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ABSTRACT

Range images differ from conventional reflectance images because they give direct

3-D information about a scene. The last flve years have seen a substantial increase

in the use of range imaging technology in the areas of robotics, hazardous mate

rials handling, and manufacturing. This has been fostered by a cost reduction of

reliable range scanning products, resulting primarily from advanced development

of computing resources. In addition, the improved performance of modern range

cameras has spurred an interest in new calibrations which take account of their

unconventional design.

Calibration implies both modelling and a numerical technique for flnding pa

rameters within the model. Researchers often refer to spherical coordinates when

modeling range cameras. Spherical coordinates, however, only approximate the

behaviour of the cameras. We seek, therefore, a more analytical approach based

on analysis of the internal scanning mechanisms of the cameras. This research

demonstrates that the Householder matrix [14] is a better tool for modeling these

devices.

We develop a general calibration technique which is both accurate and simple

to implement. The method proposed here compares target points taken from range

images to the known geometry of the target. The calibration is considered com

plete if the two point sets can be made to match closely in a least squares sense

by iteratively modifying model parameters. The literature, fortunately, is replete

with numerical algorithms suited to this task. We have selected the simplex algo

rithm because it is particularly well suited for solving systems with many unknown

parameters.

In the course of this research, we implement the proposed calibration. We will
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find that the error in the range image data can be reduced from more that 60 mm

per point rms to less than 10 mm per point. We consider this result to be a success

because analysis of the results shows the residual error of 10 mm is due solely to

random noise in the range values, not from calibration. This implies that accuracy

is limited only by the quality of the range measuring device inside the camera.
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1  INTRODUCTION

Modern autonomous robotics requires accurate environment mapping for navigation

and object manipulation or avoidance. Range images are particularly well suited

for this task because they give direct 3-D information about the scene. Each pixel

in a range image contains information about the range from the camera to the

corresponding point in the scene. The reported use of range images has significantly

risen in the literature since the introduction of reliable commercial range cameras.

Much of the literature focuses on the interpretation of 3-D data. There is,

however, little documentation about range camera calibration. Instead, the raw

data are often treated as a surface in cartesian space and analyzed directly for

edges and regions of continuity. Usually, if any calibration is done, the spherical

coordinates model is used. No one has yet introduced a clear and general method for

accurately modeling the complex interactions of the scanning mirrors inside range

cameras. This work advocates the use of Householder matrices in the analytic

camera model for relating points from the range image to corresponding points in

three-space.

We intend to employ the Householder matrix to model a simple one mirror

range scanner and next, a two mirror system. Specifically, we need the two mirror

model for a commercially available range camera from Perceptron [29], which we

will be using in an experiment designed to determine calibration parameters for

this camera. We first need to devise a calibration strategy.

Most authors describe the use of targets to implement calibrations. Targets

exhibit known geometry, which is exploited during calibration, to find the unknown

parameters. We propose to design our calibration strategy around using a set of

known target points, which may exist in the scene already. We wish to introduce



a rotation and translation inside the calibration loop which allows the target to be

imaged from any position or angle. We hope these features will make calibration

attractive for remote operations when human access is limited. Many authors

employ a numerical algorithm to find the unknown calibration parameters once the

target has been imaged. We favor the simplex algorithm because it works very well

with many unknowns.

1.1 A Brief Description of Range Cameras

Each pixel in a range image contains information about the range (or distance)

from the center of the camera to the corresponding point in the scene. Range, as in

a range image, can be obtained by a variety of techniques. In general, systems are

classified into one of the following types: triangulation (passive or active) [31], time

of flight [16], focusing [32], holography [35, 34], diffraction [7], or Moire techniques

[9].

Passive triangulation, or stereo, is perhaps the most familiar method, because

humans perceive depth in this fashion. The correspondence problem in stereo

matching is ill-defined and limits the number of application we may consider [3].

The correspondence problem of stereo vision can be eliminated by replacing one

of the cameras with a moving light source. This is known as active triangulation.

A prohibitive factor to the performance of this technique is the video frame rate

limitation of the cameras. At NTSC rates, only 30 points can be measured per

second.

Focusing, holography, diffraction, and Moire techniques are seldom discussed

in literature because of fundamental performance limitations. These systems are

either too slow or do not have the required accuracy for autonomous robotics.



Most range imaging systems are in the time-of-flight category. The popularity

of these systems stems from their high sample speeds and the elimination of the

correspondence problem associated with passive triangulation. The time-of-flight

concept includes ultrasonic pulse detection, light pulse [15] detection (pulsed laser),

and continuous light wave (CW laser) techniques [6]. Time-of-flight systems de

termine range by measuring the time required for a signal to travel to an object,

reflect, and return.

f

Depth resolution clearly is a function of signal velocity in this type of system.

Ultrasonics usually provide very accurate range measurements because of the rel

atively low velocity of sound. Object resolution is low, however, since the sound

cannot be concentrated into a very narrow beam. For this reason, ultrasonic range

flnding is better suited to autonomous navigation than to range image acquisition.

Laser light is coherent and has an extremely small wavelength in comparison to

sound. These properties allow it to be collimated into a tight beam for measuring

the range to just one point in the scene. Most laser range cameras use two mirrors

mounted on orthogonal axes to scan the laser in a raster pattern. Range values are

sampled from this pattern in a grid format to produce the well known range image

see Figure 1.

The two laser range cameras used at the University of Tennessee are based on

this principle. The Odetics [27] system has a 128 x 128 image size and 8 bits of

range resolution. The field of view is approximately 60 degrees, both horizontal

and vertical. Range images are acquired every 853 ms. The Perceptron [29] system

(see Figure 2) is programmable. The view can vary from 15-60 degrees, up to 1024

pixels horizontally, and from 3-72 degrees, up to 2048 pixels vertically. Range is

returned as 12 bit integers at the rate of 360,000 samples every second.
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Figure 2: Field of view for a typical range image and the commercially available

laser range camera from Perceptron [29] which captured this image.



1.2 Problem Definition: From Images to 3-D

The main function of a range camera is to return 3-D data, usually in the form of

a range image. Single range images are useful in many machine vision applications.

For the task of object recognition, grasping, etc., however, it may be necessary to

view the object from many different positions. In fact, these multiple range images

must be integrated to find the true 3-D shape of the object [10], [37]. Unprocessed

range images, however, cannot be pasted together because they are from different

viewpoints. We must therefore consider the topic of camera calibration in order to

transform these images into a cartesian coordinate system where the data can be

registered through homogeneous transformations.

Points from the range images are typically first transformed to Cartesian coor

dinates, then integrated to form a 3-D scene or object model. A calibrated camera

model is therefore desired to move points from the range image to (a:, y, z) space.

Sobel [36] recognized that calibration is divided into two main subproblems: mod

eling the camera, and calibration. In the literature, one often finds reference to the

spherical coordinate model [4]. Although this model has known errors concerning

the origin of its coordinate system, it has been used extensively without question.

This perhaps is because of the complexity of modeling the internal scanning mecha

nism. Regardless, the introduction of appropriate mathematical tools for modeling

and calibration are necessary to move beyond approximation.

1.3 Previous Work in the Field of Camera Calibration

The work of Jun Ni [26] addresses the calibration of a laser scanning system for

use with computer numerical controlled (CNC) milling machines. Interfacing 3-D

input devices such as this with milling machines allows quick digitization of parts for



Figure 3: Structure of a multiple-axis CNC laser-stripe sensor. (Adapted from

[26].)

inclusion into computer aided design (CAD) software (See Figure 3). The author

uses a ball-target-based system for calibration of the 3-D multiple-axis system

shown above.

The calibration utilizes four small metallic spheres mounted in the corner of

the workcell as a target. The system is calibrated whenever a change in position

or orientation occurs in setup. A matrix is developed to take measurements from

the skewed coordinate system of the milling machine into Cartesian coordinates.

Then, based on the results of the modeling, a constrained optimization calibration

algorithm is developed. The four ball targets are measured and the distortion of

their geometry from spherical is used to correct transformation parameters in the

matrix. The radial distortion of the balls was reduced from an average of 1.44 mm

to 0.04 mm over an 18.93 mm range. The significance of this work is that the

calibration depends on the geometry of the target, not on careful placement.



Figure 4: Robot engaged in scanning a scene with a detachable structured-light

scanner. (Adapted from [8])

Chen and Kak [8] model and calibrate a robotic 3-D structured light scanner.

The configuration is shown in Figi;re 4. The camera is based on the sheet of

light principle and detects only one stripe or line of range values at a time. The

illuminated scene points all lie in the same plane as the sheet of light. Scanning

is accomplished by moving of the robot. The authors assume a pinhole camera

model to simplify the mathematics. This assumption leads to a projection matrix

that the authors use for recovering the 3-D location of detected points. However,

several variables inside the matrix must be calibrated first. The authors state that

four co-planar points provide enough equations to solve for the unknowns in the

matrix, but, they claim this approach is impractical for the following reasons:

1. There are always some errors associated with the measurement of the four

calibration points. Thus, the co-planarity condition is not completely guar

anteed;



2. It is unrealistic to assume the camera can be modeled perfectly by a pin-

hole. A pin-hole model is questionable, especially when zoom lenses are used.

Additionally, when the pin-hole approximation breaks down, there may be

no unique center of projection; and

J

3. Because of the non-zero thickness of the illumination stripe and other digiti

zation aspects of camera imaging, there will always be some non-zero error

associated with the location of the image point corresponding to an object

point.

To avoid co-planarity problems, the authors devise a novel technique free from

fixed coordinates. The authors propose using a fiat trapezoidal object located per

manently in the work area as shown in Figure 4. When the scanner projects a

stripe intersecting the top edges of this object, the intersection points are guaran

teed to be co-planar and to lie on one of the two fixed lines. To avoid the second

and third problems, many points are sampled, and a linear least squares problem

is solved to give the best fit answer for the matrix. The dimensions and relative

orientation of the object are found as a part of the calibration procedure. In fact,

the authors compare the recovered dimensions with actual size and find that they

agree to within about one percent.

