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ABSTRACT

The purpose of this study is to describe the ascent flight dynamics and orbital

maneuvering requirements of a manned Mars Ascent Vehicle (MAY) within the mission

structure defined by the NASA Design Reference Mission (DRM). The primary task of

the MAY is to transport the astronauts and their scientific cargo from the surface of Mars

to an orbiting Earth Return Vehicle (ERY), in which the crew will depart Mars orbit and

begin their return to Earth. This objective comprises two phases of operation, an ascent

from the Martian surface to a parking orbit, and an orbital rendezvous with the waiting

ERY, and is critical to the success of a manned Mars mission.

In order to accomplish this study two programs were written to model each of the

distinct phases of MAY operation. The ascent program uses Pontryagin's Maximum

Principle to optimize the ascent trajectory and reduce it to a two point boundary value

problem. This is then solved by the numerical method of Runge-Kutta integration, with

Newton's Method used to guess the unknown initial conditions of the trajectory. This

program finds the optimal trajectory to place the MAY into a parking orbit prior to

rendezvous with the ERY, minimizing propellant expended and maximizing useful

spacecraft payload.

The orbital rendezvous portion of the study involves quantifying the impulsive

maneuvers needed to alter the MAY orbit to match its position and velocity with the

ERY. This is accomplished through a study of the differential equations of relative

position and velocity between the two vehicles. The resulting boundary value problem is

IV



solved using the numerical methods of Runge-Kutta integration and Newton's Method,

providing the necessary maneuvers to achieve orbital rendezvous.
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1. INTRODUCTION

Among the long term plans of the National Aeronautics and Space Administration

is a manned mission to Mars, which it is hoped may occur within the first half of this

century. The requirements for such an imposing goal are being tentatively explored in

NASA's Design Reference Mission, an evolving mission strategy that is periodically

updated to include current and proposed technological advances.

While the problems of sending humans to the nearest planet are daunting, the

provision for their safe return is an equally intimidating task. NASA's current mission

strategy attempts to alleviate these challenges through the pre-positioning of redundant

pieces of equipment for use in each phase of the nussion architecture. When the first

crew arrives on Mars, a waiting MAV will have already been there almost two years.

Shortly after their arrival on Mars surface a second MAV, originally intended for use by

the second visiting crew, will arrive, providing a backup ability for the crew to reach

orbit should the first vehicle prove inoperable.

The ascent from the Martian surface and subsequent rendezvous with the Earth

Return Vehicle is budgeted with the single largest AV of any maneuver in the mission,

approximately 5.6 kilometers per second [1]. The MAV has been designed to carry

39,000 kg of propellant to achieye the combined ascent and rendezvous with the ERV.

The MAV itself consists of an a crew capsule weighing 4829 kg, an empty propulsion

module mass of 4069 kg, and a payload consisting of four crew members and scientific

equipment weighing approximately 1000 kg. MAV propulsion is supplied by four RL-10



class engines modified to bum a mix of oxygen and methane and operating with an

average specifie impulse of 379 seconds [2].

Significant savings in mission mass are achieved by producing the propellant

needed by the MAV on the surface of Mars, using in-situ propellant production. Carbon

dioxide from the Martian atmosphere is combined with a supply of pre-delivered

hydrogen feedstock to produce methane and water through the Sabatier reaction [3]. This

chemical reaction functions without input of any energy in the presence of a nickel

catalyst by the following chemical formula:

C02+4H2^CH4+2H20

Despite the savings made in overall mission mass through the use of in-sitii propellant

production (ISPP) technology, it is still desirable to be able to launch the MAV from the

surface of the planet to its rendezvous with the ERV using a minimum of fuel,

maximizing the mass of the vehicle dedicated to the astronauts and their scientific cargo

and minimizing the portion of the vehicle mass dedicated to propellant systems.

Once in orbit the crew will then rendezvous and transfer to the Earth Return

Vehicle in which they will leave Mars orbit and return home. The ERV has been

aerobraked into a highly elliptical orbit around Mars, with a periapsis altitude of 250 km

arid an apoapsis altitude of 33793 km [4]. The high eccentricity of this orbit, 0.8249,

leads to the need to perform rendezvous with the ERV near the periapsis position of its

orbit. This requires careful timing of the MAV launch from the surface to place it in the

vieinity of the ERV as it comes sailing by at the low point of its orbit. The maneuvers

needed to accomplish rendezvous are then specified through the equations of relative



motion between the two spacecraft, with a desired final relative position of zero distance

and zero relative velocity between the two spacecraft.



2. ASCENT ANALYSIS

2.1 History of Trajectory Optimization

The problem of trajectory optimization was dealt with from the beginning uses of

the guided missile as a weapon of war. The first numerical solutions to the problem of

powered ascent grew out of the V-2 rocket program undertaken by the German's during

World War II. As the ranges of early guided missiles were relatively small, these

calculations were in a Cartesian format with corrections for the earth's curvature inserted

into longer range trajectories. .

These earliest methods of range optimization involved establishing the vehicle in

a predetermined position and velocity at the end of its vertical climb. These

predetermined flight conditions at the end of the climb formed the initial values to be

inserted into the non-controlled ballistic equations of motion for the vehicle. This

method therefore is not a continuously controlled system, as control forces were exerted

on the vehicle only at the end point of the vertical climb.

A graphical method, in which the vectors of the change of velocity caused by

vehicle thrust, aerodynamic forces, and gravitational losses, can be used to determine the

optimum continuously controlled pitch program for an ascending space vehicle. Such a

method can be easily used to determine a controlled trajectory for a vehicle ascending

into orbit, but this analysis is again performed in Cartesian format, necessitating the

addition of correction factors for the curvature of the earth. This method grew out of the

V-2 program and remained in use in missile range calculations during the 1950's [5].



An analytic solution can be found to the optimal ascent problem if several

assumptions are made. The first of these assumptions states that the thrust of the

ascending vehicle, and thus its mass flow rate, must be constant. The second assumption

states that the gravity acting on the vehicle is a linear function of its radial position.

These assumptions reduce the representation of the problem to that of a harmonic

oscillator with a forcing function. A solution can therefore be found through the method

of variation of parameters [6].

A solution to a continuous controlled trajectory problem can be sought through

the method of calculus of variations. In this approach a particular performance index of a

vehicle is minimized by enforcing the Euler Lagrange condition. This generally reduces

the trajectory problem to a two point boundary value problem, which can be solved by

several numerical techniques, including steepest ascent and the Newton-Raphson method

[7].

The Euler Lagrange condition that is the basis of the calculus of variations

approach to the problem becomes inconvenient as the number of parameters in the

problem increase. The cases when these equations can be integrated in closed form are

limited [8]. An alternative to the calculus of variations method lies in the study of the

Hamiltonian of a dynamic system. Hamiltonian-based optimization techniques, an

example of which is the Pontryagin Maximum Principle used in this study, have been

utilized for trajectory calculations on the upper stages of Saturn boosters in the I960's

[9].



2.2 Pontryagin Maximum Principle

Considering a problem with an n-dimensional state vector x and state equations

defined as

Xi=fi(x,u) i = l,2, ...,n

where u is a control vector. A transfer is sought from an initial state x° at time zero to a

final desired state x^ at some unspecified time tf. There exists a control as a function of

time, u(t), that will accomplish this transfer while minimizing a cost function

J = r'fo(x,u)dt
•to

where fo(x, u) is a state equation corresponding to an additional state variable xq,

Xq =f(x,u)

Added to the previous state vector x this additional state variable forms the state vector

xwith dimension n+1 and corresponding state equations

Xi=fi(x,u) i = 0, l,2,...,n

From the extended state vector the Hamiltonian of the system, a function of the

state variable, the costate variable, and the control, can be defined as

H = z^x = Jzifi i = 0, l,2,...,n
i=0

where z represents an extended co-state vector with n+1 dimensions. The equations for

both the state and costate vector can defined by the following equations:

dX; _ 9H
dt 9Zi

dZj _ 9H
dt 9X;

i = l,2,...,n

i = l,2,...,n



Since the value of the Hamiltonian does not depend on the additional state variable xo, the

equation for its corresponding costate variable is

Zq =0

Having stated the problem in terms of its Hamiltonian, with accompanying state

and costate variables, the PMP can be applied to the problem. The four basic conditions

of the PMP are as follows [10]:

1. The Pontryagin maximum principle states that an arbitrary value of

negative one is assigned to zq. This leads to the modified expression of

the Hamiltonian:

H = -fo+izifi i = l,2,...,n
i=0

2. The optimum control function, according to the Pontryagin maximum

principle, will maximize the Hamiltonian to a value greater than or equal

to zero for all time during an optimal trajectory. The equation for the

optimum control function is obtained using the following equation:

3. There exists a set of initial values for the costate vector and state vector

that will transfer the values of the state vector from their initial state to a

desired final state.

4. Along an optimal trajectory the Hamiltonian exhibits a constant value.

This constant value is positive if the final time is fixed and is zero if the

final time is free.



The problem as stated now has a set of 2n + 2 state and costate equations. These

equations are solved by the n known initial and final values, the initial value of xq, and

the value of zq. For final time free problems, such as the one in this study, the unknown

final time requires an additional known final condition. This condition is supplied by the

fourth statement of the PMP.

