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Abstract

In 1993, Leonard Adleman showed that synthetic strands of deoxyribonucleic acid

(DNA) can be made to compute in test tube reactions and thus invented the DNA

computer. The DNA computer scales with remarkable efficiency when used to solve

computationally hard problems. Here, we show that the DNA computer can be recast

using the common yeast Sacchromyces cerevisiae. The yeast computer retains the efii-

ciency of Aldeman's DNA computer but is much easier and far less costly to implement.
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Chapter 1

Introduction

1.1 Background

Computer scientists and engineers are now looking beyond semiconductor-based solid-

state microelectronics and searching for new, more powerful ways of doing computations.

Some scientists are trying to build logic circuitry out of individual organic molecules

[RTOO]. Others are taking things even further and trying to do computations using elec

trons as bits [BCLM98]. The latter approach has particular promise because electrons

can apparently exist in two states at once and thus represent 1 and 0 simultaneously.

This quantum effect can be exploited to achieve (theoretically at least) blazing fast

computations.

But theoretical promise is one thing, concrete realization is another. Only the crud

est sorts of molecular circuitry have been built so far and quantum computing is still

just a theoretical possibility.



1.2 Adleman's DNA computer

In 1993, however, another alternative was conceived. It was the brain-child of Leonard

Aldeman, then a professor of computer science at the University of Southern California

(use). As he tells it [Adl98], he decided to take a break from computer science and

spend some time in a biology laboratory learning the nuts and bolts of how to work

with deoxyribonucleic acid-DNA. Ultimately, it was his intention to study the molecular

biology of HIV, the virus that causes AIDS. Instead, late one night while nodding off

to sleep, he had an epiphany-why not make a computer out of DNA? In other words, a

DNA computer.

He was inspired by two facts [Adl98]. First, DNA chemistry follows a strict set of

rules. The most famous of these is the Watson-Crick pairing rule which can be stated as

follows: a piece of single-stranded DNA will form a stable double-helix when presented

with its complement (see Appendix A for explanations of biological terms). Prom such

simple rules, Adleman noted, computations can be done. Second, he was impressed with

the fact that DNA segments can be artificially synthesized and manipulated almost at

will in test tubes. With such capability, he reasoned, a DNA computer can actually be

built.

What he did next was almost diametrically opposite to what biologists normally do

(but very much in keeping with what theoretical computer scientists do) [Adl94]. Instead

of looking at naturally occurring pieces of DNA and trying to divine their information

content (e.g., the Human Genome Project), he made up his own information content and



logically projected it onto DNA. In other words, he realized that computational problems

can be encoded as strands of synthetic DNA and that these strands can be operated

upon in a logically meaningful way using the modern-day tools of molecular biology. To

prove his point, he went into the lab and did a DNA-based computation. Specifically,

he used combinatorial chemistry to synthesize a mixture of DNA strands that logically

represented all possible paths through seven nodes and then used the modern tools of

molecular biology to winnow through the mixture to extract the strands (i.e., the paths)

that qualified as Hamiltonian. The entire experiment took him seven days-a long time

considering that a modern electronic problem could solve the problem in a nanosecond.

But it worked-he managed to extract the strands representing correct answers.

While the DNA computer proved to be disappointingly slow, Adleman realized that

it could perform a huge number of instructions simultaneously. In other words, it had

the potential of being massively parallel. His reasoning was as follows. DNA strands

are molecules and hence very small. A test-tube can hold trillions of individual strands.

Likewise, the enzymes used to operate on DNA are very small as well. Consequently,

its possible to operate on a test-tube's worth of DNA all at once by simply adding the

appropriate enzymes. If each of these strands in this hypothetical test tube has a unique

sequence and thus logically represents a different guess to a particular problem, then

what we have in effect is a computer executing trillions of instructions simultaneously.

In other words, a massively parallel computer unmatched by anything now currently

available. And although the DNA computer may take a long time to complete an



operation, it compensates in effect by executing trillions of instructions per operation.

This insight ignited an explosion of interest. Today, there are a dozen research groups,

both in industry and academe, trying to speed up DNA operations to exploit this

inherent parallelism exhibited by the DNA computer. The hope is that if the operations

can be sped up sufficiently a nexus will be reached that will propel DNA computers into

contention with today's most powerful supercomputers.

1.3 Motivation

Herein, a different tack was taken. Instead of trying to speed up DNA operations, an en

tirely new biological computer was developed, one which retains much of the parallelism

of Adleman's DNA computer but which is easier and far less costly to implement. The

encoding utilizes Sacchromyces cerevisiae, a common yeast strain. The yeast computer

doesn't require costly DNA synthesizers or reagents and doesn't involve labor-intensive

chemical extractions or analysis. Rather, the yeast computer relies on yeast to do the

heavy-lifting required in the computations, not the human operator. As a consequence,

the yeast computer serves as a prototypical example of how autonomous biological or

ganisms can be used to compute and underscores some of the advantages inherent in

this approach.



Chapter 2

A Novel Encoding for a Biological

Computer

2.1 Introduction

Adleman used DNA as a medium for computation. DNA has a lot of features which

recommend it. First of all, it's a very simple molecule. Whether very long or very

short, it's always a linear array of four nucleotides (A, G, C, T) arranged one after the

other in some sequence. These nucleotides can be thought of as an alphabet and the

sequences they form can be thought of as strings conforming to the regular expression:

(A + G + C + r)*.