Storjohann and Saltzen [38] describe an imaging model derived for use with

the Odetics unit. The Odetics camera transmits an amplitude modulated laser

beam. The power of the returned signal is a function of the target reflectance,

and the phase shift is a function of the travel time, corresponding to the range.

A graphical description of the model is shown in Figure 5. While scanning the

laser beam horizontally and vertically, the range and reflectance data are spatially

registered in separate images. The scan mechanism consists of a planar mirror,

rotating up and down for the vertical deflection, and a rotating polygonal mirror
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Figure 5: (a) Setup of the scan mirrors and (b) Coordinate system of the camera.

(Adapted from [38])

for the horizontal deflection of the laser beam. A comparison is made to the raster

scan of a television receiver.

It is appropriate at this point to introduce some terminology associated with the

Odetics model shown in Figure 5. Commonly, elevation-azimuth (EA) is a term

applied both to a particular class of scanners with equivalent kinematics, and to

their associated spherical coordinate system. The notation elevation-azimuth refers

to the order in which the vertical and horizontal deflections occur. In this scanner,

the vertical deflection occurs flrst, and the horizontal deflection occurs second. If

the order were reversed, it would be called an azimuth-elevation scanner. A more

complete survey of scanner conflgurations was done by Besl and can be found in

128].

Storjohann and Saltzen explain how to experimentally measure the internal pa

rameters (intrinsic calibration) associated with the elevation-azimuth model. They

bring out one important and often neglected effect: the coupling of horizontal and

vertical motions in the mirrors. During each scan line of the horizontal mirror, the

vertical mirror remains in motion, producing a small offset from beginning to end



of the scan line. After all experimental procedures are developed, they produce a

transformation is produced for mapping a reflectance image acquired in the range

camera to a virtual image corresponding to the standard camera pinhole model.

This is for the purpose of evaluating the range camera's external orientation (ex

trinsic parameters) by conventional techniques. Results indicate that the extrinsic

parameters can be determined to within a mean distance of less than one pixel.

According to Baker [4], the transformation from to {x,y,z) can be con

sidered as a mapping function for the range camera. The form of the mapping can

be determined from the design of the scan mechanism. Nominal parameters, such

as scan rates can be found in the manufacturer's literature. Calibration of these

parameters to flt the individual camera completes the mapping. Baker notes how

range cameras are typically calibrated by imaging carefully designed targets and/or

physically measuring absolute distances and angles, inferring the corresponding pa

rameter settings. The complexity of such procedures often prohibits re-calibration,

especially during remote operations.

As a solution, the author proposes a novel technique related to Chen and

Kak's [8]. Calibration is considered automatic since it requires neither carefully

designed targets, nor detailed analysis of the camera model. The premise is that

the accuracy of a range camera's mapping can be determined by evaluating the pla-

narity of its output when imaging a surface known to be planar. Importantly, the

technique is orientation invariant which inspired the development of the calibration

strategy in this thesis.
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The plane surface provides a simple mathematical model for the acquired points.

The algorithm which Baker refers to uses an eigenvalue decomposition (Reister and

Morris [30]). When the eigenvalue iteratively converges to zero, the points are

considered to be co-planar. If two eigenvalues converge to zero, the points are co-

linear. A fast indicator of planarity is the determinate, which numerically equals

the product of all eigenvalues.

Baker [4] states that four distinct forms of spherical mappings exist for laser

range cameras, depending upon their internal design, and denotes them with a

type number T.

Type r = 1:

Type T = 2:

Type T = 3:

X = rsin(Q;) (1)

y = rsin(/3) (2)

2 = r\Jcos'^{oi) — siv? {13) (3)

X = rsin(Q:) (4)

y = r cos(q:) sin(,d) (5)

z = r cos(q:) cos(,d) (6)

X = rsin(Q:) cos(/?) (7)

y = rsin(/5) (8)

z = r cos(q!) cos(/?) (9)

11



Type T = 4:

X = rsin(a:) cos(/3) (10)

y — rcos(a) sin(/3) (11)

2: = rcos(Q;) cos(/5) (12)

Where,

a = Al2-{A + B)R/{5R -I)-{A- C)C/{5C{5R - 1))

P = DI2- [D + E)C/{5C - 1) - (D - F)R/{5R{5C - 1))

r = G + ro-

Thus, between any two adjacent rows, the angle a is uniformly interpolated

according to the value of the column, and similarly, between any two adjacent

columns, the angle ̂  is uniformly interpolated according to the value of the row.

This is necessary to model the coupling of the vertical and horizontal drives in

the scanner so noted earlier by Storjohann and Saltzen [38]. By generalizing these

calibration equations with parameter coefficients, they become applicable to any

laser range camera which scans a parallelogram grid pattern.

Calibration of this system could be performed either manually, by guessing the

parameters, or more effectively by an automatic numerical algorithm. If a single

mapping takes only a few seconds, automatic calibration requiring a turnaround

time of less than two hours permits just a few thousand guesses. Baker chooses to

use a genetic search algorithm [13] because the search space has a significant di

mensionality and a few thousand guesses covers less than one trillionth of a percent

of the search space.

Despite using the simple spherical model for the camera, the genetic algorithm's

search was largely successful; most of the error was removed. Baker postulated that

12



many of the remaining errors are a result of changing flight path length of the laser

beam as the mirrors rotate. We will eliminate this problem in our model by using

the Householder matrices. Additionally, the generality of such a technique naturally

covers all four variants of scan types mentioned above.

13



2 NON-CONTACT DEPTH MEASUREMENT

TECHNIQUES

Time-of-flight techniques determine range by measuring the time required for a

signal to travel to an object, reflect, and return. Given the velocity of the signal,

u, and the travel time of the signal. At, the range, r, is given by

^  (13)

This equation assumes that the signal travels to the object and back on the same

path. The lower the velocity of the signal, the more accurate the range resolution

will be, based on or because of flnite precision in the measurement of time.

Time-of-flight ranging avoids the correspondence problem of passive triangula-

tion and the range ambiguities inherent in active triangulation. The time-of-flight

concept includes ultrasonic pulse detection, light pulse detection (laser), and con

tinuous light wave (laser, LED) techniques.

2.1 Ultrasonic Pulse Detection

An ultrasonic range finder transmits a chirp over a short period of time and mea

sures the time interval between the transmitted pulse and the returning echo, as

shown in Figure 6. An ultrasonic ranging system uses a sound transducer for both

the transmitter and the receiver. When transmitting, the transducer generates a

short burst of sound, similar to a speaker. When receiving, the transducer acts as

a microphone. According to Jarvis [17], several pulses at different frequencies are

transmitted to reduce the probability of signal cancellation. Usually, ultrasonics

provide very accurate range measurements because of the relatively low velocity of

sound. Object resolution is low, however, since the sound cannot be concentrated

14
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Figure 6: Ultrasonic ranging system. (Adapted from [18], ©John Wiley & Sons)

into a very narrow beam such as a laser. For this reason, ultrasonic range finding is

better suited to low resolution tasks such as obstacle avoidance, whereas grasping

requires the much higher resolution offered by laser range cameras.

2.2 Light Pulse Detection

A pulsed light system uses the same basic idea as the ultrasonic range finder. This

technique measures the time it takes for an emitted light pulse to reflect from a

surface then return along the same path. For this case, the range is given by

cAt
(r = 14)

15



where c is the speed of light and At is the pulse travel time. In most cases today,

the light originates from a laser.

Jarvis [16] developed a pulsed laser range finder which produces a 64 x 64 pixel

range image with an accuracy of ±0.25 cm in a scanning time of 40 seconds. This

includes averaging 100 samples per point. The depth-of-field for this system is

approximately 1 to 4 meters. Heikkinen et al. [12] developed a laser range sensor

with a resolution of approximately 20 mm at a range of 3.5 meters (at the system's

maximum data rate of 10,000 points per second). Maatta et al. [19] implemented a

pulsed laser system for profiling hot surface linings which require frequent inspection

and repair. The system has a resolution of better than 1 mm at 20 meters, with

a sample time of 0.5 seconds. The high resolution is obtained by averaging 4000

samples per point. Takeichi et al. [24] report on another pulsed system which

was implemented using high speed streak cameras. The system operates with a

precision of 1 cm at 100 kilometers. Sample times are limited by the time-of-flight

at 100 kilometers. Finally, Golubev et al. [1] uses three color light for calculating

distances traveled through the atmosphere. The three color method compensates

for dispersive effects in the atmosphere which vary the pulse shape and time-of-

flight. The result is an increased accuracy of 0.25 mm at 5 km. Sample times are

limited to the time-of-flight.

The chirped light technique is an extension of the pulsed light concept. Since

ambient noise is always present in the environment and in electronic circuitry, the

accuracy of a range measurement heavily depends upon the signal- to- noise ratio

or SNR. Therefore, the resolution of a pulsed laser system is limited by the peak

power output of the laser. By chirping the signal, more power can be delivered over

a longer time period as a chirped wave packet. This concept was first developed

for radar. In this type of system, the distance is determined by an analog or digital

correlation filter. Moreover, these filters have an averaging effect which reduces the
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total amount of noise in the measurement. Collins et al. [33] experimented with

a chirped laser system, obtaining a resolution of 10 cm at 20 meters range using

only a 5 milliwatt laser source. The authors stated that further refinements in the

signal processing electronics are expected to increase the resolution.

2.3 Continuous Light Wave

A continuous wave laser ranging system is an alternative to the pulsed laser system.

Rather than using a short pulse, a continuous beam is emitted and the range is

determined as a function of the phase shift between the outgoing and returning

waves. This type of system can use either amplitude modulation or frequency

modulation.

By amplitude modulating, a laser beam at a frequency Jam — cJXam and

measuring the phase difference A0, defined as:

A(j) = 27r/AMAt = 47r/AM-, (15)
c

between the outgoing signal and the returning signal, the range can be obtained

from the following equation [6]:

This result is good for range values which are less than one-half of the wavelength of

the modulated signal. Any phase measurement, A^, also corresponds to A0 + n27r.