2.3 Equations of Motion for an Ascending Spacecraft

.  The equations of motion for a powered ascent vehicle can be derived by the use of

Lagrange's equation for non-conservative forces:

dT'

dt aq

where T is the kinetic energy of the spacecraft, q is an appropriate set of generalized

coordinates and Qi is the generalized force on the spacecraft. The equations of motion for

this problem will be derived for polar coordinates with the origin located at the center of

the planet to eliminate any correcting teims for trajectory curvature that are inherent to

rectangular derivation of the equations [11]. Expressing the equations of motion in polar

coordinates is also beneficial in that they can be viewed as the equations of orbital motion

with the addition of a thrusting force. The coordinate system and a free body diagram of

the forces on the vehicle are illustrated in figure 2.3.1.

The generalized coordinates for the problem are radial and angular position of the

spacecraft with respect to the center of Mars. For this study it is assumed that the thrust

vector always passes through the vehicle's center of gravity. For a vehicle with a

gimballing engine, this assunies that the pitching moments produced by the



Figure 2.3.1: Free Body Diagram of an Ascending Spacecraft

gimballed engine are small. This simplification does not lead to large inaccuracies in the

calculations, as current designs for the MAV have a wide squat appearance, with the

center of mass riding low in the vehicle near the engines. For a vehicle without engine

gimballing ability, this assumption is accurate, as steering changes are made by

maneuvering the entire vehicle at a desired angle to its velocity vector. This study also

neglects the aerodynamic effects of lift and drag on the vehicle as it ascends through the

atmosphere. Atmospheric drag has minimal effects on the trajectory of an ascending

spacecraft in Earth's atmosphere. The low density of Mars' atmosphere will lead to

lower dynamic pressures than experienced in Earth's atmosphere, producing an even

smaller drag on the MAV.

The first step in using Lagrange's equations is to express the kinetic energy of the

spacecraft as:

T=im(F+(re)')

Lagrange's equation for the first generalized coordinate, radial position, is:



=0dt 19f J 9r

The generalized force in the radial direction is made up of the radial components of

gravity and engine thrust and is expressed as;

^ GM F . / , 0
—r- + —smf(() + ajQr

m

The partial derivatives of the kinetic energy expression with respect to radial position and

time rate of change of radial position are:

8T
■ = mr

af

3r,

The above equations are inserted into Lagrange's equation and the common mass

variable present in each term can be divided out, producing the following expression.

f-r0' =-
GM F .H—sin (9 +a)

m

Since the radial component of velocity is the product of the radius arid the angular rate of

change the differential equation for the radial rate of change can be expressed as:

dv, Vo uivi Jc . / , \
—i- = —2 + —sm(9 + aj
dt r r^ m

Lagrange's equation for the second of the two generalized coordinates, angular

GM F .

position, is:

dtlaej 90 ®

10



The generalized torque in the angular direction is made up only of the angular component

of engine thrust, since gravity is only active in the radial direction and is expressed as:

Qg =F-cos((p + a)-r

The partial derivatives of the kinetic energy with respect to angular position and time rate

of change of angular position are:

-dT 2A
-^ = mr 0

,  , - 30

^ = 0
36

By again noting that the tangential velocity is equal to the product of the radial position

and the rate of change of angular position the partial derivative of the kinetic energy with

respect to rate of change of angul^ position can be expressed in the following form:

3T
—:- = mrvB
30 n

The above equations are inserted into Lagrarige's equation and the common mass

variable present in each term can be divided out, producing the following equation:

x(^e) = —•cos(9 + a)-r .
dt m

By expanding the time derivative in the above equation the differential equation for the

tangential velocity can be written as:

dvg v.Vg F / s
—- = —+ —cos(cp + a)

.  dt r m

In order to perform Runge-Kutta integration upon the two derived equations, we must

have a set of two differential equations to describe the radial and angular position, so that

11



the total set can be treated as four first order differential equations. This produces the set

of equations as follows:

dr

dt~^'

dt r

dv, Vg'' GM F . / X
^^ = —2 — H—sin((p + a)
dt r r' m ^ ^

dvg v.Vfl F I X
—- = —+ —cos((p + a)
dt , r m

In order to carry out a numerical solution to the problem it is useful to non-

dimensionalize the equations. This would reduce the time taken for a computer to

complete the numerical calculation. The non-dimensional values for velocity, length, and

time can be calculated from the following equations:

*

_ r

*

V n

V =—==

GM

Rp

t
t=-

'Rp'
GM

where the asterisk superscript denotes the dimensional variable. As can be seen in the

above equations, the scaling variables for radial position is the radius of Mars, Rp. The

circular orbit speed at the surface of Mars is the velocity scaling variable. A time scaling

12



variable is derived from dividing the distance scaling variable by the velocity scaling

variable. The dimensionless equations of motion for an ascending spacecraft take the

form:

Ir;
GM

Rp dr* . IGM
•= V,

R,

V dt r
GM

GM

1  d0* V0* V Rp
R.

GM

Rj> dv.
^ dt r
GM

p

R. R.

GM V GM 1 F .

R, r*' R„^ m
H—sin((p + a)- GM

R. R.

GM

Rp dv. Vr Ve

GM

R
P J

R
3  dt Rp

• + —cos((p + a)
m

R.

GM

GM

VGM R.

Simplification of the above equations, and the dropping of the asterisk for clarity, as it is \

no longer needed, obtains the dimensionless state equations in their final form:

dr

dt
n = V,

dt r

dv Vg 1 F . / \
-  --t sm((p + a)

dt r r mg.

13



dVfl v.Vfl F ./ N
-  • + cos((p + a)

dt r mg„

where gm is the gravitational acceleration on the surface of Mars. It is this set of

equations to which the PMP will be applied in order to optimize the ascent trajectory for

minimum fuel expenditure.

2.4 Trajectory Optimization

The first phase of the MAV mission is to ascend from the surface of Mars into an

orbit suitable for rendezvous with the ERV. The problem undertaken in this study is to

achieve a rendezvous orbit while burning a minimum amount of propellant. The cost

function for this problem is then stated as

J = £(m)dt

For this study, the MAV is assumed to have a constant mass flow rate. This allows us to

treat the optimization of the trajectory as a minimum time problem, simplifying the cost

function to the following form:

J=pldt
Jo

The state vector of the ascent vehicle is composed of its radial and tangential components

of its position and velocity, a total of four state variables. It is observed that none of the

state equations are dependent on the angular position, 0, of the ascent vehicle nor is

angular position a specified value in the desired final state of the system. The angular

position is therefore seen to be unimportant and can be disregarded in the optimization

procedure [12]. This allows the number of state equations; to be reduced from four to

14



three. The value of the angular position of the ascending spacecraft will be of interest,

however, in calculating the downrange distance covered by the MAV. The

corresponding state equations are as follows:

-  dr
f, = — = v,
'  dt

dv/ Vg 1 F . / \
f, =—5- = -H - + sm(9 + a)
'  dt r r' mg„

f,=-
dvp v,v.

dt
-cos

r  mgr

((p-t-a)

Optimization of the trajectory by the PMP is based upon the maximizing the

Hamiltonian of the system. The Hamiltonian of the ascent vehicle can be expressed in

the following equation:

H = -l + z,(vJ-t-z,^
2  , -r;

Vp 1. F
-smi(tp -h a)

^  (
+ z.,

VrVe

\

-h ^ COS'((p -I- a)
^ r rr mg^

The set of costate differential equations are derived from the partial derivatives of the

Hamiltonian with respect to each state variable and are as follows:

dz, 8H
2  ̂ /

dt dr
-HZ

Vfl" 2
ve

V

dzv, an '
=  = -Zr +2^

dt dv • '
—^sin((p-Ha)

^ mg„ dv, . j
-Hz

ve

dz
Ve dH

dt dVp
• = z.

2Ve F d

r  mg„ dvg
•sm(cp-Htt) + Z.

^  F d
r  mg„ dv,

V, F d

cos(tp-Ha)

r  mg„ dvg
-cos(tp-Htt)

15



The above equations contain derivatives of the sine and cosine of angle cp, the angle

between the MAV's velocity vector and the local horizontal. This angle can be expressed

in terms of the radial and tangential components of the vehicle velocity by the relation:

(p = tan"
V^ey

The magnitude of the velocity vector can also be expressed in terms of the components of

velocity by the following relation:

=v^2  , 2
+ Ve

The partial derivatives of the trigonometric functions of the control angle a,nd angle to

local horizontal can be written in the following form:

a  .sih
Bv,

((p + a) = cos((p + a)-;^ - ̂cos((p + a)
dv, v'

-^cos((p + a) = -sin((p + = -•^sin((p + a)
dv, dv, V

^ sin((p + a) = cos((p + a)^^ = --^cos((p + a)
dv dv p

dv,
-cos({p + a) = - sin((p + a)-:^ = -^sin(9 + a)

dv.

The equation for the optimal control of the steering angle is found by setting the partial

derivative of the Hamiltonian with respect to the control equal to zero, yielding the

following expression:

F  d ^F  d . A X
■+ (-  , smlcp + alda 'Img^da

n— = 0 = z. Z.
vmg„ da

-cos 9 +a)

16



The partial derivatives of the sine and cosine of a, the angle between the velocity vector

and the thrust vector of the MAV, are expressed by the following equations:

3—sin((p + a) = cos((p + a)
da

—cos((p + a) = - sin((p + a)
da

Inserting these into the partial derivative of the Hamiltonian with respect to the control

angle leads to the following expression:

V,,
-cosi(cp + a) -sm(9 +a)

Siniplifying the above equation yields the following relation;

tan((p + a) = —^
n z„

iSolving the above expression for a yields an expression for the control law of the system:

a = tan" -9

This expression for the engine control angle is inserted back into the equations of motion

for the state and costate variables, resulting in the following set of six differential

equations:

dr
■= V,

dt

dv. Vfl^ 1 F .
—  - + sm

r  r mg^dt
V

tan
-1 V,

 V ^8 yy
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dVfl v,Vo F
®  5- + COS]

f

d

 r s\
z„

t

dt

mg„
tan

-1

V  \ ̂ 0 JJ

= z.

