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ABSTRACT

Image segmentation is one of most difficult tasks in computer vision. It plays a

critical role in object recognition of natural images. Unsupervised classification, or

clustering, represents one promising approach for solving the image segmentation

problem in typical application environments. The K-Means and Bayesian Learning

algorithms are two well-known unsupervised classification methods. The K-Means

approach is computationally efficient, but assumes imaging conditions which are

unrealistic in many practical applications. While the Bayesian learning technique always

produces a theoretically optimal segmentation result, the large, computational burden it

requires is often unacceptable for many industrial tasks. A novel clustering algorithm,

called Bayesian Weighted K-Means, is proposed in this thesis. Through simplification of

the Bayesian learning approach's decision-making process using cluster weights, the new

technique is able to provide approximately optimal segmentation results while

maintaining the computational efficiency generally associated with the K-means

algorithm. The capabilities of this new algorithm are demonstrated using both synthetic

images with controlled amounts of noise, and real color images of cotton lint

contaminated with non-lint material.
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Chapter 1

Introduction

Image segmentation is the proeess of dividing images into sets of eoherent regions

or objects. Although this ability is a fundamental component of human perception,

automatic image segmentation is one of most difficult tasks in computer vision because it

is an ill-posed problem. In other words, it is not possible to define a general metric or

measure of 'correct' pixel grouping, making solutions to the problem highly task

dependent. In spite of this difficulty, the demand for image segmentation algorithms is

high, because grouping plays a critical role in the automated understanding of natural

images. Due to this need, myriad segmentation algorithms have been proposed over the

past thirty years [2] [4] [5] [6] [7] [8]. The constraints of a given application must still be

defined before an appropriate segmentation approach can be chosen or developed,

however.

One such application of image segmentation involves the measurement of non-lint

material, or trash, in images of cotton samples. The amount of trash in cotton bales is a

crucial factor in determining its market value. Existing image-based automatic trash

measurement systems analyze the gray-scale images of a cotton sample surfaces using a

fixed intensity threshold to identify pixels in cotton image as "lint" or "non-lint". The

amount of trash is then quantified as the percentage of the surface area occupied by non-

lint pixels. While this method performs well if the cotton is bright white in color, the

1



trash particles are always much darker than the lint, and the image light source does not

degrade with use, these assumptions are often not satisfied in practice. Cotton colors

range from bright white to dark yellow, non-lint material varies in darkness, and light

sources degrade with use as shown in Figure 1.1. Thus, it is not possible to assign a

single threshold that is able to accurately discriminate between lint and non-lint material

rmder all possible conditions.

The primary goal of the work presented in this thesis is to develop an automatic, fast,

robust, reliable, color image-based trash measurement system that is less sensitive to

changes in cotton color and light degradation. Since the core of such a system is an

algorithm for dividing the image into lint and non-lint regions, the appropriate choice of

segmentation algorithms is crucial for success. The trash measurement task provides the

following constraints to guide the choice of segmentation techniques:

Computation time should not exceed 10 seconds per 3 MB fiill-color image.

Color boundaries between lint and non-lint material are of variable contrast.

Training data should not be required, because little is available.

Segmentation should be fully automatic, requiring no human intervention.

A priori probability of non-lint material can be estimated.

A priori probability of non-lint material is always much smaller than for lint.

The majority of existing methods for image segmentation can be broadly classified

into three categories: a) edge-based, b) region-oriented, and c) clustering approaches [9].
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Figure 1.1 Cotton Image and Intensity Histogram



Many algorithms also exist which combine aspects of these techniques. Edge-based

methods apply gradient operators to images in order to find local intensity or color

boundaries [10] [11]. Regions enclosed by these boimdaries are then grouped as distinct

objects. For simple, low-noise, high contrast images, edge-based approaches perform

well. However, for noisy, complex images with varying contrast, edge detection often

produces extra edges or missing edges, resulting in undesired grouping. Occluded

regions, such as walls behind objects, are also often incorrectly segmented. Edge-based

techniques are not appropriate for the given segmentation task due to the varying contrast,

or ftizziness, of the boundaries between lint and non-lint material in the images. Such

techniques also allow limited use of the relative probability information available for the

occurrence of lint and non-lint material.

Region-oriented approaches delineate pixel regions by either merging (or splitting)

image regions based on similarity (or dissimilarity) of apparent intensity and/or color [12]

[11]. While region-based methods are more resistant to the effects of random image noise

than edge-based techniques, these algorithms still often mislabel occluded regions. Most

region-based techniques also employ heuristic metrics of similarity, leading to under- or

over-segmentation, and are computationally expensive. As a result, region-based methods

are inappropriate for the trash measurement task.

Cluster-based approaches [14] employ techniques from statistics to identify and

group image pixels with similar characteristics, or features, such as gradient operator



response, color, intensity, etc. Clustering algorithms represent a sub-problem of

statistical pattern recognition, solutions to which are generally divided into supervised

and unsupervised approaches. Supervised learning methods require large sets of training

data and significant human guidance to construct decision surfaces, or boundaries

between similar groups known as clusters, in feature spaces. Unsupervised learning

methods automatically construct decision surfaces based on the similarities among the

patterns without extra training data or human interference. If a priori statistical feature

information is available, clustering algorithms are often computationally more efficient

than region-based and edge-based approaches and more likely to properly group occluded

objects. If such statistics are unavailable or inaccurate, however, clustering algorithms

often produce undesired groupings. Because unsupervised cluster-based approaches are

often relatively fast, can make use of the estimated probability information of non-lint

and lint material, and require no human intervention or training data, they represent the

best choice for use in a trash measurement system.

Bayesian Learning [1] [13] [15] [19] and K-means algorithms [1] [16] [17] [18] are

two well-known unsupervised clustering techniques. Assuming knowledge of the a priori

probabilities of feature classes and spherical Gaussian distributions for each cluster, the

Bayesian Learning algorithm attempts to iteratively update the statistical parameters of

each cluster, including mean vectors and covariance matrices, using the image feature

data. After a stable statistical model is achieved, an optimal decision surface is calculated

using Bayes Decision theory. This algorithm minimizes the probability of decision error



and yields the optimal solution for the classification problem assuming exact knowledge

of the prior probability of the individual clusters. However, the Bayesian approach

requires a significant amount of training data to find an accurate estimation of the a priori

probabilities of classes and takes significant computation time when the feature space

dimension is large.

