling to JNK activation [82]. Nek is also known to mediate activation

of another serine /threonine kinase, PAK, with eventual activation of JNK and p38 [88,

89]. Nek is also involved in activation of JNK/SAPK pathway in response to growth

hormone [90]. Thus, Nek, through its association with upstream growth fector receptors

and downstream effectors such as tyrosine kinases or serine/threonine kinases, seems to

be involved in regulation of multiple intracellular signaling events.

PhosDholipase C-v fPLC-v)

PLC-y belongs to a femily of cellular proteins believed to play a significant role in

intracellular pathways utilized by hormones and growth factors. Several growth factors

including, EGF, FGF, PDGF and VEGF are known to activate PLC-y through receptor

mediated tyrosine phosphorylation of the specific PLC-y isozyme [68, 91-94]. PLC-y, a

145 kDa protein, contains two SH2 domains and one SH3 domain. Unlike Nek, PLC-y
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possesses intrinsic enzymatic activity [95]. Signaling across cell membranes often

involves the activation of both phosphatidylinositol-specific PLC-y and phosphoinositide-

3- kinase (PI-3 kinase). PI-3 kinase phosphorylates and PLC-y hydrolyze

phoshotidylinositol-4,5-bis-phosphate to inositol-l,4,5-triphosphate (IP3) and

diacylglycerol (DAG). These second messengers induce release of intracellular Ca2+

and activate protein kinase C (PKC) [95,96]. Tyrosine phosphorylation of PLC-y is

necessary for its activation and this phosphorylation is brought about by its conq)lex

formation with growth factor receptors. Tyrosine phosphorylation of PLC-y is believed

to be involved in the mechanism by which tyrosine kinase-dependent growth factors

receptors stimulate phosphatidylinositol- 4,5-bis-phosphate hydrolysis [91]. In response

to growth fector stimulation, PLC-y may either act as an enzyme to generate second

messengers which in turn activate downstream signaling molecules, or as an adapter

molecule by binding to growth fector receptors through SH2 domains and to downstream

molecules through its 8113 domains [96].

PLC-y associates with both KDR and Flt-1 receptors [66,69,70,97], where it

may play an important role in KDR/Flt-1-mediated signal transduction. PLC-y seems to

be the major target for KDR. VEGF via KDR induces activation of the ERK pathway

and stimulates proliferation in primary endothelial cells [71, 98], in KDR-ejqjressing

NIH3T3 fibroblasts [71], and in KDR-expressing PAE cells [67]. Phosphorylation of

PLC-y and PLC-y-mediated DNA synthesis is inhibited by a KDR receptor antibody [94],

and a PLC-y antibody, respectively [99]. Signaling by VEGF in endothelial cells results

in phosphorylation of both of its receptors and PLC-y, leading to eventual activation of
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downstream kinases like ERK and JNK [100].

Like KDR, Flt-1 is also known to serve as a binding site for PLC-y. There is

ample evidence for the involvement of PLC-y in KDR and Flt-1-mediated signal

transduction in response to VEGF. However, the role of PLC-y in PIGF mediated

signaling is not clear [66, 69,97]. Some reports show that PLC-y associates with Flt-1

and KDR, and is phosphorylated in re^nse to VEGF, but there is no evidence indicating

phosphorylation of Flt-1 in response to PIGF. A recent report showed that PLC-y was not

pho^horylated in PlGF-stimulated, Fh-l-expressing PAE cells,while it was

phosphorylated in VEGF-stimulated KDR-expressing PAE cells.

SIGN AT. TRANSDTTCTTON PATHWAYS

Cells respond to extracellular signals by transmitting intracellular instructions to

coordinate appropriate responses. Mitogen activated protein kinase (MAPK) cascades

are activated in response to various extracellular stimuli, including growth

factors/cytokines and environmental stresses, and are mediators of signal transduction

from the cell surface to the nucleus. The MAPK signaling pathway comprises three major

phosphorylation cascades; the extracellular signal-regulated kinase (ERK), c-JunNH2-

terminal kinases, and p38 kinases (Fig 2). Each pathway is regulated by distinct stimuli,

and each have different as well as overlapping target specificities. Once activated, they

translocate to the nucleus to regulate activities of transcription factors and thereby control

gene expression. The ERKs are preferentially activated in response to mitogens/growth
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factors, and are mainly associated with cell proliferation or differentiation. JNK and p38

pathways are collectively termed stress-activated protein kinases because they are

typically activated by various stress-related stimuli and proinflammatory cj^okines [101-

103].

g-Tiin Aminn Terminal Kinase (JWK>

The JNK femily of MAPKs consists of JNKl, 2, and 3. Alternative splicing of

JNK genes gives rise to at least ten isoforms; JNK-1 (al, a2, pi, P2), JNK-2 (al, a2, pi,

P2), and JNK-3 (al, a2). JNK-1 and -2 are expressed in many tissues, while JNK-3 is

only e7q)ressed in brain, heart and testis [102,104]. JNKs are activated through dual

phosphorylation of Thr and Tyr residues in response to stress. JNK is regulated by the

dual specificity semine/threonine kinases, mitogen activated protein kinase kinase

(MKK-4), and mitogen activated protein kinase kinase (MKK-7). MKK-4 activates both

JNK and p38, while MKK-7 activates JNK only [105]. MKK-4 is in turn regulated by

MKKK-1, apoptosis signal-regulating kinase (ASK-1) and some of the MLK (mixed

lineage kinase) family members [106-108]. ASK-1 activates both MKK-3 and MKK-4,

leading to activation of p38 and JNK [107]. Further upstream regulators of JNK include

members of the Rho &mily of small GTPases ( Ras,Racl, Rac2, cdc42, Rho) [109] and,

p21 Ras activated kinase (PAKs) [89]. JNKs are activated in response to diverse stimuli

including DNA damage, UV irradiation, heat shock, IL-1, ceramide, TNF-a, and Fas-L.

In addition, JNK is also induced by mitogenic signals, including growth fectors,

cytokines, Ras, and other signals like CD40 ligation and T cell activation. Activated JNK
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in turn regulates activities of transcription fectors like ELK-1, SAP-1, ATF-2 and c-Jun

(components of dimeric transcr^tion factor AP-1) [102].

Functions of JNK

JNK and .^optosis

It is generally accepted that activation of JNK and p38 kinases inhibits cell

growth or promotes cell death, while ERK is usually activated by growth

fectors/cytokines and hormones that stimulate cell growth / proliferation [110]. Activated

JNK is known to mediate apoptosis in many cell types. JNK-induced apoptosis is

observed inneuronal injury and inmyocardialinfarction [111, 112], and dominant-

negative inhibitors of the JNK pathway inhibit JNK-mediated apoptosis [113,114].

Similarly, JNK pathways also mediate apoptosis following injury induced by UV

irradiation and heat [115], and expression of dominant-negative mutants of JNK block y-

radiation and UVC-induced cell death [116]. A specific JNK pathway inhibitor, CEP-

1347/KT7515, protects chick neurons [117] and embryonic neurons [118] from

apoptosis. In the absence of growth &ctors and serum, ceramide-mediated JNK activity

induces apoptosis in pheochromocytoma (PC 12) cells [119]. Several studies have

implicated JNK in TNF- induced apoptosis [102,107,120-122]. However, several

reports show that activation of JNK can be mediated through a non-cytotoxic TRAF-2-

dependent pathway initiated by TNF-a, which is not linked to apoptosis [123].

Additionally there is a recent report in which TNF-a-induced ASK-1 regulates JNK

activity, which is instrumental in executing the apoptotic signal of TNF-a [107,122].

These studies provide strong evidence for a JNK-stimulated apoptotic pathway.
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Although many stimuli seem to induce apoptosis via JNK activation, whether JNK

activation is required for apoptosis still remains controversial.

JNK and Survival

JNKs are also involved in other cellular events beside apoptosis, including

cellular growth, differentiation and transformation. A recent study showed that activation

of JNK in Il-3-dependent BAF3 (pre-B cells) was not involved in apoptosis, but rather

mediated proliferation of these cells in response to IL-3. IL-3-stimulated proliferation of

BAF3 was inhibited when JNK activity was specifically inhibited by M3/6 (JNK inhibitor,

a phosphatase) [124,125]. Selective activation of JNK by CD40 on B cells rescues these

cells from anti-IgM (receptor cross-linking) mediated apoptosis [126]. Activation of JNK

and subsequent phosphorylation of c-Jim are required for hepatocyte proliferation in

hepatic regeneration after partial hepatectomy [127]. SEK-1, a direct activator of JNK,

protects thymocytes from Fas- and CD3- mediated apoptosis [128].

Other Functions of JNK

The JNK pathway also is involved in cell activation and induction of other genes.

JNK is specifically involved in T cell activation and IL-2 induction [129]. A recent

report also showed that JNK is required for IL-1-induced IL-6 (which promotes cell

growth) and IL-8 (which plays a role in inflammation) gene e}q)ression in the

keratinocyte cell line KB; inhibition of JNK activation in these cells inhibits IL-6 and IL-

8 gene expression [130]. JNK is activated during co-stimulation of T cells [131] and may

contribute to the secretion of IL-2, and the proliferation of thymocytes [132]. In addition,

JNK is activated during the differentiation of Thl and Th2 cells, and this may help in the
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differentiation process [133]. These observations confirm that JNK plays a role in

regulation of normal cell fimctions.

Kinases

The p38 mitogen-activated protein kinases are mammalian homologues of the

HOG-1 MAP kinase of 5. cerevisiae which is necessary for their growth under

hyperosmolaric conditions. p38 kinase is activated by both physical and chemical stresses

including UV irradiation, osmotic stress, heat, bacterial lipopolysacharide and the pro-

inflammatory cytokines, TNF-a, IL-1 [134-136]. The p38 femily of MAP kinase

consists of p38a, p38p, p38y and p385 [134]. p38 kinase is activated by dual specificity

MAP kinase kinases, including MKK3, MKK6, and MKK4, that phosphorylate p38 on

threonine 180 and tyrosine 182 residues [137]. Activated p38 in turn regulates activities

of several transcription &ctors including ATF2, CHOP, EK-l, MEF-2C, and other

protein kinases such as mitogen-activated protein kinase-activated protein-2 (MAPKAP-

2) and MAPKAPK-3, both of which activate heat shock proteins (HSP) 25/27 [138].

Many stimuli that activate JNK also activate the p38 kinase pathway. However,

the biological responses elicited by activation of these kinases are distinct, and in many

cases, only one of the pathways is activated. These pathways may also have different

biological effects on the same cell type [139-141].

Functions of p38 Kinase

p38 kinase and Apoptosis

Like JNK, p38 kinase is implicated in neuronal apoptosis [119], B lymphocyte
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apoptosis [142], TNF-a induced apoptosis [122], Fas-induced apoptosis [143], apoptosis

induced by NGF withdrawal [144], and UV-induced apoptosis [145].

p38 Kinase and Survival

Like JNK, p38 inhibits apoptosis in certain situations. p38 kinase inhibits

apoptosis in cardiac myocytes [146,147], Jurkat T cells [148], mast cells [149] and

WEH-23 cells (B lymphoma cell line) [150].

Other Functions of p38 Kinase

p38 kinase is also involved in other cellular functions like growth, differentiation

and gene activation. p38 is required for serum-stimulated growth [151]. TNF-a induced

activation of p38 leads to gene induction but not cytotoxicity in L929 cells [152]. Heat

shock protein-27 (HSP-27), which is involved in growth and differentiation in many cell

types is regulated by p38 kinase. p38 kinase is also involved in differentiation of

pheochromocytoma (PC12) cells [153], and proliferation and differentiation in breast

carcinoma cells (MCF-7) cells [154]. VEGF-induced activation of p38 is known to

mftdiflte actin reorganization and cell migration in endothelial cells [155]. Additionally,

hematopoietic growth factors regulate the development and function of hematopoietic

cells through activation of p38 kinases [149].

Fxtracellnlar Signal Regubted Kinase (ERKl

ERK-1 and ERK-2 are expressed in almost all cells. Both kinases are activated

by phosphorylation of Thr/Tyr residues by MEK-1. MEK-1 is in turn activated by other

upstream kinases like Raf [156], and MKKK-1 [106]. Activated ERK-1 and -2 regulate
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activities of various transcription factors such as, ELK-1 [157], c-Jun [158], c-Fos [159],

c-Myc, p53 [160] and other signaling proteins, such as MAPK-APKs [161], cPLA2,

SOS-1 [162]. ERKs are activated by growth fectors/cytokines and hormones. They are

mainly involved in mediating biological responses like cellular growth, proliferation and

cell survival in response to various stimuli.

