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ABSTRACT

The following thesis studies the acoustic wave equation, the elastic wave equa

tions, a fluid-solid interaction problem, and their flnite element approximations in

the frequency domain. The focus is on how the solutions depend on the frequency uj,

how the error bounds for the finite element approximations depend on the frequency

u, and how the mesh size h is constrained by the frequency u in the flnite element

approximations. Particular emphasis is on results for high frequency waves.

A Rellich identity technique is used to derive an elliptic regularity estimate for the

acoustic Helmholtz equation with a first order absorbing boundary condition. The

estimate is optimal with respect to the frequency uj. The finite element method for

the problem is formulated and analyzed. The flnite element analysis leads to two

main results. The first is a constraint on the mesh size h in terms of the frequency

u which is necessary to guarantee existence of finite element approximations. The

second is an error bound on the finite element approximations which shows explicit

UJ dependence.

Analogous techniques achieve similar results for the elastic Helmholtz equations.

An additional difficulty appears in the elastic case because the Lame operator is only

semi-positive definite. The difficulty is overcome first with a regularity argument,

and the result is then improved with a Korn-type inequality on the boundary.

A fluid-solid interaction problem, which is described by a coupled system of acous

tic and elastic Helmholtz equations, is considered next. Finite element approxima

tions are proposed and analyzed, and optimal order error estimates are established.

Parallelizable iterative algorithms are proposed for solving the corresponding finite

element equations. The algorithms are based on domain decomposition methods.

Strong convergence in the energy norm of the algorithms is proved.

Finally, the acoustic Helmholtz equation with a second order absorbing boundary

condition is studied. Again, the finite element method is formulated and analyzed,

and optimal error estimates are derived with explicit dependence on the frequency, uj.

Ill



A procedure for recovering the solution in the time domain by numerically approx

imating the inverse Fourier transform is formulated. The procedure is implemented

for both the acoustic Helmholtz problem with the first order absorbing boundary

condition, and for the acoustic Helmholtz problem with a second order absorbing

boundary condition. A computational comparison of the resulting approximate solu

tions is given.
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Introduction

Acoustic and elastic wave equations are the governing equations of wave propagation

through inviscid fluids and elastic solids. The Helmholtz equation, which is time

independent, appears when one applies the Fourier transform in the time variable to

the wave equation, or when one seeks time-harmonic solutions of the wave equation.

An alternative method for numerically solving wave propagation problems is therefore

to first solve the corresponding Helmholtz problem, and then recover the solution in

the time domain by calculating the inverse Fourier transform of the solution.

This approach, known as the frequency domain approach or method, is attractive

for two reasons. First, it is a parallelizable method; one can exploit parallel algorithms

and computers to solve a sequence of Helmholtz problems necessary to approximate

the Fourier inversion. Second, it eliminates the need for time stepping. In order to

approximate solutions in the time domain, one must solve a discrete problem for all

previous time steps before advancing to the next step. Furthermore, the time step

cannot be chosen arbitrarily. With a frequency domain approach, however, one only

needs to solve the sequence of Helmholtz problems once, and one can then calculate

the solution at arbitrary times without any knowledge of the solution at previous

time values.

In the following thesis, we are interested in the frequency domain approach to the

study of waves, and focus on analysis of Helmholtz problems which arise from the

study of wave propagation in fluid and solid media. As governing partial differential



equations, we will use the scalar or acoustic Helmholtz equation

--^P - Ap = gj,

and the elastic Helmholtz equation

-uj^PsU - div (cr(u)) = Qs ,
~  ~ \ss ~ / ^

so called because of their respective relationships to the aforementioned acoustic and

elastic wave equations. We will use absorbing boundary conditions, which are meant

to minimize reflections of outgoing waves, hence simulating the absence of a physical

boundary. Our emphasis is on analysis of flnite element based numerical solution

methods. When possible, we derive elliptic regularity estimates, which bound appro

priate norms of the solution of the Helmholtz equation in terms of its source with

explicit dependence on the frequency, u. It is worth noting that the variational form

associated with Helmholtz problems is not coercive in general, and we therefore can

not appeal to results such as Cea's Lemma and the Lax-Milgram Theorem to reach

our conclusions.

In Chapter 1, we analyze the acoustic Helmholtz equation with a first order ab

sorbing boundary condition, a problem which has received considerable attention in

the literature. In the one dimensional case, [10] establishes a regularity estimate using

the Green's function representation of the solution. This paper also presents flnite

element analysis based on the argument of Schatz [34], analysis of the total error of

approximate solutions in the time domain, and numerical experiments. [18] derives

regularity estimates in the two and three dimensional cases using the fundamental

solution of the Helmholtz operator. In [23], the authors derive regularity estimates for

the attenuated case, analyze total error, and present results of numerical experiments

in both constant and variable wave speed domains. In the two dimensional case, [28]

derives a regularity estimate equivalent to that of [10]; the author uses a test function

originally developed in [27].



In our analysis of the acoustic Helmholtz problem, we generalize the regularity

result of [28] to both two and three dimensions using a technique based on a Rellich

identity for the Laplacian. The Rellich identity for the Laplacian originally appeared

in [33] for real valued functions; we derive a complex version of this identity for the

acoustic Helmholtz problem. We then state the variational or weak formulation of the

problem, and prove an existence/uniqueness theorem. Next, we formulate the finite

element method, and derive optimal order estimates for the finite element method.

In Chapter 2, we analyze the elastic wave equation with a first order absorbing

boundary condition which arises from a model for wave propagation through elastic

media. Our analysis parallels that of the acoustic problem in Chapter 1. We first

derive a Rellich identity for div which generalizes the Rellich identities found

in [31] and [7] to complex case. We use the Rellich identity to derive two elliptic

regularity estimates for solutions to the elastic Helmholtz problem. Our estimates

improve results for elastic and nearly elastic waves in [16]. We then prove existence

and uniqueness of solutions to the variational formulation, formulate the finite element

method and derive optimal order finite element error estimates.

In Chapter 3, we study a coupled system of acoustic and elastic Helmholtz equa

tions which arises from a model for wave propagation through composite fiuid-solid

media. We use first order absorbing boundary conditions on the outer boundary of

the whole domain, and impose additional conditions on the interface to describe the

interaction between the fiuid and solid domains. The corresponding model in the time

domain is the subject of [15] and [17]. The model is developed in [15], where exis

tence, uniqueness, and regularity results also appear. Finite element analysis for the

time dependent interaction problem appears in [17]. [27] treats the one dimensional

case of the interaction problem in the frequency domain. The authors establish exis

tence and uniqueness of solutions to the variational formulation, derive a regularity

estimate for solutions, and provide finite element analysis.

In this work, we generalize the existence and uniqueness result for the coupled



Helmholtz system to the two and three dimensional cases. We also provide finite

element analysis for the two and three dimensional cases, and derive optimal order

finite element error estimates.

In Chapter 4, we continue our analysis of the coupled system of Helmholtz equa

tions with the presentation and analysis of non-overlapping domain decomposition

iterative methods for solving the fiuid-solid interaction problem. The key to each

method is to replace the physical interface conditions with equivalent relaxation con

ditions, a technique which is used successfully in [2, 9, 14]. We use an energy method

to show convergence of the iterative methods, and provide numerical results to sup

port the analysis. Similar results and techniques for the time dependent interaction

problem appear in [17]. Chapter 4 completes an earlier work, [6], with greater detail

and exposition.

We revisit the acoustic Helmholtz equation in Chapter 5. It is well known that sec

ond order absorbing boundary conditions yield smaller refiections, and we therefore

consider the acoustic Helmholtz problem with a second order absorbing boundary

condition. A similar analysis of the acoustic problem with a first order absorbing

boundary condition appears in [23]. We formulate the finite element method, and

derive error estimates. Finally we present and implement a procedure to numerically

approximate solutions to the time-dependent acoustic wave equation using both the

first order and the second order absorbing boundary conditions, and give a com

putational comparison of the performance of the first and second order absorbing

boundary conditions.



Chapter 1

Acoustic Waves

Consider the unattenuated wave equation,

(1.1) \Ptt-AP = Gf t>0

where P is a real-valued function of the spatial variable x e 3?^ {N = 2,3) and

the time variable t. Equation (1.1) describes the propagation of disturbances in an

acoustic medium and solutions are commonly known as "waves." It is not feasible to

approximate waves in large or infinite domains, and in practice one often truncates

the computational domain by imposing an artificial boundary condition. Ideally,

such a condition should "absorb" waves striking the boundary - that is, minimize

reflections back into the computational domain - thus simulating the absence of a

physical boundary. The equation

(1-2) +
C ot OUf

is known as a first order absorbing boundary condition; when imposed on an artificial

boundary, it absorbs outgoing waves arriving normally at the boundary. For a more

complete discussion of absorbing boundary conditions, see [11].

Combining equations (1.1) and (1.2) yields the following model for computing



^Ptt - AP ^9f X eQ.f,t> 0,

IdP I dP
c dt drif = 0 X e dQf, t>0,

P^Pt = 0 X G ̂ f, i ̂  0,

wave propagation in an infinite or large acoustic medium

(1.3)

where Qj C 9?^ is a bounded domain, and n/ is the unit outward normal to dQ,f.

Throughout Chapter One, we will assume that Qj C is a bounded star-shaped

domain with Lipschitz boundary. Recall that if is star shaped, there exists a

positive constant Pi, and a point xq G Qf such that

(1.4) Pi < — ̂o) ■ nf \/xedClf.
^

Assume without loss of generality that Xq = 0

Applying the Fourier transform to (1.3), or seeking time-harmonic solutions to

(1.3), yields the following Helmholtz problem

=gj inQf,

=0 ondQf,

where p = P = fP°^e^'^^P{t,x)dt. Because of its relationship to equation (1.1), the

Helmholtz equation above is often referred to as the acoustic wave equation in the

frequency domain or the acoustic Helmholtz equation.

Chapter One begins this thesis with an investigation of (1.5). In Section 1.1,

we derive several identities which lead to a Rellich-type identity for the Laplacian.

In Section 1.2, we use the Rellich identity to derive an elliptic regularity estimate

for solutions to (1.5). In Section 1.3, we define the weak or variational formulation

of (1.5), and prove an existence/uniqueness theorem for the variational formulation.

Section 1.4 contains finite element analysis for (1.5); we present the finite element

method, and derive an optimal order error estimate for the finite element solution.
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1.1 Preliminary and Rellich-Type Identities

The Rellich identity for the Laplacian relates the L^-norm of Vp on the boundary to

a particular integral involving Ap. Rellich identities for Poisson's equation appear in

[33], and are named for the author. Necas applies the identities to second and fourth

order elliptic problems in [29] and [30]. Generalizations of Rellich's identity appear

in [31]. Note that the Rellich identities in [29, 30, 31, 33] only consider real valued

functions.

To derive the Rellich identity, we first collect three preliminary identities which

are true with minimal hypotheses on the relevant functions.

Lemma 1.1. Given a : —)■ C and b : ,

div(a6) = Va • 6 + a div(6).

Proof:

= E = E +"E ̂
Z=1 2=1 2=1

= Va • h + adiv(6).

Lemma 1.2. For any p, q : 9?^ —> 9?

Vp • V? = div((Vp) q) — (Ap)^.

Proof : This result follows from Lemma 1.1 with a = q and b = Vp. ■
/>j

Lemma 1.2 will also be useful in understanding the variational formulation of

(1.5). The next lemma is a technical lemma that we will apply directly in the proof

of the Rellich identity.



Lemma 1.3. Given p : 3?^ —> C and a : 9?^ —> 3?^,

a • V(Vp • Vp) = 2 Re |div ̂ (Vp) (a • Vp) j — (Ap) (a • Vp) |

dx, dx, dxj j n
Proof : Since

(1.6) 2.v(v..w) = E.<Eg5.E«.Ef5^.
i=\ j=l 3 ^ 3 i=i j=i J ^ 3

then

vp.v(E^ = Eg£:E".f
2=1 J = 1 •'

N o Nr. -7^ N o No  rv O 1\ ly rvoap ao;.- op op ̂  a'^p

.  —, „ r-fdzi-^ ■'dxidxj
J=1 •' 2=1 ^ = 1 •'

Oxi dxj
N r. Nr. -o N NOEUp V -r CUj up \ V > Op O'^p

f)nr - ' ^ finr- Finn ■ / Jt j r)nr - ^ i^ 5a;i 5a;i ^ ̂  Oxi OxiOx
oij dp

Oxi dxj ^
1  1 = 1 •' 7=1 1=1 ■'3-

N ^ N ^ -?S— N NO

« — i=i » w 1=1

implies

iV ^ iV „ -?;— N N

E

d

oij dp
Oxi dxj

doij dp

wp UlXj up ^ -S^ Op O^p
rinr- t ^

p O'^p(1.7) Vp • V(o • Vp) Y1 Q Q Q ■
i=l ^ ^ J i=l j=l J J

Equations (1.6) and (1.7) imply

2Re{Vp.V(E^}=a.V(Vp.W) + 2Re{E^E^^
1. i=l j=l ■'

Applying Lemma 1.2 to this equation (with q = a - Vp) and rearranging yields:

a ■ ViVp ■ Vp) = 2Re |div((Vp) (a • Vp)) — (Ap) (a • Vp)|
^ a ^ Q ~Q~Op Oaj OpE^EOxi ^ Oxi Oxa

2=1 7 = 1



We now use Lemma 1.1 and Lemma 1.3 to derive the Rellich identity for the

Laplacian. Note that the Rellich identity and the above Lemmas are true for any

function.

Theorem 1.4. (Rellich Identity) For any p : —> C, a :
r\j

f Q:-n/|Vp|^= f (diva)|Vpp + 2Re f -^^(a-Vp)
Jdiif ~ ~ Jilf ^ Jdilf OUf ~

N  N

'Qf JUf

Proof : By Lemma 1.1,

div{Q:|Vp|^} = div(Q:)(Vp • Vp) + a n Vi^p n Vp).

Applying Lemma 1.3 yields

div{Q;|Vp|^} = div(Q!)(Vp • Vp) + 2Re |div ̂ (Vp) (a • Vp)j — (Ap) {a • Vp)|

I ̂  OXi OXi OXj I
1=1 J=1 ■'

Integrating over ^/ and applying the divergence theorem implies

/  Q! -n/|Vp|^= / (divQ:)|Vpp + 2 Re / nf ■ (vp{a ■ Vp)]
Ja^f^ ~ JUf ~ Jao.f"' ^ ~ /

which is equivalent to Theorem 1.4.

Corollary 1.5. For any p : —> C,

j-n;|Vpp = (iV-2)||Vp||i,,„^)+2Re^
— 2Re / (Ap)(a; -Vp).

J?if ~



Proof : Apply Theorem 1.4 with a = x.
r>j

Notice that the Rellich identity contains an integral over Qf of Ap{o! • Vp). Before

we can apply the Rellich identity to the Helmholtz equation, we need the following

identity for p{a n Vp).

Lemma 1.6. For any p : 3?^ —y C, a : 3?^ —y 3?^,

/  (divQ:)|pp= / a • n/|p|^ — 2 Re / p{oi-Vp).
Jnf ~ Janf ~ ~ Jsif ~

Proof : By Lemma 1.1

div |q:|pP| = div(Q;)|pp + a n V|pp

= div(Q:) |p|^ + 2 Re Ip{a • Vp) |.

Integrating over Q/ and applying the divergence theorem yields

/  Q!-n/|pp= / (diva)|pp + 2Re / p{a-Vp).
Jan;^ ~ jQf ~ Jcif ~

n

Corollary 1.7. For anyp:R^^C,a:^^—y 3?^,

^WpWl^nf) = [ 2 • y\p\'^ -2Re f p(x-Vp).
Proof : Apply Lemma 1.6 with a = x. n

1.2 A Priori Estimates for the Helmholtz Problem

Next, we derive identities and estimates which bound the solution of the Helmholtz

problem in terms of its source function p/, paying particular attention to how the

identities and estimates depend on the frequency, u. The principle result is a regu

larity estimate for the Helmholtz problem (1.5), which estimates the L^, and

norms of the solution in terms of the source function p/.

10



The first lemma employs a simple test function technique to establish estimates

for the norm of the gradient of a solution, and for the boundary norm of a

solution. We will use these results to derive the regularity estimate.

Lemma 1.8. Suppose p is a solution of (1-5); then Vei,e2 > 0,

(2) 7\\P\\lHdnf)= + f

Proof : Multiplying the Helmholtz equation in (1.5) by p and integrating over fi/

yields

+ ||Vp||i.(„^) + ̂lblli2(an,) = [ 9SP-
^  Jcif

Taking real and imaginary parts of this equation yields

,2
—w ■\\p\\hinf) + \\^P\\LHnf)='^^ [ 9fP < [ 9fP

J Clj J Ctf

and

7lblli2(an,) = Im / gjp < / gfp
J Clf J Clf

Subsequent applications of Cauchy's inequality and Young's inequality to the right

hand side of the above equations yields the result. ■

The regularity estimates for the solution now follow from Lemma 1.8 above, Corol

lary 1.7, and the Rellich identity in Corollary 1.5.

Theorem 1.9. Suppose p is a solution of (1.5). Then p satisfies the following regu

larity estimates:

(1) \\p\\L^nf) < + ^)\\9f\ \mnf)-

(2) lblki(n.) ^ ^0- + w + ^)\\9f\\L^{nf)-

(3) If is a convex polygonal domain, then

11



lbl|H2(n,) < C{u + 1 + ̂)lb/|lL2(Q^).

Proof : Combining Corollaries 1.5 and 1.7 implies

+ l f (j • = ̂  f s n + (f ~ ̂) W^pWln^f)
J  f J f

+ Re [ + Re [ (-^P - Ap)
Jaaf ~ Jnf ̂  ^ ~

Since p solves (1-5), the above becomes

^\\p\\h{nf) + k [ (^ n = 6 f l' ̂f\P\^ + (f - 1) \\^P\\l^{ni)
J d^lf ^ ̂  JdQf

+ Re [ =^p{x n Wp) +Re [ gf{x • Vp).
JaQf ~ JQf

Applying (1.4), Cauchy's inequality and the boundedness of implies

^Iblli2(n^) + ̂W'^PWhiaQf) ̂  ̂Iblli2(9ny) + (f ~ l) !I^Plli2(n/)
Muj+ -r\\p\\LHaQf)\\'^p\\L^dnf)

+ ̂̂lb/IU2(n,)||Vp||L2(n^)

for some M > 0.

Next, we use Young's inequality and Lemma 1.8 to bound the right side of the

above inequality in terms of Iblli2(n^), Iblli2(an^) and \\9f\\l2^a^y Carefully manip
ulating the arbitrary constants will allow of the resulting |blli2(n^) Iblli2(any)
terms into the left side while retaining non-negative coefficients.

First, applying Young's inequality above implies

^Iblli2(n^) + ̂W'^pWhiaaf) ̂  ̂̂ \\p\\h{aUf) + (y ~ l) II^Plli2(n^)

+ ̂  {^Iblli2(any) + ̂l|Vplli2(any)|
+ ̂  {fW^PWhinf) + 2^lb/lli2(n^)|,

or equivalently,

^l|p|||.,n,, + (^ - l|Vp|l!.(,n,) < (^ + ft) ?l|p|l!=(.n,) +

12



Applying Lemma 1.8 implies

^Iblli2(n/) + (f" ~ ̂̂ ^)\\^P\\h{dnf)

^  + ft) {ftlb/lli^cn^) + f
+  {ftlb/lll2(n^) + (f + ̂) Iblli2(n^)}
+ ftlb/IU2(n^)

= { (^ + ft) f + (^ + (f + tf) } lblli^(n,)
+ { + ft) ft + ft + ft} lb/llL2(n^)-

Choose ei = Then — ei^) = 0, and the above becomes

^Iblll'P,) < {(^ + ̂ ) t + (^ + ̂ ) (¥ + S)} Iblli'p.,)
+ {(^ + ̂ ) i + (^ + ̂ ) i + s} lb/lli'(ii/)

or equivalently

'(ft + f) + (^ + ̂ ) (f + #)]} IIpIIIh",)
< { (ft + f) si + (^ + ¥) i + S} lb/lli'(n,)

/ H<id. _
\ 2c2

or

{^ - [(ft + f) gf + + ̂  + } i|p||i,(„,,
- {(ft si (^ + ''y^) i + i} lls/lli=(n/)'

Choose €3 = ̂ + '^) and note that < i. The above inequality becomes

(tf-
ur_ I ei _L Mtid i A/ea
8c2 4 """ 4 2 c2]} Ibll

< || (^2 + f) + (5 + ft + ftj Ib/lli2(n^)-
Choosing €4 = and 62 = 4^7 yields

~  \\p\\h(nf) <\\[^2 + + 1;^ + 2^^^} WP/Whinf)-

13



That is,

'^^Iblli2(n/) {l + ■^ ) |b/| |i2(n^)

or equivalently,

'^lbl|L2(n^) < C (l + j) lb/||i,2(n^),

where C is independent of to. It follows from the above inequality and Lemma 1.8

that

Mmin,) - Mhia,) + \mhin,)
\\9f\\h{nj) + hWdfWhiQf) + (2 + f) \\p\\h(nf)-

Choosing e = 0{u'^) implies

lbliHi(%) Ib/lli2(n^) + Ib/Ili2(n^)-

Therefore,

Iblli^Mf^/) + h + Ib/lli2(ny:)-

Finally, if is a convex polygonal domain, then regularity theory for the Laplace

problem (see [19]) implies

Iblk2(n^) < C ^11^/ + a;^p||x,2(n^) + \i(^p\m/2{daf)^
<  (lb/ib2(n;:) + ̂ ^^11^111,2(0^) + a;||p||^,-i(n^))
< C (lb/l|L2(n^) + (a; + l)||^/||i2(n_f) + C (a; + 1 + ^) lb/IU2(n^))

or

lbllH2(o^) < c (w +1 + ^) lb/||i2(n^).

