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Abstract

Models that describe the spread of invading organisms often assume no

Allee effect. In contrast, abundant observational data provide evidence for

Allee effects. In chapter 1,1 study an invasion model based on an integrodif-

ference equation with an Allee effect. I derive a general result for the sign of

the speed of invasion. I then examine a special, linear-constant, Allee growth

function and introduce a numerical scheme that allows me to estimate the

speed of traveling wave solutions. In chapter 2, I study an invasion model

based on a reaction-diffusion equation with an Allee effect. I use a special,

piecewise-linear, Allee population growth rate. This function allows me to

obtain traveling wave solutions and to compute wave speeds for a full range

of Allee effects, including weak Allee effects. Some investigators claim that

linearization fails to give the correct speed of invasion if there is an Allee

effect. I show that the minimum speed for a sufficiently weak Allee may be

the same as that derived by means of linearization. In chapters 3 and 4, I

extend a discrete-time analog of the Lotka-Volterra competition equations

to an integrodifference-competition model and analyze this model by investi

gating traveling wave solutions. The speed of wave is calculated as a function

of the model parameters by linearization. I also show that the linearization

may fail to give the correct speed for the competition model with strongly

interacting competitors because of the introduction of a "weak Allee effect".

A linear-constant approximation to the resulting Allee growth function is
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introduced to estimate the speed under this weak Allee effect. I also analyze

the back of the wave for the competition model. Some sufficient conditions

that guarantee no oscillation behind the wave are given.
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Chapter 1

IntegrodifFerence Equations,
Allee Effects, and Invasions

1.1 Introduction

Ecologists are increasingly concerned with the effects of invading organ

isms [23, 42, 76, 94]. Thus, there is keen interest in models that can predict

the rates of spread of invaders. Most invasion models have per capita growth

rates that decrease with density. For these models, one can determine the

speed of invasion from a linearized version of the original model [75, 99].

At the same time, many natural populations exhibit Allee effects [1, 2] or

depensation [19] and show an increase in the per capita growth rate at low

densities. This complicates matters: linearization may fail to give the correct

speed of invasion if there is an Allee effect.

Allee effects may be weak or strong. Consider the density-dependent

difference equation

Af.+i = (1.1.1)



where Nt is the population size in generation t. I will assume that the growth

function f{Nt) satisfies

/(0) = 0, /(1) = 1, (1.1.2)

so that there is a trivial equilibrium at the origin and a nontrivial equilibrium

that has been normalized to one. I will also assume that there is, at most,

one other equilibrium between zero and one. Under these assumptions, the

population exhibits a strong Allee effect if there exists a range of Nt, in the

interval of [0,1], such that

f{N,) > f(0)Nt, 0 < /'(O) < 1, (1.1.3)

and a weak Allee effect if there exists a range of Nt, in the interval of [0,1],

such that

f(N,) > /'(0)JV„ /(O) > 1. (1.1.4)

A strong Allee effect introduces a population threshold. The population must

surpass this threshold to grow. Figure 1.1 shows representative strong and

weak Allee growth functions.

Allee effects can arise from a shortage of mates [45, 46, 63, 74, 100], lack

of effective pollination [33, 62], population fragmentation [34, 64], or many

other causes. Allee effects can slow down or stall an invasion [66, 67].

In this chapter, I will analyze integrodifference equations (IDEs) with

Allee effects. IDEs are models for populations with discrete, nonoverlapping

generations and well-defined growth and dispersal stages. In the simplest
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Figure 1.1: Representative strong and weak Allee growth functions

The strong Allee growth function in subfigure (a) has population threshold
a, and satisfies the conditions that f{Nt) > f'{0)Nt, 0 < /'(O) < 1, for
a range of Nt in [0,1]. The weak Allee growth function in subfigure (b)
has no population threshold, but there is a range of Nt in [0,1] such that
f{Nt) > f'{0)Nt with /'(O) > 1.



case, /+00
k{'^ - y)f{Nt{y)) dy, (1.1.5)

-oo

where Nt{x) is the population density, in space, of a species at generation

t. Time is discrete, space is continuous. The function f{Nt{x)) describes

the growth of a species during its sedentary stage. The redistribution kernel

k{x — y) is the probability density function for dispersal from a source at y.

Neubert et al. [77] describe how dispersal kernels can arise from mechanistic

models of dispersal. The integral tallies dispersal from all sources y.

Interest in IDEs in ecology has been increasing [3, 6, 15, 16, 20, 36, 37,

38, 39, 41, 57, 58, 59, 60, 65, 77, 79, 99, 100]. One reason is that IDEs

can handle an extremely wide variety of dispersal distributions. IDEs can

have traveling wave solutions [39, 58, 70, 71, 72, 103, 104] similar to those of

reaction-diffusion equations. However, they can also give rise to accelerating

invasions [20, 60].

Despite this keen interest, there has been little work on Allee effects and

IDEs. Lewis and Veit [100] used an IDE with an Allee effect to describe the

dynamics of the House Finch invasion in eastern North America. Their model

was quite general, but they relied on numerical simulations. In contrast, Kot

et al. [60] took an analytic approach, but focused on an extremely narrow

limiting case. In this chapter, I extend the work of Kot et al. [60]. I also hope

to complement recent work on Allee effects in reaction-diffusion models [21,

66].

.  In section 1.2,1 derive a general result on the sign of the speed of invasion



in the presence of an Allee effect. I follow this, in section 1.3, with an iterative

scheme for estimating the rate of spread for a linear—constant Allee growth

function. I use this scheme, in section 1.4, to estimate the rates of spread for

both thin and fat-tailed dispersal kernels. I discuss the implications of my

results in section 1.5.

1.2 A general result

In this section, I derive conditions that determine whether a traveling wave

solution advances or retreats. I assume that the dynamics of a population is

described by the IDE

/+0O
- y)f{Nt{y)) dy, (1.2.1)

■00

where the kernel A:(a; — y) is a bounded and symmetric probability density

function that satisfies /+0O
k{z) dz = 1. (1.2.2)

■OO

I also assume that the growth function is infinitely smooth (/ G C°°),

increases with density,

f(N) > 0, (1.2.3)

and satisfies

f{N) > 0, /(O) = 0, /(I) = 1. (1.2.4)

I am thus ignoring the possibility of overcompensation. Since / is strictly

increasing, I can define its inverse f~^.



Under these assumptions, it is reasonable to look for traveling wave solu

tions

Nt+i{x) = Nt{x-c) (1.2.5)

that satisfy

lim Nt{x) = 1, lim Nt{x) = 0 (1.2.6)
X-^—OO I—>+oo

[58, 70, 71, 72,103,104]. The number c is the speed of the wave. If c > 0, the

wave front moves toward low densities, and the population always approaches

the carrying capacity; the invader is successful. On the other hand, if c < 0,

the wave front moves toward high densities, and the population eventually

goes extinct everywhere.

The traveling waves satisfy

/+00
- y)f{N{y)) dy, (1-2.7)

•oo

where I have now taken the liberty of dropping the subscripts on the Nt^s. I

will assume that these waves are infinitely smooth, N{x) G C°°, and strictly

decreasing, N'{x) <0. I will also assume that

(PM Nlim lim ̂  = 0, 2 = 1,2,... (1.2.8)
x->-oo aX^ x->-+oo dx^

and that there exists a positive number M such that

d'f(N{x))
< M for all X and 2 = 1,2, (1.2.9)

dx^

Lui [72] discusses conditions that guarantee the existence of traveling waves

for models with Allee effects.

Based on the above assumptions, I derive the following result;



Theorem 1.1. For the traveling wave solutions of IDE (1.2.1),

c<0<^ /" [f{N)-N]dN (1.2.10)
Jo

c>0<^ f\f{N)-N]dN>0, (1.2.11)
Jo

and

= 0^ f [f{N) -N]dN = 0. (1.2.12)
Jo

Here, means "if and only if ".

Proof : If I subtract N{x) from both sides of traveling-wave equation

(1.2.7) and let z = x — y, I obtain

«+oo/-hoo
k{x — y)f{N{y)) dy — N{x) (1.2.13)

■OO/+00
k{z)f{N{x — z))dz — N[x). (1.2.14)

■OO

Let me write f{N{x — z)) as the sum of an odd and an even function in

f{N{x - z)) = foix, z) + fe{x, z), (1.2.15)

where

fo{x, z) = ^[f{N{x - z)) - f{N{x + z))], (1.2.16)
z) = ^[f{N{x - z)) + f{N{x + z))]. (1.2.17)

Since f{N{x — z)) and f{N{x+z)) are bounded by zero and one, and because

the kernel integrates to one, equation (1.2.2), the integrals of k{z)f{N{x—z)),

7



k{z)fo{x,z), and k{z)fe{x,z) with respect to ̂  each exist and

r»-foo r+oo/4-00 r+oo
k{z)f{N{x - z)) dz= k{z)fo{x, z) dz

•oo J—oo/+00
k{z)fe{x,z) dz. (1.2.18)

•OO

The first integral on the right hand side of equation (1.2.18) equals zero

because k{z)fo{x,z) is an odd function in 2:. It follows that

/+00
k{z)fe{x,z)dz — N{x). (1.2.19)

■00

If I multiply equation (1.2.19) by df(N{x))/dx and integrate with respect

to X from —00 to +00, I get

-+00 If f-\-0O f+OO[  [N(x - c) - Ar(a:)] ^ dx = r C °°
J —00 J —00 J—00

f'^°° df— / N{x)— dx, (1.2.20)
J —00

where

df _ df{N{x))
(1.2.21)

dx dx

Since / is a strictly increasing function of N and N is a strictly decreasing

function of x, the derivative of / with respect to x is negative. The integrand

k{z)fe{x, z)df/dx is thus of one sign. By Tonelli's Theorem [105], I can switch

the order of integration in the first integral on the right hand side of equation

(1.2.20).

Let me expand fe{x, z) as a Taylor series in 2:,

/,(x,z)=/(W(x))+f:^^;j^f>i. (1.2.22)
i=l ^ '



It follows that

r>+oo

f  [A/'(2; — c) — N{x)] ̂  dx = f [f{N{x)) — N{x)] ̂  dx
J — OO J —oo/+00 n-\-oo QQ

/  ̂~^^Ji{x,z)dxdz. (1.2.23)
•00 J —00 »'__1

where

and

Jfo: z)=k(z) — ̂^^ ~ ̂  \2i)\ dx^'dx

^2if _ d^if(^N{x))

(1.2.24)

(1.2.25)
dx"^^ dx"^^

I will now show that the second integral on the right hand side of equation

(1.2.23) vanishes. The bound (1.2.9) guarantees that {Ji{x,z)} is a sequence

of integrable functions in x. Moreover, for fixed z,

C+oo oo /'+O0 2ip+oo ^ r+02 2i I J2i f
df

r+oo

<-

dx (1.2.26)

00 ^2i

i=\ ^ '

< Mk{z) [cosh(z) — 1] < oo.

dx

dx (1.2.27)

(1.2.28)

(1.2.29)

Thus, by the Levi Theorem for series [8]

r»+oo /*+oo QQ /»+oo OQ /*+oo/H-oo ^-|-oo ̂  ^+oo ^ ^+00
/  ''^Ji{x,z)dxdz= / ^ / Ji{x,z) dx dz (1.2.30)

■oo J—oo J—oo j_j J—oo

or

/+00 ^+oo oo y+oo oo 2i
/  '^ Ji{x,z)dxdz= ^k{z)j—^Sidz, (1.2.31)

•oo ^-oo J-oo



where
+00 J2icP'fdf

However, all of the Si vanish by integration by parts,

/+00
•CO

dx^ dx 2 \dx j

+00

1 / df dNV
2 \dN dx )

+00

= 0,

5o =

/+00
•00

£11. dx = (£11
00 dx'^ dx ydx'^dx,

\  +00 p-\-oo

/ —oo */ — dx^ dx^
dx

n  1 fd f0- - ' •'
2 j?

2 V d

\ 2

x'^

Si = L

+00

= 0,

—00

+°° d^'f df
dx^^ dx

/d^#xr°°_ r
\dx^'-'^dxj\ J_

'+00

dx'^^~^ dx"^
dx

= (-!)-/f+°°S+'fd'fT dx
i-iy-' (If

dx^

00

+00

dx^+^ dx

= 0, i>3.

Notice that the above calculations require

V  df dflim - hm -r^ = 0, z = 1,2,...,
x^-00 dx'^ i->+oo dx^

1.2.32)

1.2.33)

1.2.34)

1.2.35)

1.2.36)

1.2.37)

1.2.38)

1.2.39)

1.2.40)

which can be deduced from asymptotic boundary condition (1.2.8) using the

chain rule.

Since the integrals in equation (1.2.31) equal zero, integral equation (1.2.23)

reduces to

[iV(2; - c) - Ar(a;)] ̂  dx = [f{N{x)) - N{x)] £ dx (1.2.41)

10



or

"+00^ J [iV(x - c) - NW] ̂dx = I [f{N) - JV]^ dN. (1.2.42)
Setting y = f{N) gives me that

^ [/(JV)-N]^dN = -j\dv+ [ /-'(!/) dy. (1.2.43)
Since the sum of the two areas bounded by

y = l, iV = 0, y = /(iV) (1.2.44)

and

y = 0, N = l, y = f{N) (1.2.45)

equals one (see Figure 1.2), I have

f f-Hy)dy = l- [' f{N)dN. (1.2.46)
^0 Jo

It follows that

J  [N{x - c) - N{x)] ̂ dx = - NdN+1- f{N) dN (1.2.47)
or

f  [N(x - c) - N{x)] ̂  dx= f [N - f{N)] dN. (1.2.48)
J-oo Jo

Since N is a. strictly decreasing function of x and the derivative of / with

respect to x is negative, I have

c > 0 N{x — c) — N{x) > 0 on (—oo, oo) (1.2.49)

/  [Ar(a; - c) - N{x)] — dx < 0 (1.2.50)
J —oo

[ [f{N) -N]dN> 0. (1.2.51)
Jo

11



B f(N>

A

Figure 1.2: The sum of area A and area B = 1
Note: Area A is the area bounded by (1.2.45) and area B is the area bounded
by (1.2.44).

Similarly, I can show that result (1.2.10) for the negative sign of the speed and

result (1.2.12) for the steady-state solution hold. □

Theorem 1.1 implies that the wave is advancing if and only if

[ [f{N) -N]dN> 0, (1.2.52)
Jo

and that it is retreating if and only if

f [f{N)-N]dN <0. (1.2.53)
Jo

The wave is a steady state if the area below the growth function and above

the 45'' line equals the area above the growth function and below the 45°

line,

[ [f{N) -N]dN = 0 (1.2.54)
Jo

(see Figure 1.3).

