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ABSTRACT

The ptirposes of this research were threefold. The first goal was to

develop and apply a normative typology using multivariate profile analysis

of subtest scores of the Universal Nonverbal Intelligence Test (Bracken &

McCallum, 1998; UNIT), taken from the national standardization sample; the

second goal was to develop and apply a typology using multivariate subtest

profile analysis of a subsample of identified children with Learning

Disabilities from the national standardization sample; and the third goal was

to provide practitioners a description of user friendly strategies needed to

compare meaningful subtest profiles of individual examinees with

commonly occuring normative profiles, as identified in goal one above.

To accomplish these goals, mtiltistage cluster analyses were applied to

the standardization sample for the UNIT Extended Battery, comprised of all

six subtests; the UNIT Standard Battery, comprised of four subtests; and the

UNIT Learning Disabled subsample, comprised of the four Standard Battery

subtests. The results of these analyses yielded a seven profile cluster solution

for the Extended Battery, a six profile cluster solution for the Standard Battery,

and a four profile cluster solution for the Learning Disabled subsample. The

psychometric properties of the respective analyses were impressive with

extremely tight profile clusters that were separated extremely well from each

other.
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Demographic prevalence trends of the resultant clusters are similar to

other studies, but help to describe the cluster composition. Additionally, the

results lend support to the UNIT'S underlying factor structure. To fulfill the

third goal of this research, user-friendly methods of determining whether or

not clinical profiles are unique when compared to the profiles identified in

the standardization sample are discussed.
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CHAPTER 1

Introduction

The purposes of this research are threefold. The first goal is to develop

and apply a normative typology using multivariate profile analysis of subtest

scores of the Universal Nonverbal Intelligence Test (Bracken & McCallum,

1998; UNIT), taken from the national standardization sample; the second goal

is to develop and apply a typology using multivariate subtest profile analysis

of a subsample of identified children with Learning Disabilities from the

national standardization sample; and the third goal is to provide practitioners

a description of user friendly strategies needed to compare meaningful subtest

profiles of individual examinees with commonly occurring normative

profiles, as identified in goal one above.

A profile is the overall pattern of subtest scores on a particular test for a

given individual. The technical elements of a profile consist of the shape,

elevation, and scatter as set forth originally by Lee Cronbach and Goldine

Gleser in 1953. According to Harvey Skinner (1978), "the shape is the actual

pattern of ups and downs across variables in a profile, scatter describes how

dispersed scores are from the average, while elevation is the mean score of

the individual over all attribute measures in the profile" (p.297).

Profile analyses of intelligence tests have taken several directions since

first being advocated by Wechsler (1949). There are two primary strategies.

The first approach is intraindividual, and requires examination of the pattern



of subtest or scale scores produced on an intelligence test to determine the

relative strengths and weaknesses of a given individual. A second

interpretive strategy, an interindividual approach, examines a profile pattern

produced on a given scale for a given individual and compares it to the

patterns of scores on the same scales from other individuals.

It is possible to use both approaches to profile analysis in a two-step

process that includes both an interindividual (normative) and an

intraindividual (ipsative) evaluation. The normative evaluation is

characterized as an inter-individual profile analysis because the comparisons

are between different persons, while the ipsative evaluation can be

characterized as an intra-individual profile analysis since the comparisons are

between the different subtest scores for an individual. The traditional

normative analysis requires univariate statistical methods to compare the

individual with the norm group, while the ipsative analysis examines the

pattern of strengths and weaknesses of a given individual on that particular

test.

Inter-Individual Profile Analysis

Inter-individual profile analysis is carried out using normative scores

to aid in comparing how weU one person performs in relation to another

person. According to Cattell (1944), normative scores are obtained when " the

subjects (persons) are placed in order relative to one another and assigned a

standard score..." (p.293). It is at this normative level that some researchers



and practitioners feel interpretation should stop (McDermott, Fantuzzo, and

Glutting, 1990; McDermott, Fantuzzo, Glutting, Watkins, and Baggaley, 1992),

All the major published intelligence tests' manuals report norming

procedures to allow the among-individual comparisons that practitioners

use. Usually, however, instead of examining the overall normative score

profile through a multivariate analysis, traditionally practitioners have

sequentially analyzed the scaled and standardized scores of the individual

subtests, scales, and full-scale scores of intelligence tests. This sequential

process is described as "univariate" because of the sequential comparisons

designed to determine whether scores are different enough from the norming

group to be statistically significant and/or exceptional (i.e., rare in the

population).

The univariate analysis begins by examining the statistical significance,

or lack thereof, between the obtained scaled score(s) and the calculated, tabled

value(s) listed in the manual of the particular test being used. As suggested

above, the comparisons are pairwise and sequential. Most comparisons use a

significance level of p < .05 to rule out chance occurrence, but p values

ranging from .01 to .15 have been commonly used (Kaufman, 1994; Sattler,

1988). Once the statistical significance comparisons between obtained global

scores and the standardization sample is complete, the second univariate step

of examining base rates begins.



Pairwise comparisons are considered next. By comparing a particular

individual's sub test discrepancy scores to base rates, the evaluator can make a

determination as to how common, or frequent, a pairwise subtest discrepancy

is. Generally, as Kaufman (1994) advocates, this procedure begins by

subtracting the lowest subtest score from the highest subtest score on the

entire instrument or on the separate global scales (depending on the test).

Once that discrepancy is obtained, it can be compared to the cumulative

percentages for that particular discrepancy formd in the standardization

sample. If the discrepancy is large enough, it may then be determined to

occur infrequently and be therefore interpretable (Kaufman, 1994). Both of

these normative procedures are univariate, however, and have been shown

to have statistical limitations due to the multiple pairwise, sequential

comparisons, which may lead to the overidentification of strengths and

weaknesses (Glutting, McDermott, Watkins, Kush, & Konold, 1997).

Following this type of normative analysis, an ipsative or intra-individual,

analysis of the subtest scores can occur.

Intra-Individual Profile Analysis

Intra-individual profile analysis is best known as ipsative

interpretation of a psychological measure, usually a cognitive or personaHty

scale. Raymond B. Cattell (1944) first defined ipsative scores as " scale units

relative to other measurements on the person himself" (p. 294). Since the



term's inception in 1944, over 200 articles have appeared in the psychological

literature dealing with ipsative measures.

Typically, intelligence tests are composed of several subtests that yield

raw scores for the individuals being assessed. These raw scores are then

standardized through a derivation formula, then transformed to yield

familiar standard scores. In order to ipsatize these scores then, one simply

sums all the subtest scores for a given individual, takes the average of these

scores, and compares the relative differences between the separate subtest

scores with the calculated average of all the subtest scores (for that given

individual) on a particular test battery, or scale within a test battery.

Ipsative, or intra-individual, profile analysis has been used extensively

in the clinical assessment of intelligence. It is stiU taught as a viable,

important approach to interpretation, and it is advocated by several

influential texts in the field (Kaufman, 1979; Kaufman, 1994; Sattler, 1988). It

continues to be a method of choice for several reasons. See Table 1 for an

example of how this method is commonly used to identify strengths and

weaknesses for a widely used test, the Wechsler Intelligence Scale for

Children - 3rd Edition (Wechsler, 1991, WISC-in).

This intra-individual approach to profile analysis allows the clinician

to concentrate on the individual's pattern of strengths and weaknesses while

keeping the normative inter-individual comparisons to a minimum

(Zachary, 1990).



Table 1.

Traditional Ipsative Approach to Subtest Profile Analysis with the WISC-IH

Subtest® Scaled Score Difference Value for Frequency

Significance'^

I  12 0.7 3.32 >25%

CD 10 1.3 3.77 >25%

S  9 2.3 3.48 25%

PA 9 2.3 3.91 >25%

A  11 0.3 3.74 >25%

BD 16 4.7 3.04 <10%

V  9 2.3 2.97 25%

OA 12 0.7 4.37 >25%

C  14 2.7 3.84 25%

PC, Picture Completion; I, Information; CD, Coding; S, Similarities; PA, Picture Arrangement;

A, Arithmetic; BD, Block Design; V, Vocabulary; OA, Object Assembly; C, Comprehension

^ Absolute difference from the Scaled Score M, 11.3 (based on the 10 reported subtest scores)

Value needed for statistical significance; values reported in Table B.3, WISC-III Manual

(Wechsler, 1991); values in Bold Typeface are statistically significant

Cumulative percentages of occurrence in standardization sample; values reported in Table B.3,

WISC-111 Manual (Wechsler, 1991)



Presumably, practitioners can use this information to design interventions

that capitalize on the individual's strengths. In addition, some practitioners

use this strategy to identify problem areas for remediating. For example.

