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ABSTRACT

The mammalian circadian pacemaker is located in the suprachiasmatic nucleus

(SCN). Phase shifts of the pacemaker are modulated by various inputs. The input that we

investigated is the serotonergic (5HT) input from the raphe nuclei. 5HT phase-advances

the SCN pacemaker when applied during mid-subjective day. In vitro studies indicate

that 5HT phase-advances the mammalian circadian pacemaker through a process that

includes stimulation of S-HT? receptors, activation of protein kinase A, and opening of

K"^ channels. How these cytoplasmic and membrane events translate into a shift in the

molecular core of the circadian oscillator is not known. To further understand this

process, we investigated whether serotonergic phase advances require protein synthesis.

Using two reversible translational inhibitors, anisomycin and cycloheximide, we show

that inhibition of protein synthesis blocks SHTergic phase shifts. We further show that a

transcriptional inhibitor, 5,6-dichloro-l-P-ribobenzimidazole (DRB), also blocks the

SHTergic phase shifts in the SCN circadian pacemaker. These results are similar to those

found previously with respect to SHTergic modulation of the Aplysia ocular circadian

clock, and suggest that SHT may phase-shift the SCN pacemaker through increasing

transcription and translation of specific proteins.
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Chapter I

Background and Significance

The Suprachiasmatic Nucleus and Circadian Rhythms

Circadian rhythms are endogenously driven rhythms in behavior and physiology

with a period length of about 24 hours. In addition, circadian rhythms appear to be

ubiquitous to all eukaryotes and even in some prokaryotes; their period length is

temperature-compensated and varies little at different ambient temperatures; and

environmental signals, mainly light and temperature changes, reset the phase to entrain

the rhythm to exactly 24 hours (Reppert and Weaver, 2000). Notable examples of

circadian rhythms include the sleep-wake cycle, food and water intake, locomotor

activity, body temperature, hormonal secretion, and psychomotor performance functions

(Rivkees and Hao, 2000). Although these rhytlrms parallel environmental cycles of light

and dark, they are not simply a reaction to environmental fluctuations, but are generated

by an endogenous timekeeping mechanism called the circadian clock. This biological

clock consists of tlu:ee components: an entrainment pathway that transmits environmental

signals to the timekeeping apparatus; a timekeeping apparatus, or 'oscillator' which

operates in the absence of environmental cues and is the core component of the circadian

clock; and output pathways by which the pacemaker regulates its various output rhythms

(Hardin, 2000; Moore, 1997).

In mammals, a bilaterally paired structure, the suprachiasmatic nuclei (SCN), is

considered to be the master circadian clock (Miller et al., 1996; Edery, 2000). The SCN is

located above the third ventricle at the base of the optic chiasm in the anterior

hypothalamus (Rivkees and Hao, 2000). Synchronization of the multiple, cell-
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autonomous circadian clocks within the SCN leads to coordinated circadian outputs that

regulate expressed rhythm(Shearman et al., 2000; Tomioka, 2000). Anatomically, the

SCN is divided into two main subdivisions: ventrolateral and dorsomedial (Miller et al.,

1996). The great majority of SCN neurons contain the inhibitory neurotransmitter y-

aminobutyric acid (GABA), while other peptides are more restricted in their distribution,

including arginine-vasopressin, in the dorsomedial SCN, and vasoactive-intestinal

peptide, in the ventrolateral part of the SCN (van den Pol, 1991).

There are tliree major input pathways leading to the SCN, all of which terminate in the

ventrolateral division of the SCN. Photic information is transported directly from the

retina via the retino-hypothalamic tract (Moore, 1997); there is also neuropeptide Y

(NPY) input from the intergeniculate leaflet through the geniculo-hypothalamic tract

(Moore and Card, 1990; Morin and Moore, 1992); and serotonergic (5-

hydroxytryptamine, 5HT) input from the raphe nuclei (Moore et al., 1978; Morin, 1994).

Interacting Molecular Loops in the Mammalian Circadian Clock: Presence of Clock

Genes in the SCN

In recent years, there has been extraordinary progress in elucidating the molecular

components of the mammalian circadian clock system. The discovery of circadian clock

genes in lower organisms (such as fruit flies and fungi), which show many similarities

with clock genes in mammals, together with advances in mouse molecular genetics have

led to major new discoveries on the molecular and genetic basis of mammalian circadian

rhythms.



In its simplest form, the molecular core of the circadian clock in mammals

consists of autoregulatory transcriptional and translational negative feedback loops that

have both positive and negative elements (Dunlap, 1999). Although not all components

of the circadian clock oscillate, interactions among these genes and the proteins encoded

by them are essential for the transcription-translation feedback loop to exist. The two

positive components of this feedback loop are the Clock gene and a heterodimeric

binding partner, Bmall, each of which contain bHLH (DNA-binding) and PAS (protein-

dimerization) domains. According to the negative feedback loop model, the proteins

encoded by these two genes dimerize through the bHLH and/or PAS domains, bind

regulatory DNA sequences (E-boxes) and activate transcription of another set of genes.