12



(a,f(a))

Figure 1.3: The area below the growth function and above the 45° line equals
the area above the growth function and below the 45° line

Example 1.2.1. Consider IDE (1.2.1) with growth function

BN^
m) (1.2.55)

where B > 2. Under the assumptions at the beginning of this section, I can
determine the sign of the speed c of the wave solution for various choices of
B.

Since

=  (,2.56)

I conclude that c > 0 if and only if

B

B

or

B > 3.2952.. (1.2.58)

13



I also have c < 0 for S < 3.2952... and c = 0 for 5 = 3.2952 — Figure 1.4

shows the growth functions and traveling wave solutions for B = 5.0, 3.2952,

and 2.3. □

1.3 Estimating invasion speed:
a numerical scheme

Theorem 1.1 determines the direction of a traveling wave solution of IDE

(1.2.1) with an Allee effect. The theorem does not give me the actual speed.

Unfortunately, even estimating the speed for most Allee growth functions

is difficult. In this section, I develop a numerical scheme to estimate the

invasion speed for a particularly simple growth function [78]:

XNt, Nt < a,

1, Nt > a,
f{Nt) = (1.3.1a)

where

a

(see Figure 1.5).

Notice that f{Nt) has a strong Allee effect if

0<A<-, 0<o<l (1.3.1b)

a weak Allee effect if

0 < A < 1, (1.3.2)

1< A < i, (1.3.3)
a

14



/(A^r)

f(N,)

f(Nr)

0-'

N,(x)

R^S.O

-2

N,(x)

R = 3.2952

N,(x)

R = 2.333

Figure 1.4: A rational growth function and its traveling wave solutions for
various choices of the parameter B

The growth function, equation (1.2.55), is shown on the left for 5 = 5 (top),
B = 3.2952 (middle), and B = 7/3 (bottom). The traveling wave solutions
for these parameters are shown on the right. If the area between the growth
function and the 45° line is positive (top), the waves move to the right. If
this area is negative (bottom), the waves move to the left. If this area is
zero (middle), the traveling wave is a steady-state dine. The waves were
simulated by integrating IDE (1.1.5) with 2^^ mesh points and an FFT-
assisted implementation of the trapezoidal rule. The kernel was the Laplace
distribution, equation (1.3.11), with a = 3. Each panel shows five iterates of
the traveling wave.

15



fiN.)

a

0< A< 1

fW

b

1 <A<-

Figure 1.5: The Linear-constant Allee growth function

The growth function is defined by equations (1.3.1a) and (1.3.1b); it consists
of a linear ramp of slope A and a constant top. The function has (a) a strong
Allee effect for 0 < A < 1 and (b) a weak Allee effect for 1 < A < l/o. There
is no Allee effect for A = l/o.

and no Allee effect if

A=i. (1.3.4)
a

I study IDE (1.2.1) with a symmetric kernel and the linear-constant Allee

growth function (1.3.1). I introduce a numerical scheme for estimating the

speed of the traveling wave solutions.

1.3.1 Traveling wave solutions

To estimate the speed of invasion, I look for a traveling wave solution. Sup

pose this traveling wave is moving to the right and that it attains the thresh

old value o at a; = 0 and time t. Traveling-wave equation (1.2.7) and equation
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(1.3.1a) imply that the traveling wave satisfies

poo

N{x — c) = X j k{x — y)N{y)dy + G{x), (1.3.5a)
Jo

N{0) = a, (1.3.5b)

where

G{x) = 1 — f k{z)dz. (1.3.5c)
J —OO

I have, once again, dropped the subscript on Nt- Equation (1.3.5a) is a

Wiener-Hopf integral-difference equation [32]. If c = 0, then equation (1.3.5a)

is a one-sided or Wiener-Hopf integral equation of the second kind [43, 88].

For the case A = 0, system (1.3.5) reduces to

N{x) = G{x -f c), (1.3.6a)

G{c) = a. (1.3.6b)

I may thus conclude that the traveling wave solution takes the shape of the

function G{x) and that the speed c is given by equation (1.3.6b), or

c = G-\a) (1.3.7)

(see [60] for details).

For the case A ̂  0, I will try to solve system (1.3.5) by considering a

Neumann series [88] of the form

OO

N{x)=Y^X%{x). (1.3.8)
1=0
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After substituting this series into system (1.3.5) and matching powers of A,

I obtain

uq{x) = G{x + c)^ (1.3.9a)
poo

Ui{x)= k{x + c-y)ui-i{y)dy, 2 = 1,2,..., (1.3.9b)
Jo

CL = ̂(c) "h 'iti(0)A + 'ii2(0)A^ + .... (1.3.9c)

It is difficult to apply numeric methods directly to equation (1.3.9b) be

cause of the infinite upper limit of integration. For Wiener-Hopf equations,

numerical analysts commonly use a finite-section approximation [7, 11, 44,

96]. This approximation allows me to replace the infinite upper limit of

integration with an appropriate positive finite number L, so that iterative

method (1.3.9) becomes

uo{x) — G{x + c), (1.3.10a)

Ui{x)= k{x + c-y)ui-i{y)dy, 2 = 1,2,..., (1.3.10b)
Jo

a = G(c) -j- 22i(0)A -f- 222(0)A^ "F .... (1.3.10c)

The accuracy of this method is sensitive to the choice of L.

If I choose a value of c, I can iterate equation (1.3.10b) starting with

the function G(x + c). For the integration, I use a fast-Fourier-transform-

assisted [6] implementation of the trapezoidal rule. For each iteration, I

evaluate Ui(x) at the origin to get the next coefficient in equation (1.3.10c).

Equation (1.3.10c) gives the relationship between the speed c and A. Since

all of the Ui are positive, Descartes's rule of signs guarantees that equation
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(1.3.10c) has a single positive root A for fixed c. I determine this root and

solve for A as a function of c (or, equivalently, for c as a function of A)

numerically using Brent's method [89].

Even though this is a numerical scheme, I can calculate the successive

iterates, Ui{x), analytically for at least one choice of the kernel k(x). This

kernel lets me test the effectiveness of Dr. Kot's code.

Example 1.3.1. Consider the Laplace kernel

k{x) = Jae-"!'"!, (1.3.11)
Zi

with

a; > 0,
G{x) = { (1.3.12)

1 - a; < 0.

For the case A = 0, I have { lp-a(x+c) r > 0
(1.3.13)

1 - a; < 0,

and

( Aln2(l-o), a>|,
c=G-^{a) = l (1.3.14)

[ -A In (2a), a < i.

For Laplace kernel (1.3.11) with A ̂  0, equation (1.3.5a) can be rewritten

N{x) = A / dy
Jo 2

p+CX> -t
+A / -ae''^''+''-y^N{y)dy + G{x + c), (1.3.15)

Jx+C 2
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for X > —c, and

^+00 -1
N{x) = X -Q:e"(^+'=-s')Ar(y) dy + G{x + c), (1.3.16)

Jo 2

for X < —c. The solution on the interval (—00, —c) is determined by the

solution on the right-half real line (a; > 0).

After applying algorithm (1.3.10) to equation (1.3.15), I obtain

Wo(:r) = (1.3.17a)

rx-tc 1

^ J dy
P+CC 1

+ / -Q!e°(''+'=~^^Ui_i(y) dy « = 1,2,..., (1.3.17b)
Jx+C ■"

0, = Gi(c) -|- ui(0)A W2(0)A^ -+-. . . (1.3.17c)

for X > —c.

To second order in A, I have

N{x) = + ^[1 -f 2a(a; -I- c)]e-'^(^+2c)
2  8

+—[(1 + 3q;c + 3q:^c^) -I- 2q;(1 -|- 2ac)a; -I- (1.3.18)

for X > —c. Equation (1.3.17c) now reduces to

a = + ^(1 + 2ac)e-2"= + ^(1 + 3ac + (1.3.19)
Z  o lb

By using equation (1.3.19), I can plot the speed c as a function of A for

various choices of a.
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Figure 1.6 shows the numerical data for order A and order A^ on top of

the corresponding analytic curves that I get from equation (1.3.19). The

agreement is quite good. I have also plotted the curves for the order A^° and

order A®"'' power series. I expect the different-order curves to agree for small

A and to diverge for large A, and this is indeed so. These results suggest

that my numerical scheme is self-consistent. How accurate, however, are the

various curves? I can get some feel for their accuracy for A = 1 /a.

For A = l/o, there is no Allee effect and I can compute the true speed.

Since the Laplace kernel has the moment generating function

/-l-oo
k{z)e^''dz, (1.3.20)

■OO

the true speed c can be obtained from the parametric equations

M'(s) ,
=  TTTl 1.3.21)M(s) M{s) ^ '

(see [60]). For the case

a = 0.5, A = 2.0, a = 1.0, (1.3.22)

the speed is c = 1.898985— I can now use my numerical scheme to esti

mate A for various orders of the power series in equation (1.3.10c). Since

A = 2.0, I can compute the difference between the numerically estimated

A and the true A (see Figure 1.7). The error decays as the reciprocal of

order. □
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a = 0.5

a = 1.0

c  1 -

O(A^)

om

0.5-

0 0.5 1

A

1.5

Figure 1.6: The speed c as a function of A for the Laplace distribution

I chose q; = 1 and Allee threshold a = 0.5. The speeds were obtaining numeri
cally, using iterative scheme (1.3.10). The plot shows numerical data of order
A and A^ atop the corresponding analytical curves from equation (1.3.19).
The order A^° and order A®"" numerical data are also plotted. Integrations
were performed using an FFT-assisted implementation of the trapezoidal rule
with 2^^ mesh points and an upper limit of integration oi L — 50.
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c = 1.898985

A = 2.0
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Order
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Figure 1.7: The error in A for different orders of power series (1.3.10c) for
the Laplace distribution

The figure is for the Laplace distribution with a — 1.0, an Allee threshold
of a = 0.5, and the speed c = 1.898985 The true value is A = 2.0 (see
equation (1.3.21)). Estimates of A were obtained by iterating and solving
equations (1.3.10) numerically using 2^^ mesh points and an upper limit of
integration of L = 50.
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1.4 Other numerical examples

Few kernels are as tractable as the Laplace distribution. I must rely on nu

merical procedures for most distributions. In this section, I use my iterative

scheme to estimate the speeds for thin-tailed and fat-tailed redistribution

kernels. I use "thin-tailed" for kernels such as the normal distribution and

the Laplace distribution that have moment generating functions. I use "fat-

tailed" for kernels such as the exponential square root distribution and the

Cauchy distribution that do not have moment generating functions.

Example 1.4.1. Consider the normal distribution

k(x) = (1.4.1)
VSttct

with

I show c(A) for the normal distribution and a = 0.5 in Figure 1.8. □

Example 1.4.2. Consider the exponential square root distribution
2

k{x) = (1.4.3)

with

G{x) — ^(1 + ay/x)e~°'^ (1-4.4)
for a; > 0.

This distribution has moments of all integer order, but no moment gen

erating function. This distribution gives rise to accelerating invasions in the
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1.5

Weak Allee

Figure 1.8: The speed c as a function of A for the Laplace, normal, exponen
tial square root, and Cauchy kernels

The parameters a. and o were chosen as a = 1.0 (Laplace), o = 1.0 (nor
mal), a = 1.0 (exponential square root), and a = 1.0 (Cauchy). The Allee
threshold is o = 0.5 for all kernels. The curves were computed using iter
ative scheme (1.3.10) with 2^^ mesh points, and upper limits of integration
of L = 50, L = 30, L = 400, and L = 6000. The thin-tailed Laplace and
normal distributions generate finite-speed traveling waves for all positive A.
The speed diverges to infinity for the fat-tailed exponential square root dis
tribution for some A > 1 and for the fat-tailed Cauchy distributions at or
near A = 1.
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absence of an Allee effect [60]. Figure 1.8 shows a monotonic increase in the

wave speed with increasing A for o = 0.5. The speed appears to diverge to

infinity for some A greater than one. I am, however, suspicious of some of

my large A numerical results, for reasons to be discussed. □

Example 1.4.3. Consider the the Cauchy distribution

k{x) = - ^ (1.4.5)
TT [a'^ + x^)

with

= 1-^ (^)I  TT \OlJ

for a; > 0.

The Cauchy distribution is the classic example of a fat-tailed distribution

that lacks all moments. This distribution, like the square root distribution

gives rise to accelerating invasions in the absence of an Allee effect. In Figure

1.8,1 see that the speed c increases with the net reproductive rate A and that

it diverges at or near one for o = 0.5. □

The two fat-tailed distributions show similar large-A behavior for other

choices of the threshold level a: the speed for the Cauchy distribution contin

ues to diverge at or near one. Similarly, the speed for the exponential square

root distribution continues to diverge for some A greater than one.

The choice of L is critical for my numerical results. If I choose an L too

large, numerical instabilities arise. Conversely, if L is too small, I expect a

large error from neglecting too much of the integral. Consider the Cauchy

distribution. If I fix the speed c, the Allee threshold a, the order of the power
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series, and the number of mesh points n of integration, I see, in Figure 1.9,

the effect of L on A.

For the Laplace kernel and the normal distribution, I easily chose upper

limits L from the plateaus of the curves X{L). I chose L — bO for the Laplace

distribution and L = 30 for the normal distribution. Figure 1.10 shows the

influence of L on A for the exponential square root distribution with speeds

c = 2.0 and c = 5.0. The first curve reaches a plateau prior to the onset of

oscillations. If I increase the speed to c = 5.0, I lose my plateau. For the

exponential square root distribution, I could not find a good choice of L for

my iterative scheme. I chose L = 400.

1.5 Discussion

Allee effects can slow down [66] or reverse [67] traveling wave solutions of

reaction-diffusion equations. For integrodifference equations (IDEs), Allee

effects can play an additional role: they can turn accelerating invasions into

constant-speed invasions [60]. In this chapter, I have tried to broaden my

understanding of the effects of Allee effects on simple IDEs.

