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Abstract

Starting with the theory developed by Hopfield, Cohen-Grossberg
and Kosko, the study of associative memories is extended to N - layer re-
current neural networks. The stability of different multilayer networks is
demonstrated under specified bounding hypotheses. The analysis involves
theorems for the additive as well as the multiplicative models for continuous
and discrete N - layer networks. These demonstrations are based on contin-
uous and discrete Liapunov theory. The thesis develops autoassociative and
heteroassociative memories. It points out the link between all recurrent net-
works of this type. The discrete case is analyzed using the threshold signal
function as the activation function. A general approach for studying the sta- ‘

bility and convergence of the multilayer recurrent networks is developed.
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NOMENCLATURE
Ay stimuli

b or 6 threshold

‘B response

¢,  constant real value

D = z~! unit delay operator, originated from the z-transform

e error
Fx, Fy layers

f() functions of differential or difference equations
F() general type of function

g() the function of heteroassociative recall mechanism
1, 7 index |

h hidden layer

k discrete time 6r the k-th layer in a N layer network

ko initial condition

" L the number of PEs, neurons in the hidden layer

M function of the differential or difference equation

m number of pairs in a pattern

N number of layers in multilayer recurrent neural network
n number of neurons of Fy layer

n* number of neuronsl of the k-th layer from N layers

n, number of neurons of the first layer
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ng number of neurons of the secoﬁd layer

ns number of neurons of the third layer

o derivative order

p number of neurons of Fy layer

r constant value

g index in summing expresion

S, () activation function

S# denotes the activation function of the i-th neuron in the layer Fx

s(k, ko, .) the solution evaluated at the k-th time (k > ko)
‘ s(t, to, Zo) denotes the solution of the differential equation
.7_5, t1, %, times .

t; sampling tim¢

T(M, €) time estimation

V' Liapunov candidate function or system’s energy

v inner product of thg weight and input vectors

x input vector of the neural network

y output signal

y(n + 1) is the future value of the vector y

y(n) is the current value of the vector y

Z,. the set of nonnegative integers

W weight matrices of the neural networks

WhorW h weight matrices of the hidden layers




Wy layer output weight matrix
« function
§(€), d(e, to) equilibrium sequential estimations

7 the constant adaptation rate
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ABAM adaptive bidirectional aééociatiVe méfnory model
BAM bidirectional associative memory model

C! set of functions contiﬁubusiyl‘dif:ferentiable

Ipdf locally positive definite function

pdf positive definite function

PE processing element, neuron

RABAM random adaptive bidirectional associative memory model
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- Chapter1
Introduction

11 B Ba‘ckgroun(’i\ | |
"A' neura]inetwork’ is a massively “par..allle] distributed processor made of simple . '
procéé_sing .“ur-lité known as neuroris. Knowledge is a_équifed by the network from its en-
vironment thro;éh a learning -prdgés; The.intér-neuropal connection strengths, known -
as synaptic 'wéights:,. ére-uged to st‘qre tiﬁe_‘a'cquired know]edge._Rgcun.‘c-nt.n;u‘ra] net-
wo;ks éofnputg Fhéif future s:tate ‘baséél on the present or pést stafes aﬂa o-utpu'ts‘. Neu-
rai ne-twofkslet'}] recuﬁent ébnncciioné are finding ilrlcrez-isiﬂg applications iﬁ >diver§'e:
areas 6fje]ectr(‘)n¢ics ‘and epgirieeriﬁg; i;aét L?ffons ét désig‘ning s'l;ch networks have fo-
cused 'main]y von“ ;ieady;§tate ﬁxea point ll')’c;hav‘ic')r’ for applicaiioﬁ,'s such as associativg
' mé;mon’es. Thcée ﬁetv’vorks can 'a]-so: solve dynamic prob]emé such as fhe recognition of
R ‘co-r‘lthi‘n‘uous si‘gna}“s and adaptive dynaf;iic: _ci-;)ht'rolg Their dllversityii‘-h topd]ogy as- well as
,theif r"apj.d qonvergeﬁcé and. Slélbi.]‘;i[.)",:mal\('é -ihiemtpqwerful tools. Thjs' t;]e'sis ﬁroposes :
10 ger;eralize the :Iglbba] stablhty of aé‘soc_'i‘atl:ve rn'em.oﬁes:; ?néluding both a‘dditi\}e and
| mu_l-tipl:iqutilve models fqr ar)y;_n'u'nlaﬁer'c‘)'f. Ida)."ei'.s; . .

Regéarch7 6p,associativé nﬂéinories détes‘béck to the early work of Cohen and

" Grossberg [24]. More recén‘tl}’, the study of bidiréctiona] assqciatii'c memories has been .

, ‘extehdéd by Kosko [1], [ﬁ], [3], [4]T he~pr'ob]ei'n to l‘)e'addressed- by this the_sis _i;s to




demonstrate the generality of associative memories to multilayer architectures, under
different topologies. The analysis is based on continuous and discrete Liapunov theory.

This thesis is composed as follows. Chapter 2 presents a general overview of
neural networks. Chapter 3 discusses the main theorems and results of stability the-
ory. Chapter 4 is devoted to multilayer continuous recurrent neural networks. Section
4.2 defines multilayer recurrent neural networks (as generalizations of Cohen-Grossberg
models [23]) and establishes the basic mathematical equations for the additive and multi-
plicative multilayer models. Section 4.3 introduces and proves the theorems contributed
by this thesis including the antinuous N - Layer Associative Memory Theorems - for
both additive and multiplicative models. Section 4.4 states the lemma regarding the re-
lationship between heteroassociative and autoassociative networks. Chapter 5 presents
the theorems and the proofs of discrete N layer associative memory models. Chapter 6

presents the conclusions.

1.2 Review of Literature

The bidirectional associative memory (BAM) model introduced by Kosko in [1],
[21, [3]', [4] as an extension of the unidimensional Hopfield autoassociator model [16],
has been investigated extensively over the past ten years. In [4], Kosko develops a theo-
retical aqalysis of discrete and continuous bidirectional associative memories. He inves-
tigates the cc;nvergence and stability of different recurrent neural networks. The theo-
rems regarding BAM and their relation to Hopfield and Grossberg models [16], [24} are

analyzed as heteroassociative neural networks, as adaptive BAMs and as random adap-
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tive BAMs. Kosko [4] discuses the global stability of recurrent neural networks as well
as the sfability-convergence dilemma of adaptive BAMs. The fundamentals presented in
chapter 2 and chapter 3 are based'on the Cohen-Grossberg Theorem [24], the Cohen-
Grossberg-Kosko Theorem [4] and on Liapunov stability [26], [23].

Further results obtained by Kosko [27] for the BAM analyze the structural stabil-
ity of unsupervised learning for recurrent neural networks using stochastic calculus to
derive the random adaptive bidirectional.associative memory model, RABAM. Kosko
4] Aalso pfesents the ABAM Model and ABAM Theorem, and extends the results to
the RABAM Theorem and the RABAM Noise Suppression Theorem, concluding that
the average RABAM behavior is the'ABAM behavior. Similar matters are presented
for stochastic models in [22]. In [28] Kosko examines competitive learning systems as
stochastic dynamic systems under continuous and discrete models. He derives general
expressions of unsupervised, supervised and differential competitive learning systems.
An estimation of unknown probability density functions based on random pattern sam-
ples is made using adaptive vector q.uantization (AVQ). In feedforward competitive neu-
ral networks, thé synaptic vectors qliantize the pattern space and converge to pattern
class centroids or local probability maxima. Kosko proves this using a stochastic Li-
apunov procedure under competitive AVQ algorithms. [15] is dedicated to differential
competitive learning compared with supervised competitive learning. An extension of
feedback neural stabilization theory to feedback fuzzy theory analyzes similar global

stability properties in [21].
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. arevabStractrons’;‘ofthe'-blolog’1¢a]' neu\ronf.i

: Chép‘ter 2

F oundatiOns ‘of‘iArtiﬁcia._l 'N,étjralzsystgms .

: interconnected'eiementary neuronsA neural network is a parallel, distributed structure
B cons‘iskting“‘of interconnected pro;ce‘ss'fi\ﬁé ‘eler_nen'ts. Edch processing element'has a single L
s output whrch is sent to as many other processmg elements as desned The PE § output

si gnal can be any des1red mathematlcal functron of the mputs The processmg e]ements A‘

. Neural:networks-can be programmed or trained to store, recognize, and associa-

~ tively retrieve patterns in.order to solve combinatorial optimization problems, control

| i_l]Tdeﬁ_ned prob]ems, and estimatesénrpletl‘unkno’v&;n function's,v

22 o “Processing Elen]ents, Neurons

Processing elements (PE), referred to as nodes, short-term rnemory;, OT Meurons.

are the components of the neural networks. Artificial neural networks are nonlinear in-

forma_ti'on si gnalilproc’essing units interconnecting;different architectures and structures

of PEs An artlﬁmal neuron PE 1s a p- 1nput smgle output 31gnal processing element

, Graphlcally, a PE is descnbed in F1g 2 L. The pre synapt1c act1v1t1es are represented by :

. Artificial neural networks are norlinear information processing devices, built from
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Zo

Zp

input output:

A) One neuron

B) Block diagram representation
Fig.2.1. A single p-input (p-synapse) neuron, PE

the p-input column vector,
T = [27...75)" 2.1

in the p-dimensional input space.. The synapses are characterized by the adjustable pa-
rameters, called weights or synaptic strength parameters, arranged in a p-element row

vector:
w = [wy...wp) (2.2)

A synapse is classified as excitatory if the corresponding weight is positive, w; > 0, and
as inhibitory if the corresponding weight is negative, w; < 0.
The activation potential is written as a linear combination of input signals and

synaptic weight parameters, mathematically as an inner product of the weight and input



vectors:
v=5" wz; =w-z’ (2.3)

The total post-synaptic PE activity, the output signal, is computed based on the 'compo- .

sition of the activation potential and a chosen activation function, ¢():
y=p(v) (24)

Mathematically, it is convenient to add an additional parameter called threshold, 6 or

bias, b ="—6, by constantly fixing one signal input.

