
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2001

Development of a simulation backplane with dynamic Development of a simulation backplane with dynamic

configurability configurability

Lloyd Gabriel Clonts

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Clonts, Lloyd Gabriel, "Development of a simulation backplane with dynamic configurability. " PhD diss.,
University of Tennessee, 2001.
https://trace.tennessee.edu/utk_graddiss/8479

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Lloyd Gabriel Clonts entitled "Development of

a simulation backplane with dynamic configurability." I have examined the final electronic copy

of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Electrical

Engineering.

Donald W. Bouldin, Major Professor

We have read this dissertation and recommend its acceptance:

J. M. Rochelle, E. J. Kennedy, D. F. Newport, W. R. Hamel

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Lloyd G. Clonts entitled "Development

of a Simulation Backplane with Dynamic Configurability I have examined the final

copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctorate of Philosophy with a major in

Electrical Engineering.

Dr. Donald W. Bouldin, Major Professor

We have read this dissertation and recommend its acceptance:

/lit:

/2.rl.lL

Accepted for the Council:

Interim Vice Provost

and Dean of the Graduate School

Development of a Simulation Backplane with Dynamic Configurability

A Dissertation

Presented for the

Doctorate of Philosophy

Degree

The University of Tennessee, Knoxville

Lloyd G. Clonts

May 2001

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Donald W. Bouldin for his guidance,

patience, and reassurance during this dissertation. I would also like to thank the other

committee members. Dr. J.M. Rochelle, Dr. E. J. Kennedy, Dr. D.F. Newport, and Dr. W.R.

Hamel for their comments and encouragement. I would also express my deepest gratitude to

my group leader, W.L. Bryan, at ORNL for his guidance, patience, and help in limiting the

scope of the topic. Finally, I would like to thank my mother, Elaine Clonts, for her

encouragement and for putting-up with my endless complaining during the completion of

this degree, and to my grandparents, Donald and Barbara Ownby.

11

ABSTRACT

The subject of this thesis was the development a simulation backplane for coupling

an electrical simulator with a mechanical fmite-element simulator although the backplane is

applicable to any simulator with the proper architecture. To tradeoff performance and

accuracy during the analysis, a dynamic configuration option was included, where different

simulators and models in a simulator can be switched in and out during the analysis. This

option provided the designer with the flexibility to analyze all details of simulations from

different modeling representations to optimizing the simulation performance within the

same analysis. This backplane was able to transverse multiple coupling architectures to be a

configuration tool for simulating hybrid environments with dynamic changes. In this work,

the dynamic configurability procedure was outlined with other issues and procedures for

coupling multiple simulators.

To improve upon the basic coupling process, different interface configurations were

examined in different casualty-based formats. Specifically, conventional interface

combinations were compared under different sensitivity calculation criteria and methods to

find the interface or combination with the best iteration efficiency and convergence. The

iteration efficiency was typically determined by the sensitivity calculation options while the

convergence was determined by the interface combination between the simulators and by

the backplane initialization sequence. The optimum convergence for any conventional

interface combination was 93%. From these analyses, a dynamic-interface configuration

procedure was developed based on coupling conditions and variable causality to identify the

iii

interface configuration with the best chances of convergence. A tiered dynamic interface

procedure had convergence of 95% and equivalent iteration efficiency with the conventional

interfaces. Finally, a flow correction method using behavioral models was examined, where

a predictor and corrector process was implemented that allowed more versatility in the

coupling process and improved initialization compared to the other interfaces. The flow

correction process had a convergence, of 93% tested over behavioral models with different

accuracy constraints. A sensitivity calculation problem limited the success of the flow

correction procedure and caused the iteration inefficiency to be two times larger than the

other procedures.

IV

TABLE OF CONTENTS

Chapters Page

1.Introduction 1

1.1 A Generic Simulator and the Modeling Issues 2
1.1.1 Levels of Abstraction 4

1.1.2 Importance of Modeling 6
1.2 Independent Simulators 7
1.3 Coupled Simulators 8
1.4 Unified Simulator 10

1.5 Conclusions 11

1.5.1 Dissertation Goals 14

1.5.2 Dissertation Outline 16

2. Background 18
2.1 MEMS Simulation Environments 19

2.1.1 CAEMEMS 19

2.1.2 MEMCAD 20

2.1.3 SESES/SOLIDIS 21

2.1.4 Concurrent Electrical and Mechanical Analysis 21
2.1.5 Behavioral Models 22

2.2 System-level Partitioning ; ; 23
2.3 Interfacing and Iterating 26

2.3.1 Simulator Architectures 29

2.3.2 Solution Process 31

2.3.2.1 Newton-Raphson Method 31
2.3.2.2 Relaxation Methods 33

2.3.3 Synchronization 35
2.3.4 Convergence 36

2.4 Communications and Controls 38

2.5 Dynamic Modeling Process 39
2.5.1 State and Timing Control 41
2.5.2 Representation Control 42
2.5.3 Model Definitions 44

2.6 Summary 46

3. Causality-based Interfaces 47
3.1 Interface Definition 49

3.2 Causality Detection... 51
3.2.1 Absolute Power Criterion 52

3.2.2 Sensitivity Criterion 54

V

3.3 Direct Calculation Interface ; 55

3.3.1 Averaging Interpolation Interface 57
3.3.2 Causality Recognized 61

3.4 Conventional Interfaces 63

3.4.1 Flexible Interface 68

3.4.2 Norton and Thevinin Equivalents Interfaces 68
3.4.3 Voltage or Current Source Interfaces 68
3.4.4 Direct Emulation 69

3.4.5 Dynamic Interface Configuration 69
3.4.5.1 Basic Causality Modifications 70
3.4.5.2 New Causality State Diagram 71

3.5 Flow Correction Interface 72

3.5.1 Calculation Procedures 75

3.5.2 Convergence Analysis 78
3.5.2.1 Identity Matrix 80
3.5.2.2 Diagonal Scaling matrix 81
3.5.2.3 Full Definition 82

3.5.3 Algorithm Modifications 83
3.5.4 Modeling Issues 85

3.6 Summary 85

4. Backplane Implementation 87
4.1 Communications 88

4.2 Database Structure 90

4.3 Control Structure 91

4.3.1 Simulator Modes 92

4.3.1.1 Non-calculation, Non-iterative Modes 93
4.3.1.2 Non-iterative Modes 94

4.3.1.3 Iterative Modes 95

4.3.2 Simulator Status Control 97

4.3.3 Model or Simulator Switch Conditions 98

4.4 Calculation Control Stmcture 100

4.4.1 Matrix Building 100
4.4.2 Convergence Control 101
4.4.3 Sensitivity Delta Definitions 103
4.4.4 Sensitivity Scheduling and Mode Definitions 104
4.4.5 Enhancement Sensitivity Calculation Options 106

4.5 Simulator Selection 106

4.5.1 Electrical Simulator ! 108

4.5.2 Finite Element Simulator 109

4.6 Summary 110

VI

5.Result s Ill

5.1 Overview and Sensitivity Ill
5.2 Electrical-to-Electrical (E2E) Coupling 113

5.2.1 Direct Configurations 119
5.2.2 Conventional Configurations 120
5.2.3 Flow Correction Configuration 122
5.2.4 Dynamic Interface Configuration 124
5.2.5 Summary 125

5.3 Electrical-to-Mechanical (E2FE) Coupling 126
5.3.1 Conventional Configurations 130
5.3.2 Flow Correction Configuration 131
5.3.3 Dynamic Interface Configuration 132
5.3.4 Summary 132

5.4 Dynamic modeling via a simulation backplane 133
5.4.1 Accuracy Comparison 135
5.4.2 Performance Comparison 142

5.5 Summary 143

6. Conclusions 146

6.1 Interface conclusions for coupling simulators 146
6.2 Pros and Cons of Dynamic Operations in simulation 148
6.3 Future Research 150

REFERENCES 154

APPENDIXES 163

A. Backplane Control Syntax ; 165
A.l Integrating the backplane into a simulator 166
A.2 Parameter Defmitions 170

A.3 Object and Device Structures 171
A.4 Automatic Configuration i 172
A.5 Triggering Rules and Procedures 173

B. Interface Methodology 202
B.l Signal Domain 206
B.2 Electrical Domain 207

B.3 Mechanical Domain 207

B.4 Interface Initialization 208

C. Interface Variable Causality Detection 211
D. Coupling Results 216
E. Backplane Calculation Tutorial 284

E.l A Simple Example 284
E.2 EFFORT Output Example 292

vii

E.3 Final Comments 305

VITA 307

Vlll

LIST OF TABLES

Table 3-1. Resistance definition under d,ifferent conditions 60

Table 4-1. Keywords for the simulation backplane 88

Table 4-2. Backplane modes for a simulator 93

Table 4-3. Flags generated from the backplane to the simulator 98

Table 4-4. The different trigger conditions available in the backplane 99

Table 5-1. Definition of the scaling factor for different sensitivity scheduling options 113

Table 5-2. E2E statistics based on the sensitivity options over all interfaces 118

Table 5-3. Statistics for generic and specific E2E interfaces 120

Table 5-4. E2E flow correction process characteristics 123

Table 5-5. E2E results for dynamic interface configuration 124

Table 5-6. Statistics for generic and specific E2FE iiitbrfaces 130

Table 5-7. E2FE flow correction process characteristics.. 131

Table 5-8. E2FE results for dynamic interface configuration 132

Table 5-9. Error summary for the ACCURACY trigger tests , 136

Table 5-10. Performance results for the ACCURACY trigger tests 143

Table 5-11. Final interface convergence and iteration inefficiency comparison 144

Table A-1. Keywords for the simulation backplane 165

Table A-2. Backplane to simulator interface routines 167

Table A-3. Flags from the backplane to the simulator 169

Table A-4. Data keywords for the backplane 176

ix

Table A-5. RANGE attribute definitions used within SM-MODELDEF 180

Table A-6. SIM-MODELDEF parameter definitions 181

Table A-7. MODELDEF parameter defmitions 181

Table A-8. Control keywords for the backplane 182

Table A-9. GLOBPRM parameter definitions 184

Table A-10. OBJPRM parameter defmitions 186

Table A-11. SIMPRM parameter definitions 191

Table A-12. Command keywords for the backplane 196

Table A-13. TRIGDEF parameter definitions 198

Table A-14. An outline of the trigger conditions within the trigger definition
command 200

Table B-1. List of all interface and configurations recognized by the backplane 203

Table B-2. Interface and configuration compatibility index 204

Table B-3. Input/ Output characteristics of the backplane interface 204

Table B-4. Calculations definitions for the different configurations and interfaces 205

Table B-5. Sensitivity delta definitions for the different configurations and interfaces 206

Table B-6. Interface mapping between primitive elements and electric interfaces 207

Table C-1. Variables created for identifying an interface's input causality 212

Table D-1. Interface numbers to interface definition table 218

Table E-1. Simulator and backplane calculation variables 286

X

LIST OF FIGURES

Figure 1-1. Database and simulation overview for MEMS 2

Figure 1-2. The structure of a simulator 3

Figure 1-3. Independent Simulator Architecture 7

Figure 1-4. Coupled Simulator Architecture 9

Figure 1-5. Unified Simulator Architecture 10

Figure 1-6. Dynamic model switching based on simulation performance and accuracy 15

Figure 2-1. A complete design database 24

Figure 2-2. Three different mixed-mode architectures 29

Figure 2-3. Two extreme feedback problems 35

Figure 2-4. Comparison of convergence and non-convergence types 37

Figure 2-5. Closed and distributed architectures for a simulator 39

Figure 2-6. Region map of a device behavior in two variables 43

Figure 3-1. System-level simulation matrix representation 47

Figure 3-2. Concept and structures for the flexible interface element 50

Figure 3-3. State diagram for causality detection 52

Figure 3-4. Example circuit to test causality rationale 56

Figure 3-5. Iteration process for the GENERIC element 59

Figure 3-6. Simple feedback system to examine the iteration process 62

Figure 3-7. Different equivalent representations for a simulator or simulator node 63

Figure 3-8. New causality state diagram 71

xi

Figure 3-9. Flow correction interface 73

Figure 3-10. Nodal representation for the flow correction approach 76

Figure 4-1. Interface between the backplane and simulator 87

Figure 4-2. Overview of the backplane database structure 90

Figure 4-3. Simulator control overview flowchart 92

Figure 4-4. Major variable reference (time) exchange between a simulator and
backplane 97

Figure 5-1. Iteration inefficiency statistics for all E2E coupling examples 115

Figure 5-2. Convergence statistics for all E2E coupling examples 116

Figure 5-3. Average iterations per time point statistics for all E2E coupling examples 117

Figure 5-4. Iteration inefficiency statistics for all E2FE coupling examples 127

Figure 5-5. Convergence statistics for all E2FE coupling examples 128

Figure 5-6. Iterations per time point statistics for all E2FE coupling examples 129

Figure 5-7. Primary effort (voltage) responses at terminal T2 138

Figure 5-8. Primary flow (current) responses at terminal T2 138

Figure 5-9. Effort responses at terminal T2 of the triggered coupled analyses 139

Figure 5-10. Flow responses at terminal T2 of the triggered coupled analyses 139

Figure 5-11. Effort responses at terminal T2 of the triggered correction analyses..... 140

Figure 5-12. Flow responses at terminal T2 of the triggered correction analyses 140

Figure 5-13. Effort responses at terminal T2 of the break analyses 141

Figure 5-14. Flow responses at terminal T2 of the break analyses 141

Xll

Figure A-1. Backplane reference stepping diagram 169

Figure C-1. Input causality detection process 213

Figure D-1. SPICE primitive component definitions 220

Figure D-2. FESIM and SPICE equivalent component defmitions 221

Figure D-3. E2E digital coupling tests 222

Figure D-4. Iteration results for E2E_NF_INVINVI 223

Figure D-5. Iteration results for E2E_NF_INVCNF1 224

Figure D-6. Iteration results for E2E_NF_RLCDRV2 225

Figure D-7. Iteration results for E2E_LF_INVOSC2 226

Figure D-8. E2E I and 2 terminal linear coupling tests 227

Figure D-9. Iteration results for E2E_NF_LINEAR1 228

Figure D-IO. Iteration results for E2E_NF_LINEAR2 229

Figure D-II. Iteration results for E2E_NF_LINEAR2a 230

Figure D-I2. E2E 4-terminal linear example 231

Figure D-I3. Iteration results for E2E_NF_LINEAR4 232

Figure D-14. E2E nonlinear no-feedback coupling tests 233

Figure D-15. Iteration results for E2E_NF_RCPULLU1 234

Figure D-I6. Iteration results for E2E_NF_RCPULLUIA 235

Figure D-I7. Iteration results for E2EJ^_LINDRV4 236

Figure D-I 8. E2E 2-terminal nonlinear current mirror 237

Figure D-I9. Iteration results for E2E_NF_MIRDRV2 238

Xlll

Figure D-20. E2E 4-tenninal nonlinear current mirror 239

Figure D-21. Iteration results for E2E_NF_MIRDRV4 240

Figure D-22. E2E 2-terminal nonlinear driver 241

Figure D-23. Iteration results for E2E_NF_DRVVIR2 242

Figure D-24. E2E 4-terminal nonlinear driver 243

Figure D-25. Iteration results for E2E_NF_DRVVIR4 244

Figure D-26. E2E 2-terminal virtual driver example 245

Figure D-27. Iteration results for E2E_LF_DRVVIR2 246

Figure D-28. Iteration results for E2E_LF_DRVVIR2a 247

Figure D-29. Iteration results for E2E_HF_DRVVIR2 248

Figure D-30. Iteration results for E2E_HF_DRVVIR2a 249

Figure D-3I. E2E broken amplifier 2-terminal coupling tests 250

Figure D-32. Iteration results for E2E_LF_AMPHB2 251

Figure D-33. Iteration results for E2E_HF_AMPHB2 252

Figure D-34. E2E 2-terminal linear virtual driver example 253

Figure D-35. Iteration results for E2E_LF_LIN[EAR2 254

Figure D-36. Iteration results for E2E_HF_LINEAR2 255

Figure D-37. E2E 4-terminal virtual driver example 256

Figure D-38. Iteration results for E2E_LF_DRVVIR4 257

Figure D-39. Iteration results for E2E_HF_DRVVIR4 258

Figure D-40. E2E broken-amplifier 4-terminal tests 259

XIV

Figure D-41. Iteration results for E2E_LF_AMPHB4 260

Figure D-42. Iteration results for E2E_LF_AMPHB4a 261

Figure D-43. Iteration results for E2E_HF_AMPHB4 262

Figure D-44. Iteration results for E2E_HF_AMPHB4a 263

Figure D-45. E2E 4-terminal linear virtual driver example 264

Figure D-46. Iteration results for E2E_LF_LINEAR4 265

Figure D-47. Iteration results for E2E_HF_LINEAR4 266

Figure D-48. E2FE land 2-terminal coupling tests 267

Figure D-49. E2FE 4-terminal coupling tests 268

Figure D-50. Iteration results for E2FE_NF_RCPULLU1_PE 269

Figure D-51. Iteration results for E2FE_NF_RCPULLU1_PR1 270

Figure D-52. Iteration results for E2FE^NF_DRWIR2_PE 271

Figure D-53. Iteration results for E2FE_NF_DRWIR2_PR1 272

Figure D-54. Iteration results for E2FE_NF_DRVVIR4_PE 273

Figure D-5 5. Iteration results for E2FE_NF_DRWIR4_PRI 274

Figure D-56. Iteration results for E2FE_HF_AMPHB2_PE 275

Figure D-57. Iteration results for E2FE_HF_AMPHB2_PR1 276

Figure D-5 8. Iteration results for E2FE_HF_AMPHB4_PE 277

Figure D-59. Iteration results for E2FE_HF_AMPHB4_PR1 278

Figure D-60. Iteration results for E2FE_HF_DRWIR2_PE 279

Figure D-61. Iteration results for E2FE_HF_DRWIR2_PR1 280

XV

Figure D-62. Iteration results for E2FE_HF_DRVVIR4_PE 281

Figure D-63. Iteration results for E2FE_HF_DRVVIR4_PR1 282

Figure E-1. Simple coupling example 285

Figure E-2. High gain feedback problem 293

XVI

LIST OF ABBREVIATIONS

AIC

ASIC

ASIS

CAD

CAE

DOF

E2E

E2FE

FE

FEA

FEM

n

NA

MEMS

MNA ■

PVM

RFC

SB

Absolute Iteration Comparison

Application Specific Integrated Circuits

Application Specific Integrated Systems

Computer Aided Design

Computer Aided Engineering

Degrees of Freedom

Electrical to Electrical simulator

Electrical to Finite Element simulator

Finite Element

Finite Element Analysis

Finite Element Method

Iteration Inefficiency

Nodal Analysis

Micro-Electro-Mechanical Systems

Modified Nodal Analysis

Parallel Virtual Machine

Remote Procedure Call

Switch Back

xvii

Chapter 1. Introduction

Micro-Electro-Mechanical Systems (MEMS) are difficult to design and simulate

due to their multidisciplinary nature. MEMS integrate different engineering disciplines

where batch processing can reduce costs and enhance features [3,4]. The disciplines [1,2]

used in MEMS are process technology (micromachining), electronics, mechanics,

packaging, thermodynamics, etc, as shown in Figure 1-1. These different disciplines in

MEMS can be designed, modeled, and simulated independently, but few environments

consider all disciplines simultaneously as a single problem at the system-level using

different discipline simulators. Assuming each discipline has found the optimum iteration

algorithm(s) and modeling/abstraction method(s) for a particular type of design, then the

problem becomes how to integrate the different discipline simulators into an efficient

system-level concept.

To narrow the scope of this work, this rese^ch focused on integrating an electrical

analog-type simulator and a mechanical Finite Element (FE) simulator. An electrical

simulator is used for lumped-sum devices with well-defined behavior while a FE simulator

is used to analyze movable devices using a known structure and material models with

multiple degrees of freedom (DOF). The capabilities of the individual simulator determine

how the simulator can be used to simulate MEMS, since each simulator offers different

perfonnance, accuracy, and implementation tradeoffs. The first requirement is to define the

basic structure of a generic simulator and the modeling issues between the different

simulators. These issues are then used to examine the different simulator architectures for

integrating disciplines (not just MEMS). The different architectures are independent

1

Micropower Biology
CAD CAD

Process

CAD

MEMS
Database

Package
CAD

Process

Physical
Device

Simulation

Electrical

\ CAD

'5,

Mechanical
CAD

Optical Chemical
CAD CAD

Figure 1-1. Database and simulation overview for MEMS

simulators, coupled simulators, and a unified simulator.

1.1 A Generic Simulator and the Modeling Issues

The common causes for any design failure are a lack of accurate models and

insufficient simulation of the design over different conditions. These modeling issues

translate into a tradeoff between defining the simulation accuracy to meet the design

specifications [6,7] and performing a sufficient number of simulations to validate the design

under a reasonable set of different conditions. Unfortunately, simulation accuracy and

performance cannot typically be optimized simultaneously. To make tradeoffs between

accuracy and performance, the designer can use different levels of abstraction (design

representations or modeling techniques) or different solver algorithms. These two elements

represent the flmdamental aspects of a simulator, which are a solver(s), equation matrix, and

a modeler as shown in Figure 1-2.

(Simulation)
v. Database J

User-Defined
Stimuli

Model

Definitions
Modeler

Simulation/Equation
V Database >

Results

Solver

Figure 1-2. The structure of a simulator

The role of the solver is to calculate a solution from the equation matrix. Each

solver can use a variety of different iteration techniques to reach convergence because

certain solver algorithms or combinations of algorithms work better for specific problem

types and sizes. In most cases, the solver algorithms are hidden from the designer, but the

noticeable differences between simulators are improvements in performance or undesired

convergence failures. Primarily, solvers have a greater contribution on simulation

performance and solution convergence than on simulation accuracy, although the timestep

and iteration control in the solver can influence the accuracy of the analysis.

The modeler directly determines the devices that the simulator can recognize and

translates the devices definitions from the different syntax databases into the equation

matrix. The modeler dynamically defines the equation matrix values for a device based on

the device's physical parameters, governing behavioral equations, and the present solution.

Most simulators are built around predefined component definitions to simplify the modeling

of a design, so the interfaces are very direct and optimized for solving a particular problem.

With the optimized interface, the designer must only specify the essential physical

parameters into the predefined models to perform an analysis. Using the predefined

modeling definitions, a designer does not have to specify the equations governing a

component's behavior or verify the model.

Solvers are essential to the simulation process, but the modeling can have the largest

impact on both accuracy and performance. The modeling defines the level of abstraction

and the different calculation modes for an element in the simulation. Different calculation

modes can be accessed within the same simulator, but the level of abstraction often requires

a different type of simulator (domain or discipline). Therefore, another reason to integrate

simulators is to have full access to the abstraction capabilities of the different simulators and

solver algorithms in some cases.

1.1.1 Levels of Abstraction

The level of abstraction can range from a physical low-level to a functional or

conceptual high-level. The lower abstraction levels typically have greater accuracy and

slower performance by focusing on device and structural behavior. A low-level

representation requires the simulator to solve a large number of equations for each primitive

element. The higher abstraction levels have faster performance and typically less accuracy

by examining modules that describe behavior instead of the interaction between the

multiple elements comprising the device or module. A high-level representation minimizes

the number of equations to be solved or limits the number of possible solutions to a finite

number of states. The higher abstraction levels are generally used at the beginning of the

design cycle to make system-level tradeoffs and the lower abstraction levels are used at the

end of the design cycle for verification. Unfortunately, no simple rule exists for defining the

level of abstraction except to simulate as many different ways and over as many different

conditions as possible [91].

In a MEMS design, the coupling mechanisms between disciplines are the critical

points to be modeled accurately since the transduced energy is the sensor mechanism or

actuator control. Because the coupling mechanism is between the disciplines, the perception

is that the models must be at a low abstraction level to achieve high precision. For

examining a particular characteristic of the coupling mechanisms, low-level analyses are the

only true mechanisms to ensure that the nonlinear or undefined effects missing in higher-

level models do not accumulate td create significant errors. However, these detailed

analyses can be time consuming, which can require hours of simulation for microseconds of

real time. When longer simulation runs are required, the low-level analyses become

restrictive at the system-level and the designer is forced to use higher level models for

examining different conditions.

In many situations, the higher-level less-accurate models can provide all the

information needed at the system-level. However, a point can be reached where the higher-

level models become counter productive due to errors. One concern with higher-level

models is that these models can break down under untested conditions and lead to the

wrong response. Examples of extreme failure modes are structural breaks and contacts.

where the functionality of the device undergoes sigriificant changes. Besides the extreme

situations, improperly modeled device behavior can cause system instability especially if the

device's transfer characteristics are a strong function of the operating region. Errant

behavior in a model is very difficult to predict without a different modeling viewpoint.

Another reason to switch between different abstraction levels is to provide for verification

and error analysis.

1.1.2 Importance of Modeling

Most equation-based simulators can expand their modeling capabilities by modeling

a device in terms of differential equations [5,64-68], so only the mathematical behavior of a

component is required to create a model. With the correct models defined for a component,

any generic simulator can predict the physical behavior of MEMS from the mechanical

structure to the electronics and beyond. Under these considerations, the accuracy of the

models is almost independent of the simulator, where only superior models can create .

accurate simulations. If all modeling is assumed equal across all simulators, then the

modeling issues shift toward the dedicated solver algorithms for improving performance.

To further complicate the problems in simulating MEMS, designers must deal with

fabrication variations. With variations in the fabrication process, models cannot absolutely

be defined for any component or material since a tolerance is on all parameters. Process

variations do jeopardize the validity of requiring highly accurate models imless simulations

are done over multiple sets of model variations. Even with the different sets of models, the

designer still has accuracy constraints with uncertainties.

1.2 Independent Simulators

Most designers approach MEMS simulation using independent simulators as shown

in Figure 1-3. In this architecture, the designers can continue to use their native simulator(s)

and design enviromnents [15,66,95]. The independence between the design environments

and simulators allows the foreign elements to be modeled in any manner possible in a given

simulator. In this procedure, the behavior of each device must be characterized, modeled,

and verified against the measiored or simulated results from the other disciplines [15,95].

Consequently, this architecture puts significant emphasis on the accurate modeling of

components from a different discipline since the different databases can be completely

independent. A potential hazard is that design modifications between the different

environments are not necessarily updated in the models used in other databases. For this

reason, the modeling procedure can require a sequential iterative process to reach an

accurate and consistent model represeritatibn.

In this architecture, the problems are constructing models that are accurate over all

lechanica

Database

Mechanical
Simulator

Results
Database

Independent

Model or

Stimulus
Generator

Electncal

Database

Electrical
Simulator

Results
Database

Figure 1-3. Independent Simulator Architecture

operating regions of each device and determining how to analyze effectively the devices

using the system-level response when higher-accuracy models are required. Typically, the

devices' behavior is modeled in a lumped-sum or macromodel format. These new or

updated device models can be constructed in three different ways: automatically from the

design database [8,63,85], automatically from simulation results [15,67,95], or analytically

from the structure [64-66]. In the automated procedures, model generation does require

translation of the results from the different simulators, so the different simulators do become

loosely coupled via the data translator in the model generator. Although this iterative

process can be time consuming and resource intensive, the fmal model can be efficient and

accurate, at least over limited regions of operation.

1.3 Coupled Simulators

A single virtual simulator is implemented when different simulators are coupled as

shown in Figure 1-4. With a simulation backplane, the different simulators can operate in a

plug-and-simulate environment where distributed or parallel processing is a part of the

process. A simulation backplane integrates simulators together through a procedural

interface or inter-process protocol that links multiple simulators into a common

environment and provides data-transfer and synchronization mechanisms. Designers from

the different disciplines can simulate how their devices, components, or functions interact

directly with other engineering disciplines using their native tools. Each designer has the

benefit of examining the responses with different simulators. At the very least, the coupling

of the different simulators provides the mechanism for concurrent verification of the

Coupled

Simulaticn

Database

Electncal
Simulator

Mechamcal
Simulator

Concurrent
Controller.

Results
Database

Results
Database

Figure 1-4. Coupled Simulator Architecture

system-level design from different modeling perspectives.

This coupled architecture brings challenges in terms of communications protocols,

interfacing procedures, and design partitioning. Simulators do require an open interface with

sufficient controllability as a prerequisite for this process. In particular, the design

partitioning becomes a cmcial part of the process. Virtually any configuration of simulators

or design representations is possible with the proper partitioning algorithms. A designer can

select how the designs or devices are partitioned across the different simulators or

algorithms can search for optimal configuration of accuracy or performance based on

certain simulation criteria.

The importance of the partitioning process is to address the performance problems

of this architecture, especially the coupling of the Finite Element Analysis (FEA) with

electrical analysis. The FE simulators offer very detailed time-consuming analyses [33], but

repeated long simulations are certain to include redundant information from previous

analyses. After several simulations, the coupling of the FEA with the electrical simulator

becomes very monotonous and provides little or no additional insight into the behavior.

1.4 Unified Simulator

The unified simulator is a compact form of the coupled simulators with the same

types of problems. The difference between the unified simulator and coupled architectures

is that the simulation backplane becomes an algorithmic backplane, which internally links

the different simulator algorithms into a single program with a common output as shown in

Figure 1-5. For this implementation, a unified simulator would require the capabilities of

ALL the individual discipline-specific simulators, i.e. the simulator would have unlimited

capabilities: multiple levels of abstraction, multiple iteration methods, multiple analysis

formats, and modeling information on all possible disciplines. At present, the mathematical-

type simulators, like MATLAB [88], are the closest implementations to a unified simulator.

At a certain point, the difference between simulators becomes a translation problem.

Unified

Simulation
Database

Single
Sunulator

Results

Database

Figure 1-5. Unified Simulator Architecture

10

so a unified simulator can be emulated by integrating the modelers from the different

disciplines. Discipline-specific modelers would translate all the various physical or

conceptual representations into a common simulation or mathematical format. Once in a

common database, a generic simulator could analyze the complete system of equations

assuming that the size of the system does not exceed the simulator's capabilities. Because of

the potential size of the problem, a distributed or parallel-processing mode becomes

essential to the unified simulator architecture. This distributed homogeneous simulator does

eliminate most interfacing problems that can occur between heterogeneous simulators, and

load balancing becomes possible to optimize the parallel processing. The only missing

element would be the dedicated solver algorithms and analysis methods for a particular

problem.

1.5 Conclusions

The unified simulator architecture with parallel processing would be the optimum

solution. However, the discipline modelers are already implemented in the different design

and simulation environments, so the implementation choice is either the coupled or the

independent architectures [67]. For linking different simulators into a larger virtual system,

the coupled simulator architecture with the proper partitioning options is the most flexible

approach to make any tradeoffs. However, the independent simulator architecture allows

designers to continue using their existing design and simulation procedures at the cost of

sacrificing some accuracy while maintaining a high degree of performance. The decision

becomes one of performance and accuracy, where. accuracy depends on how well the

11

models characterize the behavior of the devices and materials regardless of the simulator.

For this reason, only the performance aspects of the two architectures can be analyzed.

For a performance comparison, the independent architecture is required to validate

or crosscheck the solution using the other discipline simulators to guarantee matching

between the solutions. Otherwise, the independent architecture has a distinct advantage in

performance, since the time consuming device-level analysis would be unnecessary. To

calculate the simulation time for each architecture (X), four variables are defined: maximum

system-level simulation time (2^), maximum average mechanical simulation time (7^),

number of iterations), and number of data points). An average value for a variable

y is defined by y. Using these defmitions, the total simulation times for the coupled

architecture () and for the independent architecture (7}) are

= MAX(Ts,TJ • =MAX{Ts,T^) -d^-n. Equation 1-1
y=i

= Ts ̂ dj + ^dj^ ̂{Ts-dc+Tf^-d,)- rij Equation 1-2
j=\ j=\

In the coupled architecture, the number of iterations is varying per time point and the

slowest simulator defines the simulation time because of parallel processing effects. For the

independent architecture, the total simulation time is a summation of the system-level and

the slowest device-level simulation time because of the sequential process. The ratio of the

two simulation times is

ZL =
Tc

Tf^ n dj + Tg • d(,

MAX(T^,Ts) j
w, ni'd, „ . ,
—— = a 37—- Equation 1-3

12

For this relationship, the assumption is made that the device-level simulation time is

typically slower than the system-level analysis, so the value can be lumped into the parallel

processing factor {a).

Prior to the construction of accuracy models in the independent architecture, the

only known relationship between the architectures is that dj <d(^. This condition occurs

because the device-level simulation process can eliminate piecewise linear (PWL)

conditions within the data sequence to reduce the number of points. By, eliminating data

points, the independent architecture can avoid the synchronization issues in the coupled

architecture. With the potential disproportionate relationship between simulation times, this

condition is assumed to eliminate the advantages due to parallel processing {a-dj -d^.),

so the ratio depends primarily on the number of iterations.

For the number of iterations, the expectation is the initial value of rij is equal to or

greater than the maximum , so <nj. The justification of this consideration is that the

initial model is a poor representation, which can cause divergence until the regions of

device operation are parameterized. However, the number of iterations in the independent

architecture will approach unity if the accuracy specifications are met over all simulation

conditions. Unfortunately, the number of iterations in the coupled approach remains fixed

because each simulation starts with no prior information. A point is reached where the

independent architecture using behavioral models becomes more efficient than the coupled

architecture.

13

1.5.1 Dissertation Goals

Based on the comparison of the two architectures, the coupled approach is more

efficient than the iterative process of the independent approach until behavioral models

reach an acceptable accuracy. Even with a model diat has acceptable accuracy, situations

can still occur when models break down because of conditions outside of the

characterization range. During these conditions, the only option is to switch to different

abstraction levels to guarantee the operation and accuracy of the device or module.

However, the cost of this modeling switch is a decrease in simulation performance, which is

unfortunately the main benchmark for simulation. In general, these coupling processes

typically have poor performance compared to behavioral models. Although the solutions

from the coupling process can have superior accuracy to behavioral models, optimized

behavioral models over a narrow range of operation can have precision equal to FEA.

To provide the maximum perfonn^ce and to always meet the tolerance parameters,

a hybrid approach is needed where the advantages of both architectures are used. This

hybrid approach involves a dynamically configurable simulation [72] where different

modeling representations are switched during the analysis to promote performance or

accuracy as shown in Figure 1-6. This illustration also shows how two different model

representations can have equivalent accuracy with different performance parameters.

Additional information about the dynamic modeling procedures is provided in section 2.5

and section 4.4.

For maximum flexibility, simulation is done through the simulation backplane, so

different simulators can be exchanged during the analysis. The goal of this research is to

14

Performance

Dynamic Switching • ►
Physical I I

icef I
Functional [I

Accuracy
Figure 1-6. Dynamic model switching based on simulation performance and accuracy

create a coupled architecture using a simulation backplane with dynamic

reconfiguration of the discipline-specific simulators for MEMS analysis. Specially, a

mechanical FE simulator and an electrical simulator are coupled, and representations for the

MEMS device model are dynamically switched between FE and behavioral models. For the

dynamic switching process, the assumption is that the altemate behavioral models exist

prior to the analysis although the coupling process could guide the domain mapping

between the disciplines as suggested in section 2.5. For the backplane development, the

major questions to be answered are:

• What are the general procedures for the simulation backplane?

• What specific operation(s) does the simulation backplane require to switch dynamically

between models representations in different simulators?

• What calculation and iteration process is needed to couple the simulators and to achieve

convergence?

• What type of interface(s) is needed to couple the simulators?

• Does an optimum interface exist in terms of convergence and iteration efficiency to

couple the simulators for the hybrid approach?

• Can the backplane implement an interfacing procedure to improve the coupling

efficiency between the simulators?

1.5.2 Dissertation Outline

This research is presented in the following manner. Chapter 2 presents a literature

review that describes the present MEMS specific design and simulation environments. The

different coupling methods for different simulators and backplane implementations are

examined. The basic requirements of a simulator are outlined for this coupling architecture

and a more comprehensive overview of the dynamic modeling option is provided. An

accuracy-based trigger is also examined with other considerations to aid in the behavioral

mapping of a device using the dynamic modeling procedure.

Chapter 3 examines different interfacing structures with the emphasis on the

configurations and modeling combinations to optimize the iteration efficiency and

convergence between simulators. This section also outlines the process flow of calculation

procedure from direct nodal relationship to the final error-minimization procedures with

input causality identification using bond graph techniques. Specifically, various methods of

using causality assignment are examined, and a flexible interface node is created to

investigate the effects of dynamic interface configuration on the iteration process. A flow

16

correction method, which overlaps FEA with a behavioral model in the electrical simulator,

is also examined for improving performance between simulators.

Chapter 4 describes the implementation process for backplane process. The

procedures for the different backplane modes are outlined and considerations for improving

performance are described. The database structure of the backplane and local simulator

interfaces is described. Additional specifications on the iteration process are defined.

Chapter 5 provides the results from the different coupling configurations and

examines the relative merits of the different coupled approaches over a variety of modeling

representations and design examples. The results show mechanical-to-electrical simulator

coupling and electrical-to-electrical simulator coupling to demonstrate the flexibility of the

backplane. The results for different coupling processes using the hybrid method are

presented with examples using no coupling, static coupling, and dynamic coupling on the

performance and relative accuracy of the analysis;

Chapter 6 presents the conclusions and future areas of research.

17

Chapter 2. Background

This literature review is presented in almost chronological order as a system-level

view is taken for simulating MEMS and for crystallizing the scope of this topic. The review

began by examining the different MEMS-specific environments for simulating MEMS,

where FEA is typically used to examine the characteristics of mechanical devices. Based on

these environments, coupling the different simulators is the most direct method of analyzing

the systeni although creating behavioral models is the more common and simple method of

analysis. This information is presented in section 2.1.

For the coupling process, partitioning the system-level design, calculating the

solution across multiple simulators, interfacing and communicating between simulators, are

the major issues. The partitioning process is the first and perhaps most important step in

coupling the different simulators to meet a designer's perceptions and goals of modeling all

aspects of a system from a specific simulator to a certain abstraction level. To use existing

CAD environments for these partitioning tasks, a system-level partitioning process is

required to create discipline specific databases to define this array of options. This

partitioning process is described in section 2.2 with the ramifications on the simulation

backplane.

After the system-level design is partitioned and post-processed, the analysis task

begins and the different discipline simulators are coupled to fmd a solution. The focus of

most research in this area is defming the interface and iteration method to optimize

performance. The basic simulator iteration and interface process is examined in section 2.3.

Finally, each simulator requires certain functions and capabilities to be used in the coupling

18

process. The basic simulator requirements and an overview of the backplane control are
^ I

described in section 2.4. Finally, the dynamic modeling process is presented in section 2.5.

2.1 MEMS Simulation Environments

The main design and simulation environments specifically for MEMS are

CAEMEMS [47-49], MEMCAD [51-59], and SESES [60-62]. These different MEMS

design-and-simulation environments have focused primarily on the mechanical aspects of

MEMS using FEA and those electrical properties influencing the mechanical behavior.

With FEA, designers can examine the behavior of practically any structure given the

material and interaction characteristics of the components. However, these systems

concentrate primarily on device-level and not system-level analysis.

To overcome this problem. Application Specific Integrated Systems (ASIS) have

been proposed for MEMS [2], which like Application Specific Integrated Circuits (ASICs)

would create separate tools to integrate the different disciplines. At this point, the typical

approaches are coupling simulators and creating parameterized behavioral models. Several

authors have already coupled an electrical simulator to a mechanical simulator for MEMS,

and the results demonstrate the high accuracy and slow simulation performance relative to

behavioral models. This section examines the different MEMS-specific simulation

environments, different simulator coupling approaches, and MEMS behavioral modeling.

2.1.1 CAEMEMS

Computer-Aided Engineering of Micro-Electro-Mechanical Systems (CAEMEMS)

is a CAE fi-amework for MEMS, which functions as a MEMS-specific designer's

19

workbench [47]. This MEMS framework provides a set of databases, libraries, graphical

user interfaces (GUI), plotting functions, solid modelers, and utilities for the integration of

MEMS-related CAD and CAE programs [48,49]. Within this framework, a user can design

and optimize specific MEMS applications, and the tools provide guidance to the user. One

module is the CAEMEMS-D [48] for pressure sensor design and simulation. Another

module is ASEP [49] for simulation of the etching of <10p>-oriented silicon using KOH.

ANSYS is the finite element simulator used in CAEMEMS.

2.1.2 MEMCAD

MEMCAD system is an environment that creates the architecture to address the

system level problems and the specific tool-development level, that can solve the entire

coupled set of CAD problems [50]. MEMCAD consists of accurate 3-D solid model

generation from CIF mask layers and process descriptions and development of material

model databases [51,52,53,58]. In MEMCAD, the MEMS design process requires designers

to create a 2-dimensional layout in CIF mask format. Then, the CIF file is translated to

IGES format, and a solid modeler generates the 3-D shapes using process descriptions as

input into a mechanical simulator [52,58]. The 3-D solid model is simulated using

ABAQUS for the finite element analysis and visualization using PATRAN or I-DEAS.

With a solid representation of the mechanical structures, MEMCAD can find the

deformation of the mechanical structure due to electrostatics [55,56,59]. The electrostatic

simulator called COSOLVE-EM [59] is used to find charge densities across structures using

ABAQUS and FASTCAP. The charge distribution creates electrical pressure loads for the

20

mechanical simulator to determine the deformations, hysteresis effects, or contact problems

for a structure [57]. As the mechanical structure is deformed, the charge density across a

structure is redistributed to change the electrostatic force contributions. An iterative process

is applied between the deformations and charge densities until the device reaches self-

consistent values.

2.1.3 SESES/SOLDDIS

Unlike the CAEMEMS and MEMCAD environments, SESES is a closed system

and not a collection of interfaced programs [60]. The SESES environment has concentrated

on developing a unified software concept, which provides flexible coupling of electrical,

thermal, and mechanical deformation phenomena in a imiform and consistent environment

[60]. In addition, the general coupling effects between physical properties of MEMS are

outlined to illustrate how the different coupling effects can influence the iteration methods

for solution of the system equations. SOLIDIS is a package of programs with common

database structures and algorithms that uses tailored fmite-element analysis to solve self-

consistent thermo-electro-mechanical problems [61,62]. This system can create a SPICE

netlist representing the behavior of the mechanical device for simulation at the system-level

[63].

2.1.4 Concurrent Electrical and Mechanical Analysis

Several articles describing concurrent analysis for MEMS are [32-36]. In [32], an

electrical simulator ELDO is coupled to the mechanical simulator ANSYS for a

piezoelement simulation. An iterative solution is found with ANSYS controlling the

21

process. Different interface configurations based on relaxation methods are examined. In

[36], the electrical simulator PSPICE is coupled to ANSYS for piezoelectric analysis of an

oscillator. An external transfer program creates load vectors for ANSYS from the PSPICE

analysis. In [35], an electrical VHDL simulator is linked to the mechanical simulator

PROUESSE using Remote Procedure Calls (RPC). Because of the simulator types, this

particular problem uses logical states instead of current and voltage.

The remaining articles define a simulation backplane to link the simulators. In [33],

ANSYS and the electrical simulator SABER are integrated using Parallel Virtual Machine

(PVM) and gradient methods to solve the interface problem. However, an iterative process

is not used to generate a consistent result like [32]. The test cases are an acceleration sensor

and thermal analysis of an electrical circuit. The lack of performance is defined as a major

negative of the coupling process although the backplane significantly improves the

performance compared to file-based transfer^ In [34], the mechanical simulators CAPA and

ANSYS are coupled to the electrical simulator KOSIM using a relaxation-based method

with Newton's method. PVM is also used as the communication mechanism.

2.1.5 Behavioral Models

For system issues, behavioral models in an electrical simulator provide a designer

with a faster and simple approach to designing and simulating MEMS [5,64-67,85].

Electrical devices have also been simulated in a EE simulator [68]. In most situations, the

designers develop the mathematical behavior of a device based on analytical simplifications

and assumptions [5,64-65,85], where the behavior can be verified using PEA. The most

22

practical approach is to apply stimuli to the FEA and then create behavioral models for the

electrical simulators [67].

Reduced-order models for the Finite Element Method (FEM) [14] and lumped

model equivalents [8,9,85] of the fabricated device responses can produce the same

accuracy as the FEA at least in certain operational regions. The concem in this work is that

device models become invalid under certain conditions since higher-level models are by

definition less accurate than lower-level physical representations. In most cases, the

problem is not the behavioral model per se, but errors resulting from system-level analysis

using faulty stimuli definitions outside the model limits. This situation becomes possible as

different discipline engineers become involved in a system when the limits of the design can

be reached or exceeded. Minor inaccuracies in the behavioral model do become irrelevant

beyond a certain point once the designer has tested the major conditions, but failure modes

are still possible in the unverified situations.

2.2 System-level Partitioning

Most partitioning processes break a system into small modules starting with a

system-level representation or top-level design as shown in Figure 2-l(a). For each design,

the partitioning process can potentially choose from a variety of behavioral models or

structural representations for each instance of a design as shown in Figure 2-1(b). Virtually

any configuration of simulators and modeling options is possible with a flexible-partitioning

program [17,21] and the proper design and model viewpoints [69]. The degree of

partitioning across multiple simulation databases depends on the capabilities of each

23

a. Design tree

Instance X:
sJDesign A/

Stimuli for
- Instance X;

Design A

Behavioral Structure

Structural
intercoimections,
Devices, Spatial
relationships, etc

stance 1 to n^,„0[istance 1 tol^
Design Design,

b. Instance representation

Figure 2-1. A complete design database

simulator and the partitioning options.