I have followed two complementary paths. In section 1.2, I have derived

a simple formula for the sign of the speed of a traveling wave solution for a

general, single-species IDE. This formula resembles a well-known result for

the generalized Nagumo [17] or bistable [54] reaction-diffusion equation. My

result holds for redistribution kernels that are bounded and symmetric. It

suggests that the ultimate success of a sufficiently large invasion is indepen-
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c = 5.0

0 0.4 0.8

LCxlO^)

Figure 1.9: The slope A as a function of the upper limit of integration L for
the Cauchy distribution

The plot shows the effect of the upper limit of integration on the value of A
produced using numerical scheme (1.3.10) for order 500 with 2^^ mesh points,
speed c = 5.0, and an Allee threshold of a = 0.5. As L increases, the slope
A approaches a plateau. For larger values of L, the slope oscillates due to a
numerical instability. Care must be taken to choose a value of L from the
plateau.
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Figure 1.10: The slope A as a function of the upper limit of integration L for
the exponential square root distribution

The speed c was chosen as c = 2.0 for the top and c = 5.0 for the bottom.
The plots show the effects of the upper limit of integration on the value of A
produced using numerical scheme (1.3.11) for order 500 with 2^^ mesh points
and an Allee threshold of a = 0.5. For c = 2.0, the curve rapidly reaches a
plateau before succumbing to a numerical instability. For c = 5.0, there is
no obvious plateau. In this case, it may be difficult to choose an appropriate
upper limit of integration.
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dent of the exact redistribution kernel and depends only on the form of the

growth function. Loosely speaking, if the area of increase exceeds the area

of decrease, a la equation (1.2.11), traveling waves will be waves of invasion.

While the exact form of a symmetric kernel does not have an obvious

effect on the ultimate success of a sufficiently large invasion, it does have a

profound influence on the speed with which that invasion occurs. In section

1.3, I developed a numerical scheme for estimating the speed of invasion for

a linear-constant growth function. This function shows all the important

properties of more general Allee growth functions and can exhibit the full

range of strong and weak Allee effects. The use of this growth function

establishes an intimate tie between traveling wave speeds for integrodifference

equations with Allee effects and the theory of Wiener-Hopf integral and

integral-difference equations.

In section 1.4,1 used my numerical scheme to estimate the speed of inva

sion for various thin-tailed and fat-tailed redistribution kernels in the pres

ence of both strong and weak Allee effects. For two fat-tailed examples, a

strong Allee effect could always turn an accelerating invasion into a constant-

speed invasion (or retreat). A weak Allee effect might or might not turn an

accelerating invasion into a constant-speed invasion. For the Cauchy distri

bution, which has no moments, the wave speed diverges to infinity at or near

the boundary, A = 1, between strong and weak Allee effect. For the exponen

tial square root distribution, which has moments, but no moment generating

function, the wave speed diverges for some A > 1. Thin-tailed distributions
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were better behaved and always gave rise to finite speeds.

These results have some interesting consequences. Hosono [48] has shown

that an inferior competitor can introduce a weak Allee effect into the growth

rate of a superior competition. This suggests that an inferior competitor

might be able to turn the accelerating invasion of a superior competitor into

a constant-speed invasion for some kernels, but not for others. I hope to

determine if this is true in future research.
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Chapter 2

Speeds of Invasion in a Model
with Strong or Weak Allee
Effects

2.1 Introduction

Biological invasions [1-4] have long been of interest. Invading organisms play

important roles in both economy and ecology. One significant way to under

stand these invasions is to estimate rates of spread. Most invasion models

assume no Allee effect: per capita growth rates decrease with density (see

subfigure 2.IB). One can determine the speed of invasion for models without

Allee effects by linearization [75, 99]. In contrast, abundant observational

data [4, 25, 33, 46, 61, 62, 63, 64, 97] provide evidence for an increase in the

per capita growth rate at low densities (see figures 2.ID and 2.IF). Odum [81]

first referred to this phenomenon as "Allee's Principle", and it is now called

an Allee effect [1, 2] or depensation [19]. I will show, by example, that lin

earization may still give the correct speed of invasion for sufficiently weak
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f(n)

-0.5
1  0

Figure 2.1: Representative strong, weak, and no-Allee-effect population
growth rates and the corresponding per capita growth rates

The no-Allee-effect population growth rate in subfigure A satisfies the condi
tion that f{n) < /'(0)n, for all n in [0,1]. The corresponding no-Allee-effect
per capita growth rate g in subfigure B decreases with density. The strong-
Allee population growth rate in subfigure C has a population threshold a,
and satisfies the conditions that f(n) > /'(0)n, /'(O) < 0, for a range of n in
[0,1]. The corresponding strong-Allee-effect per capita growth rate g in sub-
figure D increases with density at low densities, commencing with a negative
value. The weak-Allee population growth rate in subfigure E has no popu
lation threshold, but there is a range of n in [0,1] such that /(n) > /'(0)n
with /'(O) > 0. The corresponding weak-Allee per capita growth rate g in
subfigure F starts with a positive value and increases with density at low
densities.
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Allee effects.

Most people regard the strong Allee effect as the Allee effect and ignore

the weak Allee effect [5, 21, 22, 33, 34, 46, 60, 66, 67, 69, 85, 100], In fact,

Allee effects may be weak or strong. Consider a population that is governed

by
dn ,

M = /W. (2-1-1)
where n is the population size at time t. I will assume that the growth

function f{n) satisfies

/(0) = 0, /(1) = 0, (2.1.2)

so that there is a trivial equilibrium at the origin and a nontrivial equilibrium

that has been normalized to one. I will also assume that there is, at most,

one other equilibrium between zero and one. Under these assumptions, the

population exhibits a strong Allee effect if there exists a range of n in the

interval of [0,1], such that

/(n)>/'(0)n, /'(0)<0, (2.1.3)

and a weak Allee effect if there exists a range of n, in the interval of [0,1],

such that

/(n) > f'{0)n, /'(O) > 0. (2.1.4)

The difference between the strong and weak Allee effects lies in the sign

of the slope of the growth function at the origin or, equivalently, in the sign

of the per capita growth rate when the population is rare. A positive sign
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implies that the Allee effect is weak, while a negative sign indicates the ef

fect is strong. A strong Allee effect introduces a population threshold. The

population must surpass this threshold to grow. In contrast, a population

with a weak Allee effect does not have a threshold. Figure 2.1 shows repre

sentative strong, weak, and no-Allee-effect population growth rates and the

corresponding per capita growth rates. Clark [19] and several other investi

gators refer to a strong Allee effect as critical depensation and a weak Allee

effect as noncritical depensation. Notice that the definitions of strong and

weak Allee effects in this chapter differ from those of [45].

One of the earliest examples of a weak Allee effect is found in experi

mental work on fiour beetles of the genus Tribolium [1, 2, 18, 55, 73, 86].

These studies showed that the per capita growth rate of beetles reaches its

maximum at an intermediate population size and that this rate is positive

when the population is rare. Two other examples of a weak Allee effect oc

cur in the experimental work of Robertson [91] and Petersen [87] on Enchelys

farcimen and Paramecium caudatum. Robertson [91] found that when two

Enchelys farcimen individuals were placed together in a restricted amount of

culture medium, the early rate of reproduction, following a period of read

justment, was over twice that when a single Enchelys farcimen individual was

so treated. Petersen [87] obtained the same results for Paramecium cauda

tum using larger volumes of culture medium. Turchin and Kareiva [97] also

provided experimental data that highlighted a weak Allee effect for aphid

colony size. These Allee effects are weak because the populations do not
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exhibit any thresholds. Numerous examples of weak Allee effects can also be

found in [1, 2].

In this chapter, I will analyze a reaction-diffusion equation with an Allee

effect. Reaction-diffusion equations describe populations with growth and

dispersal. In the simplest case,

iT't = f{n) + na;x, (2.1.5)

where n{t, x) denote the population density of a species at time t and position

X, f{n) is the population growth rate. Time and space are both continuous.

A classic example is Fisher's equation [28], with no Allee effect, where

/(n) = n(l-n). (2.1.6)

This equation was first proposed by Fisher [28] for a progressive wave of

gene increase due to a locally favorable mutation for a uniformly distributed

population in one dimensional space. It was then applied by Skellam [95] to

the study of population dispersal. This equation has traveling wave solutions

n{x — ct) for all velocities c> 2 = c* [28, 56].

Interest in wave speeds for Allee effects has been increasing [9, 10, 21, 26,

27, 35, 41, 60, 66, 67, 92, 93, 100, 102]. Cruickshank et al. [21] developed a

numerical method to determine velocities for reaction-diffusion models with

strong Allee effects. However, their model of European fox rabies has a

particularly low carrying capacity so that the speed under strong Allee effects

is not much different from that computed from threshold-free models. Lewis
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and Kareiva [66] used a partial differential equation model to examine the

influences of a strong Allee effect on local population dynamics, but relied on

numerical investigations. Lewis and Veit [67] used a general integrodifference

equation (IDE) model with an Allee effect to describe the dynamics of the

House Finch invasion in eastern North America, but gave only numerical

simulations. In contrast, Kot et al. [60] analytically investigated an IDE

model with a Allee effect, but focused on an extremely narrow limiting case.

Despite this increasing interest, most work does not distinguish between

strong and weak Allee effects (but see [19, 102]). Most people take the strong

Allee effect as "the Allee effect" and neglect the weak Allee effect. In this

chapter, I extend a model of Jones and Sleeman [49] to include both strong

and weak Allee effects. I analytically solve for the traveling wave solutions

and compute the wave speeds for a full range of Allee effects. The transition

from strong Allee effect to no-Allee effect through the weak Allee effect region

gives the most interesting results. I also hope to complement recent work of

Wang et al. [102] on integro difference equations.

2.2 The model

Jones and Sleeman [49] (see also [13]) considered the following piecewise-

linear approximation to the Fisher equation:

/("
. _ / n, 0 < n < i, foou
'"U-n, \<n<\.
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Reaction-diffusion equation (2.1.5) with population growth rate (2.2.1) has

a minimum wave speed of c* = 2. For any wave speed c > 2, one can solve

for the exact traveling wave solution.

I generalize equation (2.2.1) by incorporating strong and weak Allee ef

fects,

f{n) = ( '"■ °z"tr (2-2-2)
where

b < 1 (2.2.3)

(see Figure 2.2). Notice that /(n) has a strong Allee effect if

b < 0, (2.2.4)

and a weak Allee effect if

0 < 6 < 1. (2.2.5)

I am interested in the speeds and shapes of traveling wave solutions.

2.3 Traveling wave solutions

To estimate the speed of invasion for reaction-diffusion equation (2.1.5) with

population growth rate (2.2.2), I consider a traveling wave solution of the

form

n{x,t) = u{z), z = X — ct, (2.3.1)

where c is the speed of the wave. I assume that the population goes to zero

in front of the wave,

lim u{z) = 0, (2.3.2)
z-^+oo
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Figure 2.2: The piecewise-linear Allee population growth rate

The population growth rate is defined by equations (2.2.2) and (2.2.3); it
consists of two linear ramps of slopes b and —1. The function has A: a strong
Allee effect for 6 < 0 and B: a weak Allee effect for 0 < 6 < 1. There is no

Allee effect for 6 = 1.
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that it approaches its carrying capacity behind the wave,

lim u(z) = 1, (2.3.3)
z— oo

and that the wave is centered at the origin,

u(0) = i. (2.3.4)

I determine the speed of invasion using standard methods [17]. For a

simple traveling wave, (2.3.1), reaction-diffusion equation (2.1.5) reduces to

u" + cu' + f(u) = 0, (2.3.5)

where primes denote differentiation with respect to z. Multiplying equation

(2.3.5) by u' and integrating from z = —oo to z = -foo gives me

1  r+oo p+oo j
-u'^\tZ+c dz + / f{s)^ dz = 0. (2.3.6)

J—CX3 J —00

Since u' goes to 0 as z goes to —oo or -|-oo, I conclude that

^ _ fo f(^) (2.3.7)
f°°u'2dz
J —00

Since u'"^ dz is positive, the wave speed c has the same sign as the integral

li f{s) ds.
I now define v(z) = u'{z) for differential equation (2.3.5) so that

u' = V, v' — —cv — f{u). (2.3.8)

I wish to find a heteroclinic orbit that lies in the lower-half {u, v) phase plane,

that connects (1,0) to (0,0), and that remains in the strip 0 < m < 1. There is
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no such orbit if the critical points (0,0) and (1,0) are centers or foci. Finally,

I assume that the wave solution satisfies the fiux-continuity condition

lim v(z) — lim v(z).
z^0+ z->o-

(2.3.9)

The linearization about (0,0) gives the characteristic equation

=  + cA + 6 = 0. (2.3.10)
-A 1

-b -c-A

The two eigenvalues are thus

—c + y/c^ — Ah
Ai = —

2  '
Xo —
 "

—c — — Ah
(2.3.11)

2

If 6 < 0, the critical point (0,0) is a saddle point. If 6 > 0, speed formula

(2.3.7) guarantees that c is positive. I need c > 2y/b for real eigenvalues.

(Complex eigenvalues lead to oscillatory solutions about (0,0) that violate

« > 0.) I thus restrict my attention to the case c > 2\/6. This implies that

the critical point (0,0) is a stable node.

The linearization about (1,0), in turn, gives the characteristic equation

-A 1

1  —c — A
= A^ + cA - 1 = 0 (2.3.12)

with eigenvalues

—c + Vc^ + A —c —
A3 - ^ , A4 = ^ .

The critical point (1,0) is thus a saddle point.

Notice that differential equation (2.3.5) has the general solution

(2.3.13)

u{z)={;
+ A2e^^^, z >0,

+  z <0,
(2.3.14)
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for (? ̂  46, and

\ 1 + + Z)4e^^^ z<0, (2-3.15)

for = 46. The coefficients Ai, A2, Az, A4, Di, D2, Dz, D4 are determined by

centering condition (2.3.4), boundary conditions (2.3.2), (2.3.3), and flux-

continuity condition (2.3.9).

In the next two subsections, I will consider two possible heteroclinic con

nections.

2.3.1 Strong Allee effect (6 < 0)

For the strong Allee case, 6 < 0, the critical points (0,0) and (1,0) are both

saddle points (see Figure 2.3). For each 6 < 0, there is one and only one

speed c that gives rise to a heteroclinic connection from (1,0) to (0,0). The

proof is similar to that of Theorem 4.76 in [17] and to that of Theorem 4.15

in [27].

