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Abstract

A theoretical framework is constructed to a.né.lyze the behavior of all determin-
istic non-repeating search algorithms as they apply to all possible functions of ;';\,
given finite domain and range. A population tqble data structure is introduced for
this purpose, and many properties of the framework are discovered, including the .
number of deterministic non-repeating search algorithms. Canonical forms are pre-
sented for all elements of the framework, as well as methods for converting between
the objects and their canonical numbers and back again. The theorems regarding
population tables allow for a sjmple, alternate form of the No Free Lunch (NFL)
theorem, an important theorem regarding search algorithm performance over all
functions. Previously, this theorem has only been proven in overly-complicated,
confusing fashion. Other statements of the NFL theorem are shown in the light
of this framework and the theorem is extended to non-complete sets of functions
and to a non-trivial definition of stochastic search. The framework allows for an
- extensive study of minimax distinctions between search algorithms. A change of
representation is easily expressed in the framework with obvioﬁs performance im-
plications.

The expected performance of random search with replacement, random search
without replacement, and enumeration will be studied in some detail. Claims in
the field regarding search algprithm robustness will bé tested empirically.

Experiments were performed to determine how the compressibility of a function
impacts its performa.nce; with an emphasis on randomly selected{ functions.‘ A
 genetic algorithm was run on two sets of functions: one set contained functions
that were known to be compressible, and the other contained functions that had a
high probability of beiné incompressible. Performance was found to be the same

for both sets. -
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1 Introduction
1.1 ‘Motivation

~ Recently, a.n importéint theorem was _iﬁtroduced that outlines significant limitations to
any search algorithm’s: performance. The importance of this so cajled “No Free Lunch”
theorem is widely acknowledged, but its pfa,ctica.l relevance has been frequently de-
bated, and continues to be a source of contention. The theorem addresses search algo-
rithm performance over all furictions of a finite domain and range, making it relevant

to the study of black box search, i.e. search over a completely arbitrary function. -

Before this theorem was intfoduced, black box-search had received only limited at-
tention, and there is little accumulated theory on the subject. The lack of a basic
theoretical framev‘vork for black box search contributes to the contention and gdnfusion
in the field, and explains in part why there has not been a clear and concise formulation -

of the theorem.

1.2 Search Algorithms

Consider functions from a finite domain X to a finite co-domain Y. A search algorithm
will be defined to be an algorithm that attempts to find a domain value that has a
sufficiently high co-domain value. Simple examples include random search (with or

without replacement) and enumeration.

Define a relation on the domain so that any pbint in the domain is related to a certain .
number of other points in the domain. Any two points related in this way will be called

neighbors, and the set of neighbors for any point will be called its neighborhood. Define



a local search algorithm to be a search algorithm that employs a neighbor relation. A

local search aléorithm will typically proceed by selecting a set of points, exa.mining

the pomts in their nelghborhoods, and based on their evaluations, determme a. new

set of pomts to continue the sea.rch An example of this would be hill chmbmg, which
' proceeds by takmg a pomt at random, evaluatmg all its neighbors, ‘and selectmg the
point with the highest evaluatlon to contlnue the search; if a point has no neighbors of

greater value, a new point is randomly-selected from the domain.

Another example of local search is the genetlc algorithm or. GA for short Genet1c

algonthms are an attempt to mimic the success of brologlca.l evolutlon, where a pop-

ulation of organisms evolves to become more fit with respect to 1ts env1ronment In

a genetic a.lgorlthm each element in X is represented as a strmg, and its ﬁtness is

its assoclated value from Y. A random set of values from X is chosen as the 1mt1a.l

population, and the elements with highest fitness are more likely to be used to create -

‘the next generation. This creation process typically involves crossover and mutation:
Crossover is 't‘h‘ezprocess of combining two strings A and B into a new string C of the
same size by picking an index in C at random and filling C' with points from A before
the crossover point and points from B at or after the crossover point.! Mutation is
‘ s1mp1y a matter of randomly altermg each element i in the string with (typlcally very
small) probability. With the new population in place, the process contmues, often

for thousands or milhons of generations. This process can be seen as a type of local

search since the pomts in the new generation are related to the points in the prevlous :

generation. Introductlons to GAs mclude Vose [12] and Whitley [15].

Hill chmbmg and genetlc algorithms are two w1de1y used prObablllSth search algo-
rithms, and many others can be seen as varlatlons of these two (e g. simulated anneal-

_ing [9] can be seen as a-variation of hill climbing where downhill moves are allowed

1This is called single point crossover. Multi-point crossover works similarly by alterna.tlng the
.Acopymg of pomts from A and B a.t each crossover point.




: - with dumn1sh.1ng probab111ty) One of the appeals of these two search algonthms is

that they do not requxre SOph1st1cated programmmg techmques As long as a qutable
representatlon and a smtable fitness ﬁmctlon are used a genet1c algonthm or'a hxll J

climber can.take it from there Because of thxs, these search algonthms may seem to

“be a kind of silver bullet, ﬁndmg optima with relatlvely httle toil on the part of the-' . «

pract1t1oner Unfortunately, it will be shown that these search algonthms perform well.,' e

on only a small fraction of all funct1ons.

Despite the countless varlants and hybr1ds of hxll cllmbmg and GAs, the versions used oy

in this dissertation are rather bas1c In practlce thess basm vers1ons are often pulled o

off the shelf and used as a startmg pomt for an opt1m1zat10n attempt and they have a
reputat1on as being rather all-purpose whxle many of the var1ants are consrdered to be
!

more spec1al1zed Even with a basic GA there are a multltude of parameters that can

be ad_]usted, allowmg a certain amount ‘IOf “tumng.

1.3 Black Box Search .

3

Ideally, information about an opt1m1zat1on problem can be encoded 1nto the search

~algor1thm For example, if the goal is to max1m1ze alrﬂow over a w1dget one could ‘

employ the equatrons of ﬂuld dynam1cs to d1rect the search towards prormsmg areas of

. the search space.- Another example is when a property of the functlon is known such

as its’ convexity, smoothness, or modal1ty Black box search is commonly cons1deredl
to be an attempt to optlmlze a function when there i 1s no such prior knowledge about
it. Another definition of black box’ search is search over an arb1trary funct1on, where
these functions are uniformly distributed. This i is different from searchmg an “unknown

function,” since an unknown function class could bé (for example) a limited and easy

' ;class of functions. Unfortunately,' the two notions are often confused, as in [18]. This



dissertation will use the second deﬁnition;

Black box search is like a:“black box” in'the sense that the only inforrnation the function
reveals is the answer to the question, “vthat is the value of point z?” "AI‘hus aside from
its domam, the only thing that can be known about the function with certalnty is
the values of the points that have been evaluated In order to perform black box
' optimization, a search algorlthm must be able to proceed with only this eva.luatlon
history to guide it. As discussed in the previous sectlon, both hill chmbmg and GAs

can take on this task, as can enumeration, random search, and inany of their variations.

.B.lack box search theory received a tremendous ﬂurry of aotivity with the introduction
‘of the NFL theorem (discussed in the following sectlon) In a black box scenario, the
functron to be solved could be any pos31ble function, and thus there is a link to a search
algonthrn’s performance across all functions and thus to the NFL theorem. This obser-
vation also allows a connection to aigorithmic information theory (also known as the
study of Kolmogorov complexlty) w1th its attention towards randomness, compress1b11- '

1ty, and “typical” input [6].