Table 1 shows that the abilities assessed by the Block Design subtest are

considered strengths, and can be identified. Knowledge of these strengths

may be used to help plan interventions.

Clinical hypotheses can be generated from this ipsative approach.

These hypotheses can be used to guide diagnosis as well as intervention

decisions (Zachary, 1990). The individual's strengths and weaknesses, as

measured by the given intelligence scale, can be used conjointly with other

assessment data in this decision-making process. In addition, a full

assessment should include other measures of an individual's intellectual

ability allowing the practitioner to use the data to triangulate the most

accurate diagnosis.

While ipsative profile analysis is often used in practice, it is not

without its problems. According to some, there is little empirical evidence to

support its use (Hale, 1979; Hale & Landino, 1981; Hale & Saxe, 1983; Zachary,

1990). For example, according to McDermott, Fantuzzo, Glutting, Watkins,

and Baggaley (1990), ipsatizing the subtest scores on the Wechsler Intelligence

Scale for Children - Revised (WISC-R) automatically removes all the

common variance associated with Spearman's g and almost 60% of the

overall testis reliable variance. In essence then, by ipsatizing the scores in the



traditional manner, McDermott et al. (1990) argue that the reliability of the

scale is diminished drastically. Kaufman (1994) counters convincingly that

the normative scaled scores are not changed in an ipsative analysis; only the

profile mean is shifted. By doing so, no detrimental normative effects occur

(e.g., there is no loss of systematic variability).

McDermott et al. (1990) examined the predictive validity associated

with the WISC-R subtest scores both normatively and ipsatively. They foimd

that normative test scores were able to accotmt for nearly 40% of academic

performance while ipsatized scores could account for less than 10% of

academic performance. Therefore, they concluded that ipsatized scores were

much less valid in predicting academic outcomes from the WISC-R.

Another drawback to using the ipsative approach to profile analysis

according to McDermott et al. (1990) is that the practitioner is unable to

compare one person's ipsatized profile to another's profile. Cattell's (1944)

definition of ipsative scores makes this point. Ipsative scores can be

compared only to other scores that a given individual receives, while

normative scores may be compared between individuals. Although,

McDermott et.al. (1990) argue that this is a weakness, Kaufman (1994) suggests

that this is a strength. He points out that ipsative analyses are meant to

supplement the group comparisons, not replace them (Kaufman, 1994).

Intra-individual profile analysis of intelHgence scales has been

supported over the years by several researchers (Delaney & Hopkins, 1987;
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Katifman, 1979, 1990, 1994; Kaufman & Kaufman, 1983; Battler, 1988, 1992;

Wechsler, 1974, 1991) while concurrently being discouraged by others

(McDermott, Fantuzzo, and Glutting, 1990; McDermott, Fantuzzo, Glutting,

Watkins, and Baggaley, 1992). With personality measures, this type of profile

analysis is carried out quite commonly and is generally accepted as proper

interpretation. However, because of the problems associated with intra-

individual profile analysis, McDermott et.al.(1990; 1992) argue for another

approach to subtest interpretation which makes use of a numerical taxonomy

that utilizes a particular multivariate statistical approach.

Numerical taxonomy is the epistemological discipline that refers to the

systematic distinguishing, ordering, and naming of types based on the

analysis of numerical data using classification rules or models and has been

referred to by Adams (1985) as "phenetic taxonomy". In essence, the objective

of the (pheneticist) is to objectify and quantify the taxonomy by the use of

empirical models to make reliable classifications of groups based on some

form of measurement (Adams, 1985). Sneath and Sokal (1973) are credited as

being the pioneers in the area of numerical taxonomy, especially in biological

classification. In their work, Sneath and Sokal (1973) maintain that

numerical taxonomy centers on the identification of latent relationships

between objects at a given point in time. In order to accomplish these goals, a

statistical approach known as cluster analysis has been relied upon heavily.



Cluster analysis refers to a set of multivariate statistical procedures, or

algorithms, that allow a researcher to group subjects according to data

gathered on several variables that describe the subjects. The resultant groups

are composed of group members that are maximally similar to each other;

concurrently then, each separate group is maximally dissimilar to each other.

This classification or typological function of cluster analysis is by far the most

commonly used by researchers (Aldenderfer & Blashfield, 1984).

In order to understand cluster analysis, it can be compared and

contrasted to factor analysis. Most researchers are more familiar with factor

analysis than cluster analysis; factor analysis can be described as a set of

statistical procedures that produce groups of variables, called factors, based on

data produced on the variables by the subjects. Factor analysis is a data

reduction technique where the redtmdancy is removed from a set of

correlated variables to produce a much smaller number of derived variables

called factors (Kachigan, 1991). Whereas factor analysis reduces a large

number of variables being measured into smaller groups of variables called

factors, cluster analysis reduces a large number of subjects or objects into

smaller groups of identifiable clusters based on their variable scores. Cattell

(1944) called factor analysis an R-technique and cluster analysis a Q-technique.

Recently there has been a rapid increase in the use of cluster analysis,

for two reasons (Aldenderfer & Blashfield, 1984). First, the advent of high

speed computers has made the enormous data handling quite manageable;
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second, the importance of classification as a scientific procedure, especially in

the social sciences, has become more focal to research goals.

Aldenderfer and Blashfield (1984, p.12) propose that all solidly

developed cluster analytic studies should be composed of the five following

steps; a) select a sample that is to be clustered; b) define a set of variables that

represent a measure of the entities, or subjects, in the sample; c) compute a

measure of the similarities among the subjects; d) use a cluster analysis

method to create groups of similar subjects; and e) validate the resulting

cluster solution.

These are the basic steps of which every cluster analytic study should

consist. While step one is fairly straightforward, steps two, three, four, and

five will be discussed below.

After selecting a sample of subjects, a decision must be made as to what

variables will be used to measure those subjects. For instance, researchers

who are interested in personality types of a sample of alcoholics might choose

to use the scales on a personality test such as the Minnesota Multiphasic

Personality Inventory (Hathaway & McKinley, 1940; 1951) as the

measurement variables as Goldstein and Linden (1969) did in their research.

Those interested in the profiles of intelligence acquired by a sample of

learning disabled children might choose the particular subtests on an

intelligence test as measurement variables (Rourke, 1985). Once

measurement variables have been selected, a similarities matrix must be

11



computed among the subjects. A similarities matrix is an arrangement of

similarity coefficients between cases in a row by column format often referred

to as an N X N matrix, where N is a case.

There are several different computational methods for arriving at a

similarities matrix. In the social sciences, the most common methods use

either correlations or the distance in score units between subjects on the

measurement variables. Each method has its associated strengths and

weaknesses, depending on the data under consideration.

Profiles can be compared for similarity through shape, the pattern of

low and high scores; elevation, the mean value of the case over all the

variables; and scatter, the dispersion of scores about the mean (Cronbach &

Gleser, 1953; Aldenderfer & Blashfield, 1984). With these characteristics in

mind, the choice of a similarity measure becomes more apparent.

By using a correlation coefficient as the measure of similarity (a shape

measurement), the researcher chooses a measure that is insensitive to the

magnitude of the differences of the variables being compared. However,

when dispersion and magnitude differences are not of critical importance, the

correlation coefficient may become the similarity measure of choice

(Aldenderfer & Blashfield, 1984). Additionally, of the similarity measures,

the correlation coefficient is one of the easiest to calculate. The other most

commonly used similarity measure is distance. As Aldenderfer and

Blashfield (1984) point out, however, distance measures are more of a

12



comparison of dissimilarity than similarity. That is, when the comparison of

two variables is equal to zero, the variables are said to be the same, but as the

comparison value increases, the variables become more dissimilar.

The most popular distance measure is Euclidean distance. In essence, it

is literally the distance, in score units, between two points, and therein lies its

appeal. Another miiltivariate distance measure is Mahalanobis D^, or

generalized distance (Mahalanobis, 1936). It is different from Euclidean

distance in that it incorporates the variance-covariance matrix in its

computational steps. When the correlation between variables is equal to

zero, Mahalanobis and Euclidean distance are the same value (Aldenderfer

& Blashfield, 1984).

The distance measures also have problems. Primarily, and intuitively,

case similarities are affected by large or small variable magnitudes and

amoimt of dispersion. That is, variables with large size and dispersion

differences can mask variables with small size and dispersion differences

(Aldenderfer & Blashfield, 1984). When using distance measures, most often

researchers will first standardize the variables to overcome this problem.