2.3 Activation Functions

Many mathematical forms have been used for activation functions. Often, activa-
tion functions transform an unbounded input activation, v, into a bounded output signal
S(v). Three common activation functions are the linear, binary and sigmoidal functions.

The linear function has the equation
o(v) = aw | (2.5)

where « is a constant real value that adjusts the magnification of the PE activation, v.
The parametef « controls the slope of the function.
The‘ step funéti‘on is defined in (2.6) followed by graphical representation in
Fig 2.2,
1,if,v>0

0,if,v<0




1|'..,

Fig. 2.2. B The step function‘,y unipolar case

This processing element is traditionally called a perceptron, and it works as a threshold

element with a binary output. The step function for the bipolar case has the following

mathematical definition

1,if,v >0 :
y=op)={ 2.7
—1,if,v <0
The step function with bias, unipolar case, is shown in Fig.2.3. The bias can be added to
both the unipolar and the bipolar step functions.
The sigmoidal function is a bounded, mbnotonic, nondecreasing function that pro-

vides a graded, nonlinear response. A common sigmoidal function is the logistic func-

tion
S(Qc) =(1+ e‘cd’“)‘—1 (2.8)

The saturation levels of the equation (2.8) are 0 and 1. The function is strictly increasing

“for positive constant ¢ > 0 because the derivative of S with respect to its argument is

Fig.2.3. The step function with bias




- positive:’

R

/_dS _‘J

The family »of: the‘logis,tic sigrﬁqidéljfuhctions, -indexéd by\c;' af)prbaches asymptotically

S

o ._“ the threshold fgncﬁon asc in’c.reas'cs‘ to positive infinity. A bipolar sigmoidal function is -

* the hyperbolic fangent

CUB@) =tenh@ . @lo)

- which has saturation levels at -1 and'1. The derivative with respect to its argument is:

B G Ay (RSP ¢ X §)

‘- fof pééiﬁve "cérllstant c > 0 éind, $o“tﬁe} _fun&ioﬁ is 'stric‘tly ihgfea’s,iﬁg. The >sign'1‘oidzil‘ ‘
Ifunctioﬁ"sl; cah Ab"e;' ﬁnip"oléf or blpolar and £h;3y e;rg gfa;phicaily re?résentéd inFig24and "~ -
" . »V‘Vh.en'a\ lmearfunctlonlsbounded to }the fanée [—fy, +7] it becomes a noniingér .

:: famp function described by th@ equatlon L

/ .
3

R R T N s O

* “wheré y.and —v are, respectively, the PE’s maximum and minimum output values, com-.

- monly referred to as the saturation levels.

Su-gs0 ey



Fig.2.4. Unipolar Sigmoid

4T '

L —_——
-E-
0 T

oL

Fig.2.5. Bipolar Sigmoid
Signal and Activation Velocities The signal velocity %}3 measures the instanta-

neous signal change. The chain rule gives % as

dS dSdz
T dedt | (2.13)

The signal velocity thus dépend explicitly on the activation velocity, Z—f.

2.4 A Layer of Neurons

A layer of neurons is a structure composed of PEs which are not connected with
each other. It can be basically represented as in Fig.2.6. A layer of neurons is described
by an x p matrix W of synaptic weights. Every row of the weight matrix is associated

with one neuron. Mathematically a layer of neurons can be represented as follows:

v=W-X (2.14)

y=o(W-X)=p@) (2.15)



input layer

A) Signal flow graph |

Fig. 2.6.

X

B) Block diagram

p

10

n

v @ | \il/2

output layer

w

A n-PEs single layer neural network with p-input



whel;e.{')li‘"s‘tﬁen 'z;;:tiVéti(;n éotent-ial _}'}ec'tovrvdéi'ihed 1n section 2.2. Figure 26 shows th’at‘
‘.eaf;h‘ weight pé‘iafnet_ef w” (synaptlc strength) 1s ré:latéd td the connection betv;/een the
input signals and thellayer: nodes - . | |

. The ‘(2‘.3):a—nd, (24) si'ngle-n'elllwr‘o'n eiqlilgti:ons"cari b¢ ’geﬁe‘;ralized to a layer of neu-
rons as fqllows..Th’é-ippiit 51gna1s come f'r,olrn.eithf-;r thclelel.lvi‘ron‘ment or another ,lay'erv
:fo'l;rrling an ihput yect&r _ | |

X = (@i )y (216)

where g; is the activity level of the é-th input. The synaptic weights leading into the j-th

PE; y;, forms a vector
G Wiy @1

“-where tﬁé weights w;; are’the dc;rlllié;tion strength froﬁl the inpuf ar:Z to the j-th I;E, Y-
Sometimes tﬁer§ is.an ’addi_tiqna‘lipartaniét,er', an ‘inte.rnal threshold value, ©;, modulated
by the wei ght"l.‘l):(]j. .The- Weighfs W‘j,>the inpﬁt vector: X ‘ and the possibie exﬁa parameter-
"@j‘ are used to Iéompufe the l‘c')ut_piltﬁvah;é yJ‘-‘olf the j;th P.E.lMathematically this- operation .

is defined as.
yj=o(X W —w;6;) . - (218)

or, in point-wise notation, as

B

B - »‘ylj‘: ‘P(Z?}iWij'—WOj@j) ‘ ) . a (2.19)
T i=1 _ : : ‘
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25 C ‘Multi-Layer :Fe.ed’feijward Neural Networks -

©If two dr.‘mofe' layers arei.“suc,q;essiVely connected, they form a multilayer feed-

- forward nenrei “netwb'ifkl Figure27represents the arehitect_ure of a twohflaye‘r neural
: "neiwork also known“a'é a'.sinl’gie lj_uiidden‘fl'exerneur.ai _netwdrk. ‘There are' L neurons in the
hi'dden layer (hidden nenronsj, aind m ineUron.s in the output layer (output neurons). The
: input 31gnalswhich have ) neunone; )‘(,ﬂ‘are nassed‘through sznapses of the hidden layei ‘
‘y'y‘ith connection, strengths described by the hidden weight ‘matrix, W, and L hidden
, alcti'\/etienlsignalls are genereied’. The h‘_ic,i‘d.en‘signal's.2 L, are converted into’the eutput m'-
» dimension aetivation signais, Y, hy. means ef fthe outpht weighty‘maitrix, W}, composed -

‘with the respective activation functions.
2.6 °  Dynamic Systems -
. The systems in which the current output signals depend, .in general, on current

B - and ‘past input signails are called 'dynainiic systems. There are two classes of dynamic.

- .systems: continuous and discrete. .

o Oy T, o
| . ‘,L*v‘L - , ,muﬂm

'Fig. 27. = The two layers or the single hidden layer, feedforward neural network




. T 13 '|
2.7 .~ Continuous Dynamic Systems

In ‘genefal','c'qntihuous' dynamic \systems.:wérk with signals which are céntinu‘ops
. functions of cbhtinuous'var:i\ableé'.:‘Diffé_fential eqﬁations ‘describe such systems. The
.. first-order difféliéntiél e’quatibn-is Tuse_'d in t‘hev f&illowing form:
B = f(a(t),y(®) (20

. where y(t) is the system’s output at time t and z(£) is the system’s state at time t. ‘

: | 2.8 ~ Discrete Dynamic Systems -

: Discreté dynamic systems opéflalj“te with signals which are functions of discrete

- .variables.".l‘he’dkiscrete model is obta’iri{id by discretizatiﬁg the continuous systems,
U t=ntteRneN | @21y
where t;'is the ‘§ampliﬁg time. Dis‘cr:ete‘dyneinilic systems can be described by discrete .

difference equaﬁons. The first-order difference equations are : -

L yn+1) = f(gn),y(n) Q22
. .where y(n +‘_1j"isithé future i\’éill.l&e» andy(n)lsthe current value of the vector 4. The -
unit delay ppérﬁtdr; D=zt which 'c'“)rig:ina't'éd\ from the z-tranéf(nm; is used to ﬁlodel

. adiscrete dynarriic system, or to ‘obta_in the output signals. Using the deiay operator, we

have

z"ly(n+1)= yny - (2.235
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which leads to the Fig.2.8 in which p is the dimension of the system’s state at time n,

z(n), and m is the dimension of the system’s outputs (), y(n+1) at times n and n+1.

2.9 Neural Dynamic Systems

A neural dynamic system can be described by a differential equation system that
governs the time evolution of the neural activations. For two layer network, we define
the state of the neuronal dynamic system, at time ¢, to be the instantaneous vectors of

activations
X&) = (z1(t), ..oy T4 (1)) | (2.24)
Y (t) = (y1(t), .- yp(2)) (2.25)
and denote Flx as the first layey whose state at time ¢ is X (¢) and Fy as the second layer

whose state at time ¢ is Y'(t). For this two layer architecture the activation differential

equations are in vector notation

o = o(X®),Y ) (2.26)
=(n) * yn+1) y(n)
p f(CII, y) D m

Fig.2.8. A discrete dynamic system



or in point-wise notation

dy
2 hx (), Y ()
d:c; ‘

E = (X (2),Y ()
dz,,

B — gu(X(0), Y (1)
W _ gy (x(0), Y(0)
di 0

B (x(0), Y(2)

dt

15

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

where z; and y; denote the respective states of the -th neuron in Fx and the j-th neu-

ron in Fy, g; and h; are the activation functions of the i-th neuron in Fx and the j-th

neuron in Fy including the synaptic and input information, without independent vari-

ables. This dynamic neural network is an autonomous system. It represents a distinction

between neural network models and the classical neural modelling, where often the dif-

ferential equation gives a detailed, multivariable description of how individual neurons

or synapses behave.

Neural State Space

t, to be the instantaneous vectors of activations

- We define the state of the neuronal dynamié system, at time

(2.32)

(2.33)
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The state spaces of layers F and Fy are the real vector spaces R" and RP. The state
space of the entire or joint neural dynamic system is the product space B" x RP. The
trajectory in the state space describing the evolution of the network over time is a smooth

curve. The signal state S(X) of the Fx at time ¢ is described as
S(X (1) = (57 (#1(), - S (2a (1)) | (2.34)

where S denotes; the activation function of the ¢-th neuron in the layer F’x. The bound-
edness of the activation functions implies an n-dimensional hypercube as the signal state
space. When the signal functions have values in the unit interval [0,1] the signal space is
the unit hypercube I™, [0, 1]” and the product cube I, x I, defines the signal state space

of the two-layer dynamic network F'x, Fy.