" Black box 'optimization is an important subject-of study because 1t presents a limiting
“case interms of prior knowledge. It is also of interest because of its broad applioability:
~such a search algorithm can search any | kfunctiony A large nurnher'of search aléorithms
- ¢can be thought of in terms of black box opt1mlzat1on, and the fact that they can be
_run “oﬂ' the shelf,” often w1th httle spec1allzatlon makes them very appealmg The
popularlty of these search a.lgorlthms is bolstered by, their mnumerable success stories
across multlple fields. Typlcally, these apphcatlons are not strictly black box since
,"domam knowledge ¢an’be coded mto the representatmn, ﬁtness function, and search
algonthm para.meters, but from' that point on, "the pract1t1oner can only watch, wait,

and tweak the para.meters if things do not go as planned. -

Coa
s




The next section will note that for a.ny search algorithm only a small fraction of all
functions can be quickly opt1m1zed Furthermore, 1t implies that the kmd of general-
1zat1on that these search algor1thms asprre to must necessanly come at a performance
, pr1ce n partrcular, the attempts to d1scover or accumulate regulantles in the eval-
‘uat1on hJstory that could be exploited. to ‘improve black box search are in vein. And
yet, full of hope people contmue to apply these search algonthms to the1r opt1rmzat1on

problems

A frameworl{ willb be develbped in this dissertation to better understand'how search.,
algonthms behave over all. functlons havmg finite domam and co-domam ‘Basic data
'structures w1ll be mtroduced and their propertles w111 be explored The framework will
demonstrate 1ts usefulness by allowing a stralghtforward proof of the No Free Lunch
theorem and by fac111tat1ng an extens1ve study of the minimax relatlon which is a means

-of comparmg search algor1thm performance over all functions.

" 1.4 ’I‘.‘he'No‘ Free Lunch ;I:‘heorem'

,The No Free Lunch (NFL) theorem is an attempt to address how search algonthms
perform over all possible functions of a given ﬁmte domain and co-doma1n Because the.
theorem is prunanly concerned w1th a uniform d1str1but1on of funct1ons, 1t addresses

issues of black box search. .

Roughly speaking, the NFL theorem states that when averaged over all funct1ons, any .
two search algonthms will perform equally well regardless of the performance measure ‘
This 1mp11es for- example, that when averaged over all functlons a hill cl1mber wrll do
no better than a hill descender on a maxnmzatron problem, a.nd that enumeratlon will
perform at least’ as well as any other search algor1thm Needless to say, enumeration

is very dlsappomtmg performance-w1se, but in a black box scenano, this is as good as




one can expect. The irnplication is that one cannot simplyAchoos,e a search algorithm
off the shelf and expect it to do well on an unknown problem;' instead one has to ensure
that the s.earch algorithrn is well suited to the task. In other words, there’s no “free
lunch.” Another way of looking at it is that there cannot exist a generalized search

algorithm that will perform well on a sufficiently broad class of functions.

The NFL theorem was proven Aby Wolpert and Macready [18, 19] for search algorithms

which sample all points in a finite search space. The original proof was for deterministic

algorithms that do not revisit points already sainpled, but their paper goes on to claim '

that the theorem also alpplies without these two conditions. Their proof was based

largely on probability theory.

Radcliffe and Surry [7] proved the NFL Theorem in a very differént way using repre-
sentations and permutations, but they do not claim a proof for algorithms that revisit
points (and criticize Wolpert and Macready’s treatment on this subject), and their
" notion of stochastic search is rather weak.? While they claim to have oronided a rnore

accessible proof, their version has several leaps of faith and points of confusion..

Thomas English presents a proof of the NFL theorem. [2] that is based largely on.

information theory. One of the basic assu-mptions‘of search algorithm practice is that
the search algorithm “gains knowled%e” "of the search space as the search. prdgresses

However, English, states tha.t w1thout pr1or knowledge of the Jomt d1str1but10n of seen

and unseen’ points, the opt1m1zer cannot a.ssume anything about the unseen po1nts

Consequently, “an opt1m1zer does not gam 1nformat1on about the obJect1ve function

it optimizes, despite contrary cla.lms in sources rangmg from Goldberg 8 standard text

to a recent survey of self-a.daptwe algorithms.” The NFL theorem is thus shown to

overturn a basic operatmg assumpt1on of search algonthm pract1ce

2As wﬂl be discussed in section 2.4.




Section 2.6 will provide a much-needed straightforward proof of this important theo-

rem from withinithe context of the yframework developed.. Instead of,a-coxnplicated
statistical, representational, or information theoretical approach,. 1t -will be shown how
the theorem can be clearly understood almost upon inspection. The NFL statements .
of preyious authors are shown in the light of the current framework, and an NFL gen-
eralization is given for non-complete‘sets of functions. ‘A stochastic version of the NFL -

theorem is given for a non-trivial definition of stochastic search. -

1.5 Analytical Methods in Black Box Search

Stochastic search algorlthms such as h111 chmbers or genetrc a.lgorlthms can produce
dramat1cally d1ﬂ'erent results dependmg on the seed of their pseudo-ra.ndom number

generator. In order to arnve at an est1mate of expected performance for stochastic

-search, a large a.nd representatwe samphng is needed.- To arrive at an estunate of

a search algonthm’s expected performance on a funct1on, the search algonthm may

"be run on the ﬁmction many times, each time witha_diﬂ'erent seed. The results of - o

each run can then be assembled into a .measure of performance. It is assumed that .
the pseudo-ra.ndom number generator wrll not mtroduce undue b1as in th1s process.
Slm1larly, in order to estunate expected performance over an ensemble of funct1ons, :
one needs an unb1ased samphng of funct1ons from the set in quest1on Unfortunately,

unbiased" samplings are: seldom used

When discussing a search a.lgorrthm’s performance, undue focus has been g1ven to -

‘ funct1ons that are known to have low complexlty (by various measures) [16, 17] Even

though flmct1ons from popular test smtes are fallmg under mcreased,cr1t1c1sm [10], they .
continue to be wxdely used as benchmarks On another front countless experiments,

mcludmg very recent works [14 11] contmue to use function generators that result in




functions of great regularity.’ Claims are frequently made about a search‘ algorithm’s
performance based solely on' the performance over these relat1vely snnple or- hlghly

concocted functions..

Define a randomly:selected functz‘io"n”‘to be a.function that has been ‘ran'domly and»
uniforml')" selected from'the set"of"a.ll‘functions of a given domain and co-domain. ‘
Studymg randomly selected f1mct1ons speaks to search in the broadest possible sense’
since the set of f1mct1ons drawi on.is ma.x1ma.1 and unb1ased Since the NFL theorem
. implies that a search a.lgonthm can only expect good performance on a sma.ll set of -
funct1ons, randomly selected functions w1ll be expected to be difficult for any search '
- algonth.m and thus these funct1ons serve as a pract1ca.l and eas1ly access1ble sampling

of vd1ﬂicult funct1ons. o

Relat1vely little attention has’ been g1ven to randomly selected funct1ons but they will
be used repeatedly in this dissertation. Because the performance of a sea.rch a.lgonthm
apphed to a randomly selected ,funct1on may vary from minimal to max1ma.l, large
numbers of them are needed before a.ny reasonable genera.lizations can be made. In
this d1ssertat1on, it will not be uncommon for thousands of randomly selected functions
to be used in an experiment. The data can then be used to create various kmds of

distribution curves.

As ‘di,scussed above, commonly used function generators often produce highly regular
functions of low complexity. When these generators are then used to study search
algorith.rn performance, the results can be unclearv since it can be difficult to know
whether the performance effects can‘b,e generalized to larger sets of functions. In
contrast, results from randomly selected functions naturally generalize to the set of all
functions since the sampling is not biased. Their use even suggests ‘a method: Run

~ the search ‘algo’rithm on a large number of randomly selected functions, and for any




property of interest, decompose the results a.ccording to that property. One can discover

how that property is dlstributed across funct1ons in general, and how changing it affects
performance If one is only 1nterested in performance over a certaln range ofa property,
one can e1ther “filter” ra,ndomly selected functlons for th1s property, or a function °
~ génerator can make an effort to draw functions uniformly from all ‘functions having the
given property. . This method will be used to study the effects vof compressibility’on
search algorithm peri'orma,nce.