Therefore, A0 is actually determined to within an integer multiple of 27r. This

results in an ambiguity interval on r of c/2fAM^ or XamI"^- If there are no ambiguity

resolving mechanisms, the depth field must be constrained to less than one-half

Aaa//2 for Equation 16 to be valid. If higher modulating frequencies are used, better

depth resolution is gained. If lower modulating frequencies are used, larger depth
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Figure 7: Range as a function of phase for an amplitude modulated continuous

beam laser range finder. (Adapted from [27], ©Odetics)

field is obtained. Figure 7 illustrates the concept of amplitude modulation (AM)

laser ranging. Seta and O'ishi [20] utilize the intermode beat of a He-Ne laser to

obtain a continuous wave AM laser source for range measurements. This produces

an AM modulation that is extremely stable, with nearly 100 percent depth of

modulation and which occurs naturally in many laser diodes. At distances between

10 meters and 1300 meters, the resolution is within 0.1 mm. Sample time is not

given. Deng and Wang [22] report nanometer scale resolution from an AM system

they developed. Their system uses optical coherence domain reflectometry over a

very short distance to make measurements at the 20 nanometer scale. Detection

speed is limited by the peizoelectric crystal response of 1 kHz. Unfortunately, the

method requires a mirror at the target, which precludes the possibility of non-

cooperative target measurement.

In a frequency modulated (FM) system, if the optical frequency of the transmit-
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ted signal is varied linearly between (u - A?;/2) and {v + Ai;/2) during the period

1/fm, a reference signal can be coherently mixed with the returning signal to create

a beat frequency, /&, that is a function of range. Figure 8 illustrates this principle.

The range is determined from the following equation [6]:

cfb
^if (17)b) =

4/mAu ■

The absence of phase measurement in this system precludes the possibility of an

ambiguity interval. Beheim and Fritsch [5] developed an FM laser ranging system

having a 29.3 points/second data acquisition rate. They gave experimental results

showing the possibility of obtaining sub-centimeter resolution over a range of 1.5

meters.
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One of the major noise sources in coherent heterodyne laser radar systems, such

as pulse detection and FM, is a material property called speckle. Speckle effects

derive from surface roughness at the microscopic level. When illuminated by a

coherent wavefront of light, the reflections tend to be out of phase, giving rise

to random constructive and destructive interference, which result in a specular-

looking reflection. Leader [23] asserts that the effects of speckle can be minimized

if an appropriate model is used. Green and Shapiro [11] actually implement such a

system using a probabilistic speckle model. Results show good agreement between

the theoretical predictions and the experimental data.
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3 FROM THE RANGE IMAGE TO CARTE-
j

SIAN COORDINATES: DEVELOPMENT OF

MATHEMATICAL MODELS

An analytic camera model relating 3-D coordinates (x, y, z) to the range image

coordinates (i, j, range) is desired. The usual assumption of spherical coordinates

is not considered except as a special case. An alternate model is preferred, based di

rectly on the internal scanning mechanism of the camera. Since most range cameras

employ two rotating mirrors for scanning, the mirror reflection transform (House

holder matrix) will form the basis of the optical kinematics study. Both pointing

errors and static range measurement errors will be considered in the calibration of

the camera model.

Classically, research in this fleld makes heavy use of geometry and triangular

relationships to analyze the operation of scanner designs on a per-unit basis. The

complexity of such an analysis often motivates specialized designs exhibiting par

ticularly nice mathematics. Often, in the presence of small mechanical deviations

in the device, the models can be shown to behave badly. A more direct method

involving the popular Householder matrix is presented here. This type of operation

enjoys familiarity in the mathematical community because of the extensive litera

ture concerning the Householder [14] reflection matrix. The matrix was originally

devised by Householder to speed machine inversion and decomposition of matrices.

The objective was to replace the more costly rotation-matrix operations involving

sine and cosine functions. In contrast. Householder matrix operations require only

multiplication and addition.
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Figure 9: Snell's law. (Adapted from [21])

3.1 Reflection: Snell's Law

Let us begin by analyzing the simple reflection of rays with planar mirrors. Snell's

law states that the reflected ray lies in the same plane as the incident ray and the

normal to the mirror. Moreover, the angle between the incident and the normal is

the same as the one between the reflection and the normal (illustrated in Figure 9).

The physical interpretation is that photons are bouncing off the mirror surface.

Conservation of momentum implies that normal component of motion is reversed,

while the parallel component remains unchanged (Equation 18).

Vi - 2{vi n h)n (18)

Consider an operator, ref(n), a 3 x 3 matrix that performs this reflection when it

is multiplied by a vector.

Vr —

Vr —

Vr —

Vr

ref(n)

Vi - 2h{n n Vi)

Vi — 2n{f{Fvi)

Vi — 2hfiFvi

(I — 2hf{F)vi

I — 2nn^

(19)

(20)

22



A

el
V. f  y
\ / /a..

\
/

Figure 10: A three dimensional orthonormal basis

3.2 Formation of the Householder Matrix by Projection

Matrices

The matrix re/(n), also known as the Householder matrix, is formed by inverting

one orthonormal basis in a vector space. Projection matrices can be used to show

how this works. A projection matrix is an essential tool for projecting a higher

dimensional space onto a lower dimensional space, such as a plane or line. The

3x3 projection matrix, hfiF is the outer product of n with itself, as opposed to

the more familiar inner product, written as fiFh. Notice that the inner product is

a 1 X 1 matrix, or a scalar value, while the outer product is a 3 x 3 matrix.

Consider the product of hfiF with a vector: (nn^)u. This can also be written

as h{n^v), which is the projection of v onto the line spanned by n. We next show

how these matrices are related to the Householder matrix.

Take any three dimensional orthonormal basis as shown in Figure 10.

B = [e\,e2,e%]. (21)
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The outer product of B within itself is the identity matrix, since B spans the

entire three dimensional space. Projecting a vector onto B does not alter the

original vector.

BB^ = eiei^ + 6262^ + 63^3^ — -^3x3- (22)

Reflecting one of the bases gives:

ref = eiCi^ + 6262^ — = Izxz ~ 26363^. (23)

Ref is a reflection operator that maps all vectors to a new space where one dimension

has been reflected through the origin. In general, the special form Izy.3 — 26363^ is

known as a Householder matrix.

3.3 Modeling a One Mirror Scanner

Figure 11(a) illustrates a 2-D version of a laser range scanner. In this flgure, the

laser beam travels from the source to the mirror, is reflected through some angle,

and hits the target. The total range measured is the sum of the lengths of path a

plus path h. Given a mirror angle and the measured range distance, we desire to

calculate the position of the detected point in space.

The mirror seems, at flrst, to be an encumberance to calculating the detected

point because of its interaction with the laser beam. In the absence of a scanning

mirror, only points along the line of the laser beam can be detected. We calculate

that the detected point equals the laser origin plus a vector representing a length

of laser beam given by the measured range. Signiflcantly, the presence of a mirror

changes the geometry, but in an extremely predictable way. If we call this point,

lying on the line of the laser beam, the virtual point, then the real point is related

to the virtual point by a mirror transform. Therefore, calculating the real detected

point consists of two simple procedures. First, calculate the virtual point. Second,
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Figure 11: (a) Range from a simple laser scanner configuration, (b) Using the

virtual image concept.

multiply the virtual point by the appropriate mirror transformation to find to real

point.

Figure 11(b) shows the geometry associated with the virtual point concept The

detected range point x in the virtual scene is equal to 5 + IR, where S is the

laser origin, / is a direction vector for the laser beam that is one range increment

in length, and R is the range value (scalar). The Householder matrix moves the

virtual points to real points and vice versa as in Equation 25.

y = {I - 2hn^)x

y = {I-2hh^){S + lR)

(24)

(25)

These equations are valid for all cases where the mirror passes through the origin,

since the Householder matrix produces reflection across the origin. If the mir

ror does not pass through the origin, the reflection will have to be done under a

translated coordinate system. Some stationary point on the mirror (a point on
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the mirror axis) should b.e subtracted from the coordinates before reflection, then

added back afterwards. Reflection through two or more mirrors is done by chaining

the Householder matrices end to end. The 2-D concept readily extends to 3-D.

3.4 Multiple Mirror Systems

Range cameras typically scan in a rasterized grid pattern. Generating the pattern

requires one mirror for horizontal deflection and a second mirror for vertical deflec

tion. The two mirrors can be arranged in a variety of ways, as noted by Besl [28].

For instance, the Perceptron [29] unit is an azimuth-elevation scanner, whereas

the Odetics unit is an elevation-azimuth design. The azimuth-elevation variant

is sometimes referred to simply as an azimuth scanner. Likewise, the elevation-

azimuth design can be called an elevation scanner.

3.4.1 Kinematics of the Azimuth Scsmner

The azimuth scanner is a generic name for a class of laser range cameras with

equivalent kinematics. In this scanner, the laser beam first undergoes the azimuth

reflection, and secondly, the elevation reflection. The Perceptron unit falls into this

category. The Perceptron unit is a 2-D scanning laser range camera employing a

polygonal azimuth mirror and a flat nodding elevation mirror. The mirrors move

as shown in Figure 12. The spinning polygonal azimuth mirror creates horizontal

deflection, while the flat elevation mirror rotates up and down for the vertical

deflection.
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Figure 12: Azimuth Scanner

3.4.2 Kinematics of the Elevation Scanner

The Odetics unit is an elevation-azimuth scanner. In this configuration, the laser

beam reflects off the elevation mirror first and the azimuth mirror second (see Fig

ure 13). Thus, while AE and EA scanners appear to be functionally equivalent, their

associated spherical coordinates are not as noted by Baker [4]. Furthermore, subtle

differences exist in the design of the scanning mirrors, which introduce changes

in the coordinate system. In addition to the deliberate design parameters, each

scanner contains a unique set of calibration parameters, further modifying the co

ordinate system in a non-intuitive way. For instance, mirrors may be mounted

slightly off axis. The focus of the next chapter is to develop a mathematical model

general enough to cover all possible design variations in addition to calibration

parameters.
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Figure 13: Elevation Scanner (Adapted from [38])

3.5 Modeling a Two Mirror Scanner

Modeling the two-mirror system involves chaining the Householder matrices. Pre

viously we saw how to model a one-mirror system by using 2-D vectors. The

following examples require 3-D vectors which can be manipulated in exactly the

same way. The matrix notation is, in fact, exactly the same, no matter how many

dimensions exist.