I now derive the unique speed c and the corresponding traveling wave

solution. Since 6 < 0, equation (2.3.14) is the general solution and

Ai >0, A2 < 0, A3 >0, A4 < 0. (2.3.16)

Centering condition (2.3.4) and asymptotic boundary conditions (2.3.2) and

(2.3.3) guarantee that

Ai = 0, A2 = ̂, Az = ~, A4 = 0, (2.3.17)
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V 0

A

b = - 0.5

c = 0.2887

0.5

U

Figure 2.3: The phase plane for traveling wave solutions of function (2.2.2)
with 6 < 0

Note: The phase plane for the strong Allee case, b = —0.5 and c = 0.2887,
shows that the two critical points (0,0) and (1,0) are both saddle points.

and that solution (2.3.14) reduces to

c~v/c^—4b ,

u{z) = { 2^ ' ̂V  / I ^ —c+\/c^+4 _
1 - ie 2

z>0,

z<0.
(2.3.18)

Applying flux-continuity condition (2.3.9) to equation (2.3.18), I obtain

—c — ■\/c2 — 46 = c — \/c2 -1- 4, (2.3.19)

which gives the unique speed

c =
1 + 6

(see Figure 2.4) and the wave solution

z >0,

z<0

(2.3.20)

(2.3.21)
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0
1/3-1 0

b
Figure 2.4: The minimum speed c* as a function of b

The minimum speed c* is the unique speed (2.3.20) for 6 < 0, for which
there is a strong Allee effect. The minimum speed c* for an insufficiently
weak Allee case with 0 < b < 1/3 satisfies (2.3.39). This formula is the same
as (2.3.20) for the speed of strong Allee case. The minimum speed c* for a
sufficiently weak Allee effect with 1/3 < 6 < 1 satisfies (2.3.30). This formula
is the same as the formula that results from linearization. The thick curve is

the minimum speed c*. The thin curve on top of the thick curve corresponds
to speed formula (2.3.39) for 1/3 < 6 < 1, while the thin curve below the
thick curve corresponds to speed formula (2.3.30) for 0 < 6 < 1/3.
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u(z)

b = -0.5

b = 0.25

b = 0.5

0

Z

12

Figure 2.5: The traveling wave solution for various choices of the parameter
b and speed c

The traveling wave solution is shown on the left-top (right-bottom) for the
strong Allee case with b = —0.5 and c = 0.2887, left-middle (right-middle)
for the insufficiently weak Allee case with b — 0.25 and c = c* = 1.0206, and
left-bottom (right-top) for the sufficiently weak Allee effect with b = 0.5 and
c = c* = 1.4142. The traveling wave solutions for all three cases are moving
to the right.
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(see Figure 2.5).

Equation (2.3.20) for the speed is quite different from the formula that

results from linearization. Linearization does not give the correct speed of

invasion for this simple example of a strong Allee effect.

2.3.2 Weak Allee effect (0 < 6 < 1)

For the weak Allee case, 0 < 6 < 1, (0,0) is a stable node, while (1,0) is a

saddle point (see Figure 2.6). I would like to determine the traveling wave

solutions and the minimum wave speed c* for various choices of b.

Following the proof of Theorem 4.68 in [17] or of Theorem 4.15 in [27], I

can show that there is a speed c* G [2y/b, 2] such that a connection from 1

to 0 exists if and only if c > c*.

Since 5 > 0,1 need c > 2\/6 in order to have real eigenvalues at the origin.

For c > 2y/b, eigenvalue formulae (2.3.11) and (2.3.13) imply that

Ai <0, A2 < 0, A3 >0, A4 < 0. (2.3.22)

Double eigenvalues (c = 2\/b)

For the special case c = 2-\/6, equation (2.3.15) is the general solution.

Centering condition (2.3.4) and asymptotic boundary conditions (2.3.2) and

(2.3.3) guarantee that

A = 1, A = A = 0, (2.3.23)
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V 0

B

25

0206

0.5

U

V 0

C

4142

0.5

U

Figure 2.6: The phase planes for traveling wave solutions of function (2.2.2)
with 6 > 0

The phase plane B for the insufficiently weak Allee case, b = 0.25 and c =
1.0206, shows that the critical point (0,0) is a stable node and the critical
(1,0) is a saddle point. The phase plane C for the sufficiently weak Allee
effect, b = 0.5 and c = 1.4142, shows that the critical point (0,0) is a stable
node and the critical point (1,0) is a saddle point.
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so that solution (2.3.15) reduces to

- I 1 _ ie(V5«-v^)., ^ < 0. P-2-2'')
Imposing flux-continuity condition (2.3.9) upon equation (2.3.24), I thus ob

tain

Vb y/i) — \/b + l , .-— + D2 = ^ , (2.3.25)
or

It follows that

D2 = + A (2.3.26)

u(z) = l ^>0,
1 - z<0,

2'

(2.3.27)

for c = 2y/b (see Figure 2.5).

Since solution (2.3.27) can be written as

u{z) = Q + D2Z^ , (2.3.28)
for c = 2-\A and 2: > 0, the coefficient D2 must be nonnegative to prevent

negative value of u. Since

D2 = + Vb > 0 (2.3.29)

if and only ifl/3<5<l, I conclude that the minimum speed is

cl = 2Vb (2.3.30)

(see Figure 2.4) and the slowest heteroclinic connection is thus (2.3.27) for

1/3<6<1. In addition, the minimum wave speed c* = C2 > 2^/b for

0 < 6 < 1/3.
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Distinct eigenvalues (c > 2y/b)

I now simplify the general wave solution for any speed c > 2\/b. For the case

c > 2y/b, equation (2.3.14) gives the general solution. Centering condition

(2.3.4) and asymptotic boundary conditions (2.3.2) and (2.3.3) guarantee

that

As — — A4 = 0, Ai + A2 = (2.3.31)

so that solution (2.3.14) reduces to

{ —c+y/c^—4b _ /I . \ —c—v^c^—46 _
'  (2.3.32)1 - |e 2 z <0.

Applying flux-continuity condition (2.3.9) to equation (2.3.32) implies that

(2.3.33)

2  y V2 V V 2

1^ ( —c + vc^ + d

It follows that

and

^ = y?H46-^4+&
4\/c2 - 46 ^ '

4x/c2 - 46 ^ ^

-c+\/c2-46 -c-\/c2-46

"(-)=•! '' ■ (2.3.36)S - ie=^^ z < 0,
for any c > 2\/h (see Figure 2.5).

I now determine the minimum speed and the slowest heteroclinic connec

tion for 0 < b < 1/3. Since c > > 2y/b, the traveling wave solution is
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(2.3.36). Since wave solution (2.3.36) can be written as

u{z) =6 2^
\/c2-4i) / 1 \ -v/e2-4t

'  (2" ' (2.3.37)

for 2: > 0 and c > 2\/6, .Ai must be nonnegative to prevent negative value

for u.

I now consider the two cases A.i = 0 and Ai > 0.

Case 1. Ai — 0.

In this case, I have from definition (2.3.34) of Ai that

2c = Vc2 + 4 - Vc^ - 46. (2.3.38)

This equation has a solution for c if and only if 0 < 6 < 1/3 and the speed c

is

c = 4= . (2.3.39)
^2(1^ ^ ^

Case 2. Ai > 0.

In this case, I have from definition (2.3.34) of Ai that

2c > Vc^ + 4 - Vc2 - 4b. (2.3.40)

Since 0 < 6 < 1 and c > 2\/6, the numbers on both sides of inequality

(2.3.40) are positive so that I can square both sides of inequality (2.3.40) to

obtain

-c^ + 2(1 -b)< V(c2 + 4)(c2-46). (2.3.41)
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If the number on the left hand side of inequality (2.3.41) is negative, I

have

(? > 2(1 - b) (2.3.42)

and

c = ci > V2(l - b) > C2 (2.3.43)

for 0 < 6 < 1/3. If the number on the left hand side of inequality (2.3.41) is

nonnegative, then

c = C2 < ̂2(1 -6). (2.3.44)

Once again, I square both sides of inequality (2.3.41) to get

C2 > cl (2.3.45)

From inequalities (2.3.44) and (2.3.45), I require

1 + 6

which holds for 0 < 6 < 1/3. Prom the above, I have shown that speed c = C2

in equation (2.3.39) obtained from = 0 is the minimum speed (see Figure

2.4) and the slowest heteroclinic connection is

f<::
for 0 < 6 < 1/3.

Equation (2.3.30) for the speed of a sufficiently weak Allee case, 1/3 <

6 < 1, is the same as the formula that results from linearization. In contrast.
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Strong Allee effect h < 0 C —
v/2(l-6)

Weak Allee effect

0<6<i c > c* -
^2(1-6)

|<6<1 c > c* = 2y/h

Table 2.1; Wave speeds c and minimum speeds c* for population growth rate
(2.2.2)

equation (2.3.39) for the speed of an insufSciently weak Allee effect, 0 < 6 <

1/3, is the same as equation (2.3.20) for the speed of the strong Allee case,

6 < 0. The latter was not obtained by linearization. Thus, linearization may

or may not give the correct speed of invasion for this simple example of a

weak Allee effect, depending on the exact strength of the effect.

Table 2.1 shows wave speeds c and minimum speeds c* for various choices

of b.

2.4 General case

In this section, I consider the reaction-diffusion equation

= f{n)+

with the general growth rate

t(r,\ _ / 0 < n < a,
\l — n, a<n<l.

(2.4.1)

(2.4.2)
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Strong Allee

Effect

b < 0 C  [(1 +

Weak Allee

Effect

C > C [(1 a) +ha]^o(l-a)(l-Q-a6)

Ip-l) < 6 < 'r c > c* = 2y/W

Table 2.2: Minimum speeds c* and possible speeds c for population growth
rate (2.4.1)

where D is the diffusion coefficient and

0<a<l, 6<- — 1.
a

The function f{n) has a strong Allee effect if

6 < 0,

(2.4.3)

(2.4.4)

and a weak Allee effect if

0 < 6 < i - 1. (2.4.5)
a

Notice that there is no Allee effect for 6 > 1/a - 1 and the minimum

speed is thus c* = 2^/W. Table 2.2 shows minimum speeds c* and possible

speeds c for different values of b. Traveling wave solutions u and the slowest

heteroclinic connections u* are shown in Table 2.3.

Figure 2.7A shows the effect of a on the minimum speed c* for different net

reproductive rates b, while Figure 2.7B shows the effect of net reproductive,

rate b on the minimum speed c* for various choices of a.
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Strong Allee
Effect

b < 0

u{z) = ae
— yJa{l—a—ab)l[D{\—a)\z

z>Q>

1 + (a - i)ey/<^-^-o.b)l[D{i-a)\z^ ^ < q

Weak Allee

Effect

h < a(2—a)

u*{z) =
ae

—yja(l—a—ab)l[D{\—a)\z
z > 0

1 + (o - ^ < 0

u{z) =
c+\/c^~4bZ) .

+ ̂26
—c—y/c^ — AhD ,

2D

^  -c+\/c^+4D
1 + (a — Ije 20

2 > 0

^ < 0

Ai —
a\/c^—4&D—(1—a)\/c^+4£)+c

2Vc^-ibD

^  a\/c^—4b£)+(l—0)-^c^+4£)—c
2 ~ 2Vc^-ibD

u'(z) =

ae + (a — 1) +

Weak Allee

Effect

a(2-a) - " ̂ a

/v/S+T-y/FA

l + (a-l)e^ ^ ) ,

ze D^, z>0

z<0

u{z) =
Aie'

c-hy/c^—AbD
2D + ̂26

-c^y/c^ — AbD .

■, , / H \ -c+\/c2+4D1 + (a — l)e 2d

2 > 0

z < 0

^ _ a\/c^—46D—(1—a)\/c^+4Z?+c
^ ~ 2v'c2-46£»

^  a\/c'^—46D+(1—a) v/c^+4£>—c
2 — 2Vc2-46n

Table 2.3: Traveling wave solutions w and the slowest heteroclinic connections
u* for (2.4.1)
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C* 0

-5

-15.
0

15
A

10

10

b = 2, 1, 0.5, 0.005, -1, -2, -3

0.2

.sH 0

B

= 0.15,0.3,0.45,0.6,0.75,0.9 i

b

Figure 2.7: The minimum speed c* as a function of the parameter a (b) for
various choices of b (a)
Note: The minimum speed c* for each curve in subfigure A decreases as a
increases. For each curve in subfigure B, the minimum speed c* decreases as
b decreases. '

55



2.5 Conclusion and discussion

Allee [1, 2] observed increases in the per capita growth rate at low pop

ulation densities, but did not name this phenomenon. Odum [80] named

this phenomenon "Allee's principle" and showed a representative figure [80]

that emphasizes the positive effect of population size on per capita growth

rates. This figure is an example of a weak Allee effect. At about the same

time, Odum and Allee [81] displayed two different survival-density curves

that characterize a positive (cooperative) relationship between specific sur

vival rate (specific growth rate, per capita growth rate) and density. I use

the terms "strong Allee effect" for the one with a negative survival rate at

low densities and "weak Allee effect" for the one that has a positive survival

rate at minimum densities.

To date, most models for Allee effects have misused the definition of

the effect or have focused on a limited range of phenomena that involve

population thresholds. It is clear, from Allee's original investigations and

Odum's definition, that Allee effects can be strong or weak. I have formalized

these terms in section 2.1.

In sections 2.2 and 2.3, I computed the speeds of invasion and solved for

the exact traveling wave solutions for a piecewise-linear population growth

rate. This function shows all the important properties of more general Allee

growth rates and exhibit a full range of strong and weak Allee effects. My

results show that the minimum speed of invasion for a sufficiently weak Allee

56



effect may be derived by linearization, while the formula for the minimum

wave speed for an insufficiently weak Allee effect is the same as that for

a strong Allee effect. This implies that the absence of an Allee effect is

a sufficient, but not a necessary condition for linearization. Hadeler and

Rothe [35, 92] calculated the minimum wave speed for a cubic or bistable [54]

population growth rate. They determined speeds for a range of Allee effects,

but did not highlight weak Allee effects. Their results support my contention

that linearization may still work for sufficiently weak Allee effects. They

could not, however, determine the shape of the traveling front for the weakest

Allee effects.

In section 2.4,1 generalized the model of section 2; my results are found in

Table 2.2, Table 2.3, and Figure 2.7. Allee effects can slow down the traveling

wave solution of reaction-diffusion equations [66]. Figure 2.7B shows that,

for fixed a, the minimum wave speed c* decreases as b decreases: the stronger

the Allee effect, the slower the wave speed. Notice that the number a is a

population threshold for b < 0.

Growth rate (2.4.2) is a modified form of the linear-constant, Allee growth

rate [102] that I previously used in a study of integrodifference equations

[102]. I examined this linear-constant growth rate and introduced a numer

ical scheme to estimate the speed of traveling wave solutions for integrodif-

ference equations. I did not, however, obtain exact analytic expressions for

the traveling wave solutions or for the minimum wave speeds. My results in

this chapter are analytical. I hope to extend the work of Wang et al [102]
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analytically in future research.
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Chapter 3

Integrodifference Equations
and Competition Models, I

3.1 Introduction

The history of modeling competition interactions started with the studies of

Lotka [68] and Volterra [101]. They independently suggested a continuous-

time two-species competition model. Although there has been extensive work

on multispecies systems of reaction-diffusion equations [12, 24, 31, 47, 48, 50,

51, 52, 53, 83], there has relatively little work on multispecies systems of IDEs.