2.10 Topology

Neural network architectures are based on PE’s layer organization and weighted
interconnections. The topology of a neural network consists of the interconnection scheme

and the layer configuration.

2.11 Interconnection Schemes

The three primary PE interconnection schemes [5] are the intra-layer, inter-layer
and recurrent connections as represented in Fig.2.9. The intra-layer connections are con-
nections among PEs in the same network layer. The inter-layer connections are connec-

tions among PEs from different layers. The recurrent connections are connections from
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A) Feedforward representation

X Y
= NI N2 . N3
X B) Feedback representation Y
NI F=F ) N2 >
|
N3

C) Cellular representation

Fig. 2.9. " Neural network architectures
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a PE to itself. Interlayer connectioﬁs are classified by their signals. A feedforward sig-
nal allows information to flow among PEs in one direction. A feedback signal allows
information to flow among PEs in either direction or recursively. Signals that propagate
forward are feedforward networks. Signals that propagate from one time step to the next

are feedback networks.

2.12 Layer Configuration

The layer configuration combines the neural layers, information flow, and inter-
connection schemes into a coherent architecture. A layer that receives input signals from
the environment is called an input layer and a layer that emits signals to the environment
is called an output layer. Any layer lying between the input and the output layers is called

a hidden layer and has no direct environment contact.

2.13 Recall

Assume that the pairs (A, By), £ = 1,2, ..., m have been stored in the learning
matrix, W. A heteroassociative recall mechanism is a function g() that takes W (mcrﬁ-
ory) and Ak(stimuli) as input and returns B ( the response ) as output. This relation is

illustrated by the equation -
By = g(Ay, W) (2.35)

Using this notation, the two primary neural network recall mechanisms can be defined:

the nearest-neighbor recall and the interpolative recall. The nearest neighbor recall finds
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the stored input that most closely matches the stimulus and responds with the corre-

sponding output. This operation can bé conveniently illustrated by the equation
By = g(A', W) (2.36)

where A’ is the closest neighbor of A, with the lowest dist(A’, Ay) denoted by
dist(Av’, Ay) = Iﬁ? dist(4', A,)) (2.37)

where dist() is typically the Hamming or Euclidean distance function.

An interpolator is a mathematical function\that estimates the outputs based on
given data and rules. Interpolative recall accepts a stimulus and interpolates (in a possi-
bly nonlinear fashion) from the entire set of stored inputs to produce the corresponding
output. Assuming that the interpolation g() is linear, this operation can be illustrated by

the equation

B' = g(A,W) (2.38)

A, < A (2.39)

where A’ is an interpolating point between A, and A4, with A" < A, and B’ is the

interpolated response with B, < B’ < B, for some pattern pairs (A4,, B,) and (4,, B,).

2.14 Learning

Learning is defined as any change in the memory weight matrix, W, defined math-
ematically as

dw
L0 (2.40)
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AW (r) = M(W (n), 2(n), y(r), d(r) e

All learning methods can be classified into two categories, supervised learning and un-
supervised learning, although they may coexist in a given architecture. Supervised learn-
ing is a process that incorporates an external teacher or global information. Supervised
learning is based on desired output and entails deciding when to turn off the learning, de-
ciding hbw long and how often t;) present each training association and how often to sup-
ply the perfofmanqe error. Unsupervised learning, also refeﬁed to as self-organization,
is a process that incorporates no external teacher and felies upon the local. information
and internal control. Examples of supervised and unsupervised learning are discussed in

the next two sections.

2.15 Supervised Error-Correction Learning

Error-correction learning is a supervised learning procedure that adjusts the con-
nection weights betweeﬂ PEs in proportion to the difference between the desired and
computed output values of each PE. If thc; desired value of the j-th neuron output is d;
and the computed value of the same neuron is y; then the updating equation takes the

general form
A’I.Uij = oza:i[yj — dj] (245)

where w;; is the memory connection strength from z; to Y, and « is the learning rate,

typically 0 < o < 1.
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2.16 Unsupervised Hebbian Learning

Hebbian learning adjusts the connection weight based on the correlation over time
of the two PE’s states or outputs. The simplest mathematical form of Hebbian correlation

learning is
A’wi]‘ =TTy (246)

where the weight value w;; is the correlation of the i-th PE’s state, z; with the j-th PE’s
state, z;, using the discrete time equation Aw;;. This represents the discrete change of
w;;. There are several variations of the simple Hebbian learning rule. One such variation

is to use the PE’s covariance correlation in the equation
Awg; = nlz; — Zi][z; — Zj) (2.47)

where the bracketed terms represent the covariance and 0 < 1 < 1. Here 7 is the
constant adaptation rate, the overbar represents the mean, and the quantity in brackets
represents the j-th PE’s variance. Another variation is to correlate x;’s mean value with

the variance of z; as expressed by the equation
Awij‘ = n:Ez[x] —_ fj] (248)

Drive reinforcement learning is a variation which correlates the changes in z; and the

changes in z;, as expressed by
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The discrete time equation, (2.50), correlates the activation value of z; with the changes

in z;, regulated by the current connection strength value w;; and a constant 7
A’U)ij = nxiwij(Aa:j) (2.50)

Casting the simplest Hebbian learning rule into continuous time, and adding a decay

term yields the equation

dwij
dt

= —W;5 + TiT; . (2.51)

An extension of the continuous Hebbian learning rule is

dwij
dt

= —wi; + S(2:) S (z;) (2.52)

where S() is the sigmoid activation function. It correlates the activation values passed
through the nonlinear activation function. Another differential Hebbian learning rule is

described by the equation

d 9T g at (253)
where the continuous sigmoid derivative is
dS(z) o, \dx
pranke S'(z) o (2.54)
2.17 Competitive and Cooperative Learning

The competitive and cooperative processes are described as neural networks with
self-exciting recurrent connections and neighbor connections which are either inhibiting

(competitive) or exciting (cooperative). The system of differential equations

du;
dt

:F!i(xlax%"'amn) :E(X) (255)
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for i=1,2,...,n, is competitive if

O0F; C
< .
oa; = 0,Vj #£1 (2.56)
and cooperative if
0 >0,V #1 (2.57)
83:j

Competitive learning is a pattern classification procedure for training intra-layer connec-
tions in a two-layer neural network. In its simplest form (“winner take all”’), competitive

learning works in the following manner:

1. An input pattern is presented to the llayer Fy.

2. The PEs of F4 send their activations to F'p by intra-layer connections.

3. Each PE of Fg competes with the others by sending positive signals to itself (re-
current self-excitation) and negative signals to all its neighbors (lateral neighbor-
inhibition). Sometim_es the PE of Fg with the greatest activation is singularly active
and all others are nullified. The PE of Fp with the largest activation is called the Fg

winner.

The competition takes place using the equation

dwij
dt

= S(zs)[—wi; + S(y5)] (2.58)
where w;; is the connection strength from the i-th PE of F, to the j-th PE of F, and
S() is the sigmoidal function. The above equation automatically adjusts only those con-

nections emanating from the winner PE of F'z, leaving all other connections unaffected.

One extension of competitive leamning is Grossberg’s competitive cooperative
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learning. A competitive-cooperative learning neural network has excitatory (positive) or
inhibitory (negative) connections to each PE. The competitive learning equation is the

same, but the activation dynamics are entirely different [4].

2.18 Weight Matrix Computation

The initial values of learning matrices in recurrent networks can be determined by

supervised or unsupervised learning methods. The most popular method for constructing

- the weight matrices for recurrent networks is bipolar Hebbian or outer-product learning

method [2], [4]. The method [2], [4] sums weighted correlation matrices as follows.
Given m binary vectors (X;, Y;) where X; denotes a binary vector of length n (it can be
identified with the initial input coﬁdition of the first layer in BAM, Fx) and Y; denotes a
binary vector of length p (it can be identified with the initial input condition of the second

layer in BAM, Fy), the bipolar outer-product law sums the individual correlations

w =S xTv, (2.59)

i=1
In [4] Kosko suggests that outer-product recurrent networks apply to only a small set
of association training samples, and overlooks the signal-processing potential of many
stable recurrent networks. Thus outer-product can be used to determine the initial condi-
tion of weight matrices in recurrent networks. [4] describes other methods of computing

as the optimal linear associative memory based on pseudo-inverse computation.
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2.19 Autoassociators

This section presents-the main ar_chitectlires used in the following chapters. Cohen
[1988] calls two-layer networks heteroassociative, and one-layer networks autoassocia-
tive. By the generalization proposed in chapters 4 and 5, N-layer networks are called

heteroassociative.

Non-Adaptive Autoassociators Non-adaptive autoassociators are one layer neu-
ral networks that operate in continuous time, employ feedback recall, and have con-
stant connection weights. Associators compute their future state based on present or

past states and outputs of one layer’s neurons..

Cohen-Grossberg’s Model A one-layer non - adaptive autoassociator possesses

Cohen-Grossberg[1983] activation dynamics if its activation equations have the form

diEi
% = [:81 l'z Zmz]

where 1 < i < n.Ina one-léyer network with n neurons, described as in Fig.2.11,
z; represents the i-th neuron state, S;(€) is the activation function of the ¢-th neuron,
a;(z;) and G;(z;) are typical functions for the i-th neuron and each m,; represents the
weight of the connection between the i-th neuron and the 7-th neuron of the one layer
neural network. The nonnegative functions «o;(z,) > 0 represent abstract amplification
functions, assumed upper bounded. The functions §; can be of any type. To assure the
stability theorem they must satisfy the conditions of bounded integral from [24]. The

model is called an autoassociator because the updated state of -th neuron depends of




Cohen-Grossberg’s Model

@i — o(z)[Bi(wi) — E?=1 m;;S;(25)]
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S(z1) S(zy) - S(;)
al(xl) 012(11;‘2) ai(mz)
@1(171)@,82(:52) @z(xz)
N O 20) 2(0)

One Layer Recurrent Neural Network

Fig.2.11. Cohen-Grossberg’s Model
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present state and output of itself a;(z;), Gi(z;), S;(x;) and the other neurons from the

same layer, Vj # 4, Sj(z;).