The K-Means algorithm is a significantly faster classification method which yields

the same optimal result as the Bayesian Learning algorithm when each cluster a) is

modeled by a spherical Gaussian distribution, b) has equivalent probability of occurrence,

and c) is nearly symmetric. For the task of cotton trash measurement, both the equivalent

probability and the symmetry assumptions are not satisfied. On the other hand, the

computation constraint is very important for this application. Thus, a new algorithm that

is faster than Bayesian Learning and requires less restrictive assumptions than K-Means

is needed.

To handle the reality of unequal probability and asymmetry present in the lint/non-

lint segmentation problem while meeting the computation time constraint, I have

developed a novel technique defined as the Bayesian Weighted K-Means algorithm. The

Bayesian Weighted K-Means method uses the a priori probabilities of and covariance

matrix between clusters to assign a weight to each class. Each image feature is then

assigned to a given cluster based on a minimal weighted distance criterion. New weights

are then computed using concepts from Bayes decision theory and the process is repeated



until a stable model is achieved. This weighting factor is directly correlated with both the

statistical and the geometric properties of clusters. As the weight assigned to a given

cluster increases the population and spatial scope of that class expands. Because only

the relatively small set of weights, and not the entire set of image features, is updated

using iterative Bayesian techniques, the new approach is much more efficient

computationally and still produces close-to-optimal segmentation results.

The remainder of this paper is organized as follows. A brief overview of the K-

Means and Bayesian Leaning algorithms is given in chapter 2. Chapter 3 discusses the

Bayesian Weighted K-Means clustering algorithm in detail and presents experimental

results on controlled images. Chapter 4 demonstrates the use of the new algorithm for

cotton trash measurement. A final discussion of this work and future research directions

is provided in Chapter 5.



Chapter 2

Background

As discussed in the previous chapter, the Bayesian Learning and K-Means clustering

algorithms are two well-known unsupervised classification techniques. K-Means is

widely used in many applications or is used as an initialization step for more

computational expensive elustering methods due to its efficiency. The Bayesian Learning

algorithm is often employed because it theoretically yields statistically optimal decision

boundaries, despite its inefficiency. Due to their extensive use and positions at opposite

ends of the computational efficiency/accuracy spectrum, these two algorithms serve as

good references for evaluating the performance of new algorithms.

2.1 Bayesian Learning Aigorithm

As diseussed in chapter 1, the Bayesian learning algorithm is an unsupervised

method that employs Bayes deeision theory to iteratively learn the statistieal model

parameters for the elasses in the given feature space. Given K feature classes, a set of K

initial ̂ -dimensional eluster centers, fik, a set of K initial n x n dimensional covariance

matrices, 25t, a set of ̂-dimensional feature vectors, xj, J = 1 ... N, and the a priori

probability of each cluster, each feature vector, xj, is assigned to a cluster k such that

the equation, or decision function,

dk(Xj) =p(Xj I k) •p(k) (2.1)



is maximized. Assuming spherical Gaussian distributions for each cluster, the decision

rule can be written as

dk(Xj) = Inp(k) - V2 In I I - V2[(Xj - fikf ̂k' (Xj - ilk)] (2.2)

New cluster centers, fik , and covariance matrices, are then calculated based on

these feature assignments. This assigning-updating process is repeated until a stable

model is established.

By maximizing the decision function equation (2.1), the Bayesian learning algorithm

assigns patterns to classes based on a maximal a posteriori probability criterion. Thus,

the expected classification error is both computable and optimal [1] for the given

probability distributions and feature set. Again assuming spherical Gaussian classes, the

expected classification error, EQC), is given by

E (error )=J J exp[ - i-( -/l, 2 (x -/l,
i = l ..K ,/t^ J

The Bayesian learning approach suffers from two significant limitations that often

make it impractical for many applications despite its ability to provide theoretically

optimal classification results for a given data set. First, the classification results it

determines are highly sensitive to the initial a priori probability estimates given for each

class. In general, in order to get an accurate estimation of a priori probabilities of the

classes, a large amount of training data needs to be collected and analyzed. Second, the

time complexity of the decision function computation step is on the order of 0(N-K-n^).



For typical image segmentation problems where N is large, the 2"'^ order dependency on

the feature space dimension n often leads to unacceptably long computation times.

2.2 K-Means Clustering Algorithms

The K-Means approach provides a simplified method for computing the optimal

feature classification for a given data set under a more restrictive set of assumptions. In

the Bayesian learning algorithm, each pattern, Xj, is assigned to a cluster k by maximizing

the decision function given in equation (2.2). Assuming the specific case in which all

classes have equivalent a priori probability and are symmetric in feature space, the

decision function, dk(xj), can be rewritten as

dk(xj) = -(Xj- pikf (Xj - ̂ k) (2.4)

Letting Z = • I, where o is the standard deviation in each dimensional of feature

space and / is the n x « identity matrix, the assignment criterion, dk(xj), can be redefined

as

mink( dk(xj) = \ \xj-iJ.k\ \ ). (2.5)

Clustering methods using this simplified decision function are known as K-Means

algorithms.

As is apparent ftom equation 2.5, the goal of a K-Means algorithm is the

minimization of the sum of squared error of all patterns in a cluster. Initial cluster centers,

or seeds, are chosen in feature space, and then features are assigned to each cluster using

minimum distance criteria of equation 2.5. New cluster centroids are then calculated

based on the mean position of current members. As with the Bayesian approach, this

assignment-update process is repeated imtil a stable model is established.
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The primary advantage of the K-means approach over the Bayesian learning

technique is reduced computational complexity. The complexity of the K-means decision

flmction given by equation 2.5 is of the order 0(NKn). This linear dependence on the

dimensionality of the feature space significantly reduces computation time in problems

where either the size of the data set or the number of classes is large. Unfortunately, the

performance of K-means algorithms degrades quickly for situations in which the equal

probability and symmetry assumptions are not satisfied.

2.3 Algorithm Analysis

Figure 2;1 shows an example of a two-dimensional feature space with two clusters.

The decision boundary found using the K-Means technique is the perpendicular bisector

of the line joining the two cluster centers. In an «-dimensional feature space, the decision

surface will be the hyper-plane that is the perpendicular bisector of the line joining the

two cluster centers. In color-image segmentation applications, the feature space is

typically a three-dimensional color space. Figure 2.2 shows a successful K-Means

classification in RGB color space (see Appendix). As shown in the above two successful

examples, the K-means approach provides desirable segmentation results if all the

assumptions are satisfied and the clusters are well separated in the feature space.