Without the ability to operate on these sequences, however, there would be no such

thing as a DNA computer. For the past thirty years, scientists have been developing



techniques to do just that. Today, DNA strands of any arbitrary sequence and length

can be synthesized using automated machinery. Other machines are available which

can read the nucleotide ordering of any arbitrary strand. To perform operations such as

concatenation, deletion, selection, recombination or circularization, modern-day biolo

gists have whole catalogues full of specialized enzymes they can buy to perform these

tasks.

So why bother building a yeast computer when the DNA computer is already avail

able? First of all, realize that the two aren't unrelated. Yeast have DNA. Yeast (or

any living organism for that matter) are manifestations of their genetic content-i.e.,

their DNA. The physical manifestation of a genome's content is called a phenotype. If

a yeast's phenotype can be mapped to its DNA, then its DNA can be logically operated

upon through its phenotype. Such mappings are what the science of genetics is all about.

And, as demonstrated in this thesis, it turns out that encoding problems and executing

operations at the phenotypic level is much cheaper and far easier to accomplish (and to

understand) than directly operating on the level of DNA.

Think of it this way. Encoding problems at the DNA level is like writing assem

bler code-laborious, tedious, slow and exhausting. Encoding and computing at the

phenotypic level is like writing C code-much easier and certainly more fun.

2.2 The Encoding

What follows is our phenotypic encoding:



Let any gene in the yeast genome represent a variable. If that gene is wild-type

(i.e., it does not have any mutations), then the variable it represents has a value of

1. On the other hand, if that gene harbors a mutation, then the variable it represents

has a value of 0. Furthermore, for every variable (i.e., for every gene), suppose there

is at our disposal a set of two growth conditions, one of which selects for yeast that

have the wild-type allele of that gene while the second selects for yeast harboring the

corresponding mutant allele. Now, to do a computation, encode the problem such that

its answer is a bit string(s) of length n. Obtain a mixture of 2" strains representing

all possible bit patterns (i.e., all possible solutions). Algorithmically operate on this

mixture with the different growth conditions to winnow out the strains that represent

the correct solutions to the given problem.

2.3 Getting Ready To Compute

DNA computers were first used to solve problems in boolean logic, the basis of all

modern-day computation. To illustrate the yeast computer, the same will be attempted

here. Suppose we wanted to find out all values of x and y that render the following

formula true: (x=l or y=0) and (x=0 or y=l). This is an example of a class of

boolean logic problems called satisfiability (or, SAT, for short) problems [HMUOl]. SAT

problems are notorious in computer science because they are considered intractable-i.e.,

unable to be solved in a linear number of steps.

This particular problem involves two variables. According, to the yeast encoding, it



thus requires four different strains (note: 4 = 2^) that are variously mutant or wild-

type in two different genes but are otherwise isogenic (i.e., the same). At this point, an

appropriate set of two genes has to be chosen.

2.3.1 Choosing Genes

Perusal of the literature covering yeast genetics does not reveal a bounty of candidate

genes. Considering the fact that yeast have about 6,200 genes, this seems odd. The

problem is that geneticists haven't bothered to work out both negative and positive

growth selections that specifically operate on each of these genes. Up till now, there

hasn't been much need to. Despite this, there are some prospects. URA3 and LYS2 are

two in particular.

S. cerevisiae requires the URA3 gene to make uracil, an essential component of RNA.

URA3 mutants need exogenously provided uracil in order to grow. A toxic analog of

uracil, 5-FOA, poisons yeast cells that contain the wild-type allele, leaving mutants in

the URA3 gene untouched [BLF84].

Likewise, S. cerevisiae requires the LYS2 gene to make lysine, an essential amino

acid. LYS2 mutants need exogenously provided lysine in order to grow. A toxin called

aminoadipate kills yeast cells that harbor the wild-type allele; the toxin leaves LYS2

mutants unharmed [CS79].

Given these facts, URA3 and LYS2 should function appropriately in the context

of the yeast encoding, at least theoretically. Let LYS2 represent the variable x in our

problem and let URA3 represent y. Four strains are now required which are variously

8



mutant or wild-type in these two genes. Luckily, these are already available. Their

names, genotypes and logical equivalences are shown in Table A.l.^ Note that all

figures and tables for Chapter 2 are included in Appendix A.

Given Table A.l, a matrix of growth conditions can be constructed that operate on

these strains according to their genotypes. This matrix is shown in Table A.2.^

2.3.2 Physical Implementation of the Growth Matrix

At the time Table A.2 was conceived, it was not known whether the growth conditions

it described would work in actual practice. Yeast geneticists had been working with

URA3 and LYS2 for years but never in concert. Consequently, uncertainties abounded.

For example, there was a very real fear that the presence of exogenous uracil would

ameliorate the toxic effects of aminoadipate and thus subvert the purpose of condition

A (namely, to kill off any strains wild-type for LYS2). Successful implementation of the

growth matrix was predicated on the assumption that LYS2 was indifferent to the status

of URA3 and vice versa. This was a very dangerous assumption indeed considering the

extensive network of interdependencies between genes in biological systems.

^Genotype designations in all capital letters indicate the wild-type allele. Designations in all small
case letters indicate the mutant allele. All of the mutant alleles used in this study are deletions and
hence do not revert to wild-type. Remember, a wild-type allele represents the value 1 while a mutant
allele represents the value 0. Also remember, URA3 represents the variable x while LYS2 represents the
variable y. Logical equivalence is expressed arbitrarily as an ordered pair (0 + 1)(0 + 1) where the first
number represents the value of x and the second represents the value of y.

