University of Tennessee, Knoxville

na LINIVERSITY o

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Doctoral Dissertations Graduate School

5-2001

Development of a simulation backplane with dynamic
configurability

Lloyd Gabriel Clonts

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Clonts, Lloyd Gabriel, "Development of a simulation backplane with dynamic configurability. " PhD diss.,
University of Tennessee, 2001.

https://trace.tennessee.edu/utk_graddiss/8479

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8479&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a dissertation written by Lloyd Gabriel Clonts entitled "Development of
a simulation backplane with dynamic configurability." | have examined the final electronic copy
of this dissertation for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Electrical
Engineering.

Donald W. Bouldin, Major Professor
We have read this dissertation and recommend its acceptance:
J. M. Rochelle, E. J. Kennedy, D. F. Newport, W. R. Hamel
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a dissertation written by Lloyd G. Clonts entitled “Development
of a Simulation Backplane with Dynafnié Configurability “. I have examined the final
copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctorate of Philosophy with a major in

D il W, B

Dr. Donald W. Bouldin, Major Professor

Electrical Engineering.

We have read this dissertation and recommend its acceptance:

///ﬁ
ZM&M

(/Q«tnx..r I cLz /Lv_..

Interim Vice Pravost

and Dean of the Graduate School




Development of a Simulation Backplane with Dynamic Configurability

A Dissertation
Presented for the
Doctorate of Philosophy
Degree'

The University of Tennessee, Knoxville

Lloyd G. Clonts

May 2001



ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Donald W. Bouldin for his guidance,
patience, and reassurance during this dissertation. I would also like to thank the other
committee members, Dr. J.M. Rochelle, Dr. E. J. Kennedy, Dr. D.F. Newport, and Dr. W.R.
Hamel for their comments and encourégement. I would also express my deepest gratitude to
my group leader, W.L. Bryan, at ORNL for his guidance, patience, and help in limiting the
scope of the topic. Finally, I would like to thank my mother, Elaine Clonts, for her
encouragement and for putting-up with my endless complaining during the completion of

this degree, and to my grandparents, Donald and Barbara Ownby.

ii



ABSTRACT

The subject of this thesis was the development a simulation backplane for coupling
an electrical simulator with a mechanical finite-element simulator although the backplane is
applicable to any simulator .with the proper architecture. To tradeoff performance and
- accuracy during the analysis,"a dynamic configuration option was included, where different
simulators and models in a simulator can be switched in and out during the analysis. This
option provided the designer with the flexibility to analyze all details of simulations from
different modeling representations to optimizing the simulation performance within the
same analysis. This backplane was able to transverse multiple coupling architectures to be a
configuration tool for simulating hybrid environments with dynamic changes. In this work,
the dynamic configurability procedure was outlined with other issues and procedures for
coupling multiple simulators.

To improve upon the basic coupling process, different interface configurations were
examined in different casualty-based formats. Specifically, conventional interface
combinations were compared under different sensitivity calculation criteria and methods to
find the interface or combination with the best iteration efficiency and convergence. The
iteration efficiency was typically determined by the sensitivity calculation options while the
convergence was determined by the interface combination between the simulators and by
the backplane initialization sequence. The optimum convergence for any conventional
interface combination was 93%. From these analyses, a dynamic-interface configuration

procedure was developed based on coupling conditions and variable causality to identify the

iii



interface configuration with the best chances of convergence. A tiered dynamic interface
procedure had convergénce of 95% and equivalent iteration efficiency with the conventional
interfaces. Finally, a flow correction method using behavioral models was examined, where
a predictor and corrector process was implemented that allowed more versatility in the
coupling process and improved initialization compared to the other interfaces. The flow
correction process had a convergence of 93% tested over behavioral models with different
accuracy constraints. A sensitivity calculation problem limited the success of the flow
correction procedure and caused tﬁe iteration inefficiency to be two times larger than the

other procedures.

iv



TABLE OF CONTENTS

Chapters : , Page
L INITOAUCHION ...ttt esesesses s sesessesasesssessssesnsaennassseasnasssneessnsensassesmessenntssnsas 1
1.1 A Generic Simulator and the Modeling ISSUES ........ccecererreecrrirmncreeenerernresieserecsereenene 2
1.1.1 Levels of AbStraction.............eeeveeeerene et saees s sspe s b aee bt saes s R s e ran 4
1.1.2 Importance 0f MOAELINEG ......cceueeeerreeremrcncrerrnensorrcreraracsnsasssesessessssereesessseseneeesanes 6

1.2 Independent SIMUIALOTS .......covevrvrmerrerrreesiinirensiresciineeeisisseseasessssssisessssssesessasssassesess 7
1.3 Coupled SIMUIALOLS ......cuerruerrerssersssersssassesrassssssnsssesssssssasessssssasessessessassssessasssscsssassassasses 8
1.4 Unified SIMUIALOT ....ccvvveveneeemseesmsnssrsmssesemssessaseessssagresssesessescssenses v eneseas 10
1.5 CONCIUSIONS......corireruecrerenrsernrernrnsesesesaesssnsssssssossssnsassnssessannsnsonese dereeeseeseneneenesneneasneant 11
1.5.1 Dissertation GOAlS........ccoceeruereenemeeemmresrerearaceerecseeerarernecsssnssssesarsssssensesesssasssoseesesess 14
1.5.2 Dissertation OULLNE........cccesvecererrcereeeerrccrrnrestrasescsesestssecsassssssssasassssssssssassnsses 16

2. BaCKEIOUNd .....covevimiminncririririsiecesisecsassssssnacasstassssssssasssasesecssssssssssssasassesssssssssssssnsesseasassens 18
2.1 MEMS Simulation ENVILONMENES.......ccceeeereerrecernereressssnsmesessesssassessesnssnsssssassonsarsasaan 19
2.1.1 CAEMEMS ... occceeenereeceesncasssenrsnsssassestssssesssasasnssssssasassasssssssssesesassassesnssesssasses 19
212 MEMCAD ....cvicrecrneeenenreressessssesesstsasasasasssssstsenssssesessasensasassesesssesnsasarsessasassssesess 20
2.1.3 SESES/SOLIDIS .....oooieiriericrnerinscnsacsssecesensosssssasssossessssssssenssasassassessessnsassins 21
2.1.4 Concurrent Electrical and Mechanical Analysis..........cevseeesioreecorensersesecraerecsnes 21
2.1.5 Behavioral MOdeIS.......ccvceeeeeerrrnrereninnccensiennasesssnnneonsssssssssesnsssssesassssssesconsansasasns 22

2.2 System-level Partitioning .........:civeecersienerennereionsssenssssssusossssossossesresesesesssssessenssessesens 23
2.3 Interfacing and Herating..........coceecevuvrimsiccsimsinitnsitsnicsesae st sssssssssassseneas 26
2.3.1 Simulator ArCRItECTUIES.......cocerierirererrrerernrencaesteserenesiessessesescssecrsasassasesnsnsnencas 29
2.3.2 SOIULION PIOCESS ...coucurereeecneneresenessecnersnroressscasasssonssasosenssrsncsnessacessssesensnsacsasasnsonss 31
2.3.2.1 Newton-Raphson Method..........ccouiereenenruresurunnsnscsscscssssisincnicssncecsiaenes 31
2.3.2.2 Relaxation Methods ........cccoeeeeuernnrsessecnennesersensssnsnssessnsesconsssssessesossesessenes 33

2.3.3 SYNCHIONIZAION ...veucurercrcesrrenereenrecscensresesassasasassssesessssesesssasassesassssasseessassssessrens 35
2.3.4 CONVEIZEIICE ..c.vverrrrenerronseescsnesesersrsassmsnsssnssacsassnssssassasensassasssssssssasesessaonsanssesnssassasess 36

2.4 Communications and COontrols..........cceeveremirccsseseenesnsesenssessereersasessessonssassesasasersscscsses 38
2.5 Dynamic MOdeling PrOCESS.....c.evueeeereecmrseseaensenesnsesarsesaensussnsnsssassessenseasassessaescsesesosses 39

" 2.5.1 State and Timing COntrol .........coveeeiveieicmrneieieerestesaens e et ssssssns s asssssnenes 41
2.5.2 Representation COntrol...... ..o ceecerrencrrrercserencscsmsrecsessentsascesssssssssssnssssssnsass 42
2.5.3 MOdel DefiNItions.......cccceereerrenrrreersersnresssesseansncssensacsocssessassesssessscsseesssssansssnsasesess 44

2.6 SUITUTIATY .c..ooveeernenesesnsessensessassressensstessssssssssasssssesasassassresesssossasssstsssansssenssesssensessasansns 46
3. Causality-based INEITACES ......ccceurmrererenreeeieenenencecersertstsas e seesesas e seasaeseenesasesasasassesens 47
3.1 Interface DefINItiON....ccevurerececerrrertrieeiessseaeeee s tseseeeeeemsacsenssesaesms e sessessnentensasecs 49
3.2 Causality DEteCtiON. .....cccvierierrerurureeterncareeecrcseacsasasereetsessassessesentessestorsssssensasesares 51
3.2.1 Absolute POWET CrIteriON......cccerveecsmnineruseresessnasassiesessissssstsesssesssssssssseseseseessasssneas 52

3.2.2 SensitiVity CrIteIION. ...ccoceeeieererceeerrreecrerascrertreeetesasesesesaestnssesmsanesesenceeesnsace 54




3.3 Direct Calculation IMEITACE. .......coveeveeerrieerirerereccerseeesseessnssansssessstssss s e esssesensssassnseas 55

3.3.1 Averaging Interpolation INEITACE ........coccvvurriivcnirsssinncnnrneensrsnnnsnns 57
3.3.2 Causality RECOZNIZEA ......ccovruererrirunnenernrerncsniresessesessesseniseorsessssssssmsseesssessessssssseseans 61
3.4 Conventional Interfaces.........cccoceuruererenceeuruenemreenencacecne reseueneaetens et t et et e eeeanrass 63
3.4.1 Flexible Interface.......cocoeeeneeee eeeeteieteerrete st tates e s et et et sttt saeret e st e aeasaratraneent sen 68
3.4.2 Norton and Thevinin Equivalents Interfaces ...........coeverinvreneeccncnsncinnninnnnncnn. 68
3.4.3 Voltage or Current Source INterfaces.........cccererrrererrerencseeesessiscssersessasessesesesacnsonas 68
3.4.4 Direct EMUIALION. .....cccvrerreieierrsnceecescnsenseesesesesasesssasesasssassssesssssssasasnsasnssssess 69
3.4.5 Dynamic Interface Configuration.........c..cevureereneisinnmnncnicsnescsessunssassensassens 69
3.4.5.1 Basic Causality ModifiCations.......ccc.cecrevereeerernesencrerressesnssesessnessseseasnesssassones 70
3.4.5.2 New Causality State Diagram........ccceereeereerrensencrenemsescecsrsescecrssseeesessessnesesacae 71

3.5 Flow Correction INEIACE.........ccovemrrrrremeerarerenseensnsemeansssceesernsesssssseseeiessacsssasserassseses 72
3.5.1 Calculation ProCeduIEs..........cevrereereccrensrernrmeseescserssscncacseseecnnsmseesececesessssessassnseses 75
3.5.2 ConVErgence ANALYSIS ......cocvcerreemrrrersasansrassaenssasnsssersescassssssnsncsersenssssseseseesssossnseres 78
3.5.2.1 IAentity MALTIX ....cccoceeeererrrrnrnrerieceresenessnsnsnesencsssesenssssessssensessaseenssensessssencacsses 80
3.5.2.2 Diagonal Scaling MAtriX .....cceeeueecrerermenercenemenmemesasseseeesesressosssssssemessasassosene 81
3.5.2.3 Full DefiNlitioN.....ccceereneeerererreremruesssesesseessseasissssonsersesanssasascasassesssasseenesssenea 82
3.5.3 Algorithm MOQifiCatIONS ......cceeeerrererersnsrerearresesesesnsesesassssesssasacsssesssasesassescsssacsens 83
3.5.4 MOAELING ISSUES ....ccereemrrmrrarrrereiernretscscnctesasannenesseemsssassscsensssnsasacesasssesrasacnsacsess 85
3.6 SUNMIMNATY .....civrenreresseresessseesessesessssssesasasessssssesssssassesssssassassssssasessssensassssssssssssesssensescsns 85
4. Backplane Implementation .........c.cccueerenervecsreessenensssessseesessrsssssesssessesessssssessssesssasasseneans 87
4.1 COMMUNICALIONS ....viueererrsrerersenseiiunseiinnmsionsioiasiuessesnssssseseerosssnsseseranasanesessesssnssssasarassons 88
4.2 Database SIIUCKUTE.......c.eceurrrrserercrarcsersesassesesassesmarsssssssssassssasasssasssssssssssassssssssassreseses 90
4.3 CODILOL SIIUCKUTE ......ouereeenreasnresereereeseeeessssssessossesasesassesasnsassaseassassesesassencassassesenseseses 91
4.3.1 SImUIAtOr MOAES .....cucoveeereeencrecersesariseseesssnsresesssesasssssorssssesssasessssessnssesesssnsassenssssses 92
4.3.1.1 Non-calculation, Non-iterative Modes ..........cccevereererererreereneesrenneseeseesessenns 93
4.3.1.2 NON-terative MOAES ......coceeeeueeirirreerreresierirestsssesesseseressssessensssessssssassassssesssses 94
4.3.1.3 Tterative MOdES.....oveuuncermmnrecrsassnesessasnecesmsnesceneas e e raaa e 95
4.3.2 Simulator Status COntrOL.........ccevverereeerererreriernresestessssssesessssssossessssssnssssssesessons 97
4.3.3 Model or Simulator Switch Conditions ..........c.ceeevinecininisnsnesinisiennsssssesescnens 98
4.4 Calculation Control STIUCKUTE.........cccererremerrrerrererereensresisssesssssrsssssssssssssssssnens 100
4.4.1 Matrix BUIldINg ......coeeeveeerernnrsereressierssessssssssresssssssssssssssssssssssssassesssesssssnsasssasassens 100
4.4.2 Convergence CONMTOL.......ccovrececeeercrirercrersenerersseeeessesenessssasestessmensnssesensnsesss 101
4.4.3 Sensitivity Delta DEfInitions ........cccocececereeesuencnceerrenenreersesesesscsestesesesssnsseseenes 103
4.4 4 Sensitivity Scheduling and Mode Definitions .........cccececvvececeeeveencenes eeretenseneens 104
4.4.5 Enhancement Sensitivity Calculation Options........c.cccceeveeceeemreereccreenecrcrcscuenne 106
4.5 Simulator SEleCtion ..........e.veeuvecesersrerseneeonns eerben s ase et e R s e R pensaens 106
4.5.1 Electrical SIimulator.............cceceveerererenriecresesersreeseesens ceresecraensasesstsnssesransrnseses 108
4.5.2 Finite Element SImMUIAtOL.........cccveccvemsaerecresessesssssssssssssssssesssasssssessssesssesssassssssenes 109
4.6 SUIMINATY .....cucermrcrerentereeeeecntseeteesaseseseesetstesssasesssesssssesssesesessassesenssesessstsssasassssesenssaes 110

vi



S RESUIS cvvverereeronressrseseeesseesonissesssesasessssesssssssnssnesssrassssssbrsssssssasssssasasssssessasensassanenessnassessassans 111

5.1 Overview and SEnSitiVILY ......coveervercsnnmsininsnnssicnseiiesinssisnessssssesssssesse 111
5.2 Electrical-to-Electrical (E2E) COUPIING........coveveururrruimvuencuneiniririsisnsnssssssnensssssnensnenns 113
5.2.1 Direct CONFIGUIALIONS ...c.vveeceerernrenreressssnessasesensarsseesenssssssesssessssnsasssssassssssssssns 119
5.2.2 Conventional CONIGUIAtIONS ..........ceceeerreeersesurersnueasucsecesesesecssasscarsstsessesnassssone 120
5.2.3 Flow Correction Configuration..........cceseeseessrcersseneerseescsssssscssssessssssessssssssanes 122
5.2.4 Dynamic Interface Configuration.........c.coevureiverivesnvninnscscsnsenincsssessssessssssesees 124
5.2.5 SUMMDIALY ...cueoverearrrernenccrseneseriesesntsestsesststesssssistssssssresessarsssssessssasessssnssssensssnss 125
5.3 Electrical-to-Mechanical (E2FE) COUPLINE .....cccovnruvunurreriscrmreriseniresesiresessesencsssssseans 126
5.3.1 Conventional Configurations .........ceeeceeeeetescrcrcsesssssscssnsscsmssensissransessesesssasseseones 130
5.3.2 Flow Correction CONfIGUIAtION ......cvveereeeremeeseressssnesensssssssersssssstssssssusersserssesscas 131
5.3.3 Dynamic Interface Configuration......c...ceeeeeescrcrcusussensismsesssscusnsnsasesssassnsesenssns 132
5.3.4 SUMMATLY ....coorveuieerecnrereresessenasnensonsstseseesssesscssssesamsiassssosesmstsssssssssscssssessessesssnsssses 132
5.4 Dynamic modeling via a simulation backplane ............cocooveririiorsnnccncrecrnsisennenne. 133
5.4.1 AccUraCy COMPATISOI ....cceueerureursecesaseonssesssesisssasisrsessssesssseesssensossssasssssssssasssssas 135
5.4.2 Performance COMPATISOIL.....c.c.eeeeriuesnuemsumsesiscsisesmsesimsissssssssssssssssmssssssssssssssansens 142
5.5 SUMMATY ....cocrercmrceeerencncirte et is st essssansestsasssas s saese e st sasstnssssisssbessassnsasassastes 143
6. CONCIUSIONS.....cveeeuenennrerenerrrarnsseaseesesoeseae e e ssissessasasssasossesssstsasnessssnsasssssssssrassonsasssasseserasens 146
6.1 Interface conclusions for coupling SIMUIALOTS .......ccceuremrecmrrirnicnieiiniecenesannen, 146
6.2 Pros and Cons of Dynamic Operations in simulation...........cecceeueiiccivcinienecncnen. 148
6.3 FUture ReSEArCH .....c.vcveeererrreneaseemrcinieieeraesescrecc s ssscs e tesssesssssasanssenesssssnsassenes 150
REFERENCES ......oouieeemireeceeenarnseenenessasasestsesessssesssretatsssssssssasssssenserssosssssssssssssssssnsnsasssas 154
APPENDIXES .......covvierrueneeniensarisaensassssssessaesssssssssssesesessessssssensassssstas sensesssssssssesenssssessssees 163
A. Backplane Control SYNTAX.......ccoeccuruerueerscrsisssesenscseusessensesessussssssssessmsssssssssssesssssessese 165
A.1 Integrating the backplane into a SIMUIAtOT..........cccruevrervenecrinrscsivecncsssicseseincsens 166
A.2 Parameter DefInitions .......ccciceecericcrciininecciinicnnnnisecsenessssessscsincssssssessssessasssons 170
A.3 Object and Device SUCIULES.......coueuiinerieiiscsnsiniisssissssesasssssessssssssesesenss 171
A4 Automatic CONfIGULALION ....ecvevereuerenccrrurmenenracesecseeeeestesesessarssssssesssssssassssesenssenes 172
A.5 Triggering Rules and Procedures.........c.ooeeeeveecncsinunmsnincsinnsnssrennscsnscnessacscseens 173
B. Interface MethOdOIOZY......ccveerruenminterererisisirscsseseissiscssnssisansessssssssssssesssssssstsssssessessosans 202
B.1 Signal DOmain....ccccuiieenremnuinenrieneneneiiencesceestseeensssaesessessssasstesssssssssnsassssesees 206
B.2 Electrical DOMAIN.........ccocerereererreersrencresssasasssemsessencsssasaesasnsasssensasmssessnsosssssnsasasaess 207

. B.3 Mechanical DOMAIN ........ccevreemeerecnnsrncnmenerrnereeencnnecsenecssesesmessssesessesssssssnsssssseas 207
B.4 Interface Initialization............ccecvcvererecnmincncmerrninirnscccncisesssenessassssnssssesees 208
C. Interface Variable Causality Detection ........cceceeereerereecrermncrecssncsinteesassesessesensssssssessas 211
D. Coupling RESUILS ......cccovireeriercrercronanic st sssssntessssnesencssssssssesasssssssasassssnsseas 216
E. Backplane Calculation TUtOrIal..........ccccrererermeneereemsmresssseesaresessnencaserasessssssessnssesssanes 284
E.1 A Simple EXample........covrrrmrnriiccrirncnnicninsssiinesssssisisssssssssssssasssssasssssas 284
E.2 EFFORT Output EXample.........cccovueeeirmreereerreecsensaneresnneietserenenensecsessssacssesssessnens 292



viii



LIST OF TABLES

Table 3-1. Resistance Rgy- definition under different conditions ..........occoeevervenrsernsernnnns 60
Table 4-1. Keywords for the simulation backplane .........ccecevvminininiciiinciinciinnins 88
Table 4-2. Backplane modes for a simulator.............ccccueeeee. resstttt et n s e e e s s s esas 93
Table 4-3. Flags generated from the backplane to the SIMUIALOL. ........veereverereeeenrseesessaennens 98
Table 4-4. The different trigger conditions available in the backplane .........ccocouvureeurunnnnnee. 99
Table 5-1. Definition of the scaling factor for different sensitivity scheduling options......113
Table 5-2. E2E statistics based on the sensitivity options over all interfaces............oeueuee. 118
Table 5-3. Statistics for generic and specific E2E interfaces.........coooevuueevcncciniccncusivinenacnns 120
Table 5-4. E2E flow correction Process Characteristics .........cowererreremcererercereserearesusssecocnes 123
Table 5-5. E2E results for dynamic interface conﬁgmation ................................................ 124
Table 5-6. Statistics for generic and specific E2FE iterfaces.........ooevrureumneresseessmereneessnnns 130
Table 5-7. E2FE flow correction process charaCteristics........coouuiiemrisesrssinnsisissnssesssennans 131
Table 5-8. E2FE results for dynamic interface configuration..........coceceerecserceicecnnienensenannns 132
Table 5-9. Error summary for the ACCURACY TLIZEEL tESES ueveperrarucsnerearaereenscseeanneenannae 136
Table 5-10. Performance results for the ACCURACY trigger tests........ccrcrerenrreererenerecenecs 143
Table 5-11. Final interface convergence and iteration inefficiency comparison................. 144
Table A-1. Keywords for the simulation backplane .........ccccevvvvcennvcnnnnnnieinnncannc, 165
Table A-2. Backplane to simulator interface routines............owcvuemmscrmermsssiassssnnssinsiecanses 167
Table A-3. Flags from the backplane to the SIMUIALOL..........verrrerenrresmsnseserserasasesssesenssenee 169
Table A-4. Data keywords for the backplane 176

ix



Table A-5. RANGE attribute definitions used within SIM-MODELDEEF...............u........ 180 -

Table A-6. SIM-MODELDEF parameter defInitions ......cceceverniesinisincsisnennenerensisiesannns 181
Tabie A-7. MODELDEF parameter definitions. ......ccceeuerserereesercscrseseesersascsarsessrerseeneecsosas 181
Table A-8. Control keywords for the backplane...........coecevveeeieinirnnmnccnicniineccensnneceienane 182
Table A-9. GLOBPRM parameter definitions .........c.coeveecrerererernruricsencsssnssensesssniesesasssesnnnes 184
Table A-10. OBJPRM parameter definitions.........cccuvcceuriimrmncnnsncscisinissiseseesssessnssssneens 186
Table A-11. SIMPRM parameter defINItIONS ........cceureveeerereesseesarescnsenssseesesesencesssancsnsaesens 191
Table A-12. Command keywords for the backplane ...........ccoceeeerenmieiniinscnennencnenecnninccnc. 196
Table A-13. TRIGDEF parameter definitions.......c.coueeeereeeeuercecrrescrercsiienscscenssssenessssennaes 198
Table A-14. An outline of the trigger conditions within the trigger definition

147034011 0F: ) 11 KO 200
Table B-1. List of all interface and conﬁgtlxrations recognized by the backplane ............... 203
Table B-2. Interface and configuration cOmpatibility IEX ............e..eeesseereeemeemmmmseememeremmeres 204
Table B-3. Input/ Output characteristics of the backplane interface........c.coouveeivriirnrerecnnnee 204
Table B-4. Calculations definitions for the different configurations and interfaces ........... 205
Ta;ble B-5. Sensitivity delta definitions for the different configurations and interfaces......206
Table B-6. Interface mapping between primitive elements and electric interfaces............. 207
Table C-1. Variables created for identifying an interface’s input causality..........c.ceevveureene. 212
Table D-l.‘ Interface numbers to interface definition table ........ooevevercrcnrriccicncnnnee 218
Table E-1. Simulator and backplane calculation variables.........c.ccocovrreniciriccnccnincnnnes 286



'LIST OF FIGURES

Figure 1-1. Database and simulation overview for MEMS ........ccoccvververerireennnirensennsennessasaens 2
Figure 1-2. The structure of a SIMUIALOT .......cccvvervecrueeerereeensereseesseseseasereessssssesssssessssssassssnns 3
- Figure 1-3. Independent Simulator ArChiteCture...........c.ccvveverurenrurereereeeeennsenrressenseseesensesessnsesaes 7
Figure 1-4. Coupled Simulator ArChiteCture.........o.crrvsrresssinsssssnsessnnssessssssesssnssssenessnsesss 9
Figure 1-5. Unified Simulator ATChItECUIE .........cececrruerneressernierreesesressesssesesssesssesessseresesenns 10
Figure 1-6. Dynamic rﬁodel switching based on simulation performance and accuracy 15
Figure 2-1. A complete desi};n dALAbASE....cccoeiicmrrcreneeiresssensissnrnersasassanesesesnsaraesessaenesens 24
Figure 2-2. Three different mixed-mode architectures ................................................... 29
Figure 2-3. Two extreme feedback problems. .......c.cvceeurercreuerersenensreseninesessssssssssssenesessnnes 35
Figure 2-4. Comparison of convergence and non-CONVergence types ...........o.useesersecsceseraecs 37
Figure 2-5. Closed and distributed architectures for a SImulator...........ccecerevererrneceerererennns 39
Figure 2-6. Region map of a device behavior in two variables ..........ccceeervereienererrereenenenenee 43
Figure 3-1. System-level simulation matrix repx;esentation ................................................... 47
Figure 3-2. Concept and structures for the flexible interface element.......c..cccceureerererreecsrannne 50
Figure 3-3. State diagram for causality detection...........cceeeeeecereereeerereeenrererenceneseseseseassesennee 52
Figure 3-4. Example circuit to test causality TAHONALE ..oveov e reveeemereeemeeeseeseseseeeressseesseneens 56
Figure 3-5. Iterati;)n process for the GENERIC elc;.ment................, ....................................... 59
Figure 3-6. Simple feedback system to examine the iteration process............coeeerevereereenanas 62
Figure 3-7. Different equivalent representations for é simulator or simulator node ............. 63
| Figure 3-8. New causality state diaém ............................................................................. 71

xi



Figure 3-9. Flow COITECtion INtEITACE .......cccerirrrerriecneneiiierensseieserenssessesssesessssseensesssresssssssnns 73

Figure 3-10. Nodal representation for the flow correction approach.............ceeeesevueeeceersnenns 76
Figure 4-1. Interface between the backplane and simulator...........c.cceeveveeesrrenerceerrueereeenenans 87
Figure 4-2. Overview of the backplane database StrUCTUTE ..........ccceerrrererrereenncerrereerenseensnsens 90
Figure 4-3. Simulator control overview flowchart..............coeecveererererreereeeirereresereseeesesennns 92

Figure 4-4. Major variable reference (time) exchange between a simulator and

DACKPIANE.....covinirieisieinccanncicecnnasesesennnrasassssssese s snestesssassssasssnssesesesssessesssessane 97
Figure 5-1. Iteration inefficiency statistics for all E2E coupling examples..........occeceureecncs 115
Figure 5-2. Convergence statistics for all E2E coupling examples ...........cccevesuereeereerreerenes 116

Figure 5-3. Average iterations per time point statistics for all E2E coupling examples..... 117

Figure 5-4. Iteration inefﬁciency statistics for all E2FE coupling examples..........ccever.... 127
Figure 5-5. Convergence statistics for all E2FE coupling examples...........cccoverrerrnrerennens 128
Figure 5-6. Iterations per time point statistics for all E2FE coupling examples ................. 129
F i@re 5-7. Primary effort (voltage) responses at terminal T2.........ccccoeeceeeereeerenenceeenicreenns 138
Figure 5-8. Primary flow (current) responses at terminal T2........ccceeueveriverivcreeseerenenseeneaes 138
Figure 5-9. Effort responses at terminal T2 of the triggered coupled analyses ................... 139
‘Figure 5-10. Flow responses at terminal T2 of the triggered coupled analyses .................. 139
' 'Figure 5-11. Effort responses at terminal T2 of the triggered correction analyses.............. 140
Figure 5-12. Flow responses at terminal T2 of thé triggered correction analyses............... 140
Figure 5-13. Effort responses at terminal T2 of the break analyses...........cceovvevemeeruvincnenns 141
Figure 5-14. Flow responses at terminal T2 of the break analyses..........ccoceeeuevevevencerenenes 141

xii




Figure A-1. Backplane reference stepping diagram........cccevririnmniennisisinninninisnsnsnssisisenes
Figure C-1. Input causality deteCtion ProCeSS.......cvererermsseuserssessmressnssessesmseasessenscusisecnsseasens
.Figure D-1. SPICE prifnitive component defINItions........ce.eveerverecresemrecnsercresccreareraensnessences
Figure D-2. FESIM and SPICE equivalent component definitions........co..cceeevueereenncureieans
Figure D-3. E2E digital COUPHNG tESLS wurevreverererenreesenssssersnscssns ettt cns oo

Figure D-4. Iteration results for E2E NF INVINVI....cocceiiciincciineescnssnniesnennnns

Figure D-5. Iteration results for E2E_ NF_INVCNFL........oueevvuummrersssmensesssesessessesssesseneneens

Figure D-9. Iteration results for E2E_NF_LINEARI ..ot
Figure D-10. Iteration results for E2E_NE_LINEARZ.........cccoevevvvsessemmssmsnssssssssesssnsssssssssess
Figure D-11. Iteration results for E2E_NF_LINEARZa........ccocoeverrnncnrirennerncnsinnnnnnenens
Figure D-12. E2E 4-terminal linear example ..........ccveeiincrineiesncnncninninncncssiscnneecineecans
Figure D-13. Iteration results for E2E_NF_LINEAR4 ceereeerste et b s e e ranensnaas
Figure D-14. E2E nonlinear no-feedback coupling tests .......ccccccvvururercirvreirececsiensrnnnnenne.
. Figure D-15. Iteration results for E2E_NF_RCPULLUI ........coccoivinnminmnrissneresscnesensenennns
Figure D-16. Iteration results for E2E_Ni3_RCPULLU1A .................................................
Figure D-17. Iteration results for E2E NF_LINDRVA.........occvviiircvinnrcncemencsecnennnes
Figure D-18. E2E 2-terminal nonlinear CUrrent mirror ...........ocereeeerereemenseresusnsssessesesennnsens

Figure D-19. Iteration results for E2E_NF_MIRDRVZ .....conveiicinicriisinsinniniansiinnns

xiii



Figure D-20. E2E 4-terminal nonlinear CUITent MIITOL ........ccoeierescrvmeansesssscassssssssesesssssnsens 239

Figure D-21. Iteration results for E2E NF_MIRDRVA4 ..........oovennrnirerennesennrennaens 240
Figure D-22. E2E 2-terminal nonlinear driver .........occcoceiinrnscnicsnnenneeesenensnesncsssenens 241
‘Figure D-23. Iteration results for E2E NF_DRVVIR2..........coceevrvemrnrrnnsinccnecscnnsenes 242
Figure D-24. E2E 4-terminal nonlinear driver.........cccoeeeuiercuinnnes e 243
Figure D-25. Iteration results for E2E NF_DRVVIR4 ..... ................................................. 244
| Figure D-26. E2E 2-terminal virtual driver €Xample ........ocoeecueicriinesensvenensnrensesnnnsssannans 245
Figure D-27. Iteration results for E2E LF_DRVVIRZ..........ccoveevrrerrerenernrrnsrnnnnesscnnnreans 246
Figure D-28. Iteration results for E2E LF_ DRVVIR2a........ccocoerrurernsvrerenereresenrennennesssnnnes 247
Figure D-29. Iteration results for EZE_HF_DRVVIRZ ....................................................... 248
Figure D-30. Iteration results for E2E_HF_DRVVIR2a ......c.covveuureerserussecuaeresessnnscerrarennens 249
Figure D-31. E2E broken amplifier 2-terminal coupling tests...........ccecvurvresrresnresneresanences 250
Figure D-32. Iteration results for E2E LF_AMPHB2..........cooeervirenernresetnnststsesnanas 251
Figure D-33. Iteration results for E2E_HF AMPHB2 ..........ccoeemeerretrerenenreensssesnenannsanns 252
Figure D-34. E2E 2-terminal linear virtual driver example..........ccecevevvurevnnrereccnreninnnnnnee. 253
Figure D-35. Iteration results for E2E_LF_LINEARZ.........cccoevererrerurimrressrerassssasissnsennsas 254
Figure D-36. Iteration results for E2E_HF LINEARZ......oooioeivenrreeeneseennenesesanenssnens 255
Figure D-37. E2E 4-terminal virtual driver eXample ........ccceeveeererneiesesenessressnnnnsonsannenes 256
Figure D-38. Iteration resuits for E2E_ LF_DRV.VIRA..........ccococemriitimmemrencncrnnencrntinncnnnes 257
Figure D-39. Iteration results for E2E_HF DRVVIR4A ........covrrmsiunsiiinnsinisinsssinneee, 258
Figure D-40. E2E broken-amplifier 4-terminal tests ........cocvueveurereueuereniererrissnrecesinnssnsnnans 259
Xiv



Figure D-41. Iteration results for E2E_LF_AMPHB4..............; ..........................................
Figure D-42. Iteration results for E2E_LF_AMPHB4a........c.coccovvunninsnnsinencnninssnensessesinnas
Figure D-43. Iteration results for E2E_ HF_AMPHBA4 ........ccoiverermriiereessniernestennnees
Figure D-44. Iteration results f§r E2E HF AMPHBAa .......cccovveirccensseencrenceennaenis
Figure D-45. E2E 4-terminal linear virtual driver example..........ccueuetrmveinreinieinsnsineicnns
Figure D-46. Iteration results for E2E_LF_LINEARA.......ouvceiiemrenereteiensrrneniestenenstsnnnas
Figure D-47. Iteration results for E2E_PE_LNEAR4 ........................................................
Figure D-48. E2FE land 2-terminal coupling tests........c.cocoveieunnrurenennnnensiiensesesnsssessnsnanns
Figure D-49. E2FE 4-terminal coupling tests .........cocvviurinmicreinuinnisisnsnncsisnscsnnsncesensssssnnnns
Figure D-50. Iteration results for E2FE_NF_RCPULLUI1_PE ...................................
Figure D-51. Iteration results for E2FE NF_RCPULLUI_PRI ...t
Figure D-52. Iteration results for E2FE. NF_DRVVIR2_PE........cooroneenirnencsinnans
Figure D-53. Iteration results for E2FE NF_DRVVIR2 PRlI......ieeererernenrserernsannns
Figure D-54. Iteratioﬁ results for E2FE NF_DRVVIR4 PE.......ccovnninnicrniinsienennes
Figure D-55. Iteration results for E2FE NF_DRVVIR4 PRl................... ........................
Figure D-56. Iteration results for E2FE_HF_AMPHB2 _PE.........cccouvveiivvrinnntnnesenene
Figure D-57. Iteration results for E2FE_I—£F_AMPHB2_PR1 .............................................
Figure D-58. Iteration results for E2FE HF_ AMPHB4 PE...........ooovieeenecennnrnnn ......
Figure D-59. Iteration results for E2FE_HF AMPHB4 PR1 ...........................................
Figure D-60. Iteration results for E2FE HF DRVVIR2_PE ............

Figure D-61. Iteration results for E2FE_HF DRVVIR2 _PR1.......covvmnieoreeeiennee

XV




Figure D-62. Iteration resuilts for E2FE_HF DRVVIR4 PE.........ccooiniririiiriseercscnianans 281

Figure D-63. Iteration results for E2FE_HF DRVVIR4 PRl.......cccoeviinninvcninnririeininsinns 282
Figure E-1. Simple coupling eXample..........c..ccceveuemrmverercnirinicimniniinicssnresnsenesssssssesenes 285
Figure E-2. High gain feedback problem ..........cccmevevcceniricicinnenininecnnecscssiecnsasnnaeans 293

xvi



AIC
ASIC
~ ASIS
CAD
CAE
DOF
E2E
E2FE
FE
FEA

FEM

NA
MEMS
MNA -
PVM
RPC

SB

LIST OF ABBREVIATIONS

Absolute Iteration Comparison

Application Specific Integrated Circuits

Application Specific Integrated Systems
Computer Ai;ied Desién

Computer Aided Engineering

Degrees of Freedom

Electrical to Electrical simulator
Electrical to Finite Element simulator
Finite Element

Finite Element Analslsis

Finite Elemept Method

Iteration Inefficiency

* Nodal Analysis

Micro-Electro-Mechanical Systems
Modified Nodal Analysis

Parallel Virtual Machine

Remote Procedure Call

Switch Back

xvii




Chapter 1. Introduction

Micro-Electro-Mechanical Systems (MEMS) are difficult to design and simulate
due to their multidisciplinary nature. MEMS integrate different engineering disciplines
where batch processing can reduce costs and enhance features [3,4]. The disciplines [1,2]
used in MEMS are process technology (micromachining), electronics, mechanics,
packaging, thermodynamics, etc, as shown in Figure 1-1. These different disciplines in
MEMS can be designed, modeled, and simulated independently, but few environments
consider all disciplines simultaneously as a single problem at the system-level using
different discipline simulators. Assuming each discipline has found the optimum iteration
algorithm(s) and modeling/abstraction method(s) for a particular type of design, then the
problem becomes how to integrate the different discipline simulators into an efficient
system-level concept.

To narrow the scope of this Wotk, this research focused on integrating an electrical
analog-type simulator and a mechanical Finite Element (FE) simulator. An electrical
simulator is used for lumped-sum devices with well-defined behavior while a FE simulator
is used to analyze movable devices using a known structure and material models with
multiple degrees of freedom (DOF). The capabilities of the individual simulator determine
how the simulator can be used to simulate MEMS, since each simulator offers different
performance, accuracy, and implementation tradeoffs. The first requirement is to define the
basic structure of a generic simulator and the modeling issues between the different
simulators. These issues are then used to examine the different simulator architectures for

integrating disciplines (not just MEMS). The different architectures are independent

1




Micropower Biology
CAD CAD

Process MEMS Electrical
CAD Database CAD
" Process
Packa Physical Mechanical
gar e\ | i s
Simulation|

\

Optical Chemical
CAD CAD

Figure 1-1. Database and simulation overview for MEMS

simulators, coupled simulators, and a unified simulator.

1.1 A Generic Simulator and the Modeling Issues

The common causes for any design failure are a lack of accurate models and
insufficient sifnulation of the design ovef different conditions. These modeling issues
translate into a tradeoff between defining the simulation accuracy to meet the design
specifications [6,7] and perfonniné a sufficient number of simulations to validate the design
under a reasonable set of different conditions. Unfortunately, simulation accuracy and
performance cannot typically be optimized simultaneously. To make tradeoffs between
accuracy and performance, the designer can use different levels of abstraction (design
representations or modeling techniques) or different solver algorithms. These two elements
représent the fundamental aspects of a simﬁlator, which are a solver(s), equation matrix, and

a modeler as shown in Figure 1-2.



Simulation
Database

" User-Defined
Stimuli

" (Simulation/Equation)¢

.\ -Database " /'

- i x‘ 'x .
v

‘Solver ©

Figure 1-2. The structure of a simulator

The role of the solver is to calculate a solution from the equation matrix.‘ Each
solver can use a variety of different iteration techniques to reach convergence because
certain solver algorithms or combinations of algorithms work better for specific problem
types and sizes. In most cases, the solver algorithms are hidden from the designer, but the
noticeable differences between simulators are improvements in performance or undesired
convergence failures. Primarily, solvers have a greater cont'ribution on simulation
performance and solution convergence than on sirﬂulation accuracy, although the timéstep
and iteration control in the solver can influence the accuracy of the analysis.

The modeler directly determines the devices that the simulator can recognize and
translates the devices definitions from the different syntax databases into the equation
matrix. The modeler dynamically defines the equation matrix values for a device based on

the device’s physical parameters, governing behavioral equations, and the present solution.



Most simulators are built around predefined component definitions to simplify the modeling
of a design, so the interfaces are very direct and optimized for solving a particular problem.
With the optimized interface, the designer ‘must only specify the essential physical
parameters into the predefined models to” perform an analysis. Using the predefined
modeling definitions, a designer does not have to specify the equations governing a
compbnent"s behavior or verify the model. |

Solvers are essential to the simulation process, but the modeling can have the largest
impact on both accuracy and performance. The modeling defines the level of abstraction
and the different calculation modes for an element in the simulation. Different calculation
modes can be accessed within the same simulator, but the level of abstraction often requires
a different type of simulator (domain or ciiscipline). Therefore, another reason to integrate
simulators is to have full access to the abstraction capabilities of the different simulators and

solver algorithms in some cases.

1.1.1 Levels of Abstraction

The level of abstraction can range from a physical low-level to a functional or
conceptual high-level. The lower abstraction levels typically have greater accuracy and
slower performance by focusing on device and structural behavior. A low-level
representation requires the simulator to solve a large number of equations for each primitive
element. The higher abstraction tlevels have faster perfofmance and typicélly less accuracy
by examining >modules that describe behavior instead of the interaction between the

multiple elements comprising the device or module. A high-level representation minimizes



the number of equations to be solved or limits the number of possible solutions to a finite

number of states. The higher abstraction levels are generally used at the beginning of the
design cycle to make systemflevel tradeoffs and the lower abstraction levels are used at the
end of the design cycle for verification. Unfortunately, no simple rule exists for defining the
level of abstraction except to simulate as many different ways and over as many different
conditions as possible [91].

In a MEMS design, the coupling mechanisms between disciplines are the critical
points to be modeled accurately since the transduced energy is thc sensor mechanism or
actuator control. Because the coupling mechanism is between the disciplines, the perception
is that the models must be at a low abstraction level to achieve high precision. For
examining a particular characteristic of the coupling mechanisms, low-level analyses are the
only true mechanisms to ensure that the nonlinear or undefined effects missing in higher-
analyses can be time consuming, which can require hours of simulation for microseconds of
réal time. When longer simulation runs are required, the low-level analyses become
restrictive at the system-level and the designer is forced to use higher level models for
examining different conditions.

In many situations, the higher-level less-accurate models can provide all the
mfoﬁnation needed at the system-level. However, a point can be reached where the higher-
level models become counter productive due to errors. One concern with higher-level

models is that these models can break down under untested conditions and lead to the

wrong response. Examples of extreme failure modes are structural breaks and contacts,




where the functionality of the device undergoes significant changes. Besides the extreme
situations, improperly modeled device behavior can cause system instability especially if the
device’s transfer characteristics are a strong function of the operating region. Errant
behavior in a model is very difficult to predict without a different modeling viewpoint.
Another reason to switch between differeqt abstraction levels is to provide for verification

and error analysis.

112 Importance of Modeling

Most equation-based simulators can expand their modeling capabilities by modeling
a device in terms of differential equations [5,64-68], so only the mathematical behavior of a
component is required to create a model. With the correct models defined for a component,
any generic simulator can predict the physical behavior of MEMS ffom the rﬁechanical
structure to the electronics and beyond. Under these considerations, the accuracy of the
models is almost independent of the simulator, where only superior models can create .
accurate simulations. If all modeling is assumed equal across all simulators, then the
modeling issues shift toward the dedicated solver ;lgorithms for improving performance.

To further complicate the problems in simulating MEMS, designers must deal with
fabrication variations. With variations in the fabrication process, models cannot absolutely
be defined for any component or material since a tolerance is on all parameters. Process
variations do jeopardize the validity of rquiring highly accurate models unless simulations
are done over multiple sets of model variations. Even with the different sets of models, the

designer still has accuracy constraints with uncertainties.



1.2 Independent Simulators

Most designers approach MEMS simulation using independent simulators as shown
in Figure 1-3. In this architecturg, the designers can continue to use their native simulator(s)
and design environments [15,66,95]. The independence between the design environments
and simulators allows the foreign elements to be modeled in any manner possible in a given
simulator. In this procedure, the behavior of each device must be characterized, modeled,
and verified against the measured or simulated results from the other disciplines [15,95].
Consequently, this architecture puts significant emphasis on the accurate modeling of
components from a different discipline since the different databases can be completely
independent. A potential hazard is that design m/odiﬁcations between the different
environments are not necessarily updated in the models used in other databases. For this
reason, the modeling procedure can require a sequential iterative process to reach an
accurate and consistent model represéntation. |

In this architecture, the problems are constructing models that are accurate over all

Electrical
Database

Mechanical Model or Electrical
Simulator Stimulus Simulator
Generator

Results
Database

Results
Database

Figure 1-3. Independent Simulator Architecture



operating regions of each device and determining how to analyze effectively the devices
using the system-level response when higher-accuracy models are required. Typically, the
devices’ behavior is modeled in a lumped-sum or macromodel format. These new or
updated device models can be constructed i‘n"three different ways: automatically from the
design database [8,63,85], automatically from simulation results [15,67,95], or analytically
from ﬁe structure [64-66]. In the automatéd proceldu'res, model generation does require
translation of the results from the different simulators, so the different simulators do become
loosely coupled via the data translator in the model generator. Although this iterative
process can be time consuming and resource intensive, the final model can be efficient and

accurate, at least over limited regions of operation.

1.3 Coupled Simulators

~ Asingle virtual simulator is implemented when different simulators are coupled as
shown in Figure 1-4. With a simulation backplane, the different simulators can operate in a
plug-and-simulate environment where distributed or parallel processing is a part of the
i)rocess. A simulation backplane integrates simulators together through a procedural
interface or inter-process protocol that links multiple simulators into a common
environment and provides data-transfer and synchronization mechanisms. Desigﬂers from
the different disciplines can simulate how their devices, components, or functions interact
directly with othe;r engineering disciplines using their native tools. Each designer has the;
benefit of examining the responses with different simulators. At the very least, the coupling

-of the different simulators provides the mechanism for concurrent verification of the



Coupled

Simulation
Database

Mechanical Electrical

Simulator | | Simulator

Results Results
Database Database

Figure 1-4. Coupled Simulator Architecture

system-level design from different modeling perspectives.

This coupled, architecture brings challenges in terms of communications protocols,
interfacing procedures, and design partitioning. Simulators do require an open interface with
sufficient controllability as a prerequisite for this process. In particular, the design
partitioning becomes a crucial part of the process. Virtually any configuration of simulators
or design representations is possible with the proper partitioning algorithms. A designer can
select how the designs or devices are partitioned across the different simulators or
algorithms can search for optimal configuration of accuracy or performance based on
certain simulation criteria. |

The importance of the partitioning process is to address the performance problems
of this architecture, especially the coupling of the Finite Element Analysis (FEA) with
electrical analysis. The FE simulators offer very detailed time-consuming analyses [33], but

repeated long simulations are certain to include redundant information from previous



analyses. After several simulations, the coupling of the FEA with the electrical simulator

becomes very monotonous and provides little or no additional insight into the behavior.

1.4 Unified Simulator

The unified simulator is a compact form of the coupled simulators with the sarﬁe
types of };roblems. The difference between the unified simulator and coupled architectures
is that the simulation baci(plane becomes an algorithmic Backplané, which intémally links
the different simulator algorithms.into a single program with a common output as shown in
Figure 1-5. For this implementation, a unified simulator would require the capabilities of
ALL the individual discipline-specific simulators, i.e. the simulator would have unlimited
capabilities: multiple levels of abstraction, multiple iteration methods, multiple analysis
formats, and modeling information on all possible disciplines. At present, the mathematical-
type simulators, like MATLAB [88], are the closest implementations to a unified simulator.

At a certain point, the difference between simulators becomes a translation problem,

Unified

Simulation
Database

Single
Simulator

Results
Database

Figure 1-5. Unified Simulator Architecture

10



so a unified simulator can be emulated by integrating the modelers from the different
disciplines. Discipline-specific modelers would translate all the various physical or
* conceptual representations into a common simulation or mathematical format. Once in a
common database, a generic simulator could analyze the complete system of equations
assuming that the size of the system does not exceed the simulator’s capabilities. Because of
the potential size of the problem, a distributed or parallel-processing mode becomes
essential to the unified simulator architecture. This distributed homogeneous simulator does
eliminate most interfacing problems that can occur between heterogeneous simulators, and
. load balancing becomes possible to optimize the parallel processing. The only missing
element would be the dedicated solver algorithms and analysis methods for a particular

problem.

1.5 Conclusions

The unified simulator architecture with parallel processing would be the optimum
soluﬁon. However, the discipline modelers are already implemented in the different design
and simulation environments, so the implementation choice is either the coupled or the
independent architectures [67]. For linking different simulators into a larger virtual system,
the coupled simulator architecture with the proper partitioning options is the most flexible
approach to make any tradeoffs. However, the independent simulator architecture allows
designers to continue using their existing design and simulation procedures at the cost of
sacrificing some accﬁrgcy while maintaining a high degree of performance. The decision

becomes one of performance and accuracy, where. accuracy depénds on how well the

11



models characterize the behavior of the devices and materials regardless of the simulator.

For this reason, only the performance aspects of the two architectures can be analyzed.

For a performance comparison, the independent architecture is required to validate
or crosscheck the solution using the: other discipline simulators to guarantee matching
between the solutions. Otiierwise, the independent architecture has a distinct advantage in
performance, since tiie time consuming dévicé—levei anaiysis would be unnecessary. To
calculate the simulation time for each architecture (X), four variables are defined: maximum

system-level simulation time (7;), maximum average mechanical simulation time (7,),
number of iterations (#} ), and number of data points (d ). An average value for a variable
y is defined by y. Using .these definitions, the total simulation times for the coupled

architecture (T.) and for the independent architecture (7, ) are

J=dc¢

T, = MAX(T;,T,,)- Dl =MAX(Ty,T,,)- d; - 7, Equation 1-1
j=l
Jj=n; J=n -
T,=Ts3d+T, > d}, =Ts-d.+T,,-d))n Equation 1-2
. J=1 =1

In the coupled architecture, the number of iterations is varying per time point and the
slowest simulator defines the simulation time because of parallel processing effects. For the
independent architecture, the total simulation time is a summation of the system-level and
the slowest device-level simulation time because of the sequential process. The ratio of the

two simulation times is

Equation 1-3

I
T

c

TM"_i['*'-'Z;'dc_ i L &
MAX(T,,,T5) ) n.-d. ng-

12



For this relationship, the assumption is made that the device-level simulation time is
typically slower than the system-level analysis, so the value can be lumped into the parallel
processing factor (o).

Prior to the construction of accuracy models in the independent architecture, the

only known relationship between the architectures is that 67, <d_. This condition occurs

because the device-level simulation process can eliminate piecewise linear (PWL)
conditions within the data sequence to reduce the number of points. By eliminating data
points, the independent architecture can avoid the synchronization issues in the coupled

architecture. With the potential disproportionate relationship between simulation times, this
condition is assumed to eliminate the advantages due to parallel processing (- E, =d.),

so the ratio depends primarily on the number of iterations.

