
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2000

Black box search : framework and methods Black box search : framework and methods

Chris W. Schumacher

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Schumacher, Chris W., "Black box search : framework and methods. " PhD diss., University of Tennessee,
2000.
https://trace.tennessee.edu/utk_graddiss/8419

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Chris W. Schumacher entitled "Black box

search : framework and methods." I have examined the final electronic copy of this dissertation

for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Michael D. Vose, Major Professor

We have read this dissertation and recommend its acceptance:

Brad Zanden

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Christopher Wayne Schumacher entitled

"Black Box Search - Theory and Methods." I have examined the final copy

thesis for form and content and recommend that it be accepted in partial fulf^

of the requirements for the degree of Doctor of Philosophy, with a major in Cobuputer

Science.

of this

llment

/
Michael D. Vose, Major Professor

We have read this dissertation

and recomm^d its acceptance;

J2k

Accepted for the Council:

Interim Vice Provost and

Dean of The Craduath"^hool

Black Box Search -

Framework and Methods

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Chris Schumacher

December 2000

11

Abstract

A theoretical framework is constructed to analyze the behavior of all determin

istic non-repeating search algorithms as they apply to all possible functions of a

given finite domain and range. A population table data structure is introduced for

this purpose, and many properties of the framework are discovered, including the

number of deterministic non-repeating search algorithms. Canonical forms are pre

sented for all elements of the framework, as well as methods for converting between

the objects and their canonical numbers and back again. The theorems regarding

population tables allow for a simple, alternate form of the No Free Lunch (NFL)

theorem, an important theorem regarding search algorithm performance over all

functions. Previously, this theorem has only been proven in overly-complicated,

confusing fashion. Other statements of the NFL theorem are shown in the light

of this friunework and the theorem is extended to non-complete sets of functions

and to a non-trivial definition of stochastic search. The framework allows for an

extensive study of minimax distinctions between search algorithms. A change of

representation is easily expressed in the framework with obvious performance im

plications.

The expected performance of riindom search with replacement, random search

without replacement, and enumeration will be studied in some detail. Claims in

the field regarding search algorithm robustness will be tested empirically.

Experiments were performed to determine how the compressibility of a function

impacts its performance, with an emphasis on randomly selected functions. A

genetic algorithm was run on two sets of functions: one set contained functions

that were known to be compressible, and the other contained functions that had a

high probability of being incompressible. Performance was found to be the same

for both sets.

m

Contents

1 Introduction 1

1.1 Motivation • 1

1.2 Search. Algorithms 1

1.3 Black Box Search 3

1.4 The No Free Lunch Theorem 5

1.5 Analytical Methods in Black Box Search 7

1.6 Compressibility of Functions . 9

2 Search Algorithm Framework 10

2.1 Definitions . i 10

2.2 Population Tables - 14

2.2.1 Counting the Number of Search Algorithms 19

2.3 Performance Tables . • 22

2.3.1 An Example Performance Table ^ 26

2.3.2 The Number of Rows in a Performance Table . 29

2.3.3 Other Properties of Performance Tables 31

2.4 Stochastic Search Algorithms • • • 32

2.5 Canonical Representations 34

2.5.1 Functions . • • 35

2.5.2 Performance Vectors . 35

2.5.3 Search Paths . . . ' 37

IV

2.5.4 Populations 40

2.5.5 Search Algorithms , 42

2.6 The No Free Lunch Theorems 47

2.6.1 NFL Generalization 51

2.6.2 NFL Theorem for Stochastic Search 54

2.6.3 Nonuniform Function Distributions 55

2.7 Minimax Distinctions Between Algorithms 56

2.8 Other Possibilities 60

2.9 Summary of Population Table Properties 61

2.10 Summary of Performance Table Properties 61

3 Analytical Methods in Black Box Search 63

3.1 Expected Performance of Random Search : 64

3.1.1 Random Search with Replacement 65

3.1.2 Random Search without Replacement 68

3.2 Enumeration 70

3.3 An Empirical Investigation of Robustness 71

4 Representation and Black Box Search 77

4.1 Changing a Representation 78

4.2 Change of Representation in a Population Table 79

4.3 Problem Difficulty and Representation 82

5 Compressibility of Functions and Black Box Search 84

6 Conclusions 89

6.1 Further Research 91

Bibliography 93

Appendix 96

A NFL Result with Unequally Weighted Functions 97

Vita 99

VI

List of Tables

1 Complete Population Table; {X = {0,1,2} and :y = {0,1}) For each
search algorithm, the top row indicates the search paths and the bottom
row indicates the corresponding performance vectors 16

2 The number of unique non-repeating deterministic search algorithmis for
small values of N and M 23

3 Performance Table: (JV = 3 and y = {6,1}) This performance table
corresponds to the population table in table 1. 27

4 An inconsistent "search algorithm" for the IV = 3, M = 2 complete
performance table. The row is inconsistent even though the row is a
permutation of a true algorithm's row, and even though each column
has the correct number of I's .^d O's 28

5 Functions as strings and canonical numbers when X = {0,1,2} and
iV = {0,1}. The function {(rco) o), (a;i, b), (x2, c)} is represented as string
abc . . '. 35

6 All performance vectors and their associated canonical numbers when
Ar = {0,l,2} and3^ = {0,l} 36

7 All non-repeating search paths and their associated canonical numbers
when X = {0,1,2} and y = {0,1,2}. 38

8 Search path canonical number. 38

9 All populations and their associated canonical numbers whenA^ = {0,1, 2}
and 3^ = {0,1}. Population {{x, a), {y, b), (z, c)) is represented as - 41

10 A table listing of the search algorithm having canonical number 13,407,874
in the case where y = {0,1,2,3}. 43

11 A breakdown of table 10. The columns are divided by population size,
The second row is an ordered listing of aU new x values from table 10.
The third row is aii . ordered listing corresponding to the second row
where each element indicates the index into a list of available valu^.
Each element of the third row can be thought of as h single number of
base 4, 3, and 2 respectively. The forth row lists the corresponding base
10 values of the elements of the third row. 44

Vll

12 All non-repeating search aJgoritluns and their associated canonical num
bers when X = {0,1,2} and = {0,1}. Compare agemst the population
table in table 1. . . 5. . 46

13 The immber of functions, performance vectors, non-repeating search
paths, populations, and non-repeating search algorithms for various val
ues of N and M 48

14 Minimax table for the com game. NDQ indicates an ordering of Nickel,
Dime, Quarter. Each entry denotes the minimax advantage of the row's .
strategy over the column's strategy. Minimax tables are symmetric

. across the major diagonal with a sign change. 57

15 Minimax Table: {X = {0,1,2}, y = {0,1}) The objective function is
to find the maximum value in the population. Note the non-symmetric
relation Aq > Ag > Ag > Ag. 58

16 Minimax Table: {X = {0,1,2}, y = {0,1}) The objective function is
to find the minimum value in the population. Note that Ag > Ag >
As > Ag. i 59

17 Three bit linear sort. . 79

18 A table listing all functions and representations when X and
y = {0,1}. The row heading indicates how the domain is remapped for
each representation, arid the row shows the efiect of the remapping on
the original function space. Each element of row xyz shows f{x)f{y)f{z)
as a string. : 81

19 An example of when the NFL result occurs when the functions are not
weighted equally. 97

Vlll

List of Figures

1 Graph representations of the functions in table 3. For example, /s =
((0,1), (1, 0), (2,1)). ; 27

2 Expected performance histograms for random search with replacement
when the size of the search space is 1024 and there are n global optima. 66

3 Expected performance profiles for random search with replacement when
the size of the search space is 1024 and there are n global optima. 67

4 Expected performance histograms for random sea,rch without replace
ment when the size of the search space is 1024 and there are n global
optima. 69

5 . Expected performance profiles for random search without replacement
when the size of the search space is 1024 and, there are n global optima. 70

6 Performance profiles at various mutation rates for a randomly selected
function. Profiles are shown at mutation rates of 0.05, 0.1, 0.2, 0.3, 0.4,
and 0.5, with performance increasing with mutation. 72

7 Black box histograms: This figure shows how both a GA and hill
climbing perform over 10,000 randomly selected functions. The expected
distribution for enumeration is included for comparison. 74

8 Black box histograms for a GA at various mutation rates, and the black
box histogram spike of random search with replacement. As the muta
tion increases, the GA's black box histogram more closely resembles the
profile of random search with replacement. The profile for 0.4 and 0.5
are almost indistinguishable 75

9 Performance profiles for a GA on a randomly selected fitness function,
and on the same function after a linear sort was performed as a change
Of representation 80

1 Introduction

1.1 Motivation

Recently, an important theorem was introduced that outlines significant limitations to

any search algorithm's performance. The importance of this so called "No Free Lunch"

theorem is widely acknowledged, but its practical relevance has been frequently de

bated, and continues to be a source of contention. The theorem addresses search algo

rithm performance over all functions of a finite domain and range, making it relevant

to the study of black box search, i.e. search over a completely arbitrary function.

Before this theorem was introduced, black box search had received only limited at

tention, and there is little accumulated theory on the subject. The lack of a basic

theoretical framework for black box search contributes to the contention and confusion

in the field, and explains in part why there has not been a clear and concise formulation

of the theorem.

1.2 Search Algorithms

Consider functions from a finite dom^ .T to a finite co-domain 3^. A search algorithm

will be defined to be an algorithm that attempts to find a domain value that has a

sufliciently high co-domain value. Simple examples include random search (with or

without replacement) and enumeration,

Define a relation on the domain so that any point in the domain is related to a certain

number of other points in the domain. Any two points related in this way will be called

neighbors, and the set of neighbors for any point wfil be called its neighborhood. Define

a local search algorithin to be a search algorithm that employs a neighbor relation. A

local search algorithm will typically proceed by selecting a set of points, examining

the points in their neighborhoods, hnd bttsed on their evaluations, determine a hew

set of points to continue the search. An exeuhple of this would be hiU climbing, which

proceeds by taking a point at random,' evaluating all its neighbors, and selecting the

point with the highest evaluation to continue the search; if a point has no neighbors of

greater value, a new point is randomly selected from the domain.

Another example of local search is the genetic algorithm, or GA for short. Genetic

algorithms are an attempt to mimic the succ^s of biologiccd evoliition, where a pop

ulation of organisms evolves to become more fit with respect to its environment. In

a genetic algorithm, each element in A' is represented as a string, and its fitness is

its associated value from 3^- A random set of values firom X is chosen as the uiitial

population, and the elements with highest fitness are more likely to be used to create

the next generation. This creation process typically involves crossover and mutation:

Crossover is the process of combining two strings A and B into a new string C of the

same size by picking an index in C at random and filling C with points from A before

the crossover point and points firom B at or after the crossover point.^ Mutation is

simply a matter of randomly altering each element in the string with (typically very

small) probability. With the new population in place, the process continues, often

for thousands or millions of generations. This process can be seen as a type of local

search since the points in the new generation are related to the points in the previous

generation. Introductions to GAs include Vose [12] and Whitley [15].

Hill climbing and genetic algorithms are two widely used probabilistic search algo

rithms, and many others can be seen as variations of these two (e.g. simulated anneal

ing [9] can be seen as a variation of hill climbing where downhill moves are allowed

^This is called single point crossover. Multi-point crossover works similarly by alternating the
copying of points from and B at each crossover point.

with diininishing probability). One of the appeals of these two search -algorithms is

that they do not require sophisticated programming techniques. As long as a suitable

representation and a suitable fitness function are used, a genetic algorithm or a hill

climber can.take it from there: Because of this, these search algorithms may seem to

be a kind of silver bullet, finding optima with relatively httle toil on the part of, the

practitioner. Unfortunately, it will be shown that these se^ch algorithms perform well

on only a small firaction of ̂ functions.

Despite the countless variants and hybrids of hill climbing and GAs, the versions used

in this dissertation are rather basic. In practice, these basic versions are often pulled

off the siiplf and used as a starting point for an optiinization attempt, and they have a

reputation as being rather all-purpose while many of the variants are considered to be

more sp^ialized. Even with a basic GA there are a multitude of parameters that can

be adjusted, allowing a certain amount of "tuning."

1.3 Black Box Search

Ideally, information about an optimization problem can be encoded into the search

algorithm. For example, if the goal is to maximize airfiow over a widget, one could

employ the equations of fluid dynamics to direct the search towards promising areas of

the search space. Another example is when a property of the function is known such

as its convexity, smoothness, or modality. Black box search is commonly considered

to be an attempt to optimize a function when there is no such prior knowledge about

it. Another definition of black box search is search over an arbitrary function, where

these functions are uniformly distributed. This is, different firom searching an "unknown

function," since an unknown function class could be (for example) a limited and easy

class of functions. Unfortunately, the two notions are often confused, as in [18]. This

dissertation will use the second definition.

Black box search is like "black box" in the sense that the only information the function

reveals is the answer to the question, "what is the value of point x?" Thus aside from

its domain, the only thing that can be known about the function with certainty is

the values of the points that have been evaluated! In order to perform black box

optimization, a search algorithm must be able to proceed with only this evaluation

history to guide it. As discussed in the previous section, both hill climbing and GAs

can take on this task, as can enumera,tibn, random search, and many of their variations.

Black box search theory received a tremendous fiurry of activity with the introduction

of the NFL theorem (discussed in the following section). In a black box scenario, the

function to be solved could be any possible function, and thus there is a link to a search

algorithm's performance across all functions and thus to the NFL theorem. This obser

vation also allows a connection to algorithmic information theory (also known as the

study of Kolmogorov complexity) with its attention towards randomness, compressibil

ity, and , "typical" input [6].

Black box optimization is an important subject of study because it presents a limiting

case in terms of prior knowledge. It is also of interest because of its broad applicability:

such a search algorithm can search any function. A large number of search algorithms

can be thought of in terms of black box bptimiization, and the fact that they can be

. run "off the shelf," often with httle specialization makes them very appealing. The

popularity of these search algorithms is bolstered by their innumerable success stories

across multiple fields. Typically, these applications are not strictly black box since

domain knowledge can be coded into the representation, fitness function, and search

algorithm parameters, but from that point on, the practitioner can only watch, wait,

and tweak the parameters if things do not go as planned. ,

The next section wUl note that for any search aJgorithrri, only a small fraction of all

functions can be quickly optimized. Shrthermore, it implies that the kind of general

ization that these search algorithms aspire to must necessarily come at a performance

price. In particular, the attempits to discover or accumulate regularities in the eval

uation history that could be exploited to improve black box seardi are in vein. And

yet, fuU of hope, people continue to apply these search cilgorithms to their optimization

problems.

A framework will be developed in this dissertation to better understand: how search

algorithms behave over all; functions having finite domain and co-domain. Basic data

structures will be introduced and their properties will be explored. The fr̂ ework will

demonstrate its usefulness by allowing a straightforward proof of the No Free Lunch

theorem and by facilitating an extensive study of the minimax relation which is a means

of comparing search algorithm performance over all functions.

1.4 The No Free Lunch Theorem

The No Free Lunch (NFL) theorem is an attempt to address how, search algorithms

perform over all possible functions of a given finite domain and co-domain. Because the

theorem is primarily concerned with a uniform distribution of functions, it addresses

issues of black box search.

Roughly speaMng, the NFL theorem states that when averaged over all functions, any

two search algorithms will perform equally well, regardless of the performance measure.

This implies, for example, that when averaged over all functions, a hill climber will do

no better than a hill descender on a maximization problem^ and that enmneration will

perform at least as well as any other search algorithm. Needless to say, enumeration

is very disappointing performance-wise, but in a black box scenario, this is as good as

one can expect. The implication is that one cannot simply choose a search algorithm

off the shftlf and expect it to do well on an unknown problem; instead one has to ensme

that the search algorithm is well smted to the task. In other words, there's no "free

lunch." Another way of looking at it is that there cannot exist a generalized search

algorithm that will perform well on a suflSciently broad class of functions.

The NFL theorem was proven by Wolpert and Macready [18, 19] for search algorithms

which sample all points in.a finite search space. The original proof was for deterministic

algorithms that do not revisit points already saihpled, but their paper goes on to claim

that the theorem also applies without these two conditions. Their proof was based

largely on probability theory.