1.6 Compressibility of Functioris

A string is said to be compressible if there exists an encodirig that can express it in
fewer bits than the string itself requires. Since functions can be ‘expressed as a series
of co-domain values, tliey téo can be either compressible or incompressible. There is
speculation that compressible functioos may in general be easier for search algorithms, -
* and as with modality, this notion hes been used to try to diminish the importance of
the NFL theorem. It has been argued that the functions that occur in practice are
functions of high compressibility [5], as oppose‘(i to the set of all functions, which is
what the NFL theorem directly addresses. Thus NFL type results may not apply to
'compres_sible functions. This assertion is put to the test by comparing search algorithm
performance on a diverse set of compressible functions against search algorithm per-
formance Ion a diverse set of functions where each functiori has a high probability of
being incompressible. The performance on both sets is shown to be nearly identical,

once again upholding‘ the reach of the NFL theorem.
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2 Search Algorithm Framewprk

This section sets forth a framework for the analysis ef deterministic non-repeating‘
" search aigorithms. By design, this framework is able to addres{si issues regarding all
such algorithms over all functions of a given finite domain and co-demaih. The main
idea involves the creation of a table where columns label all posélibl‘e funcfiorrs, TOWS
label all poss1b1e deterministic non-repeating search algorithms, and each element of
the table outlines the search path of the given search algorithm on the g1ven function.
Many properties of this table will be proven. Ittw111 be. possible to perform analysm R
over all functions or over a class of functions, over all search algorithms or over a cless
of sea.reh algorithms. Tt e.llovsis analysis over a broad range of performance measures
and is thus quite vereatile. Cenenik:el versions for all assdciate& jobjectS‘a;re -brovided,’
allowing for exha.ustiw}e experiments. Secpion 2.6 outlines a spra.ightforwa.rd proof of the

NFL theorem and extends the result to a strong definition of stochastic search.

2.1 Definitions -

Let X and Y be ﬁmte sets, let f : X — y be a functlon a.nd deﬁne ¥y; -as f (z,,)
Throughout this dlsserta,tmn, let N = || and M= |y| Define a populatzon of size m_

(m > 0) to be a-sequence of pairs:

Pa = (50,40 (51,41)s - @ty Ym))

At times the size subscript of a population will be omitted to refer to populations of

arbitrary size. Let Py, be the set of all populations of size m, and let P be the set of




all populaﬁions. Adopt the following notation: .

Ry =

P2 = (Z0,T1,+rsTm—1) |
Py = (Yo,y15--->Ym-1)
Fuli] .= (i)
Pili] = =
PEll = u

A concatenation operator || will be used to extend the size of a population in the

following way:

Prll (2,9) = (Pul0l,Pulll,..., Pulm —1],(z,y))

The prefiz m; P of population P is defined as the first i elements of P, i.e. mP =

{(zo,0)s---» (Tic1,¥i-1)). -

Define a non-repeating population P to be a population with unique z components, i.e.
Pz[i] = P?[j] = i = j.3 A complete population P is defined to be a population that
covers the domain, i.e. for all z € X there eiisfs an ¢ sucil that P*[i] = z. Because a
population is a sequence of ordered pairs, .it corresponds to a function; if the population
is complete, then the corresponding function is f. Define a permutation of a population
to be any rearrangement of ité pairs; and thus a permutation ofa population is itself a

" population. “

Consider a selection operator g : P — &’ which when given a population as an argument

3This paper will follow the convention that free variables are universally quantified.
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returns a point in the search space. A deterministic search algorithm A corresponds to
a selection operator g, and takes as mgﬁnents a population Py, and a function f € y¥

and returns the ‘p‘opula.tioh
P = Pm." .(Q(fm)a f © g(Pm))-

For example, the first two steps of a deterministic search algorithm A would proceed

as follows:

ApB) = Byl (a(Ro), f o g(Py))

Af(P}) = P.| (g(P),fog(P1)) = P

P

Deterministic search algorithms therefore operate in discréte steps where each step |
generates a new pair that is concatenated into the previous population to form the
next population. Note that selectioﬂ op;erator g is used to generate the £ components
of the population, and that function f is used to evaluate the utility of those points;
this reflects the separation between “selection” (choosing a new point in the search
space) and “fitness e\;aluation” (evaluating the utility of that new point). Multiple
applications of a deterministic search algorithm will be abbreviated in the natural way,

i.e. P = AT(Py), and in particular, A}(Fp) =P

A non-repeating search algorithm is defined to be a search algorithm whose co-domain
contains only non-repeating populations. The largest population such a search algo-
rithm could generate is clearly a complete population which has size N, and this implies

that such a search algorithm has domain elements of size less than N.

After m steps, algofithm A and function f will generate population Py, from initial
population Py. In this dissertation, search algorithms always start from the empty

population Py, which may seem to be a limitation. However, algofithms with an
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arbitrai:y initial population size are aetua.lly special cases of algorithms: that start from
the empty population; as the following illustrates: Consider algonthm A and initial -
population P,. A corresponds to another algorithm Al that given initial population Py
will generate P, after m steps, and will behave exactly as A afterwards. Designating an
initial population is thus simulated by using a slightlp modiﬁed algorithm that starts at
Fy. In other words, algonthms that can set all pomts in their populatlons are powerful

enough to encompass algonthms that cannot

A‘comple‘te population fully summarizes thevb_‘ehavior of a non-repeating searcli algo-
rithm on a given function. Accordingly, non-repeating search algorithms A and B will
be considered identical if and only if they both generate the same complete populatlon
for all f € VX, ie. AN(PO) =B} (R) for all f € Y*.

Define a search path of length, m to bel a sequence of m values from X ,.and define a,
non-repeating search path to be a search path where no element may occur more than
once. The search path associated with population Py, is P7. Thé number lof nnique
non-repeatmg search paths of length m is H;—ol (N —1i) = (N)p, since there are N ways

to choose the first = value, N — 1 ways to choose the second value, and so on.

Define a performance vector of length m to be av sequence of m values i’rom Y. The
performance vector assoeiated with popnlation P, is PY. A peri'ormance vector and
a search path ean,t“hns be said to be derived Ifr‘om a population, and a i'unction and
a search algorithm together ean -be said to generate a performance vector or a search
path from Po.‘ A complete performance 'u.'ect.or is a performance vector derived from a
_complete population, and a complete non-repeating performance vector is derived from

a complete non-repeating population. There are |Y|™ unique performance vectors of

length m.

-Random search with repilacement'is défined to be a search algorithm that stochastically
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chooses points in the search space based on a probability distribution, allowing'for the
possibility that points in the search space may be revisited. Random search without
replacement is a search algorithm that Stochastically chooses points in the searchspace

with the restriction that points seen may. not be revisited.

2.2 Population Tables

The prev1ous section deﬁned the selection operator of a detenmmstlc search algorlthm :
: to be a mappmg from populatlons to points in the search space One could therefore _
: represent such a selectlon operator asa hstmg of all possible populatlons along w1th the
domain value that would be chosen for ea.ch of those populatlons However this.turns
-,.out to be quite mefﬁc1ent since a glven determmlstlc non-repeatmg sea.rch algorlthm
will only be exposed to .a tiny fraction of possible populatlons. "On the other” hand',
recall from the previous section that a ‘complete population fully captures the behavior'
~of a determ1mst1c non-repeatmg search algonthm on a. glven functlon Because of thlS |
‘a deterministic non-repeatmg search algorlthm could be fully descrlbed by a 11st of M N
.complete populatlons, one for each flmctlon Th.lS sectlon mtroduces the populatlon T
"ltable data structure, thch hsts the populatlons that are produced for each algorlthm
‘ »actmg on each functlon Tlus is a far more efﬁc1ent way of completely representmg a’

search algorlthm since it only records relevant behavlor

Deﬁne a populatzon table of size m to be a table where rows- are labeled by all deter- .

mmlstlc non-repeatmg search algorlthms and where columns are labeled by all M N

possible’ functlons, each element of- the table 'will c0nta.1n the populatlon generated by
the. correspondmg algorlthm (row) and function (column) after m steps Define a com-

' plete population table to be a populatlon table consisting of complete populatlons ie.