These genes, perl, per2, per3, cryl, and cry2 comprise the negative aspect of the

feedback loop. The proteins encoded by these genes, translocate to the nucleus following

a delay involving translation, phosphorylation, and heterodimerization. Once in the

nucleus, they negatively affect the transcription of their own genes by interfering with

CLOCK-BMALl activity. In time, the level of proteins in the negative feedback loop

declines (due to posttranscriptional processes), their negative feedback is reduced, and

the CLOCK-BMALl complex can begin transcription all over again (Yagita et al., 2000;

Shearman et al., 2000; Albrecht et al., 1997; Vitaterna et al., 1994; Oishi et al., 2000; van

der Horst et al., 1999; Vitaterna et al., 1999; Kume et al., 1999). This represents one

circadian cycle of the clock. The periodic activities of these clock genes are the essence

of the feedback loop. A simplified model for the clock mechanism in mammalian SCN

pacemaker cells is shown in Figure 1.
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Figure 1. The cireadian oscillator mechanisms in mammals: Simplified model for the

clock mechanism in SCN pacemaker cells. Arrows indicate positive regulation and lines

ending in bars denote negative regulation. Gene symbols are as described in the text.



Gene Induction as the Basis of Resetting the SCN Clock

The function of light in circadian rhytlims is to maintain synclirony of the

circadian pacemaker with the environment. It accomplishes this through specific

pathways and cellular mechanisms. The effect of light is dependent on time of day, with

light presented during early night delaying the clock, and light encountered during late

night advancing it (Moore, 1997). Environmental light signals are relayed to the SCN via

the RHT (Cermakian and Sassone-Corsi, 2000). Activation of ionotropic glutamate

receptors on SCN cells initiates a cascade of events leading to a phase shift of the clock.

Light pulses that reset the clock also induce the expression of a number of immediate-

early genes (lEGs), including c-fos and jun-B in the retinorecipient part of the SCN

(Beaule and Amir, 1999; Guido et ah, 1999; Edelstein et al., 2000), as well as clock genes

such as mPerl and mPer2 (Shigeyoshi et al., 1997; Zylka et al., 1998; Miyake et al.,

2000; Albrecht et al., 1997; Shearman et al., 1997). In addition, the degree of induction of

mPerl and mPer2 gene expression is dependent on the phase of the clock and correlated

with the size of the phase shift (van Esseveldt et al., 2000). While mPerl is induced hy

light tliroughout circadian night (parallel to lEG induction), mPer2 is induced only by

light pulses delivered in the earlier part of the night (Miyake et al., 2000). mPerS does not

appear to be light-regulated (Zylka et al., 1998). Therefore, the transcriptional responses

of the SCN to light, which are part of the input to the oscillator, vary with circadian

phase.

Conversely, recent findings demonstrate that several other stimuli, such as

melatonin secretion, locomotor activity, NPY and 5HT, phase-shift the circadian clock

during the subjective day rather than at night. Collectively referred to as 'non-photic
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stimuli, these inputs may modulate circadian elock phase by having opposite effeets on

cloek genes relative to light. For example, confinement of hamsters to a running wheel

that generally elicits considerable activity and arousal and phase-shifts the elock, results

in an acute down-regulation of Perl and Per2 mRNA levels in the SCN (Maywood et ah,

1999). In addition, it has been reported that systemic administration of a serotonin agonist

also down regulates hPerllhPer2 wiRNA levels in the hamster SCN (Horikawa et ah,

2000). Thus, the period genes are a common target for both photic and nonphotie

resetting cues. Their sensitivity to nonphotie resetting supports their proposed role as core

elements of the circadian oscillator. Moreover, these studies provide a possible

explanation at the molecular level for the effects of photic and nonphotie cues on the

cloek.

Effects of Protein Svnthesis Inhibitors on Circadian Pacemakers

Experimental work in a wide variety of organisms suggests that protein synthesis

is required for the function of the circadian oscillator. This conclusion is based upon two

types of results: the identification of specific genes critical for circadian rhythm

generation as outlined above, and the application of protein synthesis inhibitors that cause

phase shifts or period changes in circadian rhythms. The range concentration for inducing

phase shifts is the same as that which inhibits protein synthesis (Nakashima et al., 1981;

Dunlap and Feldman, 1988). Among vertebrates, protein synthesis inhibitors phase shift

circadian melatonin rhythms in chick pineal cells (Takahashi et al., 1989), and circadian

activity rhythms in hamsters (Takahashi and Turek, 1987). Among invertebrates,

translation inhibitors cause large phase shifts and change the period of the Aplysia ocular

rhythm (Jaeklet, 1980; Yeung and Eskin, 1988; Lotshaw and Jacklet, 1986). In all these
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cases, data suggest that about half of the circadian cycle is sensitive to inhibitors of

translation, with maximal sensitivity occurring from about circadian time CT 18 to CT 6.