In addition, Mahalanobis has historically been problematic in that it

is tedious to compute (Mezzich & Solomon, 1980). However, with the advent

of more powerful and faster computers, this problem has been somewhat

alleviated. After selecting a similarity measure the next decision point then

becomes the clustering method.

13



Clustering Methods

There are many clustering methods. Only the three major classes of

clustering techniques used in the social and behavioral sciences will be

discussed here (Aldenderfer & Blashfield, 1984). (For a more detailed

description of the myriad of clustering techniques readers are referred to

Aldenderfer and Blashfield, 1984; Anderberg, 1973; Everitt, 1980; Hartigan,

1975; Mezzich and Solomon, 1980; and Sneath and Sokal, 1973). The three

classes of clustering techniques that are of primary importance to social and

behavioral sciences are: (1) Hierarchical agglomerative, (2) Iterative

partitioning, and (3) Factor analytic.

Hierarchical Agglomerative Methods

According to Aldenderfer and Blashfield (1984), there are four

important points that distinguish hierarchical agglomerative clustering

techniques. First, the methods in this class require a search of a similarity

matrix and sequentially merge those cases most similar. Second, the merger

of clusters can be visualized using a tree diagram. Third, at the first step of

clustering, all cases are viewed as independent clusters; at the last step, all

cases have been merged into one inclusive cluster. Lastly, the methods in

this class are easy to conceptualize. Hierarchical agglomerative methods have

some limitations. They require the calculation and storage of a huge

similarity matrix. This requires a great deal of computer power and memory

space. Second, these methods make only one pass through the data. Third,

14



different solutions may be obtained by simply reordering the data in the

similarity matrix. The four most popular clustering techniques in this class

are: single linkage/ average linkage, complete linkage, and Ward's method.

In single linkage, cases are joined to clusters if the case is similar to at

least one case already in the cluster. Average linkage (Sokal & Michener,

1958) joins cases to clusters if the case is similar to the average of the cases

already in the cluster. Complete linkage (Sokal & Michener, 1958) joins cases

to clusters if the case is within a certain level of similarity to all the other

cases in the cluster. Finally, Ward's method (1963) joins cases or groups of

cases that result in the minimum increase in variance as represented by the

error sum of squares (ESS = X;^ - l/n(SXi)^, where X; is the score of the i*^ case).

When clustering begins with Ward's method, the ESS is equal to zero and as

cases are combined the ESS is recalculated and used as the decision rule.

All of the discussed hierarchical agglomerative methods must be used

in conjunction with some stopping rules in order to determine the point at

which the data yield the most useful and relevant clusters. Obviously, one

large all-inclusive cluster would not be any more useful than having each

case in a sample represent separate clusters. Several stopping rules, or

decision points, have been determined and tested for use with these

methods (see Mojena, 1977; Mojena and Wishart, 1980; Wishart,

1982)

15



Iterative Partitioning Methods

Iterative partitioning methods aUow the researcher to decide initially

the number of clusters desired and where to partition the data (Anderberg,

1973). After the initial partition, each data point is assigned to the cluster

having the nearest centroid. Once a data point is assigned, the cluster

centroids are recomputed. The algorithms for iterative partitioning methods

are designed to make a complete pass through the data each time a data point

is assigned to a cluster. The algorithm repeats untU no data points can be

reassigned.

These methods have some important strengths over the hierarchical

agglomerative methods. First, iterative partitioning methods can handle

much larger data sets. Second, these methods make numerous passes

through the data thereby compensating for a poor initial partition. Finally,

these methods do not produce clusters within clusters, nor do the clusters

overlap.

Although these methods have important strengths, they also suffer

from one major limitation. The most optimal solution would require the

data to be partitioned in all possible configurations. According to Aldenderfer

and Blashfield (1984), an example with 15 cases and 3 clusters would require

the examination of 217,945,728,000 unique partitions. This would be

16



practically and computationally impossible, even for a data set as small as the

example.

There are several iterative partitioning methods, but the most

commonly used method in the social sciences is known as 'k-means'

(MacQueen, 1967), In this procedure the researcher specifies k starting points

as initial estimates of group centroids. Cases are then assigned to a cluster

with the nearest centroid, and the centroids are recomputed after the addition

of each case (Mezzich & Solomon, 1980).

Factor Analysis Methods

Variants of factor analysis have been used considerably in the field of

psychology. Clustering methods based on factor analysis are commonly

known as inverse factor analysis or Q-type factoring (Aldenderfer &

Blashfield, 1984). Whereas traditional factor analysis groups variables based

on the factor loadings, the clustering variants group cases based on the factor

loadings. As in traditional factor analysis, clustering variants begin with a

correlation matrix between entities as a measure of similarity from which the

factors are extracted.

Clustering variants are not without their faults, however. These

clustering variants have been cited as faulty for the use of a linear model

across cases, the possible generation of multiple factor loadings, and the

double centering of data (Aldenderfer & Blashfield, 1984; Everitt, 1980; Fleiss

et al., 1971).

17



Once a clustering method is chosen and applied, the next step in a

cluster analytic study is to validate the resultant solution. The three most

commonly used validation techniques are; a) replication; b) significance tests

on external variables; and c) tests of homogeneity.

Rephcation is straightforward and conceptually simple. The idea is to

split the sample randomly into a derivation group and a validation group,

apply clustering techniques to the derivation group to determine clusters, and

finally, to apply the same clustering techniques to the validation group.

Successfxil validation would result when clusters in the validation sample are

compared to and fotmd similar to those in the derivation sample. A word of

caution is necessary, however. "The failure of a cluster solution to replicate is

a reason for rejecting the solution, but a successful replication does not

guarantee the validity of the solution" (Aldenderfer & Blashfield, 1984, p.65).

The second commonly used validation technique allows significance

testing of external variables, i.e., the technique performs significance tests and

compares the resultant clusters with variables not used in the original

clustering procedures. For example, it is possible to compare a particular

clustering solution with external demographic data or results obtained on

other measures. The strength of this procedure is that the clusters are

compared directly with relevant data (Aldenderfer & Blashfield, 1984).

The third most commonly used validation technique is the use of

internal tests of homogeneity. Tryon and Bailey (1970) advocate the use of the
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H statistic. The H statistic compares the variance for a particular cluster on a

variable with the variance for that same variable across the entire data set

(Blashfield & Aldenderfer, 1988). Another test of homogeneity used in this

type of research has been CatteU's (1949) rp statistic. Cattell's rp compares the

average similarity between the resultant clusters.

Other less commonly used validation techniques include the

cophenetic correlation, significance tests on the variables used in the creation

of clusters, and Monte Carlo procedures. Readers are referred to Aldenderfer

and Blashfield (1984), Skinner and Blashfield (1982), and Blashfield and

Aldenderfer (1988) for more information if interested in these less common

techniques.

Application of Clustering Methods

The recent development of this plethora of clustering methods has led

to an increase in taxonomic and typological research focusing on the study of

intelligence. Various combinations of these clustering techniques have been

used in the development of normative profile typologies of several

individually administered intelligence tests. Typologies have been developed

and described for the Wechsler Intelligence Scale for Children - Revised

(Wechsler, 1974) by McDermott, Glutting, Jones, Watkins, and Kush (1989),

the Wechsler Adult Intelligence Scale - Revised (Wechsler, 1981) by

McDermott, Glutting, Jones, and Noonan (1989) and by Schinka and

Vanderploeg (1997), the Wechsler Preschool and Primary Scale of Intelligence
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(Wechsler, 1967) by Glutting and McDermott (1990a), the McCarthy Scales of

Children's Abilities (McCarthy, 1972) by Glutting and McDermott (1990b), the

Kaufman Assessment Battery for Children (Kaufman & Kaufman, 1983) by

Glutting, McCrath, Kamphaus, and McDermott (1992), the Differential Ability

Scales (Elliot, 1990) by Holland and McDermott (1996), and the Wechsler

Intelligence Scale for Children - Third Edition (Wechsler, 1991) by Glutting,

McDermott, and Konold (1997) and by Donders (1996). All of these typologies

were developed and based on the national standardization samples for each

respective instrument. Several of these authors have developed procedures

to allow practitioners to compare a particular examinee's sub test profile to the

"common" profiles of the respective typologies.