A discrete-time growth and continuous-space dispersal model for the invasion

of an annual plant that is subject to competition from an established annual

was derived under integrodifference formulation by Hart and Gardner [39].

Hart and Gardner restricted their model so that the problem could be reduced

to that of one species. They actually solved a one-species problem instead of

solving the two-species problem directly. Their approach cannot be applied

to other general cases. In contrast, Allen et al. [3] considered a quite general
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two-species system of IDEs with competition and dispersal, but gave only

numerical investigations. In this chapter, I analytically study a two-species

competition problem based on the integrodifference formulation, from both

a mathematical and a biological point of view.

My analyses are based on linearization. However, Hosono [47, 48] has

shown that the speed derived by linearization may underestimate the true

speed for a reaction-diffusion system because of a weak Allee effect. I also find

this effect takes place in my IDE model. My objective is to obtain a formula

for the speed of invasion by analyzing traveling wave solutions and to discuss

the behavior of the traveling wave. I will also try to estimate the speed of

invasion under a weak Allee effect by a linear-constant approximation to the

growth function.

3.2 The model

Recall the single-species IDE that I introduced in chapter 1:

/+0O
k{x - y)f{Nt{y)) dy, (3.2.1)

■00

where Nt{x) is the population density, in space, of a species at generation t.

The life cycle is composed of two distinct processes: sedentary and dispersal

stages. All growth happens in the sedentary stage, all movement occurs in

the dispersal stage.

For the sedentary stage, f{Nt{x)) represents the growth of the species.
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Examples include the compensatory growth function [14]

r/,r/ AA/'/fx)
i + [ix-i)Nt{x)/Ky

and the overcompensatory growth function [90]

f{Nt(x)) = Nt{x)exp .  Ntjxy
K

(3.2.3)

K is the carrying capacity of the environment. The parameters A = e'" and r

are the geometric and intrinsic rates of increase, respectively. The function

/ is assumed to be nonnegative and to satisfy

f{N) < /'(0)iV, (3.2.4)

which means that there is no Allee effect [1, 2]. For nonlinear integrodif-

ference equations without an Allee effect, the asymptotic velocity of scalar

equation (3.2.1) can be derived from the linear IDE

/+0O
k{x - y)Nt{y) dy, (3.2.5)

•OO

(see [60, 103, 104]).

For the dispersal stage, I assume that is a probability density function.

If k is symmetric, then

k{x - y) = k{y - x). (3.2.6)

Examples include the Gaussian distribution

61



and the leptokurtic Laplace kernel

k{x) = (3.2.8)

In this chapter, I generalize one-species IDE (3.2.1) to a two-species

model,

"-(-OO/-hoo
- y)f{Ut{y), Vt{y)) dy, (3.2.9a)

■oo/+0O
- y)9{Utiy), Vt{y)) dy, (3.2.9b)

•OO

where Ut{x) and Vt{x) are the population densities, in space, of the first and

second species, respectively, at generation t; ki{x — y) and k2{x — y) are the

kernels; f{Ut{y),Vt{y)) and g{{Ut{y),Vt[y)) are the growth functions for the

first and second species. I am particularly interested in competition.

To formulate a competition model based on IDEs, I first look at the

system of difference equations for a discrete-time competition model [40]

Ut+i = , r/, ^\|^rr\(TT A. tTT' (3.2.10a)1 -b [(Ai - l)/Ki](Ut + Q;i2Vt)

= VZUI ^ fM' (3.2.10b)1 + [(A2 — Ij/K^^iVt -\- cx2\Ui)

where

Ai >1, A2 > 1, 0:12 > 0, Q!2i > 0. (3.2.10c)

t/f+i and Vt+i are the densities at generation t for the first and second species.

The parameter Aj is the net reproductive rate in the limit of small popula

tions; Ki is the carrying capacity. Index f = 1 represents the first species,
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index i — 2 represents the second species. I define

ut = ̂, vt = -^, (3.2.11)
Ai A2

SO that system (3.2.10) may be reduced to

where

^12 = ai2-j^, /?2i = Oi2i-j^. (3.2.12c)
ill K2

I now turn model (3.2.12) into a system of IDEs for a discrete-time,

continuous-space competition model by introducing spatial coordinates and

dispersal kernels. In order to examine the speed of invasion for an organism

subject to competition, I analyze the system

r»-i-oo/-I-00
- y)f{ut{y),vt{y)) dy, (3.2.13a)

■00/+00
^2(2: - y)g{ut{y),Vt{y)) dy, (3.2.13b)

•00

where f {ut{y), Vt{y)) and g{ut{y),vt{y)) are defined as

f{utiy),vt{y)) = —— ^ (3.2.13c)1 + (Ai - 1)K(2/) -1- Pi2Vt{y)]

g{ut{y)My)) = T—a R TTV (3-2-13d)I + {X2 - l)[vt{.y) + p2iut{y)\

with

Ai >1, A2 > 1. (3.2.13e)
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I assume that both redistribution kernels have moment generating functions,

/+00
ki{x)e^'' dx, i = 1,2, (3.2.14)

•OO

and two-sided Laplace transforms

/+0O
ki{x)e~^^ dx, i = l,2, (3.2.15)

•00

that are well-defined for some intervals of A and s about zero.

Difference equations (3.2.12) and IDEs (3.2.13) possess four equilibria,

corresponding to (i) extinction of both species, {ut,vt) = (0,0); (ii) extinction

of the first species and survival of the second species at its carrying capacity,

{ut,vt) = (0,1); (iii) extinction of the second species and survival of the

first species at its carrying capacity, {ut,Vt) = (1,0); (iv) coexistence of both

species, {ut,Vt) = {u*,v*), where

= T^-
The equilibrium {u*,v*) exists provided that

(1 ~ A2)(1 —/52i) > 0. (3.2.17)

In this chapter, I consider the case

Pu < 1, p2i > 1, (3.2.18)

in which the first species is invading a resource that is dominated by the

second species.
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3.3 Traveling waves

I will solve IDEs (3.2.13) by looking for a traveling wave solution,

Ut+i{x) = ut{x-c), vt+i{x) ̂ vt(x-c). (3.3.1)

This solution corresponds to a heteroclinic connection from (1,0) to (0,1).

The wave solutions satisfy

r^+oo/-too
U h{x-y)f{u{y),v{y))dy, (3.3.2a)

•OO/+00
klix-y)g{u{y),v{y))dy. (3.3.2b)

•OO

I have taken the liberty of dropping the subscripts on the u[s and v[s.

It is very difficult to prove the existence of the heteroclinic connection

from (1,0) to (0,1). If this connection does exist, I may determine the speed

of the wave.

3.3.1 The front and the speed of the wave

I will look at the front of the wave by linearizing near the equilibrium (u, v) =

(0,1). If I let

u{x) = u{x), u(a;) = u(a;) - 1, (3.3.3)

the linearization near (0,1) is

■^1
/ + 00

k (3i{x-y)
■OO

v{x -c) = J k2{x -y) ~
.1 + (Al — 1)A2 u{y) dy,

p2iu{y) + -^viy)
A2

.3.4a)

dy. (3.3.4b)
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Since exponential functions are eigenfunctions for both the translation

operator on the left hand side of equations (3.3.4) and for the integral oper

ator on the right hand side of equations (3.3.4), it is natural to look for an

exponential solution,

u{x) = Uoe v{x) = vqc—Xx

for A > 0. The change of variable z = x — y gives me

(3.3.5)

uoe^'' =
Ai

1 -f- (Ai — 1)^12
Uo

voe
Ac — ( 1 — P21U0 + —

/-I-00
ki{z)e^^ dz,

•00/+00
k2{z)e^^ dz.

•00

The characteristic equation at (0,1) may now be written as

Ai
Muoe^" -

1 + (Ai — 1)/3i2
Uo

Voe
Ac ~ ( 1 ~ P21U0 +

l (A),

M2(A),

where Mi (A) and M2(A) are the two moment generating functions

"+00/+00
Mi ki{z)e^^ dz, 1 = 1,2.

•00

(3.3.6a)

(3.3.6b)

(3.3.7a)

(3.3.7b)

(3.3.8)

System (3.3.7) can be written in the matrix form

Ai
Ml (A) 1+(Ai-1)/3i2 0 Uo n 0 "

1

A2 M2(A) .  '^0 . 0
(3.3.9)

In order to get nontrivial solutions to system (3.3.9), the leading matrix

must be singular,

0
©Ac

M (l (A) l+(Ai-1)^12

- ( 1 ~ i ) ^ -A2

a Ac

M2(A)

= 0. 3.3.10)
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There are two transcendental equations for the eigenvalues. The roots of the

first equation,

i=jfi)-
have an eigenvector (0,1) that will not lead to invasion of the first species.

The second equation is

Mx(A) " 1 + (Ai-1)A2'

which gives an estimate of the speed of the traveling wave.

Since the number of the invading species must remain nonnegative (both

mathematically and biologically), I need a wave speed that is sufficiently

large to give monotonic (rather than oscillatory) wave fronts and real (rather

than complex) roots A. Real roots emerge as double roots at the second order

contact that is given by rewriting equation (3.3.12) as

+  (3.3.13)

and differentiating equation (3.3.13) with respect to A,

By combining the above two equations, I obtain a minimal wave speed c*

that may be expressed parametrically as

MUX*) Ai
Ml (A*)' 1 + (Ai - 1)^2 " Ml (A*) n

Notice that c* is positive for symmetric kernels.
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Example 3.3.1. Consider IDEs (3.2.13) with

ki{x) = 2 = 1,2 (3.3.16)

and moment generating functions

of
M(A) = 1^1 i = l,2. (3.3.17)

I have

M'M) = (SfSp-
It then follows form parametric equations (3.3.15) that

2A*
c* = — 3.3.19

al - X*^ ^

and

= (l-^) (3.3.20)1 + (Al — l)Pi2 \ al

Figure 3.1 shows c* as a function of Ai/[1 + (Ai — 1)^012]-

For the case

Al = A2 = 1.5, P12 = 0.25, P21 = 1-25, ai = 7.0 cr2 = 5.0, (3.3.21)

the predicted speed obtained from parametric equations (3.3.19) and (3.3.20)

is

c* = 0.16315 (3.3.22)

and the speed obtained by simulating the traveling wave solution is

c = 0.1587 (3.3.23)

(see Figure 3.2A). For the case
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0.3

0.2

a = 7.0

0.1

1 12-

FigureS.l; The speed c* as a function of Ai/[l + (Ai-l)/3i2] for IDEs (3.2.13)
with the Laplace kernels (3.3.16)

Using parametric equations (3.3.19) and (3.3.20), the speed c* can be written
as a function of Ai/[1 + (Ai - l)/5i2].
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Figure 3.2; The observed speed c for IDEs (3.2.13) with the Laplace kernels
(3.3.16)

The observed speed c was obtained by simulating the traveling wave solution
of IDEs (3.2.13) with Laplace kernels (3.3.16). The population was fixed
to obtain the location of the wave for each generation t. The slope of the
location of the wave with respect to the generation t is the observed speed
c. The parameters were chosen as A: Ai = A2 = 1.5, ^12 = 0.25, /?2i =
1.25, q;i = 7.0- a2 = 5.0, and B: Ai = 1.2, A2 = 1.5, /5i2 = 0.2, P21 —
1.2, ai = a2 = 7.0.
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Ai = 1.2, A2 = 1.5, A2 = 0.2, /32i = 1.2, ai = ̂2 = 7.0, (3.3.24)

the predicted speed is

c* = 0.11173 (3.3.25)

and the speed obtained by simulating the traveling wave solution is

c = 0.1074 (3.3.26)

(see Figure 3.2B). □

Example 3.3.2. Consider IDEs (3.2.13) with

^i(^) = ^0:1 (3.3.27)
and

Since the first kernel is a Laplace kernel, equations (3.3.19) and (3.3.20)

give the parametric equations for speed c*. For the case

Ai = A2 = 2, /3i2 = 0.25, /32i = 1.25, = 7, 0:2 = 5, (3.3.29)

the predicted speed is

c* = 0.2155. (3.3.30)

The speed obtained by simulating the traveling wave solution is

c = 0.2116 (3.3.31)

(see Figure 3.3). □
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Figure 3.3: The observed speed c for IDEs (3.2.13) with kernels (3.3.27) and
(3.3.28)

The observed speed c was obtained by simulating the traveling wave solution
of IDEs (3.2.13) with kernels (3.3.27) and (3.3.28). The population was fixed
to obtain the location of the wave for each generation t. The slope of the
location of the wave with respect to the generation t is the observed speed
c. The parameters were chosen as Ai = A2 = 2, ̂ 12 = 0.25, P21 = 1-25, ai =
7.0, a2 = 5.0.
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The above analysis is customarily based on linearization. However, Hosono

[47, 48] has proved that the minimal speed derived by linearization may un

derestimate the true wave speed for a reaction-diffusion system because of

the introduction of a weak Allee effect. I find that this effect may also affect

my estimation of the wave speed.

Wecik Allee effect

Let us now consider a special case that causes a weak Allee effect in compe

tition model (3.2.13). For this special case, I define

k2{x - y) = 5{x - y), (3.3.32)

where delta(x) is the Dirac delta function so that IDE (3.2.13) is rewritten

as /+00
h{x-y)f{ut{y),vt{y)) dy, (3.3.33a)

■cx>

Ut+i(a:) = g{ut{x),vt{x)), (3.3.33b)

where

f{My),My)) = t—tt— (3.3.33c)1 + (Ai - l)[ut{y) + ^uVt{y)]

9{My),vt{y)) = —yr 0 rYv (3.3.33d)1 + (A2 - i)[wt(?/) + p2iut{y)]

Ai >1, A2 > 1. (3.3.33e)

The traveling wave solution,

ut+i{x) =ut{x-c), vt+i{x) :^vt{x- c) (3.3.34)
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satisfies

/-hoo
ki{x - y)f{ut{y),vt{y)) dy, (3.3.35a)

•OO

-c) = yr , n nn • (3.3.35b)
1 + (A2 — l)[ut(2;) + P2iUt{x)]

As A2 goes to 00, equation (3.3.35b) implies that

Vt(x — c) = lim —n 7~^ (3.3.36)
A2—)-+oo 1 + (A2 — l)[uf(a;) + /32iMt(2;)]

Vt(^)
=  , , , ,. 3.3.37

I thus have

^  M^) (O O qON
1 + (A2 - 1)^(2:) + p2lUt{x)] Vt{x) + ̂2lUt{x)

or

ut(a;)[l - vt{x) - P2iUt{x)] = 0 (3.3.39)

as A2 goes to 00.