Some cytokmes/growth fectors and serum inhibit apoptosis by either down

regulating the stress-activated protein kinases, JNK/p38 kinase, or by up-regulating ERK

pathways. Many growth fectors inhibit apoptosis in various cell types by activating ERK

pathways. IGF-1 inhibits apoptosis in PC-12 cells by activating ERK pathways [163].

Serum and NGF protect HeLa carcinoma cells and PC-12 (pheochromocytoma) cells

from apoptosis by up-regulating the ERK pathway and down-regulating the p38 kinase

pathway [114,139]. IGF-1 rescues neuroblastoma cells from apoptosis by inhibiting the

JNK pathway, and up-regulating the ERK pathway [140]. Insulin protects fetal neurons

from apoptosis by inhibiting p38 kinase [164]. Thus, cell survival and death are dictated

by a balance between ERK, JNK, and p38 kinase signaling.

APOPTOSIS

Two common forms of cell death have been described in vertebrate tissue.

Necrosis refers to the morphology seen when cells die from severe and sudden injury,

such as ischemia, sustained hyperthermia, or physical or chemical trauma. The earliest

changes include swelling of the cytoplasm and organelles, especially the mitochondria.

The changes ultimately lead to organelle dissolution and rupture of the plasma

22



membranes, allowing cellular contents to leak out into the extracellular space, provoking

an inflammatory response [165].

In contrast to necrosis, apoptosis is a morphologically distinct, energy dependent,

suicidal process, involving a series of well-regulated synthetic events. This form of cell

death occurs in many different tissues under various conditions and is the major mode of

cell death [166].

The growth, development and function of most tissues and organs require the

appropriate balance between ceU growth and death. Apoptosis is essential for normal cell

growth, development of tissues and organs, and is required for maintaining tissue

homeostasis. Apoptosis is an active process of programmed cell death in multicellular

organisms, characterized by cytoplasmic shrinkage, nuclear condensation and DNA

fragmentation in 200-base pair fragments [167,168].

Mechanism of Apoptosis

Apoptosis can be triggered in many cell types by various stumuli. Induction of

apoptosis can be divided into two groups.

1. Deprivation of growth factors or serum causes apoptosis in growth factor-

dependent cells [169,170]. These growth factors and cytokines mediate

survival signals and protect cells from apoptosis. The survival and

differentiation of neurons depend on specific neurotrophic fectors like NGF

and iusulin [164]. Serum deprivation induces apoptosis in various cell types,

like endothehal cells [15,171], PC12 cells [172], epithelial cells [173],
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fibroblasts [174], porcine granulosa cells [175], and vascular smooth muscle

cells [176].

2. The second type includes apoptosis in response to physical, chemical, or

biological assaults such as ionizing radiation, oxidants, free radicals, heat

shock, e7q)osure to inflammatory cytokines like TNF-a and IFN-y [177],

bacterial toxins or toxins like ethanol and anti-cancer drugs.

Cvtokine Induced Apoptosis

Inflammatory cytokines like TNF-a and INF-y induce apoptosis in many cell

types and cell lines [107, 178-181]. TNF-a -induced responses are mediated through two

distinct cell surface receptors, TNFR-l/p55 or TNFR-2/p75. TNF induces apoptosis

through several pathways. TNFR-1 activation results in generation of ceramide by

Smase (sphingomyelinase) which is responsible for mediating the cytotoxic effect of

TNF-a. Ceramide -activated JNK is known to induce apoptosis in some cells [120].

However, there is evidence showiug that JNK activation is not involved in TNF-a

mediated-apoptosis [123]. TNF-a-mediated apoptosis may be due to activation of the

caq)ase cascade, through RIP mediated apoptosis, or ASK-1-mediated activation of

SAPKs. However, the role of SAPKs in TNF-a induced-apoptosis remains controversial.

Apoptosis in the Female Reproductive Tract

Apoptosis plays a major role in embryonic development, pregnancy and normal

development and maintenance of reproductive organs. Throughout the menstrual cycle,
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cell death and proliferation occur in the female reproductive tract in a regulated &shion.

The process of foUicular atresia, luteolysis, and cyclic shedding of the endometrium

involves apoptosis [182, 183].

Apoptosis in the placenta is also observed during normal pregnancy and

pregnancies con:q)licated by infections or other pathologies. Discontinuities in the

integrity of the syncytiotrophoblast may be due to apoptosis and apoptosis is responsible

for the progressive disappearance of trophoblast in the chorionic laeve as pregnancy

approaches term in normal pregnancies. Apoptosis has been demonstrated in normal

placentae from both first and third trimesters and the rate of apoptosis increases

significantly as pregnancy progresses [184-187]. Recent studies have shown that

apoptosis occurs in the conceptus during the first trimester of normal pregnancy [188].

These observations suggest that apoptosis plays an important role in the normal

development and aging of placentae.

In addition to its role in normal pregnancy, trophoblast apoptosis has been

implicated in several obstetrical complications. Apoptosis is known to increase greatly in

cases of spontaneous abortions [188]. Apoptosis in the placenta leads to fetal growth

retardation in rats [189] and the incidence of placental apoptosis is significantly greater in

human pregnancies complicated with lUGR (intrauterine growth restriction). Placental

bed hypoxia is generally thought to occur in preeclampsia and lUGR, and is known to

induce apoptosis in many cell types [190]. A recent study also indicated that pre

eclampsia is associated with widespread apoptosis of the cytotiophoblast that invade the

uterus [191]. Our present study indicated that angiogenic growth factors like PIGF and
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VEGF may protect trophoblast from growth fr.ctor withdrawal-induced apoptosis by

activation of the SAPKs, JNK and p38 kinase [75]. Placenta! bed hypoxia in

preeclampsia and lUGR may down-regulate PIGF and increase trophoblast susceptibility

to stress-induced apoptosis. In addition, decreased serum levels of PIGF observed during

preeclampsia [192] contribute to increased trophoblast apoptosis, and which in turn may

have a significant role in the pathophysiology of the disease.

Tumor necroses factor-alpha (TNF-a) and gamma interferon (IFN-y) are

expressed in human placenta! villi and uterine cells in early and late gestation [193,194].

Studies have shown that TNF- a and IFN-y induce apoptosis in primary trophoblast in

vitro [180, 195, 196], and that EGF protects trophoblast from TNF-a- and IFN-y-induced

apoptosis [180]. In addition, a recent study showed that VEGF inhibits TNF- a-induced

apoptosis in endothelial cells [197]. Several studies have shown that EGF is able to

protect from pro-inflammatory cytokine-induced apoptosis in trophoblast [75,180].

All of the above reports suggest that regulation of apoptosis is quite complex and

miiltifactorial. The decision to die or live depends on the dynamic balance between

growth factor activated-MAPKs and stress activated-JNK/p3 8 pathways, ejqiression of

anti-apoptotic and pro-apoptotic proteins, apoptotic signals and anti-apoptotic signals,

generated by various extracellvilar and intracellular stimuli.

OncQgenes Modulating Apoptosis

Apoptosis can be induced by two ways: i. When the cells are exposed to apoptotic

inducing agents (cytokines/or growth fectors, environmental stresses, genotoxic
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substances etc.), or iL when cells lose apoptotic suppression signals, Le., withdrawal of

serum/cytokines/growth fectors, etc.

Serum and growth factors/cytokines regulate cell survival through different

mechanisms, including activation or inhibition of different signal transduction pathways,

by up-regulating anti-apoptotic proteins or downregulating e3q)ression of anti-apoptotic

proteins.

Akt

The serine /threonine kinase Akt (Protein Kinase B), a proto-oncogene, may play

a central role in growth fector-dependent cell survival. Many growth fectors utilize PI-3

kinase/Akt signal transduction pathways to inhibit apoptosis. Vascular endothelial

growth fector protects endothelial cells from serum-deprivation-induced apoptosis

through the PI-3 kinase/Akt signaling pathway, and Akt activation is essential for VEGF-

mediated induction of Bcl-2 [14,198]. Similarly, many growth fectors, like IGF, NGF

[199,200], insulin [201] and serum [139,199] mediate their survival effects in various

cell types in a PI-3 kinase-dependent fashion. In addition, inhibition of Akt activity with

wortmannin abrogates the protective effect of serum/growth fectors on cellular survival.

Briefly, when receptors bind cytoldnes/growth fectors, they are phosphorylated

and become docking sites for SH2 domain-containing proteins like PI-3 kinase.

Activated PI-3 kinase at the cell membrane phosphorylates the 3'-position of the inositol

ring in phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol-3,4,5-

triphosphate (PIP3). The phosphorylated product binds to Akt, translocates it to

membrane and activates it [202]. Activated Akt then phosphorylates the pro-apoptotic
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protein Bad, resuhing in sequestration of Bad by 14-3-3 proteins. This prevents Bad

from heterodimerizing with Bcl-2. Thus, the Bcl-2 or Bc1-Xl /Apaf-1 (apoptosis-

associated fector) /procaqjase interaction remains intact. On the other hand, in the

absence of cj1:okines/growth fectors, Bad is dephosphorylated and dissociates from 14-3-

3 proteins and heterodimerizes with Bcl-2/or Bc1-Xl. This heterodimerization disrupts

the Bcl-2/Bcl-XL/Apaf-l/pro-caspase interaction, setting off the caspase cascade leading

to apoptosis [203,204]. Akt also can inactivate caspase-9 directly by phoiqrhorylation

[205].

Bcl-2

Some growth fector/cytokines or serum rescue cells from apoptosis by either up-;

regulating anti-apoptotic proteins, or down-regulating anti-apoptotic proteins. Growth

factors like IGF, EGF [206,207], FGF, and NGF [208,209] inhibit apoptosis either by

up-regulating the ejqpression of Bcl-2 and Bc1-Xl, or doAvn-regulating Bcl-Xs.

The proto-oncogene Bcl-2 and its related proteins comprise a family of apoptosis

regulatory gene products, which may be either pro-apoptotic or anti-apoptotic. Bcl-2 is

an antiapoptotic intracelliilar protein that is predominantly localized in the outer

mitochondrial membrane, nuclear membrane and endoplasmic reticulum (ER) [210]. AH

the members of Bcl-2 femily possess at least one of four conserved motifs known as Bcl-

2 homology domains (BHl to BH4). Most death-inhibitory members contain at least

BHl and BH2, and those most similar to Bcl-2 have all four BH domains. Bcl-2

homology domains control the ability of these proteins to dimerize and function as

regulators of apoptosis [210]. Pro- and anti-apoptotic Bcl-2 femily members regulate
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each other's functions, and they also heterodimerize. Their ratio seems to determine

whether a cell will respond to an apoptotic signal [211].

Bcl-2 is known to protect cells against the effects of hypoxia, diverse cytotoxic

insults like cytokine withdrawal, dexamethasone, staurosporine and cytotoxic drugs [212-

216].

The Bcl-2 family of proteins plays a major role in preventing apoptosis caused by

withdrawal of growth fectors/cytokines. Viability of certain cytokine-dependent cells

depends on e3q)ression of Bcl-2. Both VEGF (in HUVE cells) and EGF (in

keratinocytes) are known to increase Bcl-2 egression, and protect cells from apoptosis

under serum withdrawal conditions [14,207]. Cytokine-bound receptors prevent

apoptosis by inducing phosphorylation of apoptosis-inducing Bad, making it unavailable

for dimerization with Bcl-2 or BcI-Xl- In the absence of cytokines and growth factors,

dephosphorylated Bad dimerizes with Bcl-2, disrupting Bcl-2-Apaf-l-inactive cystine-

protease interaction, there by activating a cystine protease (caspase-9) inducing apoptosis

[217].