14



Regularity estimates for (1.5) appear in several other papers. In the one dimen

sional case, Douglas, Santos, Sheen and Schreyer [10] use a Green's function technique

to establish regularity estimates that are equivalent to those in Theorem 1.9 . In three

dimensions, Feng and Sheen [18] use the fundamental solution for the Helmholtz op

erator to show that the solution satisfies the following weaker estimates,

||p|lL2(n^) < C{u + ̂)\\gf\\L^nf)-

llplUqu.) < -I- ^)|b/||L2(ny)-

lbl|H2(n,) < C{u)^ -f- j)|b/||L2(n^)-

In [28], Melenk derives estimates equivalent to those in Theorem 1.9 in the two di

mensional case.

1.3 Variational Formulation and Well-Posedness

The variational formulation of (1.5) is defined as

(1.8)
Find peH^{Qf) such that

a{p, q) = {9f, q) Vg G

where

a(p, q) = f pq+ f Vp-Vq + — [ pq
c  J^f Jnf c

and

i9f,q)= [ 919 VgGif^(Q/).
Jnf

The bilinear form a(-, •) is not coercive so we cannot use the Lax-Milgram Theorem

to show existence and uniqueness of solutions. It is easy to show, however, that a(-, •)

satisfies a Carding inequality; specifically,

Re{a(p,p)} + (^ + l) Ib||i2(n^) >

15



We can therefore use the Fredholm Alternative Theorem ([3],[38]) and the Unique

Continuation Principle ([25],[24]) to show that the problem (1.8) is well-posed.

Theorem 1.10. Suppose pf G L^{Q,f), u) ̂  0. Then there exists a unique solution

to (1.8).

Proof : Since the bilinear form a(-, •) satisfies a Carding inequality, the Fredholm

Alternative Theorem implies that a solution to (1.8) exists if the adjoint problem

{Find G such that
a* {t, q) = (5/, <l) V? G (fi/),

has only the zero solution when ̂ / = 0 (see [1], pg 102). If gj = 0, then choosing

q = ip \TX the variational form and taking the imaginary part implies that (^ = 0 on

dQ.f. Integrating by parts in (1.9) then implies that ̂  = 0 on dQ.f. By the Unique

Continuation Principle, = 0 in hence solutions exist. The same argument shows

^/ = 0 in (1.8) implies that ̂  = 0, therefore solutions are also unique. n

1.4 Finite Element Procedures

Let Th he a quasi-uniform triangulation of with mesh size h > 0. Suppose Vh is

the Pm-i conforming finite element space of associated with %■ It is well

known that Vh has the following simultaneous approximation property (see [5]) :

(1.10) inf {Hp - qWi^Qf) + h\\p - g||ifi(n/)} < V p G iT"(f^/).
'h

Then the finite element method for (1.8) is defined as{Find Ph £ Vh such that
a{Ph,q) = {9f,q) yq^Vh.

Let Cn^rn denote an abstract regularity constant for solutions to (1.5), i.e.

< CR,m\ \gf\\Hr(Qj)-

16



where r = max{0,m — 2}. From Theorem 1.9, we know that CR^m = 0{u^~^) for

m>2.

The main results in this section are estimates for the finite element error. These

estimates bound the and norms of the finite element error in terms of the source

function gj, the mesh size h and the frequency u. Because the bilinear form a(-, •) is

not coercive, we cannot appeal to Cea's Lemma to derive error estimates. Instead,

we will apply a duality argument to bound the norm of the error in terms of its

norm, and then use the argument of Schatz [34] to establish the error estimates.

A similar approach appears in [10] for the one dimensional case.

Lemma 1.11. Suppose p solves (1-8) andph solves (1-11). Then there are constants

Ci and C2 independent of uj and h such that h < ^—C\ = implies that

\\p - PhWlHilf) < <^2^^^,2^11^-^/111771(0^).

Proof : Suppose that p is a solution of (1.8) and ph is a solution of (1.11). Let (p be

a solution to the adjoint problem with source p — ph, i-e. p solves

Find ip e such that

a*{p,q) = {p-ph,q) \/q e

where

a*{T,Q) = -^f 'PQ+ f Vp-Vq-— ( pq.
C  Jo.} J^lf C

Then p satisfies

= {.TP-Ph) ^qeH'^{9-f).

Taking q=p — pf^ implies

(1-12) \\P-Ph\\l2{pij)=a{p-Ph,p).

The fundamental orthogonality identity states that

o(p-p/i,<P/i) = 0 Vp/i G

17



This is true because a{p,iph) = {gf,Ph) and a{ph,(ph.) = {9f,^h.) whenever (ph G Vh-

Therefore

a{p-ph,(p) ̂ a{p-ph,ip-(ph)

and (1.12) becomes

lb - Ph\\h(nf) = a(P -Ph,V>- Ph)

= -^{P -Ph,p- Ph.) + (V(p - Ph),^{p - Ph))

+ T <P-Ph,p- Ph> n

Schwarz's inequality implies

\\p - PhWhiiif) ̂  ̂\\p - Ph\\L^{df)\\p - PhWi'^inf)

+ l|V(p -pft)||L2(f2/)||V(<^ - Ph)\\L^{nf) + ̂\\p - Ph\\L^(dnf)\\p - <P/i||z-2(ar2/)-

Since Clf has a Lipschitz boundary, the trace inequality (see [4])

(1-13) Iblb^Can/) ̂  ̂/lbllL2(ny)lbllHi(n^)-

holds for all p G i?^(fi/) (see [4]). Therefore,

^\\P — Ph\\L2{dClf)\\P - PhWl^idilf)

< ̂CjWp - Ph\\L2\nf)y - ¥"^llL2^(n^)lb - Ph\\HHnf)\\P "

and by Young's inequality.

\\p - Ph\\L'^{dnf)\\P - PhWl^dClf) < ̂\\p - Ph\\L2{Qf)\\p - PhWl^inf)

+ -i-\\p -Ph\\m{nf)\\p - Ph\\m{nf)-

18



Plugging this inequality in above yields

Wp-PhWh^Qf) < ̂\\p - PhWmnf)^ - Mlhqj)
+ llV(p - Ph)||L2(n^)llV((p - ̂h)\\L^inf)

+ -fWip - Ph)\\m{nf)\\'P - ̂h\\m{Q.i)

< ̂r\\p - Ph\\L^{iij)\W -
cj

¥|

+ max 1^, l| Hp - Ph\\HHnf)h " V/iUhH^/)-

The approximation property of Vh implies

|2 ^ 2tj2|
-  C'

+ '

\\p - PhWl^inf) < ̂\\p - Ph\\L^nf)CAh'^M\HHnf)
max 1^, l| Hp - Ph\\m{nf)CAh\\(p\\m{^nf)-

Applying the regularity estimate (recall that <p solves the dual problem with source

p-Ph) yields

\\P-Ph\\h{nf) ̂  ̂\\P - Ph\\LHnf)CAh'^CR,2\\p - PhWi^Qf)
+ max 1^, l} Hp - Ph\\H^nf)CAhCR,2\\p - Phh^^f)

or equivalently,

|l - ̂CAh'^CR^2} \\P - Phh^cif) < max 1%, l| CAhCR,2\\p - PhWH^Qf)-
Choose h < —7=Ci where Ci = „ L . Then— Uy/Cn^2 2^/c^

{l-'-fiCAh'CR,2}>\
which implies that

\\\p - PhWi^^if) < max CAhCR^2\\p - PhllH^^if),

or

Hp ~ PhWi^ittf) < C2CR^2h\\p - P/iHij-qn/),

ciwhere C2 = max l| Ca-
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Theorem 1.12. Suppose p solves (1.8) and ph solves (1.11). Then there are con

stants C3 and C4 independent of u and h such that

implies that

h < C3 5=^ = 0{u-')
Cfi,2Y ̂ +1

lb - PhWmicif) < C^Cn^rn |b/|bm-2(n^)

and

\\p - Ph\\L^{nf) < CCR^2CR,m{^h"^^^ + /i'")|b/|bm-2(n^)

for m>2.

Proof : Suppose that p is a solution of (1.8) and ph is a solution of (l-ll). Then

\\p-Ph\\m(nf)^'Re{a{p-ph,p-ph)}+ (# + l) \\P - PhWh^n^y

Note that a{p — Ph,p — Ph) = o-{p — Ph,P — o) for every 9 6 14 by fundamental

orthogonality. Therefore,

Wp-PhWhin^) =^^Mp-Ph,p-q)}+ (tf+ 1) \\P - PhWhia^}
< ̂\\P - Ph\\L^nf)\\p - qWi^Qf) + ||V(p-p/i)||L2(n^)||V(p- ?)||L2(n^)

+ ̂\\P - Ph\\LHanf)\\p - qllL^diif) + (^ + ij Ib-P'illi2(n/)
< i\\P - Ph\\mnf)\\p - q\\maf) + ||V(p - p/,)l|i2(n^)||V(p - g)||L2(n^)

2

+ "^Wp - Ph\\mnf)\\p - 9llL2(n/) + -f\\p -Ph\\m{cif)\\p - qWmin;)

+ + 1) Ib-Pftlli2(n^)
or

lb - PhWlycif) < Slb - PftlU2(n^)lb - qWi^nf)

+ ("4" + lb -p/ilbHO/)lb ~ q\\m(nf) + (^ +1) \\p ~PhWhiUf)
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Applying Young's inequality,

lb ~ PhWii^Qf) < ̂  {lib ""P/illi2(n^) + lib ~ 9llL2(n/)}
+ lib - PhWmin^) + I (x + l) lb - Q\\%^(n^)
+ (x + l) lb -Pft|lL2(n^)
= (^ + l) lb-P/.lli2(n^) + xlb-9lli2(n^)
+ |lb-P/i|lHi(n,) + I (■/ + !) lb - 9llffi(f2y)

or equivalently,

l\\p - Phlfn^nf) < + l) \\P ~ PhWh^nf) + xlb ~ 9lli2(%)
+ 2 (■/ + !) Ib-^ll^qn^)-

The regularity estimate for (1.5) and the approximation property (1.10) implies that

\\p - PhWi'^inj) < CAh^\\p\\H'n(^Qj) < CA/i"'CH,m|b/lb'"-2(ny)
lb ~ 911^1(0/) < C'a/i'""^||p||h"'(0/) < C'^/i'"~^C'R,m|b/lb'"-2(n/).

Therefore

lib - PhWlnaf) < (^ + l) lb - Pft|li2(n^) + x<^A/i^"'C'i.mlb/llH"-2(n^)

=  \\p~ Ph\\'L2{nf)

+ ^AC%rn + 2 ("4^ + |b/11^^-2(0^).
Applying the duality estimate from Lemma 1.11 implies

lib ~ P/illffi(n/) ^ ^2^R,2^'^\\P ~ P/i||ffi(n/)

+ ^A(^R,m + 2 ("4^ + l) |b/llH'"-2(n/)'
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or equivalently,

{l - (^ +1)

< ClCl„ 1^/,^ + 1 (2 +1)' a2„-2|
Choose h < C3 — where C3 = 7^. Then

CR,2y ^2 +1

i - (¥ +1) clh'cl, > 1

and therefore

lb - ?<.!!?,.(%) ̂  +1 (? + Ib/ll2ij'"'-2(ny)i
or

lb ~ T^/ilblCO/) < C^CR^ra {coh^ + Iby||^^m-2(n^).

For some constant C4 independent of h and u. Combining this estimate with Lemma

1.11 implies that

\\p - PhWi^inj) < \\p - Ph\\m{af)

< C2CR,2hC^CR^rn |b/||j/'"-2(r2^)-
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Chapter 2

Elastic Waves

Consider the elastic wave equations,

(2.1) PsUtt - div = Gs x e^s, t > 0.

where C/ is a real, vector-valued function of the spatial variable x e (A'' = 2,3)

and the time variable t, and

(2.2) (t(17) = AdivC// + 2/ie([/), e{U) = ̂ (VU + {VUf] .

Equation (2.1) describe the propagation of disturbances in a linearly elastic medium.

Equation (2.2) is the constitutive relation for Qg where A > 0 and p> 0 are the Lame

constants of the elastic medium, and I denotes the N x N identity matrix. A is a

N X N symmetric positive definite matrix whose entries depend only on rig, Ps,X and

p. When N = 2, A has the form

^s,l ^s,2 I I Ois ^ 1 1 ^s,2 ^
'^3,2 f^s,l / \ ̂  \ '^8,1 j

where

+  rp
— \ 1 Ps — \ )

Ps V
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The boundary condition

(2.3) AUt + a{U)ns = 0 a: G t > 0,

is the standard first order absorbing boundary condition (see [13]). When it is imposed

on the boundary of waves which arrive normally at the boundary are completely

absorbed.

Equations (2.1) and (2.3) lead to the following model for wave propagation in an

elastic medium

PsUtt - div (cr(C/)) =Gs X eQ.s, t> 0,

(2.4) < AUt + cr{U)ns =0 x E dQs, t > 0,

Ut = U =0 t < 0.
I.

Throughout Chapter Two, we will assume that Ctg C is a bounded star-shaped

domain with a Lipschitz boundary. Since is star-shaped, there exists a positive

constant 71 and a point Xq G such that 71 < (2; — otq) • rig for all x G
rv/ rsj ^ rsj

Assume without loss of generality that Xq = 0. Applying the Fourier Transform

to (2.4), or seeking time harmonic solutions, yields

{-(j^PgU - div (<t(u)I = Qs in Qg,
ibjAu -1- a{u)ns = 0 on dQg,

where u — U = e^W{t,x). The above Helmholtz equations are also known as
<-s-(

the elastic Helmholtz equations or the elastic wave equations in the frequency domain.

In Chapter Two, we present an analysis of the elastic Helmholtz problem (2.5)

which parallels our analysis of the acoustic problem in Chapter One. In Section

2.1, we derive a Rellich identity for the operator div((7(-)). We then use the Rellich

identity in Section 2.2 to derive two elliptic regularity estimates for solutions to (2.5).

The second estimate, which we believe is optimal, uses a Korn-type inequality on

the boundary of Section 2.3 contains the variational formulation of (2.5), and an

existence/uniqueness theorem. Section 2.4 concludes Chapter Two with analysis of

the finite element method for the elastic Helmholtz problem.
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2.1 Preliminary and Rellich-Type Identities

The Rellich identity for div(cT(-)) relates the !?■ norms of divu and e{u) on the
boundary of to a certain integral involving div((j(it)). We first gather several

identities which hold for general vector-valued functions. These identities - many of

which are analogous to identities in section 1.1 - will lead us to the Rellich identity.

Rellich-type identities were established for div((7(-)) by Payne and Weinberger in [31]

for real, vector-valued functions (also see [7]).

Define the matrix inner product,

N N

A:M = EE (Jyjkn^jk-
k=l

Lemma 2.1. Given ^ ,and o : 3?^ -> C

(1) div(a6) = (Va) ■ b + a div b.

(2) div(Ay = Ef=i Ef=i fe&i + Ef=i E7=i

(3) div(yl6) = (div (.<4)) • 6 + ^ : V6 if A is symmetric.

Proof : The first two equations are easy to verify. The following is a proof of the

third:

N N ^ N N

'"^(4y=EE^^.+EE-.g
i=l j—1 i=l j=l

N N ^ N N

=ee^^.-ee%<£
AT AT N N

=EE^^.+EE''.
i=i j=i ' i=i j=i

daji dbj
.  ̂ ^ dxi"' ■
j=i 1=1 1=1 j=i

=(div(^)) b + A: V6.
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Lemma 2.2. For any u, v : 3?^ —)•

(1) a{u) : Vv = A divu divy + 2iJ,e{u) : e(v),

(2) a(u) : (Vv)^ = A divu div-y + 2/ie(tt) : 6(7;),

(3) (j(u) : €(v) = A divu divv + 2/j,6(u) : e(v).

Proof :

a(u) : Vv = (a divw I + 2fj,e{u)\ : Vv

= A divTi I : Vv + 2n e{u) : Vv
^ ^ rsf

N N-  - 1 fdui
= A divu divy + 2u > > - { -r h

^ ̂ 2 \dx~
1=1 j=i ^ •'

= A divwdi^+2/i^^^ (|^ +
1=1 i=i ^

1 /dui

ui

duj\ dvi
^  ̂ ^ dxi) dxi

N N 1 (d dui\ 1 /dvi ̂  dvi
dxi J 2 \dxj dxj^

— A divu divT; + 2jie{u) : 6(7;).

A similar proof shows the second identity. Identity (3) is a direct consequence of the

first two. n

Lemma 2.3. For any u, v : 3?^ —)•

A div u div 7; + 2/7 e (77) : e (7;) = div (o"(77) v) — div ((7(77)) - v.

Proof : By Lemma 2.1,

div ((7(77) V) = div (cr(u)) • 7; + a(u) : Vv

= div (cr(77)) • 7; + (A div 77 div 7; + 2/76 (77) : e(7;))
rv-" ~ / ~ \ ^ ~ /

Lemma 2.1 is similar to Lemma 1.1 of Chapter One. Lemmas 2.2 and 2.3 are

analogous to Lemma 1.2. The following lemma, which corresponds to Lemma 1.3, is

a technical lemma which we will use in the proof of the Rellich identity.
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Lemma 2.4. For any m : ->• , a : 3?^ -)■ 9?^

a • V (a I divMp + 2/i e(w) : e(ii)') =
rsj \ rsj ^ ^ /

2 Re (div('c7(M) ((Vu)q;)) -divfa(u)') • f(Vw)Q;)|{ N N
A(divu) ^2

Proof : The identity

N Ndocj dui ^ f dui ^ d
1=1 j=i^ dxi dxj ' ' d

Nuj ̂  dui dak
xij dxk dxj

a • V I divMp + 2// e{u) : e{u)\
= Aa • ■! divwV(divu) + (div'u)V divw >■

+ 2fj,a
A"£(1') ■ £(") + sfrjC") : £.(»)

.  + sfcjW ■ jM
implies that

(2.6) a • V (a I divup + 2/i e{u) : €(11)) =
\  rs./ /Nil J

2 Re A(divM)Q; • V(div«) + 2/xq;
g^e(u) : e(u)

.  • £y.

> .
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Also,

Adivu div

N
dui

I. r=l 7=1 •'

N N

= A div u

{N N r\n i * it
i=l 7=1

iV

,  1 \ j- \-^\-^duidaj
= A div« E''i E ^ S E E s;:: ̂

j=l i=i J

N N

.  , . , dxj dxi
7=1 J=1 •'

dxj dxi
1=1 j=i j ^

N N

= A(div u) a-V (div u) + X div u
. . . . 9a;j
7=1 J = 1 ■'

that is,

JV iv ^
(2.7) A(divw) q: • V(divM) = A div w div f(Vti)Q:') — A div

~ ~ ~ ~ \ ~ ~/ ~ •'-—' ' OXi OXi
7=1 j=l J

Finally,

2fie{u) : e ({'Vu)aâ] =

\  \ 1 / dui 9uj
^ dxi) 2

dui d duj \
— — z \uxj uxi J ^ \ uxj ^ dxk dxi ^ dxk j

/ 2 ^ ̂9a:j5a:fc ^ J
1 ^ ̂  / dui duj \ / dui dak duj dak A2^ ^ \9a;j dxi) ^ V^aijt dxj dxk dxj J

^  ̂ ^ 1 /a Q ^ ^

■^''E-eeKI'A:=l 7=1 j=l ^ ■'

1 d dui duj'
dxi J 2 dxk ^ ^— —^ H

:k \dxj dxi

— 2iJ,a ■

VE f ̂ '^7 duj \ ^—\ dui dak
^ ̂  ̂  V ^ dxj

'- ¥5 ^ jv■^--\ / du{ duj \

47«(2) ■ «(h) .

\ dui dak
^ ̂ ^ \9xj dxi) dxk dxj'
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or

(2.8) 2//Q!

K5(») : f(«)
= 2iJ,e{u) : e

V  SUj \ dUi dOLk

^ ̂  ̂ V ^ aa;fc '
Therefore, plugging (2.7) and (2.8) into (2.6) yields

a • V (a I divup + 2[i e(u) : e(u)) —
r\j \ ^ i-vj /-v_i y

2 Re jAdivu div ̂ (Vu)Q:j +2/ie(u) : e
N N

-2Rea(divu)EE^l!^ + /^EE(e + ̂ )E
^ ^ / a Q \ ■'^

^ ̂ V dxj dxi) ^
"a—aauj auj \ oui oak

.  ̂ . dxi dxj
1=1 j=i ■'  axfc dxj

Applying Lemma 2.3 with v = (Vu)a: yields the result.

We are now ready to use the above lemmas to prove the Rellich identity.

Theorem 2.5. (Rellich Identity) For any u : 3?^ , a ; 9?^ —>• 9?^

/  a • Us (x \ divu|^ + 2/i e(u) : €(«))
JdCls ~~V ~

= J (diva) I divup + 2;u e(u) : e(u)^ +2Re J ^a{u)ns^ • ^(Vu)a^
r  ( ^ ^ a "a— ^ ^ /a a \ ^-2R.f (A(div«)X:Ell^+MEE(l^+S^ Eaxi axj

iV iV / Q a \ a a
OUi ouj \ oui oak

1=1 j=i ■' =1 j=i ^^^0 dXj
— 2ReJ div ^cr(u)^ • ^(Vu)a^

Proof : By Lemma 2.1

div |a Ta I divu|^ + 2/i e(u) : £(«)) | = (diva) (x \ divu|^ + 2/i e(u) : e(u))
+ a • V Ta I div up + 2/i e(u) : e(u)) .

rsj r\j rsj J
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Applying Lemma 2.4 to the right side yields

div {a (a I divwp + 2/i e(u) : e(«) J | = (diva) (A | divw|^ + 2// e{u) : e{u)j

+ 2 Re |div('(T(w) ((Vu)a)) — div((T(u)') • f(V'u)a')|
^ a ^ ^ ^ /a a \ ^—a

w  N ^0=7 oui / oui ouj \ oui oajA(^-),E E + "E E (a;- + a^) S as aij
Integrating over fig and applying the divergence theorem implies

/  a • rig (A| divu|^ + 2 e(u) ; e(w) J = / div a (A| div^l^ + 2//e(7i) : €(«))

+ 2Re J rig • ̂ cr(w) ̂ (VM)aj^ —2ReJ div ̂ cr(w)j • ̂ (Vrt)aj
f  i ■. /j. \ \—^ doij dui \ ^\ /dui duj\ ^—v duj dotj

Since a{u) is symmetric,

Tig • {a{u) f(Vw)a)) = {(x{u)ns f(Vii)a)') .
rsj rsj \ ~ ~ / / r\j \ J J

Applying this equation above yields the result. ■

Corollary 2.6. For any u : 9?^ —)■ ,

/  a; • (A I divMp + 2/ie(u) : e(it))
JdQg ~~v ~

= {N-2) ^A|| divull^^^j^^^ + 2^||e(u)| |^2(n3))
+ 2Re f (a{u)ng\ • ('(Vu)^;') — 2Re / div fcr(u)) • ('(Vu)a;') .