Additionally, cluster analytic procedures have been used in intelligence

research that examines the incidence of profile types based on individually

administered intelligence instruments for persons identified as learning

disabled (Mailer & McDermott, 1997; Shapiro, Buckhalt, & Herrod, 1995);

persons who experienced traumatic-head-injury (Donders & Warschausky,

1997) and closed-head-injury (Crawford, Carthwaite, Johnson, Mychalkiw, &

Moore, 1997); and children diagnosed as conduct disordered (Christian, Frick,

HiU, Tyler, & Frazer, 1997). For example, DeLuca, Rourke, and Del Dotto

(1991) applied cluster analytic procedures to the scaled scores of 4,000 students

labeled learning disabled in arithmetic to determine possible subtypes. They

used the scaled scores obtained on the Wechsler Intelligence Scale for
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Children - Revised (WISC-R; Wechsler, 1974), the Wide Range Achievement

Test (WRAT; Jastak & Jastak, 1978), the Personality Inventory for Children

(PIC; Lachar & Gdowski, 1979), the Behavior Problem Checklist (Quay &

Peterson, 1979), and the Activity Rating Scale (Werry, 1968) as clustering

variables. A two-stage clustering procedure was used that incorporated a

hierarchical procedure in the first stage and an iterative partitioning

procedure in the final stage. Based on their analysis, they were able to

determine four subtypes of arithmetic disabled students that needed distinctly

different treatment regimens.
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Statement of the Problem

It can be seen, then, that normative typologies based on clustering

techniques can be both illuminating and useful when comparing individuals

based on standardized testing results. These typologies have been generated

using the most common intelligence and personality instruments.

Practitioners now have a choice. They can use the older inter- and intra-

individual interpretive strategies, or they can use the multivariate cluster-

based interpretive strategies. However, practitioners using new

multidimensional nonverbal tests of intelligence, as well as the newer

special-focus tests, do not have the multivariate based analyses available. My

research aims to apply the aforementioned clustering techniques to a new

multidimensional nonverbal intelligence test, the Universal Nonverbal

Intelligence Test (UNIT; Bracken & McCallum, 1998), for two populations.

The first sample is representative of all school-age children in the United

States; the second is representative of learning disabled (LD) children in the

United States.

The UNIT (Bracken & McCallum, 1998) is a measure of general

intelligence and cognitive abilities. It is designed to be used with children and

adolescents between the ages of 5 years and 17 years who may be

"disadvantaged by traditional verbal and language-loaded" (p.l) measures of

intelhgence. The UNIT measures a broad range of memory and reasoning

abilities, including processes of verbal (symbolic) mediation and processes
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that do not rely on mediation (nonsymbolic). The UNIT memoiy subtests

"measure recall of content, location, and sequence" (p.l), while the reasoning

subtests "measure pattern processing, problem solving, understanding of

relationships, and planning abilities" (p.l).

The UNIT is administered and completed without the use of language,

making it a truly nonverbal test of intelligence. The UNIT consists of six

subtests. Symbolic Memory, Spatial Memory, Object Memory, Cube Design,

Analogic Reasoning, and Mazes. All of the subtests yield standard scores with

a mean of 10 and a standard deviation of 3. The standard scores on these

subtests can be combined to yield the following five scale quotients: Memory

Quotient, Reasoning Quotient, Symbolic Quotient, Nonsymbolic Quotient,

and Full Scale Intelligence Quotient. All of these scales use standard scores

with a mean of 100 and a standard deviation of 15. Using the UNIT data from

the standardization sample, two questions were developed.
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Research Questions

What is the normative typology of the Universal Nonverbal

Intelligence Test based on the obtained scaled scores of the six subtests,

i.e., what are the "common" profiles and how many "common"

profiles are available.

Are there distinctive normative subtypes of Learning Disabled students

based on the UNIT standardization?
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CHAPTER 2

Methods

Participants

The entire standardization sample of the Universal Nonverbal

Intelligence Test (UNIT) was used. The sample included 2,100 children from

age 5 years, 0 months through age 17 years, 11 months, 30 days. The sample

was stratified according to the 1995 U.S. census data and incorporated current

data from the U.S. Department of Education to target children from all major

U.S. geographic regions, socioeconomic levels, ethnicities and races,

commtmity settings, classroom placements, special education services and

parental education attainment. Representative samples of exceptional

children such as learning disabled, deaf/hearing impaired, mentally retarded,

and children learning English as a Second Language were included. The

sample was divided into 12 groups of 175 children, categorized in age ranges

of 1 year for all ages except for the 16 and 17 year olds; they were combined

into one group. Because the sample was relatively equally distributed across

months within years, norms were generated with four-month intervals.

Instrument

The UNIT is a technically sound measure of intelligence. Many

reliability and validity studies were undertaken during its development.

In terms of reliability, internal consistency was measured using split-

half correlations with Spearman-Brown corrections. Reliabilities of the four
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subscales ranged from .87 for the Symbolic Quotient to .91 for the

Nonsymbolic Quotient with a .93 for the UNIT Full Scale scores. The

reliabilities of the individual subtests ranged from .64 on Mazes to .91 on

Cube Design with the majority of coefficients above .75. Additionally,

reliabilities were examined over time with test-retest measures.

Test-retest reliabilities of the four subscales ranged from .78 on the

Symbolic Quotient to .87 on the Reasoning Quotient with a .88 for the Full

Scale scores. The reliabilities of the individual subtests ranged from .58 on

Mazes to .85 on Cube Design. All reliability coefficients reported here were

corrected for restriction or expansion in range; additionally, aU composite

coefficients were corrected for reliability of linear combinations (Bracken &

McCallum, 1998).

Both internal and external evidence of validity for the UNIT was

examined. Procedures were used to determine content validity and structural

validity that included examinations of unidimensionality, intercorrelations,

and both exploratory and confirmatory factor analysis.

Unidimensionality was achieved by selecting items with comparable

item characteristic curves as measured by the Rasch model. Those original

items with item characteristic curves not meeting best fit criteria were

discarded. Intercorrelations among the four scales of the Standard and

Extended batteries were consistently high with coefficients above .90.

Confirmatory factor analytic conclusions consistently foxmd evidence of four
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factors corresponding to the four global UNIT scales. Therefore, ample

evidence of internal validity was shown. Evidence of external validity was

also examined.

Correlational studies provided evidence of both concurrent and

predictive validities for the UNIT. Correlations with the composite scores of

Wechsler Intelligence Scale for Children - Third Edition, Woodcock-Johnson

Tests of Cognitive Ability - Revised, Kaufman Brief Intelligence Test, and the

Matrix Analogies Test yielded concurrent coefficients above .81. Additionally,

the UNIT was compared with Raven's Standard Progressive Matrices and the

Test of Nonverbal Intelligence - Second Edition yielding coefficients of .56 and

.63 respectively.

The UNIT'S predictive validity was also examined with comparisons

between the UNIT FuU Scale score and the Woodcock-Johnson Tests of

Achievement - Revised Broad Scores (Reading, Mathematics, Knowledge,

and Skills). The UNIT yielded correlations above .78 with all the

achievement scores. Comparisons between the UNIT Eull Scale score and the

Wechsler Individual Achievement Test yielded correlations ranging from .44

to .74.

Additional validity studies with subsamples of the standardization

sample who were diagnosed with an exceptionality (speech and language

impaired, learning disabled, mentally retarded, intellectually gifted, and
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serious emotional disturbance). The external validity studies were used to aid

in verifying the UNIT'S technical validity properties.

Procedure

Cluster analysis procedures were used to sort the children's subtest

profiles according to shape and level. The majority of procedures used for the

initial part of this study will replicate those used by Glutting, McDermott, and

Konold (1997); then procedures were used to develop a normative subtest

taxonomy for the UNIT standardization sample.

The second part of the study used cluster analysis procedures to

develop a subtest taxonomy for the subsample of learning disabled students

taken from the overall standardization sample. Procedures used in the

second part of this study replicated those in the initial part to ensure

continuity.

The clustering strategy consisted of three stages, beginning with an

agglomerative clustering procedure. Ward's (1963) hierarchical

agglomerative procedure was used to initially cluster 12 initial partitions

independently. The initial 12 partitions consisted of the groups divided by

age levels. A proximity matrix of error sums of squares values was formed by

pooling the clusters from the 12 independent analyses. This proximity matrix

then underwent the second stage of clustering which also utilized Ward's

hierarchical agglomerative procedure.
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Ward's method utilizes error sum of squares values as a measure of

similarity to produce the similarity matrix. This similarity matrix was

subjected to the second stage of clustering, again using Ward's method to

produce the clusters. From these clusters, the cluster centroids were be used

as starting points for the third stage of clustering.

The third stage of clustering utilized an iterative partitioning

procedure that uses a K-means passes algorithm. Generalized distance was

used as the similarity measure with this iterative procedure.

Four stopping rules (Glutting, et al., 1997) were utilized during the first-

and second-stage clustering with one stopping rule used with the final stage

of clustering. The first four stopping rules are as follows;

1. Solutions must correspond to a hierarchical step occurring before an

atypical change in the similarity measure.