The link between receptor-mediated signal transduction and Bcl-2 function is not

clearly defined. Bcl-2 is phosphoiylated on serine residues in response to many stimuli,

like growth fectors/cytokines or cytotoxic drugs [218-220]. The functional role of Bcl-2

phosphorylation in the promotion [218,221] or inhibition [219,222] of apoptosis is

controversial. However, there are several studies showing that phosphorylation of Bcl-2

inhibits apoptosis in some cell types [219,222]. Activation of JNK/SAPK in other cell

types has been shown to phosphorylate Bcl-2 and regulate its functional activity [223].
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In a hematopoietic ceil line, Bcl-2 is phosphorylated on serine residues, following

exposure to IL-3 [220], but it is also hyperphosphorylated on serine residues following

treatment with Taxol [218]. Furthermore, the biological relevance of Bcl-2

phosphorylation is not as clear as that of BAD. It remains imcertain whether

phosphorylation of Bcl-2 leads to its activation or deactivatioiL Additionally, it has been

suggested that since phosphorylation sites of Bcl-2 have not been detected in all systems,

it may be possible that distinct pho^horylation sites may regulate Bcl-2 function

differentially [224].

Many growth factors like IGF, NGF, IL-3, and GM-CSF among others have been

shown to fecilitate survival in different cell types. However, their function seems to be

independent of Bcl-2, because these growth fectors/cytokines do not regulate expression

of Bcl-2 [225,226]. On the other hand, there are several growth factors like VEGF (in

endothelial cells) and equine chorionic gonadotropin (eCG) (in granulosa cells) that up-

regulate Bcl-2 expression [14,227].

Regulation of Bcl-2 function is muhifactorial. Thus, along with cytokines,

relative levels of antiapoptotic Bcl-2 and proapoptotic (Bad) proteins, post-transcriptional

modification of Bcl-2 or related proteins, can influence the propensity of a cell to live or

die [211].

Bcl-2 is expressed in syncytiotrophoblast throughout pregnancy [228-230]. A rise

in Bcl-2 protein levels is evident in placental extracts from ten weeks of gestation to term.

There is a differentiation-dependent pattern of Bcl-2 expression in trophoblast, in that

cytotrophoblast and JEG-3 choriocarcinoma cells express very low to no Bcl-2, while
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terminally differentiated syncytiotrophoblast e3q)ress abundant amounts of Bcl-2 protein.

Expression of Bcl-2 in syncytiotrophoblast suggest that it may protect trophoblast from

apoptosis [231-233]. Treatment of JEG-3 cells with 8-Br-cAMP induces genes

characteristic of the syncytiotrophoblast and raises levels of Bcl-2 protein [231]. This

differentiation-dependent pattem of Bcl-2 e3q)ression in the placenta suggests that Bcl-2

may protect trophoblast from apoptosis, and is necessary for the preservation of placental

function during gestation.
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PARTn.

FTT-1 MKDIATED SIGNAL TRANSDUCTION AND FUNCTIONS OF VEGF

AND PIGF IN NORMAL HUMAN TROPHOBLAST
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ABSTRACT

Trophoblast function and vascular development in the placenta and endometrium

during pregnancy are critical to successhil gestation. Although growth factors and

cytokines are thought to govern trophoblast function, little is known about the specific

responses they elicit in trophoblast. This study was conducted to investigate VEGF and

PIGF as potential regulators of placental growth and development. In addition to their

role as pairacrine angiogenic fectors within the placenta and endometrium, presence of

their receptor, Flt-1, on trophoblast suggests that both VEGF and PIGF may have

autocriue role(s) in regulating trophoblast function. To elucidate their roles in

trophoblast, the signal transduction and functional responses of primary hmnan term

trophoblast to VEGF and PIGF were investigated. Exogenous PIGF and VEGF induced

specific activation of the stress-activated protein kinase (SAPK) pathways, c-Jun-NHa

terminal ifinasp! and p38 kinase, in primary trophoblast, with little to no induction ofthe

extracellular signal regulated kinases (ERKl- and -2). In contrast, both PIGF and VEGF

induced significant ERKl and 2 activities, but not SAPK activity, in human umbilical

vein endothelial (HUVE) cells. VEGF and PIGF both phosphorylated/activated SH2-

SH3 -domain containing proteins like Nek and PLC-y in endothelial cells and trophoblast.

Functionally, PIGF and VEGF protected trophoblast from growth fector withdrawal-

induced apoptosis, but were unable to protect trophoblast from apoptosis induced by the

proinflammatory cytokines, tumor necrosis fector -a (TNF-a) and interferon- y (INF-y).

VEGF phosphorylated/activated Akt (protein kinase B) in endothelial cells and
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trophoblast, while PIGF had no effect on Akt phosfphorylation/activation in either

endothelial cells or trophoblast. VEGF, but not PIGF upregulated the antiapoptotic

protein Bcl-2 in endothelial cells, while neither fector modulated Bcl-2 protein levels in

trophoblast. These finding.s suggested that VEGF and PIGF protect trophoblast from

stress induced apoptosis by Bcl-2- independent pathway (s). Collectively, these results

provide the first direct evidence of a biochemical and functional role for PIGFA^GF/Fh-

1 in normal trophoblast and suggest that aberrant PIGF and VEGF expression during

pregnancy may impact trophoblast function as well as vascularity within the placental

bed.

INTRODUCTION

Successful pregnancy is dependent upon adequate vascular growth, permeability

and remodeling in the placenta and the endometrium. Vascular and placental

insufficiencies are associated with many obstetrical complications, notably spontaneous

abortions, preeclampsia and intrauterine growth retardation (lUGR). During normal

implantation and placentation, fetal trophoblast invade maternal endometrium,

myometrium and remodel spiral arteries, converting them into low resistance high

capacity vessels. This process is necessary to enhance uterine and placental blood flow

in pregnancy. However, shallow invasion of trophoblast and inadequate conversion of

maternal arteries leads to poor placental perfusion and placental hypoxia and may

eventually result in fetal and placental growth retardation and preeclampsia [234,235].
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Many growth &ctors and cytokines are known to govern trophoblast function. However,

modes of their action or specific functional responses elicited by these growth fectors in

trophoblast are not well understood.

Expression of two angiogenic growth fectors, vascular endothelial growth factor

(VEGF) and placenta growth fector (PIGF) in normal trophoblast has been characterized

[20]. Receptors for the VEGF family of growth factors include fins-like tyrosine kinase,

Flt-1 [45,236]) and a kinase insert domain-containing receptor, KDR [47]. Flt-1 binds

VEGF and PIGF with high affinity, while KDR binds only VEGF. Flt-1 and KDR

e}q)ression is primarily restricted to vascular endothelial cells, [49] although recent

evidence shows that trophoblast ej^ress Flt-1 [1,20] (Fig.l). Isolated term trophoblast

express high levels of PIGF and low levels of VEGF when cultured in normoxia (21%

O2). However, strong induction of e3q)ression of VEGF and down regulation of PIGF

occurs \sdien trophoblast are cultured under hypoxic conditions (1% O2). Studies have

shown that both Flt-1 and KDR are also up-regulated by hypoxia [57, 58]). Trophoblast

expression of both VEGF and PIGF is modulated by oxygen tension, suggesting that

trophoblast may directly mfluence local vascular growth, permeability, stability, and

remodeliug during pregnancy. The current research involves investigation of VEGF and

PIGF and their receptors, Flt-1 and KDR, as potential regulators of placental growth and

development. Both VEGF and PIGF are known to be mitogenic to endothelial cells in

■vitro and are able to induce all aspects of angiogenesis in vivo. Even though the

biological functions of VEGF in endothelial cells are well documented, its effects on

trophoblast are not known. Furthermore, the biological functions of Flt-1 are not known.
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Since biological activities mediated by Flt-1 and KDR receptors seem to be different

[64], it is important to determine and compare signaling pathways mediated by Flt-1

receptors in term trophoblast, and KDR- and Flt-1-mediated signaling in endothelial

cells.

The production of PIGF and VEGF by trophoblast and the presence of Flt-1

receptors on trophoblast raises the possibility that both VEGF and PIGF may have active

roles in regulating trophoblast functions through autocrine mechanisms, in addition to

their angiogenic roles in placenta and endometrium. However, the biochemical responses

and physiological significance of Fh-IAHEGF/PIGF interactions in normal trophoblast are

not known.

The long-term goal of this project is to determine the molecular and cellular

responses of normal trophoblast to VEGF and PIGF. Results of these studies may

elucidate novel functions of these angiogenic &ctors in pregnancy. Given that

trophoblast function and vascular development during pregnancy are critical to successful

gestation, these studies may also provide insights in to new therapeutic avenues for

reproductive feilures.

The long term goal of this project will be attained by the following specific aims.

Specific Aims:

1. DejQne the molecular responses of normal trophoblast to PIGF and VEGF stimulation.

1 a. Determine whether exogenous PIGF and VEGF induce MAPK (SAPKs and

ERK) refuses in trophoblast.
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1 b. Con^are VEGF- and PlGF-induced ERK and SAPK responses in trophoblast

and human umbilical vein endothelial cells (HUVE).

1 c. Characterize the upstream regulatory signal transduction conponents

responsible for di^arate ERK and SAPK signal transduction responses in

trophoblast and endothelial cells.

2. Determine the cellular function of PIGF and VEGF in trophoblast.

2 a. Determine the ability of PIGF and VEGF to protect trophoblast from apoptosis.

2 b. Determine the molecular mechanisms responsible for anti-apoptotic effects of

VEGF and PIGF in trophoblast.

MATERIALS AND METHODS

Reagents

Keratinocyte growth media (KGM), keratinocyte basal media (KBM), bovine

pituitary extract (BPE) were purchased from Clonetics Corp. (San Diego, CA) and RPMI

1640 from Bio-Whitaker (Walkersville,MD); Dulbeccos Modified Eagles-Medium

(DMEM) - high glucose (HG), 3-4,5-dimethylthizol-2,5-diphenyl-tetrazolium bromide

(MTT), heparin, wortmannin, and LY-294002 were from Sigma Chemical Co. (St. Louis,

MO). rhVEGF, TNF-a and INF-y were from R&D Systems (Mirmeapolis, MN);

rhepidermal growth fector (EGF), myelin basic protein (MPB), anti-bovine Nek were

from Upstate Biotechnology (Lake Placid, NY). Anti-c-Jun-N-terminal kinase (JNK-1),

extra-cellular signal regulated kinase 2 (ERK-2), p38, goat anti-rabbit horseradish
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peroxidase (HRP)-conjugated antibodies, and glutathione-S-transferase (GST)-c-Jun

fusion protein were fiom Santa Cruz Biotechnology (Santa Cruz, CA). Goat anti-mouse

horseradish peroxidase HRP-conjugated antibody was from Jackson Immuno Research

laboratories (West Grove, PA). Rabbit anti-phosphotyrosine antibody was purchased

from Transduction laboratory (Lexington, KY). Mouse anti-human Bcl-2 antibody was

purchased from DAKO Corporation (Carpinteria, CA). Chemiluminescence reagents

were purchased from Amersham Pharmacia Biotech (Piscataway, NJ). Percoll was

obtained from Pharmacia and Upjohn (Kalamazoo, MI). Anti-phospho Akt and Akt

antibodies were from New England BioLabs (Beverly, MA).

Isolation and Cell Culture

Human term trophoblast were isolated and cultured as follows. 24h prior to

collection of placenta, digestion medium was made up with 25 mM HEPES and IX

HBSS (Ca-H- and Mg-H- free). Two Percoll gradients were prepared (ranging from 25 %

- 50 %) in 5 % increments for every 40-50 gm of tissue. Immediately prior to the

collection of the placenta, trypsin was weighed out in its three digestion aliquots, but was

not added to the digestion media (0.19 gm, 0.25 gm and 0.19 gm added to 150 ml, 100 ml

and 75 ml of digestion media, respectively). Fetal calf serum was aliquoted into 50 ml

tubes (5 ml/tube). Percoll gradients were layered slowly starting with 50 % without

mixing. Immediately after delivery, the placenta was placed on ice. 3-5 cotyledons

(depending on the size) were removed from the placenta, large blood clots and calcium

deposits were removed and the tissue was finely minced with sterile scissors. The minced
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tissue was thoroughly washed with ice-cold PBS through sterile gauge until the PBS

washed through clearly with minimal blood. Approximately 50 g was placed in a large

flask and warmed digestion media containing 0.19 gm of trypsin and 150 pi (300 pg) of

DNase was added. The tissue and digestion media were placed in a shaking incubator

(37°C) for 30 min. This was repeated for two more times with different amounts of

tiypsin (0.25 gm tiypsin + 100 pi (200 pg) DNase /100 ml of digestion media for second

digestion, and 0.19 gm trypsin + 75 pi (150 pg) DNase /75 ml of digestion media for the

third digestion). After each digestion step, the supernatant was collected and passed

throng a Falcon cell strainer and layered over 5 ml of PCS preloaded in 50 ml tubes.

