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Abstract

Starting with the theory developed by Hopfield, Cohen-Grossberg

and Kosko, the study of associative memories is extended to N - layer re

current neural networks. The stability of different multilayer networks is

demonstrated under specified bounding hypotheses. The analysis involves

theorems for the additive as well as the multiplicative models for continuous

and discrete N - layer networks. These demonstrations are based on contin

uous and discrete Liapunov theory. The thesis develops autoassociative and

heteroassociative memories. It points out the link between all recurrent net

works of this type. The discrete case is analyzed using the threshold signal

function as the activation function. A general approach for studying the sta

bility and convergence of the multilayer recurrent networks is developed.
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NOMENCLATURE

A), stimuli . ,

box 6 threshold

Bk response

c, a constant real value

D — z~^ unit delay operator, originated from the z-transform

e error

Fx, Fy layers

/() functions of differential or difference equations

F{) general type of function

g{) the function of heteroassociative recall mechanism

i, j index

h hidden layer

k discrete time or the A:-th layer in a N layer network

ko initial condition

L the number of PEs, neurons in the hidden layer

M function of the differential or difference equation

m number of pairs in a pattern

N number of layers in multilayer recurrent neural network

n number of neurons of Fx layer

number of neurons of the k-th layer from N layers

rii number of neurons of the first layer



n2 number of neurons of the second layer

nz number of neurons of the third layer

0 derivative order

p number of neurons of Fy layer

r constant value

q index in summing expresion

S,(p{) activation function

Sf denotes the activation function of the i-th neuron in the layer Fx

s{k, ko,.) the solution evaluated at the k-th time (k > ko)

s{t, to, xo) denotes the solution of the differential equation

t,tl,to times .

ts sampling time

T{M, e) time estimation

V Liapunov candidate function or system's energy

V inner product of the weight and input vectors

X input vector of the neural network

y output signal

y(n + 1) is the future value of the vector y

y{n) is the current value of the vector y

the set of nonnegative integers

W weight matrices of the neural networks

W^orWh weight matrices of the hidden layers



Wy layer output weight matrix

a function

(J(e), (5(e, to) equilibrium sequential estimations

rj the constant adaptation rate
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Abbreviations

ABAM adaptive bidirectional associative memory model

BAM bidirectional associative memory model

set of functions continuously differentiable

Ipdf locally positive definite function

pdf positive definite function

PE processing element, neuron

RABAM random adaptive bidirectional associative memory model



Chapter 1

Introduction

1.1 Background

A neurar network is a massively parallel distributed processor made of simple

processing units known as neuroris. Knowledge is acquired by the network from its en

vironment through a learning process. The inter-neuronal connection strengths, known

as synaptic weights, are used to store the acquired knowledge. Recurrent neural net

works compute their future state based on the present or past states and outputs. Neu

ral networks with recuirent connections are finding increasing applications in diverse

areas of electronics and engineering; Past efforts at designing such networks have fo

cused mainly on steady-state fixed point behavior for applications such as associative

memories. These networks can also solve dynamic problems such as the recognition of

continuous signals and adaptive dynamic control. Their diversity in topology as well as

their rapid convergence and stability, make them.powerful tools. This thesis proposes .

to generalize the global stability of associative memories, including both additive and

multiplicative fnodels for any.rhumber of layers.

Research on associative memories dates back to the early work of Cohen and

Grossberg [24]. More recently, the study of bidirectional associative memories has been

extended by Kosko [1], [2], [3], [4]. The problem to be addressed by this thesis is to



demonstrate the generality of associative memories to multilayer architectures, under

different topologies. The analysis is based on continuous and discrete Liapunov theory.

This thesis is composed as follows. Chapter 2 presents a general overview of

neural networks. Chapter 3 discusses the main theorems and results of stability the

ory. Chapter 4 is devoted to multilayer continuous recurrent neural networks. Section

4.2 defines multilayer recurrent neural networks (as generalizations of Cohen-Grossberg

models [23]) and establishes the basic mathematical equations for the additive and multi

plicative multilayer models. Section 4.3 introduces and proves the theorems contributed

by this thesis including the Continuous N - Layer Associative Memory Theorems - for

both additive and multiplicative models. Section 4.4 states the lemma regarding the re

lationship between heteroassociative and autoassociative networks. Chapter 5 presents

the theorems and the proofs of discrete N layer associative memory models. Chapter 6

presents the conclusions.

1.2 Review of Literature

The bidirectional associative memory (BAM) model introduced by Kosko in [1],

[2], [3], [4] as an extension of the unidimensional Hopfield autoassociator model [16],

has been investigated extensively over the past ten years. In [4], Kosko develops a theo

retical analysis of discrete and continuous bidirectional associative memories. He inves

tigates the convergence and stability of different recurrent neural networks. The theo

rems regarding BAM and their relation to Hopfield and Grossberg models [16], [24] are

analyzed as heteroassociative neural networks, as adaptive BAMs and as random adap-



tive BAMs. Rosko [4] discuses the global stability of recurrent neural networks as well

as the stability-convergence dilemma of adaptive BAMs. The fundamentals presented in

chapter 2 and chapter 3 are based on the Cohen-Grossberg Theorem [24], the Cohen-

Grossberg-Kosko Theorem [4] and on Liapunov stability [26], [23].

Further results obtained by Kosko [27] for the BAM analyze the structural stabil

ity of unsupervised learning for recurrent neural networks using stochastic calculus to

derive the random adaptive bidirectional associative memory model, RABAM. Kosko

[4] also presents the ABAM Model and ABAM Theorem, and extends the results to

the RABAM Theorem and the RABAM Noise Suppression Theorem, concluding that

the average RABAM behavior is the ABAM behavior. Similar matters are presented

for stochastic models in [22]. In [28] Kosko examines competitive learning systems as

stochastic dynamic systems under continuous and discrete models. He derives general

expressions of unsupervised, supervised and differential competitive learning systems.

An estimation of unknown probability density functions based on random pattern sam

ples is made using adaptive vector quantization (AVQ). In feedforward competitive neu

ral networks, the synaptic vectors quantize the pattern space and converge to pattem

class centroids or local probability maxima. Kosko proves this using a stochastic Li

apunov procedure under competitive AVQ algorithms. [15] is dedicated to differential

eompetitive learning compared with supervised competitive teaming. An extension of

feedback neural stabilization theory to feedback fuzzy theory analyzes similar global

stability properties in [21].



:4

Chapter 2

Foundations of Artificial Neural Systems

2.1 ' Introduction ' >

. Artificial neural networks are norilinear information processing devices, built from

interconnected elementary neurons. A neural network is a parallel, distributed structure

consisting of interconnected probessing elements. Each processing element has a single

output which is sent to as many other prbcessing elenients as desired; The PE's output

signal can be any desired mathematical function of the inputs. The processing elements

are abstractions bf the biologicarneuroni" ; '̂ ,

; Neural; networks can be programmed or trained to store, recognize, and associa^

tively retrieve patterns ih.order:to solve combinatorial optimization problems, control

illrdefined problerns, and estimate sampled unknown functions.

2;2 Processing Elements, Neurons

Processing elements (PE), referred to as nodes, short-term memory, or neuroiis

are the components of the neural networks. Artificial neural networks are nonlinear in-

formatibn signal ,processing units interconnecting different architectures and structures

of PEs. An artificial neuron, PE is a p-input single-output signal processing element.

Graphically, a PE is described in Fig.2.1. The pre-syriaptic activities are represented by
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Wi

X2
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input

A) One neuron

output

A
n)

B) Block diagram representation

Fig. 2.1. A single p-input (p-synapse) neuron, PE

the p-input column vector,

X = [xi-.-Xp"^ (2.1)

in the p-dimensional input space..The synapses are characterized by the adjustable pa

rameters, called weights or synaptic strength parameters, arranged in a p-element row

vector:

W = [Wi-.-Wp] (2.2)

A synapse is classified as excitatory if the corresponding weight is positive, Wi > 0, and

as inhibitory if the corresponding weight is negative, Wi <0.

The activation potential is written as a linear combination of input signals and

synaptic weight parameters, matheihatically as an inner product of the weight and input



vectors:

V = Sf-iWiXi — w • (2.3)

The total post-synaptic PE activity, the output signal, is computed based on the compo

sition of the activation potential and a chosen activation function, <^();

y = (2.4)

Mathematically, it is convenient to add an additional parameter called threshold, 9 or

bias, b = '—9, by constantly fixing one signal input.

2.3 Activation Functions

Many mathematical forms have been used for activation functions. Often, activa

tion functions transform an unbounded input activation, v, into a bounded output signal

S{v). Three common activation functions are the linear, binary and sigmoidal functions.

The linear function has the equation

(p{v) = av (2.5)

where o; is a constant real value that adjusts the magnification of the PE activation, v.

The parameter a controls the slope of the function.

The step function is defined in (2.6) followed by graphical representation in

Fig.2.2.

> 0

y = ̂{v) = < (2.6)

0,if,v < 0
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y

t'

0

Fig. 2.2. The step function, unipolar case

y = ip{v) = <

This processing element is traditionally called a perceptron, and it works as a threshold

element with a binary output. The step function for the bipolar case has the following

mathematical definition

l,z/,u>0
(2.7)

< 0

The step function with bias, unipolar case, is shown in Fig.2.3. The bias can be added to

both the unipolar and the bipolar step functions.

The sigmoidal function is a bounded, monotonic, nondecreasing function that pro

vides a graded, nonlinear response. A common sigmoidal function is the logistic func

tion

5(2;) = (1 + e-''')ca:\ —1 (2.8)

The saturation levels of the equation (2.8) are 0 and 1. The function is strictly increasing

for positive constant c > 0 because the derivative of S with respect to its argument is

0  ©

Fig. 2.3. The step function with bias



positive: . / . , .