Radcliffe and Surry [7] proved the NFL Theorem in a very different way using repre

sentations and permutations, but they do not claim a proof for algorithms that revisit

points (and criticize Wolpert and Macready's treatment on this subject), ̂ d their

notion of stochastic search is rather weak.^ While they claim to have provided a more

accessible proof, their version has several leaps of faith and points of confusion.,

Thomas English presents a proof of the NFL theorem. [2] that is based largely on

information theory. One of the basic assumptions of search algorithm practice is that

the search algorithm "gains knowledge" of the search space as the sear A, progresses.

However, English, states that without prior knowledge of the joint distribution of seen

and unseen points, the optimizer cannot .assume anything about the imseen points.

Consequently, "an optimizer does not gain information about the objective function

it optimizes, despite contrary claims in sources ranging from Goldberg's standard text

to a recent survey of self-adaptive algorithms." The NFL theorem is thius shown to

overturn a basic operating assumption of search algorithm practice..

^As will be discussed in section 2.4.

Section 2.6 will provide a much-needed straightforward proof of this important theo

rem from within the context of the framework developed. Instead of, a complicated

statistical, representational, or information theoretical approach, it will be shown how

the theorem can be clearly understood almost upon inspection. The NFL statements

of previous authors are shown in the light of the cmrent framework, and ain NFL gen

eralization is given for non-complete sets of functions. A stochastic version of the NFL

theorem is given for a non-trivial definition of stochastic search.

1.5 Analytical Methods in Black Box Search

Stochastic search algorithms such as hiU climbers or genetic algorithms can produce

dramatically different results depending on the seed of their pseudo-random niunber

generator. In order to arrive at an estimate of expected performance for stochastic

search, a large and representative sampling is needed. To arrive at an estimate of

a search algorithm's expected performance on a function, the search algorithm may

be run on the function many times, each time with a different seed. The results of

each run can then be assembled into a measure of performance. It is assumed that

the pseudo-random number generator will not introduce undue bias in this process.

Similarly, in order to estimate expected performance over an ensemble of functions,

one needs an unbiased sampling of functions from the set in question. Unfortunately,

imbiased samplings are seldom used.

When discussing a search algorithm's performance, undue focus has been given to

functions that are known to have low complexity (by various measures) [16,, 17]. Even

though functions from popular test suites are falling imder increased criticism [10], they

continue to be widely used as benchmarks.. On another frontj countless experiments,

including very recent works [14, 11] continue to use frmction generators that result in

8

functions of great regularity. Claims are frequently made about a searcli algorithm's

performance based solely on the performance over these relatively simple or highly

concocted functions..

Define a randomly selected function to be a function that has been randomly and

uniformly selected frona the set of functions of a given domain and co-domain.

Studying randomly selected functions speaks to search in the, broadest possible sense

since the set of functions drawn on is maximal and unbiased; Since the NFL theorem

implies that a search algorithm can only expect good performance on a small set of

functions, randomly selected functions wiU be expected to be difficult for any search

algorithm, and thus these functions serve as a practical and easily accessible sampling

of difficult functions.

Relatively little attention has been given toirandoihly selected functions, but they will

be used repeatedly in this dissertation. Because the performance of a search algorithm

applied to a randomly selected function may vary from minimal to maximal, large

numbers of them are needed before any reasonable generalizations can be made. In

this dissertation, it will not be uncommon for thousands of randomly selected functions

to be used in an experiment. The data Ccui then be used to create various kinds of

distribution curves.

As discussed above, commonly used function generators often produce highly regular

functions of low complexity. When these generators are then used to study search

algorithm performance, the results can be unclear since it can be difficult to know

whether the performance effects can. be generalized to larger sets of functions. In

contrast, resffits from randomly selected functions naturally generalize to the set of all

functions since the sampling is not biased. Their use even suggests a method: Run

the search algorithm on a large number of randomly selected functions, and for any

property of interest, decompose the results according to that property. One can discover

how that property is distributed across functions in general, and how changing it affects

performance. If one is only interested in performance over a certain range of a property,

one can either "filter" randomly selected functions for this property, or a function

generator can make an effort to draw functions uniformly from edl functions having the

given property. , This method will be used to study the effects of compressibility on

search algorithm performance.

1.6 Compressibility of Functions

A string is said to be compressible if there exists an encoding that can express it in

fewer bits than the string itself requires. Since functions can be expressed as a series

of co-domain values, they too can be either compressible or incompressible. There is

speculation that compressible functions may in general be easier for search algorithms,

and as with modality, this notion has been used to try to diminish the importance of

the NFL theorem. It has been argued that the functions that occur in practice are

functions of high compressibility [5], as opposed to the set of all functions, which is

what the NFL theorem directly addresses. Thus NFL tsrpe results may not apply to

compressible functions. This assertion is put to the test by comparing search algorithm

performance on a diverse set of compressible functions against search algorithm per

formance on a diverse set of functions where each function has a high probability of

being incompressible. The performance on both sets is shown to be nearly identical,

once again upholding the reach of the NFL theorem.

10

2 Search Algorithm Framework

Til is section sets forth a framework for the analysis of deterministic non-repeating

search algorithms. By design, this framework is able to address issues regarding all

such algorithms over all functions of a given finite domain and co-domain. The main

idea involves the creation of a table where columns label all possible functions, rows

label all possible deterministic non-repeating search algorithms, aiid each element of

the table outlines the search path of the given search algorithm on the given function.

Many properties of this table will be proven. It will be possible to perform analysis

over all functions or over a class of functions, over aU search algorithms or over a class

of search algorithms. It allows analysis over a broad range of performance measures

and is thus quite versatile. Canonical versions for all associated objects are provided,

allowing for exhaustive experiments. Section 2.6 outlines a straightforward proof of the

NFL theorem and extends the result to a strong definition of stochastic search.

2.1 Definitions

Let X and y be finite sets, let f : X y he a function, and define yi as f{xi).

Throughout this dissertation, let iV = |.T| and M, = \y\. Define a population of size m

(m > 0) to be a sequence of pairs:

At times the size subscript of a population will be omitted to refer to populations of

arbitrary size. Let Vm be the set of all populations of size m, and let V be the set of

11

all populations. Adopt the following notation:

^>0 = 0

■fm — l)

Pm = {yo,yu---,ym-i)

•PmH ■= i^i^yi)

Pm[i\ = Xi

■PmW = yi

A concatenation operator || will be used to extend the size of a population in the

following way:

Pm\\ {x,y) = <Pm[0],Pm[l],...,P^[m-l],(a;,y))

The prefix TTjP of population P is defined as the first i elements of P, i.e. ttiP =

{{xo,yo),--- ',{xi-i,yi-i))-

Define a non-repeating population P to be a population with unique x components, i.e.

P®[z] = P®[j] ^ i = j? A complete population P is defined to be a population that

covers the domain, i.e. for all a; £ A there exists an i such that P®[z] = x. Because a

population is a sequence of ordered pairs, it corresponds to a function; if the population

is complete, then the corresponding function is /. Define a permutation of a population

to be any rearrangement of its pairs, and thus a permutation of a population is itself a

population.

Consider a selection operator g :V -¥ X which when given a population as an argument

®This paper will follow the convention that free variables are universally quantified.

12

returns a point in the search space. A deterministic search algorithm A corresponds to

a selection operator g, and takes as arguments a population Pm and a function / €

and returns the population

. Pm+l = Pm \\ {9{Pm)J°g{Pm))-

For example, the first two steps of a deterministic search algorithm A would proceed

as follows:

AfiPo) = Po\\ {9{Po)Jog{Po)) ̂ P,

AfiPl) = Pi \\ {9{Pi),f°9{Pi))=P2

Deterministic search algorithms therefore operate in discrete steps where each step

generates a new pair that is concatenated into the previous population to form the

next population. Note that selection operator g is used to generate the x components

of the population, and that function / .is used to evaluate the utility of those points;

this reflects the separation between "selection" (choosing a new point in the search

space) and "fitness evaluation" (evaluating the utility of that new point). Multiple

applications of a deterministic search algorithm will be abbreviated in the natural way,

i.e. Pm = A.^(Po): and in particular, A^(Po) = Po-

A non-repeating search algorithm is defined to be a search algorithm whose co-domain

contains only non-repeating populations. The largest population such a search algo

rithm could generate is clearly a complete population which has size JV, and this implies

that such a search algorithm has domain elements of size less than N.

After m steps, algorithm A and function / will generate population Pm from initial

population Pq. In this dissertation, search algorithms always start from the empty

population Pqi which may seem to be a limitation. However, algorithms with an

13

arbitrary initial population size are actually special cases of algorithms that start from

the empty popiJation, as the following illustrates: Consider algorithm A and initial

population Pm- A. corresponds to another algorithm A! that given initial population Pq

will generate after m steps, and wUl behave exactly as A afterwards. Designating an

initial population is thus simulated by using a slightly modified algorithm that starts at

Pq. In other words, algorithms that can set all points in their populations are powerful

enough to encompass algorithms that caimot.

A compleite population fully summarizes the behavior of a non-repeating search algo

rithm on a given function. Accordingly, non-repeating search algorithms A and B wUl

be considered identical if and only if they both generate the same complete population

for all / € y^.le. Af (Pq) = Pf (Pq) for all / €

Define a search path of length m to be a sequence of m v^ues from X, and define a,

non-repeating search path to be a search path where no element may occur more than

once. The search path associated with population P^ is P^. The number of unique

non-repeating search paths of length m is = (■^)m since there are N ways

to choose the first a: value, AT — 1 ways to choose the second value, and so on.

Define a performance vector of length m to be a sequence of m values from y. The

performance vector associated with population P^ is Pm- A performance vector and

a search path can thus be smd to he deirived from a population, and a function and

a search algorithm together can be said to generate a performance vector or a search

path from Pq. A complete performance vector is a performance vector derived firom a

complete population, and a complete non-repeating performance vector is derived from

a complete non-repeating population. There are unique performance vectors of

length rn. .

Random search with replacement 's defined to be a search algorithm that stochastically

14

chooses points in the search space based on a probability distribution, allowing for the

possibility that points, in the search space may be revisited. Random search without

replacement is a search algorithm that stochastically chooses points in the search space

with the restriction that points seen may not be revisited.

2.2 Population Tables

The previous section defined the selection operator of a deterministic search algorithm

to be a mapping from populations to points in the search space. One could therefore

represent such a selection operator as a listing of all possible populations along with the

domain value that would be chosen for each of those populations. However, this turns

out to be quite inefiicient since a given deterministic non-repeating search algorithm

will only be exposed to a tiny firaction of possible popiilatiOns. On the other hand,

recall from the previous section that a complete population fully captures the behavior

of a deterministic non-repeating search algorithm on a given function. Because of this,

a deterministic non-repeating search algorithm could be fully described by a list of ,

complete populations, one for each function. This section introduces the population

table data structure, which lists the populations that are produced for each algorithm

acting on each function. This is a far, more efiicient way of completely representing a

search algorithm since it only records relevant behavior.^

Define a population table of size m to be a table where rows are labeled by all deter

ministic non-repeating, seMch algorithms, and where columns a,re labeled by all

possible functions; each element of the table will contain the population generated by

the corresponding algorithm (row) and function (column) after m steps. Define a com

plete population table to be a population table consisting of complete populations, i.e.

^Likewise, in section 2.5, a CMonical form for a search aJgorithm is given that includes only
populations that the search algorithm is exposed to. ^

15

a population table of size N. A complete population table contains complete descrip

tions of all deterministic non-repeating search algorithms. Table 1 shows the complete

population table when X = {0,1,2} and = {Oj 1}. Population {{x, d), (y, 6), {z, c)) is

represented as

Let Tffi reprisseht a population table of size m. Note that each element in Tq will be

the empty population. A row in a population table will be referred to by the name of

the algorithm to which it corresponds, and similarly, a column will be referred to by

its corresponding function. Since populations in are non-repeating, any two (x, y)

pairs within a population must have diflFerent x values. Accordingly, two (s, y) pairs

will be called mutually exclusive if they both have the same x value.

Note how the population in row A and column / of Tj+i corresponds to the population

in the same row and column of-Tj: the populations are exactly the same except for

the addition of the last {x, y) pair. In other words, each population in Tm becomes a

population in Tm+i by the concatenation of a new (a;, y) pair.

Lemma 1: In ciny arbitrary row of Tj (0 < i < IV), if two populations are identical,

those two populations will have the same new x value in Tj+i.

Proof: The new value of a; is determined by. the securch algorithm's selection operator

g which accepts a population as its sole argument. Since the selection operator and the

input are the same, the new value of x will be the same as well. □

Theorem 1: No two populations within any single row of Tm may be permutations

of one another unless they axe equal.

Proof: by induction on m. The base case is clearly true since ^1 elements of Tq are

16

Table 1: Complete Population Table: [X .= {0,1,2} and [V = {0,1}) For each
search algorithm, the top row indicates the search paths and the bottom row indicates
the corresponding performance vectors.

/o /i /2 /s h /s h fr

■^0 012 012 012 012 012 012 012 012

000 001 010 Oil 100, 101 110 111

012 012 012 012 021 021 021 021

000 001 010 Oil 100 110 101 111

A2 021. 021 021 021 012 012 012 012

000 010 001 Oil 100 101 110 111

^3 021 021 021 021 021 021 021 021

000 010 001 Oil 100 110 101 111.

-^4 102 102 102 102 102 102 102 102

000 001 100 101 010 Oil 110 111

102 102 120 120 102 102 120 120

000 001 100 110 010 Oil 101 111

, -^6 120 120 102 102 120 120 102 102

000 010 100 101 001 Oil 110 111

A7 120 120 120 120 120 120 120 120

000 010 100 110 001 Oil 101 111

As 201 201 201 . 201 201 201 201 201

000 100 001 101 010 110 Oil 111

A9 201 210 201 210 201 210 201 210

000 100 001 110 010 101 Oil 111

-^10 210 201 210 201 210 201 210 201

000 100 010 101 001 110 Oil 111

^11 210 210 210 210 210 210 210 210

000 100 010 110 001 101 Oil 111

17

identical. For the inductive step, assume that no two different populations in any single

row of Tjn are permutations of each another.

case 1: Any two populations that are the same in any row of will have the same

new X value in T^+i (lemma 1). If they also have the same new y value, the populations

are also the same in Tm+i- Otherwise the populations differ only in their new y value

and each contains one of a mutually exclusive pair (since each x value may occur only

once in a population). Thus, the two populations cannot be permutations of each other,

and this also ensures that the populations cannot be extended to permutations of each

other. To summarize: if any two populations in a row of are the same, they will

either be the same in Tm+i or they will be non-permutations of each other in T^+j for

all 0 < j < IV — m.

caise 2: If two populations in a row of Tm are different, there must have been a Tj

{i < m) for which the two populations were the same and a Ti+i where they became

different. But as shown above, from that point on, the populations contain mutually

exclusive elements, and cannot be permutations in for any j > 0. □

Consider population Pm = {{xq,yo), (xi,yi),..., {xm-i,ym-i)) in row A of T^. Let F

be the set of functions which label columns of T„i containing Pm in row A. In other

words, F contains those fimctions which, together with algorithm A, generate Pm- Note

how the definition of F involves the algorithm A. Let F' consist of all functions / from

X toy subject to the condition that for all 0 < i < m, /(xj) = yu where (xj, yi) is the
ith component of Pm a.s defined above. Note that the definition of F' depends on the

population being generated® (i.e. Pm) but is independent of which algorithm generates

it.

®Permutations of the population will also result in the same F'.

18

Theorem 2: F = F'

Proof: by double containment. Assume / € F. .Thus A and / generate P and so

f{xi) = yi for 0 < i < m, and therefore / G F'. Next assume / G F'. The following

proof by induction on i will show that A and / generate TTjP in Tj. For i = m this

becomes f € F. For the base case of i = 0, each element of table To is Pq, and thus

A and / generate Pq. For the inductive step, assume that prefix TTjP is generated by

A and / in table Tf. Since P exists in row A of T^, TTjP exists in row A of Tj. By

lemma 1, all entries in row A of Tf that equa,l iriP will have the same new x value in

Ti+i, and since ttj+iP exists in row A of Tj+i, the new x value in row A and column

/ of Tj+i must be Sj+i- By the constrmnts of F' it is known that /(xj+i) = yi+i, and

thus A and / generate Pj+i in Tj+i. □

Theorem 2 is useful because it demonstrates that for a population P in a particular

row of Tm, the columns that cire labeled by P (in the sense that they contain P) are

precisely those that correspond to functions that satisfy the restrictions imposed by

the elements of P. Put another way, a population enumerates constraints that define

the set of functions. This result would not be possible if non-trivial permutations of a

population could exist in a row of a population table (theorem 1).