Adaptive Autoassociators Kosko [4] has extended the Cohen-Grossberg model
[24] by replacing the constant weight matrix m;; with the adaptive learning rules de-

scribed in sections 2.16 and 2.17.

Cohen-Grossberg-Kosko Model A one-layer adaptive autoassociator possesses
Cohen-Grossberg-Kosko [1990] activation dynamics if its system equations have the

form

d.’l?i

E = Q; xz [/61 -Tz Zng (2.60)
dmi-
o = ~mij + 5i(2:)55(2) (2.61)

with the Hebbian learning rule defined in section"2.16; 1 < ¢ < n. In the one-layer
adaptive network with'n neurons, a;z represents the i-th neuron state, S;() is the acti-
vation function of the i-th neuron, 'ai (z;) and f;(z;) are typical functions for the i-th
neuron and each m;; is the adaptive (2.61) weight connection between the ¢-th neu-
ron and the j-th neuron of the one layer neural network, governed by Hebbian learning
rule defined in section 2.16. Figure 2.12 describes this model. It is called an associator
because the updated state of i-th neuron depends of present state and output of itself

a;(z;), Bi(:), Si(z;) and the other neurons from the same layer, Vj # 3, S;(z;).
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o = o(xs)[Bi(xs) — Ty misSi(25)]
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One Layer Adaptive Recurrent Neural Network

Fig.2.12. Cohen-Grossberg-Kosko Model
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2.20 ‘Heteroassociators

In [4] Kosko calls BAM networks heteroassociators and extends them to adaptive
systems by ABAM Model. The ABAM Model [4], [2], [3] describes in three genéral

equations two - layer evolution synchronized with adaptive learning.

ABAM Model [4] A two-layer heteroassociator possesses Kosko [1990] activa-

tion dynamics if its activation and learning equations have the form

dxi p
o = ai(@a)bil@) = > mi;S; (y5)], (2.62)
. j=1
and
% = ¢;(y;)ld;(z;) — ;mijsi ()], (2.63)

with the Hebbian learning rule defined in section 2.16

dmi j
dt

= —my; + Si(2:)S;(z;) (2.64)
In the two-layer network with n neurons in the first layer, F’x, and p neurons in the sec-
ond layer, Fy, x; represents the i-th neuron state of the Fx layer, S;(€) is the activation
function of the ¢-th neuron of the FX léyer, a;(z;) and b;(x;) are typical functions for the
i-th neuron of the F'x layer, y; represents the j-th neuron state of the Fy layer, S;(§) is
the activation function of the j-th neuron of the Fy layer, c;(z;) and d;(z;) are typical
functions for the j-th neuron of the Fy layer and each m,; is the adaf)tive (2.64) weight

connection between the i-th neuron of the first layer and the j-th neuron of the Fy- layer.

Heteroassociators compute the updated state of i-th neuron from the Fx layer based on
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the present states and outputs of itself, z;, a;(;), bi(z;), Si(z;) and the neurons from the-
other layer Fy; Vj, z;, Sj(x;). For a neuron in layer F just itself and the neurons from

the Fy layer can contribute to its updated state. Figure 2.13 describes this model.
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ABAM Model ) )
x Learning equation
Gt = —miy + Si(:)S;(;)

S1(y1) Sa(ya) S;(y) Sp(Yp)

System Equations

B = ay(2) [bi(z:) — Tho1 mai S;(y5)]

Wi = ¢;(y;)ldj(z) — Toy migSi(wi)]

Fig. 2.13. ABAM Model
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:_Chap.t‘er 3. ,

Stability and ConVérgence

3.1 Review of Litérzitju’fé” '

Neural network processing is &'pica]]y governed by two mathematical concepts:
stability and convergénce. The first is the ,st‘abil’ity of the PE activation over time given
any initial input. The second is conv'gargence of the error between the desired and com-

~ puted PE»outputs to a minimum. Stabi]jty uguélly is associated with feedback rec.:all, énd ‘

convergence usually is associated with supervised learning. Convérgence and stability -

T :““t}Tedfi’éS have ‘long'hiStbﬁes_.'Eiapﬁﬁov 's_tabili.t‘y.' théory is‘the foundation ‘of the stabilify :
of several neuralt network archifeg'tur;:s ,[23j, [26]. The o;le-layer ;eéunént neural net-
work was investigated and solyeq by _Coﬁen and 'Grossblerg [24]. The two layer neural -

" ‘network, bidirectional associative m':émpr)‘/’ BAM case, was initiated and ;mal'yzed‘by s
Kosko [1], [2], [4]. Sections 3.13-3.16 ;.).reseﬁt‘ some p'révioqs results in order to under-

stand the original results for N layef recurrent neural networks analyzed in chapters 4 -

and 5.




34

3.2 A Definition of Convergence

A convergent sequence is defined as an infinite sequence of numbers z, that tends
to a limit, X. A more precise definition is: For any given error, e > 0, there exists a

positive integer ng such that |z, — z| < e for every n > ny.

3.3 A Definition of Global Stability

Globally stable neural networks are defined as nonlinear dynamic systems that
bring all inputs to fixed points. These fixed points (limit points, convergence points,
equilibria...) are places where iﬁformation can be deliberately stored. Although global
stability guarantees all inputs are mapped-to a fixed point, it does not guarantee that it

will map an input onto the desired fixed point.

34 Stability Definitions
A vector differential equation is described as

dx’
= = f(t,a(®),t 20 3.1)

where z(t) € R", and f : R, X R® — R" are continuous. It is assumed that the
equation has a unique solution corresponding to each initial condition.
s(t, to, To) denotes the solution of the equation (3.1) corresponding to the initial condi-

tions z(tp) = o, evaluated at time t. In other words, s satisfies the equation

d.S‘(t, to, 1130)
dit

= f[ta S(ta thxO)]’Vt 2 tO) 8(t07t0,x0) =T (3'2)
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The solﬁtion, s maps R, x R" into R", and satisfies the following properties: .

S(to,to,.’ﬁo) = IEo,VCEo € Rn; S(t,tl, S(tl,to,.’ﬂo)) = S(t, to,(Eo),Vt >t > to,vwo €ER"

(3.3)
We define a vector zy € R" as an equilibrium of the above system if
or equivalently
s(t, to, To) = T, Vt > 19 > 0 . (3.5)

In other words, if the system starts at an equilibrium, it remains there. If the equilibrium
under study is not the origin, one can always redefine the coordinates in the state space
R™ so that the equilibrium of interest becomes the new origin. Thus without loss of

generality, it is assumed that at equilibrium

f(¢,0)=0,Vt >0 (3.6)
This is equivalent to
s(t, t0,0) = 0,Vt > t N EN))
3.5 Definition - Stable Equilibrium

The equilibrium O is stable if, for each € > 0 and each ¢y, € R, there exists

ad(e, to) € R such that

||$0“ < (5(6,1}0) — HS(t, to,.’l?o)” < G,Vt >ty (38)
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The equilibrium O is uniformly stable if, for each € > 0, there exist a § (¢) such that
onll < 6(6),t0 > 0= ”S(t, to,xo)” < 6,Vt >t (39)

The equilibrium is unstable if it'does not satisfy either stability criterion.

3.6 Definition - Attractive Equilibrium

The equilibrium O is attractive if, for each ¢ty € R, there exists an 7(tg) > 0 such
that

z0]] < 1(to) = s(to +t, o, To) — 0 (3.10)

ast — oo.

The equilibrium 0 is uniformly attractive if there is a real number > 0 such that
”LE()” <1t > 0= S(to + t, to,xo) — 0 (3.11)

as t — oo uniformly in g, tg.

3.7 Definition - Global Uniform Asymptotic Equilibrium

The equilibrium O is globally uniformly asymptotically stable if,

1. It is uniformly stable, and
2. For each pair of positive numbers M, e with M arbitrarily large and e arbitrarily

small, there exists a finite real number 7'(M, €) such that

|zoll < M,to > 0= ||s(to +t, %o, 20)|| < €Vt > T(M,¢) (3.12)
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3.8 Liapunov Function Discrete Case

Discrete systems are described by the recursive relationship
Trp1 = fr(Tr) (3.13)

where 2, € R", and f; : R — R" for all £ > 0. The equation (3.13) has one solution,
given an initial condition of the form z(ky) = zo. This solution evaluated at the k-th
time (k > ko), is denoted by s(k, ko, .) being continuous for each pair (%, ko). A point

zo € R™ is called an equilibrium of the system (3.13) if
fi(@0) = 20, VE >0 (3.14)

and

‘s(k,ko,gto) =1z, Vk > ko >0 (3.15)
We can assume, without loss of generality, that the equilibrium of interest is the origin,
£(0) =0,Vk >0 ' (3.16)
and there is a function V : Z, x R™ — R such that
V= Viksthknoo)] (3.17)
The forward difference of the seqﬁence Vi is
AV = Vi, = Ve = VIk+1,5(k+ 1, b 2)] — V(k, z). (3.18)

where AV depends on both the function V' and the system (3.13). The evolution along

the trajectory of (3.13) is givcn by

Vi =V + S AV (i, 23) - (3.19)

=7



38
Definition The equilibrium 0 of the system (3.13) is stable if, for each € > 0 and
each integer kq > 0, there exists a § = (¢, ko) such that
l|lzk|] < (e, ko) = ||s(k, ko, zo)|| < €, VEk > ko (3.20)
3.9 Liapunov Function
Definition A function V : R, x R® — R is a locally positive definite function
(Ipdf) if
1. itis continuous
2. V(t,0) =0,Vt >0, and
3. there exists a small constant r > 0 and a function o of class C* such that
a(||z]|) < V(t,z),Vt > 0,Vz € B,. (3.21)
Definition Visa vpositive definite function (pdf) if the above conditions are

satisfied for all x € R".
From [23] we select the following conclusions:
A continuous function V' : R, x R® — R is an Ipdf if and only if it satisfies the

following two conditions:

1. V(0) =0

2. there exists a constant r > 0 such that V(z) > 0,Vz € B, — 0.