For the number of iterations, the expectation is the initial value of #, is equal to or
greater than the maximum »/, so n; < n, . The justification of this consideration is that the

inﬁial mode;,l is a poor representation, which can cause divergence until the regions of
device operation are parameterized. However, the number of iterations in the independent
architecture will approach unity if the accuracy specifications are met over all simulation
conditions. Unfortunately, the number of iterations in the coupled app;oach ;emains fixed
because each sirﬁulation starts with no prior information. A point is reached where the
independent architecture using behavioral models becomes more efficient than the coupled

architecture.

13




1.5.1 Dissertation Goais

Based on the comparison .of the two architectures, the coupled approach is more
efficient than the itefative process of the independent approach until behavioral models
reach an acceptable accuracy. Even with a model that has acceptable accuracy, situations
can still occur when models break down because of conditions outside of the
characterization range. During these conditions, the only option is to switch to different
abstraction levels to guarantee the operation and accuracy of the device or module.
However, the cost of this modeling switch is a decrease in simulation performance, which is
unfortunately the main benchmark for simulation. In general, these coupling processes
typically have poor performance compared to behavioral models. Although the solutions
from the coupling process can have superior accuracy to behavioral models, optimized
behavioral models over a narrow range of operation can have precision equal to FEA.

To provide the maximum performarcé and to always meet the tolerance parameters,
a hybrid approach is needed where the advantages of both architectures are used. This
hybrid approach involves a dynamically configurable simulation [72] where different
modeling representations are switched during the analysis to promote performance or
accuracy as shown in Figure 1-6. This illustration also shows how two differen;c model
representations can-have equivalent accuracy with different performance parameters.
Additional information about the dynamic modeling procedures is provided in section 2.5
and section 4.4.

For maximum flexibility, simulation is done through the simulation backplane, so

different simulators can be exchanged during the analysis. The goal of this research is to

14



create a coupled architecture using a simulation backplane with dynamic |

Performance

Dynamic Switching @ —»
Physical
Device |

Functional

Figure 1-6. Dynamic model switching based on simulation performance and accuracy

reconfiguration of the discipline-specific simulators for MEMS analysis. Specially, a

mechanical FE simulator and an electrical simulator are coupled, and representations for the

MEMS device model are dynamically switched between FE and behavioral models. For the

dynamic switching process, the assumption is that the alternate behavioral models exist

prior to the analysis although the coupling process could guide the domain mapping

between the disciplines as suggested in section 2.5. For the backplane development, the

major questions to be answered are:

What are the general procedures for the simulation backplane?
What specific operation(s) does the simulation backplane require to switch dynamically
between models representations in different simulators?

What calculation and iteration process is needed to couple the simulators and to achieve

15



convergence?

e What type of interface(s) is needed to couple the simulators?

e Does an optimum interface exist in terms of convergence and iteration efficiency to
couple the simulators for the hybrid approach?

¢ Can the backplane implement an interfacing procedure to improve the coupling

efficiency between the simulators? -

1.5.2 Dissertation Outline

This research is presented in the following manner. Chapter 2 presents a literature
review that describes the present MEMS specific design and simulation environments. The
different coupling methods for different simulators and backplane implementations are
examined. The basic requirements of a simulator are outlined for this coupling architecture
and a more comprehensive overview of the dynamic modeling option is provided. An
accuracy-based trigger is also examined with other considerations to aid in the behavioral
mapping of a device using the dynamic modeling procedure.

Chapter 3 examines different interfacing structures with the emphasis on the
configurations and modeling combinations to optimize the iteration efficiency and
convergence between simulators. This section also outlines the process flow of calculation
procedure from direct nodal relationship to the final error-minimization procedures with
input causality identification using bond graph techniques. Specifically, various methods of
using causality assignment are examined, and a flexible interface node is created to

investigate the effects of dynamic interface configuration on the iteration process. A flow

16



correction method, which overlaps FEA with a behavioral model in the electrical simulator,
is also examined for improving performance between simulators.

Chapter 4 describes the implementation process for backplane process. The
procedures for the different backplane modes are outlined and considerations for improving
performance are described. The database structure of the backplane and local simulator
interfaces is described. Additional specifications on the iteration process are defined.

Chapter 5 provides the results from the different coupling configurations and
examines the relative merits of the different coupled approaches over a variety of modeling
representations and design examples. The results show mechanical-to-electrical simulator
coupling and ele;:trical-to-electrical simulator coupling to demonstrate the flexibility of the
backplane. The results for different coupling processes using the hybrid method are
presented with examples using no coupling, static ‘coupling, and dynamic coupling on the
performance and relative accuracy of the analysis:

Chapter 6 presents the conclusions and future areas of research.

17



Chapter 2. Background

This.literature review is Presénted in ahﬁost chronological order as a system-level
view is taken for simulating MEMS and for crystallizing the scope of this topic. The review
began by examining the different MEMS-specific environments for simulating MEMS,
where FEA is typically used fo examiné the characteristics of mechanical devices. Based on
these environments, coupling the different simulators is the most direct method of analyzing
the system although creating behavioral models is the more common and simple method of
analysis. This information is presented in section 2.1.

For the coupling process, partitioning the system-level design, calculating the
solution across multiple simulators, interfacing and communicating between simulators, are
the major issues. The partitioning process is the first and perhaps most important step in
coupling the different simulators to meet a designer’s perceptions and goals of modeling all
aspe;:ts of a system from a specific simulator to & certain abstraction level. To use existing
. CAD environments for-these partitioning tasks, a system-level partitioning process is
required to create discipline specific databases to define this. array of options. This
partitiening process is described in section 2.2 with the ramifications on the simulation
backplane.

After the system-level design is partitioned and post-processed, the analysis task
begins and the different discipline simulators are coupled to find a solution. The focus of
most research in this area is defining the interface and iteration method to optimize
perfonhance. The basic simulator iteration and interface process is examined in section 2.3.
Finally, each simulator requires certain functions and capabilities to be used in the coupling

18



process. The basic simulator requirements and an overview of the backplane control are
s

described in section 2.4. Finally, the dynamic modeling process is presented in section 2.5.

2.1 MEMS Simulation Environments

The main design and simulation environments specifically for MEMS are
CAEMEMS [47-49], MEMCAD [51-59], and SESES [60-62]. These different MEMS
design—and-sir.r.lulation en\;ironments have' focused pﬁmaﬂly on the mechanical aspects of
MEMS using FEA and those electrical properties influencing the mechanical behavior.
With FEA, designers can examine the behavior of practically any structure given the
material and interaction characteristics of the components. However, these systems
concentrate primarily on device-level and not system-level analysis.

To overcome this problem, Application Specific Integrated Systems (ASIS) have
been proposed for MEMS [2], which like Application Specific Integrated Circuits (ASICs)
would create separate tools to inte;grate- the different disciplines. At this point, the typical
approaches are coupling simulators and creating parameterized behavioral models. Several
authors have already coupled an electrical simulator to a mechani;:al simulator for MEMS,
and the results demonstrate the high accuracy and slow simulation performance relative to
behavioral models. This section examines the different MEMS-specific simulation

environments, different simulator coupling approaches, and MEMS behavioral modeling.

2.1.1 CAEMEMS
Computer-Aided Engineering of Micro-Electro-Mechanical Systems (CAEMEMS)

is a CAE framework for MEMS, which functions as a MEMS-specific de.signer's

19



workbench [47]. This MEMS framework provides 4a set of databases, libraries, graphical
user interfaces (GUI), plotting functions, solid modelers, and utilities for the integration of
MEMS-felated CAD and CAE programs [48,49]. Within this framework, a user can design
and optimize specific MEMS applications, and the toole provide guidance to the user. One
module is the CAEMEMé-D [48] for pressure sensor design and simulation. Another
~ module is ASEP[49] for sifnl;llation of the etching of <100>-oriented silicon ‘using KOH.

ANSYS is the finite element simulator used in CAEMEMS.

2.1.2 MEMCAD

MEMCAD system is an environment that creates the architecture to address the
system level problems and the specific tool-development level, that can solve the entire
coupled set of CAD problems [50]. MEMCAD consists of accurate 3-D solid model
generation from C]F mask layers and process descriptions and development of material
model databases [51,52,53,58]. In MEMCAD, the MEMS design process requires designers
to create a 2-dimensional layout in CIF mask format. Then, the CIF file is translatee to
IGES format, and a solid rﬁodeler generates the 3-D shapes using process descriptions as
input into a mechanical simulator [52,58]. The 3-D solid model is simulated using
- ABAQUS for the finite element analysis and visualization using PATRAN or I-DEAS.

‘With a solid representation of the mechanical structures, MEMCAD can find the
deformation of the mechanical structure due to electrostatics [55,56,59]. The electrostatic
simulator called COSOLVE-EM [59] is used to find charge densities across structures using

ABAQUS and FASTCAP. The charge distribution creates electrical pressure loads for the

20



mechanical simulator to determine the deformations, hy;teresis effects, or contact problems
for a structure [57]. As the mechanical structure is deformed, .the charge density across a
structure is redistributed to change the electrostatic force contributions. An iterative process
is applied between the deformations and charge densities until the device reaches self-

consistent values.

2.1.3 SESES/SOLIDIS
Unlike the CAEMEMS and MEMCAD environments, SESES is a closed system
and ﬁot a collection of interfaced programs [60]. The SESES environment has concentrated
on developing a unified software concept, which provides flexible coupling of electrical,
thermal, and mechanical deformation phenomena in a uniform and consistent environment
[60]. In ad&ition, the general coupling effects between physical propertievs of MEMS are
outlined to illustrate how the different coupling effects can influence the iteration methods
for solution of the system equatioﬁs. SOLIDIS is a package of programs with common
database structures and algorithfns that uses tailored finite-element analysis to solve self-
consistent thermo-electro-mechanical problems [61,62]. This system can create a SPICE
netlist representing the behavior of the mechanical device for simulation at the system-level

[63].

2.1.4 Concurrent Electrical and Mechanical Analysis
Several articles describing concurrent analysis for MEMS are [32-36]. In [32], an
electrical simulator ELDO is coupled to the mechanical simulator ANSYS for a

piezoelement simulation. An iterative solution is found with ANSYS controlling the

21



process. Different interface configurations based on relaxation methods are examined. In

[36], the electrical simulator PSPICE is coupled to ANSYS for piezoelectric analysis of an
oscillator. An external tran§fer program creates load vectors for ANSYS fr(;m the PSPICE
analysis. In [35], an electrical VHDL simulator is linked to the mechanical simulator
'PROUESSE using Remote Procedure Calls (RPC). Because of the simulator types, this
particular problem uses logical states instead of current and voltage.

The remaining articles define a simulation backplane to link the simulators. In [33],
ANSYS and the electrical simulator SABER are integrated using Parallel Virtual Machine
(PVM) and gradient methods to solve the interface problem. However, an iterative process
is not used to generate a consistent result like [32]. The test cases are an acceleration sensor
and thermal analysis of an electrical circuit. The lack of performance is defined as a major
negative of the coupling process although the backplane significantly improves the
performance compared to file-based transfers. In [34], the mechanical simulators CAPA and
ANSYS are coupled to the electrical simulator KOSIM using a relaxation-based method

with Newton’s method. PVM is also used as the communication mechanism.

'2.1.5 Behavioral Mociels

For system issues, behavioral models in an electrical simulator provide a designer
with a faster and simple approach to designing and simulating MEMS [5,64-67,85].
Electrical devices have also been simulated in a FE simulator [68]. In most situations, the
designers develop the mathematical behavior of a device based on analytical simplifications

and assumptions [5,64-65,85], where the behavior can be verified using FEA. The most

22



.

practical approach is to apply stimuli to the FEA and then create behavioral models for the
electrical simulators [67].

Reduced-order models for the Finite Element Method‘ (FEM) [14] and lumped
model equivalents [8,9,85] of the fabricated device responses can produce the same
accuracy as the FEA at least in certain operational regions. The concern in this work is that
device models become invalid under certain conditions since‘ higher-level models are by
definition less accurate than lower-level physical representations. In most cases, the
problem is not the behavioral model per sé, but errors resulting from' system-level analysis
using faulty stimuli definitions outside tﬁe model limits. This situation becomes possible as
different discipline eﬁgineers become involved in a system when the limits of the design can
be reached or exceeded. Minor inaccuracies in the behavioral model do become irrelevant
beyond a certain point once the designer has tested the major conditions, but failure modes

are still possible in the unverified situations.

22 System-level Partitionihg

Most partitioning processes break a system into small modules starting with a
system-level represeﬁtation or top-level design as shown in Figure 2-1(a). For each design,
the partitioning process can potentially choose from a variety of behavioral models or
structural representations for each instance of a design as shown in Figure 2-1(b). Virtually
any configuration of simulators and modeling options is possiblevwith a flexible-partitioning
program [17,21] and the proper design and model viewpoints [69]. The degree of

partitioning across multiple simulation databases depends on the capabilities of each

23



Structural
interconnections,
Devices, Spatial
relationships, etc
AR
nstan € lt:n.: Py

b. Instance representation

Figure 2-1. A complete design database

simulator and the partitioning options.

The first task for all partitioning algorithms is to flatten the design hierarchy by
expanding all instances of a design until the desired modeling representation or the
primitive elements are reached. Starting with the top level of the design, flattening
algorithms take the present instance names at each hierarchical level and use them to name
all sub-instances, nodes, devices, etc. From the flattened database, the partitioning process
generates a unique simulation database for each simulator in the analysis. The simulation
databases contain the interface configurations between the simulators, the communication
mechanisms, and the object naming conventions to link simulators across the backplane.

Most design environments and CAD frameworks provide partitioning and
translation mechanisms to create a simulation database for a specific simulator(s) from a
design database(s) [70,71]. In this research, the most notable partitioning problem is the

lack of a common design database prior to generation of a physical database for the

24




fabrication process. This work assumes that multiple design environments are used, so no

single database will contain all design and model representations. Without a common or
central database, an automated or interactive partitioning process is not possible with all the
different modeling options simultaneously. Different simulators can still be coupled using a
common naming reference through the backplane, but only single instances of a different
discipline design can be simulated without manual creation of a design database for each
instance. One environment is expected to contain sufficient information to construct a
system-level database. With a system-level database, the major problems in the partitioning
process are the discipline refinement process and an instance’s discipline-specific stimulus.
The discipline refinement process generates the simulator configurations and
performs all translation functions between the different databases. Examples of the
refinement process are the meshing operations for the FEA .and separation of analog anq
digital circuitry for mixed-mode simulation. TWo implementations for the refinement
process are a single partitioning program for all disciplines and different post-partitioning
processes from within the different design environments. In both cases, a system-level
partitioning process is still required to recognize and to separate the different disciplines
from a central database. However, the single partitioning program requires enormous
 flexibility and scope to implement any known partitioning algorithm. The multiple
discipline partitioning option follows the basic premise of the research that the discipline-
specific tasks are best performed by the nativg tools. The partitioning process also defines
the environments doing the post-processing on the different ciesign or simulation databases

[70]. Consequently, each instance can be post-processed differently based on performance

25




or acéuracy'cons‘traints. Th‘e".only‘ requifémen"c in the discipline-specific processes is that all
post-processing operations must preserve the links to the simulation backplahe.

For just coupling the different simulatoré, access to the stimuli in a discipline is not

a requirement. However, the hybrid approach requires the stimuli to be synchronized

-between the different simulators, or the solutions are not correlated as all distributed

variables are lumped into a single composite representation to prevent complex interactions.

The stimuli are also required if a behavioral model is generated usiné data from another

simulator.

2.3 Interfacing and Iterating

For defining the interfacing and iteration process, this research examined mixed-
mode, simulation in electrical simulators [16-22,41-45,47], mixed device and circuit
simulators [28-31], mixed level simulators [44,46], parallel processing [23-26,80-84], and
simulator algorithms [10-13,37,40]. In mixed-mode sirnulatioﬁ, analog and digital types of
electrical ‘analyses are combined. Analog sirﬁulation uses the fundamental equations
(Kirch§ﬁ’s Laws) of circuit analysis to solve voltage énd current relationships between
devices. Digital simulation abstracts the circuit analysis of the voltage or current levels into
discrete logical states. Mixed-mode electrical simulation is a translation. pfocess between
two differen£ abstraction domains, which did not directly apply to this research. However,
the architectures of the mixed-mode simulators and synchronization of the different

simulators are relevant as described in section 2.3.1 and section 2.3.3.

26



Mixea circuit-device simulation imi)lerhents the samé basic process that is required
in this research. Most iteration schemes between simulators with nonlinear relationships use
some variation of the Nevﬁon Raphson method to linearize the given variables at the
present solution [31,46]. The focus of most coupling schemes is the interface between the
solver algorithms to maximize performance [29,30]. In [29], the full, two-level, and
modified two-level Newton methods are compared. The full Newton method solves all
unknown variables simultaneously as a single problem. The two-level method does a
standard linearization at the device and circuit level, where the device is linearized at one
level and the circuits are lihearized at a second level using the device representation. The
modified two-level method applies a linear predictor step at the device-level in the standard
two-le;/el method to improve the runtime performance and to maintain the same iteration
efficiency. A Norton equivalent circuit is used at the circuit level for the device, and voltage
sources are applied .at the device-level. In [30], different node tearing algorithms using a full
Newton method are examined by adding different resistance boundary conditions to the
interface. The addition of series resistance to the bordered block diagonal matrix did
improve the runtime performance and iteration efficiency of the coupling process in three
dimensions compared to an interface without the resistance. The mixed-lev;l simulators
[44,46] have similar characteristics to the mixed device-circuit simulator, except that state
variable transfer functions in S and Z domains are solved with the circuit analysis.

The basic simulation methods are typically variations and combinations of different
iteration techniques to improve performance without sacrificing accuracy. To enhance

performance, the common implementation practices are bypassing unnecessary model

27



evaluations [10,22,74] and partitioning the matrix into loosely coupled blocks [10,11].
Model evaluations are done during solution checks and the sensitivity calculations within
the blocks. With the proper partitioning of the system into blocks, siml'llators can suspend
internal iteration processing once all shared and internal variables have converged for a
block. The coupling process bec&mes event-driven or selectively traced [10,11], so blocks
remain idle whenever possible.

In the iteration process for this research, the system-level partitioning process has
alreaay divided the complete system into disciplines. However, the blocks based on
discipline partitioning are not necessarily efficient from a simulation standpoint. Iteration
methodé can require certain matrix conditions to guarantee convergence, so matrix re-
assembling or matrix overlapping [27] may be required 'to provide the necessary conditions
for convergence. Another technique to improve performance is to limit the number of
iterations without guaranteeing full convergence (e.g. timing simulation). The solution
process is described in section 2.3.2 and the convergence requirements for an interface are
outlined in sectién 2.34.

Parallel processing has the goal of fully utilizing all computer resources by load
balancing and eliminating sequential steps from a simulation process [23-26,80-84].
Although the iteration process for coupling simulators has qualities of parallelism, load
balancing cannot be achieved intentionally. Any improvement in performance due to
parallel processing is just a by-product of the discipline partitioning process. Furthermore,

‘mechanical FEA is compufationally intensive compared to electrical analysis, so the process

28



is typically dominated by the mechanical simulation time unless the mechanical simulator

has a parallel processing option.

2.3.1 Simulator Architectures

The mixed-mode simulators provided the most information about the simulator
architectures, which are very distinctly defméd because of the mapping process between
continuous and disc;rete states. The three architectures fér coupling mixed-mode simulators
are the core, glue, and unified approdches [16,21,40].‘These architectures are the bases for
the independent, coupled, and unified architectures in Chapter 1. Figure 2-2 illustrates these
different simulation archite;:tures for mixed-mode simulation.

In the core architecture, the analog or digital component is given capabilities in

another simulation domain [16,21,40]. One single simulator does all information conversion

- | Analog 'Analog . [ Digital
. Design '_’ Simulator or . % Simulator

..................................

Glue Unified
Simulation Backplane Algorithmic Backplane
Analog Digital :.-.i.'-..: :.--;-.---:

Simulator Simulator .Alg%?thm Alg%;lthm

Ry

Figure 2-2. Three different mixed-mode architectures

29



between the two domains by simulating a componerit at the level of the given simulator. In
the analog simulator, Aigital cells are modeled with analog representations while analog
cell’s responses are emulated with digital representations in the digital simulator.

Unified simulators make no distinctions between analog and digital circuits due to
an internal algorithmic backplane, which provides policies that govern time
synchronization, signal mapping, etc. [17-22,40,44]. A single, integrated environment has
" algorithms to solve any specific level of abstraction. This type of simulator is very flexible,
and new algox;itlnns can be compiled into the backplane as needed. Most simulator
development is moving towards algorithmic backplane architectures because of their
flexibility and expandability. This flexibility allows the unified simulators to be used as glue
simulators, so a unified simulator should be the first type of simulator considered in any
simulation process.

The' glue approach has separate simuilators communicating and working together
using a procedural interface or inter-process protocol [41-43,45]. This protocol links
| multiple simulators into a common environment and provides data-transfer and
synchronization mechanisms, which collectively are called a simulation backplane. A
simulation backplane is a distributed version of the algorithmic backplane. Potentially, any
design can be solved regardless of the size or complexity since new simulators with
compatible interface protocols can be added to the backplane as needed. Multiple simulators
can be coupled using a simulation backplane for distributed and parallel processing with the

proper partitioning process.

30



2.3.2 Solution Process

All solution processes are required to solve a system of M equations where
functions of a vector (x € R™) at a given time are equal to zero, or

5 (x,t)=0 forall je M Equation 2-1
Because of the pre-partitioning operaﬁons, these equations are spread across multiple
simulators, but the Basié Isolution process does not change. System-level iteration still
performs standard nonlinear solver procedux;es, except model evaluations become solution
sequences of a simulator. The two solver techniques considered in this research for the
coupling process are the Newton-Raphson and relaxation methods. The Newton method is
most commonly used in the interfacing process because of tightly coupled relationships

between simulators.

2.3.2.1 Newton-Raphson Method
For the simulation of the nonlinear system of equations, the Newton-Raphson

(Newton) method or linearization process is typically applied where

- ' :
XM=y —l:ail] f Equation 2-2
ox

-

ox; ox,,
[ai] =l . Equation 2-3
ol A U

ox, ox,,

The sensitivity matrix I:gl] is also called gradient matrix or Jacobi matrix. For an
x

31



unknown N terminal device, this procedure requires the simulator to perform at least N
model evaluations to generate the N* gradients depending upon the differential formula. The

gradient value is calculated as

¥ S £ 6
ox, . Ax,

J . J

forallke N Equation 2-4

This linearization procedure applies a .variable delta to a device’s terminal with all other
terminals held éonstant. Then, the functional offsets of the other)terminals are measured and
used to define the sensitivity matrix. Other differential formulas are also possibilities (see
[94, pp.149-155]), but additional evaluation sequences are required if a more complex
formula is used. All variables with no direct reiationship to a device have a sensitivity of
zero. Most systems of equations are sparse with blocks of tightly coupled relationships.
Because of the computational intensity of this process, the full gradient calculations

are done very selectively. In many cases, a modified Newton method is used where

, - ‘
XM= x - I:ai-] f Equation 2-5

ox®
The full gradient calculation is performed only once, since one calculation can provide a
reasonable approximation [10,78] that is mathematically accurate enough to be iteration
efficient. The tradeoff is between model evaluations for the sensitivity calculations or for
finding new solutions. For example, N+1 model simulation sequences can test N+1 new
solutions or test a single solution with the calculation of a new sensitivity matrix. The
choice is to do model evaluations for new solutions except during initialization. At

initialization, the simulators do not have a valid sensitivity matrix definition because of the

32



unknown solution vector. Several iterations can be required before the solutions reach
sufficiently close conditions [78,79] to calculate a valid sensitivity matrix.

The Newton method is the main iteration technique in the mixed device-circuit
-simulators because of the tight coupling between simulators. As outlined in [31], the

Newton matrix for the mixed device-circuit simulator is defined by

(R, 0 - 0 T, Jéy] [-F]
0 R - 0 T|dx -F, Rm=aF"’ Sm=aF"
N oo =] g;,: aan”m Equation 2-6
0 0 R, T \&, | |-F, |T,= Y=
” " oz oz
s, s, - 8, Y|&]| |-F,

The variable x represents the internal device variables and terminal currents, the variable z
represents the voltage and currents between modules, and the variable F represents the time
discretization of the function that should be zero [31]. Within this research, access to the
internal variables of the device.or module is possible, but only the shared power data (z) for
a terminal is exchanged between simulators wi;h the relevant sensitivity information for the
variables. The internal variables are eliminated from the system-level representation. To
maximize performance, the individual sensitivity matrixes are calculated in parallel by each
simulator with respect to the shared nodes. These sensitivity matrixes are broadcast or
transferred [28] to all simulators for defining the system-level interface matrix. This

calculation process is outlined in section 3.4 for this simulation backplane.

2.3.2.2 Relaxation Methods
A general overview of different relaxation methods can be found in [10,11,78].

Most relaxation techniques use some variation of Newton’s method as a linearization step

33



to solve the nonlipear equations. The relaxation-based algorithms are well suited for parallel
processing [86], sincé solutions can be done per variable and a complete sensitivity matrix
does not have to be calculated. [10]. However, relaxation methods are guaranteed to
converge only if the syst.em-level matrix has a diagonal dominance. To define diagonal
dominance, the system-level in a linear format is defined by

Ax=b AeR"™ xbeRY Equation 2-7
For diagonal dofninance, the absolute value of the diagonalf elements of the system matrix

are larger than the summation of the absolute value of non-diagonal elements, or
M
|Aj, il > ZlAf-kl k#j Equation 2-8

For the system-level partitioning in this research, diagonal dominance is a condition that
cannot be assumed. N

" As an example, two configurations foxi a §ensor applicatioﬂ are shown in Figure 2-
3. The worst case situation is Figure 2-3(a), where the external device is defining the
feedback -path fc;r the amplifier. Any variations on V4 around Vyp can make Vour
(;scillate between the output .limits of the power supplies. With large gain, a solution may
never be found especially if the error tolerances for the variables are too large. In this
situation, the simulator with the amplifier requires the completion of the feedback path.
Figure 2-3(b) is a more stable example, since the feedback sets the virtual node at V4 to
be Vvmp. However, the wrong interface model (a voltage source) at the virtual node can
still cause divergence problems. These situations show that poor partitioning of the

system-level across multiple simulators and poor interface definitions can cause problems

34



Linear Control
H(s)

V, ~»Z(®)

(a) (b)
Figure 2-3. Two extreme feedback problems

in a relaxation process. One method to overcome the poor partitioning problem is the use

of overlapping matrixes [27], which is technique used in waveform relaxation [12].

2.3.3 Synchronization

The two most common synchronization methods for simulation are the lockstep and
rollback methods [40-42,73-75]. The rollback scheme takes an optimistic approach to time
step control, where all simulators progress at their individual rates. When a variable conflict
occurs between simulators, each involved simulator rollbacks all timing information to the
conflicting time point, and then re-starts simulation using the new information. Because- of
this characteristic, the rollback scheme is a memory intense process since sufficient
information must be stored to return to the time point.

The lockstep method is a pessimistic approach that sets the global time-step as the

minimum timestep of any simulator. By sacrificing simulation performance, this method is

very efficient in terms of memory utilization, since only the present time delta of the

simulator is changed. Due to the complexity of the different simulators involved, the

35



'locks-tep'rﬁethod is more appropriate for this research. As a requirement, each éimulator
must have a one-step rollback where the backplane controls the simulator’s present
timestep.

A variety of hybrid methods is also possible as outlined in [73-75], but these
methods can cause locking problems. In simulators that partition a matrix into smaller
- blocks, a typicz;l synchronization method is to allow the different blocks to proceed at
diffefént rates. The potential problem with these rﬁethdds is that different time deltas can be
too large and the same data points are iterated to calculate multiple intermediate solutions.
The iteration process can invalidate previous data points [20], but these hybrid
synchronization methods can improve the simulation performance of the analysis if

piecewise linear (PWL) conditions exist.

2.3.4 Convergence

The three main convergence parameters are a deadlock limit, an absolute tolerance,
and a relative tolerance. For variable convergence, the convergence criterion is based on an
absolute tolerance parameter (84) and a relative tolerance parameter (dg). An absolute
tolerance requires that the absolute difference between the present solution (Xp) and the
~ next or expected solution (Xy) values must be less than absolute parameter, or

XX ,| <8, Equation 2-9
A relative tolerance requires that the absolute difference between the values is less than a

parameter times the maximum variable plus an absolute tolerance [29], or

| X\ ~X | < 8- MAX(X ), X, )+6 4, : Equation 2-10

36



The absolute relative tolerance (8ar<<d,) is used during the relative comparison to ensure
that a comparison is not operating on integration noise or a signal too close to zero. The
relative tolerance procedures are the most flexible.

In a calculation process, a solution can iterate towards convergence, non-
convergence, or divergence as shown in Figure 2-4. Divergence is the solution sequence
with an oscillating geometric growth while the non-convergence applies to a solution that
never reaches a stable point nor diverges. Most non-convergence problems are symptomatic
of feedback loops, model discontinuities, tolerapce problems, poor sensitivity calculations,
or poor calculation methods. Instead of detecting non-convergence, most simulators
implement a deadlock limit. A deadlock or iteration limit specifies the maximum number of

solution iterations (7, ) that can occur on a single data point before the simulator is halted.

Current(D) Cureeni(h) : Curenell)
cwx osx
0o oRX
0°0%0°0°4°%0° 9004 0, %%% 0, onx
Iecration Uezal Dieracen
oal » 00 > 00 v
XXy Xy Xy Mg X X% xxx® »
*xx, xx onx
x 0K x omx oax omx
v v v
Voltage{V) Voltage(V) Voltage(V)
%o, °°°o omx O
"""m""o o, OXDXDXANDX ”“mﬁa" xoq omx
e 0 X0 RoXOXOXOXONS w8 i
a0l Ucration aton 00 B 00 s 3

a. Convergence.  b. EVEN/ODD type ¢. Multicycle type d. Divergence.
non-convergence.  00ON-Convergence.

Figure 2-4. Comparison of convergence and non-convergence types

37



All simulators have a deadlock limit to prevent the endless iteration for a single solution.

2.4 Communications and Controls

The communication mechanisms aife_secondary issues compared to the simulator
requirements, internal database structures, and control mechanisms, since the
communications mechanisms are an implementation issue. In most cases, performance
degradations due to the backplane operation are assumed insignificant compared to the
iteration time of a simulator. With a FE simulator in the analysis, this performance
condition can easily be vefiﬁed, but the coupling process is prohibitive for “small”
problems. The goal for a backplane is flexibility and expandability to éllow data exchange
between any simulators through common procedures [39]. Using a simulation backplane,
the simulators become computation engines controlled by the backplane interface. The main
operations -of the simulation interface are accessing internal variables, modifying internal
matrix valués, translating information between the backplane and the simulator, and
execuﬁﬁg simulator operations cohsistently with the othgr simulators.

All simulators in this coupled architecture require an iteration capability that can be
controlled by an external program or internal interfac'e code. Simulators with an open-
architecture can make the implementation simpler than simulators that need modification at
a structural level to incorporate the backplane interface. The basic difference between an
open and closed architecture is shown in Figure 2-5, where the shaded areas are common
~ between the architectures. With an open interface, the translation and command operations

can be incorporated directly into the simulator. In the worst case situation, the iteration

38



|- I

STARD {Initialization|—[» “Make o |-

Convergance| - — ‘

Output » Decision [¢| - Evaluate |g

Data N ", Results.
a. Closed Architecture.

o Negotate | oJL0ad Global] |\ [~ wake 1 Do . | °
i of gz ST i B ]
Output |-+{COnVergance) . ™ Guipyt Convergance . M Eyaluate o
LocaltpData Decision(s) [] Globatlp Data| |. ]Dec1§1on 1 ‘Results o

b. Open Architecture.
Figure 2-5. Closed and distributed architectures for a simulator

process can be implemented by a middle-ware program as a sequence that starts and stops a
simulator by saving and loading previous solutions with new data parameters. Most control
functions depend upon the type of system-level drchitecture in terms of a central controller
or a distributed controller [38]. A central controller defines what each simulator does while
distributed controllers have each simulator perform the same procedures. This process is

outlined in Chapter 4 for this simulation backplane.’

2.5 Dynamic Modeling Process

The dynamic modeling process is described in [72], and a brief summary of this
work for mixed-mode s&mulation is presented here for the simulator coupling process. In
dynamic simulation, the four major parts are the representation control, model definitions,

state control, and timing control. Representation control defines the situations and

39



conditions where the different models and the interface configurations are switched
(connected or disconnected) into the analysis based on trigger conditions (automatic mode),
static selection (constant mode), or interactive selection. The static control mode does the
standard simulator coupling process and the interactive mode waits for the designer’s
request to toggle between models. In the automatic mode, a trigger can be any event or
condition in the analysis. The representation control using simulator coupling is examined
in section 2.5.2 where a region-based modeljng approach using an accuracy trigger is
proposed. |
The various model representations are typically part of the simulation database prior
to the analysis as in t72], but the model generation is possible during the analysis. Models
oniy need to be valid prior to the switching: process. Considerations for different model
definitions are examined in section 2.5.3 in terms of the region-based modeling. The timing
control involves the rollback of the simulators and the recovery operation from a simulation
failure vahile state control guarantees that both models have equivalent states at the
transiiion point. In this work, these two control mechanisms are grouped together where
timing control is used to implement the state control as described in section 2.5.1. The
general sequence for the dynamic modeling is the following pro;:edure after the detection of
a switching condition:
1.Stop the analysis after the present iteration.
2.Save the state information of the present model(s) and shutdown or turnoff the

simulator(s) with the present model.

40



3.Start the new simulator(s) with the new modeling definition(s) at N steps prior to
present time.- Apply the previous N solutions and stimuli directly to the new models
and load any state information for the old model if relevant.
4.Link the new simulator(s) into the backplane using the appropriate name, variable,
and objects references.
5.Restart the anaIysis.
Unlike [72], this pro;:edure does not rollback the analysis of the simulators since only a
single step rollback is permitted. Consequently, the models must be reliable and relatively

consistent until the transition point occurs.

2.5.1 State and Timing Control

Without a doubt, state control is the most critical consideration for an accurate
transition between the models because the internal state information of the old model does
not necessarily correlate to a new model’s states. In the simplest case, all models can be
completely defined by the present terminal variables and the applied stimuli in a lumped-
sum format. However, devices like an oscillator or devices with hysteresis effects can be
multi-valued, so finding the equivalent state can be difficult based only on the present
solution of the device. To ensure state control, all models can share certain internal
variables to prevent state conflicts as part of the modeling method. Adding required states to
the procedure will limit the number of modeling methods that can be used [90].

In this process, the timing control becomes responsible for the state control by

seeking the closest equivalent state from the available information. The state equivalency

41



and model compatibility are not rigorously checked to permit switches between any model
representations, so the model transitions can introduce errors into the analysis. With a
sufficient number of tjme steps in Step 3, the timing control is assumed to synchronize the
dynamic response between the new and old models. The problem becomes determining the

number of steps to reach synchronization or providing mechanisms to ensure state control.

| 252 Representation Control
Liké [72], the trigger can be any event, and for this research, a certain accuracy of
“the behavioral model is considered as a trigger. The model representation changes only
when the simplified behavioral model matches the response from the more accurate model
within a specified error tolerance. Additional constraints on this condition are that the
trigger conditions must persist for a certain sequential number of iterations and analysis
times. Of course, the simulation time of this other model in the other simulator has to be
less than the simulation time of the other simulators to improve performance. Otherwise,
there is no reason to change representations.

To recognize the trigger, the behavioral model simulators can be in concurrent
operation with the most accurate model, but the information is not included in the iteration
process. A central controller is required to make the dynamic modéling decisions. Once the
behavioral model simulator has met the given tolerance parameters, the FEA is shutdown

and the behavioral simulator assumes a normal status to replace the FEA. These various

conditions guarantee state control between the representations without the N step rollback.

42



The problem in this procedure is defining how to guarantee state control in the
reverse direction and when to switch back to the FEA. As a simple definition, a model is
defined as valid only over the known test conditions and not necessarily over the complete
.variable space. As shown in Figure 2-6, each region of a device operation can have different

models g(P,) that are inaccurate outside the given region. Because of the region

definitions, the models have a trigger condition to change between representations. If a
region has been tested and the results have an error measurement below the given
tolerances, then the model simulator can continue the analysis into the other regions.
Otherwise, the region is assumed untested, and the reverse trigger condition occurs once the
variable solution crosses a gray area between the regions. Then, the most accurate modeling
representation is switched into the analysis and synchronized with an N-step roll forward or
a state recovery or both. Continuity across the boundaries is also critical.

This region-based modeling approach 'c"émplicates the modeling and switching

ue(t) A

2(6,)
, (6,
£(6.)
-{CD)
£(8,)
£(6,)
£(6;)

. ,(t)
Figure 2-6. Region map of a device behavior in two variables :

43



process. In a fully integrated environment, an array of different models with various degrees
of accuracy and perfonhance are available for this dynamic modeling process. This
condition assumes that information is available about the accuracy and performance of each
model in a simulator with all the region mappings. The advantages of this region-based
process are a known accuracy, the potential to simplify the model definitions in a region,
and complete region veﬁﬁcatidn for éliminating re-simulation. A region check-off and

verification procedure is-integrated into the modeling process.

2.5.3 Model Definitions

With region-based models, the model generation process can become an integral
part of the approach. This consideration is beyond the scope of this work, but different
options aré examined. Model definitions can be generated‘automatically using FEA for a
specific simulation environment, but the problem is defining the stimuli to test consistently
all operational regions without ﬁser interaction. To implement the model definition process,
the three modeling methocis using the backplane are a coupled solution, independent
analysis, and hybrid analysis.

The -coupled solution uses the concurrent results from the analysis to construct a
model, but several flaws are apparent in the process. An incomplete analysis and lack of
model mtegnty onert the complete operatlonal region are potentlal problems. The
distribution of the solution data can skew the model without data filtering, so the model can
be inaccurate in regions with few test points. The region mapped by the coupled simulation

cannot be ébsolﬁtely “checked off’ from the total variable space without complete

44




verification over all conditions.

In the indepeﬂdent analysis, a complete region mapping of the device’s behavior is
possible where a predefined stimuli sequence is applied to more accurate but time-
consuming model to create a reduced order model [67]. The'proces)s guarantees the model
integrity, since region mapping is done over all possible stimuli conditions. A single model
representation is possiele [89] where a common -error statistic governs the model to
eliminate the need for an accuracy trigger. However, generating the stimuli over all
operational regions and conditions can be extremely difficult and lenéthy process over all
potential responses, and a poor mapping may result.

In the hybrid analysis, the coupling process assists the independent modeling
process by defining the variable ranges to prevent the mapping of all possible regions. This
consideration is a variation of the piecewise linear modeling, where each region is assumed
linear in one variable and the stimuli can be applied one-at-a-time especially if the regions
are sufficiently smali. The problems with the region mapping process are defining the size
of the regions and the modeling method. The one significant advantage of this hybrid
appreach is that the model generation process can be implemented in parallel with the
coupling process where each ﬁew region found in the coupled analysis spawns a model
generation process. Once the region mapping is completed, the models can then be used
dynamically to trigger the representation control. This p;'ocess can eotentially minimize the
amount of FEA needed on the devices while guaranteeing a high-degree of accuracy. If

necessary, the different region-based models can be combined [89] into a single model

instead of testing a single stimuli definition to cover all conditions.

45




2.6 Summary

This chapter has outlined several 'MEMS design, modeling, and simulation
environments. In\addition, the four main aspects of a general coupling process have been
described with an emphasis on the iteration process and solution procedures. Finally, the
dﬁmic modeling process has been presented for the hybrid coupling process for MEMS.
A variation of the dynamic modeling process is outlined to ensure certain accuracy

constraints and potentially to optimize the simulation performance and accuracy via

automated model generation.

46



Chapter 3. Causality-based Interfaces

In a coupling process, multiple shﬂulators are linked via nodes that exchange
EFFORT (E) and FLOW (F) variables as shown in Figure 3-1(a). In the electriéal domain,
this relationship corresponds to Kirchoff’s current law and voltage equality. Since other
disciplines have similar relationships, a solution process was defined to include any
simulator wheré power was exchanged based on generic EFFORT (E) and FLOW (F)
variable definition, which is the bases of bond graph analysis techniques [91]. The two rules
for n, elements in a node required that

Jj=nr Jj=nr

ZIJ. =0 or ZF/ =0 Equation 3-1
J=1 j=1

h=v,=Vy=--=V, or E=E=E=-=E Equation 3-2

In this process, all simulators were black boxes, and the coupling process ultimately
required the sensitivity information from the interface variables of each simulator as shown
in Figure 3-1(b). The backplane was required to solve the coupling relationship based on the
simulator’s interface, which did determine what sensitivity parameters could be calculated

and how the backplane interacted with a simulator.

Simulator
Find Ei+1 Fi+1 » Module B ppp
¢ JdE, JF, 1]:;'; >Interface
imulator imulator =1 ¢ s : ;
Module |[***| Module J=Hion) oF  oF, E: : Interfacel :
S) ) | oF, OF [T T fntertacy
a. System level matrix b. Simulator module with n-terminals.

Figure 3-1. System-level simulation matrix representation




Most simulators defined policies that forced the user to define the variable causality
(input or output definition of the variables in the node). Within the backplane, causality was
not necessary known except if an interface constrained either the EFFORT or FLOW
variable. Of course, the interface could violate the variable causality required by the design
[87]. Usually, &e partitioning of the design eliminated this problem, but this research did
not have this infonnétion.priof to simulation. The initial consideration was to implement
dynamic interface configuration where the goal was to find the interface configurations
that optimized the iteratioh efficiency and convergence of the coupling process. The
known requirement of this goal was a flexible interface definition as described in section
3.1. Causality assignment m section 3.2 was the procedure considered for implementing a
“smart iﬁterface” to maximize coupling efficiency.

This research began by examining interfaces that difectly solve Equation 3-1 and 3-
2 as described in section 3.3, where simple voltagé and current source definitions were used
directly to 'implement the two rules in a sequential process. Unfortunately, these simple
elt;ment definitions adversely affected the iteration efficiency and caused divergence if the
wrong type of source was used [32,87]. The premise of this work became that causality
assignment with intel;face reconfiguration could improve the iteration process by identifying
the particular element coﬁtrolling the node variables. For example, the interface definition
did have a small impact on the performance of device-level ahalysis [30]. The direct
approach did eliminate the sensitivity parameter calculations, which was a computationally

expensive part of the coupling process, but the approach was unsuccessful.

48



After the failure of the direct calculation interface, the causality assignment process
was applied to the conventional interfaces using more formal calculation procedures as
described section 3.4. Conventional interfaces required the calculation of the sensitivity
parameters and determination of the proper input sénsitivity variables. To enhance the
iteration process, a flow variable correction method was examined in section 3.5. This
particular method overlapped the different simulators using behavioral models for the
external devices. One simulator with the behavioral model assumed the role of a system-
lével simulator with a complete system-level definition while the other simulators became
device or module simulators. The behavioral model operated as a predictor function [90]
that was corrected by ﬂle external device simulator. This configuration was better suited to
the dynamic modeling approach, since the corrector function could be changed or

eliminated for the coupling process. Various versions of the correction process were

3.1 Interface Definition

For implementing the causality tests and sensitivity calculations, an interface
configuration was required with sufficient flexibility to define an effort or flow. This
element had to monitor the flow into any device model for the correction process or an
equivalent matrix created by the backplane for a simulator. Initially, this work attempted to
define an interface that had all characteristics of both an effort or flow source, so any aspect
of power can be absolutely controlled. However, the ability to control both variables

implied that the process controlled power, which was not possible without eliminating the

49




iteration process with the simulator. The basic coupling concept is shown in Figure 3-2(a)
The initial symbolic representation- of the flexible interface concept was a

combination of a Thevinin and Norton equivalent interfaces from the electrical domain as

shown in Figure 3-2(b). The backplane calculations defined the conduction G,
effort £*., and flow Fg,.. The simulator returned a solution effort £'*' from the flow
source and the partial flow F(Eg.) through the effort source. Eventually, the flexible

interface was changed to a Norton equivalent representation with a Thevinin equivalent

Simulator

node

Matrix or
Model(?)

a. Basic interface concept

+1
Ese

1+1
Fsrc

o
Glﬁé = R+

b. Initial sym lexible interface
E +1
node' E"' node
F(Es)

G ey

H1
Fsrc

c. Final sym lexible interface

Figure 3-2. Concept and structures for the flexible interface element

50




monitor as shown in Figure 3-2(c). This representation was used to indicate that the

backplane calculated the flow through the conduction element for the Norton interface.

Considerations were also made to use the conduction element G, for calculating sensitivity

parameters of internal models, but no practical usage for this element was found.

3.2 Causality Detection

Causality assignment is defined as the process of assigning inputs and outputs to
subsystems and possibly in an arbitrary manner [91, pp.143-154]. This particular statement
applies to bond graphs, but the same principle can be applied to simulator’ coupling
especially if one simulator defined the response to another simulator. Initially, the causality
assignment process was conceived as the flow diagram in Figure 3-3. The strategy for this
process was to identify the dominant element in a node as the CAUSE element, and the
other elements followed the operation of the CAUSE elemenlt. Specifically, the CAUSE
element defined the EFFORT stimulus to the EFFECT elements in sequential manner. The
CAUSE element was a FLOW-based configuration while the EFFECT element was an
EFFORT-controlled configuration. This convention was maintained throughout the
research.

The GENERIC element was the default interface configuration in this process until
the CAUéE element was identified. Four transition states were also included between the
three basic elements to ensure that the conditions for CAUSE and EFFECT persisted for at
least two iterations. The most difficult task in this process was defining the conditions for

the state changes in Figure 3-3. At this point, the only available information for the

51



Figure 3-3. State diagram for causality detection

detection process was the element’s power and sensitivity contribution to the node.

3.2.1 Absolute Power Criterion

The absolute power criterion was not a very robust detection mechanism because
power in a node sums to zero. The absolute power criterion compared an element's absolute
power contribution to the absolute power of the other node elements by using a power ratio
(opw) and a state-based power multiplier (0s). The power ratio was the primary parameter
that defined the absolute power ratio to make a CAUSE or EFFECT decision. The state-
based power multiplier was a secondary variable that changed the range of absolute power
ratio to ease the transition process between element types. When an element's absolute

power was O Opw times larger than the maximum absolute power of an external element,

52



the element followed the CAUSE paths in Figure 3-3, or

|E,-F|| 2 05-0 -MAX(E,-F |) ¥V j=2..m, Equation 3-3

When the element's absolute power was 0 Opw times smaller than the maximum absolute

power of an external element, the element followed the EFFECT path in Figure 3-3, or
|E,-F|| S 0-0py -MAX(E,-F |y ¥V j=2..n Equation 3-4

In most cases, the criteria only identified elements with minimum power contributions to a
node and the criterion was only stable when two elements were coupled because of the
potential overlap in the detection criteria. In this procedure, a CAUSE element was not
lalways the maximum power element and the EFFECT element was not always the
minimum power element in the node.

Because of the potential overlap between CAUSE and EFFECT, three rules were
required to make the causality detection rules consistent. Based on bond graphs [91], the
three rules were:

1. Only one CAUSE element can exist per node, and other elements must be an

EFFECT.

2. Without a CAUSE element, two GENERIC elements are required in a node.

3. A node cannot contain just EFFECT elements.
These three rules prevented elements from improperly transitioning into a state where the
iteration function stopped or the solution diverged. The violation of any rule forced the two
elements contributing the maximum absolute power to the node to become GENERIC

elements. By choosing the two elements with the largest absolute powers, the dominant

53



elements in the node were identified.

In. most situations, the absolute power criterion was completely unacceptable.
However, the calculation procedure in section 3.3 was able to identify causality using the
absolute power - criteria when peaks or inflection points occurred in the response. An
inflection point in the time response represented a change in the transient behavior of an
element where the time derivative of the element’s effort 'was reversed from vthe previous
transient conditions. The element causing the inflection point had to supply the power to
change the transient behavior of the other element(s), so the element’s power increased. The
additional power forced the other element(s) through the previous solution where the
integration process encountered a local minimum and the power of the other element(s)
decreased. Thus, causality was detected, but the process was not very reliable. The
combination of the power ratio, signal magnitude, and time-step determined if an inflection
point could be detected. In many situations, the iteration sequence corrected the power

.difference between the elements before the criteria recognized a peak in the response.

3.2.2 Sensitivity Criterion

The sensitivity criterion was similar to the absolute power criteria. For this criterion,
the absolute internal conduction parameter of an element was compared to the absolute
conduction from the other elements by using a state-based ratio (oir). When an element's

conduction was ¢, times larger than the maximum internal conduction of other simulators,

the element began to follow the CAUSE paths in Figure 3-3, or

54



aed > o, MAX(G) G, =9F

1535 j=2...n, Equation 3-5

J
When the element's conduction was ¢, times smaller than the maximum conduction of
other simulators, the element began to follow the EFFECT path in Figure 3-3, or

1

’G{I < a—RoMAX(‘G;.|) j=2..m Equation 3-6

In this criterion, the CAUSE element was always the dominant element in the node with the
largest sensitivity parameter. The two causality definitions did not overlap and only one
CAUSE assignment was made, so no additional rules were required to prevent assignment

problems.

3.3 Direct Calculation Interface

The direct calculation interface attempted to solve Equation 3-1 aﬁd 3-2 directly
using only the present flow and effort values, but these interfaces had divergence and non-
convergence problems [32]. Since the interfaces were not very reliable, an attempt was
made to improve the process. The experiment started with the problem in Figure 3-4 using
two SPICE simulators. The possibility of uéing causality assignment was realized after
analyzing this problem using bpth combinations of current source and voltage source with
the direct relationships.

In the experiment, the VOLTAGEc;-CURRENT(; configuration found the correct
initialization point for the node, but the transient analysis diverged when the stimulus Vi,
_started changing at time t1 The CURRENT¢;-VOLTAGECG; configuration found the wrong

initialization point, but the dynamic solution converged and the result had the same

55



<4

-

ﬁggﬂ I
Y T 1

Figure 3-4. Example circuit to test causality rationale

waveform characteristics as the complete system solution obtained from SPICE. One
configuration was statically correct and the other solution was dynamically correct.
Logically, an intelligent combination of the two results produced the correct solution. Based
on this experiment, causality was considered a dynamic and not a static property. The initial
premise was that a pure current (FLOW) and VOLTAGE (EFFORT) configuration using
direct calcﬂlatz'ons was possible for a node, if the elements in the node are correctly
coordinated and clonﬁgured at the proper times. A better explanation was that the interface
procedure had an error, but this observation became the driving rationale behind this
research.

In this example, variation of the resistance value and the transistor’s width and
length did cause divergence in the coupling process. The simple source definitions did not
have the capability to find a stable point since the iteration process was one-dimensional. A
stable bias' point was discovered to be a requirement for a direct configuration. To overcome
this problem, a GENERIC element was defined as outlined in section 3.3.1. ‘The initial
GENERIC definition converged to a solution, but the rate of convergence was slow (7 to 11

56



iterations per step) and different speedup conditions were tested to improve convergence.

During the testing of the GENERIC node, the sbeedup considerations improved the
convergence rate, but a “sticky point” was found with slow convergence. Within this sticky
point, the iteration process forced the power of one element to approach zero, and the
realization was made that the absolute power criteria could be applied for transiting to the
pure CAUSE and EFFECT arrangements. This causality identification did improve the
overall rate of convergence, and the interface process appeared viable based on this
example. Different test situations were later examined, and the process only converged
when a node had two elements with NO FEEDBACK. Certain situations also caused
divergence when causality was incorrectly identified. To account for all the various
exceptions and divergence possibiliﬁes, this procedure had to implement additional rules,
which eventually eliminated the causality detection. As described in section 3.3.2, this

interface was a terrible approach to the couplifig problem.