■  ' s'. = ̂, = cS(l-S)>0' (2.9)
■  dx ■'

The family of the logistic sigmoidal functions, indexed by c, approaches asymptotically

the threshold function as c increases to positive infinity. A bipolar sigmoidal function is

the hyperbolic tangent ' *

.  ' , , S{x) ■=tanh{x) (2.10)

which has saturation levels at -1 and 1. The derivative with respect to its argument is:

'  ■ ■ :■ , ■5" = c(1-52),>0 ' : (2.11)

for positive constant c > 0 and so the function is strictly increasing. The sigmoidal

functions can be unipolar or bipolar and they are graphically represented in Fig.2,4 and

Fig.2.5.y , / . ■ ■ ■ ■ ■ ; "
When a linear function is bounded to the range [-7, +7] it becomes a nonlinear

ramp function described by the equation, , .

.'"+-7 if a; > 7

S{x) ^ if |x| <7 ■ . . (2-12).

'—■7 if a: '< —7 ■ - • ' ■ ' ' ; •

'  where 7.and -7 are, respectively, the PE's maximum and.minimum output values, com-,

;  monly refeired to as the saturation levels. . .



Fig. 2.4. Unipolar Sigmoid

Fig. 2.5. Bipolar Sigmoid

Signal and Activation Velocities The signal velocity ̂  measures the instanta

neous signal change. The chain rule gives ̂  as

dS _ dS dx
dt dx dt

(2.13)

The signal velocity thus depend explicitly on the activation velocity, ̂

2A A Layer of Neurons

A layer of neurons is a structure composed of PEs which are not connected with

each other. It can be basically represented as in Fig.2.6. A layer of neurons is described

by a n X p matrix W of synaptic weights. Every row of the weight matrix is associated

with one neuron. Mathematically a layer of neurons can be represented as follows:

v = W-X

y = ̂{W-X)= ifiv)

(2.14)

(2.15)
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yiVi n
vO'Wii

Wl2
y2V2 n)w

yn
n)wnp

input layer output layer

A) Signal flow graph

A

P

W
V

pO
Y

B) Block diagram

Fig. 2.6. A n-PEs single layer neural network with p-input
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where, u, is the activation potential vector defined in section 2.2. Figure 2.6 shows that

each weight parameter Wij (synaptic. strength) is related to the connection between the

input signals and the layer nodes. . . .

' The (2.3) and (2.4) single-neuron equations can be generalized to a layer of neuT

rons as follows. The input signals come from either the environment or another layer

forming an input vector

X = {xi,....^Xi,...Xn), , (2.16)

where Xi is the activity level of the i-th input. The synaptic weights leading into the j-th

PE, yj, forms a vector

.  / ' Wj - .. ,(2.17)

where the weights wij are the connection strength from the input Xi to the j-th PE, yj.

Sometimes there is an additional parameter, ah internal threshold value, Oj, modulated

by the weight ̂oj. The weights Wj, the input vector X and the possible extra parameter

0j are used to compute the output value yj of the j-th PE. Mathematically this operation

is defined as , ..

-  ̂ - yj = cp{X--Wj - WojOj) . ̂  • (2.18)

or, in point-wise notation, as

Vj = (2.19)
i=l.
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2.5 Multi-Layer Feedforward Neural Networks

" If two or more layers are/fSuccessiVely connected, they form a multilayer feed

forward neural network. Figure, 2i7, represents the ̂ chitecture of a two-layer neural

network also known as a single hidden layer neural network. There are L neurons in the

hidden layer (hidden neurons), and m neUrons in the output layer (output neurons). The

input signals which have p neurons, X, ,are passed through synapses of the hidden layer

with connection strengths described by the hidden weight matrix, Wh, and L hidden

activation signals are generated. The hidden signals, L, are converted into the output m-

dimension activation signals, Y, by means of the output weight matrix, Wy, composed

with the respective activation functions,

2.6 Dynamic Systems

The systems in which the current output signals depend, in general, on current

and past input signals are called dynamic systems. There are two classes of dynamic,

systerhs: continuous and discrete.

^  — h h r ^ Y ^ Y
o. Wh, ; /

p L
Wy

m  m

Fig. 2.7. The two layers or the single hidden layer, feedforward neural network



.. . ^ . .. . ^ ' n ' n . , ' 13

2.7 Continuous Dynamic Systems

In general, continuous dynamic systems work with signals which are continuous

functions of continuous variables. Differential equations describe such systems. The

first-order differential equation is used in the following form:

,  . , n . n , ; ^ (2.20)

where y{t) is the system's output at time t and x{t) is the system's state at time t.

2.8 Discrete Dynamic Systems

. Discrete dynamic systems operate with signals which are functions of discrete

. variables. The discrete model is obtained by discretizating the continuous systems,

t — nts]t G R,n ̂  'N (2.21)

where ts is the sampling time. Discrete dynamic systems can be described by discrete

difference equations. The first-order difference equations are :

;  ylnf l) - f{x{n),y{n)) (2.22)

where y{ri 1) is-the future value-and ,y(n) is,the current value of the vector y. The

unit delay operator, D =' which originated from the z-transform, is used to model

a discrete dynamic system, or to obtain the output signals. Using the delay operator, we

have . , . ,

•  ' n n n , ■■z~^y{n'+l)\^ y{n) . , (2.23)
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which leads to the Fig.2.8 in which p is the dimension of the system's state at time n,

x{n), and m is the dimension of the system's outputs ̂/(n), y (n+1) at times n and n +1.

2.9 Neural Dynamic Systems

A neural dynamic system can be described by a differential equation system that

governs the time evolution of the neural activations. For two layer network, we define

the state of the neuronal dynamic system, at time f, to be the instantaneous vectors of

activations

X{t) = ...,Xn{t)) (2.24)

(2.25)

and denote Fx as the first layer whose state at time tis X {t) and Fy as the second layer

whose state at time t is Y{t). For this two layer architecture the activation differential

equations are in vector notation

^ = s(X{t),Y{t)) (2.26)

Vin)y(n + l)
f{x,y) D

m
m

m

Fig. 2.8. A discrete dynamic system
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=h(X{t),Y{t)) (2.27)
dt

or in point-wise notation

''''' =g,{X(t),Y(t)) (2.28)
dt

gn{X{t),Y(t)) (2.29)
dt

^ = h{X(t),Y{t)) (2.30)

=h,{X{t),Y(t)) (2.31)
dt

where Xi and yj denote the respective states of the i-th neuron in Fx and the j-th neu

ron in Fy, Qi and hj are the activation functions of the ?-th neuron in Fx and the j-th

neuron in Fy including the synaptic and input infomiation, without independent vari

ables. This dynamic neural network is an autonomous system. It represents a distinction

between neural network models and the classical neural modelling, where often the dif

ferential equation gives a detailed, multivariable description of how individual neurons

or synapses behave.

Neural State Space We define the state of the neuronal dynamic system, at time

f, to be the instantaneous vectors of activations

X {t) = {xi{t),..., Xn (t)) (2.32)

y{t) = {yi{t),...,yp{t)) (2.33)
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The state spaces of layers Fx and Fy are the real vector spaces and R^. The state

space of the entire or joint neural dynamic system is the product space i?" x RF. The

trajectory in the state space describing the evolution of the network over time is a smooth

curve. The signal state S{X) of the Fx at time t is described as

;  S(X(i)) = (Sf(ii(i)),...,S'f(rt„(t))) (2.34)

where Sf denotes the activation function of the z-th neuron in the layer Fx. The bound-

edness of the activation functions implies an n-dimensional hypercube as the signal state

space. When the signal functions have values in the unit interval [0,1] the signal space is

the unit hypercube [0,1]" and the product cube /„ x Ip defines the signal state space

of the two-layer dynamic network Fx, Fy-

2.10 Topology

Neural network architectures are based on PE's layer organization and weighted

interconnections. The topology of a neural network consists of the interconnection scheme

and the layer configuration.

2.11 Interconnection Schemes

The three primary PE interconnection schemes [5] are the intra-layer, inter-layer

and recurrent connections as represented in Fig.2.9. The intra-layer connections are con

nections among PEs in the same network layer. The inter-layer connections are connec

tions among PEs from different layers. The recurrent connections are connections from
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A) Feedforward representation
X

N1 n N2 .  N3
\

/

X  B) Feedback representation Y

o= N1 N2
-rr

N3

C) Cellular representation

X

Fig. 2.9. Neural network architectures
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a PE to itself. Interlayer connections are classified by their signals. A feedforward sig

nal allows information to flow among PEs in one direction. A feedback signal allows

information to flow among PEs in either direction or recursively. Signals that propagate

forward are feedforward networks. Signals that propagate from one time step to the next

are feedback networks.

2.12 Layer Configuration

The layer configuration combines the neural layers, information flow, and inter

connection schemes into a coherent architecture. A layer that receives input signals from

the environment is called an input layer and a layer that emits signals to the environment

is called an output layer. Any layer lying between the input and the output layers is called

a hidden layer and has no direct environment contact.

2.13 Recall

Assume that the pairs {Ak,Bk), k = 1,2,..., m have been stored in the learning

matrix, W. A heteroassociative recall mechanism is a function g{) that takes W (mem

ory) and Afc (stimuli) as input and returns Bk(. the response ) as output. This relation is

illustrated by the equation

Bk^9iAk,W) (2.35)

Using this notation, the two primary neural network recall mechanisms can be defined:

the nearest-neighbor recall and the interpolative recall. The nearest neighbor recall finds
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the stored input that most closely matches the stimulus and responds with the corre

sponding output. This operation can be conveniently illustrated by the equation

Bk = g{A',W) (2.36)

where A' is the closest neighbor of A/., with the lowest dist(A', Ak) denoted by

m

dist{A', Ak) = nun dist{A , Aq)) (2.37)

where disti) is typically the Hamming or Euclidean distance function.