 “Likewise, in section 2.5, a canonical form for a sea.rch algorithm is given that includes only '
. populations that the search algorithm is exposed to. .. : -
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a population table of size N. A complete population table contains complete descrip-

tions of all deterministic non-repeeting seareh algorithms. Table 1 shows the complete
population table when &’ = {0,1 2} and Y = {0;1}. Population ((z,a),(y,b), (2,¢)} is

represented as .

Let Ty represent a populatlon table of size m. Note that ea.ch element in To will be

the empty populatlon Arowina population table will be referred to by the name of

the a.lgorlthm to which it corresponds and 81m11arly, a column will be referred to by

its correspondmg functlon Since populatlons in Ty, are non-repeating, any two (z,y)
pairs w1th1n a population must have different = values. Accordmgly, two (z,v) pa1rs

will be called mutually ezclusive if they both have the same z value.

Note how the population in row A and column f of T;4; corresponds to the population

in the same row and column of T;: the populations are exactly the sa.rne'except for

- the addition of the last (z,y) pair. In other words, each population in Ty, becornes a

popula.tion. in Tpp41 by the concatenation of a new (z,y) pair.

~ Lemma 1: In any arbitrary row of T; (0 < i < N ), if two populatiens are identical,

those two populations will have thé same new z value in T34,.

Proof: The new value of z is determined by the search algorithm’s selection operator

' 'g which accepts a populatlon as 1ts sole argument. ‘Since the selectlon operator and the

input are ‘the same, the new value of T w1]1 be the same as swell, . . - O

' Theorem 1: No two populations within any 'single row of T, may be permutations

of one another unless they are equal.

Proof: by induction on m. The base case is clearly true since all elements of Tp are-



-Table 1: Complete Population Table:
search algorithm, the top row indicates the sea.rch pa.ths and the bottom row indicates

the corresponding performance vectors.
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._{oiz}amiy-—{01nimmemm

L [ fo

Si ' fo f3s fa fs  fe fr ]
Ag [ 012 012 012 012 012 012 012 012
000 001 010 011 100. 101 110 111
A; [ 012 012 012 012 021 021 021 021
000 001 010 011 100 110 101 111
Ay [021. 021 021 021 012 012 012 012
000 010 001 011 100 101 110 111
Az | 021 021 021 021 021 021 021 021
000 010 001 011 100 110 101 111.
As | 102 102 102 .102 - 102 102 102 102
000 001 100 101 010 011 110 111
A; | 102 102 120 120 102 102 120 120
000 001 100 -110 010 011 101 111
Ag | 120 120 102 102 120 120 102 102
000 010 100 101 001 011 110 111
A7 [ 120 120 120 120 120 120 120 120
000 - 010 100 110 001 011 101 111
Ag | 201 201 201 .201 201 201 201 201
000 100 001 101 010 110 O11 111
Ag | 201 210 -201 210 201 210 201 210
000 100 001 110 010 101 O11 111
A | 210 201 210 201 210 201 210 201
000 100 010 101 001 110 O11 111
A;p | 210 210 210 210 210 210 210 210
000 100 010 110 001 101 011 111
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identical. For the inductive step, assume that no two different populations in any single

row of T}, are permutations of each another.

case 1: Any two populations that are the same in any row of Ty, will have the same
new z value in Ty, 1 (lemma 1). If they also have the same new y value, the populations
are also the same in Tp,4). Otherwise the populations differ only in their new y value
and each contains one of a mutually exclusive pair (since each = value may occur only
once in a population). Thus, the two populations cannot be permutations of each other,
and this also ensures that the populations cannot be extended to permutations of each

other. To summarize: if any two populations in a row of T, are the same, they will

 either be the same in Tyny1 or they will be non-permutations of each other in Tr, 5 for

all0< <N -m.

case 2: If two populations in a row of Ty, are different, there must have been a T;
(i < m) for which the two populations were the same and a T;41 where they became
different. But as shown above, from that point on, the populations contain mutually

exclusive elements, and cannot be permutations in T, ; for any j > 0. O

Consider population P, = {(z0,Y0); (T1,%1);- - - » (Tm—1,Ym—1)) in row A of Tp,. Let F
be the set of functions which label columns of Ty, containing P, in row A. In other
words, F contains those functions which, together with algorithm A, generate Pp,. Note
how the definition of F' involves the algorithm A. Let f” consist of all functions f from
X to Y subject to the condition that for all 0 < i < m, f(z;) = y;, where (zi,:) is the
ith component of Pm as defined above. Note that the definition of F/ depends on the
population being generated® (i.e. Pp,) but is independent of which algo;ithrﬁ generates

it.

SPermutations of the population will also result in the same F'.
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Theorem 2: F = F'

Proof: by double containment. Assume f € F. Thus A and f generate P and so _
flz)) =y for 0 < ¢ <m, and therefore f € F'. Next assume f ‘E F'. The following
proof by induction on i will show th;xt A and f gonerate ;P in T;. For i = m this
becomes f € F. For the base case of i = 0, each element of table Ty is Py, and thus
‘A and f generate Py. For the inductive step, assume that prefix 7;P is generated by ‘
Aand f in table T;. Since P exists in row A of Ty, m;P exists in row A of T;. By
lemma 1, all entries in row A of T; that equal ;P will have the same ne§v T value in’

T;11, and since 7411 P GXIStS in row A of T,+1, the new z value in row A and column

f of T; ;1 must be z;;;. By the constraints of F” it is known that f (:z:,+1) = Y;y1, and - '

thus A and f generate P,y in T,+1 0

Theorem 2 is useful because it demonstrates that for a population P in a particular

row of T, the columns that are labeled by P (in the sense that they contain P) are

precisely those tha.t correspond to functions that satisfy the restrictions imposed by
the elements of P. Put another way, a population enumerates constraints that define
the set of functions. This result would not be possible if non-trivial permutations of a

population could exist in arow of a population table (theorem 1).

Theorem 3: For any.arbitrary population P, let S be the set of rows in T, which

contain Py,. Every row in S has Py, in exactly the same columus.

Proof: Consider any two rows A ‘ahd B which both contain Pp,. Let F; denote the

columns containing Py, m TOW . Théorexﬁ 2 demands that F4 =F' = Fp. O

Because the set F' is the same whether it was.deﬁﬁed from P, or froxh a permutation

.of P, the following corollary arises:
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Corollary 1: Permutations of P, can only occur in columns containing Pp,.

These theorems explain how rows are related with respect to a given population and
its permutations. In particular, if population P4 occupies columns F in'row A, then a
non-trivial permutation of P4 can only occupy the exact same columns, and only in a

row different from A.

Theorem 4: All possible non-repeating populations of size m exist in T,,. More pre-
cisely, if X is an arbitrary non-rebeating search path and Y is an arbitrary performance

vector, there exists population P in T, such that P* = X and PY =Y.