The first example of a 3-D case is the rotating faceted azimuth mirror in the

Perceptron unit (Figure 14). A special frame of reference known as the body coor

dinates makes the calculations extremely convenient. By aligning the Z axis with

the mirror's natural rotation axis, the normal vector to the mirror facet becomes a

spherical coordinate with radius = 1, facet angle = a, and mirror rotation = 6 ks

the mirror rotates, the facet normal sweeps out lines of latitude. Each point on the

latitude circle corresponds to a unique Householder matrix. Thus, by relating pixel

coordinates in the range image to mirror rotation angles, it is possible to deduce the
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Figure 14: Characterizing the azimuth mirror normal.

appropriate Householder transformations for each point in the range image. Since

the facets on the mirror are identical, every horizontal scan line has the same set

of Householder matrices, which may lead to a speed up in computation time for

complete images.

Consider the elevation mirror from the Perceptron unit. The axis of rotation

is offset in the z and y coordinates to location C = {O,yo,zo) (as illustrated in

Figure 15).

It is now possible to complete the range scanner model. Derive the expressions

for the two Householder matrices corresponding to the azimuth mirror and the

elevation mirror.

Hi = I — 2ninf

H2 — I — 2h2'n^

(26)

(27)

By assembling these into a larger expression based on the same principal as Equa-
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tion 25 we have the following:

P = H2{Hi{S + IR)). (28)

Furthermore, we may compensate for the offset between the two mirrors, C, by

translating the coordinates before and after the second mirror reflection, yielding

the more accurate equation:

P = H2{Hi{S-^lR)-C) + C. (29)

In Equation 29, P is the true 3-D coordinate of the point in the range image, C

is the elevation mirror offset. Hi depends on the azimuth mirror angle, and H2

depends on the elevation mirror angle.

3.6 From Range Images to Cartesian Coordinates: A Com

plete Model

Now that the theory of how to transform a single range measurement back into

3-D coordinates has been laid out, consider the more pressing question of how to

transform the entire range image back into the 3-D geometry which it represents.
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As each pixel coordinate {i,j) corresponds to unique mirror orientations (9,^) in

side the camera, many Householder matrices must be constructed; in fact, two

for each pixel coordinate. Therefore, knowing how to construct the two required

Householder matrices from {9,4>), we must find the relationship between (0, (f>) and

ihj)-

Because of the Householder matrices' dependence on the mirror normals, we

must establish the relationship between the mirror normals and the range image

coordinates The primary concern here is the sampling scheme by which

range values are taken and the intervals at which they are taken. The following

assumptions have been verified by consultation with the manufacturer and by ex

perience.

1. Both mirrors rotate at a constant rate over the entire scan.

2. Samples are taken at regular intervals during each horizontal scan, beginning

with the first pixel {i = 0) and ending with the last pixel {i = imax)-

3. Horizontal line scans are also taken at regular intervals.

These three simple assumptions lead to the following conclusions;

1. The azimuth mirror angle is linearly linked to i, the column number of the

pixel.

2. The elevation mirror angle at the beginning of each line scan is linearly linked

to j, the row number of line.

3. The elevation mirror continues to rotate during each line scan so it is different

by some angle at the end of each line compared to the beginning.
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all of which may be expressed by the following relation:

i

j

1

6

o

O

I

. ̂ . _ 7 P <l>o _
(30)

Where alpha is the angle increment per pixel in the horizontal direction, beta is

the angle increment per pixel in the vertical direction, and gamma is a small value

corresponding to the small change in the elevation mirror angle across the scan line.

As indicated in the assumptions, both mirrors move continuously during a scan. If

the elevation mirror angle is constant across a scan line, gamma is zero.

3.7 Resolving the Issue of Spherical Coordinates

The use of spherical coordinates dominates the literature concerning laser range

camera modeling. In light of the new Householder model, we question the relation

ship of the Householder model to the spherical coordinates models. It is possible

that spherical coordinates models can be derived from the Householder model un

der certain assumptions. In this case, we want to quantify the errors resulting from

these assumptions.

Both models are based on two angles {9, <j)) (mirror normals in the Householder

model and laser angles in spherical model), which are calculated from the image

coordinates (i, j) using Equation 30, only with different factors in the matrix. We

shall later see what kind of relationship exists between the two different sets of

angles.

Consider the azimuth elevation spherical coordinates (type T=2) according to

Baker [4] in Chapter 1. Refer to Figure 16 also.

X = rsin(0) (31)
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Figure 16: Azimuth elevation spherical coordinates are aligned to the x axis.

y = r cos(0) sin(0) (3

z = —r cos(^) cos(^), (3

where r = (range)(gjmm^) + offset.

Although the spherical form shown above does not look very much like the House

holder model Equation 29, an important link exists. Equation 29 is repeated below

for convenience.

P = H2{H^{S + IR)-C) + C.

Where P is the true 3-D coordinate of the point in the range image, C is the

elevation mirror offset, and Hi and H2 depend on the azimuth and elevation mirror

angles hi and n2.

Hi — I — 2ninf (34)

H2 = I — 2h2n^ (35)

From Figures 14 and 15, the mirror normals hi and h2 are defined as follows:

ni = j^cosiO)



n2

0

- sin(^)

— cos((;i)

(37)

We can obtain the spherical form from the Householder model under certain

assumptions. These are:

1. The scene is large in relation to the size of the scanner mechanism so the

elevation mirror offset, C, can be ignored;

2. The laser source is located on the negative z axis of the camera; and

3. The laser source points only in the negative 2 direction of the camera.

In reality one cannot assume these conditions will hold. For instance, autonomous

navigation tasks meet condition 1 while grasping tasks do not. This illustrates

why the Householder model is more flexible. Expanding some of the terms in

Equation 29 gives

{S + IR) =

From Equations 34 and 36 we have

Hi = I — 2ninf =

1 0 0

0 0 0

0 + 0 range = 0 (38)

—offset mm

increment
n —r

^sm{e)
0 1 0 -2 ■^cos(9)
0 0 1 1

V2

^sin(0) ;^cos(0)V2 V2

or

i?i =

1 - sin2(0)
- sm{6) cos{9)

— sin(0)

— sin(0) cos(0)

1 - cos^(0)
— cos(0)

— sin(0)

— cos(0)

0

(39)

(40)
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Because of assumption 1, C = 0 and the only remaining factor in 29 is H2. From

Equations 35 and 37 we have

1  0 0 0

H2 = I — 2n2n^ = 0  1 0 -2 — sin(^)

0 0 1 — cos(^)

0 —sin ((?!») — cos(0)

"" 1 0 0
H2= 0 1 —2sin^(0) —2sin(^) cos(0)

0 -2sin(^)cos(^) l-2cos^((^)

The terms in 29 can be combined.

H2iHi{S + lR)) =

1  0 0

0  1 —2sin^((^) — 2sin(^) cos(^)

0 —2 sin(0) cos(^) 1 —2cos^((^)

r sin(0)

rcos(0)

0

r sin(0)

r(l - 2sin^(^)) cos(0)

-r(2 sin((^) cos(^)) cos(0)

rsin(0)

r cos (2^) cos(0)

—r sin(2^) cos(0)

.  (41)

(42)

1 0 0 1 — sin^ (9) — sm{d) cos{9) — sin(0) 0

0  1 —2sin^(^) —2 sin((^) cos(^) — siii(d) cos(5) 1 — cos^ (0) — cos{6) 0

0  —2 sin(0) cos((^) 1 — 2 cos^{<j>) — sin(0) — cos{6) 0 —r

(43)

Notice the strong resemblance to Equations 31-33. If a substitution of — $/2 is

made for ̂  — 7r/4, an equivalence occurs.

cos(2^) = cos(2(0 — •7r/4) + 7r/2) = — sin(2(0 — 7r/4)) = — sin(—$) = sin($)

sin(2(/>) = sin(2(^ — 7r/4) + 7r/2) = cos(2(^ — 7r/4)) = cos(—$) = cos($)
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Equation 43 now becomes

X rs\n{9)

y — rsin($) cos(^) (44)

z —r cos($) cos(0)

The linear relation between (j) and $ is accounted for in matrix 30. Thus, ̂  is

mirror angle while $ is laser angle. The difference is because of the configuration

of the mirror and laser, which causes the reflected beam to go through twice the

angle of the mirror rotation.

This analysis demonstrates that the two models are reconciled by ignoring the

mirror center offsets, which is appropriate for large scale scenery, and making other

plausible assumptions. The spherical coordinates model is thus seen as special case

of the Householder model.

36



4 CALIBRATION HARDWARE AND SOFTWARE

WITH AUTOMATIC TARGET LOCATION

In the following sections, we design and implement hardware and software for cali

bration. In the first section, we design and build a target and mobile range work

station. In the second section, we develop software to locate the target and its

geometric features, and to calibrate the camera parameters based on these features.

Figure 17 shows a simple block diagram of the software fiow during calibration.

Calibration Target >

<S Pi

Perceptron
Camera

Segmentation
r,ij coordinates

Camera Model

9 points in
x,y^ coordinates

9 points in

RMS eiTor from
x,y^ coordinates 9 points representing

geometry the ideal target

Camera

Parameter

List

Simplex Algorithm

Error

Signal

Figure 17: A simple block diagram of the software flow during calibration.