For the example shown in Figure 2.3, when the two feature-space clusters are non-

symmetric and very close to each other, the K-Means algorithm does not work well. For

the same reason, the K-Means algorithm does not segment images of cotton and non-lint

material well. Finally, Figure 2.4 shows a Bayesian Learning algorithm classification

result to the same example as Figure 2.3. It is readily apparent that the classification

11



result of the Bayesian learning approach is more accurate than that of the K-Means

algorithm. As discussed earlier, however, the processing time required for classification

by the Bayesian Learning algorithm is much longer than that required for the K-Means

algorithm.

Po o «Jo » o\f ^ jt oO 6\
f® o-fe O O a)
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Figure 2.1 K-Means clustering algorithm result in two clusters and two-
dimensional feature space example

From [1]

m.

Figure 2.2 Successful K-Means classification of three-dimensional RGB color space.
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Figure 2.3 Unsuccessful Example of K-Means Classification.
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Chapter 3

Bayesian Weighted K-Means Clustering Algorithm

As shown in the previous chapter, the K-Means algorithm is computationally

efficient, but employs assumptions that are often unrealistic. Thus, K-Means does not

work well in many practical applications. The Bayesian learning approach always

approximates the optimal result, but is too slow for many practical applications, including

the trash measurement system, due to its computational complexity, 0(N-K-n^). To meet

the demands imposed by the trash measurement task, I have developed a new algorithm,

called Bayesian Weighted K-Means, which has similar computational efficiency to K-

Means while yielding the same close-to-optimal result as the Bayesian learning approach.

3.1 Method

As discussed in section 2.3, computation of the decision function is the fundamental

contributor to the time complexity of both the K-Means and Bayesian procedures. Thus,

to maintain the computational efficiency of K-Means, the time complexity of the decision

step in any new algorithm should remain linear in n, or 0(N-K-n). On the other hand, use

of the a priori probability and covariance matrix information is important for acquiring

desirable results, as shown in section 2.2. Thus, this knowledge should be considered in

the decision step of a new algorithm. The Bayesian Weighted K-Means algorithm was

designed by merging the computational simplicity of the K-means approach with the

ability of the Bayesian technique to use a priori statistical data.

14



Given K feature space classes, a set of K initial «-dimensional cluster centers, pLk, a

set of w-dimensional feature vectors, Xj, j = 1 ... N, and a X-dimensional weighting

vector w = [ 1/K.. .1/K^, and assuming spherical Gaussian clusters, each feature vector,

Xj, is first assigned to a cluster / such that the equation

mink (ek(xj) =\\xj-fik ||/wk) (3.1)

is satisfied. New cluster centers, fik, and covariance matrices, 2^, are then calculated

based on these feature assignments. Note that as the weight assigned to a cluster grows,

the likelihood of individuals features being assigned to that cluster increases, and the

computational complexity is still of the order, 0(N-K-n).

The novel aspect of the algorithm involves the process of updating the cluster

weight vector using Bayes decision theory. As noted in the previous section, the

computationally expensive section of the Bayesian learning method involves the

calculation of the n-dimensional Gaussian decision fimction, dk(xj), over each cluster, k, k

= 1... K, and each feature veetor, Xj,j = l ... N. Thus, the time complexity is 0(N-K-n^).

However, instead of calculating the decision function for each feature vector and each

cluster, the decision surface Dy^/x) between adjacent clusters r and s is calculated in the

Bayesian Weighted K-Means algorithm. The time complexity for this additional step is

0(K -n ), which is significantly smaller than 0(N-K-n ) for the typical image processing

task where N is large. The weight w^of cluster r and w^of cluster s are calculated based

15



on the distance f(r,s) between cluster center fir and decision surface Drs(x) and f(s,r)

between cluster center//j and decision surface usbig

f(r,s) /Wr =f(s,r) /Ws, where r = l ... Kand r (3.2)

where,

f(r,s) = \\fir- Drjx) 1 1 (3.3)

Mr) = II - Dr,s(x)\\' (3.4)

The decision surface for ̂ -dimensional Gaussian distribution has the form

-(In P, - .\-~V,x - p Z (X - p ,yi) =0

which can he written in general quadratic form as

x^'A-x + b^-x + c = 0 (3.6)

where A'lsnxn matrix, h is «-dimensional vector and c is a scalar. The distance f(r,s)

from each cluster center to the proper decision boundary can he calculated as below.

•  Let l(x) be the line that passes through fir and fig.

•  Compute intersection z of l(x) and decision surface Dr,sj(x).

•  Let P(x) be the tangential hyper-plane of decision surface Dr,sj(x) at point z.

•  Compute the distance,/(>,5^, from fir to P(x).

Because the weighting vector w has K unknowns, K constraints are needed for a

solution. From Equation (3.2), for all the possible combinations of r and ^ - 7 of them

are independent. Let r = 1 ... K-1 and 5 = r + 7, equation (3.2) can be written as
16



G'W = 0 (3.7)

where

G =

f(2,l) -f(l,2) 0 0

0  f(3,2) -f(2,3) 0

0  0

0 0 0  f(K,K- 1) -f(K- 1,K)

(3.8)

(K- l)xK

Equation 3.7 is a homogeneous system with K-1 equations, K unknowns and rarik(G)

= K-1. A solution for the weighting vector up to a scale, w', can be found from equation

3.7 using SVD. The solution w' is the eigenvector corresponding to the smallest

eigenvalue of G^G. In addition,

Z w = / (3.9)

Thus, the actual weighting vector is determined by

w = wWZ(w') (3.10)

Once the weighting vector has been updated, the entire assign-update procedure is

repeated until the cluster centers and weights converge to a stable value.

Note that calculating the intersection of a line with a general quadratic can be

computationally burdensome for high dimensional feature spaces. Because the decision

surfaces are used for updating of the weighting vector instead of dividing the patterns into

classes, dominant modes can be used to approximate a lower order, p < n, decision

surface. Thus, in the current implementations of the algorithm, lower dimensional

features, x', are used in Equations 3.3 to 3.6 to solve for the weighting vector. The one-

dimensional and two-dimensional cases are discussed below.