^"+" indicates growth; indicates no growth. Condition A contains supplemental uracil, aminoad
ipate and lysine. Condition B contains uracil. Condition C contmns 5-FOA, uracil and lysine. Condition
D contains lysine. Condition E contains uracil and lysine. Exact details of their composition can be
found in Appendix B. FY4 and S288c are essentially identical except for the fact that FY4 is of the same
mating type as the rest of the strains while S288c is of the opposite type. S288c was later abandoned
for this reason.



Nonetheless, the risk was taken. First, agar plates embedded with each of the growth

conditions were made (see Appendix B for details). Using a toothpick, small numbers of

each strain were then struck out unto the plates. After three or four days of incubation

at 30 degrees Celsius, the plates were then observed for any consequent growth. The

results are shown in Figure A.l.^

First, note that we observe robust growth only where expected: only two out four

strains vigorously grow on any one plate. Which two is a function of what plate is

used. Observe, however, this effect isn't absolute. For example, note how BY4724

exhibits some residual growth on condition B plates where none is expected. This

effect is called carry-over and occurs because yeast are able to manage a few additional

rounds of multiplication using internal sources of nutrients stored up when growing

under permissive conditions. This observation is important because carry-over has the

potential of introducing errors in yeast-based computations.

As an aside, another set of plates were made whose formulations were designed to

allow for only one of the strains to grow up at a time. Such plates aren't really necessary

for the yeast computer, because their results can be achieved by simply applying two of

our original conditions in serial fashion (which two depends on which strain is ultimately

being selected for). Nevertheless, these plates would have been useful as short-cuts.

So, an attempt was made to extend the growth matrix with the additional conditions

described in Table A.3."^

®In this figure as well as in meiny of the subsequent ones, condition E is often referred to as YEPD.
This is in deference to yeast geneticists who normally see it referred to as such.

''Again, "+" indicates growth; indicates no growth. Condition F contains no supplements.

10



As shown in Figure A.2, conditions F, G and H worked as intended but condition

I failed. As suggested in [MD91], we tried systemically varying the concentration of

5-FOA against a constant amount of aminoadipate and lysine (see Figure A.3). As

shown, at relatively low concentrations of 5-FOA, good selection against S288c and

BY4700 was observed but unacceptably high levels of growth by BY4715 occurred. At

slightly higher levels of 5-FOA (8-fold), BY4715 no longer grew but neither did BY4724.

This suggested that, at best, there was an 8-fold range in which to work. This was too

narrow and the effort was abandoned. While this effort didn't contribute anything to

the work outlined in this thesis, it does underscore the vagaries one often encounters

when trying to obtain discrete behavior from biological systems.

At this point, it was decided to test whether formulating the growth conditions in

liquid medium might yield superior performance. The reasoning was that streaking yeast

by toothpick is a very uncontrolled procedure (at least when done by a human). One

can't really control the amount of inoculum, nor can the actual pressure and geometry

of the stroke be reliably reproduced. In contrast, when grown in liquid, yeast are

easier to work with. Their concentrations can be reliably determined using turbidity

measurements and micropipettors can be used to transfer exactly measured-out aliquots

from flask to flask. In view of this, we tested the matrix shown in Table A.2 in liquid.

The results can be seen in Figure A.4. Each of the pictured flasks were inoculated several

days before with 10"^ individuals of the indicated strain. As shown, no perceptible

Condition G contains 5-FOA and uracii. Condition H contains aminoadipate and lysine. Condition I
contains 5-FOA, uracii, aminoadipate and lysine.

11



carry-over was observable with the naked eye. Nor was there any indication of the

phenomenon using turbidity measurements (data not shown). Consequently, growth

in this case seems truly discrete. Of course, this probably really isn't really the case.

But the combination of using a small inoculum, a relatively large volume of liquid and

allowing for a long period of biological amplification (i.e., growth) probably swamps out

any chance of perceptible carry-over.

12



Chapter 3

Solving SAT Problems with the

Yeast Computer

3.1 Introduction

In the last chapter, a problem from boolean algebra was chosen and then reduced

to a corresponding problem in yeast genetics. Experiments were then done to make

certain that the basic operations required by the encoding were actually realizable in

the laboratory. Now, it's time to test whether it's possible to link these operations (both

in series and in parallel) to achieve a meaningful problem-solving capability.

13



3.2 Solid-Phase Computation

3.2.1 First Attempt

Figure B.l shows our first attempt to solve (x = 1 or y = 0) and (x = 0 or y = 1)

using agar plates. (Note that all figures and tables referred to in Chapter 3 are found

in Appendix B). We call this solid-phase, yeast-based computing. The cartoon shows

the operations and a stylized representation of the results. The associated photographs

show the actual results.

The algorithm goes like this. First, streak out each strain in one of the four quadrants

of a single condition E plate (labeled YEPD in the figure). All strains should grow into

macroscopic colonies and indeed they did (see corresponding photo). Now, take a dab

of each of the strains and streak them unto condition B plates, again in four quadrants.

Take another dab and streak them unto condition C plates. Wait for a couple of days

and observe for growth. Those strains that grow (i.e., the survivors) should represent

solutions that satisfy the first clause, namely (x = 1 or y = 0). Note that, in practice,

the strains denoting 11, 10 and GO grew whereas the strain representing 01 did not.

Now, take a dab from each of the survivors and plate them on condition A plates.