An interpolator is a mathematical function that estimates the outputs based on

given data and rules. Interpolative recall accepts a stimulus and interpolates (in a possi

bly nonlinear fashion) from the entire set of stored inputs to produce the corresponding

output. Assuming that the interpolation ̂ () is linear, this operation can be illustrated by

the equation

B' = g{^,W) (2.38)

Ap < A' (2.39)

where A' is an interpolating point between Ap and Aq, with A' < Aq and B' is the

interpolated response with Bp < B' < Bg for some pattern pairs {Ap, Bp) and {Aq, Bq).

2.14 Learning

Learning is defined as any change in the memory weight matrix, W, defined math

ematically as

^^0 (2.40)
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Configuration of neural networks as learning units •

Trmning

Learning

Fig; 2.10. Learning in neural networks ' • . -

In simple or specialized cases, the weight matrix can be pre-computed, but more com

monly it is obtained through a learning process. Learning is a dynamic process which

modifies the weights of the network in some desirable way. As in any dynamic process,

leaming can be described in either a continuous or a discrete framework. Generally, a

neural network including the leaning process can be illustrated by the Fig.2.10.

The leaming process can be described either by differential equations in continuous-time

■; _ dw{t) = 'M{W{t) (2
dt .

,x{t),v{t)\d{t)) .41)

or by the difference equations in discrete-time

W(n -f 1) M{w\n),x{n), y{n),d{n)) (2.42)

where x is the input or the system state, y is the output and d is an external teach

ing/supervising signal used in supervised leaming (usually the desired output). The d

signal is not present in unsuperyised networks. The discrete leaming law is often used

in the form of the update weight equation

.  'W{n + 1) = W{n) + AW{n) . (2.43)
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AW{n) — M{W{n),x{n),y{n),d{n)) (2.44)

All learning methods can be classified into two categories, supervised learning and un-

supervised learning, although they may coexist in a given architecture. Supervised learn

ing is a process that incorporates an extemal teacher or global information. Supervised

learning is based on desired output and entails deciding when to turn off the learning, de

ciding how long and how often to present each training association and how often to sup

ply the performance error. Unsupervised learning, also referred to as self-organization,

is a process that incorporates no extemal teacher and relies upon the local information

and internal control. Examples of supervised and unsupervised learning are discussed in

the next two sections.

2.15 Supervised Error-Correction Learning

Error-correction learning is a supervised learning procedure that adjusts the con

nection weights between EEs in proportion to the difference between the desired and

computed output values of each PE. If the desired value of the j-th neuron output is dj

and the computed value of the same neuron is yj then the updating equation takes the

general form

Awij == axi[yj - dj] (2.45)

where Wij is the memory connection strength from Xi to yj, and a is the leaming rate,

typically 0 < a <C: 1.
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2.16 Unsupervised Hebbian Learning

Hebbian learning adjusts the connection weight based on the correlation over time

of the two PE's states or outputs. The simplest mathematical form of Hebbian correlation

learning is

Awij = XiXj (2.46)

where the weight value Wij is the correlation of the i-th PE's state, xi with the j-th PE's

state, Xj, using the discrete time equation Awij. This represents the discrete change of

Wij. There are several variations of the simple Hebbian learning rule. One such variation

is to use the PE's covariance correlation in the equation

Awij = rj[xi - Xi][xj - Xj] (2.47)

where the bracketed terms represent the covariance and 0 < 77 < 1. Here rj is the

constant adaptation rate, the overbar represents the mean, and the quantity in brackets

represents the j-th PE's variance. Another variation is to correlate Xi's mean value with

the variance of Xj as expressed by the equation

Awij = r]Xi[xj — Xj] (2.48)

Drive reinforcement learning is a variation which correlates the changes in Xi and the

changes in Xj, as expressed by

Awij = {Axi){Axj) . (2.49)
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The discrete time equation, (2.50), correlates the activation value of Xi with the changes

in Xj, regulated by the current connection strength value Wij and a constant ry

Awij = r}XiWij{Axj) (2.50)

Casting the simplest Hebbian learning rule into continuous time, and adding a decay

term yields the equation

= -Wij + XiXj (2.51)

An extension of the continuous Hebbian learning rule is

=  (2.52)

where SQ is the sigmoid activation function. It correlates the activation values passed

through the nonlinear activation function. Another differential Hebbian learning rule is

described by the equation ,

dwjj ̂  ^ dS{xi)dS{xj)
dt dt dt

where the continuous sigmoid derivative is

® . n.,'i a»

2.17 Competitive and Cooperative Learning

The competitive and cooperative processes are described as neural networks with

self-exciting recurrent connections and neighbor connections which are either inhibiting

(competitive) or exciting (cooperative). The system of differential equations

•-^^Fi{xi,x,,...,Xn)=Fi{X) (2.55)
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for i=l,2,...,n, is competitive if

dF-^<0,Vi/z (2.56)

and cooperative if

BF-
(2.57)

Competitive learning is a pattern classification procedure for training intra-layer connec

tions in a two-layer neural network. In its simplest form ("winner take all"), competitive

learning works in the following manner:

1. An input pattern is presented to the layer Fa-

2. The PEs of Fa send their activations to Fb by intra-layer connections.

3. Each PE of Fb competes with the others by sending positive signals to itself (re

current self-excitation) and negative signals to all its neighbors (lateral neighbor-

inhibition). Sometimes the PE of Fb with the greatest activation is singularly active

and all others are nullified. The PE of Fb with the largest activation is called the Fb

winner.

The competition takes place using the equation

^ = S{xi)[-Wij + S{yj)] (2.58)

where Wij is the connection strength from the i-th PE of Fa, to the j-th PE of Fb, and

50 is the sigmoidal function. The above equation automatically adjusts only those con

nections emanating from the winner PE of Fb, leaving all other connections unaffected.

One extension of competitive learning is Grossbefg's competitive cooperative
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learning. A competitive-cooperative learning neural network has excitatory (positive) or

inhibitory (negative) connections to each PE. The competitive learning equation is the

same, but the activation dynamics are entirely different [4].

2.18 Weight Matrix Computation

The initial values of learning matrices in recurrent networks can be determined by

supervised or unsupervised learning methods. The most popular method for constructing

the weight matrices for recurrent networks is bipolar Hebbian or outer-product learning

method [2], [4]. The method [2], [4] sums weighted correlation matrices as follows.

Given m binary vectors [Xi, Yj) where Xi denotes a binary vector of length n (it can be

identified with the initial input condition of the first layer in BAM, Fx) and Yi denotes a

binary vector of length p (it can be identified with the initial input condition of the second

layer in BAM, Fy), the bipolar outer-product law sums the individual correlations

m

(2.59)
i=l

In [4] Kosko suggests that outer-product recurrent networks apply to only a small set

of association training samples, and overlooks the signal-processing potential of many

stable recurrent networks. Thus outer-product can be used to determine the initial condi

tion of weight matrices in recurrent networks. [4] describes other methods of computing

as the optimal linear associative memory based on pseudo-inverse computation.
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2.19 Autoassociators

This section presents the main architectures used in the following chapters. Cohen

[1988] calls two-layer networks heteroassociative, and one-layer networks autoassocia-

tive. By the generalization proposed in chapters 4 and 5, N-layer networks are called

heteroassociative.

Non-Adaptive Autoassociators Non-adaptive autoassociators are one layer neu

ral networks that operate in continuous time, employ feedback recall, and have con

stant connection weights. Associators compute their future state based on present or

past states and outputs of one layer's neurons.,

Cohen-Grossberg's Model A one-layer non - adaptive autoassociator possesses

Cohen-Grossberg[1983] activation dynamics if its activation equations have the form

= ai{xi)[Pi{xi) - mijSj{xj)]
ai

where 1 < i < n. In a one-layer network with n neurons, described as in Fig.2.11,

Xi represents the i-th neuron state, Si{^) is the activation function of the i-th neuron,

ai{xi) and Pi{xi) are typical functions for the i-th neuron and each rriij represents the

weight of the connection between the i-th neuron and the j-th neuron of the one layer

neural network. The nonnegative functions ai{x^) > 0 represent abstract amplification

functions, assumed upper bounded. The functions Pi can be of any type. To assure the

stability theorem they must satisfy the conditions of bounded integral from [24]. The

model is called an autoassociator because the updated state of i-th neuron depends of
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dxj
dt

ai{xi)[Pi{xi) - Y:J-^^mijSj{xj)\

M

S{xi)
S{X2)

/-K Q;i(a;i) q;2(x2)
f  0:2 ] I^2{x2)
^^a:i(Or^ 0:2(0)

X.

S{xi)

ai(xi)

M^i)
Xi(0)

S{Xn)

^n{^n)

X.

a;n(0)

One Layer Recurrent Neural Network

Fig. 2.11. Cohen-Grossberg's Model
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present state and output of itself ai{xi), ̂i{xi), Si{xi) and the other neurons from the

same layer, \/j Sj{xj).

Adaptive Autoassociators Kosko [4] has extended the Cohen-Grossberg model

[24] by replacing the constant weight matrix with the adaptive learning rules de

scribed in sections 2.16 and 2.17.