17



In the case with one dominant discriminatory mode, the lower dimensional feature

vector x' becomes a scalar x, fir becomes a scalar Ur, fig becomes a scalar Ug, and the

decision surface Dr,s(x) is given by the parabola

a-:)^ + b-x c = 0 (3.11)

Thus, the quadratic formula can be used to solve for the decision point between two

adjacent clusters,

-b±^b^-4ac (3-12)
^12 =

2a

Letting T = xjj where T is chosen such that, Ur<T < Ug, the distance from each cluster

center can be computed using

f(r,s) = \\fir- Drj(x) 11 = I M,. - r I (3.14)

and

f(s,r) = 11//,- Dr,g(x) 1 1 = I - r I (3.15)

In the case of two discriminatory modes, the feature vector x' reduces to a point (x,

y), fir becomes a point (ur, Vr); fig becomes a point (ug, Vg) and the decision surface Dr,g(x)

is given by the ellipsoid:

A-x^ + B-x-y + Cy^ + D-x + Ey + F = 0 (3.16)

The distance f(r,s) = \ \ fir- Dr,s(x) \ \ can be calculated as below (see Figure 3.1):

18



Iine2(x,y)
►mu[)]

Iine1 (x,y)
'a.b)

mu[i

Decisiora Boundary
f|x,y)

Figure 3.1 Compute the distance from center to decision surface

Let li(x,y) be the line that passes through fir and fig

y-Vr = (Vs- Vr)/(UrUr)-(x-Ur) (3.17)

Compute the intersection (a,b) of h(x,y) and curve Dr,s(x,y).

Compute

^__2-A-x + B-y + D _ 2A-a + B-b + D (3.18)
8a: B-x + 2-C-y + E. B-a + 2-C-b + e

Let l2(x,y) be the line that passes through (a,b) and has the slope, 8y/dx such that

y-b = dy/dx • (x-a). (3.19)

Compute the distance from (Ur,Vr) to l2(x,y) (see Figure 3.2) using

f(r,s) = |v, • cos(;r-a), where a = tan'(dy/dx). (3.20)
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(u,y)

Figure 3.2 Distance from point to straight line

3.2 Algorithm Description

A complete listing of the algorithm is provided below. For complete details refer to

section 3.1.

Assumptions:

•  Each cluster is modeled by a spherical Gaussian distribution

Input Data:

•  Pattern Set - A" ={x in R" \ Xjj = 1 ... .N}

• Number of Clusters - K

•  Initial Cluster Centers in R", k=l.. K

•  Initial .^T-dimensional weighting vector, w = [1/K.. 1/K\^

•  A priori probability of cluster - pk

20



Steps:

1. For each feature vector JCy, compute ek(Xj) = \\xj-fik^l Wk for each cluster center,

flu Find the minimal value of ek(Xj) with respect to k for each feature vector.

Assign pattern xj to cluster k.

2. Compute new cluster centers fik and covariance matrices Zk for each cluster.

3. Update the weighting vector w.

a) For cluster r and s = r + 1 where r = 1.. K-1, compute the decision surface

Dr,s(x') using Bayes decision theory, where jc' is a subset of size one or two

selected from x to reduce the computational complexity of the decision

surface.

b) Compute the distance from each cluster center to the appropriate decision

surface

f(r,s) = \\,ir-DUx% (3.21)

and

f(r,s) = \\fis-Dr,s(x% (3.22)

c) Let

f(r,s) /Wr =f(s,r)/ws, r = 1.. K- 1, s = r + 1. (3.23)

d) Use the expression

G'W = 0 (3.24)

where
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G =

f(2,l) -f(l,2) 0 0 0

0  f(3,2) -f(2,3) 0 0

0  0 ... ... 0

0  0 0 f(K,K-1) -f(K-1,K).

(3.25)

(K- 1)XK

and the normalizing constraint

SCw) = 1 (3.26)

to solve for a new weighting vector w.

4. If the old model and new model parameters, {^,w}, are sufficiently close to each

other, terminate, else return to step 1.

3.3 Experimental Results

The results of two experimental trials of the Bayesian Weighted K-Means algorithm

are presented in this section. These experiments involved the use of synthetic color

images with two (K = 2), and three (K = 3) distinct regions, respectively. These

experiments were performed to investigate the ability of the Bayesian Weighted K-Means

algorithm to provide desired segmentation in the presence of noise. Synthetic images are

used so that both the correct segmentation and noise parameters can be controlled and

quantified. The version of the algorithm used in this test was developed using MS Visual

C++ 6.0, and was executed using a Pentium III 650MH/MS platform running Windows

ME.

In the two clusters experiments, each 128 x 128 test image is generated by adding

zero-mean Gaussian noise of differing variances to the synthetic image shown in Figure

3.3 (a). The background RGB color of this image is (128,128,128) with probability of

occurrence, P(b) = 0.8, and the foreground RGB color is (64, 64, 64) with probability of
22



(a) Original Image

Background (128, 128, 128)

Foreground (64, 64, 64)

1

m

•ifm

(b) Example Test Image

Background Noise = 32

Foreground Noise = 16

Figure 3.3 Input Image and Noisy Example for the Two Clusters Experiments

occurrence, P(f) = 0.2. The Bayesian Weighted K-Means, basic K-Means and Bayesian

clustering algorithms are then applied to the test images. The classification result is

compared to a standard classification based on knowledge of correct pixel grouping, and

the actual classification error rate is calculated using the expression:

E = (misclassified pixels) / (total pixels) * 100% (3.27)

The expected error of the optimal segmentation case is calculated using equation 2.3.

The error rates are compared with the theoretically expected error to demonstrate and

analyze algorithmic performance.

Table 3.1 shows the results for a set of two cluster experiments. Note that the

Bayesian Weighted K-Means algorithm provides error rates that closely approximate the

expected optimal classification error from decision theory while maintaining

computational times which are similar to and better than those of the traditional K-means

and Bayesian learning approaches, respectively.