The first task for all partitioning algorithms is to flatten the design hierarchy by

expanding all instances of a design until the desired modeling representation or the

primitive elements are reached. Starting with the top level of the design, flattening

algorithms take the present instance names at each hierarchical level and use them to name

all sub-instances, nodes, devices, etc. From the flattened database, the partitioning process

generates a unique simulation database for each simulator in the analysis. The simulation

databases contain the interface configurations between the simulators, the communication

mechanisms, and the object naming conventions to link simulators across the backplane.

Most design environments and CAD frameworks provide partitioning and

translation mechanisms to create a simulation database for a specific simulator(s) from a

design database(s) [70,71]. In this research, the most notable partitioning problem is the

lack of a common design database prior to generation of a physical database for the

fabrication process. This work assumes that multiple design environments are used, so no

single database will contain all design and model representations. Without a common or

central database, an automated or interactive partitioning process is not possible with all the

different modeling options simultaneously. Different simulators can still be coupled using a

common naming reference through the backplane, but only single instances of a different

discipline design can be simulated without manual creation of a design database for each

instance. One environment is expected to contain sufficient information to construct a

system-level database. With a system-level database, the major problems in the partitioning

process are the discipline refinement process and an instance's discipline-specific stimulus.

The discipline refinement process generates the simulator configurations and

performs all translation fionctions between the different databases. Examples of the

refinement process are the meshing operations for the FBA .and separation of analog and

digital circuitry for mixed-mode simulation. Two implementations for the refmement

process are a single partitioning program for all disciplines and different post-partitioning

processes from within the different design environments. In both cases, a system-level

partitioning process is still required to recognize and to separate the different disciplines

from a central database. However, the single partitioning program requires enormous

flexibility and scope to implement any known partitioning algorithm. The multiple

discipline partitioning option follows the basic premise of the research that the discipline-

specific tasks are best performed by the native tools. The partitioning process also defines

the environments doing the post-processing on the different design or simulation databases

[70]. Consequently, each instance can be post-processed differently based on performance

25

or accuracy constraints. The only requirement in the discipline-specific processes is that all

post-processing operations must preserve the links to the simulation backplane.

For just coupling the different simulators, access to the stimuli in a discipline is not

a requirement. However, the hybrid approach requires the stimuli to be synchronized

between the different simulators, or the solutions are not correlated as all distributed

variables are lumped into a single composite representation to prevent complex interactions.

The stimuli are also required if a behavioral model is generated using data from another

simulator.

2.3 Interfacing and Iterating

For defining the inteifacing and iteration process, this research examined mixed-

mode simulation in electrical simulators [16-22,41-45,47], mixed device and circuit

simulators [28-31], mixed level simulators [44,46], parallel processing [23-26,80-84], and

simulator algorithms [10-13,37,40]. In mixed-mode simulation, analog and digital types of

electrical analyses are combined. Analog simulation uses the fundamental equations

(Kirchoffs Laws) of circuit analysis to solve voltage and current relationships between

devices. Digital simulation abstracts the circuit analysis of the voltage or current levels into

discrete logical states. Mixed-mode electrical simulation is a translation process between

two different abstraction domains, which did not directly apply to this research. However,

the architectures of the mixed-mode simulators and synchronization of the different

simulators are relevant as described in section 2.3.1 and section 2.3.3.

26

Mixed circuit-device simulation implements the same basic process that is required

in this research. Most iteration schemes between simulators with nonlinear relationships use

some variation of the Newton Raphson method to linearize the given variables at the

present solution [31,46]. The focus of most coupling schemes is the interface between the

solver algorithms to maximize performance [29,30]. In [29], the full, two-level, and

modified two-level Newton methods are compared. The full Newton method solves all

unknown variables simultaneously as a single problem. The two-level method does a

standard linearization at the device and circuit level, where the device is linearized at one

level and the circuits are linearized at a second level using the device representation. The

modified two-level method applies a linear predictor step at the device-level in the standard

two-level method to improve the runtime performance and to maintain die same iteration

efficiency. A Norton equivalent circuit is used at the circuit level for the device, and voltage

sources are applied at the device-level. In [30], different node tearing algorithms using a full

Newton method are examined by adding different resistance boundary conditions to the

interface. The addition of series resistance to the bordered block diagonal matrix did

improve the runtime performance and iteration efficiency of the coupling process in three

dimensions compared to an interface without the resistance. The mixed-level simulators

[44,46] have similar characteristics to the mixed device-circuit simulator, except that state

variable transfer functions in S and Z domains are solved with the circuit analysis.

The basic simulation methods are typically variations and combinations of different

iteration techniques to improve performance without sacrificing accuracy. To enhance

performance, the common implementation practices are bypassing unnecessary model

27

evaluations [10,22,74] and partitioning the matrix into loosely coupled blocks [10,11].

Model evaluations are done during solution checks and the sensitivity calculations within

the blocks. With the proper partitioning of the system into blocks, simulators can suspend

internal iteration processing once all shared and internal variables have converged for a

block. The coupling process becomes event-driven or selectively traced [10,11], so blocks

remain idle whenever possible.

In the iteration process for this research, the system-level partitioning process has

already divided the complete system into disciplines. However, the blocks based on

discipline partitioning are not necessarily efficient fi-om a simulation standpoint. Iteration

methods can require certain matrix conditions to guarantee convergence, so matrix re

assembling or matrix overlapping [27] may be required to provide the necessary conditions

for convergence. Another technique to improve performance is to limit the number of

iterations without guaranteeing full convergence (e.g. timing simulation). The solution

process is described in section 2.3.2 and the convergence requirements for an interface are

outlined in section 2.3.4.

Parallel processing has the goal of fully utilizing all computer resources by load

balancing and eliminating sequential steps from a simulation process [23-26,80-84].

Although the iteration process for coupling simulators has qualities of parallelism, load

balancing cannot be achieved intentionally. Any improvement in performance due to

parallel processing is just a by-product of the discipline partitioning process. Furthermore,

mechanical PEA is computationally intensive compared to electrical analysis, so the process

28

is typically dominated by the mechanical simulation time unless the mechanical simulator

has a parallel processing option.

2.3.1 Simulator Architectures

The mixed-mode simulators provided the most information about the simulator

architectures, which are very distinctly defmed because of the mapping process between

continuous and discrete states. The three architectures for coupling mixed-mode simulators

are the core, glue, and unified approaches [16,21,40]. These architectures are the bases for

the independent, coupled, and unified architectures in Chapter 1. Figure 2-2 illustrates these

different simulation architectures for mixed-mode simulation.

In the core architecture, the analog or digital component is given capabilities in

another simulation domain [16,21,40]. One single simulator does all information conversion

Digital
Design

Analog
Simulator

(Result^

Glue

1 Simulation Backplane

t • • t
Analog

Simulator

Digital
Simulator

Core

or

Results, Results,

Analog
Design

Digital
Simulator

Results,

Unified

Algorithmic Baclqilane

Algorithm-
: #1

Algorithm
#n

£17
Results

Figure 2-2. Three different mixed-mode architectures

29

between the two domains by simulating a component at the level of the given simulator. In

the analog simulator, digital cells are modeled with analog representations while analog

cell's responses are emulated with digital representations in the digital simulator.

Unified simulators make no distinctions between analog and digital circuits due to

an intemal algorithmic backplane, which provides policies that govern time

synchronization, signal mapping, etc. [17-22,40,44]. A single, integrated environment has

algorithms to solve any specific level of abstraction. This type of simulator is very flexible,

and new algorithms can be compiled into the backplane as needed. Most simulator

development is moving towards algorithmic backplane architectures because of their

flexibility and expandability. This flexibility allows the unified simulators to be used as glue

simulators, so a unified simulator should be the first type of simulator considered in any

simulation process.

The glue approach has septate simulators communicating and working together

using a procedural interface or inter-process protocol [41-43,45]. This protocol links

multiple simulators into a common environment and provides data-transfer and

synchronization mechanisms, which collectively are called a simulation backplane. A

simulation backplane is a distributed version of the algorithmic backplane. Potentially, any

design can be solved regardless of the size or complexity since new simulators with

compatible interface protocols can be added to the backplane as needed. Multiple simulators

can be coupled using a simulation baclqplane for distributed and parallel processing with the

proper partitioning process.

30

2.3.2 Solution Process

All solution processes are required to solve a system of M equations where

functions of a vector (x e) at a given time are equal to zero, or

fj{x,i)=0 foralljeM Equation2-1

Because of the pre-partitioning operations, these equations are spread across multiple

simulators, but the basic solution process does not change. System-level iteration still

performs standard nonlinear solver procedures, except model evaluations become solution

sequences of a simulator. The two solver techniques considered in this research for the

coupling process are the Newton-Raphson and relaxation methods. The Newton method is

most commonly used in the interfacing process because of tightly coupled relationships

between simulators.

2.3.2.1 Newton-Raphson Method

For the simulation of the nonlinear system of equations, the Newton-Raphson

(Newton) method or linearization process is typically applied where

"a/'"'JC'^' f Equation 2= x' -
dx'

-2

ay;
dx, dxjf

3x_ aA
dx, dXff

Equation 2-3

The sensitivity matrix
dx

is also called gradient matrix or Jacobi matrix. For an

31

unknown N terminal device, this procedure requires the simulator to perform' at least N

model evaluations to generate the gradients depending upon the differential formula. The

gradient value is calculated as

= for all ke N Equation2-4
3jc^. AXj

This linearization procedure applies a variable delta to a device's terminal with all other

terminals held constant. Then, the functional offsets of the other terminals are measured and

used to define the sensitivity matrix. Other differential formulas are also possibilities (see

[94, pp. 149-155]), but additional evaluation sequences are required if a more complex

formula is used. All variables with no direct relationship to a device have a sensitivity of

zero. Most systems of equations are spairse with blocks of tightly coupled relationships.

Because of the computational intensity of this process, the full gradient calculations

are done veiy selectively. In many cases, a modified Newton method is used where

"a/"'"'/' Equation 2= x' - -5
dx"

The full gradient calculation is performed only once, since one calculation can provide a

reasonable approximation [10,78] that is mathematically accurate enough to be iteration

efficient. The tradeoff is between model evaluations for the sensitivity calculations or for

fmding new solutions. For example, N+1 model simulation sequences can test N+1 new

solutions or test a single solution with the calculation of a new sensitivity matrix. The

choice is to do model evaluations for new solutions except during initialization. At

initialization, the simulators do not have a valid sensitivity matrix definition because of the

32

unknown solution vector. Several iterations can be required before the solutions reach

sufficiently close conditions [78,79] to calculate a valid sensitivity matrix.

The Newton method is the main iteration technique in the mixed device-circuit

simulators because of the tight coupling between simulators. As outlined in [31], the

Newton matrix for the mixed device-circuit simulator is defined by

Ro 0
0 R,

0 0

Sq 5,

0 To

0 r,

Rmm m

Sci

dx2

1

nn

5x

dz .-Fn.

R =

T =

dF
m

m

dz

S„ =
dF„

Y =

dx^

dz

f" Equation 2-6

The variable x represents the internal device variables and terminal currents, the variable z

represents the voltage and currents between modules, and the variable F represents the time

discretization of the function that should be zero [31]. Within this research, access to the

internal variables of the device, or module is possible, but only the shared power data (z) for

a terminal is exchanged between simulators with the relevant sensitivity information for the

variables. The intemal variables are eliminated from the system-level representation. To

maximize performance, the individual sensitivity matrixes are calculated in parallel by each

simulator with respect to the shared nodes. These sensitivity matrixes are broadcast or

transferred [28] to all simulators for defining the system-level interface matrix. This

calculation process is outlined in section 3.4 for this simulation backplane.

2.3.2.2 Relaxation Methods

A general overview of different relaxation methods can be found in [10,11,78].

Most relaxation techniques use some variation of Newton's method as a linearization step

33

to solve the nonlinear equations. The relaxation-based algorithms are well suited for parallel

processing [86], since solutions can be' done per variable and a complete sensitivity matrbc

does not have to be calculated , [10]. However, relaxation methods are guaranteed to

converge only if the system-level matrix has a diagonal dominance. To define diagonal

dominance, the system-level in a linear format is defined by

Ax = b x,be'^^' Equation 2-7

For diagonal dominance, the absolute value of the diagonal elements of the system matrix

are larger than the summation of the absolute value of non-diagonal elements, or

M

\^j.j\ - XMmI j Equation 2-8

For the system-level partitioning in this research, diagonal dominance is a condition that

cannot be assumed.

As an example, two configurations for a sensor application are shown in Figure 2-

3. The worst case situation is Figure 2-3 (a), where the external device is defining the

feedback path for the amplifier. Any variations on Va around Vmid can make Vqut

oscillate between the output limits of the power supplies. With large gain, a solution may

never be found especially if the error tolerances for the variables are too large. In this

situation, the simulator with the amplifier requires the completion of the feedback path.

Figure 2-3(b) is a more stable example, since the feedback sets the virtual node at Va to

be Vmid- However, the wrong interface model (a voltage source) at the virtual node can

still cause divergence problems. These situations show that poor partitioning of the

system-level across multiple simulators and poor interface definitions can cause problems

34

Vm
V At)

Vv_.mill

Linear Control
H(s)

V
V At

Vv_.xmd

(a)
Figure 2-3. Two extreme feedback problems

in a relaxation process. One method to overcome the poor partitioning problem is the use

of overlapping matrixes [27], which is technique used in waveform relaxation [12].

2.3.3 Synchronization

The two most common synchronization methods for simulation are the lockstep and

rollback methods [40-42,73-75]. The rollback scheme takes an optimistic approach to time

step control, where all simulators progress at their individual rates. When a variable conflict

occurs between simulators, each involved simulator rollbacks all timing information to the

conflicting time point, and then re-starts simulation using the new information. Because-of

this characteristic, the rollback scheme is a memory intense process since sufficient

information must be stored to retum to the time point.

The lockstep method is a pessimistic approach that sets the global time-step as the

minimum timestep of any simulator. By sacrificing simulation performance, this method is

very efficient in terms of memory utilization, since only the present time delta of the

simulator is changed. Due to the complexity of the different simulators involved, the

35

lockstep method is more appropriate for this research. As a requirement, each simulator

must have a one-step rollback where the backplane controls the simulator's present

timestep.

A variety of hybrid methods is also possible as outlined in [73-75], but these

methods can cause locking problems. In simulators that partition a matrix into smaller

blocks, a typical synchronization method is to allow the different blocks to proceed at

different rates. The potential problem with these methods is that different time deltas can be

too large and the same data points are iterated to calculate multiple intermediate solutions.

The iteration process can invalidate previous data points [20], but these hybrid

synchronization methods can improve the simulation performance of the analysis if

piecewise linear (PWL) conditions exist.

2.3.4 Convergence

The three main convergence parameters are a deadlock limit, an absolute tolerance,

and a relative tolerance. For variable convergence, the convergence criterion is based on an

absolute tolerance parameter (6a) and a relative tolerance parameter (6r). An absolute

tolerance requires that the absolute difference between the present solution (Xp) and the

next or expected solution (Xn) values must be less than absolute parameter, or

< 6^ Equation 2-9

A relative tolerance requires that the absolute difference between the values is less than a

parameter times the maximum variable plus an absolute tolerance [29], or

\x,rXp\ < 5^ • MAX{Xj„Xp)+ 6^^ Equation 2-10

36

The absolute relative tolerance (6ar«5a) is used during the relative comparison to ensure

that a comparison is not operating on integration noise or a signal too close to zero. The

relative tolerance procedures are the most flexible.

In a calculation process, a solution can iterate towards convergence, non-

convergence, or divergence as shown in Figure 2-4. Divergence is the solution sequence

with an oscillating geometric growth while the non-convergence applies to a solution that

never reaches a stable point nor diverges. Most non-convergence problems are symptomatic

of feedback loops, model discontinuities, tolerance problems, poor sensitivity calculations,

or poor calculation methods. Instead of detecting non-convergence, most simulators

implement a deadlock limit. A deadlock or iteration limit specifies the maximum number of

solution iterations (n^) that can occur on a single data point before the simulator is halted.

Currcnt(0

Iietslioa

■>

VoHageOO

Cuapl(I) CuiTcnt(l)

e®o®o®e«o®o«

ItcraaoTt^ 0.0

Cairent(J)

llcnlioa

Voltage(V) Voltagc(V)

t
Voltage(V)

0.0

...SB., .Sb..^
x»" ®

L

O
OSK

eax
oax

Itexstion

M

oax
eai

o«x
OBX

'

a. Convergence. b. EVEN/ODD type c. Multicycle type d. Divergence,
non-convergence. non-convergence.

Figure 2-4. Comparison of convergence and non-convergence tjpes

37

All simulators have a deadlock limit to prevent the endless iteration for a single solution.

2.4 Communications and Controls

The communication mechanisms are secondary issues compared to the simulator

requirements, intemal database structures, and control mechanisms, since the

communications mechanisms are an implementation issue. In most cases, performance

degradations due to the backplane operation are assumed insignificant compared to the

iteration time of a simulator. With a FE simulator in the analysis, this performance

condition can easily be verified, but the coupling process is prohibitive for "small"

problems. The goal for a backplane is flexibility and expandability to allow data exchange

between any simulators through common procedures [39]. Using a simulation backplane,

the simulators become computation engines controlled by the backplane interface. The main

operations of the simulation interface are accessing intemal variables, modifying intemal

matrix values, translating information between the baclqjlane and the simulator, and

executing simulator operations consistently with the other simulators.

All simulators in this coupled architecture require an iteration capability that can be

controlled by an extemal program or intemal interface code. Simulators with an open-

architecture can make the implementation simpler than simulators that need modification at

a stmctural level to incorporate the backplane interface. The basic difference between an

open and closed architecture is shown in Figure 2-5, where the shaded areas are common

between the architectures. With an open interface, the translation and command operations

can be incorporated directly into the simulator. In the worst case situation, the iteration

38

Initialization

Output
Data

Make
Convergence
Decision

Do
analysis

; Evaluate
iE^esults

a. Closed Architecture.

(STA^)->Initialization

EXIT

Output
Local Data

Negotate
Global

Convergance
Decision(s)

Load Global
Data

Output
Global Data

Mj^e
Local

Convergance
Decision

Do
analysis

Evaluate,
Results

b. Open Architecture.

Figure 2-5. Closed and distributed architectures for a simulator

process can be implemented by a middle-ware program as a sequence that starts and stops a

simulator by saving and loading previous solutions with new data parameters. Most control

functions depend upon the type of system-level Architecture in terms of a central controller

or a distributed controller [38]. A central controller defines what each simulator does while

distributed controllers have each simulator perform the same procedures. This process is

outlined in Chapter 4 for this simulation backplane.

2.5 Dynamic Modeling Process

The dynamic modeling process is described in [72], and a brief summary of this

work for mbced-mode simulation is presented here for the simulator coupling process. In

dynamic simulation, the four major parts are the representation control, model definitions,

state control, and timing control. Representation control defines the situations and

39

conditions where the different models and the interface configurations are switched

(connected or disconnected) into the analysis based on trigger conditions (automatic mode),

static selection (constant mode), or interactive selection. The static control mode does the

standard simulator coupling process and the interactive mode waits for the designer's

request to toggle between models. In the automatic mode, a trigger can be any event or

condition in the analysis. The representation control using simulator coupling is examined

in section 2.5.2 where a region-based modeling approach using an accuracy trigger is

proposed.

The various model representations are typically part of the simulation database prior

to the analysis as in [72], but the model generation is possible during the analysis. Models

only need to be valid prior to the switching process. Considerations for different model

definitions are examined in section 2.5.3 in terms of the region-based modeling. The timing

control involves the rollback of the simulators and the recovery operation from a simulation

failure while state control guarantees that both models have equivalent states at the

transition point. In this work, these two control mechanisms are grouped together where

timing control is used to implement the state control as described in section 2.5.1. The

general sequence for the dynamic modeling is the following procedure after the detection of

a switching condition:

1. Stop the analysis after the present iteration.

2. Save the state information of the present model(s) and shutdown or tumoff the

simulator(s) with the present model.

40

3.Start the new simulator(s) with Ae new modeling defmition(s) at N steps prior to

present time. Apply the previous N solutions and stimuli directly to the new models

and load any state information for the old model if relevant.

4.Link the new simulator(s) into the backplane using the appropriate name, variable,

and objects references.

5.Restart the analysis.

Unlike [72], this procedure does not rollback the analysis of the simulators since only a

single step rollback is permitted. Consequently, the models must be reliable and relatively

consistent until the transition point occurs.

2.5.1 State and Timing Control

Without a doubt, state control is the most critical consideration for an accurate

transition between the models because the intemal state information of the old model does

not necessarily correlate to a new model's states. In the simplest case, all models can be

completely defined by the present terminal variables and the applied stimuli in a lumped-

sum format. However, devices like an oscillator or devices with hysteresis eflFects can be

multi-valued, so finding the equivalent state can be difficult based only on the present

solution of the device. To ensure state control, all models can share certain intemal

variables to prevent state conflicts as part of the modeling method. Adding required states to

the procedure will limit the number of modeling methods that can be used [90].

In this process, the timing control becomes responsible for the state control by

seeking the closest equivalent state from the available information. The state equivalency

41

and model compatibility are not rigorously checked to permit switches between any model

representations, so the model transitions can introduce errors into the analysis. With a

sufficient number of time steps in Step 3, the timing control is assumed to synchronize the

dynamic response between the new and old models. The problem becomes determining the

number of steps to reach synchronization or providing mechanisms to ensure state control.

2.5.2 Representation Control

Like [72], the trigger can be any event, and for this research, a certain accuracy of

the behavioral model is considered as a trigger. The model representation changes only

when the simplified behavioral model matches the response from the more accurate model

within a specified error tolerance. Additional constraints on this condition are that the

trigger conditions must persist for a certain sequential number of iterations and analysis

times. Of course, the simulation time of this other model in the other simulator has to be

less than the simulation time of the other simiilatbrs to improve performance. Otherwise,

there is no reason to change representations.

To recognize the trigger, the behavioral model simulators can be in concurrent

operation with the most accurate model, but the information is not included in the iteration
\

process. A central controller is required to make the dynamic modeling decisions. Once the

behavioral model simulator has met the given tolerance parameters, the FEA is shutdown

and the behavioral simulator assumes a normal status to replace the FEA. These various

conditions guarantee state control between the representations without the N step rollback.

42

, The problem in this procedure is defining how to guarantee state control in the

reverse direction and when to switch back to the FEA. As a simple definition, a model is

defined as valid only over the known test conditions and not necessarily over the complete

variable space. As shown in Figure 2-6, each region of a device operation can have different

models g(9^) that are inaccurate outside the given region. Because of the region

defmitions,' the models have a trigger condition to change between representations. If a

region has been tested and the results have an error measurement below the given

tolerances, then the model simulator can continue the analysis into the other regions.

Otherwise, the region is assumed untested, and the reverse trigger condition occurs once the

variable solution crosses a gray area between the regions. Then, the most accurate modeling

representation is switched into the analysis and synchronized with an N-step roll forward or

a state recovery or both. Continuity across the boundaries is also critical.

This region-based modeling approach cbmplicates the modeling and switching

TJo(t),

gOo)

g(e.)

g(e^

g(03)

scej

g(e.)

g(e«)

Figure 2-6. Region map of a device behavior in two variables

43

u,(t)

process. In a fully integrated environment, an array of different models with various degrees

of accuracy and performance are available for this dynamic modeling process. This

condition assumes that information, is available about the accuracy and performance of each

model in a simulator with all the region mappings. The advantages of this region-based

process are a known accuracy, the potential to simplify the model definitions in a region,

and complete region verification for eliminating re-simulation. A region check-off and

verification procedure is integrated into the modeling process.

2.5.3 Model Definitions

With region-based models, the model generation process can become an integral

part of the approach. This consideration is beyond the scope of this work, but different

options are examined. Model definitions can be generated automatically using FEA for a

specific simulation environment, but the problem is defining the stimuli to test consistently

all operational regions without user interaction. To implement the model definition process,

the three modeling methods using the backplane are a coupled solution, independent

analysis, and hybrid analysis.

The coupled solution uses the concurrent results firom the analysis to construct a

model, but several flaws are apparent in the process. An incomplete analysis and lack of

model integrity over the complete operational region are potential problems. The

distribution of the solution data can skew the model without data filtering, so the model can

be inaccurate in regions with few test points. The region mapped by the coupled simulation

cannot be absolutely "checked off' fi-om the total variable space without complete

44

verification over all conditions.

In the independent analysis, a complete region mapping of the device's behavior is

possible where a predefined stimuli sequence is applied to more accurate but time-
)

consuming model to create a reduced order model [67]. The process guarantees the model

integrity, since region mapping is done over all possible stimuli conditions. A single model

representation is possible [89] where a common error statistic govems the model to

eliminate the need for an accuracy trigger. However, generating the stimuli over all

operational regions and conditions can be extremely difficult and lengthy process over all

potential responses, and a poor mapping may result.

In the hybrid analysis, the coupling process assists the independent modeling

process by defining the variable ranges to prevent the mapping of all possible regions. This

consideration is a variation of the piecewise linear modeling, where each region is assumed

linear in one variable and the stimuli can be applied one-at-a-time especially if the regions

are sufficiently small. The problems with the region mapping process are defining the size

of the regions and the modeling method. The one significant advantage of this hybrid

approach is that the model generation process can be implemented in parallel with the

coupling process where each new region found in the coupled analysis spawns a model

generation process. Once the region mapping is completed, the models can then be used

dynamically to trigger the representation control. This process can potentially minimize the

amount of FEA needed on the devices while guaranteeing a high-degree of accuracy. If

necessary, the different region-based models can be combined [89] into a single model

instead of testing a single stimuli definition to cover all conditions.

45

2.6 Summary

This chapter has outlined several MEMS design, modeling, and simulation

environments. In addition, the four main aspects of a general coupling process have been

described with an emphasis on the iteration process and solution procedures. Finally, the

dynamic modeling process has been presented for the hybrid coupling process for MEMS.

A variation of the dynamic modeling process is outlined to ensure certain accuracy

constraints and potentially to optimize the simulation performance and accuracy via

automated model generation.

46

Chapter 3. Causality-based Interfaces

In a coupling process, multiple simulators are linked via nodes that exchange

EFFORT (E) and FLOW (F) variables as shown in Figure 3-1 (a). In the electrical domain,

this relationship corresponds to Kirchoff s current law and voltage equality. Since other

disciplines have similar relationships, a solution process was defined to include any

simulator where power was exchanged based on generic EFFORT (E) and FLOW (F)

variable definition, which is the bases of bond graph analysis techniques [91]. The two rules

for rij elements in a node required that

j=nr

11, =0
J="T

or ^Fj=0
j=i

Equation 3-1

Equation 3-2V,=V,=V,=- = K^ or E,=E, = E,=- = E„^

In this process, all simulators were black boxes, and the coupling process ultimately

required the sensitivity information from the interface variables of each simulator as shown

in Figure 3-1(b). The backplane was required to solve the coupling relationship based on the

simulator's interface, which did detennine what sensitivity parameters could be calculated

and how the backplane interacted with a simulator.

FmdE'^',F'*'
Simulator
Module

I
Simulator Simulator
Module • • • Module

(SO (SJ

aE, aii
1=1 to n aE, as.
j=l to n aFi aFi

aE, aF,

E'

h
F1

Interface

Interface

a. System level matrix b. Simulator module with n-terminals.

Figure 3-1. System-level simulation matrix representation

47

Most simulators defined policies that forced the user to define the variable causality

(input or output definition of the variables in the node). Within the backplane, causality was

not necessary known except if an interface constrained either the EFFORT or FLOW

variable. Of course, the interface could violate the variable causality required by the design

[87]. Usually, the partitioning of the design eliminated this problem, but this research did

not have this information , prior to simulation. The initial consideration was to implement

dynamic interface configuration where the goal was to find the interface configurations

that optimized the iteration efficiency and convergence of the coupling process. The

known requirement of this goal was a flexible interface definition as described in section

3.1. Causality assignment in section 3.2 was the procedure considered for implementing a

"smart interface" to maximize coupling efficiency.

This research began by examining interfaces that directly solve Equation 3-1 and 3-

2 as described in section 3.3, where simple voltage knd current source defmitions were used

directly to implement the two rules in a sequential process. Unfortunately, these simple

element definitions adversely affected the iteration efficiency and caused divergence if the

wrong type of source was used [32,87]. The premise of this work became that causality

assignment with interface reconfiguration could improve the iteration process by identifying

the particular element controlling the node variables. For example, the interface definition

did have a small impact on the performance of device-level analysis [30]. The direct

approach did eliminate the sensitivity parameter calculations, which was a computationally

expensive part of the coupling process, but the approach was unsuccessful.

48

After the failure of the direct calculation interface, the causality assignment process

was applied to the conventional interfaces using more formal calculation procedures as

described section 3.4. Conventional interfaces required the calculation of the sensitivity

parameters and determination of the proper input sensitivity variables. To enhance the

iteration process, a flow variable correction method was examined in section 3.5. This

particular method overlapped the different simulators using behavioral models for the

extemal devices. One simulator with the behavioral model assumed the role of a system-

level simulator with a complete system-level definition while the other simulators became

device or module simulators. The behavioral model operated as a predictor function [90]

that was corrected by the extemal device simulator. This configuration was better suited to

the dynamic modeling approach, since the corrector function could be changed or

eliminated for the coupling process. Various versions of the correction process were

considered to eliminate the sensitivity calculations and to improve performance.

3.1 Interface Defmition

For implementing the causality tests and sensitivity calculations, an interface

configuration was required with sufficient flexibility to define an effort or flow. This

element had to monitor the flow into any device model for the correction process or an

equivalent matrix created by the backplane for a simulator. Initially, this work attempted to

define an interface that had all characteristics of both an effort or flow source, so any aspect

of power can be absolutely controlled. However, the ability to control both variables

implied that the process controlled power, which was not possible without eliminating the

49

iteration process with the simulator. The basic coupling concept is shown in Figure 3-2(a)

The initial symbolic representation of the flexible interface concept was a

combination of a Thevinin and Norton equivalent interfaces from the electrical domain as

shown in Figure 3-2(b). The backplane calculations defined the conduction

effort , and flow The simulator returned a solution effort from the flow

source and the partial flow F{E'src) through the effort source. Eventually, the flexible

interface was changed to a Norton equivalent representation with a Thevinin equivalent

Other
nodes

FLEX

Other

Simulator

node'

nodes' Matrix or

L- Model(?) ■pl+1 ^
P U \

F.=Fb+Fc TfJ
a. Basic interface concept

node
i+1

FLEX

src

node A E^'node
F(B^)

I src

Gltl=7^

b. Imtial sym

src

node E"' node
I +

F(EJ

IGl+j © src

lexible interface

c. Final sym lexible interface

Figure 3-2. Concept and structures for the flexible interface element

50

monitor as shown in Figure 3-2(c). This representation was used to indicate that the

backplane calculated the flow through the conduction element for the Norton interface.

Considerations were also made to use the conduction element for calculating sensitivity

parameters of intemal models, but no practical usage for this element was found.

3.2 Causality Detection

Causality assignment is defined as the process of assigning inputs and outputs to

subsystems and possibly in an arbitrary manner [91, pp. 143-154]. This particular statement

applies to bond graphs, but the same principle can be applied to simulator coupling

especially if one simulator defined the response to another simulator. Initially, the causality

assignment process was conceived as the flow diagram in Figure 3-3. The strategy for this

process was to identify the dominant element in a node as the CAUSE element, and the

other elements followed the operation of the CAUSE element. Specifically, the CAUSE

element defined the EFFORT stimulus to the EFFECT elements in sequential manner. The

CAUSE element was a FLOW-based configuration while the EFFECT element was an

EFFORT-controlled configuration. This convention was maintained throughout the

research.

The GENERIC element was the default interface configuration in this process until

the CAUSE element was identified. Four transition states were also included between the

three basic elements to ensure that the conditions for CAUSE and EFFECT persisted for at

least two iterations. The most difficult task in this process was defming the conditions for

the state changes in Figure 3-3. At this point, the only available information for the

51

CAUSE
element

fGENERIC\
TO

, CAUSE
\element I

^ CAUSE \
TO]

GENERIC
\ element/

GENERIC'
element i

^STARTJ

Effect \
TO ;

\GENERICi
\elementX

fGENERIC\
TO

. EFFECT
\element /

fEFFECX'
I.." element

Figure 3-3. State diagram for causality detection

detection process was the element's power and sensitivity contribution to the node.

3.2.1 Absolute Power Criterion

The absolute power criterion was not a very robust detection mechanism because

power in a node sums to zero. The absolute power criterion compared an element's absolute

power contribution to the absolute power of the other node elements by using a power ratio

(apw) and a state-based power multiplier (as). The power ratio was the primary parameter

that defined the absolute power ratio to make a CAUSE or EFFECT decision. The state-

based power multiplier was a secondary variable that changed the range of absolute power

ratio to ease the transition process between element types. When an element's absolute

power was as c^w times larger than the maximum absolute power of an external element,

the element followed the CAUSE paths in Figure 3-3, or

\E^-F^>as-ap^-MAX(\E.-Fj^ V j = 2...nj. Equation3-3

When the element's absolute power was Os ctpw times smaller than the maximum absolute

power of an external element, the element followed the EFFECT path in Figure 3-3, or

\E^ -F^ < as-<Xp^ • MAX(\EF V j = 2...n^ Equation3-4

In most cases, the criteria only identified elements with minimum power contributions to a

node and the criterion was only stable when two elements were coupled because of the

potential overlap in the detection criteria. In this procedure, a CAUSE element was not

always the maximum power element and the EFFECT element was not always the

minimum power element in the node.

Because of the potential overlap between CAUSE and EFFECT, three rules were

required to make the causality detection rules consistent. Based on bond graphs [91], the

three rules were:

1. Only one CAUSE element can exist per node, and other elements must be an

EFFECT.

2. Without a CAUSE element, two GENERIC elements are required in a node.

3. A node cannot contain just EFFECT elements.

These three rules prevented elements from improperly transitioning into a state where the

iteration function stopped or the solution diverged. The violation of any rule forced the two

elements contributing the maximum absolute power to the node to become GENERIC

elements. By choosing the two elements with the largest absolute powers, the dominant

53

elements in the node were identified.

In most situations, the absolute power criterion was completely unacceptable.

However, the calculation procedure in section 3.3 was able to identify causality using the

absolute power criteria when peaks or inflection points occurred in the response. An

inflection point in the time response represented a change in the transient behavior of an

element where the time derivative of the element's effort was reversed from the previous

transient conditions. The element causing the inflection point had to supply the power to

change the transient behavior of the other element(s), so the element's power increased. The

additional power forced the other element(s) through the previous solution where the

integration process encountered a local minimum and the power of the other element(s)

decreased. Thus, causality was detected, but the process was not very reliable. The

combination of the power ratio, signal magnitude, and time-step determined if an inflection

point could be detected. In many situations, the iteration sequence corrected the power

. difference between the elements before the criteria recognized a peak in the response.

3.2.2 Sensitivity Criterion

The sensitivity criterion was similar to the absolute power criteria. For this criterion,

the absolute internal conduction parameter of an element was compared to the absolute

conduction from the other elements by using a state-based ratio (aR). When an element's

conduction was times larger than the maximum internal conduction of other simulators,

the element began to follow the CAUSE paths in Figure 3-3, or

54

G;|>o. Mty(|G;|) g;=|| j = 2...rij. Equation 3-5

When the element's conduction was times smaller than the maximum conduction of

other simulators, the element began to follow the EFFECT path in Figure 3-3, or

|g;| < — • M4Z(|gJ|) y = 2...TV Equation 3-6

In this criterion, the CAUSE element was always the dominant element in the node with the

largest sensitivity parameter. The two causality definitions did not overlap and only one

CAUSE assignment was made, so no additional rules were required to prevent assignment

problems.

3.3 Direct Calculation Interface

The direct calculation interface attempted to solve Equation 3-1 and 3-2 directly

using only the present flow and effort values, biit these interfaces had divergence and non-

convergence problems [32]. Since the interfaces were not very reliable, an attempt was

made to improve the process. The experiment started with the problem in Figure 3-4 using

two SPICE simulators. The possibility of using causality assignment was realized after

analyzing this problem using both combinations of current source and voltage source with

the direct relationships.

In the experiment, the V0LTAGEci-CURRENTc2 configuration found the correct

initialization point for the node, but the transient analysis diverged when the stimulus Vin

started changing at time tj. The CURRENTci-V0LTAGEc2 configuration found the wrong

initialization point, but the dynamic solution converged and the result had the same

55 .

C1

t, t,
K

r-WA

'■©

V„.=5VDD

Vc V,

Cb

Figure 3-4. Example circuit to test causality rationale

waveform characteristics as the complete system solution obtained from SPICE. One

configuration was statically correct and the other solution was dynamically correct.

Logically, an intelligent combination of the two results produced the correct solution. Based

on this experiment, causality was considered a dynamic and not a static property. The initial

premise was that a pure current (FLOW) and VOLTAGE (EFFORT) configuration using

direct calculations possible for a node, if the elements in the node are correctly

coordinated and configured at the proper times. A better explanation was that the interface

procedure had an error, but this observation became the driving rationale behind this

research.

In this example, variation of the resistance value and the transistor's width and

length did cause divergence in the coupling process. The simple source defmitions did not

have the capability to find a stable point since the iteration process was one-dimensional. A

stable bias point was discovered to be a requirement for a direct configuration. To overcome

this problem, a GENERIC element was defined as outlined in section 3.3.1. The initial

GENERIC definition converged to a solution, but the rate of convergence was slow (7 to 11

56

iterations per step) and different speedup conditions were tested to improve convergence.

During the testing of the GENERIC node, the speedup considerations improved the

convergence rate, but a "sticky point" was found with slow convergence. Within this sticky

point, the iteration process forced the power of one element to approach zero, and the

realization was made that the absolute power criteria could be applied for transiting to the

pure CAUSE and EFFECT arrangements. This causality identification did improve the

overall rate of convergence, and the interface process appeared viable based on this

example. Different test situations were later examined, and the process only converged

when a node had two elements with NO FEEDBACK. Certain situations also caused

divergence when causality was incorrectly identified. To accoimt for all the various

exceptions and divergence possibilities, this procedure had to implement additional rules,

which eventually eliminated the causality detection. As described in section 3.3.2, this

interface was a terrible approach to the coupling problem.

3.3.1 Averaging Interpolation Interface

The calculation process for the GENERIC element was required to define the source

values as variations of the present iteration values ONLY. The variable deltas were

calculated by simple averaging. All elements were moved toward a common average

voltage value and a common current difference was applied across the different elements.

The resistance was defined as a ratio of the node variations. In the electrical domain, the

node elements were defined by

=i;+Ai; A/; = — Equation 3-7

57

t!.Vt=—%r,-Vl Equation3-8
«rM "ry=i

^skc = Kar=-^ Equation 3-9_ AF/
~ A/;

The calculation process was a form of the secant method and a crude approximation of the

sensitivity parameters in a conventional interface, where

/'« - /' =/'+A/'■'l ■'SRC V 5/JC^ •'l ^ n,
Equation 3-10

A/; af;'

Because of the averaging, this procedure stepped toward the solution. The variation terms

changed the power to a simulator element as shown in Figure 3-5(a). In the simulator, the

voltage and current calculation for the element returned toward the previous solution with a

rate that depended on the dominance of the element as shown in Figure 3-5(b).

This resistance calculation was a very poor approximation of the normal

linearization process and "sticky" points occurred where the convergence rate slowed or

stopped. The process was very sensitive to whether one variable delta converged faster than

the other delta. As A/, approached zero, the resistance became very large, and the

voltage variation jGrom the voltage source had no effect on the response. When the AF/

approached zero, a small resistance value was created where the voltage source dominated

the response and absorbed the current variation. The options for eliminating this problem

were applying one variable at a time, redefining the variation terms, or redefining the

resistance definition. The choice was made to redefme the resistance.

58

Voltage

(V„IJ

(V,+AV„I,+AI,yO

• Present value
O Iteration value

(V,+AV„I,+AU'

(V„T,)'

Current

a. Present value to Iteration value

Voltage

(V,+AV„I,+AI.yi o

O Iteration value
O Nejtt value

R,„ limitation range

(V,+AV„I,+AIJ

Current

b. Iteration value to Next value

Figure 3-5. Iteration process for the GENERIC element

Two additional resistance values were defined: differential resistance Rj^jpp and an

absolute resistance . The differential resistance was a dynamic resistance calculated

based on a time derivative approximation where the resistance was the slope between the

present iteration value and the previous event point. The differential resistance was defined

as

^DIFF ~ ^DIFF Equation 3-11

R,■MAX Otherwise

The absolute resistance was an equivalent load resistance from the node to ground where

59

^ABS ~

1^'+' y=nr

tf E kJl *»
2l^;l '■'
j=nT

2
;=i

^MAx Otherwise

Equation 3-12

In this process, the decision was also made to use the smallest resistance value as to

guarantee that the voltage was converging faster than the current since voltage is common

between all elements of a node. However, the process still required to be redefined in

certain situations as outlined in Table 3-1.

During the testing of this procedure, another sticky point was discovered at the

peaks in the voltage response. After analyzing the cause of this slow convergence, the peak

detection criterion described in section 3.2.1 was realized and the effect was traced to the

minimum resistance criterion using the differential resistance R^jpp. At the peaks, the

differential resistance was typically smaller than the normal and absolute resistance values,

which became large due to the divergence of the responses. In this situation, the averaging

process pulled the different responses back toward the previous solution, while each

element attempted to continue the response in the same direction due to the integration

process of the simulator. Slowly, the CAUSE element supplied the power necessary to

change the response directions of the other elements.

Table 3-1. Resistance definition under different conditions

Conditions Current Convergence Otherwise

Voltage
Convergence

D'
^SRC max (/Jjo/py 5 Rabs > ^var)

Otherwise min {Rdipf j R-abs > ^var) min i^QiFF J ^ABS ' ̂ VAR)

60

3.3.2 Causality Recognized

Using peak detection, the pure CAUSE and EFFECT elements were incorporated

into the approach to improve the iteration efficiency of the GENERIC element. This

combination was briefly successful and the iteration efficiency was improved for the given

example. The parameter values for the test case defined apw with a value of 10 to guarantee

that the response of the node is at a peak. Smaller values of the power ratio caused the

elements to oscillate between the different states. In addition, the values for ocs are 0.5 in the

transition states compared to I.O in the causal states. Unfortunately, the same procedures

failed on other examples. Several serious interfacing problems were discovered, and this

process was later proven to diverge under certain situations.

A third simulator demonstrated interface inconsistencies due to the overlap regions

in the causality criteria, and the overlap rules in section 3.2.1 had to be created to correct

these problems. Other test cases showed the divergence nature of incorrectly defining

causality, and a divergence detection mechanism became necessary. Fortunately, divergence

has a distinct characteristic where the solution grows to unrealistic values in aii altemating

sequence. Whenever divergence was detected, an intemal flag was set in each node to

prevent the detection of causality and all elements were forced to a GENERIC state. With

all the different conditions, the interface had become too complex, and the calculation

procedures were not consistent between the different element types i.e. a common

mathematical calculation procedure was lacking. As additional simulators were added to a

node, this procedure was unable to find a solution. At this point, the direct calculation

approach was abandoned and a more conventional approach was considered.

61

This procedure had attacked the problem based on individual nodes, which was not

sufficient for a system with feedback. As an example of the causality divergence problems,

a simple state feedback loop in Figure 3-6 was examined to show divergence potential and

feedback gain requirements with causality recognition. The two gain blocks had a large

output conduction value and small input conduction value, so causality was easily

determined. The Laplace gains were simplified to a constant gain for both the initialization

(DC bias) and transient analysis. The initial conditions were assumed zero. The basic

iteration process for this example was defined by

x' = G,iz+y-')

y=G,x'-'
Equation 3-13

The expansion of the iteration process revealed that

X = z G,+
/2-1 N

y=G^z

1-GA

l-(G,Gj
/

i72-l ̂

i>2

i > 2

Equation 3-14

This iteration process converged if and only if IG1G2I <1 or if z = 0. These requirements

were the most critical during the initialization procedure because the interface solutions

yt

G,(s)

G.(s)

Figure 3-6. Simple feedback system to examine the iteration process

62

were not stable. For the transient analysis, a "sufficiently small" timestep was required for

the effective loop gain to meet this criterion. Since these conditions cannot be guaranteed,

this calculation procedure cannot be considered for the general coupling process.

3.4 Conventional Interfaces

Most conventional interface definitions were based on nodal or modified nodal

analysis [31,77], which implied Norton equivalent interfaces and representations. Initially,

the Norton equivalent interface for each simulator was solved as shown in Figure 3-7 for n

simulators. To define the equivalent circuit, the sensitivity parameters (Equation 3-15) were

used as the conduction defmition for an element. The Thevinin or Norton equivalent circuit

[29] for a particular simulator (j) at the present iteration (i) was defined by

dF

' dE>Nr Equation 3-15

GNOR

S.

Backplane
interface

or simulator#!
1+1 1+1

1+1

i® i® i® ®GeqIiG GE EQNOR NOR Qin NOR

• ••

S,

Solution Representation
for all simulators

Equivalent Representation
bock to the simulator

Figure 3-7. Different equivalent representations for a simulator or simulator node

63

■'TH

NOR\

= ^'j-Req ■F'j
Equation 3-16

The solution for the effort and flow values (CALC subscripts) was defined as

\—1
;=«r . A J-f^T

^ ̂NOr\j->■+1

\CALC

/' j=nr
/ ;=i

y=i , y=iy=i

Equation 3-17

F M =-F +GIc4ic . ^NOr\j-^'^Eq\j
_g;/+l|

lG4iC

= Fi+GEo\\E'^'\ -E')J \ \CALC

Equation 3-18

To define a Thevinin or Norton equivalent circuit for the interface, the following equivalent

relationships was required:

^EQ - X ̂ eq j ~ (^£2)"
y=2 ^

J-"? \= I [04

Equation 3-19

Equation 3-20

In these equations, the local simulator was always referenced as 1. These equations applied

to both matrix operations and singular nodes.