Cohen-Grossberg-Kosko Model A one-layer adaptive autoassociator possesses

Cohen-Grossberg-Kosko [1990] activation dynamics if its system equations have the

form

= ai{xi)[Pi{xi) -^rUijSjixj)] (2.60)
at

= -rriij 4- Si{xi)Sj{xj) (2.61)

with the Hebbian learning rule defined in section 2.16, 1 < i < n. In the one-layer

adaptive network with n neurons, Xi represents the i-th neuron state, Si{^) is the acti

vation function of the z-th neuron, ai{xi) and Pi{xi) are typical functions for the z-th

neuron and each rriij is the adaptive (2.61) weight connection between the z-th neu

ron and the j-th neuron of the one layer neural network, governed by Hebbian learning

rule defined in section 2.16. Figure 2.12 describes this model. It is called an associator

because the updated state of z-th neuron depends of present state and output of itself

ai{xi), Pi{xi), Si{xi) and the other neurons from the same layer, Vj / z, Sj{xj).
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Cohen-Grossberg-Kosko Model

= ai{xi)[^i{xi) - mjSjixj)]
dt

dm

dt
fL - -TJI-. + Si{Xi)Sj{Xj)

m,
y

dmIL

' dt

Six,)
Six2)

0:1(3:1)/'''^ 0:2 (0:2)
( xiJPl{xi)(^2 ) P2ix2)

a;i(0) 2:2(0)

S{xi)

^\ Otiixi)
f Xi ]^i{Xi)

2:^(0)

SiXn)
Oini^n)
Pni^n)

X

2:n(0)

One Layer Adaptive Recurrent Neural Network

Fig. 2.12. Cohen-Grossberg-Kosko Model
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2.20 Heteroassociators

In [4] Kosko calls BAM networks heteroassociators and extends them to adaptive

systems by ABAM Model. The ABAM Model [4], [2], [3] describes in three general

equations two - layer evolution synchronized with adaptive learning.

ABAM Model [4] A two-layer heteroassociator possesses Kosko [1990] activa

tion dynamics if its activation and learning equations have the form

(It n ^
= ai{xi)[bi{xi) (2.62)

and

dv- "
= Cj iVj) [dj i^j) - (^i)]' (2.63)

1=1

with the Hebbian learning rule defined in section 2.16

= -ruij + Si{xi)Sj{xj) (2.64)

In the two-layer network with n neurons in the first layer, Fx, and p neurons in the sec

ond layer, Fy, Xi represents the i-th neuron state of the Fx layer, Si{C) is the activation

function of the i-th neuron of the Fx layer, ai{xi) and bi{xi) are typical functions for the

i-th neuron of the Fx layer, pj represents the j-th neuron state of the Fy layer, Sj{^) is

the activation function of the j-th neuron of the Fy layer, Cj{xj) and dj{xj) are typical

functions for the j-th neuron of the Fy layer and each is the adaptive (2.64) weight

connection between the i-th neuron of the first layer and the j-th neuron of the Fy layer.

Heteroassociators compute the updated state of i-th neuron from the Fx layer based on
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the present states and outputs of itself, Xi, ai{xi), bi{xi), Si{xi) and the neurons from the

other layer Fy, Vj, Xj, Sj{xj). For a neuron in layer F^just itself and the neurons from

the Fy layer can contribute to its updated state. Figure 2.13 describes this model.
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ABAM Model
Learning equation

dlThi-i

-M Tflij ~|~ Si(^Xi^Sj{^Xj'^

"^1(^1) 32(^X2) Si(^Xi^ SjiiXf^

ai{Xi) 02(2:2) CLii^i) Cln{Xn)

bi{xi) b2{x2) n bi{Xi) bniXn)
2:1(0) 2:2(0) 2:i(0)

2:1 X2

dx dx
dx dx

dm

%(o)^2(0)

yi y2 yp
dy

dyi dy2
dt dt

di{yi) ^2(1/2)

ci(yi) 02(1/2)

Siiyi) 52(1/2)

System Equations

dj{yj) dpivp)

Cjiyj) Cpivp)

^j{yj) ^p{yp)

dx

dt̂
 = ai{xi)[bi{xi) - Tfj=imijSj{yj)]

dt' = Cj{yj)[dj{xj) - ELi rriijSiixi)]

Fig. 2.13. ABAM Model
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Chapter 3

Stability and Convergence

3.1 Review of Literature

Neural network processing is typically governed by two mathematical concepts:

stability and convergence. The first is the stability of the PE activation over time given

any initial input. The second is convergence of the error between the desired and com

puted PE outputs to a minimurn. Stability usually is associated with feedback recall, and

convergence usually is associated with supervised learning. Convergence and stability

~thedfies have long histbnes: Liapunbv stability theory is the foundation of the stability

of several neural network architectures , [23], [26]: The one-layer recurrent neuraknet

work was investigated and solved by Cohen and Grossberg [24]. The two layer neural

network, bidirectional associative memory BAM case, was initiated and analyzed by

Kosko [1], [2], [4]. Sections 3.13-3.16 present some previous results in order to under

stand the original results for N layer recurrent neural networks analyzed in chapters 4

and 5.
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3.2 A Definition of Convergence

A convergent sequence is defined as an infinite sequence of numbers Xn that tends

to a limit, x. A more precise definition is: For any given error, e > 0, there exists a

positive integer no such that \xn — x\ < e for every n> no-

3.3 A Definition of Global Stability

Globally stable neural networks are defined as nonlinear dynamic systems that

bring all inputs to fixed points. These fixed points (limit points, convergence points,

equilibria...) are places where information can be deliberately stored. Although global

stability guarantees all inputs are mapped to a fixed point, it does not guarantee that it

will map an input onto the desired fixed point.

3.4 Stability Definitions

A vector differential equation is described as

^ = f{t,x{t)),t>0 (3.1)

where x{t) G i?", and / : x i?" —> i?" are continuous. It is assumed that the

equation has a unique solution correspbnding to each initial condition.

s{t, to, xq) denotes the solution of the equation (3.1) corresponding to the initial condi

tions x{to) = xo, evaluated at time to - In other words, s satisfies the equation

ds{t,to,Xo)
f[t

dt
,s{t,to,xo)],yt > to-,s{to,to,Xo) = Xo (3.2)
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The solution, s maps R+ x i?" into i?", and satisfies the following properties: .

s{to,to,Xo) = Xo,\/Xo e R^-, s{ti,to,Xo)) = s{t,to,xo),yt >ti> to,yxo e RP'

(3.3)

We define a veetor xq e RP as an equilibrium of the above system if

/(fjXo) = 0, Vf > 0 (3.4)

or equivalently

s(f,t:o,3:o) = a;o,Vf > fo > 0 (3.5)

In other words, if the system starts at an equilibrium, it remains there. If the equilibrium

under study is not the origin, one can always redefine the coordinates in the state space

RP so that the equilibrium of interest becomes the new origin. Thus without loss of

generality, it is assumed that at equilibrium

/(i,0)-0,Vf>0 (3.6)

This is equivalent to

s(f, to, 0) = 0, Vf > fo (3.7)

3.5 Definition - Stable Equilibrium

The equilibrium 0 is stable if, for each e > 0 and each to ̂  -R+, there exists

a 5(e, to) e R such that

||3;ol| < 5(e,to) l|s(t,to,a;o)|| < e,Vt > to (3.8)
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The equilibrium 0 is uniformly stable if, for each e > 0, there exist a S(e) such that

||a;o|| < (5(e), to > 0 => ||s(t, to,a;o)|| < e,Vt > to (3.9)

The equilibrium is unstable if it does not satisfy either stability criterion.

3.6 Definition - Attractive Equilibrium

The equilibrium 0 is attractive if, for each to G i?+, there exists an r](to) > 0 such

that

Ikoll < v(io) s(to + t,to,xo) —^ 0 (3.10)

as t —>■ oo.

The equilibrium 0 is uniformly attractive if there is a real number r? > 0 such that

Ikoll < ^,to > 0 s(to +t,to,a;o) —>• 0 (3.11)

as t —> oo uniformly in Xq, to-

3.7 Definition - Global Uniform Asymptotic Eqnilibrinm

The equilibrium 0 is globally uniformly asymptotically stable if,

1. It is uniformly stable, and

2. For each pair of positive numbers M, e with M arbitrarily large and e arbitrarily

small, there exists a finite real number T(M, e) such that

||a;o|| < M, to > 0 \\s{to +t,fo,a:o)|| < e,Vt > T{M,e) (3.12)
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3.8 Liapunov Function Discrete Case

Discrete systems are described by the recursive relationship

^k+i = fk{xk) (3-13)

where Xk G R^, and fk'R"'^ RP" for all A: > 0. The equation (3.13) has one solution,

given an initial condition of the form 3;(/co) = This solution evaluated at the /c-th

time {k > ko), is denoted by s{k, ko,.) being continuous for each pair (A:, ko). A point

a;o G RP is called an equilibrium of the system (3.13) if

fk{xo)=xo,yk>0 (3.14)

and

s{k,ko,xo) = Xo,'ik > k() > 0 (3.15)

We can assume, without loss of generality, that the equilibrium of interest is the origin,

fk{0) = 0yk>0 (3.16)

and there is a function V : y. RP R such that

v: = V[k,s{k,k,,x^)] (3.17)

The forward difference of the sequence I4* is

^Vj: = T/fcVi - 14* = V[k + 1, s{k + 1, A:, Xk)] - V{k, Xk). (3.18)

where AV depends on both the function V and the system (3.13). The evolution along

the trajectory of (3.13) is given by

Vk* = V,* + Zts/AV(i,Xi) . (3.19)
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Definition The equilibrium 0 of the system (3.13) is stable if, for each e > 0 and

each integer ko > 0, there exists a <5 = 5(e, /cq) such that

||2;jt|| < 5(e, A:o) => ||s(/c, A:o,a:o)|| < e,VA: > fco (3-20)

3.9 Liapunov Function

Definition A function V : x E" ̂  i? is a locally positive definite function

(Ipdf) if

1. it is continuous

2. V(f, 0) = 0, Vf > 0, and

3. there exists a small constant r > 0 and a function a of class such that

a(l|2:||) < V{t,x),yt > 0,Va; G B,. (3.21)

Definition y is a positive definite function (pdf) if the above conditions are

satisfied for all x e R^.