JdQs ^ ^ •'O3 ~ \« ~ / V /

Proof : Apply Theorem 2.5 with a = x. ■

As in Chapter One, we will apply the Rellich identity to the elastic Helmholtz

problem, and therefore need the following identity for u ■ ((Vu)a) which corresponds
rsj rsj

to Lemma 1.6.
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Lemma 2.7. For any u : -> , a : -)•

/  (divQ;)|M|^ = / a-ns\u\^-2Re ■u- ('(Vu)q!V
Jn, ~ ~ Jdn^ ~ ~ ~ Jn,~ ^ ^

Proof : By Lemma 2.1,

div ■< a{u • w) [• = (div a)u •u + a-V{u-u)

and
N  Q iV

o

•3
j_l » j-i

N  N -Q N N ^E\ ■> ^ uUj
i=l j=l i=:l j=l

N  N -Q iV N ^■E\—\ UUj V—^ V—^ OUj
j=l i=i ® j^i i=i ^

= u- ((W)a;) + u- ((Vu)q;)
= 2Re{«- ((W)a)).

Therefore,

div |q!(m • m)| = (div a)u ■ u + 2Re |m • ^(Vw)Q:j |.
Integrating over fig and applying the divergence theorem yields the result. ■

Corollary 2.8. For any u : 3?^ —)■
rsj

Proof : Apply Lemma 2.7 with a = x. ■

2.2 A Priori Estimates for the Elastic Helmholtz

Problem

In this section, we present identities and estimates for solutions to the elastic Helmholtz

problem, again paying careful attention to how the estimates depend on the frequency
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uj. The principle results are the regularity estimates which bound the and

norms of the solution in terms of the source.

We begin by stating the well-known Korn's inequality from elasticity which relates

the norm of e{u) to the norm of u.
^  rsj

Lemma 2.9. (Korn's Inequality) There exists a positive constant K such that

||£(^')||l2(o,) + ||'y||L2(n^) > Vu G

Proof : See [4], pages 222-223. n

The next lemma establishes some fundamental estimates for solutions to (2.5)

using a simple test function technique. We will make repeated use of these estimates,

particularly when we derive the regularity estimates.

Lemma 2.10. Suppose u solves (2.5). Then u satisfies the following inequalities

(1) -u.

(2) Al l divu||22(j^^) + 2iM\\e{u)\\l,^^^^ < ps\\u\\l2^^^^ + Ref^^ n u.

Proof : Multiply the Helmholtz equation in (2.5) by u to get

—ufipsU n u — div (cr(u) J - u = ps -u.
~ ~ ~ ~ / ~ ro ~

Since a{u) is symmetric, Lemma 2.1 implies that
^ rv

—ufipsU n u — div(cr(M) • u) a(u) : Vu = Ps -u,

so by Lemma 2.2,

—UJ PsU n u — div((j(u) • u) + A| divu| -I- 2pe[u) : e{u) = pg • u

Integrating over and applying the divergence theorem yields

-^^P.||£lli2(n,) - ng- a{u)u + A|| divM||^2(n^;, + 2p\\e{u)\\l2^^^^ " /j
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Applying the boundary condition from (2.5) yields:

)-icu / Ann + All divu||i2(n^)+2/^11 e(u)|li2(n^) = / g.

Treating the real and imaginary parts separately yields the result. n

In order to derive a regularity estimate, we will need to have a bound for the

||Vu||i2(j2^) in terms of ||u||L2(n,) and ||^s||L2(n^). Unlike the acoustic case, the basic
Ri ~ ~

test function identities in Lemma 2.10 do not give us such an estimate directly. We

can, however, apply Korn's inequality and estimate (2) of Lemma 2.10 to get a bound

for jjujliyqn^) which will be sufficient.

Lemma 2.11. Suppose u solves (2.5). Then for every e > 0

2fj.K\\u\\%^^^^ < {u'^Ps + 2p+ f)||u||^2(j^^) +

Proof : Lemma 2.10 implies for all e > 0

All divull^^^j^^) + 2Ai||e(u)||i2(n^) < PsMh^n^) + ill£ji2(n,) + f Il£|li2(fi,).

Dropping the divergence term from the left and adding 2//||u||^2(n^)
yields:

2/^ (ll^(£)lli2{fi,) + ||£lli2(n,)j < + f + 2M)||£|li2(n,) + ̂lb5|lL2(n,)-

Applying Korn's inequality (Lemma 2.9) implies

2/"A'||u||^i(n,) ̂  + f + 2/i)||u||^2(f2^) + ̂||5s|lL2(fi^).

2.2.1 A Regularity Estimate for the Elastic Problem

Our goal is to apply the Rellich identity (Lemma 2.5) to derive a regularity estimate

for solutions to (2.5). If we examine the Rellich identity and look back at the argument
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for the acoustic problem in Theorem 1.9, it is not hard to anticipate that this approach

forces us to handle a term of the form 1| A simple application of Young's

inequality was sufficient to handle the corresponding term in the acoustic case. The

elastic case is far more delicate, and will require the following lemma.

Lemma 2.12. Suppose u solves (2.5) where u ̂  0 and is a convex polygonal

domain. Then there is a constant C, independent of ui such that

(1) ||'"llH2(n,) < Cuj'^\\u\\L2(^a,) + C'||5s||i2(n3).

(2) ||V«||L2(0Oa) —

Proof : Regularity theory for elliptic problems (see [19]) implies

||M||H2(n,) < \\gs+(^^PsU\\L^ns) +^0211^11^1/2(903)

< lbs|U2(n3) + a;Vs||w||L2(n3) + wo2||u||/fi(03)-

Applying Lemma 2.11,

||w||i?2(o^) < ||^s||z,2(n^) +a;Vs||w|U2(03)
1

_j_ wa2 I ^ 'z , r> . \ r I I . 1 1 1 112 1 2|(a;^Ps + 2/i+ f)||u|l|2(n
/2ilK

^) + ̂Ikslli2(n3)}'
,2< |ks||L2(r23) +0; Ps||u||£,2(03)

+  + 2p + 5||u||i2(03) + ̂̂ ^||£j/,2(03)
< (wVs + ;^^o;2p5 + 2/i + f) l|w||/:2(n^) + (1 + ||£s||l2(03).

for all e > 0. Choosing e = 0(a;^) yields (1).

Since fig is a Lipschitz domain, the trace inequality,

(^•^) 1|o||i,2(903) < ̂sll^llL2(n3)l|o||//i(03)

holds for all u 6 H^{Qg). Therefore,
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Applying Lemma 2.11 and inequality (1) implies for all e > 0
1

+ 2// + f)||Mlli2(n^) + ̂|l5s||L2(n3)}^
• |'^^l|w||L2(n,) + lli?s|lx,2(n^)|

< Cs ̂Cu?yJuj'^Ps + 2/i + f Ilw|li2(n^)
+ (c^u'^ps + 2// + f + ||«IU2(n3)||5s||L2(n,) + .

Therefore,

^Cu?^JuPps + 2/x + f||u|||2(n,)
+ [c^uj'^ps + 2/i+ f + (f ll«llL2(n,) + 2^1|5s||L2(n.))
+:^J\9s\\h(n,)]

or equivalently,

11^^11x2(90,) < C's ^^Up■ps + 2/i + I + {CyJu'^Ps + 2//+ | + 11^11^2(^3)
+ Cj I 2^ + Il£s|li2(n3)-

Choosing e — 0(cj) and ei = 0(u^) yields (2). ■

Theorem 2.13. Supposeu solves (2.5) where Qg is a convex polygonal domain. Then

u satisfies the following regularity estimates:

(1) I|w||x2(n3) < C(1 + ;^)||5s||L2(n3).

(2) | |w||iyi(n3) < C{uj + 1)||Ps||l2(o,)-
rsj

(3) ||u||/;-2(n3) < C(a;^ + 1)||5s||l2(03).

Proof : Combining Corollaries 2.6 and 2.8 implies

^^^Il'"l li2(n3) + J / X • ns(x\ div u\'^+ 2pe{u) : e{u)) [ x-nslul"^
~  ̂ JdQs ~ «~ w~/ ~ ~ ^

+ (f - 1) divu||i2(n3) + 2/i||e(u) 1112(^3)) + Re f • (@^)
+ Re / (—u^psU — div fo-(u)')) • ((Vu)a;) .Jq \ ^ \Ri ) J \ ~ ~/
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Since u solves (2.5), the above becomes

+ \ f (a ldivu|2 + 2/ie(u) : e(u)) = ̂^ /" x-ns\u\'^

+ (f - 1) (^11 divMlli2(n,) + 2^11 e(u) 11^2(0^))
— Reiu Au- ((V'n)a;) + Re / gs • ((V'u)^') .

Van, V \ «—y

Applying the trace inequality (2.9) implies

^^^-2^1l^llL2(n,) + ̂11 divM|l|2(an^) + ■^\\^{'j^)\\h{d^is)
(2.10) < ^72|l«[|i2(an,) + (f - l) II divu||^2(n,) + 2/i ||e(M)||i2(n3)}

— Re ica / Au • ((Vu)x) + Re / • (Vu)a;.
Van«~ \ 7o^ ~

Hence,

(2.11) +(f-l) ^ll "ii*'«lli'(n,) + 2/»l|e(j)lli!{n,
— Re iu / Au ■ {'Vu)x + Re / Qs ■ (Vu)a;.

Van, L w—J «—

Applying Schwarz's inequality and Lemma 2.10 yields

+ (f - l)uV> ll«ll|2(n,) + (f - 1) ils.lli,'(r!.)ll"lli=(t!.)
~  ̂ ~

+ wa2M||u||L2(af^^)||Vu| |i2(an^) + Ml|p,|lx,2(n,)||Vu||i2(n,).
« rs-. ^

Moving the (y — l) ll'"llL2(n,) term to the left side gives

o^'PsMl^a.) < ^72|Klli2(,^,)
+ (f ~ l) lkslU2(n,)ll'"IU2(n,)

+ ■^^||5s||L2(n,)||Vu||i,2(o,) +i»Ja2A/'||u||i,2(afi^)||Vu||£,2(an^).

36



Applying Young's inequality implies for any ei, €2, 63 > 0

+ (f ~ 1) + f ll^lli2(n,))
+ Af (^||£s||i2(n,) + f l|Vu||^2(n,))
+ ua2M ̂^I|«lli2(9f2^) + ̂llVu|1^2(3n3)) •

After rearranging, we get

^^Ps\M\h(n,) < (^72 + Il;^lli2(an^) + (f - l) f l|«|li2(n^)
+ ((f ~ 1) i + ̂) ll£«lli'(n,)

Applying Lemma 2.11,

'^^Pslklli2(n3) < (^72 + 11^1112(3^3) + (f - 1) f llMlli2(n3)
+ ((f ~ 1) i + S") Il£^lli2(n3)

^  + 2// + ̂)llul||2(n3) + 2^11fl'slli2(n3)}I Mt2
2  2^LK

or equivalently,

^^511^11^2(03) < (^72 + llulli2(S03)

+  + 2// + f") + 11«11l2(o^)

+ (vfe + ̂  + ft) Il£«lli2(n3)
+ ̂llY£||i2(303)-

Since A is constant, symmetric and positive definite, there exists a positive constant

oi such that

(2.12) a\X n X < x^Ax for all x £ C.
r\j

37

/Si»



Hence using Lemma 2.10 to bound |l'u||£2(9n^)j

PsWAl^i^a.) < (^72 + ^ (iil£«lli2(n,) + f l|w|li2(n,))
+  + 2/^+f) + I ||w||i2(n,)
+ (4^ + ̂  + ft) ll^5lli2(o,)

\  /

+ ̂IIY«|Py(8n,).

Rearranging again,

< I ̂^72 + + 2^ + f) + } ||wlli2(o,)
+ { (^72 + ̂̂ ^) + 4^ + ̂  + |l£s||i2(o^)
+ ̂||V£||i.(,o,).

Applying Lemma 2.12,

'^Vs||£lli2(n,) < { (^72 + ft7f + + 2/x + f) + ||u||i2(o,)
+ I (^72 + ̂^) + 4^ + ̂  + ft} Il£«lli2(n3)
+  {c'w^||M||i2(o,) + C'ill£sllL2(n,)} >

which implies

'-Vll«lli.(„,) < {(^ + S) i + sife + ̂  + ft + ll£.lll>(n,)
+ { (^ + ftS) f + if ("V. + 2f + f) + ̂  + >^£1} ll«llia(n.)-

Choosing the constants as follows

,  Ps , w'^psp.K
~ 4u;2a2MC' *^2 — 4jv4(2ij2p^+2^),
= J^p£s- = 9,,,2,^3 - 2{N-2) ' ^4 - 2w Ps

^  Ps - Ps
5  2 4cj'-^ 002^^^4-^(23 ̂72 '

implies that

'>'V.II«lli.(fi.) < ̂ll«lli.(«,)

+ {(^ + eft) ft + jSSi + ̂  + ft + ll£'lli'(n.
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or equivalently,

<C{iJ^ + 1) lb.Ili2(n,)

It follows from the above equation and Lemma 2.11 that (for all e > 0)

2^iif||u||^i(n^) < [u?ps + + {l->r Il5s|li2(n,) + ̂l|Ps|lL2(n3)-
rv

Choosing e = 0{uP') implies

ll^lli/qn,) < C(a; + l)||i?sl|i2(n^)

for some constant C independent of u.

Finally, regularity for div implies

||w||ij-2(n^) < B + a;\||i2(n^) + w|lAu||^i/2(an,)]
< B ̂||£'s||L2(n^) +n;^||u||L2(n,) + a;a2||u||ffi(n^)j
< B (|bs||L2(n3) +a;^C(l + j)||5s|U2(n,) + iJaiC(l + a;)||^s||i2(n^))

< B + C{(J^ + w) + uaiC{u} + 1)} l|^s||L2(n3).

That is,

11^11^2(0,) < C{uP' + l)||^s|U2(n,)

for some C independent of w. n

2.2.2 An Improved Regularity Estimate

Although the estimate of Theorem 2.13 improves previously known estimates obtained

in [16] for the elastic Helmholtz problem (2.5), we believe that the estimate is not

optimal. As we mentioned in the previous section, handling the ||Vu||i2(an^) term

creates a difficulty that is not an issue in the acoustic problem. In fact, this term is

the main obstacle to achieving an optimal regularity estimate in the elastic case. In
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this section, we improve the regularity estimate to what we believe to be an optimal

estimate. In the proof of our improved estimate, we will not simply discard the

"good" boundary integral from the Rellich identity as we did in the proof of Theorem

2.13 (see inequality 2.11). We will handle the difficult term with a technique similar

to that of Theorem 1.9. To do so, we need the following Korn-type inequality on the

boundary of

Conjecture 1. Suppose u solves (2.5). Then u satisfies one of these inequalities
fyj

As of this writing, we have been unable to establish the above inequalities. How

ever, a similar result appears in [7] for solutions to the traction boundary value

problem for the Lame systems of elastostatics. The Lame systems are similar to the

Helmholtz system (2.5), and we are therefore confident that the techniques in [7] can

be applied to show that the above estimates are valid.

Theorem 2.14. Suppose u solves (2.5). Then u satisfies the following regularity

estimates

(1) |k||L2(n,) < -I- ^)||5s||L2(n,).

(2) ||wl|iri(n,) < ̂"(1 + ;j)||5s||

(3) If Qg is a convex polygonal domain, then

||w||ff2(n^) < C{UJ -h l)|l^s|U2(fi^).

Proof : Recall inequality (2.10) from Theorem 2.13

II II 12(^3) + ̂11 divu|||2(af23) + ̂ll£(^)llL2(an3)
^ Ps .T<  2 2||M||i2(9n.) + (f - 1) [a II divu|||2(n3) + 2/^ Il£(«)lli2(a

— Reiu) / An n ((Vu)a;) -I- Re / gs- {Vu)x.
Van. ^ ^ Vm ~ ^ —
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Now drop the divergence term from the left hand side and add (where

^ < 7i/^) to both sides to get

+ 7if II jWII^(an.) + ell Vuiii^p,)

< ̂72ll«lli!(8n,) + (f - 1) -^11 divM||i2(n.) + 2(i I|c(«)||i2(tj,,

- Re / Au- {\/u)x +Re / 5s • (Vw)a: + ̂||Vu||^2(n^),
J dQs L~~~J J ~~~ ~~

which implies

^Il;;lli2(n,)+e (lljWIIiHaa) + IIY^IIyiai)
< ̂72|klli2(9n,) + (f - 1) ^11 divw||i2(n,) + 2/i l|e(w)|li2(n^)

-Reiw / .4if [(Vu)a;l +Re / 5s • (Vw)a; + ̂||V«l|^2m )•
./sn^ I- —J 7n, ~

Applying Schwarz's inequality and Conjecture 1 yields

< ̂72|l«||i2(an8) + (f - 1) ^11 divu||i2(n3) + 2// ||e(w)||i2(n,)

+ a;M||Au||£,2(an,)||Vu||L2(0n,) + M\\gs\\L^n^)\\Y'^\\L^{ns) + ̂||Vu|||2(n^).

It follows from Young's inequality that for any Ci, 62 > 0

^ll«ll|2(n.) + i7llY«|||2,a„,,

< =^72ll«lli2(8„.) + (f - 1) A II div«||i,,„,, + 2n ||€(H)||i,(„,

+ ujM + M 2felk.|li2(q,) + fllYj!lli^(a

Applying Lemma 2.10 and Schwarz's inequality implies for any 63 > 0

^lkHi^(08) + irllY!illiw)
< ̂72l|M||i2(9fi^) + (f - 1) '^^Ps||^||i2(n^) + 2^||5s||i2(n^) + f ||wl|i2(n^)

41



Rearranging yields

wV. (f - (f - 1)) ll»lli=(n,) + l|V«lli.(8n.)

< (=^72 + ||«||!2(,n., + (f - 1) f

+ ((f ~ 1) i + s) ll£»lli^(n,) + (^+0 IIY!!lli.'(n,)-
Applying Lemma 2.11 to handle the l|Vu|||2(f2^) term,

< (^72 + I|w|li2(an,) + (f - l) f llw|lL2(n,) + + ft) Il£slli2(n3)
+  + 2/^ + f) Il£lli2(n.) +

or equivalently

<^^ps\Ml2^n,) + (ir ~
< (^72 + ||£||i2(an.) + {^ + 0 ll£lli^(n.)

+  S + ̂)4ilb7) Il£^lli2(n.)-
Using Lemma 2.10 to bound 1^11^2(9^^)

Il£lli2(an,) ̂  (ft"ll^^lli2(n3) + ̂Il«||i2(n^)) •

Applying this estimate above yields

a;2Ps||£llL2(n^) + l|V£|||2(an,)

< (4*72 + 1^) i (ill£.ll!2(«,, + f ll«lli.(n,,)
+ ((^ +f) Il£lli2(n.)

"*■ (t?+ S + ('^+f'5»fc) ll£»lli'(Sl.
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Combining like terms,

"'/'•lljllis(n,) + (kT ~
< ((^72 + ff) irf + (^ +«) ll«lli^(0,)

«a;2p , cjMa2] 1 1 , (JV-2) , JV/ , f Me2 , c\ I \ ||„ ||2
^72 + + ~4ir" + 262 + I 2 +';j 4ii^j ll£^llL2(n,)-

Simplifying,

< { (1^72 + ̂ ) f + (^ + e) i|«||i2(„,)
{ (|S"72 + s) i + + 0 iiife + ft + Il£«lli2(n.)'

or

where

{u'^Ps — C'i)||M||^2(n,) + llY^lli2(an,) ̂  ̂2||£'s||i2(n^),

n — f f £' £s.rv -L M£1.\ 15. _i_ (Mis. s- 2ui'^P3+'^^^+f'^ , {N-2)€3 1
\V2ai '2-r 2eiai y 2 """ V 2 ApK 4 J

_ \ ( I M^\ I (Me2 i 1 i , (iV-2) \^2 \ \^2ai 72 + 2eiai J 2e5 ̂  V 2 ^ W ApKci ̂  262 ̂  463 J '

Choosing the constants as follows

uKuips _2 ApK uPps
~ iMKi(2w^Ps+Ap+ei)' ^2 — M 2u^p3+Ap+e4 16 '
,  ijj^Ps , f wps72 I 4A/2a2K'i(2tj-ps+4p+64) "I
^3 - 4 ' ^5- — I + (iKlJis J '

c  U/^Pa ApK
^  16 2u;^pa+Ap+e4 '

implies that Ci < C2 = 0(1 + ̂), and — Mynj > q. Therefore

(2-13) '^^Ps||'"lli2(n^) ̂  0(1 + ;j?)||5slli2({^^)
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for some C independent of w. Applying the above inequality to Lemma 2.11 implies

^  + f + 2/^) + ̂) ||£fs|li2(fj^) + ilbs||i2(n3) Ve > 0

or

2fiK\\u\\%^^^^ < I{u^ps + f + 2/x) C (;;^ + + i} Il5s|li2(n,) Ve > 0.

Choosing e = 0{aj^) implies that

(2-14) 11^11^1(^3) - ̂ + iiJ^) ll^slli^cos)

for some constant C independent of u. If is a convex polygonal domain, then

regularity for div ̂ '^(•) j implies that

||M||i?2(n3) ̂  B ̂11^(5 + tL;^u||£,2(n^) + a;|lAM||^i/2(an,))
< B ̂||5s||L2(n,) + W^||u||x,2(fj3) +
< B (||^s||L2(f2,) +UJ^C{^ + ;j2)|bs||L2(f2,) + waiC(l + j)|i55||L2(n3)) •

/Nj rv

That is,

||wilH2(n3) ̂  + l)lbs||L2(n^).
/V-l

n

Regularity estimates for the equations of motion for elastic and nearly elastic

solids were derived in [16]. They are as follows

(1) ||'"||i,2(n3) < C{u} + ̂)||^s||L2(n,).

