
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2000

Automated neural network-based instrument validation system Automated neural network-based instrument validation system

Xiao Xu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Xu, Xiao, "Automated neural network-based instrument validation system. " PhD diss., University of
Tennessee, 2000.
https://trace.tennessee.edu/utk_graddiss/8450

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8450&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Xiao Xu entitled "Automated neural network-

based instrument validation system." I have examined the final electronic copy of this

dissertation for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering.

J. Wesley Hines, Major Professor

We have read this dissertation and recommend its acceptance:

R. E. Uhrug, B. R. Upadhyaya, B. MacLennan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council;

I am submitting herewith a dissertation written by Xiao Xu entitled " Automated Neural
Network-Based Instrument Validation System." I have examined the final copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy, with a major in Nuclear
Engineering.

J. Wesley Hines, Major Professor

We have read this dissertation
and recommend its acceptance:

Accepted for the Council:

Associate Vice Chancellor and

Dean of The Graduate School

Automated Neural Network-Based

Instrument Validation System

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Xiao Xu

August 2000

Dedicated to my daughter, Kristine, my wife, Li, and my parents

11

Acknowledgments

There are so many people to whom I am grateful for making my time at the University of

Tennessee so rewarding. I have benefited greatly Jfrom knowing the faulty and graduate

students in the Department of Nuclear Engineering over the last five years, and hope

these relationships will endure. I am particularly grateful to the members of my

Dissertation Committee, Dr. J. Wesley Hines, Dr. R. E. Uhrig, Dr. B. R. Upadhyaya, and

Dr. B. MacLennan of Computer Science Department, for their support, valuable

comments, and encouragement. The author is most grateful to Dr. Hines for his advice

and support that made the completion of this work possible.

I would like to thank Dr. Uhrig and Dr. Tom Kerlin for providing me an opportunity to

continue my education here at the University of Tennessee.

This study is sponsored by several companies through the Maintenance and Reliability

Center. I would like to thank the Tennessee Valley Authority for providing the data for

system design and testing, and Mr. Cyrus Tafl of the Electric Power Research Institute

(EPRI) Instrument and Control (I & C) Center for his tireless help in collecting the data.

Finally, I would like to thank my wife, Li Huang, for her continuous support and

patience.

Ill

Abstract

In a complex control process, instrument calibration is periodically performed to maintain

the instruments within the calibration range, which assures proper control and minimizes

down time. Instruments are usually calibrated under out-of-service conditions using

manual calibration methods, which may cause incorrect calibration or equipment damage.

Continuous in-service calibration monitoring of sensors and instruments will reduce

unnecessary instrument calibrations, give operators more confidence in instrument

measurements, increase plant efficiency or product quality, and minimize the possibility

of equipment damage during unnecessary manual calibrations.

In this dissertation, an artificial neural network (ANNQ-based instrument calibration

verification system is designed to achieve the on-line monitoring and verification goal for

scheduling maintenance. Since an ANN is a data-driven model, it can learn the

relationships among signals without prior knowledge of the physical model or process,

which is usually difficult to establish for the complex non-linear systems. Furthermore,

the ANNs provide a noise-reduced estimate of the signal measurement. More

importantly, since a neural network learns the relationships among signals, it can give an

unfaulted estimate of a faulty signal based on information provided by other unfaulted

signals; that is, provide a correct estimate of a faulty signal. This ANN-based instrument

verification system is capable of detecting small degradations or drifts occurring in

instrumentation, and preclude false control actions or system damage caused by

instrument degradation.

IV

In this dissertation, an automated scheme of neural network construction is developed.

Previously, the neural network structure design required extensive knowledge of neural

networks. An automated design methodology was developed so that a network structure

can be created without expert interaction. This validation system was designed to

monitor process sensors plant-wide. Due to the large number of sensors to be monitored

and the limited computational capability of an artificial neural network model, a variable

grouping process was developed for dividing the sensor variables into small correlated

groups which the neural networks can handle. A modification of a statistical method,

called Beta method, as well as a principal component analysis (PCA)-based method of

estimating the number of neural network hidden nodes was developed. Another

development in this dissertation is the sensor fault detection method. The commonly

used Sequential Probability Ratio Test (SPRT) continuously measures the likelihood ratio

to statistically determine if there is any significant calibration change. This method

requires normally distributed signals for correct operation. In practice, the signals deviate

from the normal distribution causing problems for the SPRT. A modified SPRT

(MSPRT) was developed to suppress the possible intermittent alarms initiated by

spurious spikes in network prediction errors.

These methods were applied to data from the Tennessee Valley Authority (TVA) fossil

power plant Unit 9 for testing. The results show that the average detectable drift level is

about 2.5% for instrpments in the boiler system and about 1% in the turbine system of the

Unit 9 system. Approximately 74% of the process instruments can be monitored using

the methodologies developed in this dissertation.

V ;

Table of Contents

Chapter 1 Introduction 1

1.1 Importance of the Research 1

1.2 Statement of the Problem 2

1.3 Contributions of the Dissertation 5

1.4 Organization of the Dissertation 6

Chapter 2 Literature Review 7

2.1 Probabilistic Reasoning 8

2.2 Redundancy Analysis 8

2.2.1 Simple Redundancy 9

2.2.2 Analytical Redundancy 12

2.3 Maximized Sensitivity 13

2.4 Unified Geometric Approach 15

2.5 Multivariate State Estimation Technique (MSET) 16

2.6 Other Techniques 17

2.7 Artificial Neural Networks 18

Chapter 3 Methodologies for System Development 23

3.1 Introduction 23

3.2 System Overview ;... 23

3.2.1 Signal Estimation Module 24

3.2.1.1 Autoassociative Neural Network (AANN) 25

3.2.1.2 Time-Delayed Neural Network (TDNN) 25

3.2.2 Signal Checking Module 26

3.2.3 Faulty Sensor Correction Module 27

3.2.4 Network Retuning Module 28

3.3 Neural Network Architecture Selection 30

3.3.1 BetaMethod 30

3.3.2 Principal Component Analysis (PCA)-Based Method 35

3.4 Neural Network Regularization 37

VI

3.4.1 Weight Decay 38

3.4.2 Singular Value Decomposition (SVD) 39

3.4.3 Robust Training Technique 42

3.4.4 Cross Validation 43

3.5 Sequential Probability Ratio Test (SPRT) 44

3.5.1 Decision Algorithm 44

3.5.2 Decision Rule 45

3.5.3 Parameter Selection 46

3.6 Summary 47

Chapter 4 Data Processing 48

4.1 Fundamental Goal 48

4.2 System of Interest 49

4.3 Variable Selection 49

4.4 Variable Grouping 52

4.4.1 Non-Linear Partial Least Squares (NLPLS) 53

4.4.2 Correlation Analysis 56

4.4.3 Variable Grouping Algorithm 57

4.5 Network Input Scaling 62

4.6 Summary 63

Chapter 5 Sensor Monitoring Validation System Design 64

5.1 Neural Network Structure and Design 64

5.1.1 Neural Network Structures 65

5.1.2 Determination of Neural Network Parameters 67

5.1.2.1 Modified Beta Method 68

5.1.2.2 PC A-Based Method 70

5.2 Network Training 71

5.2.1 Outlier Removal 71

5.2.2 Training Algorithm Selection 72

5.2.3 Ill-Conditioning and Regularization 74

5.2.3.1 Ill-Conditioned Problem 75

Vll

5.2.3.2 Evaluation of Regularization 77

5.2.4 Training Paradigm 79

5.2.5 Stopping Criteria 80

5.2.6 Network Performance Evaluation 81

5.3 Issues on Sequential Probability Ratio Test (SPRT)81

5.3.1 SPRT Detection Problem 81

5.3.2 Modified SPRT (MSPRT) 82

5.4 Summary 84

Chapter 6 Results and Summary 85

6.1 Study of Historical Information 85

6.2 Signal Prediction 89

6.2.1 Neural Network Prediction and Noise Reduction 90

6.2.2 Neural Network Generalization 95

6.2.3 Sensitivity Analysis 97

6.3 Sensor Fault Detection 97

6.3.1 SPRT Parameter Setting 98

6.3.2 Small Drift Detection 99

6.3.3 Gross Fault Detection 101

6.3.3.1 Large Drop Case 101

6.3.3.2 Total Failure Case 102

6.4 Detectable Drift Level 103

6.5 Faulty Sensor Replacement 106

6.5.1 Small Drift Case 106

6.5.2 Gross Failure Case 107

6.6 Model Change and Adaptation 108

6.7 Summary Ill

Chapter 7 Conclusions and Recommendations 114

7.1 Conclusions 114

7.2 Recommendations for Future Work 116

7.2.1 Network Regularization 116

Vlll

7.2.2 Different Architecture - NLPLS 116

7.2.3 Residual Normalizing 117

Bibliography 118

Appendices 128

Appendix A. Tables of Variable Grouping 129

Appendix B. Network Training Performance 154

Appendix C. System Detection Performance 156

Appendix D. Noise Filtering Using SVD 165

Appendix E. NLPLS Algorithm 170

Appendix F. Matlab Codes for System Design 173

F1 Neural Network Training with Cross Validation (Main Routine) 174

F2 Variable Grouping Finalization 178

F3 Automatic Variable Grouping Algorithm 179

F4 Variable Removal Algorithm 181

F5 Sample Selection Algorithm 182

F6 Robust Training Algorithm 182

F7 Calculation of Number of Mapping/Demappihg Layer Nodes 183

F8 Calculation of Number of Bottleneck Layer Nodes 184

F9 Training with Cross Validation Algorithm 184

FIO Neural Network Performance Testing Algorithm 185

F11 Faulty Sensor Replacement Algorithm 187

F12 Truncated Singular Value Decomposition Algorithm 189

F13 Sequential Probability Ratio Test (SPRT) Parameter Setting 190

F14 SPRT Procedure Processing 190

F15 Autocorrelation Matrix Calculation 191

F16 Sensitivity Analysis Algorithm 192

VITA 194

IX

List of Tables

Table 4.1 TVA Kingston Fossil Plant Operating Data 50

Table 4.2 Interested Variables from Leak Detection System 58

Table 4.3 Correlation Coefficients for Group 4 (NN_4) 61

Table 5.1 Condition numbers for each network model 75

Table 6.1 Signals for History Study 86

Table 6.2 Demo Group Training Performance 88

Table 6.3 Signal Noise Level in Demo Group 89

Table 6.4 Neural Network Structures for NN_1 through NN_4 90

Table 6.5 NN_1 Network Training Performance 93

Table 6.6 NN Performance on Variables from Leak Detection System 96

Table 6.7 Detection Level on Interested Variables (1%/day ramp drift) 100

Table 6.8 Network APE with A Total Sensor Failure 104

Table 6.9 Smallest Detectable Level of Signals in NN_1 105

Table A1 Variables for Monitoring 130

Table A2 Variable Selection via NLPLS 134

Table A3 Grouping with Exclusion Method 137

Table A4 Grouping with Non-Exclusion Method 139

Table A5 Unmonitorable Variables Through Grouping 141

Table A6 Variables in NN_1 142

T able A7 V ariables in NN_2 143

Table A8 Variables in NN_3 144

Table A9 Variables in NN_4 145

Table AlO Variables in NN_5 145

Table A11 Variables in NN_6 146

Table A12 Variables in NN_7 147

Table A13 Variables in NN_8 148

Table A14 Variables in NN_9 149

Table A15 Variables in NN_10 150

Table A16 Variables in NN 11 150

X

Table A17 Variables in NN_12 150

Table A18 Variables in]SIN_13 151

Table A19 Variables in NN_14 152

Table A20 Variables in NN 15 153

XI

List of Figures

Figure 3.1 Sensor calibration system block diagram 24

Figure 3.2 AANN-based Sensor monitoring module 26

Figure 3.3 Simplified ANN signal error detection schematic 27

Figure 3.4 SPRT algorithm block diagram 27

Figure 3.5 NLPC A-typed AANN structure 29

Figure 4.1 Fossil power generation system (ASME PTC PM-193) 50

Figure 4.2 PLS model (Qin and McAvoy, 1992) 54

Figure 4.3 Kingston power plant Unit 9 Schematic 59

Figure 4.4 Variable exclusion algorithm 60

Figure 4.5 Variable inclusion algorithm 60

Figure 5.2 Simple block TDNN structure 66

Figure 5.3 Cross correlation between Combustion Air Flow A! and others 67

Figure 5.4 Instability of drift estimation due to perturbations 78

Figure 5.5 Regularized estimated drift value at the check point 79

Figure 5.6 Network training paradigm 80

Figure 5.7 Residual normal probability plot 83

Figure 5.8 SPRT vs. MSPRT 84

Figure 6.1 Cross correlation between Measured Steam Flow and others 87

Figure 6.2 Measured Steam Flow and Ambient Air Temp. vs. time lag 87

Figure 6.3 Measured and filtered Combustion Air Flow (Pet) (WinSize = 25) 94

Figure 6.4 Measured and filtered Feedwater Flow (Klb/hr) (WinSize = 25) 94

Figure 6.5 Sensitivity analysis with 5% perturbation in NN_1 input 98

Figure 6.6 Operating condition change of Feedwater Flow (Klb/hr) 109

Figure B1 AANN recall on Measured Steam Flow (Klb/hr) 155

Figure B2 AANN recall on Selected Drum Pressure (psig) 155

Figure B3 TDNN recall on Measured Steam Flow (Klb/hr) 155

Figure B4 TDNN recall on Selected Drum Pressure (psig) 155

Figure C1 Recall on Combustion Air Flow (Pet) 157

xii

Figure C2 Recall on FW Flow (Klb/hr) 157

Figure C3 Recall on Hotwell Pump Discharge Flow (Klb/hr) 157

Figure C4 Recall on Measured Steam Flow (Klb/hr) 157

Figure C5 Recall on Unit Gross Generation (MW) 157

Figure C6 Recall on First Stage Pressure (psig) 157

Figure C7 Prediction on Combustion Air Flow A1 (Pet) 158

Figure C8 Prediction on Combustion Air Flow B1 (Pet) 158

Figure C9 Prediction on Unit Gross Generation (MW) 158

Figure C10 Prediction on Station Service Load (MW) 158

Figure C11 Prediction on First Stage Pressure A (psig) 158

Figure C12 Prediction on First Stage Pressure B (psig) 158

Figure C13 Prediction on Deaerator Pressure (psig) 159

Figure C14 Prediction on ID Fan A Suction Pres. (InH20) 159

Figure C15 Prediction on ID Fan B Suction Pres. (InH20) 159

Figure C16 Prediction on RH Furnace Pres. after Econ (InH20) 159

Figure C17 Prediction on SH Outlet Temp. #1 (DegF) 159

Figure C18 Prediction on SH Outlet Temp. #2 (DegF) 159

Figure C19 1 %/day drift on FW Flow (Klb/hr) 160

Figure C20 1% /day drift on Mea. Steam Flow (BClb/hr) 160

Figure C21 1% /day drift on Combustion Air Flow A1 (Klb/hr) 160

Figure C22 1% per day drift on Combustion Air Flow B1 (Klb/hr) 160

Figure C23 1%/day drift on Unit Gross Generation (MW) 160

Figure C24 1%/day drift on Station Service Load (MWQ 160

Figure C25 1%/day drift on First Stage Pressure A (psig) 161

Figure C26 1%/day drift on First Stage Pressure B (psig) 161

Figure C27 1%/day drift on Deaerator Pressure (psig) 161

Figure C28 1%/day drift on ID Fan A Suction Pressure (InH20) 161

Figure C29 1%/day drift on ID Fan B Suction Pres. (InH20) 161

Figure C30 1% /day drift on RH Furnace Pres. after Econ (InH20) 161

Figure C31 1%/day drift SH Outlet Temp. #1 (DegF) 162

Xlll

Figure C32 1%/day drift on SH Outlet Temp. #2 (DegF) 162

Figure C33 5% step drop on FW Flow (Klb/hr) 162

Figure C34 5% step drop on Measured Steam Flow (Klb/hr) 162

Figure C35 5% step drop on Combustion Air Flow (Pet) 162

Figure €36 A 20% drop in FW Flow #1 (Klb/Hr) 162

Figure €37 Predicted Unit Gross Gen. (MW) w/ bad FW Flow #1 163

Figure €38 Predicted lost FW Flow (Klb/hr) starting at 10000^ min 163

Figure €39 FW Flow (Klb/hr) after recovery 163

Figure €40 Predicted Unit Gross Gen. (MW) w/ faulty FW Flow #1 163

Figure €41 1%/day drift on FW Flow #1 (Klb/hr) 163

Figure €42 Corrected FW Flow #1 after replacement 163

Figure €43 Corrected FW Flow #1 with 20% drop 164

Figure €44 Predicted Unit Gross Gen. (MW) after replacement 164

Figure €45 Recovered lost FW Flow #1 164

Figure €46 Predicted Unit Gross Gen. w/ recovered FW Flow #1 164

Figure €47 Predicted FW Flow (Klb/hr) before retuning 164

Figure €48 Predicted FW Flow (Klb/hr) after retuning 164

Figure D1 Exemplar perfect signals 166

Figure D2 Exemplar noisy signals 167

Figure D3 Reconstructed signals 169

XIV

Nomenclature

A decision boundary in SPRT

B decision boundary in SPRT

Br incomplete beta function

Cond condition number

cp cumulative percentage of variation

D process memory

d detector measurement

E(x) expectation of x

Ec least square residual

En SLSR's vector

EG error goal

e* model residual

G gain factor in MSPRT

K number of data samples

Ir learning rate

m number of mapping as well as demapping layer nodes

mi faulted mean of SPRT

mc momentum constant

mse mean squared error

msw mean squared weight

N number of steps for determining on hidden unit by random search

P loading matrix

p loadings

Q loading matrix

q loadings

r residual between measurement and estimate

S singular value matrix

S' truncated singular value matrix

XV

SF stability factor

s singular value

T score/latent matrix

t scores

U score/latent/principal component matrix

u scores

V right singular value matrix

W weight matrix

w weight vector

X measurement matrix

X mean values of X

X model estimate of X

y desired measurement

y model estimate of y

a false alarm probability

P missed alarm probability

O cumulative distribution function

<}> distribution density function of O

y performance ratio of weight decay

X likelihood ratio of SPRT

a standard deviation

y/ distribution density function

XVI

List of Abbreyiations

AANN autoassociative neural network

AI artificial intelligence

APE average percentage error

AR autoregressive

ANN artificial neural network

ASME American Society of Mechanical Engineers

ANFIS adaptive neural fuzzy inference system

EMB extended Markov blanket

EPRI Electric Power Research Institute

EWMA exponentially weighted moving average

GCC general consistency checking

KFT Kalman filtering technique

LSR least square residual

MSET multivariate state estimation technique

MPE mean percentage error

MSPRT modified sequential probability ratio test

NLPLS non-linear partial least squares

PCA principal component analysis

PC principal component

PGP principal components pruning

PGR principal component regression

PCS principal component space

PDF probability density function

PE processing element

PEM process empirical modeling

PLS partial least squares

RS residual space

SLSR standardized least square residual

XVll

SPE squared prediction error

SPRT sequential probability ratio test

SOM self-organizing map

S VD singular value decomposition

TDNN time delayed neural network

TSVD truncated singular value decomposition

TVA Tennessee Valley Authority

xviu

Chapter 1

Introduction

1.1 Importance of the Research

Plant instrumentation calibration is an important requirement for power plant operation

because of safety and availability considerations. When monitoring a complex process,

well-calibrated sensors provide measurements that indicate the plant operating condition.

Calibration is commonly regarded as the process whereby the scale of a measuring

instrument is determined or adjusted on the basis of an informative or 'calibration'

experiment (Aitchison and Dunsmore, 1975). It is crucial to have accurate values for

control variables for correct and safe control actions. In addition, it is equally important

to ensure signals be correct before they can be used for calculating other variables as

system parameters. However, if sensors provide inaccurate information for monitoring

and control, wrong decisions can be made. Therefore, to ensure the sensors are within a

stated calibration range, a non-intrusive method for continuously monitoring sensor status

is needed.

It is difficult, or impossible, for operators to visually detect small drifts in sensor

instrumentation. These drifts can cause incorrect control actions and decreased process

efficiency. The current method to avoid calibration drifts is to manually calibrate sensors

on a periodic basis. These calibrations usually require that the instrument be taken out of

service and be falsely loaded to simulate actual in-service stimuli. This can lead to

equipment damage and incorrect calibration due to adjustments made under non-service

1

conditions; thus, a non-invasive automatic sensor calibration monitoring method would

aid personnel in making on-line assessments of sensor status.

With economical consideration for power plant operations, condition-based maintenance

strategies rather than periodic or corrective maintenance strategies are desired. Changing

the calibration strategies to be condition-based requires that instruments be manually

recalibrated only when their performance is degraded beyond a specified tolerance.

Continuous calibration verification of the plant instruments will reduce unnecessary

sensor calibrations and give operators more confidence in sensor measurements.

Elimination of uimecessary maintenance results in cost savings and reduced plant down

time while a better knowledge of the actual state of the process, due to more reliable

sensor values, could result in reduced equipment damage, increased plant efficiency and

increased revenue.

1.2 Statement of the Problem

The purpose of this research is to develop a sensor calibration monitoring system for on

line power plant instrument verification and calibration; and additionally, to develop a

methodology for automated design of the neural network structures. This system is to

monitor the condition of power plant process sensors and indicate when a sensor

produces faulted measurements, which is caused by the sensor or instrument chain but

not by operating condition changes. With the ability of the developed a sensor

monitoring calibration system to determine when a sensor has failed or drifted, the

current methods of sensor recalibration on a periodic basis will no longer be necessary.

This may lead to a significant cost saving.

Recently, artificial neural networks (ANNs) have been widely studied for the purpose of

instrumentation calibration verification (Upadhyaya and Eryurek, 1992; Uhng, et ah,

1996; Nabeshima, et ah, 1995; Dong and McAvoy, 1994; Kramer, 1992). If a sensor is

in calibration, the valid model estimate should match the measured signal at all operating

ranges if the measurement is not drifted. A neural network model uses information from

correlated signals to estimate the signal we are interested in. Therefore, the model can

provide an unfaulted or near unfaulted estimate to a faulted measurement, through

comparison the sensor fault can be detected. In this research, an automated artificial

neural network technique is employed for sensor validation. The reason for using ANNs

is based on their advantages in signal validation over the traditional model-based

techniques stated in Section 2.7.

The artificial neural network structures are problem-specified. The determination of

neural network structures heavily relies on the designer's experience as well as the prior

knowledge on the plants. This dissertation developed an automated procedure for neural

network mode construction, therefore the sensor monitoring system is transferable.

Another issue is that a single neural network model cannot handle problems with large

number of inputs (signals) due to computational limitations. Therefore, in order to

monitor a large number of signals, a series of small-sized neural network models is

needed. This raises an issue on how to optimally divide the signals into small-size

correlated groups. The most common methods are sensitivity analysis, correlation

analysis, and engineering judgement. For a large number of signals to be sub-grouped, a

sensitivity analysis requires an extremely large network be trained and is almost

impossible to perform, while a correlation analysis is based only on linear relationships

between signals. In practice, most problems have linear or near-linear relationships, and

the correlation analysis can explain most of the relationships among signals. Engineering

judgement reflects the designer's prior knowledge of the system, and it is literally

impossible to be applied in automated design. Therefore the correlation analysis, which

can represent most of the information on system dynamics, not only provides an

understanding of the physical process, but also makes the automation design feasible.

In many studies of instrument calibration verification systems, a statistical method, the

Sequential Probability Ratio Test (SPRT) (Wald, 1945), is applied for sensor status

checking (Upadhyaya, et al, 1987; Uhrig, et al, 1996; Erbay and Upadhyaya, 1997;

Hines, et al, 1997; Wrest, 1996; Olvera, 1993; Eryurek, 1994). This method

continuously provides sensor status information by processing the residuals between the

sensor measurement and the neural network estimate. In order for the SPRT to work

correctly, it is required that the residuals be normally distributed. Ideally, the signal

residuals represent the signal noise in the presence of unfaulted sensors. Since signal

noise is somewhat normally distributed, the normal SPRT is usually quite applicable for

on-line detection. However, the noise may not be normally distributed and the neural

network may learn some degree of noise and incorporate it into the plant model.

Therefore the residual is not pure noise and can deviate from the normal distribution.

Furthermore, the spurious spikes due to system perturbation or other reasons may exist in

the signals. Due to this deviation and spurious spikes, the SPRT may produce

intermittent alarms.

In this dissertation, a study involves the development and evaluation of a system that

integrates sensor validation and diagnostics. Furthermore, an automated methodology for

variable selection and neural network design is developed. This research aims to

significantly reduce system failures due to faulty signals and to enable automatic artificial

neural network design without extensive knowledge of neural networks.

1.3 Contributions of the Dissertation

Traditionally, instruments are manually calibrated on a periodic basis. In recently

developed systems, the utilized neural networks are designed using trial-and-error

methods to minimize the network prediction error and prevent overfitting. This

dissertation introduces a new methodology of automated neural network design that

includes an automated variable selection and grouping, as well as an automated process

to determine the number of hidden nodes. Furthermore, a modification on the traditional

SPRT is performed to eliminate the occurrence of intermittent alarms due to residual

noise deviating from the normal distribution or due to spurious spikes in the signals.

The contributions made by this research that will be detailed in this dissertation are;

1. the development of a methodology for automated neural network variable selection

using the technique of non-linear partial least squares (NLPLS) (Geladi and

Kowalaski, 1986; Hoskuldsson, 1988; Qin and McAvoy, 1992) as well as signal

correlation analysis;

2. the development of a methodology for automated neural network input grouping

using correlation analysis;

3. the development of a methodology to estimate the number of neural network hidden

nodes in a three hidden layer autoassociative architecture;

4. the development of a modified SPRT (MSPRT) that suppress the intermittent system

alarms due to non-normally distributed residuals and spurious spikes in the signals.

1.4 Organization of the Dissertation

The dissertation begins with a review in Chapter 2 of the previous and current studies

involving the topics related to this work. This includes a survey of the sensor fault

detection systems as well as various technologies and methods used for developing these

systems. In Chapter 3, the structure of the modular sensor monitoring system is

introduced. The functions of the individual modules combined into this monitoring

system are introduced. Methodologies for developing these modules are also briefly

discussed in Chapter 3. In Chapter 4, the monitorable variables are identified using an

automation method. A new automated algorithm for variable grouping is also detailed in

this chapter. The corresponding neural network models are then established using the

developed automation procedure. Chapter 5 is the core chapter of this dissertation. It

concentrates on the neural network design using the developed methods. It includes

network type selection, network training and testing. The SPRT issues are also addressed

in this chapter. Chapter 6 presents some of the detection results on artificial drifts, such

as slow drift, small drop and gross failure. A discussion of these results is also made in

Chapter 6. Finally, Chapter 7 summarizes this research work and addresses some

difficulties of the current work and possible solutions to be addressed in future research.

Chapter 2

Literature Review

This chapter briefly reviews the literature on detection, isolation, and identification of

sensor faults in plants as well as the techniques used in estimating the instrument

measurements. Literature on relevant techniques, such as the artificial neural networks,

partial least squares (PLS), principal component analysis (PCA) as well as other

techniques are also reviewed. The purpose of this discussion is to present the current

status of the topic of interest. Although the periodic manual calibration method is still in

use, a number of studies have been conducted to attempt to enhance the capability of

sensor status prediction for predictive maintenance purposes.

Conventional model-based techniques have been widely used in process control,

monitoring and diagnostics. These techniques include polynomial fitting, statistic

modeling, and state space representation modeling. More recently, applied artificial

intelligence methods have been increasingly studied for the purposes of control and

diagnostics. There is published research involving sensor calibration verification systems

using artificial neural networks as well as other techniques in power plants (R. Dorr, et

al., 1997; Qin and Li, 1999; Dunia and Qin, 1998; Singer, et al, 1995; Fantoni and

Mazzola, 1996; Uhrig, et al, 1996). There are also a number of studies on neural

network optimization (Williams, 1995; Goutte, et al, 1997; Hashem, 1997). The

following sections discuss these topics and give an overview of the approaches used.

2.1 Probabilistic Reasoning

Ibarguengoytia et al. (1996) establishes a probabilistic reasoning model for the purpose

of sensor validation, in which a probabilistic model is presented to detect the

inconsistency in measured data. A process variable is cormected with other related

variables to form a lattice through an event tree called Markov blanket based on

knowledge of the process. A fault detection mechanism using probabilistic propagation

through the lattice finds a potential faulty sensor. Finally, constraint management is

applied to distinguish a real fault fî om the apparent ones. The difficulty is that this

technique cannot detect which sensor has the real fault if two or more sensor faults are

included in the same extended Markov blanket (EMB); for example, the flow of gas and

the flow of air. This technique is also incapable of detecting small drifts present in most

practical problems.

2.2 Redundancy Analysis

Dorr et al. (1997) presents a method, which is based on simple redundancy and consists

of generating residuals by comparing measurements provided by physically redundant

sensors. Another method presented in this paper is to use analytical redundancy. In this

method, residuals are generated by comparing each measurement with an estimate

computed from models of the process. The proposed analytical redundancy technique is

based on steady-state relationships between measurements. The selection of the steady-

state files is based on the stability factor (SF). The stability of the measured variables is

evaluated using SF, which is defined as.

X — X
SF = \00y.—^

where Xmax is the maximum value of data set;

Xnin is the minimum value of data set;

Xm is the mean value of data set.

The lower the SF, the more stable the variable. The calculation is performed for each

variable of the file considered to collect the steady-state files for each variable. For more

details on this selection, refer to (R. Dorr, et al, 1997).

2.2.1 Simple Redundancy

Simple redundancy consists of using information derived from physically redundant

sensors, which measure the same physical variable in order to generate residuals.

Fault detection and location are performed by comparing these residuals with thresholds,

which are dependent on sensor measurement accuracy. A measurement model for simple

redundancy fault detection is defined as,

X, = X* +a. +e., for/ =

where a,., which represent the sum of independent random errors between the n sensors

of the considered set for the measurement conditions considered, are normally distributed

with zero mean and standard deviation ex. Usually, cris selected as sJ2, whiles,

represents the accuracy of the sensors and e. represents accidental errors. These errors

are due to an abnormal degradation of the sensors or the instrument chains. It is

supposed that there is no common degradation mode. Therefore, these errors are

considered as independent.