3.3.1 Averaging Interpolation Interface

The calculation process for the GENERIC element was required to define the source
values as variations of the present iteration values ONLY. The variable deltas were
calculated by simple averaging. All elements were moved toward a common average
vbltage value and a common current difference was applied across the differént elements.
The resistance was defined as a ratio of the node variations. In the electrical domain, the

node elements were defined by

Igc =L +AL AL =’1—21§ Equation 3-7

J=1

57



yis = iZV; =V +AV AV = LZV; -V Equation 3-8
nr =t r =1
REL =R, = "AL]: ' Equation 3-9
AL

The calculation process was a form of the secant method and a crude approximation of the
sensitivity parameters in a conventional interface, where

A AR\

i
RSRC

I = I +1(ge) = I + AL +

. . . . Equation 3-10
I]H-l _ Ill N I/lx+l __~Vli
Al INA

Because of the averaging, this procedure stepped toward the solution. The variation terms
changed the power to a simulator element as shown in Figure 3-5(a). In the simulator, the
voltage and current calculation for the element returned toward the previous solution with a
rate that depended on the dominance of the element as shown in F igﬁre 3-5(b).

This resistance calculation was a very poor approximation of the normal
linearization process and “sticky” points occurred where the convergence rate slowed or

stopped. The process was very sensitive to whether one variable delta converged faster than

the other delta. As AI approached zero, the resistance Ry became very large, and the

voltage variation from the voltage source had no effect on the response. When the AV}

approached zero, a small resistance value was created where the voltage source dominated
the response and absorbed the current variation. The options for eliminating this problem
were applying one variable at a time, redefining the variation terms, or redefining the

resistance definition. The choice was made to redefine the resistance.

58



Voltage

? @ Present value
O Iteration value

(Vul)

i O i
(V+AV, I, +ALY /O(v,+Av,,l,+Alz)'
(VL)

P Current
a. Present value to lteration value
Voltage
A O Iteration value
O Next value
R, limitation range
(‘VI-II)H
@ o (v l 2)1-&1 ;
(VHAV, ALY z @O (VA+AV, L +AL)
&

P Current

b. Iteration value to Next value

Figure 3-5. Iteration process for the GENERIC element

. Two additional resistance values were defined: differential resistance R, and an
absolute resistance R ;. The differential resistance was a dynamic resistance calculated

based on a time derivative approximation where the resistance was the slope between the
present iteration value and the previous event point. The differential resistance was defined

as

N o) =V () AV
R =17 B = o f Al %0 Equation 3-11
oirF = Do) =1y Cprey)  Allpyer quation
Rx otherwise

The absolute resistance was an equivalent load resistance from the node to ground where

59



- if Y |I|#0
R,..= JZ‘: Iil /2;1‘ Jl Equation 3-12
"ABS ;
J=l '
A otherwise

In this process, the decision was also made to use the smallest resistance value as Rgy. to

guarantee that the voltage was converging faster than the current since voltage is common
between all elements of a node. However, the process still fequired Rixt. to be redefined in
certain situations as outlined in Table 3-1.

During the testing of tiliS pfocedure, another sticky point was discovered at the
peaks in the voltage response. After analyzing the cause of this slow convergence, the peak
detection criterion described in section 3.2.1 was realized and the effect was traced to the
minimum resistance criterion using the differential resistance Rpyrr - At the };eaks, the

differential resistance was typically smaller than the normal and absolute resistance values,

which became large due to the divergence of the responses. In this situation, the averaging

process pulled the different reéponses back toward the previous éolution, while each
element attempted to continue the response in the same direction due to the integration
process of the simulator. Slowly, the CAUSE element supplied the power necessary to

change the response directions of the other elements.

Table 3-1. Resistance R, definition under different conditions

Conditions - Current Convergence Otherwise

_ Voltage -+ Rxc max (RDIFF s Ryps> Ryar )
Convergence

OtherWlse mlﬂ (RDIFF ’ RABS H RVAR ) min (RDIFF » RABS > RVAR )

60




3.3.2 Causality Recognized

Using peak detection, the pure CAUSE and EFFECT elements were incorporated
into the approach to improve the iteration efficiency of the GENERIC element. This
combination was briefly successful and the iteration efficiency was improved for the given
example. The parameter values for the test case defined opw with a value of 10 to guarantee
that the response of the node is at a peak. Smaller values of the power ratio caused the
elements to oscillate between the different states. In addition, the values for o are 0.5 in the
transition states compared to 1.0 in the causal states. Unfortunately, the same procedures
failed on other examples. Several serious interfacing problems were discovered, and this
process was later proven to diverge under certain situations.

A third simulator demonstrated interface incongistencies due to the overlap regions
in the causality criteria, and the overlap rules in section 3.2.1 had to be created to correct
these problems. Other test cases showed the divergence nature of incorrectly defining
causality, and a divergence detection mechanism became necessary. Fortunately, divergence
has a distinct characteristic where the solution grows to unrealistic values in an alternating
sequence. Whenever divergence was detected, an internal flag was set in each node to
prevent the detection of causality and all elements were forced to a GENERIC étate. With
all the different conditions, the interface had become too complex, and the calculation
procedures were not consistent between the different element types i.e. a common
mathematical calculation procedure was lacking. As additional simulators were added toa
node, this procedure was unable to find a solution. At this ‘point, the direct calculation

approach was abandoned and a more conventional approach was considered.

61



This procedure had attacked the problem based on individual nodes, which was not
sufficient for a system with feedback. As an example of the causality divergence problems,
a simple state feedback loep in Figure 3:6 was examined to show'divergence potential and
feedback gain requirements with causality recognition. The two gain blocks had a large
6utput' cond\uction value and -small’ input conduction value, so caueality was easily
determined. The Laplace gains were simplified to a constant gain for both the initialization

(DC bias) and transient analysis. The initial conditions were assumed zero. The basic

iteration process for this example was defined by

i = G + i-1
* 1(ZH ¥ Equation 3-13

y' =Gx

The expansion of the iteration process revealed that

. 1-(GG, )"
x =z[Gl+—(L] i>2

1-GG,

Jom Equation 3-14
1-(6G.) ] a2

=G,z G +
Yy 2[ 1 -GG,

This iteration process converged if and only if |G1G2| <1 orif z=0. These requirements

were the most critical during the initialization procedure because the interface solutions

Y L Gz(su_T '

Figure 3-6. Simple feedback system to examine the iteration process -

62




were not stable. For the transient analysis, a “sufficiently small” timestep was required for

the effective loop ‘gai'n to meet this criterion. Since these conditions cannot be guaranteed,

this calculation procedure cannot be considered for the general coupling process.

3.4 Conventional Interfaces

Most conventional interface definitions were based on nodal or modified nodal

analysis [31,77], which implied Norton equivalent interfaces and representations. Initially,

the Norton equivalent interface for each simulator was solved as shown in Figure 3-7 for n

simulators. To define the equivalent circuit, the sensitivity parameters (Equation 3-15) were

used as the conduction definition for an element. The Thevinin or Norton equivalent circuit

[29] for a particular simulator (j) at the present iteration (i) was defined by

i _oF| 1Y ,
GEQI iT3E T (REQIJ, ) Equation 3-15
J
Ef‘
; iR
FNORII Gyl Backplane
Interface
S,
or simulator #1
E i:l ii-l
. . F,i:1 . . . . F,iIl
FNOR[; GEQ[ i FNORI; GEQI; FNOR[; GEQl i FEQ GEQ
Sl o008 SIl Sl

Solution Representation

for all simulators

Equivalent Representation

back to the simulator

Figure 3-7. Different equivalent representations for a simulator or simulator node

63



Eml; = E —REQIZ- Fj

; . , Equation 3-16
FNORIj =G£Q|j‘E}_F;

The solution for the effort and flow values (CALC subscripts) was defined as

i+l

e Ql] Sl
(2; EQI J 2(59‘ F')

Equation 3-17

F{‘H =—FN0R +GEQ . 'E'+1
J leare , l! . |J cALe Equation 3-18
_ i ! i+l 1
=F; +GEQ|1.(E+ caLc _Ef)

To define a Thevinin or Norton equivalent circuit for the interface, the following equivalent

relationships was required:

J=nr

2 GEQI = RIIEQ)- Equation 3-19
. J=nr PR iy i ) )
CFp = 2 FN0R|J= z (GEQIj -E,-F; ) Equation 3-20
j=2 j=2

In these equations, the local simulator was always referenced as 1. These equations applied
to both matrix operations and singular nodes.

This solution process was not very effective when the conduction parameters
became extremely large and dominated the solution as rounding errors in the EFFORT
calculations oﬂpn resulted in large errors in the flow variables. The flow variables were
added to the solution process and Newton-type iteration method was also defined. The new

solution process was

64



Ei+1 Ei ] 0 . p D, 0
i+1 i .l 1 - o0
B L . E.QL . Ak Equation 3-21
: : : o - 0 :
i+l i i
F, ' caLc F, Jdeare GEQ n 0 1 AF,
AFy =G| - & e~ Ex )- (F}lm -Fi) Equation 3-22

The interconnection matrix (p,) was a unity-based matrix that defined which flow

variables summed to zero for a particular effort to implement Equation 3-.1.

This iteration process was considered for the example in Figure 3-6, but the proper
sensitivity parameters had been not calculated and effort gain parameters were fequired.
Normally, the Newton-Raphson method was applied over all variables at the system-level if
sufficient functions were available that were equal to zero, but the only known equation
between simulators was Equation 3-1. To overcome this problem, causality assignment was
requifed to define the inputs and outpiits variablés from a simulator, since nodal analysis
had treated voltage as the input and current as the output. By changing causality, the
procedure calcplated a different set of sensitivity parameters. The sensitivity functions
(system of equations) defined the relationship between inputs and outputs for a given
simulator where

0Output
olnput,

N THEDY Alnput ; — AOutput = 0 Equation 3-23

J
Using these sensitivity relationships, the backplane had the functions necessary to couple
the simulators. The problem was deciding which variables were inputs and what sensitivity

parameters had to be calculated. The input variable detection process is described in

65



Appendix-B.

As causality changed, the backplane had to vary the sensitivity parameters and
solution matrix. An example of the final matrix representation was Equation 3-24, which
shows the sensitivity information for the both EFFORT and FLOW output variables and
how the- interconnectivity infomation was used. In Equation 3-24, each interface uniquely
defined-one row of the solution matrix where n flow variables and one effort variable was
defined for each node (domain interface). The row for the effort variable defined the flow
interconnectivity relationship while the row for each FLOW variable used the simulator

function calculated in Equation 3-23.

r

. JOo 1 0 0 e 0 -
EV[E] (e o .. % B O[O
EfU LR [ 9B . 9 R 9Bl 1S,
' Equation 3-24

v || 0 0 - 0 1 1
F F, oE, oE, aF;,_i aFn,l SE’I'
ol |EL] | o .. % . | |S,

Sl T 3E, OF, F.|

oY i

Sy = X5 Krcue ~Xys00) = Couc ~Yous) X € Inpuis Equation 3-25

~ 39X,

This proceciure was error miﬁimization between the calculated variables and the simulator
values as defined in Equation 3-25. Equation 3-25 defined the error functions to bé
minimized by Equation 3-24.

The final issue for this procedure was the calculation of the equivalent sensitivity
matrix at the system-level. In situations where only nodal analysis was used, Equation 3-19

was sufficient to calculate the sensitivity information. However, a variation of Equation 3-

66



24 was needed account for the EFFORT output conditions. For this equivalent calculation,
the basic solution matrix was modified to isolate effort variations by forcing a known delta
value into each effort variable independently. For this procedure, all local simulator
contributions were eliminated from the solution matrix. The rows of the EFFORT variables
were set to one for each EFFORT variable while the local simulator contributions were
redefined as the interconnect relationships. The solution process for the sensitivity

parameters for a particular EFFORT variable used Equation 3-26.

[ 1 0 - 0 0 - 0 -—IFAE T
0 1« 0 0 - 0 | |lo
. 1,1
0 0 - 1 0 - 0 Az 1=lo Equation 3-26
0 0 - 0 1 - 1 AFM 0
nl
oF,, OF,, oF,, OF,, oF,,
| 3E, oF, 3E, oF,, oF,, | [Afna] 10]
oF, =—A—F—"— Equation 3-27
3E, AE,

The equivalent sensitivity parameters were calculated using Equation 3-27 for each effort
' variab}g y to a local flow variable x that required the information. Certain interfaces did not
require equivalent sensitivity information. In addition, the equivalent matrix.was calculated
only when an external simulator’s sensitivity information changed. A tutorial Qf this
calculation procedure is presented in Appendix E.
With the calculations defined, the different interfaces available in the backplane are
briefly discussed. These interfaces were defined for applications in the electrical domain; so
the typical electrical names were used. Appendix-B defined interfaces component values,

emulation modes, and interfacing methodology. The dynamical interfacing process was also

67




revised for the conventional interfaces and a “smarter” procedure was developed.

3.4.1 Flexible Interface

The flexible interface was a simple combination of the Thevinin and Norton
equivalent representations where the basic interface was used in a Norton format. This
interface forced the simulator to calculate the feedback flow variable when a conduction
matrix or behavioral model was integrated into the simulator. This interface emulated all
interface types for the causality assignment brocess and was the most generic interface
available. The Flexible interface was also the only structure with a system configuration,
where the simulator loaded an external matrix to complete all feedback paths. The system

configuration was essentially a matrix version of a Norton implementation.

3.4.2 Norton and Thevinin Equivalents Interfaces

Both the Norton and Thevinin configurations were classified as GENERIC elements
although the Norton was more appropriately a FLOW-based interface and the Thevinin was
an EFFORT-based interface. The Norton equivalent configuration was the conventional
interface §mcture for an electrical application [31] since most electrical matrixes used in
nodal analysis are defined in terms of conduction parameters and current sources. Both
equivalent configurations allowed variations in effort and flow variables, so any seﬂsitivity

parameters could be calculated.

3.4.3 Voltage and Current Source Interfaces
Both the voltage and current source interfaces restricted the iteration process to one

variable. Consequently, certain sensitivity parameters were not calculated and these

68




interfaces completely defined the variéblé causality. A current source was usable only with

a simulato;‘ that output a voltage or had a resistive path to ground. Without a decoupled
relationship to other nodes in the simulator, a pure current source was unable to calculate
conduction parameters between different terminals. Voltage sources were the typical
interface to device simulators because the system-level defined the voltage to the device. A
volfage source was typically used for nodal analysis. Voltage sources had interaction

problems with direct connections to virtual nodes and other voltage sources.

3.4.4 Direct Emulation

The direct configurations were residues of the direct calculation procedures, but
were not réal interfaces. Instead, these configurations were calculation modes within an
interface where an EFFORTEQ (Equation 3-2) and FLOWSUM (Equation 3-1) were
defined. Using these configurations, the FLOWSUM element defined an effort (£, ) to
the EFFQRTEQ elements in a sequential manner. The EFFORTEQ ellements applied the
effort and responded \;\zith .a new ﬂovs}, which was summed by the FLOWSUM element to
calculate a new effort on tﬁe next iteration. These elements were very ineffective unless the
dominance of the CAUSE element was a certainty and all restrictions outlined in section'

3.3.2 were guaranteed.

- 3.4.5 Dynamic Interface Configuration
The initial approach for the dynamic interface procedure used the flowchart from
- section 3.2, but the process had flaws (see section 3.4.5.1). Eventually a new tiered process

was developed (see section 3.4.5.2).

69



3.4.5.1 Basic Causality Modifications

The dynamic interfacing process from section 3.2 had several errors when different
combinations of conventional configurations were coupled. The problems were the result
of poor ﬁsage of the systerﬂ configuration and poor initialization. Several basic
modifications were required:

1. The detection of the FLdW input for an interface required the interface to be
reconfigured immediately as a CAUSE and other interface(s) in the node became an
EFFECT(s).

2. To use a system configuration, the GENERIC State in Figure 3-3 had to be a system
configuration for proper initialization. Because of modification #1, both the GENERIC
and CAUSE States had to use a system configuration.

3. At initialization, sensitivity parameters were checked to determine if the interface
exceeded the normal sensitivity rule by more than a factor of 100. If this condition was
met, then the interface was immediately changed to a CAUSE or EFFORT
configuration to improve coﬁvergence.

The FLOW input detection also placed constraints on the Causality State of other
interfaces when a system configuration interacted with otl;er interface types. With a system
configuration and a FLOW input interface detected in a simulator, the EFFORT input
interfaces in the local simulator interfaces had to examine EFFORT-to-EFFORT parameters
for gain conditions greater than one to the FLOW input interface. If the gain condition was
detected, then the interface was required to remain in a system mode to complete the

feedback paths. The poor handling of the system interaction problems was the final reason

70



that a new state diagram was developed.

3.4.5.2 New Causality State Diagram

The flexibility of defining different interface configurations for the three different
states was unnecessary with the proper rules. A new state process was developed as a tiered
system with fixed interface types as shown in Figure 3-8, and only three configurations of
the flexible interface were used (highest to lowest priority): system, Norton (FSRC_SRC),
and Thevinin (ESRC_SRC). This process used the same causality rules as the first method,
but additional considerations were given for gain situations. This procedure also started in
the system configuration to enhance the detection of EFFORT gain. The definitions for
entering the different states were better defined in this procedure.

The two system states were SYS LOCK and SYS_GENERIC. The SYS LOCK

EFFECT_SE
element

(ESRC_SENS jeffect,

SENS=1.0)

Figure 3-8. New causality state diagram

71



State indicated that a simulator had an EFFORT gain above an internal limit (50.0). Once
this condition had been detected, the interfaces (the FLOW input interface and the interface
‘that had the gain condition) remained in this state. In the initial method, the procedure
allowed the interface to enter the EFFECT State if the effect condition was detected, which
coul& cause failures in the coupling process. The SYS;GENERICI State indicated that a
FLOW variable; had been detected.

In thisv proceés, a very clear distinction was made between the CAUSE and
SYS_GENERIC States, which were identical in the original procedure. The CAUSE State
could only Be reached by ;sntering one of the<EFFECT States, which indicated singular
coupling in the simulator to the interface. The CAUSE State was ONLY included in this
procedure to indicate that singular coupling had been detected. The EFFECT SET State
was a variation of the EFFECT State where the sensitivity component was set to 1.0. In this
case, the equivalent sensitivity 'compor;ent was sufficiently large to force the interface to
truly track the backplane solution. Some hard limiting was also implemented because the
ESRC SENS interface did fail due to rounding calculation errors where the sensitivity

values were small (<106) and the simulator had to resolve a large ESRC value.

3A.5 Flow Correction Interface

Usir;g the corre;;:tion method, flow s.ources were added to the de\;ice model(s) in the
system-level siﬁiulator and effort sourceé becamé the interfaces for device-level simulators
as shown in Figure 3-9. The effort sources in the flexible interface of the ;ystem-level

simulator were needed to monitor the flows into the behavioral models since the model

72



i F
EFSE)Q ) “’—ﬁ)L GiA
S,0 .
° 4 . Fu0
System : . e Device Q¢ M"° Gi
Matrix Fiy) 0 F,x Model . M
Ei_;'(s ! 3 . Approximation M . Device
oee i FlM.N Modeel
+ ‘ E‘S .NO O+
FiC@ iC.N ) i )

System-level Device-level '

Figure 3-9. Flow correction interface

definitions were not necessarily known to the backplane. The flow correction method was a
variation of regression analysis where unknown parameters were modeled in terms of
known variables [76,90]. In this configuration, the flow sources represented the influence
of any applied stimuii, nonlinear effects, or undefined characteristics of a second model not
in the present model. The behavioral model became a first-order corrector in an ARMAX
model format [90] where a nonlinear corrector was applied externally for guaranteeing
certain accuracy in the analysis [93]. The advantages of this method were the simplified
‘interfaces and multiple corrector definitions that are possible for the dynamic modeling
approach.

In this procedure, the system-level simulaj:or can do more internal iterations using
the behavioral model. A more accurate solution was found that was always “reasonably
close” to the true solution to enhance convergence before an external iteration occurred.
This enhancement was intended to eliminate the poor initialization conditions that can occur

with the conventional interfaces where the “sufficiently close” requirement of most solvers

73



could be violated. In addition, the system-level simulator also had the potential to partition
the design more eft"wiently to improve performance because of a complete system
definition.

As a ‘nega'tive featﬁre, this pro‘éess ir‘nplementedv causalitgf assignment where the
system-level simulator defined the effort to the device-level simulator(s). This process was
sequential and was potentiaily slower than the otﬁer interfaces unless improvements occur
in the iteration efficiency between the simulators. A 2x factor of improvement in efficiency
of the sequential procesé guaranteed equivalent performance to a parallel process.
Fortunately, this process was implemented in a parallel fashion after an initialization
sequence since the basic calculation process was a variation of nodal analysis.

Initially, the correction method was considered for situations where the mechanical
FE simulator was always coupled to an electrical simulation as a form of waveform
relaxation. As just a coupling process, thie regréssion method offered a simple means of

. repeating analysis without using FEA and without generating a new behavioral model. The
flow source ‘values emulated the previous response in an event-driven piecewise linear
(PWL) mode without re-analyzing the device behavior in the external simulator. The
system-level analysis potentially achieved the desired accuracy without performance
degradation. In this prdcess, a designer constructed stimuli waveforms in terms of the flow
source values from different coupled analyses to test the system-level behavior in a
meaningful manner using the flow equivalent mechanical §tirnuli. Of course, these énalyses
did become inaccurate as the sensér, stimuli, or electronics was modified, so this emulation

process was not as useful as a regressed model. Still, the process was simple and fast after

74




the initial coﬁpling analysis was completed, and most simulators were able to use directly
the information in this flow waveform format.

Finally, the flow correétion method offered e; corrector that can be any external
source. By varying the corrector source, the dynamic modeling approach was effectively
changing model definitions compared to the basic model in the system-level simulator. Of
course, one option was not to define an external corrector with the internal model, so this
approach simplified to the independent approach. As a second option, the corrector source
could Be a combination of multiple modeling sources to create an N-level corrector [90]. A
higher performance model would perform multiple coarse corrections with the system-level
simulator before the more complex model was used as a fine corrector. This consideration
was made to limit the number of FE iterations for improving performance between the
simulators, but was not implemented.

The calculation procedures for the flow correction process are defined in section
. 3.5.1 and the convergence of the process is examined in section 3.5.2. Several variations of
calculation procedure are examined to improve performance by eliminating the sensitivity
matrix calculations. However, these variations have limitations depending upon the
accuracy of the behavioral model. Several modifications of this algorithm are presented in

section 3.5.3. Additional modeling considerations are considered in section 3.5.4.

3.5.1 Calculation Procedures

In this process, the device was an N-terminal module with a system-level model

represented by a conduction matrix G € R™" . The system-level analysis generated an

75



effort response E; € R and a flow response F; € R for each external device in the

system. A correction flow F € R was applied to each model for correcting the error
between the different model representations. The total system-level response was defined by
G, Ei+F.=F,+F.=F; Equation 3-28
G, -Eg=-F, Equation 3-29
The device-lévei simula;cor sequentially applied the system-level effort response and
generated a flow response F;, € R” from an equivalent conduction matrix G}, € R™".

This procedure used the nodal representation in Figure 3-10 where a sensitivity
matrix was available for the system-level, internal device, and external devices to construct

a Norton equivalent circuit for nodal analysis. This information was used to find the next

system-level effort E;" and flow F;"'. A second calculation step adjusted the solution to

eliminate the contributions from the internal device model. The new system-level flow and

effort values from section 3.4 were defined as

EN =E _(GEQI; +Ggy l;l )—1 (FA'/I +F; ) ~ Equation 3-30

Fi = Fy+Gy| (B - EY) Equation 3-31
The new system-level effort and flow values were used to derive a new correction flow

i+l itl

» -
i+l i+l
s

- s s . . . . . :
INORlé GEQI i INOR[;,I GEQ]I\I/[ ICI1+1 INORI A GEQI ‘11&

=

Figure 3-10. Nodal representation for the flow correction approach

76



where ‘

Fgt = F _FNOR|; +GEQI; - Fg
= I+ F+ G| - (B - By) ' Equation 3-32
= B+ (- F ) Gy (557 - E)

This equation was further expanded to derive a flow-based relationship for testing

different constraints on the solution ‘process where

&t = B4 (- Fi )+ Gy
=Fl+ (GEgl; +Gy|, XE;’“ ~E.)
=Fl- (GEQ|; + GEQ|;XGEQ|’S +Gy| )l (7 +F.)

i : i i Y1
=FC"—(aFS + 9 Ian +aFM] (7 +F2)

(B - EY)

Equation 3-33

JE; OE; | 0E; OE;
The iteration process was defined as a scaling matrix 8’ e R™" times the flow summation

between the device-level and system-level, or

AL T A o
= - - > - t =0)=ident t
’ (aE§+aE§ IaE;+aE; B*(t, = 0) = identity matrix

R =F - B, +F) F(,=0)=0

Equation 3-34

Several variatio-ns of thé scaling matrix are considered in the convergence analysis to
eliminate the complexity of calculating three sensitivity matrixes.

This procedure was initially a sequential process to get a good initialization solution,
but parallel version was easily implemented. The parallel version followed the procedures

from section 3.4 except that an initialization sequence was required to apply the initial effort

77




values to the device-level simulator. All new corrector values were defined using Equation
3-32, where the simulator-coupling matrix solved the new flow and effort variable values.
The predictor interfaces did require additional sensitivity parameters and constraints
on the sénsitivity function matrix (Equation 3-23). Each predictor device created both
system -and deviqe sensitivity parameters, since the internal model sensitivity had to be
;:alclulat_ed. The system parémeters interacted ONLY vx;ith other system variables, and device
parameters thy interacted with other parameters from the same device. These relationships

were defined as follows:

bEV . Equation 3-35
z (Ainput)- ______aputput

r dinput

= Aoutputlsysrw
SYSTEM

The device sensitivity parameters were ALWAYS the FLOW over EFFORT parameters,

while the system variables were identified using fhe input causality rules.

3.5.2 Convergence Analysi;

From a flow perspective, convergence between the system-level simulator and the
me;:hanical simﬁlators occurred if and only if the device flow response becomes equal to the
negative value of the system-level flow response. The expansion of the correction flow

matrix showed that

R = e+ B (Fy + )
B B(E + )+ B+ B = S (B )
=0

J

Equation 3-36

78



Since the scaling matrix ' was assumed nonzero, the flow sum had to approach zero for

the process to convergence. This relationship was considered for detecting divergence in the.
correction process and for switching bétween differenf scaling options.

The effort iteration process showed how the different conduction matrixes interact
to cause divergence problems. The recursive relationship for the system-level effort vector
was.defined as

£ =G (B - E)= 6. (- R+ 5o (5 4 )

=G F - -F)+ B GRES + FY) Equation 3-37

=G ) R+G) (B - +(G.) (G - priGi e

After repeated substitutions, this iteration process was equivalent to
B =) R+ G.) -6 e
j=i-1[ k=i-1 . o ]
G| T 4- ettty )] srb-culonle

Equation 3-38
=0 | k=j
The necessary condition for convergence for effort was that all elements in the product term

approached zero as the number of iterations increased, or

k=1-1 .
H(l - B*GL (G )-1)—> 0 asi— o . Equation 3-39
k=j

This relationship defined the rate of convergence for the process. The convergence of this

iteration process was examined based on three different scaling matrix definitions: an

identity matrix, a strictly diagonal matrix, and the full definition.




3.5.2.1 Identity Matrix

As the simplest procedure, an identity-scaling matrix (8’ =1) eliminated all

sensitivity calculations. For this scaling matrix to work, all models had to be relatively
accurate, so corrections were done under small-scale conditions. Since the accuracy of the
system-level device model was not absolutely specified, divergeﬁce became a possibility as
the modeling errors increased. To examine this iteration process, the system-le'\{el flow was
assumed constant while the-coriductiq’n‘ matrixes were also assumed constant and diagonal.
With the diagonal matrix assumption, the non-diagonal elements in the matrix expansion

process were ignored and the matrix was solved per diagonal element. A single effort value

(e5) with a flow ( f ) was defined by
1 j=i-1[ k=il g, :l £ J=inl g =/
e =—1|e; + -2 I f =25 14 1-8M
’ gAl: ’ ;[1;[\ 84 ) | e }ZO &4
T i j=i-1 -/ 1
I |18 ,2 18| oSy [1-8
84 84 )0\ - 84 Eu &4

The convergence requirement was that

Equatibn 3-40

0<84 <2 g,>05-g, ' Equation 3-41
&4

Under the given conditions, the system-level effort and the mechanical flow converged to

e = éFS_ fo =—g,es =1 _ Equation 3-42
M . . .

This simple process did meet the current convergence requirements, but the rate of

convergence was poor unless the models were almost identical. As an example, 2 minimum

80




number of iterations to satisfy a relative tolerance (g;) were calculated based on the
maximum scaling ratio where «,,, = (gM /e, )W The minimum number of iterations
By for relative convergence was approximately

(1 - aAMX )”MIN < sr

_ne, 0<0y,y <2;0,, #1
J Infl — 044 , Equation 3-43
i>nmgy = 1 Oy =1
oo otherwise

Nonlinear device behaviors and non-diagonal matrix coupling effects were certain to
increase the number of iterations for convergence. Consequently, an identity-scaling matrix

was very impractical as the model accuracy decreased.

3.5.22 ‘Diagonal Scaling matrix

Like the identity matrix, the diagonal scaling matrix definition ignored all coupling
effects across the device’s terminals. A strictly diagonal dominance assumption [83, pp.91]
was made with the purpose of avoiding sensitivity matri;( calculation, so all cross terminal
componenf contributions were lumped together in' the diagonal elements. A secant

approximation provided the partial derivative relationship where

aFi Fi __Fi—-l . AFi
aEi Ei _Ei—l - AEI

Equation 3-44

If all effort variations for the nodes were identical, then the effort variations could be
eliminated if the effort differences were not zero. Under this condition, the correction flow

became a function of only the flow variations, where .

81



[3' M I AE'I S€
5 = | AFy, ;1 AF, s, o Equation 3-45
1 otherwise
7

Bi=0Jj*k

Usiné they. lulmped linearization step, the consideration was that sensitivity
.inf'orrﬂnation becarpe a relativje approximation (GR’;) times a diagonal scaling matrix (t),)
where

G

; =0y -Gy ;{ | Equation 3-46
If the relative approximation was assumed equal in all situations and the scaling matrix was
calculated in the same format for each representation, then the relative approximations
cgncelled and the scaling matrixes did provide sufficient information in certain cases to
emulate the full sensitivifcy calculations. The convergence rate from this approach converged
faste;' than the identity-scaling matrix. If the conduction matrixes combined to create a
strictly diagonai result, then this process converged absolutgly. Otherwise, divergence was
still possible since the contributions from the cross-coupling effects accumulated to exceed
the convergence conditions. Of course, the chanceé of divergence increased with an increase

in the number of device terminals. However, this process had not calculated any gradients

outside of the normal iteration process.

3.5.2.3 Full Definition
The full definition of the flow correction method had to calculate three sensitivity
matrixes ' although the  system-level simulator generated two sensitivity matrixes

simultaneously. The positive feature of the full definition was that one model was

82



completely adjustéd in terms of anc;;cher model representation to eliminate any errors
between the two representations. Effectively, this approach negated the effects of the
internal behavioral model. In a sequential format, this basic sequential process had low
performance characteristics because the full sensitivity matrixes were still required. In a
parallel format, the full procedure should have equivalent or better performance compared
to the standard proéess IF THE SENSITIVITY MATRIX FOR THE INTERNAL
BEHAVIORAL WAS ACCURATELY CALCULATED. Calculating the sensitivity

parameters of the internal behavioral model was difficult in certain situations.

3.5.3 Algorithm Modifications

During the testing of the flow correction process, a significant problem was
encountéred where a large flow correction value caused\ the simulator to reduce its
timestep. If a'correction value was too large, the LTE calculation in the simulator had to
compensate for the error by reducing the time step. Part of the problem was that the
correction pr(;cess used multiplication to find the flow correction values for the
PREDICTOR. interface, so any error in the sensitivity calculations capsed the flow
correction values to diverge. In certain cases, the large flow correction values forced the
internal model into an unnatural state. The problem was the most severe at an inflection
or peak i)c;mt in the analysis of the internal model. |
| Because of the timestep reduction, the increase in the number of analysis points
made this process very iteration inefficient compared to the convention interfaces. To

make this interface more feasible, the problem had to be eliminated, and a minimization

83



rule was used to limit divergence of the flow correction values. For this rule, two different

correction variables (FZ'; and F.'}) were calculated from Equation 3-32 where

FC,' :; = F C,' + AF C'ALC + Gpresenl : AEé,‘,‘iLC » Equation 3'47
Fci:: =F.+AF .+ G premous AEgy. Equation 3-48

The normal calculation fqr the correction process is Equation 3-47 and the checking
function is Equation 3—'48, where the normal function used the present sensitivity matrix and
the o;thér function used the previous sensitivity matrix values. The assumption for this rule
was that only one set of sensitivity parameters was invalid at any point. The iimiting feature
compared these two calculations and restricted the final éorrection value (F.™) as follows:

i |FE]>|RE) then BY= RS

i+l _ il
else F." =F;.,

Equation 3-49

The ratio axwas the useffdeﬁnable parameter CORRSENSRATIO under the DEVDEF
command (see Apperidix-A). The optimum value was found quickly to be between two and
ten, but very little experirnehtation was done beyond the default value of five.

This limiting procedure did identify the p;oblem with the'correction process as the
proper calculétion of the sensitivity pérameters of the internal model. In tﬁe future, a more
robust approach is required to eliminate the parameter divergence since certain examples
still had a large number of transient points where the basic assumptiori was violated.
Different sensitivity calculation methods did improve the iteration efficiency of certain

examples.

84



3.5.4 Modeling Issues

The model definitions at the sysfém-level required sufficient information about the
mechanical components to define the first-order coupling mechanisms between the device
terminals. Otherwise, the correction flows did not properly adjust the effort variables like
the FE device model, and the process began correcting large-scale variations compared to
‘- smz;.ll-scale variations. The behavioral model in this method should be at least as accurate as
a device’s structural representation like a RLC network (linear representation). More precise
models offered faster convergence rates for the analysis and less iteration with the external
simulator. The consideration was that the external models were always more complex and
accurate than the internal model. Otherwise, the simulation process did not require the
coupled simulator. Finally, this method required that the behavioral model did not need
modified nodgl analysis (MNA) since the process was based completely on nodal analysis.
The primary concern was inductive eleimenits with no series resistance where different effort

sources could be shorted.

3.6 Summary

This Chapter has outlined three different coupling methods: a non-conventional, a
conventional, and a flow correction. Each method attempted to use causality assignment to
improve the coupling process. For the first two methods, a causality-detection scheme was
considered where the interface model  was self-configuring across all simulators to
maximize iteration efficiency and to define an interface st;'ucture where “one fits all” for

black box representations. The first method had several fundamental problems that make

85




the process completely .unstable under most conditions. The second method was based on
conventional techniques and the mathematical foundation was consistent for all elements.
Using conventional interfaces, causality assignment was used to switch between different
calculation processes to improve convergence and iteration efficiency.

The flow correction method implemented an overlapping approach where
behavioral models completed all feedback paths in the analysis. All simulators had a
deﬁﬁe& role as system-level or devige-level simulator, where the system-level simulator(s)
controlled the device-level simulators in a sequential format. With an initialization
sequence, the correction approach was made into a parallel process and was solved with the
standard interfaces. In termé of performance, the flow correction method potentially
eliminated the sensitivity matrix calculations required between simulators if the ratio of the
real and behavioral conduction matrixes were sufficiently diagonaf. The advantage of the
ﬂqw correction method was in the hybrid approach where different external modeling

representations (correctors) were or were not applied to the default behavioral model.

86



Chapter 4. Backplane Implementation

In this chapter, the implementation of the backplane is described. The backplane
routines provided a common framework (as middle ware) to synchronize and to convert
information between the simulators as shown in Figure 4-1. This implementation made all
simulators into simulation engines where the backplane synchronized the engines. In this
process, the backplane became the simulator while the simulators became model evaluators.
All backplane operations were classified into the four functional categories: calculations,
communications, control, and database. Sections 4.1 to 4.4 describe the implementation
aspects of these categories. The control parameters were the major focus point to implement
the dynamic modeling process and to optimize the coupling efficiency between simulators.

The simulator selection process is described in section 4.5.

Simulator | Object Common
Status Status Object
-  and Object Interface
~ control | Variables at Topat
(m) Sensitivity - Vahues —’
" [nformation| Q,lalltput N
& . Backplane | [ Values | i
0-8 ° ¢ * Calculation
&8 Cs)bject Procedures Matrix
a'g Simulator tatus Py Local Results
S 2 — definition —P . i
§ E Status Object P intorface Simulator Database
g P and | Varisbies
&) control
(Sim ID,) | Sensitivity
Information| Simulator
Reference |
12 Message Output
Generation (+response)
Global Su}xulator
2 i Reference| o\ | oo ,
—> Instruction Sync;ggmze-} eﬁ;ﬁ?ce Translator;
i Control | | (+control) _Code_;

Figure 4-1. Interface between the backplane and simulator

87



The’ command set for the backplane operation was developed to maximize

flexibility and expandability. All data within the backplane was sent in ASCII form to be
human readable for debugging and script writing purposes. A short synopsis of the different
database and command keywords are presented in Table 4-1. The complete definitions and
parameter variables for the backplane are presenting in Appendix-A, which also outlines the

modifications required to incorporate the backplane into a simulator.

4.1 Communications .
The communication mechanism was considered a physical problem that was not a
major issue in this work. Of coarse, the fastest communication mechanism was preferable to

the slowest implementation. A modular development of the backplane architecture allowed

Table 4-1. Keywords for the simulation backplane

Keyword Codes Description

DEVDEF Define a device within a sitniulator.

GLOBPRM Define global parameters common to all backplane elements.

GRADDATA Define object gradient data from a simulator.

ID Define the simulator ID during the initialization process.

INCLUDE Include a file as a subcommand file.

MESSAGE Messages (warnings, errors, etc...) sent to the backplane controller.

MODELDEF Define a multi-facetted model for the dynamic switching process.

OBJDATA Define object variable data of a simulator.

OBJPRM Interface controls and configurations for an object.

REQSTAT Request the status of a simulator or its internal objects, parameters,
etc.

SIMCMD Send a command directly to a simulator.

SIMPRM Define simulator control instructions and parameter deﬁnltxons

START All simulators are to start processing data based on their MODE
parameter.

STOP All simulators are to stop and await further instructions.

TOLERANCE Define the convergence tolerance for variables of root objects.

TRIGDEF Define the trigger conditions for switching between models.

88




the substitution of &iffererit transfer mechanisms like SOCKETS [96], PVM [100], or even
file baséd transfers. The backplane coxﬁmﬁnic;cltions m;echanisrrll. was chosen as SOCKETS,
but any communications mechanism could be used. The architecture of the communication
process waé more important for optimizing performance by eliminating sequential delays.

The communications architectures considered in this work Weré-péer—to-peer and
client-server wifh a centra1 controller module (BKPLCON). The controller was present to
make decisions for the dynamic switching process and to be a communications server.
Simulators élways communicate with a controller module and NEVER directly with
another simulator, so only the controller had to handle errors and the addition of new
simulators during the analysis. In a peer-to-peer configuration, each simulator implemented
the backplane calculation procedures independently to reduce sequential operations. In the
client-server mode, the server received all information, performed all system-level
calculations, and defined the interface valués back to each simulator. Sensitivity
calculations were perfonqed by the local simulator, but other calculations were the
responsibility of the server.

Bot‘:h'implementations had approximately the same communications overheads. The
client-server modEl had additional séquential processing steps because of the equivalent
matrix generation required by certain interfaces. However, the client-server model had a
district ‘advantagé in a single processor environment because- of redundancy in the
calculations. In a multiprocessor environment, the major performance issue was the
calculation of the equivalent matrix with the peer-to-peer architecture having the advantage.

This implementation used the peer-to-peer architecture model because of the potential

89




elimination of sequential processing steps.

4.2 Database Structure

The primary database definition for the backplane was BKPL_DEF. This structure
contained all simulator infdrmatich as shown in Figure 4-2. Each simulator had to create
this variable internally for interaction with the backplane as described in Appendix-A. The
parmﬁeter definitions in the different structiﬁes wefe ﬁe contrc;I mechanisms for all aspects
of the backplane. For this reason, the common parameter structure within the backplane was
easily expanded with a variety of IO formats.

The backplane structure BKPL_INTF under the object definition of a simulator was

the master node translator where both the backplane and simulator read and wrote

Figure 4-2. Overview of the backplane database structure

90



information. All data access wés done »thro‘ugh this interface structure (See Appendix-B).
Each interface corresponded to a backplane object with an interface definition and
configuration. Tﬁe interface déﬁnitioh wés the" primitive interface type defined by the
simulator. The interface configuration defined how a solution was applied to the interface.
In this coupling process, only shared data and monitor points from a simulator were
transmitted over the backplane while all other solution information was stored and
maintained by thé ~loca1 simulator. The backplane did not attempt to generate a common
database sinae déta’ retrie;val was a function perforrhed by the local simulator or other data
translators as part of the design and simulation framework [57]. However, this data retrieval
procedure could cause a problem in the dynamic modeling 'approach where data from a
previous session could- be overwritten if a simulator restart occurred. For this reason,
deactivating the simulator into the OFF mode prevented the overwriting of data compared

to a simulator shutdown with a restart.

4.3 Control Structure

The two control aspects of the backplane were the backplane controller (control
" module) and the individual simulator control. The control module interacted with the user
interface and defined the operations that the other simulators performed. At the beginning of
an analysis, the simulators performed the normal initialization process where a backplane
initialization sequence found a unique name or ID for the simulator and created the
backplane structure within the simulator. The backplane process in a simulator is shown in

Figure 4-3. Once all simulators were operational, the controller module defined the objects,

91




[ Initialize Backplane| ~ Simulator Task []
¢ Backplane Task [ ]
Interface Task | ;
Initialize Simulator e
and backplane
interfaces
? yes
\$h\utdo i Backplane shutdown
 Define the simulator : y
., analysis references :

.................. . - Normal
Import interface data.: - Simulator shutdown
: Implement different : Mode.

flag operations .
s pﬁssible_ : Preprocessing X
....... T Process backplane
' " information and
Do local : instructions
Simulator process _ T
Mode
‘ Export interface data: | | | POstprocessing
- Export analysis - : Process simulator
... Teferences results

Figure 4-3. Sirhulator control overview flowchart

the initial modes, tolerances, interface configurations, etc for the simulators and sub-
controllers. The major aspects of the control structure were the simulator mode, operational

status control, and the triggering situations.

4.3.1 Simulator Modes

The most important control parameter for a simulator was MODE under SIMPRM,
which defined the proccf;ssing procedure for the simulator. Thé MODE pmaﬁeter for a
simulator had eleven different statés of operation as shown in Table 4-2. A simulator’s

mode was controlled via the START and STOP commands. This section describes the

92



Table 4-2. Backplane modes for a simulator

Classification Mode Names
Non-calculation, non-interactive modes IDLE or OFF
ITERROGATE and OVERRIDE
SHUTDOWN
Non-iterative modes LOAD and SAVE
INDEPENDENT
~ , SYNCHRONIZE
Iterative modes ITERATE and SENSCALC
TRACK
UPTODATE

different operational modes.

4.3.1.1 Non-calculation, Non-iterative Modes

Most modes in this category were a variation of IDLE or OFF. An IDLE mode
simulator received information from other i)ackplane elements and responded to new
instructions from the control module. After the successful completion of an operation or a
STOP command, all backplane elements were forced into the IDLE mode except for the
IN TERROGATE modé. The OFAF mode indicated that a simulator was to remain inactive
with no contributions to the solution matrix although the IDLE mode had the same
definition. The SYNCHRONIZE mode did make a distinction between the two modes.

The SHUTDOWN mode began the sequence for a simulator to perform an orderly
shutdown of its internal databases prior to the backplane forcing a shutdown. The simulator
had one opportunity to perform a shutdown after the shutdown flag was set to the simulator.
Otherwise, the next occurrence of the main backplane procedure forced the simulator to exit

or halt.

93



The INTERROGATE mode broadcasted the local simulator’s object variables, the
object configurations, and simulator parameters to the central controller for diagnosis and
configuration. This mode provided all backplane elements with knowledge §f the objects
and variables involved in the simulator including any previous responses or event lists. This

“information was" used for' s’ynchroniéation and simulation initialization. A backplane
: t;lemept entered the OVERRIDE mode when .the INTERROGATE mode was completed.
The OVERRIDE mode was anoﬁer ifaria’éion of the IDLE mode where the READONLY

parameters in the backplane could be overridden.

- 4.3.1.2 Non-iterative Modes

The SYNCHRONIZE mode was a non-iterative version of the ITERATE mode
where a simulator applied variable information to synchronize with .the operation of the
other simulators. This operation was a roll-forward for simulators that were being spawned
or restarted from the OEF mode. Additional synchronization modes were the SAVE and
LOAD operations for capturing and returning to a previous calculation point as discussed in
section 2.5 for rollback or quick initialization. However, these functions were -simulator
operations and not backplane functions, so the backplane.only initi;ated the operations. For
manual synchronization processes, the OFF mode distinguished simulators .that had
previously been active (now in an IDLE model) from simulators that were OFF in the
previous analysis operation. The backplane automatically synchronized simulators that

. changed from an OFF to an ITERATE mode during an analyses.

94



"i“he INDEPENDENT mode detached the simulator from the backplane. By
detaching the simulator from the backplane, the simulator returned to an independent
operational mode where most backplane overheads were removed. Once a simulator was in
the INDEPENDENT mode, the simulator was not able to reconnect to the backplane. The
simulator did interact with the backplane for defining interface values that were potentially

stored in a data event list. -

4.3.1.3 Iterative Modes

The ITERATE mode was the primary iteration process where all simulators were
iteration locked and data synchronized. The other iterative modes followed the iteration
locking rules of the ITERATE mode simulators. The three iteration levels for the ITERATE
mode simulators were:

1. Iteration done.

2. Reference done.

3. Simulator-stopped.

The lowest priority was the iteration done setting, where the simulator had completed the

present iteration for the given reference point without convergence. The reference done

level indicated that the simulator had found a converged solution for the given reference
point. When all simulators reach the done level, the process continued to the next reference
point on the next iteration. The simulator-stopped level indicated that the simulator had
reached a stop or error condition. Simulators remained in a stop state until all simulators
reached an equivalent state. The stopped level had the highest priority. Although the rules

were common, the TRACK and UPTODATE modes applied the rules at different levels.

95



The SENSCALC mode was a temporary mode in the ITERATE mode for generating the
sensitivity parameter matrix of a simulator required by the calculation process.

The TRACK mode was a variation of the ITERATE mode where simulators were
locked at the reference done level, so the TRACK mode simulators were not involved in the
standard calculation procedure. The TRACK mode allowed a simulator to track the final
solution of other simulators by lagging the operation of the ITERATE mode simulators. The
simulators in the ITERATE mode had to wait for TRACK mode simulators to finish their
analysis of the. previOI;s re.ferericé.poiﬁ"c. Specifically, the TRACK mode was a concurrent
verification tool of other simulators used with an accuracy trigger. |

| The UPTODATE mode was a combination of the ITERATE mode and
SYNCHRONIZE mode. The purpose of this mode was to eliminate part of the sequential
delays for a simulator in an OFF mode to be résynchronized with simulators in an
ITERATE mode. The procedure waited for the simulators in the ITERATE mode to exceed
.. the retained event limit (humber of reference points that an object can maintain during an
analysis). When the minimum reference point in all event lists were beyond the present
reference pc;int of the UPTODATE mode simulator, the simulator smcﬁonﬁed with the
other simulators to the last valid solution point. An UPTODATE simulator only attempted
to remain up-to-date with the analysis of the ITERATE simulators. A simulator in the

UPTODATE mode was not locked with the simulators in the ITERATE mode

96



4.3.2 Simulator Status Control

The three synchronization parar;;eters'in the bai_qkplane:_were REFPREV (stable or
previous iteration point), REF (present iteration point), and REFDELTA (next iteration
delta value for tﬁe REF point) as shown in Figure 4-4. These reference parameters
corresponded to common variables in the analysis such as time, frequency, etc. This work
focused on transient analyses where time was the primary variable. The reference structure
| for all sﬁchoﬁﬁatiqn dé.té. within the backplane was expressed as a hexadecimal number
of discrete interx}a'ls‘ and not as a floating-point number [92,pp. 21].. Without using
hexadecimal représentations, the different backplane elements lost synchronization due to
timgstamp‘ mismatches caused by error accumulation and rounding of imprecise floating-
point numbers.

Several flags were defined for the simulator from the backplane to control various
aspects of the analysis as desqribgd in Table 4-3. The one essential flag was the shutdown
indicator that allowed the simulator to shutdown in ahormél fashion and to cleanly close all

related databases. All other flags were optional and depended -on the capabilities of the

variable

. refdelta’ | refdelta
_:(present) . (next)

>
refprev ref

Figure 4-4. Major variable reference (time) exchange between a simulator and backplane

97



' Table 4-3. Flags generated from the backplane to the simulator.

Flag (*%). Description

SHUTDOWN Indictor to shutdown the simulator in an orderly fashion.

OPERATION Indictor that a backplane interface was in the analysis.

SOLV_SAVE Indictor to save the present iteration data as the solution. Without this
flag, the simulator stored interim iteration data.

LOAD_FILE Indictor to load external file that contains simulator solution and state

; *| information (BACKUP/restore function).

LOAD_STATE | Indictor to load a simulator’s backup solution and states from memory
(BACKUP/restore function).

NEW TIME Indictor that the REF variable has changed.

ROLLFORWARD | Indictor to a simulator that the backplane will be synchronizing the
simulator to new data in the future. If possible, the simulation should
move to the new reference point, and restarted the analysis assuming
initialization conditions applied.

SAVE FILE - | Indictor to save a simulator’s solution and state mformatlon into an
external file (BACKUP/save function).

SAVE_STATE | Indictor to save a simulator’s solution and state information into

' memory (BACKUP/save function).

SENS_CALC Indictor that sensitivity calculations are being performed. The
simulator’s local model evaluation process can be skipped if possible.

SENS SSAVE | Indictor of the beginning of sensitivity calculations. The simulator
should save the present solution values to restore the values at the end
of the sensitivity process.

SENS_SLOAD | Indictor of the ending of sensitivity calculatlons The simulator can

load the stored solution values, so an extra iteration is not required to
return the solution back to the previous value.

** The prefix BKPL._ is applied to all flags to avoid naming conflicts with the simulator.

simulator, but the efficiency of the coupling process could be improved by using these flags.

The sensitivity control flags had the greatest potential to improve the performance of the

overall analysis by eliminating calculation steps in a simulator (See section 4.4.5).

4.3.3 Model or Simulator Switch Conditions

This simulation backplane had five different triggering conditions for model

switching as defined in Table 4-4. All the different trigger conditions can be used

98




Table 4-4. The different trigger”cpnditi(l)ns available in the backplane

Trigger Description
Accuracy This trigger uses simulators in a TRACK mode to maintain a specified
accuracy compared with the reference device model. The trigger is re-
activated after occurring.
Immediate Immediately switch between the active device definition and a new
device model. The trigger is de-activated after occurring.
Range This trigger uses the ranging information in the model definitions to

optimize performance, variables ranges, and accuracy. The trigger is
re-activated after occurring.