(2) ||«l|i?i(n,) < + ̂)||^s||i2(n^).

(3) ll'"||H2(n3) ̂  + j)|bs|lL2(n^).

Clearly, the estimates proved in Theorem 2.14 and 2.13 improve the above estimates.
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2.3 Variational Formulation and Well-Posedness

The variational formulation of (2.5) is defined as

{Find u E. {H^ {Q,s))^ such that
b{u,v) = {gs,v) \/v e

where

b{u, v) = —uj^Ps(u, v) + 2iJ,{e{u), e{v)) + A(div(u), div(u)) +iu < Au, v > .
^  r>j rsj rsj

The bilinear form b{-, •) is not coercive, so we cannot use the Lax-Milgram Theorem

to show existence and uniqueness of solutions to (1.8). We can use Korn's inequality

(Lemma 2.9), however, to show that 6(-, •) satisfies a Carding inequality. Specifically,

Reb{u,u) + (wVs + 5)||u||i2(n,) >

for any 0 < 5 < 2p. Now we can apply the Unique Continuation Principle and the

Fredholm Alternative Theorem to show that (2.5) is well-posed.

Lemma 2.15. Suppose '0 = a{ip)ns = 0 on dQ,s- Then Vip = 0 on dClg-

Proof : Fix x G dQs- To show that Wip = 0 on we will show that b'^{Vip)a = 0

for all a, 5 G 3?^ Let nj be the unit normal to at x, and let ti, ...,riv-i be unit
r\j n-j

orthogonal tangent vectors to dQg at Then -0 = 0 on dQ.s implies that Vipk-Tj = 0

for k = 1,..., N and for j = 1,..., N — 1. Therefore,

(2.16) {'Vip)Tj = 0 at a; for j = 1, ...N — 1.

It follows from (2.16) that

(2.17) b'^{Vip)Tj = 0 at a: for all b G 3?^.

Since a{'ip)ns = 0 at x,
r>j

(2.18) Xdiv{ip)ns + fi(Vip)ns + p{'Vtp)'^ns = 0 at x.
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Dot (2.18) with Tj to get
/Nil

(2.19) iJ,Tj{'Vip)ns + iJ,Tj{Vip)'^ns = 0 at x.
/Nil INJ

Since ̂  ̂ 0, (2.16) and (2.19) imply that

(2.20) {'Vip)ns = 0 at x for j = 1,..., N — 1.
rv' ^ rsj

Equations (2.16) and (2.20) imply that

(2.21) Tj{Vtp)a = 0 at X for all a G 5?^,
iNil ^ /Nil

therefore,

(2.22) t'^{ViP) = 0 at X.

Since div is rotation invariant,

N-l

div(V') = nf (VV')n, + ̂rj (V^)rj.
3=1

Therefore by (2.16),

div(V') = nJ(VV')ns.
/Nil /Nil

INy /Nil

Dot (2.18) with Us and apply the above expression for div('0)to get
INJ ^

(A + 2ij,)nJ {Vip)ns = 0.

Therefore,

(2.23) nJ(V^)n, = 0

since (A + 2/i) > 0. Equations (2.20) and (2.23) imply that

(2.24) &^(V^)n, = 0 V 6 G SR^.

Combining equations (2.17) and (2.24),

b^{Vip)a = 0 V a, 6 G
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Theorem 2.16. Suppose pg 6 L'^{Q.s) andoj 7^ 0. Then there exists a unique solution

to (2.15).

Proof ; Since the bilinear form b{-,-) satisfies a Carding inequality, the Fredholm

Alternative Theorem implies that a solution to (2.15) exists if the adjoint problem{Find tp G such that
b*{xp,v) = {gg,v) yveH^{Qs)-

has only the zero solution when Ps = 0 (see [1], pg 102). If = 0 in (2.25), then

choosing u = ■^ in the variational formulation and taking imaginary part implies that

•0 = 0 on dD,s. Integrating by parts in (2.5) then implies that a{'^)ns = 0 on
^ rsj

SO by Lemma 5.21, V('!/') = 0 on dO-g. By the Unique Continuation Principle, -0 = 0
~  r\j

in Q.g, and the Fredholm Alternative Theorem therefore implies that solutions exist.

The same argument shows that = 0 in (2.15) implies that u = 0. Solutions are

therefore unique. ■

2.4 Finite Element Procedures

Let Th he a quasi-uniform triangulation of Qg with mesh size h > 0. Suppose 14 is

the Pm-i conforming finite element space of H^{Qg) associated with %■ It is well
known that I4 has the following simultaneous approximation property [5]:

(2.26)

{lk-^IU2(n^) + /i||u-u||iri(n^)} < CAh^'Wullffn^inf) V uG (iL'"(fi/))^.
The finite element method is then defined as{Find Vh G (14)^ such that

b{uh, v) = {pg, v) Mvh e (14)^.

Let CR^m denote an abstract regularity constant for solutions to (2.5), i.e.
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where r = max{0, m — 2}. Theorem 2.14 implies that CR^rn - for m>2.

Lemma 2.17. For any v : 3?^ —>

(1) ||e(;y)IU2(n,) < |lVvl|z,2(n,).

(2) II div(w)||i2(n^) < \/iV||V^||i2(n,).

Lemma 2.18. Suppose u solves (2.15) and Uh solves (2.27). Then there are con-

slants Ci and C2, independent of uj and h, such that h < C\ ~ ,

implies that

||w — M/i||L2(n^) < C2CR^2h\\u — Ufi\\m(n,).

Proof : Suppose u solves (2.15) and Uh solves (2.27). Let -0 be a solution to the

adjoint problem with source u — Uh, i.e. il: solves

Find V G {Vh}^ such that

b*{i;,v) = (u-Uh,v) yv e {H^{Qs))^,

where

b*{u, v) = —u?ps{u, u) + 2p{e{u), c(u)) + A(div(u), div(u)) — iuj < Au, v > .
r>j rsj rs/ ^ ^ r\j ^

Then ip satisfies b{v, ip) = {v,u — Uh). Taking v = u — Uh implies
r>^ r\J

(2.28) \\u-uh\\l2^^^) = b{u-uh,ip).
rsj r\j

The fundamental orthogonality identity states that

b{u - u/i, V/i) = 0 for any iph e 14.

which is true since b{u,iph) = [9s,fph) and b{uh,iph) = {9s,i>h) whenever iph ^ 14

Therefore,

b{u - Uh, ip) = b{u -Uh,tp- tph) for any -0^ G 14
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and (2.28) becomes

- '^hWh^n,) = b{u -Uh,ip~ A)
rsj

= 2//(e(u - Uh), £(V' - ■0/i)) + A(div(M - Uh),div{il; - iph))

- u'^ps{u -Uh,ip - i>h) +iu < A{u - Uh,),ip- iph >,

which implies

h - ̂ /illL2(n.) < 2//||e(M - M/i)||L2(n3)||e(^ - V/i)IU2(n,)

+ All div(w - ■Uft)||i2(n,)|| div(V' - iph)\\L^ns)
rsu

+ U}^ps\\u - 'UA||L2(n^)||V' - i^hh^Qs)
rsj /\j

+ ua\\u - 'U/i||L2(an^)| |V' - tphWiHans)-

The trace theorem on implies

w||m - 'U/i||L2(3n,)||'i/' - '0/1111,2 (an^)
^  r>^

<  - 0/t|li(^(fi,)||0 - 0/iIIhi%,)
CU^<  ~ «/i||L2(n3)||0 - 0/i||z,2(n^) + II'" - '"/i||Hi(n,)||0 - 0/i||/ri(n.)-

Inserting this inequality into the above implies

Ik - «/illi2(n3) < 2/i||e(u - u/,)||i2(n^)||e(0 - 0/,)||L2(n,)
r\j nu

+ All div(w - m/i)||l2(o,)|| div(0 - iph)\\LHns)

+ u^Ps\\u - Uh\\L\n,)\ \ip - tphh^n.)

+ a < ^Ik - UhWmns)]^^ - fph IU2(n,)
I  ~ ~ ~ ~

+|k - w/i|ki(n,)lk " 0/ilki(o,) \ ■
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Applying Lemma 2.17 implies

\W - UhWh^n,) < (2m + AA" + a)!!^ - Uh\\HHns)U " Mlmins)
^  ̂ r>j (*<j

+  (ps + !!'"■ - i^/i||L2(n,)||'0 - V'/i||L2{f23)-
Applying the approximation property of Vh,

| |w - ■u/i|li2(n^) < (2/x + AA + a)\\u- Uh\\m(n,)CAh\\tp\\H^(n^)

+  ̂Ps + l|u — Uh\\L^{n^)CAh'^\\'ip\\m{n^)-
Applying the regularity estimate to ||'011^2(03), (recall that tjj solves the dual problem
with source u — Uh),

\W -'^h\\h{Qs) - (2p + AA + a)CAhCR^2\\iJ' - Uh\ \m(n,)\\u - UhWi^in,)
r>j

+  (^Ps + CAh^CR^2\\u ~ '"/ill 12(0^))
which implies

^1 — up' ^ps + j CaCr^2^^^ ||w ~ '"/i|U2(fi^) <
(2/i + AN + a)CACRph\\u — ■U/i||Hi(n^).

Choose h < Ci—^== , where Ci — —;=—^ Then-  ' ff tiXTTy (^3+12 4 \Ca

^1 - u? {ps + CACR,2h^^ >
Therefore,

^ll-u — w/i||i2(f^^) < [2p + AN + a2)C'/iCij,2^| |w — M/iUnyn^)

or

|w - u/i||L2(n,) < C2Ch,2^||m - w/i|Ui(n,),
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where

C2 = (2/i 4- XN + 0.2)0aCr^2-

Theorem 2.19. Suppose u solves 2.15 and Uh solves 2.27. Then there are constants

C3 and C4, independent of lo and h, such that h < ^ = 0{-^) implies that

ll'w — M/i||/fi(ns) ̂  O^CR^mih^oj + h^ ̂ )||5s||j?'"-2(n,)
r«wi rv

and

||w — M/i||L2(n,) < CCR^2CR,m{h^^^uj + h'^)\\gs\\H"'-^{as)
t-srf

for m>2.

Proof;

b{u -Uh,u- Uh) = -uj'^PsWu - Uh\\l2m,) + 2/i||e(« - Uh)\\l2m^

+ A|| div(M - Uh)\\l2(n) +iu! < A{u - Uh),u- Uh > .

Taking the real part on both sides and using the fact that < A{u — Uh), u — Uh > is

real since A is symmetric, we get

Re6('u -Uh,u- Uh)+uj^ps\\u - u/i||i2(n,)
^  ̂ r>^ r>j

= 2)"l|e(w - w/i)|li2(n.) + ̂11 div(u - u/i)||i2(n^) > 2/i||e(u - Ufe)|li2(n,)-

Applying Kern's inequality,

Re b{u - Uh,u - Uh) + (cuV + 2At)|lM - Uh\\l2m^)
~  ~ /v., ^

>2pl l|e(u - Uh)\\l2^n^) + 1|« - ii/illi2(n,) ) > 2pK\\u -
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So for uj sufficiently large,

R,e 6(u Ufi, u — u/i) + 2uj Ps||u '^/i||L2(f23) — 2piir||'it

Note that Re b{u — Uh,u — Uh) — Re b{u — Uh,u — v) for all u 6 V/i by fundamental

orthogonality; therefore, for all u G V/i,

2nK\\u - UhWjj^ns) ̂  -Uh,U-v) + {2u}'^p,)\\u - U^Wl^rn)

< uj^ps\\u - u/i||£2(n,)||'u - v\\L2{a )

+  ~ '"/i)IU2(n,)||e(u - u)||x,2(n^)

+ A|| div(u - M/i) 11^2(0^)11 div(u - t;)||L2(n,)
^  rs-» /-w»

+ n;||^(u - u/i)||i2(9o,)||('a - n)||i2(ao3) + (2a;Vs)||« - Uh\\l2mA.
rsj <-s^ Aw«

Applying Lemma 2.17 implies

2pK\\u - UhWli^cis) < - Mft||L2(fi,)|k - ̂llL2(n,)
r\j r>j rsj ^ ^

+ {2p + XN)\\u - w/i|liri(n3)||'" - 'y||iyi(n,)

+ uja2\\[u - Uft)||^2(an^)||(u - ;y)|U2(ao3) + (2a;^p,)||u - M/i||i2(o,)

or

2pAr||u-u/i||^i(o^) < ̂||w - w/i||i2(o,) + - ̂Ili2(n3)

+ (2/i + XN) + f ||w - ̂11^1(03)

+ 02 ( - ■o/i)||i,2(n3)||('o - u)||x,2(n3)
+ ll(« - ||(o - ̂ )lki(n3)) + (2wVs)ll;o - M;i|li2(n3).
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Choose e = Then

2i.K\\u - < (^)||« - + ̂11^ - ̂111.(03)

+ ̂11^ ~ ~ ̂11^1(03)

+ "2^^||(« - '"/i)l|x,2(n3) + a2^\\{u - ■y)l|z,2(n3)

+ ^ll(^ - 'i^/i)llHi(n.) + ^Wi}!: ~ ^)IU'(n.)
= (^ + <^^) II" - »/.llia<n.)

+  + 02^) 11^ - ̂ ||ij(n,) + fK\\u - ti).||?,i(nj
+ ®^ll^-«.,a.,.

which implies

,xa:||« - Kj|||.,„,, < (225^0,^) +
+'2'^lt-£lll,.,«.)-

Regularity of (2.5) and the approximation property of 14 implies (for v appropriately
chosen)

Ik ~ ^111,2(^3) < C'A/2.'"|k|km(n^) < CAh'^CR^rn\\gs\\H'^-'^{ns)-

Ik — w||Hi(n3) ^ CAh^ ^lk|k'"(03) ^ CaH^ ^C'/e,m|ks|k'"-2(n3)-
Using these inequalities in the previous inequality gives

^LK\\u-ujA,^a.) < (222^0.=) ||« - "jUiajn,,

+ <Wg'+'(C3ft"-C3.„)^||£.fe-,(n.),
which implies

U.K\\u - < (22i4eSi,2^ ||„ _
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Applying the duality estimate to \\u — (cf. Lemma 2.18),

+  + Sii^}

or

{f^K - ̂20p.+a2C|^2j Ik -

Choose h < where <^3 =

_ ̂ 20p.+a.c?^2j > if.

Therefore,

if Ik - •"/i|lHi(n,) < CA{CR,mh'^ ^)^lks|lH"'-2(n,)

or

Ik ~ ii/ilkicns) < C^CR^rn{h"^(^ + ^)lkslk'"-2(ns),
rsj

where C4 is independent of h and uj. Combining this estimate with Lemma 2.18

implies that

Ik ~ ■ii/ilU2(n3) < C2CR^2h\\u — ■U/i|ki(n3)

< CiCn^h {C,CE,„{h''u + ft"-')l|s.||„.-.(!,.)} .
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Chapter 3

Fluid Solid Interactions

In Chapter One, interest in wave propagation through fluid media motivated our

analysis of the acoustic Helmholtz equation. In Chapter Two, we analyzed the elastic

Helmholtz equation, motivated primarily by our interest in wave propagation through

solid media. In the following two chapters, we study a system of coupled acoustic

and elastic Helmholtz equations which emerges from a model for wave propagation

through a composite fluid-solid medium.

Suppose Q is a subset of 3?^ (A^ = 2,3) where Q, = flfUQ,s and let F denote

For our purposes, represents a composite fluid-solid medium; Q./ represents the fluid

part of the composite medium, and represents the solid part. In order to model

wave propagation through such a medium, one begins with the following system of

equations

f  ~ = Gf X £ Qf, t > 0,
(3.1) { ' .

I  PsUtt - div = Gs X eG.s, t>0.

The acoustic wave equation thus governs the propagation of waves in the fluid medium,

and the elastic wave equation governs the propagation of waves in the solid medium.

One must then impose boundary conditions on dQ.. Following the example of

Chapters One and Two, we will use the appropriate version of the first order absorbing

boundary condition, that is,
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(3.2)
-cW + ̂  =0 jeT;. t>0.

AUt + a{U)ns =0 2: G Fg, t > 0,

where F/ = dO,/ fi dO,, F^ = dQ,s Fl

Finally, one must address the question, "what happens to waves or disturbances

which pass from one sub-domain to the other, or strike the interface F = n dQg

between the fluid and solid subdomains?" In mathematical terms, one must impose

conditions which describe the interaction between the fluid component and the solid

component of the composite medium. The following interface conditions

(3.3)

1 dP

ĉ
 - PfUtt -ris =0 xev, t > 0,

a{U)ns — prif =0 a; G F, t > 0,

which were derived in [17] and in [8], are frequently used in the literature. The physical

meaning amounts to continuity of the normal stress and the normal acceleration on

the interface.

Together, equations (3.1),(3.2) and (3.3) yield the following model for wave prop

agation through a composite fluid-solid medium

(3.4)
1 dP

cduf

(3.5)

--

II

X G fi/. t > 0,

1 ̂  I ap
c at arif = 0 a; G 9fi/, t > 0,

PfUtt ' '^s = 0 a; G F, t > 0,

P = Pt = 0 X G Qf, t < 0;

-divf(7(17)) X G fis. t>0,

AUt + a{U)ns
« ̂  ~ ~

= 0 X G 5fis, t > 0

a{U)ns -puf
^

= 0 a; G F, t > 0,

Ut = U = 0
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In the system, P is the pressure in flf, U is the displacement vector in fis, and

c is the wave speed in the fluid medium, pi [i = /, s) denotes the density of Q,i,

m [i = f, s) denotes the unit outward normal to d^i. Throughout Chapter Three, we

will assume that the domains Qf and are subsets of with Lipschitz boundaries.

Furthermore, we assume that they are star-shaped domains, that is, there exists

X e Qf, X e Qs such that

(3.6)
(x — x) • n/ > Co > 0 for all x e

r\j

(x — x) • rig > Cq > 0 for all x G f^g.

The derivation of the above model can be found in [15], where a detailed mathe

matical analysis concerning the existence, uniqueness and regularity of the solutions

also appears. [17] studies the flnite element approximations of the model, proposes

both semi-discrete and fully-discrete finite element methods, and establishes optimal

order error estimates for both discretizations of the fluid-solid interaction model.

Applying the Fourier transform to (3.4) and (3.5), or seeking time harmonic solu

tions P{x,t) = p(x)e®'^' and U{x,t) = u(x)e^'^', yields the following frequency domain
r\j (-SJ r\j rsj rsj

representation of the problem

(3.7)

-^P-Ap =gi in a,,

=Oonr,,

^ + wV/i -n, = 0 on T;

(3.8)

—uPpsU — div ̂ (j(u) j
iujAu 4- G{u)ns

rsj (%-»

(j{u)ns — pTif

= ps in fig,

= 0 on Fg,

= 0 on F,

which is the coupled system of acoustic and elastic Helmholtz equations that we

studied in Chapters One and Two.

We continue our study of Helmholtz problems in Chapter 3 with an analysis of

(3.7)-(3.8). In Section 3.1, we derive identities for solutions to the interaction problem.
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Several are direct consequences of the Rellich identities from Chapters One and Two.

We present the variational formulation for (3.7)-(3.8) in Section 3.2, and prove the

existence and uniqueness of solutions. In Section 3.3, we formulate the finite element

method, and derive finite element error estimates.

3.1 Some Basic and Rellich Type Identities

We first collect some preliminary identities which describe the solution to the inter

action problem in terms of its source function. We prove the first lemmas using the

solution as a test function. The second lemma follows when we recognize that some

cancellation occurs on the interface between subdomains.

Lemma 3.1. Suppose p andu solve the interaction problem (3.7)-(3.8). Then
r>ij

(1) -^WpWhi^f) + ZjkjW'^PWlHnf) + + [ilf ̂')P =z;kjf 3fP-
Jt J fif

-oJ^PsMl^ns) + ̂11 divulli2(n,) + 2/i|ie(u)||i2(fi^)
(2)

+ iuj (An) - u— {prif) ■u= Qs -u-
Jv, ~ ~ ~ ./n, ~ ~

Proof : To prove (1), multiply the Helmholtz equation in (3.7) by p and integrate

over Qf to get

[ {^P)P= [ 9fP-
«/ t/Qy «/ y

By Lemma 1.2 and the divergence theorem,

-iUW, + IIVp||i.,„„ - I = I 9,p.
Applying the boundary and interface conditions in (3.7) yields (1).

To prove (2), multiply the Helmholtz equation in (3.8) by u and integrate over Qg

to get

-uj'^ps / \uf - / div (c7(u)) -u = / Qs
Jus ~ ~ ~ ^ ~ 7n. ~

u.
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By Lemma 2.3 and the divergence theorem,

+ ̂11 divwl|i2(n^) + 2^1|e(u)l|i2(n,) - " H " ̂
Applying the boundary and interface conditions in (3.8) yields (2).

Lemma 3.2. Suppose p and u solve the interaction problem (3.7)-(3.8). Then

(1) ^ • « = Im f ^

(2)

^\\p\\h{nj)+^^PsMl2^n.) + ;j^|iVp||i2(n^)

-(A|ldivw||i2(n3) + 2//|le(M)||i2(n,))=Re[;;;^ / 9fP- [ 5. •")•
^  \ J Qf J Cls J

Proof : On r, n/ = —n^. Therefore,

/ {u-ns)p- / {pnf)-u = / {u-ns)p+ / {pUs)
jr ~ ~ 7r ~ ~ ~ ~ yr ~

u

=  {u- ns)p + {u- ns)p
yr ~ ~ yr ~ ~

= 2Rel [ {u-ns)p \ .
Ur ~ ~ J

Adding the equations from Lemma 3.1 and taking the imaginary part yields (1).