The principle of sensor fault detection by simple redundancy is to compare each

measurement with an estimate of the true value. The estimate is calculated by a linear

combination of measurements given by redundant sensors. In this paper, assuming all

sensors are of the same model, the estimate is simply the mean of the redundant sensor

measurements. A detector d^, which uses only n-\ sensors to estimate the mean of n

measurements, is defined as.

X, H t-X„
V —
•*-1

d„ =

n-\

X,+-X._,+X,^,+-- + X„
i 1

n-\

In the absence of accidental errors, the mathematical expectancy and the variance of the

d^ detector can be computed using.

d„,i}) = x, j^i

1 ^

n-\

10

In the presence of a fault of magnitude e. on sensor i, the mathematical expectancy of the

component / of the detector is

E(dM = e,

and the variance of (/) remains unchanged.

The estimate of the failure magnitude is given by

e. =x.- — for/eC^

where number of nonfaulty sensors;

set of indexes of nonfaulty sensors;

Cf set of indexes of faulty sensors.

Then search for one i such that \d^ (/)| > l{n^ - which is the two standard

deviation of d^. If this i does not exist, then no sensor is faulty. Otherwise, search for

the largest component j of the detector in absolute value. Sensor j is considered faulty

and removed from C^and added in Cf. The new detector is computed without this

sensor. Accordingly, is also updated for further calculation. This process is repeated

until all faulty sensors are identified.

11

The major drawback of simple redundancy is that it does not enable determining which

sensor is the most likely to be faulty in a set of two redundant sensors. Moreover, it is

not possible to monitor single or nonredundant sensors. This drawback can be overcome

with the application of artificial neural network modeling.

2.2.2 Analytical Redundancy

Analytical redundancy uses additional information provided by models such as

X=HX* +a + s

where the notations are the same as in the simple redundancy model. It is noticed that H

must be full column rank.

This problem can be solved by a standardized least square residual (SLSR) analysis,

A

which minimizes the criterion with respect to X

<D=^ (ar - xj V-' {jax - x)

V is the covariance matrix of measurement errors and supposed to be known. The sensor

status is judged by the factor of the SLSR's vector , which is defined as

= for 7 = 1,...,

where is the least square residual vector and is the variance-covariance matrix of

LSR. They can be calculated by applying the Lagrange multiplier technique. For further

12

details refer to (R. Dorr, et al, 1997). The detection procedure is similar to simple

redundancy analysis.

The major difference between the simple and analytical redundancy analyses is that the

latter technique is able to determine the sensor which is most likely to be faulty in a set of

two redundant sensors. More practically, the analytical redundancy method is able to

determine nonredundant sensor status which is impossible for simple redundancy

method. The drawback of this technique is that a very precise model describing the

physical process must be presented, which involves tremendous amount of efforts on

analyzing the process, and carefully selecting the variables for modeling. The

engineering judgement is heavily involved in this technique, which makes this technique

unfeasible for automation.

2.3 Maximized Sensitivity

The mechanism of this approach (Qin and Li, 1999) is to make the rth element of a set of

structured sensor residuals r, which is defined later in this part, insensitive to the rth

sensor fault but most sensitive to the others. Alternative methods (Narasimhan and Mah,

1988; Dunia, et al, 1996) make one index most sensitive to one fault. The maximized

sensitivity technique starts with a normal process model given as

Bx*it) = e'{t)

where x*{t) is a vector of normal sensor values, B is the model matrix, and e* is the

model residual which contains measurement noise, process noise, and model errors.

13

Under normal conditions, the model residual e* can be assumed to be zero mean

Gaussian noise. When a sensor fault occurs, the sensor measurement x(t) contains the

normal values of the process variables and the fault,

x(t) = x*(t)+DjXO

where /. (t) is a vector of the fault magnitude, D. is a matrix of fault direction. For a

single sensor fault in the /th sensor, = [00 --l-- - of, which is the rth column of the

identity matrix. A set of structured residuals r(t) is generated by transforming the model

residual vector e(f) by a matrix fF

r(/) = fFe(f)

The matrix W is designed that each element of r(t) is insensitive to one particular sensor

fault and sensitive to others. The detailed derivation is omitted and can be seen in (Qin

and Li, 1999).

To avoid false alarms due to noise, a filter structure, exponentially weighted moving

average (EWMA), is introduced to the model residual

where 0 < < 1. By using PCA or PLS, the sensor values x*(/) is decomposed into

x'(f) = Pr+FF

14

where P are orthogonal eigenvectors associated with the principal eigenvalues of the

correlation matrix of x*(/) and P are the remaining eigenvectors associated with the

remaining minor eigenvalues. The vectors t and t are the principal and residual

components, respectively.

Through the PCA or PLS analysis, the matrix Wis the eigenvector of that

corresponds to the largest eigenvalue. B° is the normalized vector of B, where B = P^.

This finding is appropriate for either single sensor faults or multiple sensor faults. For

details on multiple faulty cases, see reference (Qin and Li, 1999). Several sensor fault

detection indices are applied to detect the sensor faults. Process changes are

distinguishable from sensor faults with the indication of fault occurring in most of these

indices.

Although this method is effective in detecting sensor status and distinguishes the process

change from individual sensor faults, the major concern of this method is that it cannot

detect the magnitude of the fault. Therefore it cannot provide quantitative information on

sensor faults and predict current sensor readings from future data.

2.4 Unified Geometric Approach

Dunia and Qin (1998) proposed a unified geometric approach using the PCA technique to

identify and detect sensor faults. Similar work has been done by (Dunia, et al, 1996).

The objective of this work is to define a set of faults, including sensor and process faults,

in which each member is to be identified using the principal component subspace (PCS)

and residual subspace (RS). The PCS includes data variations according to the principal

15

component model in agreement with the measurement correlations, while the RS includes

data variation due to modeling errors and noise in the data.

From the geometric perspective, the sample vector for abnormal operating conditions lies

in the measurement space far from the PCS. The procedure that geometrically

characterizes the fault determines the location of the sample vector with respect to the

PCS. The fault is detectable if the orthogonal distance between the faulty measurements

and the PCS is larger than the diameter of the confidence region. The squared prediction

error (SPE) is chosen to be the fault identification index. The PCA is used to reconstruct

a sensor measurement from the remaining sensors to identify the fault. The drawback of

this approach is that the fault direction vector should be known a priori, which requires

knowledge of the process and process data that contain the faults. This in general makes

the automation process difficult to be developed.

2.5 Multivariate State Estimation Technique (MSET)

Argonne National Laboratory developed a MSET model for nuclear power plant signal

monitoring and fault detection (Singer, et al, 1995; Gross, et al, 1997; Singer, et al,

1997). The MSET is a non-linear regression technique developed from the concept of the

least square estimation. The least square estimation technique minimizes the sum

squared error between the measurement and the estimate, which is represented as below;

X = D {p^ d)'' ■D''-X

where X is the sensor measurements; X is the model estimate; D is the process memory.

16

The least square estimation is a linear technique and requires the matrix {d^ d] be

invertible, i.e., it must be non-singular. However, most of the plant signals are correlated

with each other to some degree, which may cause the matrix (d^ -d) to be non-

invertable. Also the process can be nonlinear, which makes the least square estimation

technique invalid.

Although the linear technique is unusable to this problem, its formalism leads to a

relationship between an estimate of the process state, a current measurement and the

process history that has several very useful features. Along with other reasons stated in

(Singer, et al, 1997), a non-linear form is developed by modification of the linear form;

X = d\d^ -D^ ®X

where ® is a non-linear operator which can be found in (Gross, et al, 1998).

Results (Gross, et al, 1997; Singer, et al, 1997) demonstrate that the MSET is capable of

monitoring nuclear systems, detecting and identifying malfunctions and analytically

replacing faulted sensors.

2.6 Other Techniques

Some other techniques, such as the generalized consistency checking (GCC), the process

empirical modeling (PEM), and the Kalman-filtering technique (KFT) are also used for

signal validation. The GCC method is used for the systematic cross-comparison of

redundant signals. The KFT method requires prior knowledge of the process of interest.

However, with the presence of no redundant sensors and no prior knowledge of the

17

relationship of the variables, these methods may not be applicable. Erbay and

Upadhyaya (1997) applied these methods for on-line signal validation in nuclear power

plants.

Other techniques include, an adaptive neural fiizzy inference system (ANFIS) applying

the fuzzy logic in combination with a neural network is also applied for on-line sensor

validation (Hines, et al, 1997). Concerns have been raised that the number of fuzzy rules

and partitions could explosively increase as the number of sensors to be monitored

increased, which might prevent this technique from being applied to plant wide sensor

monitoring. Furthermore, the requirement of understanding the physical process in order

to make proper fiozzy rules removes this method from consideration for automated

design.

2.7 Artificial Neural Networks

Artificial intelligence (AI) has become one of the most studied methods for monitoring,

diagnostics and control. Neural network modeling is among the most mentioned AI

techniques. Recently, a better understanding of new neural network paradigms and the

existence of more powerful computers have led to the utilization of neural networks in

the areas of validation, monitoring, diagnostics and control. The applicability of neural

networks in the power generating industry for monitoring and validation has been

demonstrated in a number of studies (Upadhyaya and Eryurek, 1992; Uhrig, et al, 1996;

Nabeshima, etal, 1995; Dong and McAvoy, 1994; Kramer, 1992).

18

For effective control strategies in process industry systems, it is necessary to perform

validation and monitoring of important variables. Early applications of validation and

diagnostics systems utilized model-based techniques where polynomial fits were used to

capture the relationships among variables (Erbay and Upadhyaya, 1997). The Kalman

filtering technique uses a linear or quasi-linear model for plant state estimation (Kalman,

1960; Brown, 1992). A more recent approach, artificial neural network modeling, has

broadened the capabilities of validation, monitoring, and diagnostics systems even

further. This approach provides an opportunity to develop a nonlinear model between

related variables.

Artificial neural networks are models inspired by the architecture of the human brain

(Haykin, 1994; Aleksander and Morton, 1990). A neural network consists of a large

number of highly interconnected processing elements (PEs). A PE, analogous to a

neuron, has a number of input paths. It combines the values of the weighted inputs,

modifies the combination with a transfer function, and produces an output. In an

artificial neural network, the processing elements are organized in a sequence of layers.

Several applications of neural networks for sensor validation have been reported

(Upadhyaya and Eryurek, 1992; Uhrig, et al, 1996; Wrest, 1996), showing that the

artificial neural network technique is capable of detecting sensor failure and of providing

useful information to operators to make correct decisions.

Fantoni and Mazzola (1996) presented a detection system for nuclear power plants using

artificial neural networks. This research demonstrates the feasibility of using neural

19

networks for signal validation in nuclear power plants. A pattern recognition module

(SOM) acting as the data preprocessor is designed to cluster the data into several

operating regions according to the measured plant state. In such a way, similar plant

states (input patterns) are classified and assigned to the same cluster. A series of neural

networks corresponding to each plant state is formed. A five-layer neural network was

chosen as the network structure. Results are presented based on eight selected correlated

variables. In order to filter the monitored signal, six consecutive samples in the time

domain were supplied for each signal to the input layer, so one input pattern contains 48

values. Therefore, there were 48 nodes in the input layer. With a developed random fault

learning method, the authors claimed that this validation system can also handle multiple

sensor failures and show some results. This paper demonstrates the possibility of using

neural networks for sensor validation purposes. However, the embedded filter structure

using consecutive sampling data points as network input greatly enlarges the size of the

neural networks. This results in a more complicated network structure and a large

network weight matrix. For plant-wide sensor monitoring, a relatively large number of

variables are presented in a neural network model; this filter structure makes the network

training extremely difficult or impossible. In this design, only a specific group of sensors

were monitored; it is not designed for plant-wide monitoring.

The generation of an accurate model, using model-based techniques, requires an effort

which is proportional to the complexity of the system. Neural networks offer several

advantages for signal validation, monitoring, and diagnostics over traditional techniques:

20

• Data-driven. It is unnecessary to define a fiinctional form relating a set of variables.

A neural network model is established by analyzing the importance between the

predictors and the response variable;

• Nonlinearity. The universal approximation theorem states that a single hidden layer

network is sufficient for a multilayer perceptron to uniformly approximate any

continuous function, including linear or nonlinear functions (Cybenko, 1989;

Haykin, 1994);

• Robustness. Neural networks are by far more fault tolerance than the traditional

model-based techniques (Eryurek, 1991). Unlike traditional model-based programs,

neural networks can give high performance even when there is a failure in the

network structure, such as missing processing elements, or faulty weight

connections (Sequin and Clay, 1992);

• Adaptation. When there is a small operating status change, the neural network can be

adapted to the new operating condition through retuning using a linear

transformation technique - singular value decomposition (SVD) (Masters, 1993;

Jolliffe, 1986). Network retraining is not needed. This property makes the on-line

sensor status monitoring available.

Neural networks are intrinsically parallel and non-algorithmic. These features make real

time processing of data and information more feasible. Artificial neural networks

provide fast responses or solutions to complex problems such as plant-wide monitoring or

model-based sensor validation. Once trained, the neural network models are easy to

21

implement and can be used as real-time failure detection tools due to their inherent

robustness and parallel computational architecture.

One of the major concerns in neural networks, as in other data-driven techniques, is the

overfitting problem. Because the measurements are more or less noisy, the over-pursuit

of accuracy on training data causes overfitting. This is because the network is trained not

only to fit the underlying function presented by the training data, but also to tiy to fit the

noise in the function. This makes the network generalization performance unreliable. To

avoid this problem, a smaller-sized neural network architecture, in regard to the number

of hidden nodes, is proposed to reduce the degree of fî eedom of the adjustable

parameters. Also the employment of a cross validation technique can avoid the

overfitting problem. Details on these solutions are discussed in Chapter 5.

22

Chapter 3

Methodologies for System Development

3.1 Introduction

Traditional approaches to instrument calibration are expensive in terms of labor and

economic cost. Manual calibrations may lead to damage of equipment or incorrect

calibration. While proper adjustment is vital to maintaining proper plant operation, a less

invasive technique is desirable. In this research, an on-line sensor calibration verification

system is developed to monitor sensor status and replace faulty sensor instruments if

needed. An autoassociative neural network (AANN) architecture is employed to provide

the best estimate of the sensor values. Should a sensor failure be detected, the system

acts as a virtual sensor to replace the real faulted one with its best estimate. By using this

system, plants are able to operate continuously without being interrupted due to some

sensors being failed. This may increase the plant operation efficiency and reduce its

maintenance costs.

This chapter introduces the sensor validation system as well as the individual modules of

this system. Details on the methodologies used for developing these modules are

discussed. Also a statistical method was reviewed for faulty sensor detection.

3.2 System Overview

The artificial neural network (ANN) based instrument monitoring calibration system has

four major components:

23

1. Signal estimation module utilizes an AANN architecture to provide the best estimates

of signals;

2. Signal checking module determines the sensor status using a statistical decision logic;

3. Signal correction module replaces faulty signals with their best estimates when the

fault becomes statistically significant;

4. Network retuning module adapts the network to the new operating conditions when

plant operating conditions change.

A block diagram of this sensor calibration monitoring system is shown in Figure 3.1.

Sensor

Signal Signal

Correction

-tr

Signal

Estimation

+ 1
Sensor

-UyV*'
Sensor

Checking

\
yesNetwork

Retune

Tunmg?

no

Figure 3.1 Sensor calibration system block diagram

3.2.1 Signal Estimation Module

In this research, an ANN architecture is applied to estimate sensor signals. An ANN can

model a plant process at any degrees of nonlinearity (Haykins, 1994). An ANN is a data-

driven plant process model that does not require prior knowledge of the plant, unlike a

physical or an empirical model. The ANN model is capable of providing estimates of

sensor values. In this research, two types of neural networks, the autoassociative neural

24

network (AANN) and the time-delayed neural network (TDNN), have been studied for

architecture selection.

3.2.1.1 Autoassociative Neural Network (AANN)

In an AANN, the outputs are trained to emulate the inputs, which are current snapshot

sensor values, over an appropriate dynamic operating range. Many plant variables that

have some degree of correlation with each other constitute the inputs. During training,

the interrelationships among the variables are embedded in the neural network connection

weights resulting in a model of the process.

Figure 3.2 shows a simple AANN-based sensor monitoring module for a group of four

sensors whose measurements are correlated to some degree. When a sensor that is an

input to the autoassociative network is faulty due to a drift or gross failure, the network

still gives a valid estimate of the correct sensor value due to its use of information fi"om

other correlated sensors. The estimated sensor value (Sn') is then compared to the actual

sensor value (Sn). The difference or residual (rn) normally has a zero mean and a variance

related to the amount of noise in the sensor signal. When a sensor is faulty, the mean or

variance of its associated residual changes. This change can be detected by the statistical

decision logic.

3.2.1.2 Time-Delayed Neural Network (TDNN)

A TDNN uses both the current sensor measurements and the previous sensor values as

input to the network. This provides the network with temporal information. This type of

network uses more information and can learn process dynamics. Another advantage of

25

51

52

53

54

Model

ANN

-Si_

S3

Jj2_

JjL.

Td

Statistical

Decision

Logic
^Fault

Hypothesis

Figure 3.2 AANN-based Sensor monitoring module

using a TDNN is that the network can leam to filter the input signals since it has more

than one input (a current value and several previous values) for each sensor. In order for

the TDNN to be more valuable, the time delays should be chosen such that the process

dynamics are represented. Otherwise, this type of network does not exhibit its

advantages over other static networks.

In both network structures, a robust training procedure detailed in Chapter 5 was used to

force the network to depend on all the correlated inputs (sensor measurements) to

estimate each individual output. As a result, any specific network output shows virtually

no change when the corresponding input has been distorted by noise, faulty data, or

missing data. This characteristic allows the network to detect sensor drifts or failures by

comparing sensor measurements with the corresponding network estimates of the sensor

values. A simplified ANN signal error detection schematic is shown in Figure 3.3.

3.2.2 Signal Checking Module

A statistical method called the Sequential Probability Ratio Test (SPRT) (Wald, 1949)

was utilized for sensor status checking based on the network residual, the difference

26

Measurement
Signal Estimation Estimate " /

(ANN) E
Residual

Figure 3.3 Simplified ANN signal error detection schematic

between the measurements and the estimates. The SPRT determines if the network

residuals are from a normal or abnormal probability distribution. Unlike other statistical

methods which require calculation of a new mean and variance at every new sample, the

SPRT continuously updates the values of the probability likelihood ratio, which indicates

the sensor status, by processing the updated network residual. Therefore, this method can

be used for on-line sensor status checking. The SPRT system is blocked diagramed in

Figure 3.4.

3.2.3 Faulty Sensor Correction Module

When a sensor measuring a control signal is classified to be faulty, the best estimate of

the signal fi*om the sensor monitoring module can be sent to the control system, for

display to plant operators, or for control tasks. The best estimate also replaces the faulty

sensor as input into the sensor monitoring module so that the influence of the faulty

sensor on the estimate of other signals is minimized. The actual sensor output is

Sensor Measurement

Signal Estimation

SPRT

s
Residual

SPR Processing

Likelihood

Ratio Statistical

Decision

Sensor

Status

Figure 3.4 SPRT algorithm block diagram

27

substituted back into the network when the fault has been cleared. This method always

gives the operator access to the best estimate of the parameter whether it is the unfaulted

measured value or the estimated value.

3.2.4 Network Retuning Module

The neural network learns the interrelationships among the sensor measurements during

training. Although the training set should include samples from all plant operating

regions, sometimes the plant's operating state may change to one that was not included in

the training set. This can be caused by component wear, cyclical changes, or changes in

the plant configuration, among others. These changes would be characterized by several

residuals deviating significantly from their normal mean of zero. When this happens, the

output of the network is not reliable and the network must be retrained to operate under

the new conditions. If only one residual deviates from zero, a sensor fault is

hypothesized.

The neural network architecture applied in this research is a non-linear principal

component analysis (NLPCA) type network, which is a three hidden layer feedforward

network proposed by Kramer (1992). It consists of an input layer, three hidden layers

(mapping layer, bottleneck layer and demapping layer) and an output layer. The NLPCA

architecture is sketched in Figure 3.5.

The hidden layers act as feature extractors and the linear output layer combines these

features to provide a desired mapping. If the features do not change when a plant or

process operating condition changes, only the output layer weights need to be adjusted to

28

perform the desired mapping without retraining the entire network. This assumption

seems to hold for small changes in operating conditions. Since the output layer is a linear

layer, therefore, instead of retraining the entire network, a linear regression technique is

applied to regress the model. The training time is significantly reduced, from days of

training down to seconds of regression. Retraining the entire network may be necessary

for major changes in plant operating conditions when adjusting the output weights does

not result in satisfactory performance.

nmlinear linear nonlinear linear

inpat m^ing bottleneck dem^ing output

Figure 3.5 NLPCA-typed AANN structure

Retraining only the linear output layer can be achieved by solving for the output layer

weights using a least squares procedure. Several methods of solving for the linear output

weights exist including standard least squares methods that can cause numerical inversion

problems. Other methods used are the LU or QR decompositions (Jolliffe, 1986;

Farebrother, 1988). The best method is to use the singular value decomposition (SVD)

technique (Press, et al, 1992; Masters, 1993) that uses the most relevant information to

compute the weight matrix and discards unimportant information that may be due to

noise.

29

3.3 Neural Network Architecture Selection

The optimal selection of the number of neural network hidden units is an extremely

difficult task. Among other things, it heavily depends on the complexity of the problem

(Masters, 1993). The size of the neural network greatly influences the network capacity

(Baum, 1988; Akaho and Amari, 1990). Current studies estimate the optimal number of

network hidden units through either network training or statistic techniques. Fahlman

and Lebiere (1990) use a flexible cascade-correlation learning architecture by adding

hidden units one by one so as to reduce the output error of the network, the network with

the least output error is selected. Similarly, Moody (1992) and Kurita (1990) use an

analogy of Akaike's Information Criterion (1974) to estimate the number of hidden nodes

by training the networks with different numbers of hidden units. These techniques select

optimal network architectures on a trial and error basis, which is improper for automated

design.

3.3.1 Beta Method

Fujita (1998) introduces a method to statistically estimate the number of hidden units

without training the network. This technique is based on what is called beta function and

the original derivation will be presented in this section.

Consider an w-input-1-output feedforward network that consists of a linear output unit

and m non-linear hidden units. Suppose that there are K data sets containing both the

input and desired output. The input data sets are represented by a K*n matrix X, and the

desired output data sets are represented by a AT*/ vector The output of the hidden units

are represented hy a K*m matrix H, which is generally a function ofX;

30

H=f{X)

where f denotes the mapping

In a one-hidden-layer network, let y be an actual output vector produced by the linear

output unit of the network as a linear combination of the column vectors of H,

y = Hw

where w is an /w-dimensional weight vector. The sum squared output errors which should

be minimized is represented as

1=1

According to the theory of the least squares approximation, the optimal is given by

Jo =Py

where P is the projection matrix onto L\H\. If H consists of linear independent columns

only, then is non-singular and P is expressed as

P = H{H^ H)-'

Hence, the least sum of squared output errors is

lb'-/>ir=iMr

where Pc=I-P and I is the identity matrix.

31

When a new hidden unit is added, let h be the output vector of the added hidden unit.

The column space to which j belongs is expanded by one dimension from L{H\ to L[Hh\

where [Hh] is an augmented matrix. This space expansion brings the decrease of the

minimum value of ||jy-j)||^ from P^y to y^P^y where

P, = I (iHh]r[Hhf -PMh'P^hrh'P^

Let A be the decrease of the output error, which can be expressed as

'^ = y'P.y- y'P^y=y'PMh'P.>ir h'P,y =

The h that maximizes the A is the best one for reducing the output error.

The number of required hidden units for reducing the output error depends on how large

the A of each unit can be. The expected largest value of A is estimated statistically, based

on a certain supposition that the largest value of A is obtained by random search for h.

For the convenience of theoretical treatment, A is rewritten as

A =
P.y py'

where the term within the parentheses denotes the inner product. This inner product

corresponds to the inner product (m,v) of (^-7M)-dimensional unit vectors u and v.

32

In order to estimate the expected largest value of A, let us consider the distribution of

r = (m, v)^ in the range of 0 < /• < 1. Suppose that u is constant and v is uniformly

distributed on the surface of the (^-/w)-dimensional hypersphere. In this case, the

cumulative distribution function 3>(/') can be expressed by the beta distribution as

follows:

. (\ K-m-\^

Where Br is the incomplete beta function and c is the inverse of the beta function

B(ll2,(K-m-\)l'2). The largest value of r can be obtained through the following

distribution density function xf/N •

where s is the number of samples of v which are obtained by random sampling of unit

vectors, is the largest value of r in these samples. ^ is the distribution density

function of 0.

The expected value of is

) = \wn ir)dr = 1 -10)^ {r)dr

and is expressed by the inequality

33

K-m-l

2cN

K-m-l K-m + \

where Y is the gamma function. The right side gives a close approximation to) for

K-m»l and 5 » 1 as follows

2

where a is the abbreviation of the coefficient given in the previous equation. The

expected rate of the squared output error decreasing by one hidden unit added is

expressed by

E

/".I , ||2^
kyW

= l-E{r^)<^aN~

\

VtsR squared output error P^"'^y for m hidden units added one by one can thus be

estimated as

M

2m

a-'YlN
;=i

Therefore, the number of required mapping and demapping layer units is estimated

approximately as

34

m

A:iogf,;.||/£G)
log#

where EG is the criterion of the allowable output error.

3.3.2 Principal Component Analysis (PCA)-Based Method

The principal component analysis (PCA) (Jolliffe, 1986) models the variability in a data

set by identifying the dominant directions in which it varies. This technique is quite

useful for data compression where the multi-dimensional data is mapped into lower

dimensions with a minimal loss of information. This is done by developing a set of basis

vectors based on the dominant directions and by viewing data observations not only as a

set of individual or univariate measurements, but as a multivariate observation whose

behavior can be observed in terms of the new basis vectors. The PCA implementation is

presented below.

Let X represents an n*m data matrix {n is the number of observations, m the number of

variables). PCA optimally factorizes X into two matrices, T, called the scores matrix

(n*f) and P, called the loading matrix plus a residual matrix E (n*m):

X=TP^ +E

where/is the number of factors The condition of optimality on the factorization is

that the Euclidean norm of the residual matrix, ||£||, must be minimized for the given

number of orthogonal factors. To satisfy this criterion, the columns of P are the

eigenvectors corresponding to the /largest eigenvalues of the covariance matrix oiX.

35

PCA linearly maps data from 5R'" to Take P'^P = I without loss of generality, the

mapping has the form:

ti=yiP

where represents a row of Y, a single data vector, and U represents the corresponding

row of T, or the coordinates of>', in the feature space. The loadings P are the coefficients

for the linear transformation. The information lost in this mapping can be assessed by

reconstruction of the measurement vector by reversing the projection back to SR ":

y/=t,P'

where ̂ ,'=7, -e. is the reconstructed measurement vector. The smaller the dimensions

of the feature space, the greater the resulting error.

Due to the capability of data compression without losing significant amount of

information, the mechanism of PCA is also applied into the framework of neural

networks to reduce dimensionality and produce a feature space map resembling the actual

distribution of the underlying model parameters (Kramer, 1991; Dong and McAvoy,

1996).

Because of the property of the PCA in data compression, it is applied in this study to

estimate the number of the bottleneck layer in neural networks. Estimated by the PCA-

based algorithm, the bottleneck layer of the NLPCA architecture has a relatively small

number of nodes. Network connections through this layer retain most of the information

36

presented by the signals when the signals pass through the network layers during the

network training.

3.4 Neural Network Regularization

The risk of overfitting noisy and collinear data is of major concern in neural network

design. A model with an excess number of free coefficients tends to generate mappings

which have a lot of curvature and structure, as a result of overfitting to the noise in the

training data. Similar behavior also arises with more complex non-linear neural network

models. Regularization techniques control the effective complexity of the model and

encourage smoother network mappings. Regularized neural network models reduce

overfitting, provide stable result, and the generalization ability is improved.

Methods of regularizing neural networks have been widely studied. Larsen et al. (1996)

proposed an adaptive regularization method by minimizing the error on a validation set.

A gradient descent scheme is developed to optimize the regularization parameter

adaptively. Similar work has been done by (Hansen, et al, 1994; Larsen, et al., 1996;

Hansen, et al, 1994; Petersen, et al, 1996; Larsen, et al, 1994). Levin et al (1994)

propose a principal components pruning (PC?) method to tune the neural network

parameters based on principal component analysis of the node activations of successive

layers of the networks. Similar to truncated singular value decomposition (TSVD)

technique detailed in Section 3.6.2, the PCP removes the eigennodes which have no

effect on increasing prediction error on a validation set. This method can be done off

line.

37

Several regularization techniques were applied in this study, including weight decay,

cross validation and singular value decomposition.

3.4.1 Weight Decay

Regularization smoothes the weight matrices and makes the solution stable; in other

words, makes the solution robust to noise in the data. The regularization technique adds

a penalty term Q. to the objective function to give

J = E + uQ

Here E is one of the standard functions, such as sum squared error (SSE) or mean squared

error (MSE); the parameter v controls the extent to which the penalty term Q influences

the form of the solution. Training is performed to minimize this error function J. A

function that provides a good fit to the training data will give a small value for E, while

one that is very smooth will give a small value for H.

The most common neural network regularization method is weight decay (Press, 1992).

In the form of weight decay, the penalty function is the sum of the squared of the

adaptive parameters in the network.

where the sum runs over all weights and biases.

38

3.4.2 Singular Value Decomposition (SVD)

A problem lurking in linear regression is the problem of collinearity of a data matrix, in

which two or more independent data vectors are linearly correlated with others to a high

degree. This makes the solutions of regression tasks non-unique, which leads to

instability and unreliability of the solutions. The employment of the SVD technique

makes the solution stable by removing noise components. This technique removes noise

from a signal and does not introduce bias to the solution.

As described in Section 3.2.4, the output layer of the neural networks has a linear

activation function, which linearly maps the output vector of the final hidden layer and

the desired output. The neural network training process adjusts the weight parameters

(weights and biases) for this connection node by repeatedly propagating the prediction

error back through the previous hidden layers. Due to the possible collinear ill-

conditioned training data matrix, the resulting neural network weight parameters will be

weighted heavily towarding the few dominating variables, which have the largest

variations. The neural network models with the non-smooth weight matrices generate

inconsistent results. The SVD technique smoothes the weight matrix by removing the

minor principal components due to noise in the signals.

The SVD process extracts the components from the variables. The minor components,

which are associated with small eigenvalues, are considered as noise information carriers.