This solution process was not very effective when the conduction parameters

became extremely large and dominated the solution as rounding errors in the EFFORT

calculations often resulted in large errors in the flow variables. The flow variables were

added to the solution process and Newton-type iteration method was also defined. The new

solution process was

64

i

+

'e'
0 i
P•••

nP
-1 "
0
 "

=
E

-

i1q£
^

1•

0

n

 O
O

af
;

CAL
C.
K

CLA
C
0•• 1

AF.=G4.(£'|^^-£i)-h
IC41C

Equation 3-21

Equation 3-22

The interconnection matrix (p^) was a unity-based matrix that defined which flow

variables summed to zero for a particular effort to implement Equation 3-1.

This iteration process was considered for the example in Figure 3-6, but the proper

sensitivity parameters had been not calculated and effort gain parameters were required.

Normally, the Newton-Raphson method was applied over all variables at the system-level if

sufficient functions were available that were equal to zero, but the only known equation

between simulators was Equation 3-1. To overcome this problem, causality assignment was

required to define the inputs and outputs variable^ from a simulator, since nodal analysis

had treated voltage as the input and current as the output. By changing causality, the

procedure calculated a different set of sensitivity parameters. The sensitivity functions

(system of equations) defined the relationship between inputs and outputs for a given

simulator where

Sou,pu,(^np^O = Mnputj -AOutput = 0j dinputj
Equation 3-23

Using these sensitivity relationships, the backplane had the functions necessary to couple

the simulators. The problem was deciding which variables were inputs and what sensitivity

parameters had to be calculated. The input variable detection process is described in

65

Appendix-B.

As causality changed, the backplane had to vary the sensitivity parameters and

solution matrix. An example of the final matrix representation was Equation 3-24, which

shows the sensitivity information for the both EFFORT and FLOW output variables and

how the interconnectivity information was used. In Equation 3-24, each interface uniquely

defined one row of the solution matrix where n flow variables and one effort variable was

defmed for each node (domain interface). The row for the effort variable defined the flow

interconnectivity relationship while the row for each FLOW variable used the simulator

function calculated in Equation 3-23.

27/+1
A.1

K'

K

K

K

F'* n,a

BY

0 1 •

0 •

• 0 0 •

3f;,

I

-1

0 "

dE, 34, dF
n,a

^I.l

0

dE,

0 •

0 •

• 0 1

34

34,

1

34

94..

0
Equation 3-24

0 •

34

34,.
34.1

dF
n,a

dF/J,a _

(-^j.CALC ^],sim) (^calc ^sim) Xe. Inputs Equation 3-25

This procedme was error minimization between the calculated variables and the simulator

values as defined in Equation 3-25. Equation 3-25 defined the error functions to be

minimized by Equation 3-24.

The final issue for this procedure was the calculation of the equivalent sensitivity

matrix at the system-level. In situations where only nodal analysis was used. Equation 3-19

was sufficient to calculate the sensitivity information. However, a variation of Equation 3-

66

24 was needed account for the EFFORT output conditions. For this equivalent calculation,

the basic solution matrix was modified to iisolate effort variations by forcing a known delta

value into each effort variable independently. For this procedure, all local simulator

contributions were eliminated from the solution matrix. The rows of the EFFORT variables

were set to one for each EFFORT variable while the local simulator contributions were

redefined as the interconnect relationships. The solution process for the sensitivity

parameters for a particular EFFORT variable used Equation 3-26.

1 0 •• 0 0 0
-1

"1"
0 1 0 0 0 AF,. 0

0 0 • 1 0 0
AF„, 0

0 0 ••• 0 1 1
AF„, 0

.AF.,.. 0dE, aF., 3F,.

Equation 3-26

_ af. Equation 3-27

The equivalent sensitivity parameters were calculated using Equation 3-27 for each effort

variable y to a local flow variable x that required the information. Certain interfaces did not

require equivalent sensitivity information. In addition, the equivalent matrix was calculated

only when an external simulator's sensitivity information changed. A tutorial of this

calculation procedure is presented in Appendix E.

With the calculations defmed, the different interfaces available in the backplane are

briefly discussed. These interfaces were defined for applications in the electrical domain, so

the typical electrical names were used. Appendix-B defined interfaces component values,

emulation modes, and interfacing methodology. The dynamical interfacing process was also

67

revised for the conventional interfaces and a "smarter" procedure was developed.

3.4.1 Flexible Interface

The flexible interface was a simple combination of the Thevinin and Norton

equivalent representations where the basic interface was used in a Norton format. This

interface forced the simulator to calculate the feedback flow variable when a conduction

matrix or behavioral model was integrated into the simulator. This interface emulated all

interface types for the causality assignment process and was the most generic interface

available. The Flexible interface was also the only structure with a system configuration,

where the simulator loaded an external matrix to complete all feedback paths. The system

configuration was essentially a matrix version of a Norton implementation.

3.4.2 Norton and Thevinin Equivalents Interfaces

Both the Norton and Thevinin configurations were classified as GENERIC elements

although the Norton was more appropriately a FLOW-based interface and the Thevinin was

an EFFORT-based interface. The Norton equivalent configuration was the conventional

interface structure for an electrical application [31] since most electrical matrixes used in

nodal analysis are defined in terms of conduction parameters and current sources. Both

equivalent configurations allowed variations in effort and flow variables, so any sensitivity

parameters could be calculated.

3.4.3 Voltage and Current Source Interfaces

Both the voltage and current source interfaces restricted the iteration process to one

variable. Consequently, certain sensitivity parameters were not calculated and these

68

interfaces completely defmed the variable causality. A current source was usable only with

a simulator that output a voltage or had a resistive path to ground. Without a decoupled

relationship to other nodes in the simulator, a pure current source was unable to calculate

conduction parameters between different terminals. Voltage sources were the typical

interface to device simulators because the system-level defined the voltage to the device. A

voltage source was typically used for nodal analysis. Voltage sources had interaction

problems with direct connections to virtual nodes and other voltage sources.

3.4.4 Direct Emulation

The direct configurations were residues of the direct calculation procedures, but

were not real interfaces. Instead, these configurations were calculation modes within an

interface where an EFFORTEQ (Equation 3-2) and FLOWSUM (Equation 3-1) were

defmed. Using these configurations, the FLOWSUM element defined an effort) to

the EFFORTEQ elements in a sequential manner. The EFFORTEQ elements applied the

effort and responded with a new flow, which was summed by the FLOWSUM element to

calculate a new effort on the next iteration. These elements were very ineffective unless the

dominance of the CAUSE element was a certainty and all restrictions outlined in section

3.3.2 were guaranteed.

3.4.5 Dynamic Interface Configuration

The initial approach for the dynamic interface procedure used the flowchart jfrom

section 3.2, but the process had flaws (see section 3.4.5.1). Eventually a new tiered process

was developed (see section 3.4.5.2).

69

3.4.5.1 Basic Causality Modifications

The dynamic interfacing process from section 3.2 had several errors when different

combinations of conventional configurations were coupled. The problems were the result

of poor usage of the system configuration and poor initialization. Several basic

modifications were required:

1. The detection of the FLOW input for an interface required the interface to be

reconfigured immediately as a CAUSE and other interface(s) in the node became an

EFFECT(s).

2. To use a system configuration, the GENERIC State in Figure 3-3 had to be a system

configuration for proper initialization. Because of modification #1, both the GENERIC

and CAUSE States had to use a system configuration.

3. At initialization, sensitivity parameters were checked to determine if the interface

exceeded the normal sensitivity rule by more than a factor of 100. If this condition was

met, then the interface was immediately changed to a CAUSE or EFFORT

configuration to improve convergence.

The FLOW input detection also placed constraints on the Causality State of other

interfaces when a system configuration interacted with other interface types. With a system

configuration and a FLOW input interface detected in a simulator, the EFFORT input

interfaces in the local simulator interfaces had to examine EFFORT-to-EFFORT parameters

for gain conditions greater than one to the FLOW input interface. If the gain condition was

detected, then the interface was required to remain in a system mode to complete the

feedback paths. The poor handling of the system interaction problems was the final reason

70

that a new state diagram was developed.

3.4.5.2 New Causality State Diagram

The flexibility of defining different interface configurations for the three different

states was unnecessary with the proper rules. A new state process was developed as a tiered

system with fixed interface types as shown in Figure 3-8, and only three configurations of

the flexible interface were used (highest to lowest priority): system, Norton (FSRC_SRC),

and Thevinin (ESRC_SRC). This process used tihe same causality rules as the first method,

but additional considerations were given for gain situations. This procedure also started in

the system configuration to enhance the detection of EFFORT gain. The definitions for

entering the different states were better defined in this procedure.

The two system states were SYS_LOCK and SYS_GENERIC. The SYS_LOCK

)EFFECT_SET\
element

i(ESRC_SENSL£ff=«a
\SENS=1.0)/t^^

SYS_LOCKi
^ element f
.(SYSTEM)!
T ; f/.

..element; ' START,

/ EFFECT
I element {\(ESRC_SENSy^^^

/ CAUSE \
element

\(FSRC_SENS)/

Figure 3-8. New causality state diagram

State indicated that a simulator had an EFFORT gain above an internal limit (50.0). Once

this condition had been detected, the interfaces (the FLOW input interface and the interface

that had the gain condition) remained in this state. In the initial method, the procedure

allowed the interface to enter the EFFECT State if the effect condition was detected, which

could cause failures in the coupling process. The SYS_GENERIC State indicated that a

FLOW variable had been detected.

In this process, a very clear distinction was made between the CAUSE and

SYS_GENERIC States, which were identical in the original procedure. The CAUSE State

could only be reached by entering one of the EFFECT States, which indicated singular

coupling in the simulator to the interface. The CAUSE State was ONLY included in this

procedure to indicate that singular coupling had been detected. The EFFECT_SET State

was a variation of the EFFECT State where the sensitivity component was set to 1.0. In this

case, the equivalent sensitivity component was sufficiently large to force the interface to

truly track the backplane solution. Some hard limiting was also implemented because the

ESRC_SENS interface did fail due to rounding calculation errors where the sensitivity

values were small (<10"^) and the simulator had to resolve a large ESRC value.

3.5 Flow Correction Interface

Using the correction method, flow sources were added to the device model(s) in the

system-level simulator and effort sources became the interfaces for device-level simulators

as shown in Figure 3-9. The effort sources in the flexible interface of the system-level

simulator were needed to monitor the flows into the behavioral models since the model

72

1 F's,p 0

E's'oO
System •

•

•
• Device

Matrix

cH Model

EWO
•••

XJ ° Approximation

I I
F'C.0

'SJlV

O o

—^—

mG
eciv

eD

Ok.
mF

Mode
el

<

System-level Device-level
Figure 3-9. Flow correction interface

definitions were not necessarily known to the backplane. The flow correction method was a

variation of regression analysis where unknown parameters were modeled in terms of

known variables [76,90]. In this configuration, the flow sources represented the influence

of any applied stimuli, nonlinear effects, or undefined characteristics of a second model not

in the present model. The behavioral model became a first-order corrector in an ARMAX

model format [90] where a nonlinear corrector was applied externally for guaranteeing

certain accuracy in the analysis [93]. The advantages of this method were the simplified

interfaces and multiple corrector definitions that are possible for the dynamic modeling

approach.

In this procedure, the system-level simulator can do more internal iterations using

the behavioral model. A more accurate solution was found that was always "reasonably

close" to the true solution to enhance convergence before an external iteration occurred.

This enhancement was intended to eliminate the poor initialization conditions that can occur

with the conventional interfaces where the "sufficiently close" requirement of most solvers

73

could be violated. In addition, the system-level simulator also had the potential to partition

the design more efficiently to improve performance because of a complete system

definition.

As a negative feature, this process implemented causality assignment where the

system-level simulator defined the effort to the device-level simulator(s). This process was

sequential and was potentially slower than the other interfaces unless improvements occur

in the iteration efficiency between the simulators. A 2x factor of improvement in efficiency

of the sequential process guaranteed equivalent performance to a parallel process.

Fortunately, this process was implemented in a parallel fashion after an initialization

sequence since the basic calculation process was a variation of nodal analysis.

Initially, the correction method was considered for situations where the mechanical

FE simulator was always coupled to an electrical simulation as a form of waveform

relaxation. As just a coupling process, the regression method offered a simple means of

repeating analysis without using FEA and without generating a new behavioral model. The

flow source values emulated the previous response in an event-driven piecewise linear

(PWL) mode without re-analyzing the device behavior in the external simulator. The

system-level analysis potentially achieved the desired accuracy without performance

degradation. In this process, a designer constructed stimuli waveforms in terms of the flow

source values fi-om different coupled analyses to test the system-level behavior in a

meaningful manner using the flow equivalent mechanical stimuli. Of course, these analyses

did become inaccurate as the sensor, stimuli, or electronics was modified, so this emulation

process was not as useful as a regressed model. Still, the process was simple and fast after

74

the initial coupling analysis was completed, and most simulators were able to use directly

the information in this flow waveform format.

Finally, the flow correction method offered a corrector that can be any extemal

source. By varying the corrector source, the dynamic modeling approach was effectively

changing model definitions compared to the basic model in the system-level simulator. Of

course, one option was not to define an extemal corrector with the intemal model, so this

approach simplified to the independent approach. As a second option, the corrector source

could be a combination of multiple modeling sources to create an N-level corrector [90]. A

higher performance model would perform multiple coarse corrections with the system-level

simulator before the more complex model was used as a fine corrector. This consideration

was made to limit the number of FE iterations for improving performance between the

simulators, but was not implemented.

The calculation procedures for the flow correction process are defined in section

3.5.1 and the convergence of the process is examined in section 3.5.2. Several variations of

calculation procedure are examined to improve performance by eliminating the sensitivity

matrix calculations. However, these variations have limitations depending upon the

accuracy of the behavioral model. Several modifications of this algorithm are presented in

section 3.5.3. Additional modeling considerations are considered in section 3.5.4.

3.5.1 Calculation Procedures

In this process, the device was an N-terminal module with a system-level model

represented by a conduction matrix G'^ e . The system-level analysis generated an

75

effort response E'^ e 91'' and a flow response e 9?" for each external device in the

system. A correction flowF^ e 91" was applied to each model for correcting the error

between the different model representations. The total system-level response was defined by

g\-e-+i^ = f-+i^ = f; Equation 3-28

g'^-e-=-f;, Equation 3-29

The device-level simulator sequentially applied the system-level effort response and

generated a flow response F^, e 9t" from an equivalent conduction matrix e 9?"*".

This procedure used the nodal representation in Figure 3-10 where a sensitivity

matrix was available for the system-level, internal device, and external devices to construct

a Norton equivalent circuit for nodal analysis. This information was used to fmd the next

system-level effort E'g^ and flowF^"^'. A second calculation step adjusted the solution to

eliminate the contributions from the internal device model. The new system-level flow and

effort values from section 3.4 were defmed as

Equation 3-30

Equation3-31

The new system-level effort and flow values were used to derive a new correction flow

V,i+l V.i+l

^norU© •GeqIi ^^EQlM

Figure 3-10. Nodal representation for the flow correction approach

76

where

pi+\ pi+\ _ p
^ r — c •'AN + G,;r\ -F,1+1OR\a

=fr'+f>Gj5i-(4*'-£j)
= i? + (Fr -i5)+G,5[. {Ef -£■)

Equation 3-32

This equation was further expanded to derive a flow-based relationship for testing

different constraints on the solution process where

fi" = + fc'*' - F-)+ - E',)
= Fc + (5«|l+G«iW'-4)
= F^ - (GeqI +Gf2| .lG£e|, +G£2] y {Fs+F^)

\M'

Equation 3-33

= F' -
(dFi dF:YdFi dFL

^4 M

\-l

dE's dE's I dE's --
BE'

The iteration process was defined as a scaling matrix P' e Si times the flow summation

between the device-level and system-level, or

dFi BFiYdFi . dFL^~'5 I ^ ■ S I Af
BEl BEL

A
BEL BEl

F<;« = F^-y3'(Fi+F;)

= O) = identity matrix

= 0)= 0

Equation 3-34

Several variations of the scaling matrix are considered in the convergence analysis to

eliminate the complexity of calculating three sensitivity matrixes.

This procedure was initially a sequential process to get a good initialization solution,

but parallel version was easily implemented. The parallel version followed the procedures

from section 3.4 except that an initialization sequence was required to apply the initial effort

77

values to the device-level simulator. All new corrector values were defined using Equation

3-32, where the simulator-coupling matrix solved the new flow and effort variable values.

The predictor interfaces did require additional sensitivity parameters and constraints

on the sensitivity function matrix (Equation 3-23). Each predictor device created both

system and device sensitivity parameters, since the internal model sensitivity had to be

calculated. The system parameters interacted ONLY with other system variables, and device

parameters only interacted with other parameters from the same device. These relationships

were defined as follows:

= AF.\
'\DEV

Equation 3-35

= Aoutput\
ŜYSTEM

SYSTEM
dinput

The deyice sensitivity parameters were ALWAYS the FLOW over EFFORT parameters,

while the system variables were identified using &e input causality rules.

3.5.2 Convergence Analysis

From a flow perspective, convergence between the system-level simulator and the

mechanical simulators occurred if and only if the device flow response becomes equal to the

negative value of the system-level flow response. The expansion of the correction flow

matrix showed that

F^•=Fi■^0^{Ft,+F's)
, . , \ S Equation 3-36= +Fj)+ +f;-')= ■ (^«+^s)

j=0

78

Since the scaling matrix j3' was assumed nonzero, the flow sum had to approach zero for

the process to convergence. This relationship was considered for detecting divergence in the

correction process and for switching between different scaling options.

The effort iteration process showed how the different conduction matrixes interact

to cause divergence problems. The recursive relationship for the system-level effort vector

was defined as

4 = (g; r fe - 4) = (oi r (4 - 4"'+P'-' fe'+4"'))

= (Gir(4 +/;-'))
= (Gi)-'4 + (g' +(Gir(Gr -j8'-'GS')£5

After repeated substitutions, this iteration process was equivalent to

4 = (Gir4+(Gi)''j8'-'(i-G;,-'{Gr)"')4-'
n' ̂ ^ *Gi (gj)■' j| -pi- ai, (Gi r k
k=J

+(Giri
j=0

Equation 3-37

Equation 3-38

The necessary condition for convergence for effort was that all elements in the product term

approached zero as the number of iterations increased, or

n'(>-4Gi(G;;)"')^0 asi —> oo Equation 3-39
k=j

This relationship defined the rate of convergence for the process. The convergence of this

iteration process was examined based on three different scaling matrix definitions; an

identity matrix, a strictly diagonal matrix, and the full definition.

79

3.5.2.1 Identity Matrix

As the simplest procedure, an identity-scaling matrix (j3'=l) eliminated all

sensitivity calculations. For this scaling matrix to work, all models had to be relatively

accurate, so corrections were done imder small-scale conditions. Since the accuracy of the

system-level device model was not absolutely specified, divergence became a possibility as

the modeling errors increased. To examine this iteration process, the system-level flow was

assumed constant while the conduction matrixes were also assumed constant and diagonal.

With the diagonal matrix assumption, the non-diagonal elements in the matrix expansion

process were ignored and tihe matrix was solved per diagonal element. A single effort value

(eg) with a flow (fg) was defined by

J_

Sa

j=i-i

j=0

=A
Sa

/

1 +

L V

1-Sm

gA

fs = , 1 +

j=i-i

X
/

1- gjii

\ gA J=0
\

yj=i-if -j'

A.
r V

X I—gu - 1- 1- gjii

; ;=0 \ ' gA^ gu
<

gA)

Equation 3-40

The convergence requirement was that

8A>^-^-gM
gA

Equation 3-41

Under the given conditions, the system-level effort and the mechanical flow converged to

_ fs Aoo ee ^
Equation 3

gu
JM ~ ~gM^S ~ ~Js -42

This simple process did meet the current convergence requirements, but the rate of

convergence was poor unless the models were almost identical. As an example, a minimum

80

number of iterations to satisfy a relative tolerance (Er) were calculated based on the

maximum scaling ratio where = {smIsa^max • minimum number of iterations

for relative convergence was approximately

(^-OCmAx)"""' <£r
\n£.

i h ^ r ® ^MAX ^>^MAX ^ln[l-a;,'^\ , Equation 3-43
^hAAX ~ ̂
otherwise

^ ̂JMX ~ 1

Nonlinear device behaviors and non-diagonal matrix coupling effects were certain to

increase the number of iterations for convergence. Consequently, an identity-scaling matrix

was very impractical as the model accuracy decreased.

3.5.2.2 Diagonal Scaling matrix

Like the identity matrix, the diagonal scaling matrix definition ignored all coupling

effects across the device's terminals. A strictly diagonal dominance assumption [83, pp.91]

was made with the piupose of avoiding sensitivity matrix calculation, so all cross terminal

component contributions were lumped together in the diagonal elements. A secant

approximation provided the partial derivative relationship where

dr AF'
-—r ~ —^ -r = Equation 3-44
dE' E'-E'-^ AE' .

If all effort variations for the nodes were identical, then the effort variations could be

eliminated if the effort differences were not zero. Under this condition, the correction flow

became a function of only the flow variations, where

81

AE' > e

Equation 3-45
/3'- =

\

1 otherwise

P'j.ic=0;j:^k

Using the lumped linearization step, the consideration was that sensitivity

information became a relative approximation times a diagonal scaling matrix (oc'^)

where

^EQ ^=a'x- Equation 3-46

If the relative approximation was assumed equal in all situations and the scaling matrix was

calculated in the same format for each representation, then the relative approximations

cancelled and the scaling matrixes did provide sufficient information in certain cases to

emulate the full sensitivity calculations. The convergence rate from this approach converged

faster than the identity-scaling matrix. If the conduction matrixes combined to create a

strictly diagonal result, then this process converged absolutely. Otherwise, divergence was

still possible since the contributions from the cross-coupling effects accumulated to exceed

the convergence conditions. Of course, the chances of divergence increased with an increase

in the number of device terminals. However, this process had not calculated any gradients

outside of the normal iteration process.

3.5.2.3 Full Definition

The full definition of the flow correction method had to calculate three sensitivity

matrfaces although the system-level simulator generated two sensitivity matrixes

simultaneously. The positive feature of the full definition was that one model was

82

completely adjusted in temis of another model representation to eliminate any errors

between the two representations. Effectively, this approach negated the effects of the

internal behavioral model. In a sequential format, this basic sequential process had low

performance characteristics because the full sensitivity matrixes were still required. In a

parallel format, the full procedure should have equivalent or better performance compared

to the standard process IF THE SENSITIVITY MATRIX FOR THE INTERNAL

BEHAVIORAL WAS ACCURATELY CALCULATED. Calculating the sensitivity

parameters of the intemal behavioral model was difficult in certain situations.

3.5.3 Algorithm Modifications

During the testing of the flow correction process, a significant problem was

encountered where a large flow correction value caused the simulator to reduce its

timestep. If a correction value was too large, the LTE calculation in the simulator had to

compensate for the error by reducing the time step. Part of the problem was that the

correction process used multiplication to find the flow correction values for the

PREDICTOR interface, so any error in the sensitivity calculations caused the flow

correction values to diverge. In certain cases, the large flow correction values forced the

intemal model into an unnatural state. The problem was the most severe at an inflection

or peak point in the analysis of the intemal model.

Because of the timestep reduction, the increase in the number of analysis points

made this process very iteration inefficient compared to the convention interfaces. To

make this interface more feasible, the problem had to be eliminated, and a minimization

83

rule was used to limit divergence of the flow correction values. For this rule, two different

correction variables and were calculated from Equation 3-32 where

Fc} =Fc+ ̂Llc + Gpres...' ̂ 'cAic Equation 3-47

F^a =Fc+ ̂Llc + • ̂ 'cALc Equation 3-48

The normal calculation for the correction process is Equation 3-47 and the checking

function is Equation 3-48, where the normal flmction used the present sensitivity matrix and

the other function used the previous sensitivity matrix values. The assumption for this rule

was that only one set of sensitivity parameters was invalid at any point. The limiting feature

compared these two calculations and restricted the fmal correction value) as follows:

if > a• l^cll then F'^' =^ I I Equation 3-49
else

The ratio a was the user-definable parameter CORRSENSRATIO under the DEVDEF

command (see Appendix-A). The optimum value was found quickly to be between two and

ten, but very little experimentation was done beyond the default value of five.

This limiting procedure did identify the problem with the correction process as the

proper calculation of the sensitivity parameters of the internal model. In the future, a more

robust approach is required to eliminate the parameter divergence since certain examples

still had a large number of transient points where the basic assumption was violated.

Different sensitivity calculation methods did improve the iteration efficiency of certain

examples.

84

3.5.4 Modeling Issues ,

The model definitions at the system-level required sufficient information about the

mechanical components to define the first-order coupling mechanisms between the device

terminals. Otherwise, the correction flows did not properly adjust the effort variables like

the FE device model, and the process began correcting large-scale variations compared to

small-scale variations. The behavioral model in this method should be at least as accurate as

a device's structural representation like a RLC network (linear representation). More precise

models offered faster convergence rates for the analysis and less iteration with the external

simulator. The consideration was that the external models were always more complex and

accurate than the intemal model. Otherwise, the simulation process did not require the

coupled simulator. Finally, this method required that the behavioral model did not need

modified nodal analysis (MNA) since the process was based completely on nodal analysis.

The primary concem was inductive elements with no series resistance where different effort

sources could be shorted.

3.6 Summary

This Chapter has outlined three different coupling methods: a non-conventional, a

conventional, and a flow correction. Each method attempted to use causality assignment to

improve the coupling process. For the first two methods, a causality-detection scheme was

considered where the interface model was self-configuring across all simulators to

maximize iteration efficiency and to define an interface structure where "one fits all" for

black box representations. The first method had several fundamental problems that make

85

the process completely unstable under most conditions. The second method was based on

conventional techniques and the mathematical foundation was consistent for all elements.

Using conventional interfaces, causality assignment was used to switch between different

calculation processes to improve convergence and iteration efficiency.

The flow correction method implemented an overlapping approach where

behavioral models completed all feedback paths in the analysis. All simulators had a

defined role as system-level or device-level simulator, where the system-level simulator(s)

controlled the device-level simulators in a sequential format. With an initialization

sequence, the correction approach was made into a parallel process and was solved with the

standard interfaces. In terms of performance, the flow correction method potentially

eliminated the sensitivity matrix calculations required between simulators if the ratio of the

real and behavioral conduction matrixes were sufficiently diagonal. The advantage of the

flow correction method was in the hybrid approach where different external modeling

representations (correctors) were or were not applied to the default behavioral model.

86

Chapter 4. Backplane Implementation

In this chapter, the implementation of the backplane is described. The backplane

routines provided a common framework (as middle ware) to synchronize and to convert

information between the simulators as shown in Figure 4-1. This implementation made all

simulators into simulation engines where the backplane synchronized the engines. In this

process, the backplane became the simulator while the simulators became model evaluators.

All backplane operations were classified into the four functional categories: calculations,

communications, control, and database. Sections 4.1 to 4.4 describe the implementation

aspects of these categories. The control parameters were the major focus point to implement

the dynamic modeling process and to optimize the coupling efficiency between simulators.

The simulator selection process is described in section 4.5.

Simulator 1
Status Status
and Object

control Variables
(Local) ■"—TT":—
(Sim ID,) Sensitivity

Information

Object
Simulator Status

Stafi^ Object
2iid Variables

control
(Sim EDJ Sensitivity

Information

Message
Generation

Instruction
Processing

Backplane
Calculation
Procedures

Global
Syncrhonize ■

and
Control

Common
Object

Interface

Input
Values

Output
Values

Matrix
definition
interface

Simulator
Reference,

Output
f+response
Simulator
Reference.

Input
(+control)

, Local 1^^ Results
Simulator Database

Translator
Code

Figure 4-1. Interface between the backplane and simulator

The command set for the backplane operation was developed to, maximize

flexibility and expandability. All data within the backplane was sent in ASCII form to be

human readable for debugging and script writing purposes. A short synopsis of the different

database and command keywords are presented in Table 4-1. The complete definitions and

parameter variables for the backplane are presenting in Appendix-A, which also outlines the

modifications required to incorporate the backplane into a simulator.

4.1 Communications

The communication mechanism was considered a physical problem that was not a

major issue in this work. Of coarse, the fastest communication mechanism was preferable to

the slowest implementation. A modular development of the backplane architecture allowed

Table 4-1. Keywords for the simulation backplane

Keyword Codes Description

DEVDEF Define a device within a simulator.

GLOBPRM Define global parameters common to all backplane elements.
GRADDATA Define object gradient data from a simulator.

ID Define the simulator ID during the initialization process.

INCLUDE Include a file as a subcommand file.

MESSAGE Messages (wamings, errors, etc...) sent to the backplane controller.
MODELDEF Define a multi-facetted model for the dynamic switching process.
OBJDATA Define object variable data of a simulator.

OBJPRM Interface controls and configurations for an object.
REQSTAT Request the status of a simulator or its intemal objects, parameters,

etc.

SIMCMD Send a command directly to a simulator.

SMPRM Defme simulator control instructions and parameter definitions.

START All simulators are to start processing data based on their MODE
parameter.

STOP All simulators are to stop and await further instructions.
TOLERANCE Define the convergence tolerance for variables of root objects.
TRIGDEF Define the trigger conditions for switching between models.

88

the substitution of different transfer mechanisms like SOCKETS [96], PVM [100], or even

file based transfers. The backplane communications mechanism was chosen as SOCKETS,

but any communications mechanism could be used. The architecture of the communication

process was more important for optimizing performance by eliminating sequential delays.

The communications architectures considered in this work were peer-to-peer and

client-server with a central controller module (BKPLCON). The controller was present to

make decisions for the dynamic switching process and to be a communications server.

Simulators always communicate with a controller module and NEVER directly with

another simulator, so only the controller had to handle errors and the addition of new

simulators during the analysis. In a peer-to-peer configuration, each simulator implemented

the baclqilane calculation procedures independently to reduce sequential operations. In the

client-server mode, the server received all information, performed all system-level

calculations, and defined the interface values back to each simulator. Sensitivity

calculations were performed by the local simulator, but other calculations were the

responsibility of the server.

Both implementations had approximately the same communications overheads. The

client-server model had additional sequential processing steps because of the equivalent

matrix generation required by certain interfaces. However, the client-server model had a

district advantage in a single processor environment because of redundancy in the

calculations. In a multiprocessor environment, the major performance issue was the

calculation of the equivalent matrix with the peer-to-peer architecture having the advantage.

This implementation used the peer-to-peer architecture model because of the potential

89

elimination of sequential processing steps.

4.2 Database Structure

The primary database definition for the backplane was BKPL_DEF. This structure

contained ail simulator information as shown in Figure 4-2. Each simulator had to create

this variable internally for interaction with the backplane as described in Appendix-A. The

parameter definitions in the different structures were the control mechanisms for all aspects

of the backplane. For this reason, the common parameter structure within the baclqplane was

easily expanded with a variety of 10 formats.

The backplane structure BKPL_INTF under the object definition of a simulator was

the master node translator where both the baclqplane and simulator read and wrote

_ VARRAN^
i£6nitioo8^

KPL.MODELVAR
list ^

BKFL MODE[DEF

TUle

> SIMMOD]
HaahDible

L.RANGEDEF
lists ^

KPL SIM-MODELD
iCPL MODELD

ifiahThble

Hishittdmdexed
BKPLjnaGDEF

HcthTsble
BKFL DEVDEF

Hiihnble

SmAitx

BKFL DEVDEF
ttuhlStoe CRoot) BKPL.MAnOX

GzidMtx
BKFL SIM

ranous

fUfiS -^KPLPRM^

'— Tttle

KPL INTFDSyiAfix BKFL OBJ
HaahTkble

BKFL KEF
Rd

BKPL DBF

Hsih lodliulcxcd
^

DOUBLE
\UueG

BKPL EVENT
Git

BKFL OBJ
BKPL SIM
HtahTiblc BKPLJBVENT

Nec^Prev■. ■Itole
BKPL OBJ
Huh Table BKPL INIP

BKPL COMM
BKPL VAR BKPL^VAR

lisSigBKPL.OBJ
(Root)

BKPL SUBCOM
LSfcLiflt

Figure 4-2. Overview of the backplane database structure

90

information. All data access was done through this interface structure (See Appendix-B).

Each interface corresponded to a backplane object with an interface definition and

configuration. The interface definition was the primitive interface type defined by the

simulator. The interface configuration defined how a solution was applied to the interface.

In this coupling process, only shared data and monitor points from a simulator were

transmitted over the backplane while all other solution information was stored and

maintained by the local simulator. The backplane did not attempt to generate a common

database since data retrieval was a function performed by the local simulator or other data

translators as part of the design and simulation framework [57]. However, this data retrieval

procedure could cause a problem in the dynamic modeling approach where data from a

previous session could be overwritten if a simulator restart occurred. For this reason,

deactivating the simulator into the OFF mode prevented the overwriting of data compared

to a simulator shutdown with a restart.

4.3 Control Structure

The two control aspects of the backplane were the backplane controller (control

module) and the individiial simulator control. The control module interacted with the user

interface and defined the operations that the other simulators performed. At the beginning of

an analysis, the simulators performed the normal initialization process where a backplane

initialization sequence found a unique name or ID for the simulator and created the

backplane structure within the simulator. The backplane process in a simulator is shown in

Figure 4-3. Once all simulators were operational, the controller module defined the objects.

91

START

Define the simulator
analysis references

Import interface data.
Inclement different

flag operations
as possible.

Do local
Simulator process

Export interface data;
Export analysis - :

references

Initialize Backplane

Initialize Simulator
and baclqslane

interfaces

Mode
Preprocessing
Process baclq>lane
infonnaticm and

instructions

Mode
Postprocessing
Process simulator

results

Simulator Task FH
Backplane Task | |
Interface Task i

yes

hutdo Backplane shutdown

Normal
Simulator shutdown

EXIT

Figure 4-3. Simulator control overview flowchart

the initial modes, tolerances, interface configurations, etc for the simulators and sub-

controllers. The major aspects of the control structure were the simulator mode, operational

status control, and the triggering situations.

4.3.1 Simulator Modes

The most important control parameter for a simulator was MODE under SIMPRM,

which defmed the processing procedure for the simulator. The MODE parameter for a

simulator had eleven different states of operation as shown in Table 4-2. A simulator's

mode was controlled via the START and STOP commands. This section describes the

92

Table 4-2. Backplane modes for a simulator

Classification Mode Names

Non-calculation, non-interactive modes IDLE or OFF

ITERROGATE and OVERRIDE

SHUTDOWN

Non-iterative modes LOAD and SAVE

INDEPENDENT

SYNCHRONIZE

Iterative modes ITERATE and SENSCALC

TRACK

UPTODATE

different operational modes.

4.3.1.1 Non-calculation, Non-iterative Modes

Most modes in this category were a variation of IDLE or OFF. An IDLE mode

simulator received information from other baclqjlane elements and responded to new

instructions from the control module. After the successful completion of an operation or a

STOP command, all backplane elements were forced into the IDLE mode except for the

INTERROGATE mode. The OFF mode indicated that a simulator was to remain inactive

with no contributions to the solution matrix although the IDLE mode had the same

definition. The SYNCHRONIZE mode did make a distinction between the two modes.

The SHUTDOWN mode began the sequence for a simulator to perform an orderly

shutdown of its internal databases prior to the backplane forcing a shutdown. The simulator

had one opportunity to perform a shutdown after the shutdown flag was set to the simulator.

Otherwise, the next occurrence of the main backplane procedure forced the simulator to exit

or halt.

93

The INTERROGATE mode broadcasted the local simulator's object variables, the

object configurations, and simulator parameters to the central controller for diagnosis and

configuration. This mode provided all backplane elements with knowledge of the objects

and variables involved in the simulator including any previous responses or event lists. This

information was used for Synchronization and simulation initialization. A backplane

element entered the OVERRIDE mode when the INTERROGATE mode was completed.

The OVERRIDE mode was another variation of the IDLE mode where the READONLY

parameters in the backplane could be overridden.

4.3.1.2 Non-iterative Modes

The SYNCHRONIZE mode was a non-iterative version of the ITERATE mode

where a simulator applied variable information to synchronize with the operation of the

other simulators. This operation was a roll-forward for simulators that were being spawned

or restarted from the OFF mode. Additional synchronization modes were the SAVE and

LOAD operations for capturing and retuming to a previous calculation point as discussed in

section 2.5 for rollback or quick initialization. However, these functions were simulator

operations and not backplane functions, so the backplane only initiated the operations. For

manual synchronization processes, the OFF mode distinguished simulators that had

previously been active (now in an IDLE model) from simulators that were OFF in the

previous analysis operation. The backplane automatically synchronized simulators that

changed from an OFF to an ITERATE mode during an analyses.

94

The INDEPENDENT mode detached the simulator from the backplane. By

detaching the simulator from the backplane, the simulator retumed to an independent

operational mode where most backplane overheads were removed. Once a simulator was in

the INDEPENDENT mode, the simulator was not able to reconnect to the backplane. The

simulator did interact with the backplane for defining interface values that were potentially

stored in a data event list.

4.3.1.3 Iterative Modes

The ITERATE mode was the primary iteration process where all simulators were

iteration locked and data synchronized. The other iterative modes followed the iteration

locking rules of the ITERATE mode simulators. The three iteration levels for the ITERATE

mode simulators were:

1. Iteration done.

2. Reference done.

3. Simulator-stopped.

The lowest priority was the iteration done setting, where the simulator had completed the

present iteration for the given reference point without convergence. The reference done

level indicated that the simulator had found a converged solution for the given reference

point. When all simulators reach the done level, the process continued to the next reference

point on the next iteration. The simulator-stopped level indicated that the simulator had

reached a stop or error condition. Simulators remained in a stop state until all simulators

reached an equivalent state. The stopped level had the highest priority. Although the rules

were common, the TRACK and UPTODATE modes applied the rules at different levels.

95

The SENSCALC mode was a temporary mode in the ITERATE mode for generating the

sensitivity parameter matrix of a simulator required by the calculation process.

The TRACK mode was a variation of the ITERATE mode where simulators were

locked at the reference done level, so the TRACK mode simulators were not involved in the

standard calculation procedure. The TRACK mode allowed a simulator to track the final

solution of other simulators by lagging the operation of the ITERATE mode simulators. The

simulators in the ITERATE mode had to wait for TRACK mode simulators to fmish their

analysis of the previous reference point. SpecificaUy, the TRACK mode was a concurrent

verification tool of other simulators used with an accuracy trigger.

The UPTODATE mode was a conibination of the ITERATE mode and

SYNCHRONIZE mode. The purpose of this mode was to eliminate part of the sequential

delays for a simulator in an OFF mode to be resynchronized with simulators in an

ITERATE mode. The procedure waited for the simulators in the ITERATE mode to exceed

. the retained event limit (number of reference points that an object can maintain during an

analysis). When the minimum reference point in all event lists were beyond the present

reference point of the UPTODATE mode simulator, the simulator synchronized with the

other simulators to the last valid solution point. An UPTODATE simulator only attempted

to remain up-to-date with the analysis of the ITERATE simulators. A simulator in the

UPTODATE mode was not locked with the simulators in the ITERATE mode

96

4.3.2 Simulator Status Control

The three synchronization parameters in the backplane were REFPREV (stable or

previous iteration point), REF (present iteration point), and REFDELTA (next iteration

delta value for the REF point) as shown in Figure 4-4. These reference parameters

corresponded to common variables in the analysis such as time, frequency, etc. This work

focused on transient analyses where time was the primary variable. The reference structure

for all synchronization data within the backplane was expressed as a hexadecimal number

of discrete intervals and not as a floating-point number [92,pp. 21]. Without using

hexadecimal representations, the different backplane elements lost synchronization due to

timestamp mismatches caused by error accumulation and rounding of imprecise floating

point numbers.

Several flags were defined for the simulator from the backplane to control various

aspects of the analysis as described in Table 4-3. The one essential flag was the shutdown

indicator that allowed the simulator to shutdown in a normal fashion and to cleanly close all

related databases. All other flags were optional and depended on the capabilities of the

--variable

refdelta' refdelta

(present) : (next) |
time

re§)rev ref

Figure 4-4. Major variable reference (time) exchange between a simulator and backplane

97

Table 4-3. Flags generated from the backplane to the simulator.

Flag(**) Description

SHUTDOWN Indictor to shutdown the simulator in an orderly fashion.

OPERATION Lndictor that a backplane interface was in the analysis.

SOLV_SAVE Indictor to save the present iteration data as the solution. Without this
flag, the simulator stored interim iteration data.

LOAD_FILE Indictor to load extemal file that contains simulator solution and state

information (BACKUP/restore function).
LOAD_STATE Indictor to load a simulator's backup solution and states from memory

(BACKUP/restore function).
NEW TIME Indictor that the REF variable has changed.
ROLLFORWARD Indictor to a simulator that the backplane will be synchronizing the

simulator to new data in the future. If possible, the simulation should
move to the new reference point, and restarted the analysis assuming
initialization conditions applied.

SAVE_FILE Indictor to save a simulator's solution and state information into an

extemal file (BACKUP/save function).
SAVE_STATE Indictor to save a simulator's solution and state information into

memory (BACKUP/save function).
SENS_CALC Indictor that sensitivity calculations are being performed. The

simulator's local model evaluation process can be skipped if possible.
SENS_SSAVE Indictor of the beginning of sensitivity calculations. The simulator

should save the present solution values to restore the values at the end
of the sensitivity process.

SENS_SLOAD Indictor of the ending of sensitivity calculations. The simulator can
load the stored solution values, so an extra iteration is not required to
retum the solution back to the previous value.

** The prefix BKP is applied to all flags to avoid naming conflicts with the simulator.

simulator, but the efficiency of the coupling process could be improved by using these flags.

The sensitivity control flags had the greatest potential to improve the performance of the

overall analysis by eliminating calculation steps in a simulator (See section 4.4.5).

4.3.3 Model or Simulator Switch Conditions

This simulation backplane had five different triggering conditions for model

switching as defined in Table 4-4. All the different trigger conditions can be used

98

Table 4-4. The different trigger conditions available in the backplane

Trigger Description

Accuracy This trigger uses simulators in a TRACK mode to maintain a specified
accuracy compared with the reference device model. The trigger is re
activated after occurring.

Immediate Immediately switch between the active device definition and a new
device model. The trigger is de-activated after occurring.

Range This trigger uses the ranging information in the model definitions to
optimize performance, variables ranges, and accuracy. The trigger is
re-activated after occurring.

Reference At a specific reference point, switch to a certain device model. The
trigger is de-activated after occurring.

Variable This trigger uses variable conditions to change between different
model representations. The trigger is re-activated after occurring.

concurrently, although the accuracy and range triggers were designed to be autonomous.

Most trigger conditions waited for the convergence of the present iteration sequence before

implementing the model switching process to eliminate triggering loops. The specific rules

for model selection using the different trigger condition are outlined in Appendix-A. A

general description of the dynamic modeling process was defined in section 2.5.

The dynamic modeling process within the backplane had several levels of decision

making. The trigger conditions defined the device status, the device status defmed the object

status, and the object status was used to defme the simulation mode. Once the simulator

mode was defined, the object status was redefined based on the simulator status. The rules

for the object and simulator operation were very simple. If any object in a simulator was

active, the simulator had to be in an ITERATE mode. Otherwise, the backplane assigned the

simulator mode based on the DEACTrVE_MODE parameter. For a simulator in the

99

ITERATE mode, the object status was either ON or TRACK. The TRACK mode required

the object to track the operation of the active interfaces in a node. An object status was set

to OFF only if the simulator was in an OFF mode. The other simulator modes required the

simulator's objects to be in a TRACK mode.

4.4 Calculation Control Structure

The calculation procedures were outlined in Chapter 3, where the basic iteration

process was defined by Equation 3-24 and Equation 3-25. The scheduling and calculation of

the sensitivity information was most critical task in this coupling process, since all aspects

of the calculation process depended on the sensitivity information. The exact sensitivity

functions were not required to find a solution in the iteration process, but better

approximations had faster convergence [12, 92: pp. 72-81]. Any improvement in

convergence enhanced performance and iteration efficiency by eliminating calculations.

Thus, a variety of scheduling and sensitivity calculation options was provided by the

backplane, but full optimization of the backplane interaction with the simulator was left as a

future development issue. The specifics of the matrix building, convergence criteria,

sensitivity calculation controls, and basic object modes are defined in this section. The

interface initialization procedures did impact die calculation process as discussed in

Appendbc-B.

4.4.1 Matrix Building

The matrix building process was a very straightforward procedure. The backplane

rebuilds each matrix on a START command and rechecks all device, object, variable, and

100

trigger lists. During the building process, four matrixes were constructed or updated:

perturbation, sensitivity (GRADMTX), interconnection (SYSMTX), and equivalent

(SIMMTX). The perturbation matrix was a simulator specific matrix that was used to

generate a simulator's sensitivity matrix. The sensitivity matrix was exported to all

simulators, and was used to generate the interconnection matrix. The interconnection matrix

was used to calculate new solutions and to generate the equivalent sensitivity matrix for the

local simulator.

All matrixes were fixed in terms of variables in the matrix although a simulator's

local perturbation matrix had dynamic characteristics because of the input-causality

detection process. Only the perturbation matrix used the inactive and active variable

capabilities of the backplane matrix structure where the inactive variables were not used in

the solver process and were zeroed. Delta information (acquired during the SENSCALC

mode) was defined for both active and inactive pikrameters since causality was determined

after the perturbation method was applied to the simulator. The causality detection process

essentially determined which variables were active and inactive. Finally, the perturbation

matrix was selectively built based on an interface's characteristics defined in the backplane.

All matrixes were solved using a pivoting LU decomposition method [86].