<

o
t

]2f ^eVrV

o
t

\
J

dz.

dt
— = -z, +z.

F Ve

mg^n v'
-cos

^Z.,
tan"

yyy

+ z
vo

+ n
F v„ .

-sm

r  mg^ V
tan

-1

r
z.,

yyy

dz. an

dt avp
n = z.

2vp
■-f-

F V,
-cos

r  V

tan
-1

r
z..

yyy

+ z. Xjl L_Zi
r  mg„ v'

-sm tan"
z.,

))^

This set is treated as a boundary value problem and solved by fourth order Runge-Kutta

integration. In order to solve the boundary value problem the number of known final

conditions must equal the number of unknown initial conditions.

A list of the known and unknown conditions in this problem appears in table

2.4.1. The three unknown initial values of the costate variables and the final time in

which the ascent is performed are the four unknown initial values. The program written

to solve this problem, however, analyzes the equations and provides a set of initial costate

variables for each successive time step. This method eliminates time as an unknown and

requires the specification of only three known final conditions. These three conditions

that must be specified within the program are the final radial position, the final radial

velocity, and the final value of the Hamiltonian, which is also zero, according to the

PMP. An algorithm based on Newton's method will produce guesses for the values of

the unknown initial conditions for the costate vector that will, when the equations are

integrated over time, wiU generate the desired final conditions of radial position and

18



Table 2.4.1: Boundary Value Conditions for Ascent Trajectory Optimization

Variable Initial Condition Final Condition

Radial position known known

Radial velocity known known

Tangential velocity known known

Radial position costate unknown unknown

Radial velocity costate unknown unknown

Tangential velocity costate unknown unknown

Hamiltonian known known

Time known unknown

velocity and Hamiltonian. As the prograiri converges on the zero Hamiltonian and radial

position and velocity requirements, the selection of final time and its accompanying set of

initial costate variables is then made by picking the time step at which the tangential

velocity of the MAY is equal to the tangential velocity calculated for the desired final

orbit of the vehicle.

2.5 Ascent Calculation Results

Three different ascent strategies for placing the MAY into an orbit from which it

can perform a rendezvous with the ERY are analyzed in this study. The first ascent

strategy is a powered-all-the-way (PAW) ascent in which the MAY is placed into a 250

km circular orbit in one continuous powered maneuver.

The second strategy examined in this study is a powered ascent to a point on an

elliptical orbit with a periapsis altitude of 250 km. At a desired altitude the engines are
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shutdown and the MAV will coast along this orbit to the periapsis point. At periapsis a

maneuver is made to circularize the MAV orbit at 250 km altitude.

The third ascent strategy is composed of a powered ascent to a low circular orbit

slightly above Mars atmosphere, at which point a two-impulse Hohmann ellipse-style

maneuver is made to raise the orbit to the desired 250 km altitude.

For each strategy, the MAV is constrained to climb vertically to an altitude of 3

km before the control function is allowed to alter the MAV course. The trajectory is held

vertical through the densest part of Mars' atmosphere to limit the aerodynamic side

loading on the MAV in an effort to reduce its structural weight [5]. An additional

assumption in this study is that the elimination of effects on the trajectory caused by the

rotation of Mars.

A figure of merit used to judge each ascent strategy is the AV required to alter the

250 km ̂titude circular orbit to the highly eccentric orbit in which the ERV is waiting..

This AV, 1217.053 m/s, is calculated by the subtraction of the MAV 250 km circular-

orbit velocity from the ERV periapsis velocity, according to the equation

AV= +
r  u rc  V c

This AV can be used to calculate an initial estimate of the pfopellant required to complete

the rendezvous maneuver, that is, the propellant that must remain aboard the vehicle once

it has completed its ascent to the 250 km circular orbit. This mass of propellant needed

for the orbital maneuvering, 3833.251 kg, is calculated by the equation:

/  AV ^

mf =(m3+mp,)- glspge _1
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2.5.1 Powered All the Way Ascent

The first ascent strategy involves direct ascent into the desired final orbital flight

conditions in one continuous firing of the engine. The desired engine shutoff conditions

of the ascent maneuver are a final altitude of 250 km, a radial velocity of 0 meters per

second, and a tangential velocity equal to the circular orbit velocity at 250 km. This

value is 3471.634 meters per second and is found by the formula [13]:

v=.™

The PAW ascent strategy requires the engines to run for 461.5 seconds. The

trajectory followed by the spacecraft for the PAW ascent is shown in figure 2.5.1. Due to

the constant mass flow rate, non throttling engine assumed in this study, the highest

acceleration felt on the MAV occurs at engine shutdown. This acceleration has a value of

24.13 m/s, corresponding to 2.46 Earth gravities and 6.173 Mars gravities.

A control angle history is given for the PAW ascent in figure 2.5.2. It can be

observed that for the first 52.45 seconds of flight there is no control angle exerted on the

vehicle trajectory. This corresponds to the vertically constrained ascent to the desired

pitchover altitude of 3 km. After reaching pitchover altitude a control function generated

by the PMP guides the vehicle to the desired final orbital conditions. From figure 2.5.2 it

can be seen that the largest absolute value of the control angle is 42.65 degrees. This

angle is too large to be achieved through a gimballing of the engine and must be

accomplished by orientating the entire vehicle at an angle to its velocity vector. This

validates the assumption made in this study that the engine thrust would act through the

vehicle center of gravity. At the point of engine shutdown the MAV has only 2366.16 kg
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of fuel remaining. This amount of fuel remaining corresponds to a AV of 796.93 m/s

available for post ascent orbital maneuvering. This is less than the 1217.053 m/s required

to match orbits with the ERV. As a result, the PAW ascent strategy must be ruled out as

a viable method to accomplish the MAV mission.

2.5.2 Coast to Orbit Ascent

Both the second and third cases involve shutting the engine off at a point where

drag effects from the Martian atmosphere can be neglected. The altitude selected in this

study is 150 km, the altitude at which the atmospheric drag forces on the vehicle can be

neglected [14]. The maneuvers that occur for orbit circularization and Hohmann style

maneuvers require relatively small energy changes when compared to the magnitude of

AV required in the ascent. For this purpose the orbital maneuvering that occurs post

ascent is assumed to be impulsive. A coast phase following powered ascent is

operationally attractive, as it gives the crew time to alter their trajectory if any deviation

from the optimal trajectory had occurred during ascent.

The second case is based the spacecraft arriving at the cutoff altitude in a proper

velocity and path angle to coast to an apoapsis of 250 km, at which point a specified

value of AV is required to circularize the orbit. This involves launching the spacecraft to

some point on the elliptical orbit that is co-tangential to the 250 km altitude circular orbit

and the 150 km atmospheric limit. If the circularization maneuver is not performed at the

250 km apoapsis altitude of its coast orbit, the spacecraft must safely clear Mars and its

atmosphere at the periapsis point of the cotangential orbit in order to return to the

circularization altitude. The primary driver for the coast orbit periapsis altitude is the
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magnitude of AV to be performed in the circularization maneuver. As can be seen in

figure 2.5.3 a circularization maneuver AV of 25 m/s will allow the coast orbit periapsis

to have an altitude of 149.17 km, just inside the 150 km atmospheric limit. This dictates

that the engine cutoff altitude must be greater that 150 km. Utilizing the amount of fuel

left post ascent as a criteria for a useful ascent strategy, our choice of engine cutoff

altitude is limited. Figure 2.5.4 shows that a trajectory with a lower cutoff altitude

consumes less fiiel in the ascent, while trajectories with engine cutoff altitudes higher

than 180 km do riot leave the MAY with enough fuel to achieve the required AV of

1217.053 m/s to match orbits with the ERV. For this reason a trajectory with a cutoff

altitude of 160 km and a circularization maneuver of 25 m/s was assumed in this study.

The procedure to calculate the flight conditions at bumout is based upon finding

the radial and tangential components of velocity at an altitude of 160 km along the orbit

that is cotangential with the 250 km circular orbit and the 150 km atmosphere limit. This

is done by the following set of equations [13]. The first step in coast orbit determination

is calculating the orbital energy constant h, and the Kepler area constant C, according to

the equations:

h = v'-
2  2GM

C = vr

where v is the difference between the circular orbit speed at the 250 km altitude and the

AV for circularization and r is the radius at 250 km altitude. From this the eccentricity of

the cotangential orbit can be calculated from the following equation:
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1  C'he —-|1 + -
GM^

Having the eccentricity of the cotangential orbit yields the periapsis radius of the

cotangential orbit through the following relation:

1-e
^250km 1

1 + e

The semimajor axis of the cotangential orbit is then found by the equation:

|e -1|

The path velocity at the engine cutoff point is then calculated by the relation:

The tangential and radial components of velocity at the cutoff altitude are then found by

the following equations:

^250kra circ2S0km Av)
V„ =■

r
^cut

'Vcut -VflV,

The trajectory followed by the spacecraft for the coast to orbit ascent is shown in

figure 2.5.5. The highest acceleration felt on the MAV at engine shutdown has a value of

20.78 m/s, corresponding to 2.11 Earth gravities and 5.31 Mars gravities. The control

angle history for coast to orbit ascent is shown in figure 2.5.6. The largest absolute value

for control angle is 27.99 degrees. This is less that the largest control angle required for

the PAW ascent, 42.65 degrees, but is still large enough to be accomplished only by

maneuvering the entire vehicle at an angle to its flight path.
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The coast to orbit strategy with an engine cutoff altitude of 160 km requires the

engines to run for 437.089 seconds, leaving 4303.87 kg of propellant available after

engine shutoff. The circularization maneuver of 25 m/s of AV consumes an additional

66.77 kg of propellant, leaving 4237.10 kg of propellant. This corresponds to an

available AV of 1324.82 m/s. As this number is more than the AV required for matching

orbits with the ERV, it can be concluded that coast to orbit is a viable launch strategy.