A continuous function V' : R, x R* — R is an pdf if it satisfies the following three

conditions:
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1. V(0) =0
2. V(z) >0,Vz € R*—0

3. there exists a constant r > 0 such that infjjg>, V() > 0.

3.10 Theorems of Stability

The equilibrium O of the system (3.1) is loczﬂly stable if there exist a C* (Ipdf)

functionV : R, X R® — Rand a small constant 7 > 0 such that

dv (¢, z(t))

<0,Vt>t ' 3.22
pr <0,VE >t (3.22)

where % is evaluated along the trajéctories of the system (3.1).
The equilibrium O of the syétem (3.1) is globally stable if there exist a C* (pdf) function
V : R, x R* — R such that

dv (¢, z(t)
di

where % is evaluated along the trajectories of the system. For discrete system (3.13)

the above definitions hold by replacing (3.22) and (3.23) with
AV =V(t+1)-V(t) <0

For the proofs and further explanations, [23] is recommend.

3.11 Liapunov’s Direct Method

The direct method of Liapunov [5] studies dynamic system stability by finding

certain functions and studying their time derivatives. This method is in direct contrast

<0,Vt>t, (3.23)
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with the alternative method of motion integration. If the conditions are satisfied, Lia-
punov’s direct method proves global or local system stability. The specific properties

needed for Liapunov’s direct method to prove the global stability of the system

diI)j

= = F(t,z1,%2, ..., Zn) (3.24)

are as follows: .

i = 0ifz; =0, Vi=1,2,..,n(ie. 0 only at the origin)

"oV davz
dt Z 7 Oz dt -

0, Vz; (3.25)

where V is a Liapunov system energy function (pdf). Liapunov’s direct method states
that if the above properties are satisfied for a given energy function V, then for all pos-
sible system inputs X = (x1, Zs, ..., Z, ), the system converges to a globally stable solu-

tion.

3.12 Discussion of the Liapunov Stability

In the previous sections several results in Liapunov stability theory were summa-

rized. The favorable aspects of these are:

1. They enable us to draw conclusions about the stability properties of an equilibrium
without solving the system equations.
2. Especially for stability and asymptotic stability, the Liapunov function V' has an

intuitive interpretation as the system energy.

The unfavorable aspects of these theorems are:
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1. They represent only sufficient conditions for the system stability. Thus, if a particular

Liapunov function candidate V fails to satisfy the Liapunov theorem conditions, then

no conclusion ,caﬁ be drawn, and a new analysis should begin with another Liapunov
function candidate.

2. In a general nonlinear system there is no systematic procedure to generate a Lia-

punov function candidate and the investigator’s creativity is needed.

The problem now is how to prove dynamic system stability. The first or direct approach
is sol\;ing the equations and then studying ‘the system evolution by differential equation
theory or something similar. The second approach is to find a Liapunov function can-
didate as in section 3.11. The Liapunov method offers a short way to prove the global
stability of a dynamic system. If a Liapunov function candidate can not be found, other
matﬁematical strategies must be applied. A dynamic systc’am‘may or may not be sta-
ble. But if there is a Liapunov function meeting the Liapunov theorem conditions, then
stability is guaranteed. In general the Liapunov approach reveals only the existence of

stable points, not their number or nature.

3.13 Three General Stability Theorems

There are three general theorems that describe the stability of many recurrent neu-
ral networks [4]. The first theorem is the Cohen-Grossberg theorem [24]. It is used to

show the stability of non-adaptive autoassociators. The second theorem is the Cohen-

Grossberg-Kosko theorem [3]. It is used to show the stability of adaptive autoassocia-
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tors. A third thebrem, the ABAM theorem [22], is used to show the stability of adaptive

BAM heteroassociators. These are explained in the following three sections.

3.14 Cohen-Grossberg’s Theorem

In the following theorem for one-layer network with n neurons, z; represents the
i-th neuron state, S;(£) is the activation function of the i-th neuron, o;(z;) and §;(z;) are
typical functions for the i-th neuron and each m;; represents the weight of the connec-
tion between the i-th neuron and the j-th neuron of the one layer neural network. The
nonnegative functions a;(z;) > 0 represent abstract amplification functions, assumed
upper bounded. The functiops f; can be of any type. To assure the stability theorem they
must satisfy the conditions of bounded integral from [24]. The model is called an au-
toassociator because the updated state of i-th neuron depends of present state and output
of itself a;(z;), Bi(z;), Si(z;) and the other neurons from the same layer, Vj # 4, S;(z;)-

For any one layer nonlinear dynamic system with n neurons of the form

d:vl

dt = 3’)1 [ﬂz 331 ijz (3.26)

where 1 <4 < nand

1. the matrix ||m;;|| is symmetric and all m;; > 0

2. the functions o;(§) are continuous for all £

3. the functions ;(&) > 0 for all &, gnd the functions S;(¢) > 0 for all £
4. the functions S;(¢) are differentiable and nondecreasing for all £

5. the equation (3.26) describes the time network activation
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the function

222’”}% (2:)S;(5) E/ S:(©:)6i(0,)de (3.27)

i=1j=
is the Liapunov system energy function and the system is globally stable. The proof can
be found in [24]. Usually the Liapunov Candidate function is also called the “energy”

of the system.

3.15 Cohen-Grossberg-Kosko Theorem

In the following theorem for one-layer adaptive network with n neurons, z; rep-
resents the i-th neuron state, S;(€) is the activation function of the i-th neuron, o;(z;)
and G;(z;) are typical functions for the i-th neuron and each m;; is the adaptive (2.61)
weight connection between the i-th neuron and the j-th neuron of the one layer neural
network, governed by Hebbian learning rule defined in section 2.16. The model is called
associator because the updated state of ¢-th neuron depends of present state aﬂd output
of itself a;(z;), G (xz), Si(x;) and the 6tﬁer neurons from the same -layer, Vj # 14, Si(z;).

For any nonlinear adaptive one layer dynamic system of the form

d_t. = xz ,81, :cz Zm” ’ : (3.28)
dmi'
_—dtj = —my; + Si(z:)S;(x;) (3.29)

with the Hebbian learning rule given in (3.29), 1 < i < n and

- 1. the matrix ||m;;|| is symmetric and all m;; > 0

2. the functions ¢;(&) are continuous for all £



3. the functions a;(€) > 0 for all £, and the function S;(¢) > 0 for all £

4. the functions S;(¢) are differentiable and nondecreasing for all £

5. the equation (3.28) describes the time network activation

6. the dynamic equation (3.29) describes the changes in the interconnection network

strengths m;

the function

5D ) ILRCICALIES z/ S/(6,)6:(0:)d6 iiZm”G%)

i=1j=
is a Liapunov function and the system is globally stable. The proof can be found in [4].
The network with one layer has n neurons. Usually the Liapunov Candidate function is

also called the “energy” of the system.

3.16 ABAM Theorem

In the following theorem for two-layer network with n neurons in the first layer,
Fx, and p neurons in the second layer, Fy, x; represents the i-th neuron state of the Fx
layer, S;(€) is the éctivation function of the i-th neuron of the F'x layer, a;(x;) and b;(z;)
are typical functions for the i-th neuron of the Fx layer, y; represents the j-th neuron
state of the Fy layer, S;(§) is the activation function of the | j-th neuron of the Fy layer,
cj(z;) and d;(x;) are typical functions for the j-th neuron of the Fy layer and each My

is the adaptive (2.64) weight connection between the ¢-th neuron of the F'x layer and the

j-th neuron of the Fy layer.



In every two layer dynamic system of the form

'% = ai(z)[ me (3.31)
and
CZ? = ¢5(y5)[d;(z5) me B (3.32)
with Hebbian learning rule
d:Zij = —my; + Si(2;)S;(z;) | (3.33)

suchthat1 <i<n,1 <j<pand

1. the functions b;(z) and d;(z) are continuous for all z

2. the functions a;(z) and ¢;(z) > 0 are continuous for all =

3. the functions S;(z) and S;(z) > 0 for all z

4. the-functions S;(z) and S;(z) are differentiable and nondecreasing for all z

5. the above (3.31), (3.32) equations describe the time activation of the layer F'x € R"
and Fy € RP, respectively

6. the dynamic equation (3.33) of m;; describes the changes in the interconnection

strengths between F'y and Fy PEs when M € R™ x RP

the function

n P n z, |
=3 Y miSiw)Siw) + Y. [ siegn©de; (334 j
1=1j=1 =1

p Yy
+Z/0 SCG (GG + 1Yoy

j=1 11_7 1

(3.35)
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. isa Li~apunov function and the system is globally stable.

The proof can be found in [4], [27], [21]. For all these systems there is a reciprocal

equilibrium relationship. The system is at equilibrium (%‘—t’- = 0) if and only if

do; . dy; o odmy
(G =00 =0;"=0 | (3.36)

for all 7 and 4, and the stability is achieved in exponential time [4]. As a point of interest,
the ABAM theorem [4] can be placed in an algebraic framework of Cohen-Grossberg-

Kosko theorem, [24], and vice versa [4].