In addition to experiments using short pulses of protein synthesis inhibitors (<

6h), longer treatments with these inhibitors can arrest or stop the motion of the molluscan

circadian pacemaker (Khalsa et ah, 1992). In the mollusc Bulla, long-duration application

of protein synthesis inhibitor cycloheximide (CHX) delays the phase of the subsequent

rhytlim, and the size of the delay is equal to how long the CHX treatment extends past

subjective dawn. These experiments suggest that the motion of the circadian pacemaker

is arrested during these long treatments and that the critical period for protein synthesis is

near subjective dawn.

Similar studies have been done in mammals to study the effect of protein

synthesis inhibitors on the SCN circadian pacemaker. In hamsters, injections of CHX or

another reversible translational inhibitor, anisomycin, between CT 14 and CT 4

consistently caused phase delays of ~ 1 h in the activity rhythm, whereas injections at

phases between CT 6 and CT 10 caused phase advances of a similar magnitude (Inouye

et ah, 1988). These results again suggest that proteins critical for mammalian circadian

pacemaker activity are synthesized near subjective dawn or early subjective day. This is

approximately the phase when Perl and Per2 mRNA levels are reaching their maximum

levels and PERI and PER2 proteins are beginning to be synthesized.

In other experiments, pulses of protein synthesis inhibitors have been shown to

block the induction of phase-shifts by light. For example, in the fungus Neurospora,

treatment with CHX inliibits light-induced phase shifts (Jolmson and Nakashima, 1990).

Another invertebrate model used to study circadian rhytlims is the mollusc, Aplysia. The
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isolated eye ofAplysia exhibits a circadian rhythm in optic nerve firing (Jacklet, 1969). In

Aplysia light pulses that phase-shift the ocular circadian pacemaker have been shown to

regulate the .expression of at least 11 proteins. Both the phase shifts by light and the

protein induction can be reversed by protein synthesis inhibitors (Raju et al., 1990;

Lotshaw and Jacklet, 1986; Jacklet, 1980). Similarly, serotonin, which can also phase

shift the Aplysia ocular rhythm, can induce or suppress the expression of some of these

proteins (Yeung and .Eskin, 1987; Corrent et al., 1982; Koumenis et al., 1995; Zwartjes

and Eskin, 2000). Because light and serotonin have opposite phase-shifting effects on the

Aplysia circadian system, proteins that are affected in opposite directions by these

entraining agents could be involved in resetting the Aplysia circadian oscillator. Several

proteins have been identified that fall into this category and their potential involvement in

circadian rhythm generation is undoubtedly being investigated further.

A necessary role for transcription in circadian pacemaker functioning has also

been investigated. Many of these studies have used the reversible RNA synthesis

inhibitor, 5,6-dichloro-l-B-ribobenzimidazole (DRB). Pulses of DRB cause phase-

dependent delays when applied between CT 20 and CT 10, and have no effect from CT

10 to CT 20 in the Aplysia eye (Raju et al., 1991; Koumenis et al., 1996). These DRB

experiments suggest that a critical period for transcription of specific genes involved in

the generation of circadian rhythms occurs from CT 20 to CT 10 in Aplysia ocular

system. In Bulla, the. data suggests that the sensitive phase for transcription extends

tliroughout most of the subjective day (Khalsa et al., 1996). Thus, a common feature of

both circadian systems is a phase-dependent requirement for transcription. Similar studies

have not been done in mammals. Taken together, these studies are consistent with the
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hypothesis that circadian transcription and translation of specific circadian clock genes is

necessary for on-going functioning of the circadian clock. However, as in the case of

translation, the precise role of transcription in the generation of the rhythm is still not

clear. Transcription could reside either outside the oscillator loop, or be a part of the

oscillator mechanism, or both. The latter, if true, would result in oscillating message

levels as are found in the per gene in Drosophila (Hardin et ah, 1990). The determination

of the precise role of transcription in circadian timing (as of that of translation) will

require the identification and study of the mRNAs important in the timing of the

oscillator.

Serotonin Phase Resetting of SCN Pacemaker

The SCN in mammals receives robust serotonergic innervation from the midbrain

raphe (Moore et ah, 1978). Data show that raphe unit activity is highest during waking

and lowest during the deepest stages of sleep (McGinty, 1976). The persistence of

rhythms in 5HT content in the SCN in constant conditions suggests that the release of this

major afferent neurotransmitter in the SCN is under circadian control. In contrast, 5HT

content in the entire anterior hypothalamus seems to be driven primarily by the light/dark

cycle (Ferraro and Steger, 1990).

The functional significance of the input from the raphe to the circadian system is

controversial. To elucidate the role of 5HT function, many investigators have used the

chemical and electrical destruction of the 5HT system (Levine et ah, 1986; Honma et ah,

1979). These treatments generally did not eliminate circadian rhythms, but the rhythms

became more irregular with lower overall amplitude. Nonetheless, these experiment show



that SHTergic input to the SCN has some sort of modulatory effect on the circadian

pacemaker.