These minor components are then discarded to remove the noise information. The SVD

not only removes the collinearity of the data matrix but also serves as a noise-filter (see

39

Appendix D). The mathematical representation of the SVD technique is detailed as

follows (Masters, 1993).

Given a weight matrix W, target vectors Y, and input vectors X, a standard regression

equation can be written:

XW=Y

We can solve for the weights using the general least square solution:

W=QfX)-^X^Y

In this solution the mean squared error is minimized. However, the problem of

singularity of X^ X or near singularity arises. In practice, the vectors in X are linearly

correlated to some degree, indeed some of them may be highly correlated, which causes

the matrix)^X Xo be ill-conditioned. A small change in the vector X results in huge

change in weight matrix W. The model created by the least squares estimation may fit

the training data very well, but provides very poor generalized results due to non-smooth

weight matrix.

The solution to this problem is to solve for the linear output weights using the SVD

method. The input matrix A" is broken down into its singular value composition given by:

X = USV^

U= mm matrix of principle components (m is the number of signals)

40

S = mxm diagonal matrix of singular values

V= mxm matrix of right singular values (orthonormal matrix)

The final weight values are found by reconstructing the above S matrix:

w = v(S'y'u^Y

In this study, a truncated SVD technique (TSVD) is applied for reconstruction. In TSVD,

only the most relevant information is retained to compute the weight parameters. The

least important information, which is stored in the smaller singular values s. (/ = k,.

is discarded because it is most likely due to noise. The amount of noise that is removed

from the solution to the system is determined relative to the largest weight expected in

the network. This is achieved by setting the smaller singular values s.{i = k,...,m) in

singular value matrix S to be zero. The value of k is chosen such that the remaining non

zero larger singular values Sj{j=l,...,k-1) keep most of the information (98% in this

study) for good estimation. That is, k is chosen such that

k

E',
J^ = 0.98
m

;=i

A reconstructed singular value matrix 5" contains only the most important information

for variable reconstruction. Minor principal components containing noise information

are discarded.

41

By using the SVD technique, the network training process was greatly accelerated by

solving for the output layer weights instead of using iterative training. Not only does this

method reduce training time and obtain optimal weight parameters, but the weights are

also vastly superior to what would be attained by random iterative methods. Also by

removing the noise information, the possibility of neural network overfitting is limited.

Another purpose of using the SVD technique is that since it linearly regresses the

network model, the weights in the network linear layer can be quickly calculated; and

neural network retraining is not needed. Therefore, on-line system adaptation can be

realized.

3.4.3 Robust Training Technique

Another regularization techmque is the robust training. A robust network is one that

provides the corrected value of an input that contains an error or missing data, without

disturbing the output estimates of the other sensors in the network. Robustness with

respect to faulted inputs is not necessarily a property of neural networks, since feed

forward networks generally have poor extrapolation properties. Sensor failures have no

precedent in the training set; therefore, the network's estimate to an erroneous input is

unpredictable. An error in a single sensor may be detected, but at the risk of

compromising the remaining signals in the network, and it may not be possible to

distinguish the faulty sensor. The robust training technique improves the stability of the

network performance and makes it possible to identify the faulty sensor.

42

When training a neural network, the output Y is trained to emulate the input X. A robust

training set uses a modified input set X' which contains artificial faults. The input set is

constructed asX=X+ j=l, ...,m (m is number of input signals), Ij is the ̂ h column

of the identity matrix, and 5 is a modification factor. The modified input set X has noise

introduced in one of the signals, while the other signals remain normal. The noise is

introduced into remaining signals consecutively, so that a corruption is introduced

systematically into all of the signals, but not into more than one signal at a time. For each

original training example, each sensor is corrupted several times using different random

values of 5 ranging between 1% to —1% of the signal operating range. Using the

corrupted input set X', a robust network will be trained to produce the non-corrupted

output.

3.4.4 Cross Validation

Usually, the plant operating signals contain a small amount of noise (typically 2 to 3

percent) from the sensors and other electronic equipment. If a network is trained to a low

error value, it tends to model the noise in the data and not the overall functional

relationship behind the data. This is known as overfitting the training set, and creates a

network that has very poor generalization abilities. In order to avoid the overfitting

problem, a cross-validation technique is employed for network training. In this

technique, the data were divided into training and validation sets, the network is trained

on training data and the prediction is made on validation data. When the prediction error

begins to increase the training is stopped. Both the training and prediction errors are

measured by the objection function/defined in Section 3.4.1.

43

3.5 Sequential Probability Ratio Test (SPRT)

The decision logic module implements the SPRT initially developed by Wald (1945) and

later applied for sensor status checking (Upadhyaya, et al, 1987; Uhrig, et al, 1996;

Erbay and Upadhyaya, 1997; Hines, et al, 1997; Wrest, 1996; Olvera, 1993; Eryurek,

1994). This module uses the residual between the sensor value and model prediction as

the input, and provides the condition of the sensor. Rather than computing a new mean

and variance at each sampling time, the SPRT continuously monitors the sensor's

performance by processing the residuals.

When a sensor is operating correctly, the residual should have a mean of zero, and a

variance comparable to that of the sensor (due to the filtering characteristics of an

AANN). If there is a sensor drift, the residual mean shifts thereby increasing the

likelihood ratio. This ratio is a measure of how different the residual is from zero. If the

likelihood ratio increases above a certain predefined boundary value specified through

the false and missed alarm probabilities, the residuals are more likely to be from the

faulted distribution than from the unfaulted distribution. The sensor is classified as a

faulty sensor. When the likelihood ratio is less than the boundary value, the sensor is

good. If a sensor is determined to be faulty, the likelihood ratio is reset to zero and the

calculation to determine the status of the sensor begins again.

3.5.1 Decision Algorithm

This SPRT-based method is optimal in the sense that a minimum number of samples are

required to detect a fault existing in the signal. The decision rule used for this test is

Wald's two-sided criterion. This technique can be used for detection of sensor bias

44

degradation and for detection of sensor noise degradation with different concerns.

Assuming that the residual signals are uncorrelated and have a Gaussian distribution, the

likelihood ratio is calculated as;

<7
f
V
k-

m.

 2^

where \ — likelihood ratio at time k

m\ — the degradation mean under the degradation hypothesis Hi, which is sensor

specified and detennined by the calibration specifications.

~^k~^k~~ residual between the sensor measurement and the estimate.

<y — the normal variance of s under the normal hypothesis Ho, which is obtained

from the normal condition (no fault) test data.

3.5.2 Decision Rule

The two-sided rule was originally introduced by Wald and is detailed as follows.

The decision boundaries A and B are:

\-pr D \ r-i o\

^ = ln and B = ln
vl-ay K cc J

where a = probability of false alarms; = probability of missed alarms. It is

important to obtain a low false alarm probability so that the users gain confidence in the

system. The typical values 0.01% for a and 10% for P are adopted in this study.

45

Normally, the values of the probabilities are specified by the applications. The

discussions on the parameter setting is given in Section 3.5.3.

When A^<A, sensor is OK; , sensor is degraded.

3.5.3 Parameter Selection

The parameters that need to be defined for implementing the SPRT are the missed alarm

probability, the false alarm probability, a measure of noise in the signal (variance), and

the faulted mean.

The false alarm probability is defined as the probability of classifying the sensor to be

good but the sensor is indeed bad. The missed alarm probability is the probability of

claiming a drifting sensor but it is in good condition. The criterion to set up the values of

the probabilities is to keep the false alarm probability low, while set the missed alarm

probability a little high. This setting is to avoid true false alarms being missed, while to

allow some intermittent alarms to be ignored. Usually, the values of the missed and false

alarm probabilities are specified by the applications. In this research, the values were set

such as there is a 0.01% chance that the bad sensors will be missed, and a 10% chances

that the good sensors will be classified to be faulty. The missed alarm probabilities are

critically important for monitoring the sensors in control channels, especially the sensors

in nuclear power plant control system.

The value of the faulted mean depends on the designed detectable sensitivity of the

monitoring system. In this study, it is set to be 5% of the average individual variable

operating level, that is,

46

m^(i) = 0.05 ■ X(i)

where i is the number of signal channels to be monitored; X is the average operating

level for each channel.

3.6 Summary

This chapter introduces the individual modules of the sensor validation system to

accomplish the sensor monitoring tasks. Methodologies on automated network

architecture design were developed. A hJLPC A typed neural network architecture, that is

proved to be a universal approximator, is selected as the process model. The number of

network hidden nodes are estimated by the beta method as well as the PCA-based

technique. Several network regularization techniques to stabilize network model

performance are combined for network training. Also the SVD technique is used for

network retuning when plant operating conditions change. The SPRT method statistically

determines if the residuals are from the normal distribution to detect if the sensor is

faulted. Parameters in methods on determining the number of network hidden nodes are

to be selected in Chapter 5. Also the regularization parameter of weight decay is selected

in Chapter 5. In order for AANN models to handle variables without computational

difficulty for plant-wide sensor monitoring, data pre-processing is necessary. In the next

chapter. Chapter 4, issues related to the data pre-processing are discussed.

47

Chapter 4

Data Processing

This chapter details the data pre-processing required for the neural network architecture.

This procedure is needed to create a proper and meaningful data set for neural network

training and validation; also to minimize any computational difficulty network training

may face. In order to accomplish this procedure, the tasks that should be performed are

detailed in the following sections.

4.1 Fundamental Goal

The fundamental objective of this portion of the research is to determine the signals that

can be monitored by this system and, furthermore, to group signals to achieve optimal

neural network performance.

When developing a sensor validation system, for plant-wide sensor monitoring, a list of

process variables is constructed. Among these process variables, some of them either are

calculated for performance monitoring, or have little variances. The calculated variables

do not require monitoring, while the variables with little variances cannot be monitored

due to poor correlation relationship with others. Therefore these variables are excluded

from monitoring. Of the remaining signals, although some of them have large variations,

but have little or no correlation with others. These signals provide little or no information

in predicting other signals and cannot be estimated well by others; therefore they cannot

be predicted well by using autoassociative network structure. The resulting monitorable

variables modeled by the neural networks are put into groups of relatively small size. In

48

this study, it is less than or equal to 25. The grouping is accomplished such that the

variables within each group are correlated with each other to a relatively large degree

(greater than or equal to 0.5). The reason to choose correlation threshold to be 0.5 is that

it has been found that the variables having correlation coefficients less than 0.5 were not

estimated well using autoassociative network architecture. These grouped variables were

then used as inputs to the neural network estimation models. Corresponding neural

network models to each group of variables are then established. In this dissertation, the

correlation analysis and the NLPLS-based technique are used for variable selection.

4.2 System of Interest

In this research, Teimessee Valley Authority (TVA) fossil power generating system Unit

#9 provided sufficient data for the sensor monitoring system design. Figure 4.1

demonstrates the interrelationships among three sub-systems of this power generating

cycle: boiler system (steam generator), turbine/generator and condenser/heat rejection

(ASME PTC PM-193). Because only a few signals from the condensing system were

provided, the research concentrates on two major sub-systems: the boiler system and the

turbine system. A total of224 variables were provided by the TVA for this research.

4.3 Variable Selection

The operating data were provided for the periods listed in Table 4.1. The data was

sampled at one minute intervals. Some of the data are used for neural network model

construction, while the other data are for model prediction performance validation.

49

8Cft*m 0an»rattor •nvaiop* Turb1rt«/Gan«rator •nvvlop*

^ Siaam I
genarstor

I , . T,n 1 ' I A2r IIff Ihaat

1 FO»>n

I ID fan I

Main »im
r«ht stm

feeawatar

FImo gaa

Turbina/
Oanarator

Feed water
heaters

BFP
pump

I
Cendensete

pump

Turbina exhaust
condensate

I
Condenser

Cold water «

Coding
tower

Circulating
water

pump• .

Condansvr/heas rejection envelope

Figure 4.1 Fossil power generation system (ASME PTC PM-193)

Table 4.1 TVA Kingston Fossil Plant Operating Data

Operation Period Data Status
01/05 - 01/22-98 for network model training and validation
03/26 - 04/10, 08/01, 08/08,
08/16, 08/22-98; 02/07-02/11,
06/07-06/11, 08/17-08/22-99

for network model prediction performance checking

For an ANN-based monitoring system to function correctly, the neural networks must be

trained on the fault-free data. It is assumed that the instruments were operating within

specifications over the network training period. In essence, no adjustments were made to

sensors or instrument channels during this period. Therefore, in order for the network to

be valid in the operating region, the data in the period of 01/05/98-01/22/98 were used for

neural network training, while the remaining data were used for neural network model

validation.

Of the recorded 224 variables, some are unchanged with time and 83 of them are

calculated. Since the unchanged ones are not correlated with others and thus cannot be

50

inferred by other variables, the neural networks cannot predict them. The 83 variables

calculated by the mathematical or empirical models do not need to be monitored by

neural networks if the input signals are monitored. Thus, the variables that are either

unchanged or calculated are excluded from neural network modeling. After removing

these unmonitorable variables, the remaining 136 variables are selected for monitoring by

this validation system and are listed in Table A1 in Appendix A.

However, some measured variables, which change with time, are still unmonitorable due

to lack of information provided by other signals in regard to sensor validation purpose.

This is explained as poor correlation between the predictive and response variables,

which are the network inputs and target outputs, respectively. A non-linear partial least

squares (NLPLS)-based technique, which incorporates a neural network architecture into

a conventional partial least squares (PLS) model (Geladi, 1986; Hoskuldsson, 1988), as

well as a correlation analysis-based technique is employed to identify these variables. A

prediction error threshold is set for all the variables. The variables with prediction error

from the NLPLS model larger than the threshold are classified as unpredictable and are

excluded from network prediction. The NLPLS finds a few components called latent

vectors that carry most information of the variables to form the network input and output,

and the network is trained to map the relationship between the latent vectors. A series of

single-input-single-output neural networks is constructed to model each variable. By

using this type of architecture, variable grouping is not needed. The limitation is that the

non-linear correlation of the variables cannot be high; otherwise, this method fails.

51

In this study, most of the variables have fairly high linear correlation relationships

(correlation coefficient is greater than 0.5), therefore, the NLPLS model provides a

reference for variable selection. The variables selected from the NLPLS model are listed

in Table A2 in Appendix A. In this NLPLS model, 25 latent vectors were extracted from

the signals, which is comparable to the results obtained from the correlation analysis

detailed later. The response variables which have an average prediction error greater than

3% are classified to be unmonitorable. This criterion allows 105 variables to be

classified as monitorable.

However, since the NLPLS modeling does not require the variables to be correlated well,

the variables selected by this technique may not be appropriate for AANN modeling in

regard to sensor validation because the AANN requires the inputs to be reasonably

correlated well. Therefore, a method using correlation analysis is also applied to select

the variables for AANN input in comparison with the NLPLS-based selections. The

correlation analysis method removes the variables, which have little correlation with

others, from modeling. The correlation-analysis-based variable grouping algorithm is

detailed in Section 4.4.3 and is sketched in Figures 4.3a and 4.3b. This method

determines that 36 variables, which are listed in Table A5 in Appendix A, cannot be

monitored.

4.4 Variable Grouping

With a large number of signals/variables to be monitored in complex systems, variable

grouping is needed. The purpose of this task is to construct fairly small neural network

models with 20-30 input variables to avoid the computational difficulties associate with

52

large neural networks. The neural networks require that the input variables be correlated

with each other at some degree (usually greater than 0.5); such that they can be easily

trained. This task is to be done by performing the coirelation analysis for all the

variables. As mentioned in the previous section, this method is also considered for

variable selection. It is previously found that in an AANN model, a variable poorly

correlated with others caimot be predicted well (Hines, et al, 1998). Therefore, this

correlation analysis method optimally groups variables for neural network models to

achieve better performance.

4.4.1 Non-Linear Partial Least Squares (NLPLS)

NLPLS is a technique which incorporates feedforward neural networks into the

conventional partial least squares (PLS) model to provide nonlinear functionality

(Kramer, 1992; Qin and McAvoy, 1992). By using the universal approximation property

of neural networks (Haykin, 1994), the PLS modeling method is generalized to a

nonlinear framework. The NLPLS model captures the nonlinearity and keeps the PLS

projection to attain a robust generalization. By embedded nonlinear neural network

architecture, the NLPLS model is able to capture the nonlinear relationship between

response and predictive variables. In this research, this method along with a correlation

analysis is used to select the variables which are monitorable.

The PLS model analyzes the co-variability between predictive and response variables. It

identifies the dominant directions in which the response variable varies as well as the

directions which have the highest correlation with the predictive variables. The PLS

model is shown in Figure 4.2.

53

PLS

Outer

Model

(1)

PLS

Inner

Model

(1)

&+ —'E,
Latent Vector 1

PLS

Outer

Model

(2)

PLS

Inner

Model

(2)

t>

+ ̂ E.

Latent Vector 2

PLS

Outer

Model

,(A)

PLS

Inner

Model

(A)

Latent Vector A

Figure 4.2 PLS model (Qin and McAvoy, 1992)

The PLS outer model, which decorrelates the input and output matrices and transforms

them into latent vector space, reduces the dimension of the input X and output Y into

lower dimensional latent vectors U and T, and completely de-correlates the input

variables. The iimer model, which can be either a linear regression model or a single-

input-single-output neural network model, maps the relationship between T and U. This

mapping can either be linear such that a PLS model is formed, or a neural network

embedded nonlinear mapping such that an NLPLS model is constructed.

The mathematical model of the PLS is presented as:

n

i=l k=\

1=1 4=1

where n is the number of input variables, A is the number of latent vectors.

54

Since the columns of latent vector U are orthogonal to each other, the neural network in

the inner model has no collinearity problem. The neural network is easily trained and the

solution to the network weights is stable.

The PLS model iteratively extracts information from both the input and output data to the

outer models until the residuals E and F contain little information (i.e., ^ « 0 and

F »0). These latent vectors are then used to predict the output with a very small

discrepancy. The procedure on determining the latent vectors T and U is detailed in

Appendix E. Mathematically this can be written as:

A

T

X=
k=\

A
T

t=i

Since data in practice are usually nonlinear in nature, it is desirable to have an approach

which can model systems with some degrees of nonlinearity and still attain the robust

generalization property of the PLS approach. Keeping the outer relation from the outer

model in linear PLS so as to have the robust prediction property, a nonlinear PLS

(NLPLS) approach using neural networks as the inner regressors is proposed:

«h=Ah) + fh

where /(•) stands for the nonlinear relation represented by a neural network.

55

The power of PLS is that it is a supervised method that extracts information from the

variables by considering the input X together with the predicted output Y. It does not

simply reject the higher principal components (PCs) which have small variability in the

data set like the principal component regression (PGR). Therefore, the information that is

predictive of outcome 7 but is relatively insignificant in terms of its variance will not be

lost. Combined with the neural network non-linear modeling capabilities, the NLPLS

models the linear relationship among variables and the non-linearity as well. Therefore,

this technique provides a better representation on modeling the output Y than simple

linear regression techniques. It needs to be mentioned that since this supervised neural

network has a single-input-single-output, the training process is non-exhaustive and easy.

This may avoid the overfitting problem, make the solution stable, and make automation

possible.

4.4.2 Correlation Analysis

Correlation analysis reveals the linear relationships among variables. Previous studies

indicate that the degree of correlation between input variables is relatively significant for

an autoassociative neural network to function as a complex system monitoring device

(Upadhyaya, 1992; Kramer, 1991). In this research, the robust neural network training

paradigm detailed in Section 3.4.3 is applied. Changes in one input variable due to drift,

channel deterioration, or failure will not significantly change the corresponding value of

the network output because the output is related to all the other correlated input variables

through a large number of paths and weights.

56

The signal correlation coefficients range from -1 to +1 with the highly correlated

parameters at the boundaries of the range. A value close to +1 means that there is a

positive or negative linear relationship between the change of one parameter with respect

to another. If a signal shows virtually no change with time (i.e., constant), its correlation

with others would be near zero.

4.4.3 Variable Grouping Algorithm

The correlation analysis is employed to uncover the correlated relationship among all

monitored variables. However, the spurious spikes in the variables will significantly

influence the outcome of correlation analysis. Therefore, the spikes are filtered out using

median filters with window size of three before performing the correlation analysis. A

series of variables X are then selected which are highly correlated with a specified

response variable Y to start variable grouping. Two algorithms are studied in this

research.

Both algorithms group the variables around the most interested signals as grouping base.

These interested variables are from a leak detection system in a fossil power plant of

TVA, which is used for detecting water leak in the boiler system, and are listed in Table

4.2. The locations of the sensors are indicated in Figure 4.3.

The first algorithm is a method called variable exclusion, in which a variable can only be

in a certain group. For instance, if signal A is bound in Group A, it cannot be in any

other groups. While in the other algorithm, called variable inclusion, a variable can be in

different groups. For example, signal A can be in group A, and also can appear in Group

57

Table 4.2 Interested Variables from Leak Detection System

Location # Sigs Signal Name Unit

1 1 Combustion Air Flow A1 Pet

2 2 Combustion Air Flow B1 Pet

3 24 Unit Gross Generation MW

4 25 Station Service Load MW

5 34 First Stage Pressure A psig
6 35 First Stage Pressure B psig
7 37 Deaerator Pressure psig
8 46 ID Fan A Suction Pressure InH20

9 47 ID Fan B Suction Pressure InH20

10 48 RH Furnace Press After Econ InH20

11 124 Superheat Outlet Temperature #1 DegF

12 125 Superheat Outlet Temperature #2 DegF

©— sensor location

Drum

Steam

S.H.'s

Economizer
Deaerator

Coal
Furnace

Precipitator
BFW

Pump
Pulvenzer

©
F.D.

Tmbme GeneratorFan

D
©

Fan

Figure 4.3 Kingston power plant Unit 9 Schematic

58

B or any other groups. Both algorithms start with an interested variable Yj from Table

4.2, and variables X that are well correlated with Yi are pre-selected to form the first

group. Then the pairwise correlation analysis is performed on X within each group to

remove the variables having little correlation with others. This process is plotted in

Figures 4.4 and 4.5. Due to computational difficulty, the number of variables in a group

is limited. In this study, a maximum of 25 variables is allowed in each group. The

variables are so grouped that these variables are correlated well with each other. This

will aid in possible and easy network training. Another interested variable Yj (J ̂ i) is

selected to pre-construct another group. This procedure is repeated until all groups are

formed and all monitorable signals are covered in the groups. It can be seen from the

block diagrams of these algorithms in Figures 4.4 and 4.5 that the difference between the

two algorithms is that a variable can be in different groups for the latter algorithm, which

allows the variables share important information for better prediction.

The algorithms are applied to group the data of January 1998. The grouping results are

tabulated in Tables A3 and A4 in Appendix A. By using the proposed grouping method,

the pairwise variables are correlated well (above 0.5). A demonstration of the correlation

for Group 4 (NN_4) is tabulated in Table 4.3.

The results from both algorithms show that there are some common variables that caimot

be inferred by others and therefore are unpredictable, like variable #8 (Coldwell Tank

Makeup Flow). They also indicate that the exclusion method throws out a lot of

important information for predicting some variables, such as variable #61 (Unit CEMS

59

F iltere d Data Set

I Correlation Analysis (C.C.) ~j

1 start w / a v a r. Y i |

r

1 F in d |C .0 ■1 > = acceptance |

I #ofpickedvars>Max_Nuin? |

yes

Grouped:= Yi+ (Max_Num-l)
picked vars w/ highest C.C.s

1

I Grouped:= all picked vars |

Remove grouped vars

Pick another Y
from ungrouped vars

r

All vars grouped? |
yes

r
n 0

End

Figure 4.4 Variable exclusion algorithm

Filtered D ata S et

X
Correlation Analysis (C.C.)

Start w/ a var. Yj

Find |C .C-1 >= acceptance

r

of picked vars > Max_Num?

r

yes

Grouped:= Yi+ (Max_Num-l)
picked vars w /highest C.C.s

I Grouped:= all picked vars [

Pick another Yj
from ungrouped vars

A 11 vars grouped?

yes

End

Figure 4.5 Variable inclusion algorithm

60

RH NOx PPM). This variable cannot be monitored since the group has only three

variables according to the exclusion method but it can be monitored using the inclusion

method. This is because the other variables, which provide useful information on

predicting this variable, are thrown out and become unavailable using the exclusion

method. Therefore, the exclusion method is improper. The 36 unpredictable variables

from the inclusion method are listed in Table A5 in Appendix A.

Table 4.3 Correlation Coefficients for Group 4 (NN_4)

Sig# 75 85 87 119 123 124 125 136
75 1.00 1.00 0.90 0.69 0.66 0.51 0.65 -0.55
85 1.00 1.00 0.89 0.68 0.66 0.51 0.65 -0.54
87 0.90 0.89 1.00 0.77 0.75 0.66 0.75 -0.66

119 0.69 0.68 0.77 1.00 0.99 0.93 0.99 -0.57

123 0.66 0.66 0.75 0.99 1.00 0.95 1.00 -0.56
124 0.51 0.51 0.66 0.93 0.95 1.00 0.95 -0.59
125 0.65 0.65 0.75 0.99 1.00 0.95 1.00 -0.56

136 -0.55 -0.54 -0.66 -0.57 -0.56 -0.59 -0.56 1.00

To finalize the grouping procedure, the variables listed in Table A5 should be removed

and the remaining variables, which are considered monitorable, are to be regrouped. The

final grouping results are presented in Tables A6 through A20. This system is able to

monitor 100 signals from a total number of 136 signals, or 74% of the signals can be

monitored. There are a total of 15 neural network modules for monitoring these variables

based on the grouping result. Some variables that provide most useful information in

predicting others are included in multiple groups.

61

4.5 Network Input Scaling

Virtually all networks are to be trained more efficiently if their inputs and outputs are

restricted to a "reasonable" range (Bishop, 1995). This entails pre-processing, or scaling,

the input data before it is presented to the network, and post-processing the outputs of the

network to restore the output values. There are two reasons why processing the data is

advantageous, or in some cases, required.

1. The non-linear activation function used in network architecture requires a bounded

input value to prevent premature saturation of the network, which greatly slows or

prohibits training. In addition, the sigmoidal function tends to emphasize the importance

of intermediate output values, while obscuring fine differences when the outputs are near

their extreme high and low values. This means that predictions that approach the limits

of the network's output will be less accurate than the intermediate predictions (Masters,

1993).

2. A typical plant system has parameters that differ in magnitude and/or deviation greatly,

such as temperature contrasted to pressure. Depending on the units in which the

parameters are expressed, they have values that may differ by several orders of

magnitude. The network would need to find a solution for the weights in which some

weight values had markedly different values from others. This would greatly affect the

network's stability and generalization ability.

3. Plant signals have wide operating ranges from one sensor to another, for example, a

flow meter may normally operate between 1500 and 2000 KLb/hr levels; while a sensor

62

monitoring the RH Furnace pressure may operate between 2 and 3 InH20 levels. A PCA

technique applied to this type of data may totally ignore the importance of the pressure

signal due to the small variance. However, the pressure signal should be considered

equally important as the flow signal. Therefore, the unit variance scaling of the data

before performing the PCA technique is needed. Otherwise, the resulting PCA outcomes

could be invalid.

From the above discussion, it is apparent that the input parameters should be scaled to a

narrow range near the center of the activation functions. The input parameters to the

network are linearly scaled using a so-called z-score scaling method, which scales the

data to values that have a mean of zero and a variance of unity. The slope and intercept

parameters are used to restore the outputs back to their original values.

4.6 Summary

This chapter discusses the issues related to the data pre-processing. NLPLS is an

inferential neural network model. It does not require variables be well-correlated.

Therefore, the variables selected from this model may not be proper for AANN

architecture, which requires variables to be well-correlated. The result shows that the

NLPLS determines 105 variables are monitorable in comparison with 100 variables from

correlation analysis.

63

Chapter 5

Sensor Monitoring Validation System Design

This chapter applies the techniques detailed in the previous chapters to a TVA fossil

power plant for plant-wide sensor monitoring validation system design. The first few

sections discuss the issues of neural network structure design and training^ including the

selection of the number of the network hidden nodes without network training as well as

the network regularization. The later sections concentrate on the issues of detecting

sensor drifts and replacing faulty sensors with their best estimates from the neural

networks.

5.1 Neural Network Structure and Design

The objective of this study is to design a neural network that has the best generalization

capability with a simplest structure. A simpler network has less possibility of overfitting,

less computational difficulty due to complex structure, and stabler network performance.

The ideal network for this application would have the ability to provide dependable

sensor estimates, even though the sensor may be faulty. Once the best network

architecture is determined, training techniques were incorporated to optimize the

performance of the network.

The structure of the neural networks depends directly on the compleidty of the problem.

In this study, an automation procedure of network design was developed. The following

sections discuss the issues related to this procedure.

64

5.1.1 Neural Network Structures

In this dissertation, an NLPCA-typed AANN was used for signal modeling. The NLPCA

has been proven as a universal approximator (Cybenko, 1989; Kramer, 1992; Haykin,

1994). In this structure, the bottleneck layer performs as a PCA feature extractor, which

produces the features to retain the maximum amount of information from the original

input variables, for a given degree of data compression.

The three hidden layers form a feature detection architecture in which the bottleneck

layer plays the key role in the identity mapping. Essentially, the bottleneck layer

functions as a NLPCA filter that uses a lower dimension to explain a maximum amount

of information while eliminating minor or noise components. The outputs of the

bottleneck layer are non-linear principal components, which have a clear interpretation in

theory (Bishop, 1995). The first two layers in the network map from the input data space

to the non-linear principle component score space, arid the last two layers map from the

non-linear principle component score space to the output data space. The mapping-

bottleneck-demapping combination forces the network to develop a compact

representation of the training data that better models the underlying system parameters.

The number of hidden nodes in a feedforward neural network is significant in

characterizing the performance of the network. It greatly influences network capacity,

generalization ability and output response. However, the number of hidden nodes should

not be too small to learn the underlying functions or too large to provide poor

generalization of the output. Therefore, an optimal number of hidden nodes exists, which

depends on the complexity of a given learning task.

65

The beta method-based technique explained in Section 3.3.1, which automatically

estimates the number of the NLPCA mapping and demapping layer nodes, is developed.

A PCA-based method is also employed for determining the number of the bottleneck

layer nodes of the NLPCA.

Another type of neural network is the time delayed neural networks (TDNN). In a

TDNN, besides the current signal values, previous ones are also used to provide temporal

information for network to get, a better estimation. A simple block diagram of TDNN

with four variables xi, X2, X3, X4, plus two delayed signals in X2, and one in X3 is plotted in

Figure 5.2. This diagram shows clearly that the delayed information is used to predict the

present values in a TDNN.