An operational drawback to this strategy is that the launch must be carefully timed to

place the MAV in the 250 km altitude circular orbit to arrive at the periapsis point of the

ERV orbit.

2.5.3 Low Orbit with Hohmann Transfer Ascent

The third approach to ascending to orbit is an outgrowth of the coast to orbit

strategy. It was observed from the coast to orbit strategy that a lower engine cutoff

altitude reduces the amount of fuel consumed in the ascent. Rather than launch to an

arbitrary point along the cotangential elliptical orbit, the third launch strategy places the

MAV in a circular orbit at 150 km altitude. From this point a Hohmann transfer ellipse is

used to raise the orbit to the desired 250 km altitude. Hohrhann transfer is the optimum

minimum energy method for raising the orbit of a spacecraft. This procedure is

operationally the most attractive, as the crew can spend a given amount of time in low

Mars orbit before executing the Hohmann transfer to the higher 250 km altitude orbit.

This variable amount of time spient in low Mars orbit relaxes the need to launch at a

specified time in order to arrive at the periapsis point of the ERV orbit, a problem that

arises in the coast to orbit launch strategy.
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The magnitude of AV needed to raise the circular orbit to the altitude of 250 km

for rendezvous with the ERV are calculated by the equations for a Hohmann transfer

[15]. . . .

'  AV,=.

AV2=.

l2GM 2GM IGM

'"l50km '"l50km '"250km '"l50km

|GM |2GM 2GM

^250km V '"250km '"iSOkm ''250km

The magnitudes of these two maneuvers are found to be 24.97 m/s and 24.79 m/s,

respectively.

The trajectory followed by the spacecraft for the low orbit with Hohmann transfer

ascent strategy is shown in figure 2.5.7. The ascent to low orbit vyith Hohmann transfer

produces accelerations and control angles nearly identical to that of coast to orbit ascent.

The highest acceleration felt on the MAV at engine shutdown has a value of 20.46 m/s,

corresponding to 2.08 Earth gravities and 5.23 Mars gravities. The control angle history

for this ascent strategy is shown in figure 2.5.8. The largest absolute value for control

angle is 26.93 degrees. .

The ascent to low orbit with Hohmann transfer strategy requires the engines to

run for 434.328 seconds, leaving 4523.04 kg of fuel in the tanks at engine cutoff. The

Hohiiiann maneuver to raise the orbit to 250 km expends an additional 133.36 kg of

propellant, leaving 4389.68 kg of propellant remaining. This comesponds to 1364.74 m/s

of AV available to match orbits with the ERV and perform the rendezvous. This may

seem only a marginal improvement over the coast to orbit ascent strategy, saving 152.58

kg of propellant and allowing 39.92 m/s more AV. The result, however, shows that
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ascent to a low circular orbit combined with the use of a Hohmann transfer to raise the

orbit to its final desired altitude is the most efficient ascent strategy.
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3. RENDEZVOUS ANALYSIS

3.1 Equations of Relative Motioii

Onee in orbit the MAY rnust rendezvous with the waiting ERV, into which the

crew must transfer themselves and their scientific payload from the surface of Mars, prior

to preparing for the voyage to Earth. Rendezvous between these the MAY and the ERV

is accomplished through matching the orbits of the two vehicles. This is performed

through two impulsive maneuvers, the first of which takes the MAY to the vicinity of the

ERV and the second of which nulls the relative velocity between the two vehicles.

Determining the AY needed to perform these maneuvers is achieved by a study of the

relative motions of the two vehicles.

The first step in the analysis is to determine the relative position of the two

spacecraft. A moving coordinate frame is attached to the ERV, while the coordinate

frame originating at the center of Mars is assumed to be inertial. Figure 3.1.1 shows a

diagram of the coordinate system used in the derivation of the equations of relative

motion between the, two spacecraft.

The relative position p is represented by the equation

r = rj +p

where r and tj are the positions of the MAY and ERV in relation to the center of Mars.

This equation is differentiated with respect to the inertial coordinate system, yielding

[16]:

f = f.j.+P + 2-(Q)Xp) + d)Xp + CO X (0 X p

where f is the inertial acceleration of the MAY, f^the inertial acceleration of the ERV, p
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Figure 3.1.1 Coordinate System for Rendezvous

the acceleration of the MAV relative to the ERV, 2 • (to x p) the Coriolis acceleration,

d) X p the Euler acceleration and (o x (co x p) the centripetal acceleration.

By neglecting the small gravitational acceleration between the two vehicles their

inertial acceleration can be viewed as the sum of the gravitational acceleration caused by

Mars and the applied accelerations caused by powered maneuvers. Inserting these into

the inertial acceleration equation, resolving it into x, y, and z coordinates, and solving it

for the relative acceleration yields:

F„ - . . 2Px =gx-grx+ —+ 2copy+a)Py+(0 p,
m

Py =gy -gry + —-2a)p, -op, +C0 p
m

-  Fz
Pz=gz-gTz+ —

m
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It is assumed that the radial positions of the MAV and the beginning of the rendezvous

are not significantly different. This allows for the gravitational term in the above

equations to be approximated as [16]:

gx =■
f ̂  \

Px

V r J

gy =-g
Py +1":

= -gT

A

r  ̂
Px

V^T y

Vie.'
It y

gz =-g 'p.'
V r y

= -gi
y

Inserting these relations into the relative acceleration equations and noting that the ERV

is accelerating only in a negative y direction towards Mars yields the following

expressions:

Px =-gT

Py =2gT

Pz = -gr

V^T y

'py

+ —+ 2cop +Q)p +co^p^
m

V^T y

^£z^
vi"Ty

m
+ ̂ -2cop, - (bp, +(o'py

m

It is observed that for the case of circular orbits the value of cb is equal to zero and gx/rr

can be expressed as (O . Taking these relations into account the relative acceleration

equations could be simplified into the following form:

•• Fx ^ •
Px = — + 2(op

m

Py = —-2Ci)p, +3(oVy
m

.. Fz 2
Pz = ® Pz

m
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A simple solution can be sought to these equations through a harmonic oscillator

approach [15]. The equations in their above form have been widely used for rendezvous

applications in Earth orbit, as most rendezvous occur in circular or nearly circular orbits

[17]. For the case of the target satellite in an elliptical orbit, such as the ERV in its

parking orbit around Mars, the equations prove to be more complex.

The gravitational acceleration of the ERV can be expressed as the gravitational

parameter over the sqiiare of the radius, GM/rx^. The angular velocity and acceleration of

the ERV coordinate system are equal to the first and second derivatives with respect to

time of the of the true anomaly n of the ERV. It can also be shown that the instantaneous

radius of the ERV, rx, is a function of the, true anomaly and the orbital parameters of

eccentricity and perigee radius by the following relation [13]:

r^ — n
r,(l + e)

l + e-cos(u) . ,

We can now write the spatial acceleration equations along with an expression for the

second derivative with respect to time for the true anomaly in the following form:

•  ~ GM! • p T .. .. / • \2Px=7 Z T^ + T^+2vPy+vpy:+(v)p,
m,(l + e)

Pv =,

1 + e • cos(u)
2-GMp,

,(l + e)
^l + e-c6s(u)
-GM-pz

n + —-2vp,-vp,+(v)'py
m

.  f Vrp(l + e)
1 + e • cos(u)

 ̂ zIk
m
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D =
-2-GM-e-sin(v)

,(l + e)
1 + e n cos('u)

3.2 Solution Method

The equations for relative acceleration are second order derivatives, but they can be

solved by Runge-Kutta integration by treating them as a set of six first order differential

equations. Taken along with the two differential equations for true anomaly of the ERV,

this results in the following set of expressions:

dpx
-^ = Px
dt

dpx _ -GM-p,

dt .(l + e)
J.+ — +2VPy+VPy+(vfp,
m

1 + e • cds(u)
dp

dt

dp 2 • GM • p T .. ,. „
"lf'7 A X x3+ —-2vpx-vpx+(v) Pydt f r(l + el ^ m

- = Py

,{l + e)
1 + e • cos(u)

dp
^

dt

dt

 = Pz

-GM-p, ^T,
rp(l + e) Y ^

^l + e-cos(u)y
dv _ .

dt""^
dv _ - 2 • GM • esin(n)
dT" nn.(l + e)

1 + e • cos(u)
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There are a tothl of eight equations, the first six of which govern the spacecraft

relative positions and velocities in three dimensions. These six equations are dependent

in tum upon the two equations for the velocity and acceleration of the true anomaly of the

ERV. The initial relative position is known along with the velocity and acceleration of

the true anomaly. Table 3.2.1 contains a list of the boundary value conditions for the

rendezvous problem. The required initial; relative velocity in three diniensions is,

unknown. The solution to this boiind^ value problem requires three known final

conditions, which exist in the form of the desired final relatiye position between the two

vehicles. These final distances between the spacecraft have a value of zero, in order to

allow a rendezvous and docking to occur. . ,

For this study it is assumed that the MAY maneuvers are impulsive, that is they

occur instantaneously. Impulsive maneuvers allow the acceleration terms in the

differential equations to be disregarded in the Ruhge-Kutta integration. Rendezvous

maneuvers between spacecraft within several kilometers of each other are typically

Table 3.2.1: Boundary Value Conditions for Rendezvous Problem

Variable Initial Condition . n  Final Condition.