In light of equation (3.3.39), I can define Vt{x) as

r 0' ;^ < < 1>
vt[x) =

^  1 - P2lUt{x), 0 < Ut{x) <

so that two-species competition problem (3.2.13) reduces to the single-species

problem /-I-00
kx{x-y)F{ui{y))dy, (3.3.41a)

•00

(3.3.40)
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Figure 3.4:. Weak Allee growth rate (3.3.41c)

Function (3.3.41c) is the growth rate of the resulting single-species IDE
(3.3.41a) of IDEs (3.2.13) using kernel (3.3.32) for the second species. This
growth rate exhibits a weak Allee effect.

where

F{ut{y)) = f{ut{y),vt{y)) (3.3.41b)

Amt(y)
JT, < < 1,

(3.3.41c)

l+(Ai-l)K(3/)(l-^2ift2)+/9i2]' ® ;sL
(see Figure 3.4).

Notice that F{ut{y)) is nonnegative and

F'(0) =
1 + (Ai — 1)/?12
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In addition, I have

F{ut{y)) > F'{0)ut{y) for 0 < Ut{y) < ̂  (3.3.43)
if

^2/021 > 1. (3.3.44)

These imply that the reduced single species problem has a weak Allee effect

if (3.3.44) holds and c* may underestimate the true minimal speed for the

original two-species problem.

Since single-species IDE (3.3.41) has a weak Allee effect, linearization

may fail to give the correct speed for the traveling wave solution. However, I

will estimate the speed of the wave under this weak Allee effect by means of

a linear-constant approximation F*{ut) to the growth function F{ut). The

function F* has the same form as the one that appears in equation (1.3.1)

F'{u,)

where

Xut, 0 < Ut < a,

1, a< Ut <1,
(3.3.45)

a

I define

1<A<-, 0<a<l. (3.3.46)

/■« /-l 1 \„2 1
A{a) = Xudu+ Idu — - = — a -f -, (3.3.47)

Jo Ja 2 2 2

as the area bounded by the 45'' line and F*{ut) and

B s
Jo l + (Ai--^

Xiu

!)[(! ~ Pl2^2l)u + P12]
Xiu , 1 . ./x. H- (Ai - l)u 2'

^21
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as the area bounded by the 45° line and F{ut). For F*, function (3.3.45), the

parameter A is chosen as the slope of F at = 0,

^ = no) = 17(5^ (0-"0)
and the parameter a is the a* that makes A(a) as close as possible to B,

|A.(a*) — B\ = min |A(a) — B\ = min
0<a<^ 0<a<^

Xa^ 1
— d F ~ — B2  .. . 2 - - (3.3.50)

I approximate the wave speed of IDE (3.3.43) by estimating the speed for

the system /+CX)
ki{x -y)F*{ut{y)) dy, (3.3.51)

■od

where F*{ut) is defined as Allee growth function (3.3.45) and the parameters

A and a* are defined by equations (3.3.49) and (3.3.50), respectively. Ap

plying iterative scheme (1.3.11) to (3.3.51), I solve for c as a function of A

numerically.

Example 3.3.3. Consider IDEs (3.2.13) with

ki{x) = k2{x) = 5{x), (3.3.52)

and

Ai = 2.0, A2 = 00, A2 = 0.75, a = 7.0. (3.3.53)

Iff choose P21 — 1-5, I have by definitions (3.3.49) and (3.3.50) that

A = 1.1429, a* = 0.8180447. (3.3.54)

The predicted speed obtained from parametric equations (3.3.15) is c* =

0.10771, the approximated speed obtained by iterative scheme (1.3.11) is

c = 0.1040, and the speed obtained by simulating the traveling wave solution

is c = 0.1064 (see Figure 3.5A).
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Figure 3.5: The observed speed c of IDEs (3.2.13) with kernels (3.3.52)

The observed speed c was obtained by simulating the traveling wave solution
of IDEs (3.2.13) with kernels (3.3.52). The population was fixed to obtain
the location of the wave for each generation t. The slope of the location
of the wave with respect to the generation t is the observed speed c. The
parameters were chosen as Ai = 2.0, A2 = 00, P21 = 1.5 (A) and 6.0 (B),
A2 = 0.75, a = 7.0.
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If I choose ̂ 21 = 6,1 have by definitions (3.3.49) and (3.3.50) that

A = 1.1429, a* = 0.5889. (3.3.55)

The predicted speed obtained from parametric equations (3.3.15) is c* =

0.10771, the approximated speed obtained by iterative scheme (1.3.11) is

c = 0.1068, and the speed obtained by simulating the traveling wave solution

is c = 0.2671 (see Figure 3.5B). Figure 3.6 shows the graphs of the resulting

functions F and F*. □

Even though the two choices of ^21 in the above example both satisfy

> 1, c* is quite close to c for ^21 = 1-5, not for ^21 = 6.0. Once

again, I conclude that linearization may give the correct speed of invasion

for a sufficiently weak Allee effect and may fail to give the correct speed

of invasion for an insufficient weak Allee effect. On the other hand, the

linear-constant approximation provide a good estimate of the wave speed for

^21 — 1-5, but not for ^21 = 6.0.

3.3.2 The behavior behind the wave

To analyze the behavior behind the wave, I restrict my attention to c* >

0 for symmetric kernels (3.2.6). Even though the speed c* obtained from

linearization may underestimate the true wave speed, it still gives a lower

bound of the true speed. This means c > c* > 0 provided that c* > 0.

I will look at the back of the wave by linearizing about (u, u) = (1,0). If

1 let

u{x) = u{x) - 1, v{x) = v(x), (3.3.56)
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Figure 3.6: Growth function F in (3.3.41c) and its linear-constant approxi
mation F*

The function F is the growth rate of the resulting single-species IDE (3.3.41a)
of IDEs (3.2.13) using kernels (3.3.52). The function F* is a linear-constant
approximation of the growth rate F and is defined as (3.3.45). The parame
ters were chosen as Ai - 2:0, A2 - - 00, /?i2 = 1.5, ^21 = 0.75, a - 7.0. The
slope of the linear ramp for the linear-constant approximation is A = 1.1429,
while the parameter a* = 0.8180447.
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the linearization is

r»+00/H-OO
ki{x-y)

•oo

/+00
k2{x-y)

■OO

Ao
Kv) dy.

dy, (3.3.57a)

(3.3.57b)
.1 + (A2 — 1)/521.

For IDEs (3.2.13), I look for an exponentially bounded trailing edge of

the traveling wave,

u{x) — uie^"", v{x) = (3.3.58)

with s > 0. Substituting (3.3.58) into equations (3.3.57) and making the

change of variables z = x ~ y, I obtain

Uie - (1 - i) A2«1
Vie ~

Ao

Lds),

ViL2{s),

where

1 + (A2 — 1)^21

/+00
ki{z)e~^''dz, i = l,2,

•00

(3.3.59a)

(3.3.59b)

(3.3.60)

are the two sided Laplace transforms. System (3.3.59) can be written in the

matrix form

L,(;, a'. (1 A. ) A2 U\ " 0 ■
0  """^2{s) 1+(A2—1)/921 .  .

0
(3.3.61)

I, once again, impose the condition that the leading matrix is singular to

get two transcendental equations. The roots of the first equation,

£> —SC

■^1(5) Ai
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have eigenvectors for the form (1, 0). This contradicts my assumption that

the second species dominates the system and is at its carrying capacity at

the beginning of the problem. The second equation can be written as

g-SC

L2{s)

where

= Q, (3.3.63)

(3-3.64)

The value of s for the edge behind the traveling wave is given by equation

(3.3.63).

To prevent negative population density for the retreating species, I need a

monotonic (rather than oscillatory) wave back and positive real (rather than

complex) roots s. I also need a positive real root s to get an exponentially

bounded wave edge. The existence of a positive real root of equation (3.3.63)

will be shown in Lemma 3.3. To prove Lemma 3.3,1 first introduce Watson's

lemma (Olver, 1974).

Lemma 3.1. (Watson's lemma) Let
poo

I{s)= / e-''h{z)dz, (3.3.65)
Jo

and assume that the following three conditions hold:

1. h{z) is a real or complex function of the positive real variable z with a
finite number of discontinuities and infinities;

2. as z ̂  0"*",
OO

~  (3.3.66)
i=0

where p, is a positive constant and A is a real or complex constant such
that the real part of A is positive;
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3. the abscissa of convergence of the integral (3.3.66) is not oo.

Then
00

/(s)«5^r( -'f )-|^ (3.3.67)
i=o s "

as s oo in the sector

\ph s| < ̂  - 5 (< ̂tt), (3.3.68)
where ph s is defined as the argument of s, 5 is an arbitrary constant, and
s f has its principle value. □

Corollary 3.2. There exist real numbers oi, bi, z = 1,2, . . . such that
/OO ^ d

e~^''k{z) dz ^ ^ as s oo, (3.3.69)

and
poo oo ^
/  e~^^zk{z) dz « ^ as s oo. (3.3.70)

i=l

Proof : By Lemma 3.1, if I let

h{z) = k(z) (3.3.71)

and

A = jw = 1, (3.3.72)

then there exist ai,i = 1,2,. . . such that (3.3.69) holds. In addition, if I let

h{z)=zk{z), (3.3.73)

and

A = 2, p=l, (3.3.74)

then there exist bi, i^ 1,2, . . . such that (3.3.70) holds. □
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Lemma 3.3. Let

q{s) = for s > 0 and c> 0 (3.3.75)
L(s)

and given a real number Q, 0 < Q < 1, then there exists a positive real
number s* such that

q{s*) = Q. (3.3.76)

Proof : Setting s = 0 in equation (3.3.76) implies that

9(0) = 1. - (3.3.77)

I assume that L(s) is well-defined on [0,r) (f can be oo) and will show that

lim 9(s) = 0. (3.3.78)

Mean Value Theorem guarantees the existence of a positive real number s*

(0 < s* < f) that satisfies (3.3.78).

Since /+0O
e-'^k{z) dz > 0, (3.3.79)

■00

I have /+00
e~^^k{z)z'^ dz > 0, (3.3.80)

■OO

which implies that L{s) is a convex function and L'{s) is a strictly increasing

function. I will show that asymptotic boundary condition (3.3.78) holds by

considering the following two cases:

Case 1 Assume that L{s) is a strictly decreasing function,

L'{s) < 0 for all s > 0. (3.3.81)
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Assumption (3.3.81) implies that

L(s) < L(0) = 1 for s > 0 (3.3.82)

and L(s) is well-defined on [0,oo). Assumption (3.3.81) also implies

that

lim L'(s) < 0. (3.3.83)
S—>00

By corollary 3.2, I have

poo

lim L'(s) = lim / [{-z)e~^^k{z) + ze^^'^-z)] dz (3.3.84)
S ^OO

(3.3.85)=  lim
S

^  L poo

—¥00

J=i ̂  do
poo

=  lim / ze^^ki—z) dz (3.3.86)
s^oo Jq '

for some real numbers hi, i = 1,2, It follows that

poo

lim / ze^^ki—z) dz < 0. (3.3.87)
s->oo

Since z, and k{—z) are all nonnegative on (—oo, oo), I conclude that

poo

lim / ze^''k(—z) dz = 0 (3.3.88)
S^OO Jq

and

k{z) = 0 almost everywhere on (—oo,0). (3.3.89)

By (3.3.89) and corollary 3.2, I have

o- r°°lim L{s) = lim + lim / e^^k(—z) dz (3.3.90)
s^oo s->oo ̂  s«+l s->oo L \ ^ \ /

i=\ •'0
oo

=  (3-3.91)S—¥00 * ^ S
Z=1
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for some real numbers Uj, i = 1,2, Under Assumption (3.3.81) of

L'{s), I thus have

g-SC _ g-SC
lim q{s) = lim —— = lim a- = 0- (3.3.92)

s^ooL{s)

Case 2 Assume that

3s > 0 s. t. L'{s) > 0. (3.3.93)

Under this assumption, I have

L'{s) > L'(s) >0, for s > s (3.3.94)

because L'{s) is a strictly increasing function. Inequality (3.3.93) im

plies that L(s) is a strictly increasing function for s > s. Since L(s) is

defined as a continuous function, there exists a positive number r such

that L{s) is well-defined on [0, r) (r can be oo) and

lim L{s) = oo. (3.3.95)
S—

Under Assumption (3.3.93), I thus have

g-SC

lim g(s) = lim —= 0. (3.3.96)
s^T-i Lys)

The above two cases guarantee the existence of a positive real number

s* that satisfies equation (3.3.76) of q. I conclude that if the heteroclinic

connection from (1,0) to (0,1) exists and the minimum speed c* is positive,

the wave then has an exponentially bounded tail and there is no oscillation

behind the wave.
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Example 3.3.4. Consider the kernel

k2{x) = (3.3.97)

with the two-sided Laplace transform,

o?
kl < «• (3.3.98)

I can show the existence of a positive real number s* that satisfies equation
(3.3.76).

I am done if I can find a positive real root s* of the equation

1 - ̂  = Qe'" {0<Q< 1). (3.3.99)
a"

By plotting 1 — and Qe^'^ as functions of s on the two dimen

sional plane, one can see from Figure 3.7 the existence of a positive real root

s*. □

Example 3.3.5. Consider IDEs (3.2.13) with Laplace kernels (3.3.16) in
example 3.3.1

Since the Laplace kernel is symmetric for the first species, the mini

mum speed c* is positive so that there exists a positive root s* for equation

(3.3.76) of q. Figure 3.8 shows the traveling wave solutions for two diflFerent

choices of parameters. There is no oscillation behind the wave for the Laplace

kernels. □

Example 3.3.6. Consider IDEs (3.2.13) with kernels (3.3.27) and (3.3.28)
in example 3.3.2.
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a = 7.0
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Figure 3.7: The root s* of equation (3.3.99)

Note: For each real number Q in the interval (0,1), there exists a positive
root s* of equation (3.3.99) provided that c > 0.
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Figure 3.8: The traveling wave solution for IDEs (3.2.13) with Laplace kernels
(3.3.16)

The population densities of the two species converge to traveling waves, that
are moving to the right for a: > 0. The first species is the invading species
(approaching density 1), while the second species is the retreating species
(approaching density 0). The parameters in subfigure A were chosen as
Ai = A2 = 1.5, ̂ 12 = 0.25, P21 = 1-25, ai = 7.0 02 = 5.0. The parameters
in subfigure B were chosen as Ai = 1.2, A2 = 1.5, /?i2 = 0.2, /?2i = 1.2, ai =
0:2 = 7.0. There is no oscillation behind the wave.
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Figure 3.9: The traveling wave solution for IDEs (3.2.13) with kernels (3.3.27)
and (3.3.28)

The population densities of the two species converge to traveling waves, that
are moving to the right for a: > 0. The first species is the invading species
(approaching density 1), while the second species is the retreating species
(approaching density 0). The parameters were chosen as Ai = A2 = 2.0,
A2 = 0.25, /32i = 0.5, ai = 7.0, and 0:2 = 5.0. There is no oscillation behind
the wave.