From [23] we select the following conclusions:

A continuous function V : x i?" —>■ i? is an Ipdf if and only if it satisfies the

following two conditions:

1. 1/(0) = 0

2. there exists a constant r > 0 such that l/(a;) > 0, Va: G Br — 0-

A continuous function V : x -)• i? is an pdf if it satisfies the following three

conditions:
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1. y(o) = 0

2. V{x) >0,VrEei?"-0

3. there exists a constant r > 0 such that inf||a;||>r V{x) > 0.

3.10 Theorems of Stability

The equilibrium 0 of the system (3.1) is locally stable if there exist a (Ipdf)

function V : R+ x i?" —> R and a small constant r > 0 such that

(3.22)
at

where ̂  is evaluated along the trajectories of the system (3.1).

The equilibrium 0 of the system (3.1) is globally stable if there exist a (pdf) function

V ■. Rj^x RP- —R such that

dV{t,x{t))
<0

dt
,Vt>fo (3.23)

where ^ is evaluated along the trajectories of the system. For discrete system (3.13)

the above definitions hold by replacing (3.22) and (3.23) with

AV = V{t + l)-V{t) <0

For the proofs and further explanations, [23] is recommend.

3.11 Liapunov's Direct Method

The direct method of Liapunov [5] studies dynamic system stability by finding

certain functions and studying their time derivatives. This method is in direct contrast
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with the alternative method of motion integration. If the conditions are satisfied, Lia-

punov's direct method proves global or local system stability. The specific properties

needed for Liapunov's direct method to prove the global stability of the system

dx'-^ = F{t,Xi,X2,....,Xn) (3.24)

are as follows:

dxj
dt

0 if a;i = 0, Vi = 1,2,..., n (i.e. 0 only at the origin)

dV ^dVdxi ^ ^^ = Ea^:^<o.vx< (3.25)

where 1^ is a Liapunov system energy function (pdf). Liapunov's direct method states

that if the above properties are satisfied for a given energy function V, then for all pos

sible system inputs X = (xi,X2, ■■■,Xn), the system converges to a globally stable solu

tion.

3.12 Discussion of the Liapunov Stability

In the previous sections several results in Liapunov stability theory were summa

rized. The favorable aspects of these are:

1. They enable us to draw conclusions about the stability properties of an equilibrium

without solving the system equations.

2. Especially for stability and asymptotic stability, the Liapunov function V has an

intuitive interpretation as the system energy.

The unfavorable aspects of these theorems are:
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1. They represent only sufficient conditions for the system stability. Thus, if a particular

Liapunov function candidate V fails to satisfy the Liapunov theorem conditions, then

no conclusion can be drawn, and a new analysis should begin with another Liapunov

function candidate.

2. In a general nonlinear system there is no systematic procedure to generate a Lia

punov function candidate and the investigator's creativity is needed.

The problem now is how to prove dynamic system stability. The first or direct approach

is solving the equations and then studying the system evolution by differential equation

theory or something similar. The second approach is to find a Liapunov function can

didate as in section 3.11. The Liapunov method offers a short way to prove the global

stability of a dynamic system. If a Liapunov function candidate can not be found, other

mathematical strategies must be applied. A dynamic system may or may not be sta

ble. But if there is a Liapunov function meeting .the Liapunov theorem conditions, then

stability is guaranteed. In general the Liapunov approach reveals only the existence of

stable points, not their number or nature.

3.13 Three General Stability Theorems

There are three general theorems that describe the stability of many recurrent neu

ral networks [4]. The first theorem is the Cohen-Grossberg theorem [24]. It is used to

show the stability of non-adaptive autoassociators. The second theorem is the Cohen-

Grossberg-Kosko theorem [3]. It is used to show the stability of adaptive autoassocia-
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tors. A third theorem, the ABAM theorem [22], is used to show the stability of adaptive

BAM heteroassociators. These are explained in the following three sections.

3.14 Cohen-Grossberg's Theorem

In the following theorem for one-layer network with n neurons, Xi represents the

i-th neuron state, Si{^) is the activation function of the i-th neuron, ai{xi) and Pi{xi) are

typical functions for the i-th neuron and each rriij represents the weight of the connec

tion between the i-th neuron and the j-th neuron of the one layer neural network. The

nonnegative functions ai{xi) > 0 represent abstract amplification functions, assumed

upper bounded. The functions Pi can be of any type. To assure the stability theorem they

must satisfy the conditions of bounded integral from [24]. The model is called an au-

toassociator because the updated state of i-th neuron depends of present state and output

of itself (Xi (xi), Pi {xi), Si {xi) and the other neurons from the same layer, Vj Sj {xj).

For any one layer nonlinear dynamic system with n neurons of the form

(]r- "
= ai{xi)[Pi{xi) -Y^rUjiSjixj)] (3.26)

dt

where 1 < i < n and

1. the matrix ||mij|| is symmetric and all ma > 0

2. the functions (Xi(^) are continuous for all ̂

3. the functions > 0 for all and the functions Si(^) > 0 for all ̂

4. the functions Si(^) are differentiable and nondecreasing for all ̂

5. the equation (3.26) describes the time network activation
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the function

"1 TL TL Th

^ = 0 E Emj,S,{xi)Sj{xj) - ̂  r Sli0i)f3i{ei)d0i (3.27)
^ i=i j=i i=i

is the Liapunov system energy function and the system is globally stable. The proof can

be found in [24]. Usually the Liapunov Candidate function is also called the "energy"

of the system.

3.15 Cohen-Grossberg-Kosko Theorem

In the following theorem for one-layer adaptive network with n neurons, Xi rep

resents the ■j-th neuron state, Si{^) is the activation function of the i-th neuron, ai{xi)

and Pi{xi) are typical functions for the i-th neuron and each niij is the adaptive (2.61)

weight connection between the i-th neuron and the j-th neuron of the one layer neural

network, governed by Hebbian learning rule defined in section 2.16. The model is called

associator because the updated state of i-th neuron depends of present state and output

of itself Qfj (xi), Pi (xi), Si (xi) and the other neurons from the same layer, Vj 7^ i, Sj (xj).

For any nonlinear adaptive one layer dynamic system of the form

dr- "-^ = ai(xi)[Pi(xi)-'^mijSj(xj)] (3.28)
at

= -rriij + Si{xi)Sj{xj) (3.29)

with the Hebbian teaming rule given in (3.29), 1 < i < n and

, 1. the matrix | |mjj| | is symmetric and allmji >0

2. the functions ai(^) are continuous for all ^
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3. the functions Q;i(^) > 0 for all and the function Si{^) > 0 for all ̂

4. the functions Si{^) are differentiable and nondecreasing for all ̂

5. the equation (3.28) describes the time network activation

6. the dynamic equation (3.29) describes the changes in the interconnection network

strengths rriji

the function

v = - f: r - 2EE (3.30)

is a Liapunov function and the system is globally stable. The proof can be found in [4].

The network with one layer has n neurons. Usually the Liapunov Candidate function is

also called the "energy" of the system.

3.16 ABAM Theorem

In the following theorem for two-layer network with n neurons in the first layer,

Fx, and p neurons in the second layer, Fy, Xi represents the z-th neuron state of the Fx

layer, Si{^) is the activation function of the i-th neuron of the Fx layer, aiixi) and hi{xi)

are typical functions for the z-th neuron of the Fx layer, yj represents the j-th neuron

state of the Fy layer, Sj{^) is the activation function of the j-th neuron of the Fy layer,

Cj{xj) and dj{xj) are typical functions for the j-th neuron of the Fy layer and each rriij

is the adaptive (2.64) weight connection between the Fth neuron of the Fx layer and the

j-th neuron of the Fy layer.



45

In every two layer dynamic system of the form

dx- ^
= ai{xi)[bi{xi) - ̂rriijSjiyj)], (3.31)

at

and

dt

with Hebbian learning rule

dm.i

~ mijSi{xiy\, (3.32)

j _=  -mij + Si{xi)Sj{xj) (3.33)
dt

such that 1 < i < n,l < j < p and

1. the functions bi{x) and dj{x) are continuous for all x

2. the functions ai{x) and Cj{x) > 0 are continuous for all x

3. the functions Si{x) and Sj(x) > 0 for all x

4. the functions Si{x) and Sj{x) are differentiable and nondecreasing for all x

5. the above (3.31), (3.32) equations describe the time activation of the layer Fx G J?"

and Fy G BF, respectively

6. the dynamic equation (3.33) of mij describes the changes in the interconnection

strengths between Fx and Fy PEs when M E EF x

the function

71 P

^  - E E mijSi{xi)Sj{yj) + X: r S'i{0i)bi{0i)d0i (3.34)
1=1 j=l i=l

+ E r (Qdj{Q)dCj + ̂ E E (3-35)



46

is a Liapunov function and the system is globally stable.

The proof can be found in [4], [27], [21]. For all these systems there is a reciprocal

equilibrium relationship. The system is at equilibrium (^ = 0) if and only if

for all i and j, and the stability is achieved in exponential time [4]. As a point of interest,

the ABAM theorem [4] can be placed in an algebraic framework of Cohen-Grossberg-

Kosko theorem, [24], and vice versa [4].