Similarly,

/ {u n ns)p + {pnf)-u = 2ilm \ {u • ns)p \ n
yr ~ ~ yr ~ ~ Lyr ~ ~ j

Subtracting the equations in lemma 3.1 and taking the real part yields (2). n

The remaining identities in this section are direct application of the Rellich iden

tities in Chapters One and Two to the interaction problem (3.7)-(3.8).
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Lemma 3.3. Suppose p and u solve the interaction problem (3.7)-(3.8). Then for

any a{x) £ and P{x) G

(1)

5?/ (divQ:)|pl^ + | /" (Q;-n/)|Vpp
J^f ~ JdClf ~ ~

= & f (a-ri/)|p|^ + | /" (diva)|Vpl2
JdQf ~ ~ J^lf

- Re J p(a • Vp)| - Re J(« • • Vp)|
N ^ N

ijJ Ps

2
f divP\uf + \ / • ris (a I divwl^ + 2/i e(u) : e(u))

= ̂ / yd-n^l^p + l/ (div/3) (a I divup + 2;Li e(w) : e(u))
Vsfi. ~ ~ «- «-/

/" f ■r—\ ^\ dcxj dui —\ir—\ f du{ duj\ ^—v dui dotk

- Re |?a; J {An) ■ {{Vu)/3)^ + Re pnf{{'Vu)P)^
+ Re [ gs-{{Vu)P).

Jcis ~ « ~ ~

Proof : By Theorems 1.4 and 1.6,

/ q; • 71/^2 +1^ (a-n/)|Vp|2 = ^ /" a-n/|ppJdQf'" ~ ^90/ ~ ~ JdUf'^ ~

+ f (divQ!)|Vp|^ + Re f -^{a-Vp)
Jnf ~ ./an/ ~
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Since p satisfies (3.7), the above implies (1). By Theorems 2.5 and 2.7,

[ {divP)\u\'^ + ̂ [ p-Us (x\divu\^+ 2pe{u) : e{u))
Jn, ~ ~ Jans ~

_  f p _|_ f (div^) (a 1 divwp + 2fj. e(u) : e(u))
Jan, ~~~ Jn^ ~

+ Re / (cT(w)n5') • ((Vu)/3 ) +Re / f—oj^pjU — div ('a('n))) • ((Vw)/3

Since tt satisfies (3.8), the above implies (2).
r\j

Lemma 3.4. Suppose p andu solve the interaction problem (3.7)-(3.8). Then

^Mlnn,) + ̂ - x) n nf\Vp\' = ̂  l^^ix - J) • y\p\'
(1) (t ~ ̂) ^ ~ ¥)'

— Re| —y p((a; — x) • Vp)| — Re |a;^p/ J{u n ns){{x ~ x)-Vp)

(2)
1,2

-f o ,
laa.2

+ l f (a; - x) • n, (a I divwp + 2// e{u) : e{u)\
^ Jaas ~ ~ ~ \ ~ Ri~ w~/

f  (a; — :r) • nslu]^ + ( ̂ — 1 J [ (a | divwp + 2jU e(u) : £(«))
Jan^ ~ ~ ~~ \^2 J ~

+ Re / ps • ((Vw)(a; — 5) — Re i / (^u) • ((Vu)(a; — 3:)) >
Vfi. ~ fti~ ~ ~ [ RJ~ ~ ~ j

+ Re\ f (pnf) • ((Vu)(a:-i))|.

Proof : Follows from the Lemma 3.3 using a = x — x, P = x — x.
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Lemma 3.5. Suppose p and u solve the interaction problem (3.7)-(3.8). Then

UJ^N ,, ,,9 (J^PsN,, ,,9~^^lblli,2(n^) H ^ lbllL2(n3)

+ ̂ / (a; - i) • n/lVpp + ̂ [ (x - x) • (a | divup + 2p e{u) : e(u)')
^ Jacif ~ ~ ~ z Jd^i^ ~ ~ ~\ ~

= ̂  / (^ - ̂) • "/bp + ̂  [ {x-x)- n,|up/an/ ~ ~ ~ ^ Van^ ~ ~ ~ ~

+ (J - l) IIVp|li»(nrt + (y - l) £ I + 2^ e(«) : 7W)
— Re I — y p({x ~x) n Vp) I — Re |iaj J (Aw) n ((Vn)(x — x))^
- Re IcaV/ / (« • '^s)((a: - £) n Vp) I + Re | f [puj) • ((Vu)(x - £)) I

I  t/r ^ J I rsj rw« /vj ^

+ Re / ^/((x - x) • Vp) + Re / 5^5 • ((Vw)(x - x)).
Jny ~ ~ /n3~ «~ ~ ~

Proof : Add the equations in Lemma 3.4.

3.2 Variational Formulation and Well-Posedness

The variational formulation of (3.7)-(3.8) is defined as:

f Find \p,u] G H^(flf) x (H^Klg))^ such that
(3.9) {

I L{[P,u],[q,v]) = G{[q,v]) y[q,v] G H^^f) X
\  r\j r\j

where

L{\p,fA, [?,u]) = Lf{p,q,u) + Ls{u,v,p),
rsj

Lf{p,q,u) = ̂  [ pq+-^ f Vp-Vq + f pq + [ u-n^q,
c^Pf jQf <x^Pf Jcif cupf Jvf /r~ ~

Ls{u,v,p) = —Lo'^Ps / u-v + 2p e{u) : e{v) + X / div(u)div(u)
~ ~ /n^ ~ ~ /n^ ~ ~ /n^

+ iLj An -v— / pnf -v,
Jt, ~~ ~ /r ~ ~

/  9fQ+ [ 9s -v.
~  Z'/ /of am ~ ~
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To show existence and uniqueness for (3.9), we will first show that the bilinear form

!/(•, •) satisfies a Carding inequality, and then appeal to the Unique Continuation

Principle [25].

Lemma 3.6. The bilinear form L{-, •) satisfies the Carding inequality.

Re{Lf{p,q,u) + Lfiu,v,p)} + C (^ + l) |b||i2(n^) + C{u^ + I)||wlli2(n3)

— 2uj^pf lblliri(n/) +
Proof:

Re{Lf{p,q,u) + Lfiu,v,p)} = -^11^11^(0^) + z;^\\^p\\l2(^nf) -

+ ̂11 divu||i2(n^) + 2/^11 e(u)l|i2(n^) + 2ReJ^{u n ns)p,
which implies that

Re{Lf{p,q,u) + Lsiu,v,p)} + + Iblli2(n^) + (wV. + 2/i)||u|||2(n3)

= J^WpWmiQf) + ̂11 divu||i2(n3) + 2^11 e(u) 1112(^3)

+ 2M||w||i2(fi^)+ 2Re I {u-ns)p.
V r

Therefore by Korn's Inequality (Lemma 2.9),

Re{Lf{p,q,u) + Lsiu,v,p)} + \\p\\l2^af) + i^^Ps + ̂l^)\Mh{n,)

= JfjMminf) + • n,)p.
Note that

ZJ^WpW'n^ifif) + 2/iii'||u|| 2Re^(«.«.)p
> zkj^\p\\%Hnf) + 2/^^||w||^i(n3) " ̂ f {u- n,)p ,

r

which implies

(3.10)

Re{Lf{p,q,u) + Ls{u,v,p)} + + \\p\\h{n^) + i^^Ps + 2p)\\u\\l2^^^^

> J^\\p\\H^(n^) + 2p,K\\u\\jjr^^^^ - 2 J^{u- n,)p .
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Applying Schwarz's inequality, the trace inequalities on and Qg, and Young's

inequality yields

^  (^Ibllnqo/) + felbllL2(n^)
+S^lbllL2(n3) +

for all ei, 62,63 > 0. Choosing ei = €2= ^3 = ™plies that

^  + /^^Ibll^qn.)-

Applying this expression to (3.10) above yields

Re{L/(p, q, u) + Ls{u, v,p)} + C(^ + l) WpWh^^f) + C{(J + l)|b|li2(n^)

— 2tj2py Ibll/rqo/) + /^-^IbllnqOs)'

where C is independent of w. n

Theorem 3.7. Suppose gj G L'^{Q.f), Ps G L'^i'D.s) and u ̂  0. Then there exists a

unique solution to (3.7)-(3.8).

Proof : Since L satisfies a Garding's inequality, again the Fredholm Alternative The

orem implies that a solution to (3.9) exists if the corresponding adjoint problem

{Find \p,u] G x (i?^(f^s))^ such that
[«,»]) = G{[q,v\) V[?,«] € H\n,) X

has only the zero solution when the source is zero. If = 0 and ps = 0, then

choosing [5, v] = [y?, ip] in the variational form and taking the imaginary part implies

that (^ = 0 and = 0 on F/ and respectively. Integrating by parts in (3.11) implies

that ̂  = 0 on F/ and a{ip)ns = 0 on F^. By the Unique Continuation Principle

that ̂  = 0 and in Qj and ip = 0 in ̂ g, hence solutions exist. The same argument
rsj

shows that pj = 0 and = 0 in (3.9) implies that p = 0 in and « = 0 in so
r\j

solutions are therefore unique. n
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3.3 Finite Element Procedures

Let 7^-^, be quasi-uniform triangulations of fiy and respectively with mesh
sizes /ii > 0 and ̂ 2 > 0. Notice that we do not require the triangulations 7^-^ and

to be aligned along the interface F. Suppose V/u is the Pm-i conforming finite

element space of H^{Qf) associated with 7^-^ and Wh^ is the Pk-i conforming finite
element space of H^{'D.s) associated with 7^® • is well known that T4i and Wh^ have

the following approximation properties [5|:

(3.12) inf {Hp - q\\mnj) + hi\\p - q\\miUf)} <
'hi

and

{l|M-;y||L2(n,) + h2|k-^||/ri(n,)} < C^/i2l|w|U^(0d-
r>j 2

The finite element method for (3.9) is then defined as

{Find [p/i,u/i] G Ki X (Wh^)^ such that
L{\Phy ̂ h], [q, ■"]) = G{[q, u]) y[q, v] G Vh, X (W/^J^.

Suppose solutions to (3.9) satisfy the following abstract regularity condition:

(3.15) Ibll^^
^  rw»

where m,k >2 and Rf,m, Rs,k depend on oj.

We now apply the duality argument to first bound the norm of the solution to

(3.7)-(3.8) in terms of its norm. We will then apply the argument of Schatz to

derive an estimate for the finite element error.

Lemma 3.8. Suppose p andu are solutions to the interaction problem (3.7)-(3.8), ph

and Uh are their finite element solutions. Then there exists a constant C, independent

of OJ and h such that

hi + h2 < C • min Rf.2' y/nTz' ^^.2
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implies that

\\P - Ph\\l2{n^) + - w/.||i2(n,)

< Cihi + h^) |lb-Pft||Hi(n^)+w^llM-w/iIlHi(n,)}-
Proof : Let [p,u] be the solution of the interaction problem, and let [ph,Uh\ be the

finite element approximations. Let [(p, -0] be a solution to the adjoint problem with
r*-»

source \p — ph,u — Uh\, i.e. [p, ip] solves

Find [</?,0'] G x such that

L*i[(p,i^],[Q,'"]) = {\P-Ph,u-Uh],[q,v]) \/[q,v] G x ,
ro rsj _ , r\j rsj

where

L*{[p,il^],[q,v]) = L{[q,v],[(p,ip]).

Then [(p,ip] satisfies

-b([g,u],[^,'0]) = {[q,v],\p-ph,u-Uh\) V[9,'y] G H^Qf) x {H\ns))^.
r«wi rsj ^

That is,

Lfiq,p,v) + Lsiv,ip,q) =-^ f q{p - Ph) + [ v n {u - Uh)
^ Pf JvLj Jns ~ ~ ~

for all q G H^{Qf) and all v G {H^{Qs))^- Taking q = p — Ph and v = u — Uh and
rsj .

applying the fundamental orthogonality property.

/Ni»

^lb-P/i|lL2(n^) = Lf{p-ph,p,u-Uh) = Lf{p-ph,p-ph,u-Uh),

lb - '^hWh^n,) = ̂s{u- Uh, ̂,p- Ph) =Ls{u- Uh, 0 - 0/1,p - Ph),

66



therefore,

Wp-PhWh^cif) < ̂\\p -PhWmiif)^ - ̂hWLHQf)
+ l|V(?? - Pft)lU2(n^)||V(^ - ̂h)\\LHnf]

+ ̂\\p-Ph\\LHTf)y-^h\\mrf)

+ ̂V/||(« - ̂h) n risWi^DW^ - V^hWi^T)
^  ~

and

ll« - < (^^Ps\\u - Uh\\L^{n.)\\'(p - fphh^i^s)
rsj r>j

+ 2/^11 e(M - M/i)|U2(n,)||e(V' - V'/i)llL2(n.)
~  ,-v ^ ,-s^

+ All div(M - Uh)\\L2^n,)\\ div{ip - i^h)\\L^ns)
r\/

+ wa||u - UfiWi^Ts)]]'^ - fphWl'^iTs) + lb -P/i||L2(r)||V' - i^hWL^T)-
rs^ r\j

Note that

7lb-P/ilU2(r/)||¥' - ̂hWi^Tf) < ̂Ib ~P/ilU2(an/)||¥' - PhWi^anf)

so by the trace inequality on d^lf (1.13),

^\\P - Ph\\LHrf)\\<P - Phh^iTf)

— c^/lb ~ Ph\\L2(^af)\\^ ~ 'Ph.\\L^(nf)\\P ~~ Ph\\H^nf)\\^ ~

^ ̂C'J|b-P/i|U2(n/)||¥' - VhWL^Qf)
c?

+ ̂Ib ~Pftlbi(n;)||¥' - <P/i||ffi(n/)-
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Similarly,

n '^sllL2(r)ll<y^' - V'/i||L2(r)
fSJ ^

< (jj^pj\\{u - Uh) n ?^s|U2(9n,)|l<^ - (Ph\\L^{dnf)

<uj pfCfCs\\u *1^/111/2(0^)11^ '"/ill/i(ns)ll'^ '/^/ill/i(0/>
3

< ̂^C/Cs||u - w/i||l2(o,)||¥' - ̂hWi^inf)

+ ̂CfCs\\u - u/i||fi(03)||¥/ - fhWminf)-

,1/2 11/2 11/2

Therefore,

\\P-Ph\\l2(nf) < ̂\\P - PhWL^nj)^ - ̂h\\L2{nf)
+ l|V(p - Pft)|li,2(n/)I|V((/J - (ph)\\L^{nf)

+ ̂CjWp - ph\\L-'{nf)\\y^ - V^hWi^nf)

+ -/lb - Ph\\H^nf]\\'P - ̂hWminf]
3

+ ̂̂ C/Cslb - Uk\\L2{Qs)\\f ~
~  r'-'

+ '^CfCs\\u - Uh\\m{n,)\\(p - (fhWH^Qf),

which implies

\\P - Ph\\l2(n^) < ̂  (l-h^) \\p - Ph\\L2inf)\\p - ̂h\\L2{nf)
-I- (n- lb -P/illHi(n/)ll</2 - fhWminf)
+ '^^CfCs\\u - UhWL^^ns)]]^ - Vh\\L2{ns)

+ ̂CfCs\\u - u/i||iyi(n,)||(/' - </?/ilbi(03)-
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Applying the approximation property of (3.12) implies

lb - ^ (l + ̂) lb - Vh\\L^{as)CAh\\Mm{n})
+ (l + V") lb ~ ?'/i||Hi(n/)C'/i^i||¥'lb2(n/)

(3.16)
+ ^'̂ CfCs\\u - Uh\\L^(n,)CAhl\\(p\\H-2(n,)

~  /V.

+ ̂̂ CfCs\\u — Uh\\H^(Q^)CAhi\\(p\\H2(Q^)-

It is also easy to show that

uja2\\u - Uh\\L2{r,)\\fp - fphWL^iVs) < i^'^a2C'^\\u - Uh\\L2{n,)\\'il^ - iph\\L^(ns)

and that

Up - Ph)nf\\L^r)U - i^hWi^D < ̂CfC^Wp - phWmcif)^ - tphWiHcis)
^  /\j ^

+ i^/^slb - PhWminf)^ - V'/ilUi(n,).

Therefore,

lb - UhWh^n,) < ̂'^Psh - Uh\\LHns)U " fphUHn,)

+ 2p\\€{u - Uh)\\mns)h{'^ - V'ft)l|L2(n,)

+ All div(u - M/,)||i,2(n,)|| div(V' - 'iph)\\LHns)

+ u}'^a2C'^\\u — «/i||z,2(n^)|b - V'/ilU^cn^)
^  ̂ rv rs^

+  lb ~ Uh\\m{ns)\\'^ ~ i^hWmins)
rsj

+ fC/C^llp -p/i||i2(n^)||i/' - tphWLHQs)
rsj

+ i;;^f^s\\p - Ph\\m{nf)\\tp - i'h\\m{Qs)-
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Applying Lemma 2.17 and simplifying,

11^ - ^ + <^2Cl)\\u - Mftl|L2(n,)||V' - ■0felU2(n,)
+ (2^ + AiV + ^Cl)\\u — 'aft||iyi(n^)||'!/' - i^h\\m{a,)

r>^ r\j

+ fC/Cjp-p/,||i2(nj:)| |'0 - i>h\\L^{ns)
r>j rsj

+ i;;^f^s\\p - Ph\\m{af)\\fp - iphWH^Qs)-

Applying the approximation property of Wh2 (3.13) implies

h - < ^'^{Ps + a2Cl)\\u - Uh\\L'^{ns)CAhlU\\mm
^  r\j

+ (2/x + XN + ^Cg)\\u — Uh\\m(n^)CAh2\\tp\\H^{a^)
(3.17) ~ ~ ^

+ ^CfCsWp - Ph\\L^{nf)CAhl\\ip\\H^(^n,)

+  - Ph\\mi^^f)CAh2\\■lp\\H^Qs)■
r\.»

Inequalities (3.16) and (3.17) imply there exists C independent of uj, hi and h2 such

that

lb - PhWh^n^) + w^lb - «/^lli2(n,)

< C i^hloj^p - ph\\L^nf)\\(p\\H^nf) + ~ P/ilU2(n^)|l'0||if2(n,)|
+ C < h\J^\\u - u/iIIi,2(n,)II^11/^2(^3) + h\u%u - ■u/i||z,2(n,)||V'l|ff2(n3)

~  /-V ^ rsj

+ C |hi||p -p/,||fl-i(n/)||¥?||H2(nj:) + h2a;||p - P/i||Hi(n/)||'0lb2(f2^)
+ C < hiuj\\u — 'U/i||jyi(n^)| |(,^7| |ff2(n^) + h2U}^\\u — ■u;i||^i(n^)| |'i/'||/f2(^
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Young's inequality implies

\\P - PhWh^nj) + - «/illi2{n,)

< C ̂h\u? (i||p - PhWh^Uf) + U'PWH^Qf)) (^i;\\P - PhWhi^f] + ̂UWnHa,)^
+ hluj^ (^f Ik - + iill<^llH2(o,)^ + hju"^ ̂ |||u - Uft||i2(n,) + 511^11^2(^3))
+ hi (lib - PhWlun^) + 5lkllH2(n^)) + h^u - P/»||hi(o^) + 111^11^2(^3))

+hiuj lb - w/»||ffi(n3) + ilkllH2(n3)) + ̂2^^^ (^^\\u - Ufc||Hi(n3) + 5lkllff2(fi^)) |
Equivalently, there exists C independent of w, hi and /i2 such that

Ik-P/illi^cn^) +'^^lb - «/illi2(n3)

<ciy{h\^ hl)uP\\p - Ph\\l2^^^j) + {hi + hlfu^Wu - u/i||i2(n3)|
+ C |(/ii + h2)|b -P/i|lifi(n^) + {h\ + h2)u;^|b - 'bi|lHi(n3)|
+ Clu I{hlu'^ + hi)|b||^2(n3) + (hlco'^ + h2a;^)|blil'2(n3)|

or

(1 - C{hl + hl)uj^) jib -P/illi2(n^) + '^^Ib - 1112(^3)}
< C{hi + /12) |lb ~P/iIIhi{%) +^^lk ~'"/ill^qna))
+ ̂ {{hi + hl)u? + {hi + /12)) ||k||^2(n3) +^^llV'||^2(f^^

By the regularity estimate assumption (3.15),

(1 - C{hl + hl)J^) I lb - P;.||i2(n^) + u^lb - ^2(^3) |
< C{hi + h2) |lb-P/i|lFi(0/) +wlw-«ft|lHi(n3)}
+ ̂{{h\ + h\)uP + (hi + h2)) |i?/,2|b ~ P/i|lL2(n^) + Rs,2\\u - UhWhin^
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Therefore,

{1 - C(( hi + hDuj"^ + Rf,2{{hl + hl)u? + {hi + ̂2)))} \\p -

+ {1 - C (j^hl + hl)u}'^ + ̂{{hl + hl)u'^ + {hi + /i2))^ | a;^||w - Uh\\\2(^Q^)

< C{hi+h2) |lb-;?/i||Hi(n/)+w^l|w-MAllHi(f23)}-
Choose h such that

C ((/ii + h'^Lo^ + Rf^2{{h\ + h^uj^ + {hi + /i2))) < f,

C ̂{hl + hl)u^ + ̂̂ {{hl + hl)u^ + {hi + /i2))j <
that is,

hi + hs < C min ■{-, —i=, -5^, / , -
For hi and /12 chosen thusly,

lb - PhWlHsij) + - Uh\\h{cis)

< C{hi + h2) I lb - Ph\\\i{nj) + w^lb - w/»||Hi(n,)| •
■

Theorem 3.9. Suppose p andu are solutions to the interaction problem (3.7)-(3.8),

Ph and Ufi the finite element approximations. Then there exist a constant C, indepen-

dent of u, hi and /12 such that hi + h2 < Cu~'^ implies

lb - Ph\\Hi(nf) + - «/illHi(fi,)

< Coj^ max{^{hJf'~^)'^{}il + 1), {h2~^)'^{h\ + 1)}

■ |-^/>'7l|b/llfl-"'-2(f2/) + ■^S,A:|bs|b*:-2(n^)|
and

lb - PhWhi^^ij) + - U;j||i2(n^)
< C{hi + h2)oJ^ max[{hf'~^Y{h\ + 1), {h2~^Y{h\ + 1)}

■  I ■^/,"ilb/llH'"-2(n/) +-^s,fc|bs||^*;-2(n^) r
^  rsj
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for k,nn>2.