Since the Laplace kernel (3.3.27) is symmetric, the minimum speed c* is

positive so that there exists a positive root s* for equation (3.3.76) of q. Fig

ure 3.9 shows the traveling wave solutions for this example. □
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Chapter 4

Integrodifference Equations
and Competition Models, II

In this chapter, I consider competition model (3.2.13) with P12 < 1 and

y52i < 1. The analysis of the front of the wave is the same as that of the case

in chapter 3. I will focus on the analysis on the back of the wave for /?i2 < 1

and /?2i < 1 in this chapter. Some sufficient conditions that guarantee no

oscillation behind the wave are given.

4.1 Traveling waves

In this section, I consider IDEs (3.2.13) for the case

A2 < 1, ^21 < 1, (4-1.1)

in which the first species is invading a resource that is dominated by the

second species at equilibrium. I also look for traveling wave solutions: the

heteroclinic connection from the interior equilibrium (w*,u*) to (0,1), where

u* and V* are defined as (3.2.16).
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The analysis of the front of the wave is the same as that of the case

in chapter 3. From section 3.3.1, I know that speed formula (3.3.15) may

underestimate the true minimum speed under conditions (3.2.18) and (3.3.46)

of /?i2 and ̂ 21 because of a weak Allee effect. I could not determine whether

this result also occurs in case (4.1.1) or not. However, speed formula (3.3.15)

gives a lower bound of the minimum wave speed c*.

4.1.1 The behavior behind the wave

In this subsection, I also restrict my attention to the case c* > 0, which

includes the case of symmetric kernels (3.2.6). I analyze the wave back by

linearizing near the equilibrium.

\ 1 — P12P21 1 — P12P21)

If I let

u(x) = u(x) — u*, v(x) = v(x) — V*,

(4.1.2)

(4.1.3)

the linearization is

J —00/+00
ki{x - y)

•00/+00
h{x-y)

•CO/+00
hix - y)

•00

—U*Pi2[\i — 1

1 + (A2 — 1)^2

)

~V*h\{^2 — 1) u

u{y) dy

v{y) dy, (4.1.4a)

{y) dy

1'"*
v{y) dy. (4.1.4b)

For system (4.1.4), I look for an exponential bounded edge of the traveling
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wave,

u{x) — v{x) = vie^^ (4.1.5)

with s > 0. After substituting (4.1.5) into (4.1.4) and making the change of

the variables z = x — y,l obtain

UiB --

Vie

1 + (Ai — l)Pi2V*

— 1)

Wl-^'l(s) +

Ao
■^^1-^2(5) +

-M*^12(Ai — 1)
•^1

1 + (A2 — 1)^21^*
Ao

uiLi(s), (4.1.6a)

viL2{s), (4.1.6b)

.  (4.1.7)

which can be written as the matrix form,
_ l+(Ai-l)j9i2?;- ^•'/8i2(Ai-1)

Li{s) Ai Ai
f''fei(A2—1) e~'^° 1+(A2 —1)/321M*

A2 ^2(5) A2

Again, I impose the condition that the leading matrix of (4.1.7) is singular

for nontrivial solutions. This leads to the characteristic equation.

Ui ■ 0 "

.  .

0

b(s) - ■D][9(s) -E] = B, (4.1.8)

or

where

p(s)g(s) - [r'p(s) + £'g(s)] + DE - B = 0,

Pi^) = "TTTV' 9(5) ^LiisY L^isY

0 <D= ^ + (^1 ~ ^ 1 + (Ai - 1) ^ ^
A Ai i

0  E = ^ + (^2 - YP21U* ^ 1 + (A2 - 1) _ ^
A2 A2

0<DE-B =_  1 + (Ai — 1)^12U* + (A2 — l)P2lU*
A1A2

(4.1.9)

(4.1.10a)

(4.1.10b)

(4.1.10c)

(4.1.10d)

(4.1.lOe)
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Special case: equal dispersal

For the case ki{x) = k2{x), I have Li{s) = L2{s) and p{s) = q{s). I define

k{x) = ki{x) = k2ix), L{s) = Li{s) - L2{s), (4.1.11)

so that characteristic equation (4.1.9) reduces to

[p(s)]2 -{D + E)p{s) +DE-B = 0. (4.1.12)

It follows that

=  + (4.1.13a)
or

,  , (D + E)- J{D - EY + AB
P{s) = (4.1-13b)

Since D + E and DE — B are both positive and by definition (4.1.13), pi

and p2 are both positive real numbers. In addition, I have

l + DE-D-E-B=^^^~ ~ ~ ~ > 0, (4.1.14)
A1A2II — P12P21)

which implies that

B <l+DE - D - E (4.1.15)

and leads to

Pi < 1. (4.1.16)

On the other hand, I have

{D + E)- y/{D - EY + AB D + E-\D-E\
^<P2 = - ^ < ^ ^<1. (4.1.17)

Z  2,
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For characteristic equation (4.1.12), I have shown from the above that

p{s) = Pi ov j){s) = p2, (4.1.18a)

where

0<pi<l, 0<P2<1. (4.1.18b)

I now consider the following questions in order to know the behavior behind

the wave.

1. Is there any positive real root s of characteristic equation (4.1.12)?

2. Is the smallest positive real root of characteristic equation (4.1.12)

smaller than all positive real parts of any complex roots of equation

(4.1.12) with positive real parts? (If the answer is yes, then there is no

oscillation behind the wave.)

The answer is yes for the first question. I have shown in Lemma 3.3

that there exists at least a positive real root Sj of p(s) = pj {j = 1,2). This

implies that there exist positive real roots Si and S2 of characteristic equation

(4.1.12). I assume that Sj is the smallest positive real root of p(s) = pj for

i = l,2.

The answer is yes for the second question if the smallest positive real root

Sj of p(s) = Pj is smaller than all positive real parts of any complex roots of

p{s) = Pj with positive real parts, where j = 1,2.

I will show in Theorem 4.1 and Theorem 4.3 that if the kernel satisfies

Condition 4.1 or Condition 4.2, then there is no oscillation behind the wave.

I will also introduce Lemma 4.2 for proving Theorem 4.3.
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Condition 4.1.

k{x) < k{—x) almost everywhere on (0, oo). (4.1.19)

Theorem 4.1. If the kernel satisfies Condition f.l, then there is no oscilla
tion behind the wave.

Proof : Under Condition 4.1,1 show in appendix A that the positive real

root Sj is smaller than all positive real parts of any complex roots of p(s) = pj

with positive real parts, where j — 1,2. This implies that the smallest posi

tive real root (s^ or Sg) of characteristic equation (4.1.12) is smaller than all

positive real parts of any complex roots of equation (4.1.12) with positive real

parts. □

Condition 4.2.

L'(s) + cL{s) > 0 for c > 0 and s > 0. (4.1.20)

Lemma 4.2. Define

p{s) s 1^. (4.1.21)
If the kernel satisfies Condition f.2, thenp(s) is a strictly decreasing function
of s for s > 0 and c > 0. Furthermore, the following inequality holds

\p{P ioj)\ > \p{0)\ for any /? > 0. (4.1.22)

Proof : Differentiating equation (4.1.21) with respect to s, I obtain

,  —ce~^'^L(s) — e~^'^L'(s)P (s) = [L(sjp < 0 for s > 0 and c> 0, (4.1.23)
which implies p(s) is a strictly decreasing function of s for s > 0 and c > 0.

On the other hand, I have for any fi >0 that
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|g-c(^+zw)| g-^c

" /!L l*^WI|e-<''+'">'l<i^ ° IZ,k{z)e-l"dz
□

Theorem 4.3. If the kernel satisfies Condition f.2, then there is no oscilla
tion behind the wave.

Proof : I am done if I can show that under Condition 4.2, the smallest

positive real root of characteristic equation (4.1.12) is smaller than all positive

real parts of any complex roots of equation (4.1.12) with positive real parts.

By Lemma 3.3, there exists at least one positive real root of p(s) = pj,

j = 1,2. Since p{s) is strictly decreasing (by Lemma 4.2) under Condition

4.2, there exists at most one positive real root of p(s) = pj, j = 1,2. I thus

conclude that there exists exactly one positive real root Sj of p{s) — pj,{j =
1,2) under Condition 4.2.

Suppose Pj + ito, 7 = 1,2 is a complex root of p{s) = pj with Pj > 0, I

have by appendix A (Lemma A.l) that

# s*j- (4.1.26)

If Pj < s], I have by Lemma 4.2 that

Pj = Wj + «'^)l > p{Pj) > p{s]) = Pj, (4.1.27)

which is a contradiction. Therefore,

s*j < pj. (4.1.28)
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Since p{s) is decreasing (by Lemma 4.2) and pi > p2, I have

si < s;. (4.1.29)

It follows that

sl<s*2< p2, Si < Pi (4.1.30)

for any complex roots Pj + ioj of p{s) = pj with Pj > 0, where j = 1,2.

This implies that the smallest positive real root Si of characteristic equation

(4.1.12) is smaller than all positive real parts of any complex roots of (4.1.12)

with positive real parts. □

Notice that if k{x) satisfies Condition 4.1, then it satisfies Condition 4.2

because L'{s) > 0 under Condition 4.1.

Example 4.1.1. Consider IDEs (3.2.13) with the Laplace kernels

k{x) = ki{x) = k2{x) = (4.1.31)

and the two sided Laplace transform

cPL{s) = Li{s) — L2{s) = — where |s| < a. (4.1.32)
Gl S

1. Is there any positive real root of

0<p<l? (4.1.33)

2. Is the smallest positive real root Si smaller than all positive real parts
of any complex roots of equation (4-1-12) with positive real parts?

The kernel in this example is symmetric, hence it satisfies Condition 4.1

and Condition 4.2.
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Figure 3,8). The root si satisfies

e-.«(l_l)=p, (4.1.35)

Let P + iuj {uj 0) be a complex root of equation (4.1.34) with P > 0

such that

1 _ :  (4.1.36)

which implies that

/3^ - 0 2Pu o . ^ ^
1  5—= pe^ cosojc, smwc. (4.1.37)

Equations (4.1.37) give me

?2 , ,2 < e-'=(l - 4).

I now consider the following two cases:

Case 1: Assume that si = p.

In this case, equation (4.1.38) implies that

-Pce-.e(l
a

This will lead to a contradiction that

.2 < 0

(4.1.38)

_^)<,-.o(i_g), (,,1,33)

. (4.1.40)
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Case 2: Assume that si > ̂  > 0.

Under this assumption, I have

si > 0^, > e-''". (4.1.41)

Equations (4.1.38) and (4.1.39) imply that

— oj^ si
1 - 2 ^ 1 - -i 4.1.42)Q,2 V /

and lead to a contradiction that

oj^ <p^-si < 0. (4.1.43)

I have shown there exists a positive real root of (4.1.12) and the smallest

positive real root Si is smaller than all positive real parts of any complex

roots of equation (4.1.12) with positive real parts, i.e., there is no oscillation

behind the wave for the Laplace kernel (see Figure 4.1). □

Example 4.1.2. Consider IDEs (3.2.13) with the kernels

k(x) = k,(x) = k,(x) = I I ^ (4.1.44)
the two sided Laplace transform

L(s) = Li(s) = L2(s) = (4.1.45)
q; + s

and the moment generating function

M{X)=M0X) = M2{X) = -^, X<a, (4.1.46)
a — A
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8/9
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5/9
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10 15

X

Figure 4.1: The traveling wave solution for IDEs (3.2.13) with two same
Laplace kernels (4.1.31)

The population densities of the two species converge to traveling waves, that
are moving to the right for a; > 0. The first species is the invading species
(approaching density 8/9), while the second species is the retreating species
(approaching density 5/9). The parameters were chosen as Ai = 1.2, A2 =
1-5, P12 — 0.2, ̂ 21 = 0.5, a — 7.0. The interior equilibrium is {u*,v*) =
(8/9,5/9). There is no oscillation behind the wave.
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By speed formula (3.3.15),

c > c* = (4.1.47)
a — A ^ ^

which means the wave speed is positive. Since

L'{s) + cLie) > . ,, (4.1.48)
(a + s)^(Q; —A)

for s > 0, kernel (4.1.44) satisfies Condition 4.2. I thus conclude that if the

heteroclinic connection from {u*, v*) to (0,1) exists, there is no oscillation be

hind the wave (see Figure 4.2). □

Notice that kernel (4.1.44) does not satisfies Condition 4.1. This means

that Condition 4.1.1 is only a sufficient, not a necessary condition that guar

antees no oscillation behind the wave.

Unequal dispersal

In the case of unequal dispersal,

ki(x) ^ k2(x), (4.1.49)

I define

F(s) = [p(s) - D][g(s) -E]-B, (4.1.50)

so that characteristic equation (4.1.8) is rewritten as

F{s) = 0. (4.1.51)

I derive Condition 4.3 that guarantees no oscillation behind the wave.
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Figure 4.2: The traveling wave solution for IDEs (3.2.13) with kernels (4.1.44)

The population densities of the two species converge to right-moving traveling
waves. The first species is the invading species (approaching density 6/7),
while the second species is the retreating species (approaching density 4/7).
The parameters were chosen as Ai = A2 = 2.0, P12 = 0.25, ̂21 = 0.5, a = 7.0.
The interior equilibrium is (u*, v*) = (6/7,4/7). There is no oscillation behind
the wave.



Condition 4.3.

L[{s) + cLi{s) > 0 for s > 0, i = 1,2. (4.1.52)

Lemma 4.4. If ki{x) and ̂ 2(0;) satisfy Condition f.S, then there exists at
least a positive real root of the characteristic equation (f.l.S).