►

Neural

Networks

►

4:
w

L-i
►

w

►

Xj

X,

Figure 5.2 Simple block TDNN structure

In order for a TDNN to achieve its best performance, delayed signals should provide

useful information, that is, a good correlation between the current data and the previous

data must exist. Otherwise, the TDNN cannot guarantee any improved performance

compared to an AANN. (Hines, et al, 1998) Also the increased collinearity in its input

data matrix could degrade its generalization ability.

The proper time lag can be determined by a cross-correlation analysis. This technique

determines the amount of information provided by delayed signals in estimating a

66

response signal. Figure 5.3 shows a cross-correlation relationship between Combustion

Air Flow A1 and other signals in the group of NN_1 for the time span of four hours. It

demonstrates that there is no higher correlation at any lagged time than that at the current

time. This indicates that there is no additional information provided from the previous

measurements to improve the network performance. There is virtually no helpful

information provided for network prediction. Therefore, the TDNN does not perform

better than the AANN. A faster sampling rate probably provides a better dynamic

representation of the physical process. It was found that all the monitorable signals have

the same behavior, implying that the TDNN is not helpful for getting an improved

performance.

5.1.2 Determination of Neural Network Parameters

One issue related to the neural network structure is the selection of the number of the

hidden nodes. Generally, the number of hidden layer nodes of a neural network is related

0.8 -

0.6 -

O 0.4 -

O 0.2

-0.2 -

-0.4
100 150

Time Lag (m in)
200 250

Figure 5.3 Cross correlation between Combustion Air Flow A1 and others

67

to the complexity of the process. A network without a sufficient number of hidden, nodes

would have a reduced accuracy, due to its limited representational capacity with too few

degrees of freedom in adjustable parameters. If there are too many nodes, the network is

prone to oveifitting, or learning the stochastic variations in the data rather than the

underlying functions. One of present approaches for determining the number of mapping

layer nodes is the simplified cross-validation scheme. In such an approach, the number

of hidden nodes is determined such that the network has a minimum test error.

Therefore, this method requires the network be trained and determines the solution on

repeated trials.

The result of variable grouping implies that the neural network structure for each variable

group should not be identical. A neural network modeling with more variables may be

complicated in its structure than with fewer variables. Due to the various complexity of

the neural network structures, there is no unique solution to the network parameters. The

best solution must be chosen upon individuals' discretion. To automate this procedure,

some techniques were developed.

5.1.2.1 Modified Beta Method

As detailed in Section 3.3.1, the beta method has its advantage in determining the hidden

units without training the networks. However, it introduces a parameter N, the total

number of candidates that are randomly searched for the optimum hidden unit, which is

not known a priori. Furthermore, the number of hidden nodes depends on the number of

training samples. These factors make the original beta-method inapplicable. In this

68

dissertation, a modified beta method is developed such that it becomes data-independent

and no prior information is needed.

In this algorithm, the parameter, K, which is the number of training patterns, and log(A^,

which is the natural logarithm of the random search steps, are closely related. For

example, with more training patterns, the random search for the solution takes more

steps. Based on this observation, the method is modified by replacing this ratio with a

parameter C. Through this replacement, the modified beta method becomes

/««C»log(|^.z|/£G)

The root least square error of is calculated through a linear regression method using

the SVD method. The selection of C depends on the complexity of the problem and is

originally determined by experiments, referring to (Fujita, 1998). When applied for

automated design, an expression for estimating C should be derived.

It is observed that the determination of C is based on the roughness of the training

surface, a simple way of expressing this is by checking the number of principal

components of the data matrix. That is,

C = /(data matrix)

The function /() is designed to be the number of principal components kept such that

95% of the variation in the data set is retained. For most network groups, the value of C

69

is around 5 and the networks provide good results with the calculated number of hidden

nodes.

5.1.2.2 PCA-Based Method

In the NLPCA-type neural network, since the bottleneck layer functions as a non-linear

principal component analysis filter, it requires as many nodes as there are non-linear

factors in the parameters that are modeled. Therefore, the number of bottleneck nodes

can be statistically determined by the evaluation of the principle components in a data set.

It has been discussed in Chapter 3 that the PCA technique is applicable to estimate the
I

number of network nodes in the bottleneck layer. In retaining most of the variation in the

data set, the PCA finds a small number of variables through the principal components

(PCs) retaining most information of the dynamic process. By performing on the

covariance matrix X'X of the data set X, PCA finds a set of PCs. The number of PCs to

be kept is determined by the amount of underlying information excluding noise in the

data.

Several methods on selecting number of PCs are reported in (Jolliffe, 1986). In this

dissertation, a method, to select a cumulative percentage of information which it is

desired that the selected PCs should contribute, is applied. This method is explained

below.

The number of PCs m is selected such that the cumulative percentage reaches a desired

value. The value of m should be chosen that a maximum amount of noise is removed but

a minimum amount of true signal is lost. In this research, since the sensor measurements

70

are noisy, therefore m is selected such that the cumulative percentage of .variation of data

is equal or greater than 95%. The definition of cumulative percentage of variation cp

accounted for by the first A: PCs' is,

cp, =100
y=i / j=i

where / is the singular values of input covariance matrix Z'X; p is the dimension ofX'X.

100 ̂This expression reduces to cp^ = V/ in the case of a correlation matrix.
P M

Choosing a cut off value cp based on the desired cumulative percentage threshold, and

retaining m PCs corresponding to cp*, where m is the smallest integer, k, for which

^Pk > j provides a rule which preserves in the first m PCs most of the information in

the data set.

5.2 Network Training

The methodologies for neural network training are discussed in this section. Among the

topics covered are, the removal of the outliers in the training data; the training algorithm

selection; the accelerated training methods; the training error goal determination; the

robust training technique; and the iterative validation method.

5.2.1 Outlier Removal

The neural network's performance mainly depends on the robustness and quality of the

collected data for training and estimation. Therefore any corrupted data results in

questionable network performance. One common t5q)e of corrupted data that is easy to

71

detect is the spurious spikes or outliers. Because of their extremely large magnitudes

relative to the rest of the signals, outliers tend to negatively influence the output of the

network.

In order to minimize the influence of outliers on the network's performance, the training

data set are pre-processed with a median filter to filter out the spurious spikes of the data

usually caused by the noise in the data collection system. A zero phase shift median filter

was used on the input parameters, which gives the median value for a window size of 3.

After filtering, the data was scaled by the z-score method to prevent network from

premature saturation and to accelerate the training process.

5.2.2 Training Algorithm Selection

The major criterion for selecting the training paradigm is the size of the training set.

Three backpropagation methods were investigated; gradient descent with momentum &

adaptive learmng rate (GDX) (Vogl, et al, 1988), conjugate gradient with Fletcher-

Reeves updates (CGF) (Scales, 1985), and Levenberg-Marquardt (LM) (Hagan and

Menhaj, 1994).

Although gradient descent backpropagation (GDX) is computationally simple and

reliable, it has very slow convergence properties. Backpropagation is used to calculate

the derivatives of performance (perf) with respect to the weights and bias variables W.

Each variable is adjusted according to gradient descent with momentum:

AW = mc-dW,i,+lrmc-^^^
dW

72

where mc is the momentum constant and Ir is the learning rate, which are to be selected.

It can be seen that the change of weights and bias matrix W depends on the parameter

settings of mc and Ir. Without these parameters being properly selected, the network

training may not converge as expected. The conjugate gradient backpropagation with

Fletcher-Reeves updates has faster convergence properties than the GDX algorithm In

the CGF algorithm, each variable is adjusted according to the following;

dW = -gW + dW^„-Z, Z=
norm_sqr^,j

where gW is the gradient, norm sqr is the norm square of the gradient.

In contrast with the GDX, the adjustment of the variables only depends on the gradient

and the change of gradient and no chosen parameters are required. This makes the

algorithm easier to implement.

The Levenberg-Marquardt (Bishop, 1995) algorithm is an optimization method that

trades off between the reliable convergence of the gradient descent paradigm and the

quick convergence of Newton's method. Implementing this method requires the

calculation of a pseudo Hessian matrix. This matrix incorporates second order

information that aids convergence, but is based on assumptions of being near the

minimum and the error surface having a quadratic function. The mathematical

manipulations of the pseudo Hessian matrix make the LM training paradigm very

memory intensive and slow for large training sets and network architectures.

73

Due to the relatively large size of the neural networks required for a plant wide

monitoring system, the Levenberg-Marquardt training algorithm is impractical due to its

memory intensive requirements. We also want to avoid any training parameter choices,

so the GDX algorithm is excluded for consideration. By comparing the three training

algorithms. The conjugate gradient backpropagation with Fletcher-Reeves updates was

selected as the optimal training algorithm.

5.2.3 Ill-Conditioning and Regularization

By modeling sensor signals in an autoassociative way, a signal is predicted through its

relationship with other correlated variables. The problem with using these variables as

predictors is that they are not only highly correlated with the response variable, but they

are also correlated with each other. If the degree of correlation is extremely high,

meaning they are almost linear dependent, the data matrix becomes ill-conditioned and

the problem of drift detection becomes ill-posed (Hadamard, 1923; Hines, et al., 1999;

Gribok, et al., 1999). Hadamard defined a well-posed problem as a problem which

satisfies the three following conditions:

• The solution for the problem exists.

• The solution is unique.

• The solution is stable or smooth under small perturbations of the data; i.e. small

perturbations in the data should produce small perturbations in the solution.

74

5.2.3.1 Ill-Conditioned Problem

If any of these conditions are not met, the problem is termed ill-posed and special

considerations must be taken to ensure a reliable solution. The degree of an ill-posed

matrix is measured by the condition number Cond which is defined as:

Cond =
max(j)

min(j)

where s is the singular values of the data covariance matrix. A matrix with condition

number less than 10 is considered to be in good condition, less than ICQ to be in fairly

good condition, larger than ICQ is classified to be ill-conditioned.

The condition numbers of the input matrices of all networks are listed in Table 5.1. The

results indicate that all network input matrices are ill-conditioned, which causes

inconsistency in the neural network model.

Table 5.1 Condition numbers for each network model

Network Tag Condition Number

NN 1 3.9615e+004

NN 2 3.8640ef004

NN 3 3.8900e+004

NN 4 1.8049ef004

NN 5 5.5154e+004

NN 6 2.0478e+004

NN 7 1.0565e+005

NN 8 3.9260of004

NN 9 2.5291e+005

NN 10 4.0335e+004

NN 11 622.2410

NN 12 720.4839

NN 13 1.5410ef004

75

The large condition number of the network input matrices means that a network trained

with this set of data would generalize badly on future data. The application of

regularization techniques resolves this ill-posed problem by minimizing an objective

function J when it is embedded in neural network training. Several network

regularization techniques have been discussed in Section 3.4. This section primarily

discusses a simple form of weight decay.

Regularization combines the objective error to be minimized (the mean-squared error of

the network, mse) and the prior knowledge of the process (mean-squared weight.*; of the

network, msw) which will stabilize the network estimation. By nature, a process or

system achieves its equilibrium state with minimum energy. In neural network business,

the energy is represented in terms of weights. Therefore a term of msw is embedded into

the objective function for minimization. A regularization objective function in terms of

mean squared of the network error and the mean squared of the network weights has the

form:

J = ymse + (1 - /)msw

where

1 1 "

^ 1=1 ;=1

/ is the performance ratio and needs to be determined, 0</<l. /=0 means the
\

objective function is totally dependent on prior knowledge, while y=\ means the

76

objective function is unregularized. If the value of performance ratio is too large, the

network is under-regularized, the solution tries to provide more accurate estimate but has

large uncertainties. On the other hand, the neural network is over-regularized when the

performance ratio is small. The over-regularized network model tends to provide a more

stabilized result but introduces a larger bias, and the resulting estimate has a large

discrepancy from the true value. In this study, to balance these two situations, a value of

y is set to be 0.75, which indicates that 75% of mean squared error and 25% of mean

squared weights are contributed to the objective function. By doing so, the model tends

to predict more accurately while does not loss consistency.

5.2.3.2 Evaluation ofRegularization

To evaluate the consistency of the sensor validation system under small perturbations of

the data, a bootstrap technique (Efron, 1982) was used. The bootstrap technique is a

statistical method used for evaluating the stability of the regression coefficients or fitting

values. For a training data set of size n, the bootstrap technique samples values from both

predictor and response variables at random with replacement, thus providing a bootstrap

sample of size n with some original values duplicated and some missing. This bootstrap

sample is used to map the predictor variables onto the response variables using the same

fitting procedure as for the original sample. When the method is repeated a number of

times, the bootstrap procedure produces a set of fitted values whose variability can be

estimated and whose sampling distribution can be plotted.

77

To demonstrate the power of regularization for stabilizing the model development, a

linear regression model was used to detect a Venturi meter drift in a nuclear power plant

by predicting the feedwater flow rate (Gribok, et al., 1999). Variables that are highly

correlated with the feedwater flow rate were engaged for modeling. This shows an ill-

conditioned problem, and the models from different trials provided inconsistent results.

The flow rate drift at a selected check point was between 20 to 60 KLb/hr, while the

actual drift at that point was 40 KLB/hr. A bootstrap technique was applied to illustrate

the inconsistency, and the probability density function (PDF) of the model predictions is

plotted in Figure 5.4. After regularization, the models all provide a consistent value of

about 40 KLb/hr at different trials, which is the true drift of the feedwater flow rate, see

Figure 5.5.

0.12

0.1 -

0.08 -

0.06 -

0.04 -

0.02 -

Bootstrap estimation of a drift vaiue in a check point

A
20 40 60 80

Drift value in a check point, KLB/HR
100

Figure 5.4 Instability of drift estimation due to perturbations (Gribok, et al., 1999)

78

Bootstrap estimation of a drill value in a check point
0.8

0.7

0.6

0.5

0.3

0.2

0.1

,

20 40 60 80

Drill value in a check point, KLB/HR
100

Figure 5.5 Regularized estimated drift value at the check point (Gribok, et al, 1999)

5.2.4 Training Paradigm

The initial training/validation data set consisted of about 5% of the total patterns

randomly selected from the twelve-day operating period listed in Table 4.1 (01/05-01/16-

98). The network is trained in a cross-validated fashion explained in Section 3.4.4.

When the network prediction error of the validation set increases, the network stops

training, the test data patterns that have the largest errors are added to the training data set

until both training and testing error goals are achieved. Figure 5.6 shows the network

training paradigm developed for this research. Through this training process, the data is

ensured to cover the entire operating input space of the process, including any process

transients. A robust training paradigm is used to force the network to rely on all the

sensor information to estimate each specific sensor's value.

79

data set Y, iter- 0

ite r = ite r+ 1

yes

n o

tie

yes

X = --SVo of Y

Z Y n X

Training data = X

NN training

yes
rr>

n o

X =

Z = 2
X w X
n X

a

X = 10% dataw/

larg est S S E in Z

End

Figure 5.6 Network training paradigm

Validation involved selecting and constructing several sets of data to exercise the input

space and evaluate the network performance. This is an iterative process since poor

performance on the validation set may require merging it with the training set and

retraining the network. Thus an iterative training and testing procedure is used to achieve

optimal performance.

5.2.5 Stopping Criteria

In order to avoid the overfitting problem discussed in Section 3.4.4, the network training

should be stopped when the prediction error of validation data set begins to increase,

although the error of training data set continues to decrease. This is known as cross-

validation for network training. In this technique, the data were divided into training and

validation sets, the network is trained on training data and the prediction is made on

80

validation data. Both the training and prediction errors are measured by the objective

function J defined in Section 5.2.3.

5.2.6 Network Performance Evaluation

Network performance was evaluated with a test set of normal operating data and a test set

with an artificial error placed in one of the signals. The mean percentage error (MPE)

between the actual sensor values and the network's estimated values was used for

performance comparisons.

5.3 Issues on Sequential Probability Ratio Test (SPRT)

5.3.1 SPRT Detection Problem

The ideal network residual represents the pure noise if there is no sensor degradation.

Therefore, it is applicable for on-line detection. In practice, the neural network may leam

some degree of noise, even the spurious spikes in signals, and incorporate it into neural

network models. Therefore the residual contains not just the noise and may deviate from

the normal distribution. As stated in Section 3.7, the SPRT algorithm requires normally

distributed residual signals. Therefore, the SPRT may produce some system intermittent

alarms due to this deviation.

Since the SPRT accumulates the residuals for updating the likelihood ratio, these spikes

may cause the value of the likelihood ratio to pass the threshold and produce false alarms

not because of the signal degradation. The term of ('w/cr), which has the equivalent

meaning to the signal-to-noise ratio (SNR), has a large impact on the detection decision,

and determines the accumulation rate of the likelihood ratio. Spikes in sensor signals

81

with large (jn/a), which indicates less-noisy and well-instrumented data, will cause false

alarms to be produced quickly. This would lead operators to take wrong actions. In

order to avoid this situation, a modified SPRT (MSPRT) to eliminate the intermittent

alarms was developed.

5.3.2 Modified SPRT (MSPRT)

Since {m/a) controls the speed of the accumulation of the likelihood ratio, a filter

structure is added to reduce the speed to avoid false alarms due to spurious spikes in the

residuals. The MSPRT is represented as

- . m
k

m

^
_ j m !Lk- —

\

_i
xm Ij

where G is a gain factor to suppress the accumulation rate. Although the MSPRT may

delay the sensor validation system to initiate a false alarm, this will not degrade the SPRT

capability for detecting real signal failures. The determination of G is based on the

variance of the resulting residuals between estimates and target values of the training

data. To avoid spike-caused intermittent alarms due to prediction error, G is chosen to be

9 such that the term of (VGct) represents three standard deviations of the resulting

residual. This means that there is a 99% confidence that the training result will not cause

intermittent alarms even through the training may not be perfect.

Another modification is on the execution algorithm. Instead of resetting to zero at

each time when \ reaches or exceeds the upper bound threshold B, the value of stays

82

at the upper bound. The MSPRT will make clearer decisions than the current version of

SPRT by suppressing the intermittent alarms.

An example of the comparison of the currently used SPRT and the MSPRT is plotted in

Figures 5.7 and 5.8. In this example, the SPRT intends to detect a 2.5% mean drift while

a drift of 1% per day was artificially added for 10 days. Figure 5.7 is the residual normal

probability plot. It shows from the bottom plot of Figure 5.7 that the distribution of the

residual deviates from the normal distribution which is the straight dot-dash line,

indicating that the residual is not normally distributed. Figure 5.8 shows that the SPRT

initiates a false alarm due to spikes in the residual at 31®^ minute with 0.02% drift,

whereas the MSPRT eliminates the false alarms due to spikes and produces false alarms

when the true degradation occurs at 3876*** minute with 2.7% drift.

rs -1
/A n

5000 10000

Time (Min)
15000

+ +1
-2.5 -0.5 0.5-1.5

Figure 5.7 Residual normal probability plot

83

°iys

5000 10000

Tim e (M in)

Figure 5.8 SPRTvs.MSPRT

5.4 Summary

In this chapter, techniques discussed in Chapter 3 were applied for the sensor validation

system design. Selection on network structures between AANN and TDNN was

performed through the cross correlation analysis. For a TDNN to have a superior

performance over an AANN, there should be a high correlation between variables at a

lagged time. This study shows that no such time lag exists. Therefore, an AANN instead

of TDNN was selected as the neural network structure.

Modification on beta method was made to develop an automated methodology to

estimate the number of network hidden nodes in mapping and demapping layers. An

MSPRT is also developed to suppress the intermittent alarms from SPRT due to

prediction error or signal noise. Next chapter presents some results using the developed

methodologies.

Chapter 6

Results and Summary

In this chapter, techniques developed in this research were applied to the real operating

data from the TVA Kingston Power Plant Unit 9. A bootstrap technique is presented to

illustrate the ill-conditioned problem as well as the regularization effect on stabilizing the

neural network performance with the presence of the collinear data. The results of sensor

validation system performance are presented. Also a sensitivity analysis is performed to

verify the robustness of the networks. Network performance is validated with artificially

induced drifted signals. In this chapter, all results are plotted in figures in Appendices B

and C unless otherwise stated.

6.1 Study of Historical Information

In real processes, historical information of signals may provide better understanding of

the process. Time delayed neural network (TDNN) architecture predicts current value

using historical information and tends to provide a better result than AANN does.

However, for a TDNN to be advantageous over an AANN, the historical information

must be useful for network modeling. The determination of usefulness of the historical

information is discussed in this section.

A group of 15 signals listed in Table 6.1 is used for neural network modeling to

investigate the usefulness of the historical information, in which the cross correlation

among these signals is plotted in Figure 6.1. This plot indicates that other than the zero

time lag, which is at the current sampling time, there is no higher correlation between

85

measured steam flow and other signals. It is noticed that although the correlation

between the Measured Steam Flow and the Ambient Air Temperature is maviTnnm at a

time lag of 3^^ minute, there is no truly helpful information from the Ambient Air Temp,

in predicting Measured Steam Flow, see Figure 6.2. Therefore, there is no additional

information in the delayed measurements or historical information for improving network

performance, as described in Section 5.1.1. Therefore, in this situation, the TDNN

architecture will not provide better prediction than the AANN architecture. The

comparison result in this section illustrates this fact.

This paragraph provides the training results of both the AANN and the TDNN using

signals listed in Table 6.1 with regularization are shown in Figures B1 through B4 in

Appendix B. In these figures, the red signals represent the sensor measurements, while

Table 6.1 Signals for History Study

Sig# Tag Name Signal Name
1 9FAIRA1 Combustion Air Flow A1

13 9FHWPUMPS Hotwell Pumps Discharge Flow
23 9FSTEAM Measured Steam Flow - Raw

30 902RHA Excess 02 A in Reheat Furnace

31 902RHB Excess 02 B in Reheat Furnace

34 9P1STSTGA First Stage Pressure A
38 9PDRUM Selected Drum Pressure
46 9PIDFASUCT ID Fan A Suction Pressure

48 9PRHEC0N RH Furnace Press After Econ

50 9PSHAHT SH Furnace Press After HT SH

57 9RHC02PCT Unit GEMS RH C02

73 9TAMBIENT Ambient Air Temperature
74 9TAPHAAIRIN Air Preheater A Air Inlet Temp
75 9TAPHAGASIN Air Preheater A Gas Inlet Temp
119 9TRHABSPR RH Attemp A Before Spray Temp

86

0.9

0.8

0.7 Ambient Air Temp

0.6

S 0.5

0.4

0.3

0.2

0.1

30 40

Time Lag (min)

Figure 6.1 Cross correlation between Measured Steam Flow and others

450

1400

» 1350

w 1300

1250
14 16 18

113

^ 112.5

(0 112

c
o

la
111.5 -

8 10 12

time lag (min)

Figure 6.2 Measured Steam Flow and Ambient Air Temp. vs. time lag

87

the blue ones show the network estimates. The mean percent error (MPE) value is a

measure of network performance and is listed in Table 6.2. The plotted residuals indicate

that the TDNN does not perform better than the AANN, except only three signals (#30,

#50, and #75) are trained slightly better in TDNN than in AANN. For example, the MPE

values for Measured Steam Flow and for Selected Drum Pressure with AANN are 0.79%

and 0.19%, respectively; while the TDNN provides values of 0.94% and 0.2%,

respectively.

It has also been noticed that, in general, the noise level is higher in the TDNN predictions

than in the AANN predictions, refer to Table 6.3. This increase in variance is likely due

to a problem of collinearity and is presented in several texts on regression (MacGregor, et

al, 1991; Qin, 1997). The TDNN has more redundant information and has a more

serious collinearity problem; therefore, the variability is increased.

Table 6.2 Demo Group Training Performance

Sig# MPE in AANN (%) MPE in TDNN (%)
1 1.1805 1.2037

13 1.2962 1.3488

23 0.7909 0.9379

30 3.1972 3.1630

31 2.0006 2.2110

34 0.8216 1.0072

38 0.1921 0.2023

46 1.2984 1.5036

48 2.3511 2.3739

50 1.6971 1.6866

57 0.6371 0.7030

73 0.8723 1.0351

74 0.5155 0.6236

75 0.3259 0.3222

119 0.3840 0.3998

88

Table 6.3 Signal Noise Level in Demo Group

Sig# AANN (%) TDNN (%)
1 0.1501 0.1058

13 0.0450 0.0650

23 0.0640 0.1080

30 0.2865 0.3732

31 0.2231 O.32i0
34 0.0695 0.1144

38 0.0066 0.0097

46 0.1665 0.1478

48 0.1188 0.1810

50 0.0958 0.1584

57 0.0704 0.0764

73 0.0621 0.1206

74 0.0380 0.0479

75 0.0162 0.0232

119 0.0409 0.0495

The result shows that with no useful delayed information, the TDNN performs no better,

or even worse, than the AANN due to the collinearlity problem. In this research, it was

determined that this situation commonly exists in all the variables to be monitored.

Therefore, the TDNN architecture is not necessary for this research.

6.2 Signal Prediction

In this section, the results of network prediction are reported. The results demonstrate the

neural networks function not only as a signal predictor but as a noise filter as well. In

this section, the results from NN_1 through NN_4 are presented and discussed. The

robustness of the system, that is, how well the system resists the abnormal changes in a

signal measurement in providing a best estimate, is also evaluated through a sensitivity

analysis.

89

6.2.1 Neural Network Prediction and Noise Reduction

The neural network models built on the data groups developed in Chapter 4 were trained

and tested. The robust training technique detailed in Chapter 5 and the TS VD technique

of Chapter 2 were applied for network training. These techniques provide the robustness

of the networks and reduce the variance of the network predictions. The sensitivity

analysis is performed to evaluate the robustness of the network models. Assuming all

operating data are fault-free, artificial faults were added to a data set, which is

independent of the training data, to verify the validity of the monitoring system. The

MSPRT is applied for detecting and locating the sensor faults and provides a reference to

the sensor correction/replacement module.

The developed automation techniques were applied for network structure design. Since

the variables in the leak detection system are included in networks NN_1 through NN_4,

this section concentrates on the results from these 4 networks. By using the modified

beta method as well as the developed PCA-based method, the resulting network

structures are listed in Table 6.4.

Table 6.4 Neural Network Structures for NN_1 through NN_4

NN #of #of # of

No. input/output mapping/demapping layer nodes bottleneck layer nodes
NN 1 25 28 9

NN 2 25 27 8

NN 3 25 31 13

NN 4 8 29 5

90

It has been verified that since the variables in each group are most highly correlated with

each other (refer to Table 4.3); therefore, fewer network hidden nodes generated by the

PCA-based technique are needed to retain most of the information for capturing the

process dynamics. The network performances of the variables in NN_1 are plotted in

Figures C1 through C6 in Appendix C. Also we notice that although there are only 8

variables in NN_4, the mapping and demapping layers still needs 29 nodes due to relative

low correlation between these variables with an average correlation coefficient of 0.6.

The results indicate that the neural networks are capable of regenerating the signals.

However, not all the signals can be estimated well. Some of them are more accurately

estimated than others. The signals having large prediction errors were operating at small

magnitudes, such as the Combustion Air Flow. The accuracy of estimation depends

heavily on the variable operating range. This is because the z-score scaling method

scales all the variables into a comparable range. Thus the scaling coefficients for the

variables with lower operating magnitudes (VL) are much larger than those with higher

operating magnitudes (VH). In the network training process, all scaled variables are

trained down to the same error goal. Therefore, the VLs after being back to the original

scale will have larger errors than VHs.

The average percentage errors (APEs) for signals in NN_1 are listed in Table 6.5. Also

the noise analysis shows that in general, signal estimates have less noise than sensor

measurements. Although the actual noise level (ML) in a signal is difficult to obtain, a

comparable result can be generated on the same basis by applying the same filtering

structures to both the measurements and the estimates. By the filtering analysis, we can

91

get a comparable result for both the measurement and the filtered signal on the same

basis. In this study, the noise levels in the signals are obtained resulted by applying a

median filter with a selected window size. The noise level ML (%) is defined such that it

is comparable to the training APE.

M = t^:^^xl00 = E^'<100
k=\ k=l

where n is the number of sample points; x^.is the Ath data point while is the filtered

Ath point.

The results listed in Table 6.5 use window size of 25. From the measured and the filtered

signals plotted in Figures 6.3 and 6.4, it is observed that the measured signals have a lot

of roughness due to noise. The filter smoothes the signals by eliminating the noises in

the signals.

The results indicate that the signals from the turbine system are better estimated than the

ones from the boiler system. For instance, the APEs for the combustion air flows A1 and

A2 in the boiler system are 3.4% and 3.1%, respectively; while that for measured steam

flow in the turbine system is 0.8%. This is compliant with the previous finding that the

measurements in the boiler system are noisier and less accurate than those in the turbine

system. More importantly, the results indicate that the neural networks acts as a noise

filter as well.

92

Table 6.5 N!Sf_l Network Training Performance

Sig# APE (%) Measured NL (%) Estimated NL (%)
(WinSize=25) (WinSize=25)

1 3.3718 2.3169 1.8555

2 3.0651 2.3119 1.9016
9 0.7828 2.1008 1.9770

10 0.7625 1.9506 1.8333

13 1.5133 2.3918 1.6544

23 0.7687 2.1814 2.0710

24 0.9749 1.9285 1.9012

25 0.6058 1.1405 1.1433

34 0.8802 2.4002 2.2623

35 0.8785 2.4008 2.2623

36 0.5467 2.1269 2.0275

40 0.6807 2.1691 2.0592

41 0.5487 2.1044 2.0250

42 0.5499 2.1670 2.0951

43 0.5801 2.1030 2.1359

44 0.5596 1.6205 1.7052

45 0.5453 2.1438 2.0417

53 2.4688 4.3145 3.1942

88 0.1323 0.3745 0.3719

91 0.1775 0.3091 0.3265

92 0.1326 0.4157 0.4211

103 0.2458 0.4548 0.4744

105 0.2747 0.3938 0.4326

106 0.4006 0.4691 0.4850

110 0.4570 0.4052 0.4471

The results indicate that the signals from the turbine system are better estimated than the

ones from the boiler system. For instance, the APEs for the combustion air flows A1 and

A2 in the boiler system are 3.4% and 3.1%, respectively; while that for measured steam

flow in the turbine system is 0.8%. This is compliant with the previous finding that the

measurements in the boiler system are noisier and less accurate than those in the turbine

system. More importantly, the results indicate that the neural networks acts as a noise

filter as well.