Proof : Suppose [p, u] solves the interaction problem, and solves the finite

element interaction problem. Then

L}[p -Ph,p- Ph, = ̂Ib - PhWh^n^) + J^W^iP - Ph)\\l2^n^)

+ -^Wp - PhWlnVf) + ({u-uj,)-ns,p-Ph^^,
therefore,

Re ̂^Lf{p - ph,p - Ph,u- Uh)^ + J^Wp - PhWh^a^)
=  - Ph)\\l2{n^) +Re!^(^{u-Uh)-ns,p-Ph'^ |,

which implies that

R^^Lf{p-ph,p-Ph,u-Uh)^+(^J^ + J^^ Wp-PhWh^n^)
= Z^\\p-Ph\\%i(n^)+Rel^(^{u-uj^) ■ns,p-Ph^ |

and

Re I Ls{u - Uh,u - Uh,p - Ph) \ + iuJ^Ps + 2fj,)\\u-Uh\\l2(^Q^
\  rsj J ~ rsj

> 2fx\\u- UhWffi^Q^) -Re|^(p-p/,)n/,u-M/,^
By the fundamental orthogonality identity,

Lf{p-Ph,q,u-Uh) = 0 yqeVh,,

therefore,

Z;^\\p-Ph\ \m{nj)^-Re^(^iu-Uh) ■ns,p-ph'j |
+  \\P - PhWlnnf}-
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By the trace inequality,

Re^(w-w/i) ■ns,p-Ph^ < \\u- Uh\\L^T)\\p - Pkhnr)
<C\\u- - Ph\\L2]n^)\\u - - Ph\\Hi{n^y

So for any ei, 62, ^3 > 0,

Re({u-Uh)-ns,p-ph) < C^\]p - Ph\\%^n ) + C^\\u - Uh\\%i^ns)
(3.19) \~ ~ ~ /r ~ ~

+ C'^lb - P/i||i2(n ) + - Wh||i2(n^)
^  r>j

and

Re |l/(p - Ph,P - q,u-Uh)^ < ^Ib - Ph\\L^iif)\\p - oWh^Hf)
+  - Ph)\\L^{nf)\\^{P - q)h^{nf)
+ ^\\P - Ph\\L^irf)\\p - qWiHTf)
+ lb-w/i|U2(r)|b-9lU2(r)-

~  rs.»

Applying the trace theorem and Young's inequality,

Re I^Lf{p - ph,p - q,u- Uh)^ < ^\\p - Ph\\L^nf)\\p - qh^icif)
+ J^\\^{p-Ph)\\L^nf)\\^iP - 9)||l2(%)
+ ^Ib - P/^lb2(n/)lb - 9lb2(n^)
+ CfZ;^\\P~Ph\\m{Qf)\ \p - 9llffi(n/)
+ CfCs\\u — M/il|/2(j^^)|b ~ 9ll/2(n/)lb ~ '"'illi?i(ns)lb ~

which implies

(3.20)

Re |i^/(p -Ph,p-q,u-Uh)^ < -^Wp - Ph\ \LHnf)\ \p - qWi^Qf)
+  \\P ~ Ph\\HHQf)\\P - 9||/fi(n/)

/c)+r
/ WP-P

1/2 1U_^| |V2 |L, _„. | |l/2 ||.n_nl|Y2+ CfCs\ \u '"/ilb2(n^)lb 9| lx,2(f2^)lb '"/ilbi(n^)lb
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Applying (3.19) and (3.20) to (3.18) implies

(3.21)

< c\\p-Ph\\L^i^a})\\p- qWL^^f)

+ C-^Wp - Ph\\H-^{Q.j)\\p - q\\m{Q.i)

+ C\\u — ~ 9llL2(n^)||w — ■^/i|lHi(nj)lb ~

+ C'^lb - Ph\\]j\{^f) + C'^lb - 111-1(03)
rvj

+ c'^lb - PAlli2(n^) + - '"/illi2(03)

+ ^ (i + lb - Ph\\\i{^j)
for some C independent of oj.

Again, since bj '"] solves the interaction problem and \ph,Uh\ solves the finite

element interaction problem,

Ls{u-Uh,U-Uh,p-ph) = -(^^Ps\\u - Uh\\l2^as)
^  ̂ ^ r\j

+ All div(u - Wft)|li2(n,) + 2/^11 e(w - ̂ bi)lli2(n^)

+ iuj(u-uh,u-uh) - ({p-Ph)nf,u-Uh) ,\~ \ ~~ ~/p

RelLs{u-Uh,u-Uh,p-ph)\ + (^"^psWu - Ili2(n^) = 2/x||e(u - u/i)||i2(n,)
+ A||div(n-M/,)| ||2(n^) - Re |^(p-p/,)n/,u - |.

By the fundamental orthogonality identity,

Ls{u-Uh,v,p-ph) = ^ Vu G (1^/12)^,

therefore,

(3.22)

2iJ,\\u- Uh\\]jn^^) < Re S^Ls{u- Uh,u- v,p - ph)^ +Re i^(^{p - ph)nf,u- |
+ {uj^ps + 2p)\\u-uh\\l2^nsy

^  r\j
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By the trace inequality,

Re(^{p-Ph)nf,u-Uf}^ < \\p - Ph\\L^T)\\u- UhWi^v)
< C\\p — — ''^/i|Il2(q^)||p — -P/iII 1(0^)11^ ~ '"'^ll^qna)"

So for any 64, £5, ee > 0,

(3.23)

Re!^{^{p-Ph)nf,u-Uh'^ | < C^\\p - ph\\%i^a^) + C^J\u-
+ C-^Jp - Pft||i2(n^) + C^\\u - u/i||i2(n^).

Applying the trace theorem and Young's inequality,

Re Ls{u -Uh,u-v,p-ph)> < uj^PsWu - Uh\\L^ns)\\u - ̂h^ns)
j  ryj rsj rsj I rsj ^

+ All div(u - u/i)||L2(n,)|| div(w - u)||z,2(fi,)

+ 2p\\e{u - u/,)||i2(n,)l|e(u - •y)||i2(n,)

+ a;a2||u - u/i||£,2(r3)|lu - ̂||i,2(r,) + ||p - P/i||z,2(r)||w - w|U2(r)

< oj^psWu - M/i|U2(n^)||u - ■y||L2(n,) + {2p + AY)||u - u,i||/yi(n,)||u - ■i;||/^i(n3)
^  rs^ rv

+ u^Ps\\u - w/i|U2(n,)||u - u||L2(n,) + ^\\u - Ufel|jfi(n,)||M - v\\HHns)
+ CfCsWp - Ph\\L2\^i^)\\P - Ph\\HHaf)h - - !illffiV)'

which implies

(3.24)

Re 1,5(14 -Uh,u- Uh,p-ph) < 2a;Vs||'" - '"/i||L2(n,)||w - 'yllL^m.)

+ {2p + XN+ ^)||w - w/i||ffi(05)|l'" - vWffi^ns)
r ■' nu r>^ />J

+ CfCs\\p — Pft|l/2(n^)||p — Ph\\Hi(^Q^)\\u ~ 1(^11/2(03)11^ ~ ((ll/qo^)-
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Applying (3.23) and (3.24) to (3.22) implies

(3.25)

2ii\\u - u/illffim ) ■< - Uh\\L^n,)\\u - 'y|U2(n,)
^  r\j

+ (2^ + AA'' + ^)||w - Mftl|Hi(n3)||w -'y|lHi(n,)
/>j />«< r*-"

+ CfCsWp - Ph\\L2\nf)\ \P - Ph\\H^{nf)\\}t - iWVinJW -
+ C'-f-\\p - PhWm^n,) + - «A|[Fi(n.)

+ c-^\\p- PhWh^^f) + ~ '^hWl^as)

+ (wVs + 2/i)|lw-w/i||i2(n^).

Choose ei = 62 = £3 = Then

and Cf^ ~ ~ 4' therefore (3.21) becomes

J^Wp - PhWminf) < C\\p - Ph\\mnf)\\p - q\\L2(n^)
+ C^Wp - ph\\m{cif)\\p - 911^1(0/)
+ C\\u - uji\\j^2^q^^\ \u — '!bi||^i(n^)||p - 9llL2(n/)lb ~ 9ll/ri(n^)
+ ^\\P - PhWhin^) + fife - '^J^WnHns) + ^'^^Ife " ̂ J^Whins)
+ ^ (1 + ii) lb ~ Phfmaf) >

which implies

^\\p - Ph\\h{nf) < C\\P - Ph\\L^Qf)\\P - qWl^Qf)
+ C^^^lb -Pft| |Hi(n/)lb - 9lli?i(n/)
+ C\\u — w/i||fe2(n3)lfe ~ '';(^lljTi(nolb — 9llL2(n/)lb ~ ^Wn^rif)
+ fife - ̂ ^ftllHi(n,) + Cuj'^h - ̂ JiWhin,)
+ ^ (^ + i) lb - PhWli^Qf)-
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Applying Young's inequality,

^\\P - Ph\\m{af) < C^Wp - PhWh^nf) + C|lb - <l\\h(nf)

+ 8^lb - PhWmiQf) + ¥lb - 9IIhi(%)
+ f - u/^||i2(n,) + 4&lb - qWIhuj)

+ fib - + ̂Ib - 911^1(0/)

+ fib - + C^^lb - «/illi2(n,)
fSJ

+ ̂ (l + :?) lb - Ph\\h(nf),

which implies

^\\P -PhWliinf] < C(1 + ̂j2)lb - 9lli2(n^) + C{1 + ̂)\\p - gll^qn^)
(3-26) + Cu^\\u - Uh\\l2^a^) + fib - w/illnqn,)

r>j

+ ̂ (l + i) lb - Ph\\h(nf)

for some C independent of u. Similarly, (3.25) becomes

2^|b - w/illnqn,) < Cw^lb - w/i||L2(n3)lb - + C|b - «ft|bi(n3)lb " ̂Ibqn.)

+ C'lb ~ P'illi,2(n^)lb ~ ̂llL2(n3)lb ~ P/ill/fqn/jlb ~ ̂llnqn^)

+ I^ifelb - PhWmiQf) + fib - fb^llnqn.) + C'lb - PhWh^nf)

+ c{u}^ + i)|b - '"/i||i2(n,),

which implies

u - M/i|bi(n,) < Clo lb - u/i||i2(fi^)||u - u||L2(n,) + C|b - ■";i|bqn,)lb ~ ^Ibqn.)

+ C'lb ~ Ph\\L^(n^)\W ~ ^l lL2(n^)lb ~ ?'/il liyi(f2^)lb ~ ^ll^qos)

+ ^Ib - Ph\\m{nf) + C|b - Ph\\h(n^)
+ C{uj^ + l)|b - '^hWhias)-
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Applying Young's inequality,

^\\u - < ̂^11^ ~ '^hWhiUs) + ~

+ f h -

+ flip - PhWh^af) + jh - Hli^cn.)

+ siJ^lb - PhWmiUf) + - :^llHi(n.)

+ siii^llP - Ph\?Hi(nf) + C\\p - PhWhiaj)
+ C{l>P- + l)||u - u/i|||2(n,),

which implies

^\W ~ "/illFi(n,) ̂  + l)lk " ^lli2(no + + 1)11^^ ~ i^llffMns)

(3-27) + C\\p - PhWh^nf) + iiyllP - Ph\\m(Q^)

+ C(a;^ + l)||u - u/i|||2(n^)

for some C independent of w.

Inequalities (3.26) and (3.27) together imply

iJ^lb - Phfrniaj) + f Ik - UhW^ji^as) < + l)lk - kli^coa)

+ C{u^ + l)||u - ̂11^1(0,) + C'IIp - PhWl^in^)

+ 4ij^l|p ~P/iIIhH%) ^)lk ~ "''lli^cno

+ ̂0- + ̂)IIP - ?llL2(n,) + <^(1 + ;;j^)i|P - 911^1(0^:)

+ Cd^u - u/,||i2(n,) + f Ik - «/illHi(n.)
r>j

+ ̂ + i) Ik - PhW^inj)
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or

2^\\P - PhWl^nf) + Ph - < <^(1 + ̂)lb " QWhiQf)

+ C{u? + l)||u - v\\h{Q^) + ̂(1 + ;;jj)||p - q\\]ji^a^)

+ C(w^ + l)||u - + C (l 4- ;;)2) lb

+ C(a;^ + 1)||« - Uh\\i2^^^y

Applying the approximation properties (3.12) and (3.13),

^\\P - PhWmin^) + Ph - WA||Hi(n3) < <^(1 + i2){CAhTf\\p\\lm{af)

+ C{uP' + l)(C'/i/i2)^lbllfffc(n3) + C{\ + ̂){CAh'^ ^)^lblll''"(n/)

+ C{u? + l)(CAh2 ^)^lbll^fc(n3) + ̂ (l + ̂̂2) \\P ~ PhlW'iip.j)

+ C{J^ + 1)[|m -

which implies

2;;;^lb -PhWhuyi^) + ̂Ib - ^ <^(1 + ̂){CAhT~^f{hl + l)lbllH-(n/)

+ C(a;2 + l)(C^hr)^(h^ + l)|bf^.(n3)

+  + \\p ~ PhlW'^iiif) + +1)lb - w/i 11^2(^3)•

Applying Lemma 3.8, for sufficiently small hi and h^,

^\\P - PhWl^nj) + P\\u - 'tPiWmin,) < C{1 + ̂){CAh^-y{h\ + l)lblltf-(n^)

+ C{uj^ + l){CAh2~^)'^{h\ + l)|b||Ht(n3)

+ C{hi + ha) jib - Phfmiyis) + '^^Ib -
or equivalently,

lb - PhWlynf) + wlu - u/,||Hi(n3)

< Cu^ {{hT'^Yihl + l)lbll?r-(Oy) + + lV^lbllff^(03)}
+ C{hi + h2)u^ |lb "P/illnqn/) +^^^11^^ ~ '"/illHi(fi3)|
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for some C independent of w, hi and /i2. Applying the regularity estimate and

simplifying,

(1 - C{hi + h2)u^) I lb - PhWrn^Qf) + - u/i||Hi(n3)}
< Cui^ max + 1), {h2~^y{hl + 1)}

Choosing hi + h2 < implies

lb ~ PhWH^Slf) + '^^Ib ~ ■"/illnHOa)
< Cui"^ max + 1), {h2~^)^{hl + 1)}

■ |^/>™lb/llrn"-2(n/) "h-^s.7n|bslbfc-2(n3)| -
Combining this inequality with Lemma 3.8,

lb - PhWh^nj) + ̂ ^Ib - ujiWhins)
< C{hi + h2)u}'^ max + 1), (h2~^)^(^2 + 1)}

■  1 ■^/,"ilb/lb'"-2(%) +-^s,m|bs|bA-2(n3) f •
k  r>j

■

Remark : The global error depends on the maximum of the quantities {h^~^Y{h\-\-l)
and (h2~^)^(/i2 +1). Clearly, one should therefore choose hi ^ /i2 and k = Tn in order
to make the most efficient use of computational resources.
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Chapter 4

Domain Decomposition Methods

for the Fluid—Solid Interaction

Problem

In the following chapter, we develop some parallelizable non-overlapping domain de

composition iterative methods for solving the system of coupled acoustic and elastic

Helmholtz equations which we introduced in Chapter Three. We propose two classes

of iterative methods for decoupling the whole domain problem into individual fluid

and solid subdomain problems. The key of each method is to replace the physical in

terface condition with equivalent relaxation conditions which act as the transmission

conditions. We establish the utility of these methods by showing their strong conver

gence in the energy norm of the underlying fluid-solid interaction problem. Numerical

experiments validate the analysis and show the effectiveness of the methods.

Because of existence of the physical interface, it is natural to use non-overlapping

domain decompositions method to solve the fluid-solid interaction problem. In fact,

non-overlapping domain decomposition methods have been successfully used to solve

several coupled boundary value problems from scientific applications. See [32] and the

references therein. The non-overlapping domain decomposition methods developed in
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this chapter are based on the idea of using convex combinations of the original physical

interface conditions to transmit information between subdomains. See [2, 9,14, 26, 36]

for expositions and discussions on this approach for homogeneous problems. It is more

delicate to apply the idea to the heterogeneous fluid-solid interaction problem because

using straightforward combinations of the original interface conditions as transmission

conditions may lead to divergent iterative procedures.

We also address an implementation issue (cf. [17]). We show that the difficulty

of explicitly computing fluxes on the interface can be avoided through a simple mod

ification.

The results of this chapter were reported in [6] with few details. Here, we present

the results in greater detail; in particular, we include all proofs.

4.1 Non—overlapping methods

As in the comparable methods of [2, 9, 14], the main idea is to replace the original

physical interface conditions with equivalent Robin type interface conditions. It is

easy to check that the interface conditions in 3.3 are equivalent to

(4.1) Jf- -h ap = -u'^pfU • Us - a(7{u)ns n rig, on T,

(4.2) Pcr{u)ng n Ug + u^pfU n rig = -Pp - Jf-, on T,

(4.3) o'{u)ng • Tj = 0, on F.
^ ̂

for any a,P G C such that a ̂  p.

Based on the new form of the interface conditions, we propose the following itera

tive algorithms. Algorithm 1 resembles a block Jacobi type algorithm, and Algorithm

2 resembles a block Gauss-Seidel type algorithm.

Algorithm 1

Step 1 V p° e H\Qf), u° e iH\^lg)f.
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Step 2 For k >0, define such that
rwi

= 5-/, inQf,

¥p'^' + ̂  = 0. 0" r^.
+ ap'+' = -u^pf^ n n, - aff(«')n, n n„ on T;

-a;2psU^+^ - div((T(u'=+^)) = g^, in
/>.»

zci;^u^+^ + <7(u*^+^)n5 = 0, on F^,

/3CT(u'=+^)n^ n • Us = -pp^ - on F,

(j(u^"'"^)ns • Tj = 0, on F.

Algorithm 2

Step 1 V u° e {H\Qs)V-

Step 2 For A: > 0, define such that

-ip'' - ̂P'' = 9f, in ̂ f,

fp' + ̂  = 0, on F;,
^ + ap'' = -u'^pfU^ • Us - aa{yP)ns • Us, on F;

-u^psVp^^ - div(o-(u'=+^)) = Qs, in
ftj
~  r>j

iujAvP^^ + a{yP'^^)ns = 0, on F^,

p(T{vp-^^)ns n Us + n Us = -Pp^ - §^, on F,
^ r»j ro Ulbj

a{u'''^^)ns -Ts = 0, on F.

Notice that in both algorithms, no information is transmitted tangentially along the

interface. Also, well-posedness of the algorithms in Step 2 comes directly from the

well-posedness results in Chapters One and Two.

84



4.2 Convergence Analysis

In this section, we will use an "energy norm" technique to show convergence of the

algorithms. Since the proofs are similar, we only present the proof for Algorithm 1.

We will need to use the following two technical lemmas.

Lemma 4.1. Let Q C 3?^ be open and bounded and dQ = Fi U r2 where Fi is not

empty. Let M be a symmetric, positive definite matrix, and 0,61,62 £ 3*^, where

61/0. Define

S" ;= |u e H^{Q)\ — c?v — div fc7(u)') = 0 in Q, a{y)n -Tj = 0 on F2I

where n is the outward unit normal to dQ and Tj (j = — 1) are the unit

tangent vectors to dQ. Then there exists a positive constant C which depends only

on M, Q, a, 6 and c such that

Ikll^HQ) lk(^)" + ihMv\\jj-i/2n:^) + ||cr(u)n • n + ib2V • n||^-i/2(r2) 1

for all V E S.
rs^

Proof ; Given (u;i,u;2) £ x iF^/^(F2), define the function w as follows:

w = <

Wi on Fi,

w^n on F2,

and define the set

V := {K,W2) G X w £ {H^'\dQ))''] .

Note that 5 is a closed subset of H^{Q), and define the operator T : S —> V* (where

V* is the dual space of V) by

{Tv){wi,W2) = / {a{v) : (Vw) — a'^v-w) + ibiM / v-'n7i+ib2 {v • n)w^
~ ~ Jq ^ ~ ~ ~ « ̂ ri ~ ~ ./ra ~ ~
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for each w ̂ V. Here, we abuse the notation by using w to also denote its extension

in T is linear and continuous, and by Lemmas 2.2 and 2.3,

{Tv){w) = J div{a{v)w) + J — div
+ ibiM / v-TJJi + ib2 {v-n)w2.

7r, ~ ~ Jr-> ~ ~Ti Jr2

Since v E S,

(Tv)(wi,W2) = / div(cr(u)u;) + / v-vji + ib2 {v-n)w2
~ ~ Jq 7ri ~ ~ Jv2 ^

= / {a{v)n)-wid-ibiM / v-Wi+ {a{v)n) • {w2n)

+ ib2 / {v • n)wi
Jt2 ~ ~

= / ((T({;)n + ?6iMu) • UTT + / {a{v)n) n {w2n) + ib2 / {v-n)w^.
fa «~ ~ Jto ~ Jt2 ̂  ̂Ti JT2 JT2

Splitting a{v)n into its normal and tangential components.

Ti

+

(T'u)(u;i, 1^2) = / {a{v)n + ibiMv)-Wi
rsj rvj */r ^

/  < {(j{v)n n n)n + {a{v)n n Tj)rj > • {w2n) + ib2 / (v • n)w2.
in I ^ r\J r>^ ' * ̂  rv I rsj f y> ^ ̂^l2 j=i J *^^2

Since v E S, {a{v)n • Tj) = 0 on r2 for j = 1,..., N — 1, and the above becomes
rsj

{Tv){wi,W2) = / {(7{v)n +ibiMv)-'wj + / <! ((7(u)n • n)n [• • (u;2J^)~ ~ t/Fl ^ ~ ~ W ~ rsj . J Y2 ^ ^ ~ ~ ~ J ~

+ ib2 / (u n n)wi
JT2 ~ ~

= / ((j('i;)n + iftiMu) • TTTT + / ■! cr('y)n • n + ■j62('y •

that is,

a-(u)n + ifeiMu on Fi,
'Xv = / ~ ~ ~ ~ ~

cr(u)n • n + i62('y • on r2.
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Consider the problem

— — div (cr(x;)) =0 in Q,

(4.4) cr(i;)n + =p on Fi,
r\j ^

a{v)n + ib2{v • n)n = fn on r2.