Reference At a specific reference point, switch to a certain device model. The
trigger is de-activated after occurring.
Variable This trigger uses variable conditions to change between different

model representations. The trigger is re-activated after occurring.

concurrently, although the accuracy and range triggers were designed to be autonomous.
Most trigger conditions waited for the convergence of the present iteration sequence before
implementing the model switching process to eliminate triggering loops. The specific rules
for model selection using the different trigger condition are outlined in Appendix-A. A
general description of the dynamic modeling process was deﬁhed in section 2.5.

The dynamic modeling process within the backplane had several levels of decision
making. The trigger conditions dgﬁned the device status, the device status defined the object
status, and the object status was used to define the simulation mode. Once the simulator
mode was defined, the objgct status was redefined based on the simulator status. The rules
for the object and simulator operation were very simple. If any object in a simulator was
active, the simulator had to be in an ITERATE mode. Otherwise, the backplane assigned the

simulator mode based on the DEACTIVE_MODE parameter. For a simulator in the

99



-ITERATE mode, the object status was either ON or TRACK. The TRACK mode required
the object to track the operation of the active interfaces in a node. An object status was set
to OFF only if the simulator was in an OFF mode. The other simulator modes required the

- simulator’s objects to be in a TRACK mode.

4.4 Calculation Control S&ﬁcMe |

The calculafioﬂ proéedutés »Iwere outli'ned in 'Chapter 3, where thé Basic _iteration
process was defined by quation 3-24 and Equation 3-25. The scheduling and calculation of
the sensiti\'rity information ‘w'as most critical task in this coupling process, since all aspects
of the calculation process depended on the sensitivity information. The exact sensitivity
ﬁlncti:ons were not 'required to find a solution in the iteration process, but better
approximations ﬁad faster coﬂvergénce [12, 92: pp. 72-81]. Any improvement in
convergence enhanced performance and ite;ration efficiency by eliminating calculations.
Thus, a variety ot; schedl;ling and sensitivity calculation options was proQided by the
backplane,ﬁ buit full optimization of the backplane interacfion with the simulator was left as a
future development isspe. The specifics of the matrix building, convergence criteria,
‘sensitivity calculation controls, and basic object modes are.deﬁned in this section. The
interfaée initialization procedures did impact the calculation process as discussed in

Appendix-B.

4.4.1 Matrix Building
The matrix building process was a very straightforward procedure. The backplane

rebuilds each matrix on a START command vand‘ rechecks all device, object, variable, and

100



trigger lists. During the building process, four matrixes were constructed or updated:

perturbation, sensitivity A (GRADMTX), interconnectio,n (SYSMTX), and equivalent
(SIMMTX). The perturba;tion matrix was a simulator speciﬁ;: matrix that was used to
generate a simulator’s sensitivity matrix. The sensitivity matrix was <exported to all
simulators, and was used to generate the interconnection matrix. The interconnection matrix
was used to caiculate new solutions and to generate the equivalent sensitivity mafrix for the
~ local simulator.

All matrixes were fixed in terms of variables in the matrix although a simulator’s
Jocal perturbation matrix had dynamic characteristics because of the input-causality
detection process. Only the perturbation matrix used the inactive and active variable
capabilities of the backplane matrix structure where the inactive variables were not used in
the solver process and were zeroed. Delta information (acquired during the SENSCALC
mode) was défmcd for both active and inactive ﬁéfameters since causality was determined
after the berturbation m'ethoduwas applied to the simulator. The causality detection process
essentially determined ﬁ}hich variables were active and inactive. F iﬁally, the pertﬁrbation
matrix was selectively built based on an interface’s characteristics deﬁﬂed in the backplane.

All matrixes were solved using a pivoting LU decomposition method [86].

4.4.2 Convergence Control
Because of the variety of interface structures and procedures, the backplane initially
implemented all convergence rules based on the EFFORT and FLOW rules for all variables

from each simulator. Speciﬁcally,~the basic convergence rules were:

101



|EM4X - EMINI < S(M{IEAMXHEMIN!})

|ZF, I <&(Fpux) Equation 4-1

The £() function was the error calculation function of the backplane defined in Equation 2-

10. After several tests, the realization was made that the basic rules haa a serious flaw. The
calculated solution from Eduatiﬁn 3-24 converged, and thus, the variable values for the
simulajors reached a consistent sblutiqn. However, Equatidn 4-1 was not satisfied and the
iteration process did not cohverge. This approach differed from the conventional procedure
of testing the convergence of each variable of the calculation solution with scale value
(a =1) where

l X1~ X l <elx Equation 4-2

To eliminate the flaw, the conventional convergence rule was incorporated into the
'convergence process using the same tolerances parameters with tighter scale value
(a =10). Wﬁen all variables satisfied Eqﬁation 4-2 given a sufficient number of iterations
in the present sequence, the backplane declared the solution valid and continued to the next
iteration point. Certain interfaces did override the secondary convergence rule when the
interface variables were not part of the calculated solution. Equation 4-2 was checked

ONLY after the initial convergence of all simulators.

Another problem during the solition process was solution oscillations. A calculation

sequence was converging if the following condition was satisfied:
A= Z(xiﬂ - xi)2 <A, = Z(xi - xi—l)z ' Equation 4-3

When this condition was violated, a relaxation factor (&) of 0.5 was added to Equation 3-

102



24 to limit divergence, or

) -1
X =X, —a(%f-) F ‘ Equation 4-4
X

After the divergence condition had been détected a certain number of times, the relaxation
factor was always applied to the calculation brocess until the next iteration sequence began.

Using Equation 4-3 and 4-4, the iteration sequence could still have a slow rate of
convergence. The slow convergence rate was identified by

(A, <A,)and (A, >09-4,) Equation 4-5

'On this condition, the final solution was weighted with the present and previous values to

generate a new solution [102] where

=N
Xen'= 2.0, % N=2,0,=050=040,=01 Equation 4-6
Jj=0

The combination of the simulator sensitivity parameters and variable oscillations was one

cause of the slow convergence problems.

4.4.3 Sensitivity Delta Definitions

The calculation choices for the partial differential equation in the iteration process
were the Newton or secant bésed approaches although various methods can be used [92].
For a comparison, Newton’s method had a quadratic convergence rate (m=2) where a
secant’s convergence rate was lower at (m=1.618) [94, pp. 26-32]. The difference between
the two approximationé was the size of the delta where the Newton method had a smaller

delta than secant method. The secant method became equivalent to the Newton

103



approximation as the variable delta approached a small value. The size of the delta was
critical as the applied deltas could become too small and sensitivity information
enc‘:ountered rounding problems [94, pp. 155-157]. Large deltas had the problem of masking
essential information. The sensitivity tolerance parameters were individually definable via
the TOLERANCE command while the object parameter GRADCALC defined the delta’s
magnitude for the sensitivity process. |

The backplane process applied a single delta to calculate the sensitivity information,
so the direction of the delta had:a‘r'l impact on the coupling process. Minor variations in the
delta direction often meant’ the diﬁéience between convergence and non-convergence.
Several different options to define the direction of the:,,ap;iliecli delta were available via the
objeét\parameter GRADSIGN (See Appendix-A): Usually, the default option applied the
delta to force the simulator’s variable value toward the calculated value, since a common
. direction toward the “true” solution should maximize »convergence. In addition, the
sensitivity information affected the solution, which determined how a simulator adjusted its
timestep. The performance of the coupling process was also improved by minimizing the

number of time steps to reach the REFSTOP point.

44.4 Sensitivity Scheduling and Mode Definitions

The écheduling of the sensitivity calculation was controlled by the objeci parameter
GRADTIME (See ApbendiiclA). This paraméter had a direct relationship on the number of
calcula:tions between the Vsimuiator and backplane. Prior to the first converged solution,

sensitivity information was calculated per-iteration regardless of the GRADTIME definition

104



to implement Newton’s metliod to the fullest degree possible. Because of this diversity in
the sensitivity scheduling, the dynamic configuration process for an interface from section
3.1.was performed at theAr:‘eference-do.ne level in the ité’ration éequence and on the detection
of a new input variable causality.
The GRADMODE parameter for each object defined how to calculate the
sensitivity information. The three options were IDENTITY or NONE, DIAGONAL, and
FULL. The IDENTITY option was intended for the correction process, and this option
disabled the calculation process for non-correction mocies. The DIAGONAL option
implemented the sensitivity procedures based on decoupled or very-strong diagonal
conditions. In the DIAGONAL mode, all sensitivity information was calculated under the
assumption that all gain and coupling effects between the &ifferent nodes variables in a
simulator were negligible and set to zero. This method specifically used the secant approach
usiﬁg the present and previous iteration values while the delta(s) was sufficiently large. No
sensitivity calculation modes (SENSCALC) were required. The FULL option ﬁnplemeﬂted
the perturbation method where a unique delta was applied to a single interfacg and all
related delté information was gathered. Then, fhe backplane solved for ;111 sensitivity
parameters simultaneously using Equation 3-23 after input causality was determined.
Another critical option for the sensitivity process was how the backplane hand»led a
simulator rollback during a sensitivity calculation. The global parameter SENS_DREF
controlled this "decision. Initially, the rollback problems were not a significant issue,
especially with small delta values and simple pr_oblems. As the problem complexity

increased, any error in the sensitivity calculations resulted in sensitivity parameter errors

105



and causality identification problems. Furthermore, any divergence in the iteration process
was often sufficient to cause complete divergence depending on the sensitivity scheduling

opfion.

4.4.5 Enhancement Sensitivity Calculation Options

Another important ;:onsideration for the coupling process was whether the model
e{/aluation m a simﬁlator was necessary, since most simulétors generated and solved a linear
répresentatioﬁ. If this linear matrix was avéilable, the sensitivity calculation was
approiimately equivalent to varying the source values and solving for the delta effects on
other variables without additional model evaluations. For a linear system approximation in a
simulator where 4 - x = b , this process was defined by

A-(x+Ax)=(b+Ab) _
A-Ax=Ab Equation 4-7
Ax=A"-Ab

Since. this simulator capability would enhance performance, the sensitivity calculation
process from the backplane provided a flag to the simulator to indicate sensitivity
calculations. The model evaluation process can be skipped in the simulator when possible.
This flag also allowed the sensitivity process to be ékipped if the local simulator had a better

mechanism of calculating the sensitivity information for the backplane.

4.5 Simulator Selection
In this research, the basic premise from the first chapter was to use the discipline

specific tools and simulators for MEMS analysis. With the proper backplane structure, the




coupling of the simulators was a straightforward procedure that was simplified with the

selection of an open simulator. A more important choice for the coupling process was using
commercial or public domain software. Both types of software have advantages and
disadvantageé with tradéoffs that were very clear.

With commercial simulators, -the designer had customer support and fully
documented modeling capabilities with efficiently defined graphical user interfaces for
visualization of the results. These tools were typically more polished and provided better
feedback on errors. In addition, a wider range of algorithm selection was usually available
to improve the convergence properties of an analysis. For the disadvantages, the
commercial simulators had to be purchased and some yearly maintenance fee was required
for the latest version. In some cases, the internal algorithms were accessible only through
the basic simulator framework, so these simulators did not always have the flexibility
needed to iﬁcorpprate the backplane elements for sufficient control of the simulator.

Public domain simulators had greater flexibility for the designer to make changes
since the source code was typically available. The initial costs of the product were much
leés, but the users eventually paid for product in time and effort because of the lack of
documentation and “hidden” features in the code. The degree of testing for the code was
usually less than commercial software. Furthermore, the user became responsible for
maintenance and for d;ebuggipg the software unless a large number of users were supporting
the developmeﬁt of the basic program and any auxiliary software.

.The choice between the two environments became a tradeoff between time and

money. A sufficiently large budget provided the designers with a framework of tools and

107



capabilities if the users knew all the tool requirefnents. Otherwise, resources were
squandered on tools that do not truly address the present and future needs of the users. With
the public domain software, the user experienced a limited view of the basic techniques and
only wasted time and not as much money in the process. For graduate students, more time
was available than money, so this work began the development with public domain
software to have maximum control and flexibility. Specially, the electrical simulator was
chosen as Spice3f4 [97] and the FE simulator was constructed using the deal-II FE toolkit

[98]. In both selections, the optimum simulator choices were not made.

4.5.1 Electrical Simulator

The Spice proéam was a coré simulator with oniy analog capabilities, and future
expansion of this sﬁulétor’s capabilities would require significant development. Spice was
only chosen in this work because most public-domain electrical simulators use Spice has a
comparison benchn'lark. The céde was easily accessible. In retrospect, a simulator with an
élgorithfn backplane should have been used. Still, the program sufficed for this research.
One timestep implementation problem was founci with the breakpoint definitions in Spice
and a modeling discontinuity probiem was discoyered.

One major implementation issue occurred with the interfacing of the backplane to
SPICE (version 3f4) because of the transient breakpoints created by SPICE. At a
" breakpoint, SPICE algorithm reduced the next timestep delta of the analysis. This
interaction with other simulators caused problems especially when the reference point of the

analysis was rolled. back before the breakpoixllt‘of another simulator. Because of the

108



breakpoints, the iteration process reduced timestep more than necessary unless the
breakpoint algorithm was performed only when the SOLV_SAVE flag was active (ON) and
GRAD_CALC was inactive (OFF). Without these conditions, the interaction between two
simulators was very dependent on the sensitivity options with results ranging from
divergence to long iteration sequences per reference point with a small timestep. After the
conditions were applied to the breakpoint algorithm, the coupling process become
consistent and less dependent on sensitivity options.

However, SPICE did have one implementation problem that was not a result of the
backplane and simulator interaction. The problem was in the interaction of a voltage source
with internal models, specifically transistor models. When the voltage was connected
directly the transistor models, the current response had noticeable errors, which may have
been a result of unrealistic or poorly defined transistor models. The problem was also
observed with a .Thevinin interface, but the error was more pronounced (orders of
magnitude larger) with the voltage source. When tighter convergence parameters were
required, the coupling process did not converge if a voltage source was used. The error was

often insignificant compared to response, so the coupling process was not affected.

4.5.2 Finite Element Simulator

The search for FE simulators found FE toolkits and not simulators. Because of
domain decomposition problem, a toolkit allowed greater flexibility to examine any
structure or field-based problem. Consequently, this research had to construct a FE

simulator, and the choice was made to use the deal-II toolkit [98] because of “well

109



documented” C++ source code, but other choices were available [101]. For the
implementation, the basics of the FE method with transient analysis were obtained from
[99].

This FE simulator was developed to examine the coupling process and not for in-
depth queling. This research had to dgﬁne the modeling and material properties, where the
preferred approach was to Ihave the buili-in modeling. In this development, the FE §imulator
i;nplemented the material characteristics as piecewise linear (PWL) functions. Still, the
modeling p?ocess was made sufficiently complex to verify the coupling process and to
examine the dynamic modeling procedure. The examples were not easily implemented in

the electrical simulator.

4.6 Summary

This cﬁapter has outlined the backplane structure and implementation over the four
basic components of the backplane. The emphasis of this chapter was the control process,
which determined the flexibility and capabilities of the backplane. The complete
inforrpgtion (;n parametef setting is defined in Api)endix-A wﬁile this section gives an

overview of concepts considered in this backplane implementation.

110



Chapter 5. Results

This chapter presents a result summary on the coupling process for three different
coupling categories: electrical-to-electrical coupling (section 5.2), electrical-to-mechanical
coupling (section 5.3), and dynamic modeling process (section 5.4). An overview of the
e).(ample types and sensit.ivity options is outlined in section 5.1. The goal of the two basic
coupling tests was to ﬁnci the optimum interface, Where optimum interface fninimized the
total number of s'irnulator iterations with the backplane and converged over the most
examples. The dynamic modeling process demonstrated that the backplane allowed a broad
range of analysis capabilities where designers have the flexibility during simulation to
switch between different algorithms or design representations for accuracy or performance
reasons: Most ‘of ‘these— results aré for functional verification of the backplane and a

demonstration of the backplane’s capabilities and failure modes.

5.1 Overview.and Sensitivity

In the coupling tests, three types of examples were examined: no-feedback (effort
gain=0), feedback with small gain (effort gain < 1000), and feedback with large gain (effort
gain > 1—000). The examples had varying degrees of causality with strong and weak coupling
to examine the dynamic interface switching process and the variable-causality identification
process in Appendix-C. The different feedback examples made certain that the backplane
could solve problems that were poorly partitioned across multiple simulators with awkward
interfacing characteristics. The electrical-to-electrical coupling tests implemented all of

these tests, while the electrical-to-mechanical coupling implemented a small subset.

111




A common set of interfaces and sensitivity parameters were tested on each example
in the coupling tests, so failures did occur. The failures were typically a result of four
conditions: simulator non-convergence, interfaces violating causality assignment, deadlock
limit (100), and backplane iteration limit (10000). The initialization procedure of the
backplane was the most critical phase of the coupling process, since the backplane had to
start the analysis based on the initial solutions of the simulator. In pertain cases, the
backplane initialization sequence contributed to the problems because of the calculation of.
erroneous sensitivity parameters due to poor initial solutions. The backplane initialization
routines regarciing sensitivify caiculatibn procedures at initialization were deficient because
the sensitivity delta definitions.

‘Without al.dotltbvt, the proper calc;tlation of the &ensitivity parameters had the
majgr impact on the coupling process. Even minor variations in the sensitivity
calculation procedures had a sighificant impact on the convergence and iteration
efficiency of the backplane. The accuracy of the sensitivity parameters determined the
number of iterations required to reach convergence, and the appropriate sensitivity
parameters (local input causality) had to be identified. In most cases, the number of
sensitivity calculations often dominated the total number of simulator iterations with the
backplane. Optimizir-lg.the sensitivity calcula;cion opti'ons was a critical task for achieving
iteration efficiency because of the tradeoffs between calculating parameters and performing
normal convergence iterations. Specifically, any minimization of the number of simulator

iterations eliminated calculations, which improved the performance of the coupling process.

112



Otherwise, the backplane had no direct control over the individual aspects of a simulator’s

performance besides the flags defined in Table 4-3.
For the coupling process, the ‘sensitivity scheduling option (GRADTIME) was the

most critical definition. The number of iterations (n ) was defined as

eration

n =n +0,;-n, Equation 5-1

iteration
The pararnéter n, was the averége number of iterations per timestep, which had a
dependency on all sensitivity calculation options. The parameter n, was the number of
interfaces into a simulator. The parameter ¢, was the scaling factor defined in Table 5-1. Of

coarse, the interaction of an interface’s coupling options with a simulator’s internal

algorithms did impact the performance and convergence of the simulation.

5.2 Electrical-to-Electrical (E2E) Coupling
- This section focused on itération efficiéricy (or iteration inefficiency) instead of
performance because these examples were all relatively small problems with poor

performance compared to a single simulator solution. Specifically, these examples could not

Table 5-1. Definition of the scaling factor for different sensitivity scheduling options.

Sensitivity Scheduling Option | Scaling factor definition (¢, )
Iteration e n, -1
Timestep 1
Conditional 1
O h; —<o-<1

ni
Error O -, 0<a;<l
Diagonal 0
None, Identity 0

113



overcome the overheads created by the communication and calculation processes of the

backplane. In these tests, 31 examples (14 no-feedback, 9 low-gain feedback, and 8 high-
gain feedback) over 76 interfaces and 18 different sensitivity and calculation parameters
wére tested (42408 analyses) where the average analysis time was 20 seconds. The iteration
results for these exarhples are in Appendix-D.

As a summary, the average iteration results for the E2E .coupling examples are
presented in Figure 5-1, the convergence statistics are in Figure 5-2, and the average
iterations per transient point are in Figure 5-3. A completé listing of the interfa.ce number to
the particular interface combination is provided in Appendix-D. The average statistics and
maximum variation for the iteration and convergence results is defined in Table 5-2, where
variations values are for the different calculation and sensitivity options. In Figure 5-, the

averages over the (n) examples that converged were based on relative statistics (X, ) of

each example (j) with respect to the minimim valtie (X i )» OF

X,
IJ=12[ ! —1] | Equation 5-2
By

J,min

This figure of merit defined the relative iteration inefficiency (I) of an interface compared
to the optimum interface selection in each example. Using Equation 5-2, the goal was to
eliminate timestep variations across the diﬁ‘ereﬁt examples. The interface combination with
the smallest iteration inefficiency value had the best overall coupling performance. For
direct comparisons between intérface combination X and Y, an absolute iteration

comparison (AIC) was required to convert the relative figure of merit to an absolute merit.

114



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44; Dynamic interfacing  53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

© RelTol
10 o RelTol Interp
8 RelMax
6 X % RelMax Interp
4 © o ° &
B oo Mot ey mﬁﬁ?
2 FleRafarats nzt'm:\_' e ] w“‘ R
0 —— T r——r— T T

0 4 8 12 16 20 24.28 32 36 40 44 48 52 56 60 64 68 72 76  MmterfaceTypes

Error Sensitivity Scheduling
12 o RelTol
10 & RelTol Interp
8 . RelMax
6 % RelMax Interp
4 X w B e % 3
3 ] ey TGRS O o @?@3:; Wby ﬁwﬁcﬁ' FA3 M‘f‘“% e

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scheduling
o RelTol
a RelTol Interp
RelMax
g R AR % RelMax Interp
e et Frns ﬁm’%::" ‘:ﬁ.’&ﬁq“ o iad '?m%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

12 Timestep Sensitivity Scheduling
o RelTol
10 0 RelTol Interp
* RelMax
° % RelMax Interp

o Co . .0 X

% vl ,J'm Eall
e P S R
T L s S —— L — I e e

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

12 Other Sensitivity options
a o Diagonal
10 1 Diagonal Interp
8 Identity
6 B
4- A 4:
2
T W I
0 -W a o ,nm_q._—ﬁ&—av

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Figure 5-1. Iteration inefficiency statistics for all E2E coupling examples

115




1-36: Conventional
37-44: Dynamic interfacing

45-52: Parallel Correction (ESRC)
53-60: Sequential Correction(ESRC)

61-68; Paraliel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

100 Conditional Sensitivity Scheduling
" P, [
£ g R el et o ® ® RelTol
3 TRy T3 MR B o orgNys| | © RelTol Interp
s siad N ' X oY RelM:
& 60 T - - 7§ R i - RelMax
¥, [*] &
E 40 2 &xgﬂ é;l‘th' X RelMax Interp
3 ;
£ 20 = !'!f.i\ E e Fy Fid
0 ———————————
0 4 8 12 16 20 24 28 32 36 40- 44 48 52 56 60 64 68 72 7 Interface Types
100 Error Sensitivity Scheduling
R 5 %‘ﬁw.&%&u N1 || @ RelTel
%80 TR ;!A LA "—g‘g:éi»«.éw a RelTol Interp
£ 60 +—Fy R R S v G| ReiMax
g 40 4-2 Mm:,g a8 * = RelMax Interp
(&) v
B % . A tr £
20 - 5
o fPr——--"r-——-—""—-""——"r——"""—"m—"—"4—""r—77r"r—rT""7
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
100 Iterative Sensitivity Scheduling
b Fel g FOBLEN el I © RelTol
g 80 anv_\::—!@ e T % -2 T gém«ajc,j’é’ﬁg@% & RelTol Interp
& R - RelM;
T e . -~
g 401 2w % # RelMax Interp
S Y ;
X 20 R R 2 £
0 S S B A A . S A A A S M. A—_—
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 7 Interface Types
100 Timestep Sensitivity Scheduling
an o # T X 00 . © RelTol
- B e ¥ ot B -
380 G O T BB e R R B R ] o RelTol Interp
8eo o " 0N el | Revax
g A 2 &E,, i K g 3 RelMax Interp
640 3 ?(@ 75,7
2 2 .
820 i 1 T
Fa ’;gq -
0 e e S A R S A A A S——
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
100 QOther Sensitivity options
© Diagonal
§ 80 & Diagonal Interp
2 60 Identity
g
g 4 ° o, O
B 20 A gm oo, A °Em hﬁ” - o Wm
. :ﬁ,&: ® o 8 & g,m‘*? -
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Figure 5-2. Convergence statistics for all E2E coupling examples

116




1-36; Conventional

37-44:

45-52; Parallel Correction (ESRC)

Dynamic interfacing 53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

25 Conditional Sensitivity Scheduling
© RelTol
20 o RelTol Interp
15 RelMax
bed
10 RelMax Interp
| ﬂ" & ] é ﬁ ) 1o et d
5 T e o R, DR o e A S Ve G B A
0 ——— T T T T— T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  [werceTypes
Error Sensitivity Scheduling
25 o RelTol
20 o RelTol Interp
15 RelMax
10 *® RelMax Interp
5 g fle @ 8 @
0 zﬂ"’" 'ﬁyg.«— -ﬁww ’.;Gm,n rhxx:, “’WWWW"‘*’M-lm'j"“rf'"‘ﬁ"""j
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
Iterative Sensitivity Scheduling
% o RelTal
20 &  RelTol Interp
15 - £ = 5 LA RelMax
10 ¥ n - % RelMax Interp
o B ] £ W 53 —mww
PR PINAANCT T L ey W « ﬁ"w;‘f ot L 2l >3 BT
0 e e S s T T  EE m
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
25 Timestep Sensitivity Scheduling
. © RelTol
20 1 RelTdl Interp
15 RelMax
2 RelMax Interp
10
5 - o3 o <]
!;*'Wv:i R R m‘i S5 rMﬁ W&WWW*J L{,WTW TR
0 —— ——— f———— T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
25 Qther Sensitivity options
© Diagonal
. 20 o Diagonal Interp
15 Identity
10
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 176 Interface Types

Figure 5-3. Average iterations per time point statistics for all E2E coupling examples

117




Table 5-2. E2E statistics based on the sensitivity options over all interfaces

Flow Correction Conventional and Dynamic
Interfaces Interfaces
Options : Average Average Average Average
Convergence | Iteration | Convergence | Iteration
(%) '| Inefficienc (%) Inefficiency
y
Conditional+Reltol’ - 86.1 2.71 55.0 1.95
Conditional+Reltol+Intp 85.3 2.52 54.5 1.90
ConditionaHReltolMax = | = 85.2 - 2.72 55.4 1.90
Conditional+ReltolMax-+Intp 83.7 2.36 54.4 1.93
Diagonal 20.7 1.54 24.9 1.02
Diagonal+Intp ' - 192 - 1.96 22.1 1.00
Error+RelTol - 825 1.46 54.3 1.41
Error+Reltol+Intp 85.3 1.77 543 1.40
Error+RelTolMax 85.2 1.52 54.2 1.40
Error+ReltolMax-+Intp 83.7 1.67 53.1 1.37
Iteration+RelTol 85.3 3.61 54.6 3.22
Iteration+Reltol+Intp 84.6 3.66 54.2 3.46
Iteration+RelTolMax . 83.8 3.37 53.8 - 329
Iteration+ReltolMax+Intp 83.7 3.74 53.8 3.40
Timestep+RelTol 743 1.60 532 ‘ 1.66
Timestep+Reltol+Intp 2716 | 1.67 52.7 1.56
Timestep+RelTolMax 79.2 1.64 53.2 1.55
Timestep+ReltolMax+Intp 78.0 1.68 52.6 1.53

The absolute merit was defined as

I, -1II,

AIC =100-—— Equation 5-3
1+1,

The following sections discuss the results from the different interfacing tests.

The different calculation options caused a 16% convergence variation in the flow
correction process compared to a 2.8% convergence variation with the conventional and
dynamic interfaces as‘shown in Table 5-2. Since the convergehce of the conventional and

dynamic interfaces was consistent across the four major scheduling options, the

118




combination of the backplane initialization procedure and the interface characteristics was
considered the 1main factor in achievipg convergence (especially initial convergence). The
iteration inéfﬁciency was most dependent on the sensitivity calculation options, although
other secondary options did have a small (+10 >percent) impact. Clearly, the
CONDITIONAL, ERROR, ITERATION, and TIMESTEP option were valid techniques for
scheduling sensitivity calculations. The DIAGONAL option could only be applied in
decoupled situations.

The differences between the total number of iterations for different interfaces did
not always depend on the backplane parameters. Instead, certain interface conﬁguratidns
often caused SPICE to reduce its timestep during a transient analysis, which increased the
number of wan‘alysis points and the total iteration count. The result was usually a better
iterati‘on.efﬁc;ency per timestep, but more steps were required to reach the final analysis
point. Interface cqmbinations were deemed less efficient if the overall number of iterations

was larger.

5.2.1 Direct Configurations

yAs explained in Chapter 3, the direct configurations had the worst characteristics of
any configuration or‘ interface tested, and the simulation process typically diverged when
direct conﬁgﬁrations-wer‘e used.. The‘ dire;c1; coﬁf;lgurations could ;)nly be used when one
simulétor’s interface characteristics dominated the other simulators contributions. In
addition, the interface had to meet the gain requirements outlined in section 3.3.2 or have no

coupling to other interfaces within the simulators. In the situations where these




configurations converged, the diagonal-sensitivity calculation option with any interface
combination was more iteration efficient than the direct configurations. For these reasons,

no testing was performed on the direct configurations.

5.2.2 Conventional Configurations

The inteffacés ﬁsed by the simuiator had an effect on the iteratioh inefficiency of the
coupling px"ocess.’ An analysis by interface typé over the CONDITIbNAL, ERROR,
ITERATION, and TIMESTI;ZP GRADTIME sensitivity options is presented in Table 5-3,
where any interface combination Psing the speciﬁc:type was included in the average. Table
5-3 also showé the intelrfac“e corhbinations wﬁh gréater than 75% average convergence rate.
The interface combination group with the highest convergence rate was the system

configuration in partition 0 (driver circuit) with voltage, Thevinin, Norton, or Flexible

Table 5-3. Statistics fbr genefic and specific E2E interfaces

Interface Definition | Convergence Iteration
(%) Inefficiency
Any Current 24.1 2.78
Any Voltage 54.3 1.85
Any Thevinin 584 - 1.96
Any Norton 62.8 1.78
Any Flexible 60.1 1.79
Any System 44.7 1.82
Norton-Norton 76.6 1.51
Norton-Flexible 75.8 1.46
Flexible-Norton 76.0 1.55
Flexible-Flexible 76.2 ‘ 1.51
System-Voltage 76.4 1.86
System-Thevinin 83.6 ‘ 2.01
System-Norton 88.7 1.56
System-Flexible 89.3 1.48

120



interfaces in partitioq 1 (device circuit). °

From the genericg interfacé bomparisons in Table 5-3,a cuﬁent source interface had
the worst coupling characteristics of any conventional interfagc. This result was expected
since a current soﬁrce does not allow the calculation of the appropriate sensitivity
parameters for nodal analysis. One of the surprising results was that the system
configuration had a 29% lower convergence than the other sensitivity-based interfaces. The
explanation for this lower convergence was poor interaction between the equivalent matrix
and the simulator to calculate valid sensitivity parameters at initialization. In addition, the
Thevinin interface was expected to have equivalent convergence with the Norton interface,
but the results showed 7% lower convergence and 50% higher iteration inefficiency (AIC of
17%).

The Norton interface had higher convergence than the Flexible interface in a generic
sense, although each interface used the same calculations. The only difference was that the
Flexible interface required SPICE to calculate the return current through the voltage source.
Mbst discrepancies in the general cases were in all interfaces that contained a voltage

. source. The modeling issue from section 3.5.1 was another explanation for the problems, so
different interface combinations would have different characteristics based on how the
interface interacted with the model. Based on specific interface comparisons in Table 5-3,
the Flexible and Norton combinations had nearl}_' equivalent resufts. The SYSTEM-
FLEXIBLE and SYSTEM-NORTON combinations had the best convergence and iteration

inefficiency results of the conventional interfaces.

121



5.2.3 Flow Correction Configuration

The flow correction process had the best initialization characteristics of any
interface, and most examples found a stable initialization point. Unfortunately, this process
was typically not as iteration efficient as the other interfaces. The iterations per analysis
point_ of the correction process in Figure 5-3 were consistent with other interfaces, so the
poor iteration efficiency was the result of more time steps in the analysis. The flow
correction process had the worst problems with violating the backplane iteration limit.
However, these results used the default backplane setting and no attempts were made to
optimize the CORRSENSRATIO pafameter for a particular-problem.

The iteratioﬁ results in Figure 5-1 showed very sporadic responses that were
dependent on the sensitivity calculation options. The dependency on the sensitivity options
indicated that the minimization criterion from section 3.4.3 was not very robust and the
. sensitivity parameters for the predictor model wéte erroneous. The problem was that the
applied flow delta values were too small to generate good sensitivity information for the
internal behavioral model. Clearly, a better delta-calculation method was required for this
interface procedure. The flow correction process also beca‘me unstable as the modeling error
increased based on the decrease in the convergence statistics. The decreasing convergence
with in‘creasing modéling error could~ have been the result of the sensitivity calculation
problems.

Before testing the parallel and sequential sequencing options, the sequential process
was certain to have lower performance because the processes occufred in series. The

sequential option had little merit in the general coupling process, since most procedures do

122




not have a wait state for results from another simulator. For these two reasonms, the
sequential procedure was considered very ineffective unless all simulators were in this
mode. The sequential method had to be twice as iteration efficient as the parallel method
values before the sequential method would be viable option in the normal coupling process.
A summary of the ﬂow‘ correction process is presented in Table 5-4 over the different
options considered in section 3.4.

The sequential method was only 20% percent better in iteration inefficiency
compared to the parallel method while convergence characteristics were approximately
equivalent. The CORRECTOR and CORRECTOR_SENS interfaces had approximately the
same convergence, but the CORRECTOR interface had 5% better itere_a.tion efficiency than
the CORRECTOR_SENS interface in the full sensitivity mode. In most cases, the
DIAGONAL and IDENTITY options in the flow correction process were an unreliable

approach to the problem, except in very specific problems.

Table 5-4. E2E flow correction process characteristics

Sensitivity CORRECTOR CORRECTOR_SENS
Option Parallel | Sequential Parallel Sequential
Convergence (%)

Full 83 , 87 79 77
Diagonal 12 28 27 14
Identity 14 -0 5 0

Iteration Inefficiency _

Full , 246 1.98 2.58 , 241
Diagonal 3.48 0.85 1.49 1.18
Identity 0.14 - ©0.03 -

123



5.2.4 Dynamic Interface Configuration

A summary of the dynamic interface configuration is presented in Table 5-5. The
results were based on the default CAUSRATIO setting of ten, so further optimization of this
process was possible. The Norton-Flexible-Voltage configuration had the highest iteration
efficiency of ANY interface, but the convergence percent was too low to be a viable
procedure. The dynamic interface processes that used a SYSTEM configuration had higher
convergence rates, and these procedures were competitive with the optimum conventional
interfaces. Thé present implementation did have flaws at initialization.

The initializa;ion problem with the dyna,rhic interface configuration represented a
contradiction. This Adynamic i)rocess had to determine the interface to calculate the
sensitivity parameters properlj‘/,‘ but thé sensitivity ﬁarametéré were required for determining
the proper interface. ﬁepénding on the coupling problem, certainb interfaces had better
initializatibn cl;aractleris‘tics to calculate vali& slensitivity' pararﬁeters. For example, the
SYSTEM - configuration was typically required in high-gain problems to complete the

feedback paths while a voltage source was ideal for devices. In retrospect, the dynamic

Table 5-5. E2E results for dynamic interface configuration

Interface Definition Convergence | Iteration

: . (%) Inefficiency
Dynamic 1 Current-Flexible-Voltage 49.1 1.74
Dynamic 1 Current-Flexible-Thevinin 54.0 2.09
Dynamic 1 Current-Flexible-Norton . 47.1 1.76
Dynamic 1 Norton-Flexible-Thevinin 76.6 1.62
Dynamic 1 Norton-Flexible-Voltage 58.1 1.33
- Dynamic 1 System-System—Thevinin 85.8 2.07
Dynamic 1 System-System-Voltage 73.6 1.60
Dynamic 2 Tiered Method 88.8 1.49

interface configuration should have implemented an interface diagnostic routine where all

124



interface configurations were tested one-at-a-time to determine the optimum initial
configuration. These tests still showed that the dynamic interfacing process had merits in
the coupling process, although additional procedures are required to make the interface

“smarter”.

5.2.5 Summary

’The iteration efﬁcieﬂcy of; the coupling process was a strong function of the
sensitivity-scheduling‘ options while convergence was a strong function of the interface
definition although certain interface and sensitivity options comll)inations did react poorly
together. In particular, the convergence of the flow correction process showed larger
dependencies on the sensitivity obtions than the conventional and dynamic interfaces.
However, the flow corréction process was tﬁe only interfacing procedure with 100%
convergence across all the examples, but only one particﬁlar model representation using a
specific sensitivity-calculation option achieved this result. The tiered dynamic interfacing,
SYSTEM;FLEXIBLE, and SYSTEM-NORTON interfacve had the optimum convergence
characteristics at 89% while the flow correction proc;ass using a CORRECTOR interface
was at 83%. The tiered dynamic interfacing, ‘SYSTEM-FLEXIBLE, and SYSTEM-
NORTON interfaces had the same optimum iteration inefficiency at 1.5, while the flow
correction process using a parallel CORRECTCR interface was at an iteration inefficiency

0f 2.5 (AIC of 40%).

125



5.3 Electrical-to-Mechanical (E2FE) Coupling

The SPICE to FESIM tests were variations of different examples from section 5.2.
The coupling process with the FE simulator was more timing consuming than the previous
tests, and the average analysis time of each E2FE analysis was 10-20 minutes. For this

reason, only one of the 18 different calculation and sensitivity parameters was.tested since

the E2E examples showed that convergence was a strong function of the interface definition

and a weak function of the sensitivity option. In these tests, the goal was to determine how

the FE simulator responded to different interface configurations, since the fundamental

procedures of the two simulators were different. This FE simulator solved for effort

relationships and then calculated the flow response based on the effort values. The FE
simulator had rounding problems calculating the return currents when'an interface had large
conduction values. In comparison, the SPICE simulator solved effort and flow relationships
using nodal analysis or MNA. ;

Only the conditional sensitivity option was tested to evaluate the convergence and
iteration efficiency of the 76 different interface's over 14 (6 no-feedback and 8 high-gain
feedback) examples for 1064 analyses. The interface definitions and the iteration results for
the different e.xamples. are provided in Appendix-D. As a summary, the average iteration
results are presented in Figure 5-4, the convergence statistics are in Figure 5-5, and the
average iterations per transient point are in Figure 5-6. The E2E coupling results for the
same sensitivity parameter and examples were included for 'réference in Figure 5-4 through

Figure 5-6. These results showed that the backplane coupled different types of simulators.

126



1-36: Conventicnal
37-44: Dynamic interfacing  53-60: Sequential Comrection (ESRC)  69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Correction (ESRC) 61-68: Paralle! Correction (ESRC_SENS)

| Conditional Sensitivity Scheduling
| 12
o
10
8
© E2FE
0 E2E
X
6
&
i °
L
-
< -]
o
m o
o
4
a a
o
a o o
nd
LR 2
]
a -] s
2 o B o a apg® n
o & B, W o'
a : “pPn 8 g °
] a o
a oo o -1 o o
n Po Depmn o
°
° ° °
0090°° rS o, Interface
%000 0o, % ©00,°00 °
0 .;°°”° - 200 00,00 00,2009 000 4 et 00® T0000° Types
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure 5-4. Iteration inefficiency statistics for all E2FE coupling examples

127



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interffacing ~ 53-60; Sequential Correction(ESRC) 69-76: Sequential Correction (ESRC_SENS)

% Convergence

Conditional Sensitivity Scheduling -
100 WEOee— HOCIEING—— L E SN S ——

oo

90

oo on ' oooUO ©6 @A OR eo0ene

80

000000 <

noomo oo o -] ooou o m

70

¢ E2FE
nE2E

60

50

Homxio TWOMNO atgoen

40

30
oo

20 :

®  OOEREDEOMNNGEN OB °

10

Interface
Types

0 T T T T T T T T T T T T T T T Y T T

.0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure 5-5. Convergence statistics for all E2FE coupling examples

128



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequéntial Correction (ESRC) ~ 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
7
. )
6
2 p
= o
o.
o o
o -] ] a
a o a
o
§ g8 -
o n
o o8 a
L | B
o o m o
o8 ® | [oE2rE
o a Bo . g| |OE2E
B
o o
4 . B
- a o a a
g 9n -4
g -]
]
E
g m a
2
2
§s =
n
a o o
-
a nnm:n -]
2 v
oo
° °
°
o0 °
°
°
°
° °
1 N "o se _° o°
° ° °
oo ° °
° ° ° ° ° %% °‘°0 ° ¢
° o °
14 o° 2 ° °
° ° oo
. 0 00 o 00 ° -
° e ° ° ° ° Interface
°° ° ° Types
0 —— ype
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 76

Figure 5-6. Iterations per time point statistics for all E2FE coupling examples

129



In addition, the flow correction procedure was examined using models that were not scaled

versions of the true model representation.

5.3.1 Convention;¢11 Configurations

The interfaces used by the simulator had a small effect on the iteration efficiency of
the coupling process. An analysis by interface type is presented in Table 5-6, where any
interface combination using the specific type ‘was included in the avérage. Table 5-6 also
shows the interface éombinations with .greater than 85% average convergence rate. Thé
"'generic results were almost equivaleﬁt with thg EZE tests in terms of convergence except
that the SYSTEM configuration was significantly improved. In these examples, the
SYSTEM configuration for the FE Simulator implemented a FLEXIBLE configiration,
since a matrix-loading feature was not available in the FE simulator. Several interfaces had

100% convergence and equivalent iteration inefficiency. The convergence and iteration

Table 5-6. Statistics for generic and specific E2FE interfaces

Interface Convergence Iteration
Definition (%) Inefficiency
E2FE | E2E | E2FE | E2E
Any Current 14 17 0.02 1.85
Any Voltage 47 47 0.15 1.67
Any Thevinin 46 52 0.13 1.67
Any Norton 41 40 0.12 1.44
Any Flexible 43 40 0.21 1.36
.Any System 37 14 | 021 1.30
System-Voltage 100 100 0.16 1.67
System-Thevinin 100 100 ~| 0.09 1.73
.| System-Norton 100 85 0.10 1.68
System-Flexible - 100 85 0.13 1.69
System-System 100 57 0.12 1.39

130



results were improved compared to the E2E tests because of the linear modeling.

5.3.2 Flow Correc‘tion Configuration

A summary of the flow correction’ process is presented in Table 5-7 for the full-
sensitivity calc;ﬂation process with the two interface configurations. These examples did a
better examination'of the flow correction process, since the E2E tests had used scaled
versions of the same basic model. In this series of analyses, the predictor model within
SPICE was constructed manually with errors from the FEA. In most examples, the errors
specified in the corrector process in Appendix-D were much larger than indicated.

The iteration inefficiency for the E2FE tests using the correction procedure was four
times worse than the conventional interfaces, whilesthe E2E test§ were about two times
worst than the conventional interfaces. A detailed analysis of the E2FE tests showed that the
one and ‘tWO terminal examples had equivalent iteration inefficiency with the conventional
interfaces. The four-terminal E2FE examples had significantly skewed the iteration results,
because the SPICE behavioral models in tﬁe four terminal examples were not defining all
coupling information between the terminals like the FE models. Consequently, the flow
correction process had to compensate for missing coupling information in addition to the

problems from section 3.5.3. ,

Table 5-7. E2FE flow correction process characteristics

Interface Definition . Convergence Iteration
(%) Inefficiency
, E2FE | E2E | E2FE | E2E
Parallel CORRECTOR 100 91 0.33 3.24
Paralle]l CORRECTOR_SENS 100 84 0.38 2.23
"| Sequential CORRECTOR 78 87 0.30 3.02
1 Sequential CORRECTOR SENS 86 69 0.26 3.85

131




5.3.3 Dynamic Interface Configuration
Dynamic interface configuration had the characteristics shown in Table 5-8 for the
E2FE examples. The FE simulator had a serious problem with the FLEXIBLE interfacgs in
a voltage -source configuration, where rounding errors occurred in the flow calculation
_procedure due ’;o the large PMAX conduction values and internal FESIM variable -
tolerances. Besides this problem, the tiered dynamic method had 12% higher iteration
inefficiency than the conventional interfaces. This increased inefficiency was attributed to
the unity conduction values, which were relatively large compared to the material
definitions, and rounding problems occurred. Clearly, the tiered dynamic interface
procedure reqﬁired additional simulator-based constraints on the iﬁterface state decisions to
optimize coup!ing efficiency.
-5.3.4 Summary )
The E2FE examples had several interfaces with 100% convergence and varying

iteration inefficiencies: SYSTEM-VOLTAGE (0.16), SYSTEM-THEVININ (0.09),

Table 5-8. E2FE resulté for dynamic interface configuration

Interface Definition Convergence | Iteration

(%) Inefficiency

E2FE | E2E | E2FE | E2E

Dynamic 1 Current-Flexible-Voltage 0 42 - 2.28
Dynamic 1 Current-Flexible-Thevinin 57| --42| 0.09| 1.94
Dynamic 1 Current-Flexible-Norton 57 421 0.09] 1.87
Dynamic 1 Norton-Flexible-Thevinin 42 571 007 1.72
Dynamic 1 Norton-Flexible-Voltage 0. 42| - 2.08
Dynamic 1 System-System~Thevinin 35 711 0.04} 1.95
Dynamic 1 System-System-Voltage 7 711 5.73| 2.13
Dynamic 2 Tiered Method 100} 100 0.24 | 1.67

132



SYSTEM-NORTON (0.10), SYSTEM-FLEXIBLE (0.13), SYSTEM-SYSTEM (0.12),
tiered dynamic conﬁgt.lrétion (0.24), and parallel flow ‘correction with a CORRECTOR
(0:33) or CORRECTOR_SENS (0.38) interface. The E2FE examples had significantly
better iteration efﬁciency than the E2E examples because no model discontinuities were
present and linear modeling was used. The FE simulator did have problems when large
conduction values were applied to the interfaces with sensitivity elements because of the
flow calculation procedures in the FE simulator. The dynamic configuration processes had

the most difficulties with this problem.

54 Dyﬁamic modeling via a simulation backplane

AIn simulation, the main goal is always to achieve the highest performance and
highest accuracy possible, and dynamic modeling was implemented to achieve this goal.
Except for the ACCURACY and RANGE triggers, most triggering options were dependent
on the designer’s viewpoint of how modeling should ch;mge to achieve certain performance
or accuraby constraints. These types of triggers forced the user to have an interacfive role in
the simulation process to account for the modeling variations, different simulation
algorithms, and different disciplines. Model verification was a critical issue across the
different simulation environments, where different models were used to represent the same
component or device. For an automated approach to the verification problem, the
ACCURACY and RANGE triggers could dynamically find the model in the .highest
performance simulator that guaranteed certain levels of accuracy AT THE DEVICE

LEVEL. Unfortunately, the real accuracy issues were at the system-level.

133




This section demonstrates and examines the performance and accuracy results of
analyses based on an ACCURACY trigger. The ACCURACY trigger was a mechanism
achieving concurrent verification and simulation, where the most accuracy model defined
by the trigger was always tracking the analysis of the active modeling representation. The
RANGE trigger was a pre-verified form of the ACCURACY trigger based on error
information and simulation performance gathered from device testing or low-level analyses.
For more information, Appendix-A outlines the procedures for the ACCURACY and
RANGE trigger. Since the two‘ methods were closely related, the RANGE trigger results
should follow the ACCURARCY trigger results. For this reason, no examination was done
on the RANGE trigger.

For these dynamic modeling tests, the E2FE-'HF_DRVVIR2 example (Figure D-48)
was used. The SPICE behavioral model used in theée tests was shown in Figure D-2. This
model was maﬁually created from the FE mélysﬁ and errors were deliberately present to
demons&ate the triggerihg procedﬁres. The followirig coupling architectures, interfaces, and
modeling constraints were testéd:

. SPICE-only tests using the model derived from FEA.

¢ FEA using the SPICE response as the stimuli. The voltage stimuli were converted
- manually from the SPICE results into the FE simulator to drive the device.

e Normal coupling process (SYSTEM-ESRC interface).
e Flow correction process (using the model derived from FEA).

¢ Modeling breakdown problem.

The results from these tests are analyzed based on accuracy (section 5.4.1) and performance

134



(section 0) to determine if the ACCURACY-based triggers in this research were a viable
procedure. A model breakdown problem was inqluded to demonstrate the inaccuracies of
poor modeling by emlillating a structural break. The break problem also determined if the
flow correction process was capable of correcting for large (3+ orders of magnitude) errors
in the SPICE behavioral model. The main issue was whether the performance improvement
was “justified by the loss in accuracy, but only the designér(s) knows the minimum

constraints of the system.

N

5.4.1 Accuracy Comparison
The absolute tolerances for the coupling analyses were 0.ImV for the effort

variables and 0.1 44 with a relative tolerance of 0.1 percent for the flow variﬁbles. The
absolute tolerance for the ACCURACY trigger was 0.2mV for effort and the 0.2 u4 for

flow. In these analyses, the SPICE behavioral model had approximately 24 percent error
compared to.the FESIM model due to “capacitive” material effects not included in SPICE.
A summary of the ACCURACY ftrigger results is presented in Table 5-9 for this example.
Various error definitions and switch back (SB) conditions were examined to determine the
impact on the syétem error compared to the absolute response from the non-switched
coupled analysis. ‘

The accuracy information in Table 5-9 showed that the system error did not vary
according to the de;'ice error over all error tolerances. As the tolerance on the ACCURACY
trigger increased, a tolerance value was reached (between 10% and 20% error) where the

system error became independent of the trigger. Part of the problem was the length of the

135



Table 5-9. Error summary for the ACCURACY trigger tests

Comparisons Effort Error Flow Error
(Most compares are to the Max Avg Peak Max Avg Peak
- REFERENCE) mV mV % uA uA %

SPICE to FESIM - - - 4.54 1.51 23.9
SPICE only . 127.0 34.2 26.9 8.64 2.81 36.6
FESIM using SPICE output 127.0 30.6 . 26.9 5.55 145 23.6
Coupled analysis REFERENCE
5% error and ] step SB 19.6 5.1 4.1 0.86 0.59 3.8
5% error and 2 step SB 19.9 5.1 4.2 1.49 0.27 6.3
10% error and 1 step SB 20.4 5.4 4.3 3.25 0.27 13.8
10% error and 2 step SB 204 5.4 4.3 3.25 0.27 13.8
20% error and 1 step SB 85.1 37.8 18.0 5.96 1.76 25.3
20% error and 2 step SB 40.4 10.2 8.6 3.37 0.66 14.3
50% error and 1 step SB 72.2 16.1 15.3 5.26 1.13 22.3
50% error and 2 step SB 50.2 19.3 10.6 4.57 1.12 19.4

Coupled analysis and the | 120.7 34.8 25.6 5.17 1.59 21.9
FESIM in TRACK mode

Flow correction analysis - 0.7 0.2 0.1 0.03 0.00 0.1
5% error and 1 step SB 19.2 5.2 4.1 0.83 0.26 3.5
5% error and 2 step SB 15.2 4.5 3.2 1.48 0.25 6.3
10% error and 1 step SB 26.5 6.3 5.6 2.90 0.30 12.3
10% error and 2 step SB 45.3 114 9.6 2.56 0.52 10.9
20% error and 1 step SB 83.6 29.1 17.7 4.80 1.35 20.4
20% error and 2 step SB 50.5 24.2 10.7 4.58 0.98 194
50% error and 1 step SB 81.9 30.2 17.4 5.10 1.48 224
50% error and 2 step SB 12.7 4.4 2.7 4.51 0.68 19.2

Corréction analysis and the 119.3 33.8 25.3 5.07 1.54 21.5
FESIM in TRACK mode
Break coupled analysis 508.3 206.3 107.8 9.63 4.07 40.8
Break correction analysis 473.3 183.3 100.4 10.11 4.14 42.9

Absolute Maxium = MAX QxREF - xCMPD Absolute Average = li]xm, — Xy
P

MAXQxREF - x(M,D

Relative Peak =100
Max (xREF )_ MIN (xREF )

136



simulation, since the error accumulation would typically increase as ’the simulation
proceeded. Conversely, the nature of system qould'Be virtually independent of the device
error. Ultimately, the value- of the ACCURACY trigger in an analysis depended on
sensitivity of the system to device error. However, the various analyses using the
ACCURACY triggers were still more accurate than the SPICE behavioral model that had
errors compared to the FE model.