2. Solutions must have a cluster variance to standardization sample

variance ratio < 1.0.

3. Solutions must meet Mojena's (1977) first stopping rule. This

mathematical rule requires stopping when:

a^^i > a + ks,,

where a is the fusion coefficient; a^+j is the value of the criterion at

stage j + 1 of the clustering process; k is the standard deviate, a is the

mean of the fusion coeMcient, and s is the standard deviation of the
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fusion coefficient. The standard deviate, k, can be calculated at each

stage of clustering where;

kj = (aj+i-a)/ s,

4. Solutions must fulfill the criteria set forth by Wisharf s (1982) t-test.

The final stage of clustering (K-means) was to stop when subject relocations

did not improve within cluster homogeneities or at no more than 100

iterations.

Profile Validation

Aldenderfer and Blashfield (1984) and Blashfield and Aldenderfer

(1988) discuss several plausible methods for determining the validity of the

clusters developed through the analyses. Three of those methods are:

1. Replication

2. Significance tests on independent variables

3. Tests of homogeneity

These methods tend to provide good indicators of cluster validity and

have been used in similar research (McDermott, Glutting, Jones, Watkins, &

Kush, 1989; McDermott, Glutting, Jones, & Noonan, 1989; Konold, Glutting,

McDermott, Kush, & Watkins, 1999). Validation through replication is a

straightforward procedure, simply split the sample in half, use one half to
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determine clusters, then cluster the other half as a check for similar results. If

the second sample does not replicate the first then the vahdity of the clusters

must be called into question (Aldenderfer & Blashfield, 1984; Blashfield &

Aldenderfer, 1988). The second method for examining validity is to perform

significance tests on independent variables.

Usually these significance tests are performed on external variables not

used in the clustering procedures, such as demographics. Examples of

demographics used in similar analyses are age, sex, race, and educational

placement (Konold, Glutting, McDermott, Kush, and Watkins, 1999). Other

pertinent variables could and should be used in this type of validation

technique. The final validation technique is the use of internal tests of

homogeneity.

Tryon and Bailey (1970) advocate the use of the H statistic as a test of

homogeneity. The H statistic compares the variance for a particular cluster

on a variable with the variance for that same variable across the entire data

set (Blashfield & Aldenderfer, 1988). The value of the H statistic will

approach 1.00 as the clusters become more homogenous. A cutoff value of >

.60 has been advocated (McDermott, Glutting, Jones, Watkins, & Kush, 1989;

McDermott, Glutting, Jones, & Noonan, 1989; Konold, Glutting, McDermott,

Kush, & Watkins, 1999). Another test of homogeneity used in this type of

research has been Cattell's (1949) rp statistic.
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Cattell's Tp compares the average similarity between the restdtant

clusters. An rp value of < .40 has also been suggested as a solid cutoff point

(McDermott, Glutting, Jones, Watkins, & Kush, 1989; McDermott, Glutting,

Jones, & Noonan, 1989; Konold, Glutting, McDermott, Kush, & Watkins,

1999). All three validation techniques were used to evaluate the resultant

clusters produced by the UNIT standardization sample for the four subtest

Standard Battery, the six subtest Extended Battery, and the four subtest

Standard Battery for the Learning Disabled subsample.

Finally, a set of steps were created to help practitioners compare a

particular UNIT profile to common UNIT profiles, as determined by the

procedures described in this study. These steps are user-friendly and can be

implemented by examiners in the field using simple mathematics.
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CHAPTER 3

Results

The following results have been divided into three sections to

correspond with the three overall analyses. First, the UNIT Standard Battery

results are presented, including demographic prevalence trends, followed by

results from the Extended Battery, and the Learning Disabled subsample.

Standard Battery

The MEG procedure was utilized for the clustering analyses

(McDermott, 1998). The twelve initial age-partitioned blocks of the

standardization sample (N = 2,100) were submitted to first stage clustering.

These initial age-partitioned blocks yielded 93 profile clusters with an average

of 7.75 clusters per age-partitioned block. Those resultant profile clusters were

then merged into a 93 X 93 similarity matrix for subsequent second-stage

clustering. The resultant second-stage cluster profiles were then analyzed

through comparisons with the previously decided upon criteria. A six profile

cluster solution met the decision criteria most clearly, and was therefore

submitted to third-stage clustering to ensure accurate final profile clusters.

The third-stage clustering relocates those profiles that were misclassified

during second-stage clustering.

The six profile cluster solution produced extremely tight clusters (H =

.981; range .978 to .985). Additionally, the six profile cluster solution was
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found to have excellent separation between each cluster (rp = -.27; range -.81 to

.34). The replication rate for the final-stage profile clusters across the twelve

first-stage profile clusters was 88.89%. Replication was determined by

assessing whether the final profile clusters existed in each of the first-stage

profile clusters. Specific psychometric properties of each respective profile can

be foxmd in Table 2. Table 3 provides a summary of the subtest and Full Scale

IQ scores for each profile while Table 4 and Figure 1 presents the subscale

scores.

External variables were used in the description and to support the

validity of the prototypic profile clusters. Full Scale IQ's, Subscale Quotients,

and prevalence rates are presented with expectancy comparisons of gender,

race, and parent education within each profile cluster reported. The following

prevalence trends reported as higher or lower than expected were found to be

statistically significant (p < .05 or less).

Core Standard Battery Profile Descriptions

1. Superior. (FSIQ = 122, MQ = 119, RQ = 120, SQ = 120, NSQ = 119;

Prevalence = 16.8%). This profile type is composed of more Whites than

expected; 92% versus the expected composition of 79%. Additionally,

significantly fewer African Americans are represented; 3% versus the

expected composition of 16%. More males (54%) are represented than females

(46%). The majority of parents for these students have four or more years of

college (52%).
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Table 2

Psychometric Properties of UNIT Standard Battery Profiles

Profile Cluster Within-Type Wetween-Type

Homogeneity (H) Similarity (r^

Replication:

First-to-Last

Cluster

1

2

3

4

5

6

Mean

.978

.984

.981

.985

.984

.976

.981

-.73

.21

-.45

.34

-.17

-.81

-.27

100%

100%

50%

100%

91.67%

91.67%

88.89%

us'ousfrauzKt
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Table 3

UNIT Standard Battery Subtest Scores® and Full-Scale IQs'' for Respective

Profiles'^

Profile SY CD SP AR FSIQ

1 13 14 13 13 122

2 9 13 11 10 105

3 12 9 12 10 105

4 10 9 9 12 99

5 8 8 9 8 88

6 5 6 5 5 71

uin£«iv9iiT,0rniiuv9E^ttKtf7iv»ttn)iwve:''Ktnrsa3U2iiii!a

'Subtest standard score Ms = 10 and SDs = 3

''FSIQ standard score M = 100 and SD = 15

"SY = S5nnbolic Memory, CD = Cube Design, SP = Spatial Memory, AR

Analogic Reasoning, FSIQ = Full-Scale IQ
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Table 4

UNIT Standard Battery Subscale Scores® for Respective Profiles''

Profile MQ RQ SQ NSQ

2  101 109 100 110

3  113 97 106 104

4  95 103 106 93

5  91 89 88 91

6  73 75 73 74

®Subscale standard score Ms = 100 and Sds = 15

''MQ = Memory Quotient, RQ = Reasoning Quotient, SQ = Symbolic Quotient,

NSQ = Nonsymbolic Quotient
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5  6f

UNIT Profiles Standard Battery

I

Subtest

-♦—Superior
Slightly Above Average with High Reasoning and Nonsymbolic Quotients
Slightly Above Average with High Memory and Symbolic Quotients

-X—Average
Low Average

-♦— Delayed

Figure 1. Mean UNIT Standard Battery subtest profiles

Note: SY = Symbolic Memory, CD = Cube Design, SP = Spatial Memory, AR =

Analogic Reasoning



2. Slightly Above Average with High Reasoning and Nonsymbolic

Quotients. (FSIQ = 105, MQ = 101, RQ = 109, SQ = 100, NSQ = 110; Prevalence =

17.5%). Again, Whites predominate at higher than expected levels within

this type (84% versus 79%), while fewer than expected African Americans are

present (8% versus 16%). Males predominate (61%) versus 44% female

composition, and again the majority of parents have four or more years of

college education (36%).

3. Slightly Above Average with High Memory and Symbolic

Quotients. (FSIQ = 105, MQ = 113, RQ = 97, SQ = 106, NSQ = 104; Prevalence =

16.3%). More Whites than expected and less African Americans than

expected compose this profile type (81% versus 11%), while females are

disproportionately represented (58%; males - 42%). Parental education level

is relatively evenly distributed amoiig high school graduates (30%), those

with up to three years of college (30%), and college graduates (29%).