4.1 Developments in the Associated Hardware for Calibra

tion

This section describes the practical considerations associated with the target and

the range camera. The wide focus of this research is the deployment of a mobile type

of mapping system. Portability is therefore considered paramount. This constraint

37



implies light construction for the target. Portability also prompts the design of a

wheeled workstation containing all the associated electronics for the range camera,

plus an X-windows workstation for analyzing images and calculating calibration.

4.1.1 Target Design and Mounting

In the literature, we find references to the use of targets for calibration [26], [4],

[38], etc. Although targets vary greatly in design, we find that all exhibit a known

geometry which is exploited in the calibration process. Sometimes the targets are

spheres, rhomboids, or tetrahedrons. Other times, the geometric features are lines

or spots printed on a surface.

Because our calibration technique does not rely on a specific target configura

tion, we are free to choose among many designs. Because of the wide availability

of accurate, large scale printing equipment, we choose a printed target. Some dis

advantages that must be considered include stretching, since the target is often

mounted vertically, and expansion caused by humidity.

In order to keep the fiexible printed target pressed as fiat as possible and to

reduce stretching of the target from uneven support or humidity, design of a suitable

stand for the target must be at least as important as the design of the target itself.

The stand must protect the target from physical damage. One approach is a frame

containing two plexiglass sheets to press the target fiat and protect the stand. Our

design incorporates the plexiglass sheets in a modular stand which may be partially

disassembled for portability. Figure 18 shows the original concept design and the

final result.
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Figure 18: Target stand (a) original concept design and (b) final product.

4.1.2 Construction of a Mobile Platform for Camera and Support Hard-

We design and build a mobile four wheeled cart for all the range camera equipment,

as well as an X-Windows workstation for displaying, processing, and storing the

images (see Figure 19). Several electronics boxes mount underneath the cart in a

rack configuration, while the top surface is dedicated to the workstation and the

camera.

4.1.3 First Target Images

Because the 500 milliwatt laser source in the Perceptron camera head is powerful

enough to easily damage the retina at the close range of less than a meter, several

measures are taken to assure safety during the image acquisition process. Laser

safety goggles, opaque to the damaging radiation, must be used during operation

of the camera at all times when the laser is energized. Additionally, several safety





Intensity Component Range Component

Figure 20: Sample target image acquired from the Perceptron laser range camera.

The high quality of these images exceed conventional photography where depth of

field is limited by the lens.

interlocks, including an on-off key switch, can lock out the laser power supply.

A group of images are taken with the target placed at progressively greater dis

tances. The images will be processed, then be used to test the calibration algorithm

at various distances. These images are 1024x1024 resolution with 12 bits accuracy

in both the intensity and the range images. A sample image is shown in Figure 20.

4.2 Algorithms for Calibration

In this section, we describe the theory and implementation of all algorithms nec

essary to calibrate the camera. The first set of algorithms must isolate the target

from range images and extract the points within the target. We take the i,j co

ordinates from the centroids of the target spots and the r value from the average

range value within the spots. The points are stored for use by the second



set of algorithms which are designed to check the calibration of the camera model

against ground truth target geometry.

The camera parameters are checked by converting the {r,i,j) coordinates to a

local Cartesian system centered on the camera. Because these points (call them

Pgensed ~ T(r, i,y)) are in a local coordinate system and the target points (call
them Tjdeal) ^ world coordinate system, we must perform a translation

and rotation before comparing the fit of the two point-sets. A modification of

Horn's et al. [2] method for determining the least-square translation and rotation

is employed. After correcting the translation and rotation, we calculate the RMS

error between the two point sets; however, this alone is not enough to perform a

calibration. We must find the particular calibration parameters which minimize

the RMS error. For this task, we employ the well known Simplex algorithm [25].

4.2.1 Segmentation

Early in the calibration process, the target points and their centroids must be

isolated from the range and intensity images. Many methods for target location

and point extraction were investigated. The most successful technique relied on the

combination of primitive functions documented below. After target extraction, the

point sets are stored in a 3 x n array on disk. These points are in (r, i, j) coordinates,

but may be transformed to (rc, y, z) coordinates using the camera model.

1. Isolate the target from the background in the range image. This function

starts from a user-specified seed point located at the center of the target and

runs North, South, East, and West looking for jump edges. Once detected,

these boundaries form the target window. The actual window is a few pixels

smaller for noise margin.
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2. Threshold the target in the intensity image. This function locates the two

distinct modes of the target histogram and thresholds exactly between them,

forming a binary image.

3. Extract target spots using a four-connected algorithm. The threshold value

is passed onto this function which in turn makes groups of four connected

pixels. Background pixels are labeled zero, and the upper left dot on the

target is labeled one. The rest of the dots are labeled in increasing order, left

to right, top to bottom.

4. Calculate the centroids of the segmented spots to obtain the {i,j) coordinates

of each point.

5. Find the mean of the range values from each spot to obtain the r coordinates

of each point. This calculation can be either a simple average, a ranked mean,

or a Gaussian weighted mean. ,

Refer to Figure 21.

4.2.2 Absolute Position Loop

In general, we wish for the detected points given by the calibrated camera model

to be as close to the actual points as possible in a least-squares sense. That is,

the distances from the ideal points (Pineal) sensed points (Psensed) should

be minimized, where Pineal "^sensed coordinates. Note, however,

that Pideal 0) occupy a plane within

a 3-D space. The minimization can be done by iteratively changing the calibration

parameters in the camera according to some optimization scheme such as the geo

metric simplex algorithm of Nelder and Meade [25]. The flaw with this scheme is
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Figure 21: Results at significant stages in the automatic target segmentation pro-



2
that the error function, E -Pineal ~ "'^sensed ' assumes that the Pineal known

to an arbitrary precision. In most cases, this is not true, nor is it desirable to attach

the burden of absolute precise location to the calibration procedures. We therefore

seek a slightly modified expression which drops the absolute position requirement

in favor of a relative error measurement like E ||Pideal" Pgensed and alignedir*
Where, Psensed and aligned sensed points that have been projected into a

three-dimensional coordinate system and aligned as best as possible with the set

of ideal points through a translation and rotation.

We thus need the single rotation and single translation which brings Pj^eal

a best-fit orientation with the Pgensed before calibration. Luckily, this type of

problem has already been studied in other fields, especially photogrametry, which

is concerned with the use of photographic images for measurement. Often, no

single photograph can capture the entire scene to be surveyed. For many years,

photogrameters have studied the mathematical problems associated with the regis

tration of multiple images. Furthermore, many of the solutions give the necessary

rotation and translation for registering two sets of corresponding points from two

images. In 1988, Horn et aJ. [2] published a closed form solution for point registra

tion in the Journal of the Optical Society of America. This method explicitly gives

the necessary rotation-and translation to bring our P^deal ^ best-fit orientation

with the Pgensed' implementation of this solution as the absolute

position loop in future references.

The next step is the camera transform, discussed at length under scanner mod

eling. The associated matrix computations are carried out to transform the (r, i,j)

coordinates to (x, y, z) coordinates. Afterwards, they are sent to the linear abso

lute position loop (Horn et al. [2]). This routine is the component which frees the

calibration from tedious measurement of the camera location with respect to the

target. The major component of the routine is the US factorization loop which fac-
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tors the cross correlation matrix into two parts: an orthogonal component U and

a symmetric component S. U is the best-fit rotation from the camera coordinates

to the target coordinates. Additionally, the trace of S is the sum of least-squares

residual error under U. A short proof follows:

Suppose two corresponding sets of points exist in two different coordinate sys

tems. Call one coordinate system "camera" and designate points in these coordi

nates as Ci- Call the other system "target" and designate these points as Ti. We

seek the translations and rotation bringing the Ci points as close as possible to

the Ti points in a least squares sense. The translation between the two points is

canceled out by removing their centroids. That is, subtract the centroids out of the

two point sets to center them both on the origin. Consider the following. Call the

centroid in the camera coordinates "A" and the centroid in the target coordinates

"S".

minj:i|C;(Ci-A)-(Ti-B)f (45)
i=0

d

or B) ̂
y:i|C'(a-4l)-(T,-B)f = 0 (46)
2=0

n

UY,(Ci-A)-Y,(Ti-B) = 0 (47)
2=0 2=0

n  \ n

U[J2Ci-nA]-^Ti-nB = 0 (48)
\i=0 / i=0

Therefore, A = and B = as postulated. (49)
n  n

Call the new origin centered points sets Coi and Toi respectively. Now we seek

a rotation matrix U to minimize,

f2\\UCoi-Toi\\\ (50)
i=0
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min [{UCoif UCoi - 2 {UCoif Toi + {Toif ToJ (51)
i=0

min Y U^UCoi - 2 Trace (uCoi {Toif) + {Toif ToJ (52)
2=0

min Y - 2 Trace (uCoi (Toif) + (Taf To^] (53)
i=0

n

max Y Trace [UCoi (Toif) (54)
2=0

max Trace Y (Toi)^^ (55)
We therefore seek the matrix U that can maximize the trace of UM where

M = Yh-q Coi {Toif^. According to Horn et al, we may factor any matrix M into

an orthogonal component, Uq and a symmetric component, S such that M = UqS.

Furthermore, sections D and E of [2], Horn et al. demonstrate that Uq is the

maximizer of

Ti:ace = Trace (5). (56)

We infer from this result that the symmetric matrix has the highest trace possible

and that U is in fact Uj obtained from the factorization. Horn et al. suggest using

eigenvalues to factor M. When calibrating with planar patterns, however, M is

likely to be singular which ruins the approach.