Theorem 3: For any arbitrary population Pm, let S be the set of rows in Tm which

contain Pm- Every row in S has Pm in exactly the same columns.

Proof: Consider any two rows A and B which both contain Pm- Let Fx denote the

columns containing Pm in row x. Theorem 2 demands that Fa = F' = Fb- □

Because the set F' is the same whether it was.defined from Pm or from a permutation

of Pm, the following corollary arises:

19

Corollary 1: Permutatioiis of Pm can only occur in columns containing Pm-

These theorems explain how rows axe related with respect to a given population and

its permutations. In particular, if population Pa occupies columns F in row A, then a

non-trivial permutation of Pa can only occupy the exact same columns, and only in a

row different from A.

Theorem 4: AU possible non-repeating populations of size m exist in Tm- More pre

cisely, if X is an arbitrary non-repeating search path and T is an arbitrary performance

vector, there exists population P in Tm such that P^ = X and P^ = Y.

Proof: To show that any arbitrary non-repeating population Pm exists in Tm, induc

tion will be used to show that iriP exists in For the base case, Pq = ttqP exists in

To- For the inductive step, assmne that TTjP exists in columns F of table Tj. A search

algorithm in this table is restricted only in that x values must be non-repeating, and

thus there exists a search algorithm A that chooses rf+i for the new value of a; in

By theorem 2, F consists of all functions / from X to y subject to the condition that

for all 0 < j <i, f{xj) — yj- F therefore contains functions with all possible y values

for Si+i, and so there exists an / 6 jP for which f{xi+i) = yi+i- Therefore A and /

generate Pi+i.

2.2.1 Counting the Number of Search Algorithms

To determine the number of unique rows in a population table, consider first the ntunber

of unique populations in a row. As will be shown, this number is independent of the

algorithm (row). Let Rm be the set of populations in a row of Tm- Recall that each

element of To is the empty population, and thus i?o = {()}.

20

Theorem 5: \Rm\ =

Proof; Restrict attention to a given row A. Once again, consider the transition from

Tm to Tm+i- Let P 6 Rm determine the set of* columns F, i.e. F contains those

functions which together with A generate P. In row A of Tm+i, all columns which are

labeled by F will have the same new x value (lemma 1). By theorem 2 there cure no

constraints on what the new y value may be and so all M values will occur across the

functions of F. It is clear that two diflFerent populations in Rm could not correspond

to the same population in Rm+i, and thus for every element P in Rm there are 13^|

unique elements in 11^+1) Le^ |i2„i4.il = IfZ^J • |y|. Combining this with the fact that

|i2o| = 1 yields the desired result. □

Note that li?^! is independent of the row. At this point a number of population table

properties can be established.

Corollary 2:

1. The rows in a population table will contain distinct elements if and only if the

table is complete.

2; Any particular population may only exist in a single column of a coinplete pop

ulation table. . . "

3. There are IV! different populations within a column of a conaplete population

table. * .

4. All possible search paths exist in each column of a complete population table.

Proof: The first item follows from the fact that in a complete piopulation table m = N

and thus |iEm| = , wMch is also the .number of columns in the table. The second

21

item is a consequence of the first item and theorem 3. The third item is shown to be

true as follows: a complete population completely and imiquely defines the function

labeling its column, and since by theorem 4 all possible populations exist in the table,

all iV! possible permutations of the popula,tion must exist in the column. The forth

item is also a consequence of theorem 4, □

Let represent the set of rows in the table T^. Each row in Sm will correspond

to several rows in S^+i, in that there will be rows in Sm+i that are the Scune as a

row in Sm except for the addition of a final (x, y) pair to each population. It is clear

that two different rows in Sm could not correspond to the same row in Sm+i, atnd thus

determining how inany rows in 5^+1 correspond to each row in Sm provides a way of

counting the ntimber of unique rows in Tm-

Theorem 6:

Proof: An element of Sm will contain |i2m I unique populations, and for each of them

there axe (iV—m) possibilities for a new value of x. There are thus (AT—m)l^l different
ways to add that last point to each population in a row, i.e. =

An application of theorem 5 completes the proof. □

To determine I S'jv 1,1 e. the number of unique algorithms in a complete population table,

note that sill elements in Tq are Pq, and so l<5o| = 1- Combining this fact with theorem 6

provides one of the major results of this dissertation.

Algorithm Count Result 1: The number of unique deterministic non-repeating

search algorithms for a given X and Cp is :

• ' ' _ ■ ' / '- 'N-i'

n (*-')'
i=0

22

Table 2 displays the number of unique deterministic non-repeating search algorithms for
3

small values of N and M, showing how quickly this value skyrockets. Notice that when

N = 2, the number of algorithms is always 2 since the only two possible algorithms

are to either pick xq first or to pick xi first. If the population size is not limited (i.e.

if repeating search algorithms are allowed) it is easy to see that the number of search

algorithms would be infinite. Section 2.5 outlines a difi'erent way of counting search

algorithms for the pmpose of easily assigning a number to each search algorithm, ̂ d

vice-versa.

2.3 Performance Tables

A performance vector can be used in various ways to measure the performance of search

algorithm A on function /. The term performance vector measure will be used to denote

a measure that can be derived from a performance vector. Example performance vector

measures include:

• the number of times the optimum is obtained by evaluation n

• the position i in the performance vector having highest value by evaluation n

Define a complete performance vector measure to be a performance vector measure that

only applies to complete performance vectors. This type of measure takes full account

of the performance of A on / and is able to more directly address issues of convergence.

Examples include:

• the number of evaluations before the optimum is reached

• the number of evaluations before the best n elements are foimd

23

Table 2: The number of unique non-repeating deterministic search algorithms for small
values of N and M.

N M number of unique search algorithms

2 2 2

2 3 2

2 4 2

2 5 2

2 6 2

2 7 2

3 2 12

3 3 24

3 4 48

3 5 96

3 6 192

3 7 384;

4 2 576

4 3 55296

4 4 w 2.1 e7

4 5 « 3.3 elO

4 6 « 2.0 el4

4 7 « 4.9 el8 *

5 -2 1658880

5 3 _ 8.4 el4

5 4 , « 1.0 e30

5 5 « 1.8 e50 • ■

5 6 « 3.2. e86

5 7 « 3-5 el31 .

6 2 « 1.7 el3

6 3 PS 3l6 e45

6 4 « 6.4 el20

6 5 « 1.3 e267.

24

• the number of evaluations until error tolerance is achieved

Note that the number of local optima in a search space could not be a performance

vector mieasure Isecause it requires more information than a performance vector can

provide. Generally speakmg, a property that can be derived from a function without

reference to a performance vector will not be considered to be a suitable performance

vector measure. Furthermore, such a measure would be algorithm invariant for any

single function, and therefore could not be; used to compare the performance of sear A

algorithms (although it could be used as a measure of function difficulty). Note that

the number of times the global optima occurs is a, suitable performance vector measure

but that it is not a suitable complete performance vector measure.

In the original proof of the NFL theorem [18, 19], Wolpert and Macready propose

using a histogram as thie basis for performance rather than a performance vector.

This histogram would chart the number of times each co-domain element occmrs in

a performance vector, and a performance measure would then be derived from that

histogram. Such a measure tosses out all time information, e.g. it is not possible

to compute the number of evaluations before the optimum is reached from such a

histogram. Furthermore, this type of histogram is algorithm independent as a complete

performance vector measure, which is curious since the goal of their NFL proof was to

show algorithm independence. Fortunately, their proof employs (strong) performance

vectors in the service of these (weak) histograms.

Define a performance table of size m to be a table where rows and colunins are labeled

just as with a population table, but where each element of the table is the corresponding

performance vector of length m. A complete performance table contains performance

vectors of length N .' A population table of size m is said to correspond to a performance

table of size m, since for every element Pm in a population table, there is Pm m the

25

corresponding row and column of the performance table.

Theorem 7 No row of a complete performance table contains an.element ihore than'

. once. n' "

Proof: Assume that functions / and /' generate the same complete performance vector

for a giveii search algorithm A. It will be shown that / — /'. The assumption allows a

proof by induction that the populations generated would be the same, i.e. for 0 < i < iV,

A^(Po) = A^,(Po)- The base case i = O is trivial to verify: A°(Po) .= Po
The following two equations are us^ for the inductive step:

,A;(4(Po)) = A'^(Po)||.(a:,/(x))

where x = p(A'^(Po)) and x' = g{J^f,{Po)). By the inductive hypothesis, A*y;(Po) =

(Po), and so by lemma 1, x = x'. Since by assumption the two performance vectors -

are the same, f{x) = f'{x'), thus completing the inductive proof. Since the conaplete

populations are the same (i.e., (Pq) = A^(Po)), their corresponding functions are

the same, i.e. f = f-

Note that theorem 7 implies that for a given algorithm (row in the table), a complete

performance vector determines the function (column of the table) to which the algo

rithm was applied. As will be shown below, the converse is not true since a single

column can have duplicate entries. Theorem 7 demands that for any search algorithm

in the table, performance must be different for each function.®
®Some performance vector measures may not notice that each performance vector is different.

26

Theorem 8 Any two rows in a complete performance table are either the same or are

permutations of each other.

Proof: The number of distinct, complete performance vectors is (since there are

M ways to choose each of the N elements of a performance vector), and this is also the

number of entries in a row of the table. By theorem 7, all of the performance vectors

in a row are unique, and thus each possible performance vector occurs exactly once in

each row. □

2.3.1 An Example Performance Table

When N = 3 and M = 2 there are eight possible functions, and (as was shown in section

2.2.1) 12 possible deterministic search algorithms. For simplicity, the two possible y

values are represented as zero and one, and the performance vectors are represented by

the ordered string of their values.

Several things become clear on first inspection. Table 3 obeys theorems 7 and 8. Two

of the columns are constant, and each elementTn a column is a permutation of other

elements in the same column. Each row is unique (as will be proven in section 2.3.2).

One way to understand the occmrrence of these patterns is to observe a graphical

representation of each function as is done in figure 1. Without loss of generality, each

function has been assigned so as to correspond , to its standard binary representation,

e.g. the graph of /s can be seen to be a representation of the binary number 5 (101). By

definition, a performance vector for a given function is the ordered y values obtained

during the search, aiid thus a complete non-repeating performance vector must be a

permutation of that function's representation.

27

Table 3: Performance Table; (JV = 3 and y = {0,1}) This performance table
corresponds to the population table in table 1.

fo /l /2 /s /4 /s /e fr

000 001 010 oil 100 101 110 111

000 001 010 oil 100 110 101 111

A2 000 010 001 oil 100 101 110 111

As 000 010 001 oil 100 110 101 111

Ai 000 001 100 101 010 oil 110 111

A5 000 001 100 110 010 oil 101 111

Aq ooo 010 100 101 001 oil 110 111

Aj 000 010 100 110 001 oil 101 111

^8 000 100 001 101 010 110 oil 111

•^9 000 100 001 110 010 101 oil 111

-^10 000 100 • 010 101 001 110 oil 111

^11 000 100 010 110 001 101 oil 111

*0 "l *2 *2 *0 *1 *2 *0 *1 *2 *0 *1 *2 *0 *1 *! *0 *1 *! *0 *1 *'

Figure 1: Graph representations of the functions in table 3. For example, /s = ((0,1),
(1, 0), (2,1)).

28

The proof of theorem 8 spoke of how the number of distinct complete performance

vectors is the same as the number of possible functions. This correspondence might

have seemed odd at first glance, but by viewing the function as a graph or as a string

of numbers, it becomes clear how a performance vector is a permutation of a function's

representation. A list of all possible functions and a list of all possible performance

vectors would not only have the same size, they would in fact be the same list in

a (possibly) different order. Throughout the rest of this dissertation, a performance

vector or a fitness function may be referred to as a list of numbers or even as a single

base M number with N digits.

Becaiise each function (column) of a performance table contains performance vectors

that are permutations of the same "number," it is clear that not all pe^utations

of a row correspond to valid algorithms. It is the construction process outlined in

section 2.3 that imposes such constraints on resulting algorithms. Another restriction

on the number of ways a row may be permuted is the fact that a search algorithm

always picks the same initial x value. For example, the "search algorithm" Afaiae iii

table 4 cannot be a deterministic non-repeating search algorithm because it does not

always choose the same initial x value, as demonstrated below.

To see the inconsistency of notice that the third performance, vector (100) finds

the value of 1 on the first trial. This performance vector is based on /2, so

must have chosen xi first to get that performance vector (refer to figure 1). But this is

Table 4; An inconsistent "search algorithm" for the AT = 3, M = 2 complete perfor
mance table. The row is inconsistent even though the row is a permutation of a true
algorithm's row, and even though each column has the correct number of I's and O's.

fo fl f2 h /4 - /s h f?

Afalse 000 001 TOO Oil 010 101 110 Ill

29

inconsistent with the performance vector under since fsixi) = 1 whereas the first

value in its performance vector is 0. Afalse therefore could not have chosen xi first in

all columns.

2.3.2 The Number of Rows in a Performance Table

This section will parallel section 2.2.1 by proving the corresponding theorems for perfor

mance tables. Let Tm be a population table of size m and let Qm be the corresponding

performance table of size m. Let be the set of populations in row A of and let

Vm be the set of performance vectors for the corresponding row A of Qm-

Theorem 9 :

.Proof; This proof proceeds by first demonstrating by induction that |V^| = |i2m|- The

base case is proven by. noting that |Vb| = |i2o| = 1- Two different populations in Rn

coidd not correspond to the same population in since those populations would

have different prefixes, and similarly for the transition from Vn to Vn+i- Therefore,

focus shifts to the populations in row A that are the same. As explained in the proof

of theorem 5, these populations will have the same new x value in and will take

on the fuU range of y values, and thus |i?n+i| = \Rn\At and similarly |Vn+i| = |V^|M.

Because |iln| = (induction hypothesis), the induction is complete. Theorem 5 can

be applied to achieve the desired result. □

As before, let Sm represent the set of rows in the table Tm, and let Wm represent the set

of rows in the corresponding table Qm- As with Sm, each row in Wm will correspond to

several rows in Wm-\-\, ia that there will be rows in Wm+i that are the same as a row in

Wm except for the addition of a final y value to each performance vector. Determining

30

how many rows in Wm+i correspond to each row in Wm provides a way of counting

the number of unique rows in Q^.

Theorem 10: |Wm+i| = \Wm\{N — m)^""

Proof: It will be shown that for every unique row As € Sm, there is exactly one

corresponding row € Wm- The base case is clearly true since both Tq and Qq

contain the empty set at all entries. It is also clear that \Wn\ < I'Snl since removing the

X values in T„ cannot result in a larger number of unique rows in Qn- Thus as r„ and

Qn transition to Tn+i apd Qn+i respectively, the idea is to determine if fewer rows are

possible in Qn+i- It must be shown that removing the x values in the populations of

Tm+\ wiU not result in duplicate corresponding rows in Qm+i-

From the inductive hypothesis, there is a one-to-one correspondence between the rows

of Tn and Qn- Consider population P in row A of r„. Let F be the set of functions

which together with A generate P in Tn- As discussed in section 2.2.1, row A in Tn

will correspond to several rows in Tn-^-i- Let two distinct rows At and Bt in Tn+i both

correspond to row A in T^.