47

Chapter 4

Generalization in Recurrent Neural Networks

4.1 Continuous Associative Memories

The original presentation begins by recalling the Hopfield and BAM models [24],

[4] and defining the multilayer associative memory equations. A system of n+p coupled

first order differential equations defines an additive activation model that interconnects

layers Fx and Fy through the constant synaptic matrices M and

dxi
djiCj -|- Sjljyj^TTiij + li (4.1)

dv'

+ S Si{xi)mij + (4.2)
t=i

where 1 <i <n,l < j <p. This model is called "additive" because the total activation

received by a neuron

p

-j=i

has an additive effect on the future excitation of that neuron. The additive autoassociative

Fx = Fy model, the Hopfield model, corresponds to a system of n coupled first - order

differential equations:

dtX' ,
?, ^ "b (4-3)
at
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where 1 < z < n. The multiplicative model is defined as

rjnf*.
= -ai{xi)[hi{xi) - ̂Sj{yj)mij] (4.4)

at

dv n "
^ = -Cj (%•) [dj iVj) {xi)mij] (4.5)

i=i

where 1 < z < rz, 1 < j < p. This model is called "multiplicative" because the total

activation received by a neuron

p

is multiplied by ai{xi) in order to compute the future excitation of that neuron. The

terms are explained in section 2.20. The multiplicative autoassociative = Fy model

corresponds to a system of n coupled first - order differential equations:

dr- "
= -ai{xi)[bi{xi) - Sj{xj)wij] (4.6)

at

where 1 < z < rz. In [24], Cohen and Grossberg proved that if the system (4.6) satisfies

the conditions of Wij — WjuWa > 0 (symmetric, nonnegative diagonal weights), Sj{)

is a differentiable, nonnegative, nondecreasing function, ai() and bi{) are continuous

functions and ai{x) > ,0, then there is a Liapunov function, V, bounded below, that

satisfies

jV(x) < 0 (4.7)

on the system evolution trajectory discussed in section 3.14. The system (4.3) or (4.6)

corresponds to a one - layer symmetric autoassociative case. It includes just the intra-

connections between the neurons from the same layer. The BAM insists on the inter-
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connection between neurons from different layers. One layer activates the other and so

on.

Autoassociative and heteroassociative were defined in sections 2.19 and 2.20.

Mathematically heteroassociative neural networks can be generalized to work with the

cartesian product Rn^ x x Rn^..., where ni, n2, ns... are the numbers of neurons in

the first layer, second layer, third layer, and so on..., for an arbitrary number of layers.

Autoassociative networks work with the space i?„i+„2+n3..., where ni + n2 + ns + ... is

the number of neurons in a associative network as will be discussed in section 4.4. The

mathematical equations are homologous, but the ranges are different. Kosko [4] points

out that the Cohen-Grossberg Theorem [Grossberg, 1988], [24], ensures the global sta

bility of (4.3) and (4.6) which corresponds (in the sense that Rni x Rn2 is isomorphic

with Rn,^+n2> so they keep the transformation proprieties) to the continuous BAM the

orem for the nonadaptive heteroassociative networks. Also it represents a special case

of the ABAM and RABAM [4], [27]. Mathematically there is an isomorphism between

the heteroassociative multilayer network and an autoassociative network with one layer

composed of all the layers of the heteroassociative network. It can be proved mathemati

cally that a BAM has an isomorphic relationship with an autoassociative recurrent neural

network where the weights of neurons' intraconnections of the same layer are zero [4].

The main block diagonal in the connection matrix of the autoassociative network is zero.

All BAM demonstrations can be reduced to autoassociatve network correspondents. The

generalization can be made for continuous (chapter 4) and discrete (chapter 5) systems.

The following multilayer generalized models are initiated.
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4.2 Definition qf the N - Layer Associative Memory

Given N layers, every neuron state is dependent on the activations of the neurons

from the other layers. Each neuron has a connection to itself but not to any other neurons

in the same layer. Every two layers are connected exactly as in a BAM. Every neuron

from one layer receives the activated signals from all other neurons from other layers

but not its own layer. The mathematical equations can be written as follows,

The Additive Activation Model

rl^k N ni

-^ = -am+ E +

where

The Multiplicative Activation Model

j„k N ni

=  E (4-9)

where l<i<n'',l<k<N (the notation represents the connection

between the layers I and k, and vice versa). The following notations are used: the upper

index k is used for everything that belongs to the layer k, where 1 < k < N-, i corre

sponds to the i-th neuron, (1 < i < n^), from the layer k with neurons; j corresponds

to the _)-th neuron, {1 < j < rii), from the layer I which has n; neurons, w^j is the weight

of connection between two neurons from different layers, which in this notation denotes

the weight of connection between the neuron i-th of the layer k and the j-th neuron of

the layer I (when k ̂  I for heteroassociative model); are the coefficients from the

additive model with different values corresponding to each neuron i in layer k; A'l{x\)
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and are the multiplicative model functions with different forms corresponding

to the ?-th neuron from layer k.

These generalized models are difficult to understand, so some examples are pro

vided for N=2 and N=3. The additive system given by the equations (4.1) and (4.2) can
'\ ^ '

be written for two layers as

ai

^ = -A!x! + tsj(:c])wf}+lf
ai

where l<i<n^,l</i:<2, as references [2], [4].

The multiplicative system given by the equations (4.4) and (4.5) can be written for two

layers as

% = -Al (xl) - Sjix'^j)wlf]
ai

^  [B- {Xi) - £ Sj{x])w^^]
ai

where l<i<n*^,l</i:<2 and rii and n2 are the number of neurons in the two layers.

This was explaned in section 2.20. For N=3, the additive and multiplicative model can

' be written as follows; A system of rii -f ̂ 2 -f- nz coupled first - order differential

equations defines the additive activation model that interconnects layers , Fx2 and

Fxs through constant synaptic matrices (by notation = (fF*^')^ which represent

the connection between the layers I and k).

The Additive Model for three-layers

N  ni

^ = -AA+ E ESjix^H + il
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^ = -Aix^+ f; f;s,(x5K' + /f
1^2,1=1 j=l

^ = -A^ixf+ J2 E'5',(4)?i;g + /3

where l<i<n^,l</i:<3

The Multiplicative Model for three layers

^ =-A?(xf)[B|(x?) - E E5,(x5)«gl
^^3 ]V n,

1:^3,1 = 1 j = l

where l<i<n'^,l</i:<3 and ni,n2, riz are the neuron numbers of the three layers.

The niodel is represented in Fig.4.1.

The case — F^s is identified with an autoassociative network. One of

the following cases, Fx^ = Fx^ or = Fx3 or Fx3 = Fx^, is identified as a BAM

network.

4.3 Theorems for N - Layer Associative Memory

Theorem 4.1 (The Continuous N Layer Associative Memory Theorem - for Addi

tive Model).

Every additive dynamic system of the form

f]rpk N ni
^ = -.4fxf+ E E'S'j(4K + ̂ (4.10)

where 1 < i < rf, 1 < k < N and

a. the matrices w^j — Wjl (by the notation convention and by the chosen heteroassocia-
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dx\

Wi3 = {<}
W^12 = Wli)

dxi

= -Ai(4)[^H^i) - e«2,!=i E"ii ̂j(4)4j]

— r„„23i
w;W^23 = { ij }

Wsi =, {-« '} fV^, = {»#}

dx^ = -A?(xf)[B!(xf) - E&3,,=i E?ii

Three Layer Recurrent Neural Network

Fig. 4.1. Three Layer Recurrent Neural Network - Multiplicative Model
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tive model)

b. the functions Sf^) are bounded continuous functions

c. the functions are differentiable and nondecreasing

e. the above (4.10) equations describe the time activation of the layer Fxk G for

every layer, k < N

f it is assumed the boundedness of the integrals used in the below Liapunov function

(for example x'l assures the boundedness of the integrals used)

then the function

■I N N nk ni N Uk

v = E + / s'(0,)e4ei (4.11)
^ k=l i=l j=l k=l 1=1

N Uk ■

-EEs(^?U^
fc=li=l

is a, Liapunov system energy function and the system is globally stable.

Proof. The proof can be done in two ways. One is based on Liapunov theorem and the

other is based on the isomorphic equivalence between heteroassociative and autoasso-

ciative networks discussed in section 4.4. The first proof is given below starting with the

boundedness of the function

1 N N Uk ni N Uk ^xi

v = E T.Z'""Si{xt)s,{x',) + zZAU si{e,)0,d0,
^ k=l kjtl,l=l i=l j=l k=li=l

N Uk

~EEs(xf)4.
k=li=l

The boundedness of the function follows from the boundedness of the signal functions

Si stated in assumption (b) and from the hypothesis (f) of the theorem regarding the
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boundedness of the integrals used (for example 2;^ > 0 assures the boundedness of

the integrals used). The boundedness of the integral terms requires additional technical

hypotheses to avoid pathologies. For the thesis' purpose, the boundedness of the integral

terms is assumed. For every term in part

N rik

1
k=

the above integral sum is low bounded as well as.

EE4/ si(ei)e,d9t (4.12)
A:=li=l •^0

-! N N nu ni -i N N Uk ni

^ k=l ki^l,l=l i=l j=l k=l 1=1 i=l k:/^l,j=l

and

N Tlk ' N Tlk

-EEs(a;.')?>-EEIi-'?i i
fc=li=l k=li=l

By time-differentiating V, the time-derivative operator is distributed across the right-

hand side of the above function. Then each term can be time-differentiated separately.

The chain rule of differentiation then gives

d  , ,, dF dxi .. .