Table 3.1 Comparison for Two Clusters Experiments

(a) Error Rate Comparison for Two Clusters Experiments

Std. Std. % Error % Error % Error Expected Difference

Deviation Deviation BWKM K-Means BLA Error, E BWKM-E

Background Foreground

Noise Noise

32 32 1.459 33.722 1.147 0.95 0.509

32 24 1.227 33.691 1.227 0.861 0.366

32 16 0.47 33.582 1.404 0.464 0.006

32 8 0.092 33.716 1.898 0.077 0.015

24 32 0.824 25.079 1.105 0.684 0.14

24 24 0.458 24.268 0.507 0.516 -0.058

24 16 0.067 24.78 0.116 0.198 -0.131

24 8 0.024 24.445 0.427 0.016 0.008

16 32 0.159 0.214 1.434 0.229 -0.07

16 24 0.085 0.079 0.903 0.122 -0.037

16 16 0 0.037 0.189 0.022 -0.022

16 8 0 0.012 0 0 0

8 32 0.006 0.159 2.057 0.015 -0.009

8 24 0.006 0.024 1.678 0.004 0.002

8 16 0 0 0.708 0 0

8 8 0 0 0 0 0
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Table 3.1 (Continued)

(b) Processing Time Comparison for Two Clusters Experiments

Std. Std. Processing Processing Ratio Processing Ratio

Deviation Deviation Time, Tl, Time, T2, T1/T2 Time, T3, T1/T3

Background Foreground BWKM K-Means BLA

Noise Noise (seconds) (seconds) (seconds)

32 32 13 12 0.92 17 1.31

32 24 9 9 1 20 2.22

32 16 6 11 1.83 21 3.5

32 8 7 10 1.43 31 4.43

24 32 7 22 3.14 15 2.14

24 24 5 17 3.4 11 2.2

24 16 5 15 3 16 3.2

24 8 5 16 3.2 38 7.6

16 32 4 2 0.5 11 2.75

16 24 3 2 0.67 15 5

16 16 3 2 0.67 10 3.33

16 8 4 2 0.5 6 1.5

8 32 4 2 0.5 15 3.75

8 24 3 3 1 15 5

8 16 3 1 0.33 20 6.67

8 8 3 1 0.33 2 0.67

In order to further illustrate the operation of the Bayesian Weighted K-Means

algorithm, two of the experiments listed in Table 3.1 will be presented in detail. Figure

3.4 shows the segmentation results for the case with background and foreground noise

standard deviations of 32 and 16. Figure 3.5 shows the same results for the trial with

background and foreground noise standard deviations of 32 and 8. Table 3.2 and Table

3.3 show the results comparison of different algorithms.
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(a) Test Image (b) Correet Classifleation

y.-^'

(c) Bayesian Weighted K-Means

Classification

(d) Basic K-Means Classification

Background Cluster: Black (0)

Foreground Cluster: White (1)

(e) Bayesian Learning Classification

Figure 3.4 Two Clusters Trial with Noise Deviations (BG = 32, FG = 16)
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(c) Bayesian Weighted K-Means

Classification

(d) Basic K-Means Classification

Background Cluster: Black (0)

Foreground Cluster: White (1)

(e) Bayesian Learning Classification

Figure 3.5 Two Clusters Trial with Noise Deviations (BG = 32, FG = 8)



Table 3.2 Two Clusters Trial - Noise Deviation (BG = 32, FG = 16)

Algorithm Error% Processing

Time

(sec.)

Weight

Vector

Final Background

Cluster Center

Final

Foreground

Cluster Center

Bayesian

K-Means

0.500 6 (0.730,

0.270)

(127.1, 128.1,

128.4)

(63.2,61.9,

64.1)

Basic

K-Means

33.307 11 (0.500,

0.500)

(138.0,137.6,

138.1)

(103.7, 103.4,

103.7)

Bayesian

Learning

1.404 21 (0.500,

0.500)

(128.9, 128.4,

129.1)

(68.0, 69.8,

67.2)

Expected 0.464 (128,128,128) (64, 64, 64)

Table 3.3 Two Clusters Trial - Noise Deviation (BG = 32, FG = 8)

Algorithm Frror% Processing

Time

Weight

Vector

Final

Background

Cluster Center

Final Foreground

Cluster Center

Bayesian

Weighted

K-Means

0.061 7 (0.799,

0.201)

(128.1, 128.1,

128.2)

(64.5, 63.6, 64.0)

Basic

K-Means

34.869 10 (0.500,

0.500)

(138.2, 138.5,

138.8)

(104.3,104.2,

103.3)

Bayesian

Learning

1.898 31 (0.500,

0.500)

(129.0,129.4,

129.1)

(70.4, 70.8, 69.8)

Expected 0.077 (128, 128,128) (64, 64, 64)
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In both of these experiments, the ideal center of the background cluster is (128, 128,

128) and the ideal center of foreground cluster is (64, 64, 64). Once noise is added, the

background and foreground colors could fall within +/-3 standard deviations from the

cluster centers. Thus, background color values range from (32, 32, 32) to (224, 224, 224)

and foreground color values from (16, 16, 16) to (112, 112, 112) in the experiment shown

in Figure 3.4. Although the feature space area shared by both regions is large, the

classification error of the Bayesian Weighted K-Means method is only 0.5%, which is

very close to the expected error of 0.464%. This error rate is superior to both the

Bayesian learning classification error of 1.404%, and the K-Means error of 33.3%. It

should he noted that the classification error for the learning approach is higher than both

that of the weighted technique and the optimal value expected due to inaccuracies in the

estimated a priori prohahility. The feature space partitioning produced hy each algorithm

is shown if Figure 3.6.

In the experiment of Figure 3.5, the backgroimd and foreground clusters have less

overlap due to significantly different noise deviations, but are still close to each other in

feature space. Note the final weighting vector of the Bayesian Weighted K-Means

algorithm reflects this difference in cluster sizes. Figure 3.7 shows the classified feature

space produced using the different algorithms.
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(a) Correct Classification

Background Cluster: Red

Foreground Cluster: Green

(b) Bayesian Weighted K-Means Classification

Figure 3.6 Feature Space of two cluster example with noise (32, 16)
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(b) Bayesian Weighted K-Means Classification

Figure 3.7 Feature Space of two clusters example with noise (32, 8)



(d) Bayesian Learning Classification

Figure 3.7 (Continued)



(a) Original Image

Background Gray(128, 128, 128)

Round Object Red(128, 64, 64)

Ring Object Green(64, 128, 64)

(b) Example Test Image

Background Noise = 24

Roimd Object Noise =16

Ring Object Noise = 8

Figure 3.8 Input Image and Noisy Example for the Three Clusters Experiments

In the three clusters experiments, each 64 x 64 test image is generated by adding

zero-mean Gaussian noise of differing variances to the synthetic image shown in Figure

3.8 (a). The background RGB color of this image is (128,128,128) with probability of

occurrence, P(b) = 0.5, the ring object RGB color is (128, 64, 64) with probability of

occurrence, P(r) = 0.3, and the circular object RGB color is (64,128,64) with probability

of occurrence, P(c) = 0.2. The Bayesian Weighted K-Means, basic K-Means, and

Bayesian clustering algorithms are then applied to the test images. The result is compared

to a standard classification based on knowledge of correct pixel grouping, and the actual

classification error rate is calculated using the equation 3.27. The expected error of the

optimal segmentation case is calculated using equation 2.3. The error rates are compared

with the expected error to demonstrate and compare algorithmic performance.