In order for two distinct rows At and Bt in Tn+i to correspond to two identical rows

Aq and Bq in Qn+i, the y values in At and Bt woidd all have to agree with the y

values in Aq and Bq, and thus the only way for At and Bt to be distinct is if they

differ in only the last x value. This is shown to be impossible as follows: As explained

in the proof of theorem 6, a search algorithm must make an x value choice for P G Rn-

Assume that search algorithm At chooses Xa for the population P and that algorithm

Bt chooses x^ (xi, ̂ xa) for the same population. For rows Aq and Bq to be equal, the

new y value in each population of row At must be the same as each new y value in row

Bt- By theorem 2, F contains all functions with oiily the restrictions of P, and thus F

31

contains functions for which f {xa) ̂ creating a contradiction. This completes

the induction and so shows a one-to-one correspondence between the number of rows

in a population table and the number of rows in the corresponding performance table.

Theorems 6 and 9 can be applied to complete the proof. □

Algorithm Count Result 2: The number of unique rows in a complete performance

table, i.e. |W}vl, is the same as the number of unique rows in a population table:

N-l
\M*HiN-iy

i=0

A search algorithm can therefore be completely and liniquely expressed by the complete

performance vectors it generates over all functions. Because of this resiilt,, theorem 8 ,

can be strengthened as follows:

Theorem 11: Any two rows in a complete performance table are permutations of one

another.

Proof: Since a complete population table has unique rows; and since the number of

unique rows is the same in both a population table and a performance table, a complete

performance table will also have unique rows. □

2.3.3 Other Properties of Performance Tables

Each column in a complete performance table is unique in its ordering, winch follows

from the fact that every element in a row is imique (theoremi 7) and tbus any two

columns, will be different at each position. Section 2.2.1 showed how all permutations

of a population exist in a column of a population table, and thus all permutations of a

32

performance vector must occur in a column of a performance table. Each performance

vector in a column is a permutation of the others (a consequence of corollary 2). This

implies that for any performance 'measure based solely on the position of the first

optimum, the, expected performance for an imknown search algorithm on a function

would depend only on the number of maxima in the co-domain of that function.

There are Nl difiierent enumerations of the search space which in many cases will be

a smaller number than the number of performance vectors in a row of a complete

performance table (M^). Using Stirling's formula to approximate factorial, the second

number is found to be 0{{eM/N)^/VN) times larger than the first number. This

implies that a search algorithm will often use the same enumeration of the state space

for different functions. Indeed, some algorithms will use the same enumeration of

state space for all functions. Even with a static enximeration, the resulting complete

performance vectors will be distinct because of the different evaluation functions used.

Section 2.3.1 demonstrated that not all permutations of a row exist in a performance

table. Algorithm Count Result 2 makes it possible to determine the percentage of

permutations that do exist in a row. There are M^\ permutations of a row for a

complete population table, a number which vastly exceeds Algorithm Count Result

2. Therefore only a very small percentage of row. permutations exist in a coniplete

performance table.^

2.4 Stochastic Search Algorithms

A population table contains all deterministic non-repeating search algorithms, but

many search algorithms such as GAs or hill climbers have a significant stochastic com

ponent. This section will discuss how the population table framework can be related

/Even 999! has over two thousand digits. Compare to row N = M = 5 in table 13.

33

to stochastic aJgorithms.

Randomness should not simply be swept under the rug (as is so often the c^e) by

rlaiTning that any algorithm implemented on a computer must be deterministic; sim

ulated randomness can, be improved arbitrarily, and true random input sources are

available that make it possible to have true random algorithms on computers.

In the NFL proof given by Radcliflfe and Surry [7], A stochastic search algorithm is

defined to be a search algorithm that uses a deterministic "random" number generator

to simulate random choices. Similarly, Whitley et. al. [17, 8] discuss "stochastic" algo

rithms as deterministic algorithms coupled with a specific corresponding random, seed.

Because they assume ;the seed remains constant, they are still referring to determin

istic algorithms, and thus the above theorems hold for this weak notion of stochastic

search. To make their notion more striaightforward, consider how it relates to a pop

ulation table. A population table captmes the behavior of all possible deterministic

search algorithms. By using a fixed seed with a pseudorrandom number generator, the

"stochastic" algorithm will behave exactly as a row of a population table, with the se^

determining the row (as described above). ,

In discussing the stochastic case, Wolpiert and Macready [19] introduce "stochastic"

algorithm a, and claim "One can now reproduce the derivation of the NFL result for

deterministic algorithms, only with a replaced by <j throughout. In so doing, all steps

in the proof remain valid." However, the situation is not nearly so transparent as to

warrant the omission. Furthermore^ the description of stochastic search is not complete

(do they mean stochastic in the same sense as Radcliffe and Surry? some other way?),

and the interpretation of the theorems in terms of probabilities can be confusing. For

example, in summing probabilities in their theorem statement, they arrive at a number

that is not itself a probability (indeed, it can exceed the value of one). Is it possible that

34

two stochastic search algorithms may perform diflferently but are not expected to do so?

If their notion of stochastic is weak, then their use of probability is inappropriate, and if

their notion of stochastic is stronger, they fail to elucidate what it is, their conclusions

in. the stochastic case are unclear, and their lack of discussion is suspect.

For the remainder of this dissertation, a stochastic search algorithm will be de^ed as

a vector A having an element for each deterministic search algorithm in a population

table, where each element X{Ai) indicates the probability that the stochastic search

algorithm will behave as the deterministic search algorithm Ai. It will be shown in

section 2.6.2 how this definition allows a version of the No Free Lunch theorem for,

stochastic search.

For any given run, a stochastic search algorithm will behave exactly like a deterministic

search algorithm, and thus the vector A provides a connection between stochastic and

deterministic search. Furthermore, a population table fuUy captures the behavior of a

stochastic search algorithm for any given run.

2.5 Canonical Representiations

Objects such as populations and search algorithms can be immense ̂ d unwieldy. A

canonical representation allows for a short but complete naming system that also has

the benefit of a natural ordering. Such a strict ordering makes it easy to create tables

(such as performance tables), step through all objects for exhaustive experiments, and

to randomly select objects. This , section will describe canonical representations for

many of the objects that have: been previously discussed. When rules are given for an

ordering, they are presented in order of precedence.

35

Table 5: Functions as strings and canonical numbers when X — {0,1,2} and y = {0,1}.
The function {(aro, a),{xi,b),{x2,c)} is represented as string abc.

canonical function string

0 000

1 001

2 010

3 Oil

4 100

5 ̂ 101

6 110

7 111

2.5.1 Functions

To put functions in canonical form, first assume that sets A* and y are ordered. Since

the domain has an order, a function can be represented as a string of length N where

each position is a base M number, i.e. the function {(soi a)) b), (x2, c)} wiU be rep

resented as string abc. To efi'ect an ordering on functions, leftmost places in the string

are more significant. In this way, a function can be described in at most O(logM^)

bits. Table 5 shows the canonical and string representations for all functions when

X = {0,1,2} and = {0,1}.

2.5.2 Performance Vectors

A performance vector can have length from 1 to AT. The number of performance

vectors of length n is M", and the total number of performance vectors is Yln=i

To achieve an ordering, thie following two rules suffice: 1) performance vectors of length

n will occur before those of length n-I-1, 2) within a given length, leftmost places of the

performance vector will be niost significant. Table 6 shows all performance vectors and

36

Table 6: All performance vectors and tbeir associated canonical numbers when X
{0,1,2} and y= {0,1}:

canonical performance vector

0 0

1 1

2 00

3 01

4 10

5 11

6 000

7 001

8 010

9 Oil

10 100

11 101

12 110

13 111

their corresponding canonical numbers for the case when X = {0,1,2} and y = {0,1}.

Wheii IV = M = 4, the canonical number associated with performance vector (2,3,2,2)

can be computed as follows: the performance vector has length 4, and the index of the

first performance vector with length 4 is ~ oiily needs to

compute the offset of this performance vector into performance vectors of size 4. This

is simply

2 • 4® + 3 • 4^ + 2 • 4^ + 2 = 186

Adding this offset to the ofeet for length gives the canonical number of 270. To go from

the canonical munber of 270 to the corresponding performance vector, first determine

the length of the performance vector. Because 270 is greater than 2n=i-^" ~

the length must be four, and thus 270 — 84 = 186 will be the offset into: length 4

37

performance vectors. Modulus arithiiietic can be performed as follows:

186/(4^). = 2 Remainder 58

58/(4^) -- 3 Remainder 10

10/(4^) - 2 Remainder 2 ,

Which yields the numbers 2, 3, 2, 2 for performance vector (2,3,2,2).

2.5.3 Search Paths

A non-repeating search path can have length from 1 to N. There are {N)n non

repeating search paths of length n, and thus i^)n non-repeating search paths.

The number of search paths is thus independent of M. The ordering rules are basically

the same as for performance vectors: 1) search paths of length n wiU come before

search paths of length n + 1, 2) leftmost places in the search path are considered more:

significant. Table 7 shows , all non-repea,ting search paths and their canonical numbers

in the case when X = {0,1,2} and y = {0,1,2}.

When N — 5, search path (1,3,2,0) will have canonical.number 123, as wiU now be

shown. The length of this search path is 4, and the index of the first search path

with length 4 is i^)n = 85; Search paths are non-repeating, so there will be JV

choices for the first position, "iV — 1 choices for the second, and so on. Therefore, the

value at position i can be represented as a base N — i digit, allowing for a naaximally

compact encoding. This can be done by converting ̂ ch search path value to an index

into a list of unused values. Refer to table 8. The list of unused values starts off a,s

[0,1,2,3,4]. The first position value in the search path is 1, and its position index in

38

Table 7: All non-repeating search paths and their associated canonical numbers when
;t = {0, l,2} andD; = {0,l,2}.

canonical search path

0 0

i 1

2 2 .

3 01

4 02

5 , . 10 ;

6 12

7., 20

8 21

.9 012

10 021

11 102

12, 120 •

13: ,201 ;
T4".*' 210

, Table 8: Siearch path c^onic^ number.

position value .1 3 2 0

position index 1 2 1 0

choices at position 5 4 3 2

the list of unused values is also 1 (since indexing starts at zero). Once 1 is removed,

the list of unused values is [0^ 2,3,4]. The next search path position value is 3, which

occupies position index 2 in the list of unused values. Once 3 is removed; that list will

be [0,2,4]. The next position value is 2 which occupies position index 1, and when the

list is [d,4], 0 occupies position index 0, and this coniipletes the second row of table 8-

The position indices can be combined into a. single number that provides the offset of

this seardi path into length 4 search paths; Note from'the third row of table 8 that

there are 2 possible values for' the last position, 3 • 2 possible Vcilues .for the last two

positions, and so on, leading to the following equation for this offsiet: .

l.;(4-3-,2);+2-|(,3-2)+ 1-2 + 0 = 38

The canonical number for this searqh path is thus 85 + 38 = 123.

To derive a search path given N = -5 and canonital number 123, the, first step is to

determine the length of the search path. Because 2n=i < 123 < X)n=i {^)n,

the search path length must be 4. Accordingly one can subtract ™ order

to get the offset into search paths of length 4, i.e. 123 — 85 = 38. One can now do

moduliis arithmetic as follows:

38/(4 •3-2) — 1 Remainder 14

14/(3-2) - 2 Remainder 2

2/2 = 1 Remainder 0

This results in numbers 1, 2, 1, 0, which are the position index values from the second

row of table 8. A list of unused values will again be used, but this tinie one will go

from index to value. The fist of unused values is initialized to [0,1,2,3,4]. The first

index is 1, which has value 1, and thus the first position value of the search path is 1.

The list is then [0,2,3,4], and the next index value is 2, which corresponds to value 3

in the list. The list then becomes [0,2,4], and the next index value of 1 will correspond

to value 2 in the list. When the list is finally [0,4], and the last index of 0 results in

the final position of the search path being 0. The search path is thus (1,3,2,0).

40

2.5.4 Populations

A population may have length from 1 to N, and consists of a seaxch path and a

performance vector. Theorem 4 implies that a,population can be created from,any

non-repeating search path together with any possible performance vectpr, and thus the

mimbef of populations of length n is and the total nmnber of populations is

^n=i The ordering relies on the following rules: i) populations of length n
will come before populations of len^h n -I-1, 2) populations will be ordered by thmr

search paths, and 3) populations will be ordered by their performance vectors. Table 9

shows all populations for X = {0,1,2} and 3^ = {0,1}.

The canonical nmnber of a population can be computed by combining the canonical

numbers of the. search path and performance vector that comprise the population. For

example, when N — M = A, the population ((2,1), .(1,3), (0,1), (3,2)) can be expressed

as canonical value 5446 as follows: The length of the population is 4, its search path is

(2,1,0,3) (which has canonical value 54) and its performance vector is (1,3,1,2) (which

has canonical value 202). The first population of length 4 has the canonical value of

{N)n = 1744. The first search path of length 4 has canonical value of 14,

and the first performance vector of length 4 has canonical value of 118 (see previous

sections). There are 4^ possible performance vectors of length 4, and thus the canonical

number is the result of 14 • 4^ -t-118 + 1744.= 5446.

The conversion back to a population involves first determining that the length must

be 4 since the canonical value is greater than M" {N)n = 1744. The offset into

populations of size 4 woiild therefore be 5446 — 1744 = 3702. Integer division can then

be performed to give the indices into a length 4 search path and a length 4 performance

vector:

3702/(4^) = 14 Remainder 118

41

Table 9: All populations and their associated canonical numbers when X = {0,1,2}
and y =. {0,1}. Population ((ar, a), (y, 6), {z, c)) is represented as ale-

pop pop pop pop pop

0 0 16 10 32 012 48 102 64 201

0 10 010 010 010

1 0 17 10 33 012 49 102 65 201

1 11 Oil Oil Oil

2 1 18 12 34 012 50 102 66 201

0 00 100 100 100

3 1 19 12 35 012 51 102 67 201

1 01 101 101 101

4 2 20 12 36 012 52 102 68 201

0 10 110 110 110

5 2. 21 12 37 012 53 102 69 201

1 " 11 111 111 111

6 01 22 20 38 021 54 120 70 210

00 00 000 000 000

7 01 23 20 39 021 55 120 71 210

01 01 001 001 001

8 01 24 20 40 021 56 120 72 210

10 10 010 010 010

9 01 25 20 41 021 57 120 73 210

11 11 Oil Oil Oil

10 02 26 21 42 021 58 120 74 210

00 00 100 100 100

11 02 27 21 43 021 59 120 75 210

01 01 101 101 101

12 02 28 21 44 021 60 120 76 210

10 10 110 110 110

13 02 29 21 45 021 61 120 77 210

11 11 111 111 111

14 10 30 012 46 102 62 201

00 000 000 000

15 10 31 012 47 102 63 201

01 001 001 001

42

This yields 14 for the search path and 118 for the performance vector. From there one

may create the search path and performance vector as described in previous sections.

2.5.5 Search Algorithms

As described in section 2.1, a search, algorithm consists of a selection operator g :

"P i.e. a mapping from populations to points in the domain., What follows is a

means of representing this mapping as a table that will allow -a maidmally compact

representation. Table 10 shows a search algorithm represented in this way, and can

serve as an example for the following discussion. A deterministic non-repeating s^ch

algorithm is limited in the populations it can generate, and a maximally compact

representation should only encode those populations. A table's first entry is the empty

population and the search algorithm's first choice from X. From that first choice,

populations are created with all .M possible values from y, and these populations

comprise the next M populations in the table (following the ordering of set y). The

table proceeds as follows: take each population of length n as it occurs in the table,

and use it and its associated new choice from X to create M new populations of length

,n -b 1. These new populations are entered into the table along with their associated

new domain values. The table has populations of length n, for a total of Y^n=o

entries.®

This table representation allows a means of computing the number of non-repeating

search algorithms: since there are M" popula-tions of length n in the table, and

since there are N — n choices for a new x value at each such entry, there must be

— n)^" non-repeating search algorithms, which is in accord with Search Al

gorithm Count 1. . ,

.®The table need not include populations of size JV — 1 since the search algorithm is non-repeating
and thus has no choice in the final entry.