To further study the function of this projection in the mammalian circadian

system, several labs switched to in vitro studies. The SCN circadian clock continues to

function in vitro, generating 24 h rhythms in spontaneous neuronal activity. Prosser et al.

(1990) found that quipazine (a non-specific 5HT agonist) could reset the phase of the rat

SCN pacemaker in vitro. Treatments with both 5HT and quipazine advanced the phase of

the clock when applied during the mid- subjective day and delayed the clock when

applied during mid-subjective night. Similar results were obtained by other labs using a

variety of SHTergic agonists (Medanic and Gillette, 1992; Shibata et al., 1992b). In vivo

studies using 5HT and SHTergic agonists in both rats and hamsters generate similar

results to those seen in vitro, i.e., daytime phase advances and small or no phase delays at

night (Cutrera et al., 1994; Tominaga et al., 1992; Cutrera et al., 1996; Edgar et al.,

1993).

Signal Transduction Processes Associated With Serotonereic Phase Shifts

Several \n vitro studies have investigated the signal transduction processes

through which 5HT phase-shifts the circadian clock (Prosser, 2000; Prosser et al., 1994a).

Serotonin appears to phase-advance the mammalian circadian pacemaker through a

process that includes stimulation of SHT? receptors, causing activation of adenylate

cyclase and an increase in cyclic AMP, activation of protein kinase A, and opening of K"^

channels (see Figure 2). 5HT has also been shown to decrease c-fos mRNA in the SCN in

vitro when applied during the subjective day (Prosser et al., 1994b), and to decrease Perl

and Per2 mRNA levels in vivo when applied during the day (Horikawa et al., 2000).
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Figure 2. Working model of SHTergic resetting of the mammalian circadian clock:

Previous research suggests that 5HT advances the SCN clock through stimulating 5HT7

receptors, activating adenylate cyclase (AC), increasing cAMP levels and activating

protein kinase-A (PK-A). Also involved in the phase advances is opening of K"^ channels.

Here we are exploring other possible down-stream events linking 5HT stimulation to the

core oscillatory loop of transcription/translation negative feedback, specifically whether

transcription and/or translation are necessary steps in this signal transduction pathway.
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Wliether either of these changes are necessary for SHTergic phase shifts is not known.

Undoubtedly, many additional biochemical pathways are involved in 5HTergic advances

of the mammalian circadian pacemaker.

In the Aplysia ocular system, 5HT also induces phase advances in the subjective

day through activation of adenylate cyclase, an increase in cAMP, and an increase in K"^

channel conductance (Koumenis and Eskin, 1992; Eskin et ah, 1982). Protein synthesis

has also been implicated in the 5HT-entraimnent pathway in Aplysia (Eskin et ah, 1984)

since the 5HTergic-phase advances ai'e blocked by protein synthesis inhibitors (Eskin et

ah, 1989; Yeung and Eskin, 1988), and 5HT induces production of several proteins in the

Aplysia eye (Zwartjes and Eskin, 2000; Koumenis et ah, 1995). Anisomycin also blocked

phase shifts induced by cAMP analogues (Eskin et ah, 1982). This last result suggests

that protein synthesis occurs after the cAMP step in the 5HT-entrainment pathway. In

addition, SHTergic phase shifts in the Aplysia circadian system are also blocked by

application of DRB (Koumenis et ah, 1996).

Rationale For This Studv

The potential involvement of transcription and translation in 5HTergic phase

shifts of the Aplysia circadian clock led us to hypothesize that SHTergic phase advances

of the mammalian circadian clock may also involve transcriptional and translational

processes. To begin addressing this hypothesis, we investigated whether transcriptional

and translational inhibitors block the phase shifts induced by 5HT in the SCN circadian

pacemaker in vitro. Since the 5HT agonist (+) DPAT has been shown to mimic the

daytime phase-shifts of 5HT, and it is selective for the 5HTia and SHT? receptors (the

12



later likely being the receptor involved in 5HT phase-advances) many of our experiments

used (+) DPAT instead of 5HT.

13



Chapter II

Materials and Methods

Brain Slice Preparation

Coronal brain slices (500u) containing the SON were prepared during the daytime

from adult, male Sprague-Dawley rats housed in a 12:12 light-dark cycle. Slices were

maintained in a Hatton-style interface brain-slice chamber, where they were perfused

continuously with warm (37°C), oxygenated (95% O2 / 5% CO2) Earle's Balanced Salt

Solution (BBSS; Sigma) supplemented with glucose and bicarbonate, and brought to pH

7.4 (Prosser, 1998).

Single Unit Recordings and Data Analysis

The spontaneous activity of single SCN neurons was recorded on day 2 in vitro

using a glass microelectrode filled with 3M NaCl. Activity of each neuron was recorded

for 5 min and the data stored using a DatalFave system. Throughout each hour of the

recording process, between 4-6 SCN cells were recorded. The individual firing rates were

then used to calculate two-hour rumiing averages to obtain a measure of population

neuronal activity, as described previously (Prosser, 1998). The time-of-peak was defined

as the symmetrically highest point in the resulting curve. Phase shifts were calculated as

the difference in time-of-peak in drug-treated slices vs. untreated slices. Student's Mest

and ANOVAs were used to test for significant differences between treatment and control

experiments.