Chapter 4

Generélization in Recurrent Neural Networks

4.1 Continuous Associative Memories

The original presentation begins by recalling the Hopfield and BAM models [24],
[4] and defining the multilayer associative memory equations. A system of n-p coupled
first order differential equations defines an additive activation model that interconnects

layers Fx and Fy through the constant synapﬁc matrices M and M7T:

dIL‘.,; ) ' P

o o writ > Si(y)me + I (4.1)
i=1

Wi — by + 3 Silw)myg + 7 42

— = sy + X Silm)ma + J; 4.2)

i=1
where 1 <7 < n,1 < j < p. This model is called “additive” because the total activation

received by a neuron

> Si(ys)mi;

__7:1

has an additive effect on the future excitation of that neuron. The additive autoassociative
F; = F, model, the Hopfield model, corresponds to a system of n coupled first - order

differential equations:

d.’L‘i

E = —a;xT; + Z Sj(mj)wij + Ii (43)

=1
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where 1 < ¢ < n. The multiplicative model is defined as

% = —a;(z)[bi(z:) — jZi:lSj(yj)mij] (4.4)
% =G (yj)[dj(yj) — i Si(xi)mij] 4.5)

where 1 < i < n,1 < j < p. This model is called “multiplicative” because the total
activation received by a neuron
P
> Si(ys)mi
j=1
is multiplied by a;(z;) in order to compute the future excitation of that neuron. The

terms are explained in section 2.20. The multiplicative autoassociative £, = F, model

corresponds to a system of n coupled first - order differential equations:

CZU; —a;(z;)[bi(z;) Z (z5)wi] (4.6)

where 1 < 4 < n. In [24], Cohen and Grossberg proved that if the system (4.6) satisfies
the conditions of’ w;j = wy;wy > 0 (symmetric, nonnegative diagonal weights), S;()
is a differentiable-, nonnegativé, nondecreasing function, a;() and b;() are continuous
functions and a; (a:) ‘ 2 0, ;hen there is-a“Liapunov function, V, bounded below, that

satisfies

dtV( z) < 4.7

on the system evolution trajectory discussed in section 3.14. The system (4.3) or (4.6)
corresponds to a one - layer symmetric autoassociative case. It includes just the intra-

connections between the neurons from the same layer. The BAM insists on the inter-
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connection between neurons from different layers. One layer activates the other and so
on.

Autoassociative and heteroassociative were defined in sections 2.19 and 2.20.
Mathematically heteroassociative neural networks can be generalized to work with the
cartesian product R,,, X R,, X R,,..., where ni, ng, ns... are the numbers of neurons in
the first layer, second layer, third layer, and so on..., for an arbitrary number of layers.
Autoassociative networks work with the space R, 4ny4ns..., Where ny +ng +ng + ... 1s
the number of neurons in a associative network as will be discussed in section 4.4. The
mathematical equations are homologous, but the ranges are different. Kosko [4] points
out that the Cohen-Grossberg Theorem [Grossberg, 1988], [24], ensures the global sta-
bility of (4.3) and (4.6) which corresponds (in ‘thle'selnse that R,, X R,, is isomorphic
with R, 1p,, SO Jthey' keep the traésformation proprieties) to the continuous BAM the-
orem for the nonadaptive heteroassociative networks. Also it represents a special case
of the ABAM and RABAM [4], [27]. Mathématically there is an isomorphism between
the heteroassociative multilayer network and an autoassociative network with one layer
composed of all the layers of the heteroassociative network. It can be proved mathemati-
cally that a BAM has an isomorphic relationship with an autoassociative recurrent neural
network where the weights of neurons’ intraconnections of the same layer are zero [4].
The main block diagonal in the connection matrix of the autoassociative network is zero.
All BAM demonstrations can be réduced to autoassociatve network correspondents. The

generalization can be made for continuous (chapter 4) and discrete (chapter 5) systems.

The following multilayer generalized models are initiated.
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4.2 Definition of the N _-'Layer Associative Memory

Given N layers, every neuron state is dependent on the activations of the neurons
from the other layers. Each neuron has a co‘nnectidn to itself but not to any other neurons
in the same layer. Every two layers are connected exactly as in a BAM. Every neuron
from one layer receives the activated signals from all other neurons from other layers
but not its own layer. The mathematical equations can be written as follows,

The Additive Activation Model

it _

= = —Afzl + Z ZS Dws + IF (4.8)

I#kl=1j=1
where1 <i<nf1<k<N

The Multiplicative Activation Model

dzk PN S Iy, ki
e —A; (z7)[Bi(27) — l;%_ljgsj(%)%] (4.9)

where 1 < i < n*,1 < k < N (the notation W* = (WH)T represents the connection
between the layers [ and k, and vice versa). The following notations are used: the upper
index k is used for everything that belongs to the layer k£, where 1 < k < V; ¢ corre-
sponds to the i-th neuron, (1 < ¢ < ny), from the layer & with nj neurons; j corresponds
to the j-th neuron, (1 < j < n;), from the layer [ which has n; neurons, w ! is the weight
of connection between two neurons from different layers, which in this notation denotes
the weight of connection between the neuron ¢-th of the layer k£ and the j-th neuron of
the layer [ (when k # [ for heteroassociative model); A¥ are the coefficients from the

additive model with different values corresponding to each neuron i in layer k; A¥(z¥)
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and B¥(z¥) are the multiplicative model functions with different forms corresponding
to the ¢-th neuron from layer k.

These generalized models are difficult to understand, so some examples are pro-
vided for N=2 and 1\1=3. The additive ;ystem given by the equations (4.1) and (4.2) can

be written for two layers as

d“"l 1.1 12 1
= — Az, —}—ZS w + I;

dt o

o et 3 et +

where 1 < i < n¥ 1 < k < 2, as references [2], [4].

The multiplicative system given by the equations (4.4) and (4.5) can be written for two

layers as
d 1
L= Al ZS
dz?
- = = —A}(z?)[B}(z? ZS

where 1 < i < nF,1 < k < 2 and ni and ny, are the number of neurons in the two layers.
This was explaned in section 2.20. For N=3, the additive and multiplicative model can
" be written as follows: A system of n; + ny + ng coupled first - order differential
equations defines the additive activation model that interconnects layers Fx1, Fx2 and
Fxs through constant synaptic matrices (by notation W* = (W*))T which represent
the connegtion between the layers [ and k).

The Additive Model for three-layers

dxt
S glale Y zs Ll + I}
dt : I#1,l=1j=
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d 2

Zi —A2x2+ Z ES w”—l—[2

dt z;e2z 1j=1

dm 3.3 3l 3
—A¥z? + z ZS ywi + I

de 1£3,1=1 =1

where1 <i<nk 1<k<3

The Multiplicative Model for three layers

dz; 1.1\ Rl/A1 A Iy, 1

dtz :—Ai(xi)[Bi(xz‘)._ Z ZSj(x Jw;
z;éu 14=1

da:2

o REBE - Y YSe
z;ﬁzz 1j=1

da:
1£3,1=1 j=1

where 1 < i < n*, 1 < k < 3 and nq, ny, ng are the neuron numbers of the three layers.
The model is represented in Fig.4.1.

The case Fiu = F2 = Fp3 is identiﬁed with an autoassociative network. One of
the following cases, Fx‘l = Fp or Fpu = Fys or Fiis = F2, is identified as a BAM

network.

4.3 Theorems for N - Layer Associative Memory

Theorem 4.1 (The Continuous N Layer Associative Memory Theorem - for Addi-
tive Model).

Every additive dynamic system of the form

k
G gk oy Z ZS Lywht 4 I (4.10)

dt I#k,l=1j=1

where 1 <i<nk 1<k<Nand

kl
iy

a. the matrices w;; = w X (by the notation convention and by the chosen heteroassocia-




War = {wi}
G = —AEDIBHY) — Theaim il Si(ah)wl]

W23 = {wfj‘g

W31 = {w%l W32 = {'U)Ef

da? '
T = — A (23)[B}(z?) - g i1 L Sj(m§)w?} .

Three Layer Recurrent Neural _Network

Fig.4.1. Three Layer Recurrent Neural Network - Multiplicative Model

53
dax} n
Zi=—Al(z})[B}(z}) — Z{gﬂ,l:l Y it1 S (z_ly)wlljl
W13 _ {w}f’ 12 { ]
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tive model)
b. the functions S;(&) are bounded &o’ﬁtinuous functions
c. the functions S;(€) are differentiable and nondecreasing
e. the above (4.10) equations descfibe the time activation of the layer Fxr € R" for
every layer, k < N |
[ it is assumed the boundedness of the integrals used in the below Liapunov function
(for example z¥ > 0 assures the boundedness of the integrals used )

then the function

1 N ng Ny N ng
V=3 S S whls(at +ZZA’“/ 6,)0:d6; (4.11)
2k=11c;él, =11i=1j=1 k=1i=1
N ng
=22 8k
k=11=1

is a Liapunov system energy function and the system is globally stable.

Proof. The proof can be done in two ways. One is based on Liapunov theorem and the
other is based on the isomorphic equivalence between heteroassociative and autoasso-
ciative networks discussed in section 4.4. The first proof is given below starting with the

boundedness of the function

ng Ny N 7y

vl S S e (@) + >3 4k [7 siene.de,
242 1k£ll=1i=1 j=1 k=1i=1 0
N ng
— 2 28N
k=1i=1

The boundedness of the function follows from the boundedness of the signal functions

S; stated in assumption (b) and from the hypothesis (f) of the theorem regarding the
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boundedness of the iﬁ'tegrals used (for éxample a:f > 0 assures the boundedness of
the integrals used). The boundednééé éf the integrél terms requires additional technical
’ ‘hypotheses to avoid pgfhologies. Fc;r the thesis’ purp‘ose; the boundedness of the integral

terms is assumed. For every term in part
N ng . ( '
ZZA’“/ 6.)6:d0, . (@12)

k= 11—

the above integral sum is low bounded as well as.

1 N N nEg n 1 N N ng
=520 2 2 wiSi(ah)Si(a) 2 -5 32373 3 ] (4.13)
k=1 k#l1=114=1 j=1 k=11=1 i=1 ksl,j=1 r
and
N ng N .nk
—EZS DI > =3 3 I (4.14)
k=11i=1 k=11i=1

By time-differentiating V, the time-derivative operator is distributed across the right-
hand side of the above function. Then each term can be time-differentiated separately.

The chain rule of differentiation then gives

Fz;(t — 4.15
dt (@il )) dz; dt *15)
d (= dx
= = — 4.16
7 fwdu= () - @19
The term 5] (:vz) 4% multiplies each additive term of the layer k.-
N N ng Ny Kl / k . .
— >N Z wii S (x tz S;(z?) | 4.17)
k=1k#£ll=1i=1 j=
N ng
7 I
LS
N ng

_ 1 z k
IPIR(CIEE:

=1i=1




E:,f‘ggs'(xz)d—;d—; (R
but S’(z*) > 0, which concludes | V. <. After computing denvatlves and grouping,
the proof reaches the conclusxon vV < 0 which proves that Visa Llapunov function -
so the .systém is gioi)ally stéBlé. qu the above system there is a reciprocal equilibrium

relationship. The system is at équilibriufn

if and only if
dz*
’ L= 4.19

for all &, 7 and the stability is achieved in exponential time. As a point of interest, the the-

orem can be placed in an algebraic framework of the Cohen-Grossberg-Kosko theorem

[4].