4. Average. (FSIQ = 99, MQ = 95, RQ = 103, SQ = 106, NSQ = 93;

Prevalence = 15.1%). The race composition of this profile approaches the

overall population (Whites - 85%; African Americans - 13%). Gender

composition also approaches the overall population with slightly more

females than males (51% versus 49%). Parent education is again relatively

evenly distributed with most completing high school (35%), 28 percent

completing one to three years of college, 24 percent completing college, and 12

percent not finishing high school.
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5. Low Average. (FSIQ = 88, MQ = 91, RQ = 89, SQ = 88, NSQ = 91;

Prevalence = 25.7%). Slightly less Whites than expected (72% versus

population expectancy of 79%) and significantly more African Americans

than expected (32% versus popiilation expectancy of 16%). In terms of gender,

there are more females (52%) than males (48%). More parents have

completed high school (38%; national proportion - 29%), with a large

proportion also completing one to three years of college (26%).

6. Delayed. (FSIQ = 71, MQ = 73, RQ = 75, SQ = 73, NSQ = 74; Prevalence

= 8.5%). More African Americans (32%) and less Whites (64%) than expected

(versus 16% and 79%, respectively) comprise this profile. The largest

proportion of parents within this profile have completed high school (37%)

with some attending college (26%) and a large proportion not completing

high school (20%). Sixteen percent of the parents have completed college.

Significantly more females than males are present (54% and 46%,

respectively) within this type.

Extended Battery

The MEG procedure was also utilized for the Extended Battery

clustering analyses (McDermott, 1998). The twelve initial age-partitioned

blocks of the standardization sample (N = 2,100) were submitted to first stage

clustering. These initial age-partitioned blocks yielded 96 profile clusters with

an average of 8 clusters per age-partitioned block. Those resultant profile

clusters were then merged into a 96 X 96 similarity matrix for subsequent
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second-stage clustering. The resultant second-stage cluster profiles were then

analyzed through comparisons with the previously decided upon criteria. A

seven profile cluster solution met the decision criteria most clearly, and was

therefore submitted to third-stage clustering to ensure accurate final profile

clusters. The third-stage clustering relocates those profiles that were

misclassified during second-stage clustering.

The seven profile cluster solution produced extremely tight clusters

(H = .979; range .973 to .981). Additionally, the seven profile cluster solution

was fotmd to have extremely good separation between each cluster (rp =-.09;

range -.76 to .23). The replication rate for the final-stage profile clusters across

the twelve first-stage profile clusters was 84.48%. Replication was determined

by assessing whether the final profile clusters existed in each of the first-stage

profile clusters. Specific psychometric properties of each respective profile can

be found in Table 5. Table 6 provides a summary of the subtest and FuU Scale

IQ scores for each profile while Table 7 and Figure 2 presents the subscale

scores.

Again, external variables were used in the description and to support the

validity of the prototypic profile clusters. FuU Scale IQ's, Subscale Quotients,

and prevalence rates were presented with expectancy comparisons of gender,

race, and parent education within each profile cluster reported. The foUowing
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Table 5

Psychometric Properties of UNIT Extended Battery Profiles

ProfUe Cluster Within-Type Between-Type

Homogeneity (H) Similarity (r )

Replication:

First-to-Last

Cluster

1

2

3

4

5

6

7

Mean

.975

.979

.980

.981

.981

.981

..973

.979

-.69

-.25

.11

.18

.05

..23

-.76

-.09

100%

100%

66.67%

58%

91.67%

75%

100%

84.48%
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Table 6

UNIT Extended Battery Subtest Scores® and Full-Scale IQs'' for Respective

Profiles'^

Profile SY CD SP AR OB MZ FSIQ

1 14 13 14 13 14 11 122

2 11 12 11 11 10 13 111

3 11 12 11 11 10 8 105

4 10 9 10 10 12 11 101

5 8 9 9 8 8 11 90

6 9 8 8 9 10 7 90

7 6 6 6 5 6 7 70

srnnS'^MJiiunauiiDViuiliarawuiTiiii)

^Subtest standard score Ms = 10 and SDs = 3

^FSIQ standard score M = 100 and SD = 15

"SY = Symbolic Memory, CD = Cube Design, SP = Spatial Memory, AR =

Analogic Reasoning, OB = Object Memory, MZ = Mazes, FSIQ = Full-Scale IQ
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Table 7

UNIT Extended Battery Subscale Scores® for Respective Profiles''

Profile MQ RQ SQ NSQ

_  ̂

2  105 114 105 114

3  105 104 105 104

4  103 99 104 98

5  88 95 87 96

6  94 87 96 85

7  73 73 72 74

®Subscale standard score Ms = 100 and Sds = 15

''MQ = Memory Quotient, RQ = Reasoning Quotient, SQ = Symbolic Quotient,

NSQ = Nonsymbolic Quotient

44



10;

UNIT Extended Battery Subtest Profiles

—♦—Superior
—■—High Average

Average
—K—Average with Slightly Higher Memory and Symbolic Quotients than Reasoning and Nonsymbolic Quotients

JK Low Average with Slightly Higher Reasoning and Non^mbolic Quotients than Memory and Symbolic Quotient
—•—Low Average with Slightly Higher Memory and Symbolic Quotients than Reasoning and Nonsymbolic Quotient
—t—Delayed

Figure 2. Mean UNIT Extended Battery subtest profiles

Note: SY = Symbolic Memory, CD = Cube Design, SP = Spatial Memory, AR =

Analogic Reasoning, OB = Object Memory, MZ = Mazes



prevalence trends reported as higher or lower than expected were found to be

statistically significant (p < .05 or less).

Core Extended Battery Profile Descriptions

1. Superior. (FSIQ = 122, MQ = 123, RQ = 116, SQ = 122, NSQ = 117;

Prevalence = 13.6%). This profile type is composed of more Whites than

expected; 89% versus the expected composition of 79%. Additionally,

significantly fewer African Americans are represented; 4% versus the

expected composition of 16%. Males and females are equally represented.

The majority of parents for these students have four or more years of college

(55%).

2. High Average. (FSIQ = 111, MQ = 105, RQ = 114, SQ = 105, NSQ = 114;

Prevalence = 15.6%). Again, Whites predominate at higher than expected

levels within this type (89% versus 79%), while fewer than expected African

Americans are present (5% versus 16%). There are more males than females

(55% versus 44%), and again the majority of parents have four or more years

of college education (39%).

3. Average. (FSIQ = 105, MQ = 105, RQ = 104, SQ = 105, NSQ = 104;

Prevalence = 15.1%). More Whites than expected and less African Americans

than expected compose this profile type (90% versus 6%), while males are

disproportionately represented (56%; females - 44%). Most parents have four

or more years of college (41%).
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4. Average with Slightly Higher Memory and SymboHc Quotients than

Reasoning and Nonsymbolic Quotients. (FSIQ = 101, MQ = 103, RQ = 99, SQ =

104, NSQ = 98; Prevalence = 14.6%). The race composition of this profile is

very similar to the overall population (Whites - 76%; African Americans -

15%). More females than males are present (54% versus 46%). Parent

education is relatively evenly distributed with most completing high school

(35%).

5. Low Average with Slightly Higher Reasoning and Nonsymbolic

Quotients than Memory and Symbolic Quotients. (FSIQ = 90, MQ = 88, RQ =

95, SQ = 87, NSQ = 96; Prevalence = 18.3%). The race of these students

approaches expectancies (Whites - 81%; African Americans - 14%). In terms

of gender, there are more males (53%) than females (47%). More parents

have completed high school (36%; national proportion - 29%), with a large

proportion also completing one to three years of college (31%; national

proportion - 30%).

6. Low Average with SHghtly Higher Memory and Symbolic Quotients

than Reasoning and Nonsymbolic Quotients. (FSIQ = 90, MQ = 94, RQ = 87,

SQ = 96, NSQ = 85; Prevalence = 14.2%). More African Americans (21%) and

slightly less Whites (76%) than expected (versus 16% and 78%, respectively)

comprise this profile. The largest proportion of parents within this profile

have completed high school (39%) with some attending college (24%) and

some graduating from college (22%). Fifteen percent of the parents have not
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completed high school. Significantly more females than males are present

(59% and 41%, respectively) within this type.

7. Delayed. (FSIQ = 70, MQ = 73, RQ = 73, SQ = 72, NSQ = 74; Prevalence

= 8.7%). African Americans make up a disproportionally large group within

this profile (37%) while Whites account for just rmder two thirds. Again,

there are more females than males (52% and 48%). The largest proportion of

parents have not completed high school (36%) with those completing high

school following closely (32%).