Experimental Treatments

All drugs were bath applied on day 1 in vitro for 1 hour. During drug application,

the normal perfusion was stopped and the medium in the chamber was replaced with

14



medium containing the appropriate test compound using a glass pipette. At the end of the

hour, the treated medium was exchanged with normal medium and perfusion was

resumed. For blocking experiments, the perfusion medium was first replaced with

medium containing the blocking agent. After 15 min this solution was replaced for 1 h

with medium containing both compounds. This was followed by another 15min treatment

with medium containing the blocking agent, after which the treated medium was

exchanged with normal medium and the normal perfusion was resumed. Chemicals used

in this study include 5-hydroxytryptamine (5HT), 8-hydroxy-dipropylaminotetralin HBr

((+)DPAT), anisomycin and CHX (Sigma/Research Biochemicals) and 5,6-dichloro-l-P-

ribobenzimidazole (DRB) (Calbiochem).

Protein Synthesis Measurements

To determine the effect of anisomycin on protein synthesis we measured the

incorporation of [^^S] methionine/[^^S] cysteine into trichloroacetic acid (TCA)-

precipitable material (Raju et al., 1990; Yeung and Eskin, 1988). Two groups of SCN

brain slices (1 control and 1 experimental) were run in parallel. These brain slices were

reduced in size from those used in recording experiments, so they consisted only of the

SCN and adjacent optic chiasm. The experimental group was treated with anisomycin for

1 h beginning at zeitgeber time 6 (ZT 6, where ZT 0 = lights-on in the animal colony).

Individual slices from each group were removed from the slice chambers at different time

points before, during, and after anisomycin treatment. After each slice was removed from

the bath, it was weighed, placed in a mixture of [^^S] methionine/[^^S] cysteine (Trans-^^S

label, ICN) and DMEM (150uL radioactive label/450uL DMEM) and incubated for 1 h at

37°C. At the end of incubation, slices were homogenized for at least 2min in RIP A

15



buffer on ice and then centrifuged {RIPA buffer: 7>w-HCl lOmM, Triton 0.5ml, Tween

0.5ml, and SDS 0.5ml). Three lOuL aliquots of supernatant were removed from each

sample and placed on pieces of filter paper which were dried and then placed in boiling

10% TCA for 3-5miri. The filter papers were then dried and placed in vials with 10ml

scintillation fluid. Measurements of TCA-precipitable radioactivity were then made.

Protein synthesis was expressed as radioactivity (counts per min) divided by wet tissue

weight (ug).
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Chapter III

Results

Single-Unit Recording Experiments: Serotonergic Phase Shifts

In control experiments, SCN neuronal activity peaked at mid subjective day

(Fig.3). The mean (±S.E.M.) time-of-peak for all control experiments Avas ZT 6.0 ± 0.5

(n=4). Consistent with results obtained from previous studies (Medanic and Gillette,

1992; Shibata et ah, 1992b; Prosser et ah, 1993), both 5HT and its agonist (+) DPAT

significantly advanced the time of peak activity when applied alone at ZT 6 (Fig.3). 5HT

(1 and 10 uM) induced mean phase advances of about 4 h, while DPAT induced mean

phase advances of about 3 h (10 uM) and 4 h (100 uM) (Table 1).

Protein Svnthesis Inhibition

To examine the need for protein synthesis in SHTergic phase shifting, two

reversible translational inhibitors were used: anisomycin and cycloheximide. We began

by measuring the amount and time course of protein synthesis inhibition induced by

anisomycin at ZT 6. As shown in Fig.4, 20uM anisomycin decreased incorporation of

TCA-precipitable radioactive label by 80% within the first half-hour of its application,

and complete recovery of the percentage of total protein synthesis occurred within 30min

of drug removal.

Next, we investigated the effects of anisomycin on SCN pacemaker phase in vitro.

We found that the ability of anisomycin to phase-shift the SCN pacemaker was

dependent on the circadian time of drug application. Consistent with previous results
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Figure 3. In vitro circadian rhythm of neuronal activity. Shown here are the

2h means ±SEM of spontaneous neuronal activity recorded in single

experiments A) Control experiment showing a peak in neuronal activity at

ZT 6. B) 5-HT (luM) induces a 4h phase advance when applied at ZT 6. C)

Neuronal activity after application of DP AT (lOuM) peaks near ZT 3,

indicating a phase advance of about 3 h. Horizontal bar: lights-off in the

animal colony. Vertical bar: time of drug treatment. Dotted line: mean time-

of-peak in control experiments.
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Table 1. Phase-shifting effects of various drugs bath-applied to SCN brain
slices for 1 h at ZT 6.