4.4.2 Convergence Control

Because of the variety of interface stmctures and procedures, the backplane initially

implemented all convergence mles based on the EFFORT and FLOW rules for all variables

from each simulator. Specifically, the basic convergence rules were:

101

\^MAX ^MIN
,_ . Equation 4-1
|Xi^|<e(iw)

The e() function was the error calculation function of the backplane defined in Equation 2-

10. After several tests, the realization was made that the basic rules had a serious flaw. The

calculated solution from Equation 3-24 converged, and thus, the variable values for the

simulators reached a consistent solution. However, Equation 4-1 was not satisfied and the

iteration process did not converge. This approach differed from the conventional procedure

of testing the convergence of each variable of the calculation solution with scale value

(a = 1) where

a n - Jc,I < e(;c,.) Equation 4-2

To eliminate the flaw, the conventional convergence rule was incorporated into the

convergence process using the same tolerances parameters with tighter scale value

(a = 10). When all variables satisfied Equation 4-2 given a sufficient number of iterations

in the present sequence, the backplane declared the solution valid and continued to the next

iteration point. Certain interfaces did override the secondary convergence rule when the

interface variables were not part of the calculated solution. Equation 4-2 was checked

ONLY after the initial convergence of all simulators.

Another problem during the solution process was solution oscillations. A calculation

sequence was converging if the following condition was satisfied:

= S(•*'+1 - T < A2 = ~ ̂.-1 f Equation 4-3

When this condition was violated, a relaxation factor (a) of 0.5 was added to Equation 3-

102

24 to limit divergence, or

^,>1 =^,-a Equation 4-4

After the divergence condition had been detected a certain number of times, the relaxation

factor was always applied to the calculation process imtil the next iteration sequence began.

Using Equation 4-3 and 4-4, the iteration sequence could still have a slow rate of

convergence. The slow convergence rate was identified by

(Aj < A2) and (Aj > 0.9 • Aj) Equation 4-5

On this condition, the fmal solution was weighted with the present and previous values to

generate a new solution [102] where

J=N

N = 2,ao = 0.5,ai = 0.4,a2 = 0.1 Equation 4-6
;=o

The combination of the simulator sensitivity p^drheters and variable oscillations was one

cause of the slow convergence problems.

4.4.3 Sensitivity Delta Definitions

The calculation choices for the partial differential equation in the iteration process

were the Newton or secant based approaches although various methods can be used [92].

For a comparison, Newton's method had a quadratic convergence rate (m=2) where a

secant's convergence rate was lower at (m=1.618) [94, pp. 26-32]. The difference between

the two approximations was the size of the delta where the Newton method had a smaller

delta than secant method. The secant method became equivalent to the Newton

103

approximation as the variable delta approached a small value. The size of the delta was

critical as the applied deltas could become too small and sensitivity information

encountered rounding problems [94, pp. 155-157]. Large deltas had the problem of masking

essential information. The sensitivity tolerance parameters were individually definable via

the TOLERANCE command while the object parameter GRADCALC defined the delta's

magnitude for the sensitivity process.

The backplane process applied a single delta to calculate the sensitivity information,

so the direction of the delta had ,an impact on the Coupling process. Minor variations in the

delta direction often meant the difference between convergence and non-convergence.

Several different options to define the direction of the applied delta were available via the

object parameter GRADSIGN (See Appendix-A); Usually, the default option applied the

delta to force the simulator's variable value toward the calculated value, since a common

direction toward the "true" solution should maximize convergence. In addition, the

sensitivity information affected the solution, which determined how a simulator adjusted its

timestep. The performance of the coupling process was also improved by minimizing the

number of time steps to reach the REFSTOP point.

4.4.4 Sensitivity Scheduling and Mode Definitions

The scheduling of the sensitivity calculation was controlled by the object parameter

GRADTIME (See Appendix-A). This parameter had a direct relationship on the number of

calculations between the simulator and backplane. Prior to the first converged solution,

sensitivity information was calculated per-iteration regardless of the GRADTIME definition

104

to implement Newton's method to the fullest degree possible. Because of this diversity in

the sensitivity scheduling, the dynamic configuration process for an interface from section

3.Lwas performed at the reference-done level in the iteration sequence and on the detection

of a new input variable causality.

The GRADMODE parameter for each object defined how to calculate the

sensitivity information. The three options were IDENTITY or NONE, DIAGONAL, and

FULL. The IDENTITY option was intended for the correction process, and this option

disabled the calculation process for non-correction modes. The DIAGONAL option

implemented the sensitivity procedures based on decoupled or very-strong diagonal

conditions. In the DIAGONAL mode, all sensitivity information was calculated under the

assumption that all gain and coupling effects between the different nodes variables in a
;

simulator were negligible and set to zero. This method specifically used the secant approach

using the present and previous iteration values while the delta(s) was sufficiently large. No

sensitivity calculation modes (SENSCALC) were required. The FULL option implemented

the perturbation method where a unique delta was applied to a single interface and all

related delta information was gathered. Then, the backplane solved for all sensitivity

parameters simultaneously using Equation 3-23 after input causality was determined.

Another critical option for the sensitivity process was how the backplane handled a

simulator rollback during a sensitivity calculation. The global parameter SENS_DREF

controlled this decision. Initially, the rollback problems were not a significant issue,

especially with small delta values and simple problems. As the problem complexity

increased, any error in the sensitivity calculations resulted in sensitivity parameter errors

105

and causality identification problems. Furthermore, any divergence in the iteration process

was often sufficient to cause complete divergence depending on the sensitivity scheduling

option.

4.4.5 Enhancement Sensitivity Calculation Options

Another important consideration for the coupling process was whether the model

evaluation in a simulator was necessary, since most simulators generated and solved a linear

representation. If this linear matrix was available, the sensitivity calculation was

approximately equivalent to varying the source values and solving for the delta effects on

other variables without additional model evaluations. For a linear system approximation in a

simulator where A-x = b, this process was defined by

A-{x + Ax) ={b + Ab)
A-Ax = Ab Equation 4-7

Ax = A-^-Ab .

Since. this simulator capability would enhance performance, the sensitivity calculation

process from the backplane provided a flag to the simulator to indicate sensitivity

calculations. The model evaluation process can be skipped in the simulator when possible.

This flag also allowed the sensitivity process to be skipped if the local simulator had a better

mechanism of calculating the sensitivity information for the backplane.

4.5 Simulator Selection

In this research, the basic premise from the first chapter was to use the discipline

specific tools and simulators for MEMS analysis. With the proper backplane structure, the

106

coupling of the simulators was a straightforward procedure that was simplified with the

selection of an open simulator. A more important choice for the coupling process was using

commercial or public domain software. Both types of software have advantages and

disadvantages with tradeoffs that were very clear.

With commercial simulators, the designer had customer support and fully

documented modeling capabilities with efficiently defmed graphical user interfaces for

visualization of the results. These tools were typically more polished and provided better

feedback on errors. In addition, a wider range of algorithm selection was usually available

to improve the convergence properties of an analysis. For the disadvantages, the

commercial simulators had to be purchased and some yearly maintenance fee was required

for the latest version. In some cases, the intemal algorithms were accessible only through

the basic simulator framework, so these simulators did not always have the flexibility

needed to incorporate the backplane elements for sufficient control of the simulator.

Public domain simulators had greater flexibility for the designer to make changes

since the source code was typically available. The initial costs of the product were much

less, but the users eventually paid for product in time and effort because of the lack of

documentation and "hidden" features in the code. The degree of testing for the code was

usually less than commercial software. Furthermore, the user became responsible for

maintenance and for debugging the software unless a large number of users were supporting

the development of the basic program and any auxiliary software.

The choice between the two environments became a tradeoff between time and

money. A sufficiently large budget provided the designers with a framework of tools and

107

capabilities if the users knew all the tool requirements. Otherwise, resources were

squandered on tools that do not truly address the present and future needs of the users. With

the public domain software, the user experienced a limited view of the basic techniques and

only wasted time and not as much money in the process. For graduate students, more time

was available than money, so this work began the development with public domain

software to have maximum control and flexibility. Specially, the electrical simulator was

chosen as Spice3f4 [97] and the FE simulator was constructed using the deal-II FE toolkit

[98]. In both selections, the optimum simulator choices were not made.

4.5.1 Electrical Simulator

The Spice program was a core simulator with only analog capabilities, and future

expansion of this simulator's capabilities would require significant development. Spice was

only chosen in this work because most public-domain electrical simulators use Spice has a

comparison benchmark. The code was easily accessible. In retrospect, a simulator with an

algorithm backplane should have been used. Still, the program sufficed for this research.

One timestep implementation problem was found with the breakpoint definitions in Spice

and a modeling discontinuity problem was discovered.

One major implementation issue occurred with the interfacing of the backplane to

SPICE (version 3f4) because of the transient breakpoints created by SPICE. At a

brealqpoint, SPICE algorithm reduced the next timestep delta of the analysis. This

interaction with other simulators caused problems especially when the reference point of the

analysis was rolled back before the breakpoint. of another simulator. Because of the

108

breakpoints, the iteration process reduced timestep more than necessary unless the

breakpoint algorithm was performed only when the SOLV_SAVE flag was active (ON) and

GRAD_CALC was inactive (OFF). Without these conditions, the interaction between two

simulators was very dependent on the sensitivity options with results ranging from

divergence to long iteration sequences per reference point with a small timestep. After the

conditions were applied to the breakpoint algorithm, the coupling process become

consistent and less dependent on sensitivity options.

However, SPICE did have one implementation problem that was not a result of the

backplane and simulator interaction. The problem was in the interaction of a voltage source

with intemal models, specifically transistor models. When the voltage was connected

directly the transistor models, the current response had noticeable errors, which may have

been a result of unrealistic or poorly defined transistor models. The problem was also

observed with a Thevinin interface, but the error was more pronounced (orders of

magnitude larger) with the voltage source. When tighter convergence parameters were

required, the coupling process did not converge if a voltage source was used. The error was

often insignificant compared to response, so the coupling process was not affected.

4.5.2 Finite Element Simulator

The search for FE simulators found FE toolkits and not simulators. Because of

domain decomposition problem, a toolkit allowed greater flexibility to examine any

structure or field-based problem. Consequently, this research had to construct a FE

simulator, and the choice was made to use the deal-U toolkit [98] because of "well

109

documented" C-H- source code, but other choices were available [101]. For the

implementation, the basics of the FE method with transient analysis were obtained from

[99].

This FE simulator was developed to examine the coupling process and not for in-

depth modeling. This research had to define the modeling and material properties, where the

preferred approach was to have the built-in modeling. In this development, the FE simulator

implemented the material characteristics as piecewise linear (PWL) fionctions. Still, the

modeling process was made sufficiently complex to verify the coupling process and to

examine the dynamic modeling procedure. The examples were not easily implemented in

the electrical simulator.

4.6 Summary

This chapter has outlined the backplane structure and implementation over the four

basic components of the backplane. The emphasis of this chapter was the control process,

which determined the flexibility and capabilities of the backplane. The complete

information on parameter setting is defined in Appendix-A while this section gives an

overview of concepts considered in this backplane implementation.

110

Chapter 5. Results

This chapter presents a result summaiy on the coupling process for three different

coupling categories: electrical-to-electrical coupling (section 5.2), electrical-to-mechanical

coupling (section 5.3), and dynamic modeling process (section 5.4). An overview of the

example types and sensitivity options is outlined in section 5.1. The goal of the two basic

coupling tests was to find the optimum interface, where optimum interface minimized the

total number of simulator iterations with the backplane and converged over the most

examples. The dynamic modeling process demonstrated that the backplane allowed a broad

range of analysis capabilities where designers have the flexibility during simulation to

switch between different algorithms or design representations for accuracy or performance

reasons. Most of these results are for functional verification of the backplane and a

demonstration of the backplane's capabilities and failure modes.

5.1 Overview, and Sensitivity

In the coupling tests, three types of examples were examined: no-feedback (effort

gain=0), feedback with small gain (effort gain < 1000), and feedback with large gain (effort

gain > 1000). The examples had vaiying degrees of causality with strong and weak coupling

to examine the dynamic interface switching process and the variable-causality identification

process in Appendix-C. The different feedback examples made certain that the backplane

could solve problems that were poorly partitioned across multiple simulators with awkward

interfacing characteristics. The electrical-to-electrical coupling tests implemented all of

these tests, while the electrical-to-mechanical coupling implemented a small subset.

Ill

A common set of interfaces and sensitivity parameters were tested on each example

in the coupling tests, so failures did occur. The failures were typically a result of four

conditions: simulator non-convergence, interfaces violating causality assignment, deadlock

limit (100), and backplane iteration limit (10000). The initialization procedure of the

backplane was the most critical phase of the coupling process, since the backplane had to

start the analysis based on the initial solutions of the simulator. In certain cases, the

backplane initialization sequence contributed to the problems because of the calculation of

erroneous sensitivity parameters due to poor initial solutions. The backplane initialization

routines regarding sensitivity calculation procedures at initialization were deficient because

the sensitivity delta definitions.

Without a doubt, the proper calculation of the sensitivity parameters had the

major impact on the coupling process. Even minor variations in the sensitivity

calculation procedures had a significant impact on the convergence and iteration

efficiency of the backplane. The accuracy of the sensitivity parameters determined the

number of iterations required to reach convergence, and the appropriate sensitivity

parameters (local input causality) had to be identified. In most cases, the number of

sensitivity calculations often dominated the total number of simulator iterations with the

backplane. Optimizing the sensitivity calculation options was a critical task for achieving

iteration efficiency because of the tradeoffs between calculating parameters and performing

normal convergence iterations. Specifically, any minimization of the number of simulator

iterations eliminated calculations, which improved the performance of the coupling process.

112

Otherwise, the backplane had no direct control over the individual aspects of a simulator's

performance besides the flags defmed in Table 4-3.

For the coupling process, the sensitivity scheduling option (GRADTIME) was the

most critical definition. The number of iterations {n^,„ation) was defined as

Equation 5-1

The parameter 77, was the average number of iterations per timestep, which had a

dependency on all sensitivity calculation options. The parameter «, was the number of

interfaces into a simulator. The parameter a, was the scaling factor defmed in Table 5-1. Of

coarse, the interaction of an interface's coupling options with a simulator's internal

algorithms did impact the performance and convergence of the simulation.

5.2 Electrical-to-Electrical (E2E) Coupling

This section focused on iterMion efficieiicy (or iteration inefficiency), instead of

performance because these examples were all relatively small problems with poor

performance compared to a single simulator solution. Specifically, these examples could not

Table 5-1. Definition of the scaling factor for different sensitivity scheduling options.

Sensitivity Scheduling Option Scaling factor definition (a,.)

Iteration n,-\

Timestep 1

Conditional 1
< 1

72,

Error «£ • 72, 0 < «£ < 1

Diagonal 0

None, Identity 0

113

overcome the overheads created by the communication and calculation processes of the

backplane. In these tests, 31 examples (14 no-feedback, 9 low-gain feedback, and 8 high-

gain feedback) over 76 interfaces and 18 different sensitivity and calculation parameters

were tested (42408 analyses) where the average analysis time was 20 seconds. The iteration

results for these examples are in Appendix-D.

As a summary, the average iteration results for the E2E coupling examples are

presented in Figure 5-1, the convergence statistics are in Figure 5-2, and the average

iterations per transient point are in Figure 5-3. A complete listing of the interface number to

the particular interface combination is provided in Appendix-D. The average statistics and

maximum variation for the iteration and convergence results is defined in Table 5-2, where

variations values are for the different calculation and sensitivity options. In Figure 5-, the

averages over the (n) examples that converged were based on relative statistics {Xj) of

each example (j) with respect to the minimum valtie ^), or

^-1 Equation 5-2

This figure of merit defined the relative iteration inefficiency (11) of an interface compared

to the optimum interface selection in each example. Using Equation 5-2, the goal was to

eliminate timestep variations across the different examples. The interface combination with

the smallest iteration inefficiency value had the best overall coupling performance. For

direct comparisons between interface combination X and Y, an absolute iteration

comparison (AlC) was required to convert the relative figure of merit to an absolute merit.

114

1-36: Conventional 45-52: Paraliei Corteotion (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamlo interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

Conditional Sensitivity Scheduling
» RelTol

n RelTol Inteip

RelMax

K RelMax Interp

0 4 8 12 16 20 24 . 28 32 36 40 44 48 52 56 60 64 68 72 76
Interfece Types

12

10

Error Sensitivity Scheduling

. ♦«

♦ RelTol

a RelTol Interp
. RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

8 --

Iterative Sensitivity Scheduling

■OTUci»9x°0 ̂ ^ jx n eio^ y* « « 'it

» RelTol

P RelTol Interp
RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

12

10

8

6

4

2

0

Timestep Sensitivity Scheduling

i_ . „ r^- . R o .t, , , n- , tffe

♦ RelTol

□ RelTol Intetp
' RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

12

10

8

6

4

2

0

Other Sensitivity options

B°.P O

-«o-

-1 1 1 r

* Diagonal
D Diagonal Interp

Identity

0 4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

Figure 5-1. Iteration inefficiency statistics for all E2E coupling examples

115

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Carectlon (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correctlon(ESRC) 69-76: Sequential Correction (ESRC_SENS)

100

2? 80

e

60
V

e
o

40
U

20

Conditional Sensitivily Scheduling

R Jig g
54

'Ti 'J-Vv

' I n n n I n T '

« RelTol

o RelTol Inteip

RelMax

X RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40- 44 48 52 56 60 64 68 72 76
Inteiface Types

100

8 80
5
E?60
S
§ 40
u

5? 20

Error Sensitivity Scheduling

,1"' ip w a
!r< ^

♦ RelTol

n RelTol Inteip

RelMax

K RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

100

8 80
B

§>60
1
o 40
O

^ 20

Iterative Sensitivi^ Scheduling

iP it TIS.S^., .ft, « RelTol

n RelTol Interp

RelMax

X RelMax Interp

g S3 " ̂ S • 55-* "S3

y«» axK " •><

.. ft ft A

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

100

880
C

&60

|«
^20

0

Timestep Sensitivity Scheduling

I

-IS—

^ ..P....
ri

w

—B— U

9 -p - ̂ A

^ n

F.1

ft W W U

♦ RelTol

n RelTol Interp

RelMax

» RelMax Inteip

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

100

8 80
a

60

3 40
^ 20

0

Other Sensitivity options

n" —ri —g_Q—fi_Q—6 ^8
gc n a

.fl cSS»,»a «

no

« Diagonal

a Diagonal Inteip

Identity

0 4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Figure 5-2. Convergence statistics for all E2E coupling examples

116

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

25

20

15

10

5

Conditional Sensitivity Scheduling

- ̂ M "1 R

9 RelTol

n RelTol Interp

RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

25

20

15

10

Error Sensitivity Scheduling

S^y-' sfesfrs I0~otis< cf7l5Ki3

® RelTol

n RelTol Interp

RelMax

X RelMax Inteip

T 1 1 1 1 \ 1 1 1 1 1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

25

20

15

10

5

Iterative Sensitivity Scheduling

¤ RelTol

n RelTol Interp

RelMax

X RelMax Interp

-1 1 1 1 1 1 r——I 1 1 I I 1 1 1 1 1 I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

25

20

15

10

Timestep Sensitivitv Scheduling

Fi-
; t

« RelTol

n RelTol Interp

RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

25

20

15

10

Other Sensitivity options
« Diagonal

□ Diagonal Interp
Identity

0 4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Figure 5-3. Average iterations per time point statistics for all E2E coupling examples

117

Table 5-2. E2E statistics based on the sensitivity options over ail interfaces

Flow Correction Conventional and Dynamic
Interfaces Inter aces

Options Average Average Average Average
Convergence Iteration Convergence Iteration

(%) Inefficienc

y

(%) Inefficiency

Conditional+Reltol 86.1 2.71 55.0 1.95

Conditional+Reltol+Intp 85.3 2.52 54.5 1.90

Conditional+ReltoMax 85.2 2.72 55:4 1.90

Conditional+ReltolMax+Intp 83.7 2.36 54.4 1.93

Diagonal 20.7 1.54 24.9 1.02

Diagonal+Intp - 19.2 1.96 22.1 1.00

Errort-RelTol 82.5 1.46 54.3 1.41

Error+Reltol+Intp 85.3 1.77 54.3 1.40

ErrorfRelTolMax 85.2 1.52 54.2 1.40

Error+ReltolMax+Intp 83.7 1.67 53.1 1.37

Iteration+RelTol 85.3 3.61 54.6 3.22

Iteration+Reltol+Intp 84.6 3.66 54.2 3.46

Iteration+RelTolMax 83.8 3.37 53.8 3.29

Iteration+ReltolMax+Intp 83.7 3.74 53.8 3.40

Timestep+RelT ol 74.3 1.60 53.2 1.66

Timestep+Reltol+Intp ^71.6 1.67 52.7 1.56

Timestep+RelTolMax 79.2 1.64 53.2 1.55

Timestep+ReltoMax+Intp 78.0 1.68 52.6 1.53

The absolute merit was defined as

1 + 77,
Equation 5-3

The following sections discuss the results from the different interfacing tests.

The different calculation options caused a 16% convergence variation in the flow

correction process compared to a 2.8% convergence variation with the conventional and

dynamic interfaces as shown in Table 5-2. Since the convergence of the conventional and

dynamic interfaces was consistent across the four major scheduling options, the

118

combination of the backplane initialization procedure and the interface characteristics was

considered the main factor in achieving convergence (especially initial convergence). The

iteration inefficiency was most dependent on the sensitivity calculation options, although

other secondary options did have a small (+10 percent) impact. Clearly, the

CONDITIONAL, ERROR, ITERATION, and TIMESTEP option were valid techniques for

scheduling sensitivity calculations. The DIAGONAL option could only be applied in

decoupled situations.

The differences between the total number of iterations for different interfaces did

not always depend on the backplane parameters. Instead, certain interface configurations

often caused SPICE to reduce its timestep during a transient analysis, which increased the

number of analysis points and the total iteration count. The result was usually a better

iteration efficiency per timestep, but more steps were required to reach the final analysis

point. Interface combinations were deemed less efficient if the overall number of iterations

was larger.
/

5.2.1 Direct Configurations

As explained in Chapter 3, the direct configurations had the worst characteristics of

any configuration or interface tested, and the simulation process typically diverged when

direct configurations were used. The direct configurations could only be used when one

simulator's interface characteristics dominated the other simulators contributions, hi

addition, the interface had to meet the gain requirements outlined in section 3.3.2 or have no

coupling to other interfaces within the simulators. In the situations where these

119

configurations converged, the diagonal-sensitivity calculation option with any interface

combination was more iteration efficient than the direct configurations. For these reasons,

no testing was jjerformed on the direct configurations.

5.2.2 Conventional Configurations

The interfaces used by the simulator had an effect on the iteration inefficiency of the

coupling process. An analysis by interface type over the CONDITIONAL, ERROR,

ITERATION, and TIMESTEP GRADTIME sensitivity options is presented in Table 5-3,

where any interface combination using the specific type was included in the average. Table

5-3 also shows the interface combinations with greater than 75% average convergence rate.

The interface combination group with the highest convergence rate was the system

configuration in partition 0 (driver circuit) with voltage, Thevinin, Norton, or Flexible

Table 5-3. Statistics for generic and specific E2E interfaces

Interface Definition Convergence Iteration

(%) Inefficiency

Any Current 24.1 2.78

Any Voltage 54.3 1.85

Any Thevinin 58.4 1.96

Any Norton 62.8 1.78

Any Flexible 60.1 1.79

Any System 44.7 1.82

Norton-Norton 76.6 1.51

Norton-Flexible 75.8 1.46

Flexible-Norton 76.0 1.55

Flexible-Flexible 76.2 1.51

System-Voltage 76.4 1.86

System-Thevihin 83.6 2.01

System-Norton 88.7 1.56

System-Flexible 89.3 1.48

120

interfaces in partition 1 (device circuit).

From the generic interface comparisons in Table 5-3, a current source interface had

the worst coupling characteristics of any conventional interface. This result was expected

since a current source does not allow the calculation of the appropriate sensitivity

parameters for nodal analysis. One of the surprising results was that the system

configuration had a 29% lower convergence than the other sensitivity-based interfaces. The

explanation for this lower convergence was poor interaction between the equivalent matrix

and the simulator to calculate valid sensitivity parameters at initialization. In addition, the

Thevinin interface was expected to have equivalent convergence with the Norton interface,

but the results showed 7% lower convergence and 50% higher iteration inefficiency (AIC of

'%).

The Norton interface had higher convergence than the Flexible interface in a generic

sense, although each interface used the same calculations. The only difference was that the

Flexible interface required SPICE to calculate the retum current through the voltage source.

Most discrepancies in the general cases were in all interfaces that contained a voltage

source. The modeling issue firom section 3.5.1 was another explanation for the problems, so

different interface combinations would have different characteristics based on how the

interface interacted with the model. Based on specific interface comparisons in Table 5-3,

the Flexible and Norton combinations had nearly equivalent results. The SYSTEM-

FLEXIBLE and SYSTEM-NORTON combinations had the best convergence and iteration

inefficiency results of the conventional interfaces.

121

5.2.3 Flow Correction Configuration

The flow correction process had the best initialization characteristics of any

interface, and most examples found a stable initialization point. Unfortunately, this process

was typically not as iteration efficient as the other interfaces. The iterations per analysis

point of the correction process in Figure 5-3 were consistent with other interfaces, so the

poor iteration efficiency was the result of more time steps in the analysis. The flow

correction process had the worst problems with violating the backplane iteration limit.

However, these results used the default backplane setting and no attempts were made to

optimize the CORRSENSRATIO parameter for a particular problem.

The iteration results in Figure 5-1 showed very sporadic responses that were

dependent on the sensitivity calculation options. The dependency on the sensitivity options

indicated that the minimization criterion from section 3.4.3 was not very robust and the

sensitivity parameters for the predictor rhodel were erroneous. The problem was that the

applied flow delta values were too small to generate good sensitivity information for the

internal behavioral model. Clearly, a better delta-calculation method was required for this

interface procedure. The flow correction process also became unstable as the modeling error

increased based on the decrease in the convergence statistics. The decreasing convergence

with increasing modeling error could have been the result of the sensitivity calculation

problems.

Before testing the parallel and sequential sequencing options, the sequential process

was certain to have lower performance because the processes occurred in series. The

sequential option had little merit in the general coupling process, since most procedures do

122

not have a wait state for results from another simulator. For these two reasons, the

sequential procedure was considered very ineffective unless all simulators were in this

mode. The sequential method had to be twice as iteration efficient as the parallel method

values before the sequential method would be viable option in the normal coupling process.

A summary of the flow correction process is presented in Table 5-4 over the different

options considered in section 3.4.

The sequential method was only 20% percent better in iteration inefficiency

compared to the parallel method while convergence characteristics were approximately

equivalent. The CORRECTOR and CORRECTOR_SENS interfaces had approximately the

same convergence, but the CORRECTOR interface had 5% better iteration efficiency than

the CORRECTOR^SENS interface in the full sensitivity mode. In most cases, the

DIAGONAL and IDENTITY options in the flow correction process were an unreliable

approach to the problem, except in very specific problems.

Table 5-4. E2E flow correction process characteristics

Sensitivity
Option

CORRECTOR CORRECTOR_SENS

Parallel Sequential Parallel Sequential

Convergence (%)

Full 83 87 79 77

Diagonal 12 28 27 14

Identity 14 0 5 0

Iteration Inefficiency

Full 2.46 1.98 2.58 2.41

Diagonal 3.48 0.85 1.49 1.18

Identity 0.14 - 0.03 -

123

5.2.4 Dynamic Interface Configuration

A summary of the dynamic interface configuration is presented in Table 5-5. The

results were based on the default CAUSRATIO setting of ten, so further optimization of this

process was possible. The Norton-Flexible-Voltage configuration had the highest iteration

efficiency of ANY interface, but the convergence percent was too low to be a viable

procedure. The dynamic interface processes that used a SYSTEM configuration had higher

convergence rates, and these procedures were competitive with the optimum conventional

interfaces. The present implementation did have flaws at initialization.

The initialization problem with the dynamic interface configuration represented a

contradiction. This dynamic process had to determine the interface to calculate the

sensitivity parameters properly, but the sensitivity parameters were required for determining

the proper interface. Depending on the coupling problem, certain interfaces had better

initialization characteristics to calculate valid sensitivity parameters. For example, the

SYSTEM configuration was typically required in high-gain problems to complete the

feedback paths while a voltage source was ideal for devices. In retrospect, the dynamic

Table 5-5. E2E results for dynamic interface configuration

Interface Definition Convergence

(%)

Iteration

Inefficiency
Dynamic 1 Current-Flexible-Voltage 49.1 1.74

Dynamic 1 Current-Flexible-Thevinin 54.0 2.09

Dynamic 1 Current-Flexible-Norton 47.1 1.76

Dynamic 1 Norton-Flexible-Thevinin 76.6 1.62

Dynamic 1 Norton-Flexible-Voltage 58.1 1.33

Dynamic 1 System-System-Thevinin 85.8 2.07

Dynamic 1 System-System-Voltage 73.6 1.60

Dynamic 2 Tiered Method 88.8 1.49

interface configuration should have implemented an interface diagnostic routine where all

124

interface configurations were tested one-at-a-time to determine the optimum initial

configuration. These tests still showed that the dynamic interfacing process had merits in

the coupling process, although additional procedures are required to make the interface

"smarter".

5.2.5 Summary

The iteration efficiency of the coupling process was a strong function of the

sensitivity-scheduling options while convergence was a strong function of the interface

defmition although certain interface and sensitivity options combinations did react poorly

together. In particular, the convergence of the flow correction process showed larger

dependencies on the sensitivity options than the conventional and dynamic interfaces.

However, the flow correction process was the only interfacing procedure with 100%

convergence across all the examples, but only one particular model representation using a

specific sensitivity-calculation option achieved this result. The tiered dynamic interfacing,

SYSTEM-FLEXIBLE, and SYSTEM-NORTON interface had the optimum convergence

characteristics at 89% while the flow correction process using a CORRECTOR interface

was at 83%. The tiered dynamic interfacing, SYSTEM-FLEXIBLE, and SYSTEM-

NORTON interfaces had the same optimum iteration inefficiency at 1.5, while the flow

correction process using a parallel CORRECTOR interface was at an iteration inefficiency

of 2.5 (AIC of 40%).

125

5.3 Electrical-to-Mechanical (E2FE) Coupling

The SPICE to FESIM tests were variations of different examples from section 5.2.

The coupling process with the FE simulator was more timing consuming than the previous

tests, and the average analysis time of each E2FE analysis was 10-20 minutes. For this

reason, only one of the 18 different calculation and sensitivity parameters was tested since

the E2E examples showed that convergence was a strong function of the interface definition

and a weak function of the sensitivity option. In these tests, the goal was to determine how

the FE simulator responded to different interface configurations, since the fundamental

procedures of the two simulators were different. This FE simulator solved for effort

relationships and then calculated the flow response based on the effort values. The FE

simulator had rounding problems calculating the return currents when an interface had large

conduction values. In comparison, the SPICE simulator solved effort and flow relationships

using nodal analysis or MNA.

Only the conditional sensitivity option was tested to evaluate the convergence and

iteration efficiency of the 76 different interfaces over 14 (6 no-feedback and 8 high-gain

feedback) examples for 1064 analyses. The interface defmitions and the iteration results for

the different examples are provided in Appendix-D. As a summary, the average iteration

results are presented in Figure 5-4, the convergence statistics are in Figure 5-5, and the

average iterations per transient point are in Figure 5-6. The E2E coupling results for the

same sensitivity parameter and examples were included for reference in Figure 5-4 through

Figure 5-6. These results showed that the backplane coupled different types of simulators.

126

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequentiai Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

Conditional Sensitivity Scheduling

□ n
□

®E2FE

DE2E

D O

-cP-
a

a

qQqQ O g

O D D
no ooQDa .

O PgHPg □

._1 o ^®0 ®®>®» ®®- ®®»» ®®® » I

Interface
Types

0 4 8 12 16 20 24 28 32 36 40 44 48 32 56 60 64 68 72 76

Figure 5-4. Iteration inefficiency statistics for all E2FE coupling examples

127

1-3S: Conventional 45-52: Parallel Con-edion (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction(ESRC) 69-76: Sequential Correction (ESRC_SENS)

100

90

80

70

60

a 50

i
o

U

s?

40

30

20

10

Conditional Sensitivity Scheduling
If n D

0 0

OB OB WWWWI1 g PQ 0000B0

000000 0

H^DB0 BB □ BB SBra Q BB

00

Q O □ 00B D B

B0»0 flMUI0 tssoos

0

Ba

B DBBBrai DB 0

0

♦ E2FE

nE2E

Interface
Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure 5-5. Convergence statistics for all E2FE coupling examples

128

1-36; Conventional 45-52: Pataiel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequ^i^ Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduiing

,1

I

tP
a n

n D

' 0°

a a

D

Qa

a □ a

UxT Q

jsoj a

♦
o
♦ «

o » « ' «

♦

♦ ♦

I 1 I I ■!—^ I ■ ■ T 1 1" ■ I I I I I ■■ -■!■■■ ■!

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

♦ E2FE

aE2E

Intei&ce

Types

Figure 5-6. Iterations per time point statistics for all E2FE coupling examples

129

In addition, the flow correction procedure was examined using models that were not scaled

versions of the true model representation.

5.3.1 Conventional Configurations

The interfaces used by the simulator had a small effect on the iteration efficiency of

the coupling process. An analysis by interface type is presented in Table 5-6, where any

interface combination using the specific type was included in the average. Table 5-6 also

shows the interface combinations with greater than 85% average convergence rate. The

generic results were almost equivalent with the E2E tests in terms of convergence except

that the SYSTEM configuration was significantly improved. In these examples, the

SYSTEM configuration for the FE Simulator implemented a FLEXIBLE configuration,

since a matrix-loading feature was not available in the FE simulator. Several interfaces had

100% convergence and equivalent iteration inefficiency. The convergence and iteration

Table 5-6. Statistics for generic and specific E2FE interfaces

Interface

Definition

Convergence

(%)

Iteration

Inefficiency

E2FE E2E E2FE E2E

Any Current 14 17 0.02 1.85

Any Voltage 47 47 0.15 1.67

Any Thevinin 46 52 0.13 1.67

Any Norton 41 40 0.12 1.44

Any Flexible 43 40 0.21 1.36

.Any System 37 14 0.21 1.30

System-Voltage 100 100 0.16 1.67

System-Thevinin 100 100 0.09 1.73

System-Norton 100 85 0.10 1.68

System-Flexible 100 85 0.13 1.69

System-System 100 57 0.12 1.39

130

results were improved compared to the E2E tests because of the linear modeling.

5.3.2 Flow Correction Configuration

A summary of the flow correction process is presented in Table 5-7 for the full-

sensitivity calculation process with the two interface configurations. These examples did a

better examination of the flow correction process, since the E2E tests had used scaled

versions of the same basic model. In this series of analyses, the predictor model within

SPICE was constructed manually with errors firom the PEA. In most examples, the errors

specified in the corrector process in Appendix-D were much larger than indicated.

The iteration inefficiency for the E2FE tests using the correction procedure was four

times worse than the conventional iiiterfaces, while the E2E tests were about two times
)

worst than the conventional interfaces. A detailed analysis of the E2FE tests showed that the

one and two terminal examples had equivalent iteration inefficiency with the conventional

interfaces. The four-terminal E2FE examples had significantly skewed the iteration results,

because the SPICE behavioral models in the four terminal examples were not defining all

coupling information between the terminals like the FE models. Consequently, the flow

correction process had to compensate for missing coupling information in addition to the

problems from section 3.5.3.

Table 5-7. E2FE flow correction process characteristics

Interface Definition Convei^ence Iteration

^o) Inefficiency

E2FE E2E E2FE E2E

Parallel CORRECTOR 100 91 0.33 3.24

Parallel CORRECTOR SENS 100 84 0.38 2.23

Sequential CORRECTOR 78 87 0.30 3.02

Sequential CORRECTOR SENS 86 69 0.26 3.85

131

5.3.3 Dynamic Interface Configuration

Dynamic interface configuration had the characteristics shown in Table 5-8 for the

E2FE examples. The FE simulator had a serious problem with the FLEXIBLE interfaces in

a voltage source configuration, where rounding errors occurred in the flow calculation

procedure due to the large PMAX conduction values and intemal FESIM variable

tolerances. Besides this problem, the tiered dynamic method had 12% higher iteration

inefficiency than the conventional interfaces. This increased inefficiency was attributed to

the unity conduction values, which were relatively large compared to the material

definitions, and rounding problems occurred. Clearly, the tiered dynamic interface

procedure required additional simulator-based constraints on the interface state decisions to

optimize coupling efficiency.

5.3.4 Summary

The E2FE examples had several interfaces with 100% convergence and varying

iteration inefficiencies: SYSTEM-VOLTAGE (0.16), SYSTEM-THEVININ (0.09),

Table 5-8. E2FE results for dynamic interface configuration

Interface Definition Convergence

(%)

Iteration

Inefficiency
E2FB E2B E2FE E2E

Dynamic 1 Current-Flexible-Voltage 0 42 - 2.28

Dynamic 1 Current-Flexible-Thevinin 57 .42. 0.09 1.94

Dynamic 1 Current-Flexible-Norton 57 42 0.09 1.87

Dynamic 1 Norton-Flexible-Thevinin 42 57 0.07 1.72

Dynamic 1 Norton-Flexible-Voltage 0 , 42 • - 2.08

Dynamic 1 System-System-Thevinin 35 71 0.04 1.95

Dynamic 1 System-System-Voltage 7 71 5.73 2.13

Dynamic 2 Tiered Method 100 100 0.24 1.67

132

SYSTEM-NORTON (0.10), SYSTEM-FLEXIBLE (0.13), SYSTEM-SYSTEM (0.12),

tiered dynamic configuration (0.24), and parallel flow correction with a CORRECTOR

(033) or CORRECTOR_SENS (0.38) interface. The E2FE examples had significantly

better iteration efficiency than the E2E examples because no model discontinuities were

present and linear modeling was used. The FE simulator did have problems when large

conduction values were applied to the interfaces with sensitivity elements because of the

flow calculation procedures in the FE simulator. The dynamic configuration processes had

the most difficulties with this problem.

5.4 Dynamic modeling via a simulation backplane

In simulation, the main goal is always to achieve the highest performance and

highest accuracy possible, and dynamic modeling was implemented to achieve this goal.

Except for the ACCURACY and RANGE triggers, most triggering options were dependent

on the designer's viewpoint of how modeling should change to achieve certain performance

or accuracy constraints. These types of triggers forced the user to have an interactive role in

the simulation process to account for the modeling variations, different simulation

algorithms, and different disciplines. Model verification was a critical issue across the

different simulation environments, where different models were used to represent the same

component or device. For an automated approach to the verification problem, the

ACCURACY and RANGE triggers could dynamically find the model in the highest

performance simulator that guaranteed certain levels of accuracy AT THE DEVICE

LEVEL. Unfortunately, the real accuracy issues were at the system-level.

133

This section demonstrates and examines the performance and accuracy results of

analyses based on an ACCURACY trigger. The ACCURACY trigger was a mechanism

achieving concurrent verification and simulation, where the most accuracy model defined

by the trigger was always tracking the analysis of the active modeling representation. The

RANGE trigger was a pre-verified form of the ACCURACY trigger based on error

information and simulation performance gathered from device testing or low-level analyses.

For more information, Appendk-A outlines the procedures for the ACCURACY and

RANGE trigger. Since the two methods were closely related, the RANGE trigger results

should follow the ACCURARCY trigger results. For this reason, no examination was done

on the RANGE trigger.

For these dynamic modeling tests, the E2FE-HF_DRWIR2 example (Figure D-48)

was used. The SPICE behavioral model used in these tests was shown in Figure D-2. This

model was manually created from the FE analysis and errors were deliberately present to

demonstrate the triggering procedures. The following coupling architectures, interfaces, and

modeling constraints were tested:

• SPICE-only tests using the model derived fi-om FEA.

• FEA using the SPICE response as the stimuli. The voltage stimuli were converted
manually from the SPICE results into the FE simulator to drive the device.

• Normal coupling process (SYSTEM-ESRC interface).

• Flow correction process (using the model derived from FEA).

• Modeling breakdown problem.

The results from these tests are analyzed based on accuracy (section 5.4.1) and performance

134

(section 0) to determine if the ACCURACY-based triggers in this research were a viable

procedure. A model breakdown problem was included to demonstrate the inaccuracies of

poor modeling by emulating a structural break. The break problem also determined if the

flow correction process was capable of correcting for large (3+ orders of magnitude) errors

in the SPICE behavioral model. The main issue was whether the performance improvement

was justified by the loss in accuracy, but only the designer(s) knows the minimum

constraints of the system.

5.4.1 Accuracy Comparison

The absolute tolerances for the coupling analyses were O.lmV for the effort

variables and 0.1 juA with a relative tolerance of 0.1 percent for the flow variables. The

absolute tolerance for the ACCURACY trigger was 0.2mV for effort and the 0.2/jA for

flow. In these analyses, the SPICE behavioral model had approximately 24 percent error

compared to the FESM model due to "capacitive" material effects not included in SPICE.

A summary of the ACCURACY trigger results is presented in Table 5-9 for this example.

Various error definitions and switch back (SB) conditions were examined to determine the

impact on the system error compared to the absolute response from the non-switched

coupled analysis.

The accuracy information in Table 5-9 showed that the system error did not vary

according to the device error over all error tolerances. As the tolerance on the ACCURACY

trigger increased, a tolerance value was reached (between 10% and 20% error) where the

system error became independent of the trigger. Part of the problem was the length of the

135

Table 5-9. Error summary for the ACCURACY trigger tests

Comparisons
(Most compares are to the

REFERENCE)

Effort Error Flow Error

Max Avg Peak Max Avg Peak

mV mV % pA pA %

SPICE to FESIM - - - 4.54 1.51 23.9

SPICE only 127.0 34.2 26.9 8.64 2.81 36.6

FESIM using SPICE output 127.0 30.6 .26.9 5.55 1.45 23.6

Coupled analysis REFERENCE

5% error and 1 step SB 19.6 5.1 4.1 0.86 0.59 3.8

5% error and 2 step SB 19.9 5.1 4.2 1.49 0.27 6.3

10% error and 1 step SB 20.4 5.4 4.3 3.25 0.27 13.8

10% error and 2 step SB 20.4 5.4 4.3 3.25 0.27 13.8

20% error and 1 step SB 85.1 37.8 18.0 5.96 1.76 25.3

20% error and 2 step SB 40.4 10.2 8.6 337 0.66 14.3

50% error and 1 step SB 111 16.1 15.3 5.26 1.13 22.3

50% error and 2 step SB 50.2 19.3 10.6 4.57 1.12 19.4

Coupled analysis and the
FESIM in TRACK mode

120.7 34.8 25.6 5.17 1.59 21.9

Flow correction analysis 0.7 0.2 0.1 0.03 0.00 0.1

5% error and 1 step SB 19.2 5.2 4.1 0.83 0.26 3.5

5% error and 2 step SB 15.2 4.5 3.2 1.48 0.25 6.3

10% error and 1 step SB 26.5 6.3 5.6 2.90 0.30 12.3

10% error and 2 step SB 45.3 11.4 9.6 2.56 0.52 10.9

20% error and 1 step SB 83.6 29.1 17.7 4.80 1.35 20.4

20% error and 2 step SB. 50.5 24.2 10.7 4.58 0.98 19.4

50% error and 1 step SB 81.9 30.2 17.4 5.10 1.48 22.4

50% error and 2 step SB 12.7 4.4 2.7 4.51 0.68 19.2

Correction analysis and the
FESIM in TRACK mode

119.3 33.8 25.3 5.07 1.54 21.5

Break coupled analysis 508.3 206.3 107.8 9.63 4.07 40.8

Break correction analysis 473.3 183.3 100.4 10.11 4.14 42.9

Absolute Maxium = MAX^Xj^p - X(^\)

Relative Peak = 100 •

1 ''
Absolute Average = —

P 0

{xref) - ̂{xref)

■CMP\

136

simulation, since the error accumulation would typically increase as the simulation

proceeded. Conversely, the nature of system could be virtually independent of the device

error. Ultimately, the value of the ACCURACY trigger in an analysis depended on

sensitivity of the system to device error. However, the various analyses using the

ACCURACY triggers were still more accurate than the SPICE behavioral model that had

errors compared to the FE model.

The SPICE, FESIM, and non-switching coupling responses are presented in Figure

5-7 and Figure 5-8 to establish the basis of the comparisons. Figure 5-9 and Figure 5-10

showed the responses from the conventional interfacing procedures using various error

tolerance of the ACCURACY trigger. Figure 5-11 and Figure 5-12 showed the responses

from the flow correction procedure over the same error tolerances of the ACCURACY

trigger. The break responses are in Figure 5-13 and Figure 5-14 to show extreme divergence

between the SPICE behavioral and the FE model. In these plots, the effort information was

taken from the SPICE simulator while the flow variable information was taken from the

FESM to illustrate the consequences of dynamic modeling. With large error constraints, the

flow responses from the FE simulator had discontinuities at the trigger points, where the

solution had large corrections.

The main reason for using the ACCURACY trigger was extreme modeling errors

like a break condition in Figure 5-13 and 5-14, where the most accurate model (defined by

the trigger) could be used in the analysis when required. By switching models based on the

ACCURACY trigger, the designer(s) did not have to implement additional simulations to

correct the error. The break analyses showed the merit of an ACCURACY trigger.