Proof: To show that any arbitrary nbn—repeating population P, exists in Tpy,, induc-
tion will Be used to' show that m; P exists in T;. For the base case, Py = mpP exists in
Ty. For the inductive step, assume that 7; P exists in columps F of table T;. A search
algorithm in this table is restricted only in that values must be non-repeating, é.nd
thus there exists a search algorithm A that chooses ;1 for the new value of z in T;4.
By theorem 2, F cousists of all functions f from X to ) subject to the condition that
for all 0 < § < i, f(z;) =.y;. F therefore contains functions with all possible y values
for z;41, and so there exists an f € F for which f(zi+1) = ¥i+1- Therefore A and f

generate Pj;. O

2.2.1 Counting the Number of Search Algorithms

To determine the number of unique rows in a population table, consider first the number
of unique populations in a row. As will be shown, this number is independent of the
algorithm (row). Let R, be the set of populations in a row of Tr,. Recall that each

element of T} is the empty population, and thus Ry = {(}}.
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Theorem 5: |Ry,| = M™

Proof: Restrict a.tte:ntion’ to a given row A. the agein, consider the transition from
T, to Tm+1- Let P € Rp, <letermine the set of. columns F, i.e..F contains those
: fuhctions which together with A generate P. In rosv A of Tn+1, all columns which are
labeled b;' F W111 havethe same new z value (lemma 1). By theorem 2 there are no
5 constra.mts on what the new y value may be and so all M values w1ll occur across the
funct1ons of F. It is clea.r that two different populat1ons in R, could not correspond
to the same population in Rm+, and thus for every element P in Rm there are |Y)|
umque elements in Rm+1, iel ]Rm+1| = IRmI | | Comb1mng this with the fact that
|Ro| = 1 yields the des1red result.’ . ' - ‘ ‘ : O

Note that |Ry,| is independent of the row.. At this point a number of population table

properties can be established. - ' ' '

» Corollary 2:

"'1. The rows in a population table will contain distinct elements if and only if the
' table-is complete. ‘ ' o

2 Any pa.rticula.r population may only e:bcisttin a single column of a complete pop-

-ula.tion table.

3. There are N i dlﬁerent popula.tlons w1thm a column of a complete population
table ‘ ' ' -

4, Allpossible search paths exist.in each column of a'complete‘popule"tion table.

, Proof The ﬁrst 1tem follows from the fact that ina complete populat1on tablem = N

*and thus |Rm| = M N, thch is. also the number of columns i in the table The second
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item 1s a consequence of the first item and theorem 3 The tlurd 1tem 1s shown to be
true as follows a complete populat1on completely and un1quely deﬁnes the funct1on

labelmg 1ts column, and since by theorem 4 all poss1ble populat1ons ex1st 1n the table,

: a]l N! poss1ble permutatrons of the populat1on must ex1st in the column The forth

item is also a consequence of the_orem'{t, - “ - 0O

Let Sy repreSent'the set of ‘rows in the table Trn. " Each row in S will correspond
_to several rows in Sp41, in: that there will be rows in Sm+1 that are the same as a
. row in Sm except for the add1t1on of a final. (.'z;, y) pair to each populatlon It is clear
‘that two d1ﬂ'erent rows in Sm could not- correspond to the same row in Sp41, and thus

C deterlmnmg how many rows in Sy’ correspond to ea.ch row in Sy, prov1des a way of

countmg the number of umque rows in Tm-

Theorem 6 |Smt1| = [Sm|(N — ml,)M"‘l

Proof: An element of .Sm Will contain'|Rm| unique populations, and for each of them

there are (N —m), possibilities fora new value of z. There are thus (N m) |Rm| different

»ways to add that last po1nt to each populat1on in a row, i.e. |Sm+1| = |Sm|(N —m)Bml,

" An apphcat1on of theorem 5 completes the proof - S .- 0O~

To dete'r'min'e:|S N| “i’e. the number of uniquexalgo‘rithms in a complete population table,
note that all elements in To are Py, and so |So| ='1. Combining this fact with theorem 6

provides one of the maJor results of. tlus dxssertatmn

"'Algorlthm Count Result 1' The number of umque determm1st1c non-repeatmg

* search algor1thms for a g1ven X and y is

! : _1 ~M1‘: o N
H (v — i)™

T i=0
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Table 2 displays the number of unique detefmim'stic non-repeating search algorithms for
snlall values of N and M, showing how quickly this value skyrockets. N otice that when
N = 2, the number of alg_oritlimé is, é.lways? since the only two possible aigorithms
are to either pick z first or to pick z first. If ‘the populatibn size is not limited (i.e.
if repe:'a.ting search algorithms are a.llo‘:wed) it is easy to see that the number of search
algorithms. would be infinite. Section 2.5 outlines a different way ofl counting search
algorithms for the purpose of easily assigning a number to each search algorithm, and

vice-versa.

2.3 Performance Tables

A performance vector can be used in various ways to measure the pérformance of search
algorithm A on function f. The term performance vector measure will be used to denote
a measure that can be gierived from a performance vector. Example performance vector

measures include:

e the number of times the optimum is obtained by evaluation n

e the position ¢ in the performance vector having highest value by evaluation n

Define a complete performance vector measure to be a performance vector measure that
only applies to complete performance vectors. This type of measure takes full account
of the performance of A on'f and is able to more directly address issues of convergence.

Examples include:

e the number of evaluations before the optimum is reached

‘e the number of evaluations before the best n elements are found
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Table 2: The number of unique non-repeating deterministic search algorithms for small
values of N and M. -

| number of unique search algorithms |

96

192

384 -

576

55296
~21e7 .
~ 3.3 el0

:z 2.0 el4

= 4.9 el8 -
1658880
|~ 84el4

| = 1.0 e30
~1.8e50
~ 3.2.¢86 -
= 3.5 el3l"
~ 1.7 el3

~ 3.6 e45

| ~ 6.4 €120 -
= 1.3 e267.
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‘e the number of evaluations until error tolerance is achieved

Note that the number of local optima in a search space could not be a performance"'k"

vector measure because it reqmres more 1nformat1on than a performance vector can

‘prov1de Generally speaking, a property that can be der1ved from a funct1on w1thout ’
‘reference to a performance vector will not be cons1dered to be a sultable performance .
vector measure. Furthermore, such a measure would be algorithm. 1nvar1ant for any -

s1ngle functlon, and therefore could not be-used to compare the performance of search '

algorithms (although it could be used as a measure of funct1on difficulty).- Note that
the number of times the global optzma occurs is’ a smtable performance vector measure

but that 1t is not a smtable complete performance vector measure.

In the or1g1nal proof of the NFL theorem [18, 19], Wolpert and Macready propose
using a h1stogram as the basm for performance rather than a performance vector.
This h1stogram would chart the number of times each co-domain element occurs in
a performance vector, and a performance measure would then be derived from that
histogram. " Such a measure tosse’s' out all time informatiorf, ‘e.g. it"is not possible
to compute the number'of evaluations Ubeforel'the optimum is reached from such a

histogram. Furthermore, this type of histogram is algorithm independent as a complete

performance vector measure, which is curious since the goal of their NFL proof was to -

show algorithm independence. Fortunately, their proof employs (strong) performance

vectors in the service of these (weak) histograms.

Deﬁne a performance table of s1ze m to be a table where rows and columns are labeled

‘just as w1th a populat1on table, but where each element of the table is the corresponding
performance vector of length m. ‘A complete performance table contains performance .

vectors of length N A populat1on table of 81ze ' is said to correspond to a performance“

table of size m, since for every element P, ina population table, there is P% in the
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corresponding row. and column of the performance table. S

Theorem 7 No row of a complete performance table contains 'an‘ele‘men’t anore than

_once. e B ) B o ‘

- Proof: Assume that functions fand f’ 'generate the sa,me.lcomp‘lete performance vector
for a glvei'r sea.rch algorithm A. Tt will be shown :that f=r. “Th.e AaSSumr)tion allows a

proof by induction that the populatihns generated would Lbe the same, i:e. for 0 < i <N,
A (Po) = (Po) The base case z = 0:is trivial to ver1fy AY (Po) = Po = A ,(PQ)..