43

Table 10: A table listing of the seariii algorithm having canonical number 13,407,874
in the case where X — y = {0,1,2,3}.

population new X population new X

0 2 21

12

3

2 1 , 21 0

0 .. 13

2 1 , 23 1

1 20

2 3 23 0

2 21

2 0 23 0

3 22

21 3 23 0

00. 23

21 0 20 1

01 30

21 0 20 1

02 31

21 3 20 3

03 32

21 0 : 20 1

10 33

21 3

11

44

Table 11: A, breakdown of table 10. The columns are divided by population size. The
second row is an ordered listing of all new x values from table 10. The third row is
an ordered listing corresponding to the second row where each elisment indicates the
index into a list of available values.: Each element of the third row can be thought of as
a single number of base 4, 3,. and 2 respectively. The forth row lists the corresponding
base 10 values of the elements of the third row.

. n = pop size 0 .1 2

new X values 2 1130 3003033010001131

new X indices 2 1120 1001011010000010

base 10 values 2 42 38530

Because size n populations can be built up from size n — 1 populations already in the

table, and since the null population always starts the table, a non-repeating search

algorithm can be represented by a listing of new values irom X alone. Table 11 shows

such a liisting. Furthermore, since this is a non-repeating se^ch algorithm, this listing

can be transformed into another listing where eax:h , entry is an index into a list of

available positions. For example, in table 10, note the last entry on the left side, where

population f | is being mapped to new a: value 3. Because the population contams x

values 2 and 1, the new x value could only be a O.or a 3. These two values 0 a.nd 3

comprise a listing of available positions. For new x value 3, the corresponding index

into the list of available positions is 1. The third row of table 11 lists each index value

for each hew x v^ue from the second row.

In this listing of indices, an element, that corresponds toT population, size n can be

thought of as a base N — n digit since there are "N — n choices for a nisw x value at that

point. For exanaple, in table 11 when the population size is 1, the index values can be

seen as base 3 .digits, an(J when the population size is 2, the index values can be seen

as base 2:digits; : v ' , : -

All digits having the same population size can be combined into & single base N — n

45

number number having digits. This can be done for all values of n from zero to

jV — 2. In the example of table 11, IOOIOIIOIOOOOOIO2 = 38530io, II2O3 = 42io, and,

24 = 2io.

To combine these numbers into a single canonical number, note that there are 2^®

possible values when the population size is 2, and 3^ possible values when the population

size is 1. Generally, there will be (N - n)^" possible values when the. population size

is n. The three numbers in the example can therefore be combined as follows:

2 • 3^--2^® + 42 • 2^® + 38530 = 13,407,874

To arrive at the table, form of a search algorithm given its canonical number, start with

modulus arithmetic to decompose the single number into a number for each population

size. If the canonical number is 13^407,874 and N — M = 4, the modulus arithmetic,

proceeds as follows: - . .

13,407,874/(3^-- 2^®) = 2 Remainder 2,791,042

2,791,042/2-^^® -- 42 Remainder 38,530

This yields the numbers 2, 42, and 38530. These can be converted to base 4, 3, and 2

numbers respectively, creating the list of new x indices as shown in row 3 of table 11.

From here, the process of creating the table proceeds as described above, with the

following added step: as the populations are constructed, a list of available values is

created so that the new X index can be converted into a new a; value. ,

Table 12 lists all search algorithms and their canonical numbers for the case when

X — {0,1,2} and y = {0,1}. This table can be compared against the popidation table

in table 1 which contains the same information in a different form.

46

Table 12; All non-repeating search algorithms and their associated canonical numbers
when X — {0,1,2} and y = {0,1}. Compare against the population table in taWe 1.

num pop new X num pop new X

0 0 0 1

0 0
0 1 6 1 2
0
1 1 1

1 0

0 0 0 1

1

OC

1 7 1 2
0
1 2 1 2

0 0 0 2

2

OC

2 8 0
u
1

1 , 'Z

1 0

0 0 2

3 0
0

2 9 2 0
u
1 2 1

0 1 n 2

■4 ■ , 1
0 . 0 10 1 ,

■ •
1
1 : 0 0

0 1 0 2

5 1
0 0 : 11 2 1
1.
1 2 2

1 1 -

47

A securch algorithm will be said to be compressible if it can be expressed in fewer bits

than its canonical number. It is \vell known [1] that the percentage of strings that

are compressible is rather small, and thus the percentage search algorithms that are

compressible must also be small.

For sufficiently large domain and co-domain, search algorithms such as enumeration,

hill climbing, and GAs are highly compressible. One might think that a search al

gorithm's complexity might contribute to its optimization power, but that need not

be the case. For example, a static enmneration is highly compressible, but the NFL

theorem guarantees that it has optimal expected performance in black box scenarios.

On the other hand, if there are known correlations between seen and unseen points,

memory and processing of those seen points may lead to improved performance.

Table 13 shows how the size of the domain and co-domain affects the number of func

tions, performance vectors, non-repeating search paths, populations, and non-repeating

search algorithms. Code was written to generate any of these objects given their cjuion-

ical number, and this was used to generate the population tables in this dissertation

as well as the canonical tables in this section. The code was also, used extensively in

the Minimax section (2.7) below to test the performance of all search algorithms over

all functions.

2.6 The No Free Lunch Theorems

In section 1.4 there was discussion regarding the lack of clarity of previous proofs of

the No Free Lunch theorem. On the other hand, the performance table data structure

provides a natural foundation for comparing seardb. algorithms. This section will prove

the No Free Lunch theorem as a direct and natural consequence of the basic properties

of performance tables. Previous statemients of the NFL theorem wdl be discussed from

48

Table 13: The number of functions, performance vectors, non-repeating search paths,
populations, and non-repeating search algorithms for various yalu^ of N and M.

N- M Fs PVs SPs Ps SAs ,

Er, M" EL, iN)n ,EL, iN)nM- nL-n'(Ar-nr'

2 2 4 6 4 -'j' 12 2

2 3 9 12 4 24 2

2 4 16 20 4 , - , 40. 2 ,

2 5 25 30 4 60 ■2

2 6 36 42 4, 84 . 2

2 7 49 56 4 112 2

3 2 8 14 .15 78 . ,12

3 3 27 39 15 225 24

3 4 64 84 15 492 48

3 5 125 155 ; , 15 915 96

3 6 216 258 15 1530 192

3 7 343 399 15 2373 384

■4 2 16 30 64 632 576

4 3 81 120 64 2712 55296

4 4 256 340 64 7888 iw 21 e7

4 5 625 780 64 18320 « 3.3 elO

4 6 1296 1554 64 _ 36744 w 2.0 el4

4 7 2401 2800 64 66472 w 4.9 el8 ,

5 2 32 62 325 6330 1658880

5 3 243 363 325 40695 fs 8.4 el4

5 4 1024 1364 325 157780 w 1.0 ie30

5 5 3125 3905 325 458025 « 1.8 e50

5 6 7776 9330 325 1102350 w 3.2 e86

5 7 16807 19607 325 2326555 rs.3.5 el31

6 .2 64 126 1956 ; 75972 « 1.7.el3

6 3 729 1092 1956 732528 w 3.6 e45

6 4 4096 5460 1956 3786744 « 6.4 el20

6 5 15625 19530 1956 13740780 « 1.3 e267

49

within the current framework, and will all be shown to be equivalent. A proof will

follow that demonstrates how the! NFL theorem can be generalized to other sets of

functions. Finally, an NFL proofwill be given for stochastic search (as defined in

sisction 2.4).

Let Pm{A,f) denote„the length m population generated by search algorithm A and

function /. Similarly let Vm{A,f) denote the length m performance vector generated

by A and /. The size subscript may be omitted when it is not needed. Let ,M(V[A, /))

be the value of the performance vector measure M when applied to performance vector

V{A, /). Define an overall measure of search algorithm A and set of functions F to be

a function that maps the set of performance vectors generated by A and jF to a real

number. An overall measure can be used to compare the overall performance of two

seardi algorithms on a set of functions, and if the two search algorithins have identi^l

overall measures, it can be said that they perform equally well over F. An example

of an overall measure would be to take , a performance vector measure and apply it

to every element in F and then combine the results in some way such as an average,

i.e. X)/eF-^(^(A)/))/|-^|- A complete measure is an overall measure where the set of

functions F is the set of all functions, from 3''^- Three statements of the NFL theorem

will now be proven.

Theorem 12 (NFLl) For any complete measure, each non-repeating determitustic

search algorithm performs equally well.

Proof: From thwrem 11, each row of a complete performance table contains the same

set of performance vectors, and thus any two rows will be using the exact same data

for computing the complete measure. D

The following statement of the theorem is a pivotal component of the proof by Radclifie

50

and Surry [7], phrased more directly in the language of the current framework. In their

language, isomorphic search algorithms generate the same sequences.

Theorem 13 (NFL2) For any two deterministic non-repeating search algorithms A

and S, and for any function /, there exists a function g such that V{A,f) = V{B,g).

Proof: Theorem 11 states that all rows in a complete performance ta,ble are permu

tations of each other, and thus any performance vector in row A will necessarily occur

in row B. □

As defined above, an overall measure is a function of a set of performance vectors.

Consider instead a weightal overall measure which is defined with respect to a search

algorithm's row in a complete performance table. This allows the performance measure

of each performance vector to be weighted according to the function that generates

it, i.e. W(/)M(V(A,/)). A weighted overall measme is not generally subject to the

NFL theorem except in the case where the functions are equally weighted. An equally

weighted overall measure is a weightied overall measure where each of the performance

vectors in the algorithm's row is weighted equally, i.e. certain functions are not deemed

more important than others. The NFL theorem statement below is essentially that

given in Wolpert and Macready [18].

Theorem 14 (NFL3) For any equally weighted overall measmre, each deterministic

non-repeating search algorithm will perform equally well.

Proof: When performance vectors axe weighted equally, W{f)M{V{A, f)) becomes

cM{V{A,f)) for some constant C; Let performance vector measmre M'{Y) = cM{V).

51

Thus an equally weighted overall measiure is in fact a non-weighted overall measure M',

allowing the result to follow as in NFLl. □

Note that all three versions of the NFL theorem are direct consequences of theorem 11,

demonstrating the significance of that theorem.

A corollary to theorem 11 is that if a search algorithm performs better than, average

on one set of functions, it must perform worse on the complementary set. This is

essentially an argument for specialization: a search algorithm wiU perform well on a

small set of functions at the expense of poor performance on the complementary set.

An even stronger consequence follows from theorem 11: all deterministic non-repeating

search algorithms are equally specialized. This contradicts commonly stated beliefs

(e.g. [2, 3]) about how there can be robust general purpose search algorithms that

perform reasonably well on a broad class of functions at the expense of not performing

extremely well on any set of functions. Since every search algorithm has precisely the

same collection of performance vectors when all functions are considered, it follows that

if any search algorithm is robust, then every search algorithm is, and if some search

algorithm is not robust, than no search algorithm can be.

2.6.1 NFL Generalization

Let f : X y he a function and let a : X X he a permutation (i.e. a is one-

to-one and onto). The permutation af of f is the function af : X -¥ y defined by

Define a set F of functions to be closed under permutation if for every f G F, every

permutation of f is also in F. Define ^ NFL result over F to be a situation where any

52

two deterministic non-repeating search algorithms will have equal overall performance

with respect to the set of functions F. ' .

Let A be a search algorithm with selection operator g arid let cr be a permutation

(of X). The permutation aA of A is the search, algorithm with selection operator ag

defined by cg{<i>) = <y~^{g{o'x{(l>))) where da;(<^) operates on the a; values of population

<j) by applying cr to each of them, while leaving the y values untouched.

Theorem 15: If Pn{A, af) = {{xq,yo), (si, yi),..., (sn-i, yn-i)) then

PniaAJ) = ((cr~^(a;o),yo),(o-"Ha;i),yi),---,(«^~Ha;fi-i),yn-i))

Proof: By induction on the length of the populations. The base case is true since all

populations of length 0 are the same, i.e. Pq{(tA, f) = Po{A, cr/) = ().

Assume the inductive hypothesis:

Pn{A,of) =

Pn{aA,f) = <(cT~^(a;o),yo),(o-~^(a;i),yi),...,(o-~^(a;„_i),y„_i))

By definition,

(xg{Pn{<TAJ)) = a~^ o g{ax{Pn{crA, f)) = cr~^ o y(P„(A,cr/)) = (T~'^ixn)

Moreover, f{a~^{xn)) = (yf{xn) = Vn- Accordingly:

P„+i(A,<t/) = PniAaf) I I {Xn,yn)

Pn+i{crAJ) = PniaAJ) || {a~^{Xn),yn)

53

•Which completes the proof. □

Gorbllary 3: V{aA, f) — V{A, af)

Corollary 3 is true since the y values are the. same in both populations. This corollary

is striking in the way that it shows a correspondence between a permutation of a search

algorithm and a permutation of a function.

Lemma 2 If the set of jFunctions F is closed under permutation, then there is an NFL

result over F. .

Proof: Let A and B be arbitrary deterministic non-repeating search algorithms. If one

can show that set 5i = {y(A,/) : / € F} is equal to set S2 = {V{B,g) : g E F}, the

result will follow naturally. This will bie shown by double containment. By theorem 13,

for any A, B, and /, there exists a, function h such that V{A,f) = V{B,h). Because

these two complete performance vectors; are equal, / and h must be permutations, and

thus hE F. li is therefore true that for any element V{A, /) E Si, there exists an equal

element F(B, 3) E S2- The case in the other direction can be demonstrated in the same

way, and so Si — S2 by double containment. Thus any two deterministic non-rejpeating

search algorithms,will be using the same data to compute their combined performance

measures and ,wUl therefore arrive at the same result. □

The above lemma was an intermediate result in Radcliffe and Surry's proof of the NFL

theorem [7]. The conyerse of this lemma is also true:

Lemma 3 If an NFL result occurs over the set of functions F, then F is closed under

permutation. , , ,

54

Proof:, Assume by way of contradiction that an NFL result occurs over the set F, but

that F is not closed under permutation. Consequently, there is some fimction f in F

which has a permutation g which is not in F. Consider an arbitrary search algorithm

A. Let M{V{A^f)) = 1, and let M equal zero for all other performance vectors in

A's row. Since rows in a performance table are permutations of one another, each

row will have a single performance vector having measure 1, and all other performance

vectors will have measure 0. Let the overall, measure be a sum of performance vector

measures, i.e. /))• Note that this sum is 1 for search algorithm A, and

since an NFL result is assumed over F, the value of this sum should be 1 for every

search algorithm. As / and g are permutations, let / = ag. By corollary 3, F(A, f) =

V{A,ag) = V{aA,g), and thus M{V{aA,g)) = 1. Accordingly, M{V{aA,h)) =

0, a contradiction. - • - □

Combining lemmas 2 and 3 yields the following theorem:

Theorem 16 (NFL Qeneralization) An NFL result occurs over the set of functions

F if and only if F is closed under permutation.

When an NFL result occurs, no search algorithm can outperform enumeration. More

generally the phrase "NFL curse" will be used to describe situations where enumeration

provides the best possible expected, performance.

2.6.2 NFL Theorem for Stochastic Search

The definition of stochastic search in section 2.4 allows for the following proof of the

NFL theorem for stochastic search. Let A(A) be the probability that stochastic search

algorithm A behaves as deterministic search algorithm A.

55

Theorem 17 (NFL for Stochastic Search) For any equally weighted measure, each

non-repeating stochastic search algorithm has equal overall expected performance.

Proof: Let S\ be the overall expected performance of stochastic search algorithm A.

The following shows how the overall expected performance is constant and independent

of A. .i4 is a search algorithm and / is a function.

f A

A f

= (by NFL).
A

= c □

2.6.3 Nonuniform Function Distributions

The NFL curse is not necessarily escaped with non-uniform distributions of functions,

as pointed out by Wolpert and Macready [18]. Appendix A presents two search algo

rithms having identical performance with respect to a non-uniform function distribu

tion. English proposes [2] that the NFL result occurs in an "uncountable infinitude" of

function distributions, and he states that NFL consequences may occur, whenever the

function set to be optimized is "large and diffuse," which is the very signatiure of black

box search.