The SPICE, FESIM, and non-switching coupling responses are presented in Figure
5-7 and Figure 5-8 to establish the basis of the comparisons. Figure 5-9 and Figure 5-10
showed the responses from the conventional interfacing procedures using various error
tolerance of the ACCURACY trigger. Figure 5-11 and Figure 5-12 showed the responses
from the flow correction procedure over the same error ‘tolerances of the ACCURACY
trigger. The break responses are in Figure 5-13 and Figure 5-14 to show extreme divergence
between the SPICE behavioral and the FE model. In these plots, the effort information was
taken from the SPICE simulator while the flow variable information was taken from the
FESIM to illustrate the consequences of dynamic model;ng. With large error constraints, the
flow responses from the FE simulator had discontinuities at the trigger points, where the
solution had large corrections.

The main reason for using the ACCURACY trigger was extreme modeliné €rTor1s
like a break condition in Figure 5-13 and 5-14, where the most accurate model (defined by
the trigger) could be used in the analysis when required. By switching models based on the
ACCURACY trigger, the designer(s) did not have to implement additional simulations to

correct the error. The break analyses showed the merit of an ACCURACY trigger.

137



Voltage

2.90E+00

2.80E+00

2.70E+00

2.60E+00

|~ Spice
—e—FESIM
—r— Coupled
- %~ Corraction

2.50E+00 »

2.40E+00

2.30E+00

2.20E+00

0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 S.00E-06 6.00E-06 7.00E-06 B.00E-06 9.00E-06 1.00E-05 Time

Figure 5-7. Primary effort (voltage) responses at terminal T2

2,00E-05

1.50E-05

1.00E.05

5.00E-08

Current

0.00E+00

-5.00E-06 1

-1.00E-05

-1.50E-05

-2 00E-05

——Spice
—e—FESIM

—tr—Coupled
——Couection

0.00E+00 1.00E-08 2.00E-06 3.00E-08 4.00E-06 5.00E-06 6.00E-08 7.00E-06 8,00E-06 9.00E-06 1.00E-05 Time

Figure 5-8. Primary flow (current) responses at terminal T2

138



Voltage

Current

2.90E+00

2.80E+00

2.70E+00

2.60E+00
2.50E+00 |j

2.40E+00

~—t—Coupled

=y Coupled 5%
—#—Coupled 20%
—e—Coupled 50%
—+—Coupled - Track

2.30E+00

2.20E+00

0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06 9.00E-06 1.00E-05 Time

Figure 5-9. Effort responses at terminal T2 of the triggered coupled analyses

2.00E-05

1.50E-05

1.00E-05

5 00E-06

0.00E+00

-5.00E-06

-1 00E-05

-1.50E-05

-2.00E-05

v

0

—a—Coupled

e Coupled 5%
—m—Coupled 20%
—e—Coupled 50%
~—-=Coupled - Track

0.000001 0.000002 0.000003 0 000004 0.000005 0.000006 0.000007 0.000008 0.000009 0.00001 Time

Figure 5-10. Flow responses at terminal T2 of the triggered coupled analyses

139



Vollage

2.90E+00

2,80E+00

2,70E+00

2.60E+00

2,50E+00

2.40E+00

2,30E+00

2.20E+00

C.00E+0 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06 9.00E-06 1.00E-05
0

~—&—Cofrrection

-+ Correction 5%
—m—Correction 20%
~o—Corroction 50%
~+—Correction - Track

Time

Figure 5-11. Effort responses at terminal T2 of the triggered correction analyses

2.00E-05

1.50E-05

1.00E-05

5.00E-06

0.00E+00

Curront

-5.00E-06 A

-1.00E-05 <

-1 50E-05

-2.00E-05
0

0 000001 0.000002 0.000003 0.000004 0.000005 0,000006 0.000007 0.000008 0.000009 0.00001

—a— Correction

w5« Correction 5%
—m—Correction 20%
—e—Correction 50%
~—+—Correction - Track

Time

Figure 5-12. Flow responses at terminal T2 of the triggered correction analyses

140



Voltage

Current

2.90E+00
2.80E+00
270E+00
2.60E+00 Y
& / ~—a~—Correction
\ ﬁ{ wii: Coupled
Y H —e—Correction Break
2 S50E+00 3 v —e—Coupled Break
sy, Fr_&*
Y
5 4
2.40E+00 5 7
5 {
hY 7
Bodx, ,}l‘%:d"’
A% A
2.30E+00 h‘!‘
2.20E+00 T T T T T T
0.00E+0 1.00E-06 2 0DOE-06 3.00E-06 4.00E-06 S.00E-06 6.00E-06 7.00E-06 8.00E-06 59.00E-06 1.00E-05 time
[
Figure 5-13. Effort responses at terminal T2 of the break analyses

2.00E-05
1.50E-05
1 00E-05
5.00E-06

=a—~Correction

~»-—~Coupled
0.00E+00 —e—Correction Break

~e3=Coupled Break
-5.00E-06
-1.00E-05
-1.50E-05
-2.00E-0%5

0 0.000001 0.000002 0.000003 0.000004 0.000005 0. 0.000007 0. 0. 0.00001 Time

Figure 5-14. Flow responses at terminal T2 of the break analyses

141




One of the significant accuracy issues was whether the flow correction process
would converge under extreme situations. Although the effort response began to diverge
between the coupled and correction processes (see Figure 5-13), the flow correction process
did converge in the break emulaﬁon situations. The analysis from section 3.5.2 (Equation 3-
40) indicated that overestimating the model’s conduction characteristics would converge in
any situation with sufficient iterations. The SPICE behavioral did overestimate the response
compared to the break situation. However, the inverse problem of a structural contact or
short condition would have failed based on Equation 3-40. The validity of this statement is.

left for future research.

5.4.2 Performance Comparison

In coupled analyses, the FE simulator completely dominated the analysis time as
shown in Table 5:10, which 6ut1ines the variation in simulation time with different error
tolerances of the ACCURACY trigger. As expected, performance was improved by
eliminating the interaction between the SPICE simulator and the FE simulator, and the
value of eliminating sensitivity calculations can be observed. The standard analyses had
between 86 and 133 time steps .based on the SPICE and FESIM analysis. In the coupled
analyses, the total number of simulator iterations was at least 2-3 times the number of time
 steps. Finally, the performance of the FEA was improved by 8% when using the tracking
mode compared to applying a waveform from the analysis. The tracking mode eliminated
breakpoint conditions implemented in the FE simulator and reduced the number of time

steps in the analysis.

142



Table 5-10. Performance results for the ACCURACY trigger tests

Simulation Number of
-Simulation Task Time Iterations
(seconds)

SPICE only <1.0 86
FESIM only 25 ' 133
Coupled analysis 94 439 /434
With 5% error trigger . 94 448 /179 /435
With 20% error trigger 81 493 /222 /422
With 50% error trigger 63 502 /249 /355
Coupled analysis and the 24 435/250/ 124
FESIM in TRACK mode
Flow correction analysis 87 424 /430
With 5% error trigger 89 423 /445
With 20% error trigger 77 382 /405
With 50% error trigger 63 323/352
Correction analysis and the 23 125/119
FESIM in TRACK mode e
Break coupled analysis 90 470/200/446
Break correction analysis 83 414 /430

5.5 Summary

Thé E2E and E2FE fésts déxﬁonstrated the backplane procéss had the ability to
couple two different types 6f simulators although the backplane had some initialization and
sensitivity calculation problems. Different degrees of convergence and iteration efficiency
were achieved over a variety of interfaces and sensitivity calculation options. The
convergence §f the coupling procesé was ; strong func;tion of the interface definition while
the iteration efficiency was a strong function of the sensitivity parameter and general
calculation 6ptions.'Hoyvever, the testing of the backplane was only over a small number of

sensitivity calculation options, so parameter settings are potentially not optimized for each

143



problem. Based on the E2E examples, the conditional sensitivity scheduling option had the
highest convergence statistics of scheduling options available in this backplane. However,
the error sensitivity scheduling option had the best iteration efficiency by approximately
15% with a one-percent lower convergence rate.

The statistics for all interfaces with 85% or greater average convergence is presented
in Table 5-11 over all examples based on the conditional sensitivity scheduling option. As
expected, the interface conﬁg;xrations that completed the feedback or gain paths in a
simulator had the highest convergence characteristics as indicated by the four interface
combinations that contained a SYSTEM interface in partition 0. In the coupling tests,
partition 0 usually contained the driver or gain circuitry while‘ partition 1 contained the
device. The tiered procedure for dynamic interface cqnﬁguration was overall the optimum

interface procedure at 95% convergence because the interface could be used in any

Table 5-11. Final Interface Convergence and Iteration Inefficiency comparison

Interface Convergence Iteration
(%) Inefficiency

System-Voltage 86 1.18
System-Thevinin 91 . 1.19
System-Norton 93 1.12
System-Flexible 93 1.08
Dynamic 2- Tiered method 95 1.15
Parallel Flow Correction | . 93 2.21
with CORRECTOR

Parallel Flow Correction 89 2.01
with CORRECTOR SENS

Sequential Flow Correction 86 1.67
with CORRECTOR

144




situation. The flow correction process had sensitivity calculation problems that limited the

success of the procedu;e and increased the iteration inefficiency compared to the other
processes. However, the flow correction process was: the ONLY interface that did not have
any initialization problems.

The dynamic modeling process was very difficult to evaluate although the results
showed how performance and accuracy tradeoffs were possible. The dynamic process using
ACCURACY triggers allowed concurrent verification of a model/device/design with the
option to switch dynamically to a different representation if errors exceeded certain limits.
However, the impact of device errors on the system error was impossible to define without
analyzing the system and the sensitivity of the system to . the device variations.

Consequently, dynamic modeling had the potential to create errors, at least compared to an

absolute reference. In the best case scenario, system error could only be minimized because’

error was typically accumulated during the analyses and the switching procedures. For the
other type of triggering optibns, dynamic modeling procedures were very dependent on the

designer viewpoint of how the modeling should change based on conditions in the system.

145



Chapter 6. Conclusions

The previous chapters have outlined the fundamental mathematical and
implementation aspects of a simulation backplane with dynamic configurability. With the
mathematical foundation based on bond graph theory, this coupling procedure can be
extended to any domain with minimum effort. This backplane had a large number of
options to conﬁol and optimize the coupling process betwéen simulators. The backplane
also had the capabilities to transvérse the different coupling architecture. Consequently, this
backplane structure provided backplane configuration management that supported hybrid
coupling environments and dynamic changes. The simulation backplane developed in this
research was called FLEXBKPL. This section. answers the interfacing questions from
Chapter 1 that have not been answefed in the previous aections. Conclusions about the

coupling process are made and suggestions are given for future research.

. 6.1 Interface conclusions for_ coupling simulatora
Thé convergence of the coupling process was clearly a function of the interface
definitions and the backplane initialization procedure to calculate valid sensitivity
information and to achieve the “sufficient close™ initial solution’ (guess) required by all
ite;ation routines.u After initial convergence was achieved, the iteration efficiency was a
14

function of the calculation and sensitivity calculation parameters, which did cause

approximately 3% degradation of the convergence statistics in the electrical-to-electrical

coupling tests from Chapter 5. Based on these characteristics, the optimum interface was the .

interface or interface procedure with the higher convergence.

146



In this research, the optimum interface was the tiered procedure for dynamic

interface configuration using the Flexible interface. This interface had the best average
convergence at 95% (using the conditional sensitivity scheduling option). The failure
conditions were the re§u1t of béckplane initializat(ion procedures that failed to find a
“sufficiently close™ initial solution and that did not calculate valid sensitivity information. A
secant-based initialization procedure using large delta values could potentially eliminate
these problems. Compared to the tier dynamic interface procedure, certain specific interface
combinafcions did have equivalent characteristics, but only this configuration could be
randomly assigned m the coupling process to any simulator and still achieved the highest
convergence rate. The tiered dynamic configuration process can still be improved with
better initialization procedures based on the simulator’s interfacing characteristics. -

The flow correction proéess had sensitivity caleulation problems that limited the

success of the interface procedure to a convergence of 93% using the conditional sensitivity

)

scheduling option. The iteration statistics of this process was 50% larger than the other
interfaces with éreater than 85% convergence. Because of the internal modeling
réquirements, this overlapped modeling process had more coupling constraints than the
other interfaces and procedures examined in this research, which did limit the usefulness of
the process. However, this procedure over the given tests alwayé found a valid initialization
condition, which was the main problem with the other interfaces. If the sensitivity
calculation problems can be eliminated (see Chapter 3 and Chai)ter 5), then the flow
cofrection process was able to implement dynamic modeling while also spanning different

coupling architectures. By eliminating the corrector function from an analysis, the system-

147



level simulator switched to-the independent simulator architecture, which had the potential
for the highest simulation throughput. When the corrector function was included, the flow
correction process had the smallest device error compared to the “most accurate” device
model in an external simulator. Another feature of the flow correction process was the
ability to use the coupled response as a method of back annotation between simulators to
eliminate-additional coupled solutions. However, this. feature was not investigated in this

research.

6.2 Pros and Cons of Dynamic Operations in simulation

This simulation backplane performed three types of dynamic configuration: vaﬁable
causality for determining the proper sénsitivity parameters, dynamic interface configuration,
and dynamic hodel switching. In the coupling process, the determination of the proéer
sensiﬁvity parameters was eésential for convergence, but the input causality detection was
not an absolute"requirement. In certain gain situations, >the backplane was able to achieve
convergence without input causality detection because of thé interface definitions in the
simulators. When an interface"s’ inpu'; variable causality was identified, the sensitivity
parameters did a better characterization of the models in a simulator. In addition, the
calculation of the sensitivity parameters did not have the divergence potential (‘)f the
procedurei without the ;:ausality‘ detection because Iof small délta information that caused
rouﬁding problems (See Appendix E).

The interface selecﬁon was critical in the coupling process because the interface

selection did impact the convergence and the input-causality detection process. Dynamic

148



interface configuration was implemented to eliminate the designer’s task of choosing the
best interface for the-coupling process to maximize convergence (and iteration efficiency if
possible). The results from Chapter 5 demons&ated that this configuration process did
improve the convergence of the coupling process by changingvthe interface based on the.
relative coupling characteristics of a simulator. A fixed interface had to follow certain
predefined calculation procedures that were not sufficiently flexible to meet any coupling
characteristic of a simulator. By freeing the designer from manually choosing the interface,
dyilamic interface configuration was a beneficial feature in the coupling process.

The dynamic model switching procedure was a very straightforward extension of
rebuilding an internal matrix within'the backplane and changing which matrix elements of a
simulator were added to the system-level interconnection matrix. This procedure allowed
tradeoffs betwéen performance and accuracy during an analysis. Besides performance and
accuracy, each diffgrent simulation provided the designers with assurances that no
fundamental problems had occurred by switching between different abstraction levels.
Essentially, this procedure was another a form of verification. At the samé time, the
increased flexibility provided rﬁore opportunities to cause probiems in the analysis, since
error could accumulate in the system. As an analogy, dynamic modeling allowed the user to
map the eartﬁ by using a transportaﬁon mechanism that could be any vehicle from an
airplane to a bicycle. At one transition point, the user had to careful that the plane did not
change to a bicycle and crash into the ground. On the reverse condition, bicycle might be
unable to reach sufficient velocity to fly or the sudden change in altitude could cause the

plane to spin off into space.

149




The ACCURACY or RANGE triggers in the dynamic }nodéling process were
implemented as a form of verification to eliminate large-scale errors. However, error in the
analysis depended on th¢ system definition and the sensitivity of the system to the model
variations. Consequently, these triggers could only minimize error at the system level while
the present error remained and even accumulated in an analysis. At the same time, these
~ trigger options had the potential to eliminate simulation errors dynamically. Regardless of
the trigger mechanism, dynamic model switching placed the emphasis on the designers to
identify problems. For these reasons, the only conclusion on the dynamic model switching

procedure was “User Beware”.

6.3 Future Research

In the presént versi;)n of the backpl;ane, most object parameters are defined by the
user, and very few parameters are automatically changed during the analysis to optimize
pcrformanée. Bec‘;aﬁse the. sensitivity calculaﬁoﬁ optiéns had tile largest impéct on
performance, these options should change dynamically to optimize performance without
affecting convergence. Another technique to' improve the iteration efficiency of the
sensitivity calculétion process would be grouping objects and variables within a simulator
for parallel calculation of the parameters. However, a criterion would have'to be developed
for recalc‘ulz‘lting' thfs inf(;:rm;ation if internal .groupir;g reiatiohships became invalid. The
information from tﬁe causality identification process in Appendix-C could be used to

optimize the sensitivity calculation process. However, an immediate need for this backplane

150



was improving the initialization procedures to calculate more accurate sensitivity

information and to find a better initial solution (guess).

The simulators used in this ba;ckplane did not have the quality or the model
capabilities to fully test the backplane operation. Future implementation§ should use
commercial simulators with better modeling and more coupling between different domains
to rigorously test the backplane operation. Additional interface definitions are also required
in the backplane, so mixed mode simulation can be included in an analysis. With these
additional interfaces, the dynamic modeling procedure could be used for verification of
GDS layout using RTL and transistor level representations.

This work has been done with hand-partitioned designs to examine the coupling
process. With the coupling issues resolved, a system for( partitioning domains was needed
where one database contained the information about all domains. The database had to track
modifications across different sub-design environments, but the main database maintainéd
ALL modeling representations. With a central database, the system could be partitioned
based on any criteria or hierarchical level. The designer could select different model
" representations and different model revisions for the same design in the same simulation
like [17].

Given the number of domains possible for MEMS, a system-level configuration and
verification mechanism (architecture and tradeoff manager) would improve the system
development and shorten the design cycle. The tool would define the optimum partitioning
of the system based on the simulation tools, model representations, and the design stage.

Based on constraints defined for a subsystem, the tool would enforce rules for modeling and

151



simulation to avoid pitfalls. In addition, the different partitioning options can be used to

guarantee an acceptable level of testing via specification verification. Specifically, the tool
would require a sufficient number of cross-verified analyses using different partitions,
model representation, and stimuli before defining a system to be flaw tolerant (no detectable

flaws between the specifications and analyses).

152




REFERENCES

153




REFERENCES

[1] W.L.Bryan, G.T. Alley, ORNL internal communication on LDRD.

[2] H. Sandmaler, H.L. Offereins, B. Folkmer, “CAD tools for micromechanics”, Journal
of Micromechanics & Microengineering, Vol. 3, 1993, pp. 103-106.

[3] J. Bryzek, K. Peterson, “Micromachines on the march”, IEEE Spectrum, May 1994, pp.
20-31.

[4] K.D. Wise, “Integrated Microelectromechanical Systems. A Perspective on MEMS in the
90s”, Proc. IEEE MEMS 1991, pp. 33-38.

[5] G. Pelz, J. Bielefeld, F.J. Zappe, G. Zimmer, “Simulating Micro-Electromechanical
Systems”, IEEE Circuits and Devices Magazine, Vol. 11, Issue 2, 1995, pp. 10-13.

[6] C.C. McAndrew, “Compact Device Modeling for Circuit Simulation”, Proceedings Of
The 1997 IEEE Custom Integrated Circuits Conference, Santa Clara, May 5-8 1997,
Section 8.2.1-8.2.8, pp. 151-158. .

[7] S. Robinson, “SIMULATION PROJECTS. BUILDING THE RIGHT CONCEPTUAL
MODEL”, Industrial Engineering, Vol. 26, No. 9, Sept 1994, pp. 34-36.

[8] J. Gilbert, “Integrating CAD Tools for MEMS Design”, IEEE Computer, April 1998,
pp- 99-101.

[9] S.D. Senturia, “Cad For Microlectromechanical Systems”, The 8th International
Conference on Solid-State Sensors and Actuators: Eurosensors IX, June 1995, Vol. 2,
Section 232-A7, pp. 5-8.

[10] AR. Newton, AL. Sangiovanni-Vincentelli “Relaxation-Based Electrical
Simulation”, IEEE Transactions on Computer-Aided Deszgn, Vol. CAD-3, No. 4,
October 1984, pp.308-331.

[11] M.P. Desai, LN. Haljj, “On the Convergence of Block Relaxation Methods for Circuit
Simulation”, IEEE Transactions on Circuits and Systems, Vol. 36, No. 7, July 1989,
pp. 948-958.

[12] N.B. Guy Rabbat, A.L. Sangiovanni—Vincetelli, H. Y. Hsieh, “A Multilevel Newton
Algorithm with Macromodeling and Latency for Analysis of Large-Scale Nonlinear
Circuits in the Time Domain”, IEEE Transactions on Circuits and Systems, Vol.
CAS-26, No. 9, September 1979, pp. 733-741.




[13]

[14]

[15]

[16]°

[17]
[18]
(19]

[20]

[21]

[22]
[23]

[24]

E. Lalarasmee, A.E. Ruehli, A L. Sangiovanni-Vincetelli, “The Waveform Relaxation
Method for Time-Domain Analysis of Large Scale Integrated Circuits”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
CAD-1, No. 3, July 1982, pp. 131-145.

G.XK Ananthasuresh, R.K. Gupta, S.D. Senturia, “Approach to macromodeling of
MEMS for nonlinear dynamic simulation”, Proceedings of the 1996 ASME
International Mechanical Engineering Congress and Exposition, Atlanta, Nov 17-22
1996, v 59, pp. 401-407.

S. L. Garverick, M. Mehregany, “METHODOLOGY FOR INTEGRATED MEMS
DESIGNS”, Proceedings of the 1996 IEEE International Symposzum on Circuits and
Systems, ISCAS, Atlanta, May 12-15 1996, pp. 1-4.

F. Goodenough, “Mixed-Mode Simulators Go Beyond Spice”, Electronic Design, Oct 27
1988, pp. 77-91.

EL. Acuna, J.P. Dervenis, A.J. Pagones, F.L. Yang, R.A.Saleh, ”Simulation ‘

Techiques for Mixed Analog/Digital Circuits”, IEEE Journal of Solid-State Circuits,
Vol. 25, No. 2, April 1990, pp 353-363.

S.P. Menzel, J.A. Barby, J. Vlach, “A MULTI-LEVEL SIMULATION SYSTEM
FOR MOS VLSINETWORKS?”, Proc. Intl. Symp. Circuits and Systems ISCAS 1989
Part 2, pp. 1145-1148.

P. Odryna, “A Unified Mixed-Mode Digital/Analog Simulation Environment”,
Proceedings - IEEE International Symposium on Circuits and Systems Jun 7-9 1988,
Vol. 1, pp. 893-896.

D. Overhauser, 1. Hajj, “IDSIM2: An Environment for Mixed-Mode Simulation”,
IEEE 1990 Custom Intergrated Circuits Conference, pp. 5.2.1-4.

R. Beale, R. Chadha, C. Chen, A. Prosser, K. Tham, “Design Methodology and
Simulation Tools for Mixed Analog-Digital Integrated Circuits”, IEEE Intl. Symp. on
Circuits & Systems, Vol. 2, May 1990, pp.1351-1355.

S.P. Menzel, J. Vlach, “A Mixed-Mode Analogue And Switch Level Simulator”, Intl.
Journal of Circuits, Theory, & Applications, Vol. 18, Issue 1, 1991, pp. 35-50.

C. Yuan, R. Lucas, P. Chant, R. Dutton, “Parallel Electronic Circuit Simulation on the
iIPSC(R) System”, IEEE 1988 Custom Integrated Circuits Conference, pp. 6.5.1-4.

P. - Sadayappan, V. Visvanathan, “Circuit, Simulation on Shared-Memory
Multiprocessors”, IEEE Transactions on Computers, Vol. 37, No. 12. December
1988, pp. 1634-1642.

155



[25]

[26]

[27]

[28]

PF. Cox, R.G. Burch, D.E Hocevar, P. Yang, B.D Eple;, “Direct Circuit Simulation
Algorithms for Parallel Processing”, IEEE Transactions on Computer-Aided Design,
1991, Vol. 10, Issue 6, pp. 714-725.

V. Klinger, “DiPaCS: A New Concept for Parallel Circuit Simulation”, Proceedings
of the IEEE Annual Simulation Symposium, Proceedings- of the 28th Annual
Simulation Symposium, Apr 9-13 1995, pp. 32-41.

JL. Calvet, A. Titli, “Overlapping vs Partitioning in Block-Iteration Methods: |
Application in Large-Scale System Theory’ Automatzca 1989, Vol. 25, No. 1, pp.
137-145.

D. A. Gates, P.K. Ko, D.O. Pederson, “MIXED-LEVEL CIRCUIT AND DEVICE
SIMULATION ON A DISTRUTED-MEMORY MULTICOMPUTER?”, IEEE 1993

" Custom Intergrated Circuits Conference, May 1993, pp. 8.5.1-8.5.4

[29]

[30]

(1]

[32]

[33]

[34]

[33]

K. Méyaram, D.O. Pederson, “Coupling Algorithms for Mixed-Level Circuit and Device
Simulation”, IEEE Transactions on Computer-Aided Design, Vol. 11, No. 8, August

1992, pp. 1003-1012.

K..Mayaram, J. Chemn, P. Yang, ‘,‘Algorithms for Transient Three-Dimensional
Mixed-Level Circuit and Deviceé Simulation”, IEEE Transactions on Computer-Aided
Design, Vol. 12, No 11, Nov 1993, pp. 1726-1733.

W. L.r Engl, R. Laur, HK. Dirks, “MEDUSA — A Simulator for Modular circuits”,
IEEE Transactions on Computer-Aided Design, Vol. CAD-1, No 2, April 1982, pp. 85-93.

V.B. Dmitriev-Zdorov, B. Klaassen, “An Improved Relaxation Approach For Mixed
System Analysis With Several Simulation Tools”, 1995 IEEE European Design
Automation Conference, pp. 274-279.

S. Wuensche, C. Clauss, P. Schwaxz F Winkler, “Microsystem Design Using
Simulator Coupling”, Proceedings of the 1997 European Design & Test Conference,
Paris, Mar 17-20 1997, pp. 113-118.

P.C. Eccardt, M. Knoth, G. Ebest, H. Landes, C. Clauss, S. Wuensche, “Coupled
finite element and network simulation for microsystem components”, Microsystem
Technologies 1996, Potsdam 1996, pp. 145-150.

N C. Petrellis, AN. Birbas, M.K. Birbas, E.P. Mariatos, G.D. Papadopoulos,
“Simulating Hardware, Software and Electromechanical Parts Using Communicating
Simulators”, Proc. 7" IEEE International on Rapid System Prototyping, June 1996,
pp. 78-82.

156




[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Schroth, T. Blockwitz, G. Gerlach, “Simulation of A Complex Sensor System
Using Coupled Simulation Programs”, The 8th International Conference on Solid-
State Sensors and Actuators; Eurosensors IX, June 25-29, 1995, Stockholm, Section
239-PA7, Vol. 2, pp. 33-35.

K.A. Sakallah, S.W. Directbf, “SAMSON2: An Event Driven VLSI Circuit
Simulator”, IEEE Transactions on Computer-Aided Design, Vol. CAD-4, No 4, Oct.
1985, pp. 668-684.

W.M. Zuberek, “Software Iﬁterfaces For Integrated Simulation Applications”, Annual
Phoenix Conference Proceedings - Ninth Annual International Phoenix Conference
on Computers and Communications, Mar 21-23 1990, pp. 832-839.

G. Schuster, F. Breitenecker, “Coupling simulators with the model interconnection
concept and PVM?, Proceedings of the 1995 EUROSIM Conference, Sep 11-15 1995,
Vienna, Austria, pp. 321-326.

R. Saleh, S. Jou, AR Newton, Mixed-Mode Simulation and Analog Mutlilevel

Simulation, Kluwer Academic Publishers: Boston 1994.

M. Zwolinski, C. Garagate, Z. Mrcarica, T.J. Kazmierski, A.D. Brown, “Anatomy of a
simulation backplane”, IEE Proceedings: Computers and Digital Techniques, Vol.
142, No. 6, Nov 1995, pp. 377-385.

AR.W. Todesco, T.H.Y. Meng, “Symphony: A Simulation Backplane for Parallel
Mixed-Mode Co-Simulation for VLSI Systems”, Proceedings of the 1996 33rd
Annual Design Automation Conference, JUN 3-7 1996, pp. 149-154.

M. Zwolinski, C. Garagate, T.J. Kazmierski, “Mixed-Signal Simulation Using The

- Alfa Simulation Backplane”, Proceedings IEEE International Symposium on Circuits

and Systems, Jun 7-9 1988, Vol. 1, pp. 390-393.
J. Singh, Techniques for Analog Multilevel Simulation, Ph.D Dissertation 1994.

P. Odryna, “The Application of Co-Simulation in Today’s Design Environment”,
ECN, December 1996, pp. 161.

R. Chadha, C. Viswesariah, C. Chen, “M° - A Multilevel Mixed-Mode Mixed A/D
Simulator”, IEEE Transactions on Computer-Azded Design, Vol. 11, No. 5, May 1992, pp.
575-585.

L. Maliniak, “A/D Simulators: An Expanding Array of Choices”, Electronic Design,
December 5, 1994, pp. 95-102.

157




[48]
[49]

[501
[51]

[51]
[52]

[53]
[54]
[55]
[56]
[57]

[58]

S. Crary. Y. Zhang, “CAEMEMS: An Integrated Computer-Aided Engineering
Workbench for Microelectromechanical Systems”, Proc. IEEE MEMS 1990, pp. 113-114.

S. Crary, O. Juma, Y. Zhang, “Software Tools for Designers of Sensor and Actuator CAE
Systems”, Proc. IEEE MEMS 1991, pp. 498-501.

R.A. Buser, S.B. Crary, O.S. Juma, “Integration of the Anisotropic-Silicon-Etching
Program ASEP™ within the CAMEMS™ CAD/CAE Framework”, Proc. IEEE MEMS
1992, pp. 133-138. :

S.D. Sentuna, RM. Harris, et. al, “A Computer-Aided Design System for
Microelectromechanical System (MEMCAD)”, J. of Mzcroelectromechamcal Systems,
Vol. 1,No 1, March 1992, pp. 3-13.

F. Maseeh, R. M. Harris, S.D. Senturia, “A CAD Architecfure for. Microelectromechanical
Systems”, Proc. IEEE MEMS 1990, pp. 44-49.

R.M. Harris, F. Maseeh. S.D. Senturia, “Automatic Generation of a 3-D Solid Model of a
Microfabricated Structure”, Sensors and Actuators “90, pp. 36-41.

R.M. Harris, S.D.~ Senturia, “A Solution of the Mask Overlay Problem in
Microelectromechanical CAD (MEMCAD)”, Tech. Dig. IEEE Solid-State Sensor and

- Actuator Workshop, 1992 , pp. 598-562.

M.A. Shulman, M. Ramaswamy, M.L. Heyens, S.D. Senturia, “An Object-Oriented
Material-Property Database Architecture For Microelectromechanical Cad”, Proc.
Transducers 1991, pp. 486-489. :

P. Osterberg, H. Yie, X. Cal, J. White, S. Senturia, “Self-Consistent Simulation and
Modelling of Electrostatically Deformed Diaphragms”, IEEE Micro Electro Mechanical
Systems, Vol. 4, 1994, pp. 28-32.

JR. Gilbert, P.M. Osterberg, RM. Harris, S.D. Senturia, et. al., “Implementation of a
MEMCAD System for Electrostatic and Mechanical Analysis of Complex Structures from
Mask Descriptions”, Proc. IEEE MEMS 1993, pp. 207-212.

IR Gilbert, GK. Ananthésuresh, S.D. Senturia, “3D ModelingA of Contact Problems
and Hysteresis in Coupled Electro-Mechanics”, Proceedings of the 1995 9th Annual
International Workshop on Microelectromechanical Systems, Feb 1996, pp. 127-132.

P.M. Osterberg, S.D. Senturia, “”"MEMBUILDER” AUN AUTOMATED 3D SOLID
MODEL CONSTRUCTION PROGRAM FOR MICROELECTROMECHANCICAL
STRUCTURES”, The 8th International Conference on Solid-State Sensors and
Actuators: EUROSENSORS IX, June 1995, Vol. 2, Section 236-A7, pp. 21-24.

158



[59]

[60]

[61]

JR. Gilbert, R. Legtenburg, S.D. Sensturia, “Coupled Electro-mechanics for MEMS:

‘Applications of CoSolve-EM”, Proc. 1995 International Conference on

Microelectromecahanical Systems, pp. 122-127.

J.G. Korvink, J. Funk, M. Roos, G. Wachutka, H. Baltes, “SESES: A Comprehensive -
MEMS Modeling System”, IEEE Microelectromechanical Systems, Vol. 4, 1994,
pp.22-27. o '

JM. Funk, J.G. Korvink, J. Buhler, M. Barchtpld, H. Baltes, “SOLIDIS: A tool for
Microactuator Simulation in 3-D”, Journal of Microelectromechanical Systems, Vol.

. 6, No. 1, March 1997, pp. 70-81.

[62]

[63]
[64]

[65]

[66]

[67]

[68]

J. Funk, J.G. Korvink, M Bachtold, J. Buhler, H. Baltes, “Coupled 3D Thermo-
electro-mecahanical Simulations of Microactuators”, Proceedings of the 1995 9th
Annual International Workshop On Micro Electro Mechanical Systems, Feb 1996,
pp- 133-138.

H. Baites, O. Paul, J.G. Korvink, “Simulation Toolbox and Material Parameter Data
Base for CMOS MEMS”, MHS 1996: Micro Machine & Human Science. 7th
International Symposium on Micro Machine and Human Science, 1996, pp.1-8.

1. Zelinka, J. Diaci, V. Kunc, L. Trontelj, “MODELING AND SIMULATION OF A
MICROSYSTEM WITH SPICE SIMULATOR?, Informacije Midem, Vol. 27, No. 1,
1997, pp. 18-22.

Z. Mrcarica, D. Glozic, V.B: Litovski, H. Detter, “Describing space-continuous
models of microelectromechanical devices for behavioural simulation”, Proceedings
of the 1996 European Design Automation Conference with Euro-VHDL 1996 and
Exhibition, Sept. 1996, Geneva, pp. 316-321.

J. Scholliers, T. Yli-Pietila, “Simulation of Mechatronic Systems Using Analog
Circuit Simulators”, IEEE Intl. Conf. Robotics & Automation, May 1993, pp. 2847-
2852.

S. Meinzer, A. Quinte, M. Gorges-Schleuter, W. Jakob, W. Sub, H. Eggert,
“Simulation and Design Optimization of Microsystems Based on Standard Simulators
and Adaptive Search Techniques”, Europear Design Automation Conference, 1996,
pp- 322-327.

N. Sadowski, Y. Lefevre, C.G.C. Neves, R. Carlson, “Finite Elements Coupled to
Elecfrical Circuit Equations in the Simulation of Switched Reluctance Drives:
Attention to Mechanical Behavior”, IEEE Transactions on Magnetics, Vol. 32, No. 3,
May 1996, pp. 1086-1089. T

159



[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

(78]

[79]

B. Nuseibeh, J. Kramer, A. Finkelstein, “A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification”, IEEE
Transactions on Software Engineering, Vol. 20, No. 10, October 1994, pp. 760-773.

J. Daniell, S.W. Director, “An Object Oriented Approach to CAD Tool Control”,
IEEE Transactions on Computer-Aided-Design, Vol. 10, No. 6, June 1991, pp. 698-
713. '

J.L. Wolf, D.M. Davis, B.R. Iyer, P.S. Yu, “Multisystem Coupling by a Combination
of Data Sharing and Data Parititioning”, IEEE Transactions on Software Engineering,
Vol. 15, No. 7, July 1989, pp. 854-860.

S. Z. Hussian, D. Overhauser, “Automatic Dynamic Mixed-Mode Simulation through
Network Reconfiguration”, ISCAS 1995: IEEE Intl Symp Circuits & Systems, April
1995, pp. 582-586. :

R. Righter, J.C. Walrand, “Distributed Simulation of Discrete Event Systems”,
Proceedings - 1987 IEEE International Conference On Computer Design: VLSI in
Computers & Processors, Vol. 77 No. 1, January 1989, pp. 99-113.

W. Najjar, JL. Jezouin, JL. Gaudiot, “PARALLEL EXECUTION OF
DISCREATED-EVENT SIMULATION”, 1987 IEEE International Conference on
Computer Desighn, pp. 668-671.

R.M. Fujimoto, “Parallel And Distributed Discrete Event Simulation: Algorithms And
Applications™, Proceedings of the 1993 Winter Simulation Conference, pp. 106-114.

E.J. Williams, Regression Analysis, New York: John Wiley & Sons, Inc, 1959, pp.
37-40.

C. W. Ho, A.E. Ruehli, P.A. Brennan, “THE MODIFIED NODAL APPROACH TO
NETWORK ANALYSIS”, Proc. IEEE Int. Symp. on Circuits And Systems, 1974, pp.
505-509.

JM Ortega, W.C. Rheinboldt, lterative Solution of Nonlinear Equations In Several
Variables, ACADEMIC PRESS, New York, 1970.

LB. Rall, “SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS”,
Numerical Solution of Partial Differential Equations, Editor: J.G. Gram, D Reidel
Publishing Company, Boston, 1973, pp. 55-105. .

160



[80]

[81]

[82]

(83]

[84]

[83]

[86]

[87]

[88]

[89]

[90]

C. Farhat, M. Lesoinne, “AUTOMATIC PARTITIONING OF UNSTRUCTED
MESHES FOR THE PARALLEL SOLUTION OF PROBLEMS IN
COMPUTATIONAL MECHANICS”, International Journal for Numerical Methods
in Engineering, Vol. 36, 1993, pp. 745-764.

Y. Escaig, G. Touzot, M. Vayssade, “Pérallezation Of Multilevel Domain
Decomposition Method”, Computmg Systems in Engineering, Vol. 5 No. 3, 1994, pp.
253-263.

A.V. Hudli, RM.V. Pidaparti, “Distributed finite elemént analysis: scalability and
performance”, Advances in EngzneerzngSoﬁware, Vol. 21, 1994, pp. 1-9.

E. DeSantiago, K H. Law, “An Implementatlon of Finite Element 'Method on
Distributed Workstations™, Proceedings of the 1996 12th Conference on Analysis and
Computation, Apr 15-18 1996, pp. 188-199.

L. Grosz, C. Roll, W. Schonauer, “A Black-Box Solver for the Solution of General
Nonlinear Functional Equations by Mixed FEM”, FEMS 50 Years of Courent
Elements, Marcel Dekker Inc, New York, 1994, pp. 225-234.

N.R. Lo, E.C. Berg, S.R. Quakkelaar, J.N. Simon, M. Tachiki, H. Lee, K.S.J. Pister,
“Parameterized Layout Synthesis, Extraction, and Spice Simulation for MEMS?”,
ISCAS: Proc. IEEE Intl Symp. Circuits & Systems Conn, Vol. 4 1996, pp. 481-484.

C. F. Gerald, P. O. Wheatley, Applied Numerical Analysis, Ed. 5, ADDISON-

WESLEY PUBLISHING COMPANY: Massachusetts, 1994.

E. Lindberg, “Simulation”, The Circuits and Fz'lters Handbook, 1995 IEEE, CRC
Press, pp. 1058-1071..

R. Pratap, “MATLAB”, The Handbook of Sofiware for Engineers and Scientists,
IEEE 1996, CRC Press, pp. 963-1004.

T. A. Johansen, “SEMI-EMPIRICAL. MODELING OF NON-LINEAR
DYNAMICAL SYSTEMS?”, Proc. IEE Collogium Adv. Neural Networks, 1994, No.
136, pp. 4/1-4/3. |

J. ‘Sjoberg, Q. Zhang, L. Ljung, A. Benveniate, B. Delyon, P. Glorennec, H.

. Hjalmarsson, A. Juditsky, “Nonlinear Black-box Modeling in System Identification:

[51]

a Unified Overview”, Automatica, Vol. 31, pp. 1691-1724.

L. Ljung, T. Glad, Modeling of Dynamic Systems, PTR Prentice Hall: Englewood
Cliffs, 1994.

161




[92] J. E. Kleckner, Advanced Mixed-Mode Simulation Techniques, Ph.D Dissertation,
1984.

[93] J. Sjoberg, “ON ESTIMATATION OF NONLINEAR BLACK-BOX MODELS:
HOW TO OBTAIN A GOOD INITIALIZATION”, Proceedings of the 1997 7th
IEEE Workshop on Neural Networks for Signal Processing, NNSP'97, Sept. 24-26
1997, pp. 72-81.

[94] M.C Kohn, Practical Numerical Methods: Algorithms and-Programs, Macmillan
Publishing Company: New York, 1987.

[95] O. Nagler, M. Trost, B. Hillerich, F. Kozlowski, “Efficient design and optimization
of MEMS by intergrating commerical simulation tools”, Sensors and Actuators A,
Vol. 66, 1998, pp. 15-20. :

[96] W.R. Stevens, Unix Network Programming, Prentice Hill: New Jersey, 1990, pp.
358-340.

[97] T. Quarles, “SPICE3F4 SOURCE CODE”, Online ftp://ic.berkeley.edu/pub/Spice3,
May 1996.

[98] W. Bangerth, G. Kanschat, “THE DEALII HOMEPAGE”, Online
http://gaia.iwr.uni-heidelberg.de/~deal, Sept 2000.

[99] K.H. Huebner, E.A. Thornton, The Finite Element Method for Engineers, Edition II,
~ John Wiley & Sons: New York, 1982.

[100]A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, “PVM:
PARALLEL VIRTUAL MACHINE A USERS' GUIDE AND TUTORIAL FOR
NETWORKED PARALLEL COMPUTING”, Online

http://www.epm.ornl.gov/pvm, March 1999.
i \
[101]JR. Young, I. MacPhedran, “INTERNET FINITE ELEMENT RESOURCES”,
Online http://www.en,qr.usask.ca/~macphed/ﬁnite/fe resources/fe resources.html,
May 1999.

[102]V.B. Dmitriev-Zdorov, “Multicycle Generation- A New Way to Improve the
Convergence of Waveform Relaxation for Circuit Simulation”, IEEE Transactions on
Computer-Aided Design, Vol. 17, No 5, May 1998, pp. 435-443

162



- APPENDIXES '




APPENDIX-A

164




Appendix-A. Backplane Control Syntax

This appendix describes the different parameter values and.formats for each

keyword (command) in the backpléne. A: brief overview of the commands.is provided in

Table A-1. The following information is also notes on the backplane operations and

instructions for integfating the backplan'e into a simulator. The three categories of keywords

are DATA (Table A-4 through Table A-7), CONTROL (Table A-8 through Table A-11),

ande'OMMAND (Table A-12 through Table A-14) at the end of this appendix. The DATA

keywords are for information exchange, the CONTROL keywords define the parameters for

the interfaces and tasks, and COMMAND keywords initiate operations within the

backplane. The backplane processirig procedures are case insensitive. Both simulators and

user control script interact using these commands.

Table A-1. Keywords for the simulation backplane

Keyword Codes Description
DEVDEF Define a device within a simulator.
‘GLOBPRM Define global parameters common to all backplane elements.
GRADDATA Define object gradient data from a simulator.
ID Define the simulator ID during the initialization process.
INCLUDE Include a file as a subcommand file. ‘
MESSAGE Messages (warnings, errors, etc...) sent to the backplane controller.
MODELDEF Define a multi-facetted model for the dynamic switching process.
OBJDATA Define object variable data of a simulator.-
OBJPRM Interface controls and configurations for an object.
REQSTAT Request the status of a simulator or its internal objects, parameters, etc.
SIMCMD Send a command directly to a simulator.
SIMPRM Define simulator control instructions and parameter definitions.
START All simulators are to start processing data based on their MODE parameter.
STOP All simulators are to stop and await further instructions.
TOLERANCE Define the convergence tolerance for variables of root objects.
TRIGDEF Define.the trigger conditions for switching between models.

165




Appendix-A.1 Integrating the backplane into a simulator
The main routines to interface the simulator with the baekplane are described in

Table A-2. The following steps should be followed to modify a simulator:

‘1) Create a global variable (BKPL_DEF *BKPL _def) in the main code of the simulator.
All-backplane structures are generated within this variable. The routine BKPL_setup()
creates the BKPL_def structure. Internal simulator commands or an initialization file
defined via an environment variable or filename to BKPL_setup is required to specify

| backpiane initialization parameters for a particular sirnulator; |

2) Create 6peratibns 'with:in the simulator to define the interface structure between the

~ simulator and the backplane. The routine EKPL_H}ITERFACE_ﬁnd creates an interface
into the backplahe and acti\.'ates tﬂe baekplane. If a backplane interface is not created,
then the backplane does ﬁot become active and normal simulation is perfoﬁned. The
interface contains indexing variables for simulator access to the local solution matrix.
The index variables are E_index and F_index for the EFFORT and FLOW variables
solufipn points, fespect_ively. The ESYS_index is for adding an external matrix (system) .
to the‘locel simlt'llator' matrix, and this index variable defines the EFFORT point for
adding conduction information. README files are available with the backplane eource

code to define the process of adding new interface or configuration types.

166



Table A-2. Backplane to simulator interface routines

Main Iteration Routines

BKPL_setup(char *filename)

Create the backplane structure within a simulator and define the initialization control file.
The filename for the simulator can be defined via this routine. If filename is NULL, then the
environment variable BKPL_INIT FILE defines the filename. A global variable called
BKPL DEF *BKPL def is required in the simulator in order to create the backplane. All
backplane structures are created within BKPL def.

BKPL_main()
This routine is the main backplane algorithm that links all backplane elements together,
performs calculations, etc. Very few operations are performed outside the main routine.

'BKPL_shutdown()
This routine sends a shutdown message to the backplane controller and frees most internal
structures created by the backplane. Sufficient structure remains for the simulator to

perform a shutdown.

BKPL_REF input(BKPL_REF *Ref, BKPL_REF *RefDelta)
BKPL_REF input_double(double Ref, double RefDelta)
Load the simulator reference and reference delta into the backplane.

BKPL_REF output(BKPL_REF *PrevRef, BKPL._REF *PresentRefDelta)
BKPL_REF _output_double(double *PrevRef, double PresentRefDelta)

Output the new simulator reference point and reference delta to the simulator. The present
reference point used in the calculations is Ref = PrevRef + PresentRefDelta .

BKPL_INTERFACE_add_attr
(BKPL_INTERFACE *interface, char *name, char *value)
Define an interface parameter (name) with value (value).

BKPL_SIM add_attr(char *name, char *value)
Define a simulator parameter (name) with value (value).

BKPL_SIM_cmdbufprs (char *Line)
Process the given string as a backplane command.

BKPI, SIM_cmdwordprs (char **Words, int count)
Process a list of words-with length count as a backplane command.

int BKPL,_INTERFACE _find

(char *objname, char *intfname, char *confname,

BKPL_INTERFACE **interface, int domain)

Create an interface (interface) with an object name (oaname) interface (intfname), and
configuration (confname) for a domain (domain) (See vardefh for domain definitions). If
the interface is valid, then the routine returns 0. The routine returns a 1 if an error occurred.

167




Table A-2. Continued

Main Iteration Routines

V01d BKPL_OBJ INTERFACE find

(char *objname, BKPL_INTERFACE **interface)

Find the interface that corresponds to a particular object, but the interface will be created if
it does not exist. However, this routine expeécts the interface to created by
BKPL INTERFACE find.

double BKPL. INTERFACE_varload

(BKPL_INTERFACE *interface, double Ref, int vartype)

Load the variable (vartype) for the interface at the given reference (REF) point. The valid
definitions for vartype are define in Figure B-1 (Appendix B).

3) Add new interfaces or mcflify existiﬂg routines to load variable information from the
backplane to the simqlator. The routine BKPL_INTERFACE_varload loads variable -
information from the interface structure. |

4) Modify the main loop qf the-simulator’s .iteration process to includg BKPL_REF_input,
BKPL_main, alnd'BKPL_REF_output (in this c;fder). The BKPL_main controls the loop
and defines- the flags to tﬁe simulator -(See ’i‘able A-S) for controlling tﬁe sirﬂulator
anal&sis. The majority of all backplane operations are performed in BKPL,_main. The
;)ther routines-are for reference control of a transient analsrsis. ‘The BKPL;REF_mput
routine requires the simulator to define REF and REFDELTA to the backplane and
BKPL_REF_outpﬁt returns REFPREV and REFDELTA’ as shown in Figure A-1. In

this format, the simulator can adjust REF or REFDELTA’.

168




variable

" refdelta’ |

refdelta

"(present) : (mext) :

; . (]
LA N R R B B A A I
I s 1 . T l j 1 T T | ]

refprev ref

 Figure A-1. Backplane reference stepping diagram

Table A-3. Flags from the backplane to the simulator

Flag (**) Description

SHUTDOWN Indictor to shutdown the simulator in an orderly fashlon

OPERATION Indictor that a backplane interface was in the analysis.

SOLV_SAVE Indictor to save the present iteration data as the solution. Without. this
flag, the simulator stored interim iteration data.

LOAD_FILE Indictor to load external file that contains simulator solution and state
information (BACKUP/restore function).

LOAD_STATE ([ Indictor to load a simulator’s backup solution and states from memory

: (BACKUP/restore function).

ROLLFORWARD | Indictor fo a simulator that the backplane will be synchronizing the
simulator to new data in the future. If possible, the simulation should
move to the new reference pdi‘nt, and restarted the analysis assuming
initialization conditions applied.

NEW TIME Indictor that the REF variable has changed.

SAVE FILE Indictor to save a simulator’s solution and state information into an
external file (BACKUP/save function).

SAVE_STATE | Indictor. to save a simulator’s solution and state information into
memory (BACKUP/save function). '

SENS_CALC Indictor that sensitivity calculations are being performed. The
simulator’s local model evaluation process can be skipped if possible.

SENS_SSAVE | Indictor of the beginning of sensitivity calculations. The simulator
should save the present solution values to restore the values at the end
of the sensitivity process.

SENS SLOAD | Indictor of the ending of sensitivity calculations. The simulator can

load the stored solution values, so an extra iteration is not required to
return the solution back to the previous value.

*x The prefix BKPL,_is applied to all flags to avoid naming conflicts w1th the simulator.

169




5) Custom routines are required prior to BKPL_main to load the new variables values
(simulator output) from ;che local solution process into the interface structure.

6) Include BKPL_shutdown routine at all exit points from the simulator. At this point, the

| simulator and backplane should be capable of interacting with other simulators
containing a backplane element.

7T) Test and debug the backplane and simulator interaction using a simple problem.

8) **OPTIONAL** In the basit_: implementation, the initialization file defines object and
simulator parameter‘sett'ings. The initialization file is unnecessary if thg simulator can
interriall& pass ir'lfon-r;ation directly to the backplane. Several command processing
rqgtines are also available’to implement this function.

9) **OPTIONAL** .Mo'difyr the Sﬁ\/[CMD command so the backplane can issue
commands directly to é simulator.

16) **OPTIONAL** Add or modify existing external matrix loading routines to interact
yvith the backplane. A simulator can link to the SIMLOCAL->EqvMtx matrix and then
load tﬁe equivalent matrix information using ESYS _index from two different backplane

interfaces.