Theorem 4.2 (The Continuous N Layer Associative Memory Theorem-for Multi-
plicative Model).

 Every multiplicative dynamic system of the form

i al:z:’c
dt

= —Af (zf) B (zk) — Z ZS(mJ)w : (4.20)

Ik =1 j=1
where 1 <i<nk 1<k< N and

a. the matrices w“

;’f (by the notation convention and by the chosen heteroassocia-
tive model)

b. the functions S;(£) are bounded continuous functions

c. the functions S;(§) are differentiable and nondecreasing
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;i. the equations (4.20) describe the lfime activation of the layer Fxr € R" for every k
layer, k < N
e. the functions A¥(z¥) and Bk( ) a‘re continuous for all 1 < i < ny, and1 < k < N,
and A¥() > 0 (they are typical multiplicative functions. They correspond to the i-th
neuron from layer k)
_ f. it is assumed the boundedness of the integrals used in the Liapunov function below
(The boundedness of the integral térms requires‘ additional technical hypotheses to avoid
pathologies, as Cohen and Grossberg[1983] dz:scuss in [24])

* then the function

1N ne N ng
52 Z SN wfi Sk +ZZ/ S;(6;)BE(©;)dO; (4.21)
k=1k#ll=14=1j=1 k=1i=1

is a Liapunov system energy function and the system is globally stable.

Proof. The proof is similar to the above (Theorem 4.1) proof. The.boundedness of the
above function followg from the boundédness of the signal functions S; stated in as-
sumption (b) and from hypothesis (f) regardinglthe boundedness of the integrals used.
The boundedness of the integral terms requires additional technical hypotheses to avoid
pathologies, as Cohen and Grossberg [1983] discuss in [24]. For the thesis’ purpdse,
the boundedness of the integral terms is assumed. By time-differentiating V, the time-
derivative operator is distributed across the right-hand side of the above function. Then

each term can be time- dlfferentlated separately by computmg and grouping after

S!( 1) dt ’ISO

N ng ]g N ]

dt = Si(a; ; [Bfah) — S 3 Sj‘(:c’)wfj] (422)

k=1i=1 I#k,1=1 j=1
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dV -5 /( k SRS Ly, ki12
= =2 2 SiEDA DB =) — X2 3 Sila)wy (4.23)
k=1i=1 I#k,l=1j=1

After computing the time differentiation and grouping, the conclusion

av
— <0
dt —

proves that V' is a Liépunov function so the system is globally stable. For the above

system there is a reciprocal equilibrium relationship. The system is at equilibrium

av

(=0
if and only if
' dz? '
L= 24

for all k, ¢ and the stability is achieved in exponential time. As a point of interest, the the-

orem can be placed in an algebraic framework of the Cohen-Grossberg-Kosko theorem

(4]

4.4 The Relationship Between Recurrent Neural Networks

As described above, equations (4.8) or (4.9) equations of the heteroassociative N
layer network can be seen as a one layer, autoassociative network. We can consider it as
a virtual layer which contains all the N layers, where its size is the sum of all the neurons

from all the N layers of the heteroassociative network, n; + ns + ... + ny. This autoas-

sociative network has a matrix of connections between neurons formed from the het-

eroassociative W* matrices. This construction follows the convention W* = (W*)T
and W** = (, The connection matrix of the autoassociative network is symmetric with

the block main diagonal zero. The following lemma appears necessary:
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Lemma 1. There is a‘relatz:onship between the two above described multilayer recur-
rent neural networks: any heteroassociative network described by the equations (4.8) or
(4.9) has a corresponding one layer, autoassociative network (the virtual layer which
contains all the N layers of the hete}oassociative recurrent neural network) and vice

versa.

Motivation

The difference between autoassociative and heteroassociative networks is given by the
network architecture highlighted in the multilayer case. Of course, mathematically the
heteroassociative neural networks work with the Cartesian product R,, X R,, X Rp,...,
where ny, ny, n3... are the numbers of neurons in the first layer, second layer, third layer
and so on..., but the autoassociative neural networks work with the space R, {n,+ns...,
where n; + ny + 13 + ... are the numbers of neurons in the autoassociative network.
It is known that R,, X R,, X R,,.... is isomorphic with R, {n,n,..., SO there is an
isomorphism equivalent relationship between autoassociative and heteroassociative net-
works. The autoassociative network has the matrix of connections between neurons
formed by the heteroassociative W* matriées. By construction there is the convention
Wk = (W*)T and W** = 0. The connection matrix of the aﬁtoassociative netwo.rk is
symmetric with the block main diagonal zero. By means of this lemma, there is a second
way to prove the above theorems based on the Cohen-Grossberg theorems [24], and vice

versa.
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A .'Ch‘aptér 5.
Discreté Case

.51 General Additive Discréte Memory Model

‘Discrete activation models for recurrent neural networks have signal activation

functions that take the form of threshold functions
(o
1,if,z(t+1)>T

| 5($(t+‘1)),F.J‘S(:'v(t)),if,z(t+1)=T.. | . SRNCE

| 'Lo,’z‘f, st +1)<T

* for an arbitrary real-valued tﬁrgshol_d 'I‘.Q.T‘he .i_n:dex .tfindica‘tles the discrete time step and
--:r(t), :r,(t + ‘1) are the states att.tiﬂme%ti‘,an_q i+ 1. The;thré.asl_)pld function allows one to
model c‘omplcxl asynchronous statgf:qlllang_jc‘pat.tgm‘.s :Ia.s ’Qefbined rin Kc%sko 41. Differen.t
neurons can rar;dom]y choose any tirhe= 'whethér to‘ compare their current activation to
their threshold 6r not. ‘NOt é]] the neurpnls frém the same layer are activated in the ‘saI'ne
time: In 'BAM fnbdiei‘ any of the 2‘“" éﬁt;gets of f’x ncurons,'or the 27 sﬁbsets of Fy
neurons, can decide fo change state. :Ral.]dom]y ééch neur(;n mayvdecide vx;het'her‘ to 
check the thresho}d conditions. Generally ‘the network béhaves: as a vector stochastic
p;oéess. Kosko [é] deﬁﬁes s‘ynchr'o-nous étate chaﬁge of a BAM as a deterministic update
of an entire layer of neurons at 'a time. Then all the'neurqns from é layer are updated

synchronously, they éynchrondu'sly choose to compare their current activation to their
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threshold. Another case is simple asynchrony defined in [4] as the case when only one
neuron makes a stare-change decision at a time. In general state-change decisions are
subset asynchronous, one subset of neurons per layer makes state-change decisions at
a time. When the subset has just one neuron we have the simple asynchrony and when
the set is all the neurons of the layer we Have synchronous state change. As defined
in [4] a BAM lsystern (Fx, Fy, M ) is bidirectionally stable if all inputs converge to
fixed-point equilibria. .Fumherlbiairectional stability appears as an example of global
or absolute stability and aé a dynénﬁc equiliBrium. The signal information flows back
and forth in a bidirectional fixed point. Kosko describes the bidirectional equilibrium
as a resonant state. Grossberg [1982] alternatively référs to this joint equilibration of
neurons and synapses as adaptive resonance. Kosko proved [4] that every matrix M
is bidirectionally sFéble for synchronous or asynchronous state change, for the discrete
additive BAM‘with threshold signal functions, governed by the difference equations

P
zi(t+1) = ; Si(y;(8)yma; + I, (5.2)
- n
yi(t+1) = ; Si(z:(8))mij + J;
where for two layer neural network with n neurons in the first layer, Fx and p neurons in
the second layer Fy, z;(t + 1), z;(t) are the states of i-th neuron of the layer Fix at time
t+1andt, y;(t+1),y;(t) aré the states of j-th neuron of the layer Fy at time ¢+ 1 and

t, m;; are the weights of connection between i-th neuron of layer Fx and j-th neuron of -

layer Fy. The above theorem can be generalized for any discrete neural system of the
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(5.3)

(54)

for any connection matrix M. This model is inspired by the continuous additive model

discussed in chapter 4.

Theorem 5.1 ( General Additive Discrete BAM Theorem).
Given a discrete system of n+ p coupled equations which defines the additive activation

model that interconnects layers Fy and F, through the constant synaptic matrices M

and M7 :
.’L‘i(t -+ 1) = —A,(CEZ(t)) + i Sj(yj(t))mij + I; (5.5)
(4 1) = =By (9) + 30 Si(ax(0)mg + 66)

where S;() are the threshold activation functions described by

’
Lif,z(t+1)>U

Szt +1)) =1 8(z(t),if,z(t+1)=U (5.7)

LO, if, z(t+1) < U.
and where U ‘is the vector threshold for X and 'V is the vector threshold for Y, then the
system is bidirectionally stable, for synchronous or asynchronous state changes, for all

matrices M (under the assumption of some boundedness conditions).

Proof. This theorem is a particular case of Theorem 5.2, for N=2.
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5.2 Definition of Discrete N - Layer Associative Memory

. We now consider the following multilayer generalized discrete model. A discrete
N layer associative memory, recurrent neural network can be described:

. Given N layers, every neuron S$tate is deperide_nt on the activations of the neurons

. from the other layer. Each heuro_n h‘asl a connection to itself but not to any other neurons

in the same layer:' Every ‘two‘l'ayers -are connected exaétly as in BAM. Every neuron

from one layer receives the activated signals of other neurons from other layers but not

its own layer. The mathematical eqﬁafions can be described as follows:

The Additive Activation _Model‘

sh(t+1) = —A’“ )+ Z ZS £))w + IF (5.8)

Ik l=1 j=1

where ¢ is the discrete time; the system state at time ¢ + 1, (¢ + 1).is computed based

on the parameters of the system at time ¢; the upper index £ is used for the layer £,

where 1 < k < N; 4 corresponds to the i-th neuron of layer k, which has n; neurons,

1<:i< nk);. J correspbnds to the j’-fh neuron of‘ the layer [, which has n; neurons,

(1< | Jj =< ”z)_; zk (t) i"s‘”Fhe' state ofz-th neuron fro{m layer £ at tim'e; t, wfjl are the

_ connection weights between two neurons from different layers, which in this notation

T

. denotes the weight of connection befWeen,the i-th neuron of layer k and the j-th neliron

of layer ! (when k # I for the' heteroassociative model); Ak (2k(t)) are the functions

which have different forms cor.féspondingl to the 4-th neuron from layer k, aﬁd S() are

_threshoid function as defined in (5.1).»As all‘ remark it is necessary to point out that in ‘
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(5.8) the A¥(z%(t)) are functions rather than coefficients as in the continuous model;

this makes the above model distinct.