Tubes were centrifiiged 1000 x g (1700 rpms) for 5 min. The supernatant was aspirated

and the cell pellet was resuspended in 8 ml of DMEM-HG and stored at 37°C. After the

third digestion, cells were pooled, additional media was added to help 'wash' the cells,

and the cells were centrifiiged again for 5 min. The pellet was resuspended in 10 ml

DMEM-HG and equal amounts (5 ml each) was layered carefully over the two Percoll

gradients and centrifiiged at 1200 x g for 20-25 min. Trophoblast banded at 34 %-42 %

Percoll, RBCs fell below 25 %, and cell digestion debris collected on the top gradient.

Cell debris was aspirated and layers containing trophoblast were collected and washed

with firesh DMEM-HG and centrifiiged at 1000 x g for 10 min. Wash media was

removed and the cell pellet was resuspended in DMEM-HG. An aliquot of cells was

diluted in DMEM-HG 1:10 and counted on a hemocytometer.

This procedure yields ~ 90 % pure population of trophoblast as assessed by

antibodies to vimentin and cytokeratin [2]. Out of 10 % vimentin-positive cells, ~ 7.5 %
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were macrophages, and the rest were other contaminants like fibroblasts or cellnlar

debris. There were no endothelial cells in the trophoblast preparation. To detect

contaminating macrophages and endothelial cells, trophoblast cultures were analyzed

with monoclonal antibody to CD 68 (clone EBM 11) and CD 31 (clone JCI70 A),

respectively.

Freshly isolated cytotrophoblast were plated in KGM containing insulin, 5 pg/ml;

EGF, 0.1 pg/ml; hydrocortisone, 0.5 pg /ml; and 10 % fetal calf serum (FCS). By 48 h,

mononuclear trophoblast aggregate in to multitiuclear colonies and fuse to form

multinucleated syncytiotrophoblast. Syncytiotrophoblast were rendered quiescent by

incubation in KBM without FCS or mitogens for 18-24 h before treatment with growth

factors. Endothelial cells collected from human mnbilical veins [237] were cultured in

RPMI-1640 with L-glutamine (25 mM) and HEPES (25 mM) supplemented with bovine

pituitary extract (30 pg/ml), 10 % FCS, 219 pg/ml L-glutamine, 90 pg/ml heparin.

Human umbilical vein endothelial (HUVE) cells were cultured to 80 % confluency and

used before passage 8. They were serum-starved in serum free RPMI for 18-24 h before

growth fector treatment.

In Vitro Kinase Assays for JNK and ERK-1 and -2

All the growth fectors used in this study were prepared in sterile PBS and 10 %

BSA. Trophoblast and HUVE cells were treated with 10 ng/ml of VEGF or 10 ng/ml

PIGF or 20 ng/ml EGF along with Ipg/ml heparin for 2.5,5,10, and 20 min. Cells were

lysed in lysis buffer (20 mM Tris-HCl, pH 7.4,200 mM NaCl, 0.1 % NP-40,1 mM
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PMSF, 1 mM Na3V04, and 10 nM NaF) and the lysates were cleared of cellular debris by

centrifugation. Cell lysates were stored at -80°C until ready to use. Protein

concentrations were determined by Bradford assay. Cell lysates (100 jAg of protein for

JNK assay and 50 pg protein for ERK assay) were immunoprecipitated overnight at 4°C

with 0.5 pg/san^le JNK or 0.5 pg/sanq)le ERK-2 antibodies conjugated to protein A/G

agrose beads. The beads were washed three times in lysis butfer and twice in kinase

buffer (25 mM HEPES pH 7.5,25 mM NaCb, 25 mM glycerophosphate). The kinase

reaction for JNK or ERK was performed by incubating the immunoprecipitated proteins

with kinase buffer containing 1 mM DTT, 0.1 mM Na3V04,10 mM ATP, 5 pCi/sample

of (y ̂^P) ATP, and 0.2 pg GST-c-Jun or MBP at room temperature for 30 min. Kinase

reactions were terminated by addition of Laemmli sample buffer and samples were

resolved on 12 % (JNK) or 14 % (ERK) SDS polyacrylamide gels (SDS/PAGE). The

radiolabeled substrate bands were quantified by laser densitometry.

ImmunoDrecipitatinn and Tmmunoblotting

Trophoblast and HUVE cells were treated with 10 ng/ml VEGF or 10 ng/ml

PIGF or 20 ng/ml EGF along with 1 pg/ml heparin for 5 and 10 min. Cells were lysed in

lysis buffer (20 mM Tris-Hcl, pH 7.4,150 mM NaCl, 1 % Triton X-100,1 mM EGTA, 1

mM EDTA, 1 mM PMSF, 10 pg leupeptin, and 1 mM Na3Vo4). For

immunoprecipitation with antisera to Nek, cell lysates were precleared with protein-A

beads for 2 h at 4®C. Precleared lysates (250-300 pg of protein) were

immunoprecipitated with 1-1.5 pg/san5)le Nek antibody and protein-A/G beads overnight
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at4°C. The beads were washed three times in lysis biiflFer. After the third wash, 2X

Laemmli sample buffer was added to samples and samples were boiled for 5 min.

Immunoprecipitated proteins were separated on 12 % SDS-polyacrylamide gels and

blotted onto nitrocellulose membranes by electrotransfer in transfer buffer (20 mM Tris

pH 7.5,150 mM NaCl, 5 % methanol) at 75 volts for 1.30 h. The membranes were

blocked with 1 % BSA in TEST (Tris-buffered saline with 0.1 % Tween-20) for 1 h and

incubated with rabbit anti-phosphotyrosine antibody (1:500,250 pg/ml) in blocking

buffer (TEST with 1 % ESA) overnight at 4°C. The membranes were washed several

times with TEST and then incubated with anti-rabbit antibody conjugated with

horseradish peroxidase (HRP) (1:5000, Jackson Immuno Research Labs) fi)r 30 min and

washed several times with TEST. The enhanced chemiluminescent detection system

(ECL) was used for protein detection. The membrane was incubated in

chemiluminescent reagents for 5 min, covered with plastic wrap and ejqposed to X-ray

film.

For ERK-2 and p38 kinase activity, equal quantities of cell lysates (30-40 pg for

ERK and 80-90 pg for p38 kinase; protein concentrations were determined by Bradford

assay) were separated on 12-14 % SDS-polyacrylamide gels and were transferred to

nitrocellulose membranes. The membranes were blocked with 0.5 % casein in TEST

(Tris buffered saline with 0.1 % Tween-20) for 30 min, incubated with anti-active p38

kinase antibody (1:2000, Promega) or with anti active MAPK antibody (25 ng/ml)

overnight at 4®C. Membranes were washed in TEST several times, and then incubated

with goat anti-rabbit HRP-conjugated antibody (1.5 pg/ml) for 30 min, and washed
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several times with TBST. The proteins were detected with chemiluminescent reagents.

The protein bands were quantitated by laser densitometry.

For the Akt phosphoiylation assay, HUVE cells and trophoblast were grown as

described previously. Before start of serum starvation, cells were washed with PBS, and

serum-free RPMI medixun complemented with 0.1 % bovine serum albumin for HUVE

cells, or KBM without serum for trophoblast, was added. HUVE cells are highly

sensitive to serum starvation and they withstand this stress better if they are

supplemented with BSA. 9-12 h after starvation, cells were washed with PBS and fresh

starvation medium was added with or without 200 nM wortmannin for 30 min or 30 pM

2-(4-morn^holinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002, (Sigma)) for 20 min.

Cells were treated with growth &ctors at indicated concentrations for 15 min. Cells were

lysed in lysis buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1

mM EGTA, 1 % Triton X-100 2.5 mM sodium pyrophosphate, 1 mM p-

glycerophosphate, 1 mM Na3V04,1 pg/ml leupeptin, 1 mM PMSF, 1 mM NaF. Equal

quantities of total cell lysates (80-100 pg of protein) were separated by SDS-PAGE and

transferred to nitrocellulose membranes. Membranes were blocked with 0.5 % casein in

TBST and Akt phosphorylation/activation was detected by incubating the membrane with

rabbit anti-phospho-Akt antibody (1:1000, New England BioLabs) overnight at 4''C.

Membranes were washed with TBST several times and incubated with anti-rabbit HRP-

conjugated antibody (1.5 pg/ml) for 30 min. Membranes were washed with TBST and

the immune conplexes were detected with the enhanced chemiluminescence detection

system as described earlier.
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To control for protein loading, the membranes were stripped with buffer

containing 0.2 M glycine, pH 2.2, 0.1 % SDS, and 10 % Tween 20, for 20 min, washed
}

with TBST and reblocked with blocking buffer for 30 min. The membranes were probed

with anti ERK-2 antibody (0.5 pg/sample) or p38 antibody (0.5 pg/sample), or Akt

antibody (1:1000, New England BioLabs) overnight and developed as above.

For detection of Bcl-2 protein levels, trophoblast and HUVE cells were

maintained in KGM and RPMI-1640 with 10 % FCS and mitogens, respectively. Before

the experiment, complete media was replaced with serum- and -mitogen free basal

medium (con^lemented with 0.01% bovine serum albumin for HUVE cells) or

supplemented with 75 ng/ml VEGF or 75 ng/ml PIGF or 75 ng/ml EGF for the indicated

periods of time. Equal amounts of cell lysates (50 pg-100 pg) were loaded on to 10 %

SDS-polyacrylamide gels and western blotting was done with mouse anti-human Bcl-2

antibody as described above. Anti-mouse HRP-cohjugated antibody (1:5000, Jackson

Tmirmnn Research Labs) was used to detect Bcl-2 by chemiluminescent reagents.

Apoptosis Assays

Trophoblast apoptosis was monitored with DNA fragmentation and MTT assays.

Cultured trophoblast were plated in KGM/10 % FCS and incubated for 4-6 h at 37®C to

allow attachment. Complete media was replaced with DMEM-HG with or without 10

ng/ml VEGF, or 10 ng/ml PIGF, or 10 ng/ml EGF, or 10 % FCS. For experiments

involving cytokines, 10 ng/ml tumor necrosis factor-a (TNF-a) and 100 U/ml interferon-

y (IFN-y) were used to induce apoptosis. For DNA fragmentation analyses, both attached
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and floating cells were collected after 72h and incubated in digestion buffer (50 mM Tris

pH 8,0.5 % sodium laiuyl sarcosine, 0.5 mg/ml Proteinase K, and 10 mM EDTA) for 3 h

at 55°C. Digested cells were treated with DNase-free RNase for Ih at 55®C, and DNA

was extracted twice with phenol/chloroform and once with chloroform. Extracted DNA

was precipitated with ethanol overnight at -80°C. Ten pg of DNA from each treatment

group was resolved on 1.6 % agarose gels, stained with 2 pi of ethidium bromide (1

mg/ml), and photographed.

For the MTT assay, trophoblast were plated in 96 well plates (600,000 cells /

well). Media from quadruplicate cultures were replaced with DMEM-HG containing 0.5

mg/ml MTT(3-4,5-dimethylthizol-2,5-diphenyl-tetrazolium bromide) and incubated at

37®C for 3.5-4 L Intracellular formazan was extracted with isopropanol, and absorbance

of each well was measured at 570 and 650 nm. Percentage of apoptosis was calculated

after normalizing to control cultures containing 10 % PCS.