The term S[(xi) ̂  multiplies each additive term of the layer k. -

rIV ^ N rik ni i k

Z = -E E EE<s:(-?)^5,(4) (4.17)
k=l kj^l,l=l i=l j=l

N Uk j k

+T.Y:Ar^su)x'i
k=l i=l

N rik J k

k=l i=l
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jy N rik n J k. ^ = (4.18)

but S'{xf) > 0, which concludes ̂  < 0. After computing derivatives and grouping,

the proof reaches the conclusion ̂  < 0 which proves that F is a Liapunov function

so the system is globally stable. For the above system there is a reciprocal equilibrium

relationship. The system is at equilibrium

if and only if

(^ = 0) (4.19)

for all A:, i and the stability is achieved in exponential time. As a point of interest, the the

orem can be placed in an algebraic framework of the Cohen-Grossberg-Kosko theorem

[4].

Theorem 4.2 (The Continuous N Layer Associative Memory Theorem-for Multi

plicative Model).

Every multiplicative dynamic system of the form

-^ = -AM)[B^{x^^)- Y. n (4.20)
'  i^k,l=ij=i

where 1 < i < rf, 1 < k < N and

a. the matrices wfj = Wjl (by the notation convention and by the chosen heteroassocia-

tive model)

b. the functions Si{^) are bounded continuous functions

c. the functions Si{^) are differentiable and nondecreasing
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d. the equations (4.20) describe the time activation of the layer Fxk G R"' for every k

layer, k < N

e. the functions A\{x'l) and B^(x\) are continuous for all 1 < i < Uk, and I < k < N,

and A^{) > 0 (they are typical multiplicative functions. They correspond to the i-th

neuron from layer k)

f. it is assumed the boundedness of the integrals used in the Liapunov function below

(The boundedness of the integral terms requires additional technical hypotheses to avoid

pathologies, as Cohen and Grossberg[1983] discuss in [24])

then the function

N  N rik ni ' N nk

. k^ljl=l i=l j-

is a Liapunov system energy function and the system is globally stable.

■\ N N nt, ni ' N nk -x''

>'=-oE E • smBfmdei (4.21)
^ k^lk^Ll=li=l j=l k=li^l °

Proof. The proof is similar to the above (Theorem 4.1) proof. The boundedness of the

above function follows from the boundedness of the signal functions Si stated in as

sumption (b) and from hypothesis (f) regarding the boundedness of the integrals used.

The boundedness of the integral terms requires additional technical hypotheses to avoid

pathologies, as Cohen and Grossberg [1983] discuss in [24]. For the thesis' purpose,

the boundedness of the integral terms is assumed. By time-differentiating V, the time-

derivative operator is distributed across the right-hand side of the above function. Then

each term can be time-differentiated separately by computing ^ and grouping after
•l(„k\dx'^.

) dt

N Uk
'! ( i \T>k(^k\ \ ̂  \ ^ Q frd-\n,.kl

jy N Uk J k N ni

^ = E • (4-22)
k=li=l i^k,l=lj=l
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N rik N ni

^ = E ("-23)
k=li=l i/fe,i=lj=l

After computing the time differentiation and grouping, the conclusion

dV ^
-7- < 0
dt

proves that V is a Liapunov function so the system is globally stable. For the above

system there is a reciprocal equilibrium relationship. The system is at equilibrium

if and only if

(^ = 0) (4.24)

for all A;, z and the stability is achieved in exponential time. As a point of interest, the the

orem can be placed in an algebraic framework of the Cohen-Grossberg-Kosko theorem

[4].

4.4 The Relationship Between Recurrent Neural Networks

As described above, equations (4.8) or (4.9) equations of the heteroassociative N

layer network can be seen as a one layer, autoassociative network. We can consider it as

a virtual layer which contains all the N layers, where its size is the sum of all the neurons

from all the N layers of the heteroassociative network, rii + n2 + ... + n^. This autoas

sociative network has a matrix of connections between neurons formed from the het

eroassociative W'^'' matrices. This construction follows the convention W^'' = (kF'^^)^

and W'''^ = 0. The connection matrix of the autoassociative network is symmetric with

the block main diagonal zero. The following lemma appears necessary:
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Lemma 1. There is a relationship between the two above described multilayer recur

rent neural networks: any heteroassociative network described by the equations (4.8) or

(4.9) has a corresponding one layer, autoassociative network (the virtual layer which

contains all the N layers of the heteroassociative recurrent neural network) and vice

versa.

Motivation

The difference between autoassociative and heteroassociative networks is given by the

network architecture highlighted in the multilayer case. Of course, mathematically the

heteroassociative neural networks work with the Cartesian product Rni x Rn2 x Rns---,

where rii, n2, ria... are the numbers of neurons in the first layer, second layer, third layer

and so on..., but the autoassociative neural networks work with the space Rnj^+n2+n3...,

where ni + ̂2 + ris + ... are the.numbers of neurons in the autoassociative network.

It is known that x Rn^ x Rns---- is isomorphic with so there is an

isomorphism equivalent relationship between autoassociative and heteroassociative net

works. The autoassociative network has the matrix of connections between neurons

formed by the heteroassociative matrices. By construction there is the convention

_ (]Yki^T y^kk _ Q connection matrix of the autoassociative network is

symmetric with the block main diagonal zero. By means of this lemma, there is a second

way to prove the above theorems based on the Cohen-Grpssberg theorems [24], and vice

versa.
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Chapter 5

Discrete Case

5.1 General Additive Discrete Memory Model

Discrete activation models for recurrent neural networks have signal activation
. < ,' I , n

functions that take the form of threshold functions

+ 1)) = /

1, if, x{t + l) > T

S{x{t)),if,x{t + 1) =T (5.1)

0, if, x{t+l) <T

for an arbitrary real-valued threshold T., The index Vindicates the discrete time step and

x{t),x{t + 1) are the states at time and f -f-1. The threshold function allows one to

model complex asynchronous state-change patterns as defined in Kosko [4]. Different

neurons can randomly choose any time whether to compare their current activation to

their threshold or not. Not all the neurons from the same layer are activated in the same

time. In BAM model any of the 2" subsets of Fx neurons, or the 2^ subsets of Ty

neurons, can decide to change state. Randomly each neuron may decide whether to.

check the threshold conditions. Generally the network behaves as a vector stochastic

process. Kosko [2] defines synchronous state change of a BAM as a deterministic update

of an entire layer of neurons at a time. Then all the neurons from a layer are updated

synchronously, they synchronously choose to compare their current activation to their
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threshold. Another case is simple asynchrony defined in [4] as the case when only one

neuron makes a stare-change decision at a time. In general state-change decisions are

subset asynchronous, one subset of neurons per layer makes state-change decisions at

a time. When the subset has just one neuron we have the simple asynchrony and when

the set is all the neurons of the layer we have synchronous state change. As defined

in [4] a BAM system {Fx,Fy,M) is bidirectionally stable if all inputs converge to

fixed-point equilibria. Further bidirectional stability appears as an example of global

or absolute stability and as a dynamic equilibrium. The signal information flows back

and forth in a bidirectional fixed point. Kosko describes the bidirectional equilibrium

as a resonant state. Grossberg [1982] altematively refers to this joint equilibration of

neurons and synapses as adaptive resonance. Kosko proved [4] that eyery matrix M

is bidirectionally stable for synchronous or asynchronous state change, for the discrete

additive BAM with threshold signal functions, govemed by the difference equations

-H 1) = Sj{yj{t))mij + k (5.2)

Ujij' T 1) — ̂  -f- Jj
i=l

where for two layer neural network with n neurons in the first layer. Fx and p neurons in

the second layer Fy, Xi{t -1-1), are the states of i-th neuron of the layer Fx at time

t + 1 and t, yj{t + l), yj (t) are the states of j-th neuron of the layer Fy at time t+1 and

t, rriij are the weights of connection between i-th neuron of layer Fx and j-th neuron of

layer Fy. The above theorem can be generalized for any discrete neural system of the
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form

p

Xi{t + 1) = -Ai{Xi{t)) +
3=1

n

yj{t + l) = -Bj{yj{i)) + Y, Sii^i(t))'^ij + Jj (5-4)
i=l

for any connection matrix M. This model is inspired by the continuous additive model

discussed in chapter 4.

Theorem 5.1 (General Additive Discrete BAM Theorem).

Given a discrete system ofn+p coupled equations which defines the additive activation

model that interconnects layers Fx and Fy through the constant synaptic matrices M

and

p

xfit + 1) = -Ai{xi{t)) + Sj{yj{t))mij + li (5.5)
j=i
n

yfit + 1) = -Bfiyfit)) + Si{xi{t))mij + Jj (5.6)
i=l

where Si() are the threshold activation functions described by

1, if, x(t + 1) > U

S{x{f)),if,x{t + 1) — U

0, if, x{t + 1) < U .

and where U is the vector threshold for X and V is the vector threshold for Y, then the

system is bidirectionally stable, for synchronous or asynchronous state changes, for all

matrices M (under the assumption of some boundedness conditions).

Proof This theorem is a particular case of Theorem 5.2, for N=2.

S{x{t + 1)) =
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5.2 Definition of Discrete N - Layer Associative Memory

We now consider the following multilayer generalized discrete model. A discrete

N layer associative memory, recurrent neural network can be described:

Given N layers, every neuron state is dependent on the activations of the neurons

from the other layer. Each neuron has a connection to itself but not to any other neurons

in the same layer. Every two. layers, are connected exactly as in BAM. Every neuron

from one layer, receives the activated signals of other neurons from other layers but not

its own layer. The mathematical equations can be described as follows:

The Additive Activation Model

,, n ' . N ni

n  ' xUt + l) = -Al{xUt))+ E (5.8)
-  n , l^k,l=lj=l

where t is the discrete time; the system state at time t + 1, Xi{t + l) .is computed based

on the parameters of the system at time ty the upper index k is used for the layer k,

where 1 < k < N; i corresponds to the z-th neuron of layer k, which has Uk neurons,

(1 < i < Uk)', j corresponds to the j-ih neuron of the layer I, which has ni neurons,

(1 < i < is The state of z-th neuron from layer k at time t, are the

connection weights between two neurons from different layers, which in this notation

denotes the weight of connection between the z-th neuron of layer k and the j-th neuron

of layer I (when k ̂  I for the heteroassociative model); A'l{x^{t)) are the functions

which have different forms corresponding to the z-th neuron from layer k, and 5() are

threshold function as defined in (5.1). As a remark it is necessary to point out that in
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(5.8) the A^[x\{t)) are functions rather than coefficients as in the continuous model;

this makes the above model distinct.