Table 3.4 shows the results for a set of three cluster experiments. This series of

experiments again demonstrates that the Bayesian Weighted K-Means algorithm



combines a low classification error with computational speed. The average classification

improvement over K-Means is 11.21%, while the computation speed is comparable. The

average error rate produced by the weighted method is 2.39% lower than that displayed

by the learning algorithm, while the computation speed is 5.46 times faster.

To fiirther illustrate the operation of the Bayesian Weighted K-Means algorithm, the

results of one of the experiments from table 3.4 are illustrated in detail. Figure 3.9 shows

the segmentation results for the case with background, ring object, and round object noise

standard deviations of 24, 8, and 16, respectively. Results comparison shows in Table 3.5.

The correct feature space clustering and the classification produced using each of the

three algorithms are given in Figure 3.10. The final weighting vector produced by the

Bayesian Weighted K-Means algorithm reflects the visible variance in the three cluster

radii.

Table 3.6 provides a summary of the average computation time and classification

errors obtained throughout the course of both the two and three cluster experiments.

Note that the Bayesian Weighted K-Means algorithm outperformed the other two

algorithms in both speed and accuracy.
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Table 3.4 Result Comparison for Three Clusters Experiments

(a) Error Rate Comparison - Three Clusters Experiments

Std. Std. Std. % Error % Error % Error Expected Difference

Dev. Dev. Dev. BWKM K-Means BLA Error, E BWKM-E

BG Round Ring

Noise Noise Noise

32 32 32 7.788 36.328 7.666 4.458 3.33

32 32 24 6.738 35.889 6.25 4.028 2.71

32 32 16 5.225 28.955 7.715 2.748 2.477

32 32 8 4.834 35.352 9.717 1.585 3.249

32 24 24 6.25 34.106 6.519 4.012 2.238

32 24 16 3.613 33.203 7.739 2.734 0.879

32 24 8 2.808 32.08 9.814 1.57 1.238

32 16 32 9.717 33.179 6.714 3.969 5.748

32 16 24 5.005 32.886 6.812 3.543 1.462

32 16 16 4.126 30.542 7.886 2.267 1.859

32 16 8 2.051 32.69 9.351 1.104 0.947

32 8 32 8.081 30.835 7.544 3.327 4.754

32 8 24 3.613 28.931 6.982 2.902 0.711

32 8 16 2.344 31.104 8.301 1.627 0.717

32 8 8 0.928 29.102 9.79 0.464 0.464

24 32 32 12.451 20.923 5.835 3.474 8.977

24 32 24 4.81 24.39 4.15 2.972 1.838

24 32 16 2.588 20.459 3.613 1.905 0.683

24 32 8 2.759 21.704 4.346 1.148 1.611

24 24 32 6.567 16.089 5.811 3.334 3.233

24 24 24 4.59 21.997 3.955 2.831 1.759

24 24 16 2.393 23.34 2.856 1.771 0.622

24 24 8 1.514 22.095 3.882 1.024 0.49

24 16 32 6.763 16.675 5.518 2.841 3.922

24 16 24 3.687 16.309 2.246 2.354 1.333

24 16 16 1.27 17.041 1.685 1.329 -0.059
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Table 3.4 (a) (Continued)

24 16 8 0.952 19.922 3.564 0.596 0.356

24 8 32 6.323 16.992 5.371 2.38 3.943

24 8 24 4.541 17.847 2.515 1.918 2.623

24 8 16 0.83 18.335 1.758 0.916 -0.086

24 8' 8 0.195 17.969 3.394 0.184 0.011

16 32
"f

24 2.954 1.563 6.055 1.444 1.51

16 32 16 2.344 1.27 3.613 0.779 1.565

16 32 8 2.026 0.806 2.71 0.465 1.561

16 24 32 2.393 3.003 7.959 1.686 0.707

16 24 24 1.245 1.318 5.151 1.244 0.001

16 24 16 0.708 0.562 2.612 0.603 0.105

16 24 8 0.391 0.439 2.539 0.329 0.062

16 16 32 3.271 2.271 6.763 1.261 2.01

16 16 24 1.685 1.147 4.688 0.864 0.821

16 16 16 0.391 0.537 1.318 0.318 0.073

16 16 8 0.195 0.537 1.099 0.111 0.084

16 8 32 3.296 2.197 6.543 0.965 2.331

16 8 24 2.002 1.392 3.613 0.645 1.357

16 8 16 0.195 0.391 0.928 0.191 0.004

16 8 8 0 0.513 0.244 0.011 -0.011

8 32 24 1.758 1.416 8.398 0.715 1.043

8 32 8 0.488 0.903 3.589 0.08 0.408

8 . 24 24 0.708 1.318 8.032 0.542 0.166

8 24 16 0.244 0.293 5.029 0.192 0.052

8 24 8 0.024 0.269 3.052 0.035 -0.011

8 16 32 1.367 2.417 9.326 0.446 0.921

8 16 24 0.415 0.879 7.861 0.249 0.166

8 16 16 0 0.122 4.688 0.052 -0.052

8 16 8 0 0.049 2.637 0.003 -0.003

8 8 32 0.952 2.393 8.13 0.163 , 0.789

8 8 24 0.122 1.025 5.933 0.069 0.053

8 8 16 0 0.049 3.369 0.005 -0.005

8 8 .  8 0 0 0.342 0 0
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Table 3.4 (Continued)

(b) Processing Time Comparison - Three Clusters Experiment

Std. Std. Std. Processing Processing Ratio Processing Ratio

Dev. Dev. Dev. Time, Tl, Time, T2, T2/T1 Time, T3, T3/T1

BG Round Ring •BWKM K-Means BLA

Noise Noise Noise (seconds) (seconds) (seconds)