Proof : By definition of F{s), I have

~  - i)(l - A2)(1 - P21) ̂  ^

and

F'{s) = p'{s)[q{s) -D] + \p{s) - C]q'{s). (4.1.54)

I have shown in Lemma 3.3 that if Li{s) is well-defined on [0,ri) and

Z/2(s) is well-defined on [0, r2) (ri, r2 can be 00), then

lim_p(s) = 0 lim g'(s) = 0. (4.1.55)

Without loss of generosity, I assume

r = min (n, r2) = n (n > T2) (4.1.56)

so that

lim j9(s) = 0. (4.1.57)
5—>T~

I can show there exists at least a positive real root of characteristic equa

tion (4.1.51) by considering the following two cases:

Case 1: Assume that

lim_F(s)<0. (4.1.58)
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Applying Mean Value Theorem to (4.1.53) and (4.1.58), I know there exists

a positive real number Si G (0, r) such that

F{si) = 0. (4.1.59)

Case 2: Assume that

lim F{s) > 0. (4.1.60)
s—>r~

Under this assumption, I have by equation (4.1.57) that

lim .F(s) = lim [p(s) - T)][9(s)-£?]-5 (4.1.61)
5— s—>>1—

-  lim (—Z))[q'(s) - E] - B > 0, (4.1.62)
5——

which implies

lim [q{s) - £■] < 0. (4.1.63)
S-->1—

Under Condition 4.3, if I differentiate equations (4.1.10) of p and g with

respect to s, I obtain

,, . —ce~^'^Li(s) — (s) . . .
P {s) = — < 0' ^ ^ 0' (4-1-64)

and

-  < 0. for . > 0. (4.1.66)

In particular, I have

p'(0) < 0, q'{0) < 0, (4.1.66)

and

F'(0) = p'(0)(1 - £;) + (1 - D)q'{0) < 0. (4.1.67)
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Therefore, I have by (4.1.57), (4.1.63), (4.1.64), (4.1.65) that

liinF'(s) = lim_{p'(s)[9(s) - E] + [p(s) - i:)]5'(5)} (4.1.68)
S->T- S->T"

=  lim {p'(s)[g'(s) - E] - Dq'{s)} > 0. (4.1.69)
S—^T

Applying Mean Value Theorem to (4.1.67) and (4.1.69), I know there exists

S2 G (0, r) such that

F'{s2) = 0. (4.1.70)

I will show by Lemma 4.5 that

F{s2) < 0. (4.1.71)

Applying Mean Value Theorem to equation (4.1.53) of F{0) and equation

(4.1.71), I show that there exists a positive real number S3 G (6,52) such

that

F{s3) = 0. (4.1.72)

□

Lemma 4.5. Assume that F'{s) = 0 for some s > 0, then I have F{s) < 0
under Condition 4-3.

Proof : Under Condition 4.3, I have particularly by equation (4.1.64) of

p' and equation (4.1.65) of q' that

p'(s) < 0, 9'(s) < 0. (4.1.73)

By assumption, I have

F'{s) = p'(s)[g(s) - E)] + [p(s) - D]q'{s) = 0. (4.1.74)
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It follows that

\p{s) - £'][9(s) -E]<0 (4.1.75)

and

Fis) = [p(s) - D][9(s) -E]-B <-B <0. (4.1.76)

□

In order to show that the smallest positive real root of characteristic equa

tion (4.1.51) is smaller than all positive real parts of any complex roots of

equation (4.1.51) with positive real parts, I first introduce Lemma 4.6.

Lemma 4.6. Suppose s* is the smallest positive real root of characteristic
equation (4.1.51), I have

F'{s*) < 0, (4.1.77)
p{s*)-D>0, q{s*)-E>0 (4.1.78)

under Condition 4-3

Proof : Since F(s*) = 0, I have by Lemma 4.5 that

F'{s*) ^ 0. (4.1.79)

If I assume

F'(s*) > 0, (4.1.80)

and apply Mean Value Theorem to (4.1.67) of F'(0) and (4.1.80), I know

there exists a real number s, 0 < s < s* such that

F'(s) = 0 (4.1.81)

Applying Lemma 4.5 to equation (4.1.81), I obtain

F{s) < 0. (4.1.82)
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Applying Mean Value Theorem to equation (4.1.53) of F(0) and equation

(4.1.82), I know there exists a real number s (0 < s < s) such that

F{s) = 0. (4.1.83)

This is a contradiction to the assumption that s* is the smallest positive real

root of characteristic equation (4.1.51). I thus conclude that

F'{s*) < 0. (4.1.84)

Since

F(s') = [p(s*) - D][?(s*) -E]-B = 0, (4.1.85)

I have either

\p{s*) -D]>0, [q{s*) - E] > 0 (4.1.86)

or

\p{s*) -D]<0, [q{s*) -E]<0. (4.1.87)

By inequality (4.1.84), I have

F'{s*) = p'{s*Ms*) -E] + q'{s*Ms*) - D] < 0 (4.1.88)

where

p'is*) < 0, q'{s*) < 0. (4.1.89)

particularly by equation (4.1.64) of p' and equation (4.1.65) of q'. It follows

that

[p(s*) - £)] > 0, [q{s*) - E] > 0. (4.1.90)
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Theorem 4.7. Under Condition 4-3, s* is smaller than all positive real parts
of any complex roots of characteristic equation (4-1.51) with positive real
parts.

Proof : Consider any complex number 5 = P + iuj with 0 < ̂ < s*, I am

done if I can show that 5 is not a root of characteristic equation (4.1.51).

By Lemma 4.2, I have

and

In addition, I have by (4.1.91), (4.1.92), and Lemma 4.6 that

|p(5)| -D> p{s*) -D>0, 19(5)1 -E> q(s*) -E>0. (4.1.93)

It follows that

\m\ = 1[P(^) - D]m -E]-B\ (4.1.94a)

> |p(5) -~D||9(5) -E\-B (4.1.94b)

> IIpW|--D|||9('5)|-B|--B (4.1.94c)

= [|P('5)|--01[I#)|-B]--B (4.1.94d)

{
> [p(s*) - L'][9(s*) - E]- B = F{s*) = 0, if /3 < s*
> [p(s*) - D][9(s*) -E]-B = F{s*) =0, ii/3 = s* (4.1.94e)

I now consider the following two cases:

Case 1: Assume that

< s*. (4.1.95)
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In this case, I have by (4.1.94e) that

|F((5)|>0, (4.1.96)

which implies

F{5) 0. (4.1.97)

and S is not a root of equation (4.1.54) of F'.

Case 2: Assume that

P = s*. (4.1.98)

If F{5) = F{P + iuj) = 0, then " = " hold on (4.1.94b), (4.1.94c), and

(4.1.94e). Since " = " holds on (4.1.94e) for P = s*,l have

|p(5)| = p(s*) and \q{5)\ = q{s*). (4.1.99)

In addition, I have

|p(5) -D\ = |p(5)| - D and |g(5) - E\ = |g((5)| - E (4.1.100)

because" = " hold on (4.1.94c) and (4.1.94e). This implies

p((5) e R,q{S) e R, and p{5) > 0,q{6) > 0. (4.1.101)

(4.1.99), (4.1.101) imply that

|p(5)| = p(5) = p{P + iu)) = p{s* + ioj) = p{s*) e R, (4.1.102)

which is a contradiction to appendix A (Lemma A.l) that

if p{P + iu) = p(s*) e R, then P ̂  s*. (4.1.103)
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I have shown from above that s* is smaller than all positive real parts of

any complex roots of characteristic equation (4.1.51) with positive real parts.

Lemma 4.4 and Theorem 4.7 imply that there is no oscillation behind the

wave under Condition 4.3.

Example 4.1.3. Consider

ki{x) = (4.1.104)

and

= {"'T' IX < o!
with the two sided Laplace transform

=  L2(s)-=-^, (4.1.106)af — s^ q;2 + s

where |s| < Oi.

Since kernels (4.1.104) and (4.1.105) satisfies Condition 4.3. I thus con

clude that if the heteroclinic connection from (u*,v*) to (0,1) exists, there

is no oscillation behind the wave (see Figure 4.3).

Notice that the method shown in this section for unequal dispersal can

also be applied to the special case of equal dispersal.

4.2 Discussion

In chapter 3 and chapter 4,1 analyzed the traveling wave solution for a two-

species competition model based on IDEs. I derived the speed of invasion

by linearized near the equilibrium at the front of the wave. I also analyzed

the behavior behind the wave and derived some sufficient conditions that
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Figure 4.3: The traveling wave solution for IDEs (3.2.13) with kernels
(4.1.104) and (4.1.105)

The population densities of the two species converge to traveling waves, that
are moving to the right for a; > 0. The first species is the invading species
(approaching density 6/7), while the second species is the retreating species
(approaching density 4/7). The parameters were chosen as Ai = A2 = 2.0,
/?i2 = 0.25, 1321 — 0.5, ai = 7.0, and 0:2 = 5.0. The interior equilibrium is
{u*,v*) = (6/7,4/7). There is no oscillation behind the wave.
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guarantee no oscillation behind the wave. However, I have shown by an

example that linearization may not give the correct spread rate because of a

weak Allee effect.

In chapter 2,1 considered a reaction-diffusion equation with a weak Allee

effect. I concluded that linearization may still give the correct spread rate for

a sufficiently weak Allee effect and may fail to give the correct speed for an

insufficiently weak Allee effect. I also found that this result applied to two-

species models based on IDEs. However, I could not determine the sufficient

or necessary conditions for the linearization to be valid for my competition

model. I hope to complement this in future research.
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Appendix A

Suppose Si is a positive real root and s = ̂ + ioj (/? > 0) is a complex

root of the equation
g-SC

The objective of this appendix is to show that si ̂  /3 and that if the

kernel satisfies Assumption A.l, then Si <

Equation (A.l) can be rewritten as

i = L{s)e'\ (A.2)

where

/OO
k{z)e~^^dz

•OO/O poo
k{z)e~^'^dz + / k{z)e~"dz

■CO «/o .
poo poo

=  / k{—z)e^^dz + / k{z)e''"dz
Jo Jo

poo

=  / [k{z)e~^^ + k{-z)e^^]dz. (A.3)
Jo

poo

L{p + iuj)= / k{z)e-^^+'''> + k{-z)e^^+'''>dz. (A.4)
Jo

Since si is a positive real root of equation (A.l), si satisfies

L(si)e^^'= = i (A.5)

Therefore,
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or

^"00
3S1C r[k{z)e-''' + k{-z)e''']dz = -. (A.6)

Jo P

For complex root s = ̂ + iu} of equation (A.l) with /? > 0, I have

+  = (A.7)

or

Equation (A.8) can be written as

{ /q°° [ + k{-z)e^'e''^^''+'^ ]dz }=^. (A.9)
Lemma A.l shows that Si ̂  p.

Lemma A. 1. si ̂  jS, where si > 0 and /3 > 0.

Proof : If Si = /?, equations (A.6) and (A.9) imply that

POO

e''" / [k{z)e-''' + k{-z)e''']dz
Jo
POO

' / [k{z)e~^^ + k{—z)e^^]dz (A.IO)
Jo
POO

/  k{z)e~^'^ cos u}{z — c)dz
Jo

POO

+6^"^ k{—z)e^^ COS uj{z + c)dz. (A.11)
Jo

Deleting terms and redistributing equation (A. 11), I obtain

POO

/  k{z)e~^^[l — cosu{z — c)\dz
Jo
POO

=  / /:(-2)e^^[cosa;(z + c) — l]rfj2:. (A.12)
Jo

131



Since
POO

/  k{z)e~^^[l — costj(2: — c)]dz > 0 (A.13)
Jo

and
POO

/  k{—z)e^^[cosuj{z-[■ c) — l]dz <Q, (A.14)
Jo

equation (A.12) guarantees that

POO

/  A:(z)e~^^[l — cosa;(2: — c)]d2: = 0, (A.15)
Jo

and
POO

/  k{—z)e^^[cosu{z + c) — l]dz = 0. (A.16)
Jo

It follows that cos uj{z + c) = 1 almost everywhere for z in (0, oo) and leads

to a contradiction that a; = 0. I thus conclude that Si ^ /?.

Assumption A, 1. k{z) < k{—z) almost everywhere for z in (0, oo).

Lemma A. 2. Under Assumption A.l, I have P > si for si > 0 and P > 0.

Proof : I have shown from Lemma A.l that Si ^ p.

li P < Si, I have

(A.17)

In addition, equations (A.6) and (A.9) give me

r»oo

oS\c
POO

/

= e^"

 [k{z)e~^^'' + k{—z)e^^'^]dz
Jo

POO

/  [k{z)e~^^ cos u>{z — c) + k{—z)e^^ cos uj{z + c)] dz. (A.18)
Jo
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It follows that

poo

/  [k{z)e-''' + k{-z)e''']dz
Jo
poo

<  / [k{z)e~^''cos(jj{z-c) + k{-z)e^^ cos (jj{z + c)]dz, (A.19)
J 0

which reduces to

^OO

/  A:(-2;)[e®^^ — e^^cosa;(2: +c)]d2:
Jo
poo

<  / k{z)[e~^''cosu{z - c) - e~^^'']dz. (A.20)
Jo

Since -1 < cosa;(2: - c) < 1 and -1 < cosw(2: + c) < 1,1 have

noo poo
/  k{z)[e~^''cosuj{z-c)-e~''^]dz< k{z)[e~^^ - e'^^'^jdz, (A.21)
Jo Jo

and

roo poo

/  k{-z)[e^'''-e^^]dz< k{-z)[e'"-'- cosuj{z + c)]dz. (A.22)
Jo Jo

It follows that

pco poo

/  k{-z)[e'"''-e^^]dz< k{z)[e~^^ - e~''^]dz. (A.23)
Jo Jo

Moreover, I have for 2: > 0 that

- 1] (A.24)

< e-^^[l - - 1]

=  -2 + 6(^1-/^)^]

/  _/9r\r (^i-g)z.n V= (-e ̂ ^)[e 2 +6 2 ]2 < 0. (A.25)
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This implies that

By Assumption A.l and (A.26), I thus have

roo poo

/  k{z)[e-^'- e-''']dz < / k{-z)[e'''- e^']dz, (A.27)
^0 Jo

which is a contradiction to inequality (A.23). I have shown from the above

that Si < p.

From the above discussion, I conclude that Si 7^ p. Under Assumption

A.l, I have Si < P, which means that the positive real root si is smaller than

all positive real parts of any complex roots of equation (A.l) with positive

real parts.
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