Take another dab and do the same on condition D plates. Observe for growth. Whichever

strains emerge represent solutions that satisfy both clauses. Note that at this point in

the algorithm the strains representative of 00 and 11 grew again whereas the strain

equivalent to 10 failed. By inspection, 00 and 11 are both correct solutions to the

original problem.
r

14



While this algorithm was successful, it seemed singularly unsatisfying. It was too

labor-intensive in the sense that the human operator seemed to be called upon to make

too many subjective judgements along the way. For example, how does the operator

score growth versus carry-over? Herein, it was done by judging robust-looking growth as

being bona fide and anemic-looking growth as being merely carry-over. Correct answers

resulted, but this approach was abandoned nonetheless.

3.2.2 Second Attempt

In an attempt to salvage the use of plates in yeast computing, we tried a technique called

replica-plating. This technique imprints the yeast from one agar plate unto another

using a velvet surface mounted on a heavy cylinder (see Figure B.2 for a picture of the

device). The procedure involves lightly pressing a virgin piece of velvet unto the first

plate to make the imprint and then pressing the imprint on the second to accomplish the

transfer, thereby making a replica. This procedure is not unlike old-fashioned printing

but instead of ink, yeast is used instead.

The use of replica-plating fundamentally changes the algorithm to compute (x = 1 or

y = 0) and (x = 0 or y = 1). Instead of toothpicking each of the strains individually, they

can now be manipulated in parallel. See Figure B.3 for the algorithm and the results. In

the figure, the directionality of the arrows indicate which plates served as templates and

which were born of the procedure. The letters indicate the growth conditions embedded

in the plate and the numbers indicate colonies selected for genotypic analysis. The

strategy can be summarized as follows. First, make a mixture of the four strains in

15



liquid in a test-tube (ensure all four strains are represented equally) and spread (or

plate, to use the parlance of geneticists) an aliquot unto a YEPD plate so that about

100 colonies develop upon incubation. The result of this step is shown as the top-most

photograph in the figure. Now, replica-plate this plate unto B, YEPD and C plates and

allow colonies to grow. The result of this is shown as the three photographs occupying

the second row of the figure. Finally, replica-plate the B plate unto A, B and YEPD

plates. Do the same with the C plate. The results are shown. Now, select colonies for

genotypic analysis. In the figure, the numbered colonies were selected. Their analysis

is shown in Figure B.4. Colonies 1 and 2 proved to be FY4 (i.e., 11). Colonies 3 and 4

proved to be BY4724 (i.e., 00). These are correct solutions to the original problem.

Despite this success, the algorithm still falls short. First of all, carry-over is still a

problem. In addition, the procedure still doesn't scale well. One reason is evident from

inspection of the plates shown in Figure B.3. As the replica-plating is reiterated, the

colonies get progressively more squashed until they finally lose all definition. Another

more subtle reason is that the number of plates required scales according to

m

E*'.
i=l

where k is the number of variables and m is the number of clauses. In other words, the

number of plates scales exponentially.

16



3.3 Liquid-Phase Computation

At this point, all efforts to use plates were abandoned. The decision was made to

use liquid cultures in their stead. This change necessitated another alteration in the

algorithm.

3.3.1 Computing (x=l or y=0) and (x=0 or y=l)

Figure B.5 shows the new strategy. A key feature here is the pooling operation (see

central portion of figure). This pooling effect could be achieved using solid agar plates

but it's trivial when liquid is used: survivors of the first two selections are literally

poured together in the same test-tube and aliquots from this mixture are then used to

inoculate the next set of flasks.

Some key details are missing from the figure. The flasks used were 125 milliliter

erlenmeyers containing 50 milliliters of fluid. Liquid media were made fresh, except for

the YEPD. The inoculated cultures were incubated at 30 degrees Celsius on a rotating

(30 rpm) platform.

To initiate the algorithm, a mixture of the four strains was required. To generate

this, the following was done: overnight cultures of the four strains grown in YEPD were

prepared, the concentrations of yeast contained therein were determined using turbidity

measurements [BDSOO], and then a mixture in sterile water consisting of 6 x 10^/mZ

individuals from each strain was formulated. Depending on how well the strains grew,

this represented a 60- to 120-fold dilution of each of the strains. 50 microliters of the

17



above mixture were used to inoculate the first set of fiasks. This provided each fiask

with ten thousand individuals of each strain. Note that 50 microliters into 50 milliliters

represents a dilution effect of 1 to 1,000. While seemingly inconsequential, these details

are important because initial conditions presumably dictate whether or not effects like

carry-over or phenotypic leak come into play.

After one day of incubation, an obvious degree of turbidity developed in the inocu

lated fiasks. Upon measurement, it was found that there were 1 x 10^/m/ individuals

in the condition B fiask whereas there were 7 x 10®/mZ in the condition C fiask. These

numbers were nearly 10-fold less than those achieved in YEPD medium. But this was

to be expected since YEPD is a richer medium. Anyhow, a mixture was prepared in

sterile water that was 6 x 10^/m/ with respect to each set of survivors. 50 microliters

of this mixture were then used to inoculate the second set of flasks.

Two days were required for the condition D fiask to develop a high degree of turbidity.

Upon measurement, it was found to contain 1 x 10^/m/. An additional day was required

by the condition A fiask. It was found to contain only 2.6 x 10®/mZ at the time of harvest.

At this point (four days after initiating the algorithm), the computation was complete.