. " - 56

2.7 Minimax Distinctions Between Algorithms

Wolpert anid Macready [18, 19] discuss, a sense in which one search aigorithm can

outperform another search algorithm, even when all functions are considered. This

minimax distinction between search algorithms A and B is described as foUows: For

each function f G. T (where is the set of all functions from the domain to the co-

domain), compare the performance measure of A on f to the performance measure of

B on f. Keep a tally of the number of times each algorithm has the better performance

measure when compared in this pair-wise way.- If after all the comparisons have been

made A has a larger tally, then A is said to have a minimax advantage over B, and the

value of the minimax advantage would be the value of A's tally minus the value of B's

tally. Let A> B denote the relation that algorithiri A has a minimax advantage over

algorithms.- -

While it may at , first seem that the No Free Lunch Theorem would preclude one al

gorithm from having a minimax advantage , over another, that is not the case. The

minimax distinction "loses information" in the sense that it does not take into account

how much lietter, one algorithm did on a function, but only that it did better. When

that information is accounted for, the equal performance guaranteed by the NFL theo

rem will be evident. Furthermore, it is conjectured that there is still a type equivalence

between all search algorithms even when minimax distinctions are present, as will be

shown below.

As a simple example pf minimax, consider the following two-player game: each player

is given a nickel, a dime, and a quarter, and each player then orders them without

the other player's knowledge. When both players are satisfied with their orderings, the

values at each position are compared, and the winner is the one who has more positions

at higher value. The minimax table for this game is presented in table 14. Each entry

57

Table 14: Minimax table for the coin game. NDQ indicates an ordering of Nickel,
Dime, Quarter. Each entry denotes the minimax advantage of, the row's strategy over
the column's strategy. Minimax tables are symmetric across the major diagonal with
a sign change.

NDQ NQD DNQ DQN QND QDN

NDQ • 0 0 -1 1 0

NQD 0 • -1 0 0 1

DNQ 0 1 • 0 0 -1

DQN 1 0 0 • -1 . 0

QND -1 0 0 1- • 0

QDN 0 -1 1 0 0 •

denotes the minimax advantage of the row's strategy over the column's strategy, with

a negative value indicating a disadvantage.

For any strategic ordering, there is one way . to win, and one way to lose. For example,

NDQ hais minimax advantage over QND, QND has minimax advantage over DQN, but

DQN has minimax advantage over NDQ, showing that the relation is non-trahsitive.

Radcliffe and Surry [7] observed this circular relation under a different set of circum

stances.

As a more general example, table 15 lists the minimax distinctions for all search algcn

rithms having X = {0,1,2} and y — {0,1} (as in table 3). The objective in this case

is to find the first occurrence of the maiximum value in each performance vector^ An

assumption is made that the mammum will be recognized when it is seen, and thus the

seardi may stop at the first such occurrence. The performance vector measure is the

length of the performance vector minus the number of evaluations performed in finding

that maximuTn value. This has the effect that finding the maximum value quickly will

yield a high score. Each entry {Aa, Ab) denotes the value of the minimax ̂ vantage of

:Aa over Ab, with a negative number indicating that Aj, has a minimax advantage over

58

Table 15: Minimax Table: {X = {0,1,2}, = {0,1}) The objective function is to
find the maximum value in the population. Note the non-S5Tnmetric relation Aq >
As> Aq> Aq.

Aq Ai A2 A3 A4 A5 As At As Ag Alo All

A) n 0 0 0 0 0 -1 -1 1 1 0 0

0 • 0 0 0 0 -1 -1 1 1 0 0

A2 0 0 • 0 1 1 0 0 0 0 -1 -1

As 0 0 0 • 1 1 0 0 0 0 -1 -1

A4 0 0 -1 -1 0 0 0 0 0 1 1

As 0 0 -1 -1 0 • 0 0 0 0 1 1

-^6 1 1 0 0 0 0 • 0 -1 -1 0 0

At 1 1 0 0 0 0 0 • -1 -1 0 0'

As -1 -1 0 0 0 0 1 1 • 0 0 0

Ag -1 -1 0 0 0 0 1 1 0 • 0 0

-^10 0 0 1 1 -1 -1 0 0 0 0 • 0

All 0 0 1 1 -1 -1 0 0 0 0 0 •

Aa- For example, it can be seen that Aq has a minimax advantage over As and Ag,

and that algorithms Aq and Aj have minimax advantage over Aq. Consider the sum

across a row of a minimax table.

Table 16 also lists the minimax distinctions for all algorithms in table 3, but in this table

the objective function involves finding the minimum value rather than the maximum.

The performance vector measure is the length of the performance vector minus the

number of evaluations needed to find the minimum value. In this table too, all rows

sum to zero.

Just as in table 14, tables 15 and 16 exhibit circular non-transitive minimax advantages.

For example, in table 15 Aq > As > Aq > Aq. This suggests a notion of equivalence.

Search algorithms A and B are said to be minimax equivalent if there exists a circrilar

relation involving A and B or if neither A nor B has a minimax advantage over the

other.

59

Table 16: Minimax Table: (Af = {0,1,2},>^ = {0,1}) The objective function is to
find the minimum value in the population. Note that Aq > Ag > A5 > Aq.

Ao Ai A2 Aa Af- As As Ar As Ag Alo All-

-Ao . • - 0 0 0 : 0 -1 0 -1 1 0 , 1 0

■Ai" 0 • d 0 . 1 0- 1 0 0 -1 0. -1

A2 0 0 • 0 0 -1: 0 -1 1 0 1 0

A3 0 0 0^ - ■. 1 ' 0; T 0 0 -1 0 -1

A} 0 -1 0 -1 . 0 0 0 0 1 0 1

A5 1 0 1 0 0 .• 0 0 -1 0 -1 0

Ae 0 -1 0 -1 0 0 • 0 0 1 0 1

A7 1 0 : 1 0 0 0 0 ■ • -1 0 -1 0

As -1 0 -1 0 0 1 0 1 • 0 0 0

Ag b 1 0 1 -1 0 . -1 0 0 0 0

Aio -1 0 -1 b 0. : 1 0 1 0 0 , 0

An 0 1 0 1 . -1 ;o A 0 0 0 0 •

Complete performance tables were created for many values of iV ^d M, and from

them minimax tables were produced.® Let [x,y] be shorthand for the minimi table

where N = x and M = y. For [2,2], [2,3], [2,4], [2,5], [2,6] and [2,7], there are no

minimax distinctions between search algorithms. For [3,2], [3,3], [3,4], [3,5], [3,6], [3,7]

and [4,2], there are minimax distinctions between search algorithms, although in each

table, every search algorithm is in the same minimax equivalence class.

In these tables, the performance measure was the number of evaluations required to find

the maximum value in the population. Tables were also created where the performance

measure was the number of evaluations required to find the minimum value in the

popiUation, and once again all seardi algorithms were found to be in the ,same minimax

equivalence class. These results suggest to the following conjecture:

Minimax Conjecture: All deterministic non-repeating search algorithms with a given
®Laxge values of N and M require prohibitive amounts of memory (see'table 2) and thus only

modestly sized tables were created. ■ ■'

60

finite domain and co-domain will be in the same minimax equivalence class.

2.8 Other Possibilities

The overriding value of something as abstract as a population table is in how it fa

cilitates conceptualization. Population tables make clear how each search aJgorithm

behaves under all possible scen^ios, and they provide a foundation for proofs that can

lead to greater insight into how search algorithms behave.

There are many conjectures as to what meikes a function hard for a particular type

of search algorithm. Modality, epistasis, compressibility, and other factors have been

implicated. It is possible to consider a search algorithm class su(i as a GA, and to then

determine which functions in the population table perform best on that class. These

functions could be dissected, and their.properties could be stated definitively, at least

for the given domain and co-domain. Factors such as modality could be exhaustively

examined. Such analysis may take some of the guesswork out of knowing which type

of search algorithm to apply to which type of problem- Part of such an analysis woxild

involve the translation from what a search algorithm gets, i.e. the populations in the

table, to what the search algorithm does, i.e. how it makes its selections.

These techniques can require vast , amoimts of computational tiine and space, but that

does not necessarily make them impractical. For starters, it may be sufiicient in certain

situations to randomly sample functions rather than testing all functions. In addition,

direct simulation may be avoided by mathematical analysis applied to. the objects

formalized in the framework developed in this dissertation. Algorithmic information

theory (commonly known as the study of Kolmogorov complexity) ihay well contribute

to this understanding. The fact that the table is full of functions and search algorithms

that are incompressible makes it ripe for this type of analysis. Furthermore, the incom-

pressibiiity method [6] studies the eflFect oi typical inputs which will be used extensively

in the following sections with the discussion of uniformly selected functions.

2.9 Summary of Population Table Properties

n All Population Tables

— Within a row, no two populations may be permutations of each other unless

they are equal

— All possible populations of size m exist in

— All rows containing will have that population in exactly the same columns

— Each row has the same number of unique populations

— Permutations of will occur in the same columns as Pm

— All permutations of a population (and thus all possible search paths) exist,

in each column .

• Complete Population Tables

— Rows are unique -

— Each population in a row is unique

— ,No ,two populations in a row are permutations of each other .

— Rows are not permutations of each other

— No popidation exists in more than one column

2.10 Summary of Performance Table Properties

. • All Performance Tables '

, n ; ̂ ^ , , 62

— Rows axe permutations of each dther

— Each row has the same number of unique performance vectors

— Within a column, ail perforniance vectors are permutations of one another

— Within a column, ail performance vectors exist

• Complete Performance Tables '

— Rows are unique

— Each performance vector in a row is unique

— Same number of rows as a complete population table

" — For any row, few of its permutations are also, in the table

— All search algorithms (rows) will have the same complete measure (NFL)

— Two different colunms will differ at each position

— The number of Tinique elements in a column will depend on the number of

unique co-domain values of the function defining the column

63

3 Analytical Methods in Black Box Search

Because search algorithms such as genetic algorithms and hill climbing are stochastic

in nature, performance results wiU vary according to the seed of the pseudo-random

number generator. To overcome this variation, statistical methods can be used to allow

reasonable generalizations regarding performance. One of the main goals of this section

is to determine a means of finding the expected behavior of a given search algorithm on

a given function. This will allow performance comparisons over both algorithms and

functions, as well as performance comparisons of classes of algorithms over classes of

functions.

Random search (with and without replacement) and enumeration will be analyzed in

detail. Since sets X and y are finite, they can be enumerated, and therefore identified

with sets of non-negative integers. And so without loss of generality, the analysis in

this section will pertain to functions that map froni X = {0,1,..., AT — 1} to y =

{0,1,..., M — 1}. This section will also introduce a means of graphing the expected

performance of an algorithin over a class of functions.

For most experiments, each function will be run to convergence many times, each

time with a new seed.^° The number of evaluations required to converge is recorded

for each rim. Note that it is the number of function evaluations being counted and

not the number of generations the GA is being;run.^^ This allows hill climbers and

genetic algorithms to be compared on, equal footing. All runs were required to achieve

acceptable performance.

The data from running a stochastic search algorithm on a function multiple times can

'^Unless otherwise specified, convergence is defined ̂ the first occurrence of a value in a given subset
of the co-domain.

'^In certain situations an evaluation will not be counted, e.g. when using elitism, the best strings
need not be reevaluated in the next generation.

64

be used to construct a histogram that shows the percentage of rims that converged at

each trial number. Such a histogram will be called a performance histogram. With an

adequate sample size, it can be thought of as a way to visualize the expected probability

of first success at a given evaluation number.

Now consider a graph that charts the cumulative percentage of success at each trial

number, i.e. f{x) = ^(0 where h{i) is the percentage of runs that converged

at trial i. This type of graph will, be called a, performance profile. Notice that since

the percentages are summed, a performance profile graphs an approximation of the

probabfiity of success by trial x.

3.1 Expected Performance of Random Search

Random search is an important benchmark to compare against, especially when consid

ering the ramifications of the No Free Lunch theorem. Therefore its expected behavior

will be studied in some detail. Let N be the size of the search space, let M be the

size of the co-domain, and let n be the size of the set that indicates convergence.^^

Convergence is recognized at the first evaluation of an element from the convergence

set.

The expected optimum value of a uniformly selected function can be found with the

following analysis. P{S) will denote the probability of event S. Let y be the event that

the optimum co-domain value is y. Let A be the event that all co-domain values are

less than or equal to y, i.e. A = {/ : f{x) < y Va; G X}. Let B be the event that at

least one co-domain value is equal to y, i.e. B = {f : 3x G X : f{x) = y}. Let C be

the event that no co-domain value is equal to y, i.e. C = {/ : f{x) ̂ y^x G X}.

^^This definition.allows for two usages: either the naaximum value is repeated n times, or more
generally, the top n values in the space indicate adequate convergence.

65

P{y). = .P{AriB)

= .P(:A)P{B\A)

. , = ;P(i)(l-P(C|A))

- (y- 1)^

The expected optimum value can,be computed as follows:

^ /»,iV _ iaATv_ - /y^-(^-l)ArX
-)£{y)

y-

' M • M-1

= liW +I « If n « n 'ff

\y=l y=0

,, /k^l M-l M-1
' j: s,«+'+m''+' - 2 - E»"

V V=1 y=l y=0
M^lM^l

E
!/=l

In the following experiments, the domain size and co-domain size will often be 10 bit

and 16 bit respectively. In such a case, the expected optimum value is approximately,

65,472, or about 64 less than the optimum.

3.1.1 Random Search with Replacement

Consider a random search algorithm that chooses points with replacement according

to a uniform distribution, and consider the application of this search algorithm to an

66

Expected Performance Histograms - Random Search with
Replacement

0.003

0, 0.0025

— n = 3
3 0.002

- n = 2

n = 1Z 0.0015

S 0.001

s
0.0005

-1

500 1000 1500 2000 2500 3000

numt>er of evaluations

Figure 2: Expected performance histograms for random search with replacement when
the size of the search space is 1024 and there are n global optima.

arbitrary function. Let p be the probability of generating an optimum value for a single

trial, let q be the probability of not generating an optimum value for a single trial, and

let Pi be the probability that the first optimum occurs at trial i. First success at the ith

trial is a matter of i — 1 failures and the single final success, all of which are independent

because of replacement:

p-qi—i

n fN — n\
^ JV ' V N)

1—1

This value allows the expected performance histogram and performance profile to be

created, i.e. a profile that outlines the expected performance on black box search. The

expected performance histograms for various values of n are shown in figure 2. The

associated performance profiles are shown in figure 3.

Consider now the expected number of evaluations before convergence. For random

67

Expected Performance Profiles - Random Search with
Replacement

IS

\ ,\ -n
=
3

 -n
=
2

 ™n
=
1

/

/
/

/

/

500 1000 1500 2000

number of evaluations

2500 3000

Figure 3: Expected performance profiles for random search with replacement when the
size of the search space is 1024 and there are n global optima.

search with replacement, the derivation for expected time to convergence is as follows:

00 ' - ,

a; • Px
j:=1

- —Vx
-

■Q',1;—1. g = {N-n)/N
X=1

1=1

n d 1

N dql — q
n,

N{l-q)^
n

lV"(n/Ar)2
N

n

In the case where there is a single global m^mum, random search with replacement

wiU thus be expected to perform as many evaluations as there are points in the search

68

space.

3.1.2 Random Search without Replacement

Just as with random search with replacement, this search algorithm will have equal

expected performance for any two functions having the same values for N and n. Let

Pi be the event of finding a global optimum at step i, and let Pi be the event of finding

the first optimum value at step i. Let qi be the event of not finding a global optimum

at step i, and let Qi be the event of not finding a global optimum at any step less than

or equal to i. As before, let N be the size of the search space and let n be the size

of the set, that indicates convergence. The last step in the following derivation for the

probability of Qi utilizes a telescoping product simplification.

P{Qi) = PfenQi-i)

= P{qi \Qi-i)-P{Qi-i)
_ N-n-i+1 p,
- N-i + 1

j-i

i~ 1 * T •nN-n-j
N-j

j=o

N -i-k

n N-k

Note that in the final result there is no danger pf dividing by zero since n — 1 will always

be less than N. P{Pi), the probability of first success at step i, is the probability of

z — 1 failures and the single final success:

69

Expected Performance Histograms:- Random Search
without Replacement

0.004

0.0035

n = 1

n = 2

n = 3

n = 4

u 0.003

0.0025

0.002 -

>.