53 Theorem for Discrete N - Layer Associative Memory

Theorem 5.2 (The Discrete N Layer Associative Memory Theorem-for Additive
Model).

Every discrete additive system of the form

xf(t+1)=—A’° ) + Z ZS @) wef + IF - (5.9)
l#k,l=1j=
where

a. the matrices wk’

é’f ( by the notation convention qnd by the chosen heteroassocia-
tive model)

b. the functions S;(£) are thieshold signal ﬁmctions as described in (5.1), with U} the
threshold of the neuron i-th from thé.layer k

c. the equations (5.9) describe the time activation of every k layer, Fxx € R™, k < N
d. it is assumed the boundedness of the second sum of the below Liapunov function (The
boundedness of the second sum in (5.10) requires additional technical hypbtheses to

avoid pathologies)

then the function .

N nE Ny

:_52 IPHWLEEOLICED) (5.10)

k=1 k#l,l=11i=1 j=

N'n.k

+ Z ZZA’“ 1)) (Si(z¥(q) — Si(z¥(g — 1))

=1l1i=1q=



— 53550 ~u)

k=11i=1

is a Liapunov system energy function and the system is globally stable, for every class

of matrices W which verifies (a).

Proof. The proof uses the bounded Liapunov function given above. The boundedness
of the function V follows from the boundedness of the threshold signal functions S; and
also from the hypothesis made at point d regarding the boundedness of the sum used.
The boundedness of the second sum in (5.10) requires additional technical hypotheses to
avoid pathologies. For the thesis’ purpose, the second sum in (5.10) is assumed bounded.

Every term is analyzed:
t
> AL (Si(#{(®) = Si(=d M (1)l (0) (5.11)

The above integral sum is assumed low bounded.

N nEg N y 1 N N ng ny
—52 > 2D wSi((@)Si(z;(6) > — 533 Ml 6.12)
k=1k#l,l=11i=1j=1 k=11=1i=1 k#l,j=
N ng N nyg
-3 Y Sz ~ Uk > - ZZ |IF — UF|| (5.13)
k=1 1i=1 k=1 i=1

We assume at least one signal neuron change, activation, from time % to time k41, which
means there is ¢ for which AS;(z;) # 0. This allows us to model the synchronous, simple
asynchronous, and subset asynchronous changes. Only the neurons from the same layer
can be active, changing the state ¢ to ¢ + 1. The variation of the function V, AV =
V(t+ 1) — V(¢) differs from zero because of the changes in one of the layers. Suppose

that the change occurs only in layer Fx,, the layer f is activated, 1 < f < N, then the




above function can be written in the following way:

N nE ny

V=23 3 S s )5 k)

k=1 k#ll=1i=1 j=1

N ng t

+3° 2> Al(af (g = 1))(Si(ei(g) — Si(af(g — 1)

k=1i=1q=1

Nnk

_ZZS Uik)

k=1i=1

N

verp=l 3 ¥ ’zw o (4 1)) (a5 2)

F#£LI=1 active,layer, f,i=1 j=

Y Y S S ulsat)S (k)

k=1,kf bl fLI=1i=1 j=1

active,layer, f,i=1 g=1

Ny t+1

bSO e - 1)(Siehg) — Silab(g— 1)

k£ fk=1i=1 g=1

-N Nk

303 S(ak(t + 1)k - UF)

k=11i=1

We wrote above the general case when the layer f is activated, 1 < f < N.

AV == 3 33 wl(Sial(E+1)) - Sl ©)S;( )

Y Al + 1) - S 0)

active,layer, f,i=1 qg=1

—Z Sl (t+1)) - S @) I - UF)

66

(5.14)

(5.15)

(5.16)
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nf

AV = =Y [, (6 +1) - S @E e+ ) - V) <0 61

=1

along trajectories. It will be proven that all the terms of the above sum are nonpositive.

We need to check only the cases (forevery i, 1 <1 < ny):

First, AS;(z;) > 0, then
ASi(z;) =St —SF=1-0 (5.18)
From the threshold law this implies z; (t +1) > Uif , s0 the above product is

ASi(zl @) (! (t+1) = U/) > 0

Second, suppose AS;(z;) < 0, then
ASy(z;) =St —SF=0-1 (5.19)
From the threshold law this implies m{ t+1) < Uif , 80 the above product is positive

AS;i()(

)

IIF—H — Uz) >0

&)

When AS;(z;) = 0 this means the neuron i-th of the layer f is not active. Every activa-
tion (the state change from ¢ to £+ 1) can be considered analogously. This example is for
the threshold signal functions described in (5.1) for any 2"/ — 1 possible subsets of neu-
rons from layer Fix, which activate, or change state, at time ¢ + 1. The ébove argument
was made for an arbitrary layer f. The same argument produces the proof for the case
in which the activation is from any‘ other layer of the N - layer network. So AV < 0 for
every state change, which proves that the above function is a Liapunov function so the

system is globally stable.



Chapter- 6

_Conclusions and Recommendations

«‘Th‘is‘ thesis develops a new point of view about multilayer recurrent neural net-

- works. The mu]tilayef recurrent neural networks are mathematically described by the

dynénﬁc equations found in chap‘tetrsv4 and 5. 'i‘he thésis states and proves a qhajn
;)f 6ﬂginal (heofems' conce’fning ;nultiléyer neural ‘nthorks fpr different architectures.
Historically, thé idea of recvurre‘nt‘n.eura] netvézork appeared first with Hopfield’s single
additivé architecture [16]'. Around’1985w , Coﬁeh and Grossberg developled Fhe multiplica-

tive single layer structure known as the Grossberg model [24] and proved the Cohen-

Grossberg Theorem regarding global stability. The next step was made by Kosko with -

his BAM model as well as with a sét of siudies of two layer recurrent neural networks.
This thesis intrqduées and develops the oriéinal study of the N - layer recurrent neural
netw‘qus from different poin_t:s pf \{jew.l'. ~

~~ Some obsgwaﬁions regardiné -tileb N - layer structure are as follows: Section 4.4
proves the isorﬁorphic relagibnship petWeen'o,n'e layer and N ) layer peural ﬂetwbrks.
This lealds to folléwing questior‘lz Why are we studying N - layer neural netwprks? The
differentiation of N -layers or N"‘-... groups of 41’1'epzurons allows adaptive and highly cor-
related structures ‘which aré not équivaier_it ;o'éingle“layér, autoassociative models. The

differentiation by layers is very important in adaptive and discrete structures because

1



69
the neurons from the same layer are not modifying each other; only a neuron from a
different layer can affect a given neuron’s activation state. Theorems from chapters 4
and 5 prove different system global stabilities based on the system Liapunov energy
function. However they do not show the exact convergent solutions or the stable points.
These theorems only prove the global stability of the given systems. It is just a beginning
of a long study which can be developed based on N - layer recurrent neural networks.
This subject will be investigated in future work. Intuitively, these dynamic systems have

analogies to the short-term and long-term memories of biological neural networks:

1. In N layer recurrent neural networks short term memory is represented by the acti-

vation state vector X* of each layer k,

2. Long term memory is represented by the matrix of synapses, W.

Some activation patterns may represent auditory, olfactory, tactile or visual pat-
terns as Kosko speculated in [4]. As exemplified when learning poetry, it is hard to
remember after a few days all the words completely, although some fragments are still
remembered. This might conceivably be modelled by updated activation patterns of neu-
ral structure competing and evolving, conform to their dynamics. Further, dynanﬁc neu-
ral systems could conceivably model the process of thought, or human intelligence [4].
The N layer recurrent neural generalized model could conceivably be applied in this way
to the development of models of biological neural networks. Another observation is that
all the neuronal dynamic systems analyzed in chapters 4 and 5 do not include time as
an individual variable. As a result, all of these models can be classified as autonomous

dynamic systems. It is known that autonomous systems are usually easier to analyze



than nonautonomus systems.

All the studies presented in chapters 4 and 5 _pfove global stability. Global sta-
bility means converéehce to fixed 'poi;l;cs fér all iniﬁal ;:onditions and parameters. It is
important to mention that global stability.is-a joint equilibrium of the neuronal activa-
tion and synaptic dynamics. As it is known that neural activation changes faster than
synaptic weights [4] this means a reciprocal balance betweén' the two dynamics. The
stabilization at the neuronal level is faster than at the synaptic level; neuronal dynamic
activations stabilizé faster than synaptic learning. This leads to a stability dilemma in
most adaptive recurrent structures. The neuronal activation is based on activity patterns
while the synaptic sequence weights learn from themself. Learning destabilizes the neu-
ral activation by moving the state in the global stability space.

There is a relationship between additive and multiplicative N layer recurrent neural
networks. If in the additive model the constant terms, If are zero, it becomes a particular
case of the multiplicative model obtained by taking A¥(z¥) = 1 and BF(zF) = bFzF. So
the symmetry of results and statements for both cases is motivated. However the proofs
are based on different Liapunov functions.

The boundedness proofs are based on well defined hypotheses (e.g. the si gnal tobe
positive). An important topic for future study is the extension of the above theorems to
stochastic neural processing under noise. This thesis establishes many theoretical results
for continuous énd discrete multilayer recurrent neural networks, for different architec-

tures. Other topics that need to be investigated are random adaptive learning laws. This
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study also provides opportunities to further develop Hopfield’s optimization of recurrent

neural networks.
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