It is easy to show that the corresponding variational formulation satisfies a Carding

inequality, and the homogeneous adjoint problem has a unique trivial solution. The

Fredholm Alternative therefore implies that (4.4) admits exactly one solution v €

{H^{Qs))'^ for each {g,f) € V* (see chapter 2). Hence, T is one-to-one and onto

V*. By the Open Mapping Theorem (see [22]), T~^ exists and is bounded. Hence for

veS,

IkllffMQ) = 11^ ^ (cy{v)n + ibiMv, a(v)n n n +ib2{v n n]) \\h^q)
< C|| (a{v)n + ibiMv, a{v)n •n + ib2{v • n)) ||y.

^ r\j ^ r\j r\j rsj /

^C\ ||o-('y)n + ibiMv\\H-imT.) + lk('y)n • n + ib2{v n n)||^-i/2(r2) }
^  ̂ ^ rsj r>j rsj J

for all V e S. The proof is complete. I
rsj

Lemma 4.2. Let Q C 91^ be open and bounded, a,b eR, b ̂ 0 and define

S  {qE H^{Q) \ — dfq — = 0 in Q} .

Then there exists a positive constant C which depends only on Q, a and b such that

WqWhHQ) <^11^ + ibq\\H-i/2(^gQ^ ^ q E S.

Proof ; The proof is similar to the proof of Lemma 4.1, and can be found in [9]. n

Define the error functions at the kth iteration,

r''=p — p'', e'' = u — u^

It is easy to check that and satisfy the equations
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(4.5) - Ar'+i = 0. in Q,,

(4.6) + ̂  = onT/.

(4.7) + ar'''^^ =—LO^pfe''■ Us — aa{e'')ns ■ Us, onF;
rsj ^ rsj

duf

(4.8) -u'^pse'"'^^ - div((7(e'=+^)) = Ps, in

(4.9) iuAe'''^^ + cr{e'''^^)ns = 0, on F^,

(4.10) p(x{e''+^)ns ■ ris + u^pfe'^^'^ • rig = -pr'' - on F,

(4.11) a{e'''^^)ns • Tg = 0, on F.

Define the "pseudo-energy"

(4.12) Ek = \\l^ + a!r'=||i2(r) + | |^a(e*^)ng • + oj^Pfe^ • W5||i2(r)-
Then we have

Lemma 4.3. The pseudo-energy satisfies

Ek+i — Ek — Rk,

where

Rk = (lap - t/5p) {ikiiajD - llg(e''K • ^Js||i2(r)}
[ {a-P)a{e'')ns-nsOj'^pfe'' -Us+ 2Re [ {oc-P)r''^
Jr j ̂

- 2Re

Proof : From the transmission conditions in Algorithm 1,

Ek+i = 11^^ + ar'^^^lli2(r) + l|/5a(e'=+^)ng • Us + uj^Pfe'^^^ • ng||i2(r)
= II - ■ ng - aa(e^)ng • ng||i2(r) + || - fir'' - ̂ ||i2(r),

or equivalently,

(4.13) Ek+i = ll^r^ + £||i2(r) + p^P/e'' ■ ng + acr(e'=)ng • ng|p2(r).
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Calculating the two terms in (4.13) separately,

11^^^ + e^WW) = 11^ + + i^- (^y\\h(r)
~ 11^ + '^^^llL2(r) + ||(/3 - Q:)r^l|i2(r)
+ 2Re/(^ + Qr')(/3-a)r^

Note that

2I^e^(^ + Q:r*=)(;5-Q:)r'= = 2Re - cx)l^r''
+ 2Re(a^)||r'=||i2(r) - ̂oir''\\l2^r),

therefore,

+ ̂lli^cr) = 11^ + <^''^lli2(r) + {\P - ~ 2|a:p + 2 Re(Q:^}|lr''||^2(p)

+ 2Re^(F^i^^
or equivalently,

+ ̂lli^cr) = 11^ + '^^''llL2(r) + (I^P - |ap) ||r^||i2(r)
(4.14) r _+ 2 Re y^(/?-a)^r'.
Next, simplifying the second term in (4.13),

Wcj'^Pfe^ • ris + aa{e'')ns n

= \\Pa{e'')ns • Us + u^pfc'^ • + (a - P)a{e'^)ns • ns||p2(r)
r>j rsj rsj rsj ^ '

= ||^c7(e'=)n, • Us^up-pfe^ n n,|||2(n + IK^ - ̂)<j{e'')ns n ns\\l2(^r)

+ 2Re / (;0cr(e*^)ns • ris + w^p/e^ • n5)(Q; — ;5)(7(e*=)n5 • n^.

Note that

2Re / {Pa{e'')ns n Us + oj^pje'' • ns){a — P)a{e'^)ns • ris
^p, rsj r\j r\j n^j

— 2Re {a - P)a{e'')ns n Ugu'^pfe'' n ris+ 2Re{Pa)\\a{e'')ns ■ns\\'i2(Y)

+ 2|^Plk(e'=)n, •n,|||2(r),
^ <-sy r>»< ^ '
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therefore,

||a;^p/e* • + aa{e'')ns •

(4.15) = \\Pa{e'')ns n ris + • ̂ Jl2(r) + (|q!|^ - |,5p)||a(e'=)n, • n,|||2(r)

+ 2Re / {a — P)a{e'^)ns • ns{oj^Pfc'^ • Us).
J rsj

Plugging (4.14) and (4.15) into (4.13) yields

Ek+i = |||^ + Q:7-'=£^|li2(r) + ll^g(e'')n, • n, d-w^/e^ • ns\\l2(r)

+ (|/5p - lap) {lk1|i2(r) - l|a(e'=)n, • n,l|^2(r)}
+ 2Re [ {a-p)a{e'')ns-ns{u^pfe''■ns) + 2Re [ - a)^r^

Jy* ^ r>j «/ P

= Ek — Rk-

Lemma 4.4. Rk has the following expression

Rk = (jap - ̂ P) {||r*^||i2(r) - ll^(£*')^s •
+ 2 Re I (a - /3) ('^V/P5||e''||i2(n,) - Aa;V/|| div e'=||^2(fi^)

- 2pa;2p/||e(e*^)||i2(n^) - ̂ ||r*| |i2(n^) +

+  --'^''''''Ml-
Proof : From Lemma 4.3,

R, = (jap - |/3p) {||r'|||,,r, - ' n.llW)}
- (2R«y (a-;S)CT(e')ns •n,wV/£'' ■ + 2Re J

Testing equation (4.5) against implies (by Lemma 1.2) that

11^(0^) + = f div f(Vr'=)r'=) .
J Qf
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Applying the divergence theorem and equations (4.6) and (4.7) implies

(4.16) /
Testing the conjugate of equation (4.8) against implies (by Lemma 2.3) that

-uj^Ps\\e''\\l2^ns) + ̂11 diveii2(n,) + 2//l|e(e'=)l|i2(n,) = [ div n
Applying the divergence theorem, and equations (4.9) and (4.10),

f (c7(e*^)n,) • = -wV.||e'=||^2(n,) + A|| div
(4.17) ~ ~ / / -N

+ 2/^11 e(e'=)l|i2(n,) +/ div^Ae'^je^
~  JTs ~

Applying equations (4.16) and (4.17) to the expression for Rk and gathering terms

yields the result. n

Theorem 4.5. Suppose a = P = —i^ where ̂  > 0. Then the sequence {(p*',^*^)}

generated by Algorithm 1 satisfies

(i) p'' —> p strongly in H^{'D.f),

(a) —y u strongly in n

Proof : First, we will show that p^ —> p strongly in Since a = i^ = —fi,

Lemma 4.4 implies that

Rk = 4^ {Ae^) n e'' + 7lir'=||i2(r^)^ -
Therefore Rk > 0 for all k since A is positive definite. Lemma 4.3 implies that

k

(4.18) Ek+i + Rj = Eq

for all k, hence Rk —> 0 as k —> oo and the sequence {Ek}'^=i is bounded in L^(r).

Rk —y 0 implies that r^. —y 0 strongly in L^(r/). Equation (4.6) then implies
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that 1^ —> 0 in L^(r/). Ek bounded implies that is bounded in
L^(r). This together with the fact that —> 0 and ̂  —> 0 in L'^{Tf) implies that

is bounded in L'^{dQ,f). By Lemma 4.2, is bounded in

Hence, has a subsequence which converges weakly in Let

denote the subsequence, and let r denote its weak limit. Since H^{Qf) A- 1/^(^2/)

(see [1], pg.30), —>■ r strongly in By the trace inequality on 512/,

< CfWr'' - r\\L2^nf)\\r'' -
which implies that —> r strongly in L^(512/) and hence r = 0 on F/. The
trace inequality also implies that is bounded in L^(r). Therefore, since

{|^ + is bounded in L^(r), is bounded in L^(512/) and must
have a subsequence which converges weakly in L^(512/). For notational brevity, let

denote the subsequence, and let x £ L'^{d^lf) denote its weak limit.
By equation (4.5), each satisfies

[ r-^q+ [ Vr'^>' .V~q=[ ^q Vg G
Jcif JQf Jdrif '

Taking the limit as k —> oo implies

rq+ f Vr.V^=/" XQ Vg G ^^12/)-
J  J J f

Therefore, r satisfies

-^r — Ar = 0 in 12/,
=^' + -t = X on512/.duf

We already know that r = 0 on F/, and ^ = 0 on F/ for all k, so ^ == 0
on F/. By the unique continuation principle, r = 0 in 12/. This implies that every

weakly convergent sequence of must converge weakly to zero. Therefore, the

whole sequence must converge to zero weakly. Finally, test (4.5) against q = r'' to
get

dQf
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Since —)■ 0 strongly in and in this implies that r'^ —^ 0 strongly
in

The proof that v!' —)■ u strongly in is similar. Rk —^ 0 and {Ek}'k-i
<  J K X

bounded in L'^{r) implies that

{/?CT(e*=)n, • Us +

is a bounded sequence in L'^{T). Since iuAe'''^^ + cr(e'=+^)ns = 0 on for all k,
/ki r\J r-j

Lemma 4.1 implies that {e^}^o is bounded in {H'^{Cls))^ and must therefore have a
r>u

weakly convergent subsequence. Arguing as above, one can show that this weak limit

must be zero, and that the whole sequence {e^}^o inust converge to zero. The proof
is complete. ■

Algorithms 1 and 2 have a drawback with respect to implementation. Solving
for in Step 2 of Algorithm 2, for example, requires the normal derivatives

a{u)ns • ris and ^ on the interface. Consequently, one is forced to use non-standard
or hybrid finite element methods in order to implement Algorithm 1 and 2. This draw

back can be easily avoided through a simple modification. The modified algorithms
are given as follows.

Algorithm 3

Step 1 yhj, h° G L2(r).
Step 2 For A: > 0, define {p'', u^) such that

-^p''- Ap''= gf, inQf,

+  = 0. on r„
^ + ap'' = h'}, onF;

-io'^psv!' - div(tT(u'=)) = Qs, in
rsj f\j

rs-«

iuAsv!^ -I- cr(u*)ns = 0, on F^,

a{u'^)ns ■ rig -t- • Ug = hg, on F,
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a{u^)ns n Ts = 0, on F;

— [a — P)p'' — h'j, on F,

/i5+^=a;2p^(|-l)w*= -ns-|/i^, on F.

Algorithm 4

Step 1 Vhj G L2(F).

Step 2 For > 0, define such that

- Ap' = P/, in Q,f,

fp'+si=('. on F/,

^  OLT)^ — h^. on F,

h!l = {a- - h)] on F;

—Uppsv!^'^^ — div(cr('u'^+^)) = Qs^
n\j

in Cls,

iwAsU^'^^ + a{u^^^)ns = 0,
rs/

on F^,

a[u''^^)ns • Us + n Us = hj, on F;

o-(u^+^)ns • = 0, on F,

h)+^ = • ris - on F.

The equivalence of Algorithm 2 and 4 can be seen formally from the following

I3cr{u''^^)ns • Us + u^pfu'''^'^ • ris = h] = {a - - h)

= (a - 0)p- - (^ + «p)

onj

Algorithms 1 and 3 are equivalent for a similar reason. Following the proof of Theorem

4.5, it can be shown that the statement of Theorem 4.5 also holds for Algorithm 3

and 4.
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4.3 Numerical Experiments

In this section we will present the numerical results of two test problems in order

to validate the theoretical analysis established in the previous section and to demon

strate the effectiveness of the proposed domain decomposition algorithms. To test the

domain decomposition algorithm, we performed two sets of numerical experiments.

In the first set, the true solution and the whole domain finite element solution are

known; in the second, the true solution and the finite element solution are not explic

itly known. In all experiments, = [0,1] x [0,1], Qg = [1,2] x [0,1] and the mesh

size is approximately 0.1. We used Algorithm 4 to generate all domain decomposition

solutions.

For the first set of experiments, we chose the following source functions

gs = 0.

Qf — sin^(7rx) sin^(7rt/)(47r^ — o;^) — 27r^[sin^(7rx) cos^(7ry) -t- cos^(7ra:) sin^(7ry)].

Given the above sources, it is easy to show that the true solution is u{x,y) = 0,

p{x, y) = sin^(7rx) sin^(7ry)

Figure 4.1 shows the finite element solution and the domain decomposition so

lution. Table 4.1 shows the L°°-norm and the L^-norm of the error. In table 4.1,

Ph denotes the (global) finite element solution of the fluid half, and denotes the

EjudSoMM

Figure 4.1: Finite element solution vs. domain decomposition solution



Table 4.1: Errors of domain decomposition solution

-p|
Z,2 v  v\ L°°

u'^ — u — U
rsj r\j L2 L°°

5

10

20

.00774713

.00750596

.00750852

.00150090

.00151935

.00152213

.00737340

.00731775

.00731816

.00184845

.00172242

.00172427

(global) finite element solution of the solid half.

In the second experiment, we choose the source functions

9fi^,y) = xey, gs{x,y)^
1

0

In this test, because the true solution of the problem is not explicitly known and the

whole domain finite element solution is not easily obtained, we tested the accuracy of

our domain decomposition algorithms by calculating the relative error of successive

iterates. Figure 4.2 shows the domain decomposition solution after 30 iterations.

Note that the graph shows the real part of the first coordinate of the solution u.

Table 4.2 shows the L^-norm and the L°°-norm of the relative errors of the domain

decomposition solutions after 5, 10, 20 and 30 iterations, respectively.
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Figure 4.2: Domain decomposition solution after 30 interactions

Table 4.2: Relative errors of domain decomposition solution

fc _ fc+i k_uk+l

.00762755 .01312341 .00133775 .00313325

6.825e-05 2.292e-05 1.697e-05 7.146e-05

6.103e-08 2.175e-07 1.736e-08 7.198e-08

8.856e-ll 3.640e-10 2.442e-ll 9.257e-ll



Chapter 5

Approximation of Scalar Waves in

the Space-Frequency Domain

Using Second Order Absorbing

Boundary Conditions

In Chapters One and Two, we studied Helmholtz problems with a first order absorb

ing boundary conditions. Recall that an absorbing boundary condition is meant to

minimize reflections from waves passing through the boundary of the computational

domain. Such a property is desirable because it simulates the absence of a physical

boundary, yet is computationally practical. We now return to the acoustic wave equa

tion (1.1) which we studied in Chapter One. In this chapter, however, we consider

the following second order absorbing boundary condition

where Ap denotes the Beltrami-Laplacian on F = dfi/. Equation (5.1) is a form of

the second order absorbing boundary condition which was proposed by Engquist and

Majda in [11], [12] and [13], and studied by Higdon in [20] and [21], and by Sheen in
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[35]. Imposing (5.1) on (1.1) then leads to the following model for wave propagation

in an acoustic medium;

iPtt-AP =Gf xeQ,f, t>0,

(5.2) +  =0 xeV, t>0,

P — Pt =0 X E Clf{ t < 0.

Applying the Fourier transform to (5.2), or seeking time-harmonic solutions to (5.2)

yields the following Helmholtz problem

(5.3)

where p = P = e"^^P(t, x)dt.

2

-^p-Ap = gj infi/,

=0 onr.

5.1 Finite Element Procedure for (5.3)

Introduce the following function space and its associated norm:

V := {p e H\af)\ Vrp e (Pcan/))"-!},

where Vr denotes the tangential gradient operator on F =

\\p\\v Il^rp|li2(an^)-

The variational formation of (5.3) is defined as

(5.4)

where

Find p G V" such that

A(p,9) = (p/,9) yqeV,

and

Hp^q) =-^ [ Pq+ f Vp-Vg+— /" pq--^[ VrpVrgJilf Jilf C

{9f,q)= [ 9fq yqeH^^f).
Jnf
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Let 7ft be a quasi-uniform triangulation of fiy with mesh size h. Suppose Vft is a

finite element subspace of associated with %■ It is well known that Vh has

the following simultaneous approximation property (see [5]): for some 1 < s < 2,

(5.5)

{\\P ~ - 5)||L2(an/)} ^ CAh^\\p\\H'"{itiy
y}i

Let Ciz.m denote an abstract regularity constant for solutions to (5.3), i.e.

where m>2. The finite element method for (5.4) is defined as{Find Ph 6 Vft such that
HPh,q) = {9f,q) yq^Vh.

We will modify the argument of Schatz [34] to derive error estimates for the finite

element solutions. First, we prove the following modified Carding inequality for the

bilinear form A(-, •).

Lemma 5.1. There is a positive constant K which is independent of w such that

Hp,p) + Ku}^\\p\\h(n^)
for all p eV.

Proof : Proving the lemma is equivalent to showing that

(5-7) A{p,p)+Ku^\\p\\l2(^nj) >

for some K > 0 independent of ui. Expanding the left-hand side of (5.7),

\A{p,p) + Kuj^p\\l2^n^)\'^

= \(K<p^ - #)lbll^(n,) + l|Vp||i>,n,) + f\\p\\hm) - 4:l|Vrp|l!.(8n,)f
= {{K^' - + {^Iblli.(8n,) - il|Vrp||i.(8a,,}'
=  - ifmUci,) + ilVpllia,!,,) + jirllVrplll^on,)

+ 2{Ku^ — ^)lblli2(n^)||Vp||^2(n^) + ^\\p\\\^{dnf) ~ cll7'lli2(5n/)ll^rp||i2(aQ^).
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By Young's inequality,

\\\p\\h(diif)\\^rP\\L2{anf) ̂  ̂Iblli2(an/) + 8^l|Vr^?|li2(an^),

hence,

\Hp,p) + ̂̂'^\\p\\h(nf)\'^ > - ̂)^||pllL2(n^) + ||V?)|1^2(fi^) + ̂||Vrp||i2(9Q^)
+ 2{Kuj^ — ̂)|b||i2(n^)||Vp|||2(n^) - ̂\\p\\h{aaf)

and (5.7) is therefore true if

- i^}||p||i2(n^) + (1 - T^)l|Vp||i2(n^) + - i^)|lVrp||i2(an^)

+ 2{Ku'^ ~ W ~ i^)lblli2(n/)ll^2'llL2(n/) ~ ̂11^1112(90/)

~ 8^ll7'lli2(n^)||Vrp|||2(aj^^) - ̂||Vp||^2(n^)ftVrp||i2(9n/) > 0-

By the trace inequality on dO,/ and Young's inequality,

^lbllL2(90/) ̂  ̂̂ /lblli2(n/)l|Vp|l|2(Q^)

s fcj {^IWIl.(n,, + 5;%l|Vp|||,,„,)}
~ 2 Iblli2{ny) + |II^PllL2(n/)-

Also by Young's inequality,

8;^lblli2(n/)||Vrp||i2(af2^) < 4^lblli2(n/) + 6^ll^rp||l2(9n/)

and

8;^l|V7'llL2(n^)||Vrp||i2(an^) < 4;^||Vp||i2(n^) + ̂||Vr.p||l2(9n/)-

Therefore, (5.7) is true since

^Ku -^) ~ ~ I ~ 4^1 lbllL2(n^) + (I - - ̂) ||Vp||^2(n^)
+ (t^ - 3i^)l|VrP|li2(5n/) +2(i^a;^ - ̂  - i^)lblli2(0/)l|V;.||i2(^,) > 0.
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Lemma 5.2. Suppose p solves (5.4) and ph solves (5.6). Then there are constants

Ci and C2 independent ofu and h such that h < —7==Ci implies that

\\p - PhWi^sif) < C2Cr^2 {h\\p - Ph\\m(nf) + - Ph)\\L2{daf)}

Proof : Suppose that p is a solution of (5.4) and ph is a solution of (5.6). Let ip be

a solution to the adjoint problem with source p — p^, i.e. (p solves

Find such that

^*{p,q) = {p-Ph,q) "iqeH^i^tj),

where

A*(<P,9) = -^/ 'Pq+ [ V(p-Wq-— f (pq + -^ f VrpVrq.
c  jQf Jrij c 2cu Jqq^

Then cp satisfies

Mq^p) = {q,p-Ph) WqeH\nf).

Taking q —p — ph implies

\\p-Ph\\l2(nj)=Hp-Ph,T)-

The fundamental orthogonality identity implies that

Hp-Ph,p>) = Mp-Ph,q^-q^h) yq^heVh.