32 32 32 2 4 2 7 3.5

32 32 24 2 3 1.5 7 3.5

32 32 16 3 3 1 7 2.33

32 32 8 3 3 1 7 2.33

32 24 24 2 3 1.5 5 2.5

32 24 16 3 3 1 5 1.67

32 24 8 2 3 1.5 7 3.5

32 16 32 4 3 0.75 8 2

32 16 24 3 2 0.67 7 2.33

32 16 16 3 2 0.67 5 1.67

32 16 8 3 2 0.67 7 2.33

32 8 32 3 2 0.67 7 2.33

32 8 24 7 3 0.43 10 1.43

32 8 16 3 2 0.67 15 5

32 8 8 2 3 1.5 13 6.5

24 32 32 4 4 1 7 1.75

24 32 24 2 4 2 7 3.5

24 32 16 1 4 4 7 7

24 32 8 2 4 2 10 5

24 24 32 3 4 1.33 5 1.67

24 24 24 2 3 1.5 6 3

24 24 16 2 5 2.5 6 3

24 24 8 2 3 1.5 31 15.5

24 16 32 2 4 2 7 3.5

24 16 24 2 3 1.5 7 3.5

24 16 16 2 3 1.5 5 2.5

24 16 8 2 4 2 18 9
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Table 3.4 (b) (Continued)

24 8 32 2 3 1.5 12 6

24 8 24 3 3 1 31 10.33

24 8 16 2 4 2 31 15.5

24 8 8 2 3 1.5 31 15.5

16 32 24 2 1 0.5 5 2.5

16 32 16 3 1 0.33 5 1.67

16 32 8 2 1 5 2.5

16 24 32 3 1 0.33 5 1.67

16 24 24 1 1 1 5 5

16 24 16 2' 1 0.5 7 3.5

16 24 8 1 1 1 9 9

16 16 32 2 1 0.5 6 3

16 16 24 1 1 1 7 7

16 16 16 1 1 1 6 6

16 16 8 0 1 1 15 15

16 8 32 4 1 0.25 7 1.75

16 8 24 2 1 0.5 5 2.5

16 8 16 2 0 4 2

16 8 8 2 0 4 2

8 32 24 3 1 0.33 7 2.33

8 32 8 2 1 5 2.5

8 24 24 1 1 1 9 9

8 24 16 2 1 0.5 10 5

8 24 8 2 0 9 4.5

8 16 32 2 1 0.5 9 4.5

8 16 24 1 1 1 11 11

8 16 16 0 1 1 12 12

8 16 8 1 1 1 7 7

8 8 32 1 1 1 12 12

8 8 24 3 1 0.33 7 2.33

8 8 16 1 1 1 31 31

8 8 8 1 1 1 5 5
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Table 3.5 Results - Three Clusters Trial - Noise Deviation (24, 8, 16)

Algorithm Error % Time

(sees.)

Weight

Vector

Final

Background

Cluster

Center

Final Round

Object Cluster

Center

Final Ring

Object

Cluster

Center

Bayesian

Weighted

K-Means

1.099 2 (0.509,

0.318,

0.174)

(127.8,128.3,

128.4)

(127.1,67.5,

65.6)

(63.5,128.1,

63.5)

Basic K-

Means

15.649 4 (0.333,

0.333,

0.333)

(128.4,134.1,

133.1)

(132.6,91.1,

93.4)

(67.2,128.4,

68.1)

Bayesian

Learning

3.564 18 (0.333,

0.333,

0.333)

(129.0,128.2,

129.2)

(128.5, 64.2,

62.9)

(68.6,127.9,

68.7)

Expected 0.596 (128,128,

128)

(128, 64, 64) (64, 128, 64)

Table 3.6 Summary of Experiments

Time Complexity Error Rate Processing Time

BWKM 0(NK-n) 2.25% 2.83 s

K-Means 0(N-K-n) 14.13% 3.37 s

Bayesian

Learning

0(NxK-n^) 4.27% 11.07 s

Expected 1.18%
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(a) Test Image (b) Standard Classification

(c) Bayesian Weighted K-Means (d) Basic K-Means Classification

Classification

(e) Bayesian Learning Classification

Background Cluster: Black (0)

Round Object Cluster: Gray (1)

Circle Object Cluster: White (2)

Figure 3.9 Output Images of three clusters example with noise (24, 16, 8)



(b) Bayesian Weighted K-Means Classification

Figure 3.10 Feature Space of three clusters example with noise (24, 16, 8)





Chapter 4

I mage-Based Cotton Trash Measurement

The motivation for development of the Bayesian Weighted K-Means algorithm

described in the previous chapter is the construction of an automatic, color-image based

system for trash measurement in cotton samples, such as those shown in Figures 4.1.

Inspection of these sample images reveals that non-lint material is easy to discern based

on color differences. It is also easy to notice the large variance in cotton color by

comparing the various cotton images. As discussed in chapter 1, this color variance

makes the application of fixed threshold segmentation techniques problematic for this

task.

A self-adaptive system for identifying non-lint material in color images of cotton

samples based on the Bayesian Weighted K-Means cliostering algorithm has been

developed. In this system, a color-calibrated scanner is used to return high-resolution

RGB images of cotton samples. For other cotton quality measurements, the color data is

transformed from the native RGB to the perceptually uniform CIELAB76 [23] color

space (see Appendix). The pixels in the image are then classified as either lint or non-

lint using the Bayesian Weighted K-Means algorithm and the percentage of total non-lint

pixels is calculated.
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(c) Yellow Cotton Image (d) White Cotton Image

Figure 4.1 Cotton Images



During the development of the trash measurement system, two primary factors had

to be considered in addition to the choice of segmentation algorithms. First, the

appropriate color space had to be chosen since both RGB and CIELAB data are available

for each sample. Second, a method had to be developed for automatically initializing the

clusters centers with appropriate model parameters, (pLk pk}-

4.1 Color Space Selection

Cluster-based classification should provide results that are more human-like using

the CIELAB space due to its perceptual uniformity, but increases the total trash

measurement time since the process must wait for the image data transformation to be

completed before testing.

Figure 4.2 shows the results of applying both the traditional and Bayesian Weighted

K-Means algorithms to a typical cotton image sample stored in native RGB format.

Pixels classified as non-lint are located within the blue boundaries. Note that many

darker cotton pixels are misclassified as non-lint material and that the Bayesian Weighted

approach produces significantly better results.

Figure 4.3 shows the results op applying both traditional and Bayesian Weighted K-

Means algorithms to the same cotton image sample store in CIELAB space. Pixels

classified as non-lint are again shown within the blue boundaries. Note that both

algorithms provide much more visually coherent classification, with the Bayesian

Weighted technique again out-performing the traditional approach. Based on

experimental observations such as these, the current trash measurement system employs

CIELAB color data during the segmentation process.
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(a) K-Means Clustering Algorithm (b) Bayesian Weighted K-Means Algorithm

Classification Classification
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(c) K-Means Algorithm Feature Space (d) Bayesian Weighted K-Means Algorithm

Feature Space

Figure 4.2 Classification Results with RGB Color Space
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(a) K-Means Algorithm Feature Space (b) Bayesian Weighted K-Means Algorithm

Feature Space

Figure 4.3 Classification Results with CIELAB Color Space



4.2 Cluster Initialization

Both traditional K-Means and Bayesian Weighted K-Means algorithms need the

knowledge of initial cluster centers. The estimation of the initial cluster centers is very

important for the success of the algorithm. Since there are only two clusters and one of

them, the lint cluster, includes over 90% patterns, it is reasonable to use the center of all

the patterns as the estimation of the lint cluster center. The initial center of the non-lint

cluster is chosen to be the farthest point to the initial center of lint cluster in feature space.