£ 0.0015

X) 0.001

0.0005

200 400 600 800 1000

number of evaluations

Figure 4: Expected performajice histograms for random search without replacement
when the size of the search space is 1024 and there are n global optima.

p{Pi) = P(pir\Qi-i)

= P{pi \Qi-i)-P{Qi-i)

n y} N-i + l-k
JV-i + 1^ N-k

k=0

This formula was used to graph expected performance histograms and expected per

formance profiles for random search without replacement, as shown.in figures 4 and 5.

For random search without replacement, the expected number of evaluations would be

N

£(x) = Y^x-P(P,)

TV ^ ̂ A r I 1
X • 71 tt N — X + I — kEx ' 71 Yl"

V35=1 «=0
N-k

70

Expected Performance Profiles: Random Searoh without
' - Replacement

0.9 -

S 0.8

g 0.7

0.6

S 0.5 -
n = 1

5.0.4 ,n = 2

n = 3S 0.3
n = 4

0.2 -

0.-1 -

200 400 .;600. ,800
number of evaiuations

1000

Figure 5: Expe.cted performance profiles for random search without replacement wheii
the size of the search space is 1024 and'there are n global optima.

' , : n ^ N + r. ' 'y,;.'' ;: \ n
n'+l

Recall that the expected convergence time of random! search with replacement is N/n,

and thus as n increases, the advantage of non-repeating search diminishes.

3.2 Enumeration

Search without replacement is an enumeration, and by the NFL theorem all enumer

ation strategies have equal performance over the ensemble of all functions. The NFL

theorem also makes clear that no other search algorithm can have better performance

over all functions, and thus enumeration's performance profile can serve as a useful

baseline for judging the performance of other search algorithms. If the search algo

rithms are allowed to differentiate themselves by the points they have already seen (as

is the case in population tables), then the number of enumeration search algorithms is

71

the Algorithm Count Result 1 from section 2.2.1.

While random search without replacement will have the same expected performance

on all functions having the same N. and n values, enumeration strategies can perform

very differently depending on the function.^®,

3.3 An Empirical Investigation of Robustness

Genetic algorithms and hiU climbers axe widely believed to be robust search algorithms,

i.e. they are expected to perform reasonably well on a very large set of functions. This

section will investigate this assertion by exploring the, perfornaance of these two search

algorithms on randomly selected functions aiid by comparing their performance against

random search. - r - • , . •

A r£indomly selected function is generated by randomly selecting a cb-domain element

(with uniform probability) for each value in the domain. It is clear that such a function

generator selects uniformly over all possible functions ha,ving the given domain and co-

domaini Even though these functions have been randomly generated, they should not

be called random, functions since they are completely deterministic; rather, they are

randomly selected functions.. Unlessbtherwise naentiohed, a randomly selected function

will come from a" uniform distribution. ; -

A function having 10 bit domain and 16 bit co^domain was randomly selected for this

experiment. This function turns out to be extremely difficult for the GA, more difficult

than many of the toughest commonly used test functions for GAs. The performaince

profiles of this function at different mutation, rates are shown in figure 6. Performance

improves as the mutation rate is increased to 0.5, at which point the profile become

^®For example, if tlie optimum value of the function occurs at the first value that the enumeration
tests, optimal performance is achieved. , ' '

72

Mutation Impact on a Randomly Selected Function

0.8

0.6

0.4

0.2

500 1000

number of evaluations

1500 2000

Figure 6: Performance profiles at various mutation rates for a randomly selected func
tion. Profiles are shown at mutation rates of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, with
performance increasing with mutation.

indistinguishable from that of random search with replacement.

For this randomly selected function the genetic algorithm does not even beat random

search with replacement, no matter what the mutation rate. Furthermore, it performs

far worse than random search without, replacement. Although this is only one ran

domly selected function, its performance is typical, as will be shown by looking at large

numbers of randomly selected functions.

The poor performance of the GA begs the question: what percentage of functions are

well suited to solving with a GA? A performance summary can be produced over a set

of functions by running each function to convergence many times and accumulating

the results for all functions in the set. If the set of functions is very large, a further

approximation may involve using a reasonable number of randomly selected functions

from that set.

73

For this section, histograms were generated by, randomly sislecting 10,000 functions

(via a uniform distribution), where each function is run 100 times to convergence. The

average convergence time for each function is noted, and these averages are graphed

as a histogram. Such a histogram will be called a black box histogram because of its

relevance to black box search. In this section, the functions used will have iV" =;1024

(10 bit) and M = 65,536 (16 bit). ,

Because random search with replacement has the same expected performance for each

function, a black box histogram for it would .be ̂ impulse at the expected value of

N/n. For the same reason, a black box histogram of random search without replacenient

would be an impulse at the expected value of (iV + l)/(n + 1).

The situation is different for enumeration since it can have different expected per

formances on different functions. In order to determine the expected percentage of

functions that converge at each evaluation number, note that in the case when n = 1,

the number of functions that have the single optimum at point a is the same as the

number of functions that have the single optimum at any other point 6, leading to a

uniform distribution; This is the same distribution that exists in enumeration's ex

pected performance histogram for n = 1. In general, note that the formula for P{Pi) in

section 3.1.2 is the probability of first success at evaluation i, and that for enumeration,

this can be seen as the percentage of functions that converge at the given evaluation

number. The expected performance histogram of enumeration (figure 4) is thus the

black box histogram for enumeration. . ..

Figure 7 shows a frequency distribution indicating how both a GA and a hill climber

perform over 10,000 functions. The width of each bin is 50. The expected distribution

of eniimeration (n =.1) is included for comparison, adjusted for bin width and the

number of functions run. Recall that each function was run 100 times to convergence.

74

Performance Distributions

800

700

600

500

400

300

GA

hill climbing
enumeration

/ V
/ ,

n \

/ ■' \' \
\ \

1 J

J

\

i

500 1000 .1500; 2000 2500
average number of evais to convergance

3000

Figure 7: Black box histograms: This figure shows how both a GA and hill climb
ing perform over 10,000 randomly selected functions. The expected distribution for
enumeration is included for comparison.,

and the average number of evaluations were noted. For the GA, the average of these

averages was 1447 evaluations, and for the hill climber, the average was 1185. Given

n = 1, enumeration's average rtm time would be 512.5, less than half of either of its

competitors. These graphs ca,n be scaled to show the expected percentage of functions

that converge at each evaluation number. '

The same experiment was performed at mutation rates of 0.2, 0.4, and 0.5, with the

resulting black box histograms shown in figure 8. Once again it is clear that a low

mutation rate leads to poor GA perfornaance for black box search. As the mutation

rate increases, the GA approaches the performance of random search with replacement,

and at 0.5," the GA becomes random search with replacement since the elements in

one generation are not expected to bear any resemblance to the elements in the next

generation.

At high mutation, increasing the number of rrnis per fimction will have the effect of

75

Black Box Profiles for.a GA at Various Mutation Rates

g 2000
o

'■§
c

S
■o 1500

9

1000

500 -

0.1

0.2

0.4

,.'V — random

j :

1" 1 —1

500 1000 1500

evaluation number

2000 2500

Figure 8; Black box histograms for a GA at various mutation rates, and the black box
histogram spike of random search with replacement. As the mutation increases, the
OA's black box histogram more closely resembles the profile of random search with
replacement. The profiles for 0.4 and 0.5 are almost indistinguishable.

narrowing and heightening the curve, making it even more like the expected black box
histogram spike for random search with replacement. The variation at high mutation
in figme 8 is attributable to the modest sample size when computing the average for
each function.

Just as a GA becomes more like random search with replacement as the mutation rate

increases, hill climbing can become more like random search without replacement by
changing a parameter, namely the neighborhood size. The hill climbing experiment
above shows performance with neighborhood size s = 10. When s = iV, hill climbing
is random search without replacement, and thus hill climbing performance is expected
to improve on a black box function as neighborhood size increases. Note that the per
formance limit with hill climbing (random search without replacement) is significantly
better than the performance limit with GAs (random search with replacement).

76

In these experiments, only a small fraction of function were solved faster than the

expected search time of enumeration. The NFL theorem makes clear that in black box

situations, enumeration can't be beat, but these experiments show that enumeration

is vastly superior to genetic algorithms and hill clinibing for black box search. By the

above experiments and because of the pathological way that a GA can retest points,

the following conjecture is made, which runs in stark contrast to hype in the field:

Black Box Futility Conjecture: In a black box search scenario, the following fom:

search algorithms wiU be expected to exhibit the following performance ranking, from

best to worst: random search without replacement, random search with replacement,

hill climbing, genetic algorithms.

In [4], it is mentioned that Rik Belew "once jokingly remarked to [David Goldberg]

that it requires an evil inind to dream up deceptive, blocked, or otherwise 'GA-yucky'

functions." On the contrary, most functions are "GA-yucky" and finding one is as easy

as rolling the dice.

77

4 Representation and Black Box Search

Section 3 identified X and 3^ with sets of integers. Consider X = {¤, 0, ¤} and

y = {A, □, O}- These may be identified with sets {0,1,2,3} and {0,1,2} respectively
in the following manner:

*=^0 0=^1 ^=^2 *=J>3

,A=5^0 n=>l O=>2

In this representation, the function

./ = {(*,□), «>,A),(c;?, □),(*, O)}

is represented by the function f = \x — 1|, i.e. {(0,1), (1,0), (2,1), (3,2)}. If, however,
set was identified as above but set X was identified with {0,1,2,3} in some other

way, for instance

<>=^>2 4=>0

Then / is represented by f" = \x — 2\, i.e. {(3,1), (2,0), (1,1), (0,2)}.

It is thus clear that changing the representation as above dianges one function into

another. Section 2.6.1 defined a permutation of a function as follows: crf{x) = / o

cr~^(x). The permutation a that allows af = f" is {(0,3), (3,0), (1,2), (2,1)}. This
can be verified by computing erf' for all elements in the domain and comparing the

results with /" as follows:

af'iO) = f'a-\0) = /'(3) = 2 = /"(O)

a/^{i),= /V-ni);4/'(2) = L=/«(i) ,

<r/'(2) = /V-n2) = /'(!) =0 = /"(2) c,: ,

a/'(3) = /'(T-H3)=/'(0) = l = /"(3) .

Representetions therefore can be identified with permutations. The application of a

permutation to a function will be called a change of representation (for'that funtion).

In this section, it will be assumed that the co-domain ̂ has a fixed representation, and

thus it is a change of representation of the domain that will be discussed. .

The following section will demonstrate that a change of representation can draimatically

affect the performance of a search algorithm. It wiU then be shown how changing

a representation impacts the ensemble of all fimctions by examining its eflfect on a

performance table.

4.1 Ch£mging a Representation

As was seen in section 3.3, a GA wiU generally perform miserably on a randomly

selected function. 'Vose and Liepins[13] have shown how a function can be made easier

for a .GA by changing its representation. This is illustrated in the following example.

Consider a function / which maps binary strings of length n to a real number, i.e.

/ : {0,1}" —9i. Create an ordering on the domain with the following two rules:

binary strings with fewer I's will come before strings having more I's; if two strings

have the same number of ones, leftmost bits will be deemed more significant. Create a

list X containing all strings from the domain of / and sort it based oh this ordering of

the domain, resulting in list X'. Create another list Y where esich element Yi = f{Xi)

(note that Y" is a list, not a set, and may contain duplicates). Sort Y by numeric

79

Table 17: Three bit linear sort

string fitness

OOQ lowest fitness

001 '

010

100

Oil

101

110

111 highest fitness

value resulting in list Y'. Create a new function /' = : 0 < i < N — 1}.

The function /' is thus a change of representation of the original function / where low

ordered domain elements are paired with low valued range elements, and high ordered

domain elements are paired with high valued range elements. The function /' will be

called a linear sort of function /, with an example given in table 17.

Such a change of representation effects a unimodal landscape in Hamming space. Fig

ure 9 shows a performance profile for a GA working on a randomly selected function

and a performance profile where the same function is given a linear sort ajid thus the

GA is working with a new representation. The change of representation dramatically

improves performance. Of course, sorting the search space is more difiicult than search

ing it and thus this is by no means practical, biit it shows that a difiicult problem can

be made easy with a change of representation.

4.2 Change of Representation in a Population Table

Population tables deal directly and completely with all functions and all deterministic

non-repeating search algorithms of a finite domain and co-domain, and thus incorporate

80

Change of Representation -- Performance Impact

0.6

—random

—sorted random
0.4

0.2

500 1000 1500 2000

number of evaluations

2500 3000

Figure 9: Performance profiles for a GA on a randomly selected,fitness function, and
on the same function after a linear sort was performed as a change of representation.

all representations.

Consider the situation with X = {x,y,z} and y = {0,1}. There are eight possible

functions and six possible representations of the search space. An ordering of {0,1,2}

will show how the original input space is mapped to a new representation. Table 18

shows how each representation alters the effect of the function in the original domain.

For example, in.row 021 and coliunn./i, /i(0) = 0, /i(l) — 0, and /i(2) = 1. The effect

is that /i with the, change of representation looks like ./2 without the change.

Each row is a permutation of the others, and thus a change of representation shuffles

functions when seen as the effect it has on the original problem space. From an abstract

perspective this corresponds tp the fact that the map f erf is one-to-one and onto

(since / i-)- (T~^ f is the inverse). Because of this, a change of representation can be

seen as rearranging the columns (functions) of a population tablie or a performance

81

Table 18: A table listing i^l functions and reRresentations when X = {x,y, z) and =,
{0,1}. The.row heading indicates how the domain is remapped for each representation,
. and the row shows the effect of the remapping on the original function space. Each
element of row a:yz shows/(a:)/(y)/(2;) as , a string...

' j V /o h h • /3. fb .76 fi

xyz 000 001 , 010: oil.,100 101 110 . Ill'

012 000 001 010 oil . 100 101 110 111

021 000 010 001 oil 100 110 101 111

• 102 000 001 100 101 010 oil 110 111

120 000 010 100 ,110; 001 oil 101 111

201 000 100 001 101 010 lid oil 111

210 000 100 010 110: 001 101 oil 111

table. Seen this way, it is cleax that , a. change of representation can result in very

different performance for a given algorithm working on a given function,, but that the

overall measure of performance will be the same for any representation. This is one

way to conclude that all representations provide equal performance over all functipns,

a foundation of the NFL proof of Radcliffe and Surry [7].

Note that there are more rows in the population table than there are representations,

whidi makes it clear that search algorithm A caiinot always be transformed intp search

algorithm B through a change of representation. On the other hand, for any search

algorithm knd any change of representation, there exists another search algorithm in

the original representation with exactly the same performance for every function. Ex

pressed formally, VA Vcr BB V/ V(B,f) = V{A,af). This may be viewed as saying

that a change of representation amounts to a change of search algorithm. In fact the

search algoritlun B that exists is none other than aA.

82

4.3 Problem Difficulty and Representation

The previous sections made clear that an optimization problem can have varying de

grees of difficulty depending on the representation used. However, there is often a

desire to think of an optimization problem as being somehow independent of repre

sentation. This section explores how a function's difficulty can be thought of as being

independent of representation by averaging over representations. The surprising re

sult is that a function's difficulty is the same whether averaged over representations or

search algorithms.

Function difficulty across all representations for a fixed search algorithm d. can be based

on the performance vectors generated from A and G where G is a listing of functions

that result from applying all representations to function / (this listing may contain

duplicates). Because G is closed under permutation, the value of a complete measmre

over G is independent of the seardi algorithm (by theorem 16). In order to determine a

function's difficulty across all search algorithms, one can refer to that function's colmnn

in a performance table. For example, the collection of performance vector measures

from a column could be combined in a normalized sum.

The following theorem shows that average difficulty of a function over all representa

tions coincides with average difficulty over all search algorithms. Let |d.| indicate the

number of rows in a performance table, and let |o"| indicate the number of representa-.

tions (permutations), i.e. N\.

Theorem 18: ,

where the left hand side of the equation is over all permutations a and the right hand

side is over all search algorithms A.

83

Proof: In the first step of the following derivation, a is applied to A without aflfecting

the sum since a A ranges over all search algorithms as A does. Because the sum is

independent of o", one may sum over all a and divide by the number of permutations

as is done in line two. In line three, the summation over o is moved inside, and

corollary 3 is applied, moving the a from the A to the /. Because Yla^{V{A,(Tf)) is

search algorithm independent (theorem 16), it may be factored out of the summation

over search algorithms as is done in line four.