The followmg two equatlons are used for the 1nduct1ve step

Ay (R)) = "fkpo)‘u;(a‘c,\fe))

.Af"(A},(Po)) = ApE) @ FE)

-

where T = Q(A (P b)) and z'. ‘g(Ai,’(P 0))- By the inductive hypothesis,‘A‘}(Po') wh

Ay (PO)’ and soby lemma 1, z = 1. Smce by assumption the tWO performance vectors =S

are the same, f(z) = f'(z'), thus completmg the mduct1ve proof Smce the complete
populatlons are the same (1 e.. A (Po) = A (Po)), the1r correspondmg funct1ons are

thesame,1e f=r. , = _ o ' O

Note that theorem 7timplies that for a given a.léorithm (row in the table), a complete
. performance vector determines the function‘ (column of the t'able) to which ‘the’algo-'
r1thm was ‘applied. As w1ll be shown below, the converse is not true ‘since a single
* column can have duphcate entr1es Theorem 7 demands that for any search ‘algorithm

in the table, performance must be d1ﬂ'erent for each funct1on

8Some performa.nce vector measures may not notice that each performa.nce vector is dlﬂ'erent
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Theorem 8 Any two rows ina complete performance table are e1ther the same or are -

permutatmns of each other

Proof: ‘The number of distinct. complete perfOrmance vectors is MY (since there are
M ways to -choose each of the N elements 'of a performance vector),“and this is also the

number of entries 1n a row of the table By theorem 7, all of the performance vectors

in a row are unique, a.nd thus each poss1ble performance vector occurs exa.ctly once in

eachrow.. S ' ‘~ BN ’ Od0

2.3.1 An Ercample Performance Table

‘When N =3 and M = 2 there are ‘eight possible functions, and (as was shown in section

2.2.1) 12 possible deterministic search algorithms. For simplicity,. the two possible y

values are represented as zero and one, and the performance vectors are represented by

the ordered string of their values.

Several things become clear on first inspection. Table 3 obeys theorems 7 and 8. Trvo

of the columns are constant, and-each element’ in a column'is‘a permutation of other

elements in the same column. Each row is unique (as will be provenlin section 2.3.2).

One way to understand the occurrence of these patterns is to observe a graplucal
representatmn of each funct1on as is done in ﬁgure 1 W1thout loss of genera.hty, each
function has been assigried 80 as to correspond,‘to its standard binary represerntation,
e.g. the graph of fs can be seen to be a reprentation of the binary number 5 (101). By
deﬁnition a performance vector for a given function is the ordered y values obta.ined

during the search and thus a complete non-repeatmg performance vector must be a

. permutat1on of that funct1on 8 representatmn
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Table 3: Performance Table: (N = 3 and y = {0,1}) This performance table

corresponds to the population table in table 1.

| [ fo /i o Fs f1 fs fs  fr |
; Ag {000 001 010 011 100 101 110 111
} A; |000 001 010 011 100 110 101- 111
A, (000 010 o001 011 100 101 110 111
Az {000 010 001 011 100 110 101 111
| Ag | 000 001 100 101 O10 011 110 111
As | 000 001 100 110 010 o011 101 111
Ag | 000 010 100 101 001 o011 110 111
A; | 000 010 100 110 001 oO11 101 111
Ag (000 100 001 101 010 110 O11 111
Ag (000 100 001 110 010 101 O11 111
A | 000 100 - 010 101 001 110 O11 111
A;; | 000 100 010 110 001 101 O11 111
k £, £, k f, f f
Xo Xl Xz XU 'Xl Xz Xo X Xz Xl Xz Xl 3 XU Xl Xz Xu X Xz

Figure 1: Graph representations of the functions in table 3. For example, fs = ((0,1),

(1’ O)’ (271))'
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" The proof of theorem 8 spoyke:of how the number of distinct complete ‘performance -
vectors is the same as the number"of possible functions. This correspondence might- -
have seemed odd at first glance, "but by viewing the function as a‘glraph or as a string |
of numbers, it becomes clear how a performance vector is a.,:permuta.tion of a ‘function’s
representation. A list of all possible functionsv and a list of all possible performance
vectors would not_only‘ have the same size, they would in fact be the Same,‘list in
-a (possibly) diﬂ'erent-order. Throughout ' the rest of this dissertatfon, a pe.rforma.nce
'vector or a fitness function may be referred to as a list.of numbers or ‘e\"en as a single‘:

base M number with N digits.

Because each function (column) of a performance table contains performance vectors

1 tha.t are permuta.tlons of the same “number, it is clear that not all ‘permutations

-of a row correspond.to valid algorlthms. It is the constructlon process outlmed in
N section 2.3 tha,t~imposes such constraints on resulting algorithms. Another restrrctron ‘
- onv the number :of ways'a Tow may be permuted is the fact that a search algorithm
'always‘picks'the same initial T value. For-eframpfe, the “search"algorfthm” Afa,se‘in :
' vtable 4 cannot be a determlmstrc non-repeatmg search algorlthm because it does not ‘

always choose the same initial z value, as demonstrated below ‘

To see the inconsistenc'y-‘of 'Afagsé,‘notice that’the third performance vector (100) finds

- the value of 1 on the first trial. Thls performance vector is based on f2, 80" Afalse

’ must have chosen z; first to get that performance vector (refer to ﬁgure 1). But th1s is

-:"Table 4: An inconsistent - “search algorithm” for the N =3, M = 2 complete perfor- ,
mance table. The row is inconsistent even though the TOW iS a permutatron of a true
algorrthm S TOW,’ and even though each column has the correct number of l’s and 0’s.

| : Ifo~ i fa Fh fi i fo fd
|Afa,se|000 0017100 0LL_ 010 101 110 111|
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inconsistent with the perfofmance vector under f3, since f3(x1) = 1 whereas the first
value in its performance vector is 0. Agqse therefore could not have chosen z; first in

all columns.

2.3.2 The Number of Rows in-a ‘Peyformance Table

This section will parallel section 2.2.1 by proving the corresponding theorems for perfor-
‘mance tables. Let Ty, be a population table of size m and let Qy, be the cerrespondixig
performance table of size m. Let R,; be the set of populations in row A of T}, and let

' Vm be the set of performance vectors for the corresponding row A of Qm.

Theorem 9:

Proof: Tlus proof proceeds by first demonstratmg by induction that le| = |Rm| The
‘base case is proven by noting that |Vb| |Ro| = 1. Two different populations in R,
could not correspond to the same population in Rn+1 since those populations would
have different prefixes, and similarly for the transition from V, to Vi4+;. Therefore,
focus shifts to the populations in row A that are the same. As explained injthe“plr(\)of L
of the,orerh 5, these populations will have the same new z value ih Tot1 and'v'vill take
on the full range of y values, and thus |Rn+.1|~= | R | M and similarly |[Vpi1| = |Va|M.
Because |Rn| = |Vn| (ihduction hypothesis), the intiuction is coxhpiete.. Theorem 5 can

be applied to achieve the desired result. - L oo

As before, let Sy, represent the set of rows in the table Tom, and let Wy, represent the set -
of rows in the corresponding table Q. As with S, each row in Wi, will correspond to
several rows in W1, in that there will be: rows in Wm+1 that are the same as arow in

Wm except for the add1t10n of a final y value to each performance vector. Determmmg
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how many rows in Wy} correspond to each row in Wy, provides a way of counting

the number of ui1ique rows in Qy,.
Theorem 10: |Wpi1| = [Wn|(N —m)M™

Proof: It will be shown that for every unique row A, € Sy, there is exactly one
corresponding row A, € Wy, The base case is cléa.rly true since both Tp and Qg
contain the empty set at all entries. It is also clear that |Wy| < |Sy| since removing the
T @ues in T;, cannot result in a larger number. of unique rows in Q. Thus as T}, and
Qn trénsition to Tp+1 and Qn 4 rlespectivel»y, thie idea is to determine if fewer rows are
possible in Qpt1. It must be shown that removing the z values in the populations of

Tyn+1 will not result in duplicate corresponding rows in Qm+1.

From the inductive hypothesis, there is a one;to-one' correspondence between the rows
of T;, and Q. Consider population P in row A of Tp,. Let F be the set of functions
which together with A generate P in Tn.‘ vAQdiscusse(i in section 2.2.1, row A in T,
will correspond to several rows in 75, 41. Let two distinct rows Ar and Br in T}, 41 both

correspond to row A in T;,.