Relative position X known , „ known

Relative position y known • known

Relative position z known,. known

Relative velocity x unknown unknown

Relative velocity y unknown unknown

Relative velocity z unknown unknown
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measured in the tens of meters per second of AV, so assuming that the rendezvous

maneuvers are impulsive is a close approximation of actual spacecraft operation [15].

The AV required by the MAY is found by subtracting the MAY inertial velocity

from the sum of the ERY inertial velocity and the relative velocity, given by the equation:

AV = V„,-(V^,-V^,+a)Xr)

The second maneuver, needed to null the relative velocities between the two spacecraft

once they are at zero distance, can be found easily by examining the relative velocity

value contained in the final iteration of the Runge-Kutta integration. In this way the

required AY for each rendezvous maneuver can be specified. The boundary value

problem is solved over a range of times in which it is desired for a rendezvous to occur.

In actual operation the relative range and velocity between the two spacecraft

would be measured by rendezvous radar. For the purposes of the program included in

this study the range and velocity data is calculated from the orbital characteristics of the

two spacecraft.

3.3 Rendezvous Calculation Results

Having ascended into orbit on a trajectory timed to place them in the vicinity of

the ERY as it passes through the periapsis of its highly eccentric orbit, the MAY must

complete the terminal rendezvous. There are two primary methods to achieve this goal.

The first rendezvous strategy, the non co-orbital rendezvous, involves just two

impulsive maneuvers. The MAY, in its circular orbit with ERY nearby at its periapsis

. point, calculates and performs a combined maneuver that both matches the MAY orbit to
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that of the ERV and begins the terminal rendezvous. A small second maneuver is then

performed to complete the rendezvous.

The second rendezvous strategy, the co-orbital rendezvous, involves three :

separate impulsive maneuvers. The MAV performs a Hohmann-style tangential

maneuver to alter its circular orbit to the eccentric orbit the ERV is in. The two

spacecraft are now in relatively close range (100 km or less apart) on similar orbits. The

two maneuvers needed to complete the terminal rendezvous are then calculated and

performed.

Although the method of analysis is able to handle relative distances in all three

directions, for this study it was assumed that the MAV has been launched into a coplanar

orbit with the ERV. This eliminates any z direction displacements between the two

vehicles. Obtaining the proper orbital inclination is best achieved at the launch,

eliminating the need for a costly inclination change maneuver [15].

The corresponding AV for this, rendezvous in a desired time is calculated for each

minute in a two hour span. The optimal desired time for a rendezvous to occur in is

chosen based upon which time provides the minimal AV.

It should be understood that the rendezvous study taken here is made to simply

quantify the magnitude of performance needed by the MAV to achieve a rendezvous.

The actual circumstances of rendezvous, the positions and velocities of the spacecraft at a

particular time, are subject to change from planned values because of a variety of

influences. As mentioned before, the ascent would need careful planning to place the

MAV as near as possible to the ERV to facilitate a successful rendezvous.
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3.3.1 Non Co-orbital Rendezvous Case

The first case run for non co-orbital rendezvous involves the MAV in its 250 km

altitude circular orbit at the periapsis point of the ERV orbit. The ERV itself is 1 degree

of true anomaly ahead of the MAV; The program written to solve the problem calculates

the relative distances between the two spacecraft measured in the ERV body centered

coordinate system based on these orbital parameters. The distances between the two

spacecraft are an x direction displacement of 62.135 km, a y direction displacement of

-0.787 km, and a z direction displacement of 0.0 km, corresponding to a total distance

between the two spacecraft of 62.136 km. Figure 3.3.1 shows the AV for each maneuver

and the total AV required for rendezvous versus the desired time for rendezvous to occur.

The total AV for both the first and second rendezvous maneuvers is large for the first few

minutes of desired time to rendezvous starting at approximately 3.25 km/s. As the

desired time to rendezvous increases, however, the total AV for the maneuver

asymptotically approaches a value of 1.263 kmi/s.

The second case run for non co-orbital rendezvous involves the MAV in the same

position as before, but the ERV is now 1 degree of true anomaly behind the ERV. This

translates to an x direction displacement of -62.135 km, a y direction displacement of

-0.787 km, and a z direction displacement of 0.0 km, corresponding to a total distance

between the two spacecraft of 62.136 km. Figure 3.3.2 shows the AV for each maneuver

and the total AV required for rendezvous versus the desired time for rendezvous to occur.

The total AV for the rendezvous is at 1.222 km/s for the first few minutes of desired time
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to rendezvous. As the desired time to rendezvous increases, the AV gradually falls to a

value of 1.188 km/s.

3.3.2 Co-orbital Rendezvous Case

The case of co-orbital rendezvous assumes that the MAV has already performed

the 1.217 km/s maneuver to match orbits with the ERV. The first case studied has the

MAV at the periapsis point of the ERV orbit. The ERV is in the same position as in the

first non co-orbital case, 1 degree of true anomaly ahead, of the MAV. The distances

between the two spacecraft are also the same as the first case of non-co-orbital

rendezvous. The relative velocities between the spacecraft are different from the non co-

orbital cases. Figure 3.3.3 shows the AV for each maneuver and the total AV required for

rendezvous versus the desired time for rendezvous to occur. The total AV for the

rendezvous reaches a minimum value of 0.049 km/s for the range of desired times for

rendezvous between 60 and 70 minutes.

The second case of co-orbital rendezvous examined in this study has the MAV at

the periapsis point with the ERV 1 degree of true anomaly behind the MAV. The

distances between the spacecraft are the same as the second case of non co-orbital

rendezvous. Figure 3.3.4 shows the AV for each maneuver and the total AV required for

rendezvous versus the desired time for rendezvous to occur. The total AV is relatively

large for small desired times to rendezvous, initially measured in the hundreds of meters

per second. As the desired time to rendezvous increases the total AV for the rendezvous

reaches a minimum value of 0.048 km/s for the range of times between 53 and 85

minutes.
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4. CONCLUSIONS

In this study, an initial estimate of required performance was sought for a MAV

within the context of NASA's Mars DRM. Each phase of the MAV mission, ascent and

rendezvous has been modeled, taking into account as many operational considerations as

possible. For the first phase of the MAV mission, ascent from the Martian surface to

orbit, three distinct ascent strategies were studied. The primary ciiteria used in judging

the viability of each ascent strategy was the availability of post ascent propellant to match

the MAV orbit with that of the ERV, a maneuver costing 1217.053 m/s. Table 4.1 shows

the propellant remaining and the AV available at the end of the powered ascent for each

strategy. The PAW ascent strategy leaves the MAV with insufficient propellant to match

orbits with the ERV.

While both of the other launch strategies included in this smdy leave the MAV with

sufficient propellant to match orbits with the ERV, table 4. T shows that the low orbit with

Hohmann transfer is the most efficient launch strategy.

The launching of the MAV on a low orbit with Hohmann transfer ascent strategy

has several secondary benefits. The period of time that can be spent in the low orbit

Table 4.1: Summary of Launch Strategy Performance

Ascent Strategy Propellant remaining (kg) AV remaining (m/s)

PAW 2366.16 796.93

Coast to 160 km 4303.87 1324.82

Low Orbit with Hohmann 4389.68 1364.74
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before transfer to the 250 km circular orbit prior to rendezvous allows for the relaxation

of launch windows. Another benefit to the low orbit with Hohmann transfer is that it can

be accomplished with the lowest acceleration on the spacecraft. For each ascent strategy

it was found that.the spacecraft would have to be flown at relatively large angles to its

velocity vector. The side loading produced by flying the MAV at an angle to its flight

path would add structural weight to the vehicle. It was found in the study that the low

orbit with Hohmann transfer produced the smallest control angles of the three ascent

strategies in the study. Table 4.2 shows the comparison of acceleration and control angle

among the three ascent strategies.

For the second phase of the MAV mission, the requirements for terminal

rendezvous to occur quantified through a study of the equations of relative niotion

between the two spacecraft. Typical rendezvous conditions, occurring at the periapsis of

the ERV orbit, were modeled. Four different cases were studied; two with the ERV and

the MAV in their dissimilar orbits, and two cases occurring after the MAV had matched

orbits with the ERV. Table 4.3 gives a comparison of the minimum required AV and its

corresponding desired time to rendezvous for each of the four cases.

Table 4.2: Summary of Acceleration and Control angle Characteristics

Ascent Strategy Maximum g (Earth) Maximium a (deg.)

PAW 2.46 .42.65

Coast to 160 km 2.11 27.99

Low Orbit with Hohmann Transfer 2.08 26.93
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Table 4.3: Summary of Rendezvous Performance

Rendezvous Case Minimum AV (km/s) Time (min.)

Non Co-orbital, ERV behind MAV 1.188 120

Non Co-orbital, ERV ahead of MAV 1.263 85

Co-orbital, ERV behind MAV 1.265 64

Co-orbital, ERV ahead of MAV 1.266 64

Note: For the co-orbital rendezvous cases, the 1.217 kno/s AV required for orbit matching

has been added to the terminal rendezvous AV.