We have developed an alternative method for factorization that works when M

is singular. We apply a series of simple orthogonal rotations, called Gibbs rotations,

to M, until it becomes symmetric to machine precision. Ui can be determined to

make M symmetric by two elements at a time. Unfortunately, successive rotations

tend to disturb symmetries already established in the matrix. Each time through

the loop, the matrix M looks a little more symmetric until finally, after nine or

ten complete iterations, the matrix is symmetric to machine precision. Therefore,

U=UnUn-i...U2Ui.
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The residual error for the best-fit solution is very simply stated as

n

Y, [{Coif Coi + {Toif To] - 2 IVace {UM) (57)
z=0

or, Y Coi + {Toif Toi] - 2 Tirace (5). (58)
i=0

The code for this routine is quite compact and the only non-intuitive part is

calculating the proper Gibbs rotations. Two rotation angles are always possible,

but the smaller one, the rotation matrix that looks most like the identity matrix,

(positives on the diagonal), is the best choice for good convergence. That choice

minimizes the disturbance of the previously established symmetries.

4.2.3 Simplex Routine

Baker [4] uses a genetic algorithm for minimization. Other methods include conju

gate gradients, simulated annealing, and the widely used simplex algorithm. Each

method has advantages as well as disadvantages, and no method is guaranteed to

find the best solution, only a good solution. Since the simplex algorithm is well

suited for solving systems having many degrees of freedom, we chose this method

for calibration. For instance, the conjugate gradients method requires "n" deriva

tives for a system with "n" degrees of freedom. In our case, we cannot even find

one derivative because of the internal absolute-position loop.

The simplex algorithm (Nelder and Mead [25]) was invented in the mid-sixties

to utilize computers in the optimization of multi-dimensional functions. The main

advantage of the simplex is that only an expression for the functional needs to

exist. This algorithm avoids using partial derivatives since they are often too hard

to solve for, too many may exist, or some simply do not exist at points within

the minimization region. For our purposes, where too many dimensions contribute
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to the error functional and its derivatives depend on the complex behavior of the

absolute position loop, the simplex approach is ideal.

A simplex is a geometrical object in n-dimensional space. The simplex com

prises nd-1 points or vertices and all interconnecting line segments, polygonal faces,

etc. Furthermore, a simplex must contain volume; that is, it should fill some region

of the n-dimensional space. For example, in three dimensions we may visualize the

simplex as a tetrahedron, not necessarily a regular tetrahedron. Minimization of

the objective functional is accomplished through refiections, expansions, and con

tractions of the simplex according to a well defined set of rules. The fundamental

strategies developed by Nelder and Mead still hold. Figure 22 illustrates the basic

operations of the downhill simplex algorithm.

Given an initial guess, the simplex proceeds to tumble downhill, stretching and

squeezing through narrow valleys, flattening out and rolling across the plains. Fi

nally, arriving at a local minimum, the simplex shrinks down to increase the preci

sion of the solution. When plotted on a graph, the movement seems complex and

deliberate. The movements are even less intuitive when moving downhill through

the unimaginable complexity of some higher dimensional topography. This com

plex behavior derives from the repeated application of simple rules in an unknown

environment.

The downhill simplex method must not be started with just a single point, but

with n-t-1 points, defining an initial simplex. Thinking of one point as the initial

starting point, Pq, we may take the remaining n points to be:

Pi = Po + Xei (59)

where the e^'s are n unit vectors, and where A is a constant determining the size of

the initial simplex.
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simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

Figure 22: Possible outcomes for a step in the downhill simplex method. The

simplex at the beginning of the step, here a tetrahedron, is shown, top. The

simplex at the end of the step can be any one of (a) a reflection, (b) a reflection and

expansion away from the high point, (c) a contraction along one dimension from

the high point, or (d) a contraction along all dimensions toward the low point. An

appropriate sequence of such steps always converges to a minimum of the function.

(Adapted from Numerical Recipes in C [40], ©Cambridge University Press.)



The downhill simplex method takes a series of steps, most steps just moving

the point of the simplex to where the function is largest ("highest point"), through

the opposite face of the simplex to a lower point. These steps are called reflections,

and are constructed to conserve the volume of the simplex (hence maintain its non-

degeneracy). When it can do so, the method expands the simplex in one direction

to take larger steps. When it reaches a "valley floor," the method contracts itself

in the transverse direction and tries to ooze down the valley. If there is a situation

where the simplex is trying to "pass through the eye of a needle," it contracts

itself in all directions, pulling in around its lowest (best) point. The more detailed

account can be found in Numerical Recipes in C [40].

4.3 Summary

A target and a mobile range cart were designed and fabricated to assist in carrying

out calibrations. Their construction was carefully considered to fulfill the portabil

ity requirement. When the cart, was completely assembled, the system was tested

by acquiring some images of the target. Software was then developed to solve the

calibration problem. This software is divided into two main components. The first

component is a segmentation package for automatically finding the target and ex

tracting the calibration points in range image coordinates. Trials on several of the

test images proved that the segmentation package was robust. The second com-
9  '

ponent is the main calibration routine. This program contains an unconventional

double loop which automatically finds the orientation and location of the target in

3-D space. The problem of translation and rotation (absolute position) is solved

in an inner loop at each step in the calibration of the camera model. The target

position does not therefore have to be known prior to calibration. A block diagram

of the double loop calibration routine can be found in Figure 23. The large outer
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loop seen in Figure 23 represents operation of the simplex routine using a numerical

technique to find the calibration parameters. Operation of the loop ceases when

the parameters are found. The next chapter describes rigorous testing of the main

calibration routine. The primary question is whether the routine will perform satis

factorily under real conditions which often include unusually high amounts of noise

in the images.
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Figure 23: Unique double loop calibration scheme.
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5 RESULTS: CALIBRATION PERFORMANCE

IN A REAL EXPERIMENT

This chapter presents the results of an experiment designed to explore various as

pects of performance of the calibration developed in Chapter 4. Of particular inter

est are speed of convergence, residual error after calibration, stability of the solution

from different initial conditions, and the effect of different target placements within

the scene.

5.1 Acquisition of a Series of Tzirget Images

Range images of the target were acquired at several distances (34, 30, 26, 22, 18,

14, and 10 feet). Figure 24 is an example range and intensity image pair taken at

18 feet. Table 1 gives the (range, i, j) values extracted from the images. The entire

sequence of images are stored on disk to form a database for further calibration

work. Next, each image was segmented by the algorithm from Figure 21 in the last

chapter, forming arrays of ordered coordinates. These coordinates are then

saved in ASCII data files. This pre-processing speeds up execution of the calibration

by more than 50 percent, since segmentation is historically a slow process.

5.2 Preliminary Evaluation of the Data

Since all the data were taken at different distances, a significant question arises

about how distance affects the quality of the measurements. Good measurements

can only be made when the signal to noise ratio exceeds some threshold. If the

detected laser return is low, any noise contributed from the detector electronics
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Intensity Cotnponent Range Component

Figure 24: Intensity and range images of the target at 18 feet.

Table 1: Centroids of the target points found by the automatic segmentation.

point range

464.583

496.810

529.094

561.480

111

III

)omt range 1 J

16 1481.859 496.641 314.569

17 1485.210 529.007 314.792

18 1477.587 561.436 314.983

19 1510.284 400.428 353.368

20 1488.020 432.341 353.729

21 1477.650 464.350 353.985

22 1482.378 496.575 354.227

23 1485.899 528.834 354.515

24 1478.371 561.241 354.816

25 1513.489 400.554 392.822

26 1502.182 432.361 393.189

27 1490.098 464.322 393.533

28 1486.908 496.475 393.833

29 1486.657 528.632 394.095

30 1477.858 561.037 394.517



could ruin the range measurements. Quality therefore depends on the amount of

returned laser light, so one can successfully argue that the closer object returns

more laser light to the camera. Thus, the closer object gives the better range

values. This is an inverse effect. Additionally, an averaging of pixels takes place,

improving the range values. When n pixels contribute to the measurement, the

variance improves by a factor n. Again, the close objects appear larger in each

image. The number of pixels per dot, n, is also inversely proportional to r^. We

conclude that the variance of the measurement effectively worsens with r^. This

relationship places strict limits on the laser power, sample time curve for any fixed

distance.

The data extracted from the seven test shots was graphed in {r,i,j) space to

allow a visual inspection to determine how the distance affected the data from the

test targets. Figure 25 shows how the effect ruins the most distant data sets.

Some other anomalies, such as unusual aberration from the correct orientation, are

observed. As a compromise, only the best data sets, the 10, 14, 18, and 22 feet

target data, were used in the calibration. Additionally, it is concluded that some

distance restrictions may always apply to target placement within the scene.

5.3 Performance Analysis of the New Calibration Algo

rithm

A particular calibration run begins by selecting initial conditions for all model pa

rameters. These essential camera model parameters are stored in a file. Many of

these parameters can be determined from the manufacturer's specifications. The

uncertain parameters must still be initialized to some value before calibration.

These parameters can usually be guessed from the manufactures specifications or

from looking at test data. In our case, four parameters are particularly variable
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Figure 25: Test data viewed (a) from front, above (b) from above (c) from behind.
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among the individual camera units. They are enumerated below:

1. Laser source location S]

2. Distance per range increment

3. Azimuth mirror angle increment per pixel a; and

4. Elevation mirror angle increment per pixel

The following is a list of approximate values for these parameters, as determined

from consulting with the manufacturer.

1. 5 = -1700 mm z;

2. I = -2 mm z;

3. a = 0.001022 rad per pixel; and

4. /3 — 0.0005113 rad per pixel.

Before starting the calibration, we made a visual inspection of the error between

the uncalibrated data and the ideal data by plotting the points in 3-D on a Silicon

Graphics workstation. The plot is shown in Figure 26, where the uncalibrated data

are in light gray and the ideal data are in dark gray. At this point, the calibration

errors far exceed those resulting from random sources.

The behavior of a particular numerical algorithm during convergence is an im

portant characteristic. Convergence curves are often studied to determine the ef

ficiency and stability of a new algorithm. To characterize the performance of the

algorithm presented here, we modified the program to record the state of each cali

bration parameter during every iteration. As the simplex walks through parameter
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Figure 26: Initial bad fit of the data points to the ideal.

space seeking a minimum, the path can be quite complex, especially in four dimen

sional space. This leads to the question of how to view the four dimensional path of

convergence in just three dimensions or less. Since no one method seems sufficient,

we present a variety of graphs in Figures 27-33. These plots show the number of

steps of convergence during calibration for each parameter, as well as the rms error

before, during, and after calibration. Two final plots show 3-D projections of the

convergence path in three of the four dimensions simultaneously.