In order for two distinct rows Az and ‘B in Tn+1 to correspond to two identical rows
Ag and Bg in Qp41, the y values in Ar and Br would all have to agree with the y

“values in Ag and Bg, and thus the only way for At and Br to be distinct is if they
differ in only the last z value. This is shown to be impossible as follows: As explained
in the proof of theorem 6, a search algorithm must make an = vélue choice for P € R,,.
Assume that search ajgorithm‘AT chooses z, for the population P and that algorithm

- Bp chgoses Tp (Zp # ) for the same population. For rows Ag and Bq to be equal, the -
new y value in each population of row A7 must be the same as each new y value in row

Br. By theorem 2, F contains all functions with only the restrictions of P, and thus F
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contains functions for wh1ch f (a:a) :,é f(zp), creating a contra.d1ct1on ThlS completes
the induction and so shows a one-to-one correspondence between the number of rows
ina populat1on table a.nd the number of Tows in the correspondlng performance table

Theorems 6 and 9 can be apphed to complete the proof , o ’ - 0.

Algorlthm Count Result 2° The number of un1que rows ina complete performance

table, i.e. |Wy|, is the same as the number of umque rows in a populat1on table:

H(N_— z)M'

i=0

A search algorithm can therefore be completely and uniquely expressed by the complete
performance vectors it generates over all functions. .Because of this result, theorem 8. .

can be strengthened as follows:

Theorem 11: Any two rows in a complete performance table are permutations of one

another.

:Proof Since a complete popula.t1on table has umque rows, ‘and since the number of
iumque Tows is the same in both a populat1on table and a performance table, a complete

' performa.nce table will also have umque rows. " o o : " ) O

2.3.3 Other Properties of Performance Tables |

Each column in a complete performance table is unique in its ordermg, wluch follows
from the: fact that every element in a. TOW. is umque (theorem 7) and thus any two“
columns w1ll be dlﬂ'erent at each pos1t10n Sect10n 2.2.1 showed how a.ll permutat1ons

of a population exist-in a column of a populat1on table, and thus a.ll permutations of a -
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: performance vector must occur in a column of a performance table. Each performance
vector in a column is a permutation of the others (a eonsequence of corollary 2). This
.implies that for any performance measure based solely on the position of the first -
0pt1mum the expected performance for an” unknown search algorithm on a function

would depend only on the number of ma.xlma. in the co-doma.m of that function..

There are N! different enumerations of the search space which in many cases will be
'a smaller number than th‘e number of A'pe‘r'formanc-e \}ectors in a row of a complete
performance table (M ™). Using Stirling’s formula to approximate factorial, the second
. number is found to be O((eM/N)N /\/I_V ) times larger than the first number. This -
J implies that a search‘algorithm will often use the same enumeration of the state space

for different functions. Indeed, some algorithms will use the same enumeration of

_ state space for all functions. Even with a static enumera_tion, the resulting complete

performance vectors will be distinct because of the different evaluation functions used.

Section 2.3.1 demonstrated that not all permutations of a‘'row exist in a performance
table. Algorithm Count Result 2 makes it possible to determine the peroenta.ge of
permutations that do exist in a row. There are MN! permutations of a row for a
complete population table, a number which vastly exceeds Algorithm C,ount‘Result
2. Therefore only a very small percentage of row. permutations exist in a complete

performance table.”

2.4 Stochastic Search Algorithms

" A population table contains all deterministic ‘non-repeating search a.lgorithms, but
' many search algonthms such as GAs or hill climbers have a significant stochastlc com-

ponent Thxs section will discuss how the populatlon table framework can be related

"Even 999! has over two thousand digits. Compare torow N = M =5 in table 13.
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to ‘stoche.stic algorithms.

Ra.udomness should not simply be’ swept under the rug (a;s is 8o oftenthe case) by

claiming that any a.lgorithm 1mplemented on a computer must be determimstic, sim-

ulated randomness can. be 1mproved a.rbitrarily, and true random input sources are.

_ ava.llable,tha.t make it poss1ble to have true random algorithms on cornputers.

"In the NFL proof given by Radchﬂ'e and Surry 7], A stochastzc search algorzthm is

. deﬁned to be a search a.lgonthm that uses a determimstic “ra.ndom” number generator

. to sunulate ra.ndom choices. Similarly, Whitley et. al. [17 8] discuss “stocha.stic” algo .

By rithms as determimstic algorithms coupled with & speczﬁc correspondmg ra.ndom seed.
. Beca.use they a.ssume ‘the seed remams constant they are still referrmg to determin-
1st1c algorrthms, and thus the above’ theorems hold for this weak notion of stochastic

sea.rch To make their notion more stra.lghtforward consider how it relates to a pop-

ulation table. A populatmn, table captures the behavior of all poss1ble determmrstic .

search a.lg'orithms‘.: By using a fixed seed with a pseudosra.ndom number generator, the
~ “stochastic” algorithm will beha.ve~exactly as a row of a population table, with the seed

determining the row (as described above).

In discussing the stochastic case; Wolpert and Macready: [19] introduce “stochastic”

algorithm o, and cla.im “One can uow ‘reproduce the derivation of the NFL result for
" deterministic a.lgorlthms, only with a replaced by o throughout In SO domg, a.ll steps
in the proof remain va.hd - However, the 81tua,tion is not nearly so tra.nsparent as to

warrant the omissmn Furthermore, the deSCrlptIOIl of stochastic sea.rch 1s not complete

E (do they mean stochastic i in the same sense as Radcliffe and Surry" some other wa.y"), :
and the mterpretation -of the theorems in terms of probabilities can be confusmg For‘

example, in summing probabilities in their theorem statement, they arrive at a number

that is not itself a probability (indeed, it can exceed the value of one). Isit possible that
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two stochastic search algorithms ‘may perform differently but are not expected to do so?

If the1r notion of stochastic is weak, then their use of probability is 1nappr0pr1ate, and if

their notron of stochastrc is stronger, they fail to elucidate what it is, their conclusrons

in the stochastic case are unclear, and their lack of discussion is suspect.

"For the remainder of this dissertation, -a stochastic search algorithm will be defined as - -

a vector A having an element for each deterministic search algorithm in a population
table, where each element A(4;) indicates t_he p'rObability tha,t the stochastic search
algorithm will behave as the deterministic search algorithm A;. 1t will be shown in
section 2.6.2 how this definition allows a version of the No Free Lunch theorem for.

stochastic search.

For any given run, a stochastic search algorithm will behave ezactly like a deterministic
search algorithm and thus the vector \ provides a connection between stochastic and
determm1st1c search Furthermore, a population table fully captures the behavior of a

stochastic search algorrthm for any given run.

2.5 Canonical Representations

Objects such as populat1ons and search algorithms can be immense a.nd unw1eldy A
canonical representatmn allows for a short but complete naming system that also has
the beneﬁt of a natural ordering. Such a str1ct ordermg makes it easy to create tables-

(such as performance tables), step through all obJects for exhaustwe experiments, and

'to randomly select obJects ThlS sect1on wrll describe canonical representations for

many of the obJects that have: been prev1ously d1scussed When rules are given for an

order1ng, they are presented- in order of precedence.
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" Table 5: Functions as strings and canonical numbers when X = {0 1, 2} and y {0 1}
The function {(zo, a) (z1,b), (2, o)} is represented as strmg abc

canonical -{ function string |
000-

001

010

011

100

01
110 -
111

= N B SO C R

2.5.1 Functions

~ To put :funetibns in ce.nenica.l form, first assume that sets & <end Y are ordered. ‘Slince’
' _the domain has an order, a function can be represented as a string of length N where
each position is a base M number i.e. the function {(zo,a), (z1,b), (z2, c)} w111 be rep-_;-;

‘resented as string abc. To eﬂ'ect an ordering on functions, leftmost pla.ces in the strmg
are more significant. In ‘this way, a function can be described in at most O(log MN)

l ‘bltS Ta.ble 5 shows the ca.nomca.l and strmg representat1ons for all functxons whenll

X ={0,1,2} and ¥ = {0,1}.