RESULTS

PIGF Induces JNK and d38 Kinase Activities, but Not ERK-1 and -2 Activities in

Term Trophoblast

Our previous studies documented that Flt-1 receptors expressed in normal human

trophoblast are functional and that VEGF induces JNK activity [20]. To extend these

initial findings, and to determine whether PIGF induces similar activation of the Flt-1

receptor, isolated normal syncytiotrophoblast were treated with rhPlGF, and time-course

45



induction of JNK, p38 and ERK-1/2 activities were determined Exogenous rhPlGF

rapidly induced transient JNK activity (Fig 3 A). Induction of JNK activity was evident

at 5 min. and the response peaked (mean 6.1 ± 0.5 fold) at 10 min before diminishing at

20 min Longer time course experiments showed that JNK activity levels returned to

background levels by 40 min (data not shown). Activation of JNK by PIGF was

qualitatively and quantitatively similar to the increase in JNK induced within 10 min by

UV treatment a known activator of JNK [238]. Addition of exogenous rhPlGF to

trophoblast also resulted in a time-dependent induction of p38 kinase activity (mean 7.5 ±

0.5 fold at 10 min.; Fig 3 B) (p = 0.0007, ANOVA). In contrast to these SAPK results,

PIGF did not induce significant (p>0.14, ANOVA) ERK-1 and -2 activity in

syncytiotrophoblast (mean 2.2 ± 0.53 fold at 10 min.; Fig 3 C). Treatment of the

syncj^iotrophoblast with EGF resulted in a large increase in ERK-1 and -2 activity,

indirating that the ERK-1 and -2 pathway was functional in the cultured trophoblast.

PIGF Induces ERK-1 and-2 Kinase Activities, but not JNK Kinase Activity in

Endothelial Cells

Since endothelial cells also express Flt-1 receptor, signal transduction responses

to PIGF was determined in HUVE cells. The ability of PIGF to induce JNK and p38

kinase, but not ERK-1 and -2, in syncytiotrophoblast is in sharp contrast to the effects

elicited in HUVE cells. Exogenous rhPlGF induced large, transient increases in ERK-1

and -2 activities in HUVE cells (Fig 4 A). PIGF induced a peak activation (mean 20 ±

2.8-fold) of both ERK-1 (p44) and ERK-2 (p42) in HUVE cells by 5niin, which returned
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Figure 3: PIGF Induces JNK/SAFK and p38 Kinase Activities But Little ERK-1
and- 2 Activities In Trophoblast. in vitro kinase assays/western blot analysis
demonstrating PIGF induction of JNK activity (A), p38 kinase activity (B), and ERKl &
2 activities (C) in trophoblast. Syncytiotrophoblast were treated with rhPlGF (10 ng/ml)
for the indicated time intervals. PIGF rapidly induced peak JNK activity (mean 6.1 ± 0.5-
fold by 10 min), peak p38 activity (mean 7.5 ± 0.5- fold) by 5 min, but not significant
ERKl & 2 activities (mean 2.2 ± 0.5- fold by 2.5 min) (p>0.14). Results are from
representative ejqperiments that were repeated four times vith conqjarable results (p =
0.0007, ANOVA). pAb, polyclonal antibody.
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Figure 4; PIGF induces ERK-1 and-2 Activities but Not JNK/SAPK Activity In
Human Umbilical Vein Endothelial Cells (BnJVECs). HUVECs were treated with
rhPlGF (10 ng/ml) for the indicated time points. (A); western blot analysis (with anti
active MAPK) demonstrating ERKl & 2 activities, (B); in vitro kinase assay
demonstrating induction of JNK/SAPK activity. PIGF (A) induces ERKl & 2 activities
(mean20 ± 2.8-foId at 5 min) (p < 0.03, ANOVA) but not JNK/SAPK activity. Results
are from representative e3q)eriments that were repeated three times with comparable
results. pAb, polyclonal antibody.
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to background levels by 20 min (p < 0.03). This response was similar to that invoked by

the known endothelial cell mitogen, EGF. PIGF did not induce JNK activity (Fig 4 B) in

HUVE cells.

VEGF Induces JNK and p38 kinase Activities, but not ERK-1 and -2 Activities In

Term Trophoblast

Like PIGF, VEGF binds to Flt-1. To determine the signal transduction properties

of VEGF in term trophoblast, similar ejqjeriments as shown in Fig 3 were conducted.

Normal syncytiotrophoblast were treated with rhVEGF and time-course induction of

JNK, p38, and ERK-1 and -2 activities was determined. Exogenous rhVEGF rapidly

induced transient JNK activity (Fig 5 A). JNK activity peaked (mean 3 ± 0.6-fold) at 10

min, before diminishing at 20 min and returned to basal level at 40 min (data not shown)

(p<0.01). UV treatment was used as a positive control for JNK activation. Like PIGF

VEGF also induced p38 kinase activity (mean 7 ± 0.5-fold) at 10 mirL (Fig 5 B) (p <

0.04). Again like PIGF, VEGF did not induce significant ERK-1 and 2 activities in

syncytiotrophoblast (mean 2 ± 0.5-fold at 5 min; Fig 5 C).

VEGF Induced ERK-1 and -2 Kinase Activities, but not JNK Kinase Activity in

Endothelial Cells

Kinase activity induced by VEGF in HUVE cells was very similar to that of

PIGF. In contrast to the effects elicited by VEGF in trophoblast, VEGF induced a robust

transient increase in ERK-1 and -2 activities in HUVE cells (Fig 6 A). VEGF induced

peak activation of both ERK-1 and -2 (mean 9 ± 1.4-fold) in HUVE cells by 10 min
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Figure 5: VEGF Induces JNK/SAPK and p38 Kinase Activities but Little ERK-1
and-2 Activities In Trophoblast. Syncytiotrophoblast were treated with rbPlGF
(lOng/ml) for the indicated time intervals, in vitro kinase assays/Western blot analysis
demonstrating VEGF induction of INK activity (A), p38 kinase activity (B), and E^l
& 2 activities (C) in trophoblast. VEGF rapidly induces peak JNK/SAPK activity
(mean 3 ± 0.6 fold) by 10 min (p < 0.01), p38 peak activity (mean 10 ± 0.5 fold) by 5 min
(p < 0.04, ANOVA) but not significant ERKl & 2 activities. Results are from
representative experiments that were repeated four times with comparable results. pAb,
polyclonal antibody.
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Figure 6; VEGF Induces ERK-1 and-2 Activities But Not JNK/SAPK Activity In
Human Umbilical Vein Endothelial Cells (HUVE cells). HUVE cells were treated
with rhVEGF (10 ng/ml) for indicated time points. (A); Western blot analysis (with anti
active MAPK) demonstrating ERKl & 2 activities, (b); in vitro kinase assay
demonstrating induction of JNK/SAPK activity. VEGF (A) induces ERKl & 2 activity
(mean 9 ± 1.4- fold) by 5min (p < 0.03, ANOVA) but not JNK/SAPK activity. Results
are jfrom representative e3q)eriments that were repeated two times with comparable
results. pAb, polyclonal antibody.
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which returned to basal levels by 20 min (p < 0.03) VEGF, like PIGF, did not induce

INK activity in endothelial cells (Fig 6B).

Collectively, the above data show that although PIGF and VEGF bind Flt-1

receptors on trophoblast and endothelial cells, the signal transduction pathways utilized

by these cells are clearly different. In term trophoblast, Flt-1-mediated activation of the

JNK/SAPK pathway may be the major pathway for signaling in response to PIGF and

VEGF, while in endothelial cells, ERK-1 and-2 may be the major pathway for signal

transduction. Alternatively, these disparate signal transduction responses of PlGF/Flt-1

and VEGF/Flt-l/KDR in trophoblast and endothelial cells may reflect differences in

proliferation potentials between the cell types, or possibly signaling tbrnngh KDR in

HUVE cells.

PhosDhorvIation and Association of PLC-v and Nek in Endothelial flells

Nek and PLC-y are known to associate with both Flt-1 and KDR in Flt-1- and -

KDR expressing Sf9 insect cells, the endothelial cell line MSI, rat sinusoidal endothelial

cells and KDR- ejqpressing fibroblasts [66, 70,71]. Nek acts as a mediator in the INK

pathway [77]. Several growth &ctors like EGF, FGF and VEGF are known to stimulate

PLC-y activity, and in turn activate ERK pathways and induce proliferation [68,91, 98].

Furthermore, in bovine aortic endothelial cells, Nek and PLC-y are phosphorylated in

response to VEGF [98]. To determine v^iether signal transducer or adapter proteins are

responsible for the observed disparate signal responses of VEGF/PlGF/Flt-1 in

trophoblast and HUVE cells, phosphoproteins from VEGF - or PIGF- stimulated HUVE
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cells were inununoprecipitated with anti- Nek antibody and analyzed by western blotting

with antipbospbotyrosine antibody. The anti- Nek antibody used is against an epitope

wbicb is common to both PLC-y and Nek, and thus recognizes both PLC-y and Nek.

Both PLC-y (mean 3 ± 0.8- fold at 5 min) (Fig 7 A) and Nek (mean 3.2 ± 1.0- fold at 10

min) (Fig 7 B) were pbospborylated in response to VEGF in endotbebal cells. This

suggests that PLC-y and Nek may be involved in VEGF- induced signal transduction in

these cells. These results are consistent with the study by Guo et al [68] in wbicb VEGF

induced pbospborylation of both PLC-y and Nek.

Treatment of endotbebal cells with PIGF resulted in pbospborylation of PLC-y

(mean 3.2 ± 0.8- fold at 10 min) (Fig 8 A) and Nek (mean 3.3 ± 0.6-fold at 10 min) (Fig 8

B). These results differ from other studies in wbicb PIGFA^GF did not activate these

signal transducers in transfected PAE/KDR and PAE/Flt-1 cells [72]. PAE ceUs do not

e3q)ress KDR and Flt-1 while these receptors are erqrressed costitutively in HUVE cells.

Thus, cells lacking endogenous receptors may not activate certain signaling molecules.

PLC-y and Nek are known to be downstream targets of KDR, while association of PLC-y

and Nek with Flt-1 is not very web understood.

Phosphorvlation and Association of PLC-y and Nek in Tronhohlast

Similarly to the results observed in endotbebal cells, exogenous VEGF induced

peak pbospborylation of PLC-y (mean 3 ± 1.0- fold at 5 min) (Fig 9 A) and Nek (mean 3

± 1.0- fold 10 min) (Fig 9 B) intropboblast. Exogenous PIGF also induced

pbospborylation of both PLC-y (mean 3.1 ± 0.8- fold at 10 min) (Fig 10 A) and Nek
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F^re 7: VEGF Induces Phosphoiylation of PLC-y And Nek In Human Umbilical
Vein Endothelial Cells (HUVE Cells). HUVE cells were treated with rhVEGF (10
ng/ml) for indicated time points. Proteins were immunopreciphated with anti-Nck Ah
and western blotted with anti-pTyr Ah. Representative western bolts demonstrating
VEGF induced pho^horylation of PLC-y (A) and Nek (B). VEGF rapidly induced
phosphorylation of PLC-y (mean 3 ± 0.8-fold) by 5 min and induced phosphorylation of
Nek (mean 3.2 ±1.0- fold) by 10 min. Results are from representative e7q)eriments that
Were repeated three times with coniparable results.
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Figure 8: PIGF Induces Phosphorylation of PLC^ and Nek in Human Umbilical V
ein Endothelial Cells (HUVE cells). HUVE cells were treated with rhVEGF (10 ng/ml)
for indicated time points. Proteins were immunoprecipitated with anti-Nck Ab and
western blotted with anti-pTyr Ab. Representative western bolts demonstrating PIGF
induced phosphorylation of PLC-y (A) and Nek (B). PIGF rapidly induced
phosphorylation of PLC-y (mean 3.2 ±0.8 fold) by 10 min, and induced phosphorylation
of Nek (mean 3.3 ±0.6-fold) by 10 min. Results are from representative experiments that
were repeated three times with comparable results.
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Figure 9: VEGF Induces Phosphorylation of PLC-y and Nek in Trophoblast.
Trophoblast cells were treated with rhVEGF (10 ng/ml) for indicated time points.
Proteins were immunoprecipitated with ant-Nck Ab and western blotted with anti-pTyr
Ab. Representative western blots demonstrating VEGF induced phosphorylation of PLC-
y (A) and Nek (B). VEGF rapidly induced phosphorylation of PLC-y (mean 3 ± 1.0-fold)
by 5 min, and induced phosphorylation of Nek (mean 3 ± 1.0-fold by 10 min) by 5 min.
Results are from representative experiments that were repeated two times with
comparable results.
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Figure 10: PIGF Induces Phosphorylation of PLC-y and Nek In Trophoblast.
Trophoblast were treated with rhPlGF (lOng/ml) for indicated time points. Proteins were
immimoprecipitated with anti-Nck Ab and Western blotted with anti-pTyr Ab.
Representative western blots demonstrating PIGF induced phosphorylation of PLC-y (A)
and Nek (B). PIGF rapidly induced phosphorylation of PLC-y (mean 3.1 ± 0.8-fold) by
10 min, and induced phosphorylation of Nek (mean 3.5 ±1.0 fold) by 10 min. Results
are from representative experiments that were repeated two times with con^arable
results.