For each rendezvous case it can be noted that the minimum AV is less than the

1.364 km/s AV available at the end of the low ascent with Hohmann transfer ascent

strategy. As an initial performance estimate, this study has shown that the MAV, as it is

described in the DRM documentation, is capable of performing the ascent and

rendezvous with the ERV. Use of the low orbit with Hohmann transfer ascent strategy

has been shown to be the most efficient method of achieving the MAV mission, as well

as being the more operationally attractive and technically feasible method.
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5. RECCOMENDATIONS FOR FURTHER STUDY

The results of this study could be made more realistic by the inclusion of

aerodynamic effects on the vehicle as it passes through the Martian atmosphere on its

journey to orbit. This would necessistate the inclusion of a Martian atmosphere model

within the calculations. The Martian atmosphere, however, is not well defined at present,

and further study is required before atmospheric effects could be included in this

performance study. Due to the low density of the Martian atmosphere, its effect would

be minimal on the ascending MAV. This allows the results of this study to be viewed as

an accurate estimate of the required performance to complete the MAV mission.

An additional issue is the affect of acceleration on the crew following their six

month exposure to zero gravity on the outbound trip to Mars and the 500 day exposure to

Mars' limited gravity. Further study is required in the field of aerospace medicine

concerning the effect of long-term exposure to micro- and low gravity on human

performance. The need to limit acceleration experienced by the crew would lead to

changes in the basic problem formulation. A throttleable thrust system would have to be

mathematically modeled and constrained to work within set parameters. The

optimization problem would change from the minimization of time to the minimization of

propellant expended, with throttle as an additional control. Such a problem formulation

is within the capabilities of the PMP.
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Appendix A. Ascent Computer Code

program MAVCOAST;
■}

{MAV problem with no throttling or aerodynamic
constraints}

USES SIOUX;
Type vec = array[1..20] of extended;

mat = array[1..20,1..20] of extended;

-}

Var

x,z,w,dw,q,dq : vec;
OutputFile : TEXT;

i,j,ghost dnteger;
ge, {gravitational acceleration of the earth}
Pi, {Pi r not squared, Pi r round}
Th, {thrust generated by the vehicle engines}
mO, {initial total mass of the vehicle}
mdot, {mass flow rate of engines} .
mprop, , {mass of propellant consumed during ascent}
rfinal, {radius at engine cutoff}
vrfinal, {radial velocity at engine cutoff}
vthetafinal, {tangential velocity at engine cutoff}
rcirc, {desired final radius of circular orbit}
deltav. {magnitude of circularization bum}
rent, {desired engine cutoff radius}
oec, {orbital energy constant}
vcut, {path velocity at engine cutoff}
vrcut, {radial velocity at engine cutoff}
vthetacut. {tangential velocity at engine cutoff}
phicut, {angle to local horizontal at engine cutoff}
KAC, {Kepler Area Constant}
eccen, {eccentricity of the orbit prior to circularization}
rp, {perigee radius of orbit prior to circularization}
a, {semimajor axis of orbit prior to

circularization}
time, {time during controlled flight}
t. {time during vertically constrained flight}
H, {Hamiltonian of the system}
mpl, {mass of vehicle payload, samples and crew}
ms, {mass of empty spacecraft structure}
mf, {mass of fuel}
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za,

zb,
zc,

Isp,
gmars,

GM,

vorbit,
Rm,

rstar,

vstar,

tstar,

treal,
vmagsq,

phi,
alfa,
accel,

csphal,
snphal,
tcon,

pitch,
numeng,

throttle

{costate variable for radius}
{costate variable for radial velocity}
{costate variable for tangential velocity)
{specific impulse)
{gravitational acceleration on Mars)
{gravitational parameter for Mars)
{circular orbit velocity at desired final altitude)
{Radius of Martian surface 3310 km)
{distance scaling variable)
{velocity scaling variable)
{time scaling variable)
{unsclaed time) . ,
{square of the magnitude of velocity)
{angle of flight path to local horizontal)
{angle of thrust vector to flight path)
{acceleration of the vehicle, thrust over
instantaneous mass)
{cosine of alpha)
{sine of alpha)
{time during controlled flight)
{altitude at which controlled flight begins)
{number of engines on vehicle)
{percent of engine thrust)

•.extended;

{

Procedure Parameters;

begin
SlOUXSettings.tabspaces ;= 0;
Pi:= 3.141592653589793238462643;

{Gray Parameter of Mars, m3/s2)
{kg mass payload crew and samples)
{kg mass structure)
{kg of fuel initial)
{46681 kg initial mass of vehicle)
{m, radius of Mars)

GM:=4.28283el3;

mpl:= 1000.0;
ms:= 8898.0;
mf:= 39000.0;

mO := mpl+mf+ms;
Rm:= 3310000.0;

numeng:=3.0;
throttle:=1.0;
mdot ;=26.46*numeng*throttle; {kg/s)
ge:= 9.81; {rri/s)
Isp:= 379.0; {ISP of Engine)
gmars:= 3.909; {Ig on Mars m/s2)
rstar:=Rm;
vstar:=sqrt(GM/Rm);
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tstar:=sqrt(Rm*Rm*Rm/GM);
pitch;= 3000.0; {pitchover altitude}
Th := mdot*ge*Isp; {N}

{please specify}
rcirc:= Rm + 250000.0; {m}
deltav:= 25.0; {m/s}
rcut:= Rm + 160000.0; {m}

vorbit:= sqrt(GM/(rcirc)); (desired final velocity}
oec;= ((vorbit-deltav)*(vorbit-deltav)) - (2*GMyrcirc);
KAC;= (vorbit-deltav)*rcirc;
eccen:=sqrt(1.0 + (KAC*KAC*oec/(GM*GM)));
rp:=rcirc*(l .0-eccen)/(l .0+eccen);
a:=(rcirc+rp)/2.0;
vcut:=sqrt(GM/rcut)*sqrt(2.0-(rcut/a));
vthetacut:=rcirc*(vorbit-deltav)/rcut;{rapogee*vapogee/r}
vrcut:= sqrt( vcut*vcut - vthetacut*vthetaCut);

end;

{  }
{  NUMERICAL ROUTINES }
{  }
function arctan2(r,s : extended): extended;

var q: extended;
begin

if s= 0.0 then

if r>0 then q:=Pi/2 else q:=-Pi/2
else

q:= arctan(r/s);
if s<0.0 then

if kO.O then q:=q-Pi else q:= q+Pi;
if r=0.0 then q:= 0.0;
arctan2:=q;

end;
}

procedure Runge( procedure de(t:extended; var y,dy:vec); n linteger; h :extended;
yar t :extended; var y :vec);

v^ yl,fi,f2,f3,f4 :yec;
i: integer;
h2: extended;

begin
h2:= h/2;



de(t,y,fl);
for i:=l to n do yl[i]:= y[i] + h2*fl[i];
t:=t + h2;

de(t,yi,f2);
for i:=l to n do yl[i]:= y[i] + h2*f2[i];

de(t,yl,f3);
for i:=l to n do yl[i]:= y[i] + h *f3[i];
t:=t + h2;

de(t,yl,f4);
for i;=l to n do y[i]:= y[i] + h/6*(fl[i]+2*(f2[i]+f3[i])+f4[i]);

end;
(— )
Procedure Vecroot( procedure Vector(var x,y :vec); var x,ybase :vec;

ndim linteger; delx rextended);
type mat = array[1..20,1..20] of extended;
var y,xl :vec;

Jacob mat;
errlast,err,det : extended;
i,j,k :integer;

procedure System(n :integer; var a :mat; var b,x :vec; var det :extended);
var integer; ,

k: extended;

begin
det := 1.0;

for m := 1 to n-1 do begin
det := det*a[in,m];
for i := m+i to n do begin

k := a[i,m]/a[m,m];
for j := m+1 to n do a[i,j] := a[i,j] - k * a[m,j];
b[i] :=b[i] -k*b[m];

end;

end;
det := det * a[n,n];

for m := n downto 1 do begin
x[m] :=b[m]/a[m,m];
for i := 1 to m -1 do b[i] := b[i] - x[m]*a[i,m];

end;

end;

begin
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errlast:= inf;

for k:= 1 to 25 do begin
Vector( x,ybase);
err:= 0;

for i:= 1 to ndim do err:= err + sqr(ybase[i]);
err:= sqrt(err);
{writeln('Vecroot: err);}
if (err<10) and (k>3) and (err>=errlast) then exit(Vecroot);
errlast:= err;

{ Calculate Jacobian }
for j:= 1 to ndim do begin

xlj]:= x[j] + delx;
Vector( x,y);
for i:= 1 to ndim do jacob[i,j]:= (y[i]-ybase[i]) / delx;
x[j]:= x[j] - delx

end;

{ Solve for correction vector and correct x }
System( ndim,Jacob,ybase,xl,det);
for i:= 1 to ndim do x[i]:= x[i] - xl[i];.

end;
{writeln('Solution not found in "Vecroot"')}

end;
{

Procedure Climbeqs (y:extended; var q,dq :vec);
begin

end;

{

dq[l]
dq[2]
dq[3]
dq[4]
dq[5]

= -mdot*tstar/mO; {mdot}

= q[4]; {rdot}
= q[5]/q[2]; {thetadot}
= (q[5]*q[5]/q[2]) + (-1.0/(q[2]*q[2])) + Th/(q[l]*mO*gmars);{vrdot}
= 0.0; {vthetadot}