5.3 Theorem for Discrete N - Layer Associative Memory

Theorem 5.2 (The Discrete N Layer Associative Memory Theorem-for Additive

Model).

Every discrete additive system of the form

N  ni n

+  E E'^i(4WX + ̂' n (5-9)

where

a. the matrices = Wjl (by the notation convention and by the chosen heteroassocia-

tive model)

b. the functions Si{^) are threshold signal functions as described in (5.1), with the

threshold of the neuron i-thfrom the.layer k

c. the equations (5.9) describe the time activation of every k layer, Fxk 6 i?", k < N

d. it is assumed the boundedness of the second sum of the below Liapunov function (The

boundedness of the second sum in (5.10) requires additional technical hypotheses to

avoid pathologies)

then the function n

1 W N Tik ni

=  E EE^SiC^fWjSi^iW) (5.10)
fe=l i=l i=l

N Uk t

k=li=lq=l
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N Uk

-EEs{4(mif-uh
k=l i=l

is a Liapunov system energy function and the system is globally stable, for every class

of matrices W which verifies (a).

Proof The proof uses the bounded Liapunov function given above. The boundedness

of the function V follows from the boundedness of the threshold signal functions Si and

also from the hypothesis made at point d regarding the boundedness of the sum used.

The boundedness of the second sum in (5.10) requires additional technical hypotheses to

avoid pathologies. For the thesis' purpose, the second sum in (5.10) is assumed bounded.

Every term is analyzed:

N Uk t

Y,ET,^HSi(.xKt))-sdxr\t)W-\t) (5.11)
k=l1=1g=l

The above integral sum is assumed low bounded.

■t N N Uk ni -I N N rik ni

-5E E yLT.<Si(x';(t))Si(^](t))> E IKI I (s-iz)
^ fc=l ki^l,l-l i=l j=l k=l 1=1 1=1 ki=l,j=l

N Uk N Uk

- E Es(^?W)(^? - > - E E1 1^ - cfl l (5-13)
A:=l i=l k=\ i=l

We assume at least one signal neuron change, activation, from time k to time /c+l, which

means there is i for which ASi {xi) 0. This allows us to model the synchronous, simple

asynchronous, and subset asynchronous changes. Only the neurons from the same layer

can be active, changing the state t to t + 1. The variation of the function V, AV =

V(t+1) — V(t) differs from zero because of the changes in one of the layers. Suppose

that the change occurs only in layer Fx^, the layer / is activated, 1 < / < then the
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above function can be written in the following way:

N  N rik ni1  iv iv uk ni

=  E (5.14)9
^ k=l k^l,l=li=l j=l

N rik t

k=l i=lg=l

N nk

-EE5(4W)af-t/f)
k=l1=1

1  Af Ji/ ' nj

v{t+i) = -^E- E E«'5'5i(4(«+i))sA4/W) (5.15)
active,layer,f,i=l j=l

■i N N rik ni

^ fc=l,A:7i/ i=l j=l

"/ t+1

+  E E4- (a^z-(9-l))('S'i(2;f(g)-5i(a;f(9-l))'
active,layer,f,i=l g=l

. JV Tlfc t+1

+ E EE4^(^f(?-l))('^i(^i(?)-'5'i(a;f(5-l))
k^f,k=l i=l 9=1

AT nfc

-EE5'(??(«+i))(Jf-c^)
fc=li=l

We wrote above the general case when the layer / is activated, 1 < f < N.

N  1/ ni

AV = - ^ ^^wl-(Si(x{(t+l)) - Si(x{(t)))Sj(x^jf(t))) (5.16)
fji.i,i=i i=i j=r

"/ t+i

■ + E t2MiXi{t)){Si{x{{t + l)) - Si{x{{t)))
active,layer,f ,1=1 q=l

E(S(xf{t+ l))-5(i((<)))(//-t//)
1=1
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AV = - ̂lS,(x{(t +1)) - Si(x{(mx{(t + l)-U/)<0 (5.17)
i=l

along trajectories. It will be proven that all the terms of the above sum are nonpositive.

We need to check only the cases (for every i, 1 < i < n/):

First, ASi{xi) > 0, then

ASi{xi)^S^+'-S^ = l-0 (5.18)

From the threshold law this implies x{ (f + 1) > U- , so the above product is

ASi{x{{t)){x{{t + l)-U{) > 0

Second, suppose ASi{xi) < 0, then

ASi{xi)^S''A^-St = Q-l . (5.19)

From the threshold law this implies x{ (f + 1) < U- , so the above product is positive

ASi{x1){x'A' -Ui)>0

When ASi{xi) = 0 this means the neuron z-th of the layer / is not active. Every activa

tion (the state change from f to f-|-1) can be considered analogously. This example is for

the threshold signal functions described in (5.1) for any 2"-^ — 1 possible subsets of neu

rons from layer Fx^ which activate, or change state, at time t + 1. The above argument

was made for an arbitrary layer /. The same argument produces the proof for the case

in which the activation is from any other layer of the N - layer network. So AV < 0 for

every state change, which proves that the above function is a Liapunov function so the

system is globally stable.
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Chapter 6

Conclusions and Recommendations

This thesis develops a new point of view about multilayer,recurrent neural net

works. The multilayer recurrent neural networks are mathematically described by the

dynamic equations found in chapters 4 and 5. The thesis states and proves a chain

of original theorems concerning multilayer neural networks for different architectures.

Historically, the idea of recurrent neural network appeared first with Hopfield's single

additive architecture [16]. Around 1985, Cohen and Grossberg developed the multiplica

tive single layer structure known as the Grossberg model [24] and proved the Cohen-

Grossberg Theorem regarding global stability. The next step was made by Kosko with

his BAM model as well as with a set of studies of two layer recurrent neural networks.

This thesis introduces and develops the original study of the N - layer recurrent neural

networks from different points of view.

Some observations regarding the N - layer structure are as follows: Section 4.4

proves the isomorphic relationship between one layer and N - layer neural networks.

This leads to following question: Why are we studying N - layer neural networks? The

differentiation of N -layers or Ngroups of neurons allows adaptive and highly cor

related structures which are not equivalent to single layer, autoassociative models. The

differentiation by layers is very, important in adaptive and discrete structures because
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the neurons from the same layer are not modifying each other; only a neuron from a

different layer can affect a given neuron's activation state. Theorems from chapters 4

and 5 prove different system global stabilities based on the system Liapunov energy

function. However they do not show the exact convergent solutions or the stable points.

These theorems only prove the global stability of the given systems. It is just a beginning

of a long study which can be developed based on N - layer recurrent neural networks.

This subject will be investigated in future work. Intuitively, these dynamic systems have

analogies to the short-term and long-term memories of biological neural networks:

1. In N layer recurrent neural networks short term memory is represented by the acti

vation state vector of each layer k, '

2. Long term memory is represented by the matrix of synapses, W.

Some activation patterns may represent auditory, olfactory, tactile or visual pat

terns as Kosko" speculated in [4].. As exemplified when learning poetry, it is hard to

remember after a few days all the words completely, although some fragments are still

remembered. This might conceivably be modelled by updated activation patterns of neu

ral structure competing and evolving, conform to their dynamics. Further, dynamic neu

ral systems could conceivably model the process of thought, or human intelligence [4].

The N layer recurrent neural generalized model could conceivably be applied in this way

to the development of models of biological neural networks. Another observation is that

all the neuronal dynamic systems analyzed in chapters 4 and 5 do not include time as

an individual variable. As a result, all of these models can be classified as autonomous

dynamic systems. It is known that autonomous systems are usually easier to analyze
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than nonautonomus systems.

All the studies presented in chapters 4 and 5 prove global stability. Global sta

bility means convergence to fixed points for all initial conditions and parameters. It is

important to mention that global stability is a joint equilibrium of the neuronal activa

tion and synaptic dynamics. As it is known that neural activation changes faster than

synaptic weights [4] this means a reciprocal balance between the two dynamics. The

stabilization at the neuronal level is faster than at the synaptic level; neuronal dynamic

activations stabilize faster than synaptic leaming. This leads to a stability dilemma in

most adaptive recurrent structures. The neuronal activation is based on activity patterns

while the synaptic sequence weights leam from themself. Leaming destabilizes the neu

ral activation by.moving the state in the global stability space.

There is a relationship between additive and multiplicative N layer recurrent neural

networks. If in the additive model the constant terms, /f are zero, it becomes a particular

case of the multiplicative model obtained by taking Ai{xl) = 1 and — b\x\. So

the symmetry of results and statements for both cases is motivated. However the proofs

are based on different Liapunov functions.

The boundedness proofs are based on well defined hypotheses (e.g. the signal to be

positive). An important topic for future study is the extension of the above theorems to

stochastic neural processing under noise. This thesis establishes many theoretical results

for continuous and discrete multilayer recurrent neural networks, for different architec

tures. Other topics that need to be investigated are random adaptive leaming laws. This
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Study also provides opportunities to further develop Hopfield's optimization of recurrent

neural networks.
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