137

rs—^

""S^Spic©

-*-FESIM

—^Coupled
••• X—Correction

O.OOE-^00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 6.00E-06 9.00E-06 1.00E-05

Figure 5-7. Primary effort (voltage) responses at terminal T2

-Spice

-FESIM

-Coupled

-Correction

0.00E<00 1.00E.06 2.aOE-a6 3.00E.06 4.00E-OE 5.00E-06 6.00E-06 7.00E.06 8.0aE-06 9.00E46 VOOE-05

Figure 5-8. Primary flow (current) responses at terminal T2

138

—^Coupled

—^Coupled 5%

' M -Coupled 20%

Coupled 50%

•"H—Coupled ' Track

O.OOE-rOO 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-0G 6.00E-06 7.00E-06 8.00E-06 9.00E-0e 1.00E-0S Time

Figure 5-9. Effort responses at terminal T2 of the triggered coupled analyses

1 O.OOE-^00

-Coupled

-Coupled 5%

-Coupled 20%

-Coupled 50%

-Coupled - Track

0 0.000001 0.000002 0.000003 0 000004 0.000005 0.000006 0.000007 0.000008 0.000009 0.00001

Figure 5-10. Flow responses at terminal T2 of the triggered coupled analyses

139

'Correction

-Correction 5%

'Correction 20%

'Correction 50%

'Correction - Track

O.OOE+0 1.00E-06 2.00E-06 3.00E-06 4.00E-D6 5.00E-06 6.00E-06 7.00E-06 d.OOE-06 9.00E-C6 1.00E-05
0

Figure 5-11. Effort responses at terminal T2 of the triggered correction analyses

1 O.OOE*O0
m -Correction

■'Correction 5%

'Correction 20%

'Correction 50%
-Correction -Track

0 0 000001 0.000002 0.000003 0.000004 0.000005 0.000006 0.000007 0.000008 0.000009 0.00001

Figure 5-12. Flow responses at terminal T2 of the triggered correction analyses

140

..ZS^

L««s>

JO.

'Correction

■Coupled
-Correction Break
-Coupled Break

O.OOE-^0 1.00E-06 2 00E'06 3.00E.06 4.00E-06 5.00E-06 6.00E.06 7.00E-06 8.00E-06 9.00E*06 1.00E-0S

Figure 5-13. Effort responses at terminal T2 of the break analyses

S O.OOE-^00

f V 1 A

^ g ^

L. P

Correction

oupled
Correction Break

Coupled Break

0 0.000001 0.000002 0.000003 0.000004 O.OOOOOS 0.000006 0.000007 0.000008 0.000009 0.00001

Figure 5-14. Flow responses at terminal T2 of the break analyses

141

One of the significant accuracy issues was whether the flow correction process

would converge under extreme situations. Although the effort response began to diverge

between the coupled and correction processes (see Figure 5-13), the flow correction process

did converge in the break emulation situations. The analysis jfrom section 3.5.2 (Equation 3-

40) indicated that overestimating the model's conduction characteristics would converge in

any situation with sufficient iterations. The SPICE behavioral did overestimate the response

compared to the break situation. However, the inverse problem of a structural contact or

short condition would have failed based on Equation 3-40. The validity of this statement is

left for future research.

5.4.2 Performance Comparison

In coupled analyses, the EE simulator completely dominated the analysis time as

shown in Table 5-10, which outlines the variation in simulation time with different error

tolerances of the ACCURACY trigger. As expected, performance was improved by

eliminating the interaction between the SPICE simulator and the EE simulator, and the

value of eliminating sensitivity calculations can be observed. The standard analyses had

between 86 and 133 time steps based on the SPICE and EESIM analysis. In the coupled

analyses, the total number of simulator iterations was at least 2-3 times the number of time

steps. Finally, the performance of the FEA was improved by 8% when using the tracking

mode compared to applying a waveform from the analysis. The tracking mode eliminated

breakpoint conditions implemented in the EE simulator and reduced the number of time

steps in the analysis.

142

Table 5-10. Performance results for the ACCURACY trigger tests

Simulation Task

Simulation

Time

(seconds)

Number of

Iterations

SPICE only <1.0 86

FESIM only 25 133

Coupled analysis 94 439/434

With 5% error trigger 94 448/179/435

With 20% error trigger 81 493 / 222 / 422

With 50% error trigger 63 502/249/355

Coupled analysis and the
FESIM in TRACK mode

24 435/250/124

Flow correction analysis 87 424/430

With 5% error trigger 89 423/445

With 20% error trigger 77 382/405

With 50% error trigger 63 323/352

Correction analysis and the
FESIM in TRACK mode

23 125/119

Break coupled analysis 90 470/200/446

Break correction analysis 83 414/430

5.5 Summary

The E2E and E2FE tests demonstrated the backplane process had the ability to

couple two different types of simulators although the baclq)lane had some initialization and

sensitivity calculation problems. Different degrees of convergence ̂ d iteration efficiency

were achieved over a variety of interfaces and sensitivity calculation options. The

convergence of the coupling process was a strong function of the interface definition while

the iteration efficiency was a strong function of the sensitivity parameter and general

calculation options. However, the testing of the backplane was only over a small number of

sensitivity calculation options, so parameter settings are potentially not optimized for each

143

problem. Based on the E2E examples, the conditional sensitivity scheduling option had the

highest convergence statistics of scheduling options available in this backplane. However,

the error sensitivity scheduling option had the best iteration efficiency by approximately

15% with a one-percent lower convergence rate.

The statistics for all interfaces with 85% or greater average convergence is presented

in Table 5-11 over all examples based on the conditional sensitivity scheduling option. As

expected, the interface configurations that completed the feedback or gain paths in a

simulator had the highest convergence characteristics as indicated by the four interface

combinations that contained a SYSTEM interface in partition 0. In the coupling tests,

partition 0 usually contained the driver or gain circuitry while partition 1 contained the

device. The tiered procedure for dynamic interface configuration was overall the optimum

interface procedure at 95% convergence because the interface could be used in any

Table 5-11. Final Interface Convergence and Iteration Inefficiency comparison

Interface Convergence

(%)

Iteration

Inefficiency
System-Voltage 86 1.18

System-Thevinin 91 1.19

System-Norton 93 1.12

System-Flexible 93 1.08

Dynamic 2- Tiered method 95 1.15

Parallel Flow Correction

with CORRECTOR

93 2.21

Parallel Flow Correction

with CORRECTOR SENS

89 2.01

Sequential Flow Correction
with CORRECTOR

86 1.67

144

situation. The flow correction process had sensitivity calculation problems that limited the

success of the procedure and increased the iteration inefficiency compared to the other

processes. However, the flow correction process was the ONLY interface that did not have

any initialization problems.

The dynamic modeling process was very difficult to evaluate although the results

showed how performance and accuracy tradeoffs were possible. The dynamic process using

ACCURACY triggers allowed concurrent verification of a model/device/design with the

option to switch dynamically to a different representation if errors exceeded certain limits.

However, the impact of device errors on the system error was impossible to define without

analyzing the system and the sensitivity of the system to the device variations.

Consequently, dynamic modeling had the potential to create errors, at least compared to an

absolute reference. In the best case scenario, system error could only be minimized because

error was typically accumulated during the analyses and the switching procedures. For the

other type of triggering options, dynamic modeling procedures were very dependent on the

designer viewpoint of how the modeling should change based on conditions in the system.

145

Chapter 6. Conclusions

The previous chapters have outlined the fundamental mathematical and

implementation aspects of a simulation backplane with dynamic configurability. With the

mathematical foundation based on bond graph theory, this coupling procedure can be

extended to any domain with minimum effort. This backplane had a large number of

options to control and optimize the coupling process between simulators. The backplane

also had the capabilities to transverse the different coupling architecture. Consequently, this

backplane structure provided backplane configuration management that supported hybrid

coupling environments and dynamic changes. The simulation backplane developed in this

research was called FLEXBKPL. This section answers the interfacing questions from

Chapter 1 that have not been answered in the previous sections. Conclusions about the

coupling process are made and suggestions are given for future research.

6.1 Interface conclusions for coupling simulators

The convergence of the coupling process was clearly a function of the interface

definitions and the backplane initialization procedure to calculate valid sensitivity

information and to achieve the "sufficient close" initial solution (guess) required by all

iteration routines. After initial convergence was achieved, the iteration efficiency was a
/

function of the calculation and sensitivity calculation parameters, which did cause

approximately 3% degradation of the convergence statistics in the electrical-to-electrical

coupling tests from Chapter 5. Based on these characteristics, the optimum interface was the

interface or interface procedure with the higher convergence.

146

In this research, the optimum interface was the tiered procedure for dynamic

interface configuration using the Flexible interface. This interface had the best average

convergence at 95% (using the conditional sensitivity scheduling option). The failure

conditions were the result of backplane initialization procedures that failed to find a

"sufficiently close" initial solution and that did not calculate valid sensitivity information. A

secant-based initialization procedure using large delta values could potentially eliminate

these problems. Compared to the tier dynamic interface procedure, certain specific interface

combinations did have equivalent characteristics, but only this configuration could be

randomly assigned in the coupling process to any simulator and still achieved the highest

convergence rate. The tiered dynamic configuration process can still be improved with

better initialization procedures based on the simulator's interfacing characteristics.

The flow correction process had sensitivity calculation problems that limited the

success of the interface procedure to a convergence of 93% using the conditional sensitivity
I

scheduling option. The iteration statistics of this process was 50% larger than the other

interfaces with greater than 85% convergence. Because of the intemal modeling

requirements, this overlapped modeling process had more coupling constraints than the

other interfaces and procedures examined in this research, which did limit the usefulness of

the process. However, this procedure over the given tests always found a valid initialization

condition, which was the main problem with the other interfaces. If the sensitivity

calculation problems can be eliminated (see Chapter 3 and Chapter 5), then the flow

correction process was able to implement dynamic modeling while also spanning different

coupling architectures. By eliminating the corrector function from an analysis, the system-

147

level simulator switched to the independent simulator architecture, which had the potential

for the highest simulation throughput. When the corrector function was included, the flow

correction process had the smallest device error compared to the "most accurate" device

model in an extemal simulator. Another feature of the flow correction process was the

ability to use the coupled response as a method of back annotation between simulators to

eliminate additional coupled solutions. However, this, feature was not investigated in this

research.

6.2 Pros and Cons of Dynamic Operations in simulation

This simulation backplane performed three types of dynamic configuration: variable

causality for determining the proper sensitivity parameters, dynamic interface configuration,

and dynamic model switching. In the coupling process, the determination of the proper

sensitivity parameters was essential for convergence, but the input causality detection was

not an absolute requirement. In certain gain situations, the backplane was able to achieve

convergence without input causality detection because of the interface definitions in the

simulators. When an interface's input variable causality was identified, the sensitivity

parameters did a better characterization of the models in a simulator. In addition, the

calculation of the sensitivity parameters did not have the divergence potential of the

procedure without the causality detection because of small delta information that caused

rounding problems (See Appendbc E).

The interface selection was critical in the coupling process because the interface

selection did impact the convergence and the input-causality detection process. Dynamic

148

interface configuration was implemented to eliminate the designer's task of choosing the

best interface for the coupling process to maximize convergence (and iteration efficiency if

possible). The results from Chapter 5 demonstrated that this configuration process did

improve the convergence of the coupling process by changing the interface based on the

relative coupling characteristics of a simulator. A fixed interface had to follow certain

predefined calculation procedures that were not sufficiently flexible to iheet any coupling

characteristic of a simulator. By freeing the designer from manually choosing the interface,

dynamic interface configuration was a beneficial feature in the coupling process.

The dynamic model switching procedure was a very straightforward extension of

rebuilding an internal matrix within the backplane and changing which matrix elements of a

simulator were added to the system-level interconnection matrix. This procedure allowed

tradeoffs between performance and accuracy during an analysis. Besides performance and

accuracy, each different simulation provided the designers with assurances that no

fundamental problems had occurred by switching between different abstraction levels.

Essentially, this procedure was another a form of verification. At the same time, the

increased flexibility provided more opportunities to cause problems in the analysis, since

error could accumulate in the system. As an analogy, dynamic modeling allowed the user to

map the earth by using a transportation mechanism that could be any vehicle from an

airplane to a bicycle. At one transition point, the user had to careful that the plane did not

change to a bicycle and crash into the ground. On the reverse condition, bicycle might be

unable to reach sufficient velocity to fly or the sudden change in altitude could cause the

plane to spin off into space.

149

The ACCURACY or RANGE triggers in the dynamic modeling process were

implemented as a form of verification to eliminate large-scale errors. However, error in the

analysis depended on the system definition and the sensitivity of the system to the model

variations. Consequently, these triggers could only minimize error at the system level while

the present error remained and even accumulated in an analysis. At the same time, these

trigger options had the potential to eliminate simulation errors dynamically. Regardless of

the trigger mechanism, dynamic model switching placed the emphasis on the designers to

identify problems. For these reasons, the only conclusion on the dynamic model switching

procedure was "User Beware".

6.3 Future Research

In the present version of the baclqilane, most object parameters are defmed by the

user, and very few parameters are automatically changed during the analysis to optimize

performance. Because the sensitivity calculation options had the largest impact on

performance, these options should change dynamically to optimize performance without

affecting convergence. Another technique to improve the iteration efficiency of the

sensitivity calculation process would be grouping objects and variables within a simulator

for parallel calculation of the parameters. However, a criterion would have to be developed

for recalculating this information if internal grouping relationships became invalid. The

information from the causality identification process in Appendix-C could be used to

optimize the sensitivity calculation process. However, an immediate need for this backplane

150

was improving the initialization procedures' to calculate more accurate sensitivity

information and to fmd a better initial solution (guess).
/

The simulators used in this backplane did not have the quality or the model

capabilities to fully test the backplane operation. Future implementations should use

commercial simulators with better modeling and more coupling between different domains

to rigorously test the backplane operation. Additional interface definitions are also required

in the backplane, so mixed mode simulation can be included in an analysis. With these

additional interfaces, the dynamic modeling procedure could be used for verification of

GDS layout using RTL and transistor level representations.

This work has been done with hand-partitioned designs to examine the coupling

process. With the coupling issues resolved, a system for partitioning domains was needed

where one database contained the information about all domains. The database had to track

modifications across different sub-design environihents, but the main database maintained

ALL modeling representations. With a central database, the system could be partitioned

based on any criteria or hierarchical level. The designer could select different model

representations and different model revisions for the same design in the same simulation

like [17].

Given the number of domains possible for MEMS, a system-level cpnfiguration and

verification mechanism (architecture and tradeoff manager) would improve the system

development and shorten the design cycle. The tool would define the optimum partitioning

of the system based on the simulation tools, model representations, and the design stage.

Based on constraints defmed for a subsystem, the tool would enforce rules for modeling and

151

simulation to avoid pitfalls. In addition, the different partitioning options can be used to

guarantee an acceptable level of testing via specification verification. Specifically, the tool

would require a sufficient number of cross-verified analyses using different partitions,

model representation, and stimuli before defining a system to be flaw tolerant (no detectable

flaws between the specifications and analyses).

152

REFERENCES

153

REFERENCES

[1] W.L. Biyan, G.T. Alley, ORNL internal communication on LDRD.

[2] H. Sandmaler, H.L. Offereins, B. Folkmer, "CAD tools for micromechanics", Journal
of Micromechanics & Microengineering, Yo\. 3,1993, pp. 103-106.

[3] J. Biyzek, K. Peterson, "Micromachines on the march", IEEE Spectrum, May 1994, pp.
20-31.

[4] K.D. Wise, "Integrated Microelectromechanical Systems. A Perspective on MEMS in the
90s", Proc. IEEE MEMS 1991, pp. 33-38.

[5] G. Pelz, J. Bielefeld, F.J. Zappe, G. Zimmer, "Simulating Micro-Electromechanical
Systems", IEEE Circuits and Devices Magazine, Vol. 11, Issue 2,1995, pp. 10-13.

[6] C.C. McAndrew, "Compact Device Modeling for Circuit Simulation", Proceedings Of
The 1997 IEEE Custom Integrated Circuits Conference, Santa Clara, May 5-8 1997,
Section8.2d-8.2.8, pp. 151-158.

[7] S. Robinson, "SIMULATION PROJECTS. BUILDING THE RIGHT CONCEPTUAL
MODEL", Industrial Engineering, Vol. 26, No. 9, Sept 1994, pp. 34-36.

[8] J. Gilbert, "Integrating CAD Tools for MEMS Design", IEEE Computer, April 1998,
pp. 99-101.

[9] S.D. Senturia, "Cad For Microlectromechanical Systems", The 8th International
Conference on Solid-State Sensors and Actuators: Eurosensors IX, June 1995, Vol. 2,
Section 232-A7, pp. 5-8.

[10] A.R. Newton, A.L. Sangiovanni-Vincentelli, "Relaxation-Based Electrical
Simulation", IEEE Transactions on Computer-Aided Design, Vol. CAD-3, No. 4,
October 1984, pp.308-331.

[11] M.P. Desai, I.N. Haljj, "On the Convergence of Block Relaxation Methods for Circuit
Simulation", IEEE Transactions on Circuits and Systems, Vol. 36, No. 7, July 1989,
pp. 948-958.

[12] N.B. Guy Rabbat, A.L. Sangiovanni-Vincetelli, H. Y. Hsieh, "A Multilevel Newton
Algorithm with Macromodeling and Latency for Analysis of Large-Scale Nonlinear
Circuits in the Time Domain", IEEE Transactions on Circuits and Systems, Vol.
CAS-26, No. 9, September 1979, pp. 733-741.

154

[13] E. Lalarasmee, A.E. Ruehli, A.L. Sangiovanni-Vincetelli, "The Waveform Relaxation
Method for Time-Domain Analysis of Large Scale Integrated Circuits", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
CAD-1, No. 3, July 1982, pp. 131-145.

[14] G.K Ananthasuresh, R.K. Gupta, S.D. Senturia, "Approach to macromodeling of
MEMS for nonlinear dynamic simulation". Proceedings of the 1996 ASME
International Mechanical Engineering Congress and Exposition, Atlanta, Nov 17-22
1996, V 59, pp. 401-407.

[15] S. L. Garverick, M. Mehregany, "METHODOLOGY FOR INTEGRATED MEMS
DESIGNS", Proceedings of the 1996 IEEE International Symposium on Circuits and
Systems, ISCAS, Atlanta, May 12-15 1996, pp. 1-4.

[16] F. Goodenough, "Mixed-Mode Simulators Go Beyond Spice", Electronic Design, Oct 27
1988, pp. 77-91.

[17] E.L. Acuna, J.P. Dervenis, A.J. Pagones, F.L. Yang, R.A.Saleh, "Simulation
Techiques for Mixed Analog/Digital Circuits", IEEE Journal of Solid-State Circuits,
Vol. 25, No. 2, April 1990, pp. 353-363.

[18] S.P. Menzel, J.A. Barby, J. Vlach, "A MULTI-LEVEL SIMULATION SYSTEM
FOR MOS VLSI NETWORKS", Proc. Intl. Symp. Circuits and Systems: ISCAS 1989
Par/2, pp. 1145-1148.

[19] P. Odryna, "A Unified Mixed-Mode Digital/Analog Simulation Environment",
Proceedings - IEEE International Symposium on Circuits and Systems, Jun 7-9 1988,
Vol. 1, pp. 893-896.

[20] D. Overhauser, I. Hajj, "IDSIM2: An Environment for Mixed-Mode Simulation",
IEEE 1990 Custom Intergrated Circuits Conference, pp. 5.2.1-4.

[21] R. Beale, R. Chadha, C. Chen, A. Prosser, K. Tham, "Design Methodology and
Simulation Tools for Mixed Analog-Digital Integrated Circuits", IEEE Intl. Symp. on
Circuits & Systems, Vol. 2, May 1990, pp.1351-1355.

[22] S.P. Menzel, J. Vlach, "A Mixed-Mode Analogue And Switch Level Simulator", Intl.
Journal of Circuits, Theory, & Applications, Vol. 18, Issue 1,1991, pp. 35-50.

[23] C. Yuan, R. Lucas, P. Chant, R. Dutton, "Parallel Electronic Circuit Simulation on the
iPSC(R) System", IEEE 1988 Custom Integrated Circuits Conference, pp. 6.5.1-4.

[24] P. Sadayappan, V. Visvanathan, "Circuit Simulation on Shared-Memory
Multiprocessors", IEEE Transactions on Computers, Vol. 37, No. 12. December
1988, pp. 1634-1642.

155

[25] P.F. Cox, R.G. Burch, D.E Hocevar, P. Yang, B.D Epler, "Direct Circuit Simulation
Algorithms for Parallel Processing", IEEE Transactions on Computer-Aided Design,
1991, Vol. 10, Issue 6, pp. 714-725.

[26] V. Klinger, "DiPaCS: A New Concept for Parallel Circuit Simulation", Proceedings
of the IEEE Annual Simulation Symposium, Proceedings of the 28th Annual
Simulation Symposium, Apr 9-13 1995, pp. 32-41.

[27] J.L. Calvet, A. Titli, "Overlapping vs Partitioning in Block-Iteration Methods:
Application in Large-Scale System Theory", Automatica, 1989, Vol. 25, No. 1, pp.

. 137-145.

[28] D. A. Gates, P.K. Ko, D.O. Pederson, "MIXED-LEVEL CIRCUIT AND DEVICE
SIMULATION ON A DISTRUTED-MEMORY MULTICOMPUTER", IEEE 1993
Custom IntergratedCircuits Conference, May 1993, pp. 8.5;l-8.5.4

[29] K. Mayaram, D.O. Pederson, "Coupling Algorithms for Mixed-Level Circuit and Device
Simulation", IEEE Transactions on Computer-Aided Desigp, Vol. 11, No. 8, August
1992, pp. 1003-1012.

[30] K. Mayaram, J. Chem, P. Yang, "Algorithms for Transient Three-Dimensional
Mixed-Level Circuit and Device Simulation", IEEE Transactions on Computer-Aided
Design,'Wo\: 12,No ll,Nov 1993,pp. m6-\m.

[31] W. L. Engl, R. Laur, H.K. Dirks, "MEDUSA - A Simulator for Modular circuits",
IEEE Transactions on Computer-Aided Design, Vol. CAD-1, No 2, April 1982, pp. 85-93.

[32] V.B. Dmitriev-Zdorov, B. Klaassen, "An Improved Relaxation Approach For Mixed
System Analysis With Several Simulation Tools", 1995 IEEE European Design
Automation Conference, pp. 274-279.

[33] S. Wuensche, C. Clauss, P. Schwaiz, F. Winkler, "Microsystem Design Using
Simulator Coupling", Proceedings of the 1997 European Design & Test Conference,
Paris, Mar 17-20 1997, pp. 113-118.

[34] P.C. Eccardt, M. Knoth, G. Ebest, H. Landes, C. Clauss, S. Wuensche, "Coupled
finite element and network simulation for microsystem components". Microsystem
Technologies 1996, Potsdam 1996, pp. 145-150.

[35] N.C. Petrellis, A.N. Birbas, M.K. Birbas, E.P. Mariatos, G.D. Papadopoulos,
"Simulating Hardware, Software and Electromechanical Parts Using Communicating
Simulators", Proc. 7^ IEEE International on Rapid System Prototyping, June 1996,
pp. 78-82.

156

[36] A. Schroth, T. Blockwitz, G. Gerlach, "Simulation of A Complex Sensor System
Using Coupled Simulation Programs", The 8th International Conference on Solid-
State Sensors and Actuators; Eurosensors IX, June 25-29, 1995, Stockholm, Section
239-PA7,Vol.2,pp.33-35.

[37] K.A. Sakallah, S.W. Director, "SAMS0N2: An Event Driven VLSI Circuit
Simulator", IEEE Transactions on Computer-Aided Design, Vol. CAD-4, No 4, Oct.
1985, pp. 668-684.

[38] W.M. Zuberek, "Software Interfaces For Integrated Simulation Applications", Annual
Phoenix Conference Proceedings - Ninth Annual International Phoenix Conference
on Computers and Communications, Mar 21-23 1990, pp. 832-839.

[39] G. Schuster, F. Breitenecker, "Coupling simulators with the model interconnection
concept and PVM", Proceedings ofthe 1995 EUROSIM Conference, Sep 11-15 1995,
Vienna, Austria, pp. 321-326.

[40] R. Saleh, S. Jou, A.R Newton, Mixed-Mode Simulation and Analog Mutlilevel
Simulation, Kluwer Academic Publishers: Boston 1994.

[41] M. Zwolinski, C. Garagate, Z. Mrcarica, T.J. Kazmierski, A.D. Brown, "Anatomy of a
simulation baclq)lane", lEE Proceedings: Computers and Digital Techniques, Vol.
142, No. 6, Nov 1995, pp. 377-385.

[42] A.R.W. Todesco, T.H.Y. Merig, "Symphony: A Simulation Backplane for Parallel
Mixed-Mode Co-Simulation for VLSI Systems", Proceedings of the 1996 33rd
Annual Design Automation Conference, JUN 3-7 1996, pp. 149-154.

[43] M. Zwolinski, C. Garagate, T.J. Kazmierski, "Mbced-Signal Simulation Using The
Alfa Simulation Backplane", Proceedings IEEE International Symposium on Circuits
and Systems, Jim 7-9 1988, Vol. 1, pp. 390-393.

[44] J. Singh, Techniques for Analog Multilevel Simulation, Ph.D Dissertation 1994.

[45] P. Odiyna, "The Application of Co-Simulation in Today's Design Environment",
ECN, December 1996, pp. 161.

[46] R Chadha, C. Viswesariah, C. Chen, "M^ - A Multilevel Mked-Mode Mixed AID
Simulator", IEEE Transactions on Computer-Aided Design, Vol. 11, No. 5, May 1992, pp.
575-585.

[47] L. Maliniak, "A/D Simulators: An Expanding Array of Choices", Electronic Design,
December 5,1994, pp. 95-102.

157

[48] S. Craiy. Y, Zhang, "CAEMEMS: An Integrated Computer-Aided Engineering
Workbench for Microelectromechanical Systems", Proc. IEEE MEMS 1990, pp. 113-114.

[49] S. Crary, O. Juma, Y. Zhang, "Software Tools for Designers of Sensor and Actuator CAE
Systems", Proc. IEEE MEMS 1991, pp. 498-501.

[50] R.A. Buser, S.B. Craiy, O.S. Juma, "Integration of the Anisotropic-Silicon-Etching
Program ASEP™ within the CAMEMS™ CAD/CAE Framework", Proc. IEEE MEMS
iPP2, pp. 133-138.

[51] S.D. Senturia, R.M. Harris, et. al, "A Computer-Aided Design System for
Microelectromechanical System (MEMCAD)", J. of Microelectromechanical Systems,
Vol. 1, No 1, March 1992, pp. 3-13.

[51] F. Maseeh, R. M. Harris, S.D. Senturia, "A CAD Architecture for Microelectromechanical
Systems", Proc. IEEE MEMS 1990, pp. 4449.

[52] R.M. Harris, F. Maseeh. S.D. Senturia, "Automatic Generation of a 3-D Solid Model of a
Microfabricated Structure", Sensors and Actuators "90, pp. 36-41.

[53] R.M. Harris, S.D. Senturia, "A Solution of the Mask Overlay Problem in
Microelectromechanical CAD (MEMCAD)", Tech. Dig. IEEE Solid-State Sensor and
Actuator Workshop, 1992, pp. 598-562.

[54] M.A. Shulman, M. Ramaswamy, M.L. Heyens, S.D. Senturia, "An Object-Oriented
Material-Property Database Architecture For Microelectromechanical Cad", Proc.
Transducers 1991, pp. 486-489.

[55] P. Osterberg, H. Yie, X. Cal, J. White, S. Senturia, "Self-Consistent Simulation and
Modelling of Electrostatically Deformed Diaphragms", IEEE Micro Electro Mechanical
Systems, Vol. 4,1994, pp. 28-32.

[56] J.R. Gilbert, P.M. Osterberg, R.M. Harris, S.D. Senturia, et. al, "Implementation of a
MEMCAD System for Electrostatic and Mechanical Analysis of Complex Structures from
Mask Descriptions''^, Proc. IEEE MEMS 1993, pp. 207-212.

[57] J.R. Gilbert, G.K. Ananthasuresh, S.D. Senturia, "3D Modeling of Contact Problems
and Hysteresis in Coupled Electro-Mechanics", Proceedings of the 1995 9th Annual
International Workshop on Microelectromechanical Systems, Feb 1996, pp. 127-132.

[58] P.M. Osterberg, S.D. Senturia, ""MEMBUILDER" AUN AUTOMATED 3D SOLID
MODEL CONSTRUCTION PROGRAM FOR MICROELECTROMECHANCICAL

STRUCTURES", The 8th International Conference on Solid-State Sensors and
Actuators: EUROSENSORSIX, June 1995, Vol. 2, Section 236-A7, pp. 21-24.

158

[59] J.R. Gilbert, R. Legtenburg, S.D. Sensturia, "Coupled Electro-mechanics for MEMS:
Applications of CoSolve-EM", Proc. 1995 International Conference on
Microelectromecahanical Systems, pp. 122-127.

[60] J.G. Korvink, J. Funk, M. Roos, G. Wachutka, H. Baltes, "SESES: A Comprehensive
MEMS Modeling System", IEEE Microelectromechanical Systems, Vol. 4, 1994,
pp.22-27.

[61] J.M. Funk, J.G. Korvink, J. Buhler, M. Barchtold, H. Baltes, "SOLIDIS: A tool for
Microactuator Simulation in 3-D", Journal of Microelectromechanical Systems, Vol.
6, No. 1, March 1997, pp. 70-81.

[62] J. Funk, J.G. Korvink, M Bachtold, J. Buhler, H. Baltes, "Coupled 3D Thermo-
electro-mecahanical Simulations of Microactuators", Proceedings of the 1995 9th
Annual international Workshop On Micro Electro Mechanical Systems, Feb 1996,
pp. 133-138.

[63] H. Baltes, O. Paul, J.G. Korvink, "Simulation Toolbox and Material Parameter Data
Base for CMOS MEMS", MHS 1996: Micro Machine & Human Science. 7th
International Symposium on Micro Machine and Human Science, 1996, pp. 1-8.

[64] I. Zelinka, J. Diaci, V. Kunc, L. Trontelj, "MODELING AND SIMULATION OF A
MICROSYSTEM WITH SPICE SIMULATOR", Informacije Midem, Vol. 27, No. 1,
1997, pp. 18-22.

[65] Z. Mrcarica, D. Glozic, V.B; Litovski, H. Detter, "Describing space-continuous
models of microelectromechanical devices for behavioural simulation". Proceedings
of the 1996 European Design Automation Conference with Euro-VHDL 1996 and
Exhibition, Sept. 1996, Geneva, pp. 316-321.

[66] J. Scholliers, T. Yli-Pietila, "Simulation of Mechatronic Systems Using Analog
Circuit Simulators", IEEE Intl. Conf Robotics & Automation, May 1995, pp. 2847-
2852.

[67] S. Meinzer, A. Quinte, M. Gorges-Schleuter, W. Jakob, W. Sub, H. Eggert,
"Simulation and Design Optimization of Microsystems Based on Standard Simulators
and Adaptive Search Techniques", European Design Automation Conference, 1996,
pp. 322-327.

[68] N. Sadowski, Y. Lefevre, C.G.C. Neves, R. Carlson, "Finite Elements Coupled to
Electrical Circuit Equations in the Simulation of Switched Reluctance Drives:
Attention to Mechanical Behavior", IEEE Transactions on Magnetics, Vol. 32, No. 3,
May 1996, pp. 1086-1089.

159

[69] B. Nuseibeh, J. Kramer, A. Finkelstein, "A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification", IEEE
Transactions on Software Engineering, Vol. 20, No. 10, October 1994, pp. 760-773.

[70] J. Daniell, S.W. Director, "An Object Oriented Approach to CAD Tool Control",
IEEE Transactions on Computer-Aided-Design, Vol. 10, No. 6, June 1991, pp. 698-
713.

[71] J.L. Wolf, D.M. Davis, B.R Iyer, P.S. Yu, "Multisystem Coupling by a Combination
of Data Sharing and Data Parititioning", IEEE Transactions on Software Engineering,
Vol. 15, No. 7, July 1989, pp. 854-860.

[72] S. Z. Russian, D. Overhauser, "Automatic Dynamic Mixed-Mode Simulation through
Network Reconfiguration", ISCAS 1995: IEEE Intl Symp Circuits & Systems, April
1995, pp. 582-586.

[73] R. Righter, J.C. Walrand, "Distributed Simulation of Discrete Event Systems",
Proceedings - 1987 IEEE International Conference On Computer Design: VLSI in
Computers & Processors,Wo\. 77 No. 1, January 1989, pp. 99-113.

[74] W. NajjM, J.L. Jezouin, J.L. Gaudiot, "PARALLEL EXECUTION OF
DISCREATED-EVENT SIMULATION", 1987 IEEE International Conference on
Computer Design, pp. 668-671.

[75] R.M. Fujimoto, 'Tarallel And Distributed Discrete Event Simulation: Algorithms And
Applications", Proceedings ofthe 1993 Winter Simulation Conference, pp. 106-114.

[76] E.J. Williams, Reg-ession Analysis, New York: John Wiley & Sons, Inc, 1959, pp.
37-40.

[77] C. W. Ho, A.E. Ruehli, P.A. Brennan, "THE MODIFIED NODAL APPROACH TO
NETWORK ANALYSIS", Proc. IEEE Int. Symp. on Circuits And Systems, 1974, pp.
505-509.

[78] J.M Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations In Several
Variables, ACADEMIC PRESS, New York, 1970.

[79] L.B. Rail, "SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS",
Numerical Solution of Partial Differential Liquations, Editor: J.G. Gram, D. Reidel
Publishing Company, Boston, 1973, pp. 55-105.

160

[80] C. Farhat, M. Lesoinne, "AUTOMATIC PARTITIONING OF UNSTRUCTED
MESHES FOR THE PARALLEL SOLUTION OF PROBLEMS IN
COMPUTATIONAL MECHANICS", International Journal for Numerical Methods
in Engineering, Vol. 36,1993, pp. 745-764.

[81] Y. Escaig, G. Touzot, M. Vayssade, "Parallezation Of Multilevel Domain
Decomposition Method", Computing Systems in Engineering, Vol. 5 No. 3,1994, pp.
253-263.

[82] A.V. Hudli, R.M.V. Pidaparti, "Distributed finite element analysis: scalability and
performance". Advances in Engineering Software, Vol. 21,1994, pp. 1-9.

[83] E. DeSantiago, K.H. Law, "An Implementation of Finite Element 'Method on
Distributed Workstations", Proceedings of the 199612th Conference on Analysis and
Computation, Apr 15-18 1996; pp. 188-199.

[84] L. Grosz, C. Roll, W. Schonauer, "A Black-Box Solver for the Solution of General
Nonlinear Functional Equations by Mixed FEM", FEMS 50 Years of Courent
Elements, Marcel Dekker Inc, New York, 1994, pp. 225-234.

[85] N.R. Lo, E.C. Berg, S.R. Quakkelaar, J.N. Simon, M. Tachiki, H. Lee, K.S.J. Pister,
"Parameterized Layout Synthesis, Extraction, and Spice Simulation for MEMS",
ISCAS: Proc. IEEE Intl Symp. Circuits & Systems Conn, Vol. 4 1996, pp. 481-484.

[86] C. F. Gerald, P. 0. Wheatley, Applied Numerical Analysis, Ed. 5, ADDISON-
WESLEY PUBLISHING COMPANY: Massachusetts, 1994.

[87] E. Lindberg, "Simulation", The Circuits and Filters Handbook, 1995 IEEE, CRC
Press, pp. 1058-1071..

[88] R. Pratap, "MATLAB", The Handbook of Software for Engineers and Scientists,
IEEE 1996, CRC Press, pp. 963-1004.

[89] T. A. Johansen, "SEMI-EMPIRICAL MODELING OF NON-LINEAR
DYNAMICAL SYSTEMS", Proc. lEE Colloqium Adv. Neural Networks, 1994, No.
136, pp. 4/1-4/3.

[90] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniate, B. Delyon, P. Glorennec, H.
Hjalniarsson, A. Juditsky, "Nonlinear Black-box Modeling in System Identification:
a Unified Overview", Automatica, Vol. 31, pp. 1691-1724.

[91] L. Ljung, T. Glad, Modeling of Dynamic Systems, PTR Prentice Hall: Englewood
Cliffs, 1994.

161

[92] J. E. Kleckner, Advanced Mixed-Mode Simulation Techniques, Ph.D Dissertation,
1984.

[93] J. Sjoberg, "ON ESTIMATATION OF NONLINEAR BLACK-BOX MODELS:
HOW TO OBTAIN A GOOD INITIALIZATION", Proceedings of the 1997 7th
IEEE Workshop on Neural Networks for Signal Processing, NNSP'97, Sept. 24-26
1997, pp. 72-81.

[94] M.C Kohn, Practical Numerical Methods: Algorithms and Programs, Macnrillan
Publishing Company: New York, 1987.

[95] O. Nagler, M. Trost, B. Hillerich, F. Kozlowski, "Efficient design and optimization
of MEMS by intergrating commerical simulation tools". Sensors and Actuators A,
Vol.66,1998, pp. 15-20.

[96] W.R. Stevens, Unix Network Programming, Prentice Hill: New Jersey, 1990, pp.
358-340.

[97] T. Quarles, "SPICE3F4 SOURCE CODE", Online ftp://ic.berkeley.edu/pub/Spice3.
May 1996.

[98] W. Bangerth, G. Kanschat, "THE DEAL.H HOMEPAGE", Online
http://gaia.iwr.uni-heidelberg.de/~deal. Sept 2000.

[99] K.H. Huebner, E.A. Thornton, The Finite Element Method for Engineers, Edition II,
John Wiley & Sons: New York, 1982.

[100]A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, "PVM:
PARALLEL VIRTUAL MACHINE A USERS' GUIDE AND TUTORIAL FOR

NETWORKED PARALLEL COMPUTING", Online
http://www.epm.oml.gov/pvm. March 1999.

\

[101]R. Young, I. MacPhedran, "INTERNET FINITE ELEMENT RESOURCES",
Online http://www.engr.usask.ca/~macphed/finite/fe resources/fe resources.html.
May 1999.

[102]V.B. Dmitriev-Zdorov, "Multicycle Generation- A New Way to Improve the
Convergence of Waveform Relaxation for Circuit Simulation", IEEE Transactions on
Computer-Aided Design, Vol. 17, No 5, May 1998, pp. 435-443

162

APPENDIXES

163

APPENDIX-A

164

Appendix-A. Backplane Control Syntax

This appendix describes the different parameter values and formats for each

keyword (command) in the backplane. A brief overview of the commands , is provided in

Table A-1. The following information is also notes on the backplane operations and

instructions for integrating the backplane into a simulator. The three categories of keywords

are DATA (Table A-4 through Table A-7), CONTROL (Table A-8 through Table A-11),

and COMMAND (Table A-12 through Table A-14) at the end of this appendix. The DATA

keywords are for information exchange, the CONTROL keywords define the parameters for

the interfaces and tasks, and COMMAND keywords initiate operations within the

backplane. The backplane processing procedures are case insensitive. Both simulators and

user control script interact using these commands.

Table A-1. Keywords for the simulation backplane

Keyword Codes Description

DEVDEF Define a device within a simulator.

GLOBPRM Define global parameters common to all backplane elements.

GRADDATA Define object gradient data from a simulator.

JD Defme the simulator ID during the initialization process.

INCLUDE Include a file as a subcommand file.

MESSAGE Messages (wamings, errors, etc...) sent to the backplane controller.

MODELDEF Defme a multi-facetted model for the dynamic switching process.
OBJDATA Define object variable data of a simulator.

OBJPRM Interface controls and configurations for an object.

REOSTAT Request the status of a simulator or its intemal objects, parameters, etc.

SIMCMD Send a command directly to a simulator.
SIMPRM Define simulator control instructions and parameter definitions.

START All simulators are to start processing data based on their MODE parameter.
STOP All simulators are to stop and await further instructions.

TOLERANCE Define the convergence tolerance for variables of root objects.
TRIGDEF Define,the trigger conditions for switching between models.

165

Appendix-A. 1 Integrating the backplane into a simulator

The main routines to interface the simulator with the backplane are described in

Table A-2. The following steps should be followed to modify a simulator:

1) Create a global variable (BKPL_DEF *BKPL_deQ in the main code of the simulator.

All backplane structures are generated within this variable. The routine BKPL_setupO

creates the BKPL_def structure. Intemal simulator commands or an initialization file

defined via an environment variable or filename to BKPL_setup is required to specify

backplane initialization parameters for a particular simulator.

2) Create operations within the simulator to define the interface structure between the

simulator and the backplane. The routine BKPL_INTERFACE_find creates an interface

into the backplane and activates the baclq)lane. If a backplane interface is not created,

then the baclqjlane does not become active and normal simulation is performed. The

interface contains indexing variables for simulator access to the local solution matrix.

The index variables are E_index and F_index for the EFFORT and FLOW variables

solution points, respectively. The ESYS_index is for adding an extemal matrix (system)

to the local simulator matrix, and this index variable defines the EFFORT point for

adding conduction information. README files are available with the backplane source

code to define the process of adding new interface or configuration types.

166

Table A-2. Backplane to simulator interface routines

Main Iteration Routines

BKPL_setup(char *filename)
Create the backplane structure within a simulator and define the initialization control file.
The filename for the simulator can be defined via this routine. If filename is NULL, then the
environment variable BKPL_INIT_FILE defines the filename. A global variable called
BKPL_DEF *BKPL_def is required in the simulator in order to create the backplane. All
backplane structures are created within BKPL def.
BKPL_mainO
This routine is the main backplane algorithm that links all backplane elements together,
performs calculations, etc. Very few operations are performed outside the main routine.

BKPL_shutdownO
This routine sends a shutdown message to the backplane controller and firees most intemal
structures created by the backplane. Sufficient structure remains for the simulator to
perform a shutdown.
BKPL_REF_input(BKPL_REF *Ref, BKPL_REF *Re£Delta)
BKPL_REF_input_double(double Ref, double RefDelta)
Load the simulator reference and reference delta into the backplane.
BKPL_REF_output(BKPL_REF *PrevRef, BKPL_REF *PresentRefDeIta)
BKPL_REF_output_doubIe(double *PrevRef, double PresentRefDelta)
Output the new simulator reference point and reference delta to the simulator. The present
reference point used in the calculations is Ref = PrevRef + PresentRefDelta.
BKPL_INTERFACE_add_attr
(BKPL_INTERFACE *interface, char *iiame, char *value)
Define an interface parameter (name) with value (value).
BKPL_SIM_add_attr(char *name, char *value)
Define a simulator parameter (name) with value (value).

BKPL_SIM_cmdbufprs (char *Line)
Process the given string as a backplane command.
BKPL_SIM_cmdwordprs (char **Words, int count)
Process a list of words with length count as a backplane command.
int BKPL_INTERFACE_fmd
(char *objname, char *intfname, char *confname,
BKPL_INTERFACE **interface, int domain)
Create an interface (interface) with an object name (objname), interface (intfhame), and
configuration (confname) for a domain (domain) (See vardefh for domain definitions). If
the interface is valid, then the routine retums 0. The routine returns a 1 if an error occurred.

167

Table A-2. Continued

Main Iteration Routines

Void BKPL_OBJ_INTERFACE_find
(char *objname, BKPL_INTERFACE **interface)
Find the interface that corresponds to a particular object, but the interface will be created if
it does not exist. However, this routine expects the interface to created by
BKPL INTERFACE find.

double BKPL_INTERFACE_varload
(BKPL_INTERFACE ̂interface, double Ref, iut vartype)
Load the variable (vartype) for the interface at the given reference (REF) point. The valid
definitions for vartype are define in Figure B-1 (Appendix B).

3) Add new interfaces or modify existing routines to load variable information from the

backplane to the simulator. The routine BBCPL_INTERFACE_varload loads variable

information fi-om the interface structure.

4) Modify the main loop of the simulator's iteration process to include BKPL_REF_input,

BKPL_main, and BKPL_REF_output (in this order). The BKPL_main controls the loop

and defines the flags to the simulator (See Table A-3) for controlling the simulator

analysis. The majority of all baclqilane operations are performed in BKPL_main. The

other routines are for reference control of a transient analysis. The BKPL_REF_input

routine requires the simulator to define REF and REFDELTA to the backplane and

BKPL_REF_oulput retums REFPREV and REFDELTA' as shown in Figure A-1. In

this format, the simulator can adjust REF or REFDELTA'.

168

variable

refdelta' j refdelta :
T : (present): (next) :

time

reQ)rev ref ,

Figure A-1. Backplane reference stepping diagram

Table A-3. Flags from the backplane to the simulator

Flag(**) Description

SHUTDOWN Indictor to shutdown the simulator in an orderly fashion.

OPERATION Indictor that a backplane interface was in the analysis.

SOLV_SAVB Indictor to save the present iteration data as the solution. Without-this
flag, the simulator stored interim iteration data.

LOAD_FILE Indictor to load extemal file that contains simulator solution and state

information (BACKUP/restore function).

LOAD_STATE Indictor to load a simulator's backup solution and states from memory
(BACKUP/restore function).

ROLLFORWARD Indictor to a simulator that the backplane will be synchronizing the
simulator to new data in the future. If possible, the simulation should
move to the new reference point, and restarted the analysis assuming
initialization conditions applied.

NEW TIME Indictor that the REF variable has changed.

SAVE_FILE Indictor to save a simulator's solution and state information into an

extemal file (BACKUP/save function).

SAVE_STATE Indictor to save a simulator's solution and state information into

memory (BACKUP/save function).
SENS_CALC Indictor that sensitivity calculations are being performed. The

simulator's local model evaluation process can be skipped if possible.
SENS_SSAVE Indictor of the begirming of sensitivity calculations. The simulator

should save the present solution values to restore the values at the end
of the sensitivity process.