At each step during this computation, survivors were plated on YEPD plates,

colonies were picked and their genotypes determined by subsequently streaking them

out on the four conditions. This was done to see just how accurately the computation

was proceeding. Since the problem consisted of four separate steps or selections, this

necessitated four different analyses.

18



Sixteen survivors of the condition B selection were analyzed. Their raw behavior is

shown in Figure B.6.^ Their growth spectra are interpreted in Table B.l. A summary

is assembled in Table B.2. As shown, one survivor (colony #13) simply failed to grow

during its genotyping and was discounted. Another survivor (colony #2) grew on four

of the five conditions. This is a physical impossibility for a single genotype and it was

concluded that colony #2 was, in fact, a mixture of two different genotypes, namely 10

and 11. Due to this ambiguity, this colony was discounted. The remaining colonies did

not yield ambiguous results: they all proved to be either 11 or 10.

Sixteen survivors of the condition C selection were analyzed. Their raw behavior is

shown in Figure B.7. Their growth characteristics are detailed in Table B.3. A summary

is assembled in Table B.4. These colonies proved to be either 10 or 00.

Ten stuvivors of the condition A selection were analyzed. Their raw behavior is

shown in Figure B.8. Their growth characteristics are detailed in Table B.5. A summary

is assembled in Table B.6. These colonies proved to be all 00.

Ten survivors of the condition D selection were analyzed. Their raw behavior is

shown in Figure B.9. Their growth characteristics are detailed in Table B.7. A summary

is assembled in Table B.8. These colonies all proved to be 11.

In summary, the calculation depicted in Figure B.5 yielded two genotypes, namely

00 and 11. By inspection, these are the only solutions to our original problem. Con

sequently, it can be concluded that the yeast computer actually works in practice, at

'in this and subsequent pictures like it, the plates are all oriented similarly so that the same survivor
appears at the same location on all the plates.
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least in this problem instance.

3.3.2 Computing (x=l and y=0) or (x=0 and y=l)

Just because the yeast computer can solve (x = 1 or y = 0) and (x = 0 or y — 1) doesn't

mean it can solve any such problem. For instance, in the latter problem, the order of

selections were: B or C, then A or D. Would accuracy suffer if we were given a problem

to solve that necessitated a different ordering of selections? To see, the following was

computed: (x = 1 and y = 0) or (x = 0 and y = 1).

The algorithm used to solve this problem is shown in Figure B.IO. This entailed a

fundamentally different flow of growth selections compared to the last, but the strains

and the media were all the same. As in the previous computation, genotypic analyses

was done to monitor the quality of each of the selections.

Sixteen survivors of the condition B selection were analyzed. Their raw behavior

is shown in Figure B.ll. Their growth characteristics are detailed in Table B.9. A

summary is assembled in Table B.IO. These colonies all proved to be either 11 or 10.

Sixteen survivors of the condition A were analyzed. Their raw behavior is shown

in Figure B.12. Their growth characteristics are detailed in Table B.ll. A summary is

assembled in Table B.12. These colonies all proved to be either 01 or 00.

Ten survivors of the condition C selection were analyzed. Their raw behavior is

shown in Figure B.13. Their growth characteristics are detailed in Table B.13. A

summary is assembled in Table B.14. These colonies all proved to be 10.

Ten survivors of the condition D selection were analyzed. Their raw behavior is
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shown in Figure B.14. Their growth characteristics are detailed in Table B.15. A

summary is assembled in Table B.16. These colonies all tested 01.

In summary, the computation depicted in Figure B.IO yielded survivors of only

two genotypes, namely 10 and 01. By inspection, these are the only solutions to our

problem and the dual to our last solution set. Consequently, we can conclude that the

yeast computer is operationally versatile and can handle any ordering of selections.

3.4 Error-Rate

How error-prone is the yeast computer? If we define errors as being colonies in the final

survivor set which represent incorrect answers, then it can be concluded from the data

just outlined above that the yeast computer is no more than 10% error-ridden. This

is quite good considering that, at best, DNA-based computation exhibits 90% fidelity

[FLLOO].

The yeast computer's error rate is probably far lower than 10%. This was suggested

by the following experiment. 200 survivors of condition D from the first computation

were plated out unto condition C, F, G and H plates which select for {00, 10}, {11},

{10}, and {01}, respectively. Colonies developed on the F plates but on none of the

others. This indicated an error-rate of no more than 0.5%. The same was done with

200 survivors of condition A from the first computation. This time, colonies developed

on the C plates but on none of the others, indicating a similar rate of error. Further

analysis will probably lower this estimation even more.
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3.5 Scalability

Can the yeast computer solve any SAT problem regardless of its size and form? The

short answer is yes. Consider the following. Any boolean expression, no matter how

bizarre, can be converted to a conjunctive normal form (CNF) or to a disjunctive normal

form (DNF) [HMUOl]. The first problem solved in this thesis was a two-variable boolean

expression of the CNF variety. The second was a two-variable boolean expression of the

DNF variety. If the algorithms presented in Figures B.5 and B.IO can be generalized to

encompass any number of variables and clauses, then this would suggest that the yeast

computer can handle any sort of SAT problem, provided the problem is preprocessed

into a normal form. This generalization is achievable as evidenced by the pseudocode

shown below:

preprocess SAT problem into either conjunctive normal form (CNF) or

disjunctive normal (DNF) form;

if (CNF){

Spool = (all possible answers);

$clause_result = NULL;

$var_result = NULL;

for each clausef

for each variablef

if ("variable = !"){

$var_result = select for wild-type allele from Spool;}
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else{