93

100

(D
■o

o

w60

llJ
40

1000 2000 3000 4000 5000

100

(D
4-'
(0

"O

•u lA60

40

1000 2000 3000
data sampled in every minute

4000 5000

Figure 6.3 Measured and filtered Combustion Air Flow (Pet) (WinSize = 25)

1600

1400

^ 1200

1 1000

-

800

600
1000 2000 3000 4000 5000

1600

1400
ws

1200

^ 1000

800

600
1000 2000 3000

data sampled in every minute
4000 5000

Figure 6.4 Measured and filtered Feedwater Flow (Klb/hr) (WinSize = 25)

94

6.2.2 Neural Network Generalization

To verify the validity of the neural network models for signal prediction, generalization is

performed with the data on which the network has not been trained. In this section, the

neural network performance on variables in leak detection system is reported.

The results, plotted in Figures C7 through C18, show that the neural network models

designed through the automation procedure are capable of estimating the signals with an

acceptable prediction error. It can also be seen that the MSPRT suppresses the

intermittent alarms due to prediction errors. The network model predicts very well on

some signals, like SH Outlet Temp #1 and #2, with prediction errors of about 0.1%. Both

the standard and MSPRTs do not trigger at any time.

Generally, the prediction errors are larger than the training errors due the untrained data.

Table 6.6 presents with prediction and the training average percent errors (APEs) for the

variables in the leak detection system. It can be seen that the prediction APEs for most

variables are larger than the training APEs. However, even through the neural networks

have not been trained on these data, thiey still generalize well, i.e., reproduce the signals

with small and acceptable errors. The result shows that the network is not only trained

but also able to predict the future data as well if there is no significant change in the

signals. If there is a considerable change in the system, the network has to be retrained to

capture the system dynamics. This situation will be discussed in Section 6.5.

Another finding from the result is that the scaling method is also a factor to influence the

network prediction accuracy. For neural network training, it is difficult to set different

95

Table 6.6 NN Performance on Variables from Leak Detection System

Sigs Training APE (%) Prediction APE (%)
1 3.2966 3.2193

2 2.9251 3.2901

24 0.8939 1.0322

25 0.7627 0.8203

34 0.8240 0.9784

35 0.8230 0.9781

37 0.8665 0.8652

46 1.9341 1.9343

47 3.3317 3.3259

48 2.2792 2.2785

124 0.1030 0.1030

125 0.0946 0.0946

error goals for individual variables. With signals operating at different levels, larger

prediction errors may be produced by the neural networks during training for the sensor

measurements with low operating magnitudes. This may cause SPRT trigger early to

produce intermittent alarms for these sensor measurements. In order to avoid the

intermittent alarms due to prediction errors, large tolerance would be set up for the

detection system and thus leads to low sensitivity to faults of these sensors. For example,

the network has large prediction APEs on the Combustion Air Flow signals at about

3.2%, while it has small APEs on the power generation signals at about 1%. Therefore,

the sensor validation system can detect smaller, or more sensitive to, drifts on sensors

measuring the power generation signals than on sensors measuring the combustion air

flow signals. After being trained, the network is tested for robustness to assure the

network outputs are not affected much by the exterior perturbation. Otherwise, sensor

faults caimot be identified.

96

6.2.3 Sensitivity Analysis

In this section, a sensitivity analysis is performed to analyze the robustness of the

network models. A robust network should be insensitive to small disturbances in the

process or the instrument channels. The sensitivity analysis provides the changes on each

network output by perturbing one of the network inputs with a certain amount of change

at a time. If the changes of the network outputs are large, indicating the network is

sensitive to external disturbances, then it is not robust. In this procedure, each network

input was perturbed by a small amount of disturbances and the changes in the network

outputs were analyzed. Figure 6.5 represents the changes in network output in Group

NN_1 with each input being perturbed by 5%. The results indicate that with the

perturbation in sensor measurement, the network estimate also changes. Some signals

from the boiler system, like combustion air flow and hotwell pump discharge flow

(signals #1 and #5 shown in Figure 6.5, respectively), have a total change of more than

10% overall network outputs, respectively, which is higher than the changes of others.

This also proves that the signals in the turbine system have less noise and are more

accurately measured than in the boiler system. However, the average individual change

of most outputs is less than 1%, which indicates that any particular disturbed sensor

signal does not affect the network output much. The network provides a robust signal

estimate because of the application of the regularization technique and the robust training

algorithm.

6.3 Sensor Fault Detection

This section presents the system detecting ability on sensor different types of faults. The

97

Sensitivily Analysis of Neural Network
D)

o

Q.

O

^ 5

10 15 20 25

CO 0

S>1.5
£=
CD

o

E-
0

1 0-5
CO

o

liiii! BSB

M:

10 15 20

Input Changed by 5%

Figure 6.5 Sensitivity analysis with 5% perturbation in NN_1 input

common types of sensor faults include small drift, such as ramp drift and step drop; and

gross failure. In this study, all sensors are assumed in calibration range, so no fault

occurs in these signals. In order for the neural network-based sensor validation system to

identify and detect the faults, artificial drifts were introduced in each of the inputs for

system performance verification. All the types of possible faults were simulated on the

designed sensor verification system. Also the data that were not used for training were

applied to test the capability of the neural network models on generalization.

6.3.1 SPRT Parameter Setting

As discussed in Chapter 5, the MSPRT eliminates the possible intermittent alarms due to

noise or prediction error. The gain factor in the MSPRT algorithm was statistically

determined to filter out these intermittent alarms and produces false alarms when a true

98

drift is detected. It is also found that the determination of the faulted mean parameter m

in SPRT depends on the training accuracy; that is, the more accurate the estimation, the

smaller the m, and vice versa.

In this study, since no operating ranges of the sensors are provided, therefore, the

determination of the detecting faulted mean m in SPRT algorithm is based on the mean

operating level of the individual signal. This is determined by

m^ = O.OS.i' /■ =

which is 5% of the mean operating level of the signal. Where X are the mean operating

values of the data; while p is the number of signals.

6.3.2 Small Drift Detection

In this section, both the small ramp drift and the step drop were simulated for small drift

detection. Results for a 1% per day ramp drift introduced in some of the signals

operating during 01/11-01/22/1998 are presented in Figures C19 through C32.

Figure C19 presents the detection result for a 1%/day artificial drift on the Feedwater

Flow, the MSPRT detects the fault at the 2693*^^ minute or 1.87% drift of the signal, and

initiates a false alarm. While the SPRT initiates a false alarm at the 73^*^ minute or 0.05%

drift, which is obviously triggered due to noise or prediction error but not actual drift.

Figure C20 shows the detection result for the Measured Steam Flow. The MSPRT

detects the real fault beginning at the 2719*'' minute or 1.89% drift, while the SPRT

detects a fault occurring as early as in the 55*'' minute or 0.04% drift which is apparently

99

an intermittent alarm. The detection results on signals in the leak detection system are

tabulated in Table 6.7. It is shown that the fault occurring in a signal with more accurate

prediction can be detected much earlier than with less accurate prediction due to the noisy

and inaccurate measurement.

Tests on small abrupt failures were also performed by artificially introducing a 5% step

drop starting at the 10000*'' minute to each of the signals. Some detection results are

plotted in Figures C33 through C35. It has been shown that the MSPRT successfully

detects the sensor abrupt failure immediately after it occurs for all the signals, and

eliminates early intermittent alarms in most signal channels, which have relatively small

prediction errors.

The results indicate that although the MSPRT delays the alarming time, it clears the

intermittent alarms due to noise or spikes in most of the signal channels, and triggers

alarms only when a true drift occurs. Therefore, the MSPRT improves the reliability of

Table 6.7 Detection Level on Interested Variables (1%/day ramp drift)

Sigs Detected drift (%)
1 4.77

2 3.53

24 2.20

25 1.87

34 1.20

35 1.20

37 2.74

46 4.00

47 5.65

48 3.37

124 0.93

125 0.68

100

the alarming system and provides more confidence on the detection results. These results

also show that even though a drift is occurring in the signal, the network estimate does

not change significantly. The sensor monitoring system successfully identifies and

detects a sensor fault.

6.3.3 Gross Fault Detection

A gross fault is defined in this study as a drastic change in a signal value. Gross faults in

this research were simulated in two cases:

• a large percentage drop in individual sensors

• a total failure in individual sensors to their maximum or minimum values,

representing a gross fault "high" or gross fault "low", respectively. Depending on

how "gross" the signal fails, the network may or may not remain stable.

A large drop in a signal's value may cause other outputs in the network to vary, since

each input contributes to each output to some degree. A large fault can create false

alarms in other channels. The residuals may change somewhat such that they are greater

than the pre-set faulted mean values of the SPRT's. While the other variable residuals

may vary, the amount of variation is only a small fraction of that of the faulty signal.

6.3.3.1 Large Drop Case

An artificially introduced 20% drop in individual sensors were simulated for sensor fault

detection. It is found that with a large drop in one signal, the others closely related to the

101

faulted signal were also affected. In this part, a simulated result of signals affected by the

faulted Feedwater Flow #1 signal is reported. Figure C3 6 presents the estimation on the

faulted Feedwater Flow #1 and the detection result. It is shown that the validation system

locates the fault and detects it immediately after the fault occurs. More importantly, this

system almost fully recovers the signal from the faulty measurement. Furthermore, we

can see that some other network outputs were also affected due to the correlated

relationships. Figure C37 indicates that the network estimate of Unit Gross Generation

signal was affected and classified faulty by the validation system. To avoid this

mislocating problem, a sensor correction module is designed to replace the faulted

measurement with its best estimate. This corrects the faulty input to the neural networks

and the impact on other closely related signals is minimized. Section 6.7 presents the

performance of the sensor replacement module.

6.3.3.2 Total Failure Case

Another type of gross fault is the total failure of the sensors. When it happens in one

sensor, it is found that the other signals closely related to the faulted signal were degraded

to a large degree. Figure C38 shows a total failure in Feedwater Flow #1 occurred at the

10000^ minute. The SPRT initiates a false alarm right after the fault occurs. Although

the signal information is totally lost, the sensor validation system is still able to recover

about 99.1%. After the replacement, the detection system successfully recovers the lost

signal and the SPRT then finds no abnormality. The result is plotted in Figure C39.

102

Since the degradation in each affected channel and the true fault in the faulted channel

were detected almost at the same time, so it is difficult to isolate the true fault by simply

checking the false alarms. Other method is needed to locate the true faulty channel.

Figure C40 shows that due to the total failure of Feedwater Flow signal, the Unit Gross

Generation signal, which is estimated from the information provided by other signals,

including Feedwater Flow, is degraded at a large degree. The SPRT also considers this

as a fault and generates false alarms. We can see from the result that the SPRT initiates a

false alarm for the affected Unit Gross Generation signal almost at the same time as it

detects the faulted Feedwater Flow signal. Therefore, the true fault cannot be isolated by

the alarms. However, the degraded magnitudes for the true fault and for the affected

channels are different. Table 6.8 presents the average prediction error (APE) in

percentage for each of the signals in NN l with the total failure of sensor measuring

Feedwater Flow #1 (Signal #9). We can see from the table that although many signals

are affected due to a sensor fault, except sensor #9, the others are Avithin 3.5%.

Therefore, based on the amount of changes in signals, the true fault can be distinguished.

6.4 Detectable Drift Level

The drift detectable level represents the sensitivity of the detection system. It is

determined based on a statistical confidence interval. The smallest detectable drift for all

monitorable signals are calculated as follows:

D = — *\00
m

103

where a - standard deviation of the prediction error;

m - mean of the signal operating level.

Table 6.8 Network APE with A Total Sensor Failure

Sig# APE (%)
1 -0.8897

2 2.1002

9 -100.0000

10 2.3624

13 2.5916

23 2.8252

24 2.8066

25 1.8254

34 3.3803

35 3.3748

36 2.6617

40 2.8640

41 2.6196

42 2.7358

43 2.7147

44 2.3723

45 2.6540

53 -0.2522

88 0.4436

91 0.2984

92 0.5492

103 0.5041

105 0.4049

106 0.2649

110 0.1816

Some results are presented in Table 6.9. This table shows that although the networks are

successfully trained, the detection level for each signal varies significantly. The average

detection level for signals in the boiler system in NN_1 is higher than in the turbine

system. This is because that the signals recorded jfrom the turbine system are much less

104

noisy and more accurately measured than the signals from the boiler system. The

average smallest detectable level is -2.5% for the signals in the boiler system and -0.9%

in the turbine system. However, due to the introduction of the filtering structure in the

SPRT, the actual detection level of this system is higher. For example, the smallest

detectable level for feedwater flow is 1.02%, while the actual detection level is 1.87%.

Table 6.9 Smallest Detectable Level of Signals in NN l

Sig# Smallest Detectable Level (%)
1 3.9162

2 3.6551

9 1.0230

10 0.9954

13 2.2192

23 0.9933

24 1.2494

25 0.8722

34 1.0836

35 1.0822

36 0.6875

40 0.8306

41 0.6944

42 0.6939

43 0.7511

44 0.7477

45 0.6899

53 2.9521

88 0.2252

91 0.2389

92 0.1645

103 0.3153

105 0.3602

106 0.5334

110 0.6080

105

6.5 Faulty Sensor Replacement

When a sensor is found faulty, it may not be corrected immediately due to operational

constraints. Thus, it is desirable for the system to provide the correct value of the failed

sensor so that the plant could continue operating without interruption. This is extremely

important when the faulty signal is a control variable in a feedback control system. In

addition, this would minimize degradation of the sensor monitoring system because the

faulty input is replaced with a fault-free signal. The correction module designed in this

study is capable of immediately replacing faulty sensor signals with their best estimates.

Moreover, as described in previous section, the faulted sensor signal may affect the

detecting outcomes for other good sensors. The faulty sensor replacement module

replaces the faulty signal with its best estimate as virtual input to the neural networks.

Since the network input becomes fault-free or less faulty, therefore, the influence on

other signals is virtually eliminated.

In this research, it is assumed that only one sensor is faulty at a time, no multiple faults

should occur at a same time. The robust training algorithm is designed under this

assumption. The sensor replacement module continuously corrects the faulty signal and

assures no multiple sensor fault happening at the same time. Two types of sensor faults,

small drift and gross failure, were simulated.

6.5.1 Small Drift Case

It is found that when a small drift occurs in one sensor signal, others were not quite

affected with the appreciation of the robustness of the networks. In this study, a small

ramp of 1% per day was introduced to the raw measurement of Feedwater Flow #1 to

106

simulate the drift at the 5000^ minute. The sensor validation system detects the fault and

starts frequently alarming at the 3621"' minute entering the drift, which is about 2.5%

drift and the result is plotted in Figure C41. After the drifted signal was replaced by the

neural network output, we can see from Figure C42 that the false alarms were eliminated.

The system is back to normal. In this case, the other highly correlated signals were

slightly affected, but the SPRT outcomes for these signal channels indicate no faults.

6.5.2 Gross Failure Case

As mentioned previously, the gross sensor failure will have a large impact on the

detecting outcomes on other good sensors. This can be observed from the results in

Figures C36 and C37. Therefore, repeated replacement procedures may be needed to

maximally recover the lost signal.

Figure C43 demonstrates the corrected Feedwater Flow signal after the signal with 20%

step drop is replaced. It is found that 99.5% of the lost signal is recovered. Figure C44

shows the detecting result for Unit Gross Generation signal after the faulted signal is

replaced. It is proved that the replacement module is capable of correcting the

mislocating problem caused by relatively large drifts.

Figure C45 presents the corrected Feedwater Flow signal with a total failure in the sensor

after the replacement. Figure C46 shows the corresponding Unit Gross Generation after

the faulted signal is replaced. We can see that when the sensor fails at the lOOOO'^

minute, the SPRT detects the fault immediately. The replacement module started

replacing the faulted signal with its best estimate from the network. Although the sensor

107

is totally failed, the system is still able to recover 99.5% of the original signal. However,

less detectable sensitivity should be set in avoiding mislocating problems on good

sensors. The capability of signal recovery shows the robustness of the network models.

6.6 Model Change and Adaptation

Neural networks are not guaranteed to function as expected when operating outside the

training region. Although they have good generalization abilities inside the training

space, they must be retrained when expected to operate in new regions. There are several

circumstances when the operating region may change:

• Component replacement;

• Component degradation or failure;

• Process parameters change, such as a change of flow rate;

• Cyclic or seasonal changes;

All of these conditions may have impact on the performance of the sensor monitoring

system. When plant conditions change, the network must be able to adapt itself to the

new operating conditions. With a slight change of the operating condition, the network

may not need to be retrained, but only to be retuned using the linear TSVD regression

technique detailed in Section 3.4.2, which is fast in implementation and can satisfy an on

line real-time adaptation requirement.

108

To demonstrate the neural network adaptation under new process condition, a network is

trained with the data from one operating condition and tested with a set of data from a

different operating condition. It is found that the operating condition changed from the

operating period of winter 1998 to summer 1999. The measurement of Feedwater Flow

during these two periods is plotted in Figure 6.8. It can be clearly seen the feedwater

flow rate increased during summer 99 compared with that during winter 98. In this

study, the data during winter 98 was used for network training and the data during

summer 99 was used for network adaptation purpose.

Figure 6.6 shows that the winter 98 data used for network training does not cover the

dynamic range of the summer 99 test data. The network trained with the winter 98 data is

not expected to generalize well on the summer 99 operating condition that is beyond the

network training region. The result can be seen later in this section.

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

winter 98
summer 99

.'.I I ... I i I 'i

11 ;; l-Biili eSif

1 '!
I i

1? 1
'[

1 iM i
S fell

Ci"

111, l!i! ! i i;;
I ii i 1 s

1

. i ll

ii I ''Mf I

0.5 1 1.5 2

Time In 10000 minutes

2.5 3.5

Figure 6.6 Operating condition change of Feedwater Flow (Klb/hr)

109

_J

Figure C47 presents the network performance during these periods on Feedwater Flow.

It indicates that the network model fits well on the winter 98 data which was used for

training but performs badly on the summer 99 data which is beyond the model dynamic

range. In this case, the model does not match the current plant operating status and needs

to be modified. The SPRT initiates false alarms due to this mismatch.

When there is a slight change in operating conditions, complete network retraining is

urmecessary. The TSVD technique linearly regresses the neural network model to

accommodate the new operating condition by combining the current operating data and

the previous operating data. By doing so, the network leams the inherent correlations for

all dynamic operating regions. The result plotted in Figure C48 was obtained by using

the TSVD algorithm to retune the network to include summer 99 operating period. The

network's estimation performance in summer 99 operating period starting at the 23788*''

minute, i.e., the beginning of the summer 99 operating period, has improved drastically.

No false alarm occurs due to the mismatch. With the utilization of the TSVD technique,

no network retraining is required and on-line model adaptation is possible.

The correlation inherent in the neural network inputs leads to an ill-conditioning problem

(Hadamard 1923) that can cause increased noise level of model output (Qin, 1997) or

instability of the model estimate (Hansen, 1989). Network regularization techniques such

as the truncated singular value decomposition method can be utilized to correct these

problems (Hines 1999). These techniques force the model to depend on all of the input

information equally and reject perturbations due to signal noise. These techniques also

result in sensor estimates that have less noise than their corresponding measured signals.

110

6.7 Summary

This study shows that an AANN-based sensor validation system is capable of monitoring

plant-wide sensor performance because the neural networks can model relatively large

number of variables. Another advantageous property of a neural network over other

model-based techniques is that it can establish a process model with little prior

knowledge on the process; and needs no extensive knowledge of interested process to

develop a proper model.

The developed automation methodology requires little knowledge on neural network

structure design, making the neural networks be more practical. A PCA-based technique

was developed to estimate the number of nodes in the bottleneck layer of NLPCA

architecture or in the hidden layer of single hidden layer AANN architecture. This

technique extracts the useful information from the predictors and forms a few principal

components (PCs) which attain sufficient information to capture the dynamics of the

process. These PCs can be interpreted as a data compressor to greatly reduce the

dimensionality of the data through input-output mapping. This simplifies network

structure and reduces the possibility of overfitting. This also helps stabilizing the

network performance by eliminating the collinearity problem. Furthermore, this

technique reduces the noise level of the signals to be modeled.

The modified beta method estimates the number of nodes in mapping/demapping layers

of an NLPCA architecture through a statistical method and removes the influence of data

length as well as the random search steps which is difficult to determine. A properly

selected coefficient C provides enough number of hidden nodes for easier network

111

training. However, experiment indicates that the determination of C is not crucial for

networks to generalize. The application of a regularization method in this research ia

similar to the Optimal Brain Damage (Cun, et al, 1990) pruning scheme and disconnects

the unnecessary weight connections between the hidden nodes.

The sensitivity analysis discovers that a robust training scheme provides the robustness of

the network model. The scheme interrupts the data by adding noise into it one at a time.

This assumes that no more than two signals degrade at the same time. Should multiple

faults happen, the sensor correction/replacement module iteratively replaces the first

detected faulty signal with its best estimate from the neural network model as the virtual

sensor signal and ensures only one faulty signal exists at a time:

The TSVD mechanism is simple to manipulate. Since the output layers of neural

network models are linear, the SVD technique is able to solve for the weight matrix by

linear regression. Therefore, instead of retraining the whole network model, the SVD

allows part of the model to be quickly retuned for on-line adaptation when a small change

in plant operating conditions occurs.

The MSPRT uses a filter structure to eliminate the intermittent alarms caused by the

spurious spikes as well as the model prediction errors. Therefore the MSPRT eliminates

the requirement of residuals to be normally distributed. It is capable of dealing with the

residuals containing not only the noise but also some true signal contents.

112

Also, the cross correlation analysis provides sufficient evidence on whether a TDNN can

perform better than an AANN does. In order for TDNN to have a superior performance,

delayed signals must contain helpful information for prediction.

The variables must have some degree of correlation for an AANN to be trained. The

collinearity of the network inputs causes a network stability problem, and results in an

increased variance of network outputs. Network regularization techniques combined

with the singular value decomposition method was utilized to lessen the impact of these

problems.

The result shows that this sensor validation system can detect the signal drift at an

average level -2.5% of the mean system normal operating level for signals in the boiler

system and -1% in the turbine system.

113

Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The AANN-based sensor validation system with a robust training technique is capable of

providing reliable estimates of faulty sensor measurements. Sensor faults are detectable

by comparing the difference between the sensor measurements and the corresponding

network estimates. This sensor validation system can detect sensor drifts at an average

level of-2.5% of the sensor's mean operating level in the boiler system and -1% in the

turbine system. This result is consistent with the fact that some signals in the boiler

system are noisy and not accurately measured, such as the air combustion flow. This

sensor validation system is capable of monitoring 74% of the instrument chaimels, the

unmonitorable sensor channels have little correlation with others and therefore, caimot be

inferred by others. Most of the unmonitorable channels are in the boiler system.

The correlated neural network inputs cause an ill-conditioned problem, which

unstabilizes the network prediction. A bootstrap result demonstrates that the

regularization technique reduces the severity of the ill-conditioned problem and tends to

stabilize the network performance. Although the regularization introduces a bias to a

solution, it greatly reduces the inconsistency of the model estimations, and therefore,

greatly increase the reliably of the model.

The developed methodology of designing the optimal neural network architecture

requires no prior knowledge to calculate the parameters in the algorithms, and greatly

114

simplifies the network structure design. This makes the neural networks more practical

without requiring extensive neural network design experience.

Small faults, like slow drifts and small offsets, in one sensor only affect other sensor

measurements to a minor degree due to the robustness of the networks. The faulty sensor

can be easily detected and isolated by the MSPRT-based fault detection module.

However, in gross fault situations, other closely related sensors may be affected to a large

degree, and the true fault is difficult to locate and isolate using the MSPRT-based fault

detection module. A method for identifying the faulty sensor is to measure the degree of

change of each network output. The sensor channel with the largest variance, which is

the faulty sensor, is getting replaced.

When operating conditions change, the neural network models must be modified to

accommodate themselves to the new operating conditions. The use of the TSVD

technique allows the network to adapt itself to the new operating conditions without

retraining the entire network. This feature allows continuous on-line monitoring to be

realized.

Although the MSPRT delays the detection time when compared with the traditional

SPRT because of the introduced filtering structure, it effectively suppresses the early

intermittent alarms due to noise or prediction errors and triggers alarms when a true fault

is detected. The benefits of reducing false alarms outweigh the detriment of a slightly

delayed detection time.

115

7.2 Recommendations for Future Work

This section analyzes the possible difficulties of the developed methodology. Some

alternative solutions are recommended and the possible problems the alternatives may

face are also discussed.

7.2.1 Network Regularization

Due to the collinearity of the network model inputs, the network performance may be

unstable and regularization is needed. Over-regularized networks yield large prediction

errors, while under-regularized ones generate predictions with relatively large

uncertainties. Therefore, an optimal network model requires the regularization parameter

be properly determined. However, properly selecting the regularization parameter, which

controls the network performance, involves human interaction which is not desired in this

automated process design. Unlike the regularization of linear models, regularization of

nonlinear models, such as neural networks, is extremely difficult to control quantitatively.

It should be pointed out that in the situation of sensor validation, the selection of the

regularization parameter is not as crucial as some inferential sensing applications (Hines,

et al, 1999; Gribok, et al, 1999). The most important issue in the sensor validation

application is the robustness of the models, of which all the outputs, including the
V

corresponding output to the faulty input, are not affected much by a faulty input.

7.2.2 Different Architecture - NLPLS

The sensor validation AANN architecture is relatively complicated, and leads to difficult

training and computational limitation. Network architecture simplification is desired.

Although the number of latent vectors must be determined, a NLPLS architecture, which

116

decorrelates the relationship between the network inputs, greatly reduces the complexity

of the model and eliminates the collinearity problem. More importantly, regularization is

inherently embedded in a NLPLS model. Because of the simple input/Output mapping

relationship, network yariable grouping becomes unnecessary. Also the inferential type

structure uses all variables but the predicted one for variable prediction, which increases

the robustness of the sensor monitoring system.

However, the biggest concern for this architecture is the retuning procedure under the

situation of operating condition changes. Unlike the retuning procedure of the, AANNs

studied in this dissertation, an NLPLS model is retuned sequentially through all ANN-

structured inner models. This would require model retraining and it may become

impracticable for on-line adjustment.

7.2.3 Residual Normalizing

In this research it is reported that the SPRT produces intermittent alarms due to non-

normally distributed residuals. The residuals deviate from Gaussian due to spurious

spikes which may be removed by filtering. Therefore, instead of modifying the SPRT

algorithm, the residuals may be normalized through a spectrum transform filtering

algorithm (Gross and Hoyer, 1995) so that they are normally distributed about the mean.

Another approach may be to generate an autoregressive (AR) model from the residuals

and to use its output as the SPRT input.

117

Bibliography

118

Bibliography

Aitchison, J. and Dunsmore, I. R. (1975), "Statistical prediction analysis," Cambridge

University Press.

Akaike, H. (1974), "A new look at the statistical model identification," IEEE

Transactions on Automatic Control, AC 19, pp. 716-723.

Akaho, S. and Amari, S. (1990), "O the capacity of three-layer networks," Proceedings of

the IntemationalJoint Conference on Neural Networks, San Diego, CA Vol. III.

Aleksander, I. and Morton H. (1990), "An introduction to neural computing," London,

Chapman & Hall.

Baum, E. B. (1988), "On the capacity of multilayer perceptrons," Journal of Complexity,

No. 4, pp. 193-215.

Bishop, C. M. (1995), "Neural networks for pattern recognition," Oxford University Press

Inc., New York, NY.

Brown, R. G. (1992), "Introduction to random signals and applied Kalman filtering,"

John Wiley & Sons, New York.

Cim, Y. L., et al. (1990), "Optimal brain damage". Advances in Neural Information

Processing System 2, Proceedings of the 1989 Conference, San Mateo, CA, Morgan

Kaufmann Publishers.

119

Cybenko, G. (1989), "Approximation by superpositions of a sigmoidal function,"

Mathematics of Control, Signals, and Systems, 2, 303-314.

Dong, D. and McAvoy, T. (1994), "Sensor data analysis using autoassociative neural

networks," Proceedings of the World Congress on Neural Networks, San Diego, CA,

Vol. 1, pp. 161-166.

Dong, D. and McAvoy, T. (1996), "Nonlinear principal component analysis-based on

principal curves and neural networks," Computers in Chemical Engineering, 20, pp. 65-

78.

Dorr, R., et al. (1997), "Detection, isolation, and identification of sensor faults in nuclear

power plants," IEEE Transactions on Control Systems technology. Vol. 5, No. 1.

Dunia, R., et al. (1996), "Identification of faulty sensors using principal component

znaHysh," AIChE Journal, Vol. 42, No. 10.

Dunia, R. and Qin, S. (1998), "A unified geometric approach to process and sensor fault

identification and reconstruction: the unidementional fault case," Computers Chem Eng,

Vol. 22, No. 7.

Effon, B. (1982), "The jacknife, the bootstrap, and other resampling plans," Society for

Industrial and AppliedMathematics, Philadelphia, PA.

Erbay, A. S. and Upadhyaya, B. R. (1997), "A personal computer-based on-line sensor

validation system for nuclear power plants," Nuclear Technology, Vol. 119, pp. 63-75.

120

Eryurek, E. (1991), "Development and application of multi-layer neural networks for

estimation of power plant variables," MS Thesis, The University of Tennessee.

Fahlman, S. E. and Lebiere, C. (1990), "The cascade-correlation learning architecture,"

Advances in Neural Iriformation Processing Systems 2, Morgan Kaufmann.

Fantoni, P. A. and Mazzola, A. (1996), "Multiple-failure signal validation in nuclear

power plants using artificial neural networks," Nuclear Technology, Vol. 113, pp 368-

374.

Fujita, O. (1998), "Statistical estimation of the number of hidden units for feedforward

neural notwotks"" Neural Networks, Vol. 11, pp. 852-859.

Geladi, P., and Kowalski, B. R. (1986), "Partial least squares regression: a tutorial,"

Analytica Chimica Acta, 185.

Gnbok, A. V, Attieh, I., Hines, J. W., and Uhrig, R. E. (1999), "Regularization of

Feedwater Flow Rate Evaluation for Venturi Meter Fouling Problems in Nuclear Power

Plants", Ninth International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-

9), San Francisco, CA.

Gross, K. and Hoyer, K. (1995), "Spectrum-transformed sequential testing method for

signal validation applications, " 9^^ Power Plant Dynamics, Control & Testing

Symposium Proceedings, Knoxville, TN, Vol. 1.