Therefore,

lb - PhWh^n^) = A(p -Ph,q>- q>h)

= -^(p-Ph,q>- q>h) + (V(p -p/i), V(<p - (ph))

+ T <P-Ph,p-q:>h> < ̂vijp - Ph),^v{q} - Th) > n

Schwarz's inequality implies

\\P - PhWhipij) < f\\P - Ph\\LHni)\\P - ThWlHa;)

+ ll^b ~ Ph)\\L^{Qf)\\^{p - q>h)\\L'^{nf) + ̂Ib ~P/i||i2(an^)||<p - q^hWi^iaQf)

+ ̂l|Vr(p -P/i)||L2(9n_f)||Vr(<p - q>h)\\L2{dnf)-
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The trace theorem on dO./ implies

7lb - PhWi^dUf)]]^ - ¥'/i||L2(any)

— 7^/ \\p ~ Ph\\L'^{'[l})\\P ~ PhWjii^p^^y

Therefore, by Young's inequality,

^\\v - Ph\W{d€i})\W - ̂hWh'^idni) < ̂lb-P/i||z,2(n^)||¥'-9'/i|U2(fi/)
o ̂

+ -^\\P - Ph\\m{^f)\W ~ Vh\\m{nf)-

Plugging this inequality in above yields

\\P~Ph\\hinf) ̂  ̂\\p - Ph\\L^(nf)\\^ -

+ (^ +1) lb - Ph\\m{fif)\\^ - fhWminf)
+ ̂il^rb -P/i)||L2(9n^)||Vr(<^ - (ph)\\L^aQf)-

The approximation property of Vh implies

lb ~ P/i|li2(n/) ̂  ̂\\P ~ Ph\\L2{nf)CAh'^\\<p\\m{nj)

+ ("4^ + 1) \\P - Ph\\m{nf)CAh\\ip\\HHQf)
+ ill^rb -P/i)IU2(9n^)CA/i^~^||¥'lb2(n^).

Applying the regularity estimate (recall that solves the dual problem with source

P-Ph) yields

\\p ~ Ph\W'i{Uj) < ̂" Wp - Ph\W{^s)CAh^CR^2\\p - Ph\W{Qs)

+ (1^ + 1) lb - Ph\\m{iif)CAhCR^2\\p - PhWi'^iv.f)
+ ̂l|Vr(p -P/i)||L2(an;.)CA/i^~^Cij,2|b -P/illL2(n^),

or equivalently,

|l — lb ~P/i||l2(0j.) < + ij CAhCn^^Wp — Ph\\m{^f)
+ ̂C'/i/^^~^C'i?,2||Vr(p - P;i)||L2(aQ^).
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Choose h < —^=Ci where Ci = Then

{1 - > I
which implies that

\\p - PhWh'^ici}) < ̂ -4-+ 1 j 2C7^/iCK,2|b-p/i||iri(Oy)
+  Vr(p - Ph)\\L2(dnf),

or

\\p - PhWi^Qf) < C2Cr^2 {h\\p - PhWrnicif) + -p/i)||£,2(an^)} ,

where C2 = + l) Ca- n
Theorem 5.3= Suppose p solves (5.4) andph solves (5.6). Then there are constants

Cz and C4 independent of oj and h such that

h<Czmin[^jj^^,^]
implies that

\\P ~ Ph\\v CiCR^rn {ai^h^ + LVh"^ ^ ||^^||/;-m-2(ny),

and

\\p - Ph\\L^(a,) < CCR,2CR,m {h + h^-'l) (u'h^ +uh^-' + hr-')

Proof : Let p be a solution of (5.4) and let ph be a solution of (5.6). By Lemma 5.1,

^\\p-Ph\?v< Kp - Ph,P - Ph) ̂  Kuj^p - PhWli^^^y .

Note that A{p—ph,p—ph) = A{p—ph,p — q) for every q EVhhy fundamental identity.

Therefore,

\\P-Ph\\v <^\Mp-Ph,p-q)\+Ku^\\p-Ph\\l2^Q^)

< ̂\\p - Ph\\L'^{nf)\\p - 9||L2(n^) + uj + ij \\p - Ph\\m{nf)\\p - qWi^inf)
+ |ll'^r(p - P;i)IU2(an^)|| Vr(p - q)\\L^daf) + Kuj^Wp - PhWht^nf)-
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Applying the duality estimate of Lemma 5.2 and simplifying,

\\P-Ph\?v < ̂\\p-Ph\\L^inf)\\p-q\\mnf)+oj (x + l) \\P - Ph\\HHnf)\\p - q\\mQf)
+ IllVrb -P/i)IU2(any)||Vr(p - q)\\L^{dnf)

+ Ku^Cl {hCR^2\\p - Ph\\m{p.f) + -Pa)1|z,2(9q^)}^ ,

which implies (since + 6^ < 2a^ + 26^)

\\p-Phfv < ̂' \\p-Ph\\LHU})\\p-q\W{Uf)+oj (x + i) \\p - Ph\\m{nf)\\p - qh^uj)
+ |||Vr(p -Pft)llz,2(an^)||Vr(p - q)\\L^(dnf)

+ C - Ph\\m{Q^) + - Ph)\\LHdnf)} ,

or equivalently

\\P-Ph\\l - C {i^^h^C\2\\P - Ph\\m{Qi) h!^~'^'uC\2\\^T{p - Ph)\\L'^{af^i))

< ̂r\\p - Ph\\L^nf)\\p - q\W{'[ij)

+ ̂ (-4^ + 1] \\p - Ph\\HHnf)\\p - q\\m{nf)
+ |||Vr(p-p/i)||i,2(af^^)||Vr(p - q)\\L^dnf)-

Applying the approximation property implies

lb - PhWv - C {oJ^h'^Cl^2\\P - PhWmiQj) + h'^~'^'ujCl^2\\^rip - Ph)\\LHdnf))

< ̂\\P - Ph\\L^{Qf)CAh'^\\p\\H"^{nf)

+ ̂ lb ~ ]'/i||i?i(n/)C'>ih"^~^|blb"'(n/)

+ |llVr(p -p/i)||L2(9nj:)C'^h"^~^lbllff"'(n/)-

Applying the regularity estimate,

\\P-Ph\\v - C + /i''~^'a;C^^2l|Vr(p-P/i)||L2(an^))

< ̂Ib ~ P/l|U2(n^)C^h'"C/J,m|b/||/j'm-2(n^)

+ ̂ + 1) lb ~ Ph\\m(Clf)CAh'^~^CR^rn\\9f\\H'"-2{nf)
+ l\\^r{p - Ph.)\\L^{^^^f)CAh'^~^CR^rn\\gf\\H'^-^(Qf)■
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Therefore,

{1 - C } lb - PftllK

< {^CAhrcR„ + q; (3 +1) CAhr~^CR,m + Ic^a^-'Ck.^} |b/||i,».-a(„,).

Choose h < Czmin |j' ̂1/(4-2, 2/0-20 | where C3 = min (202)1/0-20 }•
Then

1 - C {oj'hX'i, + h'-^'uCl^) > i

and therefore,

lb"~P/i||v ̂  2 ^-4^ + ij CAh^
+ \CAh^~^CR^rn] \\g}\\H^-^{^j)-

Hence,

lb ~ P/l||v ̂  + wh'" ^ -\-

where C4 is independent of a; and h. Applying the duality estimate from Lemma 5.2

implies

lb " Ph\\L^(nf) < CCR^2CR,m {h + h^ (uj^h^ + uhJ^ ^ |b/||^m-2(n^).

5.2 Implementation Issues and Total Errors

We are ready to describe a procedure to numerically approximate solutions to the wave

equation in the time domain using both the first order and the second order absorbing

boundary condition. Our approach is similar to the that of [23], which treats the

acoustic Helmholtz problem with the first order absorbing boundary condition. Recall
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that one can recover the solution in the time domain through the Fourier inversion

formula

1  r°°(5.8) P{x,t) = — / p{x,uj)e"^^duj
^  27r J_QQ

where p{x,uj) is the solution to the Helmholtz problem (1.5) or (5.3). Since p{x,oj)
rsj

satisfies the conjugation relation p{x, —oj) = p{x,u), equation (5.8) reduces to

1  r°°
(5.9) P{x,t) = —Re / p{x,u)P'^^du

TT 7o ~

Of course, in order to apply equation (5.8) or equation (5.9) directly, one must de

termine p{x,u) analytically as a function of oj. We will only calculate finite element

approximations for discrete values of oj, and it is therefore necessary to approximate

the Fourier inversion. Since the integral is improper, we chose to first truncate the

integral, and approximate the remaining finite integral with numerical integration,

that is

1  pco 1 nijj'
P{x,t) :=—Re / p{x,oj) duj Tn—Re / p{x,oj)P'^^doj

TT ^0 ~ TT 70 ~
(5.10) M

- Re ̂  ̂jp{x, ojj)e^^^
j=i

for some large frequency oj*, some set of weights and some set of frequencies

{ojj} C [0,u;*]. We will approximate each p{x,oj) in the set {wj} by its finite el-

ement approximation defined by (1.11) or (5.6) as appropriate. We will therefore

approximate the time domain solution P{x,t) hy

(5.11) ^) = - Re ̂  ̂jPh{x, n
i=i

The obvious question is then, "how good is such an approximation?" Before proceed

ing to the numerical results, we present a brief discussion of the error which results

from this procedure. Define

1
Puj'{x,t) — Re / p{x,oj)P'^*'doj,

TT 7o

107



and

1  ̂
rsj » rsj

j=i

For a fixed time t, we can decompose the error into three components as follows

/N> ' r\j ^ j r\j r>>j j

(5.12) +

= Ei{x,t) -\-E2{x,t) + Ez{x,t).

The first error term is a consequence of the truncation point ui* of the Fourier integral,

2  \ 1/2

f

1/2

' ftf \ J ui'

<C'f/ \\p{-,^)\\hinf)(^
The second term depends on the numerical integration method. If, for example, we

use the composite midpoint rule, then

r°°
Ezix, t) = lRe p{x, uj)e"^*duj - ̂ Re J]] {^) p{x,

J (jJ* j=0

dCl)
1,2(0,w-)

2

LHO,ij')
dQ.i

and

I|,e2(-,i)|ii.,„,) < i / \\f (w)'&(?(;.")<=")
Qf

[ fe(p(;, <,<)«■"')
= C{uj*f [ ||{|^p(rr,w) + 2it£p{x,0j) - t^p{x,u)}Jnf I I ~ ~

Since the Fourier transform satisfies the property

{-ir£,0{u)=f^),

Awt

X,2(0,a;-)
dQ,f.

J Clf (.

+t'^ P{x, t)

Z,2(0,W)

L2(o,w-)_

+ r tP{x, t)
LHO,cj')

dQf.
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Therefore by Parseval's identity (see [37]),

\ ep{xj) + r
L2(o,a;-)

P{x,t)

tP{x,t)
L2(0,iJ-)

L2(0,tj')

The third error term depends on the finite element method.

\\Es{;t)\\lHn,)<C [
V itn y

M

M

^p{x,UJj) -Ph{x,u}j)
j=l

dPLi

M

<CY, {c«,2Cr,™ (o-lft" + Aft"") (ft + ll9/llH~-2(n,)}'
j-1

Combining the above, we have the following theorem.

Theorem 5.4. Suppose P{x,t) is the solution of (1-3) and Q{x,t) is the solution
r\J f>j

of (5.2). If p^. i^{x,t) and ^i{x,t) are the approximations of P{x,t) and Q{x,t)
^  r\j

defined by (5.11), then

poo

J (jj*

M

+ r tP{x, t)
L2(0,w*)

2(0^),

L^O,u')
+ f P{x,t)

i2(0,c;-)_

j=l

and

poo

l|Q(") ̂) ~ ^)lli2(n^) ̂  C" / ||9(")'A!)|||2(n^)da;
J ij*

t^Q{x,t) tQ{x,t)
L2(0,a;-)

+ f Q{x,t)
L2(o,a;-)_

M

+ CJ2 Cr.2Cr,„ (a + ft̂ -'a) + ujih'-' + ft"") ||s,l|
j=l

ir'"-2(n^)-
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5.2.1 Notes on Implementation of the Finite Element Method

Recall that the weak formulation of the Helmholtz problem with a first order absorb

ing boundary condition is

(Vp, V5) - ̂(p,,) + H < p,, p).

and with a second order absorbing boundary condition, the variational formulation is

(Vp, Vq) - ̂{p,q) + Vrp, Vr9 >= {gf,q).

If V/v is an N dimensional finite element space with basis then solving the

Helmholtz problem at the frequency cjk with the finite element method is equivalent

to solving the linear system

(5.13) {K - wlM + i(jJkQ)Ph =

or for the second order absorbing boundary condition.

(5.14) {K - ulM + iojkQ - 7r-B)Ph = G^„
ZUk

where the matrices K, M, Q, B and Gyj^ are defined as follows:

(5.15) Kij = / V(j)j • V(j)idx, Mij = / (j)j4>idx, Qij = / <l)j(f)ids\
Jq.{ JQf Jr

(5.16) Bij = / Vr(l>jVr(f>ids, [Guk]j = [ G{x,u)(j)jdx.
Jv Jnf

The matrices K, M, Q, and B only depend on the basis not on the

frequency Uk- Moreover, if we assume that the source function G{x,t) is of the form

(5.17) G{x,t) ̂  g{t)f{x),
<-sj

which is the case for most applications, then G{x,u) = g{uj)f{x) and

Gujk = 9i^k)G,
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where

Gj = f f{x)(j)jdx.
Jcij ~

The linear systems (5.13) and (5.14) can be rewritten as:

(5.18) {K-ulM+ iukQ)ph = gMG,

and

(5.19) {K - u)lM + iUkQ - ̂B)Ph = gMG
The matrices K, M, Q, B, and F are then independent of u. After choosing Clf and

determining the basis the matrices only need to be assembled once, and can

then be used to solve the Helmholtz problem for each frequency in the set {ujj}.

5.3 Numerical Experiments

In this section, we will implement the procedure outlined in Section 5.2 in order to

approximate solutions to (1.3) and (5.2). Our eventual goal is to provide numerical

evidence for which boundary condition better approximates a non-reflecting absorbing

boundary condition, that is, which more accurately simulates the absence of a physical

boundary. To that end, we will approximate solutions to both (1.3) and (5.2) using

the same source function, and compare the reflections generated by the resulting

wavefronts.

Because we truncate the Fourier inversion, it is important to choose the source

function G{x, t) so that G{x, uj) —> 0 rapidly as a; —^ oo. Following the example in

[23], we chose

G{x,t) =g{t)f{x),

where

,  2(:{t - to)exp{-(:{t - toY) t>0,
(5.20) g{t) =

0  otherwise.
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Figures 5.1 and 5.2 show graphs of the time component of the source function and

the absolute value of its Fourier transform, respectively. Note that |^(u;)| —> 0 rapidly

as a; oo. Based on the profile of |p(ct;)|, we chose evenly spaced frequencies in the

interval [0,25], with Aui = .1. We then recovered the solution in the time domain

by truncating the Fourier inversion integral at u* — 25 and applying the composite

Simpson's rule,

1  f°° I f"'
P{x,t) = —Re' / p{x,uj)e^'^^duj —Re / p{x,uj)e^'^*du

Jo tt Jo

(5.21)
1 Alj

TT 3

N/2

Re < u{x, oJo)e^°^ + 2 ̂  u{x, uj2k)e",iui2ki
k=l

N/2

+4 p{x, + p{x, 0J2nYiW2Nt

fc=l

To approximate the solution of the appropriate Helmholtz problem at each frequency,

we used the finite element space of piecewise linear C° functions, and used Gaussian

elimination to solve the systems (5.18) and (5.19) for ph-

0  as

Figure 5.1; g{t)

112



Figure 5.2: \g{u)\

In the first experiment, we chose = [0,4] x [0,4] as the spatial domain and

partitioned Clf into a regular triangular mesh (see Figure 5.3) with mesh size h =

.0625. We used f{x) = 5x-xo — ̂i-n as the source, where Xo = (2, .06), Xi = (2, .04).

Figures 5.4 through 5.13 show snapshots of the approximate solution generated with

both the first and the second order absorbing boundary condition at t = 3,4,5,6 and

0  Oi 1 1i 2 15 3 3.5 4 4.5

Figure 5.3: Regular Triangular Mesh of Clj, h = .0625
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Figure 5.4; Wave profile, first order absorbing boundary condition t = 3
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Figure 5.5: Wave profile, second order absorbing boundary condition t = 3
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Figure 5.8; Wave profile, first order absorbing boundary condition t = 5
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Figure 5.9: Wave profile, second order absorbing boundary condition t = 5



Figure 5.10: Wave profile, first order absorbing boundary condition t = 6

Figure 5.11: Wave profile, second order absorbing boundary condition t = 6



Figure 5.12: Wave profile, first order absorbing boundary condition t = 7

Figure 5.13: Wave profile, second order absorbing boundary condition t = 7



In the second experiment, we took a more rigorous approach to comparing reflec

tions. To determine the reflection quantitatively, we applied the following general

procedure

(1) Choose Clf and a source function G{x,t) with property (5.17).

(2) Find p, the solution to the wave equation on

(3) Enlarge Clf to a domain that contains dClf in its interior; call this domain Q,f.

(4) Find p, the solution to the wave equation on

(5) For a given value of t, calculate p{x, t) — p{x, t). This is the reflected part of

p at time t.

This procedure should yield a reasonable approximation of the reflected part of p

provided the wave p has not struck and reflected back into Clj.

For this experiment, we chose Q/ = [1,3] x [1,3] and = [0,4] x [0,4] and placed

the source at the center, (2,2). We partitioned the domains into regular triangular

meshes with mesh sizes h = .125 and h = .0625. We were careful to partition the

domains so that each mesh point of Clf was also a mesh point of fi/. Tables 5.1

and 5.2 compare the and L°° norms of the reflected waves generated in step 5

above. Figures 5.14 through 5.17 show snapshots of the solution on Qj at times

t = 1.6,1.8,2.0 and 2.2. Figures 5.18, 5.20 and 5.22 show the reflected part of the

wave generated with the first order absorbing boundary condition at times t = 1.6,1.8

and2; figures 5.19, 5.21 and 5.23 show the reflected part of the wave generated with

the second order absorbing boundary condition at times t = 1.6,1.8 and 2. In all

figures, the mesh size is h = .025.

Comparing figures 5.18, 5.20 and 5.22 to figures 5.19, 5.21 and 5.23, it is clear that

reflections generated by the second order absorbing boundary condition are smaller

than those generated by the first order absorbing boundary condition. The second

order boundary condition therefore better approximates a non-reflecting boundary
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condition, that is, the absence of a physical boundary. It is also worth noting that

using the second order boundary condition does not require much additional compu

tational overhead. The only additional calculations that are required are assembling

the matrix B from (5.16), and an additional matrix addition when assembling the

system (5.19). As tables 5.1 and 5.2 indicate, however, the reflections for both bound

ary conditions begin to grow as t gets large. Therefore, when one needs a simulation

which is long relative to the wave speed, one must use a larger computational domain.
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Figure 5.17: Wave profile, first order absorbing boundary condition t — 2.2



Figure 5.18: Reflected waves, first order absorbing boundary condition f = 1.6
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Figure 5.19: Reflected waves, second order absorbing boundary condition t = 1.6



Figure 5.20: Reflected waves, first order absorbing boundary condition t — 1.8

Figure 5.21: Reflected waves, second order absorbing boundary condition t = 1.8
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Figure 5.22: Reflected waves, first order absorbing boundary condition t = 2

Figure 5.23: Reflected waves, second order absorbing b



Table 5.1: Norms of reflected waves, h = .125

Z/^-norm Z/°°-norm

t ABCl ABC2 ABCl ABC2

1.3000 0.0060 0.0062 0.0010 0.0013

1.3500 0.0069 0.0070 0.0018 0.0017

1.4000 0.0078 0.0073 0.0025 0.0016

1.4500 0.0085 0.0088 0.0022 0.0016

1.5000 0.0109 0.0143 0.0026 0.0054

1.5500 0.0176 0.0223 0.0048 0.0097

1.6000 0.0272 0.0278 0.0108 0.0111

1.6500 0.0365 0.0274 0.0157 0.0059

1.7000 0.0425 0.0289 0.0158 0.0077

1.7500 0.0458 0.0478 0.0087 0.0278

1.8000 0.0546 0.0750 0.0118 0.0476

1.8500 0.0776 0.0953 0.0280 0.0580

1.9000 0.1129 0.0999 0.0494 0.0511

1.9500 0.1537 0.0925 0.0658 0.0304

2.0000 0.1939 0.0970 0.0731 0.0302

2.0500 0.2287 0.1357 0.0702 0.0730

2.1000 0.2540 0.1970 0.0581 0.1220

2.1500 0.2659 0.2650 0.0613 0.1578

2.2000 0.2615 0.3311 0.0591 0.1747

2.2500 0.2417 0.3901 0.0480 0.1717

2.3000 0.2140 0.4380 0.0296 0.1603

2.3500 0.1957 0.4723 0.0343 0.1609

2.4000 0.2068 0.4939 0.0450 0.1426
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Table 5.2; Norms of reflected waves, h = .0625

L^-norm L°°-norm

t ABCl ABC2 ABCl ABC2

1.3000 0.0100 0.0101 0.0003 0.0003

1.3500 0.0100 0.0101 0.0003 0.0003

1.4000 0.0100 0.0100 0.0004 0.0003

1.4500 0.0099 0.0099 0.0004 0.0004

1.5000 0.0099 0.0098 0.0005 0.0004

1.5500 0.0106 0.0097 0.0009 0.0004

1.6000 0.0131 0.0098 0.0017 0.0005

1.6500 0.0187 0.0101 0.0029 0.0006

1.7000 0.0286 0.0104 0.0044 0.0007

1.7500 0;0437 0.0108 0.0063 0.0008

1.8000 0.0652 0.0127 0.0087 0.0024

1.8500 0.0938 0.0179 0.0114 0.0052

1.9000 0.1304 0.0260 0.0144 0.0074

1.9500 0.1765 0.0345 0.0173 0.0067

2.0000 0.2337 0.0440 0.0254 0.0106

2.0500 0.3016 0.0639 0.0398 0.0220

2.1000 0.3753 0.1079 0.0527 0.0504

2.1500 0.4433 0.1801 0.0607 0.0843

2.2000 0.4903 0.2765 0.0606 0.1163

2.2500 0.5018 0.3893 0.0582 0.1387

2.3000 0.4720 0.5084 0.0505 0.1458

2.3500 0.4130 0.6229 0.0338 0.1375

2.4000 0.3665 0.7236 0.0233 0.1344
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