Treatment Number of Phase Shift (h)t
experiment

s

(+) DPAT(IOuM) 5 2.7 ±0.2*

(+)DPAT(100uM) 3 4.17± 0.4 *

5HT(1uM) 3 3.9 ±0.6 *

5HT(10uM) 3 4.3 ± 0.2 *

(+)DPAT (10uM)/AnisomyGin (20uM) 3 0.25 ±0.7

(+)DPAT (100uM)/Anisomycin (20uM) 4 1.18±0.5

(+)DPAT (10uM)/Cycloheximide (10uM) 3 0.67 ± 0.3

5HT (1uM)/Anisomycin (20uM) 3 0.5 ±0.3

5HT (10uM)/Anisomycin(20uM) 3 1.5 ±0.4

(+)DPAT (10uM)/DRB (10uM) 3 1.17±0.8

(+)DPAT (10uM)/DRB (100uM) 3 0.17 ±0.2

Anisomycin (20uM) 4 0.68 ± 0.2

Cycloheximide (10uM) 5 2.2 ±0.7*

DRB (10uM) 3 0.0 ±0.0

DRB (100uM) 4 1.32 ±0.3

t relative to control (ZT 6.0 ± 0.5, n=4)
* p < 0.05 vs. control
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Figure 4. Protein synthesis inliibition and recovery in the SCN following treatment with

anisomycin: Incorporation of [^^S]-methionine/[^^S]-cysteine into TCA precipitable
material was assayed at various time points before, during and after treatment with
anisomycin. The hatched area indicates the time of anisomycin treatment. Each value

represents the mean of 3 replicates of TCA-precipitable radioactivity from a single SCN-
containing brain slice (SEM are smaller than the symbols). Horizontal line = mean for all

6 slices assayed prior to anisomycin treatment.
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(Shibata et al., 1992a; Inouye et al., 1988; Takaliashi and Turek, 1987), anisomycin

applied alone at ZT 2 induced a large phase delay (3.2 ± 1.1 h,n=3; p<0.01 vs. control),

while anisomycin applied at ZT 6 did not induce a significant phase shift (0.68 ± 0.2 h,

n=4; p>0.1 vs. control).

Next, we investigated the effect of co-applying anisomycin with (+) DPAT. 20uM

anisomycin blocked the phase advances induced by both lOuM and 100 uM (+) DP AT

(Fig. 5; Table 1). Anisomycin also blocked the phase shifts induced by 1 and 10 uM 5HT

(Table 1).

To further investigate the effects of inhibiting protein synthesis, we tested the

effects of a second translational inhibitor, cycloheximide. Cycloheximide blocked phase

advances induced by 10 uM (+) DPAT at ZT 6 (Fig. 5; Table 1). Interestingly, when

applied alone at ZT 6 cyeloheximide induced a significant phase advance (Table 1).

Transcriptional Inhibition

Next we investigated the effects of transcriptional inhibition on the SCN

pacemaker. As seen in Fig.6, DRB (lOOuM) application at ZT 6 induced a small phase

advance. Overall, treatment of SCN slices with DRB (lOOuM) at ZT 6 induced a mean

phase advance of 1.3 h (Table 1) which was not significantly different from control

experiments. DRB application during late subjective day and early subjective night

induced similar small phase advances. However, DRB induced large phase advances

when applied during mid subjective night (ZT 18-19), and large phase delays during late

subjective night (ZT 21; Fig. 6). The full phase response curve for DRB is shown in Fig.

7.

22



Figure 5. (+)DPAT-induced phase advances of the SCN neuronal activity

rhythm are blocked by transcriptional and translational inhibitors. Shown are

the 2 h means ± S.E.M. of neuronal activity from three different

experiments. A) Co-application of anisomycin (20uM) with (+) DPAT at ZT

6 completely blocked the (+) DPAT-induced phase advance. B) Co-

application of cycloheximide (lOuM) blocked the phase-advance induced by

(+) DPAT. C) Co-application of DRB (lOuM) with (+) DP AT at ZT 6 also

blocked the (+) DPAT-induced phase advance at ZT 6. See Fig. 3 for

additional details.
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Figure 6. Phase-shifting effects of the transcriptional inhibitor, DRB.

Neuronal activity recorded in individual experiments after DRB treatment at

(A) ZT 6, (B) ZT 19, and (C) ZT 21: DRB treatment at ZT 19 induced a

large phase advance, while treatment at ZT 21 induced a large phase delay in

the time of peak activity. See Fig. 3 for additional details.
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Finally, we investigated the effeet of co-applying DRB with (-I-) DP AT. As shown

in Fig. 5, 100 uM DRB completely blocked the phase advances induced by (+) DPAT at

ZT 6. Because this concentration of DRB induced a small (but non-signifieant) phase

advance when applied alone at this time, we also investigated the effects of a lower

concentration of DRB. 10 uM DRB, which induced no phase shifts when applied alone,

decreased the (-I-) DPAT-induced phase advance such that it was no longer significantly

different from controls. The results of these experiments are summarized in Table 1.
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Chapter IV

Discussion and Future Directions

The aim of these experiments was to determine the effects of transcription and

translation inhibitors on 5HTergic phase shifts. We found that two inhibitors of protein

synthesis, anisomycin and cycloheximide, both blocked SHTergic phase shifts when

applied at ZT 6 in vitro, and that the reversible transcription inliibitor, DRB, also blocked

(+) DPAT-induced phase shifts at ZT 6.