121

Goutte, C., and Hansen, L. K. (1997), "Regularization with a pruning prior," Neural

Networks, Vol. 10, No. 6.

Gross, K., et al. (1997)," Application of a model-based fault detection system to nuclear

power signals," P"* International Conference on Intelligent Systems Applications to

Power Systems, pp. 66-70, Seoul, Korea.

Gross, K., et al (1998), "Industrial process surveillance system," Patent # 5764509,

University of Chicago.

Hadamard, J. (1923), "Lectures on Cauchy's problem in linear partial differential

equations", Yale University Press, New Haven.

Hagan, M. T. and Menhaj, M. (1994),"Training feedforward networks with the

Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1994.

Hansen, L. K., et al (1994), "Adaptive regularization," Proceedings of the IEEE

Workshop on Neural Networksfor Signal Processing TV, Piscataway, New Jersey, pp. 78-

87.

Hansen, L.K., et al. (1994), "Pruning from adaptive neural networks," Technical

University of Denmark.

Hashem, S. (1997), "Optimal linear combinations of neural networks," Neural Networks,

Vol. 10, No. 4.

122

Haykin, S. (1994), "Neural networks," MacMillan Publishing Company, Englewood

Cliffs, NJ.

Hines, J. W., Giibok, Andrei V., Attieh, I., and Uhrig, R. E. (1999), "The Use of

Regularization in Inferential Measurements", Presented at the Enlarged Halden

Programme Group (EHPG) Meeting, Loen, Norway.

Hines, J. W., Uhrig, R. E., and Xu, X. (1998), "Sensor Validation and Instrument

Calibration Monitoring," Midterm Report prepared by the University of Tennessee.

Hoskuldsson, A. (1988), "PLS regression methods," J. Chemomet, 2.

Jolliffe, I. T. (1986), "Principal component analysis," Springer-Verlag, New York.

Kalman, R. E. (1960), "A new approach to linear filtering and prediction problems," J.

Basic Eng„ 82.

Kramer, M. A. (1991), "Nonlinear principal component analysis using autoassociative

neural networks," AlCHE Journal, Vol. 37, No. 2, pp. 233-243.

Kramer, M. A. (1992), "Autoassociative neural networks," Computers in Chemical

Engineering, 16:(4), pp. 313-328.

Kurita, T. (1990), "A method to determine the number of hidden units of three-layered

neural networks by information criteria," Transaction of the Institute of Electronics

Information and Communication Engineers, JVS-D-II, pp. 1872-1878.

123

Larsen, J., et ah (1994), "Generalization performance of regularized neural network

models," Proceedings of the IEEE Workshop on Neural Networks for Signal Processing

IV, Piscataway, New Jersey, pp. 42-51.

Larsen, J., et al. (1996), "Design and regularization of neural networks: the optimal use of

a validation set," Proceedings of the IEEE Workshop on Neural Networks for Signal

Processing VI, Piscataway, New Jersey, pp. 62-71.

Larsen, J., et al (1996), "Regularization of neural networks," Proceedings of the 4th

Interdisciplinary Workshop, Technical University of Denmark, pp. 59-66.

Levin, A., et al. (1994), "Fast pruning using principal components," Advances in Neural

Information Processing 6, Morgan Kaufmann, San Diego, CA.

MacGregor, J.F., Marlin, I.E., Kresta, J.V., and Skagerberg B. (1991), "Some comments

on neural networks and other empirical modeling methods," Proceeding of the Chemical

Process Control - TV Conference, South Padre Island, TX, Feb. 18-22.

Masters, T. (1993), "Practical neural network recipes in C-H-", Academic Press, San

Diego, CA.

MATLAB, High performance numeric computation and visualization software, (1995),

The Mathworks Inc., Natick, MA.

124

Moody, J. E. (1992), "The effective number of parameters: an analysis of generalization

and reguiarization in nonlinear learning systems," Advances in Neural Information

Processing Systems 4, Morgan Kaufmann.

Nabeshima, K., Susuki, K., and Turkan, T. (1995), "Real-time nuclear power plant

monitoring with hybrid artificial intelligence systems," P"' Power Plant Dynamics,

Control & Testing Symposium, Vol. 2, pp. 55.01, University of Tennessee, May 24-26.

Navasimhan, S. Mah and R. (1988), "Generalized likelihood ratios for gross error

identification in dynamic processes," AIChE Journal, Vol. 34.

Olvera, J. R. (1993), "Instrument calibration verification," Master Thesis, The University

of Tennessee.

Petersen, M., et al. (1996), "Pruning with generalization based weight saliencies: y OBD,

y OBS," Advances in Neural Information Processing Systems 8, Proceedings of the 1995

Conference, Cambridge, Massachusetts: MIT Press, pp. 521-528.

Press, W., et al (1992), "Numerical recipes in C", Cambridge University Press.

Qin, S. (1997), " Neural networks for intelligent sensors and control — Practical issues

and some solutions," In Neural Systems for Control, Chapter 8, Edited by O. Omidvar

and D. L. Elliott, Academic Press.

Qin, S. and McAvoy, T. (1992), "Nonlinear PLS modeling using neural networks,"

Computers chem. Engng., Vol. 16, No.4, pp 379-391.

125

Qin, S. and Li, W. (1999), "Detection, identification, and reconstruction of faulty sensors

with maximized sensitivity," AIChE Journal, Vol. 45, No. 9.

Scale, L.E. (1985), "Introduction to non-linear optimization," Spring-Verlag, New York,

NY.

Sequin, C. H. and Clay, R.D. (1992), "Fault tolerance in artificial neural networks," Proc.

Int. Conf. on Neural Networks, pp. 1-703-708, San Diego, CA.

Singer, R., et al. (1995), "A pattem-recognition-based, fault-tolerant monitoring and

diagnostic technique," Seventh Symposium on Nuclear Reactor Surveillance and

Diagnostics Proceedings, Avignon, France.

Singer, R., et al (1997), "Model-based nuclear power plant monitoring and fault

detection: theoretical foundation," International Corrference on Intelligent Systems

Applications to Power Systems, pp. 60-65, Seoul, Korea.

Uhrig, R.E., Hines, J.W., Black, C., Wrest, D.J., Xu, X. (1996), ""Instrument surveillance

and calibration verification system". Report Prepared by the University of Tennessee for

Sandia National Laboratories, Contract No. AQ-6982.

Upadhyaya, B.R. and Eryurek, E. (1992), "Application of neural networks for sensor

validation and plant monitoring," NUCLEAR TECHNOLOGY, Vol. 97, pp. 170-176.

126

Upadhyaya, B.R., Wolvaardt, P.P., and Glockler, O. (1987), "An integrated approach for

sensor failure detection in dynamic systems," Research Report prepared for the

Measurement & Control Engineering Center, Report No. NE-MCEC-BRU-87-01.

Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D. L. (1988), "Accelerating

the convergence of the backpropagation method," Biological Cybernetics, Vol. 59, pp.

251-263.

Wald, A. (1945), "Sequential tests of statistical hypothesis," Ann. Math. Statist., Vol. 16,

pp. 117-186.

Williams, P. (1995), "Bayesian regularization and pruning using a Laplace prior," Neural

Computation, 7(1), 117-143.

Wrest, D. J. (1996), "Instrument surveillance and calibration verification through plant

wide monitoring using autoassociative neural networks," MS Thesis, The University of

Tennessee.

127

Appendices

128

Appendix A. Tables of Variable Grouping

129

Table A1 Variables for Monitoring

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

3 BFP A Discharge Flow - Raw Klb/hr

4 BFP B Discharge Flow - Raw Klb/hr

5 BFP C Discharge Flow - Raw Klb/hr

6 BCW Pump LeakofTFlow - Raw Klb/hr

7 Condensate Flow - Raw Klb/hr

8 Cold well Tank Makeup Flow Klb/hr

9 Feedwater Flow #1 - Raw Klb/hr

10 Feedwater Flow #2 - Raw Klb/hr

11 FWH 3 Drain Flow - Raw Klb/hr

12 Building Heating Steam Flow Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

14 Pulv A PA Flow Rate Klb/hr

15 Pulv B PA Flow Rate Klb/hr

16 Pulv C PA Flow Rate Klb/hr

17 Pulv D PA Flow Rate Klb/hr

18 Pulv E PA Flow Rate Klb/hr

19 Pulv F PA Flow Rate Klb/hr

20 Reheat Spray A Flow Klb/hr

21 Superheat Spray A Flow Klb/hr

22 Superheat Spray B Flow Klb/hr

23 Measured Steam Flow - Raw Klb/hr

24 Unit Gross Generation MW

25 Station Service Load MW

26 Coldwell Tank Level Inches

27 Selected Deaerator Level Inches

28 FWHtrl Level Inches

29 FWHtr3Level Inches

30 Excess 02 A in Reheat Furnace %Vol

31 Excess 02 B in Reheat Furnace %Vol

32 Excess 02 A in Superheat Furnace %Vol

33 Excess 02 B in Superheat Furnace %Vol

34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
37 Deaerator Pressure psig
38 Selected Drum Pressure psig
39 FW Entering Economizer Pressure psig

130

40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
44 FW Heater 5 Ext Press - Abs psia
45 Hot Reheat Pressure at Turbine psig
46 ID Fan A Suction Pressure InH20

47 ID Fan B Suction Pressure InH20

48 RH Furnace Press After Econ InH20
49 RH Furnace Pressure A InH20
50 SH Furnace Press After HI SH InH20
51 SH Furnace Press After Econ InH20

52 SH Furnace Pressure A InH20

53 SH Windbox Pressure InH20
54 Throttle Pressure at Stop Vlv A psig
55 Throttle Pressure at Stop Vlv B psig
56 Turbine Exhaust Pressure InHgAbs
57 Unit CEMS RH C02 Pet

58 Unit CEMS RH CO PPM

59 BAILEY CO MONITOR - REHEAT FURN PPM

60 Unit CEMS RH NOx LB/MMBTU LB/MMBTU
61 Unit CEMS RH NOx PPM PPM

62 Unit CEMS SH C02 Pet

63 Unit CEMS SH CO PPM

64 BAILEY CO MONITOR - SUPERHEAT PPM

65 Unit CEMS SH NOx LB/MMBTU LB/MMBTU

66 Unit CEMS SH NOx PPM PPM

67 Pulv A Flow Klb/hr

68 Pulv B Flow Klb/hr

69 Pulv C Flow Klb/hr

70 Pulv D Flow Klb/hr

71 Pulv E Flow Klb/hr

72 Pulv F Flow Klb/hr

73 Ambient Air Temperature DegF
74 Air Preheater A Air Inlet Temp DegF
75 Air Preheater A Gas Inlet Temp DegF
76 Air Preheater A Gas Outlet Temp DegF
77 Air Preheater B Air Inlet Temp DegF
78 Air Preheater B Gas Inlet Temp DegF
79 Air Preheater B Gas Outlet Temp DegF
80 BFP Suction Header Temperature DegF
81 Circ Water Inlet Temp, East DegF

131

82 Circ Water Inlet Temp, West DegF
83 Circ Water Outlet Temp, East DegF
84 Circ Water Outlet Temp, West DegF
85 Cold Reheat Temp at Turbine DegF
86 FW Heater 1 Drain Temperature DegF
87 FW Heater 1 Extraction Temp DegF
88 FW Heater 1 Water In Temp DegF
89 FW Heater 1 Water Out Temp DegF
90 FW Heater 2 Drain Temperature DegF
91 FW Heater 2 Water In Temp DegF
92 FW Heater 3 Drain Temperature DegF
93 FW Heater 3 Extraction Temp DegF
94 FW Heater 3 Water In Temp DegF
95 FW Heater 4 Extraction Temp DegF
96 FW Heater 5 Drain Temperature DegF
97 FW Heater 5 Extraction Temp DegF
98 FW Heater 5 Water Out Temp DegF
99 FW Heater 6 Drain Temperature DegF
100 FW Heater 6 Extraction Temp A DegF
101 FW Heater 6 Extraction Temp B DegF
102 FW Heater 6 Water Out Temp DegF
103 FW Heater 7 Drain Temperature DegF
104 FW Heater 7 Extraction Temp A DegF
105 FW Heater 7 Water Out Temp DegF
106 FW Heater 8 Drain Temperature DegF
107 FW Heater 8 Extraction Temp A De^
108 FW Heater 8 Extraction Temp B DegF
109 FW Heater 8 Water In Temp DegF
110 FW Heater 8 Water Out Temp DegF
111 Hot Reheat Temp at Int Vlv A DegF
112 Hot Reheat Temp at Int Vlv B DegF
113 Pulverizer A Outlet Temperature DegF
114 Pulverizer B Outlet Temperature DegF
115 Pulverizer C Outlet Temperature DegF
116 Pulverizer D Outlet Temperature DegF
117 Pulverizer E Outlet Temperature DegF
118 Pulverizer F Outlet Temperature DegF
119 RH Attemp A Before Spray Temp DegF
120 RH Outlet Header Temperature A DegF
121 Reheat Outlet Temperature #1 DegF
122 Reheat Outlet Temperature #2 DegF
123 SH Outlet Header Temperature A DegF

132

124 Superheat Outlet Temperature #1 DegF
125 Superheat Outlet Temperature #2 DegF
126 Throttle Temperature at Turbine DegF
127 Auxiliary Air Damper AA Position Pet

128 Auxiliary Air Damper AB Position Pet

129 Auxiliary Air Damper BC Position Pet

130 Auxiliary Air Damper CC Position Pet

131 Auxiliary Air Damper DD Position Pet

132 Auxiliary Air Damper DE Position Pet

133 Auxiliary Air Damper EF Position Pet

134 Auxiliary Air Damper FF Position Pet

135 RH Furnace Tilt Position Deg
136 SH Furnace Tilt Position Deg

133

Table A2 Variable Selection via NLPLS

No Sig Signal Name
1 Combustion Air Flow A1

2 Combustion Air Flow B1

3 BFP A Discharge Flow - Raw
4 BFP B Discharge Flow - Raw
6 BCW Pump LeakofFFlow - Raw
7 Condensate Flow - Raw

9 Feedwater Flow #1 - Raw

10 Feedwater Flow #2 - Raw

13 Hot Reheat Steam Flow - Raw

14 Hotwell Pumps Discharge Flow
18 Pulv D PA Flow Rate

25 Measured Steam Flow - Raw

26 Unit Gross Generation

27 Station Service Load

30 FWHtrl Level

32 FWHtr3Level

34 Excess 02 B in Reheat Furnace

37 First Stage Pressure A
38 First Stage Pressure B
39 Cold Reheat Pressure at Turbine

40 Deaerator Pressure

41 Selected Drum Pressure

42 FW Entering Economizer Pressure
43 FW Heater 1 Extraction Pressure

44 FW Heater 2 Extraction Pressure

45 FW Heater 3 Extraction Pressure

46 FW Heater 4 Extraction Pressure

47 FW Heater 5 Ext Press - Abs

48 Hot Reheat Pressure at Turbine

49 ID Fan A Suction Pressure

50 ID Fan B Suction Pressure

51 RH Furnace Press After Econ

53 SH Furnace Press After HT SH

54 SH Furnace Press After Econ

56 SH Windbox Pressure

57 Throttle Pressure at Stop Vlv A
58 Throttle Pressure at Stop Vlv B
59 Turbine Exhaust Pressure

60 Unit CEMS RH C02

134

63 Unit CEMS RH NOx LB/MMBTU

64 Unit CEMS RH NOx PPM

65 Unit CEMS SH C02

68 Unit CEMS SH NOx LB/MMBTU

69 Unit CEMS SH NOx PPM

73 Pulv D Flow

76 Ambient Air Temperature
77 Air Preheater A Air Inlet Temp
78 Air Preheater A Gas Inlet Temp
79 Air Preheater A Gas Outlet Temp
80 Air Preheater B Air Inlet Temp
81 Air Preheater B Gas Inlet Temp
82 Air Preheater B Gas Outlet Temp
83 BFP Suction Header Temperature
84 Circ Water Inlet Temp, East
85 Circ Water Inlet Temp, West
86 Circ Water Outlet Temp, East
87 Circ Water Outlet Temp, West
88 Cold Reheat Temp at Turbine
89 FW Heater 1 Drain Temperature
90 FW Heater 1 Extraction Temp
91 FW Heater 1 Water In Temp
92 FW Heater 1 Water Out Temp
93 FW Heater 2 Drain Temperature
94 FW Heater 2 Water In Temp
95 FW Heater 3 Drain Temperature
96 FW Heater 3 Extraction Temp
97 FW Heater 3 Water In Temp
98 FW Heater 4 Extraction Temp
99 FW Heater 5 Drain Temperature
100 FW Heater 5 Extraction Temp
101 FW Heater 5 Water Out Temp
102 FW Heater 6 Drain Temperature
103 FW Heater 6 Extraction Temp A
104 FW Heater 6 Extraction Temp B
105 FW Heater 6 Water Out Temp
106 FW Heater 7 Drain Temperature
107 FW Heater 7 Extraction Temp A
109 FW Heater 7 Water Out Temp
110 FW Heater 8 Drain Temperature
111 FW Heater 8 Extraction Temp A
112 FW Heater 8 Extraction Temp B

135

113 FW Heater 8 Water In Temp
114 FW Heater 8 Water Out Temp
115 Hot Reheat Temp at Int VIv A
116 Hot Reheat Temp at Int Vlv B
117 Pulverizer A Outlet Temperature
118 Pulverizer B Outlet Temperature
119 Pulverizer C Outlet Temperature
120 Pulverizer D Outlet Temperature
121 Pulverizer E Outlet Temperature
122 Pulverizer F Outlet Temperature
123 RH Attemp A Before Spray Temp
124 RH Outlet Header Temperature A
125 Reheat Outlet Temperature #1
126 Reheat Outlet Temperature #2
127 SH Outlet Header Temperature A
128 Superheat Outlet Temperature #1
129 Superheat Outlet Temperature #2
130 Throttle Temperature at Turbine
131 Auxiliary Air Damper AA Position
132 Auxiliary Air Damper AB Position
133 Auxiliary Air Damper BC Position
134 Auxiliary Air Damper CC Position
135 Auxiliary Air Damper DD Position
136 Auxiliary Air Damper DE Position

136

Ta
bl
e
A
3

Gr
ou
pi
ng
 w
it

h
Ex
cl
us
io
n
Me
th
od

G
#

Va
ri

ab
le

s
Gr
ou
pe
d

1
1

2
2
5

4
5

4
1

3
6

4
2

4
3

2
3

4
4

4
0

3
5

3
4

1
0

9
9
2

2
4

8
8

5
3

1
0
3

1
0
5

1
0
6

1
1
0

9
1

1
3

2
3
7

8
0

9
4

9
0

8
9

7
3

9
8

1
0
7

4
7

4
6

3
4
8

4
7
8

4
1
2
4

1
2
5

1
2
3

1
1
9

8
7

8
5

7
5

1
3
6

5
5

5
4

5
5

6
6

7
8

8
1
1

7
3

9
1
2

2
2

7
7

7
4

1
0

1
4

1
1
3

6
7

1
1

1
5

1
1
4

6
8

1
2

1
6

1
1
5

1
1
8

1
3

1
7

7
0

5
1

3
9

3
8

5
0

9
6

7
2

2
9

8
4

1
4

1
8

1
1
7

7
1

1
0
4

1
2
0

1
2
1

1
2
2

1
1
2

1
1
1

9
5

9
3

1
5

1
9

7
9

1
6

2
0

1
7

2
1

1
0
2

9
9

1
8

2
6

1
2
6

1
9

2
7

2
0

2
8

2
1

3
0

3
3

3
2

3
1

6
0

5
6

1
0
9

8
6

6
9

6
2

5
7

2
2

4
9

1
3
3

1
3
2

1
3
4

1
3
1

2
3

5
2

2
4

5
8

2
5

5
9

2
6

6
1

6
5

6
6

2
7

6
3

2
8

6
4

2
9

7
6

-
J

138

Ta
bl
e
A
4

Gr
ou
pi
ng
 w
it
h
No
n-
Ex
cl
us
io
n
Me
th
od

G
#

Va
ri
ab
le
s
Gr

ou
pe

d
1

1
2

2
5

4
5

4
1

3
6

4
2

4
3

2
3

4
4

4
0

3
5

3
4

1
0

9
9
2

2
4

8
8

5
3

1
0
3

1
0
5

1
0
6

1
1
0

9
1

1
3

2
3
7

8
0

9
4

9
2

4
2

4
4

4
3

4
5

4
1

3
6

9
4
0

2
4

8
8

3
4

3
5

9
1

1
0

1
0
3

1
0
5

2
3

9
0

8
9

1
0
6

2
5

3
4
6

4
7

4
8

7
0

3
8

1
1
9

2
9

3
9

8
7

8
5

3
9
8

4

1
0
7

7
8

9
4

8
0

5
3

3
7

8
9

1
1
0

7
1
0
6

1
3

9
1

4
1
2
4

1
2
5

1
2
3

1
1
9

8
7

8
5

7
5

1
3
6

5
5

5
4

5
5

6
6

7
8

8
1
1

7
3

9
1
2

7
3

2
2

7
7

7
4

1
0

1
4

1
1
3

6
7

1
1

1
5

1
1
4

6
8

1
2

1
6

1
1
5

1
1
8

1
3

1
7

7
0

5
1

1
3

3
5

3
4

5
3

1
9

4
7

4
0

2
3

1
0

1
0
7

3
7

4
2

4
1

3
6

4
5

4
4

4
3

3
9

2
5

2
4

1
4

1
8

1
1
7

7
1

1
0
4

1
2
0

1
2
1

1
2
2

1
1
2

1
1
1

9
5

9
3

1
5

1
9

1
1
8

1
6

7
9

1
1
5

1
6

2
0

:

1
7

2
1

4
7

3
2

4
6

3
0

3
1

7
0

5
0

1
6
9

7
8

3
8

5
7

3
9

2
1
0
7

1
0
2

1
3

9
9

5
1

4
1
1
0

6
2

5
3

3

1
8

2
6

2
2

1
9

2
7

2
0

2
8

—

2
1

3
3

3
0

3
2

3
1

4
6

4
7

6
0

4
8

8
4

5
6

1
0
9

7
0

1
0
2

9
9

7
8

2
9

5
0

9
6

7
2

2
1

6
9

5
1

8
6

1
1
9

2
2

4
9

1
3
3

1
3
2

1
3
4

1
3
1

2
3

5
2

2
4

5
8

2
5

5
9

2
6

6
1

6
0

6
5

4
8

4
6

4
7

9
8

3
8

1
0
7

3
9

1
1
0

3
 8
0

4
9
4

1
0
6

8
9

1
0
3

9
0

1
0
5

2
5

9
1

8
8

3
4

3
5

2
7

6
3

2
8

6
4

2
9

6
6

6
5

6
1

6
0

U
>

V
O

45434236

OS

4035432523

cn

-

C4

70

Os

8587

22

75

56

84

50

109

83

tr>

84

56

129

00

109

26

128

79

82

56

93

cs

97

22

130
132

76

00

79

100

o
00
o

116
126

127
135

o
<*>

•rl vo
m

r-

38

39

140

Table A5 Unmonitorable Variables Through Grouping

Sigs Signal Name Unit

5 BFP C Discharge Flow - Raw Klb/hr

6 BCW Pump Leakoff Flow - Raw Klb/hr

8 Coldwell Tank Makeup Flow Klb/hr

11 FWH 3 Drain Flow - Raw Klb/hr

12 Building Heating Steam Flow Klb/hr

14 Pulv A PA Flow Rate Klb/hr

15 Pulv B PA Flow Rate Klb/hr

16 Pulv C PA Flow Rate Klb/hr

19 Pulv F PA Flow Rate Klb/hr

20 Reheat Spray A Flow Klb/hr

22 Superheat Spray B Flow Klb/hr

26 Coldwell Tank Level Inches

27 Selected Deaerator Level Inches

28 FWHtrl Level Inches

49 RH Furnace Pressure A InH20

52 SH Furnace Pressure A InH20

54 Throttle Pressure at Stop Vlv A psig
55 Throttle Pressure at Stop Vlv B psig
58 Unit GEMS RH CO PPM

59 BAILEY CO MONITOR - REHEAT FURN PPM

63 Unit CEMS SH CO PPM

64 BAILEY CO MONITOR - SUPERHEAT PPM

66 Unit CEMS SH NOx PPM PPM

67 Pulv A Flow Klb/hr

76 Air Preheater A Gas Outlet Temp DegF
79 Air Preheater B Gas Outlet Temp DegF
97 FW Heater 5 Extraction Temp DegF
100 FW Heater 6 Extraction Temp A DegF

101 FW Heater 6 Extraction Temp B DegF
108 FW Heater 8 Extraction Temp B DegF
113 Pulverizer A Outlet Temperature DegF
114 Pulverizer B Outlet Temperature DegF
116 Pulverizer D Outlet Temperature DegF
118 Pulverizer F Outlet Temperature DegF
126 Throttle Temperature at Turbine DegF
135 RH Furnace Tilt Position Deg

141

Table A6 Variables in NN 1

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

9 Feedwater Flow #1 - Raw Klb/hr

10 Feedwater Flow #2 - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

23 Measured Steam Flow - Raw Klb/hr

24 Unit Gross Generation MW

25 Station Service Load MW

34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
44 FW Heater 5 Ext Press - Abs psia
45 Hot Reheat Pressure at Turbine psig
53 SH Windbox Pressure InH20

88 FW Heater 1 Water In Temp DegF
91 FW Heater 2 Water In Temp DegF
92 FW Heater 3 Drain Temperature De^

103 FW Heater 7 Drain Temperature DegF
105 FW Heater 7 Water Out Temp DegF

106 FW Heater 8 Drain Temperature DegF
110 FW Heater 8 Water Out Temp De^

142

Table A7 Variables in NN 2

Sigs Signal Name Unit
9 Feedwater Flow #1 - Raw Klb/hr
10 Feedwater Flow #2 - Raw Klb/hr
23 Measured Steam Flow - Raw Klb/hr
24 Unit Gross Generation MW

25 Station Service Load MW
34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
37 Deaerator Pressure psig
40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
44 FW Heater 5 Ext Press - Abs psia
45 Hot Reheat Pressure at Turbine psig
80 BFP Suction Header Temperature DegF
88 FW Heater 1 Water In Temp DegF
89 FW Heater 1 Water Out Temp DegF
90 FW Heater 2 Drain Temperature DegF
91 FW Heater 2 Water In Temp DegF
92 FW Heater 3 Drain Temperature DegF
94 FW Heater 3 Water In Temp DegF
103 FW Heater 7 Drain Temperature DegF
105 FW Heater 7 Water Out Temp DegF
106 FW Heater 8 Drain Temperature De^

143

Table A8 Variables in NN 3

Sigs Signal Name Unit

3 BFP A Discharge Flow - Raw Klb/hr

4 BFP B Discharge Flow - Raw Klb/hr

7 Condensate Flow - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

29 FWHtr3Level Inches

37 Deaerator Pressure psig
38 Selected Drum Pressure psig
39 FW Entering Economizer Pressure psig
46 ID Fan A Suction Pressure InH20

47 ID Fan B Suction Pressure InH20

48 RH Furnace Press After Econ InH20

53 SH Windbox Pressure InH20

70 Pulv D Flow Klb/hr

78 Air Preheater B Gas Inlet Temp DegF
80 BFP Suction Header Temperature DegF
85 Cold Reheat Temp at Turbine DegF
87 FW Heater 1 Extraction Temp DegF
89 FW Heater 1 Water Out Temp DegF
91 FW Heater 2 Water In Temp DegF
94 FW Heater 3 Water In Temp DegF
98 FW Heater 5 Water Out Temp DegF
106 FW Heater 8 Drain Temperature DegF
107 FW Heater 8 Extraction Temp A DegF
110 FW Heater 8 Water Out Temp DegF
119 RH Attemp A Before Spray Temp De^

144

Table A9 Variables in NN 4

Sigs Signal Name Unit

75 Air Preheater A Gas Inlet Temp DegF
85 Cold Reheat Temp at Turbine DegF
87 FW Heater 1 Extraction Temp DegF
119 RH Attemp A Before Spray Temp DegF
123 SH Outlet Header Temperature A DegF
124 Superheat Outlet Temperature #1 DegF
125 Superheat Outlet Temperature #2 DegF
136 SH Furnace Tilt Position Deg

Table AlO Variables in NN_5

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

4 BFP B Discharge Flow - Raw Klb/hr

7 Condensate Flow - Raw Klb/hr

9 Feedwater Flow #1 - Raw Klb/hr

10 Feedwater Flow #2 - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

17 Pulv D PA Flow Rate Klb/hr

23 Measured Steam Flow - Raw Klb/hr

24 Unit Gross Generation MW

25 Station Service Load MW

34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
37 Deaerator Pressure psig
39 FW Entering Economizer Pressure psig
40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
44 FW Heater 5 Ext Press - Abs psia
45 Hot Reheat Pressure at Turbine psig
51 SH Furnace Press After Econ InH20

53 SH Windbox Pressure InH20

70 Pulv D Flow Klb/hr

107 FW Heater 8 Extraction Temp A DegF

145

Table A11 Variables in NN 6

Sigs Signal Name Unit

18 Pulv E PA Flow Rate Klb/hr

71 Pulv E Flow Klb/hr

93 FW Heater 3 Extraction Temp De^
95 FW Heater 4 Extraction Temp DegF
104 FW Heater 7 Extraction Temp A De^
111 Hot Reheat Temp at Int Vlv A DegF
112 Hot Reheat Temp at Int Vlv B DegF
117 Pulverizer E Outlet Temperature DegF
120 RH Outlet Header Temperature A DegF
121 Reheat Outlet Temperature #1 DegF
122 Reheat Outlet Temperature #2 DegF