= i^M(VM,/)) (1)

a ̂ ^ A

1 1

= rrEEto./)) (3)

jii53M(F(.4,<7/)) (6)
w
' ' <T

□

In theorem 18, the measure of overall function difiiculty is the same whether one av

erages over search algorithms or representations. Recall that in section 2.6, a version

of the NFL theorem (theorem 14) was given that required equally weighted functions.
The results from this section indicate that this restriction can be lifted provided that

an overall difficulty measure (over all representations) is used for each function rather

than a performance vector measure: Let D{f) indicate an overall difficulty measure
for function / as described in theorem 18, and let W{f) indicate the weight given to

function /. Because both D{f) and W{f) are independent of search algorithm, the

combined measure ^fW{f)D{f) must be as well.

.84

5 Compressibility of Functions and Black Box Search

As discussed in section 2.6, the NFL theorem is primarily concerned with a uniform

distribution of functions; search algorithms can perform better than enumeration, but

only on a small subset of functions. Holland [5] has argued that compressible functions

could be such a fruitful subset for local search algoritluns such as hill climbing and

GAs.^^ He argues that the NFL theorem is not particularly relevant in practice for

just this reason, i.e. since most functions in practice are compressible, the NFL theorem

will not impact such work. . This section will, test the xmderlying premise, namely that

non-compressible functions are more difficult for a search algorithm than compressible

functions.

There are many example of functions that are easy to describe, but difficult for a OA

or a hill climber. For example, a needle in a haystack function is one where there is a

single global maximum with relatively high fitness, with all other points in the search

space having relatively low fitness. It is clear that no search algorithm can outperform

enumeration on such a function class, and thus the NFL theorem can be applicable in

situations involving-highly compressible ftmctiphs, Furthermore, section 3.3 indicated

how enumeration performs better than a OA or a hill climber for the majority of

randomly selected functions. Consequently, enumeration will be expected to perform

better than a OA or a hill climber on any size set of randomly selected functions. The

original NFL statement involves performance over all functions, but even on a single

randomly selected function, enumeration is expected to have better performance than

a OA or a hill climber.

In a test of how function compressibility impacts search algorithm performance, one

might wish to compare OA performance on a compressible set of functions against GA

, ̂"^Compressible functions axe known to be a small fraction of all functions [1].

85

performance on an incompressible set of functions. While compressible functions can

be generated easily enough, obtaining a set of incompressible functions is problematic

since determining compressibility is in general uncomputable [6]. Instead of comparing

against a set of incompressible functions, this section will compare against a set of

functions whose members have a high probability of being incompressible.

One conceivable source of compressible functions takes functions from common testing

and benchmark functions for search algorithms. However, this is a problematic source

since so many of these functions are poor measures of performance (Whitley et. al.

[16]), commonly exhibiting low modality (Whitley et. al. [17]) and low epistasis (Sa

lomon [10]). Furthermore, in order to have the greatest relevance to black box search,

both compressible and incompressible function classes^should be as large and as diverse

as possible.

For the compressible set of functions, a pseudo-random number generator will be used.

Since it can be implemented in a relatively small number of bits, it will generate highly

compressible functions when the functions are sufficiently sized. Furthermore, since the

pseudo-random number generator will attempt to select numbers in a uniform fashion,

it will draw from a large and diverse class of functions. For the incompressible function

set, a source of trffiy random numbers will be used to build the functions. This provides

a function set that is maximal in that it includes all possible functions, and diverse

in that it will be expected to sample all functions uniformly. Because most functions

are incompressible, this set is expected to contain mostly incompressible functions.

Pseudo-random numbers were generated with the Random.nextIntCint n) function

of Java 1.2.^® The pseudo-random number generator in Java is extremely compact.
'®http://java.sun.com/products/jdk/1.2/docs/api/java/util/R£tndoiii.html. Java uses a linear con-

gruential pseudo-random number generator as described by Donald E. Knuth in The Art of Computer
Programming, Volume 2: Seminumerical Algorithms, section 3.2.1.

86

True random functions were generated from streams of random bits produced by

www.random.org, an organization which uses atmospheric data to generate a ran

dom bit stream. Their numbers have been tested in various ways to ensure a uniform

distribution at various resolutions. The details of their methodology can be found on

their web site.

A GA with 10 bit strings was run on 100 different pseudo-random functions with

16 bit co-domain. Such a function can be expressed as a table in 2 kilobytes (1024

entries at 2 bytes each), and there are roughly 10'^'®®^ functions having this domain

and co-domain. The pseudo-random number generator is e^ily expressible in less than

200 bytes, and is therefore generating compressible functions. For each function, a

performance profile was generated based on 1000 runs to convergence. The average of

the average run lengths was 1438 evaluations, with a standard deviation of 276. When

the same experiment was performed with 100 true random functions, the results were

almost identical: the average of the average rim lengths was 1405, with a standard

deviation of 274. With both true random and pseudo-random, the performance was

worse than the expected performance of random search with replacement, and more

than twice, as bad as the expected performance of enumeration (512.5 evaluations for

functions with a single global optimum).

These results can be compared with the results from section 3.3 where 10,000 randomly

selected functions (also having 10 bit domain and 16 bit co-domain) were conyerged

with a GA and a hill climber! In that exiperiment, enumeration performed better than

the GA and the hill climber on the vast majority of those 10,000 functions. Because

that experiment uised a pseiido-random nmnber generator, the resulting functions were

all compressible, and yet enumeration was still the clear winner. Furthermore, this

sa,mpling of 10,000 was only a tiny fraction of all functions, amounting to a one in 10'^'®^®

sampling. By contrast, there is estimated to be about 10^® atoms in the universe, and

■87

thus even with extremely small samplings of functions (less than an atom per universe),

the NFL result can be evident. The above experiment with true random numbers had

a sample size of only 100, and yet the residts were quantitatively the same. Indeed, in

this dissertation, roughly a million pseudo-randomly selected functions were converged,

and even though they were in actuality highly compressible, almost all of them resulted

in miserable performance for both GA and hill climber.

Because no significant performance difference was found in the previous experiment, an

other experiment was performed where the function domains were considerably larger.

In this case, the GA searched over 15 bit strings, seeking the optimum 16 bit number.

There are roughly 10^®^'.®^® functions having this domain and co-donaain, and such a

function can be described as a table in 64 kilobytes. The pseudo-random number gen

erator will therefore be producing functions at a much higher rate of compression.^®

The GA optimized 100 pseudo-randona functions, and 100 true random functions, with

each function being run to convergence 100 times. For each function, the average time

to convergence was noted, and from those averages, an average over the 100 functions

was found. For pseudo-random functions, the average of the averages was 32,190 with

a standard deviation of 9121, while for true random functions, the value was 32,040

with a standard deviation of 9361. Once again, the pseudo-random number generator

creates functions that are just as difficult for a GA as a true random number generator,

even though the functions from the pseudo-random number generator are highly com

pressible. As in the previous experiment, the GA's performance is far worse th^ the

expected performance of enumeration (16,384 evaluations for functions with a single

global optimum).

Because the GA's performance in both of these experiments was so much worse than
^®The pseudo-random number generator need not be smy larger than in the previous experiment -

it simply generates more numbers.
^'^The range of averages was from 11,427 to 47,923 for pseudo-random functions and from 8415 to

45,894 for true random functions.

88

enumeration, it is clear that the NFL curse is not being circumvented, even when

using small sets of highly compressible randomly selected functions. As discussed in

section 2.6.3, English claimed [2] that NFL consequences may occur whenever the

function set to be optimized is "large and diffuse," but the results from this section

underscore the fact that the set of functions does not need to be large.

- 89

6 Conclusions

A framework was introduced for the study of deterministic non-repeating search algo

rithms. Population tables were developed, to capture the dynamics of all such search

algorithms on all functions of a finite domain and co-domain. Many properties of this

framework were proven, and the number of deterministic non-repeating search algo

rithms was established.

All objects associated with the framework were put into canonical form, allowing for

tables to be produced and experiments to be performed over all search algorithms of a

given size. The canonical form of each object was designed to be maximally compact.

Methods were provided for translating an object to its canonical number and back

again.

The framework demonstrated its usefulness with a much-needed straightforward proof

of the NFL theorem. The framework also proved useful in describing the works of

others on the subject, and in extending the NFL result to non-complete function sets

and to a meaningful definition of stochastic search. It facilitates an imderstanding of

how a change of representation affects search.

Section 2.7 used performance tables to explore in detail the minimax relation between

search algorithms with the imique benefit of being able to compare all such search

algorithms for a. given domain and co-domain. This relation was studied for two per

formance measures and for many values of N and M. The notion of a minimax equiv

alence class was introduced, and at each domain and co-domain size studied, all search

algorithms were found to be in the same minimax equivalence class.

The expected performance of random search (with and without replacement) and enu-

90

meration were explored. Commonly stated claims regarding the robustness of hill

climbing and genetic algorithms were tested with randomly selected functions, and

both search algorithms were shown to perform poorly when compared against random

search without replacement. The genetic algorithm even performed worse than ran

dom search with replacement. The expected performance of random search without

replacement serves as an important baseline since no search algorithm is expected to

beat it in a black box scenario.

There has been increased criticism of the test suite functions used to determine search

algorithm performance. The use of randomly selected functions can provide a good

alternative, providing an unbiased sampling of function space, and thereby allowing

results to be generalized to the set of all functions. Results from randomly selected

functions of a certain property can generahze to all functions having the given prop

erty. For these reasons, randomly selected functions were used at several points in this

dissertation.

The analytical methods described in section 3 were put to iise to determine the impact

of compressibility on search algorithm performance. A set of compressible functions

was pitted against another set of functions where most elements were expected to be

incompressible. A simple genetic algorithm ran each function in both sets to conver

gence 1000 times, and the overall performance was judged to be the same for both

sets, and thus compressibility was not a factor in performance. In accordance with the

results from section 3.3, enumeration is shown to outperform a GA even with small

sets of randomly selected functions. In short, neither compressibility nor small set size

can be expected to save randomly selected functions from the NFL curse.

91

6.1 Further Research

The framework introduced in section 2 can serve as a foundation for further theoreti

cal work, allowing more properties of population tables and performance tables to be

discovered. Because search algorithms are related by row permutations in a population

table, minimax relations could possibly be formalized using group theory, which may

also be useful in exploring relations other than minimax. Section 2.8 discussed several

possible applications of the framework. The , field of algorithmic information theory

(also known as the study of Kolmogorov complexity) should be able to make contri

butions to the study of black box search, since it concerns itself with incompressible

objects.

The compressibility results could be extended to include randomly selected determin

istic non-repeating search algorithms. Such a search algorithm could be generated by

randomly selecting a permutation for each new function encountered. It is speculated

that the results would mirror the results of section 5.

92

References

93

References

[1] Chaitin, G. J., On the Number of N-bit Strings with Maximum Complexity, Applied

Mathematics and Computation, 59, 1993, pp. 97-100.

[2] English, Thomas M., Information is Conserved in Optimization, Computer Science

Department, Texas Tech University, 1997.

[3] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learn

ing-, Addison-Wesley: Reading, MA, 1989.

[4] Goldberg, D.E., Deb, K., Horn, J., Massive Multimodality, Deception, and Genetic

Algorithms. Illinois Genetic Algorithms Laboratory Tech Report 92005, 1992.

[5] Holland, John, from a workshop presentation on evolutionary algorithms at The

Institute for Mathematics and its Applications, Minneapolis, Minnesota, October,

1996.

[6] M. Li and P.M.B. Vitanyi, Algorithmic Complexity, in International Encyclopedia of

the Social and Behavioral Sciences, N.J. Smelser and P.B. Baltes, Eds., Pergamon,

2001.

[7] Radcliffe, Surry, Fundamental Limitations on Search Algorithms: Evolutionary

Computing in Perspective, in Jan van Leeuwen, editor. Lecture Notes in Computer

Science, volume 1000. Springer-Verlag, 1995.

[8] Rana, S., Whitley, D., Search, Binary Representations and Counting Optima, Col

orado State University Technical Report, 1997.

[9] Rumelhart, D.E., J.L. McClelland, Parallel Distributed Processing, Explorations in

the Microstructure of Cognition, Volume 1: Foundations, M.I.T. Press, Cambridge

Mass., 1986.

94

[10] Salomon, R., S'ome Comments on Evolutionary Algorithm Theory, va. Evolutionary

Computation, 4(4):405-4i5, 1996, MIT !Press, Cambridge, MA. ,

[11] Spears, W., The Role of Mutation and Recombination in Evolutionary Algorithms.

Dissertation, George Mason University, .Computer Science Department, Summer

; 1998. n n ' ; ,

[12] Vose, M., The Simple Genetic Algorithm.: Foundatiorts and Theory, MIT Press,

,,1999. . n - n

[13] Vose, M., Liepins, G., Schema. Disruption, m Proceedings of the Fourth Interna

tional Conference on Genetic Algonthms, pp. 237-243. Morgan Kaufmann, 1991.

[14] Whitley, D. A F^ee Lunch Proof for Gray versus Binary Encodings, in GECCO-

99: Proceedings of the Genetic and Evolutionary Computation Conference. Movgasi

Kaufmann, 1999. n .

[15] Whitley, D. A Genetic Algorithm Tutorial^ in Statistics and Computing Volume 4,

pp. 65-85, 1994.

[16] Whitley, D., Mathias, K., Rana, S., Dziibera, J., Building Better Test Functions, In

International Conference on Genetic Algorithms, L. Eshelman, ed., Morgan Kauf

mann, 1995. .

[17] Whitley, D., Rana, S., Heckendorn, B..:, Representation Issues in Neighborhood

Search and Evolutionary Algorithms; In Quagliarella, D. et. al. editors. Genetic

Algorithms and Evolution Strategies in Engineering and Computer Science, pp: 39-

57, John Wiley k, Sons Ltd, 1998.

[18] Wolpert, D,, Macready, W., No Free Lunch Theorems for Search. Santa Fe Insti

tute Technical Report SFI-TR-9502T0i0; 1995.

95

[19] Wolpert, D., Macready, W., No Free Lunch Theorems for Optimization, in IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, April 1997.

96

Appendix

97

A NFL Result with Unequally Weighted Functions

One version of the NFL theorem (theorem 14) applies when the overall measure uses

equally weighted performance vector measures. It is easy to see how placing greater

importance on a set of functions could lead to results contrary to the conclusion of the

NFL theorem since search algorithms that did best on the favored functions could have

a large advantage over others. However, imder certain circumstances, the NFL result

occurs even when overall measures are not equally weighted, as the following example

illustrates: . n

When N = M — 2, there are only two possible non-repeating search algorithms: either,

xo is chosen first (search algorithm A) or xy is chosen first (search algorithm B). There

are four possible functions, and without loss of generality we will assume that yo < yi.

Table 19 shows how each function maps'the two points xq and si, and, also shows the

number of evaluations required to find the optimum value for each search algorithm.

That niunbisr of evaluations will be used as the performance vector measure.

Table 19: An example of when the NFL result occurs when the functions are not
weighted equally. •

Algorithm A Algorithm B

fo

o

o
5ft

1 1

fl yo yi 2 1

/2 yi yo 1 2

fa yi yi- -1 1

The overall measure will be weighted, and the desire is to know where in weight space

the NFL result occurs, i.e. where the overall measures for the two search algorithms

are equal. The following two equations follow from table 19:

98

overall measure for Algorithm A = ioq + 2u)i +102 + tfa

overall measure for Algorithm B = ioq + loi + 2t«2 + ̂03

Setting these two equations equal shows that the NFL result occurs when wi = W2,

independent of the values of wq and 103, showing that all the weights need not be equal

for the NFL result to hold.

99

Vita

The author is currently working on a project to disentangle corporate influence from the

Internet experience through a standardization of abstract objects and by bringing visual

programming to the masses. In his spare, time, he works on a screenplay. He received

a B.A. in Philosophy and Religion at the University of Tennessee in Chattanooga.

	Black box search : framework and methods
	Recommended Citation

	Black box search : framework and methods