(mean 3.5 ± 1.0-fold at 10 min) (Fig 10 B). EGF was used as a positive control for

phosphorylation of PLC-y and Nek. EGF induced phosphorylation of PLC-y and Nek

(mean 2.7 ± 0.5-fold). VEGF/PIGF induced phosphorylation of PLC-y and Nek was as

strong as EGF induced phosphorylation of these molecules. These findings in

trophoblast are different from other reports in which ectopically ejqjressed Flt-1 receptors

in PAE cells and fibroblasts did not activate PLC-y and other signaling molecules.

Effects of both VEGF and PIGF on Nek activation in endogenously ejqpressing Flt-1 cells

are not known. Phosphorylation of Nek usually leads to its activation. This study shows

that PLC-y and Nek are phoq)horylated in response to VEGF/PIGF and they may be

involved Flt-1 mediated signal transduction.

PIGF and VEGF Protect Trophoblast from Apoptosis Induced by Growth Factor

Withdrawal

Activation of JNK and p38 Idnase has been shown to protect some cell types from

apoptosis [129]. In order to determine whether PIGF and VEGF function similarly in

trophoblast, their effects on the fragmentation of DNA and metabolic activity of

trophoblast were examined. Syncytiotrophoblast maintained in 10 % FCS showed little

DNA fragmentation even after 72 h; however, cultures subjected to serum deprivation

(72 h) demonstrated significant DNA fragmentation. EGF, a known inducer of ERK-1

and -2 in trophoblast did not prevent apoptosis. However, exogenous PIGF (10 ng/ml)

(Fig 11 A) and VEGF (10 ng/ml) (Fig 11 B) significantly protected the cells maintained

in serum-free media for 72 h from apoptosis as shown by no DNA fragmentation.
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Figure 11: PIGF and VEGF Inhibit Growth Factor Withdrawal-induced Apoptosis
in Trophoblast. Trophoblast were cultxired for 4h and complete media was replaced
with serum free media containing either no supplements, 10 ng/ml PIGF, 10 ng/ml VEG,
20 ng/ml EGF, or 10 % FCS. After 72 h, samples were analyzed for DNA fr̂ mentation.
PIGF (A) and VEGF (B) protected the trophoblast from apoptosis, while EGF had only a
marginal effect.



The DNA fî mentation results were confirmed by measuring the loss of

trophoblast viability as measured by their metabolic capacity to reduce MTT (Yui et al.

[196]) (Fig 12). In four separate experiments, serum deprivation significantly (p <

0.0005, ANOVA) reduced MTT activity as compared with control trophoblast cultured in

10 % PCS. Furthermore, cultures receiving rhPlGF significantly increased MTT

reduction to 186 % of that foimd under serum-firee culture conditions (p < 0.005). The

addition of PIGF to serum-fi-ee cultures increased MTT activity to 145 % of cultures

containing 10 % PCS (p = 0.05). In parallel experiments, the addition of rhVEGF

significantly increased MTT reduction to 112 % of that levels found imder serum-Jfree

culture conditions (p < 0.01), and serum deprivation resulted in significant reduction in

MTT activity conpared to trophoblast cultured in 10 % PCS (p < 0.05). In contrast, the

addition of VEGP to serum- fi:ee cultures increased MTT activity to 130 % of cultmes

containing 10 % serum (Pig 13). Thus, exogenous PIGP and VEGP protect trophoblast

fi-om serum- deprivation induced apoptosis, and suggest that PIGPA^GP- mediated

activation of JNK and p38 pathways in term trophoblast may facilitate cell survival.

PIGF and VEGF Do Not Protect Trophoblast From Cvtokme Induced Apoptosis

Tumor necrosis factor-alpha (TNP-a) and gamma interferon (IPN-y) are

expressed by cytotrophoblast within human placental villi during normal pregnancy [193,

196]. EGP is known to protect trophoblast fi-om TNP-a- and IPN-y - induced apoptosis

in vitro [180]. In addition, a recent study showed that VEGP inhibits TNP-a- induced

apoptosis in endothelial cells [197]. Therefore, the next experiment was designed to
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Figure 12: PIGF Protects Trophobiast From Growth Factor Withdrawal-Induced
Apoptosis. Trophobiast were isolated and cultured for 4h and complete media was
replaced with serum free media containing either no supplements or 10 ng/ml PIGF or 20
ng/ml EOF or 10 % serum. Cell viability was measured by MTT reduction. MTT
reductive capacities were determined after 48 hours and normalized to control cultures
(10 % serum). Serum depravation significantly (p < 0.0005) reduced MTT activity, while
addition of PIGF significantly (p < 0.005, ANOVA) increased MTT activity. Addition of
PIGF protects trophobiast from apoptosis. Results shown are mean % ± SEM of
quadruplicate wells of 4 independent e3q)eriments.
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Figure 13: VEGF Protects Trophoblast from Growth Factor Withdrawal-Induced
Apoptosis. Trophoblast were isolated and cultured for 4 h and complete media was
replaced with serum free media containing either no supplements, or 10 ng/ml VEGF or
20 ng/ml EOF or 10 % serum (FCS). Cell viability was measured by MTT reduction.
MTT reductive capacities were determined after 48 hours and normalized to control
cultures (10 % serum). Serum deprivation significantly (p <0.0005) reduced MTT
activity, while addition of VEGF significantly (p<0.01, ANOVA) increased MTT
activity. Addition of VEGF protects trophoblast from apoptosis. Results shown are mean
% ± SEM of quadruplicate wells of 4 independent ejq)eriments. SF = serum free.
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determine if VEGF and PIGF provided similar protection from TNF- a- and - IFN- y

induced apoptosis in trophoblast.

The MTT assay was used to measure TNF-a- and IFN-y - induced apoptosis. As

shown previously [196], significant (P < 0.005) apoptosis was induced in trophoblast

with TNF-a and IFN-y [180] and this apoptosis was inhibited with exogenous EGF (p <

0.01). In contrast, neither exogenous VEGF (p > 0.90) (Fig 15) nor PIGF (p > 0.80) (Fig

14) was able to inhibit significantly the cytokine-induced apoptosis. Thus, the

mechanism by which PIGFA^GF protects trophoblast from apoptosis appears to be

different than that of EGF, and this difference may be due to different signal transduction

pathways that each activates. Moreover, PIGF and VEGF may only provide protection

against stress-induced apoptosis by SAPK activation, but not against cytokine-induced

apoptosis, while EGF, in contrast, may provide protection against cytokine-induced

apoptosis by ERK activation, but may not affect trophoblast survival in the absence of

growth factors.

Statistical Anatysis

Normalized data were con^ared by one-sample t-test against control values (100

%), differences between multiple treatment groups were analyzed by ANOVA, and

significance between two treatments groups determined by Tukey's honest significant

difference post-hoc conqjarison. Statistics were calculated with STATISTICA (StatSoft,

Inc., Tulsa, OK), and significance p<0.05.
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Figure 14: PIGF Does Not Inhibit Pro-inflammatoiy Cytokine Induced Apoptosis in
Trophoblast. Trophoblast were cultured for 4h and complete media was replaced with
serum free media containing either no supplements, or 10 % serum or 10 ng/ml TNF- a +
100 U/ml IFN-y or TNF-a + IFN-y +10 ng/ml PIGF or TNF-a + IFN-y + 20 ng/ml EOF.
Cell viability was measured by MTT reduction. MTT reductive capacities were
determined after 48 h and normalized to control cultures (10 % serum). TNF-a and IFN-
y significantly (p< 0.005) reduced MTT activity. Addition of PIGF did not protect cells
from TNF- a/IFN- y induced apoptosis (p > 0.80). However, addition of EGF
significantly (p <0.01, ANOVA) inhibited cytokine induced apoptosis. Results shown
are mean % ± SEM of quadruplicate wells of 4 independent experiments.
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Figure 15: VEGF Does Not Inhibit Pro-Inflammatory Cytokine- Induced Apoptosis
in Trophoblast. Trophoblast were cultured for 4h and complete media was replaced with
serum free media containing either no supplements, or 10 % serum (PCS) or 10 ng/ml
TNF- a + 100 U/ml IFN-y or TNF-a + IFN-y + 10 ng/ml VEGF, or TNF-a + IFN-y + 20
ng/ml EOF. Cell viability was measured by MTT reduction. MTT reductive capacities
were determined after 48 h and normalized to control cultures (10 % serum). TNF-a and
IpN-y significantly (p < 0.005) reduced MTT activity. Addition of VEGF did not protect
cells from TNF- a/IFN- y- induced apoptosis (p> 0.90). However, addition of EGF
significantly (p <0.01, ANOVA) inhibited cytokine-induced apoptosis. Results shown
are mean % ± SEM of quadruplicate wells of 4 independent e7q)eriments.
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VEGF but Not PIGF Activates Akt Kinase in Endothelial Cells

The apoptosis studies indicated that both PIGF and VEGF may act as survival

factors for term trophoblast as they both protect trophoblast from stress (growth factor

withdrawal)- induced apoptosis. It has been recently shown that the survival signals

mediated by various growth fectors and cytokines may be dependent upon the PI3-

kinase/Akt signal transduction pathway. Akt phosphorylation/activation was monitored

to determine if VEGF and PIGF mediate their survival effects in endothelial cells through

PI3-Kinase/Akt. Akt is activated by phosphorylation within the activation loop at Thr308

and within the C-terminus at Ser473. The PhosphoPlus Akt antibody, used in this

e3q)eriment recognizes Akt only when phosphorylated at Ser473 and it does not cross

react with related femily members such as PKC or p70 S6 Idnase (New England BioLabs,

product list). Thus, phosphorylation/ activation of Akt detected by western blot analysis

reflects its activated state. Additionally, phosphorylation/activation of Akt in response to

VEGF/PIGF was confirmed by Akt kinase assay (data not shown). HUVE cells were

treated with VEGF or PIGF (50 ng/ml) with or without the PI-3 Kinase inhibitors

wortmannin or LY294002 compoimd. Activation of Akt was determined by western blot

analysis with anti-phospho Akt antibody. VEGF induced Akt kinase activity at 15 min

(mean 2.5 ± 0.5- fold at 5 min) in HUVE cells (Fig 16 A). A 30 min preincubation with

200 nM wortmannin or 20 min with LY294002 blocked Akt phosphorylation /activation

induced by VEGF. Wortmannin is also known to inhibit myosiu light chain kinase and

phospholipase D, while LY 294002 specifically inhibits PI-3 kinase. Thus, in

combination, these two PI-3 kinase inhibitors show specific inhibition of PI-3 kinase
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Figure 16: VEGF but Not PIGF Activates/Phosphorylates Akt Kinase in Human
Umbilical Vein Endothelia! Cells (BTUVE cdls). HUVE cells were treated with VEGF
(50 ng/ml) or rhPlGF (50-100 ng/ml) with or without wortmannin (200 nM for 30 min) or
LY294002 (30 ̂ iM for 20 min) for indicated time points. Western blots (with anti-
pho^ho Akt antibody) demonstrating VEGF induced Akt phosphorylation/activity.
VEGF (A) induced Akt phosphorylation/activity (mean 2.7 ± 0.9- fold) at 15 min while
PIGF (B) did not induce Akt activity. Results are from representative eiqieriments that
were repeated two times with comparable results. pAb, polyclonal antibody.
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mediated Akt phosphorylation/activation. However, PIGF had no effect on Akt

phosphorylation/activation (Fig 16 B). Treatments with PIGF for shorter time points (5

and 10 min) did not elicit any Akt activity in these cells. These results further suggested

that the survival effect of VEGF in endothelial cells is mediated through KDR but not

Flt-1. PIGF, which binds Fk-l only, did not induce phosphorylation/activation of Akt.

VEGF but not PIGF Activates Akt Kinase in Trophoblast.