Appendix-A.2 Parameter Definitions

Most commands within the backplane are defined using keyword parameters. All
parameters are assigned a STATIC, DYNAMIC, READONLY, or CTRLONLY property.
STATIC parameters cannot be modified during calculation sequences. In most cases, these

parameters are for calculation and task control. DYNAMIC parameters can be varying

- 170



during any simulator mode with no restrictions. READONLY parameters are specified by
the local simulator and are not modified by any source other than the local simulator, but
these parameters are considered DYNAMIC parameters by other simulators. In case of
problems, the READONLY parameters can be assigned a value during the OVERRIDE
mode of the simulator. The CTRLONLY parameters can only be modified via the

backplane routines. The default paraﬁleter mode is STATIC unless specified otherwise.

Appendix-A.3 Object and Device Structures

Within the backplane, two types of objects are defined: local and root. The simulator
defines the local objects while the backplane constructs the root objects at the beginning of
a task. A local object is the standard object definition for a simulator where each local
object has a root object or system level connection. The local objects have definable
attributes and define an interface for a single domain. The MERGE option in OBJPRM
specifies the root object. If MERGE is not Specified, then the default root object is the same
name as the local object. A root object is the master node that defines how objects from
simulators are merged or interconnected. The root objects have no definable attributes
except for the tolerance parameters. Unlike the local object, the root objects support
multiple domains, so interfaces from different domains can be merged into a single root
object.

The device structures also have a local and root structure like an object, but
equivalent devices in different simulator must have the same device name. Devices are

essentially a collection of objects that represent a known entry with a district modeling

171



representation. The device definitions are used to deﬁne the predictor and corrector
interfaces in the flow correction process (described in section 3.5) and for the dynamic
model switching process (described. in section 4.3.3 and by the TRIGDEF command). At
present, local objects cannot be sh&ed by multiple device definitions. This rule is strictly
enforced with the predictor and corrector interfaces, but sharing is possible with other

interfaces.

Appendix-A.4 Automatic Configuration

Because of the dynamic switching capabilities of the backplane, the central
controller of all 'backplane elements will configure all simulators especially if a device is
defined for a simulator. If any simulator within the backplane is in an ITERATE mode, the
controller conﬁgl;res the STA'fUS péijametef of c;'bjects using the de;vice STATUS, which
the objecfs are used to construct. The mapping is defined as follows:
o Deviée ON fc;rces objects to ON.
e Device OFF forces objects to OFF.'
; Device TRACK forces objects to TRACK.
Then, a simulator’s configuration is determined from the objects’ STATUS property using
the following rules:
e If any object in a simula‘tor has a STATUS=ON, theﬁ the simulator can only be in an

ITERATE mode. Objects with a STATUS=OFF in a -simulator with a
" MODE=ITERATE are changed to STATUS=TRACK.

o The simulator is set to the TRACK mode if all objects have STATUS=TRACK.

o If all objects have STATUS=OFF, then the simulator is set to the DEACTIVE mode
parameter and the objects of the simulator are configured appropriately.

172



Once the simulator status is determined, the object in the simulator are modified if

necessary where:

e For a simulator in an ITERATE mode, the object status can be ON or TRACK.
e Fora simulatof in TRACK mode, the 6bject,status,can only be TRACK.

¢ For a simulator in OFF mode, the object status can only be OFF.

Besides these rulc_es; the central backplane controller performs  automatic ITERROGATION
of simulators with UNKNOWN modes. In addition, each backplane element will also
automatically synchronize with other simulators when the element is changed from an OFF

to ITERATE mode.

Appendix-A.5 Triggering Rules and Procedures

The triggering procedures are very s&aighﬁoﬁmd except for the ACCURACY and
RANGE procedures. The accuracy trigger is a method of concurrent verification, where the
reference model defined By the trigger tracks the operation Qf the active model (model in the
analysis). When the accuracy between the active and referencg model is not within a certain
tolerance, the procedure switches to another model that meets the accuracy criteria. The
trigger can always switch back to the reference model, which is essentially the most
accurate, but most time-consuming model in the analysis. The @ge trigger is a variation of
the accuracy trigger, where accuracy information ié already defined in lookup t;':tbles and
concurrent simulation is not required. Each trigger has aidditional rules about model
switching decisions and options.

For the ACCURACY trigger, the procedure is to chose the simulation model with

the best performance once the model (as called a device) has meet the sequential accuracy

173



. criteria. The seciuential accuracy criterion requires a model to meet the accuracy
requirement (variable errors are less than MAXERROR) 6ver a certain number of
sequential points (SEQCNT_SWITCH) compared to the reference model. Once valid, a
certain sequential number (SEQCNT_BACK) of accuracy requirement violations causes the
model to become invalid. If multiple valid models are present, then the switching procedure
will change models ONLY if the performance of the new model is better than the
performance (P) of the active model by a certain percentage (PERFDIFF), or

Py < Pyeyys - (1— PERFDIFF) Equation A-1

If no valid modéls are found; then the: reference device bepomes the active simulation
device. |

For the RANGE trigger, theldevice must(meet ﬁle sequential range criteria. Like the
sequential accuracy criteria, the sequential range criterion requires 2 model (device) to meet
the rahge requirement over a certain number of §equential points (SEQCNT_SWITCH).
The range requirement is that specified range error for all variables of the simulation model
is less than MAXERRQR of the ﬁgger. Once valid, a certain number of sequential
violatipns (SEQCNT BACK) of the range requirement caused the model to - become
invalid. However, a model immediately becomes an invalid device if the device range
exceeds MIN-MINEXT or MAX+MAXEXT for a present region without finding another
region within the error tolerance parameter. If multiple valid models are present, lthen the
switching procedure will change between valid models based on thé following rules:

1. Better perforinance (P) than the active model by a certain percentage (PERFDIFF).

174



Pygw < Pycryys - (1— PERFDIFF)

2. Equivalent performance of the active model within a certain percentage (PERFDIFF)
and an improved ratio of range error (E) over the minimum range (R) by a.certain
percentage (RANGEDIFF).

Py < Py - (1+ PERFDIFF)

Liow  Escne .\ - RanGEDIFF) Equation A-2
‘Klew ACTIVE

If no valid mpdels are found, then the SIMMOD defined in the TRIGDEF becomes the

active simulation models.

175



Table A-4. Data keywords for the backplane

Keyword Codes

DATA Description

DEVDEF

Define a device called DEVNAME in a particular simulator and define
the properties of the device. .

Format: DEVDEF SIMULATOR DEVNAME PARAMETERS

PARAMETERS

MODELDEF={model name}

Define the model that the device references. This parameter must be
specified. '

SEQCORR={YES,NO}
Perform a sequential correction process. The default is NO.

SEQCORRITR={YES,NO}
On the first iteration of a new reference point, make the CORRECTOR
track the PREDICTOR interface. The default is NO.

SIMMOD={simulation sub-model}
Define the specific simulator model that used in- the simulator. This
parameter must be specified.

SYNC-SIMMOD={simulation sub-model}
Define the specific simulator model that the given device will
synchronize. The backplane controller defines this parameter.

STATUS ={ON,OFF,TRACK}

Define the status of the device in the dynamic modeling process. The
default is ON. Because of the dynamic switching process, this
parameter can be controlled by the user and the backplane controller.

ON:_The device is active in the dynamic modeling process.
OFF: The device is inactive in the modeling process.
TRACK: The device is to track the operation of the ON device.

{simulator object}={model object}

Define how simulator interfaces (simulator objects) are connected to
the basic model (model objects). This relationship listing provides the
backplane with a secondary netlist to double-check the system-level
connectivity.

176




Table A-4. Continued

Keyword Codes

DATA Description

DEVDEF
(continued)

CORRSENSRATIO={ floating point value }
Define the correction sensitivity ratio (RATIO) for the flow-correction
minimization process. The default value is 5.0.

The flow correction procedure does the following:
F ét: =Fe +AFc+G - AEg,;c (Normal)

present

F gg = Fo +AFyc +G, AEZALC (Cornpare)

pmwmu

i (R > RATIO-|RSY| then F*=FZ)

else F.' =F.,

GRADDATA

Specify the gradient information to other simulators.
Format: GRADDATA SIMULATOR PARAMETERS

PARAMETERS
NAMEjy: VAR, NAMEy:VARg={floating point value}
Gradient results for object variables. Examples are:

T1:V[T2.A=
T1:A[T2.A=
T1: V|T2.V={floating point value}==*
T1 :A]'I2.V={ﬂoating point value}=-a—,,'-

X
o,

=9
oI,

OBJDATA

Define object variable data to other simulators.

Format: OBJDATA SIMULATOR OBJNAME PARAMETERS
PARAMETERS

'REF = {hexadecimal number} .

Define a reference point. An example is REF—0A43D

VARIABLE={floating point value}
Physical variables. Examples are:
V=0.5212 (Voltage). Units are in volts (V).
A =0.3289 (Current). Units are in amps (A).

177




Table A-4. Continued

Keyword Codes

DATA Description

INCLUDE

Include a file with additional backplane instructions.

Format: INCLUDE file

MESSAGE

Message or information to the backplane controller.
Format: MESSAGE SIMULATOR TYPE {message}

TYPE={COMPLETED, ERROR, FATAL ERROR, DATA,
WARNING, TRIGGER}
Define the type of message.

COMPLETED
Indictor of successful completion of a task.

WARNING ,
A condition occurred in the simulator that can cause errors in the
backplane.

ERROR

The present task encountered an error, which forced the simulator to
halt the' present task. The message is an error description for
diagnostics. The entire backplane process can be jeopardized by the
error and data is certainly suspect.]

FATAL ERROR

The simulator encountered an error that was unrecoverable. The
message is a description of the simulator error for diagnostics if
available. In all cases, the simulator has shutdown.

DATA
The message is simulator information from the REQSTAT command.
The information is read by the backplane controller module(s).

178




Table A-4. Continued

Keyword Codes

DATA Description

MODELDEF

Define a model and all facets of the model with respect to the different
simulation models available.

Format:
MODELDEF {name} .
MODEL-VAR variables
PARAM {MODELDEF Parameters}
 SIM-MODELDEF {name} '
PARAM {SIM-MODELDEF Parameters}
RANGEDEF; {maxerror}
RANGE {variable} {RANGE attributes}
END-RANGEDEF
{etc}
RANGEDEFy {maxerror}
{etc} :
END-RANGEDEF
END-SIMMODELDEF
{etc}
SIM-MODELDEF {name}
{etc}
END-SIM-MODELDEF
END-MODELDEF

A scparate section is provided for MODELDEF parameters,

-| RANGE attributes, and SIM-MODELDEF parameters.

Command Definitions :
END-MODELDEF, END-SIM-MODELDEF, END-RANGEDEF

Indictors to terminate a particular command sequence within

MODELDEEF.

MODEL-VAR OBJECT:VARIABLE ...
Define the reference variables or I0 information for the model.

Example: MODEL-VAR T1:V T1:A T2:V ....

(continued)

179



Table A-4. Continued

Keyword Codes DATA Description
| MODELDEF SIM-MODELDEF name -
(continued) Define the start of a simulator-specific model definition.

Example: SIM-MODELDEEF spice3

.RANGEDEF {maxerror}

Define the regions of the device that have been mapped and the
maximum error for the region (% error). The default maxerror is 0.01.

Example: RANGEDEF 0.05 = 5% efror maximum.

RANGE OBJECT:VAR PARAMETERS

Define the ranging information for the model object and variable
(usually an input variable) from MODEL-VAR command. If range
information is not provided for a variable, then the variable is assumed
valid over all values. See RANGE Parameters for more information
on the parameters.

Example: RANGE TEST1:V MIN=0.3 MAX=0.75

‘Table A-5. RANGE attribute definitioris used within SIM-MODELDEF

RANGE Attributes Attribute Descriptions

MAX

{floating point value}
The model has the specified accuracy below this maximum
value. The default is 1€10.

MAXEXT

{floating point value}

Define how far the model can be extended above the MAX
parameter in RANGE command on trigger conditions with
negligible lose of accuracy. The defaultis 1.0.

{floating point value}
The model has the specified accuracy above this minimum
value. The default is —1el0.

MINEXT

{floating point value} .

Define how far the model can be extended below the MIN
parameter in RANGE command on trigger conditions with
negligible lose of accuracy. The default is 1.0.

180




Table A-6. SIM-MODELDEF parameter definitions

SIM-MODELDEF

PARAMETER Descriptions
Parameters

LEVEL {(WHITE, PHYSICAL),(GRAY, DEVICE),
. (BLACK,FUNCTIONAL)}
Define a general level of modeling for the simulator model.
The numbers define the level that is considered the most
accuracy. Lower values indicate higher accuracy and usually
less performance. The default is BLACK.
WHITE or PHYSICAL ~level 0
Model based on the physical structure using material
characteristics. ‘ o
GRAY or DEVICE —level 1
Parameterized or lumped sum model based on observed or
extracted physical behavior with modeling error.
BLACK or FUNCTIONAL -level 2
A device model with highest performance and questionable
accuracy to represent the base characteristics of the device.

MAXERROR {floating point value}
Define the worst case relative error for the model. This value
is used if MAXERROR is not defined within RANGEDEF.
The default is 100.

PERFORMANCE {floating point value}

Define the relative performance metric for the given model
representation. Smaller values represent faster analysis
'models. The metric is presently the worst-case time for a
simulator to iterate once with the given model. The default is
lel0.

Table A-7. MODELDEF parameter definitions

MODELDEF Parameter

PARAMETER Descriptions

DEFAULTSIMMOD

{name}
Define the initialization SIMMOD if a conflict exists.
Otherwise, performance and accuracy values in SIM-

MODELDEEF are used to determine the best model.

181



Table A-8. Control keywords for the backplane

Keyword Codes

CONTROL Description

GLOBPRM

Global parameter definitions that apply to ALL simulators. All global
parameters are static.

Format; GLOBPRM PARAMETERS

The parameters are defined in GLOBPRM PARAMETERS.

OBJPRM

Interface control instructions to define how a node or object interacts
with different simulators.

Format: OBJPRM SIMULATOR1 OBJINAME PARAMETERS

The parameters are defined in OBJPRM PARAMETERS.

SIMPRM

Define the simulator specific parameters. The parameters are STATIC
unless otherwise specified.

Format: SIMPRM SIMULATOR PARAMETERS

The parameters are defined in SIMPRM PARAMETERS.

| TOLERANCE

Define the tolerance for root objects between simulators to define when
the variables have converged. See section 2.3.4. A reserved object and

| variable name is ALL wheére all objects and variables can be updated

with one command. This command also defines the delta tolerance
values for the sensitivity parameters.

Format: TOLERANCE OBJNAME {variable} PARAMETERS
PARAMETERS
ABSTOL~{floating point value}

Define the absolute tolerance for a variable. See below.

RELTOL={floating point value}
Define the relative tolerance for a variable. See below.

(continued)

182




Table A-8. Continued

Keyword Codes CONTROL Description
TOLERANCE ABSSENS={floating point value}
(continued) Define the absolute sensitivity for a variable. See below

RELSENS={floating point value}
Define the relative sensitivity for a variable. See below.

RATIO={floating point value}
Define the scaling ratio for GRADCALC=RELPLUSMAX. See below.

EFFORT FLOW Other

variables variables variables
ABSTOL 1.0e-4 1.0e-5 1.0e-4
RELTOL 0.0 1.0e-3 0.0
ABSSENS 1.0e-4 1.0e-5 1.0e-4
RELSENS 0.05 0.05 0.05
RATIO 0.5 0.5 0.5

183



Table A-9. GLOBPRM parameter definitions

GLOBPRM Parameters PARAMETER Descriptions

COMM {FILE,SOCKET,PVM}

Define the communications protocol between backplane

elements. The default is SOCKET.

e FILE is for file-based transfers. This option is very slow
(10 to 100 times) compared to the other options.

e SOCKET is for UNIX based transfer mechanisms.

e PVM is for the Parallel Virtual Machine mechanism
(Not implemented).

DEADLOCKLIMIT {integer value}

Define the iteration. limit for simulation process for a
solution at the same reference point. The default is 50.

DEBUG {ON,OFF }

Output information from the backplane based on the
DEBUG compile definitions. The default is OFF. The
compile definitions are outlmed in the include file
“config.h”.

MAXITR {long integer value}

Define the maximum number of iterations between
backplane elements before the process is stopped. The
default is 0, which means no limit.

PMAX {floating pomt nuniber} -

B Define the maximum parameter for backplane mterfaces and
calculations. The default is 1e10.

PMIN {floating pomt number}

Define the minimum parameter for backplane interfaces and
calculations. The default is 1e-10.

REFSTOP {integer value in hexadecimal format}

Define the stop reference point for the analysis. A solution is
: not generated at this point. The default is 0.

REFDELTAMIN {integer value in hexadecimal format}

o - ‘Define the minimum reference data for the analysis. The
backplane attempts to increase the reference delta until this
minimum value is reached. The default is Ins.

RESOLUTION {floating point number}

Define the minimum (usually time) resolution for the
reference variables in the backplane. The default is 10 pico
seconds.

184




Table A-9. Continued

GLOBPRM Parameters

PARAMETER Descriptions

RETAIN

{integer value}

Specify the number of data pomts that each simulator must
maintain for synchromzatlon of the s1mu1ators The default
is 8.

SENS_DREF -

a {SKIP,ROLLBACK STOP SCALE}

Define how the backplane reacts to a reference rollback

during sensitivity calculations. The default is the SCALE. '

e . SCALE option 1mplements a linear scaling of the

' reference point to expected reference point. If the scale is

greater than 2, then the process implements a SKIP.

e ROLLBACK option. forces the simulator to change the
reference delta and the sensitivity analysis is restarted.

e SKIP option skips the calculation of the sensitivity
parameters affected by the rollback.

e STOP option stops the sensitivity calculation process
and returns to the previouueration.

SYNC

{LOCKSTEP}

Define the synchronization method for the backplane. The

default is LOCKSTEP.

o LOCKSTEP forces all ITERATE mode simulators to
keep the same REFPREV, REF, and REFDELTA.

TIMEOUT

{integer value}
Define the timeout in seconds for the communications

‘process. If the simulator has .not received a communication
‘in a ‘given span, then the process checks for valid

communication mechanism. The default is 120.

VARMAX

{floating point number}

Define the maximum variable value allowed in interfaces
and calculations where |variable] < VARMAX|. The default
is 1e3. This parameter is not checked during initialization.

VARINTERP

{YES,NO}

Extrapolate new interface values after convergence for the
next reference point based on previous values. The default is
NO.

185




Table A-10. OBJPRM parameter definitions

OBJPRM Parameters

PARAMETER Descriptions

CAUSAL

{EFFORT,FLOW}
Define which variable in the electrical interface is the input.
The default is EFFORT. This parameter is READONLY.

CONF

{Interface Configuration type. See Appendix 2}

This parameter defines the configuration or emulation mode
of the interface. The default is DEFAULT or basic interface
definition. The parameter is DYNAMIC.

DOMAIN

{UNKNOWN,ELECTRICAL,MECHANICAL}
Define the domain that the object’s variables. This parameter
is READONLY and the default is UNKNOWN.

INTF

{Interface type. See Appendix 2}

This parameter defines the electrical interface definition for
an object. No default is- defined. The parameter is
READONLY.

MERGE

{root object name}

" | Merge this object into the given root-object The default is

NULL (use object name as root object name).

STATUS

{OFF, ON, TRACK}

| Transmission or interface. /O control. This parameter

defines how an object is ‘connected to other objects in

external simulators. The default is ON.

e OFF. The information from the interface is not used by
other simulators. _

® ON. The information is used by the other simulators and
sensitivity parameters are calculated.

e TRACK. The object follows another object and mirrors
its response. This information is not used in the
calculations to define the next solution and no sensitivity
calculations are required.

186




Table A-10. Continued

OBJPRM Parameters

PARAMETER Descriptions

GRADCALC

{RELTOL, RELPLUSMAX,ERROR}

Specify the variation parameters to the perturbation method
for the sensitivity calculation process. The default is
RELTOL, which is the conventional approach.

RELTOL applies a relative parameter times the variable
value plus an absolute relative parameter.

delta = RELSENS * |value| + ABSSENS
RELPLUSMAX applies the RELTOL delta and adds the
largest, previous applied delta as a ratio.
delta = ratio* RELTOL * |value| +

(1-ratio) * DELTAMAX +ABSSENS
ERROR uses the present error information between the
simulator value and the calculated value until the values
become too small. NOTE: Not very reliable due to
rounding errors.
delta = |value(i) —value(i - 1)|

GRADMODE

{IDENTITY, DIAGONAL, FULL}

Specify how the backplane is to calculate the sensitivity
information. Prior to the first valid solution, the FULL
option is ALWAYS used. The default is FULL.

IDENTITY is used primarily for the correction process,
Other modes maintains the present values.

DIAGONAL implements a SECANT based approach
where sensitivity information is gathered during the
analysis process. Variables are assumed decoupled.

NOTE: New parameters are calculated if any delta
variables are above the too-be-applied ideal delta defined
by GRADCALC. Consequently, the sensitivity tolerance
variables need to be reduced compared to the
TOLERANCE defaults. Suggested tolerance parameters
are RELSENS<le-3 and ABSSENS<le-5.

FULL option has the backplane perform the perturbation
method where deltas are applied to each interface
independently.

187




Table A-10. Continued

OBJPRM Parameters

PARAMETER Descriptions

GRADSIGN

{MO0,M1,M2,POS,NEG} .
Define how the sign of the applied delta is determined for
the sensitivity calculations of the object. The default is M1.

MO. Obsolete method of moving toward the calculated
solution, which had an error but worked.

M1. This method determines the delta direction based on
moving the simulator value toward the calculated value.
On the first iteration of the new sequence, this routine
uses the previous results to predict the direction of the
solution.

M2. The delta direction is determined based on the stable

~ or converged events in the object, so the delta is constant

during the sequence. Until sufficient events are stored in
the object, this process uses M1.

POS. Apply a positive value to the variable values.

NEG. Apply a negative value to the variable values.

GRADTIME

{NONE CONDITIONAL,ERROR, ITERATION,

TIMESTEP}

Specity when the backplane is to initiate a gradient

| calculation. The default is TIMESTEP.

NONE maintains the present values.
TIMESTEP generates gradients on each new reference
point after a variable change occurs.

‘CONDITIONAL implements the TIMESTEP process,

but performs new sensitivity parameters when variables
exceed the region encircled by the previously applied |

delta.

ERROR examines the. error between the calculated

values and the simulator values to determine when new

sensitivity calculations are performed.

ITERATION generates new gradients after very 1terat10n

until variable convergence is reached.

188




Table A-10. Continued

OBJPRM Parameters PARAMETER Descriptions

STATE {Causality states}

Defines the causality state of interface for the dynamic
interface  switching process depending on the
STATE_ENABLE method. The different methods are
defined in section 3.2 (method 1) and in section 3.4.5
(method 2). This parameter is DYNAMIC.

For method 1, the default state is GENERIC, and the
DEFCONF, CSCONF, and EFCONF parameters are used to
redefine an object’s CONF in the specific states. In method
2, the configurations are predefined.

State decisions are made at the reference done level of the
iteration process, after changes in the CAUSAL variable of
an interface, and during initialization procedure.

Causality states
Method 1 States

GENERIC. Use the DEFCONF configuration.

CAUSE. Use the CSCONF configuration.

EFFORT. Use the EFCONF configuration.
GENERIC_TO_CAUSE. Transition state to CAUSE.
GENERIC_TO_EFFORT. Transition state to EFFORT.
CAUSE_TO_GENERIC. Transition state to GENERIC.
EFFECT_TO_GENERIC. Transition state to GENERIC.

Method 2 States

e SYSTEM_GENERIC. Use a SYSTEM configuration.

e SYSTEM LOCK. The interface is locked in a SYSTEM
configuration.

e CAUSE. Use a FSRC_SENS configuration to indicate
that the system had entered the EFFECT or
EFFECT_SET state.

o EFFECT. Use the ESRC_SENS configuration.

o EFFECT SET. Use the ESRC_SENS configuration with
the sensitivity parameter set to one. '




Table A-10. Continued

OBJPRM Parameters

PARAMETER Descriptions

STATE _ENABLE

{METHOD1,METHOD2, NO}

Enable the given object to implement a specific causality

method. The default is NO.

e METHODI1. Use the causality detection criteria
proposed in section 3.2.

e METHOD2. Use the improved causality detection
criteria from section 3.4.5.

o NO. Disable the causality detection process.

CAUSCRTR

{ POWER,SENSITIVITY}

Define- the causality detection criteria. The default is
SENSITIVITY (See section 3.2.1).

e POWER uses the power criteria.

o SENSITIVITY uses the sensitivity criteria.

CAUSRATIO

{floating point number}
Define the cause ratio for the causality detection process.
The default is 10.

CSCONF

{Interface type. See Appendix 2} - ,
Define the CAUSE configuration emulation if the element is
identified as CAUSE.

DEFCONF

{Interface type. See Appendix 2} _
Define the default or GENERIC emulation configuration.

EFCONF

{Interface type. See Appendix 2}
Define the EFFECT configuration if the element is identified
as an EFFECT.

190




Table A-11. SIMPRM parameter definitions

SIMPRM Parameters

PARAMETER Descriptions

BACKUP

{NONE,MEMORY,FILE.MEM_FILE}

Parameter from the simulator to the backplane that defines

how the simulator can do a backup for a LOAD and SAVE

operation. The parameter is READONLY. The default is

NONE. - _

e NONE. No backup capability.

e MEMORY. Store information in the computer memory.

e FILE. Store information in a file. :

¢ MEM_FILE. Both MEMORY and FILE operations are
available.

BACKUPCONF

{ NONE,MEMORY,FILE}

Defines how the simulator will do a backup during a LOAD
and SAVE operation. The default is NONE.

e NONE. No backup capability.

e MEMORY. Store information in the computer memory.
e FILE. Store information in a file.

BACKUPNAME

{name}
Name of the backup. A name must -be specified if the LOAD
or SAVE mode is performed.

COMMTYPE

{See COMM types }
Define how the simulator is used in the communications
scheme. The default is CLIENT.

COMM types

e SERVER. The element receives all information and then
broadcasts it to the clients.

e CLIENT. The element sends and receives information |-

only from the server.
e HYBRID. This element is a client and a server (Not fully
implemented).

191




Table A-11. Continued

SIMPRM Parameters

PARAMETER Descriptions

CTRLTYPE

{See CTRL types }

Define how the simulator is used in the control process. The

default is SIMULATOR.

CTRL types

e CONTROLLER. This element controls other elements
and implements the configuration rules. Only one
CONTROLLER can be defined within the backplane.

e SIMULATOR. This element performs calculations and
controls a simulator.

e SIM+CONTROL. This element implements a
CONTROLLER process and SIMULATOR process
simultaneously (Not fully implemented).

e OBSERVER. This element only examines data.

DEACTIVE_MODE

{OFF, UPTODATE, TRACK}
Define the mode of the simulator if all internal objects have
STATUS=OFF. The default is UPTODATE.

END

{See END options}
This output parameter defines the status of the simulator.

_| This parameter is DYNAMIC, and is typically defined by

the backaa';e in the simulator. The default is NO.

e NO. The simulator has not finished the present iteration.

e YES. The simulator has finished the present iteration.

e DONE. The simulator has variable convergence with
other simulators, so the iteration process can move to the
next iteration and reference point.

e STOP. The simulator has finished the present task or had
an error. A simulator may wait for other simulators
completion before continuing.

NOTE

Backplane elements redefine other simulator’s END

parameters (to a NO) after iteration sequence completion in

order to eliminate transmissions between elements.

IONAME

{name}
Input and Output name for communications. The default is
BKPLCON.

LOGFILE

{name}
Log file containing the iteration characteristics of the
simulator and object interface parameters.

192




Table A-11. Continued

SIMPRM Parameters PARAMETER Descriptions

MATRIX {ON,OFF} ‘
Parameter from the simulator to the backplane defining that
the simulator has a matrix loading capability. The default is
OFF. This parameter is READONLY.

MARK {long integer value}
Iteration marker value for debugging the synchronization
process between backplane elements. This parameter is
DYNAMIC. : _ : ’ '

MODE {See MODE parameters }
This parameter defines the operation to be done on a START
command, where MODEPRS is set to MODE. The default is
ITERROGATE.

MODEPRS {See MODE parameters }
Define the present operational mode of a simulator. The
default is: UNKNOWN. The start command transfers the
MODE definition to the MODEPRS. This parameter is
CTRLONLY.

MODE parameters Backplane non-calculation modes

e IDLE or OFF. Waiting mode for information and
commands.

o ITERROGATE. Debugging and configuration mode.
This mode provides feedback to the external simulator
about all facets of the local simulator.

e OVERRIDE. Override control mode for redeﬁnmg non-
CTRLONLY backplane variables.

e SHUTDOWN. shutdown mode. An orderly shutdown of
the simulator is to be performed.

 Simulator interaction modes without calculations

e LOAD. A recovery mode. The simulator is instructed to
a load a file (IOFILE) or rollback to a previous internal
state defined by REFROLLBACK and BACKUPCONEF.
This mode is used in conjunction with SYNCHRONIZE
and SAVE.

e SAVE. A backup mode. The simulator is instructed to a
save a file (IOFILE) or internal contents for recovery,
synchronization, or rollback. The destination of the save
is defined by BACKUPCONEF. This mode is used in
conjunction with SYNCHRONIZE and LOAD.

193




Table A-11. Continued

SIMPRM Parameters PARAMETER Descriptions
MODE parameters Simulator interaction modes with non-iterative calculations
(continued) o INDEPENDENT. Backplane-off mode. The simulator
has minimum interaction with the backplane except to
load stimuli.

e SYNCHRONIZE. Synchronize mode. The backplane
defines an event sequence to synchronization the
operation of the local simulator with external operations.

Concurrent interaction modes between simulators

e ITERATE. Concurrent simulation mode.

e SENSCALC. Internal calculation mode for sensitivity
calculations. :

e TRACK. Synchronize mode. The objects within the
simulator track the response of objects in other
simulator. Track simulators are iteration locked at the
reference done level.

e UPTODATE. Synchronize mode. Similar to TRACK,
this mode is not iteration lock with the other simulators.
The simulator fries to remain up-to-date with the other
simulators like the SYNCHRONIZE mode.

REF {Hexadecimal integer value}
Parameter defining the present simulation reference point
from the analysis. This parameter is READONLY. The
: default is 0.
REFDELTA {Hexadecimal integer value}

Parameter defining the next delta reference point from the

analysis for step control. This parameter is READONLY.

The default is 0.

REFPREV {Hexadecimal integer value}

Parameter defining the previous simulation reference point
from the analysis. Specifically, this parameter is the known
stable solution that all calculations are referred. This
parameter is READONLY. The default is 0.

194




Table A-11. Continued

SIMRM Parameters PARAMETER Descriptions
REFROLLBACK {integer value in hexadecimal format}
Define the rollback reference point for the analysis for a load
operation. The simulator should use this parameter to shift
its reference points of the loaded information to this point for
fast synchronization. The default is 0.
SENSABSTOL {floating point value}
' The relative -absolute tolerance for the sensitivity
‘ calculations performed by a simulator. The default is 1e-8.
SENSRELTOL {floating point value} .
' - The relative tolerance for the sensitivity calculations
performed by a simulator. The default is le-3.
SERVER {simulator ID} .
Name or ID of the backplane server. The default is
- BKPLCON.
SIMDEF {name}

Name of the simulator being reference by the backplane.
This parameter must be defined uniquely for each simulator.
This parameter is READONLY.

195




Table A-12. Command keywords for the backplane

Keyword Codes

COMMAND Description

ID

Assign the simulator ID that all simulators will use as reference. This
process can only be done once, and each simulator is given a unique ID
prior to the analysis.

Format: ID name

Define a control file for the backplane.

INCLUDE
Format: INCLUDE file
REQSTAT Request status of a simulator and any internal backplane components.

This command is similar to the ITERROGATE mode, but the
command can be issued during any mode. This command is- more
powerful than the ITERROGATE because any internal parameters or
data from any simulator can be examined within the backplane
elements of the given simulator. This command is intended for
diagnostics. The information is returned using the MESSAGE DATA
format. Three formats are available.

Format(1): REQSTAT
Get the status of all simulators. All local OBJPRM and SIMPRM are
retumed.

Format(2): REQSTAT SIMULATOR :
Get the status of a partlcular sunulator All local OBJPRM and
S]MPRM are retumed

Format(3): REQSTAT SIMULATOR PARAMETERS
Get the status of the local simulator parameters or other simulator’s
information in the simulator beyond OBJPRM and SIMPRM.

PARAMETERS
‘DATA
Returns the event data for the given object.

GLOBPRM={Parameter name}{ALL}
Returns the given global parameter. The ALL parameter returns all
parameters.

(Continued)

196




Table A-12. Continued

Keyword Codes

COMMAND Description

REQSTAT
(continued)

OBJ={Object name}
Define the object for the REQSTAT process. If no object is defined,
then all objects for the given simulator are returned.

OBJPRM={parameter name}{ALL}
Returns the - object parameters for the specified object. The ALL
parameter returns all parameters. ‘

PING ,

A simple mechanism to make certain that a backplane element is alive.
The MESSAGE. data response is sent to the backplane controller
containing SIMPRM simulator END={status}.

SENSITIVITY
Return the sensitivity information for the given simulator.

SIM={Simulator name}
Define the simulator. The default is the local simulator.

SIMPRM={parameter name}{ALL}
Returns the given simulator parameter for, the specified simulator. The
ALL parameter returns all parameters.

SIMCMD

Command instruction from the backplane to a specific simulator.

Format: SIMCMD SIMULATOR COMMAND

START

All simulators are to start processing data based on the MODE
definition. All MODE parameters are transfer to MODEPRS.

Format: START

STOP

All simulators are to stop and await further instructions. The present
MODEPRS of each simulator is set to an IDLE.

Format; STOP

Note: Certain modes do not process information until the given task is
completed, so the STOP command could be ignored temporarily.

197




Table A-12. Continued

Keyword Codes

COMMAND Description

TRIGDEF Defme the trigger conditions for switching between different models of

a device (DEVICE).

Format: TRIGDEF NAME DEVICE PARAMETERS

See TRIGDEF Parameters for PARAMETERS information.

Table A-13. TRIGDEF parameter definitions

TRIGDEF Parameters

PARAMETER Descriptions

MAXERROR

{floating value}
The maximum error allowed for the model. The default is
0.01 or 1% error

ABSTOL_SCALE

{floating value}

Define a scale factor for the normal variable absolute
tolerance, so the trigger does not happen because of noise.
The default is 10.0.

OBJ

{string value} h
Define an object within a simulator. The default is NULL.

PERFDIFF

{floating point number}
Define the performance improvement between the models to
cause a trigger condition. The default is 0.1 (10 percent).

RANGEDIFF

{floating point number}

Define the range and accuracy improvement between the
models to cause a trigger condition. The default is 0.1 (10
percent).

REF

{Hexadecimal integer value}
Define a trigger reference point to switch to another model.
The default is 0.

SEQCNT_BACK

{integer value}

Define the number’ of sequential points needed by the new
model under different constraint before the new model is
replaced by the old model. The default is 2.

SEQCNT_SWITCH

{integer value}

Define the number of sequential points needed by the new
model before the present model can be replaced by the new
model. The default is 3.

198




Table A-13. Continued

TRIGDEF Parameters

PARAMETER Descriptions

SIM

{string value}
Define the simulator that contains the comparison variable.
The default is NULL.

SIMMOD

{simulator model}
Define the simulator model to replace the existing model.
The default is NULL

TRIGCOND

{COMPARE, IMMEDIATE, OFF, RANGE, REF, VAR}
Define the trigger condition. The default is OFF. See Table
A-13 for more information on each trigger condition

VARCOND

{GT, GTE,EQ,LTE,LT}
Define the variable condition for the generatmg a trigger.
The default is EQ.

GT Greater Than VARVALUE.

GTE | Greater Than or Equal to VARVALUE.

EQ Equal to VARVALUE (within tolerance limits).

LTE [ Less Than or Equal to VARVALUE.

LT Less Than VARVALUE.

VARVALUE

{floating point value}
Define the comparison value used by VARCOND.

199




Table A-14. An outline of the trigger conditions within the trigger definition command

TRIGCOND

PARAMETER Descriptions

ACCURACY

Switch models based on an accuracy comparison with a
reference device. This condition uses the following
TRIGDEF parameters:

e MAXERROR.

PERFDIFF.

SEQCNT_SWITCH.

SEQCNT _BACK.

SIMMOD. This parameter now defmes the reference
model that other models are compared.

The accuracy switching rules are defined in Appendix-A.S.

Switch to SIMMOD immediately. This condition uses only
the SIMMOD parameter.

The trigger has been completed by the dynamic ‘switching
process or the trigger has been disabled.

Use the RANGEDEF information in the model definition to
determine the switching conditions. This condition uses the
following TRIGDEF parameters:

e MAXERROR.

. PERFDIFF.

- RANGEDIFF.

SEQCNT _ SWITCH

SEQCNT_BACK.

The range switching rules are defined in Appendix-A.5.

Switch to the given SIMMOD when the trigger REF point is
reached or exceeded. This condition uses the following
TRIGDEF parameters:

e REF.

e SIMMOD.

Trigger on a specific variable condition. This condition uses
the following TRIGDEF parameters:

e VAR

OBJ.

SIM.

SIMMOD.

VARCOND.

VARVALUE.

200




" APPENDIX-B




Appendix-B. Interface Methodology

This section ‘defmes the interface types known to the backplane and the basic
structure of the backplane interface into the simulator. The interface process has an interface
level and a configuration level. The interface level defines the primitive structure c.>f the

interface while the configuration level defines the calculation or solving procedures beyond
the primitive level. A ;:onﬁguratioﬁ cénnot be used as an i1‘1terfa.ce while an interface is also
a conﬁguration. A definition for the different inteffaces and configuration is provided in
Table B-1. Table B-2 defines the configurations for the different interfaces.
All interface structures between the backplane and the simulator are based on bond
ﬂ graph techniques. An interface has the variable input/output characteristics defined in Table
B-3. The interfaces are domain specific, but all domain variables are defined as an EFFORT
and a FLOW. The EFFORT and FLOW designations define how variables between
simulator interact. Three domaing are presently defined:
e Signal Domain (Section B-1).
o Electrical domain (Section B-2).
e Mechanical domain (Section B-3).
The interface component values for the different configurations of the primitive interfaces
are defined in Table B-4 in terms of the calculated FLOW and EFFORT variables. The
sensitivity delta calculation is defined in Table B-5, where A is the variable delta function.
Several integer indgx variables. are also provided for internal simulator operations.

Additional variables and domains can be easily added to the backplane. The final section

describes the initialization of the different interfaces.

202




Table B-1. List of all interface and configurations recognized by the backplane

Interfaces and Descriptions
Configurations
CORRECTOR This configuration is used in the flow correction process with a

PREDICTOR.

CORRECTOR_SENS

This configuration is a variation - of the CORRECTOR
configuratlon with a sensmvxty element to improve convergence
by including loading effects.

EAPPLY

This configuration applies a list of effort data.

EDATA

This interface defines the effort data applied by an EAPPLY.

EFFORTEQ

" | This configuration is a direct interface that follows the CAUSE
“element in the root-level object.

EMONITOR

An effort monitor configuration.

ESRC

"This interface defines the effort variable.

ESRC_FSRC_2SENS

This flexible interface can mimic any type of interface
(FLEXIBLE).

ESRC_SENS

This interface uses diagonal component of the sensitivity
information with an ESRC, so the simulator can emulate loading
effects and provide local feedback to the backplane

(THEVININ).

FAPPLY

This configuration applies a list of flow data.

FDATA

This interface defines the flow data applied by an FAPPLY..

FLOWSUM -

This configuration is a direct interface that is the CAUSE
element in the root-level object. This interface defines E[, . to

‘the EFFORTEQ) interfaces in a sequential process.

FMONITOR

A flow monitor configuration.

FSRC

This interface defines the flow variable.

FSRC_SENS

This interface uses diagonal component of the sensitivity
information with an FSRC, so the simulator can emulate loading
effects and provide local feedback to the backplane (NORTON).
Only this interface uses the GC component.

PREDICTOR

This configuration specifies that a simulator has an internal
model for the device. A CORRECTOR type configuration is

‘required to complete this configuration. However, the interface

can operate in an independent mode without a corrector.

SYSTEM

This configuration defines coupling to other elements using the
equivalent matrix Gj,through a simulator’s matrix loading
routines.

203




Table B-2. Interface and configuration compatibility index

Configurations Interfaces

E F G

CORRECTOR
CORRECTOR SENS
EAPPLY

EDATA X
EFFORTEQ
EMONITOR

ESRC

ESRC FSRC 2SENS
ESRC_SENS
FAPPLY

FDATA ' X
FLOWSUM
FMONITOR
FSRC

FSRC SENS
PREDICTOR
SYSTEM '

X indicates a valid conﬁguratlon of the interface. Interface A corresponds to EDATA, B to
ESRC, C to ESRC_SENS, D to ESRC_FSRC_2SENS, E to FSRC_SENS, F to FSRC, and
Gto FDATA.

el tad kel =

o1 I ol B ot B el L)

1 Bt B ol Bl kel Bl Bl (@)

ol keitaltalbal ket

ol kel el el kel e

Table B-3. Input/ Output characteristics of the backplane interface

Variable Name Description

Emw or Esge Effort input to the simulator.

F or Fsre Flow input to the simulator.

G or Gsre Sensitivity parameter input to the simulator.

G or Gc Secondary sensitivity parameter input to the
simulator.

Eout or Egsrc ‘ Effort output from the simulator.

Four or Fgsre Flow output from the simulator.

EmnpeEx - Local simulator index for E variable solution.

Finpex Local simulator index for F variable solution.

ESYSmpex Local simulator index for loading an external
matrix.

204



.

Table B-4. Calculations definitions for the different configurations and interfaces

Interface Effort Flow Admittance
Type Value Value Value
(Egic) (Fxe) (G¢or Gge)
CORRECTOR E. . or E™ 0.0 PMAX
CORRECTOR_SENS Elgp or B 0.0 G;QIN
T
Gl F
EAPPLY E, .. (ref) 0.0 PMAX
EDATA Ep s (ref) - ~
EFFORTEQ ) - 0.0 PMAX
EMONITOR 0.0 0.0 PMIN
ESRC £ 0.0 PMAX
i+] i L0 1
ESRC_FSRC_2SENS 0.0 F™ -Gy, n E GEQI;,;
. . ‘ -1 ; 1
ESRC _SENS E_ Gy N Fit 0.0 GEQ|,-,,-
FAPPLY 0.0 F ., (ref) PMIN
FDATA - Fpoupi(ref) 3
FLOWSUM 0.0 iy ‘
| - X5
Jj=2
FMONITOR 0.0 0.0 PMIN
FSRC 0.0 Fit PMIN
i+] 4 14 ]
FSRC_SENS 0.0 F" -Gyl E"| Gy, 0
PREDICTOR 0.0 i PMIN
SYSTEM 0.0 F'™ -Gy, - E™ - PMIN.
Gy, defines the

load matrix for
the simulator

205




Table B-5. Sensitivity delta definitions for the different configurations and interfaces

Interface Effort Flow
Type Delta Delta
(AEg:) (AFge)
CORRECTOR AE 0
CORRECTOR_SENS 0.71-AE ~0.71-|AF|- sign(AE - G, )
EAPPLY - -
EDATA - -
EFFORTEQ - -
EMONITOR - . -
ESRC . AE 0
ESRC_FSRC_2SENS 0.71-AE -0.71-|AF|-sign(AE -G, )
ESRC_SENS 0.71-AE -0.71-|AF|- sign(AE - G,,,)
FAPPLY - -
FDATA - -
FLOWSUM - -
FMONITOR - -
FSRC 0 AF
FSRC_SENS 0.71-AE —0.71-|AF|-sign(AE -G, )
PREDICTOR : 0 MAX (AF,AF,)
SYSTEM 0.71-AE -0.71-|AF|-sign(AE - G,,, )

Appendix-B.1 Signal/Domain

The signal domain has two interfaces: input and output. The input and output
variables are equivalent to an EFFORT, where an input loads the Epy value and output
writes the Eour value. In the signal domain, no power is exchanged due to abstraction of the
model representations. The input and output are for control system representations like

Laplace and the Z-domain analysis.

206



Appendix-B.2 Electrical Domain

In the electrical domain, the two major variables are current (Flow) and voltage

(Effort). This domain maps directly into the interface structure, which is shown in Figure 3-

2. An interface translator from the electrical to primitive references is defined in Table B-6.

To keep the interfacing structure simple, only the flexible interface was allowed to have a

system-level or matrix loading capability.

Table B-6. Interface mapping between primitive elements and electric interfaces

Interface Electrical Interface Electrical
Type Equivalent or Type Equivalent or
alias alias
EAPPLY VAPPLY FAPPLY JAPPLY
EMONITOR VMONITOR FMONITOR IMONITOR
ESRC VSRC FSRC ISRC
ESRC SENS THEVININ FSRC SENS NORTON
ESRC FSRC 2SENS FLEXIBLE

Appendix-B.3 Mechanical Domain

This research concentrated on electrical properties, so the different configurations

for the mechanical domain were not developed, but the primitive structures can still be

used. However, the interface problem is more complex in the mechanical domain. The

electrical domain had only two variables, while the mechanical domain can have multiple

degrees of freedom. Consequently, the bond graphic approach could require multiple sub-

domains to define all interfaces between mechanical simulators. Specifically, an X, Y, Z,

and thermal domains would be expected in the full implementation. Since this research did

not require these domain variables, full domain decomposition was not implemented. Only

207



the mechanical stimuli. information was required for the behavioral models in the electrical

simulators to guarantee consistency between applied stimuli in both domains.

Appendix-B.4 Interface Initialization

The initialization of the interface was critical to eliminate divergence. Two levels of
initialization were_?équiféd: simulator and baékplan_é. The simulator initialization of the
interfaces was required to prevent the interface from dominating the first response prior to
interaction with other simulators. The backpléme initialization was a multiple calculation
process that had the same- purpose of preventing divergence in the backplane calculations.
Both. initialization processes were critical for preventing divergence and finding the
“reasonable close” initial guess. For the simulator initialization, the ESRC, FSRC, and
EFSRC values of the interface were zeroed and the sensitivity GSRC and GC values were
typicalfy le-6. The PREDICTOR configuration required GSRC and GC to be ‘PM[N (le-
10). The internal conduction matrix that a simulator can load is zeroed.

There is a three-step setup sequence in the backplang. During this setup sequence,
the CORRECTOR type configurations were forced to track the EFFORT variables of the
PREDICTOR configurations. On the first step, all EFFORT and FLOW values are zeroed
and kapplie‘d back to the interfaceé. The system configurations are given a nonzero
conduction matrix. The other interface with sensitivity components will able to use other
simulator’s sensitivity information to define loading effects. On the second and third steps,
the calculated EFFORT value was defined as an effort average, so all EFFORT variables

were moved toward a common value. However, interfaces in other simulators were required

208




to track any EFFORT output interfaces in the root node of the same domain. The calculated
FLOW variables were set to zero. The SYSTEM configuration followed a different
procedure, which set the EFFORT variables to the initial simulator’s values. In addition, the
coupling effects in the equivalent matrix for the SYSTEM configured interfaces were
modified to make certain that coupling existed between all interfaces in the simulator. A

new equivalent matrix was always calculated after the initialization sequence.

209






Appendix-C. Interface Variable Causality Detection

The variable causality defined the sensitivity paraméters that were required for the

" coupling process by identifying the input variable (EFFORT or FLOW) of an interface. For

this process, the backplane created a matrix of coupling results between all interface
variables. Initially, four different conditions were checked per variable where applicable:

CONDI: If variable variation at A had no affect on variable B where o|A4| > |AB| and
0 < a <1, then the variables are isolated. The value for oz was 0.001.
COND2: Ifa ﬁarjable variation at A had an affect on variable B, but a variable variation at

B had no affect on A, then the sensitivity parameter for variable B to A ( g—‘;) was

forward (unidirectional) coupled. Otherwise, the variables were b1-d1rect10nal
coupled. (OBSELETE)

COND3: Variable variation at A has gain to variable B if |AB| > a|A4|. The parameter

0.=10 guaranteed gain immediately. For small gain situations, a sequential gain
check was performed. If the condition with cr=2 is sequentially detected, then the
variable is also considered to have gain. This sequential gain check prevented false
gain détected due to poor simulator and backplane interaction. .

COND4 Ifthe summation of the flow varlables of the sensitivity matrix with respect to A
variation was below tolerance, the zero-flow summation test was passed. This test

- determined if the flow into simulator was equivalent to the flow out of the
simulator. (OBSELETE)

These tests were used to derive seven coupling conditions outlined in Table C-1.
The gain relationships were the most critical effects to identify causality. Without an
EFFORT gain, the causality identification process was defaulted to the EFFORT input

. condition. All interfaces were initialized to the EFFORT-input configuration. The causality

identification process also used an interface’s causality characteristics whenever possible.

For example, a flow source did not have an EFFORT-input configuration and most

- 211



Table C-1. Variables created for identifying an interface’s input causality

Parameter Description

E GAIN CNT The number of effort gains for an interface.

F GAIN CNT The number of flow gains for an interface.

EFFORT ENABLE | The iriterface can support effort as the input.

FLOW ENABLE The interface can support flow as the input.

GLOBAL_ISOL The local effort-variable delta did not couple to other interface
. variables. All COND1 conditions were true with respect to the

local effort variable.
LOCAL_ISOL The local effort variable .was isolated from the global variable

*deltas. All CONDI1 conditions were true with respect to all other

variables.

EXTERNAL FLOW

An-external interface has already changed to flow as the input.

LOCAL_VAR

| Defines if a particular variable is dominating the local interface

causality. The values are NONE, FLOW, AND EFFORT. NONE
means that both variables are reacting to the applied delta. FLOW
means that the flow variable is isolated from the effort variable.
EFFORT means that the effort variable is isolated from the flow

variable.

sensitivity parameters were for the FLOW-input. As an EFFORT-input interface, the
number of sensitivity parameters for the flow source was limited. If the backplane ever
detected flow-input condition for the interface, then the process stayed in the flow-input
configuration regardless of the detected conditions. This consideration maximized the
number of sensitivity parameters that could be calculated.

In the final version of the causality identification process, several tests became
unneces;sary. COND4 was initially considered for identifying devices within a simulator,
but COND1 provided the same information in a more generic format. COND2 was briefly
used to redefine (zero) delta information in the perturbation rﬁatrix. However, switching

causality from EFFORT to FLOW and hiding the inactive parameters corrected this

problem. For identifying the input variable of an interface, the final criteria in Figure C-1

212



used only CONDI1 and COND3. For future development, the COND1 information was
considered for identifying isolation conditions. Wiﬁl isolation identified, different
calculation methods like GRADMODE=DIAGONAL could be automatically Vdetected.
Besides the GRADMODE option, multiple deltas could be applied simultaneously during
the sensitivity calculation to eliminate calculation sequences between the backplane and the
simulator.