Procedure Climb;
begin

q[l] := 1.0; {massO}

q[2] := 1.0; {rO}
q[3] := 0.0; {thetaO}
q[4] := 0.0; {vrO)
q[5] :=0.0;

t := 0.0;

repeat
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end;

{■

Runge( Climbeqs, 5,0.001, t, q);
writeln(t*tstar: 10:5,chr(9){ ,q[l]*mO: 10:5,chr(9)},

(q[2]-1.0)*rstar:10:5,chr(9),q[3]:10;5,chr(9),
q[4]*vstar: 10:5,chr(9), q[5]*vstar: 10;5,chr(9));

until q[2] > (Rm+pitch)/rstar;
writeln(t:10:5,chr(9),q[l]:10:5,chr(9),q[2]:10:5,chr(9),q[3]:10:5,chr(9),

q[4]:10:5, chr(9),q[5]:10:5,chr(9));

Procedure Equations( y:extended; var w,dw :vec);

begin

-}

vmagsq:= (w[5]*w[5]) + (w[4]*w[4]);
phi:= arctan2(w[4],w[5]);
alfa;= arctan2(w[7],w[8])-phi;
csphal:= cos(alfa + phi);
snphal:= sin(alfa + phi);
accel:= Th/(w[l]*mO*gmars);

{magnitude velocity squared}
{angle to local horizon}
{control law}

{F/m*go}

{mdot}dw[l] := -mdot*tstar/mO;
dw[2] := w[4]; {rdot}
dw[3] := w[5]/w[2]; {thetadot}
dw[4] := (w[5]*w[5]/w[2]) - 1.0/(w[2]*w[2]) + accel*snphal; {vrdot}
dw[5] := (-w[4]*w[5]/w[2]) + accel*csphal; {vthetadot}
dw[6] := w[7]*( (w[5]*w[5]/(w[2]*w[2])) - (2.0/(w[2]*w[2]*w[2]))) +

w[8]*( -w[4]*w[5]/(w[2]*w[2]) );{zldot}
dw[7] := -w[6] + w[7]*(-accel*csphal*w[5]/vmagsq) + w[8]*( (w[5]/w[2]) +

(accel*snphal*w[5]/vmagsq)); {z2dot}
dw[8] := w[7]*( (-2.0*w[5]/w[2]) + accel*csphal*w[4]/vmagsq) +

w[8]*( (w[4]/w[2]) - (accel*snphal*w[4]/vmagsq) );{z3dot}

end;
{- -}
Procedure Solve;
Var a0,al,a2,a3,a4,a5,b0,bl,b2,b3,b4,b5,DrJ)i,xi,theta,D: extended;

begin

w[l]
w[2]
w[3]
w[4]
w[5]
w[6]

= q[l]; {massO}
= q[2]; {rO}
= q[3]; {ThetaO}
= q[4]; {vrO}
= q[5]; {vthetaO}
= x[l];
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w[7] ;=x[2];
w[8] := x[3];

{put in init conditions}
toon := t;

repeat
Runge( Equations, 8,0.001, toon, w);

until toon > time;

vmagsq:= (w[5]*w[5]) + (w[4]*w[4]);
phi:= arctan2(w[4],w[5]);
alfa:= arctan2(w[7],w[8])-phi;

(magnitude velocity squared}
{angle to local horizon}
{control law}

csphal:= cos(alfa + phi);
snphal:= sin(alfa + phi);
accel:= Th/(w[l]*mO*gmars); {F/m*go}
H:= -1.0 + w[6]*(w[4]) + w[7]*( (w[5]*w[5]/w[2]) - 1.0/(w[2]*w[2]) +
accel*snphal) + w[8]*( (-w[4]*w[5]/w[2]) + accel*csphal);

end;
{  }
procedure Vecset( var x,z :vec);

begin
Solve;

z[l]
z[2]
z[3]

= H;
= w[2]*rstar - (rcut);
= w[4]*vstar- vrcut;

end;

{
Procedure Search;

begin
x[l]
x[2]
x[3]

end;

{

begin

Parameters;

= 0.5

= 0.5

= 0.5

{guess conditions of costate vector}

Vecroot(Vecset, x,z,3,le-5);

MAIN
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Climb;
time:=430.0/tstar; {t}

Repeat
Search;
treal:=tcon*tstar;

mprop := mO*(w[l]);
rfinal := (w[2]*rstar)-3310000.0;
vrfinal ;= w[4]*vstar;
vthetafinal := w[5]*vstar;
za:= x[l];
zb:= x[2];
zc:=x[3];

phicut;=arctan2(vrcut, vthetacut);
vmagsq:= (w[5]*w[5]) + (w[4]*w[4]);
phi:= arctan2(w[4],w[5]); {angle to local horizon}
alfa:= arctan2(w[7],w[8])-phi; (control law}

csphal:= cos(alfa + phi);
snphal:= sin(alfa + phi);
accel:= 293576.61/(w[l]*m0*gmars); {F/m*go}
H:= -1.0 + w[.6]*(w[4]) 4- w[7]*( (w[5]*w[5]/w[2]) - 1.0/(w[2]*w[2]) +
accel*snphal) + w[8]*( (-w[4]*w[5]/w[2]) + accel*csphal);

writelnC rp-3310000.0:15:5, chr(9), vcut:15:10, chr(9), rcut-3310000.0:15:10,
chr(9), vrcut:15:10,chr(9), vthetacut: 15:10, chr(9), H:15:5,chr(9), phicut:15:10,
chr(9));

writeln( treal:15:5, chr(9), (w[l]*m0)-(ms+mpl):15:10, chr(9), rfinal: 15:10,
chr(9), vrfinal: 15:10, chr(9), vthetafinal: 15:10, chr(9), H:15:5, chr(9), phi:15:10,
chr(9), accel:15:10, chr(9));

writeln(za:15:5,chr(9),zb:15:10,chr(9),zc:15:10,chr(9));

time := time + 0.001;

until time >491.3/tstar; {at 491.3 the guage reads E on 3 engines}
(at 368.4 the guage reads E on 4 engines}

end.
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Appendix B. Rendezvous Code.

{  ...

program HILL; {Rendevouz Problem with target in elliptical orbit,
chaser in circular orbit}

USES SIOUX;

Type vec = array[r..20] of extended;
mat = array[1..20,L.20] of extended;

-}

Var

x,z,w,dw : vec;
OutputFile :TEXT;

i,j,ghost linteger;
fx, {initial x force in ERV. coordinate system}
fy, {initial y force in ERV coordinate system}
fz, {initial z force in ERV coordinate system}
a, {semimajor axis of ERV orbit}
e, {eccentricity of ERV orbit}
incl, {relative inclination between ERV and MAV orbit}.
nuE, {ERV initial true anomaly} ,
nudotE, (ERV intial true anomay time rate of rchange}
nudotM, {MAV intial tme anomay time rate of rchange}
nuM, {MAV initial tme anomaly}
xEFC, {ERV X Coordinate in Planetocentric coordinate

system},
yEPC, {ERV y coordinate in Planetocentric coordinate

system}
zEPC, {ERV z coordinate in Planetocentric coordinate

system}
xMPC, {MRV X coordinate in Planetocentric coordinate

system}
yMPC, {MRV y coordinate in Planetocentric coordinate

system} . .
zMPC, {MRV z coordinate in Planetocentric coordinate

system}
rERV, {ERV inital radius}
rMAV, {MAV inital radius}
rp, {Perimars Radius of ERV}
rE, {inital radius of ERV}
rM,, {inital radius of MAV}
vp, {Perimars velocity of ERV}
xOPC, {initial x distance in Planetocentric coordinate system}
yOPC, {initial y distance in Planetocentric coordinate system}
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zOPC, {initial z distance in Planetocentric coordinate system}
xO, (initial x distance in ERV coordinate system}
yO, (initial y distance in ERV coordinate system}
zO, (initial z distance in ERV coordinate system}
rhoO, (magnitude of intial distance}
xdotO, (initialx relative velocity in ERV coordinate system}
ydotO, (initial y relative velocity in ERV coordinate system}
zdotO, - (initial z relative velocity in ERV coordinate system}
thetaE, (path angle of ERV}
vE, (ERV inital velocity}
vEx, (ERV initial x velocity in ERV coordinates},
vEy, (ERV initial y velocity in ERV coordinates}
vEz, (ERV initial z velocity in ERV coordinates}
vM, (MAV circular orbit velocity}
vMxPC, (MAV initial x velocity in Planetocentric coordinates}
vMyPC, (MAV initial y velocity in Planetocentric coordinates}
vMzPC, (MAV initial z velocity in Planetocentric coordinates}
vMxEC, (MAV initial x velocity in ERV coordinates}
vMyEC, (MAV initial y velocity in ERV coordinates}
vMzEC, (MAV initial z velocity in ERV coordinates}
relvelx, (Relative x velocity in ERV coordinates}
relvely, (Relative y velocity in ERV coordinates}
relvelz, (Relative z velocity in ERV coordinates}
DelVxl, (Delta V X for first manuever}
DelVyl, (Delta V y for first manuever}
DelVzl, (Delta V z for first manuever}
delV1, (Magnitude of delta V for first maneuver}
DelVx2, (Delta V x for second manuever}
DelVy2, (Delta V y for second manuever}
DelVz2, (Delta V z for second manuever}
delV2, (Magnitude of delta V for second maneuver}
GM, (Gravitational Parameter of Mars}
Time, (time rate whieh solution is calculated}
Pi, (Pie are round}
t, (time in R-K iriteration}
nudoubledot, (time varying angular acceleration}
rT (time varying ERV radius}
:extended;