Similarly to the endothelial cells, VEGF induced phosphorylation/activation of

Akt kinase (mean 3 ± 0.5- fold at 15 min) in trophoblast (Fig 17) and this activation was

PI-3 kinase dependent. Pre-treating trophoblast with wortmannin abolished VEGF-

induced Akt activity. In contrast, PIGF did not induce phosphorylation/activation of Akt

kinase in trophoblast (Fig 17). These results suggested that Akt may play a role in

mediating survival effects of VEGF in trophoblast. The mechanism by which Akt

protects trophoblast from apoptosis is not known. Akt is known to exert its protective

effect in several ways. Akt phosphorylates the anti-apoptotic protein Bad, making it

unavailable to heterodimerize with Bcl-2 [202]. Additionally, Akt has been reported to

translocate to the nucleus following the stimulation of cells with growth frictors,

suggesting that it may have nuclear targets that could inhibit apoptosis [239]. Thus, there

are several ways in which VEGF-activated Akt could protect trophoblast from apoptosis.

Survival effects of PIGF in trophoblast may be mediated through P13-kinase/Akt-

independent signaling.
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Figure 17: VEGF but Not PIGF Activates/Phosphoiylates Akt Kinase in
Trophoblast Tiophoblast were treated with VEGF (50 ng/ml) or rhPlGF (50 xig/ml)
with or without wortmaimin (200 nM for 30 min) or LY294002 (30 pM for 20 min) for
indicated time points. Western blots (with anti- phospho Akt antibody) demonstrating
phosphorylation Akt activity. VEGF induces phosphorylation/Akt activity (mean 3-fold)
at 15 min (A), but PIGF did not induce phosphorylation/Akt activity (B). Results are
from representative e^iperiments that were repeated two times with conparable results.
pAb, polyclonal antibody.
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VEGF but not PIGF Induces Expression of Anti-apoptotic Protein Bcl-2 in

Endothelial Cells

Many cells resist apoptosis by regulating apoptotic proteins like Bcl-2 or Bc1-Xl.

Overe3q)ression of Bcl-2 in some cell types is known to protect them from apoptosis

[240]. These fitidings suggest that the viability of certain cytokine -dependent cells

depends on ejqjression of Bcl-2. Some growth factors like VEGF and EOF are known to

increase Bcl-2 e5q>ression in'endothelial cells and keratinocytes, respectively, under

serum withdrawal conditions [14,207]. To determine if VEGF/PIGF modulate

expression of anti-apoptotic proteins, we looked at protein levels of Bcl-2 by western blot

analysis in HUYE cells treated with VEGF or PIGF. Bcl-2 protein levels increased 18 h

- 36 h after the addition of VEGF (mean 3 ± 0.5- fold) as detected by western blot

analysis with anti-Bcl-2 antibody (Fig 18 A). In contrast, PIGF had no effect on Bcl-2

protein levels (Fig 18 B). This observation, along with the VEGF induced- activation of
4

Akt, suggested that VEGF may mediate its survival activity in HUVE cells throng anti-

apoptotic proteins like Bcl-2, while PIGF may not act as a survival factor for endothelial

cells. Alternatively, observed survival effects in response to growth fectors in HUVE

cells may be mediated only through KDR and not Flt-1. Since PIGF binds only to Flt-1,

it may not have any effect on endothelial cell survival.

VEGF and PIGF do not Affect BcI-2 Protein Levels In Term Troohoblast

Bcl-2 is expressed in syncytiotrophoblast throughout pregnancy [228-230].

Expression of Bcl-2 in syncytiotrophoblast suggests that it may protect trophoblast from
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Figure 18: VEGF but Not PIGF Induces Expression of Bcl-2 Protein in Human
Umbilical Vein Endothelial Cells (HUVE cells). HUVE cells were treated with VEGF
(50 ng/ml) or PIGF (50 ng/ml) or EGF (50 ng/M) 18 h, 36 h, and 36 h. Western blots
(with anti-Bcl-2 Ab) as shown demonstrating Bcl-2 protein levels. VEGF up-regulated
Bcl-2 protein levels by 18h in serum deprived HUVE cells (mean 3.2 ± 0.5-fold) (p <
0.01) (A), vdiile PIGF had no effect on Bcl-2 protein levels (B). Results are from
representative ejq)eriments that were repeated two times with comparable results. C =
control (no treatment), V = VEGF, P = PIGF, E = EGF.

71



apoptosis [231,232]. To detennine if VEGF and PIGF regulate Bcl-2 expression and

activity in trophoblast I looked at Bcl-2 protein levels. In contrast to HUVE cells, VEGF

did not affect Bcl-2 protein levels in trophoblast. Furthermore, western blot analysis with

Bcl-2 antibody detected Bcl-2 in both the phosphorylated and unphosphorylated states in

term trophoblast (Fig 19 A & B). Like VEGF, PIGF did not upregulate Bcl-2 (Fig 19 B),

and neither VEGF nor PIGF affected phosphorylation of Bcl-2. The anti-cancer drug,

Taxol, is known to induce phosphorylation of Bcl-2 in some cells. Taxol treated MCF-7

cells (breast carcinoma cells) were used as a positive control for Bcl-2 phosphorylation.

No change in Bcl-2 protein levels observed in trophoblast are consistent with the

assxunption that upregulation of Bcl-2 requires signaling through KDR but not Flt-1 [15].

DISCUSSION

Collectively, results of this study demonstrated that both VEGF and PIGF have

active roles in regulating trophoblast function. Additionally, this study contributes to

further understanding of Flt-1- mediated signal transduction responses in general (Fig 20

and 21).

Expression of both VEGF and PIGF and their receptor Flt-1 on trophoblast

suggests that both of these growth factors may act in an autocrine manner to regulate

trophoblast function. However, to date there is no biochemical or physiological evidence

for such a role. This study shows that PIGF induced transitory activation of the SAPKs,

JNK and p38 kinase, with little or no induction of the ERK-1 and -2 pathways. Sunilarly,

VEGF also induced the activation of JNK and p38 kinase with little activation of ERK-1
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Figure 19; VEGF and PIGF do Not AfTect Bcl-2 Protein Levels in Term
Trophoblast Trophoblast were treated with VEGF (50 ng/ml) or PIGF (50 ng/ml) or
EGF (50 ng/ml) for 24 h, 48 h, and 72 L MCF-7 cells (used as positive control) were
treated with TaxoL Western blots (with anti-Bcl-2 Ab) as shown demonstrating Bcl-2
protein levels. Both VEGF (A) and PIGF (B) had no effect on Bcl-2 protein levels but
Bcl-2 was detected in both the unphosphorylated and phosphorylated states in
trophoblast. Results are from representative experiments that were repeated two times
with comparable results. C == control (no treatment), V = VEGF, P = PIGF, E = EGF, T =
TaxoL
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Figure 20: Flt-l Mediated Signal Transduction Pathways in Trophoblast.
Flt-l = receptor; VEGF = vascular endothelial growth factor; PIGF = placenta growth
Factor; Nek and PLC-y = adapter proteins; JNK = c-Jun-amino terminal kinase; p38 =
p38 kinase; ERK = extra cellular signal regulated kinase; Akt = Akt kinase; Bcl-2 = anti-
apopototic protein.
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Figure 21: Flt-1/KDR Mediated Signal Transduction Pathways in Human Umbilical
Vein Endothelial Cells.

FIt-1 = receptor; KDR = receptor; VEGF = vascular endothelial growth fector; PIGF =
placenta growth factor; Nek and PLC-y = adapter proteins; JNK = c-Jun-amino terminal
kinase; p38 = p38 kinase; ERK = extra cellular signal regulated kinase; Akt = Akt kinase;
Bcl-2 = anti-apopototic protein
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and -2 kinase. In contrast, PIGF and VEGF induced strong ERK-1 and ERK-2 activities,

with no induction of JNK pathway in human umbilical vein endothelial cells (HUVE

cells). Additionally, both VEGF and PIGF phosphorylated activated signal transducers,

like PLC-y and Nek, upstream of MAPKs in endothelial cells. Similarly, both these

adapter proteins, PLC-y and Nek were phosphorylated in trophoblast in response to

VEGF and PIGF (Fig 22). VEGF and PIGF- mediated activation of JNK and p38

pathways may protect the trophoblast from apoptosis induced by growth &ctor

withdrawal.

VEGF, but not PIGF phosphorylated/activated Akt in trophoblast. While, Akt

kinase activity/ phosphorylation was not induced in response to PIGF in trophoblast. The

antiapoptotic protein Bcl-2 was detected in both phosphorylated and unphosphorylated

forms in trophoblast, but PIGF and VEGF had no effect on either expression or

phosphorylation of Bcl-2 in these cells (Fig 22). These results confirm that VEGF and

PIGF function as survival factors for term trophoblast and suggest that they may act in a

Bcl-2- independent manner. These data are the first direct evidence for a functional role

of PlGF/Flt-1 and VEGF/Flt-1 in mediating trophoblast survival.

In spite of recent atten^ts to characterize the biochemical functions of Flt-1 in

both endothelial cells and nonendothelial cells, functions of Flt-1 are still not clearly

understood. Monocytes [50] and trophoblast [1,20] are the only normal non-endothelial

cell types that ejqpress Fk-l receptors. However, there are no studies characterizing the

moleciilar fimctions of Flt-1 in these nonendothelial cells. Approaches to study Flt-1-

mediated events in endothelial cells are complicated by the co-presence of KDR
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receptors. There are several studies which report significant rei^onses to VEGF in

endothelial cells. However, activation of the Flt-1 receptor by either PIGF or VEGF have

been reported to have little or no effect in some studies [31,55,64,65,241,242], while

other studies have shown significant biological responses, such as angiogenesis,

chemotaxis, and proliferation [64,67,243-246]. The reason for these discrepant findings

are not clear, but they may be due to different cell types or assay end points [35]. Known

cellular functions of PlGF/Flt-1 or VEGF/Flt-1 are limited to monocytes and first

trimester trophoblast cell line. Both VEGF and PIGF act as mitogens for human first

trimester extraviUous trophoblast cell line [50,73,74]. PIGF is also known to stimulate

ERK and mitogenicity in Flt-1-expressing porcine aortic endothelial cells [72].

Additionally, PIGF has been reported to have weak to moderate proliferative effects on

HUVE cells [36,41]. In monocytes, both VEGF and PIGF induce chemotaxsis and tissue

factor production. Endogenously e)q)ressed Flt-1 in these cells mediates the cellular

responses to VEGF and PIGF [50].

The present study showed that PIGF and VEGF, despite binding to the similar Flt-

1 receptors on trophoblast and HUVE cells, produced different biochemical responses. In

primary trophoblast, PIGF and VEGF induced rapid activation of INK and p38 kinase

activities. In contrast, both PIGF and VEGF induced strong activation of ERK-1 and -2,

but not JNK in endothelial cells. This PIGF- induced activation of ERK activity in

endothelial cells is consistent with a recent study in which PIGF induced ERK activity in

porcine aortic endothelial cells overexpressing Flt-1 [72]. Activation of ERK-1 and 2 in

response to VEGF in endothelial cells has been well documented. However, this
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response may be mediated through the KDR receptor, because activation of Fit-1 by

VEGF induced little or no cellular responses in some studies [64]. VEGF- induced

activation of Fit-1 did not stimulate cellular responses like ERK activation, mitogenicity

or migration. However, VEGF induced all these cellular responses in KDR-expressing

PAE cells [72].

The upstream regulatory factors controlling the disparate signal transduction

responses mediated by Flt-1 receptor in HUVE cells and trophoblast are not known.

However, they may reflect differences in proliferative potentials between cell types or

possible signal facilitation by KDR in HUVE cells, or the presence or absence of yet-to-

be dejSned -signaling molecules in trophoblast. To begin to characterize the potential

differences in signal transduction in these cell types, signaling molecules upstream of

MAP kinases were investigated.

Signal transducers or adapter proteins are known to impart specificity in

signaling. The present data showed that both PLC-y and Nek are

phosphorylated/activated in response to exogenous VEGF or PIGF in HUVE cells.