In this detection process, only one FLOW input variable was allowed per root node
domain. The EXTERNAL FLOW variable blocked other interfaces from entering the same
mode. For this reason, the causality identification process could not falsely identify FLOW
inputs, so the process was conservative in identifying the FLOW inputs and fiberal in

identifying the EFFORT inputs. This rule followed the standard input and output

' EFFORT_ENABLE
FALSE

P FLOW_ENABLE
- FALSE

(EXTERNAL_FLOW=FALSE)
and (E_GAIN_CNT><F_GAIN_CNT)
and (E_GAIN>0)

FALSE

(LOCAL_VAR=FLOW)
and (E_GAIN_CNT>0)

FALSE

Figure C-1. Input causality detection process

213



restrictions of only one output per node to avoid drive conflicts and poor matrix definitions

in Equation 3-24. However, this rule was unnecessary if the %— parameter of the given
X

interface was not zero. A simple limiting condition on this parameter during the sensitivity
calculations eliminated the problem, and the backplane could have solved examples with

multiple EFFORT outputs in the same node.

214



APPENDIX-D

215



Appendix-D. Coupling Results

This appendix contains the results from the interfacing tests over five different
categories of sensitivity calculation and scheduling parameters:

o Iterative Scheduling.

e Conditional Scheduling.

e Error Scheduling.

. Timestep Scheduling. ‘ ‘ \

e Other parameters. The diagonal option is explored in addition to the identity
correction process. For the diagonal options, the sensitivity tolerance parameters
were defined as ABSSENS=1e-8 and RELSENS=0.001.

For the first five categories, four éub-categories are defined:

¢ RELTOL- Parameter setting of GRADCALC=RELTOL.

e RELTOL with extrapolation- Parameter setting of GRADCALC=RELTOL and
interface values are approximated via finite differences at a new reference point.

o MAXTOL- Parameter setting of GRADCALC=RELMAXTOL.

e MAXTOL with extrapolation- Parameter setting of GRADCALC=RELMAXTOL
and interface values are approximated via finite differences at a new reference
point.

In total, the 76 different conﬁguratioﬁs in Table D-1 are tested over these different
categories as applicablie.

In these examples, the CIRO partition was typically the bounding (driving)
component in the coupling process, while the CIRO partition represented a device. Most
interfaces used the default backplane-tolerance settings, but the flow tolerance for the HF
(high-gain feedback problems) required ABSTOL to le-6 for proper accuracy. The
electrical-to-electrical coupling examples are defined by E2E and the electrical-to-FE

examples are defined by E2FE. In addition, the E2FE examples are only tested using the

GRADTIME=CONDITIONAL because of the long simulation times.

216



There are 14 examples for E2FE and 31 examples for E2E. Most examples are
simple problems with varying degrees of coupling complexity to check the backplane
processes. For the examples, the primitive components used in the E2E and E2FE examples
are in Figure D-1 and D-2. Figure D-2 also defﬁes the SPICE equivalent behavioral models
for the FE structures. The E2FE examples have a piezoelectric test (PE) and a piezoresistive
test (PR1) using the same meshed structure. The E2E examples and iteration resul_ts are
shown in Figure D-3 through D-47. The E2FE examples and iteration results are in Figure
D-48 through D-63. All iteration results are presented as a ratio of the given interface

iteration result ( X, ) to the minimum iteration result (X, ) minus one, or

—-1 A Equation IV-1

The flow correction process defines tllle correctors as having a specified error
compared to the base model. For' the EZE exaxﬂples, this percent was very prgcise since the
models were scaled relative to a know base. The E2FE examples followed the same
procedure, but the base predictor model in‘ the SPICE was NOT a scaled version of the
FESIM model. Consequently, the SPICE predictor model in the E2FE tests had larger errors

than the E2E tesfs.

217




Table D-1. Inteifsice numbers to iritéiface definition table

Conventional Interface Combinations

Interface Partition Partition Interface Partition Partition
Number CIR0 CIR1 Number CIR0 CIR1.
Interface Interface Interface Interface
1 FSRC FSRC 19 FSRC_SENS FSRC
2 FSRC ESRC 20 FSRC_SENS ESRC
3 FSRC ESRC_SENS 21 FSRC SENS | ESRC_SENS
4 ‘FSRC FSRC_SENS 22 FSRC_SENS FSRC_SENS
5 FSRC FLEXIBLE 23 FSRC_SENS FLEXIBLE
6 FSRC SYSTEM 24 FSRC_SENS SYSTEM
7 ESRC FSRC 25 FLEXIBLE FSRC
8 ESRC" ESRC 26 FLEXIBLE ESRC
9 ESRC ESRC_SENS 27 FLEXIBLE ESRC_SENS
10 ESRC FSRC_SENS 28 FLEXIBLE FSRC_SENS
11 ESRC FLEXIBLE 29 FLEXIBLE, FLEXIBLE
12 ESRC SYSTEM 30 FLEXIBLE SYSTEM
13 ESRC_SENS FSRC 31 SYSTEM FSRC
14 ESRC_SENS ESRC EV) SYSTEM ESRC
15 ESRC_SENS ESRC_SENS 33 SYSTEM ESRC_SENS
16 ESRC_SENS | FSRC_SENS 34 SYSTEM FSRC_SENS
17 ESRC_SENS FLEXIBLE 35 SYSTEM FLEXIBLE
18 ESRC_SENS SYSTEM 36 SYSTEM . SYSTEM

Table D-1. Continued

FLEXIBLE interface with causality deteétion

Interface

Cause Défault Effort
Number Type Type Type

37 FSRC FLEXIBLE ESRC
38 FSRC FLEXIBLE ESRC_SENS
39 FSRC FLEXIBLE FSRC_SENS
40 FSRC_SENS FLEXIBLE ESRC_SENS
41 FSRC_SENS FLEXIBLE |  ESRC
42 SYSTEM SYSTEM ESRC_SENS
43 SYSTEM SYSTEM ESRC
44 Method 2 — Tiered implementation

218




Table D-1. Continued

Different Predictor and ESRC configurations

Interface Predictor and Coupling Interface | Predictor and Coupling
Number Characteristic Number Characteristic
45 Model with +10 Error and ESRC 61 Model with +10 Error and
interface ESRC SENS interface
46 Model with -10 Error and ESRC 62 Model with -10 Error and
interface ESRC_SENS interface
47 Model with +20 Error and ESRC 63 Model with +20 Error and
interface ESRC SENS interface
48 Model with —20 Error and ESRC " 64 Model with 20 Error and
interface ESRC SENS interface
49 Model with +50 Error and ESRC 65 Model with +50 Error and
interface ESRC SENS interface
50 Model with =50 Error and ESRC 66 Model with —50 Error and
interface ESRC SENS interface
51 Model with +90 Error and ESRC 67 Model with +90 Error and
. interface ESRC SENS interface
52 Model with -90 Error and ESRC 68 " Model with -90 Error and
interface ESRC SENS interface
53 Model with +10 Error and 69 Mode] with +10 Error and
sequential ESRC interface sequential ESRC_SENS
interface
54 Model with -10 Error and 70 Model with -10 Error and
sequential ESRC interface sequential ESRC_SENS
interface |
55 Model with +20 Error and 71 Model with +20 Error and
sequential ESRC interface sequential ESRC_SENS
interface
56 Mode] with —20 Error and 72 Model with —20 Error and
sequential ESRC interface sequential ESRC_SENS
: _interface
57 Model with +50 Error and 73 Model with +50 Error and
sequential ESRC interface sequential ESRC_SENS '
interface
58 Model with —50 Error and 74 Model with -50 Error and
sequential ESRC interface sequential ESRC_SENS
. interface
59 Model with +90 Error and 75 Model with +90 Error and
sequential ESRC interface sequential ESRC_SENS
interface
60 Model with -90 Error and 76 Model with -90 Error and

sequential ESRC interface

sequential ESRC_SENS
interface

219



n

et
-

N

Figure D-1..SPICE primitive component definitions

220



B . | :
. -
Ve e W ; X7
i A e
HES e r
[ e I Vs v v e ¥
Ry gl Gy L L Pt munes ME
Tany Pyt e gt em o o
2 G A SO SO SR 4 SRR i
H
i . wn | e
] [\ Yif I
T H L~ |
TR Y feapait Iy i
Vi G PR X i
: !
i
i s R
: : |
H '
H
Lt
, e
o Ve Ve
A4 i
H se 4
!
s
.y | .
i
i

st

{pedi

s
s

OE e K

A i - H
i / @\' -2;. 4.
- — ws N R

i
i
i

- LA /\:'\ __/\l"\ [ g—
= VYV A VY
| |

Figure D-2. FESIM and SPICE equivalent corhponent definitions

221




iy AN o /\x:'\:"‘_‘j/‘
REPTN [
(R LY, REAIEE o
.
Wi - oo L AAA iz
N i L v \/\/ —LWL
N ; Ry N
—————0 !} [OARRER Y4103 Ui et Q]
" EIG /]\ ™
P — —J—__ ——__t_
SRS I NL ST e
sy NV ’ z
PPN
TR .y BREL ; , s
o L
- R n‘l"/\ =
I

Figure D-3. E2E digital coupling tests

222




1-36: Conventional

45-52: Paralle! Correction (ESRC)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

61-68; Paralle! Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
B o @ o RelTol
10 o P 8 RelTol Interp
3 [+} B4 F
BN v RelMax
3 had ]
6 = =] o= % RelMax Interp
4 ™ 9 3
) B, T s Sevaus Seron(Tuonn SR T v
[ I‘n "m “ a LJ E ¢
0 — 77—
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  nterfaceTypes
Error Sensitivity Scheduling
12 =  RelTol
10 o & £ RelTol Interp
8 e - e RelMax
6 R 5 5 RelMax Interp
4 2 @ X e} &
N v
24 o N 75 o o %:l ] B ©
s e gy SR DS e
o
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Iterative Sensitivity Scheduling
, .
10 £ ©RelTol
L o
s - o ] {ORelTol lnerp
¢ B Xpm RelMax
N ° XRelMax Interp
. , X on n
Huges TP ooy Dpe imgatfarsils R °
2 < T ] o “
o o o &
0 T v T Interface Types|
0 4 8 12 16 20 A 23 2 36 40 H“ 48 52 56 60 4 68 = 7%
12 Timestcp Sensitivity Scheduling
o o
10 ° ORelTo!
© RR¢ITol Interp
3 ~—-8. Bl | ReiMx
© ® ol | xRelMax Intcrp
6 &
a b3 o
4
. 5 a a ’y L enRE 8 °o 0
o I e L TS A =
0 = Interface Types|
) 4 8 12 16 20 24 28 32 36 40 44 48 52 . 56 60 64 68 2 76
12 Other Senstivity options.
10 6 Duxgona!
B Dungonal Interp
8 + Identity
6 Q i 1~}
oo
. sele
o - o
a L
z Sgam . SAga (0ooD | BoUngSuomon o8
0 (-] o Bebs n
i i " § y y M y had N - Interface Types|
[ 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-4. Iteration results for E2E_NF_INVINV1

223



1-36: Conventional 45-52: Parallel Correction (ESRC)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Comrection (ESRC_SENS)

Conditional Sensitivity Scheduling

12 X = © RelTol
10 @ RelTol Interp
8 A % v .RelMax
6 " ° 9| | X RelMax Interp
4 £ "o $o =
L By X
o
2 RO G e et 8 | e $ U @
0 — .
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  loterfaceTypes
Error Sensitivity Scheduling
12 < RelTol
10. - B RelTol Interp
RelMax
M x RelMax Interp
" <
o™ T me o
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
12 Iterative Seasitivaty Scheduling
© o
10 ©RelTol
P ES
. ° ¢ hd ARelTol Interp
P RelMax
6 a X % RelMax Interp

0 Interface Types|
0 4 8 12 16 M 24 2 2 36 4 4 4 2 %5 &0 & & | B
12 Timestep Semmitvity Scheduling
10 ORe!Tol
BIRcITol Interp
©
3 L — RelMax
6 x ° XRelMax Interp
= N
4
o °© ° 2@
2 £ o< [+] e
316 o % Xp  ©
. S S R o s s e - o
— -r r— a g T T
Interface T
0 4 8 12 16 20 24 28 3} 36 4 4 48 52 S5 60 6 68 72 76 7Pe
12 Orher Sensivity, ootions
o
10 —r ©Diogonal
. o . O ° BDiagonal Interp
[l Identity
. v
® o
. .
° -} <o
2 0
g 9a @ @O
o OBoon Smgge OBUED OBIDY oBBYSANAYLBG onp8 o
T T T T T T —— A T lnl:rfuce'rypc:

0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64 68 T2

76

Figure D-5. Iteration results for E2E NF_INVCNF1

224



1-36: Conventional
37-44: Dynamic interfacing

45-52: Parallel Correction (ESRC)
§3-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

12
o| | © RelTol
10 T 2
I a RelTol Interp
8 2 Oy RelMax
6 ;g o, T uf B8, X * RelMax Int
. Kﬂ w‘.‘:ﬁx»&‘am 0 & ° @CL‘_‘ % ¢lMax Interp
oa N . ] & B B Be, 1]
2 Eﬂ’&.n o z.cz.&.ﬂ‘:- hi;,;“o;-.‘ (M T3 5.
0 ——-—r—— 77— T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  mterfaceTypes
Error Sensitivity Scheduling
12 P o RelTol
lg . . . o o o g o RelTol Interp
[¥] %)
6 e _® v o N RelMax
B = W Ny -2 % RelMax Int
4 SELEE ;¥ Y o T L e BT =
“ . e o BN E 3 0m X
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Imterface Types
Tterative Seasitivity Schedubing
12 ™ = = -3
;. o 38 O
10 ™ T b2 A A ©RelTol
. - 99 _ w w 2 2 2 GRelTol Interp
% % [ v 8 E an- n,.-, YA ¥ .RelMax
6 = 7 & % e s S % RelMax Interp
o - B X o™
4 ] S £ B
B .8 S s L)
2 = - R
0 Interfece Types]
0 4 8 12 16 20 24 28 32 36 4 44 48 52 6 60 61 68 72 I
12 Timestep Sensitivity Scl;duhng
’ 2
10 - ORelTol
IRl Tol Interp
8 4 RelMax
» v v oz 0D B
g oy 3 ¥ ReiMax Ierp
6 o B3] [ %
44 % ] |l n 3 [
. s o % :::352 v WME,_\ =
2 S il = = ey
2 Pl &
0 i y N Interface Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 S2 S6 60 64 68 T2 76
12 Other Sensivity options
10 © Diagonal
a B3 Diagonal Interp
8
Identsty
6 o o9, 8 2 - -
4 il o o ° —n a o .-.u
% ° - o 0 a oW
2 a _$maln o L] 2
Y
B
0 %+ y y w ! N y Interface Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 6 T2 76

Figure D-6. Iteration results for E2E NF_RLCDRV2

225



1-36: Conventional 45-52: Paralle! Correction (ESRC) 61-68; Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

N Conditional Sensitivity Scheduling
o RelTol
10 R & RelTol Interp
8 - RelMax
6 x RelMax Interp
4
P RARC .
2 — ""\Wn—.r‘—
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 7 Interface Types
, Error Sensitivity Scheduling
12 : © RelTol
10 : ) a RelTol Interp
8 RelMax
2 % RelMax Interp
2
0. [ T ol ) b rﬁw,‘__‘."_;_

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scheduling

12
10 @RelTol
. QRelTol Interp
RelMax
6 % RelMax Interp
4 ) :
gt k
2 = O oy e Ty ———nx%—a—'. 3]
Bn 80 BE mf  COPeun D TR e CaRn et
0 Interface Types|
0 4 8B 12 16 20 24 28 32 36 40 4 48 52 % 60 64 68 |2 76
12 Timeatep Senutivity Scheduling
10 ORelTol
QIRelTol Interp
8 RelMax
6 i X RelMax Interp
4
2 XTIVt AL -~
’ . . SR e
ol G st 0 AAWRNeiaes “”rmmf-““aw@mw
° Interface Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 76
12 QUL AUV, ODUQRS e
10 © Dingonal
£ Diagonal Interp
8 ]
Identity
6 ©
4
? g
2 5]
o0 —goo—GRC GG G0 SIpAoguotion 88 ¢°
iy Interface Types|

"] 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 16

Figure D-7. Iteration results for E2E_LF_INVOSC2

226



Vel
i .
S L~ e, - Y '.\f'"; : ]
gD i * A

l&__. .

‘ ‘ . LE e T n
%_‘KFL P—‘/\‘q/\‘/\ II\Q Q QT \/ nvl \/r—li———O%ﬂ

[ e g
- BN AL
ras e

AN

) ﬂv/“. ’/\

e BN - ‘| s 7
Vo BN B AL AT

EKEL

NF

- U 14
4 /A\ \
G VY

Figure D-8. E2E 1 and 2 terminal linear coupling tests

227




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Paralle! Correction (ESRC_SENS)
37-44: Dynamic interfacing’”  §3-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
12
® © RelTol
10 . 8 [/:RelTolInterp | :
8 o & . RelMax
X % RelMax Interp
I L2
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  [nterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 I B RelTol Interp
: RelMax
4 xg B X RelMax Interp
2 = o M
P e G i e T i
S pa— r T T T T T T T T s T T T T oy L T T
0 4 8 12 1620 24 28.32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
2 * Hemtive Sensitivity Scheduling
10 - ©@RelTol
2 s QRelTol Interp
) wp B RelMax
% RelMax Interp
4 o,
0 °?1' 2 oA 2
2 e ryrel e TER i s A NN
MWWMM%WW e ‘ e
0 v T T T M Interface Types
0 4 8 12 16 20 24 28 32 % 4 4 48 S2 S5 60 6 68 T T
12 'hm:;up Seritivity Sc):du;ing
10 - ORelTal
DReITol Interp
H RelMax
6 3 RelMax Interp
4
2 Xz %
s TRRRR poreaTl 1o B T ] B RN WRHED
0 ; Interface Types|
0 4 8 12 16 20 26 28 32 36 4 44 48 52 35 60 6 6 12 T
12 ~ther Sensitiviry options
10 ©Dugonal
|aDsgonat Interp
8 . Identty
g a
o B ? e
M Interface Types|

Figure D-9. Iteration results for E2E_NF_LINEARI1

228




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Paralle] Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Comrection (ESRC)  69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
10 < © RelTol
s a H & % = a ~ a RelTol Interp
< o 3 3 P RelMax . .|| . N
6 o] % RelMax Interp | |- 2+ - k2
n [+ e g .
4 7
P .
2 73 d =
o e e e s T RO s s
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  InterfaceTypes
Ezror Sensitivity Scheduling
12 o RelTol
10 = = £ o = a RelTol Interp
8 RelMax
6 -  RelMax Interp
4 i ¥
2 % (I A TR A .ﬁ(d : :Q. =
04 gy e 84 m B8 S .w-“* ( um:am LCa]
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
Iterative Sensitivity Scheduling
12 B =
1o O RelTal
8 Q O RelTol Intarp
: RelMax
6 ” ] |XRelMax Interp
‘ 8 2 =
i I.\ nﬁ v,
2 :.% [sme— ﬁ%ﬁm ‘;z_mz. IVV\- Py Wﬁ \/ vv\""" SRR L——u—',; g
’ Interfoce Types|
0 4 8 12 16 20 24 2 32 36 4 4 448 52 5% 6 646 T 7%
12 Timestep Sensitivity Scheduling
10 ORelTol
BRelTal Interp
8 % = % 3 T RelMax
g X RelMax Inerp
6 o
x B
4 -
2 P 8 5 b
“ TN TS 7y 2 >
o e Peiorys S Eﬂm mv\?’“wm&rw‘ i (R omeren wn
Interface Types|
© 4 8 13 16 20 28 28 ! 36 40 4 48 52 S5 6 6 68 T T
7} Qther Sensivity options
10 ©Diagona)
- Q1Disgonal Interp
8 - ldentity
6
s - o
°
2 g
o
o Eag o ©=f ool Qo
Interface Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 76

' Figure D-10. Iteration results for E2E_NF_LINEAR2

- 229



1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
© RelTol
10 & RelTol Interp
8 RelMax
6 # RelMax Interp
4
2 vivwy 2% 3 %
0 REn tss Havys Yy ¥3’.> et -ﬁ‘&'
0 4 8 12 16 20 2 28 32 36 40 44 48 2 56 60 64 68 72 76  lwerfoeTypes
Error Sensitivity Scheduling
12 o RelTol
10 © RelTol Interp
8 - RelMax
j ~ RelMax Interp
2 o
0 B s S S T e PR "%‘f”’x"nwrmw;_;
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Iterntive Seastvity Scheduling
10 ORelTol
8 KiRclTol Interp
RelMax
6 X RelMax Interp
4
2 e )
DENIL pogrgren NI BGOSR ONEwRn DGRy :;M)z-" ----- > 'Y:’W""-“:‘-"u
0 Interface Types|
0 4 8 1 16 W 24 8 3? 3% 40 44 4 2 6 6 6 68 T %
2 Timestep Seantivity Scl':d‘ulim
10 ORelTol
| CIRelTol Interp
8 RelMax
X RelMax bnierp
6
4
2 e []
] ywan R AR i R s A e A
0 N y o Interface Types|
0 4 8 12 16 20 24 28 32 36 40 48 48 52 56 60 6 6 12 7%
12 Other Seomtyaty.ontions
10 0 Dagonal
DDiagonal Interp
8 .. Tdentity
6
o°
4 s
2 a0 400 o o
00 ° o _@pa
0 Interface Types|
o 4 12016 20 24 28 32 36 40 4 48 52 56 60 64 68 T2 6

Figure D-11. Iteration results for E2E NF_LINEAR2a

230



P

>
2
WEe - 3
VISR ’ . ey o d .
3 Y8 fot ot v Nl Y ———
i A i —
< o ANA L
vy

. PYPR
LR \:\.’5‘ fe.

AR
”‘“A‘./"Vl\'\/ AR .

Figure D-12. E2E 4-terminal linear example

231




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44; Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

12
© RelTol
10 O RelTol Interp
8
RelMax
ﬁﬂ!
6 1o L % RelMax Interp
"~
on.rv. N o bl 4
RO < =7 ——
0 T T —— e
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  InterfaceTypes
Error Sensitivity Scheduling
12 o RelTol
10 © RelTol Interp
2 RelMax
2 == N ” % RelMax Interp
2 <] i &
0 L8 v o e oo s EETE e s, |

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types

. Iterative Sensitivity Scheduling
2
10 ORelTol
8 |CYRelTol Interp
RelMox
6 ¥ RelMax Interp
"
4 . s
2 . x : A _v.m-"\ TR A ——— ]
Sevedd Dot IERR deemy | ARG < e B
0
T Intexface Ty
0 4 8 12 16 2 W W R 3% 4 44 48 52 56 6 6 & | B ooe 1ypes
12 Tsmestep Seamtivity Scheduling
10 OReITal
DReATol Intesp
8 +RelMax
6 X RelMax Inerp
PP )
. oog
2 . - ‘ot
s T £t
et 2 “ B
ol & Rerwas Sewvas Sromes Brmry  poponl 0802 rea¥en » o oifn o0 o]
Interface Types|
0 4 8 12 16 20 24 28 32 36 4 44 48 S2 S5 60 6 6 T2 76 yee
12 Othsx Sensitivity options.
10 © Dugonal
A Dingonal Interp
8 Identity
6
4
2
0
Interface Types|

0 4 8 12 16 20 24 28 32 36 40 44 48 - 52 56 6 64 68 T2 76

Figure D-13. Iteration results for E2E_NF_LINEAR4

232




& 3
s IR
am .
n 2y’ - — vsm.. -
= 198 5 B
P o oy > FaS

- .
i Y P & ) B

“ipAw b
E2ER N

" :
! >
- 7
R A
3 e E -

¥ )
\ xS T 7 T bt
) vy it 0 ~ iy
- ) Cr—— ¢ -
- _ ¢ N :
LR . M *, [ Y n-
. i ~d- e B .
5 I G S B <1 s L
e \ o s by o s
SO | . P T - A
- & s Ln-\xw:".l'nmh %
I .~ o % ?
. B H
Ll L = ; 3
PRIV o e T - =
o { < -
R .
[ Sl BN o S o
P F ey - s
. . - 4
. t

By
Wooamy
Figure D-14. E2E nonlinear no-feedback coupling tests
233




1-36: Conventional

i

45-52; Paraliel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)

37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Comrection (ESRC_SENS)

12 Conditional Sensitivity Scheduling
. © RelTol
10 0 RelTol Interp
8 RelMax
6 % RelMax Interp
4
2 = =
o LR e R RO R R
0 4 8 12 16 20 24 2832 36 40 44 48 52 S6 60 64 68 72 76  LnterkeeTypes
Error Sensitivity Scheduling
12 © RelTol
10 & RelTol Interp
8 ) RelMax
: ' % RelMax Interp
N ) X % v
o | SR cotn erens 00Nen e TERION R REIE TIE T ainn
0 4 8 12 16 20 24 28. 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
- Iterative Seasttivity Scheduling
10 ©RelTol
] TIR¢!Tol Interp
RelMax
6 3% RelMax Interp
4
0 ’ N Interface Types|
0 4 8 12 16 0 24 W R 336 4O 4«4 4 2 6 0 4 &8 W T
12 Timestep Sersitvity Scheduling
10 ORelTal
IReITol Interp
3 RelMax
%RelMax Inteep
6
4
2 & L4
&, o ranniiaoonofammananune e Do ¥R BT 1 A RO CERTITITR
0 = —_— " .
6 4 8 12 16 20 24 B 32 36 40 44 48 52 56 6 6 68 2 16 Interfuce Types
12 Qther Seaniivity. oplions.
10 © Dugonal
B Disgonal Interp
3 . Identity
6
4
Interface Types|

Figure D-15. Iteration results for E2E_NF_RCPULLUI

234




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  §3-60: Sequential Correction (ESRC) 69-76: Sequential Comrection (ESRC_SENS)

Conditional Sensitivity Scheduling

12 © RelTol
10 8 RelTol Interp
§ - RelMax
6 # RelMax Interp
4
2 VRSO
) e e R R R R T e R w3
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  nterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 © RelTol Interp
8 RelMax
6 % RelMax Interp
4
2
o STt ST TR R RS B e

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types

2 Iterative Scusitivity Scheduling
10 ©RelTol
s DRelTof Interp
'  RelMax
6 % RelMax Interp
4
2 o = o
PR L B ] PSSR Ty B gty 8 5% 2
o Interface Types|
0 4 8 12 16 20 24 23 32 ¥ 40 44 48 52° 56 60 64 68 k3 %
12 Timestep Semsitivity Scheduling
10 ORelTol
DORelTol Interp
8 RelMax
6 5 RelMax Inteep
4
2 i O ,
4 S5 3 . G SR 1 Zm M
o M N y Interfoce Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 6 6 63 T2 76
12 Qther Sepsitiaty options
10 ©Dugonal
A Dungonal Interp
8 Identity
61— o L
Interface Typest

Figure D-16. Iteration results for E2E NF_RCPULLUIA

235



1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Parallel Correction (ESRC)

61-68: Paraliel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

12
10 © RelTol
o RelTol Interp
8 4 n 0
X a o B RelMax
¢ % ﬁﬂn % e % RelMax Interp
4 ;;vﬂ o - ® ; - § ff
K " v ©
2 W oaos u"x}«{' W.& g mé\ W“
0 T T T —r
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
Error Sensitivity Scheduling
12 p o RelTol
10 © RelTol Interp
8 % a - RelMax
j - ° * RelMax Interp
>y L T &
slge me ° -—r' 8 6 “a.® r.|
A “. /Q% n n "t ﬁw‘ o " 20
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
Tterative Seusitwvity Scheduling
12 o
1o 2 ORelTol
B %
s oy - DRelTol Interp
°. o ° ° A ° RelMax
6 X0 g" & &ov = 0% Bog n o | [¥ReMexInterp
4 o ° © o n;.( wg
2" P F]
24 8 wom Fyg B m_&__mdé_ L] "%w "
0 Interface T
0 4 8 12 16 20 2% 28 32 36 4H 4 4 5 56 6 6 6 B % P
12 Timestep Scnsitivity Sc!;dul;r@
10 SReITol
DReATol Interp
8 o . RelMax
6 a RelMax Interp
x
4 0 o % ® o .
o ° T x % go o o
2 . n 0 L) /. O .2 = zu
R 6 S PR pogmtin el s ORIV G W0 8e BEg
0 y NV y Interface Types
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 6 6 6 12
12 Other. Sensitivity options
10 ©Dugonal
B Diagonal Interp
8 A4 Idenuty
6
4 = r =
2
0 Do oFoo Lad (R %o o
Interface Types)
0 4 8 12 16 20 24 28 32 36 4 4 48 52 56 60 64 68 72 6

Figure D-17. Iteration results for E2E_NF_LINDRV4

236



Figure D-18. E2E 2-terminal nonlinear current mirror

237




1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Parallel Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
s N © RelTol
.1.0 B RelTol Interp
e (-3
s % ° RelMax
a
61 X % RelMax Interp
g - e B
24 s : % : 7 :
04 5 Brtn Yo Tume G M o R el g oG Rty
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  [nerlaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 © RelTol Interp
8 RelMax
Z . 2 RelMax Interp
o
2w w @ v 3 1
0 5o el co tmp it sl § P
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 .68 72 76 Interface Types
" Tterative Sensitmty Scheduling
10 ORelTol
8 TIReiTol Interp
E RelMax
STa o ¥ RelMax Interp
4 M = 2 & X
G [V IS o [] L P a Q0 ° E,
2 T R R o]
LT R TY R Y
0 —
o 4 8 12 16 20 4 B R % 4O &4 44 2 56 6 6 & » % Interface Types
2 Tumestcp Sersvity Schodaling
10 i ORelTol
OIReITol Interp
8 RelMax
6 i' " XRelMax Inicrp
4 w
2 J&: B, " " ] ] d
g ] 3 Xo o A0
0 = i ; Intesface Types|
0 4 8 12 16 20 24 B 32 36 40 4 48 52 56 60 & 6 12 76
12 Other Scpsiuvity. options,
10 © Dugonal
O Dingonal Interp
8 Identity
6
4
2
¢ Interface Types|
0 4 8 12 16 20 24 2B 32 36 40 4 48 2 6 60 6 6 T2 %

Figure D-19. Iteration results for E2E_ NF_MIRDRV2

238



. Syman e

mirror

Inear current

239

Figure D-20. E2E 4-terminal nonl




1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68; Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC) ~ 69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
< RelTol
10 o RelTol Interp
8 RelMax
6 # RelMax Interp
4
2 1 n&'f‘-;-"agg;g%‘ﬁ—nﬁ——:. n>
Sl fend] Dt & g i S0 WS GRS e

0 T T — T —T T T T T T T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Error Sensitivity Scheduling

12 © RelTol

10 5 RelTol Interp

8 - RelMax

3 ] % RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Sensitivity Scheduling
2
1o ORelTol
s % DIRelTol Interp
* RelMax
6 @ . HRelMax Interp
4 v F—®
o
2 Yo A=
SO BOpn% Bogmz Bam My
0 Interface Types]
0 4 8 n 16 20 A 28 2 36 4@ “ 48 52 56 60 64 68 k3 76
12 Timesicp Sensitivity Scheduhing
10 ©RelTol
DIRe!Tol Interp
8 RelMax
6 % RelMax Interp
13
4
: 99,000
o b . . - N :
0 S e 00 it e 2 g Bamah BY Spoh % jod °
i DA Ny . Interface Types|
0 4 3 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 k73 %
12 Qther Sensitaty opiions
10 © Dungonal
O Diagonol Interp
& Identity
6
4
2
0
Interface Types

] 4 8 12 16 20 24 28 32 3 40 44 48 52 S6 60 64 638 72 76

Figure D-21. Iteration results for E2E_NF_MIRDRV4

240



VeOAAMA
R\ @ :
v \ \ '\/-m et Qe ome e oy e e ek

BKFL  BKAL — BREL

Figure D-22. E2E 2-terminal nonlinear driver

241



1-36: Conventional
37-44: Dynamic interfacing

61-68; Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Correction (ESRC)
53-60: Sequential Correction (ESRC)

Conditional Sensitivity Scheduling
12
< RelTol
10 & RelTol Interp
8 . RelMax
615 v » RelMax Interp
4
5 L2 T
o | 7=E Porre P R R T e
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  neerfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 B RelTol Interp
8 RelMax
6 1] 8 % RelMax Interp
4 4o
2 27y LERD NN Dy s NN G eI ;y'\o'.‘,;.'-‘l.v;,t,vg,;VQ'.‘ R
0 R S A S S SR T )
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Iterative Sensitivity Scheduling
10— ©RelTol
34— - DRelTol Interp
° RelMax
6 #RelMax Interp
4 oY 2. v -
, “,,_‘“ Sy tocve QM::".\;Q,)O;,; A, ._,"’0,;\. ] PPN fais FEON
ke B i
o M Interfoce Types|
0 4 8 1 16 2 24 2B 3N I O 4 48 52 56 60 & & ! B
12 Timestep Seasitivity Scheduling
10 ©RelTol
DIRelTol Interp
8 . RelMax
¢ X RelMax Inierp
o a
4
2 R O R v TIvee R T R  E T IC 7
o Lo Sagy . Eede SEIRTTRIN SRy o Qe T 8 Xy ®
N ¥ Interface Types|
0 4 B 12 16 20 26 28 32 36 40 44 48 52 56 6 o4 68 712 76
2 Other Sensuviy options
10 @ Disgonal
O Diagonal Interp
8 . Identaty
6
4
2
0 o n n
Interface Types)
D 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 6

Figure D-23. Iteration results for E2E_NF_DRVVIR2

242



driver

1 nonlinear

' Figure D-24. E2E 4-termina

243



1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52; Parallel Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

© RelTol
10 B RelTol Interp
8 RelMax
6 2t RelMax Interp
o
4 R
2 eﬂ-%‘%'“ .
0 T r T T v T T T T T T T T T T T
O 4 8 12 16 20 24 28 3 36 40 44 48 52 56 60 64 63 7 76  ermesTypes
Error Sensitivity Scheduling
12 o RelTol
10 © RelTol Interp
8 RelMax
2 % RelMax Interp
2 . i
o 1258 S g DRERNTER m&wﬂfz@am&%
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Iterative Semsttavity Scheduling
10 ORelTol
8 DRelTol Interp
RelMax
¢ ﬂ #RelMax Jaterp
4 7 2
) ety _Mo .’M_‘:é'g’:\ o “;' n‘.ﬁa =0 Y %&ﬁm 5
0 Interface Types|
0 4 8 1 16 20 4 2B 32 336 4 4 4 2 56 60 6 6 | T
2 Timestep Sceutwity Scheduling
0 OReiTol
DIRelTo! Interp
8 RelMax
% RelMax Interp
6
4
24— P s o o
2528 TR A R “'}?*MW 'AW R W
o g Interface Types,
0 4 8 I 16 20 24 28 M 36 40 4 48 52 %6 & 6 6 T 7
12 bz Scnnivity oplions
10 ©Dugonal
0 Duwgonal Interp
8 . Identity
6
4
2
8 a o O o ‘0 oo
0 4-8—2a =8 ¢ Interfoce Types|
0 .4 8 12 16 20 24 28 32 36 40 4 48 52 56 60 64 68 T2 76

Figure D-25. Iteration results for E2E_NF_DRVVIR4

244



| 7
Ny

-

i\ A

l; X%

.

5'/‘?;\ :

Aﬂ.\

o .
TS
!

1
X

P

po
{

3
i

A
¥

Wy

-y
n
Lua

v

fo

iver example

Figure D-26. E2E 2-terminal virtual dr

245




1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Comrection (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
12
© RelTol
10 D RelTol Interp:
8 RelMax
6 % RelMax Interp
4
o | Emm AL B R
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  [nterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 © RelTol Interp
8 . RelMax
6 % RelMax Interp
4
2
0
2 Iterative Sensitivity Scheduling
10 ©RelTol
8 TiRelTol Interp
RelMax
6 RelMax Interp
4 )
W n‘ﬂ—mﬂi‘&,‘x‘_—,—
e IR R s e
0 - Interfuce Types|
0 4 8 12 16 2 U B R ¥ L 4 48 N2 5 6 6 8 T %
2 Timestcp Seomvity Schdui;m
10 OReITal
ORelTol Ingeep
8 RelMax
RelMax Interp
6
4
24—
2 A RN buten Pomgh A
° y M M y N Interface Types|
0 ¢ 8 12 16 20 26 28 32 36 4 44 48 52 S5 60 64 68 T2 76
12 Othex Sensitivity options.
10 9 Diagonal
O Disgonal Interp
8 Hentay
6
4 3
‘"
2 -}
4 o
0
0 o710 Interface Types|
0 4 8 12 16 20 24 28 32 36 40 4 48 52 S6 60 6 6 72 7

Figure D-27. Iteration results for E2E_ LF_DRVVIR2

246



1-36: Cenventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Schedulin;

© RelTol
o RelTol Interp
- RelMax
% RelMax Interp

e
Ben g wu  ow L f g TRTLLIN
8 o o 7
————————————

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Error Sensitivity Scheduling

o RelTol

0 RelTol Interp
RelMax

% RelMax Interp

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types

Tterative Senstivity Scheduling
2
10 OReiTol
g D RelTol Interp
s RelMax
6 #RelMax Interp
~4
2 fon—fan—An S
S i ooe  Goe Ogu @ 2 ""-““,,\xmz'?ﬁ— )
0 T Intarface Types|
] 4 3 12 16 20 % 28 2 3% 40 “ 48 52 56 60 64 68 n 7%
2 Timestep Seasitivity Scheduling
10 ORz1Tol
DReITol Inisrp
8 * RelMax
6 X RelMax Interp
4
]
2
= m i i .
N 'h'."'":r. B opan BB, o o fum 208 ?ﬁ;.\gsgm@. 4 e
. erface Types|
[} 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 2 7%
12 Other Sensitivity optrony
10 © Diagonal
A Diagonal Interp
8 *, ldentity
6
4
2
0
Interfuce Typesi

0 4 8 12 16 20 24 28 32 36 40 4 48 52 56 6 64 68 T2 76

Figure D-28. Iteration results for E2E_LF_DRVVIR2a

247



1-36: Conventional
37-44: Dynamic interfacing

45-52: Paralle! Correction (ESRC)

53-60: Sequential Correction (ESRC) 69-76: Sequential Correction

61-68: Parallel Comection (ESRC_SENS)

(ESRC_SENS)

Conditional Sensitivity Scheduling
12 ;
X0 1 RelTol
10 R O RelTol Interp
8 = 2% || ReMax
6 oo i 2
o P % RelMax Interp
4 = n -1
e g =
2 A " i ~
o . gwes o o
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  LwerleeTypes
Error Sensitivity Scheduling )
12 ) © RelTol
10 g 5 ReiTol Interp
8 ° g RelMax
6 B ]
o n %95 t RelMax Interp
4 = -
' N . Com o K
2 e — ]
o Lot e g et P
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Tterative Sensitwity Scheduling
: =
10 8 ORelTol
o
3 ¢ 19} K RelTol Interp
“we ﬁ_ RelMax
6 ”» 3 XRelMax Interp
k3
4
2 2% m
2 o o
’ Interface Types|
0 4 8 B 16 1 4 28 R» 6 40 4 48 52 56 6 6 & | B
12 Timestep Semtivity Scheduling
10 ORelTol
DReITol Interp
3 RelMax
6 4 RelMax Intorp
4
2
o Lssz e o N A
- y Interface Types|
0 4 8 12 16 20 20 28 32 36 40 44 48 52 56 60 64 68 72 -7
12 Qther Sepsitivity options
10 © Dingonal
o |8 Disgonat Interp
Ideatity
6
4
2
° Interface Types|
0 4 8 12 16 20 26 28 32 36 40 44 48 52 56 6 64 6 T2

Figure D-29. Iteration results for E2E_HF _DRVVIR2

248



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallet Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Comrection (ESRC_SENS)

Conditional Sensitivity Scheduling

. © RelTol

" B RelTol Interp
: RelMax

) % RelMax Interp

: ®

2 N
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  ‘merceTypes

Error Sensitivity Scheduling .

o o RelTol

S ® RelTol Interp
; RelMax )
j * RelMax Interp
2

0 e SR AR B e, pepeeeT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types

Iterative Sensitivity Scheduling

QRelTol
IIRelTol Interp

»RelMax

3 RelMax Interp

. ]
S T e A

Interface Types|
4 8 2 16 2 2 2 2 3% 40 4 48 52 56 60 64 68 k73 76

Timesicp Senstivty Scheduling

ORzlTal

L Re!Tol Interp

RelMax
% RelMax bicrp

b i M N Interface Types|
4 8 2 16 20 24 28 32 3 40 44 48 52 56 60 64 6 T 7

© Dingonal
O Diagonal Interp

Identity

4 8 12 16 20 24 28 32 36 40 4 48 52 56 60 64 68 T2 76

Interface Typey]

Figure D-30. Iteration results for E2E_HF_DRVVIR2a

249



KR

Figure D-31. E2E broken amplifier 2-terminal coupling tests

250



1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
12
© RelTol
10 B RelTol Interp
8 .» RelMax
6 # RelMax Interp
4 ™
555 - 2 wn b i i3
o R 5 o8y o & a5 e
2 i VD BR@ gy g RO Bl R
o +—_— T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  lnterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 £ RelTol Interp
8 RelMax
6 # RelMax Interp
4 sy
- il S >) o

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

Iterative Scnsitvty Scheduling
12
10 N Q@ RelTol
3 K RelTol Interp
% © R
[ ¢ RelMax Interp
a —i =
& %] (53 W
2 w%g EResa, g < "';-‘i;\&,w o
0 .
Interface Types
[ 4 3 12 16 20 24 28 2 36 40 «“ 48 52 56 60 64 68 n 76
12 Timestep Semsitivity Scheduling
10 ORelTol
DIRe!Tol Interp
3 - RelMax
6 4 RelMax Interp
4 =
) R e g PR
RESETI e  EER s
0 T T T T T T Interface Types
[ 4 3 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 k73 76
12 Other Sepsiivity options.
10 ¢ Diagonal
. R Diagonal Interp
8 Identity
P k
4
2 o
° o
ookl oHR
0 Interface Types|

0 4 8 12 16 20 24 28 32 3 40 44 48 52 56 60 64 68 T2 16

Figure D-32. Iteration results for E2E LF AMPHB2

251



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  68-76: Sequential Comrection (ESRC_SENS)

Conditional Sensitivity Scheduling
12
% o © RelTol
10 ¢ || o RetTol Interp
8 ] ] : RelMax
6 » RelMax Interp
4 b
2 2 AN, o, Lo} A -
Rkt R o %%mg B
0 e e e e
0 4 8 12-16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  nterfaceTypes
Error Sensitivity Scheduling
12 o RelTol
10 9 RelTol Interp
8 RelMax
3 % RelMax Interp
Ry f.\o:
2 e = 35
0 e NN X
0 4 8 12 16 20 24 28 32 36 40 44 48 52 .56 60 64 68 72 76  Interface Types
Iterative Senstivity Scheduling
12 CEC] =)
!
10 &, = ©ORelTol
8 & DRelTol Interp
o¥ « | | Reiax
6 O |3¢RelMax Interp

laterfece Types|
] 4 8 2 16 20 2] 23 2 36 4 44 48 52 56 & 64 68 n» 76
12 Timestep Seantivity Scheduling
10 ORelTal
DIReiTol Interp
8 RelMax
6 X RelMax Interp
4 3 <
2
o »
-~ S0 e
0 Interfuce Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 660 64 68 72 %
12 Qs Senatviy.oplions
10 © Dingonal
B Druagonal Interp
8 « Identity
6
4
2
0
Interface Types|

0 4 8 12 16 20 24 28 32 3 40 44 48 52 56 60 64 68 72 7

Figure D-33. Iteration results for E2E_ HF AMPHB2

252



T
ERD

o
[rr— JR—
~ PR
N PN
FECEAV S
(IR 94
4
N\

L
T
1

\
/
d Ui
ANEA
~N
o
P N A
.
‘
g
i
{

\"M REE- % o
o—ae—7\ N/ bk / \;'\
BKAL ‘\:/ -, \/ \-QQ_QJ \ ‘.\[ \'\ / BKFL

Figure D-34. E2E 2-terminal linear virtual driver example

253




1-36: Conventional 45-52: Parallel Correction (ESRC)
37-44; Dynamic interfacing  53-60; Sequentia Correction (ESRC)

61-68: Paralle! Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

12 © RelTol
10 o RelTol Interp
8 RelMax
6 » RelMax Interp
4 HOO ﬂo
5 R EORRi w8 = o I
0 B0 TR S e R pradet
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  [nterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 . B RelTol Interp
8 & RelMax
z % RelMax Interp
2 e 5
0 : ’ G &W/WTWMW‘MMW
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 ltcrative Scasitnity Scheduling
10 QRelTol
8 BIRelTol Interp
RelMax
6 3 RelMax Interp

OR0 r-Y

(3

“»n

o
AR GRS

o
e T T SRORE L

o o Interface Types|
0 4 8 12 16 20 2 28 2 36 40 “ 48 52 56 60 64 68 n 7%
12 Timestep Senmtivity Scheduling
10 SReTol
[IRelTol Interp
8 RelMax
6 % RelMax Interp
4
2 T TR Gy " = 5
[z ackoan] s ox Rt Racavs =
0 y " y . Interface Types|
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 n 76
12 Qrher Sensitivity eptions
10 o @ Dingonal
B Dragonal Interp
8 Identity
6
4
©
2
a
0 Interface Types|
[} 4 8 12 16 20 b2 28 3 36 40 44 48 52 56 60 64 68 72 7%

Figure D-35. Iteration results for E2E LF LINEAR2

254



1-36: Conventional 45-52; Parallel Correction (ESRC) 61-68: Paralle! Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
12
© RelTol
10 G RelTol Interp
8 RelMax
6 % RelMax Interp
4
2 & :
s ety pS iR Wi et
0 T T T T T T T T T T r T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  merfaceTypes
Exror Sensitivity Scheduling
12 . o RelTol
10 ~ s & RelTol Interp
8 . < RelMax
6 ST = % RelMax Interp
4 n__a n 5 n
2 A ” -
0 e R
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Iterative Sensitivity Scheduling
10 - ORelTol
8 | DRelTol Interp
RelMax
¢ #RelMax Interp
! L 2]
2 2 T 2 L R L L N D
o y Interface Types)
0 4 8 12 16 20 24 23 32 36 40 4 43 52 56 60 64 68 ” 7
N Timestep Scnsitivity Scl':dul‘irqf
10 ORelTol
BIRe!Tol Interp
8 RelMax
% RelMax Interp
6
4
2 al _ )
WA RO R PApTRRe s il e
0 . § g N Interface Types
[} 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 n 76
12 Other Sepsitivity. qotions
10 |0 Dugenst
D Diagonal Interp
8
Identty
6
4
2
0 * Interfoce Types|

0 4 8 12 16 20 24 28 32 36 40 4 48 52 5% 60 63 68 T2 76

Figure D-36. Yteration results for E2E HF LINEAR2

255



[ LGP TIP3 R S
[ERV TR IO & A e MR R D S 7 5a 1 S AN TN
o
RN
s
AL
.\ )
“ i
R 9
BrPL
Y A

|

1. v
P
-
[ S—
Ber | o
B BrPL
O
S Rt -,

. f

T NN
i

Figure D-37. E2E 4-terminal virtual driver example

256




1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Paralle! Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
© RelTol
10 4 0 RelTol Interp
8 = RelMax
6 5| | RelMax Interp
4 o w s 4
2 r‘”"“"""
ErS Fow B P O ‘ﬂb 20
0 4 12 16 20 26 28 3 36 40 4 48 52 56 60 6 68 7 76  InterlaoTypes
Error Sensitivity Scheduling
2 % © RelTol
10 = O © RelTol Interp
8 . RelMax
6 o 3t RelMax Interp
4 2 By
2+ B -2 uBaP s
0 o _,__ﬁ.m..:\-m—,—.-———.-—,—w LS o/ B
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
Itcrative Seasitmty Scheduling
12 o
10 +3a tr— ©RefTol
390~
8 0 O¢ 2§ |EOReITol Interp
o] RelMax
6 % ﬁ,( i n 2 K T |#RetMax Interp
‘ - 8
2hs N7 Yoy, o, SR Y-.¥
(5] ] ) R © =
0 Interface Types]
[ 2 16 2 2% 28 32 % 4 4 48 2 S6 60 64 6 W 6
2 Timestep Sentitivity Scheduling ‘
10 SRelTol
DRe1Tol Interp
8 RelMax
6 X 2% RelMax Inierp
4 ]
2
2Feng R ‘%@WW«W’W“%@Q;@'
° Interface Types|
[ @ 16 20 26 2 3@ % 40 4 48 52 5 60 64 6 |
12 ther Sensitvity apirens
10 © Dugonal
& Diagonal Interp
8
Identty
6
4
2
0 = Interface Types|

0 é 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-38. Iteration results for E2E_LF DRVVIR4

257



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44; Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Schedulin,
© RelTol
10 «| [P RelTol Interp
8 8| | : RelMax
6 % RelMax Interp
4 -5
21 2 I o 8 S
2 3 =

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 63 72 76  Interface Types

Error Sensitivity Scheduling
12 © RelTol
10 0 RelTol Interp
8 VL RelMax
j A # RelMax Interp
2+ g 5v - oot
0 !"TM — ‘? ’.’Mm’?wq?—r-—f—v—?'