{

Procedure Parameters;

begin
SlOUXSettings.tabspaces := 0;
Pi := 3.141592653589793238462643;
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GM := 4.28283e4; {Gravitational Parameter (Mars), km3/s2}

(ERV orbital charachteristics}
e := 0.8249022;
rp:= 3560.0; {km}
nuE := 1.0*Pi/180.0; {radians}
a:=rp/abs(e-l); {km}
vp:=sqrt(GM*(l+e)/rp); {km/s}

{MAV circular orbit charachteristics}
incl:= 0.0*Pi/180.0; {radians}
nuM:=0.0*Pi/180.0; {radians}
rM:=3560.0; {km}
vM;=sqrt(GM/rM); {km/s}
nudotM:=sqrt(GM/rM)/rM; {radians/sec}

{Calculation of relative distances}
rE:=rp*(l .0+e)/(l+(e*cos(nuE)));
nudotE:=vp*rp/(rE*rE); {rads/sec}
xEPC:=rE*cos(nuE); {km}
yEPC;=rE*sin(nuE); {km}
zEPC:=0.0; {km}
xMPC:=rM*cos(incl)*cos(nuM); {km}
yMPC:=rM*cos(incl)*sin(nuM); {km}
zMPC:=rM*sin(incl); {km}

{Relative Distance in ERV coordinate system}
xO := (xMPC-xEPC)*sin(nuE) - (yMPC-yEPC)*cos(nuE); {km}
yO := (yMPC-yEPC)*sin(nuE) + (xMPC-xEPC)*cos(nuE); {km}
zO := zMPC-zEPC;
rhoO:=sqrt((xO*xO)+(yO*yO)+(zO*zO)); {km}
fx := 0.0;

fy := 0.0; {N}
fz ;= 0.0

end;

{-

NUMERICAL ROUTINES

---}

function arctan2(r,s : extended): extended;
var q: extended;
begin

if s= 0.0 then
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if r>0 then q:=Pi/2 else q:=-Pi/2
else

q:= arctan(r/s);
if s<0.0 then

if r<0.0 then q:=q-Pi else q:= q+Pi;
if r=0.0 then q:= 0.0;
arctan2:= q;

end;
(  }

procedure Vecroot( procedure Vector(var x,y :vec); var x,ybase :vec;
ndim linteger; delx ;extended);

type mat = array[1..20,1..20] of extended;
var y,xl :vec;

Jacob :mat;
errlast,err,det :extended;
i,j,k rinteger;

procedure System(n :integer; var a :mat; var b,x :vec; var det :extended);
var i,j,m: integer;

k: extended;

begin
det := 1.0;

for m := 1 to n-1 do begin
det := det*a[m,m];
for i := m+1 to n do begin

k := a[i,m]/a[m,m];
for j := m+1 to n do a[i,j] := a[i,j] - k * a[m,j];
b[i] := b[i] - k*b[m];

end;
end;
det := det * a[n,n];
for m := n downto 1 do begin

x[m] := b[m]/a[m,m];
for i := 1 to m -1 do b[i] := b[i] - x[mj*a[i,m];

end;
end;

begin
errlast:= inf;
for k;= 1 to 25 do begin

yector( x,ybase);
err:= 0;
for i:= 1 to ndim do err:= err + sqr(ybase[i]);
err:= sqrt(err);
{writeln('Vecroot; err);}
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if (err<10) and (k>3) and (err>=errlast) then exit(Vecroot);
en:last:= err;

{ Calculate Jacobian }
for j:= 1 to ndim do begin

xU]:=xij] +delx;
Vector( x,y);
for i:= 1 to ndim do jacob[i,j]:= (y[i]-ybase[i]) / delx;
x|j]:=xlj]-delx

end;

{ Solve for correction vector and correct x }
System( ndim,jacob,ybase,xl,det);
for i:= 1 to ndim do x[i]:= x[i] - xl[i];

end;
writeln('Solution not found in "Vecroot"')

end;
(  }

procedure Runge( procedure de(t:extended; var y,dy:vec); n unteger; h rextended;
var t lextended; var y :vec);

var yl,fl,f2,f3,f4 :vec;
i: integer;
h2: extended;

begin
h2:= h/2;

de( t,y,fl);
for i;=l to n do yl[i]:= y[i] + h2*fl[i];
t:=t -+ h2;

de( t,yl,f2);
for i:=l to n do yl[i]:= y[i] + h2*f2[i];

de( t,yl,f3 );
for i:=l to n do yl[i]:= y[i] + h *f3[i];
t:=t + h2;

de( t,yl,f4);
for i:=l to n do y[i]:= y[i] + h/6*(fl[i]+2*(f2[i]+f3[i])+f4[i]);

end;
{  }

Procedure Equations( yxxtended; var w,dw :vec);
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begin

rT:= rp*(l+e)/(l+(e*cos(wi7])));
nudoubledot:= -2.0*Gm*e*sin(w[7])/(rT*rT*rT);

dw[l] :=w[2];
dw[2] := fx - GM*w[l]/(rT*rT*rT) + 2*w[8]'''w[4] + nudoubledot*w[3]

+w[8]*wi8]*w[l];
, dw[3] := w[4];
dw[4] := fy + 2*GM*w[3]/(rT*rT*rT) - 2*w[8]*w[2] + nudoubledot*w[l] +

w[8]*w[8]*w[3];
dw[5]
dw[6]
dw[7]
dw[8]

= w[6];
= fz - GM*w[5]/(rT*rT*rT);
= w[8];
= -2.0*Gm*e*sin(w[7])/(rT*rT*iT);

{writeln(dw[l]:20:10,dw[2];20:10);}

end;

.  -1}
Procedure Solve;
Vara0,al,a2,a3,a4,a5,b0,bl,b2,b3,b4,b5,Dr,Di,xi,theta,D: extended;

begin

{writelnCPARAM:',aO; 10:5,bO: 10:5,al: 10:5,bl: 10:5,a2:10:5,b2:10:5,
a3:10:5,b3:10:5,a4:10:5,b4:10:5,Dr: 10:5,Di: 10:5,D: 10:5);}

w[l] := xO;
w[2]:=x[l];
w[3] := yO;
w[4]:=x[2];
w[5] := zO;
w[6] := x[3];
w[7] := nuE;
w[8] := 0.00131733;
t:=0.0;
repeat

Runge( Equations, 8,0.1, t, w ); ,
If Ghost = 1 then

writeln(t:10:5,chr(9),w[l]:15:10,chr(9),w[2]:15:10,chr(9),w[3]:16:10,chr(9),w[4]:
15:10,chr(9),w[5]:15:10,chr(9),w[6]:15:10);

until t > Time*60.0;
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end;

procedure Vecset( var x,z :vec);
begin

Solve;

z[l]
z[2]
z[3]

= w[l]
= w[3]
= w[5]

end;

{
Procedure Search;

begin

x[l]
x[2]
x[3]

= 0.0;

= -0.0;
= 0.0;

Vecroot(Vecset, x,z,3,le-5);

end;
main }

begin

Parameters;

writelnC Time: 10:8,chr(3),x0:15:10,chr(9),y0:15:10,chr(9),z0:15:10,chr(9),rho0:15:10);

Time := 1.0;
Repeat

Parameters;
Search;
xdotO := x[l]; ydotO := x[2]; zdotO := x[3];

{CALCULATION OF INTTAL ACTUAL RELATIVE VELOCmES}
thetaE:=arctan2(e*sin(nuE),(l+(e*cos(nuE))));
vE:=vp*rp/(rE*cos(thetaE));
vEx :=-vE*cos(thetaE);
vEy: =vE* sin(thetaE);
vEz:=0.0;
vMxPC:=(-nudotM*sin(incl)*zMPC) - (nudotM*cos(incI)*yMPC);
vMyPC:=nudotM*cos(incl)*xMPC;
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vMzPC;=nudotM*sin(incl)*xMPC;
vMxEC:=vMxPC*sin(nuE)-vMyPC*cos(nuE);
vMyEC: =vMxPC*cos(nuE)+yMyPC* sin(nuE);
vMzEC:=vMzPC;
relvelx:=vMxEC - vEx + nudotE*yO;
relvely:=vMyEC - vEy - nudotE*xO;
relvelz:=vMzEC - vEz;
DelVx 1 :=xdotO-relvelx;
DelVy 1 ;=ydotO-relvely;
DelVzl :=zdotO-relvelz;
delVl:=sqrt((DelVxl*DeIVxl)+(DelVyl*DelVyl)+(DelVzl+DelVzl));
DelVx2:=w[2];
DelVy2:=w[4];
DelVz2;=w[6];
delV2:=sqit((w[2]*w[2])+(w[4]*w[4])+(w[6]*w[6]));

writeln(Time: 10:8,chr(3),xMPC: 15:10,chr(9),yMPC; 15:10,chr(9),zMPC: 15:10,chr(9));}

writeln(Time: 10:8,chr(3),DelVxl: 15:10,chr(9),DelVyl: 15:10,chr(9),{DelVzl: 15:10,chr(
9),}delVl:15:10,DelVx2:15:10,chr(9),DelVy2:15:10,chr(9),{DelVz2:15:10,chr(9),}delV
2:15:10);

Time := Time+1.0;

until Time > 120.0;

end.
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