$var_result = select for mutant allele from $pool;}

$clause_result = $clause_result + $var_result;

$var_result = NULL;}

Spool = $clause_result;

$clause_result = NULL;}

print "answer is Spool";}

if (DNF){

Sinitial = (all possible answers);

Spool = NULL;

Svar_result = NULL;

for each clause{

for each variable{

if ("variable = 1"){

Svar_result = select for wild-type allele from Sinitial;}

else{

Svar_result = select for mutant allele from Sinitial;}

Sinitial = Svar_result;}

Spool = Spool + Sinitial;

Sinitial = (all possible answers);}

print "answer is Spool";}
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Chapter 4

Summary and Conclusions

In its present incarnation, the yeast computer has several good features:

• It's very cheap. Computing with strands of DNA requires a DNA synthesizer,

expensive enzymes and a lot of expertise. Computing with yeeist requires none of

these. It is very accessible.

• Its encoding is easily understood. The yeast computer ultimately operates on the

level of DNA. However, it does so through the interface of a living organism. The

human operator doesn't need to know anything about the complexities of DNA

chemistry. All he needs to know is under what conditions yeast strains live or die.

• It requires little physical intervention from the human operator, especially as com

pared to DNA-based computing.

• It doesn't require a man-made power source. The yeast computer is powered by
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yeast cell metabolism.

• It isn't error-prone. This was explained earlier.

• It has the potential for massive parallelism. Consider the following: a 500 milliliter

erlenmeyer culture of yeast can grow up to contain 1 x 10^^ cells. All of these cells

can be operated on at the same time by simply changing the medium. This is

tantamount to executing 1 x 10^^ instructions in parallel. Of course, a yeast cell

is bigger than a piece of DNA with the same information content. Nonetheless,

the yeast computer's potential for parallel processing is impressive.

The yeast computer, however, has several obstacles to overcome:

• It's slow. In terms of actual time, the yeast computer creeps along at a snail's

pace: it takes 4 to 5 days to perform the example computations described in this

thesis. Much of this time was due to the fact we waited for the survivors to repli

cate themselves enough to turn the media turbid. This probably wasn't necessary.

Using smaller volumes and smaller inocula, days could have been shaven off the

required time. Further time reductions could be achieved (maybe) by imprinting

very small numbers of yeast cells onto a biochip and electronically reading their

responses to changes in the growth media (see for example [SSP+00]). Even this

would require seconds per step, however. This is not to say that computing with

living organisms is useless. Even discounting the potential for parallelism, this

is far from true. Biological computers exemplified by the yeast computer can
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process inputs that a normal electronic computer simply can't deal with. The

latter requires binary bits of O's and I's, while the former can respond to chem

icals, temperature, pressure, whatever and can do so in such a way as to yield

information or computation, depending on the encoding. Viewed in this context,

consider the present thesis. Another way to interpret the work herein is not to

say a yeast computer was built that can do boolean algebra, but rather to say

a very specialized computer was engineered that can discern and report on the

presence or absence of certain chemicals in liquid media, namely lysine, uracil,

5-FOA and aminoadipate. Before dismissing this as feeble, consider the possi

bilities if the yeast computer were encoded to discern important environmental

pollutants instead-chemicals like PCB's or naphthalene. Such a computer could

yield important information at superfund clean-up sites. Consider the possibili

ties if a biological computer were encoded to discern glucose-levels in the human

body. One could imagine tuning such a computer to pump out just the right dose

of insulin in response. The possibilities go on and on.

The first step of any yeast-based algorithm requires a mixture of yeast strains

representing all possible bit patterns. In this thesis, this was achieved by simply

obtaining the strains and then mixing them together. This is not very satisfying

and quickly becomes impractical as problems get bigger. One would prefer to start

with a single strain and then have the computation evolve from this single source.

How could this be achieved? One way would be through the use of a strain that has
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an error-prone DNA polymerase (see for example [GTOO]). Such strains exhibit

a mutator phenotype. This means that every time they replicate mutations are

randomly peppered through their genomes at a rate 100 to 1,000 times greater than

under wild-type conditions. This would have the effect of generating an initial set

of all possible bit patterns. Of course, getting this strategy to work would not be

trivial. How many growth generations would be required to generate an initial set?

This would depend on the size of the problem and the rate of mutation. Would

the mutator phenotype make the genotypes of the final survivor set unreliable? If

so, could some sort of statistical analysis be done to compensate? Only experience

will tell.

As mentioned earlier, there aren't many genes for which there are both positive and

negative growth selections. This puts a severe limit on the number of variables

the yeast computer can represent at the present time. As knowledge of yeast

cell metabolism grows, one can only hope these conditions will be found for an

increasing number of genes.
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Appendix A