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types

2 Tterative Scasitivity Scheduling
10 - - ORelTol
8 CIRelTol Interp
. ° RelMax
§ F'—'” T 31 [tRelMax Interp
. . S el
4 = 3
2 2 A
® o2 ) P R e
o ; Interface Types|
0 4 8 12 16 22 24 28 32 3% 40 44 48 52 56 60 6 8. N %
" Timeatcp Scnsitivity Scheduling
10 OR:ITol
. BIRztTol Interp
8 RelMax
6 X RelMax Interp
4
2
" (] 2]
P 2] e e 2 o e et A ]
: Interface Types]
0 4 8 12 16 20 24 28 32 36 4 4 48 52 S6 60 64 68 T2 76
12 Qthsz Sensteaty.options
10 © Diagonal
D Diagonat Interp
8
Identity
6
4
2
0 =
Interface Types|

0 4 3 12 16 20 24 28 32 36 40 M 48 52 56 60 64 68 2 76

Figure D-39. Iteration results for E2E_HF DRVVIR4

258




i L D
s i NIV
: . 3 4 e, o B
- - . TS Aot
H 1 - "~ e
: i G s D a e
- WAL AL Ao
. . R Py

R4 gt v Ll
, R ot e Bty N
R ot 2 Fods deia it~ 3 et
te 1 2

e
4
4
wf —
xR ®
D
z
l ;

2

74, 3T
AN SBAN

son
3

i

s 2 QRSN

Figure D-40. E2E Broken-ampliﬁer 4-terminal tests

259




1-36: Conventional

61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Correction (ESRC)

Conditional Sensitivity Scheduling

12 © RelTol
10 & RelTol Interp
8 RelMax
6 — | % RelMax Interp
4 W ; p g s:‘ﬁ.}’ o "m
2 i ———— sz—k&ﬁ—g&m{—"&ﬂv&%‘%— T &
0 T T T T — T T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
Error Sensitivity Scheduling
12 o RelTol
10 o RelTol Interp
: RelMax
" = 3t RelMax Int
4 i . =
o S oCu M W
z-_w?-'- R el e ﬁm T v o R
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
Rterstve Sensitivity Scheduling
2 =
10 ORelTol
8 o BIRelTol Interp
3, 2 -RellMax
61— ™ B R T B ] 7] |2¢RelMax Interp
N L R R oo R g SOOI < .
E] (] B X s wmR AT —
2
0 y Interfce Types
o 4 8 1 16 220 24 W R 36 4 4 48 52 S5 6 6 & W %
12 Timestep Senntivity Scheduling
10 ORelTal
BIRelTol Interp
H RefMax
6 % RetMax Interp
I
¢ — X
2 IR et e P R (R U A G T Ry 5 ZO R 2oS
0 y y M y Intexface Types)
0 4 8 12 16 20 24 28 32 36 40 4 48 52 56 60 6 6 12 B
12 Other Sensitivity options.
10 © Dugonal
B Daagenal Interp
8 Identity
6
4
2
o ot e I PR, — 1 ——
0 4 8§ 12 16 20 24 28 32 36 40 4 48 52 6 60 6 68 1

Figure D-41. Iteration results for E2E LF AMPHB4

260



1-36: Conventional 45-52: Parallel Correction (ESRC)
37-44; Dynamic interfacing  53-60; Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
. o RelTol
10 O RelTol Interp
8 RelMax
6 e # RelMax Interp
d T N P e e B «r‘}w& —TGWWW
2 KAY
0 T : T T T T T T T T T T v T T T T T T
0 4 -8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  IoterfaceTypes
Error Sensitivity Scheduling
12 © RelTol
10 & RelTol Interp
8 RelMax
z s % RelMax Interp
= a me,wx:w R
2 -—mv&iﬁm——xc.ﬁ&ﬂﬁx—ﬁw -
AN TN INrves STV
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
" Iterative Senstivity Scheduling
- ]
10 p QRelTol
= P i o p B Wy . DL, ?;;ﬁ DIRelTol Interp
B R 55 .
t&@gﬁ"\ o gty ety e - RelMax
5'—;;—“”——;3—“% ey n‘i‘ﬁ LA Ay #ReIMox Interp
4
2
o T Intarface Types
0 4 8 1 16 1 24 22 N 6 40 4 48 52 6 60 64 & TN T
12 Timestep Sensiinity Scheduling
10 ORelTal
LIReITol Lerp
3 RelMax
 RetMax Intcrp
6 R
e R T T ——— e
2
0 M - Interface Types|
0 4 8 12 16 20 24 2 32 3 40 44 48 52 56 60 6 6 T2 %
12 Sther Sensitivity options
10 © Duigonal
O Dugonal Interp
8 Identity
6
4
o'en ° a ad g
2 T TR N
o
stoe  ggy wom W Sar Su¥0,, oBTon @ 00000 0 7O
0 Interface Types|
0 4 B 12 16 20 20 28 32 36 40 4 48 52 56 6 6 6 12 76

Figure D-42. Iteration results for E2E LF AMPHB4a

261



1-36; Conventional

37-44; Dynamic interfacing  53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Comrection (ESRC)

Conditional Sensitivity Scheduling

1
2 © RelTol
10 X B RelTol Interp
8 o o ,50 o
. s §oe % RelMax
- PP ) - % RelMax Interp
4 = % ﬁ:i‘?‘ ——
e WA ™ o > o oR w
2 e O 55 &
0 T T v T T T T — T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  LwerieeTypes
Error Sensitivity Scheduling
12 o RelTol
10 = 0 RelTol Interp
8 RelMax
6 ° % RelMax Interp
4 . X% -
v 1 /ﬁ ° 3 o | B o e
z A O T
0 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
2 Itemuve Seastivity Scheduling
10 - 1:; ©RelTol
s b4 ORelTol Interp
e"j:gﬁégn ° o - RelMax
3 . % = %RelMax Interp
4 - Q i nj’f
6 el 82, oon
2 P
[)
Interfoce Types|
0 4 B 1 16 2 U W/ @ % 4 4 448 2 %6 €@ 6 68 ! %
2 Timestep Seaxitivity Scheduling
10 ORelTol
x DIReITol Interp
3 RelMax
6 n 2%RelMax Inierp
? o
4 o L4 O,
oo = %
)
: B® R 5
, & o %% a 2, | .
N N : Interface Types|
0 4 8 12 16 20 24 28 32 36 40 4 48 52 56 6 6 6 7 76
12 Oihsr Sensitoaty.optens
10 © Dugonal
D Diagonal Interp
8 ~ Identity
6
4
2
0
Interface Types|
0 s 16 20 24 28 32 36 40 4 48 52 56 60 64 68 12 76

- Figure D-43. Iteration results for E2E_HF _AMPHB4

262



1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Comrection (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
o RelTol
10 o RelTol Interp
3 RelMax
6 % RelMax Interp
4
2L i) & 5, “ R
0 ——r— T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 63 72 76  [nterfaceTypes
Error Sensitivity Scheduling
12 o RelTol
10 @ RelTol Interp
8 RelMax
j % RelMax Interp
) R M
SR e PR R e ECOR et E OO i DA
0 i e e e L s B o e e e e
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types
2 Iterative Sensitivaty Scheduling
o ORelTol
. = ORe{To! Interp
5 RelMax
6 # RelMax Interp
T g R AR g T R R
2 LAY
0 y Interface Types;
0 4 8 12 16 22 2% B 2 36 40 4 48 52 5 6 6 & T T
12 Timestep Scrsitivaty Scheduling
10 ’ ORaITal
DRI Tol bntesp
8 RelMax
 RelMax Interp
6
4
2
0 i y Interface Types
0 4 8 12 16 20 24 28 32 36 40 4 48 52 56 60 6 68 1
12 Qther Sensitivity.options
10 © Dingonal
|0 Dingonal Interp
3 Identity
6
4
°
: - o
oes o o
o ° sl oBHSSE° ol
0 - 3. Interface Types|

] 4 8 12 16 20 24 28 32 36 40 44 48

52 5 6 64 68 72 76

Figure D-44. Iteration results for E2E_HF_AMPHB4a

263




Y
"¢

rtual driver example

\
I ~,_/\ v—-—lb

i

)\

inear vi

264

Figure D-45. E2E 4-terminal 1




1-36: Conventional 45-52: Parallel Comrection (ESRC) 61-68: Parallel Comrection (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC) 69-76: Sequential Correction (ESRC_SENS)

12 Conditional Sensitivity Scheduling
© RelTol
10 - B RelTol Interp
8 o o - RelMax
6 L o % RelMax Int
. L ST L
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  LnterfceTypes
Error Sensitivity Scheduling
12 o RelTol
10 o 9 RelTol Interp
8 - RelMax
j n % RelMax Interp
24 WW ';‘%og::_m? s . 8 o ;_.“
T R BTG e 0, 5 A8 s R T R R
o

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  Interface Types

Iterative Scnsitivity Scheduling
nr
rS
lo a ORelTol
8 = ) o CIRelTol Interp
Ro'ra o % ¥ o RelMax
6 o < w1 |=
n 8o bo & ﬁ_, Y U‘Q . % RelMax Interp
4 Be o = o o Tiia & . B Co |
L3 [ R ey Oty
) o oy o B0 » Ry ¥ v
] T T
Interface Typest
o 4 8 12 16 20 2 2 32 36 40 “ 48 52 56 60 6 68 k2] 7%
12 Timestcp Senntivity Scheduling
10 -1 ©RelTel
BR:ITol Intep
8 e P o - RelMax
6 a XK RelMax Interp
Ox
n g °
4 L4 z A4
%, Aot o ® m X W
0 N Interface Types|
1] 4 8 12 16 20 24 28 32 36 40 44 438 52 56 60 64 68 7 76
12 Qther Sensitivite options
10 © Diagonal
11 Dingonal Interp
8 . ldeatity
6
4
2
0
Interfoce Types]

o 4 3 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-46. Iteration results for E2E_LF_LINEAR4

265



1-36: Conventional
37-44: Dynamic interfacing

45-52: Parallel Correction (ESRC)
53-60: Sequential Correction (ESRC)

69-76: Sequential Cormrection

61-68: Parallel Correction (ESRC_SENS)

(ESRC_SENS)

Conditional Sensitivity Scheduling
12
< RelTol
10 © RelTol Interp
8 . - RelMax
6 " T % RelMax Interp
4 & A n|
) ggf; B °
T —— e —o x|
0 r.\"‘:.\/-\', _-,;/-\fﬂ"% & WMQL"‘FMM%
0 4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76  LnterfaceTypes
Error Sensitivity Scheduling
12 P o RelTol
10 & RelTol Interp
8 o RelMax
6 / - ® RelMax Interp
4 E3 T 5%
2 - nd g ~ 5
0 A S AE el emima rolegamnn
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 Interface Types
2 Tiemtive Sensitivity Scheduling
10 = o 3 ORelTol
8 . KRelTol Interp
x ° RelMax
6 J»
M o ARelMax Interp
o 32 °
4 S &
% a4 -]
’ o ¢ SO R B ipusBill M i} gm'g_&ﬁﬁ'?
] - Interface Types
0o 4 2 16 0 % B/ B2 % 4 M 4 52 6 6 6 & T T
2 Tumesicp Scrsitnity Scheduhng
10 OReiTol
D3R! Tol Interp
8 o . RelMax
6 P XRelMax nterp
XX S
4 n
27
2
0 D ‘:"\6'-\1'- A
0 4 12 16 20 24 28 32 3% 40 4 48 52 56 60 6 68 T2 76 Tonerface Types
12 Qther Sensitivyv gotions
10 0 Dagonal
O Disgonal Interp
8 Hdeatity
s
4
2
° Interfece Types|
0 4 8 12 16 20 20 2B 32 36 40 44 48 52 56 60 64 68 T2 6

Figure D-47. Iteration results for E2E_ HF LINEAR4

266



B aat T . - )
N e e 7 o

hd o Gl
—— ANy — 1w
* '»/ AT Sy 4

T
;. { . "
:

s e

o e

TN

i&

~4/\f-\,;7

A

By o ”>—¢—-~-E ‘-'ﬁ(“ e ‘IA\;‘A\/"'“L-A':j-\,}f“

Nt S N
l g S
At

V- fot® > w

RN

DAY

e

e gt
P A ot

1 T

’\/v—‘{

anesd

P . .

A M, e :

At B v/\/' MV—O—EW
v b e g

{
|
i

4
i

Figure D-48. E2FE 1and 2-terminal coupling tests

» 267




ELI N
{

7 I .98
j\ e g ,,\>~ g “g’g
v o VY \/" (AR ! I i
] e 1
P—-“-‘"\‘,‘“\‘/\. yo——— x ; o '
- &0 O !
BEL |
w‘x 1$5 i I,
i *
i
i
B b s g .0
"4 . flici Loy
A A T
] O«-m-—-~/‘ AV 3
~EE W VY 2
GED o¢
e AR Tpey, Sink 1ol A . T it
. 31 i 5—-@—11
i — e
[ £ 8
aet W
]
pd
1 !
Vi
W gl e BN AL Wt .
wx 5 LTy
fro— o - o)
it I—. L33
& P
T .
oy
[hls
g
R e
1 T 7
T o
\
! i
Sy PO
BT AZEE A BN -5 G 5
|/ Ly i Syl
A
2y, AN SN %I
N NP ‘e )

Figure D-49. E2FE 4-terminal coupling tests

268




1-36: Conventional

37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Paraliel Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.2

0.8

0.6

©0

0.4 %o o

14 o0 00 ©o “0

00000000

0.2 -

° °

o ¢ o °

00004000

0+—2r—r—To

0 4 8 12

" o %, o 60000000
e

T ¢ T ag T T

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

L—

Interface
Types

Figure D-50. Iteration results for E2FE, NF_RCPULLU1_PE

269




1-36: Conventional

45-52; Paraliel Correction (ESRC)
37-44: Dynamic inteffacing  53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

1.8

1.6

1.4

0.8

0.6

0.4

0.2

Conditional Sensitivity Scheduling

©o

o

o
%0 o

o

%

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Interface
Types

Figure D-51. Iteration results for E2FE_NF_RCPULLU1_PR1




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60; Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

14

1.2

0.8

0.6

0.4

0000 ©,0

0.2 000000

° erfa
° ©0000000,00,0 Interface
92%6%006|  Types

0 C:J
—T 00— T T T ¢ T84~ T T T T T T T T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-52. Iteration results for E2FE_ NF_DRVVIR2 PE

271




1-36: Conventional 45-52: Parallel Correction (ESRC) 61-68; Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  68-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.4

1.2

0.8

0.6

04

0.2 90,9570 °o°°°°° o
o® ©
Interface
°

° ° ° ° T
s
000%% ¢ o0 e

0 0000 ©666—& POOUN . ]

T T T T T4404- * T * 4 T T T T T T T T T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-53. Iteration results for E2FE NF_DRVVIR2 PR1




1-36; Conventional

45-52: Parallel Correction (ESRC)
37-44: Dynamic interfacing  5§3-60: Sequential Correction (ESRC)

61-68; Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

1.8

1.6

14

1.2

0.8

0.6

0.4

0.2

0

Conditional Sensitivity Scheduling

0000000

00¢ 3

° °

°
0000,
0000 o ©0 00000 O

T T T y TOFO—0¢ 00— 000 o T T T T T T T T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 T2 76

Interface
Types

Figure D-54. Iteration results for E2FE NF_DRVVIR4_PE

273




1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Parallel Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

1.4

1.2

0.8

0.6

0.4

0.2

Conditional Sensitivity Scheduling

o

° 0000000 40400%

© ° °

©000 ©600—00b 66—220—o.

°

° o
0%00% 0% o ©

T T T T4 * o664 + T T

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

T

Interface
Types

Figure D-55. Iteration results for E2FE_NF_DRVVIR4_PR1

274




1-36: Conventiona
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Correction (ESRC)

1.8

1.2

0.8

0.6

0.4

0.2

Conditional Sensitivity Scheduling
© RelTol
%o
3,9
° . ¢ o0
L2 ° °
0 ©
Interface
Types
0 4 8 12 16 20 24 28 32 36 40 44 48 S52 56 60 64 68 72 76

Figure D-56. Iteration results for E2FE_HF_AMPHB2_PE




1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Comrection (ESRC)

45-52: Parallel Correction (ESRC) 61-68; Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

1.8

1.6

0.8

0.6

04

0.2

Conditional Sensitivity Scheduling
- Fom
X °
oo
°
00,00 00 0% 0 0%
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

© RelTol

Interface
Types

Figure D-57. Iteration results for E2FE_HF_AMPHB2 PR1

276



1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Comrection (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

45-52: Parallel Correction (ESRC)

Conditional Sensitivity Scheduling

1.8

14

12

08

0.6

04

4

©

%

0.2

° Interface
Types

[

4

T

8

T

12

T T T T T—0¢ T g T T T T T T T T

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-58. Iteration results for E2FE_HF_AMPHB4_PE




1-36: Conventional 45-52; Parallel Correction (ESRC)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

14

o

12

PYRd

0.8

'S4

0.6

0.4

0.2

Interface
Types

0 — 77T
0 4 8 12 16 20 24 28 32 36 40 44 48

T T T

T T T T T T T

52 56 60 64 68 72 76

Figure D-59. Iteration results for E2FE_HF_AMPHB4_PR1

>

278




1-36: Conventional
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)

45-52: Paralle! Correction (ESRC)

61-68: Parallel Correction (ESRC_SENS)
69-76: Sequential Correction (ESRC_SENS)

1.6

12

0.8

0.6

0.4

0.2

Conditional Sensitivity Scheduling

©
o0 o0
© ©0, ©
©, ©0 - °,
000 ¢ © ° (4

o
%o ,

©

©0°,%,0 0
— 2 >

8§ 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

4

Interface,
Types

Figure D-60. Iteration results for E2FE_HF DRVVIR2 PE

279



1-36: Conventional 45-52: Paralle! Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44: Dynamic interfacing  53-60: Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

1.8

1.6

14

0.8

0.6

0.4

0.2 -

o 0° Interface
00 o

o ° ° Types

o 900 000000 o o 900,040

<
hai)

PO
0 T — T — T —— — T T T T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Figure D-61. Iteration results for E2FE_HF_DRVVIR2_PR1

280




1-36: Conventional 45-52: Paralie| Correction {(ESRC) 61-68: Parallel Correction (ESRC_SENS)
37-44; Dynamic interfacing  §3-60: Sequential Carrection (ESRC)  68-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling
2
1.8
°
. °
1.6
14
°
12
°
°
1
%o
°
0.8
0.6
°
°
0.4 o ° ‘
° °
° ° ° |
oo ° o ©
° ° ° ° 0 © |
o °
02 ° °
o ©
°
° o Interface
° Types
0 T T T T T T T T T T g °. T °. v °. T v T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Figure D-62. Iteration results for E2FE_HF DRVVIR4 PE )

281



1-36: Conventional

45-52: Parallel Correction (ESRC) 61-68: Parallel Correction (ESRC_SENS)

37-44: Dynamic interfacing  53-60; Sequential Correction (ESRC)  69-76: Sequential Correction (ESRC_SENS)

Conditional Sensitivity Scheduling

7

2

1.8

14

1.2

0.8

0000

0.6

04

0.2

0 — T

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Interface
Types

Figure D-63. Iteration results for E2FE_HF_DRVVIR4 PRI

282




APPENDIX-E

283




Appendix-E. Backplane Calculation Tutorial

This section provides a detailed outline of the backplane calculation and causality
detection processes to clarify the procedures from Chapter 3. The first example is a simple
case, which essentially irnplemented nodal analysis using the backplane procedures. The
second example shows how the backplane detects an EFF ORT output variable and modifies
the sénsitivity calculations and backplane system matrix. Both examples show the
" initialization sequence (DC biasv point calculations), which are the most critical steps in the
backplane process. These examples showed that this process is a multilevel Newton

procedure [12].

Appendix E.1 A Simple Example

A complete representatioﬁ of this example is shown in Figure E-1 (a). The true
solution of this problem was En=4.17V and E1=2.5V with a current of 833 pA. To
demonstrate the coupling procedure, this representation was broken into two simulation
ﬁartitions in Figure E-1 (b) and (c). The interfaces into both simulators were defined as
voltagg sources. The objective was to calculate the same solution found in the complete
representation. Because of the voltage sources, the coupling process only had to calculate

conduction parameters (—g%) as shown in Figure E-1 section (d).

Y

284



R=IK E, R=2K E, R=3K

5
(a) Complete Circuit Representation
R=IK E, E, R=3K CIRO E R=K E,
Ftl 2
o) (Due
(b) Simulator partition CIRO
CIRO E, CIR1

dF, OF dF, OF
'a—‘E: —é—f: FemonsFemin ﬁi’; —é:—E‘:
OF, 0F, | Fa JOF, OF,
a Etl a Eﬂ FCIRO,QQFCDU,Q a Eﬂ a Ea

(d) Coupling Representation
Figure E-1. Simple coupling example
To implement the coupling process, 14 different variables were required as shown
in Table E-1. Each simulator contributed four variables (information to the backplane) and
the backplane' created six variables (indicated with the CALC subscript) to be used in the
error minimization process. To create functions that were equal to zero for each simulator,
the backplane created sensitivity functions. The sensitivity functions were used by the error
minimization process in the coupling process and for the sensitivity parameter calculations
in each simulator. Since the EFFORT variables were common between both simulators,

only one unique EFFORT calculation variable was required in the process.

285



Table E-1. Simulator and backplane calculation variables

Simulator Return Variables

Backplane Calculation Variables

Partition CIRO Variables: -
Ecro1, Forom
Ecron, Feron

Equivalent CIR0 Variables:
Erilcare, Fewro;rilcarc
Eplcarc, Ferolcarc

Partition CIR1 Variables:

Ecri1, Ferimi
Ecrim2, Ferim

Equivalent CIR1 Variables:
Erilcarc, Femi,tilcare
Emnlcarc, Forimlearc

For partition CIRO, the senéitivity functions were:

.. oF oF,
S (F CIRO,TI) = a_ﬂ " ALcrro,11 + 5—71‘ 'AEcmo,Tz +AF, CIR0,T1
| Er CIRO Er2 CIRO Equation E-1
aFn oF, T2 -
S (cho.rz) i : CIR0,T1 + : AEcmo,rz +AF, CIR0,T2
a'ETl CIRO aETZ CIRO

The cdnesponding error minimization equations for partition CIR0 were defined by:

AFtyo = F, CIRO»TIICALC — Foro.m
AFyors = Fogora) . = Fo
cmro,r2 = feiro,r2 CIRO,T2 .
cALe Equation E-2
AEcmo,n = Tllc«u.c - Ecmo,n

AEcppora = ET2|CALC - Ecmo,n

For partition CIR1, the sensitivity functions were:

oF, oF,
S(Fepy 1) = aTﬂ "Bl T "'a—ﬂ AEcip 1o + AFpr -
5 Tlcm 3 T2lcr Equation E-3
' F. F,
S (F CIRl.TZ) = FTZ *ALor1T1 +ai 'AECJRJ.Tz +AF, CIRL,T2
T1|CIRr1 T2 |cIr1

The corresponding error minimization equations for partition CIR1 were defined by:

286



AFpyp ry = F ClRl,T1|CALC = Fomn

AFpr, = F CIRl,TZICALC ~ Fomr

Equation E-4

AEcipm = Enl,gALc = Ecppy 1y

AECIR],TZ = 72ICALC ~Ecpiz

The sensitivity functions of both simulators were put into matrix form with the

interconnection relationships:

T 1 01 0] 1r 1
0 0 : . TllCALC 0
0 0 0101 I 0
oFp oFr, T2lcac
%En|cro %r2|cpro 1000 cIro Tll S(Feszo, Tl)
OFrs | oFr, 01 00 e Equation E-5
%ricre  %rzlcrro Ao 1 CALC S\Epzo, rz)
oF, 3R,
35771 CIRl ﬁ‘CIRI 0 01 0ffAF, C’RL“ICALC SgF CIRl, 71;
o, oF, s(F
_ﬁ CIRl a_E:f CIRl 000 1_ —AFCIRI’TZ]CALC J CIRLT2

The matrix in Equation E-5 was called the system matrix in this tutorial. The
interconnection relationships were defined in the first two rows, and these relationships
defined which FLOW variables (or FLOW delta variables) summed to zero. The sensitivity
functions were used in the other four rows. After solving for the calculated delta values in

Equation E-5, an iteration process was defined for the calculated variables:

i

=+l
FCIRO “ICALC FvCIROv“lCALC + AFCIRO,TIIC“C
i
FCIRO,TZICALC = FCIR0,7'2|CALC + AFCIRO,TZICALC

. , ‘
=F | . 4+AF | .
care = Yarni|qgc crL T gz

e

|i+1
CIRLT1 .
o ’ Equation E-6
F cmx,rzlwc =F CIRl,T2|CALC +AF, CIRl,T2|CALC

i+l

i
ETl care = ETlICALc +A‘Ev“ CALC
1+1
Er, cALC =E T2ICALc + ‘E,”'c,«u,c

287



To derive the sensitivity parameters, a perturbation matrix based on the sensitivity function
was solved by the backplane component in a simulator to define functions that were zero.

The process was defined by:

dF, oF,
S(Fp) = a_“'AEn,X +a_ﬂ'AErz,X +AF11,X =0
: Ex, Ers Equation E-7
OF, oy,
S(Fp,) = SE__'AETI,X +E-'AET2,X +AF, & = 0
71 T2

The X variable defined the interface where the variable delta was applied. The delta
information had to be applied twice (once at each interface) to calculate the four sensitivity

parameters. In matrix form, the parameters were solved by using Equation E-8.

o,
AE 0 AE 0o 1./%n| [AF
LTI 72,71 oF TLT1
T2
0 AETI,TI 0 AETZ,TI oE,, - AF, T2,T1. Equation E-8
AE, ., 0 AE;, r, 0 oFy, SE ARy ry
0 AE 1, 0 AErz,Tz_ oF, 2 AFp,r,
aETz_

These equations were the mathematical foundation for the coupling process. This entire
procedure attempts to eliminate the error in Equation E-2 and E-4. When these equations
Were approximately equal to zero, the coupling process had essentially converged.

-To demonstrate this coupling process, the simulator information was presented in
iteration blocks with sensitivity iterations defined by the format #-S.OBJECT. After each
block, the perturbation matrix (Equation E-8) was solved as necessary. The backplane
process required seven iteration steps because of the initializatibn procedures. The

initialization procedures are described in Appendix-B and mentioned in this text when

288



appropriate. Once a four-step setup phase was completed, the backplane constructed and

solved the system matrix.

On iteration 1, the simulator solution of partition CIR0 was:

Iteration ‘CIRO Simulator Response Source Values
Object Effort Flow

1 Tl 0.000e0 | 5.000e-3 | ESRC = 0.000e0
1 T2 . 0.000e0 0.000e0 | ESRC = 0.0000

1-S.T2 | TI +0.000e0 | +0.000e0 -

1-S.T2 T2 -1.000e-4 | +3.333e-8 -

1-S.T1 Tl -1.000e-4 | +1.000e-7 -

1-S.T1 T2 +0.000e0 | +0.000e0 -

Sensitivity calculations for CIRO:

—1.0e—4 0 0 0 |3E| [-1.000e-7
0  —1.0e-4 0 0 I5BF|_ 0
0 0 -1.0e-4 0 Sar 0
0 0 0 ~1.0e~4 | ZZE| |-3333.-8
oFy, =1.000e -3 .aFJ =0.0 ..aFJ =0.0 %2— =3.333¢-4
aETl aETl aETz‘ aETZ

On iteration 1, the simulator solution for partition CIR1 was:

Iteration CIR1 Simulator Response Source Values
| Object | © Effort Flow

1 T1 . 0.000e0 0.000e0 | ESRC = 0.000e0

1 T2 0.000e0 0.000e0 | ESRC = 0.000e0
1-S.T2 T1 +0.000e0 | -5.000e-8 -
1-ST2 | T2 -1.000e-4 | +5.000e-8 -
1-S.T1 Tl -1.000e-4 | +5.000e-8 -
1-S.T1 T2 +0.000e0 | -5.000e-8 -

Sensitivity calculations for CIR1:

289




—1.000e -4 0 0 0 LLE —5.000e—-8

oTLE
0 —1.000e - 4 0 0 x| | +5.0e-8
0 0 —1.000¢ — 4 0 I2F +5.0e—8
0 0 0 —1.000e—4 || ZZE| | —5.0¢-8
9 50e-4 Ui 5004 o 5004 Fr_s500-4
0E;, 0Ep, oE;, oE;,

The simulator responses for iterations 1 to 3 were identical, so these responses are not

shown. On the fourth iteration, the backplane constructed and solved the interconnect

matrix.
3 3
F am,nlwc =F, CIRO,TIICALC =0.0
3 3 .
F akl,rzlmc = cmo,nlwc =0.0
3 3
ET‘ICALC=v ET2ICALC =00
0 0 101 0] ABleye | T 0 7
0 0. 0.1 0 1] AE,|.,. 0
10e=3 0 10 0 0ARpopl,, | [50e-3
0 333¢-4 0 1 0 OfAFuors|.,.| | O
50e—4 -50e-4 0 0 1 Of AFypp|. 0
|~5.0e~4 50e=4 00 0 1JAFyp|, | L 0 |

AFC”*P'Tllcuc =8.33¢-4 AFC!RO,T2|CALC =-8.33e-4 AFC]RI'TIICALC =-8.33e—4
ARy, . =833e—4 AE,| =4167 AE,| =25

290




F CIRO'ﬂlCALC =
F, cmo,rzlwc =

F CIRlleICALC = Lemr,n

4 3

4 3
4 |3

4

F, cmo,nlmc +

AFCIRO,TI =8.33¢e—-4
F C1R0,7‘2|CALC +AF o 7 =—8.33¢ -4

* ge FAFop =833 —4

3
F ClRl,TZlCALC =F c1m,n|wc +AFpp 7, =8.33¢ -4

3

4
Enlw_c =Eqp|,,. +AEn =4.167
4 3
Enly. = En’wc +AE,, =2.5

On iteration 4, the backplane applied the solution back to the simulators.

The next backplane sequence had no error between the simulator and calculated values.

Iteration "CIR0 Simulator Response Source Values
" | Object | Effort Flow
4 Tl 4.167¢0 8.333e0 | ESRC =4.167¢0
4 T2 0.000e0 | -8.333e0 | ESRC =2.500e0
4-S.T2 T1 +0.000e0 | -5.000e-8 -
4-S.T2 T2 -1.000e-4 | +5.000e-8 -
4-S.T1 T1 -1.000e-4 | +5.000e-8 -
4-S.T1 T2 +0.000e0 |- -5.000e-8 -
Iteration CIR1 Simulator Response .Source Values
.| Object Effort Flow
4 T1 4.167¢0 | -8.333e0 { ESRC =4.167¢0
- 4 T2 0.000e0 8.333e0 | ESRC =2.500e0
4-S.T2 Tl +0.000e0 [ -5.000e-8 -
4-S.T2 T2 -1.000e-4 | +5.000e-8 -
4-S.T1 T1 -1.000e-4 | +5.000e-8 -
4-ST1 | T2 +0.000e0 | -5.000e-8 -

0 0

0 0
1.0e-3 0

0 3.33¢e-4
50e—4 —-5.0e—4

1
0
1
0
0

-50¢-4 50e-4 0

0
1
0
1
0
0

O = O O O =
-0 O O == O

o

AFepo 1| e

AFtrpo 1 caLe

AETllc.u.c
AETZICALC

S O O O O O




Once all convergence checks and initialization steps were completed, the backplane started
the transient analysis. The transient analysis followed the same procedures of eliminating

the error between the calculated variables and the simulator variables.

Appendix E.2 EFFORT Output Example

High gain problems like the example in Figure E-2 (a) were more difficult to solve
than the previous example, especially depénding on the interface used in a partition. The
complete representation was divided into two partitions with two interface terminals like the
previous example, so the same coupling vaﬁables were created as defined in Table E-1. The
CIR1 partition in figure E-2 (c) was interfaced to the coupling process using voltage
sources like the previous example. However, the CIRO partition in Figure E-2 (b) was
interfaced to the backplane using the SYSTEM configuration of a FLEXIBLE interface.
Consequently, the CIRO partition had the capability to calculate additional sensitivity

parameters as shown in Figure E-2 (d).

292



C,~INF
__I|___
R=10K |
1K
+ E,
0.0
(2) Complete Circuit Representation
CIRO
~INF
1t
R,§=10K
1K
E,
FLEX)t2
v,
(b) Simulator partition CIR0O
CIRO E, CIR1
dF, OF, 9F, [*F_ T dF, 9F,
9E, OE, oF. °"‘°*I’5 o g E, g:}g
oF, OF, JF, € C F, 2
oE, 9JE, dF, FopeFaue | 0By 9E.
OE, OB, JF,
- aEu aFu dF.
(c) Simulator partition CIR0 JdE, OJE, JE,
oE, OJF, odF,
(d) Coupling Representation

Figure E-2. High gain feedback problem

293



In the high gain situation, the main issue was to get a good initial solution (guess)
that met the sufficiently close conditions required by most iteration routines. However, this
partitioning process broke the feedback path, so the CIRO partition had a very poor
initialization soluti;)n due to the internal stimulus V. Without the conduction matrix
(Geqv) generated by the SYSTEM configuration in partitioﬁ CIRO, the backplane was
unable to solve the problem; Using the conduction matrix, the backplane essentially created
the feedback resistance of the CIR1 partition in partition CIR0. The problem solution was
almost trivial since partition CIR1 only contributed a conduction relationship to the process.
This example had an EFFORT output at terminal T2, which the backplane had to detect.

There vx‘fere; two 'reaisons ‘.for detecting the EFFORT causality at terminal T2 and
‘ calculating a different set of sensitivity.parameters. By detecting the gain, the backplane
calculated parameters that corresponded to the true nature of the models in a simulator. In
addition, the backplane used this information in certain interface procedures. The second
and most important reason was due to matrix constraints. When applying delta information
to a specific interface, the delta of the given interface sl.lould correspond to one of the largest
delta responses-. Without this condition, the matrix became ill conditioned, which caused
failures in the pivoting LU decomposition solver routines in the backplaﬂe.

At initialization, this example used the same mathematical foundation as the
previous example. When the EFFORT output variable was detected at interface T2 m the
CIRO partition, the backplane calculated a different set c;f sensitivity parameters for the
CIRO partition, and the system matrix changed. The new sensitivity functions solved in the

CIRO partition were defined in Equation E-9.

294



)2 oF., .
S(Fn): _ﬂ'AErzx"'Aan 0

T, AE. +
oE,, Lx oE,, .
SE 3E Equation E-9
S(Ep,) = —Q'AETIX + 2. AFTZ,X +AET2,X =0

ok, " oFy,

In matrix form, the sensitivity parameters were solved using Equation E-10.

[ oF, /
AE 0 AF 0o 1. /%] rar
T1,T1 T2,T1 ‘ T1,T1

0 AE 0 AR, | AE
7171 T2.71 OEp | _ | AFr2n Equation E-10

AET],TZ 0 AF‘TZ,TZ 0 aF;'l aF : AF'TI,TZ
Q AE'T1,7‘2 0 AFTZ,T2J aE th AETZ,TZ
T2
oFy, |

The variation in the sensitivity parameters changed the sensitivity functions used by the

system matrix as shown in Equation E-11.

BF oF,

9l | 71
S(FCIRO Tl) - CIR0,T1 + == a AFCIRO,TZ + A}'T'CIRO,TI
Er, 72 .
CIRO CIRO Equation E-11
oE,,
7'2
Ecpor2) = “AE o 1y "‘ “AFors + ABcipo 1y

Tl CIRO T2 lciro

The new system matrix was defined in Equation E-12. The interconnection relationship was
defined in row 1 and row 4. These rows corresponded to the input variables in the

sensitivity parameters.

295




0 1 10 1 -
AETI|CALC 0
0 0 0 1 0 1| Ag | 0
F, oF, T2lcaLc
aE” 0 1 31;‘_‘ 00 AF. S(F
F) TR a T21CIR0 CIROT g1 CIRO,T1
Ery 1 Era 0 0 = (
%rlcrro %Fri |crro AF, CIRO-TZICALC S Ecmo,n)
o R 0 0 1 0faF SFomn)
En|omi %r2lom CIRVLTY | cgpc CIRLT1
Pl I AForuza) e | SFepira)
| %Enlome %rzlom 0 0 0 IJ | Alemra|eye | L0V arra/ ]

Equation E-12

The error equations (Equation E-2 and E-4), the CIR1 relationships (Equation E-3, E-7, and
E-8), and iteration equation (Equation E-6) were identical to the previous example.
The iteration sequence for this example was more complex than the previous
example becguse of the initialization procedures for the SYSTEM configuration in partition
" CIRO. At initialization, thé equivalent matrix Ggqy in CIR0 was set to a minimum matrix
whel;e |

le-6 -le-6
Gopy =
o [—1e—6 le—6]
and ' ‘

G, G,
Goop =|
By [Gz,l Gz,z

E F,
Giroy [En] - I:Fn]
T2 T2

296




On iteration 1, the simulator solution for partition CIR0 was:

Iteration CIRO Simulator Response Source Values
, Object Effort Flow
1 T1 3.757e-8 | -1.605e-5 | FSRC = 0.000e0
1 T2 1.605¢e1 1.605e-5 | FSRC = 0.000e0
1-S.T2 Tl +1.171e-8 | -5.695e-7 -
1-S.T2 T2 -4.094e-4 | +8.241e-6 -
1-S.T1 T1 -1.577e-4 | +7.670e-6 -
1-S.T1 | T2 -8.423e-6 | +1.526e-9 -

Sensitivity calculations for CIRO:

—1.58¢—7 —8.42e¢-6 0 0 g;% —-7.67¢e—6
1.17¢—-8 —4.09¢—4 0 0 % N 5.69e—17
0 0 —-1.58¢—-4 —-842e-6 gﬁg " 1-1.53¢-9
0 0 1.17¢~-8 —4.09¢—4 % ~824e—-6
O _a86e1 2o 10600 o 8770—10 T2 =0 04e—2
aETI T1 T2 T2
BFn. _ oF;., _ ok, _ oE,, _ ok, _ dE,, =00
a‘F;'Z aF'T2 aFTZ aFTZ aETZ a‘ETI
On iteration 1, the simulator solution for partition CIR1 was:
Iteration CIR1 Simulator Response Source Values
Object Effort Flow
1 T1 0.000e0 0.000e0 | ESRC = 0.000e0
1 T2 0.000e0 0.000e0 | ESRC = 0.000e0
1-S.T2 T1 0.000e0 | -2.500e-8 -
1-S.T2 hvi +1.000e-4 | +2.500e-8 -
1-S.T1 T1 +1.000e-4 |. -2.500e-8 -
1-S.T1 T2 0.000e0 | +2.500e-8 -
Sensitivity calculations for CIR1:
1.0e—4 0 0 0 £ 2.5¢-8
0 10e-4 0 0 {EF|_[-25-8
0 0 1.0e-4 0 [[3ZL] |-25¢-8
0 0 0 1.0e—4 || 2L 2.5¢—8




0Fy,
Il =_)5¢—4
)

T2

oF,,
212 9504
)

T1

s 954

T2

0F;

=2.5e—-
ok,

4

The sensitivity parameters for CIR1 partition were constant through this analysis, so these
calculations are not shown again.

On the second iteration, the backplane had to generate an equivalent sensitivity
matrix (Ggqy) because CIRO partition has a SYSTEM-level configuration. This calculation
used the system matrix ‘with the CIRO components eliminated and with other matrix

modifications for the EFFORT variables as shown in Equation E-13.

-

-

1 0 000 0ff AE,|,,. i
0 1 000 0f AE, ZICALC
0 0 1 01 OffAE, ‘
RR R i
Enlcm  %r:lom CIRLT gz
_'g:—:' CIR1 g::i CIRl 000 1__ _AFC”“»” carc |

The x vector was changed depending upon which set of equivalent parameters was
calculated, and two calculations were required to generate all parameters. The first

calculation generated the equivalent information for the Er; variable.

[ 1 0 0 0 0 O] AE, [1]
0 1 00 0 0f AE, 0
0 0 1 0 1 O Ay | -|0
0 0 01 0 1[AF,| [0
25¢—4 -25¢e-4 0 0 1 Of ARy | [0
|-25e-4 25¢-4 0 0 0 1Ay, | |0
oF; r1| = AFC”“»“'CALC =25¢—4 oF; T2| = AFC”“"TZICALC =-25¢—4
aETl |EQV AETlchLc . aET 1 |EQV AETlchgc '




The second calculation generated the equivalent information for the Er, variable.

—

1 0
0 1
0 0
0 0
25e—4 —25e—4
|—2.5¢—4 2.5¢-4

0
0
1
0
0
0

—

S O = O O O
O = O = O O
—_ o = O O O

-
AE,

=-2.5¢e-4

~2.5¢e—-4

oF;, | _ AF, cmo,nICALC
aETZ |EQV AETZICALC ’
G = 2.5¢e—-4
BV Tl _25e—4 25¢-4

AETZ

5

CIR0,T1

5

CIR0,T2

5

CIR1,T1

5

CIR1,T2 |

0Fy
oE,,

EQV

L

AFepo
_ “larorilcye

o O O O = O

=2.5e-4
AETZICALC

Since this equivalent information does not change throughout this analysis, these equivalent

calculations are not repeated. Typically, the backplane did not recalculate equivalent

sensitivity parameters unless a simulator’s sensitivity information changed.

On the second iteration, the simulator solution for partition CIR0 was:

Iteration CIR0 Simulator Response Source. Values
Object Effort Flow

2 Tl 2.629¢-6 | -1.249e-4 | FSRC = 0.000e0

2 T2 4.996e-1 1.249¢-4 | FSRC = 0.000e0
2-S.T2 Tl +7.49e-11 | -3.559e-9 -
2-S.T2 T2 -1.779e-2 | +1.154e-5 -
2-S.T1 T1 -1.944e-4 | +9.235¢-9 -
2-S.T1 T2 +4.617e-2 | +1.152e-5 -

During this iteration, the backplane detected gain when the T1 delta was applied, and a new

set of sensitivity parameters was calculated using Equation E-10.

299



~1.94¢-10 1.154e-5 0 0 L] [-9.234e-9
7.49¢~11 1.152¢-5 0 0 [[ZBE| | 3.559¢-9
0 0 749¢—11 1.154e-5 || ZZE| " | 1.7792¢~2
0 0 ~1.94e-10 1.152¢-5| &LZE| |-4617e-2
—aFJ = 4.86¢el % =2.375¢8 —aFJ = 0.0 % =5.50e—-4
a T1 T1 T2 aFTZ ‘
OF _F, 3, _3E, _F _3E, _,,

oE,, oF, OF, OJF, OJE, OJE,

As a comparison, the true gain between Er; and Erp was 2.5¢8 (the amplifier gain was 1e6,
10x gain, and 25x gain). The backplane calculated the gain to be 2.375e8 because of the
small delta information. This delta information was below the calculation tolerance of the
simulatoré, so the backplane was potentially solving_the sensitivity parameters based on
rounding errors! Nevertheless, the large gain parameter caused some rounding errors in the
other parameters. Since the gain dominated all relationships, the errors in the other
parameters were negligiblc;.

On the second iteration, the simulator solution for partition CIR1 was:

Iteration CIR1. Simulator Response Source Values
Object Effort Flow
2 T1 0.000e0 0.000e0 | ESRC = 0.000e0
2 T2 0.000e0 0.000e0 | ESRC = 0.000e0
2-S.T2 T1 0.000e0 | -2.500e-8 -
2-S.T2 T2 +1.000e-4 | +2.500e-8 -
2-S.T1 T1 +1.000e-4 | -2.500e-8 -
2-S.T1 T2 0.000e0 | +2.500e-8 -

The third iteration continued the setup procedure, where the T2 interface of CIR1 tracked

300

the EFFORT output in CIR0. The simulator solution for partition CIR0 was:



Iteration CIR0 Simulator Response Source Values

Object | Effort Flow
3 Tl 2.629¢-6 | -1.249¢-4 | FSRC =0.000e0
3 T2 4.996e-1 1.249¢e-4 | FSRC = 0.000e0

3-S.T2 Tl +7.49-11 | -3.55%9¢-9 -
3-S.T2 T2 -1.779¢-2 | +1.154e-5 -
3-S.T1 T1 -1.944e-4 | +9.235¢-9 -
3-S.Tl T2 +4.617e-2 | +1.152e-5 -

The simulator solution for partition CIR1 was:

Iteration CIR1 Simulator Response Source Values
Object Effort - Flow
3 T1 2.629¢-6 | 1.249e-4 | ESRC =2.63e-6
3 T2 4.996e-1 | -1.249e-4 | ESRC = 5.00e-1
3-S.T2 T1 = 0.000e0 | -6.270e-6 -

3-S.12 T2 [ -2.508e-4 | +6.270e-6 -
3-S.T1 Tl +1.001e-4 [ -2.500e-8 -
3-S.T1 T2 0.000e0 | +2.500e-8 -

On the fourth iteration, the backplane started using the calculated variables from the system

matrix. The calculated variable delta values were solved using Equation E-12, or

0 0 1 0 10 ABnleye | 0 ]
0 - 0 0 1 0 1| AEn|y. | 0
4.86¢l 0 1 00 0 O0fAFuon|y, | |-1249-4
23868 1 0 55e—4 0 OfAFgppl|,,. | |1.107e~7
25e~4 -25e-4 0 0 1 OfAFunl,, . 1.249¢ - 4
-25e-4 25¢=4 0 0 0 1JAFyypl|, | [-1249%-4]

The new calculated values were defined using Equation E-6:

3 |3 3 3 0.0

£ CIRl,TlIwC = Fopom carc 0.0 Fopirs carc F cmo,z‘z|CALC =u.

Ef},.=2629-6 Epl|, . =4996¢e-6

3
2|CALC

301



4
CAL

. =—1249%-4

4
FCIRO’TIICALC = _1 -2493 - 4 FCIRO,TZI c = 1.2493 - 4

4 |4

F C’kl'“lc,u,c =124%-4  Fop 1o,

E.f., . =2629~6 E.|. .=499e-6

|4
2lcaLc

On iteration 4, the final initialization step for the SYSTEM configuration applied only the

i

flow information to the interface, which did cause divergence from the true solution.

Iteration CIRO Simulator Response Source Values
Object Effort - Flow
4 T1 2.627e-6 | -1.248e-4 | FSRC =-1.25¢-4
4 T2 9.988e-1 1.249e-4 | FSRC =+1.25¢-4
4-S.T2 T1 +1.49¢-10 7.1e-9 -
4-S.T2 T2 -3.55e-2 | 1.154e-5 -
4-S.T1 :| TI1 1.944e-4 | -9.235e-9 -
4-S.T1 T2 -4.617e-2 | -1.152e-5 -

The simulator solution for partition CIR1 is:

Iteration CIR1 Simulator Response Source Values
Object Effort Flow

4 T1 2.629¢-6 1.24%9¢-4 | ESRC = 2.63¢e-6

4 T2 4.996e-1 [ -1.249¢-4 | ESRC = 5.00e-1
4-S.T2 T1 0.000e0 | -6.270e-6 -
4-8S.T2 | = T2 -2.508e-4 | +6.270e-6 -
4-S.T1 T1 +1.001e-4 | -2.500e-8 -
4-S.T1 T2 0.000e0 | +2.500e-8 -

As the last phase of the initialization procedure, the backplane cleared the FLOW variables
‘before the standard calculations procedures were applied. |
4 4 4 . 4
chl,nlcﬂ_c = FCIRO,TIICALC =0.0 Fepry carc Fago,rzlmc =00
Epf;, .=2629e—-6 Ep|. . =4996e-1

In this iteration, the system matrix was:

302




0 0
0 0
4.86¢l 0
2.38e8 1
2.5¢e—-4 -—-2.5e—-4
|—2.5e—4 2.5e-4

0.0
5.5¢-4

O = O O O =

Al CIRO,T1

5

CIRL,T1

_0 O O = O

CIR0,T2

AFppy 1 i

0
0
—-1.249¢ -4
1.107e-7
1.873e—-4

| -1.873¢—4

Using Equation E-6 and the system matrix solution, the new calculated variable values

were.

H

cho,nlwc =-3.123e—-4 cho,rz'

5

CAL

=3.123e—-4
c

s S
ch],n]CALC =-3.123¢-4 FCJR‘-TZICALC =3.123¢-4

E,[},.=263-6

Eploye =562e-1

At this point, the backplane directly applied the calculated values to the simulators.

However, the interface procedures had to compensate for the system matrix Geqv (as

defined in Appendix B).

4 4
Fgc = CIROlICALc + GEQV ) EICALC

—3.12e—4] [ 2.5e~4 —2.5e-4]2.63e—6] [-14le—4]
| 3.12¢-4 ]+[—2.5e—4 2.5¢—4 5.62e—1] "[ 14le—4
Iteration CIR0 Simulator Response Source Values
Object Effort Flow
5 Tl 2.627e-6 | -1.248e-4 | FSRC=-1.4le-4
5 T2 1.061e0 |  1.248e-4 | FSRC =+1.41e-4
5872 | T1 | +1.59e-10| -7.54e-9 -
5ST2 | T2 3.77e2 | 1.154e-5 -
5-S.T1 T1 -1.94¢-4 | -9.231e-9 -
5-S.T1 T2 -4.615¢-2 | -1.152¢-5 -

303



6
ETllou.c

The calculated variables were applied to partition CIR1.

Iteration CIR1 Simulator Response Source Values
Obiject Effort Flow

5 T1 2.629¢-6 1.405¢-4 | ESRC = 2.63e-6

5 T2 5.620e-1 | -1.405e-4 | ESRC = 5.62¢-1
5-S.T2 Tl 0.000e0 | -7.050e-6 -
5-S.T2 T2 -2.82e-4 | +7.050e-6 -
5-S.T1 T1 -1.001e-4 | +2.503e-8 -
- 5-S8.T1 T2 0.000e0 | -2.503e-8 -

The new calculated variable values were:

6 6
Fopomfoye ==1249% =4 Fopop|o  =1249¢-4
6 6
F c1R1,71ICA,_C =1.249¢ -4 ch,rzl cac = —1.249¢ -4
6
=2.63¢—6 Epy| py =4-996e-1

Then, the simulators confirmed the solution.

On the sixth iteration, the backplane calculated the true solution. The system level matrix

. Was:
[0 0 1 0 1 0] AE,, 1 [ o0 ]
0 0 0 1 0 1| AE, 0
4.86el 0 1 00 0 OfAFuypyp | |-9.366e~5
2.38¢8 1 0 55¢—4 0 O|AFppr| | 6.202e-8
25¢—4 -25¢-4 0 0 1 OfAFuyp 1.093-4
-25¢-4 25¢-4 0 0 0 1]|AFug,| |-1.093-4

Iteration CIRO Simulator Response Source Values
Object Effort Flow
6 - T1 2.629e-6 | -1.249e-4 | FSRC = -4.6¢-14
6 T2 4.996¢-1 1.249¢-4 | FSRC = +4.6e-14
6-S.T2 T1 +7.49¢-11 | -3.559¢e-9 -
6-S.T2 T2 -1.77%¢-2 | 1.154e-5 -
6-S.T1 T1 1.944e-10 | -9.235e-9 -
6-S.T1 T2 -4.617e-2 | -1.152e-5 -

304




Iteration CIR1 Simulator Response Source Values
Object Effort Flow

6 T1 2.629¢-6 | 1.249¢-4 | ESRC = 2.63e-6

6 T2 4.996e-1 | -1.249e-4 | ESRC = 5.00e-1
6-S.T2 T1 0.000e0 -6.27e-6 -
6-S.T2 T2 -2.5le-4 [ +6.27e-6 -
6-S.T1 T1 -1.001e-4 | +2.503e-8 -
6-S.T1 T2 0.000e0 | -2.503e-8 -

'All variables meet the tolerance criteria, so the backplane converged. The transient analysis
would apply the same procedures, where any variable errors between the simulator and the

calculated values in the backplane were eliminated (error minimization).

Appendix E.3 Final Comments

In these linear examples, ’Fhe backplane initializatidn seqhence actually caused
divergence in the solution (Example 2, iteration 4). Of course, the backplane initialization
procedures had to be careful not to cause too much divergence. This initialization sequence
did improve convergence in certain nonlinear problems, but these routines were not very
robust and the routines should be improved in the future! Future initialization procedures
should consider using the’ EFFORT output information to implement a different set of
routines to ~account for any internal stimuli in a gain path. However, the interface into the
simulator was ultimately the most important facet of the coupling procedure as shown in
Example 2. By incorporating valid condition sensitivity parameters in the CIRO partition,
the coupling solution was significantly simplified and the coupling process easily
converged.

The second example demonstrated a very simple fact- the most reliable method of

coupling simulators with high gain components was to complete the feedback path. Without

305




defining the feedback path, the local simulator cannot always calculate valid sensitivity
information and the initialization solution can have significant errors (Example 2 iteration
1). If the “sufficiently close” conditions required by most iteration routines were not meet,
then the backplane cannot solve the problem based on the interfaces into the simulators.
Besides using an interface into the simulator, the other coupling approach would be
to transfer the complete solver matrix of each simulator to the backplane. The backplane.
would construct and solve a single matrix representing ALL simulator information. This
approach would require significant information extraction from the simulator and would
increase the backplane complexity. Of course, the approach was beyond the scope and

intent (simple and easy coupling via an interface) of this development.

306



VITA

Lloyd Gabriel Clonts was born in Cleveland, Tennessee on April 11, 1968. He
attended Bradley County school systems and graduated from Bradley Central High School '
in May 1986. He entered the University of Tennessee at Knoxville (UTK) in September
1986 and completed the Bachelor of Science degree (Electrical Enginerring) in May 1990.
While working as a graduate research assistant at Oak Ridge National Laborities (ORNL),
he completed his Masters of Science in May 1993. He ente'red the Doctoral program at
UTK in January 1996 after working for ORNL and several small companies in the
Knoxville area. He is currently gmployed as a CAD tool/system administrator and
Application Specific Integrated Circuit (ASIC) designer in the Instrumentation and Control

~ (I&C) division at ORNL.

307



	Development of a simulation backplane with dynamic configurability
	Recommended Citation

	Thesis2001b.C46_2.pdf
	Thesis2001b.C46.pdf