Consistent with earlier studies (Takahashi and Turek, 1987), we found that

anisomycin had no effect on circadian pacemaker phase when applied alone at ZT 6,

although it did induce substantial phase delays when applied a few hours earlier, at ZT 2.

The inability of anisomycin to phase-shift the SCN pacemaker at ZT 6 was not due to a

lack of effect on translation, since anisomycin inhibited protein synthesis when applied at

ZT 6. Inhibition of protein synthesis occurred very rapidly after drug application (80%

inhibition within '/z h), and recovery was also rapid, suggesting that any immediate

effects of this treatment are well-circumscribed. The phase delays induced by anisomycin

at ZT 2 add to the evidence that protein(s) critical to the SCN circadian pacemaker are

being synthesized near subjective dawn in the SCN.

In addition to inducing phase shifts when applied alone at ZT 2, anisomycin also

blocked phase advances induced by (+) DP AT and 5HT at ZT 6. It is important to

emphasize that anisomycin did not phase-shift the SCN pacemaker when applied by itself

at ZT 6, so the inliibition of SHTergic phase shifts at this time cannot be attributable to an

iiihibitory interaction between two phase-shifting stimuli. On the other hand, whether the

inhibition is due to a general reduction in protein synthesis in the SCN or to the inhibition
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of specific protein(s) being synthesized in response to SHTergic stimulation cannot be

determined at this point. To address this question, we would first need to investigate

whether 5HT increases the synthesis of specific proteins in the SCN when applied at ZT

6. Similar experiments investigating the ocular circadian clock in Aplysia have shown

that 5HT alters the synthesis of at least nine proteins (Koumenis et ah, 1995). It should

also be pointed out that while anisomycin has proven to be remarkably free of side effects

on neuronal functions such as resting potentials, action potentials, and synaptic

transmission (Lotshaw and Jacklet, 1986; Jacklet, 1980), it has been shown to activate at

least two protein kinases, p38 mitogen-activated protein kinase (MAPK) and c-Jun NHa-

terminal kinase (INK) (Torocsik and Szeberenyi, 2000a,b). Thus, it is possible that the

inhibition of SHTergic phase shifts could be due to mechanisms other than inhibition of

protein synthesis.

The results with cycloheximide, a second protein synthesis inhibitor with distinct

mechanisms of action, generally support the results with anisomycin, since no phase shift

was seen when cycloheximide was co-applied with (+) DPAT at ZT 6. However, the

results with cycloheximide are complicated by the fact that cycloheximide applied alone

induced a phase advance at ZT 6. Two questions arise from these results: why does

cycloheximide induce a phase advance when anisomycin does not, and why does the co-

application of (+) DPAT + cycloheximide result in no shift? As to the first question,

perhaps it has to do with side effects of cycloheximide that are not shared with

anisomycin, such as the ability to affect membrane permeability and transport (Dunlap

and Feldman, 1988). The effects of altering membrane permeability on the SCN circadian

pacemaker have not been explored, but evidence suggests that these types of
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manipulations may affect the circadian pacemaker in other organisms (Cote and Brody,

1987a,b; Mattern and Callaway, 1987). With respect to the lack of phase shift when (+)

DPAT and cycloheximide are co-applied, this does not appear to be a simple case of

additivity, since that would mean an even larger (~ 5 h) advance. This is the case even if

one assumes that the cycloheximide-induced phase advance is completed prior to (4-)

DPAT being applied. Assuming a full shift in response to cycloheximide, that would

mean that (+) DPAT was added around ZT 8-9. This is still a time when DPAT induces

phase advances (Shibata et ah, 1992b), so one would still predict a large phase advance.

An alternative hypothesis is that the mechanisms through which cycloheximide induces

phase advances are blocked by subsequent addition of (-I-) DPAT, while cycloheximide

concurrently blocks the phase advances normally induced by (-I-) DPAT. Speculation

concerning cycloheximide-induced phase advances would require more detailed

knowledge of cycloheximide's actions in the SCN.

Our results indicate that the reversible transcription inhibitor, DRB, also blocks

the phase advances induced by (-I-) DPAT. Both lOuM and 100 uM DRB were effective

at blocking (+) DPAT-induced phase advances, although a small, non-significant phase

advance was still seen with the smaller concentration of DRB. The small phase-advance

seen with the co-application of DRB at the lower concentration may be because 10 uM is

near the low end of the effective concentration range for transcriptional inhibition by

DRB (Tamm, 1983; Chodosh et ah, 1989; Zandomeni et ah, 1982). The inhibition of

SHTergic phase shifts we observed with DRB is similar to that seen in Aplysia, where

DRB also blocked 5HT-induced phase shifts. These results also are consistent with the
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hypothesis that SHTergic phase shifts of the SCN circadian pacemaker require ongoing

transcription.