Similarly, as in endothelial cells, both VEGF and PIGF induce phosphorylation/activation

of PLC-y and Nek in trophoblast. PLC-y is a known target for KDR, and is implicated in

inducing cellular proliferation [71, 93]. Other reports showed that VEGF did not induce

phosphorylation of PLC-y in either PAE/KDR -or PAE/Flt-1- ejqiressing cells, and PIGF

did not phosphorylate/activate PLC-y in Flt-1 e3q)ressing PAE cells [64, 72]. One

explanation for the different PLC-y activation patterns seen in the HUVE cells used in the

present study and transfected PAE cells used in the Waltenbeger and Landgren studies is
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that the latter cells did not e3q)ress endogenous VEGF/PIGF receptors, and thus may lack

certain downstream signaling molecules. The present data showed that both PLC-y and

Nek are phosphorylated in response to VEGF/PIGF, implicating their involvement in Flt-

1 mediated signaling in HUVE cells and trophoblast. Additionally, this data also

suggested that signal transducers other than PLC-y and Nek may be responsible for the

observed diqjarate signal transduction responses of VEGF/PlGF/Flt-1 in trophoblast and

HUVE cells.

Activation of SAPK responses has been shown in other cell types to regulate

apoptosis [247]. In certain cell types, JNK is activated in response to stress stimuli, but it

may not necessarily lead to apoptosis. SAPKs are also known to be involved in other

events beside ̂ optosis, including cellular growth, differentiation and transformation

[124,130,133]. Furthermore, there is lack of correlation between activation of JNK in

Fas-induced apoptosis, JNK- mediated induction of apoptosis in anoikis (apoptosis in

cells after detachment from ECM), and involvement of JNK in Fas-induced apoptosis in

T cells [248,249]. The present study showed that culturing primary term trophoblast in

serum-free conditions, which induces apoptosis in many cell types [195], resulted in

significant apoptosis. Stress-induced apoptosis in this study was inhibited by exogenous

PIGF or VEGF. However, EGF, an inducer of ERK-1 and -2 kinase activities in

trophoblast &iled to protect trophoblast from growth fector withdrawal- induced

apoptosis. These results further support the role played by SAPKs in inhibiting apoptosis

in some cell types, but they also raise an interesting question.

How can JNK mediate both pro-apoptotic and anti-apoptotic signals? The
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duration and the time of INK activation seems to be the detennining factor for cell

proliferation verses apoptosis. Transient INK induction leads to cell proliferation, where

as sustained INK activation causes cell death. The induction of INK in T cell activation

and a subsequent apoptosis are due to different activation patterns, i.e., transient verses

persistent [116]. Early and transient activation of INK regulates cell survival in response

to TNF-a, while late and persistent activation of INK leads to apoptosis [178,179].

Another possibility is that apoptosis may depend on the cell type. However, INK-

dependent and -independent apoptotic pathways have been observed in the same cell

type. In addition, different INK isoforms seem to mediate different signals in lung cancer

cells; dominant- negative INK-1 inhibits UV-induced apoptosis, while dominant-

negative INK-2 is ineffective. The other possibility is that the biological effects of INK

depend on other fectors present in signaling pathways that are active within the cells

[250]. The results of this present study demonstrated that in trophoblast, SAPKs are

transiently activated in response to VEGF and PIGF, and that VEGF- and PIGF- induced

transient activation of SAPKs may protect trophoblast from stess -induced apoptosis.

Studies have shown that TNF-a and IFN-y can induce apoptosis in primary

trophoblast in vitro [180,196,251]. In this present study, exogenous EGF inhibited pro-

inflammatory cytokine- induced trophoblast apoptosis, similarly to the anti-apoptotic .

activity exhibited by EGF in studies done by others [180]. However, even relatively high

levels of exogenous PIGF or VEGF did not protect trophoblast against cytokine -induced

apoptosis. These results further suggest that mechanisms by which PIGF and VEGF

protect trophoblast from apoptosis are distinct from those mediated by EGF. This
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functional difiference is probably due to different signal transduction pathways activated

by each growth factor. The EGF- induced ERK pathway seems to protect trophoblast

from pro-inflammatory cytokine- induced apoptosis, while PIGF- and- VEGF induced

SAPK pathways may protect trophoblast from stress- induced apoptosis in trophoblast.

One potential target for growth fector- induced survival effects of VEGF and

PIGF may be the PI-3/Akt signal transduction pathway [15,139,200,201,252]. In this

study, VEGF induced phosphorylation/activation of Akt in endothelial cells, an effect

that was completely abolished by wortmannin. This suggested that VEGF induces Akt

phosphorylation/activation in PI-3 kinase -dependent manner in endothelial cells.

However, PIGF did not have any effect on Akt phosphorylation/activation. These results

are consistent with other studies [15,198], suggesting that VEGF but not PIGF

phosphorylates/activates Akt kinase in endothelial cells. The divergent effects of VEGF

and PIGF on Akt activation in endothelial cells may be due to their differential receptor

(KDR or Flt-1) ligand specificity. The above results suggest that VEGF, but not PIGF,

may act as a survival factor for endothelial ceUs. Similar to the results in endothelial

cells, VEGF but not PIGF phosphorylated/activated Akt in trophoblast. Collectively,

these results suggested that VEGF may act as a survival factor for trophoblast and HUVE

cells, and this survival effect may be mediated through PI-3 kinase/ Akt- dependent

pathways. However, survival effects of PIGF in trophoblast seem to be independent of

Akt activation. Several possible mechanisms have been elucidated regarding the mode of

action of Akt in protecting ceUs from apoptosis. Akt phosphorylates the anti-apoptotic

protein Bad and prevents its heterodimerization with Bcl-2 [202]. Akt is known to
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synergise with the RafMAPK pathway to transform some cells [253]. In addition, Ras-

induced survival effects are known to be mediated through the PI-3 kinase/Akt pathway

[254]. Additionally, Akt has been reported to translocate to the nucleus following the

stimulation of cells with growth factors, suggesting that it may have nuclear targets that

could inhibit apoptosis [239]; Akt is also known to induce E2F transcriptional activity

[255]; Akt also inactivates caspase-9 directly by phosphorylation [205].

Viability of certain cell types depends on the ejqpression of Bcl-2, and this

antiapoptotic protein and/or some of its family members are known to play major roles in

preventing apoptosis caused by withdrawal of growth fectors/cytokines. The present

study showed that VEGF up-regulates Bcl-2 in serum -deprived endothelial cells, while

PIGF had no affect on Bcl-2 levels. These results in part are consistent with other studies.

VEGF protects endothelial cells from serumdeprivation- induced apoptosis by inducing

expression of Bcl-2 [14]. Furthermore, Akt activation was foimd to be essential for

VEGF- mediated up-regulation of Bcl-2 in endothelial cells [198]. Up-regulation of Bcl-

2 protein by VEGF and its effect on Akt phosphorylation/activation together suggest that

VEGF may mediate survival effects through Akt/Bcl-2 pathways in endothelial cells.

The inability of PIGF to up-regulate Bcl-2 in HUVE cells suggested that PIGF might not

act as a survival factor for endothelial cells. It may be that the survival effects of growth

factors in HUVE cells are receptor- specific, i.e., survival responses may be restricted to

signaling through KDR. In contrast to HUVE cells, neither VEGF nor PIGF up-regulated

Bcl-2 protein levels in trophoblast. However, Bcl-2 was detected in both the

phosphorylated and unphosphorylated states in trophoblast, and neither VEGF nor PIGF
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seemed to affect phosphorylation of Bcl-2. Phosphorylation is known to regulate Bcl-2

activity, although the precise role of Bcl-2 phosphorylation remains controversial. Some

reports indicate that Bcl-2 becomes activated upon phosphorylation [219,222] while

others indicate that phosphorylation of Bcl-2 leads to its inactivation and eventual

apoptosis [218,219,221]. If phosphorylation augments Bcl-2 function, the observed

phosphorylation status of Bcl-2 (in the present study) may protect term trophoblast from

apoptosis and maintain viability of the placenta during the late stages of gestatioiL

Activation of JNK in other cells has been shown to regulate phosphorylation and

functional activity of Bcl-2 [223]. However, both PIGF and VEGF had no effect on

phosphorylation of Bcl-2. Thus, PIGF and VEGF may exert their observed protective

effect against apoptosis in a Bcl-2- independent manner in term trophoblast.

The possible pathways mediating this survival effect are not known. However,

several growth fr.ctors, like IGF-1 [225] and neurotrophic factor (NTF) [226] are known

to exert their protective effects in fibroblast and ciliary neurons without altering Bcl-2

levels. There are several studies which show there is no link between Bcl-2

phosphorylation and apoptosis. Bcl-2 phosphorylation may occur only in the cells

arrested at G2/M phase of the cell cycle [256]. A recent study also indicated that Bcl-2

phosphorylation as a marker of M phase of the cell cycle, and argues against its role as a

determinant of apoptosis [257]. Irrespective of the molecular mechanism(s), this study

suggested that PlGFA^GF/Flt-1- mediated SAPK activation provide protection gainst

stress-induced apoptosis whereas EGF/EGFR- mediated ERK activation does not

increase trophoblast survival in the absence of growth fectors.
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The ability of PIGF and VEGF to modulate apoptotic events is clinically

important because trophoblast apoptosis occurs both in normal pregnancies as well as

pregnancies complicated by infections or other pathologies. Apoptosis has been

demonstrated in the normal placenta throughout pregnancy. Discontinuities in the

integrity of the syncytiotrophoblast may be due to apoptosis, and apoptosis is also

responsible for the progressive disappearance of trophoblast in normal pregnancies in the

chorion laeve as pregnancy approaches term [258,259]. Apoptosis has been

demonstrated in normal placentae from both the first and the third trimesters, and the rate

of apoptosis appears to increase significantly as pregnancy progresses [185-188,260].

These observations suggest that apoptosis plays an important role in the normal

development and aging of placentae.

The mechanisms regulating trophoblast apoptosis during gestation are not known.

Increased placental apoptosis during the first and third trimester in normal pregnancies

[186] may be due to the low PIGF serum levels found during these trimesters [192].

Thus, it may be that low levels of PIGF increase trophoblast susceptibility to apoptosis in

early and late stages of pregnancy. VEGF is produced by trophoblast throughout

pregnancy and certain levels of VEGF may be needed to maintain vessel integrity and

permeability in the placenta [261], along with conferring protection on trophoblast

against apoptosis.

In addition to its potential role in normal pregnancy, trophoblast apoptosis has

been implicated in several obstetrical coroplications. Apoptosis in the placenta leads to

fetal growth retardation in rats [189], and the incidence ofplacental apoptosis is
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significantly greater in human pregnancies complicated with intrauterine growth

restriction (lUGR) [262]. A recent report also showed that preeclampsia is associated

with widei^read apoptosis of cytotrophoblast [191]. Placental bed hypoxia is generally

thought to occur in preeclampsia and lUGR, and it is known to induce apoptosis in many

cell types [190], as well as to decrease PIGF expression in primary trophoblast [20].

Decreased expression of PIGF in hypoxia in trophoblast in vitro, along with deceased

levels of PIGF in preeclampsia [20,192] suggest that decreased PIGF levels may

contribute to increased trophoblast apoptosis. Thus, it is possible that relative placental

bed hypoxia may cause decreased production of PIGF by trophoblast, increasing

trophoblast susceptibility to stress-induced apoptosis.

Reports on maternal serum levels and immimoreactivity of VEGF in preeclampsia

are conflicting. Studies by Baker et al [263] and Sharkey et al [264] showed increased

serum levels of VEGF while other studies [265,266] reported decreased serum levels and

immunoreactivity in preeclanq)tic patients. However, serum levels of VEGF in

preeclampsia may not be a true measure of local VEGF levels within the placental bed.

Many sources other than the placenta contribute to VEGF levels found in preeclamptic

sera [192]. Decreased VEGF mRNA levels were found in preeclamptic placenta [234,

267]. Thus, it is likely that placental VEGF levels in preeclampsia are reduced.

Conceivably, the significantly decreased serum levels of PIGF and decreased local levels

of VEGF during preeclampsia contribute to increased trophoblast apoptosis, which in

turn have a significant role in the pathophysiology of the disease.

Collectively, results of this study suggested that trophoblast ejq)ression of PIGF
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and VEGF could significantly influence the matemal-fetal inter&ce. VEGF and PIGF

may control decidua and villous vascular function via paracrine mechanisms, and

influence trophoblast function directly via autocrine mechanisms. Consequently,

aberrant trophoblast expression of PIGF and VEGF may contribute significantly to both

the vascular and the placental pathologies commonly noted in perfusion -compromised

pregnancies.
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