From Figure 31 we see how the algorithm converges quickly, finding a solution

in less than fifty iterations. Most importantly, the RMS error is reduced from more

than 60 mm per data point to less than 10mm per data point. We shall compare a

plot of the calibrated data to the ideal data later to determine whether the residual

10 mm error is because of a calibration error (ie. finding a local minimum) or
whether it is due entirely to random sources of noise.

Upon completion, the program outputs new calibrated parameter values. For

this example, the calibrated values are enumerated below.

1. 5 =-2015.218750 mm
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Figure 27: Convergence of the laser source location.
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Figure 28: Convergence of the distance per range increment.
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Figure 29; Convergence of the azimuth mirror angle increment per pixel.

xlO'

S4.8

;:4.4

-.2 4.2

10 15 20 25 30 35 40 45 50

Simplex steps

Figure 30: Convergence of the elevation mirror angle increment per pixel.
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Figure 33: View of the simplex moving through another three dimensions of the

parameter space.

2. I = -2.142039 mm z;

3. a = 0.000939 rad per pixel; and

4. /? = 0.000380 rad per pixel.

Figure 34 illustrates graphically the final good fit of the test data points (light

gray) with the ideal data points (dark gray) after calibration. A closer view is

shown in Figure 35. Primarily, there appears to be no consistent pattern to the

errors, as we might expect if there were any remaining calibration error. Rather,

the noise is random, with most of the contribution in the z direction. Furthermore,

the fact most of the noise is in the z direction correlates to noise in the range values

rather than pointing errors.
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Figure 34: Final good fit of the data points to the ideal
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Figure 35: A close up of the final fit showing noise in the range values.
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Numerical algorithms often exhibit sensitivity to initial conditions. That is,

when the initial conditions are slightly changed, the results may also vary. When

many local minima exist, it is entirely possible that the algorithm will only find the

nearest local minimum, not the global solution. However, if the error function is

smooth and contains few minima, the algorithm will exhibit very little sensitivity

to initial conditions.

To determine the sensitivity to initial conditions, the calibration was initialized

several times with different parameters. Fortunately, the routine always converged

within 0.1 percent of the same solution. This kind of behavior clearly indicates a

well defined global minimum in the error function. This result also reassures us of

the method's stability.

5.4 Summary

An experiment was designed to explore the performance of a calibration method

developed in Chapter 4. This experiment required test images from a pre-selected

target. The necessary range and intensity images were acquired at several dis

tances and stored in digital format. A segmentation algorithm was next applied

to these image pairs to extract coordinates of specific target points. We

then discussed the relationship between distance and range accuracy. Persuant to

this discussion, we determined to plot our data and inspect for anomalies, espe

cially at large distance. We indeed discovered some defects in the recovered target

data. Furthermore, these all occurred at large range values. After isolating the four

best (and closest) data sets, we initialized our new calibration routine with some

approximate values. Upon completion, we evaluated the convergence efficiency by

referring to several graphs created during the process. It is determined from this

experiment that the new calibration is both efficient and robust. It is furthermore
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concluded that most of the residual error results from random noise in the range

measurment, not calibration error.

66



6 APPLICATIONS

This chapter introduces applications directly resulting from the calibrated camera

model and examines its implications. Primarily, how does the new model relate to

the older models based on spherical coordinates, and in what case is the spherical

coordinates approximation valid? Secondly, we reconstruct a 3-D scene from a sin

gle range and intensity image pair as a first step toward the integration of multiple

range and intensity images into a common 3-D model. Finally, we address the

warping effects spherical projection causes. This effect is not an error but is rather

because of the spherical type of sampling the camera uses. The curvature seen in

the images is the result of using square pixels for mapping {i,j) coordinates to the

screen. A transformation is derived to re-map the range and intensity images so

that straight lines in the scene compare to straight lines in the images. There are,

of course, limitless applications for range data; however, the previous three items

appear to be the most pertinent and immediate results linked to developing the

calibrated camera model.

6.1 Addressing Warpage in the Images

A distinctive warping effect causes vertical lines in the scene to map to curved

lines in the intensity and range images. This mapping results from the spherical

coordinate projection used in the Perceptron camera. Compare this kind of imaging

to perspective projection, where a lens or pinhole is employed in projecting the

images. Perspective projection is one of the projections which always maps straight

lines in 3-D to straight lines in the image. The perspective projection is preferable

for at least two reasons:

1. It looks correct since it is the type of projection employed within the eye; and
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2. Many computer algorithms assume perspective projection. For example, the

Hough transform was designed to isolate straight lines under the assumption

of perspective projection, which maps lines and planes in 3-D to lines and

planes in the images.

For our purposes, we are interested in a projection preserving straight lines, but is

also closely related to spherical coordinates. Equal-angle coordinates is an obscure

coordinate system, but it does produce much less warped looking images. In fact,

straight lines which are perpendicular to the 2 axis are perfectly straight in (EA)

projected images. Both the spherical and equal- angular systems possess a 6 and a

but in equal angular (EA) projection, their roles are more balanced. Recall the

form of the spherical coordinates from Equation 33;

X = sin(0) {radius)

y = cos(0) sin{(j>) (radius)

z = — cos{9) cos{(j)) (radius) (60)

As denoted previously, the two angles, 6 and <j), share an equivalent role in EA

projection. Figure 36 helps explain the geometry of EA projection. Looking at this

figure, we infer the following equations from the two triangles:

tan(0) = xj — z

tan($) = yj — z (61)

where, © and $ are the EA projection coordinates on the horizontal and vertical

axes respectively.

The goal is an analytic function for transforming the spherical coordinates to

EA coordinates. Beginning with Equation 61:

,  - . , cos(B)sva((j)) (radius) sin(^)tan^ = y (-z) = — y' ) \ = —= tan <^)
cos(^) cos(^) (radius) cos(0)
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Figure 36: A diagram of the equal-angular projection system.

tan(©) = x/(-z) = sin(g) (radius) ^ sinje) ^ tanje)
cos{6) cos{(j)) (radius) cos($) cos(0) cos(^)

^ = <j) (62)

9 = arctan(tan(0) cos(0)) (63)

Since the vertical angles (j) and $ are the same in both systems, we conclude that

a warping of 9 is sufficient to correct the problem.

To de-warp the image, one must know the degrees per pixel for 9 and <p. Because

(j) is the same for both systems, no vertical warping of the images occurs. Each raster

line is independent.

This analysis suggests an efficient algorithm for carrying out the de-warping.

One scan line from the image is loaded into a buffer; it is re-sampled according to

Equation 63 and stored in another buffer until it can be written out to the destina

tion file. This operation is repeated on every scan line of the image. Therefore, only
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enough memory to hold two scan lines from the image is needed. The efficiency of

this technique will be appreciated once the images exceed a few million pixels in

size.

The visual effect of equal-angular projection is to de-warp the apparent image

stretching done by spherical projection. A dramatic example of warpage can be

seen in Figure 37, where the spherical warping has an extreme effect on the left

and right boundaries of the images (straight structural members appear curved).

Compare these images with those seen in Figure 38 which have been transformed

to the equal-angular coordinate system. The much improved appearance of the

doorway and storage cabinet is once again because equal-angular projection can

map straight lines in the scene to straight lines in the image. Figures 39 and

40 present another sample of the improvement coming from de-warping. Although

spherical coordinates may represent the internal workings of the camera in addition

to providing a method of recovering the 3-D geometry from the scene, we conclude

that equal-angular transformation has useful applications for many edge sensitive

algorithms.

As mentioned earlier, many computer algorithms assume perspective projection.

The Hough transform, for instance, was specifically designed to isolate straight lines

under the assumption of perspective projection. For example, consider the indus

trial application of automatically segmenting pipes from a range image. In other

applications, objects are segmented from the scene and stored as closed polygons

consisting of a minimum number of straight line segments. Sometimes these chains

of linked line segments are used to sort out the objects of interest. Warpage obvi

ously encumbers the search for straight edge segments as in Figure 41, by artificially

breaking the edges into a multitude of nearly linear segments, wasting processor

time.
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Figure 37: This image shows significant spherical warping near the left and right

edges.
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Figure 38: The same image after de-warping
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Figure 39: Another image showing significant spherical warping near the left and

right edges.
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Figure 40: Again, the result of de-warping.
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Figure 41: The edge in (a) requires three line segments, while the same edge in (b)

can be represented with only one line segment.

6.2 Full Angle Range Images

Another application of spherical coordinates is for storing a full angle image. By

full angle, we mean every viewing direction that can be represented by a vector to

the unit sphere surrounding the camera. Because the images from the Perceptron

camera are in spherical coordinates, each image represents a small segment of the

surface of a projection sphere around the camera. We conjecture that by taking

multiple range images from the same location, a continuous map of the projection

sphere can be made. The task, therefore, is to warp each image so that no overlap

occurs with previously taken images. Similar forms of image mosaicing have been

proposed in the past, using conventional cameras with perspective projection [39].

Szeliski describes a technique for mosaicing images of planar surfaces from different

positions, and for mosaicing a panoramic image from several shots taken at the same



position. Rather than calibrating the camera, the author relies on local and global

registration techniques to find the required transformations between images. In our

work, however, camera calibration was viewed as the primary goal. Therefore, the

method we propose relies on the calibration parameters we derived earlier. Our

method results in a composite image spanning more than 360 degrees in azimuth,

and nearly 160 degrees in elevation (nearly full angle). This large panoramic image

is formed by mapping each small image from its natural 9, (f> coordinates to a

common world 9, (j) coordinate system.