Figures and Tables: Chapter 2

Table A.l: Yeast strains

name genotype logical equivalence
FY4 (or S288c) LYS2 URA3 11

BY4700 LYS2 uraS 10

BY4715 lys2 URAS 01

BY4724 lys2 uraS 00
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Table A.2: Growth matrix

name condition A condition B condition C condition D condition E

FY4 - + - + +

BY4700 - + + - +

BY4715 + - - + +

BY4724 + - + - +
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Table A.3: Growth matrix: an extension

name condition F condition G condition H condition I

FY4 (S288c)
BY4700

BY4715

BY4724

+

+

+

+
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Appendix B

Figures and Tables: Chapter 3
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Figure B.l: Computing using agar plates
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computing (x=1 ory=0) and (xsO ory=1)
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Figure B.5: A liquid-phase algorithm.
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Table B.l: Problem 1: growth spectra of condition B survivors

colony YEPD condition A condition B condition C condition D

1 + - + + -

2 + - + + +

3 + - + - +

4 + - + - +

5 + - + + -

6 + - + - +

7 + - + + -

8 + - + - +

9 + - + + -

10 + - + + -

11 + - + + -

12 + - + - +

13 - - - - -

14 + - ' + + -

15 + - + - +

16 + - + + -

Table B.2: Problem 1: summary of condition B survivors

logical equivalence corresponding colonies/total
11 8/14
10 6/14
01 0/14
00 0/14
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Table B.3: Problem 1: growth spectra of condition C survivors

colony YEPD condition A condition B condition C condition D

1 + - + + -

2 + - + + -

3 + - + + -

4 + - + + -

5 + - + + -

6 + - + + -

7 + + - + -

8 + + - + -

9 + - + + -

10 + + - + -

11 + + - + -

12 + - + + -

13 + - + ■ + -

14 + + - + -

15 + - + + -

16 + - + + -

Table B.4: Problem 1: summary of condition C survivors

logical equivalence corresponding colonies/total
11 0/16
10 11/16
01 0/16
00 5/16
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Table B.5: Problem 1: growth spectra of condition A survivors

colony YEPD condition A condition B condition C condition D

1 + + - + -

2 + + - + -

3 + + - + -

4 + + - + -

5 + + - + -

6 + + - + -

7 + n + - + -

8 + + - + -

9 + + - + -

10 + + - + -

Table B.6: Problem 1: summary of condition A survivors

logical equivalence corresponding colonies/total
11 0/10
10 0/10
01 0/10
00 10/10
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Table B.7: Problem 1; growth spectra of condition D survivors

colony YEPD condition A condition B condition C condition D

1 + - + - +

2 + - + - +

3 + - + - +

4 + - + - +

5 + - + - +

6 + - + - +

7 + - + - +

8 + - + - +

9 + - + - +

10 + - + - +

Table B.8: Problem 1: summary of condition D survivors

logical equivalence corresponding colonies/total
11 10/10
10 0/10
01 0/10
00 0/10
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computing (xs1 and ysO) or (x-0 and ysl)

Inoculata
6
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Figure B.IO: Problem 2

53



i

9>1
1-8

-•

1-8
9-16

-W'X
a>

'tklri
1-8 9-16

irinrtr

9-1

m

%
m.

1-8 9-1

Figure B.ll: Problem 2: genotyping of the condition B survivors



Table B.9: Problem 2: growth spectra of condition B survivors

colony YEPD condition A condition B condition C condition D

1 + - + + -

2 + - + - +

3 + - + + -

4 + - + + -

5 + - + , + -

6 + - + + -

7 + - + + -

8 + - + + -

9 + - + + -

10 + - + - +

11 + - + - +

12 + - + - +

13 + - + - +

14 + - + + -

15 + - + + -

16 + - + + -

Table B.IO: Problem 2: summary of condition B survivors

logical equivalence corresponding colonies/total
11 5/16
10 11/16
01 0/16
00 0/16

55



Figure B.12: Problem 2: genotyping of the condition A survivors



Table B.ll: Problem 2: growth spectra of condition A survivors

colony YEPD condition A condition B condition C condition D

1 + + - + -

2 + + - - +

3 + + - - +

4 + + - + -

5 + + - - +

6 + + - + -

7 + + - + -

8 + + - - +

9 + + - + -

10 + + - - +

11 + + - + -

12 + + - - +

13 + + - - +

14 + + - - +

15 + + - + -

16 + + - - +

Table B.12: Problem 2: summary of condition A survivors

logical equivalence corresponding colonies/total
11 0/16
10 0/16
01 9/16
00 7/16
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Table B.13: Problem 2: growth spectra of condition C survivors

colony YEPD condition A condition B condition C condition D

1 + - + + -

2 + - + + -

3 +  - - + + -

4 + - + + -

5 + - + + -

6 + - + + -

7 + - + + -

8 + - + + -

9 + - + + -

10 + - + + -

Table B.14: Problem 2: summary of condition C survivors

logical equivalence corresponding colonies/total
11 0/10
10 10/10
01 0/10
00 0/10
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Table B.15: Problem 2: growth spectra of condition D survivors

colony YEPD condition A condition B condition C condition D

1 + + -

1' +

2 + + - - +

3 + + - - +

4 + + - - +

5 + + - - +

6 + + - - +

7 + + - - +

8 + + - - +

9 + + - - +

10 + + - - +

Table B.16: Problem 2: summary of condition D survivors

logical equivalence corresponding colonies/total
11 0/10
10 0/10
01 10/10
00 0/10
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Appendix C

Glossary of Genetic Jargon and

Abbreviations

• allele: organisms of the same species share a set of genes, but this doesn't mean

that any one particular gene has the identical DNA sequence from one individual

to the next. Oftentimes, there are differences, sometimes important ones. These

differences are termed as allelic, and an individual's particular set of genes are

called its alleles. Allelic differences are important to the yeast computer. A

yeast's alleles determine the logical entity it represents.

• amino acid: the chemical subunits of protein.

• bactoagar: extract of seaweed, liquifies as high temperatures, solidifies at room

temperature; used to make agar plates on which to grow yeast colonies.
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• complement: In the parlance of genetics, the strand ATCG is the complement of

TAGC. See the definition of DNA for more details.