SENS_SLOAD Indictor of the ending of sensitivity calculations. The simulator can
load the stored solution values, so an extra iteration is not required to
retum the solution back to the previous value.

The prefix BKPL_ is applied to all flags to avoid naming conflicts with the simulator.

169

5) Custom routines are required prior to BKPL_main to load the new variables values

(simulator output) from the local solution process into the interface structure.

6) Include BKPL_shutdown routine at all exit points from the simulator. At this point, the

simulator and backplane should be capable of interacting with other simulators

containing a backplane element.

7) Test and debug the baclqplane and simulator interaction using a simple problem.

8) **OPTIONAL** In the basic implementation, the initialization file defines object and

simulator parameter settings. The initialization file is unnecessary if the simulator can

intemally pass information directly to the baclqplane. Several command processing

routines are also available to implement this function.

9) **0PTI0NAL** Modify the SIMCMD command so the backplane can issue

conunands directly to a simulator.

10) **OPTIONAL** Add or modify existing extemal matrix loading routines to interact

with the backplane. A simulator can link to the SIMLOCAL->EqvMtx matrix and then

load the equivalent matrix information using ESYS_index from two different baclqplane

interfaces.

Appendix-A.2 Parameter Definitions

Most commands within the backplane are defined using keyword parameters. All

parameters are assigned a STATIC, DYNAMIC, READONLY, or CTRLONLY property.

STATIC parameters cannot be modified during calculation sequences. In most cases, these

parameters are for calculation and task control. DYNAMIC parameters can be varying

170

during any simulator mode with no restrictions. READONLY parameters are specified by

the local simulator and are not modified by any source other than the local simulator, but

these parameters are considered DYNAMIC parameters by other simulators. In case of

problems, the READONLY parameters can be assigned a value during the OVERRIDE

mode of the simulator. The CTRLONLY parameters can only be modified via the

backplane routines. The default parameter mode is STATIC unless specified otherwise.

Appendix-A.3 Object and Device Structures

Widiin the backplane, two types of objects are defined: local and root. The simulator

defines the local objects while the backplane constructs the root objects at the beginning of

a task. A local object is the standard object definition for a simulator where each local

object has a root object or system level connection. The local objects have definable

attributes and define an interface for a single domain. The MERGE option in OBPRM

specifies the root object. If MERGE is not specified, then the default root object is the same

name as the local object. A root object is the master node that defines how objects from

simulators are merged or interconnected. The root objects have no definable attributes

except for the tolerance parameters. Unlike the local object, the root objects support

multiple domains, so interfaces from different domains can be merged into a single root

object.

The device structures also have a local and root structure like an object, but

equivalent devices in different simulator must have the same device name. Devices are

essentially a collection of objects that represent a known entry with a district modeling

171

representation. The device definitions are used to define the predictor and corrector

interfaces in the flow correction process (described in section 3.5) and for the dynamic

model switching process (described in section 4.3.3 and by the TRIGDEF command). At

present, local objects cannot be shared by multiple device definitions. This rule is strictly

enforced with the predictor and corrector interfaces, but sharing is possible with other

interfaces.

Appendix-A.4 Automatic Configuration

Because of the dynamic switching capabilities of the backplane, the central

controller of ail backplane elements will configure all simulators especially if a device is

defined for a simulator. If any simulator within the backplane is in an ITERATE mode, the

controller configures the STATUS parameter of objects using the device STATUS, which

the objects are used to construct. The mapping is defined as follows:

• Device ON forces objects to ON.

• Device OFF forces objects to OFF.

• Device TRACK forces objects to TRACK.

Then, a simulator's configuration is determined from the objects' STATUS property using

the following rules:

• If any object in a simulator has a STATUS=ON, then the simulator can only be in an
ITERATE mode. Objects with a STATUS=OFF in a simulator with a
MODE=ITERATE are changed to STATUS=TRACK.

• The simulator is set to the TRACK mode if all objects have STATUS=TRACK.

• If all objects have STATUS=OFF, then the simulator is set to the DEACTIVE mode
parameter and the objects of the simulator are configured appropriately.

172

Once the simulator status is determined, the object in the simulator are modified if

necessary where:

• For a simulator in an ITERATE mode, the object status can be ON or TRACK.

• For a simulator in TRACK mode, the object status can only be TRACK.

• For a simulator in OFF mode, the object status can only be OFF.

Besides these rules, the central backplane conholler performs automatic ITERROGATION

of simulators with UNKNOWN modes. In addition, each backplane element will also

automatically synchronize with other simulators when the element is changed from an OFF

to ITERATE mode.

Appendix-A.5 Triggering Rules and Procedures

The triggering procedures are very straightforward except for the ACCURACY and

RANGE procedures. The accuracy trigger is a method of concurrent verification, where the

reference model defined by the trigger tracks the operation of the active model (model in the

analysis). When the accuracy between the active and reference model is not within a certain

tolerance, the procedure switches to another model that meets the accuracy criteria. The

trigger can always switch back to the reference model, which is essentially the most

accurate, but most time-consuming model in the analysis. The range trigger is a variation of

the accuracy trigger, where accuracy information is already defined in lookup tables and

concurrent simulation is not required. Each trigger has additional rules about model

switching decisions and options.

For the ACCURACY trigger, the procedure is to chose the simulation model with

the best performance once the model (as called a device) has meet the sequential accuracy

173

criteria. The sequential accuracy criterion requires a model to meet the accuracy

requirement (variable errors are less than MAXERROR) over a certain number of

sequential points (SEQCNT_SWITCH) compared to the reference model. Once valid, a

certain sequential number (SEQCNT_BACK) of accuracy requirement violations causes the

model to become invalid. If multiple valid models are present, then the switching procedure

will change models ONLY if the performance of the new model is better than the

performance (P) of the active model by a certain percentage (PERFDIFF), or

Pnew < Pactive n 0 - PERFDIFF) Equation A-1

If no valid models are found, then the reference device becomes the active simulation

device.

For the RANGE trigger, the device must meet the sequential range criteria. Like the

sequential accuracy criteria, the sequential range criterion requires a model (device) to meet

the range requirement over a certain number of sequential points (SEQCNT_SWITCH).

The range requirement is that specified range error for all variables of the simulation model

is less than MAXERROR of the trigger. Once valid, a certain number of sequential

violations (SEQCNT_BACK) of the range requirement caused the model to become

invalid. Howeyer, a model immediately becomes an invalid device if the device range

exceeds MIN-MINEXT or MAX+MAXEXT for a present region without finding another

region within the error tolerance parameter. If multiple valid models are present, then the

switching procedure will change between valid models based on the following rules:

I. Better performance (P) than the active model by a certain percentage (PERFDIFF).

174

^NEW ^ACTIVE ' ^ERFDIFF)

2. Equivalent performance of the active model within a certain percentage (PERFDIFF)

and an improved ratio of range error (E) over the minimum range (R) by a certain

percentage (RANGEDIFF).

^NEW ^ACTIVE ' PERFDIFF)

E^^^.(^-RMGEDIFF) Equatio„A-2
^ew ^ACTIVE

If no valid models are found, then the SIMMOD defined in the TRIGDEF becomes the

active simulation models.

175

Table A-4. Data keywords for the backplane

Keyword Codes DATA Description

DEVDEF Define a device called DEVNAME in a particular simulator and define
the properties of the device. ^

Format: DEVDEF SIMULATOR DEVNAME PARAMETERS

PARAMETERS

MODELDEF={model name}
Define the model that the device references. This parameter must be
specified.

SEQCORR={YES,NO}
Perform a sequential correction process. The default is NO.

SEQCORRITR={YES,NO}
On the first iteration of a new reference point, make the CORRECTOR
track the PREDICTOR interface. The default is NO.

SIMMOD={simulation sub-model}
Define the specific siniulator model that used in the simulator. This
parameter must be specified.

SYNC-SIIVIMOD={simulation sub-model}
Define the specific simulator model that the given device will
synchronize. The backplane controller defines this parameter.

STATUS ={ON,OFF,TRACK}
Define the status of the device in the dynamic modeling process. The
default is ON. Because of the dynamic switching process, this
parameter can be controlled by the user and the backplane controller.

ON:_The device is active in the dynamic modeling process.
OFF: The device is inactive in the modeling process.
TRACK: The device is to track the operation of the ON device.

{simulator object}={model object}
Defme how simulator interfaces (simulator objects) are connected to
the basic model (model objects). This relationship listing provides the
backplane with a secondary netlist to double-check the system-level
connectivity.

176

Table A-4. Continued

Keyword Codes DATA Description

DEVDEF

(continued)
CORRSENSRATIO={ floating point value}
Define the correction sensitivity ratio (RATIO) for the flow-correction
minimization process. The default value is 5.0.

The flow correction procedure does the following:
iT't+l ,

17/+I .

n Fq + ̂CALC ^present (Normal)

= + AF^c + Gprevious " (COIIipMe)

if (|fc: > RATIO AF^^^s then F^'=^F'-l^s

else IT' = FZ

GRADDATA Specify the gradient information to other simulators.

Format: GRADDATA SIMULATOR PARAMETERS

PARAMETERS

NAMEx: VARa|NAMEy: VARB={floating point value}
Gradient results for object variables. Examples are:

T1 :V|T2.A={floating point value}=|^

T1 :A|T2.A={floating point vklue}=-^

Tl: V|T2.V={floating point value}=|p

T1 :A|T2.V={floating point value}=ik

OBJDATA Define object variable data to other simulators.

Format: OBJDATA SIMULATOR OBJNAME PARAMETERS

PARAMETERS

REF = {hexadecimal number}
Define a reference point. An example is REF=0A43D.

VARIABLE={floating point value}
Physical variables. Examples are:
V = 0.5212 (Voltage). Units are in volts (V).
A = 0.3289 (Current). Units are in amps (A).

177

Table A-4. Continued

Keyword Codes DATA Description

INCLUDE Include a file with additional backplane instructions.

Format: INCLUDE file

MESSAGE Message or information to the backplane controller.

Format: MESSAGE SIMULATOR TYPE {message}

TYPE={COMPLETED, ERROR, FATAL_ERROR, DATA,
WARNING, TRIGGER}

Define the type of message.

COMPLETED

Indictor of successful completion of a task.

WARNING

A condition occurred in the simulator that can cause errors in the

backplane.

ERROR

The present task encountered an error, which forced the simulator to
halt the present task. The message is an error description for
diagnostics. The entire backplane process can be jeopardized by the
error and data is certainly suspect.]

FATAL_ERROR
The simulator encountered an error that was unrecoverable. The

message is a description of the simulator error for diagnostics if
available. In all cases, the simulator has shutdown.

DATA

The message is simulator information from the REQSTAT command.
The information is read by the backplane controller module(s).

178

Table A-4. Continued

Keyword Codes DATA Description

MODELDEF Define a model and all facets of the model with respect to the different
simulation models available.

Format:

MODELDEF {name}
MODEL-VAR variables

PARAM {MODELDEF Parameters}
SIM-MODELDEF

PARAM {SBM-MODELDEF Parameters}
RANGEDEF; {maxerror}

RANGE {variable} {RANGE attributes}
END-RANGEDEF

{etc}
RANGEDEFat {maxerror}

{etc}
END-RANGEDEF

END-SrMMODELDEF

{etc}
SM-MODELDEF {name}

{etc}
END-SM-MODELDEF

END-MODELDEF

A separate section is provided for MODELDEF parameters,
RANGE attributes, and SIM-MODELDEF parameters.

Command Definitions

END-MODELDEF, END-SIM-MODELDEF, END-RANGEDEF
Indictors to terminate a particular command sequence within
MODELDEF.

MODEL-VAR OBJECT:VARIABLE...

Define the reference variables or 10 information for the model.

Example: MODEL-VART1 :VT1 :AT2:V

(continued)

179

Table A-4. Continued

Keyword Codes DATA Description

MODELDEF

(continued)
SIM-MODELDEF name

Define the start of a simulator-specific model definition.

Example: SIM-MODELDEF spiceS

RANGEDEF {maxerror}
Define the regions of the device that have been mapped and the
maximum error for the region (% error). The default maxerror is 0.01.

Example: RANGEDEF 0.05 5% error maximum.

RANGE OBJECT: VAR PARAMETERS

Define the ranging information for the model object and variable
(usually an input variable) from MODEL-VAR command. If range
information is not provided for a variable, then the variable is assumed
valid over all values. See RANGE Parameters for more information

on the parameters.

Example: RANGE TESTl :V MIN=0.3 MAX=0.75

Table A-5. RANGE attribute definitioris used within SIM-MODELDEF

RANGE Attributes Attribute Descriptions

MAX {floating point value}
The model has the specified accuracy below this maximum
value. The default is lelO.

MAXEXT {floating point value}
Defme how far the model can be extended above the MAX

parameter in RANGE command on trigger conditions with
negligible lose of accuracy. The default is 1.0.

MIN {floating point value}
The model has the specified accuracy above this minimum
value. The default is -1 e 10.

MINEXT {floating point value}
Define how far the model can be extended below the MEN

parameter in RANGE command on trigger conditions with
negligible lose of accuracy. The default is 1.0.

180

Table A-6. SM-MODELDEF parameter definitions

SIM-MODELDEF

Parameters

PARAMETER Descriptions

LEVEL {(WHITE, PHYSICAL),(GRAY, DEVICE),
(BLACigFUNCTIONAL)}
Defme a general level pf modeling for the simulator model.
The numbers define the level that is considered the most

accuracy. Lower values indicate higher accuracy and usually
less performance. The default is BLACK.

WHITE or PHYSICAL -level 0

Model based on the physical structure using material
characteristics.

GRAY or DEVICE -level 1

Parameterized or lumped sum model based on observed or
extracted physical behavior with modeling error.

BLACK or FUNCTIONAL -level 2

A device model with highest performance and questionable
accuracy to represent the base characteristics of the device.

MAXERROR {floating point value}
Define the worst case relative error for the model. This value

is used if MAXERROR is not defined within RANGEDEF.

The default is 100.

PERFORMANCE {floating point value}
Define the relative performance metric for the given model
representation. Smaller values represent faster analysis
'models. The metric is presently the worst-case time for a
simulator to iterate once with the given model. The default is
lelO.

MODELDEF Parameter PARAMETER Descriptions

DEFAULTSIMMOD {name}
Define the initialization SIMMOD if a conflict exists.

Otherwise, performance and accuracy values in SIM-
MODELDEF are used to determine the best model.

181

Table A-8. Control keywords for the backplane

Keyword Codes CONTROL Description

GLOBPRM Global parameter definitions that apply to ALL simulators. All global
parameters are static.

Format; GLOBPRM PARAMETERS

The parameters are defined in GLOBPRM PARAMETERS.
OBJPRM Interface control instructions to define how a node or object interacts

with different simulators.

Format: OBJPRM SMULATORl OBJNAME PARAMETERS

The parameters are defmed in OBJPRM PARAMETERS.
SMPRM Define the simulator specific parameters. The parameters are STATIC

unless otherwise specified.

Format: SIMPRM SIMULATOR PARAMETERS

The parameters are defined in SIMPRM PARAMETERS.
TOLERANCE Define the tolerance for root objects between simulators to define when

the variables have converged. See section 2.3.4. A reserved object and
variable name is ALL where all objects and variables can be updated
with one command. This command also defines the delta tolerance

values for the sensitivity parameters.

Format: TOLERANCE OBJNAME {variable} PARAMETERS

PARAMETERS

ABSTOL={floating point value}
Defme the absolute tolerance for a variable. See below.

RELTOL={floating point value}
Define the relative tolerance for a variable. See below.

(continued)

182

Table A-8. Continued

Keyword Codes CONTROL Description

TOLERANCE ABSSENS={floating point value}
(continued) Define the absolute sensitivity for a variable. See below

RELSENS={floating point value}
Define the relative sensitivity for a variable. See below.

RATIO={floating point value}
Define the scalini? ratio for GRADCALC=RELPLUSMAX. See below.

EFFORT FLOW Other

variables variables variables

ABSTOL l.Oe-4 l.Oe-5 l.Oe-4

RELTOL 0.0 l.Oe-3 0.0

ABSSENS l.Oe-4 l.Oe-5 l.Oe-4

RELSENS 0.05 0.05 0.05

RATIO 0.5 0.5 0.5

183

Table A-9. GLOBPRM parameter definitions

GLOBPRM Parameters PARAMETER Descriptions

COMM {FILE,SOCKET,PVM}
Define the communications protocol between backplane
elements. The default is SOCKET.

• FILE is for file-based transfers. This option is veiy slow
(10 to 100 times) compared to the other options.

• SOCKET is for UNIX based transfer mechanisms.

• PVM is for the Parallel Virtual Machine mechanism

(Not implemented).

DEADLOCKLEVHT {integer value}
Define the iteration limit for simulation process for a
solution at the same reference point. The default is 50.

DEBUG {ON,OFF}
Output information from the backplane based on the
DEBUG compile defmitions. The default is OFF. The
compile defmitions are outlined in the include file
"config.h".

MAXITR {long integer value}
Define the maximum number of iterations between

backplane elements before the process is stopped. The
default is 0, which means no limit.

PMAX {floating point hiiniber}
Defme the maximum parameter for baclqilane interfaces and
calculations. The default is lelO.

PMIN {floating point number}
Define the minimum parameter for backplane interfaces and
calculations. The default is le-10.

REFSTOP {integer value in hexadecimal format}
Defme the stop reference point for the analysis. A solution is
not generated at this point. The default is 0.

REFDELTAMIN {integer value in hexadecimal format}
Define the minimum reference data for the analysis. The
backplane attempts to increase the reference delta until this
minimum value is reached. The default is Ins.

RESOLUTION {floating point number}
Define the minimum (usually time) resolution for the
reference variables in the backplane. The default is 10 pico
seconds.

184

Table A-9. Continued

GLOBPRM Parameters PARAMETER Descriptions

RETAIN {integer value}
Specify the number of data points that each simulator must
maintain for synchronization of the simulators. The default
is 8. '

SENS_DREF {SKIP30LLBACK,STOP, SCALE}
Define how the backplane reacts to a reference rollback
during sensitivity calculations. The default is the SCALE.
• SCALE option implements a linear scaling of the

reference point to expected reference point. If the scale is
greater than 2, then the process implements a SKIP.

• ROLLBACK option forces the simulator to change the
reference delta and the sensitivity analysis is restarted.

• SKIP option skips the calculation of the sensitivity
parameters affected by the rollback.

• STOP option stops the sensitivity calculation process
and returns to the previous operation.

SYNC {LOCKSTEP}
Define the synchronization method for the backplane. The
default is LOCKSTEP.

• LOCKSTEP forces a.11 ITERATE mode simulators to

keep the same REFPREV, REF, and REFDELTA.

TIMEOUT {integer value}
Define the timeout in seconds for the communications

process. If the simulator has not received a communication
in a given span, then the process checks for valid
communication mechanism. The default is 120.

VARMAX {floating point number}
Define the maximum variable value allowed m interfaces

and calculations where |variable| < |VARMAX]. The default
is le3. This parameter is not checked during initialization.

VARINTERP {YES,NO}
Extrapolate new interface values after convergence for the
next reference point based on previous values. The default is
NO.

185

Table A-10, OBJPRM parameter definitions

OBJPRM Parameters PARAMETER Descriptions

CAUSAL {EFFORT^OW}
Define which variable in the electrical interface is the input.
The default is EFFORT. This parameter is READONLY.

CONF {Interface Configuration typie. See Appendix 2}
This parameter defines the configuration or emulation mode
of the interface. The default is DEFAULT or basic interface

definition. The parameter is DYNAMIC.
DOMAIN {UNKNOWN,ELECTRICAL^CHANICAL}

Define tihe domain that the object's variables. This parameter
is READONLY and the default is UNKNOWN.

INTF {Interface type. See Appendix 2}
This parameter defines the electrical interface definition for
an object. No default is defined. The parameter is
READONLY.

MERGE {root object name}
Merge this object into the given root-object. The default is
NULL (use object name as root object name).

STATUS {OFF, ON, TRACK}
Transmission or interface I/O control. This parameter
defines how an object is connected to other objects in
extemal simulators. The default is ON.

• OFF. The information from the interface is not used by
other simulators.

• ON. The information is used by the other simulators and
sensitivity parameters are calculated.

• TRACK. The object follows another object and mirrors
its response. This information is not used in the
calculations to define the next solution and no sensitivity
calculations are required.

186

Table A-10. Continued

OB JPRM Parameters PARAMETER Descriptions

GRADCALC {RELTOL, RELPLUSMAX,ERROR}
Specify the variation parameters to the perturbation method
for the sensitivity calculation process. The default is
RELTOL, which is the conventional approach.
• RELTOL applies a relative parameter times the variable

value plus an absolute relative parameter.
delta = RELSENS * \value\ + ABSSENS

• RELPLUSMAX applies the RELTOL delta and adds the
largest, previous applied delta as a ratio.
delta = ratio * RELTOL * \valu^ +

(1 - ratio) * DELTAMAX +ABSSENS

• ERROR uses the present error information between the
simulator value and the calculated value until the values

become too small. NOTE: Not very reliable due to
rounding errors.

delta = \value(J) - value{i -1)|
GRADMODE {IDENTITY, DIAGONAL, FULL}

Specify how the backplane is to calculate the sensitivity
information. Prior to the first valid solution, the FULL
option is ALWAYS used. The default is FULL.
• IDENTITY is used primarily for the correction process.

Other modes maintains the present values.
• DIAGONAL implements a SECANT based approach

where sensitivity information is gathered during the
analysis process. Variables are assumed decoupled.

NOTE: New parameters are calculated if any delta
variables are above the too-be-applied ideal delta defmed
by GRADCALC. Consequently, the sensitivity tolerance
variables need to be reduced compared to the
TOLERANCE defaults. Suggested tolerance parameters
areRELSENS<le-3 and ABSSENS<le-5.

• FULL option has the backplane perform the perturbation
method where deltas are applied to each interface
independently.

187

Table A-10. Continued

OBJPRM Parameters PARAMETER Descriptions

GRADSIGN {M0^1,M2^OS,NEG}
Define how the sign of the applied delta is determined for
the sensitivity calculations of the object. The default is Ml.
• MO. Obsolete method of moving toward the calculated

solution, which had an error but worked.
• Ml. This method determines the delta direction based on

moving the simulator value toward the calculated value.
On the first iteration of the new sequence, this routine
uses the previous results to predict the direction of the
solution.

• M2. The delta direction is determined based on the stable

or converged events in the object, so the delta is constant
during the sequence. Until sufficient events are stored in
the object, this process uses ML

• POS. Apply a positive value to the variable values.
• NEG. Apply a negative value to the variable values.

GRADTIME {NONE, CONDITIONAL,ERROR, ITERATION,
TIMESTEP}

Specify when the backplane is to initiate a gradient
calculation. The default is TIJ^STEP.
• NONE maintains the present values.
• TIMESTEP generates gradients on each new reference

point after a variable change occurs.
• CONDITIONAL implements the TIMESTEP process,

but performs new sensitivity parameters when variables
exceed the region encircled by the previously applied
delta.

• ERROR examines the error between the calculated

values and the simulator values to determine when new

sensitivity calculations are performed.
• ITERATION generates new gradients after very iteration

until variable convergence is reached. '

188

Table A-10. Continued

OBJPRM Parameters PARAMETER Descriptions

STATE {Causality states}
Defines the causality state of interface for the dynamic
interface switching process depending on the
STATE_ENABLE method. The different methods are
defined in section 3.2 (method 1) and in section 3.4.5
(method 2). This parameter is DYNAMIC.

For method 1, the default state is GENERIC, and the
DEFCONF, CSCONF, and EFCONF parameters are used to
redefine an object's CONF in the specific states. In method
2, the configurations are predefmed.

State decisions are made at the reference done level of the

iteration process, after changes in the CAUSAL variable of
an interface, and during initialization procedure.

Causality states

Method 1 States

• GENERIC. Use the DEFCONF configuration.
• CAUSE. Use the CSCONF configuration.
• EFFORT. Use the EFCONF configuration.
• GENERIC_TO_CAUSE. Transition state to CAUSE.
• GENERIC_TO_EFFORT. Transition state to EFFORT.
• CAUSE_TO_GENERIC. Transition state to GENERIC.
• EFFECT_TO_GENERIC. Transition state to GENERIC.

Method 2 States

• SYSTEM_GENERIC. Use a SYSTEM configuration.
• SYSTEM LOCK. The interface is locked in a SYSTEM

configuration.
• CAUSE. Use a FSRC_SENS configuration to indicate

that the system had entered the EFFECT or
EFFECT_SET state.

• EFFECT. Use the ESRC_SENS configuration.
• EFFECT_SET. Use the ESRC_SENS configuration with

the sensitivity parameter set to one.

189

Table A-10. Continued

OBJPRM Parameters PARAMETER Descriptions

STATE_ENABLE {METH0D1,METH0D2, NO}
Enable the given object to implement a specific causality
method. The default is NO.

• METHOD 1. Use the causality detection criteria
proposed in section 3.2.

• METH0D2. Use the improved causality detection
criteria from section 3.4.5.

• NO. Disable the causality detection process.

CAUSCRTR { POWER,SENSITIVITY}
Define the causality detection criteria. The default is
SENSITIVITY (See section 3.2.1).
• POWER uses the power criteria.
• SENSITIVITY uses the sensitivity criteria.

CAUSRATIO {floating point number}
Define the cause ratio for the causality detection process.
The default is 10.

CSCONF {Interface type. See Appendix 2}
Define the CAUSE configuration emulation if the element is
identified as CAUSE.

DEFCONF {Interface type. See Appendix 2}
Define the default or GENERIC emulation configuratipn.

EFCONF {Interface type. See Appendix 2}
Defme the EFFECT configuration if the element is identified
as an EFFECT.

190

Table A-11. SIMPRM parameter definitions

SIMPRM Parameters PARAMETER Descriptions

BACKUP {NONE,MEMORY,FILE^M_FILE}
Parameter from the simulator to the backplane that defines
how the simulator can do a backup for a LOAD and SAVE
operation. The parameter is READONLY. The default is
NONE.

• NONE. No backup capability.
• MEMORY. Store information in the computer memory.
• FILE. Store information in a file.

• MEM_FILE. Both MEMORY and FILE operations are
available.

BACKUPCONE { NONE,MEMORY,FILE}
Defmes how the simulator will do a backup during a LOAD
and SAVE operation. The default is NONE.
• NONE. No backup capability.
• MEMORY. Store information in the computer memory.
• FILE. Store information in a file.

BACKUPNAME {name}
Name of the backup. A name must be specified if the LOAD
or SAVE mode is performed.

COMMTYPE {See COMM types}
Define how the simulator is used in the communications

scheme. The default is CLIENT.

COMM tvnes

• SERVER. The element receives all information and then

broadcasts it to the clients.

• CLIENT. The element sends and receives information

only from the server.
• HYBRID. This element is a client and a server (Not fully

implemented).

191

Table A-11. Continued

SIMPRM Parameters PARAMETER Descriptions

CTRLTYPE {See CTRL types}
Define how the simulator is used in the control process. The
default is SIMULATOR.

CTRL types
• CONTROLLER. This element controls other elements

and implements the configuration rules. Only one
CONTROLLER can be defined within the backplane.

• SIMULATOR. This element performs calculations and
controls a simulator.

• SIM+CONTROL. This element implements a
CONTROLLER process and SIMULATOR process
simultaneously (Not fully implemented).

• OBSERVER. This element only examines data.
REACTIVE MODE {OFF, UPTODATE, TRACK}

Define the mode of the simulator if all internal objects have
STATUS=OFF. The default is UPTODATE.

END {See END options}
This output parameter defines the status of the simulator.
This parameter is DYNAMIC, and is typically defined by
the baciqplane in the simulator. The default is NO.
• NO. The simulator has not finished the present iteration.
• YES. The simulator has finished the present iteration.
• DONE. The simulator has variable convergence with

other simulators, so the iteration process can move to the
next iteration and reference point.

• STOP. The simulator has finished the present task or had
an error. A simulator may wait for other simulators
completion before continuing.

NOTE

Baciqplane elements redefme other simulator's END
parameters (to a NO) after iteration sequence completion in
order to eliminate transmissions between elements.

lONAME {name}
Input and Output name for communications. The default is
BKPLCON.

LOGFILE {name}
Log file containing the iteration characteristics of the
simulator and object interface parameters.

192

Table A-11. Continued

SIMPRM Parameters PARAMETER Descriptions

MATRIX {ON,OFF)
Parameter from the simulator to the backplane defining that
the simulator has a matrix loading capability. The default is
OFF. This parameter is READONLY.

MARK {long integer value)
Iteration marker value for debugging the synchronization
process between baclq)lane elements. This parameter is
DYNAMIC.

MODE {See MODE parameters)
This parameter defines the operation to be done on a START
command, where MODEPRS is set to MODE. The default is
ITERROGATE.

MODEPRS {See MODE parameters)
Defme the present operational mode of a simulator. The
default is TJNKNOl^^. The start command transfers the
MODE definition to the MODEPRS. This parameter is
CTRLONLY.

MODE parameters Backplane non-calculation modes
• IDLE or OFF. Waiting mode for information and

commands.

• ITERROGATE. Debugging and configuration mode.
This mode provides feedback to the external simulator
about all facets of the local simulator.

• OVERRIDE. Override control mode for redefining non-
CTRLONLY backplane variables.

• SHUTDOWN, shutdown mode. An orderly shutdown of
the simulator is to be performed.

Simulator interaction modes without calculations

• LOAD. A recovery mode. The simulator is instructed to
a load a file (lOFELE) or rollback to a previous intemal
state defined by REFROLLBACK and BACKUPCONF.
This mode is used in conjxmction with SYNCHRONIZE
and SAVE.

• SAVE. A backup mode. The simulator is instructed to a
save a file (lOFILE) or intemal contents for recovery,
synchronization, or rollback. The destination of the save
is defined by BACKUPCONF. This mode is used in
conjunction with SYNCHRONIZE and LOAD.

193

Table A-11. Continued

SEMPRM Parameters PARAMETER Descriptions

MODE parameters
(continued)

Simulator interaction modes with non-iterative calculations

• INDEPENDENT. Backplane-off mode. The simulator
has minimum interaction with the backplane except to
load stimuli.

• SYNCHRONIZE. Synchronize mode. The backplane
defines an event sequence to synchronization the
operation of the local simulator with external operations.

Concurrent interaction modes between simulators

• ITERATE. Concurrent simulation mode.

• SENSCALC. Intemal calculation mode for sensitivity
calculations.

• TRACK. Synchronize mode. The objects within the
simulator track the response of objects in other
simulator. Track simulators are iteration locked at the

reference done level.

• UPTODATE. Synchronize mode. Similar to TRACK,
this mode is not iteration lock with the other simulators.

The simulator tries to remain up-to-date with the other
simulators like the SYNCHRONIZE mode.

{Hexadecimal integer value}
Parameter defining the present simulation reference point
from the analysis. This parameter is READONLY. The
default is 0.

REF

REFDELTA {Hexadecimal integer value}
Parameter defining the next delta reference point from the
analysis for step control. This parameter is READONLY.
The default is 0.

REFPREV {Hexadecimal integer value}
Parameter defming the previous simulation reference point
from the analysis. Specifically, this parameter is the known
stable solution that all calculations are referred. This

parameter is READONLY. The default is 0.

194

Table A-11. Continued

SIMRM Parameters PARAMETER Descriptions

REFROLLBACK {integer value in hexadecimal format}
Define the rollback reference point for the analysis for a load
operation. The simulator should use this parameter to shift
its reference points of the loaded information to this point for
fast synchronization. The default is 0.

SENSABSTOL {floating point value}
The relative absolute tolerance for the sensitivity
calculations performed by a simulator. The default is le-8.

SENSRELTOL {floating point value}
The relative tolerance for the sensitivity calculations
performed by a simulator. The default is 1 e-3.

SERVER {simulator D)}
Name or K) of the backplane server. The default is
BKPLCON.

SIMDEF {name}
Name of the simulator being reference by the backplane.
This parameter must be defmed uniquely for each simulator.
This parameter is READONLY.

195

Table A-12. Command keywords for the backplane

Keyword Codes COMMAND Description

ID Assign the simulator ID that all simulators will use as reference. This
process can only be done once, and each simulator is given a unique ID
prior to the analysis.

Format: ED name

INCLUDE Define a control file for the baclq)lane.

Format: INCLUDE file

REQSTAT Request status of a simulator and any intemal backplane components.
This command is similar to the ITERROGATE mode, but the
command can be issued during any mode. This corhmand is more
powerful than the ITERROGATE because any intemal parameters or
data from any simulator can be examined within the backplane
elements of the given simulator. This command is intended for
diagnostics. The information is retumed using the MESSAGE DATA
format. Three formats are available.

Format(I): REQSTAT
Get the status of all simulators. All local OBJPRM and SEVEPRM are

returned.

Format(2): REQSTAT SIMULATOR
Get the status of a particular simulator. All local OBJPRM ̂ d
SIMPRM are retumed.

Format(3): REQSTAT SIMULATOR PARAMETERS
Get the status of the local simulator parameters or other simulator's
information in the simulator beyond OBJPRM and SIMPRM.

PARAMETERS

DATA

Retums the event data for the given object.

GLOBPRM={Parameter name} {ALL}
Retums the given global parameter. The ALL parameter retums all
parameters.

(Continued)

196

Table A-12. Continued

Keyword Codes COMMAND Description

REQSTAT
(continued)

OBJ={Object name}
Define the object for the REQSTAT process. If no object is defined,
then all objects for the given simulator are returned.

OBJPRM={parameter name} {ALL}
Returns the object parameters for the specified object. The ALL
parameter returns all parameters.

PING

A simple mechanism to make certain that a backplane element is alive.
The hffiSSAGE, data response is sent to the backplane controller
containing SIMPRM simulator END={status}.

SENSITIVITY

Return the sensitivity information for the given simulator.

SIM={SimuIator name}
Define the simulator. The default is the local simulator.

SIlVIPRM={parameter name} {ALL}
Returns the given simulator parameter for, the specified simulator. The
ALL parameter returns all parameters.

SIMCMD Command instruction from the backplane to a specific simulator.

Format: SIMCMD SIMULATOR COMMAND

START All simulators are to start processing data based on the MODE
definition. All MODE parameters are transfer to MODEPRS.

Format: START

STOP All simulators are to stop and await further instructions. The present
MODEPRS of each simulator is set to an IDLE.

Format: STOP

Note: Certain modes do not process information until the given task is
completed, so the STOP command could be ignored temporarily.

197

Table A-12. Continued

Keyword Codes COMMAND Description

TRIGDEF Define the trigger conditions for switching between different models of
a device (DEVICE).

Format: TRIGDEF NAME DEVICE PARAMETERS

See TRIGDEF Parameters for PARAMETERS information.

Table A-13. TRIGDEF parameter definitions

TRIGDEF Parameters PARAMETER Descriptions

MAXERROR {floating value}
The maximum error allowed for the model. The default is

0.01 or 1% error

ABSTOL_SCALE {floating value}
Defme a scale factor for the normal variable absolute

tolerance, so the trigger does not happen because of noise.
The default is 10.0.

OBJ {string value}
Defme an object within a simulator. The default is NULL.

PERFDIFF {floating point number}
Define the performance improvement between the models to
cause a trigger condition. Die default is 0.1 (10 percent).

RANGEDIFF {floating point number}
Defme the range and accuracy improvement between the
models to cause a trigger condition. The default is 0.1 (10
percent).

REF {Hexadecimal integer value}
Defme a trigger reference point to switch to another model.
The default is 0.

SEQCNT_BACK {int^er value}
Define the number' of sequential points needed by the new
model under different constraint before the new model is

replaced by the old model. The default is 2.

SEQCNT_SWITCH {integer value}
Defme the number of sequential points needed by the new
model before the present model can be replaced by the new
model. The default is 3.

198

Table A-13. Continued

TRIGDEF Parameters PARAMETER Descriptions

SIM {string value}
Define the simulator that contains the comparison variable.
The default is NULL.

SIMMOD {simulator model}
Define the simulator model to replace the existing model.
The default is NULL

TRIGCOND {COMPARE, IMMEDIATE, OFF, RANGE, REF, VAR}
Define the trigger condition. The default is OFF. See Table
A-13 for more information on each trigger condition

VARCOND {GT,GTE,EQ,LTE,LT}
Define the variable condition for the generating a trigger.
The default is EQ.

GT Greater Than VARVALUE.

GTE Greater Than or Equal to VARVALUE.

EQ Equal to VARVALUE (within tolerance limits).

LTE Less Than or Equal to VARVALUE.

LT Less Than VARVALUE.

VARVALUE {floating point value}
Defme the comparison value used by VARCOND.

199

Table A-14. An outline of the trigger conditions within the trigger definition command

TRIGCOND PARAMETER Descriptions

ACCURACY Switch models based on an accuracy comparison with a
reference device. This condition uses the following
TRIGDEF parameters:
• MAXERROR.

• PERFDIFF.

• SEQCNT_SWITCH.
• SEQCNT_BACK.
• SIMMOD. This parameter now defines the reference

model that other models are compared.
The accuracy switching rules are defined in Appendix-A.5.

IMMEDIATE Switch to SIMMOD immediately. This condition uses only
the SIMMOD parameter.

OFF The trigger has been completed by the dynamic switching
process or the trigger has been disabled.

RANGE Use the RANGEDEF information in the model definition to

determine the switching conditions. This condition uses the
following TRIGDEF parameters:
• MAXERROR.

• PERFDIFF.

•. RANGEDIFF. 1
• SEQCNT_SWrfcH.
• SEQCNT_BACK.
The range switching rules are defined in Appendix-A.5.

REF Switch to the given SIMMOD when the trigger REF point is
reached or exceeded. This condition uses the following
TRIGDEF parameters:
• REF.

• SIMMOD.

VAR Trigger on a specific variable condition. This condition uses
the following TRIGDEF parameters:
• VAR.

• OBJ.

• SIM.

• siMmod.

• VARCOND.

• VARVALUE.

200

APPENDK-B

201

Appendix-B. Interface Methodology

This section defines the interface types known to the backplane and the basic

structure of the backplane interface into the simulator. The interface process has an interface

level and a configuration level. The interface level defines the primitive structure of the

interface while the configuration level defines the calculation or solving procedures beyond

the primitive level. A configuration cannot be used as an interface while an interface is also

a configuration. A definition for the different interfaces and configuration is provided in

Table B-1. Table B-2 defines the configurations for the different interfaces.

All interface structures between the backplane and the simulator are based on bond

graph techniques. An interface has the variable input/output characteristics defmed in Table

B-3. The interfaces are domain specific, but all domain variables are defined as an EFFORT

and a FLOW. The EFFORT and FLOW designations defme how variables between

simulator interact. Three domains are presently defined:

• Signal Domain (Section B-1).
• Electrical domain (Section B-2).
• Mechanical domain (Section B-3).

The interface component values for the different configurations of the primitive interfaces

are defined in Table B-4 in terms of the calculated FLOW and EFFORT variables. The

sensitivity delta calculation is defined in Table B-5, where A is the variable delta function.

Several integer index variables are also provided for internal simulator operations.

Additional variables and domains can be easily added to the backplane. The final section

describes the initialization of the different interfaces.

202

Table B-1. List of all interface and configurations recognized by the backplane

Interfaces and

Configurations
Descriptions

CORRECTOR This configuration is used in the flow correction process with a
PREDICTOR.

CORRECTOR_SENS This configuration is a variation of the CORRECTOR
configuration with a sensitivity element to improve convergence
by including loading effects.

EAPPLY This configuration applies a list of effort data.

EDATA This interface defines the effort data applied by an EAPPLY.
EFFORTEQ This configuration is a'direct interface that follows the CAUSE

element in the root-level object.
EMONITOR An effort monitor configuration.
ESRC This interface defines the effort variable.

ESRC_FSRC_2SENS This flexible interface can mimic any type of interface
(FLEXIBLE).

ESRC_SENS This interface uses diagonal component of the sensitivity
information with an ESRC, so the simulator can emulate loading
effects and provide local feedback to the backplane
(THEVININ).

FAPPLY This configuration applies a list of flow data.
FDATA This interface defines the flow data applied by an FAPPLY.
FLOWSUM This configuration is a direct interface that is the CAUSE

element in the root-level object. This interface defines to

the EFFORTEQ interfaces in a isequential process.
FMONTTOR A flow monitor configuration.
FSRC This interface defmes the flow variable.

FSRC_SENS This interface uses diagonal component of the sensitivity
information with an FSRC, so the simulator can emulate loading
effects and provide local feedback to the backplane (NORTON).
Only this interface uses the GC component.

PREDICTOR This configuration specifies that a simulator has an internal
model for the device. A CORRECTOR type configuration is
required to complete this configuration. However, the interface
can operate in an independent mode Without a corrector.

SYSTEM This configuration defmes coupling to other elements using the
equivalent matrix through a simulator's matrix loading

routines.

203

Table B-2. Interface and configuration compatibility index

Configurations Interfaces

A B c D E F G

CORRECTOR X X X

CORRECTOR SENS X X

EAPPLY X X X

EDATA X

EFFORTEQ X X X

EMONITOR X X X

ESRC X X X

ESRC FSRC 2SENS X

ESRC SENS X X

FAPPLY X X X

FDATA X

FLOWSUM X X X

FMONITOR X

FSRC X X X

FSRC SENS X X

PREDICTOR X

SYSTEM X

X indicates a valid configuration of the interface. Interface A corresponds to ED ATA, B to
ESRC, C to ESRC_SENS, D to ESRC_FSRC_2SENS, E to FSRC_SENS, F to FSRC, and
GtoFDATA.

Table B-3. Input/ Output characteristics of the baclqjlane interface

Variable Name Description

Ein or Esrc Effort input to the simulator.

Fin or Fsrc Flow input to the simulator.

Gini or Gsrc Sensitivity parameter input to the simulator.

Gin2 or Gc Secondary sensitivity parameter input to the
simulator.

Eout or Efsrc Effort output from the simulator.

Four or Fesrc Flow output from the simulator.

Eindex Local simulator index for E variable solution.

Findex Local simulator index for F variable solution.

ESYSindex Local simulator index for loading an external
matrix.

204

Table B-4. Calculations definitions for the different configurations and interfaces

Interface

Type
Effort

Value

(4^c)

Flow

Value

iF'^)

Admittance

Value

CORRECTOR
or

0.0 PMAX

CORRECTOR_SENS E'pi^ or 0.0 G'eq . .
^ 3,3

EAPPLY Edata 0.0 PMAX

EDATA Edata - -

EFFORTEQ p■ i
^CAUSE 0.0 PMAX

EMONITOR 0.0 0.0 PMIN
ESRC 0.0 PMAX

ESRC_FSRC_2SENS 0.0 F^'-G' \ -E'*'
^h.3

ESRC_SENS
^ j.i

0.0
^i3,3

FAPPLY 0.0 Fqata PMIN

FDATA - Fdata 0"^/) -

FLOWSUM 0.0 J=«T

j=2

FMONITOR 0.0 0.0 PMIN
FSRC 0.0 PMIN

FSRC_SENS 0.0 1 -E*' <5^1 :

PREDICTOR 0.0 Fl^' PMIN

SYSTEM 0.0 F'*' -G'pq-E*' PMIN.

G'pq defines the
load matrix for
the simulator

205

Table B-5. Sensitivity delta definitions for the different configurations and interfaces

Interface

Type
Effort

Delta

Flow

Delta

CORRECTOR AE 0

CORRECTOR_SENS 0.71-A^: -0.71-|AF|.«g72(A^-G,„)
EAPPLY - -

EDATA - -

EFFORTEQ -

EMONITOR - -

ESRC AE 0

ESRC_FSRC_2SENS Q.llAE -Q.l\-\AF\-sign{AE-G^)
ESRC_SENS Q.1\-AE -0.1\-\AF\-sign{A£-G,J
FAPPLY - -

FDATA - -

FLOWSUM - -

FMONITOR - -

FSRC 0 AF

FSRC_SENS 0.71-AE: -Q.l\-\AF\-sign{AE-G,J
PREDICTOR 0 MAX{AF,AFc)

SYSTEM 0.71-ae: -0.71- AF-signiAE-G^J

Appendix-B.l Signal Domain

The signal domain has two interfaces: input and output. The input and output

variables are equivalent to an EFFORT, where an input loads the Bin value and output

writes the Equt value. In the signal domain, no power is exchanged due to abstraction of the

model representations. The input and output are for control system representations like

Laplace and the Z-domain analysis.

206

Appendix-B.2 Electrical Domain

In the electrical domain, the two major variables are current (Flow) and voltage

(Effort). This domain maps directly into the interface structure, which is shown in Figure 3-

2. An interface translator from the electrical to primitive references is defined in Table B-6.

To keep the interfacing structure simple, only the flexible interface was allowed to have a

system-level or matrix loading capability.

Table B-6. Interface mapping between primitive elements and electric interfaces

Interface Electrical Interface Electrical

Type Equivalent or Type Equivalent or
alias alias

EAPPLY VAPPLY FAPPLY lAPPLY

EMONITOR VMONITOR FMONITOR MONITOR

ESRC VSRC FSRC ISRC

ESRC SENS THEVININ FSRC SENS NORTON

ESRC FSRC 2SENS FLEXIBLE 1

Appendix-B.3 Mechanical Domain

This research concentrated on electrical properties, so the different configurations

for the mechanical domain were not developed, but the primitive structures can still be

used. However, the interface problem is more complex in the mechanical domain. The

electrical doma:in had only two variables, while the mechanical domain can have multiple

degrees of freedom. Consequently, the bond graphic approach could require multiple sub-

domains to defme all interfaces between mechanical simulators. Specifically, an X, Y, Z,

and thermal domains would be expected in the full implementation. Since this research did

not require these domain variables, full domain decomposition was not implemented. Only

207

the mechanical stimuli, information was required for the behavioral models in the electrical

simulators to guarantee consistency between applied stimuli in both domains.