4.3 Results

A complete example using Bayesian Weighted K-Means algorithm with CIELAB

color space is showed in Figure 4.4, Figure 4.5. Test image is Yellow Cotton Image in

Figure 4.1 (c). Table 4.1 shows the output of algorithm.

Figure 4.4 Classification of Bayesian Weighted K-Means Algorithm
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Figure 4.5 Result of Bayesian Weighted K-Means algorithm with CIELAB color space

Table 4.1 Result of Yellow Cotton Image Classification

non-lint cluster lint cluster

Initial Centers 23.96, 14.33, 11.83 78.81, 10.14, 20.96

Final Centers 49.30, 8.13, 14.23 78.55, 10.25,21.47

Weight Vector

Iteration Times 8



Chapter 5

Conclusions

Theoretically, the Bayes learning algorithm discussed in chapter 2 will always

provide the optimal solution for any statistical pattern classification problem. However,

the learning approach is very sensitive to the accuracy of the a priori class probability

estimates, and does not always provide solutions with the expected optimal classification

errors when applied to discrete data sets. The classification result is optimal only if the a

priori cluster probabilities are very close to the real values and the pattern data set is

extremely large. In most application scenarios, the a priori probabilities of clusters are

obtained using statistical estimation methods and are not very accurate unless large

training data sets are available.

The experimental results shown in chapter 3 demonstrate that pattern classification

using the new Bayesian Weighted K-Means algorithm results in equivalent error rates as

obtained using the Bayesian learning approach without the need for accurate initial

parameters or training data. As shown in table 3.5, the mean classification error for large

sets of two and three cluster experiments is actually 2.01% lower than the mean error

resulting from application of the Bayesian Learning method. At the same time, the

processing was increased by a factor of five. When compared with the traditional K-

means method, the Bayesian Weighted K-Means algorithm require essentially the same

processing time, while providing a mean classification error reduction of 11.87%. In
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addition, the mean classification error of the Weighted K-means approach is only 1.07%

higher than the theoretical optimum.

These experimental results are as expected from the detailed analysis of algorithmic

complexity. For one iteration of each algorithm, the time complexity for both the

traditional and Bayesian Weighted K-Means algorithms is of the order 0(N-K-n), while

the Bayesian leaning approach is of the order 0(N-K-n^). In the experiments of chapters

3 and 4, the feature space is of dimension, n = 3. Thus, the Bayesian Weighted K-means

approach would minimally be three times faster than the learning method for the same

feature sets. The larger than expected processing time required on average by the

Bayesian learning process results from the additional iterations that were often required

for convergence.

The Bayesian Weighted K-means algorithm does suffer from two potential scenarios

which could result in poor classification performance. First, if the number of clusters K

specified by the user is much greater than the actual real value and some of the cluster

centers are specified in regions with sparse data, zero size clusters could be produced

during the iteration process. In this situation, it will not be possible to find a unique

solution for the weighting vector using SVD. Second, each cluster center must be

associated with a specific a priori probability during algorithm initialization. Unexpected

and/or undesirable classification results will be produced if these probability/cluster

center pairs are not properly assigned. Thus, future work on the development of this
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algorithm will focus on, 1) identifying zero size clusters and eliminating them, and 2)

initial probability/cluster center pair assignment.

The Bayesian Weighted K-Means clustering algorithm described in this thesis has

been designed for use in the case non-equivalent probability and non-symmetry of pattern

classes in feature space. The only assumption required by the technique that each cluster

is modeled by a spherical Gaussian distribution. Like traditional K-Means algorithms,

the number of clusters and initial cluster centers must be specified prior to application.

These choices will directly influence the classification produced by each algorithm. If the

Gaussian assumption is satisfied, the number of clusters; is not over-specified, and the

initial cluster center estimates are close to their actual values, the Bayesian Weighted K-

Means algorithm provides close-to-optimal classification solution with computational

complexity that is linear with respect to the feature space dimensions.
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APPENDIX

COLOR SPACE

Color space or color model is a three-dimensional coordinate system. Each color is

represented by a point in the space.

A. 1 RGB Color Space

The RGB color space is a basic color space since most image-capture devices and

display devices provide RGB signal input or output. It is most frequently used in image

processing applications. Each color is described by three components: red, green and

blue. The disadvantages of RGB color space include: a) natural image is high correlated

between RGB three components: about 0.78 for B-R, 0.98 for R-G and 0.94 for G-B. b)

psychological non-intuitivity. c) non-uniformity. Thus, for some applications, such as

image compression and image segmentation, it is necessary to convert RGB color space

to the other color spaces like CIELAB.

A.2 CIELAB Color Space

The CIELAB color space is a perceptually uniform color space. In this model, the

color differences, which are perceived by human eyes, correspond to distances measured

colorimetrically. It is defined by following equations:

L=116-(YA^0)^^^-16

a = 500 • [ (X/XO)'^^ - (YA^O)'^^ ]

59



b = 500 • [ - {ZIZQtf'^ ]

where X, Y, Z ean be get from RGB values using the following equations:

X = 0.490R + 0.3 lOG + 0.200B

Y = 0.177R + 0.812G + 0.01 IB

Z = O.OOOR + O.OlOG + 0.990B

and (XO, YO, ZO) is reference white point (R=255, G=255, B=255).

Figure A.l shows the CIELAB color space. L stands for lightness, a for redness-

greenness and b for yellowness-blueness. L is orthogonal to a and b. The color difference

between two CIELAB coordinates (Li, ai, bi) and (L2, a2, b2) is equals to the Euclidean

distance between these two point in CIELAB color space.

AELab = ((Li-L2)' + (ai-a2)'+(bi-b2)Y''

The AEtab corresponds to human judgments of perceived color difference. Thus, the

CIELAB color space is particularly useful in color image segmentation of natural image

using clustering algorithms.
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