Again, these results cannot discriminate between whether the blocking by DRB is

due to general trahscriptional inhibition or whether it is due to DRB inhibiting the

transcription of specific genes in the SCN. DRB has been shown to inhibit transcription

of mRNA precursors at or close to the site of initiation of transcription in vitro and to

cause premature termination (Zandomeni et ah, 1983; Chodosh et al., 1989; Zandomeni

et al., 1982). Thus, it should block most, if not all, ongoing gene transcription. InAplysia,

a number of genes appear to be transcribed in response to 5HT (Yeung and Eskin, 1987;

Raju et al., 1990; Koumenis and Eskin, 1992). Future experiments could determine

whether similar transcriptional activation occurs in response to serotonergic stimulation

in the SCN.

The phase-shifting effects of DRB applied alone are also quite interesting. DRB

induced small, but non-significant phase advances during most of the subjective day and

into early subjective night. However, during mid-subjective night large advances, up to

2.5 h at ZT 19, were seen, followed by a rapid switch to large phase delays at ZT 21. No

phase shift was observed with DRB application at ZT 20. This dramatic switch from

phase advances to phase delays around ZT 20 suggests that at this time there is a rapid

onset of transcription of genes critical for circadian clock functioning. Since this is

approximately when mPerl and mPer2 mRNA levels begin to rise in the SCN (Hastings

et al., 1999; Field et al., 2000), it is possible that the phase delays induced by DRB during

late subjective night are due to its inhibition of Perl and Perl transcription.
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The pattern of phase shifts induced by DRB in the SCN is very different from that

seen in Aplysia. In that system, DRB induces large phase delays throughout the

subjective day (Koumenis et ah, 1996). This period of phase delay between CT 20-10 is

coincident or even slightly after the time of maximal phase delays induced by protein

synthesis inhibitors in Aplysia (Yeung and Eskin, 1987). This suggests there is a very

long (~18 h) delay between transcritpion and translation of proteins critical for the

Aplysia circadian pacemaker. Determining what genes and their protein products are

critical for Aplysia circadian pacemaker functioning may provide some explanation for

these intriguing results. Conversely, the time when DRB induces phase delays in the SCN

is slightly ahead of when protein synthesis inhibitors induce maximal phase delays

(Yeung and Eskin, 1988; Lotshaw and Jacklet, 1986). Thus, the results seen in the SCN

appear to fit better with the general pattern of gene transcription slightly preceeding

translation.

Previous research points to SHTergic phase advances of the SCN pacemaker

involving stimulation of SHT? receptors, activation of adenylate cyclase and protein

kinase A, and an increase in K"^ conductance. The results here suggest that the

transcription and translation of specific protein(s) may also be involved. What these

proteins may be is not known. Horikawa et al. (2000) recently showed, using in situ

hybridization, that SHTergic stimulation at ZT 6 in vivo decreases hPerl and hPer2

mRNA expression in the SCN for approximately 2 h. An effect on PER protein levels

was not seen. It has not been determined, however, if this inhibition is critical for

SHTergic phase shifts. In light of those and our results, however, one could speculate that

(+) DPAT increases the transcription of a gene(s) whose protein product(s) down-
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regulates Per mRNA levels. Then again, it is also possible that the protein(s) critical for

SHTergic phase shifts are transcribed and translated some hours after drug application.

The time course for these events needs to be investigated further.

In order to focus on specific protein changes in response to serotonergic

treatments in the SCN, several techniques such as 2-dimensional sodium dodecyl

sulphate polyacrylamine gel electrophoresis (2-D SDS-PAGE) and Western blots could

be utilized. With the Western blots, we will also look for increases or decrease in specific

clock-related proteins in the SCN such as PER, CLOCK, BMAL. With the help of the 2-

D SDS-PAGE technique, we would look more broadly at proteins whose levels are

increased or decreased in the SCN in response to either 5HT or (-I-) DP AT treatment at

ZT 6. If we do not find protein changes in response to 5HTergic stimulation, we can

conclude that either the proteins increased in response to 5HT are not being detected by

the assays, or that the transcriptional and translational inhibitors blocked the phase shifts

by disrupting ongoing synthesis of proteins critical for circadian functioning. Also, it

would suggest that 5HT does not phase-shift the clock through increasing the synthesis of

specific proteins in the SCN. Thus, with the help of these techniques we could draw

conclusions regarding the role of protein synthesis in serotonergic phase shifts of the

mammalian circadian clock.

In conclusion, our study indicates that both transcriptional and translational

inliibitors block SHTergic phase advances in vitro. These results are similar to those

found in the Aplysia circadian pacemaker. Further, these results are consistent with

transcription and translation of new proteins being important for SHTergic phase shifts of

the SCN circadian pacemaker in vitro. Additional experiments will be necessary to
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determine whether the synthesis of specific proteins is altered by 5HT, and to identify

how changes in these proteins affect the rnammalian circadian clock.
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