146

Table A12 Variables in NN 7

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

3 BFP A Discharge Flow - Raw Klb/hr

4 BFP B Discharge Flow - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

21 Superheat Spray A Flow Klb/hr

30 Excess 02 A in Reheat Furnace %Vol

31 Excess 02 B in Reheat Furnace %Vol

32 Excess 02 A in Superheat Furnace %Vol

38 Selected Drum Pressure psig
39 FW Entering Economizer Pressure psig
46 ID Fan A Suction Pressure InH20

47 ID Fan B Suction Pressure InH20

50 SH Furnace Press After HT SH InH20

51 SH Furnace Press After Econ InH20

53 SH Windbox Pressure InH20

57 Unit CEMS RH C02 Pet

62 Unit CEMS SH C02 Pet

69 Pulv C Flow Klb/hr

70 Pulv D Flow Klb/hr

78 Air Preheater B Gas Inlet Temp DegF

99 FW Heater 6 Drain Temperature DegF

102 FW Heater 6 Water Out Temp De^

107 FW Heater 8 Extraction Temp A De^

110 FW Heater 8 Water Out Temp DegF

147

Table AI3 Variables in NN 8

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

29 FWHtr3Level Inches

30 Excess 02 A in Reheat Furnace %Vol

31 Excess 02 B in Reheat Furnace %Vol

32 Excess 02 A in Superheat Furnace %Vol

33 Excess 02 B in Superheat Furnace %Vol

46 ID Fan A Suction Pressure InH20

47 ID Fan B Suction Pressure InH20

48 RH Furnace Press After Econ InH20

50 SH Furnace Press After HT SH InH20

51 SH Furnace Press After Econ InH20

56 Turbine Exhaust Pressure InHgAbs
60 Unit CEMS RH NOx LB/MMBTU LB/MMBTU

69 Pulv C Flow Klb/hr

70 Pulv D Flow Klb/hr

72 Pulv F Flow Klb/hr

78 Air Preheater B Gas Inlet Temp DegF

84 Circ Water Outlet Temp, West DegF
86 FW Heater 1 Drain Temperature DegF
96 FW Heater 5 Drain Temperature De^

99 FW Heater 6 Drain Temperature DegF
102 FW Heater 6 Water Out Temp De^

109 FW Heater 8 Water In Temp De^

119 RH Attemp A Before Spray Temp DegF

148

Table A14 Variables in NN 9

Sigs Signal Name Unit

3 BFP A Discharge Flow - Raw Klb/hr

4 BFP B Discharge Flow - Raw Klb/hr

25 Station Service Load MW

34 First Stage Pressure A psig
35 First Stage Pressure B psig
38 Selected Drum Pressure psig
39 FW Entering Economizer Pressure psig
46 ID Fan A Suction Pressure InH20

47 ID Fan B Suction Pressure InH20

48 RH Furnace Press After Econ InH20

60 Unit CEMS RH NOx LB/MMBTU LB/MMBTU

61 Unit CEMS RH NOx PPM PPM

65 Unit CEMS SH NOx LB/MMBTU LB/MMBTU

80 BFP Suction Header Temperature DegF
88 FW Heater 1 Water In Temp DegF
89 FW Heater 1 Water Out Temp DegF
90 FW Heater 2 Drain Temperature DegF
91 FW Heater 2 Water In Temp DegF
94 FW Heater 3 Water In Temp DegF
98 FW Heater 5 Water Out Temp DegF
103 FW Heater 7 Drain Temperature DegF

105 FW Heater 7 Water Out Temp DegF
106 FW Heater 8 Drain Temperature DegF
107 FW Heater 8 Extraction Temp A DegF
110 FW Heater 8 Water Out Temp DegF

149

Table A15 Variables in NN 10

Sigs Signal Name Unit

50 SH Furnace Press After HT SH InH20

51 SH Furnace Press After Econ InH20

68 Pulv B Flow Klb/hr

75 Air Preheater A Gas Inlet Temp DegF
85 Cold Reheat Temp at Turbine DegF
87 FW Heater 1 Extraction Temp DegF
119 RH Attemp A Before Spray Temp DegF

Table A16 Variables in NN 11

Sigs Signal Name Unit

21 Superheat Spray A Flow Klb/hr

73 Ambient Air Temperature DegF
74 Air Preheater A Air Inlet Temp DegF
77 Air Preheater B Air Inlet Temp De^
96 FW Heater 5 Drain Temperature DegF
99 FW Heater 6 Drain Temperature DegF
102 FW Heater 6 Water Out Temp DegF

Table A17 Variables in NN_12

Sigs Signal Name Unit

56 Turbine Exhaust Pressure InHgAbs
81 Circ Water Inlet Temp, East DegF
82 Circ Water Inlet Temp, West DegF

83 Circ Water Outlet Temp, East DegF
84 Circ Water Outlet Temp, West DegF
109 FW Heater 8 Water In Temp DegF

150

Table A18 Variables in NN 13

Sigs Signal Name Unit

3 BFP A Discharge Flow - Raw Klb/hr

10 Feedwater Flow #2 - Raw Klb/hr

30 Excess 02 A in Reheat Furnace %Vol

31 Excess 02 B in Reheat Furnace %Vol

32 Excess 02 A in Superheat Furnace %Vol

33 Excess 02 B in Superheat Furnace %Vol

37 Deaerator Pressure psig
SI Unit OEMS RH C02 Pet

62 Unit OEMS SH C02 Pet

69 Pulv C Flow Klb/hr

72 Pulv F Flow Klb/hr

80 BFP Suction Header Temperature DegF
86 FW Heater 1 Drain Temperature DegF
88 FW Heater 1 Water In Temp DegF
89 FW Heater 1 Water Out Temp DegF
90 FW Heater 2 Drain Temperature DegF

91 FW Heater 2 Water In Temp DegF
92 FW Heater 3 Drain Temperature DegF
94 FW Heater 3 Water In Temp DegF
98 FW Heater 5 Water Out Temp DegF
103 FW Heater 7 Drain Temperature DegF

105 FW Heater 7 Water Out Temp DegF
106 FW Heater 8 Drain Temperature DegF

110 FW Heater 8 Water Out Temp DegF
115 Pulverizer C Outlet Temperature DegF

151

Table A19 Variables in NN 14

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

9 Feedwater Flow #1 - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

23 Measured Steam Flow - Raw Klb/hr

25 Station Service Load MW

34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
45 Hot Reheat Pressure at Turbine psig
50 SH Furnace Press After HT SH InH20

51 SH Furnace Press After Econ InH20

70 Pulv D Flow Klb/hr

75 Air Preheater A Gas Inlet Temp DegF
85 Cold Reheat Temp at Turbine DegF
87 FW Heater 1 Extraction Temp DegF
119 RH Attemp A Before Spray Temp DegF

127 Auxiliary Air Damper AA Position Pet

128 Auxiliary Air Damper AB Position Pet

129 Auxiliary Air Damper BC Position Pet

130 Auxiliary Air Damper CC Position Pet

152

Table A20 Variables in NN 15

Sigs Signal Name Unit

1 Combustion Air Flow A1 Pet

2 Combustion Air Flow B1 Pet

7 Condensate Flow - Raw Klb/hr

9 Feedwater Flow #1 - Raw Klb/hr

10 Feedwater Flow #2 - Raw Klb/hr

13 Hotwell Pumps Discharge Flow Klb/hr

23 Measured Steam Flow - Raw Klb/hr

24 Unit Gross Generation MW

25 Station Service Load MW

34 First Stage Pressure A psig
35 First Stage Pressure B psig
36 Cold Reheat Pressure at Turbine psig
40 FW Heater 1 Extraction Pressure psig
41 FW Heater 2 Extraction Pressure psig
42 FW Heater 3 Extraction Pressure psig
43 FW Heater 4 Extraction Pressure psig
44 FW Heater 5 Ext Press - Abs psia
45 Hot Reheat Pressure at Turbine psig

53 SH Windbox Pressure InH20

78 Air Preheater B Gas Inlet Temp DegF
92 FW Heater 3 Drain Temperature DegF

131 Auxiliary Air Damper DD Position Pet

132 Auxiliary Air Damper DE Position Pet

133 Auxiliary Air Damper EF Position Pet

134 Auxiliary Air Damper FF Position Pet

153

Appendix B. Network Training Performance

154

1400

1200

1000

800

600

mea

500 1000 1500 2000 2500 3000 3500

•50

0 500 1000 1500 2000 2500 3000 3^

Time (mm.)

Figure B1 AANN recall on Measured Steam Flow (KJb/hr)

2000

1950

1900

1850

1800
500 1000 1500 2000 2500 3000 3500

0 500 10Q0 1500 2000 2500 3X0 3500

Time (min.)

Figure B2 AANN recall on Selected Drum Pressure (psig)

1400

1200

1X0

8X

6X

mea

5X 10X 15X 20X 2500 30X 35X

IX

•50

'100
0 SX 10X 1SX 20X 25X 30X 3X0

Time (min.)

Figure B3 TDNN recall on Measured Steam Flow (Klb/hr)

mea

1950

19X

1850

18X
XO 10X 1X0 20X 25X SOX 35X

0 5X 10X 15X 20X 25X 3X0 35X

Time (min.)

Figure B4 TDNN recall on Selected Drum Pressure (psig)

Note: The top plot of each figure is the signal measurement and model estimate, while the bottm plot is the

residual between them

155

Appendix C. System Detection Performance

156

100

• mffl

□ 500 1000 1500 2000 2500 3000 3600 4000 4500 5000

(3 10

E 0

0 500 1000 1500 2000 2500 3000 3600 4000 4500 5000

" 2

% 2000

0 500 1QOO 1500 2000 2500 3000 3600 4000 450O 5000
Tsne (min)

Figure C1 Recall on Combustion Air Flow (Pet)

- mea
1500

11000

500
0 500 1000 1500 2000 2500 3000 3600 4000 4500 5000

100

13 0

u *100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S 2<3

i.:
0 500 1000 1500 2000 2500 3000 3600 4000 4600 5000

Time (mm)

Figure C2 Recall on FW Flow (Klb/hr)

5 1000 *

I 0 500 1000 1500 2000 2500 3000 3600 4000 4500 5000
200, , , , , .

a 0
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 SQGO

■K 5

5 0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (min)

5 1000

i
500

I vr*,' TTT
I 0 500 1000 1500 2000 2500 3000 3500 4QOO 4500 5000

« oLHi
S-100

200
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

« 0

C 500 1000 1500 2000 2500 3000 35C0 4000 4500 5000
Time (min)

Figure C3 Recall on Hotwell Pump Discharge Flow (Klb/hr) Figure C4 Recall on Measured Steam Flow (Klb/hr)

S200
1
g100

mea

• est

TTFT

g 0 500 1000 1500 2000250030003500400045005000
10, , , , , , , , , r—

^ 0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10^

S 5
«> '

b

i 0
0 500 1000 1500 200025003000^ 4000 4500 5000

Time(iTin)

S 1000
U Mi

— mea

— est

TTT
I 0 500 1000 1500 20002500300035004000 45005000

100 r

f o|

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 SOOO
Time (m'n)

Figure C5 Recall on Unit Gross Generation (MW) Figure C6 Recall on First Stage Pressure (psig)

157

gioo

I 50

mea

— est
-TTT—t

I 0 3X0 4000 6000 8000 10000 12000 14000 16000 18000
20r

CO 10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (min)

Figure C7 Prediction on Combustion Air Flow A1 (Pet)

la
S 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

dbwdlai iLfkaiil L" 1 ° jlfLwaLtiili dik
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (m'n)

Figure C8 Prediction on Combustion Air Flow B1 (Pet)

3 300
£

mea

— est

mnn
•S200

1
1100

a 0
I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10, , , . . , , . . .—

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ft
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone (frin)

Figure C9 Prediction on Unit Gross Generation (MW)

mea

wE 6

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-3 0.5

•& 0

•0.5
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

lOr
(A
9

£ s

g 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tune (mn)

Figure ClO Prediction on Station Service Load (MW)

giooo
E

I* <1

mea

• est

"nrrr

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
lOOr

-innl J : 1 1 1 1 1 1 1 ! -100^ I > ' ' ' ' ' '

(S
E 1500

ut

c 1000

9

(d 500

E
C

s

€
.

g 0

mea

n

 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10

S
s s
VJ ®

b
V)

S 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (mn)

Figure 011 Prediction on First Stage Pressure A (psig)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

^6a "
w 4

S 2
S 0
"».2|

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (rrin)

Figure 012 Prediction on First Stage Pressure B (psig)

158

-20
{

10
</>
9

I 5

i 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

L

0 2000 4000 6000 8000 10000 12000 14000 18000 18000

0 2DQ0 4000 6000 8000 10000 12000 14000 16000 18000

Tme (ntin)

I 0 2000 4000 6QOO 8000 10000 12000 14000 16000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

« 6

S 4

S 2

§ 0
w-2|

0 2000 4000 6000 8000 10000 12COO 14000 16000 16000

Tone (min)

Figure C13 Prediction on Deaerator Pressure (psig) Figure C14 Prediction on ID Fan A Suction Pres. (InH20)

4

1
I-10
3
lAp -15
I 0

FWW

 2000 4000 6000 8000 10000 12000 14000 16000 18000

2 0

0 2000 4000 6000 8000 10000 12000 14000 16000 16000

0 2000 4000 GOOO 8000 10000 12000 14000 16000 16000

Tffne (nfin)

-5-2

s

I 0 2000 4000 6000 6000 10000 12000 14000 16000 16000
I I I I I ' ' I ' I I VIlDl I ' 'P -I - ![■ I I - I I

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

3 4
a

« 2

« 0

0 2000 4000 6000 6000 10000 12000 14000 16000 18000
Tune (nrin)

Figure C15 Prediction on ID Fan B Suction Pres. (InH20) Figure C16 Prediction on RH Furnace Pres. after Econ (InH20)

I 0 2000 4000 6000 8000 10000 12000 14000 16000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
T[me((nn)

MOSOI
11000
c
0

1 950

s 900:I 0

mee

• est

 2000 4000 6000 8000 10000 12000 14000 16000 18000
10 r

2 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (mn)

Figure C17 Prediction on SH Outlet Temp. #1 (DegF) Figure CIS Prediction on SH Outlet Temp. #2 (DegF)

159

s 1500 — est

§1000

500
0 2000 4000 6000 8000 10000 12QQ0 1400D 16000 18000

13 0

-100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
v>
3

3 5
w »

o

S 0

n
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ttme (min)

1500

rm
g 1000

500
I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

'-MJWW
0 2000 4000 6000 8000 10000 12000 1400D 16000 18000

FT]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone (min)

Figure C19 1%/day drift on FW Flow (Klb/hr) Figure C20 1%/day drift on Mea. Steam Flow (Klb/hr)

I 100

1
I 50

1
s

0 2000 4000 6QOO 8000 10000 12000 14000 16000 18000

1 °
0 2000 4000 6QOO 8000 10000 12000 14000 16000 18000

10

|s
i 0Ajj

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T«ne(min)

180

•S 60

1
§40

i^o
g o 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

mee

Twn
fl V

o 0

s-10

0 2000 4000 6000 6000 10000 12000 14000 16000 18000

li
« 5

■mU
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

'nme(trin)

Figure C21 1% /day drift on Combustion Air Flow A1 (Klb/br) Figure C22 1% per day drift on Combustion Air Flow B1 (Klb/hr)

I 300

gzoo
s
iim

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0 ZOCO 4000 6000 8000 10000 12000 14000 16000 18000

J
0 2000 4000 6000 6000 10000 12000 14000 16000 18000

Time (nsn)

(3 0
€
»-1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S 0u
0 2000 4QQ0 6000 8000 10000 12000 14000 16000 16000

Time (min)

Figure C23 1%'day drift on Unit Gross Generation (MW) Figure C24 1%/day drift on Station Service Load (MW)

160

1 1500E

I
S 1000

— est

[JJi

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
lOOi

g-100

•200
0

oww
 2000 4000 6000 8000 10000 12000 14000 16000 18000

10

1 =
S 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ibne (tran)

Figure C25 1%/day drift on First Stage Pressure A (psig)

mea

— est

n

1

1-100
•200

0 20CO 4000 6000 8000 10000 12000 14000 16000 18000

lU
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone (min)

Figure C26 1%/day drift on First Stage Pressure B (psig)

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

13 0

0 2000 4000 6000 8000 10000 12000 14000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (min)

Figure C27 1%/day drift on Deaerator Pressure (psig)

EWWg-10
E
a

g "20I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

^ 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone (nun)

Figure C28 1%/day drift on ID Fan A Suction Pressure (InH20)

I 0

■a -5
1
1-10

WWW

I 0 2000 4000 6000 eooo 10000 12000 14000 16000 16000

0 20CO 4000 6000 8000 10000 12000 14000 16000 18000

iLMJiT^r
0 2000 4000 eooo 8000 10000 12000 14000 16000 18000

Time (mn)

£•4

I -- mea

I 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

g 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (mm)

Figure C29 1%/day drift on ID Fan B Suction Pres. (InH20) Figure C30 1% /day drift on RH Furnace Pres. after Econ (InH20)

161

n

F
1100

1000

900

w

E
0

100r

to 0

im I'v/Wv

200
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

J
•: 5

S 0

0 2000 4000 6000 6000 10000 12000 14000 16000 18000

Tone (min)

s 900

S 0 2000 4000 6000 8000 10000 12000 14000 16000 16000

-a 0

9 -100

200
0 2000 4000 6000 8000 10000 12Q0Q 14000 160QQ 16000

10
M

1 s
b
w

S a

0 2000 4000 6000 8000 10000 120QO 14000 16000 16000

Tone (min)

Figure C31 1%/day drift SH Outlet Temp. #1 (DegF) Figure C32 IWday drift on SH Outlet Temp. #2 (DegF)

|2XXI

lisoo
s
11000

500
I 0 2000 4000 6000 8000 10000 12000 1«X)0 16000 16000

IQOr

200
0 2000 4000 6CC0 8000 10000 12G00 14000 16000 18000

10

•2 5

u>

5 0

0 2000 4000 6000 8000 10000 12000 14000 160C0 18000

Time (min)

g 1000
E
S

mea

. est

y f! TTT

I 0 2DQ0 4000 6000 8000 10QQ0 12000 14000 16000 18000
100, ^ . , , , , , , ,

^-100

-200
0 2000 4000 6000 8000 10000 12000 14000 16000 16000

10

la
S 0

'I I ' >

0 2000 4000 6000 8000 10000 12QOO 14000 16000 18000

Tone (ntin)

Figure C33 5% step drop on FW Flow (Klb/hr) Figure C34 5% step drop on Measured Steam Flow (Klb/hr)

1100

j)

g 50

mea

- est

P

0 2X» K)00 6000 8000 10000 12000 14000 16000 18000

0 2000 1̂000 6000 8000 10000 12000 14000 16000 16000

A.

3 2000

0 2000 4000 6000 8000 10000 12000 14000 16000 16000

Tsne (rrin)

«1500

11000
500

mea

— est

I 0 2000 4000 GOOO 8000 10000 12000 14000 16000 18000
200

1 ̂
2

^-200

-400
0 2000 4000 6000 8000 10000 12000 14000 16000 16000

10
<0
9

s s
Vt '

<A

g 0,

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (mn)

Figure C35 5% step drop on Combustion Air Flow (Pet) Figure C36 A 20% drop in FW Flow #1 (Klb/Hr)

162

n - mca

— est

THTt

c 1500

0 2D00 4GOO 6000 8000 10000 12000 14000 16000 18000

0 2000 4000 6000 8000 10000 12Q00 14000 16000 18000

10

3

2 5
«

i 0UTLJ-J
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone <min)

500

0 2DQD 4000 6000 8000 10000 12000 14000 16000 18000

1000

Ltlj'1000

•2000
0 2000 4000 6000 80QO 10000 12000 14000 16000 18000

10
0>
3

S 5
(0 '

<0

g 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Tone (min)

Figure C37 Predicted Unit Gross Gen. (MW) w/ bad FW Flow #1 Figure C38 Predicted lost FW Flow (Klb/hr) starting at lOOOO"* min.

^ ISOO
5
§1000

£ 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

o -100

200
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
(0
3

1 5
o

S 0

0 2X0 4ax 60X 8000 100X 120X 14000 160X leox

Time (min)

g 200
mea

IX

§ 0

-IX
I 0 20X 4X0 60X SOX 10000 120X 140X 160X 180X

20r

a 0

0 20X 40X 60X dOX 100X 120X 140X 160X 180X

■S SV) ®

g
i 0

0 2X0 40X 6CX 80X lOOX 120X 140X 16DX 180X
Tone (trin)

Figure C39 FW Flow (Klb/hr) ajfler recovery Figure C40 Predicted Unit Gross Gen. (MW) w/ faulty FW Flow #1

I 2000

ll500
s
iitno

^-1C0

-200

10

3

3 5w '
o

g 0

0 2X0 40X 60X 80X 1Q0X 120X 140X 160X 180X
Tone (inn)

mea

1 20X
|l5X
s|10X
3

1 — mea

0 20X 40X 6ax 80X 10QX 120X 140X 160X 180X i) 20X 40X eox 80X 1Q0X 12DX 140X 160X 180X

M 0
3

s
S-100

0 20X 4QX 60X 80X 100X 120X 14QX 160X 180X] 2DX 4QX 60X SOX 100X 120X 140X 160X IdOX

T , , ,
v>
3

1 5
o

g 0
<0

1 . 1 1 1
0 20X 40X 60X 80X 100X 120X 14QX 160X 180X

Time (min)

Figure C41 1%/day drift on FW Flow #1 (Klb/hr) Figure C42 Coirected FW Flow #1 after replacement

163

E
2000

« 1S00

§1DCD

soo

-100 -

200
0 2000 4000 6000 8000 10000 12Q00 14000 16000 18000

10
in
3

B «
40 '

O

S 0

0 2000 4000 6000 8000 10000 120QO 14000 16000 18000

Tcme (min)

Figure C43 Conected FW Flow #1 with 20% drop

200

S 0

100

U<- I n - n ■!■ ■ I - T

liM
0 2000 4000 6000 80X 10000 12000 14000 16000 18000

ts 5

S 0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
lime (min)

Figure C44 Predicted Unit Gross Gen. (MW) after replacement

g 2D00

11000

I 0 2000 4000 6000 80QO 10000 12000 14000 16000 18000
100r

75 Or

-100

200
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

10
(A
9

S 5
40 *'

i 0
0 2000 40X 6000 8000 10000 12000 14000 16000 18000

Tone (mm)

Figure C45 Recovered lost FW Flow #1

i 200

•S 100
g
i °
3

re -100
(

10,

0 2000 4000 6000 6000 10000 12000 14000 16000 18000
10

«
3

I 5
g
in

g 0

0 2000 4000 6000 8000 10000 12000 140G0 16000 18000
Tme (min)

Figfure C46 Predicted Unit Gross Gea w/ recovered FW Flow #1

500
E 0 0.5 3.5

100

g 0

£-100

-200
0.5 1 1.5

IjIIS 5

S 0

0.5 1 1.5 3.5

Time(mmx1a)

Figure C47 Predicted FW Flow (Klb/hr) before retuning

11500
s
§1000
s
S soo
E 0 0.5 1.5 2 2.5 3 3.5

3 0

1.5 2 Z5 3 3.5

'd Jj^Li
Tone (mm X10*)

Figure C48 Predicted FW Flow (Klb/hr) after retuning

164

Appendix D. Noise Filtering Using SVD

165

The sensor measurement may contain noise due to system perturbation or environmental

caused instrument channel perturbation. This noise will be associated with the neural

network weight parameters and greatly affect the stability as well as the quality of the

network. Therefore it should be removed to stabilize the network. A truncated SVD as a

noise filter is applied for this purpose.

An example is presented here to show the mechanism of this technique. Three sine and

cosine signals x, y and z are plotted in Figure Dl.

c 0

50 100 150 200

E. 0

-1

& 0uj

-1

50

50

100

100

250

\ / \/ \ / \ / \

A \ / \ / \
\ / \ ' V /\ / \ / \ y ,

150 200 250

\ /\ /\ / \ nV /
\ /
\ / ,

150 200 250

Figure D1 Exemplar perfect signals

It is noticed that signals are highly correlated shown in below.

1.0000 0.9945 0.9945

0.9945 1,0000 0.9782

0.9945 0.9782 1.0000

166

By adding nonnal distributed noise into the variables, we have the noisy signals xn, yn

and zn plotted in Figure D2.

250100 150 200

50 100 150 200

50

250

100 150 200 250

Figure D2 Exemplar noisy signals

We can see that the signals are distorted due to noise. For the convenience of data

analysis, new vectors X and Xn are formed as:

X = [x;y;z]; Xn = [xn;yn;zn];

The noise levels for these signals are computed as:

res = Xn-X; level = std.(res')

level =

0.1016 0 0.0989

167

It is noticed that variables x and z are highly correlated, which can also be identified by

the singular values s from SVD;

[u,s,v]=svd(X); S=[]; for i=l:min(size(X)), S=[S s(i,i)];end; S

S =

16.8917 1.4485 0.0000

There is a big drop between 2°*^ and 3*^^ singular values, meaning that there are dependant

vectors in X. The rank ofX is deficient. We know that variables are highly correlated.

The important observation is that in the perfect data, the singular values drop off quickly,

but in the noisy data, the singular values only gradually get smaller. Evidently, the noise

in the signal prevents the singular values from dropping off. It is also noticed that the

singular values increase with minor component having a singular value of 1.4187

compared with 0 for noise-free data.

[Ti,s^v]=svd{Xn) ; S=[]; for i=l :inin {size (Xn)) , S=[S s (i,i)] ;end; S

S =

16.8236 1.8910 1.2695

An SVD-filtering process using a truncated SVD, which sets the small singular values

caused by the noise to be zero, intends to remove the noise from the signals. Through the

SVD-filtering process, the noise is removed, the reconstructed variables have much less

noise than the noisy signals. Figures D3 shows this noise removal with 2 major singular

values kept. The noise levels are decreased from 0.1016 and 0.0989 in the noisy data to

168

0.0429 and 0.0965 in the reconstructed data, respectively. However, the noise spreads

through the SVD procedure; for example, the noise-free data was contaminated through

the SVD procedure, the noise level is increased to 0.0508 in the reconstructed data.

Therefore, the SVD procedure splits the noise to all signals.

T3

50 100 200

T3

100 150 200

■o

100 150 200

250

250

250

Figure D3 Reconstracted signals

res = Yn new-X; level = std(res')

level =

0.0429 0.0508 0.0965

169

Appendix E. NLPLS Algorithm

170

The NLPLS algorithm is constructed based on the NLPLS framework shown in Figure

2.1. The NLPLS algorithm is formulated as follows (Qin and McAvoy, 1992):

1. Scale X and Y to zero-mean and unit-variance. Let = X, F^-Y and /? = 1;

2. For each factor h, take = some ;

3. PLS outer transform:

• in matrix X:

wl = arg^^ min||£j_, -Uf,wl = lulu,,, normalize to norm 1.

h = argr, min F^_, - t,wl = .

• in matrix Y :

= arg,^ mm ^h-i ~^h^h - "a ̂h-i / j normalize to norm 1.

«A = arg„^ mm =^A-l^A-

Iterate this step until it converges.

4. Calculate the X loadings and rescale the variables:

pI =arg^,min|^A-i-^Pl

171

normalize p, : p, /||/7, ||, t, ||/7J \p^ ||.

5. Find the inner network model: train the inner network such that the following error

function is minimized.

A=iK-/('.)r.

6. Calculate the residuals for factor h.

for matrix X, =E^_, -t^pl,

for matrix Y,F^= - u^ql,

where = /(? J.