• DNA: abbreviation for deoxyribonucleic acid. In nature, it's most often found as

a double-stranded helix. The two helices are composed of linked, linear arrays of

nucleotides or 6ases-designated A, T, G and C. In the context of a double-stranded

helix, A is always found across from a T on the complementary strand. Likewise,

G is always found across from a C.

• gene: any segment of DNA which encodes a molecule (usually a protein).

• genome: an organism's entire genetic content.

• genotype: loosely synonymous with genome. Often, an organism's genotype is

stated in reference to just a few genes to distinguish it from others that have

similar genomes but have allelic differences in those particular genes.

• genotyping: the act of determining an organism's genotype.

• gms: abbreviation for grams.

• mgs: abbreviation for milligrams.

• mis: abbreviation for milliliters.

• mutant: an organism or gene that harbors a mutation.

• mutation: any inheritable change in the DNA sequence of a gene. Some mutations

have consequences, most don't.
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phenotype: the observable traits of an organism; the physical manifestation of an

organism's genome.

protein: a linear array of amino-acids specified by a gene.

strain: a genetically homogeneous line of something living (e.g., a yeast strain).

YEPD: abbreviation for yeast-extract, peptone, dextrose. This is a very nutrient-

rich medium used to grow a variety of mutants that can't make certain nutrients

themselves.

YNB: abbreviation for yeast nitrogen base.

wild-type: a genome with no mutations.
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Appendix D

Media Formulations

D.l Condition A

D.l.l agar plates

Add 10 grams of glucose + 10 grams of bactoagar to 430 milliliters of distilled water and

autoclave for 30 minutes. While this is autoclaving, filter-sterilize the following mixture:

50 milliliters of lOX YNB without amino acids or ammonium sulfate -1-1.5 milliliters of

1% lysine -I- 1 gram of aminoadipate dissolved in 20 milliliters of distilled water. Use a

20 micron filter for the filter-sterilization. After the former is finished autoclaving and

has cooled for 10 minutes in a 50 degree Celsius water bath, combine the two solutions

and swirl vigorously to mix. Dole out into petri dishes to the desired thickness.
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D.1.2 liquid

Filter-sterilize the following mixture:

12.5 mis of lOX YNB without amino acids or ammonium sulfate

0.4 mis of 1% lysine

1.25 mis of 2 mg/ml uracil

5 mis of 50 mg/ml aminoadipate

0.5 gms of glucose

106 mis of distilled water

D.2 Condition B

D.2.1 agar plates

Add 10 grams of glucose -f 10 grams of bactoagar to 450 mis of distilled water and

autoclave for 30 minutes. While this is autoclaving, filter-sterilize the following mixture:

50 mis of lOX YNB -I- 5 mis of 2 mg/ml uracil. After the former has cooled, combine

the two solutions and aliquot into sterile petri dishes.

D.2.2 liquid

Filter-sterilize the following mixture:

12.5 mis of lOX YNB

1.25 mis of 2 mg/ml uracil

0.5 gms of glucose
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Ill mis of distilled water

D.3 Condition C

D.3.1 agar plates

Add 10 grams of glucose + 10 grams of bactoagar to 375 mis of distilled water and

autoclave for 30 minutes. Meanwhile, make the following mixture: 0.5 gms of 5-fluoro-

orotic acid (5-FOA) + 50 mis of lOX YNB + 1.5 mis of 1% lysine + 5 mis of 2 mg/ml

uracil + 69 mis of distilled water. Heat on a hot-plate with vigorous stirring until the

flakes of 5-FOA dissolve. This takes a while but don't allow to boil. Filter-sterilize.

Once the latter has cooled, combine and pour plates.

D.3.2 liquid

Filter-sterilize the following mixture:

0.5 gms glucose

0.125 gms 5-FOA

111 mis distilled water

0.4 mis of 1% lysine

1.25 mis of 2 mg/ml uracil

12.5 mis of lOX YNB
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D.4 Condition D

D.4.1 agar plates

Add 10 grams of glucose + 10 grams of bactoagar to 450 mis of distilled water and

autoclave for 30 minutes. Upon cooling, add 1.5 mis of 1% lysine + 50 mis of lOX

YNB.

D.4.2 liquid

Filter-sterilize the following mixture:

0.5 gm glucose

12.5 mis of lOX YNB

0.4 mis 1% lysine

112 mis distilled water

D.5 Condition I, alias "YEPD"

D.5.1 agar plates

Dissolve 5 gms of yeast extract 4- 10 gms of peptone + 10 gms of glucose + 10 gms of

bactoagar in 500 mis of distilled water and autoclave.

D.5.2 liquid

Same as above except omit the bactoagar.
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D.6 Misc solutions

• 1% lysine: 1 gm of L-lysine in 100 mis of distilled water; filter-sterilize.

• 2 mg/ml uracil: 0.2 grams uracil in 100 mis of distilled water; filter-sterilize.

• aminoadipate: buy DL-alpha-aminoadipic acid from Sigma. Add 1 gm to a 50 ml

conical tube -I- 20 mis of distilled water. Add glacial acetic acid until dissolved.

This is tricky. Add just 100 microliters at a time until about .5 mis have been

added. Then add just 50 microliters at a time. Vortex vigorously and monitor

the pH of the solution using pH paper. Stop adding acid when the pH spikes;

avoid adding excess. Don't worry if a small amount of the chemical doesn't seem

to dissolve-the selection will still work.
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