Learning Disabled Subsample

The MEG procedure was again utilized for the clustering analyses

(McDermott, 1998). Two randomly partitioned blocks of the Learning

Disabled subsample of the standardization sample (N = 110) were submitted

to first stage clustering. These initial partitioned blocks yielded 6 profile

clusters with an average of 3 clusters per block. Those resultant profile

clusters were then merged into a 6 X 6 similarity matrix for subsequent

second-stage clustering. The resultant second-stage cluster profiles were then

analyzed through comparisons with the previously decided upon criteria. A

four profile cluster solution met the decision criteria most clearly, and was

therefore submitted to third-stage clustering to ensure accurate final profile

clusters. The third-stage clustering relocates those profiles that were

misclassified during second-stage clustering.
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The four profile cluster solution produced extremely tight clusters

(H = .982; range .979 to .985). Additionally, the four profile cluster solution

was found to have excellent separation between each cluster (tp = -.49; range

-.79 to .05). The replication rate for the final-stage profile clusters across the

twelve first-stage profile clusters was 75%. Replication was determined by

assessing whether the final profile clusters existed in each of the first-stage

profile clusters. Specific psychometric properties of each respective profile can

be found in Table 8. Table 9 provides a summary of the subtest and Full Scale

IQ scores for each profile while Table 10 and Figure 3 present the subscale

scores.

External variables were again used in the description and to support

the validity of the prototypic profile clusters. Full Scale IQ's, Subscale

Quotients, and prevalence rates were presented with expectancy comparisons

of gender, race, and parent education within each profile cluster reported.

The following prevalence trends reported as higher or lower than expected

were foimd to be statistically significant (p < .05 or less).

Core Learning Disabled Subsample Profile Descriptions

1. Average with Higher Memory Quotient than Reasoning Quotient.

(FSIQ = 106, MQ = 112, RQ = 100, SQ = 103, NSQ = 108; Prevalence = 17.3%).

This profile type is composed predominantly of Whites; 84% versus the

expected composition of 79%, while African Americans comprise only
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Table 8

Psychometric Properties of UNIT Learning Disabled Profiles

Profile Cluster Within-Type Between-Type

Homogeneity (H) Similarity (rp)

1

2

3

4

Mean

.985

.981

.979

.982

.982

-.76

-.45

.05

-.79

-.49

Replication:

First-to-Last

Cluster

100%

50%

100%

75%
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Table 9

UNIT Subtest Scores® and Full-Scale IQs'' for Respective Learning Disabled

Profiles'^

Profile SY CD SP AR FSIQ

1 11 10 13 10 106

2 9 11 8 10 97

3 8 7 9 8 86

4 6 7 6 5 73

^Subtest standard score Ms = 10 and SDs = 3

''FSIQ standard score M = ICQ and SD = 15

"SY = Symbolic Memory, CD = Cube Design, SP = Spatial Memory, AR =

Analogic Reasoning, FSIQ = Full-Scale IQ
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Table 10

UNIT Subscale Scores® for Respective Learning Disabled Profiles''

Profile MQ RQ SQ NSQ

2  92 103 100 94

3  89 86 86 88

4  74 77 73 78

®Subscale standard score Ms = 100 and Sds = 15

'MQ = Memory Quotient, RQ = Reasoning Quotient, SQ = Symbolic Quotient,

NSQ = Nonsymbolic Quotient

b
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UNIT Learning Disabled Profiles

' I
^ K i--
^  I«  I

4-f

Subtests

'  * t ct ̂

-Average with Higher
Memory Quotient than
Reasoning Quotient

Average with Slightly
Higher Reasoning and
Symbolic Quotients than
Memory and Nonsymbolic
Quotients

Low Average

Delayed

Figure 3. Mean UNIT Standard Battery subtest patterns for the Learning

Disabled subsample

Note: SY = Symbolic Memory, CD = Cube Design, SP = Spatial Memory, AR =

Analogic Reasoning



5 percent of this profile. More males (58%) are represented than females

(42%). The majority of parents for these students have completed high school

(41%)/ with sizable proportions of parents not completing high school (21%),

and completing four or more years of college (26%).

2. Average with Slightly Higher Reasoning and Symbolic Quotients

than Memory and Nonsymbolic Quotients. (FSIQ = 97, MQ = 92, RQ = 103, SQ

= ICQ, NSQ = 94; Prevalence = 24.5%). Whites predominate this profile at

higher than expected levels within this type (94% versus 79%), while no

African Americans are present (versus the expectancy of 16%). Males

predominate (70%) versus 30 percent female composition. The majority of

parents have one to three years of college education (36%) with a large

proportion completing college (30%).

3. Low Average. (FSIQ = 86, MQ - 89, RQ = 86, SQ = 86, NSQ = 88;

Prevalence = 32.7%). The race composition of this profile approaches the

overall population better than the other profile types (Whites - 86%; African

Americans - 14%). More females than males are represented (56%; males -

44%). Parental education level is most evenly distributed within this profile

with those who have not graduated high school (39%), those who have

graduated high school (28%), those with one to three years of college (22%),

and college graduates (11%).

4. Delayed. (FSIQ = 73, MQ = 74, RQ = 77, SQ = 73, NSQ = 78; Prevalence

= 25.5%). The race composition of this profile also approaches the overall
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popiilation (Whites - 75% versus the expectancy of 79%; African Americans -

21% versus the expectancy of 16%). Gender composition also approaches the

overall population with more males than females (54% versus 46%). Most

parents have not completed high school (46%), 28 percent completing one to

three years of college, 21 percent completing high school, and only 4 percent

finishing college.
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CHAPTER 4

Discussion

The results across the UNIT batteries are quite similar to the results of

other similar studies using traditional verbaUy-laden tests. Additionally,

parallels can be drawn between the results of the Learning Disabled

subsample typology and other similar research. The implications and

applications of the typologies are discussed below.

Standard Battery

Psychometrically, the UNIT Standard Battery produced extremely

strong results with within-cluster homogeneity and between-cluster

dissimilarity, H = .981 and Tp = -.27. The profiles comprising the clusters are

considered more similar to each other as the H statistic approaches 1.0, and

the farther the clusters are separated from each other the farther the Tp

statistic departs from 1.0. These results then, can be considered somewhat

stronger than similar studies of the KABC (H = .67, rp = .19; Glutting,

McGrath, Kamphaus, & McDermott, 1992), the WAIS-R (H = .74, Tp = .22;

McDermott, Glutting, Jones, & Noonan, 1989), the WISC-R (H = .63, rp = .33;

McDermott, Glutting, Jones, Watkins, &Kush, 1989), the WISC-III (H = .67, rp

= .20; Konold, Glutting, McDermott, Kush, & Watkins, 1999), the WPPSI (H =

.63, rp = .33; Glutting & McDermott, 1990), and the DAS (H = .67, rp = .31;

Holland & McDermott, 1996).
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The six profile cluster solution for the Standard Battery yielded not

only the best overall psychometric properties, but was also the most

parsimonious in terms of Subscale explication. Fom of the profile clusters

yielded woidd be considered relatively "flat" in terms of subtest variability.

This lends good evidence to the factor analytic research (Reed & McCallum,

1995) indicating that the UNIT is a good measure of one overall factor,

hypothesized as "g". Further, when considering the pattern of variability

present among the Subscale scores of the prototypical profiles, more evidence

is provided in support of the Primary and Secondary Scales described by Reed

and McCallum (1995). That is, scores tended to cluster yielding patterns

identifiable by the elevations and depressions of the Subscale scores, e.g..

Memory versus Reasoning Quotients or Symbolic versus Nonsymbolic

Quotients.

Similar to other typological research with intelligence scales

(McDermott, Glutting, Jones, Watkins, & Kush, 1989; Holland & McDermott,

1996), the higher ability profiles were comprised of significantly more males

than females while the lower ability profiles were comprised of more females

than males. In terms of race, similar findings of higher than expected

proportions of African Americans were found in the lower ability profiles

while higher than expected proportions of Whites were present in the higher

ability profiles (McDermott, Glutting, Jones, Watkins, & Kush, 1989;

McDermott, Glutting, Jones, & Noonan, 1989; Holland & McDermott, 1996;
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Konold, Glutting, McDermott, Kush, & Watkins, 1999). Interestingly though,

the proportion of African Americans is higher than obtained in the WISC-III

normative typology high ability profile (3% African Americans in UNIT

Standard Battery Superior profile versus 0.1% African Americans in the

WISC-in High Ability profile; Glutting, McDermott, & Konold, 1997, p. 362)

and lower than obtained in the WISC-III normative typology Low Ability

profile (32% African Americans in the UNIT Extended Battery Superior

profile versus "more than two and one half times the national average"

African Americans in the WISC-III Low Ability profile; Glutting, McDermott,

& Konold, 1997, p. 364). Parental education levels for students in the lower

and higher ability levels are also similar to previous typological studies

(McDermott, Glutting, Jones, Watkins, & Kush, 1989; Holland & McDermott,

1996), with higher levels of education characterizing the higher ability profiles

and lower levels of education characterizing the lower ability profiles.