Appendbc-B.4 Interface Initialization

The initialization of the interface was critical to eliminate divergence. Two levels of

initialization were required: simulator and backplane. The simulator initialization of the

interfaces was required to prevent the interface from dominating the first response prior to

interaction with other sirnulators. The baclq)lane initialization was a multiple calculation

process that had the same purpose of preventing divergence in the backplane calculations.

Both initialization processes were critical for preventing divergence and fmding the

"reasonable close" initial guess. For the simulator initialization, the ESRC, FSRC, and

EFSRC values of the interface were zeroed and the sensitivity GSRC and GC values were

typically le-6. The PREDICTOR configuration required GSRC and GC to be PMIN (le-

10). The intemal conduction matrix that a simulator can load is zeroed.

There is a three-step setup sequence in the backplane. During this setup sequence,

the CORRECTOR type configurations were forced to track the EFFORT variables of the

PREDICTOR configurations. On the first step, all EFFORT and FLOW values are zeroed

and applied back to the interfaces. The system configurations are given a nonzero

conduction matrix. The other interface with sensitivity components will able to use other

simulator's sensitivity information to define loading effects. On the second and third steps,

the calculated EFFORT value was defined as an effort average, so all EFFORT variables

were moved toward a common value. However, interfaces in other simulators were required

208

to track any EFFORT output interfaces in the root node of the same domain. The calculated

FLOW variables were set to zero. The SYSTEM configuration followed a different

procedure, which set the EFFORT variables to the initial simulator's values. In addition, the

coupling effects in the equivalent matrix for the SYSTEM configured interfaces were

modified to make certain that coupling existed between all interfaces in the simulator. A

new equivalent matrix was always calculated after the initialization sequence.

209

APPENDK-C

210

Appendix-C. Interface Variable Causality Detection

The variable causality defined the sensitivity parameters that were required for the

coupling process by identifying the input variable (EFFORT or FLOW) of an interface. For

this process, the backplane created a matrix of coupling results between all interface

variables. Initially, four different conditions were checked per variable where applicable:

CONDI: If variable variation at A had no affect on variable B where a\AA\ > |AB| and
0 < a < 1, then the variables are isolated. The value for a was 0.001.

C0ND2: If a variable variation at A had an affect on variable B, but a variable variation at
dA

B had no affect on A, then the sensitivity parameter for variable B to A (—) was
oB

forward (unidirectional) coupled. Otherwise, the variables were bi-directional
coupled. (OBSELETE)

C0ND3: Variable variation at A has gain to variable B if |AB| > a|A4|. The parameter
a =10 guaranteed gain immediately. For small gain situations, a sequential gain
check was performed. If the condition with a =2 is sequentially detected, then the
variable is also considered to have gain. This sequential gain check prevented false
gain detected due to poor simulator and backplane interaction.

C0ND4: If the summation of the flow variables of the sensitivity matrix with respect to A
variation was below tolerance, the zero-flow summation test was passed. This test
determined if the flow into simulator was equivalent to the flow out of the
simulator. (OBSELETE)

These tests were used to derive seven coupling conditions outlined in Table C-1.

The gain relationships were the most critical effects to identify causality. Without an

EFFORT gain, the causality identification process was defaulted to the EFFORT input

condition. All interfaces were initialized to the EFFORT-input configuration. The causality

identification process also used an interface's causality characteristics whenever possible.

For example, a flow source did not have an EFFORT-input configuration and most

211

Table C-1. Variables created for identifying an interface's input causality

Parameter Description

E GAIN CNT The number of effort gains for an interface.
F GAIN CNT The niimber of flow gains for an interface.

EFFORT ENABLE The iiiterface can support effort as the input.

FLOW ENABLE The interface can support flow as the input.
GLOBALJSOL The local effort-variable delta did not couple to other interface

variables. All CONDI conditions were true with respect to the
local effort variable.

LOCALJSOL The local effort variable was isolated firom the global variable
deltas. All CONDI conditions were true with respect to all other
variables.

EXTERNAL FLOW An external interface has already changed to flow as the input.

LOCAL_VAR Defines if a particular variable is dominating the local interface
causality. The values are NONE, FLOW, AND EFFORT. NONE
means Aat both variables are reacting to the applied delta. FLOW
means that the flow variable is isolated firom the effort variable.

EFFORT means that the effort variable is isolated fi-om the flow

variable.

sensitivity parameters were for the FLOW-input. As an EFFORT-input interface, the

number of sensitivity parameters for the flow source was limited. If the backplane ever

detected flow-input condition for the interface, then the process stayed in the flow-input

configuration regardless of the detected conditions. This consideration maximized the

number of sensitivity parameters that could be calculated.

In the final version of the causality identification process, several tests became

unnecessary. C0ND4 was initially considered for identifying devices within a simulator,

but CONDI provided the same information in a more generic format. C0ND2 was briefly

used to redefine (zero) delta information in the perturbation matrix. However, switching

causality from EFFORT to FLOW and hiding the inactive parameters corrected this

problem. For identifying the input variable of an interface, the final criteria in Figure C-1

212

used only CONDI and C0ND3. For future development, the CONDI information was

considered for identifying isolation conditions. With isolation identified, different

calculation methods like GRADMODE=DIAGONAL could be automatically detected.

Besides the GRADMODE option, multiple deltas could be applied simultaneously during

the sensitivity calculation to eliminate calculation sequences between the backplane and the

simulator.

In this detection process, only one FLOW input variable was allowed per root node

domain. The EXTERNAL_FLOW variable blocked other interfaces from entering the same

mode. For this reason, the causality identification process could not falsely identify FLOW

inputs, so the process was conservative in identifying the FLOW inputs and liberal in

identifying the EFFORT inputs. This rule followed the standard input and output

FLOW ENABLE

FALSE

(BXTERNAL_FLOW=FALSE)
and (E_GAIN_CNT>=F_GAIN_CNI)
and ̂ _GAIN > 0)

FALSE

START

/ FLOW
I variable
Us the input

EFFORT
variable

is the input

TRtTE \ \

EFFORT ENABLE

FALSE

^ (F_GAIN_CNT^E_GAIN_CNT)

FALSE

;tRUE / LOCALJSOL

FALSE

(LOCAL_VAR=FLOW)
\/ \and(£ GAIN CNT>0)
Ktrue ^ ~

FALSE

Figure C-1. Input causality detection process

213

restrictions of only one output per node to avoid drive conflicts and poor matrix definitions

Be
in Equation 3-24. However, this rule was unnecessary if the —^parameter of the given

interface was not zero. A simple limiting condition on this parameter during the sensitivity

calculations eliminated the problem, and the backplane could have solved examples with

multiple EFFORT outputs in the same node.

214

APPENDIX-D

215

Appendix-D. Coupling Results

This appendix contains the results from the interfacing tests over five different

categories of sensitivity calculation and scheduling parameters:

• Iterative Scheduling.
• Conditional Scheduling.
• Error Scheduling.
• Timestep Scheduling.
• Other parameters. The diagonal option is explored in addition to the identity

correction process. For the diagonal options, the sensitivity tolerance parameters
were defined as ABSSENS=le-8 and RELSENS=0.001.

For the first five categories, four sub-categories are defined:

• RELTOL- Parameter setting of GRADCALC=RELTOL.
• RELTOL with extrapolation- Parameter setting of GRADCALC=RELTOL and

interface values are approximated via finite differences at a new reference point.
• MAXTOL- Parameter setting of GRADCALC=RELMAXTOL.
• MAXTOL with extrapolation- Parameter setting of GRADCALC=RELMAXTOL

and interface values are approximated via finite differences at a new reference
point.

In total, the 76 different configurations in Table D-1 are tested over these different

categories as applicable.

In these examples, the GIRO partition was typically the bounding (driving)

component in the coupling process, while the CIRO partition represented a device. Most

interfaces used the default backplane-tolerance settings, but the flow tolerance for the HF

(high-gain feedback problems) required ABSTOL to le-6 for proper accuracy. The

electrical-to-electrical coupling examples are defined by E2E and the electrical-to-FE

examples are defined by E2FE. In addition, the E2FE examples are only tested using the

GRADTIME=CONDITIONAL because of the long simulation times.

216

There are 14 examples for E2FE and 31 examples for E2E. Most examples are

simple problems with varying degrees of coupling complexity to check the backplane

processes. For the examples, the primitive components used in the E2E and E2FE examples

are in Figure D-1 and D-2. Figure D-2 also defmes the SPICE equivalent behavioral models

for the FE structures. The E2FE examples have a piezoelectric test (PE) and a piezoresistive

test (PRl) using the same meshed structure. The E2E examples and iteration results are

shown in Figure D-3 through D-47. The E2FE examples and iteration results are in Figure

D-48 through D-63. All iteration results are presented as a ratio of the given interface

iteration result (X,) to the minimum iteration result minus one, or

X.
-—1 Equation IV-1

^MIN

The flow correction process defines the correctors as having a specified error

compared to the base model. For the E2E examples, this percent was very precise since the

models were scaled relative to a know base. The E2FE examples followed the same

procedure, but the base predictor model in the SPICE was NOT a scaled version of the

FESM model. Consequently, the SPICE predictor model in the E2FE tests had larger errors

than the E2E tests.

217

Table D-1. Interface numbers to interface definition table

Conventional Interface Combinations

Interface Partition Partition Interface Partition Partition

Number CIRO cmi Number cmo cmi

Interface Interface Interface Interface

1 FSRC FSRC 19 FSRC_SENS FSRC

2 FSRC ESRC 20 FSRC_SENS ESRC

3 FSRC ESRC SENS 21 FSRC_SENS ESRC_SENS

4 FSRC FSRC_SENS 22 FSRC_SENS FSRC_SENS,

5 FSRC FLEXIBLE 23 FSRC_SENS FLEXIBLE

6 FSRC SYSTEM 24 FSRC_SENS SYSTEM

7 ESRC FSRC 25 FLEXIBLE FSRC

8 ESRC ESRC 26 FLEXIBLE ESRC

9 ESRC ESRC_SENS 27 FLEXIBLE . ESRC_SENS

10 ESRC FSRC_SENS 28 FLEXIBLE FSRC_SENS

11 ESRC FLEXIBLE 29 FLEXIBLE FLEXIBLE

12 ESRC SYSTEM 30 FLEXIBLE SYSTEM

13 ESRC_SENS FSRC 31 SYSTEM FSRC

14 ESRC_SENS ESRC 32 SYSTEM ESRC

15 ESRC_SENS ESRC_SENS 33 SYSTEM ESRC_SENS

16 ESRC_SENS FSRC_SENS 34 SYSTEM FSRC_SENS

17 ESRC_SENS FLEXIBLE 35 SYSTEM FLEXIBLE

18 ESRC_SENS SYSTEM 36 SYSTEM . SYSTEM

Table D-1. Continued

FLEXIBLE interface with causality detection

Interface

Number

Cause

Type

Default
Type

Effort

Type

37 FSRC FLEXIBLE ESRC

38 FSRC FLEXIBLE ESRC_SENS

39 FSRC FLEXIBLE FSRC_SENS

40 FSRC_SENS FLEXIBLE ESRC_SENS

41 FSRC_SENS FLEXIBLE ESRC

42 SYSTEM SYSTEM ESRC_SENS

43 SYSTEM SYSTEM ESRC

44 Method 2 - Tiered implementation

218

Table D-1. Continued

Different Predictor and ESRC configurations

Interface

Number

Predictor and Coupling
Characteristic

Interface

Number

Predictor and Coupling
Characteristic

45 Model with +10 Error and ESRC

interface
61 Model with +10 Error and

ESRC SENS interface

46 Model with -10 Error and ESRC

interface
62 Model with -10 Error and

ESRC SENS interfece

47 Model with +20 Error and ESRC

interface
63 Model with +20 Error and

ESRC SENS interfece

48 Model with -20 Error and ESRC

interface
64 Model with -20 Error and

ESRC SENS interfece

49 Model with +50 Error and ESRC

interface
65 Model with +50 Error and

ESRC SENS interface

50 Model with -50 Error and ESRC

interface
66 Model with -50 Error and

ESRC SENS interface

51 Model with +90 Error and ESRC

interface
67 Model with +90 Error and

ESRC SENS interface

52 Model with -90 Error and ESRC

interface
68 Model with -90 Error and

ESRC SENS interface

53 Model with +10 Error and

sequential ESRC interface
69 Model with +10 Error and

sequential ESRC_SENS
interface

54 Model with -10 Error and

sequentid ESRC interface
70 Model with -10 Error and

sequential ESRC_SENS
interface ^

55 Model with +20 Error and

sequential ESRC interfece
71 Model with +20 Error and

sequential ESRC_SENS
interface

56 Model with -20 Error and

sequential ESRC interface
72 Model with -20 Error and

sequential ESRC_SENS
interface

57 Model with +50 Error and

sequential ESRC inter&ce
73 Model with +50 Error and

sequential ESRC_SENS
interface

58 Model with -50 Error and

sequential ESRC inter&ce
74 Model with -50 Error and

sequential ESRC_SENS
interface

59 Model with +90 Error and

sequential ESRC inter&ce
75 Model with +90 Error and

sequential ESRC_SENS
interface

60 Model with -90 Error and

sequential ESRC inter&ce
76 Model with -90 Error and

sequential ESRC_SENS
interface

219

i ■n-'

-shTT
■v!^

"/s

\ ! A ^v i " ^

n"^>
-O -i-rr;

' I vr /-
"/'JL

'./ > i '*'

W-30J .. .- ?:.

-J •
VV--::Ct ..;-7v
—ril..,

./-IN-'

r"\

, i' ' - IDy

vr>u:

f^- ' : ■•■■ lU A

V
it:

i mBtn

' G A N 5DC/jj ■ <;.;j)„

AAAVVy \/
VOL

3U'C"~YC^i: Z-!

Figure D-1. SPICE primitive component definitions

220

,1 7. 5 j;ip'a-a,-; ,-7.7 «

■-r;• -:ca"-:ri

\ S

"ifrrr- ■sim^vaK'^r.'isjda.

J\Mfv^

© •-'2.
I < '

w

<l i
Vi) T

?

J2L
NT?

A

-AM\ r-i Akl\ ■v\A ©VV

fv—

-*! v";- TEitEK'
•,--'•,'2

_^A A. A _1_A A AVVVO^VW
(4

Figure D-2. FESIM and SPICE equivalent component definitions

221

BhfL 1—[>?—■

-i>?r flKfU

/. Mi i ' N V s.; ^

Sl«>U

idLZ.
sm.

/^t —s > y

8WI-

xm—M;-

r,

"i --1 1A>R'

/r ■N V >-„•/

VI,-V /-

BW"U

->?- BKfl.

Figure D-3. E2E digital coupling tests

222

1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Parallel Conectlon (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Conection (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity Sch^uling

BiSraV.

» RelTol

n RelTol Inteip

RelMax

t! RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Internee Types

12

10

8

6

4

2

0

Error Sensidvity Scheduling

X X ^

•fejiag
□

v<c;aaiv» g »
-DO^e

T P-

• RelTol

o RelTol Inteip
RelMax

X RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iternbve Sensitivity Scbeduhng

♦

♦ ♦

U A -

a X n
■^ „ ♦

^ n

' °° " s
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

♦RelTol

□RelTol Interp
RelMax

XRelMax Interp

Timestep Setsitivity Scheduling

^ n-

♦RelTol

QRclTol Interp

RelMax

XRelMiK Interp

12 16 20 24 28 32 36 40 44 48 52 - 56 60 64
Interface Type:

Other Sensitivity options

»> «

''•gan " '"ansB "BBOnBOEaocca rf'"

♦Diagonal
Q Diagonal Interp
. Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-4. Iteration results for E2E_>IF_INVINV1

223

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Comection (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

CondilioDal Sensitivity Scheduling

B "

n ̂ ̂

¤ RelTol

□ RelTol Inteip
RelMax

X RelMax Inteip

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

12

10.

8

6

4

2

0

Enror Sensitivi^ Scheduling

Q ♦

1
1

SSWS®)' * « « " " CO no «

♦ RelTol

D RelTol Inteip
RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types'

Iterative Sensitivity Scheduling

♦ Q

♦
♦ ♦

♦

X

□

□

i

1

1

1

1

1

X D^ n
« ta ® i5 ^ ^ p °

0 4 8 12 16 20 24 28 32 36 40 44 , 48, 52 56 60 64 68 72 76

« RelTol

O RelTol Inteip

RelMax

RelMax Inteip

Interface Types

Timntep Semtivity Scheduling

♦RelTol

QRelToJ Inieqi
RelMax

XRelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Inteifoce Types

—^ .

D

♦ -a

♦ ♦

♦ ♦

9B9 «999eBOBa9fifi OB^
O'a a B

♦Diogonal
QDiagonol Inteip

.IdentiQr

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inletfuce Types

Figure D-5. Iteration results for E2E_NF_INVCNF1

224

1-36; Conventional 45-52: Parallel Carectlon (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamlo Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity Scheduling

JS fi?
, D £2 a ̂

I 1 I

« RelTol

o RelTol Interp

RelMax

X RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

12

10

8

6

4

2

Error Sensitivity Scheduling

a " ° □
• ea 9

•
9^' O n

a
X

• . 8 X V V-
jli) O '■ "H"

A t.\
b-a X ^ X'-'

53 F3 « S!

♦ RelTol

a RelTol Inteip
RelMax

X RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Seontivi^ Scheduling
/}r A" X St

A

•g h m
k-..
%

X
X

a a □
•i' o

n a "
as r* 15 X sso

A X

icBS • s
M C""

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

•RelTol

ORelTol Inteip

.RelMax

^RelMax Interp

Timeitcp Seraitivi^ Scheduling

' ̂

A
•

m Si

s B a a
® n C

vxtm
>1:5^ ^ i3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

•RelTol

QRelTol Interp
RelMax

XRelMax Interp

Inteiface Types

OlherSmsilivilvoiilions

^
° » fi ♦ ♦ w

_□ toaga D e

.oseraa!^..

• Diagonal
D Diagonal Interp

Identic

12 16 20 24 2S 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure Dt6. Iteration results for E2E_NF_RLCDRV2

225

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correcfon (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity Scheduling

• RelTol

o RelTol Interp

n RelMax

X RelMax Interp

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

12

10

8

6

4

2

0

Enror Sensitivity Scheduling

¤ RelTol

o RelTol Interp

RelMax

X RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Itaative Sensitivity Scheduling

¤ RcITol

□ RelTol Inteip
RelMax

X RelMax lnteq>

12 16 20 24 28 32 36 40 48 52 S6 60 64 68

Timestep Sensitivity Schedtilsng

'VSA «»<W.W </.V.V.v.«/%.

ORelTol

ORelTol Interp

.RelMu

>!RelMkX Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64
Inleiface Types

■ ClirrSniaiw'vvclivni

,«» oo-8^&

^Diagonal
O Diagonal Intop

Identity

12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interface Type:

Figure D-7. Iteration results for E2E_LF_IISrVOSC2

226

/

-^Wv-r ■vlSlSlr —^
a<fi-

It

SKR- -vSiUc^

r
' •••' - rl>

'0^ r* ! v;'^

/\ l\ nA !\ t\
■ Vwri■■■" tyvSlxi^

SKpu y V

.\. f

f
'CjK

.iz::

vD

■—^vVv/—
Vi;- Ji'-i -S-'lilirC'-'''

tS—X
;; AA A ,1.

AAA"
fXIXK

xx/rv • . A A
—AjJJTJb 'vvv- Q

a<fnr

Figure D-8. E2E 1 and 2 terminal linear coupling tests

227

1-36; Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing' 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

¤ RelToI

o.-RelTolInterp

RelMax

X RelMax Intgp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ RelToI

, ^
n RelTol Inteip

RelMax

K n °
X RelMax Inteip

° _ n O ...

0 4 8 12 16 ' 20 24 28 . 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

' IteiaUve Sensitivi^ Scheduling

0

X n 5

«Re!Tol

□RelTol Intcip

RclMax

^RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 S6 60 64
Intoface Types

Timestep Scraitivity Sclxduling

«RdTol

□RelTol Inlerp
RelMix

X RelMax blerp

12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interfsce Types

n° "-B
n ♦ V ♦

tP °

^Disgonal
□OtBgonallntetp

. Identity

0 4 8 12 16 20 24 28 32 36 40 48 52 56 60 64 68 72 76
Interface TVpes

Figure D-9. Iteration results for E2E_NF_LINEAR1

228

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correotlon (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity Scheduling

X

Cia a
X y
□ Q □

□ A

o V V

V

) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

♦ RelTol

o RelToI Interp
RelMax ■

X RelMax Inteip

12

10

8

6

4

2

0

Error Sensitivity Scheduling

Esf^'Ssi
T 1 1 1 T

♦ RelTol

n RelTol Inteip
RelMax

x RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

ItcTDtive Sensitivity Scheduling

-22

« RelTol

ORclTolIntop

RclMox

XRcIMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 64 - 68 72 76
Interfoae Types

Timestep Scraidvity Scheduling

"actes gHgrg W!is«raew

»IUITol

□RelTol Interp

RelMftX

XRelMax Inlcip

24 28 32 36 40 44 52 56 60 64 6S 72 76
Intcifecc Type:

OtherSdisilivilv otilkim

Bag Bn°

^Diagoonl
□Diagonal lotctp

Identity

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Interface Types

Figure D-10. Iteration results for E2E_NF_LINEAR2

229

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequenfiai Comecticn (ESRC) 69-76: Sequenfial Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

%;j!i

oRelTol

Q RelTol Inteip

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteifece Types

Eiror Sensitivity Scheduling
12

10

8

6

4

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece TVpes

¤ RelTol

o RelTol Interp

RelMax

^ RelMax Interp

Itemtive Sensdndty Sehedultng

« RelTol

DRelTcIJnteip

RelMax

^RelMax loteip

12 16 20 24 28 32 36 40 44 52 56 60 64
Interface Types

Timestep Senntivily Scheduling

BSW!g3 Sjcggtasa M M

♦RelTol

ORelToI Isctp
RcIMk

XRclMax Interp

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Pilnr?itmwrYWi9i»

-

see

O Dtagonol Interp
■ ■ Identic

4 S 12 16 20 24 28 32 36 40 52 56 60 64 68 72 76
Interfoce Types

Figure D-11. Iteration results for E2E_NF_LINEAR2a

230

.! \ I r\

[_— ̂ ̂
BKPl.

O O
BKPl- BKPU

\ " /* ^

VV\A

V y ! ■• jJh ft jv-r
^ fS/.'-'b:

il
! ■>

Bhf>L
-AA A _

V y v

;.v 'y- -
-Aslsjij- J\h/\ i

V v' V

N-i-j" ■ \r

Li :": .

Skpi- -AAAV \r -\SSJh- SI<Pi-

'JU- ' 7?
A A A

y V V -vsiiLa--

'

-A A A ..
V V y

a<pL

Figure D-12. E2E 4-terminal linear example

231

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Paraiiel Correction (ESRC_SENS)
37-44: Dynamio interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensirivity Scheduling

-tsCaSSg-rr
°£»3sr: iSssssa

¤ RelTol

o RelTol Inteip

RelMax

X RelMax Intetp

0 4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ RelTol

ta RelTol Interp

RelMax

K RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scbcdulmg

teJEl? awss' Sfjsw5< rswjK®

O RelTol

□RelTol Inteip
RelMsx

M RelMax Intetp

12 16 20 24 32 36 40 44 4S S2 S6 60 64

Tiraeftep Senaitivity Scheduling

^ n o-' ^ ^ n ̂

« RelTol

□RelTol Intetp
tRelMu

XRelMix Inteip

0 4 8 12 16 20 24 28 32 40 44 48 52 56 60 64 68 72 76
Inteiface Types

Other Sensitivnv o

^Diagonal
□Diogonol Inteip

Identity

12 16 20 24 28 32 36 40 44 48 ■ 52 56 60 64 68 72 76
Interface Types

Figure D-13. Iteration results for E2E_NF_LINEAR4

232

LZLr- i- p.

c;../ t:

-j /—\

-•-rf
I 4JKfi

.'T n

-j

!h

:z-

R.'

vVP

"

,'l^'
JSKfi-

•^\AA

~l r

<;

vv \r

<

vi.-aHy-i' i--.:

&h?H|

I iC'.v-z

Imr

n , n ■■■i ;
iZZ-fK

«—r:P

wOXn'i -.C-iW

ii-i t.?r

ImC

Figure D-14. E2E nonlinear no-feedback coupling tests

233

1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68; Paraiiei Correction (ESRC_SENS)
37-44; Dynamic Interfacing 53-60; Sequenfial Correction (ESRC) 69-76; Sequential Correction (ESRC_SENS)

Conditional Sensitivity SchedulinR

¤ RelTol

D RelTol Inteip

RelMax

ft RelMax Interp

0 4 8 12 16 20 24 28 ' 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

12

10

8

6

4

2

0

Eiror Sensitivity Scheduling

® SiSBiS eass 'jsisa assss
I ; I i.. I |1. 1 1 I n I ir I

O RelTol

0 RelTol Interp

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28. 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iteitktive Sensitivi^ Scheduling

« RelTol

□RelTol Interp

RelMax

RelMax Interp

0 4 8 12 16 20 24 32 36 40 44 48 S2 S6 60 64 68 72 76
Intsfoce Types

Ticnestep Sensitivity Scheduling

^RelTol

□RelTol Inierp

RelMax

XRelMax httrp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Type:

Other Sensitivitv options.

^Diagonal

□Diagooal Interp
. Identic

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-15. Iteration results for E2E_]SIF_RCPULLU1

234

1-36; Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Conection (ESRC_SENS)

Conditional Sensitivity Scheduling

o RelTol

n RelTol Inteip

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteifece Types

12

10

8

6

4

2

0

Error Sensitivi^ Scheduling

¤ RelTol

a RelTol Inteip

RelMax

^ RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iterative Sensitivity Scheduling

s»-

♦RelTol

□RelTol Inteip
' RelMax

X RelMax Inteip

12 16 20 24 28 32 36 40 44 4S S2 ' 56 60 64 <8 72 76
In toface Types

Timettep Senutivity Scheduling

OBelTol

□RelTol Inteip
RelMix

X RelMax Inteip

12 16 20 24 28 32 36 44 48 52 56 60 64 68 72 76
Interface Types

Other Senyithitv nntions

g I ntttffftanSfififi, ,

♦ Djagonol
□ Dagonol Interp

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-16. Iteration results for E2E_NF_RCPULLU1A

235

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC^SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76; Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

K

a

o

□

^ X ..a
Oa o ^

—-r —■! - 1 1 —1 ■ I" 1 1 ' ' 1 r ■ ■ 1 ■ ■ i 1 —-n- ■ 't '

oRelTol

D RelToI Inteip
RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

Error Sensidvi^ Scheduling
O RelTol

o RelTol Interp
RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56, 60 64 68 72 76 Interfece Types

IteiBtivt Sensittvity Scheduling
g

X

X ' X

X

□

XB

♦ On ®XD X ^
□

K> ^ 1»*0 53

0 4 8 12 16 20 24 23 32 36 40 44 48 52 56 60 64 68 72 76

« RelTol

DRelTcl Interp

RelMax

X RelMax Interp

Timestep Sensitivity Scheduling

^ X «
X

X ^ ifi O O

3 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

^RelTol

QRelTel Interp
- BelMax

XRelMax Interp

Interface Types

PUBrgtnnliiffftlro

^Diagonal
DDiagoiuil Interp

Identity

12 16 20 24 28 32 36 40 48 52 56 60 64
Interface Types

Figure D-17. Iteration results for E2E_NF_LINDRV4

236

V'!

1 1

Q

— I. i i !
'•/ :i

V i

.•/ _ _af<PL

T • SKPL
-o n '

75—rry

:.2a;u 1..

f<' --1COK

riRi
s-' i ! ■« i

BKPL

\2.
SKPL

W:T:2aCJL.=::

Figure D-18. E2E 2-terminal nonlinear current mirror

237

1-36: Conventional 45-52: Patallei Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correotlon (ESRC_SENS)

Conditional Sensitivity Scheduling

g X V ̂

O RelTol

o RelTol Inteip

RelMax

RelMax Intetp

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

K S a ® -a? . <vy> o* 5 "

« RelTol

g RelTol Int^
RelMax

« RelMax Interp

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 , 68 72 76 Inter&ce Types

Iteiative Sensilmqr Scheduling

CP

♦RelTol

□RelTol Inteip
RelMax

RelMax Inteip

12 16 20 24 28 32 36 40 44 48 S2 56 60 64
Intfffsce Types

Timesttp Semitivity Scheduling

C ̂ ^ ^
^ iagr^ ~

♦RelTot

□RelTd Inteip
■ RelMax

XRelMaxhtleip

12 16 20 24 28 32 36 40 48 52 56 64 68 72 76
Interface Types

Other Sensitivity OTrttons

♦Diagonal
Diagonal'
Identic

12 16 20 24 28 32 36 40 48 52 56 60 64
Interface IVpes

Figure D-19. Iteration results for E2E_NF_MIRDRV2

238

-f—•-

o— o

HKfU

^ -f—•-

l>~

aKPu

jH i
itv- .

—o
SKPU BKPl-

SKPL

.1:-^
T.

-i-

/

-O G-
SKPL SKPU

4 #_ # m

aKPL

V

Figure D-20. E2E 4-tenninal nonlinear current mirror

239

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Conection (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

o RelTol

B RelTol Interp

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

12

10

8

6

4

2

0

Error Sensitivi^ Scheduling

JS^

¤ RelTol

o RelTol Interp

~ RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

ItetBtivc SensiliviQr Scheduling

O RelTol

O RelTol Inlcip

' RelMox

XRclMox Intetp

12 16 20 24 2S 32 36 40 44 48 52 56 60 64
Interfece Types

Timestep Sensitivity Scheduling

^ M et is Ki y-

«BelToI

□RelTol Interp
RelM»

XRelMu Interp

12 16 20 24 28 32 36 40 48 52 56 60 64 68 72 76
Inteifsce Types

Other Seivtitivttv options

^Diogonal

□ Dtagonol Inteip
Identity

12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interface Types

Figure D-21. Iteration results for E2E_NF_MIRDRV4

240

A A1 -h/r- \!\v"
A A A I
\l\l\I—•-

aKFU

VIiV--/A: - H,\ ̂

te-^vV\r

AAA^
V V V

o
SKPL

-# O
SKPL

hA r

Figure D-22. E2E 2-tenninal nonlinear driver

241

1-36: Conventional 45-52: Patallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Condidonal Sensitivity Scheduling

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

« RelTol

n RelTol Inteip

RelMax

rt RelMax Interp

Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ RelTol

tJ RelTol Interp

RelMax

« RelMax Interp

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iterative Sensitivity Scheduling

O

A
-=-4-

0 4 8 12 16 20 24 21 32 36 40 44 48 52 56 60 64 68 72 76

« RelTol

□ RciTol Inleip
RcIMbx

^RelMox loteip

Interfoce Types

Timeatep SensiUvity Scheduling

.£56^

^RelTot

□RelTol Inlcip
. RelMax

XRelMax Inleip

12 16 20 24 28 32 36 44 48 62 56 64 68 72 76
Interfoce Types

Other Sensttivrtv options

^^goonl
□ Didgooollnteip

. . Identi^

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interfaee Types

Figure D-23. Iteration results for E2E_NF_DRVVIR2

242

-/lAA _
V V V

V V V i

•'".J. nn 5 S"-''vT'f'""

SKfU

>:?. U=::;kI

-AAAr-i-
V V V

'sA . - i w-^

A A

SKfU

O i A A/-
SKfU V V V

K A

fiKPU

a<f»L
o -

KrV

hO

fiKPl-

O

Vvv^p-i e

Figure D-24. E2E 4-terminal nonlinear driver

243

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

n 6

4

2

0

Condilioiial Sensitivity Scheduling

¤ RelTol

D RelTol Inteip

RelMax

» RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

o RelTol

o RelTol Interp

RelMax

- RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

lierabve Sensitivity Scheduling

^RelTcl

□RelTol latetp
RelMax

RelMax Inteip

0 4 8 12 Id 20 24 28 32 36 40 44 48 52 56 60 64 68 ?2 76
Intafose Types

Tiinertep Scisiavity Scheduling

ORclTol

□RelTol Interp
^RelMax

XRelMax Interp

12 16 20 24 28 32 36 64 68 72 76
Interface Types

Other Sensitivity options

B, 4fl,a ?aaa, 8*7 °°,

^Diagonal
□ Diagonal loteip
. Identity

12 16 20 24 28 32 36 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-25. Iteration results for E2E_NF_DRVYIR4

244

/

/■\r

SKfl- I Pa/w-
.V..] k"

A A

v.v >

ir-'v'"/ TTj/

■>i V.'''/:; '"a" ».r ^ 1 X A

w'-VVi'"!* ^DK ■} ;V 'i!'K '/J:
2^U ''/x '.'.w

I /
"1 c

AAA yA ,A AWv

■♦■"--0

J± l\K \ .—1 • •■,. .Vy.y .
v'"^t ^a1 ! -Viy. ^

HK1»U

T'V'--'-f^^. -i-J

£-\ •

/\ A A :.:i\j\lv—

Figure D-26. E2E 2-terminal virtual driver example

245

1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Parailel Correcfion (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditioiial Sensitivity Scheduling

—r—r——T- ^ " I ' I

¤ RelTol

□ RelTol Inteip'
RelMax

^ RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfice Types

12

10

Enror Sensitivity Scheduling
♦ RelTol

D RelTol Inteip
- RelMax

^ RelMax Inteip

. 0 4 , 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Itentive Scheduling

« RelTol

DRelToI Inteip

;i<RelMQX Inteip

12 16 20 24 32 36 40 44 48 S2 56 64 68 72 76
Inteifoce Types

Timestcp Seraitivity Schedghng

DRelToI

□RelTol Inteip
BelMuc

XRelMixInterp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inieifoce Types

■■CTlist.&iwitmn'mffiir ,

,»oa? "

^Dagoool
□Diagonal Inteip

Identity

0 4 8 12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interface Type:

Figure D-27. Iteration results for E2E_LF_DRWIR2

246

1-36: Conventional 45-52: Panallel Correotion (ESRC) 61-68: Parallel Correotion (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequent'al Correotion (ESRC) 69-76: Sequentiai Correction (ESRC_SENS)

Conditional Sensilivity SdredulipR

o RelTol

D RelTol Inteip

' RelMax

K RelMax Inteip

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interfece Types

12

10

8

6

4

2

0

EiTor Sensitivity Scheduling

Or.-

I '] i —I—"^1 " f— js2sj5S£

» RelTol

o RelTol Inteip

RelMax

g RelMax Inteip

I 1 1 '] ''I' I 1—-*--i '■ I I "T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Itcxstive Seiuitm^ Scheduling

—A/ws Aaa— A
cesKi Goa Sea g i

A RelTol

□ RelTol Intecp
r. RelMax

a RelMax Inteip

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Timestep Sensidvily Scheduling

,

ARelTol

□RelTol Inieip
-RelMax

XRelMax laleip

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Other Sensitivity options

^Diagonal
aDisgonallnteip

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-28. Iteration results for E2E_LF_DRVVIR2a

247

1-36: Conventional 46-52: Parallel Correction (ESRC) 61-68: Parallel Conation (ESRC.SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensittvi^ Sdieduling

12

A <*

Q 8

t', "

¤ RelToI

□ RelTol Inteip
RelMax

^ RelMax Interp

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteifece Types

12

10

8

6

4

2

0

Error Sendtivi^ Scheduling
♦ RelTol

a o RelTol Inteip
RelMax

^ RelMax Interp

■ g r,

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iteiative Sensiltvity Scheduling

ORcITol

QRclTo] Inteip
RcIMbx

RelMax Inteip

12 16 20 24 28 32 36 40 44 48 S2 56 64 68 72 76

Tincstep Sctmtivi^ Scheduling

ORelToI

□RelTol Inteip
RelMax

XRelMax Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 -76
Interfaee Types

Other Seiwitivitv options

DDiagosal Interp
Identic

12 16 20 24 28 32 36 40 48 52 56 64 68 72 76
Interfaee Types

Figure D-29. Iteration results for E2E_HF_DRVVIR2

248

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parailel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequent'ai Conection (ESRC) 66-76: Sequentiai Correction (ESRC_SENS)

Condirional Sensitivi^ Scherftiling

¤ RelTol

o RelToI Inteip

RdMax

X RelMax Interp

0 4 8 12 16 , 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ RelToI

o RelTol Inteip

RelMax

tr RelMax Inteip

0 4

I I I 1 I I I I I

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

Iterative Sensitivity Scheduling

« RelTol

□RelTol Inteip
vRelMax

RelMax Interp

0 4 8 12 I6 20 24 38 32 - 36 40 44 48 52 S6 60 64 68 72 76
Interface Types

«RelTo!

ORelTol Inleip
BclM&x

XRelMix Znleip

0 4 8 12 16 20 24 ^ 32 36 40 44 48 52 56
Inteiihce Types

...Olli'rr.StrMiUYiff.tiPlm,.

□Diagonal Inteip
Identic

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-30. Iteration results for E2E_HF_DRVVIR2a

249

....

Z

\/j; ...::.i"5")
V S i, ^ '

' • ' •

(

^ 1

:_■ "^KFU
■ s «... "S

"A A,A. / 1)

i c

5KH.

HKfL

■■'I -JU-jL

L"-'■ V.

I- f I - ;i

/\ A A nr
V V V

r
r

HKR-

Figure D-31. E2E broken amplifier 2-terminal coupling tests

250

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

jm Ba_

¤ RelTol

D RelToI Inteip

n RelMax

^ RelMax Intetp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

© RelTol

o RelTol Interp

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iterative Sensitm^ Scheduling

O RelTol

ORelTol Intetp

• RelMax

^RelMax Intetp

12 16 20 24 28 » 36 40 44 48 53 56 60 64
Interface Types

Timeatep Semitivity Scheduling

ORcITol

□RelTol Inierp
-RelMax

XRelMax hteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Interface Types

ifOoPiioHBi

^Diagonal
□ Dugon^ Intetp

Identic

12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interface Types

Figure D-32. Iteration results for E2E_LF_AMPHB2

251

1-36: Conventional 45-52: Parallel Condon (ESRC) 61-68: Parallel Correotlon (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Coneotlon (ESRC_SENS)

Condioonal Sensitivity Schedulins

X «

a □

♦ RelToI

n RelTol Inteip
' RelMax

« RelMax Inteip

0 4 8 12- 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling
oRelToI

o RelTol Interp
RelMax

^ RelMax Intetp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 -56 60 64 68 72 76 Interfece Types

Iterative Sensitivity Scheduling

^ 15

O RelTol

D RelTol Intetp
' RelMax

^RelMax Inteip

12 16 20 24 32 36 40 44 48 52 56
Intefece Types

Tiinestep Senotivity Scheduling

/• e<4>o

«RelTc<

□RelTol Intetp
vRbIMk

XRclMax Intcip

12 16 20 24 28 32 36 48 52 56 60 64
Interface Types

WitrSffwri'WWm. ..

P Diagonal
□OiBgonol Intetp
■ Identity

12 16 20 24 28 32 36 40 52 56 60 64 68 72 76
Interface Types

Figure D-33. Iteration results for E2E_HF_AMPHB2

252

n '

/ -

1 p I L"' A I'P p

'K'L: A;>0 A'w'K

HKPU

u ; - - r-
/

(—

'• AA/^^

D' 1 /

■^3i-A <

\A/V-'' A A A
., ■ / \

t"! or

. A AM-

BKPL

B / > < ' I -% r- s /
V ,v'! iU „ lO V

!> 4-DiO""XS!N® •^ODAiv

SKPU
AAA.

V V \J -vQ_PJIp—

P3-v~- IN--
r
t-

/. A A
HKPL

Figure D-34. E2E 2-tenninaI linear virtual driver example

253

1-36: Conventional 45-52; Parallel Correction (ESRC) 81-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity SchedulinR

¤ RelTol

D RelTol Inteip

RelMax

RelMax Intetp

0 4

I I I I I "I ' !■ ■ I ■ "T ■ I - I " 'I 1 ' I" ■ I I

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

12

10

8

6

4

2

0

Eiror Sensitivity Seheduling

"W

♦ RelTol

o RelTol Inteip
RelMax

» RelMax Inteip

0 4

—I 1 I 1 I I 1 I] I 1 r—

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inter&ce Types

Itentive Setuittvi^ Scheduling

^RelTol

□RelTol Intetp

RelMax

RelMax Intetp

12 16 20 24 28 32 36 40 44 48 52 S6 64 68 72 76

Timeitep Senulivity Seheduling

^RelTol

□KelTol Inteip
RelMax

XRelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

^Diagonal
□ Diagonal Inteip

Identity

12 16 20 24 28 - 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-35. Iteration results for E2E_LF_LINEAR2

254

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Condidoiial SensitiYity Scheduling

"I n t l

o RelTol

n RelTol Inteip

RelMax

rr RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ □
...

♦ n
X

Vtl ♦

♦
♦

« RelTol

o RelTol Inteip
RelMax

K RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteiface Types

Iterative Sensitivity Scheduling

♦RetTol

□RelTol Interp

RelMax

X RelMax Interp

12 16 20 24 2S 32 36 40 44 52 56 60 64 6S 72 76

Timeitep Sensitivity Scheduling

♦RelTol

□RelTol Interp
RelMu

KRelMix bleip

12 ' 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Other Sensitivitv options

♦ Diagonal
□ Diagonal Interp

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-36. Iteration results for E2E_HF_LI1S[EAR2

255

, ̂ 1 \ "■/ V , \ ■

■ •'i fs.'"'. r*'\ ' ".'v

Ji

...^s..

"IT. T5!c
20K ?' b< UK

q::' ...'■<

bkpu
SKPU

■■■f\v7j. -5N® 'CCKi}.;

T. X2

: O
' Bt<PU

■y.

SKPI-

_AAA J ^vv \ y

BKPl-

yV' •■•• I '■ '«

BKPL
O

I#
xJ^-

h~
k:A

s\<eL

M/S
iJ' •^. .. /''Si ^i V. •• •' u

f> ^ .'s.s.

BI^U

Figure D-37. E2E 4-tenninal virtual driver example

256

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitiviy Scheduling

¤
¤

« fit

I? 5^ :;v k

^ r»3
P. p,

n n 1 1 1 1 1 1 1 1 1

¤ RelTol

o RelTol Inteip

RelMax

« RelMax Inlerp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Eiror Sensitivity Scheduling

t-g-< V igg

« P

• RelTol

o RelTol Intetp

RelMax

« RelMax Inteip

1 1 I I I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteifece Types

Iterative Sensitm^ Scheduling

p X
»?_ V

5 n

n

m ' ̂ n ■*

«ReIToI

P RelTol Inteip
RelMix

RelMax Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64

Timestep Scmntivity Scheduling

^RelTol

D RelTol Inleip
RelMax

XRelMax Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inteiface Types

Other Sensitivitv opHoiis

O Diagonal
□ Kagonal Inteip

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-38. Iteration results for E2E_LF_DRWIR4

257

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

V S B i

¤ RelTol

DRelTolIntetp

: RelMax

K RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intn&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

m
-Bjm-

I I 1 r—

f9
1 I—

¤ RelTol

o RelTol Intetp

RelMax

« RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Senaitivi^ Seheduling

V y ̂ '

^RelTol

QRelTol Interp

RelMax

^RelMax Interp

12 16 20 24 32 36 40 44 48 52 56 64 68 . 72 76
Interface Types

Timeitcp Scmj^vity Scheduling

«RelTd

□RelTol Interp

RelMax

XRelMax biteip

12 16 20 24 28 32 36 40 48 52 56 60 64 68 72 76
Interface Types

Otlnr?mwrf,vwivii?.

^Disgonfil
□ Diagonal Interp

Identic

12 16 20 24 28 32 36 40 52 56 60 64 68 72 76
Interface Types

Figure D-39. Iteration results for E2E_HF_DRVVIR4

258

/

/ n ;

;

'/p'O

^\/\Ayv\V

BKPL

AW

5^

2j t '^-.O i N C - j;/

o •-
Bmrr

X^vp i
X9 y_l_

bkpB
-V/; js

' k' «

*c~?j 2.'i
■'" ":4n:'2nh/c O.C]

'iKPL

^/wH e

BKPU
O

t riiSSi I '' * U I'A'/ ,_

_ .. t':
-'C- '4v

^ V V\A^
1/ tj

BKPU

Figure D-40. E2E broken-amplifier 4-terminal tests

259

1-36: Conventional 45-52: Paiallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivi^ Sdicduling

sr

¤ RelTol

B RelTol Inteip

RelMax

RelMax Imerp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

Error Sensitivity Scheduling

¤ RelTol

a RelTol Inteip

RelMax

« RelMax Inteip

I " I I I I I' "I I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scheduling

-is—

/.ygini

♦RelTol

ORelTol Inteip

.RelMax

^RelMax Inteip

0 4 8 12 16 20 24 28 32 M 40 32 56 60 64
Interihce Types

Timestep Sensitivity Scheduling

2 ' —

0 •

♦ RelTol

ORelTol bderp
RelMsx

XRelMax Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intciface Types

Other Sensitivity oDtionj.

dBBs wayH

♦ DlBgOfiol
□ Dagonal Inteip

Identity

12 16 20 24 28 32 36 40 48 52 56 60 64 68 72 76
Interface Types

Figure D-41. Iteration results for E2E_LF_AMPHB4

260

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parailel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequentiai Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Condirional Sensitivity Scheduling

-BiS

¤ RelTol

n RelTol Inteip

RelMax

RelMax Interp

0 4 - 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivjty Scheduling

I I I

o RelTol

o RelToI Interp

RelMax

^ RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scheduling

0

□
e Sat o □ □

-

♦RelTol

□RcUol Inteip

-RelMax '

X RelMax Intcip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intffface Types

Timestep Sensitivity Scheduling

♦RelTol

□RelTol Inieip
RelMut

XRclMuc Inteip

12 16 20 24 28 32 36 40 44 48 52 56 60 64
Interface Types

Q D

iPna »%ni ♦5i^B a ♦ ♦^^

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

♦ Diagonal
□Diagonal Inteip

Identity

Interface Types

Figure D-42. Iteration results for E2E_LF_AMPHB4a

261

1-36: Conventional 45-52: Parallel Coneotlon (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Conditional Sensitivity Schedulins

X.l8-

^<-2- ® " (a

« RelTol

D RelToI Inteip

RelMax

RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Intei&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

¤ RelTol

o RelToI Inteip

RelMax

^ RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iteiative Sensitivity Scheduling

or

¤ ¤ n

♦RelTol

□ReTToI Inteip
>. RelMax

X RelMax Inteip

12 16 20 24 32 40 44 48 S2 Sd 64 68 72 76
Interface Types

Timestep Senativjty Scheduling

*2

♦RelTd

DRelTd Interp
RelMax

XRelMix Inteip

12 16 20 24 28 32 36 40 48 52 56 60 64 68 72 76
Interface Types

♦ Diagonal

□ Diagonal Inlerp
^ Identity

12 16 20 24 28 32 36 40 44 52 56 60 64 68 72 76
Interface Types

Figure D-43. Iteration results for E2E_HF_AMPHB4

262

1-36: Conventional 45-52: Parallel Correction (ESRC) 81-68: Parallel Correction (ESRC^SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Senativi^ Scheduling
¤ RelTol

D RelTol Inteip

RelMax

^ RelMax Integ?