Mapping can be done in two steps using the algorithm developed for de-warping

images. The first pass makes a de-warping transformation from the local 9, (j)

system to an intermediate standard equal-angular coordinate system. The second

pass makes a transformation from the equal- angular coordinates back to world 9,

(j) coordinates. This mapping generally stretches either the top or the bottom of the

images, depending on which hemisphere they were taken from. Near the equator of

the sphere, little warping is apparent. Near the poles, however, the image becomes

very stretched. The implication is that straight lines are always warped near the

poles of the image (top and bottom). This problem is not correctable either, because

there is no way to map a sphere to a plane without warpage. The new image

essentially gives a full view around the camera in every direction. Figure 42 shows

a nearly full angle intensity image obtained from the composite of 28 individual

1024 X 1024 images, resulting in a 7168 x 4096 pixel image. Likewise, Figure 43

shows a nearly full angle range image obtained the same way.

The registered range component forms a companion image, giving the direct

spherical coordinates of every visible surface point. This single range image provides

the most complete 3-D map of the environment for autonomous navigation and

environment mapping.
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1024 X 1024 images.



Because these images contain all the scene around the camera, it should be pos

sible to obtain any type of image projection (equal-angular, perspective, or wide

angle lens) in any direction of view by properly re-sampling the image. We un

dertook to study a 180 degree lens projection of the image from any user- defined

direction. The primary method is to calculate all the local {x, y, z) unit vectors cor

responding to the desired projection model, pass these vectors through the desired

rotation matrix to obtain the correct look direction, and extract the corresponding

{9, (p) world coordinates. The {6, (p) values are then used to select the appropriate

set of pixels to compose the new image. Bi-linear interpolation is used to calculate

the actual pixel values to avoid aliasing. Some results are shown in Figures 44-47

for different viewing directions. Note the missing data in Figure 47. Tilting the

camera straight down is impossible because of the support post obstruction.

Figure 44: A fisheye lens projection of the scene behind the cart.
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Figure 45: A fisheye lens projection of the scene in front of the cart.

0 L

Figure 46: Viewing the scene at a declined angle.
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Figure 47: Looking down, we cannot see the area directly below the camera because

of mounting hardware.



6.3 Reconstruction of a 3-D Scene

The partial reconstruction of a 3-D scene from a single range and intensity image

pair is the first step in integrating multiple views to form complete 3-D scene models

[10] and [37]. Registering and integrating multiple data sets into a common database

(possibly in some compressed format) is the goal of more advanced research, which

may incorporate the fusion of other types of data as well. This opens the possibility

for creating accurate 3-D site models, to be used in managing remote operations

within hazardous facilities.

To demonstrate the 3-D nature of the data we recover from range images, we

transformed an entire range image from range coordinates into (x, y, z) coordinates.

We then overlaid each corresponding (a:, y, z) sample point with the correct intensity

value from the intensity image and rendered this data in 3-D on a Silicon Graphics

workstation (see Figure 48). It must be emphasized that the data used in all three

views was obtained from a single range, intensity image pair. Different viewing

angles are shown to emphasize the depth feature of the image. The side views,

furthermore, illustrate the occlusion concept, where objects in front block the sensor

from detecting parts of objects in back. Thus, we conclude that many such images

must be taken from different angles to complete an entire 3-D scene model.
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Figure 48: 3-D information reconstructed from a range and intensity image pair,

(a) Viewed from the left, (b) viewed from the right, and (c) viewed from above.



7  SUMMARY AND CONCLUSIONS

Because of a recent shift toward 3-D sensing techniques in machine vision, much

of the literature now concerns on the use of range images. However, many applica

tions require accurate {x,y,z) information, especially where many images are used

together. Therefore, just as photogrameters developed calibration techniques ap

propriate for lens based imaging, we propose to study the appropriate mathematics

that leads to accurate calibrations for range cameras.

7.1 Literature Review

We reviewed the basic concept of what a range image is, how a range camera

functions, and previous work in the field of calibration. Some of the literature

inspired us to again think the traditional calibration strategy using a precisely

placed target for calibration. This is particularly important because the^ cameras

are likely to be placed in an environment so hazardous or radioactive that human

intervention with a target is impossible. On this premise, we determined that

algorithms which were invariant to target position were the most valuable. Many

of the examples are based on geometric features like shape (ie. spheres [26] and

planes [4]).

We next investigated the types of non-contact depth measurement techniques

used in range cameras. Beginning with ultrasonic pulse detection, we derived equa

tions for range based on signal velocity and travel time. Proceeding, we discussed

the need to use smaller wavelengths to increase imaging resolution. The next range

measurement system discussed was the laser pulse detection system, used in early

range cameras. We then discussed developments in continuous light wave systems

such as the amplitude modulation and frequency modulation systems used in the

82



latest range cameras.

7.2 Development of Mathematical Models

The effort of all previous research in calibration of laser scanners seems to be flawed

by deficiencies in modeling the internal scanning mechanism. It appears that no one

has ever proposed a clear method for modeling the complex interactions of multiple

rotating mirrors. Most previous work involving camera calibration pertained to

television type cameras. Where there was some work done with range cameras, the

predominant mathematical model used was the spherical coordinates system. It

was shown, however, that this model broke in near scenery, the exact environment

in which most robots function.

A new model using better mathematical tools was called for. We recalled Snell's

law from physics, an old law that used 2-D geometry to describe how light rays

reflected from a mirror. Unfortunately, the 2-D nature of Snell's law oflFered little

help in solving the general 3-D problem. This speciflcally led to the introduction of

the Householder reflection matrix. This, in addition to other tools developed here

provided an analytical approach to modeling not seen before.

Based on the new mathematical tools introduced in Chapter 3, we derived a

model for the Perceptron camera to understand the type of calibration errors that

could be present. By properly adjusting certain parameters inside the model, we

intended to produce an accurate analytic function for transforming range image

data into the more useful (x, y, z) data. The task of automatically selecting proper

parameter values, however, invoked the development of a complex theory of cali

bration.
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7.3 Calibration Hardware and Software with Automatic

Target Location

The target and mobile scanner platform required six weeks to construct and will

continue to contribute to research at UTK and ORNL. The cart has applications

toward the design of an autonomous mapping system. The autonomous mapper

is envisioned as a lighter and more sophisticated platform with on-board power,

motility, an advanced range camera, plus other sensors for color vision and radiation

detection.

The combination of the simplex algorithm and Horn's auto-registration algo

rithm make the implementation of calibration simple to set up and perform. The

need for precise target location is obviated so long as the target itself is precisely

manufactured. Furthermore, the quick convergence of the simplex algorithm (less

than 100 steps) is also satisfying and indicates the possibility of calibrating the

camera on-line from known structures in a facility (an important virtue in nuclear

environments where the camera might become contaminated and inaccessible to

humans).

7.4 Results: Calibration Performance in a Real Experi

ment

The relatively large errors experienced before camera calibration were reduced to

less than 10 mm per target point after calibration. After comparing plots of the

detected points against the ideal target, we determined that most residual error

results from noisy range measurement, not pointing error.

The above results imply that calibration is limited only by the quality of the

84



range measuring device inside the camera. The Perceptron unit used in this partic

ular set of experiments has been superseded by a new model. An FM based laser

range finder which is both quantitatively and qualitatively superior is available from

Coleman.

7.5 Applications

The advent of a fully calibrated camera model cast a few of the traditional machine

vision problems in a new light. Briefly, a new chapter was established to explore

the implications of this new model and its relationship to several problems which

had murky underpinning in the past. We primarily questioned the relationship

between this new model and the traditional, but incorrect, spherical coordinates

model. Astoundingly, our mathematical analysis shows how to derive spherical

coordinates as an approximation of our new model under strict assumptions. This

reconciliation of the two models was pleasing and lead to a set of conditions for

invoking the spherical approximation.

In turn, the newly resurrected spherical coordinates model explains why a curi

ous warping effect occurs in all the range images, resulting in curved vertical lines.

This new understanding leads to a dewarping algorithm for machine vision appli

cations which are particularly edge sensitive. One of the examples given is the

Hough transform, which detects long, straight line segments in the image space.

Performance of this algorithm can be drastically improved by dewarping.

Another topic concerning the spherical coordinates issue is full angle range im

ages. If the range images are indeed in spherical coordinates, each image represents

a small segment of the surface of a projection sphere around the camera. We realize

that by taking multiple range images from the same location, much of the projec-
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tion sphere can be filled. We propose a technique that results in a composite image

spanning more than 360 degrees in azimuth, and nearly 160 degrees in elevation.

This single range image thus provides a very complete 3-D map of the environment.

Finally, in order to demonstrate the 3-D nature of the data we recover from

range images, we transform an entire range image from range coordinates into

{x,y,z) coordinates. We then overlay each corresponding {x,y,z) sample point

with the correct intensity value from the intensity image and rendered this data

in 3-D on a Silicon Graphics workstation. We show different viewing angles to

emphasize the depth feature of the image. Furthermore, the side views illustrate

the concept of occlusion, where objects in front block the sensor from detecting

parts of objects in back. We thus conclude that many such images must be taken

from different angles to complete an entire 3-D scene model.

7.6 Conclusions

Several problems exist with the amplitude modulated range finders. Such systems

are susceptible to many noise sources and become unreliable when the laser return

is weak. Particularly, shiny and dark surfaces pose a real problem. Reportedly, the

recently developed frequency modulation solves many problems associated with

the more primitive amplitude modulation system. The first commercially available

frequency modulated system has been developed by Coleman Research Corporation

for Oak Ridge National Laboratories and is now available commercially.

The current integration of multiple views into a unified 3-D model is one

paradigm for reducing noise since noise mainly affects the range dimension. Thus,

when an object is viewed from many angles, errors from previous views can be mit

igated. This is a large area of research and is beyond the scope of camera modeling
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and calibration.

The experiment performed in Chapter 6 clearly demonstrates the feasibility of

recovering reliable, calibrated {x,y,z) surface information from the environment us

ing range images. Future work will focus on using this {x, y, z) data for autonomous

navigation, facility mapping, and remote manipulation of hazardous materials.
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