7. Increment h by one, repeat Steps 2 through 6 until all principal factors are calculated.

172

Appendix F. Matlab Codes for System Design

173

F1 Neural Network Training with Cross Validation (Main Routine)

% autotrn.m

%

% A 4 layer NN training using cross-validation
% Use TSVD solving for bottleneck and output layer weights
% Network data group is generated by AUTOGROUP.m
%

% Xiao Xu, Nov 11, 1999

clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% load training/testing data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('the data format should be Pattern*Sig_channels\n');
load work_data_2;
load Final_Group;
stdx = std(dat);

ind = find(stdx <= 0.02);

if -isempty(ind)
dat(:,ind) = [];

end

clear stdx ind;

dat = medfiltl(dat,3);

num_groups = size(final_group,1);
temp_string = sprintf('train which network?[l-%d]: ',num_groups);
nn_no = input(temp_string);
group = [];
for i = 1:length(final_group)

if final_group(nn_no,i) ~= 0
group = [group final_group(nn_no,i)];

end

end

dat = dat(:,group);
dat_trn = dat(1:round(size(dat,1)*0.7),:); % training data
dat_tst = dat(round(size(dat,1)*0.7)+1:size(dat,1),:); % test data
clear dat;

fprintf (' There are %0.f patterns\n', size,(dat_trn, 1)) ;
fprintf(' There are %0.f signals\n',size(dat_trn,2));

% construct training/testing data

x = dat_trn;
x_p = perturb(x);
clear nr

i = 1:0.5*size(x_p,1);
x_pert = x_p(i,:);
x_free = row_subset(x_p,x_pert,i);
y_free = x_free;
X tst = dat tst;

% scale the data

[yn_free,xm,xs] = prestd(y_free');
yn_free = yn_free';
xn_pert = trastd(x_pert',xm,xs)';

174

xn_free = trastd{x_free',xin,xs) ';

clear dat_trn dat_tst;

percent=input('how many data do you want for training(%): ');
i = l:round{percent*0.01*size(yn_free,l));
p = [xn_pert(i,:);xn_free(i,:)];
t= [yn_free(i,:);yn_free(i, :)] ;

[v.P_free,ind] = row_subset(xn_free,xn_free(i,:),i);
[v.P_pert,ind] = row_subset(xn_pert,xn_pert(i,:),i);
[v.T,ind] = row_subset(yn_free,yn_free(i,:),i);

V.P = V.P_free';
v.T = v.T';

[novl,numin] = size(p); % p are input vectors
[nov2,numout] = size(t); % t are target vectors
if novl ~= nov2

error('The rows of input and target vectors must be same.')
end

p = p';
t = f;

% calculate # of hidden nodes

M_numhidl = [];
for j = l:numin

M_numhidl = [M_numhidl numhid_cal(xn_free(i,:),yn_free(i,j))];
end

numhidl = max(M_numhidl);
clear M_numhidl;
numhid2 = bottle{xn_free{i, :));
numhidS = numhidl;

clear x x_free y_free x_pert x_p xn_free yn_free xn_pert;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Printout network parameters.

fprintf('\nThis network has:\n\n');
fprintf(' %0.f input neurons\n',numin);
fprintf(' %0.f neurons in the 1st hidden layerNn numhidl);
fprintf(' %0.f neurons in the 2nd hidden layer\n',numhid2);
fprintf(' %0.f neurons in the 3rd hidden layer\n',numhidS);
fprintf(' %0.f output neurons\n\n',numout);
time_start = cputime;

fl = 'tansig'; % activation functions in each layer
f2 = 'purelin';
f3 = fl;

f4 = f2;

trial = 0;

trained = 'false';

trn_fns = input('select training function (l)traingdx (2)traincgf: ');
if trn_fns == 1

trn_fn = 'traingdx';
else

trn_fn = 'traincgf;
end

obj_fn = 'msereg';

while trial == 0

fprintf('There are %0.f input/output pairs in this training set.\n\n',novl);

175

%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize network. %

%%%%%%%%%%%%%%%%%%%%%%%%

net = newff(minmax(p),[numhidl numhid2 numhidS numout],...
{fl f2 f3 f4},trn_fn,'',obj_fn);

if strcmp(trained, 'false')
net.performParam.ratio = input('enter performance ratio: ');

end

if strcmp(trained, 'false') % set small initial weights
net.IW{l,l}
net.LW{2,1}
net.LW{3,2}

net.LW{4,3}
else

net.IW = IW; net.LW = LW

clear IW LW b;

end

0.l*randn(size(net.IW{1,1})
0.l*randn(size(net.LW{2,1})
0.l*randn(size(net.LW{3,2})
0.l*randn(size(net.LW{4,3})

net.b = b;

% Set up training parameters. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

net.trainParam.epochs = 9;
net.trainParam.show = 1;

net.trainParam.goal = .05;

% Maximum number of training epochs = 9
% Errors plotted in progress every 1 epoch
% Training error goal = 0.05

if strcmp(trn_fn,'traingdx')
net.trainParam.Ir = 0.01;

net.trainParam.mc = 0.95;

net.trainParam.lr_inc = 1.05;
net.trainParam.Ir dec = 0.7;

% Learning rate = .01
% Momentum = 0.95

% Learning rate increase = 1.05
% Learning rate decrease = 0.70

end

net.trainParam.max_perf_inc = 1.04; Error Ratio = 1.04

%%

% train the network using cross-validation and SVD

clf

for cycle = 1:100
[net,tr] = cvtrain(net,p,t);
nntwarn off

al = feval(fl,net.lW{l,l}*p,net.b{l}); % demapping layer output
nntwarn off

a2 = feval(f2,net.LW{2,l}*al,net.b{2}); % bottleneck layer output
[w2,b2] = tsvd(al,a2);
net.LW{2,l} = w2; net.b{2} = b2; % retune w/b using SVD
nntwarn off

a2 = feval(f2,net.LW{2,l}*al,net.b{2}); % bottleneck layer output
nntwarn off

a3 = feval(f3,net.LW{3,2}*a2,net.b{3}); % mapping layer output
[w4,b4] = tsvd(a3,t); % call SVD algorithm

net.LW{4,3} = w4; net.b{4} = b4;
if (w4-net.LW{4,3}) < le-5*ones(size(w4)) I ...

tr.perf(size(tr.perf,2)) <= net.trainParam.goal
fprintf('best weights found.\n')
break

end

end

clear al a2 a3 w2 b2 w4 b4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% preserve the trained weights/biases
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

IW = net.IW; LW = net.LW; b = net.b; trained = 'true';

176

i

the percent error goal

pct_goal = 0.01;

% test validation

[V_hat] = sim{net,V.P);
V = poststd(v.T,xm,xs);
V_hat = poststd(V_hat,xm,xs);
err_pct = (V-V_hat)./V;
sum_err = sum(abs(err_pct));
fprintfCThe test error goal is %f\n', pct_goal*si2e (V, 1)) ;
fprintf('The max test error is %f\n', max(sum_err));
if max(sum_err) > pct_goal*size(V,1)

fprintf('Add data to training set\n');
else

trial = -1;

end

clear V V_hat err_pct;

if max(sum_err) > pct_goal*numout
%%

% find the number of points with large error

index = find(sum_err > pct_goal*numout);
if isempty(index)

trial = -1;

breaic;

else

number = size(index,2);
end

P = p';
t = t';

adding = 'y';
point =0; % start adding data points
while strcmp(adding,'y')

index = max(find(sum_err > pct_goal*numout));
if ~isempty(index)

V.P = V.P';

v.T = v.T';

p = [p; V.P_pert(index,:);v.P_free(index,:)];
t = [t;V.P_free(index,:);v.P_free(index,:)];
[v.P_free,ind] = row_subset(v.P_free,v.P_free(index,:),index);

[v.P_pert,ind] = row_subset(v.P_pert,v.P_pert(index,:),index);
[v.T,ind] = row_subset(v.T,V.T(index,:),index);
V.P = V.P_free';
v.T = v.T';

sum_err = sum_err(:,ind);

point = point+1;

if (number > 10 S point <= round(0.l*number)) I (number < 10)
adding = 'y';

else

adding = 'n';
end

else

adding = 'n';
end

end

[novl,numin] = size(p);
[nov2,numout] = size(t);

P = p';
t = t';

177

end

end

if nn_no == 1
save autowb_Gl net xm xs

elseif nn_no == 3
save autowb_G3 net xm xs

end

fprintf('weights have been saved\n')'

% test network

tst = input('do network test?: ','s');
if tst == 'y'

[y,res,err_pct,fraean,vr] = nn_test(net,x_tst,xm,xs);
end

%%%%%%%%%%%%%%%%%%%%%%%%

% sensitivity analysis

sa = input('do network sensitivity analysis?: ','s');
if sa == 'y'

p_free = p(:,0.5*size(p,2)+1:size(p,2));
x_trn = poststd(p_free,xm,xs)';
sen_test(net,x_trn,xm,xs);

end

F2 Variable Grouping Finalization

% Finalize the groups initially obtained
% from AUTOGROUP.M by eliminating variables
% having poor correlations with others

% pairwise-wide.
%

% remove little changed variables
%

clear all

load work_data_2;
stdx = std(dat);

ind = find(stdx <= 0.02);

if -isempty(ind)
dat(:,ind) = [];

end

clear stdx ind;

dat = medfiltl(dat,3);

% calculate correlation matrix

cc = corrcoef(dat);

init_group = 1:length(cc);
clear dat;

cases = input('1)remove 2)not remove grouped vars: ');
max_num = input('max # of vars per group: ');

% input interested variables
%

Inst_var = [1 2 23 24 34 35 37 46 47 48 124 125);

178

% regrouping to remove unmonitorable variables

rem_var = [];
continue = 'yes';
while strcmp(continue, 'yes')

final_group = autogroup(init_group,cc,cases,max_num,Inst_var);
if cases == 2

loop_rem_var = 0;
for row = 1:size(final_group,1)

count = 0;

for col = 1:size(final_group,2)
count = count+any(final_group(row,col));

end

if count <= 5 & count ~= 0

rem_var = [rem_var final_group(row,1)];
loop_rem_var = final_group(row,l);

end

end

if ~isempty(rem_var) S loop_rem_var ~= 0
init_group = remover(init_group,rem_var);

else

fprintf('Grouping finally done\n');
break;

end

end

end

% finalize final_group

i = 1;
max_num_row = size(final_group,1);
while i <= max_num_row

if final_group(i,1) == 0
final_group(i,:)=[];
max_num_row = size(final_group,1)i

else

i = i+1;

end n

end

% sort the results

temp_final_group = zeros(size(final_group));

for row = 1:size(final_group,1)
temp_final_group(row,:) = sort(final_group(row,:));

end

rem_var = sort(rem_var);

final_group = temp_final_group;
clear row temp_final_group

save Final_Group final_group;
save Rem Var rem var;

F3 Automatic Variable Grouping Algorithm

function Group = autogroup(init_group,cc,cases,max_numbers,Inst_var)

179

%

% Use correlation analysis to intially group the variables
%

% initial setups

master_group = init_group;
ungrouped = init_group;
grouped = [];
Group = zeros(40,max numbers);

% start grouping

grouping = 0;
gg_process= 'y';
while strcmp(gg_process, 'y')

if isempty(Inst_var)
if -isempty(ungrouped)

Inst_var = ungrouped;
else

fprintf('process finish.\n');
brealc;

end

end

grouping = grouping+1;
fprintf('%d group(s) formed\n', grouping);
id = find(abs(cc(Inst_var(l),init_group)) >= 0.5);
group = init_group{id);
clear id;

% remove low correlated variables

temp_group = group;
for i = 2:length(group)

count = 0;

for j = 1:length(group)
if abs(cc(group(i),group(j))) < 0.5

count = count+1;

end

if count >round(0.1*length(group))
fprintf('signal %d is excluded\n',group(i));

temp_group(i) = 0;
brealc;

end

end

end

group = sort(temp_group);
if isempty(group)

gg_process= 'n';
break;

end

ind = find(group == 0);
group(ind) = [];
clear temp_group;

% find the optimal combination groups

[sort_cc,id] = sort(cc(Inst_var(1),group));
id = id(length(id):-1:1); % sort cc from high to low
group = group(id);

180

clear sort_cc;

if length(group) > max_numbers % group signals
Group(grouping,1:max_numbers) = group(1:max_numbers);
start_pos = find(id == Inst_var(l));
if start_pos > raax_numbers

Group(grouping,l:max_numbers) = group([start_pos 1:(max_numbers-l)]);
end

else

Group(grouping,1:max_numbers) = [group zeros(l,max_numbers-length(group))[
end

inc_var_id = [];
for i = 1:length(Inst_var)

inc_var_id = [inc_var_id find(Group(grouping,:) == Inst_var(i))];
end

% remove grouped interested variables

Inst_var = remover(Inst_var,Group(grouping,inc_var_id));
if cases == 1

init_group = remover(init_group,Group(grouping,:));
end

% remove common variables

grouped = [grouped Group(grouping,:)];

grouped = sort(grouped);
for i = 1:length(grouped)-1

if grouped(i+1) == grouped(i)
grouped(i) = 0;

end

end

redundancy_id = find(grouped == 0);
grouped(redundancy id) = [];

% regroup remaining variables

ungrouped = remover(master_group,grouped);
ungrouped = sort(ungrouped);

end

F4 Variable Removal Algorithm

function x = remover(x,sub x)

sort_sub_x = sort(sub_x);

for i = 1:length(sort_sub_x)
- - n n •id = find(x == sort_sub_x (i)) ;

,x(id) = [];

181

F5 Sample Selection Algorithm

function [v,ind] = row_subset(x,xi,index)

^•

"or.ere"e d ijubco" d-;:"-; frorn 'ine

" - d2*"= net.
-C.

- "v, :>:D' 'R0>;_?v53E7 rNrxx:
I

>' — ■■■■ricir.ci d = ;;s .=:et;
'-'T -- ceiecton dtte .ner;

< — aer.erited .eur detj cct;
■).

t xir.o :o/.7?/''5

[nr,nc]=size(x);
[xr, xc]=size(xi);
if nc ~= xc, error('matrix dimension must agree'); end
y=(];
if index(1) -= 1

y=[y;zeros(index(1)-1,1)];
end

for i=l:xr-l
delta=index(i+1)-index(i);
if delta > 1

y=[y; xi(i,l); zeros(delta-1,1)];
else

y=[y; xi(i,l)];
end

end

y=[y; xi(xr,l)];
[yr,yc]=size(y);
if yr < nr

delta=nr-yr;
y=[y; zeros(delta,1)];

end

ind=find(y~=x(:,1));
v=x(ind,:);

F6 Robust Training Algorithm

function x_pert = perturb(x)

Z "tr. n-T-rw^rk in ir.pui* o-st
- -.no c-rrTr fr-'e c.-itc: r. '-kn •TU'pj""
^ •'f ttc- r'P'-:::3 l-r-vol a-*-* or cI "rr.-J.? tho ir;i:: :r

iratrix.

V Xt ''n-vemty "; yy -) le

[nr,nc] = size(x); t De-- n" .-Ice L ;r,j:v'- dar3 sf.

min_max_value = minmax(x');
range = min_max_value(:,2)-min_max_value(:,1);
pert = range';
X = x;

1=0; T Oer "'ocnter te-o.
for i = l:nr • "or -cv; i, ■], i-i-i ranitr

182

j = j+1;
x(i,j) = x(i, j)+0.2* (rand(l)-0.5)*pert (:, j);

if j == nc ? 7i "'d : f
j = 0;

end

end

x_pert = [x;X];

F7 Calculation of Number of Mapping/Demapping Layer Nodes

function numhid = nuinhid_cal (x,y)

' ncc?s: h::sec or. cufires '•c-hnioue

if length(x) > 1000
int = round(length(x)/lOOO);
if si2e(x,l) < size(x,2)

X = X(:,1:int:length(x));
y = y(:,l:int:length(y));
X = X';

else

X = X(1:int:length(x),:);
y = y(l:int:length(y),:) ;

end

end

[u,s,v] = svd(x,0);

sum_s = 0;

for i = l:size(s,2)
sum_s = sum_s+s(i,i);

end

for j = l:size(s,2)
nor_s (j)=s (j , j) ./sum_s; ? r ized .--(.-.vu

end

info = [];

for k = 1:length(nor_s)
info = [info;sum(nor_s(1:k))] ;

end

cut_off = .9;
m = max(find(info <= cut_off));
if ra < length(nor_s)

if abs(info(m)-cut_off) > abs(info(m+1)-cut_off)
m — m+1;

end

end

s = s (1 :m, 1 :m) ;

u = u(:,l:m);
V = v(:,l:m);

w = v*inv(s) *u'*y; Z -s"i::.a" s n

y_hat = x*w;

RSE = sqrt(sse(y-y_hat));

183

c = sqrt (sum((y* . 01) .'^2)/length (y)) ;

numhid = round(5*log(RSE/c));

F8 Calculation of Number of Bottleneck Layer Nodes

function m = bottle(x)

if length(x) > 1000
int = round(length(x)/lOOO);
if size(x,l) < size(x,2)

X = X(:,1:int:length(x));
X = X';

else

X = x(l;int:length(x),:);
end

end

[u,s,v] = svd(x,0) ;

sum_s = 0;

for i = l:size(s,2)
sum_s = sum_s+s(i,i);

end

for j = l:size(s,2)
nor_s (j) =s (j , j) . /sum_s; i 5 i-.-jd si nc:;'

end

info = [);

for k = 1:length(nor_s)
info = [info; suin(nor_s (1: k))] ;

end

cut_off = .95;
m = max(find(info <= cut_off));
if m < length(nor_s)

if abs(info(m)-cut_off) > abs(info(m+1)-cut_off)
m = m+1;

end

end

F9 Training with Cross Validation Algorithm

function [net,tr] = cvtrain(net,x,y)

184

y = :'-It s, row.:; r's:--;-".'T:c ^r.d 'jre

X:, Cc" -.b, irJ?

X = X';

y = y';
(novl,numin] = size(x);

[nov2,numout] = size(y);

if novl ~= nov2

errorCThe number of input and target vectors has to be the same.')
else

nov = novl;

end

clear novl nov2

b ci'-t up the s no:se-rrot point?;

i = l:2:nov/2; ? ir:dit--.t of noisy poi.nts
j = nov/2+1; i; ir.c:.cr:.t of noire-: r'='0 cojr.t.e
id = [i j);

p = x(id,:); ?• ir.p'.:t data
t = y(id,;); t data

[v.P,ind] = row_subset (x,p,id); '■ ■.•alj .i.atior. data
[v.T,ind] = row_subset(y,t,id);

P = p';
t = f;
V. P = V.P';
v.T = v.T';

rr:!i;: tre Xetvoro

[net,tr] = train (net, p,t,[],[],v);

FIO Neural Network Performance Testing Algorithm

function [y,res,err_pct,fmean,vr] = nn_test(net,dat,xm,xs);

? r.r_te.~ t. :t

"• r> test procra." for p-ro";ect
T: cperatron --ndititr :henv«^s, 2Vf '.'see for

" rot wo r r e t j -; - .
0

t X i
' Jar. 1;,:?::-;

clf

drift = input('Simulate drift?[y,n]: ','s');
if drift == 'y'

undrift = dat;
disp('l. ramp drift;')
disp('2. step drop;')
disp('3. momentarily step drop.')
change_type = input('your choice: ');
sig = 0;
while sig >= 0

185

str = sprintf('drifting which signal?[l-%d,-1 for no more drift sigs]:
',size(dat,2));

sig = input(str);
if sig < 0

break;

end

pet = input('enter the percentage of drift: ');
start = input('start at ');
if change_type == 3
finish = input('finish at ');
end

if change_type == 1
for i = start:size(dat,1)

dat(i,sig) = dat(i, sig)-0.01*pct/(24*60)*(i-start)*dat(i,sig);
end

elseif change_type == 2
dat(start:size(dat,l),sig) = dat(start:size(dat,1),sig)*(l-pct*0.01);
else

dat(start:finish,sig) = dat(start:finish,sig)*(l-pct*0.01);
end

end

end

nr = size(dat,1);

xn = trastd(dat',xm,xs);

fl='tansig'; f2='purelin';f3=fl;f4=f2;

adapt = input('system condition change?: ','s');
if strcmp(adapt,'y') • 5V2 rcTu-ec tbe r.etwcrl-:

if size(xn,2) > 3000 " rocuc>^- rrsirix s.l ::e f> r svr calculaTi
int = round(size(xn,2)/3000);

red_xn = xn(:,1:int:size(xn,2));
else

red_xn = xn;
end

nntwarn off

al = feval(fl,net.IW{1,1}*red_xn,net.b{1});
nntwarn off

a2 = feval(f2,net.LW{2,1}*al,net.b{2});
nntwarn off

a3 = feval(f3,net.LW{3,2}*a2,net.b{3});
[w4,b4] = tsvd (a3, red_xn); t ca:". 3'.'? a", cirirhm

net.LW{4,3} = w4; net.b{4} = b4;
end

X = sim(net,xn) ;

y = poststd (X,xm,xs) '; ? n ec c.'-pv,-

^ "V t " Pr t r 1 ;■ / ? ; t '• t i ̂ ■. -- '■ : :
; t'^t'=-r-ri,.ro var.iar.ce and faulted ",o = r;s

scale = 1;
if strcmp(drift,'n')

[data_mean,Sigma] = sprt_par(net,dat,xm,xs);
else

[data_mean,Sigma] = sprt_par(net,undrift,xm,xs);
end

a r. V -- a e ■; a ■- > ■; y C; . y y r, y

' •"vlcula'-e --ear err-T pet'-'arf
^ ? 1 , g ' y ■% " c. 7 ^ r i 7- 7. V ^ -v •: t. u 7 7 -7

res = dat-y;
err_pct = mean(abs(res./y))*100;

"11 ;■ 7- 7- y 7- 7. 7 7 7. g
7;p i

186

drawCmd = 'y';
while drawCmd' == 'y'

str = sprintf('which signal you want to plot[l-%d][0: exit]? ',size(dat,2));
signal = input(str);
if signal > size(dat,2) 1 signal < 0

disp('input out of range !!!')
str = sprintf('which signal you want to plot[l-%d][0: exit]? ',size(dat,2));
signal = input(str)

end

if signal == 0
break;

end

[status_mod,status_unmod,upline] = sprt (res,data_mean,'sigma);

"3; \ 9'

r: 1 o i ri'w 9'

clf

subplot(311)
plot(dat(:,signal),'color',[0.5 0.5 0.5]);hold on;plot(y(:,signal),'k—');hold off
legend('mea','est');

ylabel('measurement/estimate')
str = sprintf('Average Error Level = %f %%',err_pct(signal));

title(str)

xlim=get(gca,'XLim');
if strcmp(drift,'y') & pet == 100

axis([0 inf -100 inf]);

end

set(gca, 'XLim',xlim);
subplot(312)
plot(dat(:,signal)-y(:,signal))

ylabel('residual')
subplot(313)
plot (status_mod (:, signal),'color',[. 5 0 0]) ;hold on;...
plot(status_unmod(:,signal),'g—');hold off

.legend('modified SPRT','original SPRT');
ylabel('sensor status')
axis([0 inf min(status_mod(:,signal))*1.1 max(status_mod(:,signal))*1.1]);
set(gca,'XLim',xlim);
xlabel('data sampled in every minute')

end

Fll Faulty Sensor Repiacejoient Algorithm

% replacement.m
%

% Replacing faulty signals when fault occurs
%

% Xiao Xu

% Jan 2,2000

clf

undrift = dat;

disp('l. ramp drift;')
disp('2. step drop;')
disp('3. momentarily step drop.')
change_type = input('your choice: ');
sig = 0;
while sig >= 0

str = sprintf('drifting which signal?[l-%d,-1 for no more drift sigs] : ',size(dat,2));
sig = input(str);

if sig < 0

187

break;

else

signal = sig;
end

pet = input('enter the percentage of drift: ');
start = input('start at ');
if change_type == 3

finish = input('finish at ');
end

if change_type == 1
for i = start:size(dat,1)

dat(i,signal) = dat(i,signal)-0.01*pct/(24*60)*(i-start)*dat(i,signal);
end

elseif change_type == 2
dat(start:size(dat,1),signal) = dat(start:size(dat,1),signal)*(l-pct*C.01);

else

dat(start:finish,signal) = dat(start:finish,signal)*(l-pct*0.01);
end

end

% Determine residual variance and faulted means

[data_mean,Sigma] = sprt_par(net,undrift,xm,xs);

% faulty signal replacement
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp('start replacement')
pause

alpha = O.Ole-2;

beta = lOe-2;

lowline = log(beta/(1-alpha));
upline = log((1-beta)/alpha);
det_level = input('detection level (%) = ');
m = det_level/100*data_mean;

init_detect_time = inf;
status = zeros(1,size(dat,2));
for i = 1:length(dat)

if rem(i,100) == 0
fprintf('time elapsed = %d min.\n',i);

end

xn = trastd(dat(i,:)',xm,xs);
X = sim(net,xn);

y = poststd(X,xm,xs)'; % unsealed output
res = dat(i,:)-y;

status = statust (((m./sigma) .'-2) /27) .* (abs (res) ./m-0. 5*ones (1, size (res, 2))) j
if(status(signal) <= lowline)

status(signal) = 0;
end

if (status(signal) > upline)
status(signal) = upline;
dat(i,signal) = y(:,signal);
if i <= init_detect_time & i >= start

init_detect_time = i;
end

xn = trastd(dat(i,:)',xm,xs);
X = sim(net,xn);

y = poststd(X,xm,xs)'; % unsealed output
dat(i,signal) = y(:,signal);

end

end

188

% rerun network prediction

xn = trastd(dat',xm,xs);
X = sim(net,xn);

y = poststd (X,xin,xs) % unsealed output

draw_plot(undrift,y,data_mean, sigma) ;

% signal recovered percentage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

recover_part = mean (abs (y(init_detect_tiine:length (dat), signal) ./.
undrift(init_detect_time:length(undrift),signal)))*100;

F12 Truncated Singular Value Decomposition Algorithm

function [w,b]= tsvd(x,y)

tFUMOTiriV; ^ rsvdix,y}

?erf'■ rms a '.ecKt c~-jaro esalr'Ste ;s:r:g ^rur.cated sing:j'..ar
iU-~ decompositi-n (JV?! . Fun-tior. takes two = rgurer.t.-:

t - Q~z -r.dep-ncett v=r. matrix (Q: 5 ot input variobias;
!: y - ?,*r depencent var. matrix (R: J of onto.:- variables)

■1,

?, arc estimates:
t

~ V - v=:c;--- mairix
■; b - bias v--ttor

0 Tie -nptt ".ttrlx is padc-c v;itn t bias tatrix.
t ̂ i■;ise is rlir.ir.ot^G in ire input set by the porameter e.

" X: at' Feb. ii, 1033

if size(x,l) > size(x,2)
error('input/output should be row vectors. ')

end

if size(x,2) ~= size(y,2)
error('input/output should have same patterns.')

end

if size(x,2) > 1000
int = round(size(x,2)/lOOO);
X = x(:,1:int:size(X,2));
y = y(:,l:int:size(y,2)) ;

end

fprintf('start SVD \n');
if nargout <= 1

w = y/x;
else

X = X';

y = y';
[r,c] = size(x);

X = [x ones(r,l)]; radcir.q ur.ity bias u*
[u,s,v] = svd(x); ' SVC vf Input vec'-'-r.s

'' r'^ f' nd t'-c- tru-;"a':td o"in' ir. "ua'V'.x s
sum s = 0;

for i = l:size(s,2)

189

sum_s = sum_s+s(i,i);
end

for j = l:slze(s,2)
nor_s (j)=s (j , j) ./sum_s; r.-.r red s Lr.iy:. 1.7.1- vslues
end

info = [];
for k = 1:length(nor_s)
info = [info;surti(nor_s (l:k))] ;
end

cut_off = .98;
m = max(find(info <= cut_off));
if m < length(nor_s)

if abs(info(m)-cut_off) > abs(info(m+1)-cut_off)
m = m+1;

end

end

s = s(1:m,1:m);

u = u(:,l:m);

V = v(:,1:m) ;

beta = v*inv (s) *u'*y; % e^rimate sol'jtjcn
w = beta (1: c, :) '; % e.ntraor. v.-eigh': matrix

b = beta (c+1, :) '; i exT-raot bie? vector
end

F13 Sequential Probability Ratio Test (SPRT) Parameter Setting

function [data_mean,sigma] = sprt_par(net,dat,xm,xs);

" er.rt_par.;r,
•?.

0 Calculate the parameters in rr-xC al cor; tr.rr.
■r. irean - unfculred signal mean
' vr - rtnr.dard deviation of recicuaic
C

- :-:u

xn = trastd(dat',xm,xs);
X = sim(net,xn);
y = poststd(X,xm,xs) '; " unsealed "utput

Cc-ter:t;ne r=siauaj var; aro.? ind ;=r;l-.cd means
ii 17:;; ilSilsii'v v. ..A-;:-,-;': - r cat ^

res = dat-y;
Sigma = std(res);
data mean = abs(mean(dat));

F14 SPRT Procedure Processing

function [status_mod, status_unmod, upline] = sprt(res,data_mean,sigma);

rr--cer..t SPP.T prc-o-a :ro

status_mod = zeros(size(res));
status_unmod = zeros(size(res));

det_level = input('detection level (%) = ');
m = det_level/100*data_mean;

alpha = O.Ole-2;

190

beta = lOe-2;

lowline = log(beta/(1-alpha));
upline = log((1-beta)/alpha);

for t = 2:size(res,l)

status_mod(t,:) = status_mod(t-1,:) + (((m./sigma).^2)/27).*(abs(res(t, :)) ./m-
0.5*ones(1,size(res,2)));

status_unmod(t, :) = status_unmod (t-1, :) + ((m./sigma) .'^2) .* (abs (res (t, :)) ./m-
0.5*ones(1,size(res,2)));

for sig = 1:size(res,2)
if(status_mod(t,sig) <= lowline)

status_mod(t,sig) =0;
end

if(status_mod(t,sig) > upline)
status_mod(t,sig) = upline;

end

if(status_unmod(t,sig) <= lowline)
status_unmod(t,sig) = 0;

end

if(status_unmod(t,sig) > upline)
status_unmod(t,sig) = upline;

end

end

end

F15 Autoco]rrelation Matrix Calculation

function CC = autocorr(dat);

clear all

load wor)c_data_2;
load Final_Group;
stdx = std(dat);

ind = find(stdx <= 0.02);

if ~isempty(ind)
dat(:,ind) = [];

end

dat = medfiltl (dat,.3) ;
X = dat';

X = X (:, 1:10:size(x, 2)) ;
clear stdx ind final_group dat;

[m,N] = size(x);

191

^ ̂ ̂ t %'..' ■;

X = x-mean(x') '*ones(1,size(x,2));

" -vs-iT-a*-? auicT'-rrelsJior; nisirix a_xv

Max_Tirae_Lag = input('enter max time lag (return for max. time lag) : ') ;
if isempty(Max_Time_Lag)

Max_Time_Lag = N-1;
end

R_xx = [];
k = 0;
while k <= Max_Time_Lag

cov = zeros(m,m);
for i = l:N-k
cov = cov+x(:,i+k)*x(:,i) ';

end

temp = l/N*cov;
if k == 0 ;■ zero tire lat cov.

cO = temp;
end

for ii = l:m 5 y.--rm5]tze
for jj = l:m

temp(ii,jj) = temp(ii,jj)/sqrt(cO(ii,ii)*cO(jj,jj));
end

end

R_xx = [R_xx;temp];
k = k+1;

end

F16 Sensitivity Analysis Algorithm

function sen_test(net,dat,xm,xs)

■?; rer._tc-.et

" cc-nc; r.ivity cralysis or- five layer MK. Each .ir.p^jt vzctor
1 was perturbed by 5;- . Plots chance in ovtput due to ea-.t ir.p-

^ liic--- ;-:j, 3ep ", ;

clf

X = dat;

[patterns] = size(x,l);
sprintf('construct input data set.\n')
[patterns,numin] = size(x);
numout = numin;
y = X(:,1:numout);

min_max_value = minmax(y');
range = min_max_value(:,2)-min_max_value(:,1);

sonci^tvitv anslysic

m = zeros (numout,numin);

xn = trastd(x',xm,xs);
out = sim(net,xn);

192

y = poststd tout,xm,xs) '; 3 Mr.'ccsl.-- ^-urr-ui-

pert = 0.05*range'; : np-jt by
for j = l:numout ?erburr- '"rro

X = x;

for i = 1:patterns
X(i,j) = X(i,j)-pert(:,j);

end

end

Xn = trastd(X',xm,xs);
Out = sim(net,Xn);

Y = poststd(Out,xm,xs) ? convert scaled output back to criginai
m(:,j) = (sum(abs((y-Y)./y))./length(y))'*100; ? Error between input and output

end

n Korctaliz--. Motrix tor riO'tring

s = sum(m);

sm = ones{numout,1)*s;

if sm ~= 0

nm=m./sm;

end

Plot Sensitivities

V r it: t.1? l 5.1- ■-,■1 ■It.

subplot(2,1,1)
bar(m','stacked')
title('Sensitivity Analysis of Neural Network')
ylabelCSum of % Output Change')

subplot(2,1,2)
bar(nm','stacked')
xlabeK'Input Changed by 5%')
ylabel('Normalized Output Change')

193

VITA

Xiao Xu was bom in Chengdu, China on November 11, 1966. He attended Xi'an

Jiaotong University where he received the Bachelor of Science in Nuclear Engineering in

1987. After working for several years at Nuclear Power Institute of China, he entered the

Master's program in Nuclear Engineering at the University of Arizona in 1992 and

received his Master of Science in 1994. In 1995, he began his Ph.D. program in Nuclear

Engineering at the University of Tennessee. He spent five years of research in artificial

intelligence, especially in neural network modeling for complex systems. He earned his

Doctor of Philosophy in Nuclear Engineering in 2000.

194

	Automated neural network-based instrument validation system
	Recommended Citation

	Automated neural network-based instrument validation system