Extended Battery

Psychometrically, the UNIT Extended Battery also produced extremely

strong results with within-cluster homogeneity and between-cluster

dissimilarity, H = .979 and ip = -.09. The profiles comprising the clusters are

considered more similar to each other as the H statistic approaches 1.0, and

the farther the clusters are separated from each other the farther the ip

statistic departs from 1.0. These results are also stronger than the results of
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similar studies of the KABC (H = .67, rp = .19; Glutting, McCrath, Kamphaus,

& McDermott, 1992), the WAIS-R (H = .74, rp = .22; McDermott, Glutting,

Jones, & Noonan, 1989), the WISC-R (H = .63, rp = .33; McDermott, Glutting,

Jones, Watkins, &Kush, 1989), the WISC-IH (H = .67, n = .20; Konold,

Glutting, McDermott, Kush, & Watkins, 1999), the WPPSI (H = .63, rp = .33;

Glutting & McDermott, 1990), and the DAS (H = .67, rp = .31; Holland &

McDermott, 1996), but slightly weaker than those produced by the UNIT

Standard Battery (H = .981 and rp = -.27).

The seven profile cluster solution for the Extended Battery yielded the

best overall psychometric properties, and as the Standard Battery profiles, was

the most parsimonious in terms of Subscale explication. Six of the profile

clusters yielded would, as with the Standard Battery profiles, be considered

relatively "flat" in terms of subtest variability, again lending good evidence

to the factor analytic research (Reed & McCallum, 1995) indicating that the

UNIT is a good measure of "g". Also, as with the Standard Battery, when

considering the pattern of variability present among the Subscale scores of

the prototypical profiles, more evidence is provided in support of the Primary

and Secondary Scales described by Reed and McCalltim (1995). Again, scores

tended to cluster yielding patterns identifiable by the elevations and

depressions of the Subscale scores.
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Similar to the UNIT Standard Battery profile clusters and other

typological research with intelligence scales (McDermott, Glutting, Jones,

Watkins, & Kush, 1989; Holland & McDermott, 1996), the higher ability

profiles were comprised of significantly more males than females while the

lower ability profiles were comprised of more females than males.

Interestingly, however, profile five (Low Average with Slightly Higher

Reasoning and Nonsymbolic Quotients than Memory and Symbolic

Quotients) yielded a higher proportion of males. In terms of racial

composition, similar findings of higher than expected proportions of African

Americans were present in the lower ability profiles while higher than

expected proportions of Whites were present in the higher ability profiles

(McDermott, Glutting, Jones, Watkins, & Kush, 1989; McDermott, Glutting,

Jones, & Noonan, 1989; Holland & McDermott, 1996; Konold, Glutting,

McDermott, Kush, & Watkins, 1999). Again, as with the Standard Battery,

the proportion is higher than obtained in the WISC-in normative typology

high ability profile (4% African Americans in UNIT Extended Battery

Superior profile versus 0.1% African Americans in the WISC-III High Ability

profile; Glutting, McDermott, & Konold, 1997, p. 362) and lower than obtained

in the WISC-III normative typology Low Ability profile (37% African

Americans in the UNIT Extended Battery Superior profile versus "more than

two and one half times the national average" African Americans in the

WISC-ni Low Ability profile; Glutting, McDermott, & Konold, 1997, p. 364).
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Parental education levels for students in the lower and higher ability levels

are also similar to previous typological studies (McDermott, Glutting, Jones,

Watkins, & Kush, 1989; Holland & McDermott, 1996), with higher levels of

education comprising the higher ability profiles and lower levels of education

comprising the lower ability profiles.

Learning Disabled Subsample

The results of the Learning Disabled subsample must be analyzed

cautiously due to a limited number of subjects. Missing data values forced

the reduction in useable sample size to 110 individuals. Also, caution in

interpretation is warranted due to the variability in Learning Disabled

definitions used for identification for Special Education services across the

different states from which the students were selected. Fmally, the present

analysis is limited to the UNIT cognitive measures of the Learning Disabled

subsample. Further research will be needed to examine the UNIT and to link

achievement measures in profile determination. However, these results may

be useful as a starting point.

The UNIT Standard Battery Learning Disabled subsample produced a

four profile cluster solution with extremely strong results with both excellent

within-cluster homogeneity and between-cluster dissimilarity, H = .982 and ip

= -.49. Again, the profiles comprising the clusters are considered more similar

to each other as the H statistic approaches 1.0, and the farther the clusters are
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separated from each other the farther the h statistic departs from 1.0. These

results, as compared with the Standard Battery (H = .981 and rp = -.27) and

Extended Battery (H = .979 and rp = -.09), would be considered slightly stronger

than the UNIT normative typological results. Additionally, the replication

rate of 75 percent across the resultant clusters from first stage to last stage was

strong; however, the replication rate was not as strong as those produced with

the Standard Battery (88.89%) or the Extended Battery (84.48%).

Consistent with other studies (Ward, Ward, Glutting, & Hatt, 1999), the

UNIT Learning Disabled subsample produced a profile resembling slow

learners, i.e.. Profile 4, and another "profile with generally depressed

abilities" (p.631). Profile 3. Interestingly, the two higher ability profiles

produced the most variation in subscale scores with mirrored patterns

between the two profiles, i.e.. Profile 1 exhibited a higher Memory Quotient

than Reasoning Quotient while Profile 2 exhibited a higher Reasoning

Quotient than Memory Quotient. The same pattern was present with the

Symbolic and Nonsymbolic Quotients, with Profile 1 having the higher

Nonsymbolic Quotient and Profile 2 the higher Symbolic Quotient. These

definitive patterns of strengths and weaknesses were not unexpected. Even

though the population of Learning Disabled children is heterogeneous,

patterns revealing increased variation have been found than have been
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found among their Non-Learning Disabled counterparts in

neuropsychological research (Fisk & Rourke, 1983).

Clinical Comparisons. Limitations, and Future Directions

Konold, Glutting, McDermott, Kush, and Watkins (1999) have

developed, and Holland and McDermott (1996) have advocated a method to

compare subsequent clinical profiles with the normative profiles to

determine uniqueness based upon the theoretical work of Osgood and Suci

(1952). The method is easily conceptualized and user-friendly. The clinician

simply compares the clinical subtest profile to the normative profiles that

have the closest Full Scale IQ. The clinician then subtracts each of the

respective subtest scores from the normative profile scores to yield difference

scores. Those differences are then squared and summed. In terms of the

UNIT Standard Battery, if the sxun of the squared absolute differences of the

four subtests is > 272, the clinical profile can then be determined to be rare in

the population. That is, a sum of squared differences > 272 occurs less than

five times out of one hundred in the general population. When making

comparisons with the UNIT Extended Battery, a sum of the squared absolute

differences of the six subtests > 307 would be deemed rare in the population.

This method of comparing clinical profiles with the normative profiles

provides a multivariate means of analysis that overcomes the statistical

limitations associated with the univariate methods of comparison currently

used with most intelligence batteries (Glutting, McDermott, Watkins, Kush,
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& Konold, 1997). The iinivariate analyses rely on multiple stepwise, pairwise

comparisons whereas this method allows for a multivariate comparison.

Also, this method, while somewhat statistically complex in nature, is

relatively easy to use in a clinical setting where complex statistical analysis

software is either unavailable or cost prohibitive.

While this approach to the UNIT interpretation is useful, it does have

limitations. First of all, for those clinicians who approach interpretation as a

guide for developing treatments, this method's greatest strength is also its

greatest weakness. The cluster analytic results are statistically superior to the

more traditional approaches, but do not allow for the specific treatment

generation like the traditional approaches. Although this approach may have

limited utility currently, there are future directions worth exploring.

One possible direction for future research is to examine the five percent

of clinical cases that are identified as not fitting one of the normative cluster

profiles for possible explanations and implications. There may, in fact, be

commonalities that exist among these "abnormal" profiles that could provide

further information with clinical relevance. Another line of research that

would be relevant and useful might involve the determination of what, if

any, predictive validity the normative cluster profiles lend to educational

outcomes.
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