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Intofece Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling
o RelTol

o RelTol Inteip

RelMax

RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Inteifece Types

IteiBtive Sensitivi^ Sebedulmg

^RelTol

□RelTol Inteip
RelMax

X RelMax Inteip

12 16 20 24 28 32 36 40 44 48 52 S6
Intofaee Types

Timestep Sensitivity Scteduling

coses

« RelTol

□RelTol Inteip
RelMax

XRelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Other Sensitivity options -

nB^ iBnBa »'

^Otagonal
D Dagonailnterp

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64
Inteiface Types

Figure D-44. Iteration results for E2E_HF_AMPHB4a

263

i < uK

\ A-/ \ / \ / \ ̂
V V V

.A.

-'\/\/\

^\AA/-
V V V'

■IV ■ ■ .S

.A A A

, V

•A A A'VVV- i

VA?f< -:A.rrV

SKPU

W'v/

,. , X'" i 1

L^fr~8m-

XT';

.5:S-SST:sg,v->;

AAA/— —iise

e-
t—

Qriz^—*- AA/\

a<Fu

Figure D-45. E2E 4-terminal linear virtual driver example

264

1-36: Conventional 45-52: Parallel Con'ection (ESRC) 61-68: Parallel Comecfion (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Condirional SensitiYity Scheduling

<■ , la B

• RelTol

n RelTol Inteip
RelMax

s RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Inter&ce Types

12

10

8

6

4

2

0

Error Sensitivity Scheduling

r

n

0 ^ ,.0 B . W A 3
^ ..

♦ RelTol

o RelTol Inteip
RelMax

a RelMax Inteip

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iterabve Sensitivi^ Scheduling

^ □

♦RelTol

□RelTol Inlerp

RelMax

^ RelMax Intetp

0 4 8 12 16 20 24 28 32 36 40 44 48 S2 56 60 64 68 7Z 76
Interlace Types

Timestep Senativity Scheduling

_s7__n _«_jQN>

♦RelTol

□RelTol Inletp
RelMax

XRelMax hilerp

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

OilitrSmiiiwrolivm-

♦ Diagonal
□ Diagonal Inteip

. Identity

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-46. Iteration results for E2E_LF_LINEAR4

265

1-36: Conventional 45-52: Patallel Correotion (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12

10

8

6

4

2

0

Condirional Senativily Scheduling

a

X
o n

a "
ex "

A

) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

¤ RelTol

D RelTol Inteip

' RelMax

rr RelMax Inteip

Enor Sensitivity Scheduling

2

D Q.jiJ

¤ RelToI

o RelTol Inteip

RelMax

^ RelMax Interp

I ' I I I I I '

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interfece Types

Iterative Sensitm^ Scheduling

« RelTol

□RelTolInterp
RelMax

X RelMax Inteip

12 16 20 24 32 36 40 44 48 52 56 60 64 68 72 76
Interiace Types

Timestep Sensitivity Seheduluig

^>r
B

ii. □

^RelToI

DRelTol Interp
. RelMw

XHelMax Interp

0 4 8 12 16 20 ' 24 28 32 36 40 44 48 52 56 60 64
Interface Types

,..,pitM5m?iiivi«mi9n>„-

^Diagonal
□Dia^snal Interp

Identity

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Interface Types

Figure D-47. Iteration results for E2E_HF_LMEAR4

266

;:2 r-L
.^■ ■r ■ --i- RC-'H.., L.. ; -R ' '-m- .-

!*

™ < W T ! (r
vy ' »

»fl

■^7-r Ni- :):?vVF</
■■/ L N[;:itvVR?. Ri;-

f<Ci

-1 « 'C

mE ter~A'\Vsa..
'vVV

..a
ffKPlH

~i—o
-an-

'TT-Hr ^RWR2 t;
:.R-R-i-"- :„:)i5WR2 r"'RRihô

''•

\A/v—
"iVf

^e-
I ;•:»

■^:-i-.t< •r-A/VV—
^VVV-T- ^RA/V-

L-
\ \

Ki.V.r.lK

\AA.

i <.T^>

I <
v9i

Figure D-48. E2FE land 2-terminal coupling tests

267

-AM,-
V V V

I

"il

V'4 ' y,sfV
VI- r'aNSi-^ J

<!. r..t,d—A/VV— " *-■; j—'Wv

r

S?'-t

^ V V *-' >-4 I o CH A ,\}X,
, ibcft. V V V

Vf<ir •■-■>.'

 w

r

S'i

A/'-J U'-
'.X.V :«.vi:^-i -.A v- 'i

i-'-

-3^

It 55^
OJ'-n ••f«i•1i->T -rt.

:..y:r:

"fetsrT I \r [—A/vv--^>r],
.'•r- -V c>v'

•»/■-!>■

. ̂STT
A A

P ^

le

Figure D-49. E2FE 4-terminal coupling tests

268

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC.SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 6&-76: Sequential Correction (ESRC_SENS)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Conditional Sensitivi^ Scheduling

#« «« 0«

0 4
»»»»»»»»

—I 1 1 1 r

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

o RelTol

Inter&ce

Types

Figure Dt50. Iteration results for E2FE_NF_RCPULLU1_PE

269

1-36: Conventional 45-52: Paraliel Correction (ESRC) 61-68: Paraiiei Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequentiai Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

O.S

0.6

0.4

0.2 oo «« ooo «

* « «

¤ RelTol

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-51. Iteration results for E2FE_NF_RCPULLU1_PR1

270

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68; Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sonsitivity Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0 I

« « «

1 » t e ' I I

¤ RelTol

Intcr&ce

Types

I t I t I I I I I '

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figiore D-52. Iteration results for E2FE_NF_DRWIR2_PE

271

1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Paraliel Correotion (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Conditional Sensitivity Scheduling

o o o

¤ RelTol

ooooo .oo

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-53. Iteration results for E2FE_NF_DRWIR2_PR1

272

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

• RelTol

Intei&ce

Types

I 1 1 r****—»»»♦ i»»«» ♦ I 1 1—

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-54. Iteration results for E2FE_NF_DRWIR4_PE

273

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-88: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Conection (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivi^ Scheduling

1.6

1.4

1.2

0.8

0.6

0.4

0.2
.«««««•

i»«»e

• RelTol

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-55. Iteration results for E2FE_NF_DRVVIR4_PR1

274

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

O.S

0.6

0.4

0.2

«

-1 1 1 1 1 1 1 1 » 1 1 1 1 1 1 1 r

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

• RelTol

Intet&ce

Types

Figure D-56. Iteration results for E2FE_HF_AMPHB2_PE

275

1-36; Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallei Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Con-ection (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

OO-

• RelToI

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 32 56 60 64 68 72 76

Figure D-57. Iteration results for E2FE_HF_AMPHB2_PR1

276

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Con'ection (ESRC) 69-76: Sequential Correction (ESRC.SENS)

Conditional Sensitivi^ Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

¤ RelTol

Inter&ce

Types

-I 1 1 ; 1 1 1 1] • 1 1 1 1 1 1 r

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-58. Iteration results for E2FE_HF_AMPHB4_PE

277

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic Interfacing 53-60: Sequential Correction (ESRC) 68-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

¤ RelTol

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-59. Iteration results for E2FE_HF_AMPHB4_PR1

278

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC^SENS)

Conditional SensitiviQ' Scheduling

i.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

o ̂

¤ RelTol

Inter&ce>

Types

1 > ¤ • t

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-60. Iteration results for E2FE_HF_DRWIR2_PE

279

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

¤

A ¤ e e

« RelTol

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-61. Iteration results for E2FE_HF_DRWIR2_PR1

280

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynarnio interfacing 53-60: Sequential Correction (ESRC) 66-76: Sequential Correction (ESRC_SENS)

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Conditional Sensitivily Scheduling

¤ RelTol

Intei&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-62. Iteration results for E2FE_HF_DRWIR4_PE

281

1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC^SENS)
37-44; Dynamic Interfacing 53-60: Sequential Correction (ESRC) 69-76: Sequential Correction {ESRC_SENS)

Conditional Sensitivi^ Scheduling

1.8

1.6

1.4

1.2

0.6

0.4

0.2

¤ RelTol

Inter&ce

Types

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-63. Iteration results for E2FE_HF_DRWIR4_PR1

282

APPENDK-E

283

Appendix-E. Backplane Calculation Tutorial

This section provides a detailed outline of the backplane calculation and causality

detection processes to clarify the procedures from Chapter 3. The first example is a simple

case, which essentially implemented nodal analysis using the backplane procedures. The

second example shows how the backplane detects an EFFORT output variable and modifies

the sensitivity calculations and backplane system matrix. Both examples show the

initialization sequence (DC bias point calculations), which are the most critical steps in the

backplane process. These examples showed that this process is a multilevel Newton

procedure [12].

Appendbc E.l A Simple Example

A complete representation of this example is shown in Figure E-1 (a). The true

solution of this problem was Eti=4.17V and Et2=2.5V with a current of 833 |iA. To

demonstrate the coupling procedure, this representation was broken into two simulation

partitions in Figure E-1 (b) and (c). The interfaces into both simulators were defined as

voltage sources. The objective was to calculate the same solution found in the complete

representation. Because of the voltage sources, the coupling process only had to calculate

dF
conduction parameters (-r-^) as shown in Figure E-1 section (d).

OEy

284

R,=1K E„ R^=2K E„ R3=3K
WW-A^W

(a) Complete Circuit Representation

Ri=lK E..
r-VWV-4r

v@

(b) Simulator partition CIRO

E^ R3=3K CIR0| cm

ti

E„ R,=2K E,

(c) Simulator partition CIRl

GIRO

3 F„ a F.,
a Eti a Ea
aF„ aF.

CIRl

aF„ aF.,
a E,i d Eq
aF. aF.
d E,i a Eq

K F

d E„ d Efl EciR0,t25Ec]Ri,t2

(d) Coupling Representation

Figure E-1. Simple coupling example

To implement the coupling process, 14 different variables were required as shown

in Table E-1. Each simulator contributed four variables (information to the backplane) and

the backplane created six variables (indicated with the CALC subscript) to be used in the

error minimization process. To create functions that were equal to zero for each simulator,

the backplane created sensitivity functions. The sensitivity functions were used by the error

minimization process in the coupling process and for the sensitivity parameter calculations

in each simulator. Since the EFFORT variables were common between both simulators,

only one unique EFFORT calculation variable was required in the process.

285

Table E-1. Simulator and backplane calculation variables

Simulator Return Variables Backplane Galculation Variables
Partition GIRO Variables:

Eciro.tij Fciroji
EcirO.T2, FcirO.T2

Equivalent GIRO Variables:
EtiIcalcj Fciro,ti|calc
Et2|cALCj FcirO.T2|caLC

Partition GIRl Variables:

EciRi.Ti, Fcnuji
EcIR1.T2, FciR1.T2

Equivalent GIRl Variables:
EtiIcalcj Fciri,ti|calc
Et2|cALC5 FciR1.T2|caLC

For partition GIRO, the sensitivity functions were:

^y^ciRojiJ ~
BE,T1

dE;T1

diVi
^^aRO,Tl ̂

cmo

A F +^Ell.
n '^ClRQJl :i r

ORO °-^r2

• AE 4- AF'^OROJl ̂ ̂ C/RO.ri
C7R0 Equation E-1

n ^CIR0J2 + ̂CIR0,T2
CIRO

The corresponding error minimization equations for partition GIRO were defined by:

^^/o,n ~ -^ORo.nl^^ ~ ̂aRoji

^C1R0,T2 ~ ̂aR<i,T'\(^i(- ~^aR0,T2
^aRO.Tl ~ ̂T^CALC ~ ̂ClRO.Tl
^aR0,T2 ~ ̂T2\calc ~ ̂CIR0,T2

Equation E-2

For partition GIRl, the sensitivity functions were:

?FS(.Fcm,n) = ̂
dEj.^

dEj.1

AF I

cm "Ft2

AF I ^Ft2^^aRl,Tl -xr'
oEt-,cm r2

n ^aR\J2 ^CIR\,T\
CIRl

' ̂aR\,T2 ^aR\J2

Equation E-3

cm

The corresponding error minimization equations for partition GIRl were defined by:

286

AF = F -F^CIRIJI ^ aR\J\\cyiic ^ CIR\,T\

^^C1RI,T2 ~ ̂CIRI,T'}\(^uq ~ ̂CIR\,Tl
^aRl,T\ ~ ̂T^CALC ~^CIRl,T\
^CIRi,T2 ~ ■^r2|cMiC ~ ̂ CIR1,T2

Equation E-4

The sensitivity functions of both simulators were put into matrix form with the

interconnection relationships:

0

0

0

0
dFn 3Rn_
hEr\ aRo dE^z C/RO
dpTz ifn.
3En ORO CffiO

3Fn 3fh
3£n ORl dEj-2 am
3F„ 3Fj-2
3Eti CIRl 3£j.2 aRi

1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

AE.T
AE.

I\caLC

AF^c/Ro.ri CALC

AFE^aR0,T2 CALC

AF
CALC

AF̂ aRl,T2 CALC .

0

0

■^(^/Ro.n)
^{^aR0,T2)
^{^CIRl,Tl)

^{^aRl,T2)

Equation E-5

The matrix in Equation E-5 was called the system matrix in this tutorial. The

intercoimection relationships were defined in the first two rows, and these relationships

defined which FLOW variables (or FLOW delta variables) summed to zero. The sensitivity

functions were used in the other four rows. After solving for the calculated delta values in

Equation E-5, an iteration process was defined for the calculated variables:

I'+i

PaRO,Tl\cALC ~ ^CIRa,Tl\cAU:
F = F r + AF I^aR0,T2\cALC ^CIR'iMcALC CIR^McalC

FaR\,T\cALC " ̂ ciri,t\caijc ^cir\,t\calc
F 1'^' — F I' -i- \F I^CIR\,T2\calC ~ ^CIRl,T2\c^ ^aRl,T2\cALC

=-E^rir +^Til~'IC4£C ■^MC4£C -'McUiC

Equation E-6

F I'"*"' — F^T2\caLC ~ .r2| 4- AE 7.,
C4iC ''^\CALC

287

To derive the sensitivity parameters, a perturbation matrix based on the sensitivity function

was solved by the backplane component in a simulator to define functions that were zero.

The process was defined by:

S(fn) +1^-AErw +AFn.^ = 0
C'jC/2'2

Equation E-7

The X variable defined the interface where the variable delta was applied. The delta

information bad to be applied twice (once at each interface) to calculate the four sensitivity

parameters. In matrix form, the parameters were solved by usmg Equation E-8.

'AE.'T1,T1 0 AE.T

AE.Ti,ri

2,n

0

0

AE.T

AE.'T1,T2

0 AE.

0

'n

 AE.'T

,T2

2,T2

0

2,n

0

AE.'T2,T2

BEn
BET

BE7

1

'2/

' B̂Er
BE.T

i

\y

^BET
BET

2

2j

' B̂E•T2.

AF,ri,n

AFT2.T\

AFT\,T2

AF.T2.T2

Equation E-8

These equations were the mathematical foundation for the coupling process. This entire

procedure attempts to eliminate the error in Equation E-2 and E-4. When these equations

were approximately equal to zero, the coupling process had essentially converged.

To demonstrate this coupling process, the simulator information was presented in

iteration blocks with sensitivity iterations defmed by the format #-S.OBJECT. After each

block, the perturbation matrix (Equation E-8) was solved as necessary. The backplane

process required seven iteration steps because of the initialization procedures. The

initialization procedures are described in Appendk-B and mentioned in this text when

288

appropriate. Once a four-step setup phase was completed, the backplane constructed and

solved the system matrix.

On iteration 1, the simulator solution of partition GIRO was:

Iteration GIR0 Simulator Response Source Values

Object Effort Flow

1 T1 O.OOOeO 5.000e-3 ESRG = O.OOOeO

1 T2 O.OOOeO O.OOOeO ESRG = O.OOOeO

1-S.T2 T1 +0.000e0 +0.000e0 -

1-S.T2 T2 -l.OOOe-4 +3.333e-8 -

1-S.Tl T1 -l.OOOe-4 +1.000e-7 -

1-S.Tl T2 +0.000e0 +0.000e0 -

Sensitivity calculations for GIRO:

'-l.Oe-4 0 0 0 n an;F"
3n:£

0

1

o

1

0 0
an:F

dT2\E

0 0 -l.Oe-4 0
dT2-.F

an:£

0 0 0

'

1

o

1

dT2:F

,3T2:EJ

-l.OOOe-7

0

0

-3.333e-8

dKT\ _=
dE,T

 1.000e-3
T1 _=

1

 0.0 n _=
d£,r

 0.0 T1 —=

x dKT
 3.333e-4

2

On iteration 1, the simulator solution for partition GIRl was:

Iteration GIRl Simulator Response Source Values

Object Effort Flow

1 T1 O.OOOeO O.OOOeO ESRG = O.OOOeO

1 T2 O.OOOeO O.OOOeO ESRG = O.OOOeO

1-S.T2 T1 +0.000e0 -5.000e-8 -

1-S.T2 T2 -l.OOOe-4 +5.000e-8 -

1-S.Tl T1 -l.OOOe-4 +5.000e-8 -

1-S.Tl T2 +0.000e0 -5.000e-8 -

Sensitivity calculations for GIRl:

289

"-l.OOOe-4 0 0 0
r 3n:F n
3n:£

0 -l.OOOe-4 0 0
3ri:F

Br2:£

0 0

1

o
o
o

1

0
3T2:F

driiE

0 0 0 -l.OOOe-4 5T2:F

.BT2-.e]

-5.000e-8

+ 5.0e-8

+ 5.0e-8

-5.0e-8

^^ = 5.0e-4 ̂ = -5.0e-4 -^ = -5.0e-4 ■^ = 5.0e-4
d ^E,T\ E^^ ^Ej^^

The simulator responses for iterations 1 to 3 were identical, so these responses are not

shown. On the fourth iteration, the backplane constructed and solved the interconnect

matrix.

Pcm\,T\c^c " ̂ ciR^Acalc ~
F f =F P =0 0^aR\,Tl\cALC ^CIR^'T2\c^

0 0 1 0 1 0" ^Acalc 0

0 0 0 1 0 1 ^Acalc 0

l.Oe-3 0 1 0 0 0 AF'-^CIROJl CALC 5.0e-3

0 3.33e-4 0 1 0 0 AF^aR0,T2 CALC
0

5.0e-4 -5.0e-4 0 0 1 0 AF
CALC

0

-5.0e-4 5.0e-4 0 0 0 1 AF^aR\j2 CALC _
0

AEcmQ.n\cALc — 8.33e 4 ~ ^ ^orij^calc = -8.33e-4

AF.CIR\,T2\cjiic = 8.33e-4 AF'•^'IC4IC = 4.167 AFT2 CALC
= 2.5

290

' cffio.n \caijc ~ ̂axo.nlc^c ^cim,n - 8-33e 4
~ ̂ORoj^Qjijjc'^ ̂ aR0,T2 ~ 8-33e 4

F 1'^ =F 1^ + AF = -8 33e - 4
14 |3

^cm\,T2\(^i^ ~ -^ffiurzlc^c "*" ̂ cmi,T2 ~ 8.33e - 4

=Fril' +A£:j.i= 4.167
^llC4iC -''IC^LC

Ej-A =£^2] +AEr2 — 2.5'^\CALC •^^ICALC

On iteration 4, the baclqplane applied the solution back to the simulators.

Iteration CIR0 Simulator Response Source Values

Object Effort Flow

4 T1 4.167e0 8.333eO ESRC = 4.167eO

4 T2 O.OOOeO -8.333e0 ESRC = 2.500e0

4-S.T2 T1 +0.000e0 -5.000e-8 -

4-S.T2 T2 -l.OOOe-4 +5.000e-8 -

4-S.Tl T1 -l.OOOe-4 +5.000e-8 -

4-S.Tl T2 +0.000e0 -5.000e-8 -

Iteration CIRl Simulator Response Source Values

Object Effort Flow

4 T1 4.167e0 -8.333e0 ESRC = 4.167eO

• 4 T2 O.OOOeO 8.333eO ESRC = 2.500e0

4-S.T2 T1 +0.000e0 -5.000e-8 -

4-S.T2 T2 -l.OOOe-4 +5.000e-8 -

4-S.Tl T1 -l.OOOe-4 +5.000e-8 -

4-S.Tl T2 +0.000e0 -5.000e-8 -

The next backplane sequence had no error between the simulator and calculated values.

0 0 1 0 1 0" AEril^UCALC "0"

0 0 0 1 0 1 AEt-tI^^ICALC 0

l.Oe-3 0 1 0 0 0 ^anoji CALC
0

0 3.33e-4 0 1 0 0 ^CIR0,T2 CALC
0

5.0e-4 -5.0e-4 0 0 1 0 ^aR\,T\ CALC
0

-5.0e-4 5.0e-4 0 0 0 1 AF^CIR\,T2 CALC ,
0

291

Once all convergence checks and initialization steps were completed, the backplane started

the transient analysis. The transient analysis followed the same procedures of eliminating

the error between the calculated variables and the simulator variables.

Appendbc E.2 EFFORT Output Example

High gain problems like the example in Figure E-2 (a) were more difficult to solve

than the previous example, especially depending on the interface used in a partition. The

complete representation was divided into two partitions with two interface terminals like the

previous example, so the same coupling variables were created as defmed in Table E-1. The

CIRl partition in Figure E-2 (c) was interfaced to the coupling process using voltage

sources like the previous example. However, the GIRO partition in Figure E-2 (b) was

interfaced to the backplane using the SYSTEM configuration of a FLEXIBLE interface.

Consequently, the GIRO partition had the capability to calculate additional sensitivity

parameters as shown in Figure E-2 (d).

292

R,=4K

C:jp=lNF
HIR3f=10K

—^wv—
C,p=lNF

IU=25K
—wi\— R.,=10K

"—R.=1K

R„=1K

IL=1K

oST Ea
0.0

2.5+sm @ lOOMHz

(a) Conqjlete Circuit Representation

CIROi

R,P=10K
r-\WV—

Cjf=lNF

■101^ R^=1K
-vwv

IU=25K
~Wv\—■

■I 0.0

2.5+sin @ lOOMHz

R-=1K
o^r

C3p=1NF
-HI
R,f=10K

(—

R..=1K
vwv Ea

■^FLEXt2

(b) Simulator partition GIRO

E., R,=4K E,

(c) Simulator partition GIRO

CERD

ap., ap., ap.,
3E„ 9En 9Pc
ap, ap^ ap.
3E„ 3Ea 3Pii
ap., ap. ap.,
3Eq 3Pii apQ
dE„ aE„ apQ
aE,i aPu aPfi

^aRO,ti)EaRi,ti
E„

EaiU).Q>EciIU,Q

GIRl
a a p„
aE„ aE„
ap^ az.
ap, 3E„

(d) Coupling Rqiresentation

Figure E-2. High gain feedback problem

293

In the high gain situation, the main issue was to get a good initial solution (guess)

that met the sufficiently close conditions required by most iteration routines. However, this

partitioning process broke the feedback path, so the CIRO partition had a very poor

initialization solution due to the intemal stimulus Vin. Without the conduction matrix

(Geqv) generated by the SYSTEM configuration in partition CIRO, the backplane was

unable to solve the problem. Using the conduction matrix, the backplane essentially created

the feedback resistance of the CIRl partition in partition GIRO. The problem solution was

almost trivial since partition CIRl only contributed a conduction relationship to the process.

This example had an EFFORT ouqjut at terminal T2, which the backplane had to detect.

There were two reasons for detecting the EFFORT causality at terminal T2 and

calculating a different set of sensitivity parameters. By detecting the gain, the backplane

calculated parameters that corresponded to the true nature of the models in a simulator. In

addition, the backplane used this information in certain interface procedures. The second

and most important reason was due to matrix constraints. When applying delta information

to a specific interface, the delta of the given interface should correspond to one of the largest

delta responses. Without this condition, the matrix became ill conditioned, which caused

failures in the pivoting LU decomposition solver routines in the baclq)lane.

At initialization, this example used the same mathematical foundation as the

previous example. When the EFFORT output variable was detected at interface T2 in the

GIRO partition, the backplane calculated a different set of sensitivity parameters for the

GIRO partition, and the system matrix changed. The new sensitivity functions solved in the

GIRO partition were defmed in Equation E-9.

294

dF dF
+^-^T2.x +^n.x = 0

C/Hj'PY vXaf;■'Tl

dEr dEr
Equation E-9

S(E,,)=^.AE,,^^ +^-AF,,^x +^T2,x = 0
■Tl T2

In matrix form, the sensitivity parameters were solved using Equation E-10.

AE.Ti,n 0 AF.T2,T\ 0

0 AE.n
AE.n,T2

,Ti

0 AF

0

T

 AFT

2,T2

2,Tl

0

0 AE,n,T2 0 AFT2,T2

BE,Tl
BET

BE,T
l

2,
BE,T

BE,n
l

.
BET

BE,T
2

2/

T2_

AF,n,n

AE,T2,n

AFn,r2

AE.•T2,T2

Equation E-10

The variation in the sensitivity parameters changed the sensitivity functions used by the

system matrix as shown in Equation E-11.

BESiF^.o,n)=^BE,Tl

■AE,O
BE,n

Ro.n
GIRO ^^T2

■ ^aR0,T2 "*■ ^aROJl
GIRO

S(Ecmj2)=^BE,Tl

■AE,'O
BE.T2

RO.n
ORO ^^T2

Equation E-11

■ ^aR0,T2 ^GIR0,T2
ORO

The new system matrix was defined in Equation E-12. The interconnection relationship was

defined in row 1 and row 4. These rows corresponded to the input variables in the

sensitivity parameters.

295

0

0

9£ri

dEfi

dpT,

dEj-]

dFrr
dEr

CIRO

CIRO

CIRl

ORl

0

0

0

1

1

0

1

0

1

1

0

iSx
3Fr2;CIRO

9£'y2
3Fri CIRO

SFr,
dEn

3Fr,
3Et'

OR!

ORl

0

0

0

0

0

0 0

0 0

1

0

AE.
^UcALC

AE.F2lc4lC

^ciRO,n CALC

^CIR0,T2 CALC

AF̂ CIRl,T\ CALC

AF̂ CIR1,T2 CALC .

0

0

^(■^ciRo,n)
^{^CIR0,T2)
^i^CIRlJl)
'^(■^C/Rl,r2)_

Equation E-12

The error equations (Equation E-2 and E-4), the CIRl relationships (Equation E-3, E-7, and

E-8), and iteration equation (Equation E-6) were identical to the previous example.

The iteration sequence for this example was more complex than the previous

example because of the initialization procedures for the SYSTEM configuration in partition

GIRO. At initialization, the equivalent matrix Geqv in GIRO was set to a minimum matrix

where

and

^EQF ~

^EQV ~

le-6 -le-6

-le-6 k-6

<^1.1
^2,1 ^2,2

'EQV
Eti

Ej.2 J^T2.

296

On iteration 1, the simulator solution for partition GIRO was:

Iteration GIR0 Simulator Response Source Values

Object Effort Flow

1 Tl 3.757e-8 -1.605e-5 FSRG = O.OOOeO

1 T2 1.605el 1.605e-5 FSRG = O.OOOeO

1-S.T2 Tl +1.171e-8 -5.695e-7 -

1-S.T2 12 -4.094e-4 +8.241e-6 -

I-S.Tl Tl -1.577e-4 +7.670e-6 -

1-S.Tl T2 -8.423e-6 +1.526e-9 -

Sensitivity calculations for GIRO:

"-1.58e-7 -8.42e-6 0 0
'STI:F'
dTl:E

1

00

-4.09e-4 0 0
dn-.F

dT2:E

0 0

1

00

1<
1

-8.42e-6
dT2:F

dTl:E

0 0
00
1

r-

-4.09e-4 dT2:F

.3r2:£j

dKT\ _=
BE,r

 4.86el
dK
^

dK

-7.67e-6

5.69e-7

-1.53e-9

-8.24e-6

dK.

i dE.T
 = -1.06e0 -^^ = -8.77e-10 -^^ = 2.04e-2

dE dEI ;T2 ,T2

dKj.^ _ dKj.2 _ dEj.^ _ dEj.2 _ dEj-^ _ dEj.2 _ q q
dKj-2 dK., dKt dKt dEr., dE.n T2 T2 T2 "72 ■Tl

On iteration 1, the simulator solution for partition GIRl was:

Iteration GIRl Simulator Response Source Values
Object Effort Flow

1 Tl O.OOOeO O.OOOeO ESRG = O.OOOeO

1 T2 O.OOOeO O.OOOeO ESRG = O.OOOeO

1-S.T2 Tl O.OOOeO -2.500e-8 -

1-S.T2 T2 +1.000e-4 +2.500e-8 -

1-S.Tl Tl +1.000e-4 -2.500e-8 -

1-S.Tl T2 O.OOOeO +2.500e-8 -

Sensitivity calculations for GIRl:

0
1

000■ 'F.-nd
dn-.E

' 2.5e-8
'

0l.Oe-4
00dn-.F

3T2:E
8-e5.2-

0 0

1

O 0BT2:F
dTl:E

S-e5.2-

0 001.0e-4_
dT2:F

,E:2Td_
 8-e5.2_

297

■z^ = 2.5e-4 —^ = -2.5e-4 —^ = -2.5e-4 —^ = 2.5e-4
dEj.1 oEj^ aEj.2

The sensitivity parameters for CIRl partition were constant through this analysis, so these

calculations are not shown again.

On the second iteration, the baclq)lane had to generate an equivalent sensitivity

matrix (Geqv) because GIRO partition has a SYSTEM-level configuration. This calculation

used the system matrix with the GIRO components eliminated and with other matrix

modifications for the EFFORT variables as shown in Equation E-13.

1

0

0

0

0

1

0

0
3En ifW.
dEn ORl dEj-2 am

3Er2 dfn
3Et, am 3Eti am

0 0 0 0

0 0 0 0

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

AEril^MCALC

T2\caLC

CALC

AF̂ aR0,T2 CALC

AF^am,n CALC

AF̂ am,T2 CALC.

=w Equation E-13

The X vector was changed depending upon which set of, equivalent parameters was

calculated, and two calculations were required to generate all parameters. The first

calculation generated the equivalent information for the.Exi variable.

1 0 0 0 0 0" ■ AE,, - "1"
0 1 0 0 0 0 AE,2 0

0 0 1 0 1 0 AF 0

0 0 0 1 0 1 AF^aR0,T2 0

2.5e-4 -2.5e-4 0 0 1 0 AF^ciRin 0

_-2.5e-4 2.5e-4 0 0 0 1 _^aR\.T2 _ 0

dF,n
dEri

_AWiLc^2.56-4 T2

EQV AE.'TMcALC dE,T1

AFcmo,T2

EQV AE.'^
^ = -2.5e-4

UCALC

298

The second calculation generated the equivalent information for the Et2 variable.

1 0 0 0 0 0" A£j., "0"

0 1 0 0 0 0 AEj-j 1

0 0 1 0 1 0 AF̂ CJROJl 0

0 0 0 1 0 1 AF^aR0,T2 0

2.5e-4 -2.5e-4 0 0 1 0 AF^aRi,n 0

-2.5e-4 2.5e-4 0 0 0 1 _^cm\,T2 _ 0

dR
n

dE,T2

AF^aRoji

EQV

^EQV ~

AErn\

n 2.5e-4 -2.5e-4"

-2.5e-4 2.5e-4

dF
^ = -2.5e-4 ̂

dE,T2 EQV
AE.

"E2\caLC

Since this equivalent information does not change throughout this analysis, these equivalent

calculations are not repeated. Typically, the backplane did not recalculate equivalent

sensitivity parameters unless a simulator's sensitivity information changed.

On the second iteration, the simulator solution for partition GIRO was:

Iteration CIR0 Simulator Response Source Values

Object Effort Flow

2 T1 2.629e-6 -1.249e-4 FSRC = O.OOOeO

2 T2 4.996e-l 1.249e-4 FSRC = O.OOOeO

2-S.T2 T1 +7.49e-ll -3.559e-9 -

2-S.T2 T2 -1.779e-2 +1.154e-5 -

2-S.Tl T1 -1.944e-4 +9.235e-9 -

2-S.Tl T2 +4.617e-2 +1.152e-5 -

During this iteration, the backplane detected gain when the T1 delta was applied, and a new

set of sensitivity parameters was calculated using Equation E-10.

299

■-1.94e -10 1.154e-5 0 0 r 3n:F "
dTl:E

7.49e--11 1.152e-5 0 0 in-F
iT2-.F

0 0

1

o^

1.154e-5 BT2:E
BThE

0 0 -1.94e-10 1.152e-5_ BT2-.E
_BT2-.f]

-9.234e-9

3.559e-9

1.7792e-2

-4.617e-2

^ = 4.86d ^ = 2.375e8
d dEn."T Eri

BFt, dEr-, dEr, dEr

■ T2 T2 [j-2

dFrx
= 0.0

dFj.2

't\ _ dEj.2
T2 dEji

ai;,̂
dKr

 = 5.50e-4
2

dEj2

As a comparison, the true gain between En and En was 2.5e8 (the amplifier gain was le6,

lOx gain, and 25x gain). The backplane calculated the gain to be 2.375e8 because of the

small delta information. This delta information was below the calculation tolerance of the

simulators, so the baclqplane was potentially solving the sensitivity parameters based on

roimding errors! Nevertheless, the large gain parameter caused some rounding errors in the

other parameters. Since the gain dominated all relationships, the errors in the other

parameters were negligible.

On the second iteration, the simulator solution for partition CIRl was:

Iteration GIRl Simulator Response Source Values
Object Effort Flow

2 Tl O.OOOeO O.OOOeO ESRG = O.OOOeO

2 T2 O.OOOeO O.OOOeO ESRG = O.OOOeO

2-S.T2 Tl O.OOOeO -2.500e-8 -

2-S.T2 T2 +1.000e-4 +2.500e-8 -

2-S.Tl Tl -H.OOOe-4 -2.500e-8 -

2-S.Tl T2 O.OOOeO +2.500e-8 -

The third iteration continued the setup procedure, where the T2 interface of CIRl tracked

the EFFORT output in GIRO. The simulator solution for partition GIRO was:

300

Iteration CIR0 Simulator Response Source Values

Object Effort Flow

3 T1 2.629e-6 -L249e-4 FSRC = O.OOOeO

3 T2 4.996e-l 1.249e-4 FSRC = O.OOOeO

3-S.T2 T1 +7.49e-ll -3.559e-9 -

3-S.T2 T2 -L779e-2 +1.154e-5 -

3-S.Tl T1 -1.944e-4 +9.235e-9 -

3-S.Tl T2 +4.617e-2 +1.152e-5 -

The simulator solution for partition CIRl was:

Iteration CIRl Simulator Response Source Values

Object Effort Flow

3 T1 2.629e-6 1.249e-4 ESRC = 2.63e-6

3 T2 4.996e-l -1.249e-4 ESRC = 5.00e-l

3-S.T2 T1 O.OOOeO -6.270e-6 -

3-S.T2 T2 -2.508e-4 +6.270e-6 -

3-S.Tl T1 +1.001e-4 -2.500e-8 -

3-S.Tl T2 O.OOOeO +2.500e-8

On the fourth iteration, the baclqjlane started using the calculated variables from tire system

matrix. The calculated variable delta values were solved using Equation E-12, or

0 0 1 0 1 0" ^Acalc . 0

0 0 0 1 0 1 ^r2\cALC 0

4.86el 0 1 0.0 0 0 ^aRO,T\ CAUC
-1.249e-4

2.38e8 1 0 5.5e-4 0 0 ^CIR0,T2 CALC
1.107e-7

2.5e-4 -2.5e-4 0 0 1 0 AF^ciRi,n CALC
1.249e-4

-2.5e-4 2.5e-4 0 0 0 1 ^aRl,T2 CALC .
-1.249e-4

The new calculated values were defined using Equation E-6:

13 |3 |3 |3
CALC ~ ̂CIRa,Tl\cAljC ~ ^CIRI.T2\calC ~ ̂Cm,T2\cALC ~

^nLc=2.629.-6 =4.996^-6

301

^ciro,t\(^ijc ~ l*249e 4 — 1.249e 4
^aR\,T\cyiuQ =l-249e —4 ■^cwi.nlc^ic =~l"249e —4
^nLc=2.629.-6 =4.996^-6

On iteration 4, the final initialization step for the SYSTEM configuration applied only the

flow information to the interface, which did cause divergence from the true solution.

Iteration CIR) Simulator Response Source Values
Object Effort Flow

4 T1 2.627e-6 -I.248e-4 FSRC = -1.25e-4

4 T2 9.988e-l 1.249e-4 FSRC = +1.25e-4

4-S.T2 T1 +1.49e-10 7.1e-9 -

4-S.T2 T2 -3.55e-2 1.154e-5 -

4-S.Tl : T1 I.944e-4 -9.235e-9 -

4-S.Tl T2 -4.617e-2 -l.I52e-5 -

The simulator solution for partition CIRl is:

Iteration CIRl Simulator Response Source Values
Object Effort Flow

4 T1 2.629e-6 1.249e-4 ESRC = 2.63e-6
4 T2 4.996e-l -1.249e-4 ESRC = 5.00e-l

4-S.T2 TI O.OOOeO -6.270e-6 -

4-S.T2 T2 -2.508e-4 +6.270e-6 -

4-S.Tl Tl +1.001e-4 -2.500e-8 -

4-S.Tl T2 O.OOOeO +2.500e-8 -

As the last phase of the initialization procedure, the backplane cleared the FLOW variables

before the standard calculations procedures were applied.

]4 |4 |4

^aR^T^cAiC ~ ~ ^CIR1,TZ CALC ^'^^"''''^IcALC
2-629e 6 £';r2|c:4ic ~ ^

In this iteration, the system matrix was:

302

0 0 1 0 1 0" AEti 0

0 0 0 1 0 1 AE^2 0

4.86.1 0 1 0.0 0 0 AF̂ aRO,Tl -1.249.-4

2.38.8 1 0 5.5.-4 0 0 AF^aROji

1

o
t-H

2.5.-4 -2.5.-4 0 0 1 0 AF̂ aRiji 1.873.-4

-2.5.-4 2.5.-4 0 0 0 1_ AFCIRIJI _
i

00

7
1

Using Equation E-6 and the system matrix solution, the new calculated variable values

were:

^ciro,t\(^q~ 3.123e 4 —ZAlZe 4

~ ~3.123e — 4 ~ ^

=2.63.-6 ^nLc =5-62^-1

At this point, the backplane directly applied the calculated values to the simulators.

However, the interface procedures had to compensate for the system matrix Geqv (as

defmed in Appendix B).

|4 l4

Fsrc - FaRn\cALc ^eqv '
-3.12.-4

3.12.-4
+

2.5.-4 -2.5.-4

-2.5.-4 2.5.-4

2.63.-6

5.62.-1

-1.41.-4

1.41.-4

Iteration CIR0 Simulator Response Source Values

Object Effort Flow

5 T1 2.627e-6 -1.248e-4 FSRC = -1.41e-4

5 T2 1.061e0 1.248e-4 FSRC = +1.41e-4

5-S.T2 T1 +1.59e-10 -7.54e-9 -

5-S.T2 T2 -3.77e-2 1.154e-5 -

5-S.Tl T1 -1.94e-4 -9.231e-9 -

5-S.Tl T2 -4.615e-2 -1.152e-5 -

303

The calculated variables were applied to partition CIRl.

Iteration CIRl Simulator Response Source Values

Object Effort Flow

5 T1 2.629e-6 1.405e-4 ESRC = 2.63e-6

5 T2 5.620e-l -1.405e-4 ESRC = 5.62e-l

5-S.T2 T1 O.OOOeO -7.050e-6 -

5-S.T2 T2 -2.82e-4 +7.050e-6 -

5-S.Tl T1 -l.OOle-4 +2.503e-8 -

5-S.Tl T2 O.OOOeO -2.503e-8 -

On the sixth iteration, the backplane calculated the true solution. The system level matrix

was:

0 0 1 0 1 0" AEj., 0

0 0 0 1 0 1 AEj.2 0

4.86.1 0 1 0.0 0 0 AF^ CIRO,Tl -9.366.-5

2.38.8 1 0 5.5.-4 0 0 AF̂ CIR0,T2 6.202.-8

2.5.-4 -2.5.-4 0 0 1 0 AF̂ ciRi,n 1.093-4

-2.5.-4 2.5.-4 0 0 0 1_ AFJ^CIRl,T2 _ -1.093.-4

The new calculated variable values were:

~ T.249e 4 1.249e 4

^ciRi,T\\cALc ~ ̂ ^ ^aRi,Ti I — ~ .249e — 4CALC

^nLc =2-63^-6 =4.996.-1

Then, the simulators confirmed the solution.

Iteration CIR0 Simulator Response Source Values

Object Effort Flow

6 T1 2.629e-6 -1.249e-4 FSRC = -4.6e-14

6 T2 4.996e-l 1.249e-4 FSRC = +4.6e44

6-S.T2 T1 +7.49e-ll -3.559e-9 -

6-S.T2 T2 -1.779e-2 1.154e-5 -

6-S.Tl T1 1.944e-10 -9.235e-9 -

6-S.Tl T2 -4.617e-2 -1.152e-5 -

304

Iteration CIRI Simulator Response Source Values

Object Effort Flow

6 T1 2.629e-6 1.249e-4 ESRC = 2.63e-6

6 T2 4.996e-l -1.249e-4 ESRC = 5.00e-l

6-S.T2 T1 O.OOOeO -6.27e-6 -

6-S.T2 T2 -2.51e-4 +6.27e-6 -

6-S.Tl T1 -l.OOIe-4 +2.503e-8 -

6-S.TI T2 O.OOOeO -2.503e-8 -

All variables meet the tolerance criteria, so the backplane converged. The transient analysis

would apply the same procedures, where any variable errors between the simulator and the

calculated values in the backplane were eliminated (error minimization).

Appendix E.3 Final Comments

In these linear examples, the backplane initialization sequence actually caused

divergence in the solution (Example 2, iteration 4). Of course, the backplane initialization

procedures had to be careful not to cause too much divergence. This initialization sequence

did improve convergence in certain nonlinear problems, but these routines were not very

robust and the routines should be improved in the future! Future initialization procedures

should consider using the EFFORT output information to implement a different set of

routines to account for any internal stimuli in a gain path. However, the interface into the

simulator was ultimately the most important facet of the coupling procedure as shown in

Example 2. By incorporating valid condition sensitivity parameters in the GIRO partition,

the coupling solution was significantly simplified and the coupling process easily

converged.

The second example demonstrated a very simple fact- the most reliable method of

coupling simulators with high gain components was to complete the feedback path. Without

305

defining the feedback path, the local simulator cannot always calculate valid sensitivity

information and the initialization solution can have significant errors (Example 2 iteration

1). If the "sufficiently close" conditions required by most iteration routines were not meet,

then the baclqilane cannot solve the problem based on the interfaces into the simulators.

Besides using an interface into the simulator, the other coupling approach would be

to transfer the complete solver matrix of each simulator to the backplane. The baclqjlane.

would construct and solve a single matrix representing ALL simulator information. This

approach would require significant information extraction firom the simulator and would

increase the baclqjlane complexity. Of course, the approach was beyond the scope and

intent (simple and easy coupling via an interface) of this development.

306

VITA

Lloyd Gabriel Clonts was bom in Cleveland, Tennessee on April 11, 1968. He

attended Bradley County school systems and graduated from Bradley Central High School

in May 1986. He entered the University of Termessee at Knoxville (UTK) in September

1986 and completed the Bachelor of Science degree (Electrical Enginerring) in May 1990.

While working as a graduate research assistant at Oak Ridge National Laborities (ORNL),

he completed his Masters of Science in May 1993. He entered the Doctoral program at

UTK in January 1996 after working for ORNL and several small companies in the

Knoxville area. He is currently employed as a CAD tool/system administrator and

Application Specific Integrated Circuit (ASIC) designer in the Instrumentation and Control

(I&C) division at ORNL.

307

	Development of a simulation backplane with dynamic configurability
	Recommended Citation

	Thesis2001b.C46_2.pdf
	Thesis2001b.C46.pdf