~ 2.5.2 Performance Vectors

A performa.nce vector can ha.ve length from 1 to N The number of performance -

. vectors of length n is M™, a.nd the total number of performa.nce vectors is Zn_ M™.

To achieve an ordering, the fpllowmg two rules sufﬁce: 1) performance vectors of length ,
n will occur before those of length n +1, 2) within a given length, leftmost places of the

performance vector will be most significant. Table 6 shows all performanee vectors and
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Table 6: All performance vectors and their assocm,ted canonical numbers when & =
{0 1,2} andy {0 1}

* . | canonical | performance vector |
0
1
00
01
10
11
000
. 001
010
- (o1l
10 - |'100
1 101
| 12 110
13 1117

OO0~ U W RO

their correspondling canonical nlunbers‘for the case when X = {0, 1,2} and y=1{0,1}.

- ~When N = M = 4, the canonical number assecia,ted wrth performance vector (2 3,2,2)
can be computed as follows the performance vector has length 4, and the index of the
ﬁrst performance vector with length 4 is 23_ M " = 84. Now one only needs to

':eompute the offset of this performa,nce vector into perferma,nce vectors of size 4. This
is sirnply ‘ |

,zzfiﬁlf4al£+2=1%“

Addlng this offset to the oﬂ'set for length glves the ca.nomcal number of 270. To go from
-the canomca.l number of 270 to the correspondmg performa.nce vector, ﬁrst determme
, the length of the performa.nce vector Because 270 is greater than En_ M " = 84
the length must be four, a.nd thus 270 — 84 = 186 will be the offset 1nto length 4
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performance vectors. Modulus arithmetic can be performed as follows:-

186/(4%). = 2 Remainder 58
- 58/(4?) = 3 Remainder 10'

10/(4')

2 Remainder 2

Which yields the numbers 2, 3, 2, 2 for performance vector (2,‘3, 2,2).

. 2.5.3 Search Path‘sl h

A non-repeating search path can have length . from 1. to N. There are (N ) TOD-

. repeating search paths of length n, and thus Zn—l (N )n non-repeatmg search paths _ '

.The number of search paths is thus independent of M. The ordering rules are bas1cally -

the same as for performance vectors: 1) search paths of length n w111 come before
search paths of length n + 1, 2) leftmost places in the search path are cons1dered more;
significant. Table 7 shows all non-repeatmg search paths and their canomcal numbers

in the case when X = {0 1 2} and y={0,1 2}

When N =5, search path (1 3,2,0) will have canomcal number 123, as w1ll now be
shown. The length of this search path is 4, and the 1ndex of. the ﬁrst search path'
with length 4is 23_ (N )n = 85: Search paths are non-repeatmg, so there will be N.

choices for the ﬁrst pos1t_1on, N -1 cho1ces for the second and SO on. Therefore, the

“ value at positionz' can be”r'epresented as a base N—i. d1g1t allowmg for a max1mally '

, compact encod1ng Thls can be done by convertmg each search path value to an index

into a. 11st of unused values Refer to table 8. The 11st of unused values starts off as

[0, 1 2,3,4]. The ﬁrst pos1t1on value in the search path is 1, and its’ pos1t1on 1ndex in

kS
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Table 7: All non-repeatmg search paths and their assoc1a.ted canomcal numbers when
X = {012}andy {012} ‘ '

v\|7canonica.l | search path | - .
0 - 0 R
, 11

2 .

01

02

10 -,

12

20

21

| 012

" |-02L.

[ ;102

120"

T

mor 210

= 00 =3 O b W b

==
= o

= =
@wN

T
=

.- "Table 8: Search path <= canonical number.”

ol T

L

position value :|.1 )’3 2
_ position index~ . 1 {2 |10}
| choices at position | 5|4 |3.| 2"

the list of unused values is’ also 1 (s1nce 1ndex1ng sta.rts at zero) Once lis removed

the l1st of unused values is [0 2 3, 4] ~The next’ sea.rch path pos1t1on value is 3, wh.lch o

occup1es pos1t1on 1ndex 2 in the list of unused values Once 3 is removed that l1st w1ll .

“"be [O 2, 4] The next pos1t1on value is.2 which occup1es p031t1on 1ndex 1, and’ when the.

‘ l1st ;s [0, 4],;0 occupies pos1t1on 1ndex 0, and th1s completes the second row of table 8.

, The position md1ces can be combmed mto a smgle number that prov1des the oﬂ'set of '

th1s search path into length 4 search paths Note from ‘the third row of table 8 that

N there -are 2 possible values for the last pos1t1on, 3- 2 poss1ble values for the la.st two
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- positions, and'so'on; leading to the following,eouation for this offset: “ R
1;- (4:3:2)+2- §3"':"2)’+ 1-2 + 0=38 .

The canomcal number for th.lS search path is thus 85 + 38 = 123

To denve a search path glven N = 5 and canomcal number 123, the ﬁrst step is to
determine the length of the search path Because En_l (N)g < 123 < En_l (N)n,
the search path length must be 4. Accordmgly one can subtract- En_ (N )n in order )
L to get the offset mto search paths of length 4, ie. 123 - 85 = 38 One can, now do

modulus anthmetlc as follows.

38/(4-3-2) = 1 Remainder 14';
14/(3-2). = 2 Remamder 2 J

.2/2 = 1 Remainder 0

“This results in numbers 1, 2, l, 0,_which are the position index values from the second
row of table 8. A list of unused values \i'ill again be used, 'but this time one will go ‘
from index to value. The list of unused values is initialized to [0,1,2,3,4]. The first
index is 1, which has value 1, and thus the ﬁrst position value of the search path is 1.
The list is then [0 2,3, 4], and the next 1ndex value is 2, which: corresponds to value 3
in the list. The list then becomes [0,2,4], and the next: index value of 1 will correspond
to value 2 in the l1st. When the list is finally [0,4], and the last index of 0 results in
_ the ﬁnal‘position of the search path being 0. The search path is thus (1,3,2,0).
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2.5.4 Populations

A population may have length from 1 to N; and con51sts of a search path a.nd X
performance vector. Theorem 4 implies that a’ populatlon can be created from any ]
, \non-repeatmg search path together with any poss1ble performa.nce vector, a.nd thus the
- mimber of populations of length n is (N )nM"™ and the total number of populatlons is
, Zn_l (N)aM™. The ordermg relies on the followmg rules: 1) populatlons of length n
will come before populatlons of length n + 1, 2) populations will be ordered by their
search paths, and 3) populatlons will be ordered by their performance vectors Table 9
shows all populations for X {0 1,2} and Y = {0 1}.

The canonical nnmber of ‘a population can be computed by combining the canonical
numbers of the, search path and performance vector that comprise the populatlon For
'~ example, whenN M =4, the populatlon ((2,1), (1 3),(0,1), (3 2)) can be expressed
as canonlca.l value 5446 as follows: The length of the populatlon is 4 its sea.rch path is
{2,1,0,3) (which has canonical value 54) and its- performance vector is (1,3,1,2) (wh.lch
. has canonical value 202). The first population of length 4 has the canonical value of
3 M™ (N), = 1744.:. ’f‘he first search path of length 4 has canonical t/alue: of 14;
andv the first performance: vector of length 4 has ca'nonicalivalue of 118 (see previous
: sections).: There are 44 possible performance vectors of fength 4, and thns the canonical

number is the result of 14 - 4% + 118 + 1744. = 5446.

The conversion back to a population involves ﬁrst determining that the feng‘th must
“be 4 since the canonical value is g'reater than L M™ (N )n = 1744. The oﬂ'set into
populatlons of size 4 would therefore be 5446 — 1744 = 3702. Integer d1v1smn can then .
be performed to give the indices into a length 4 search path and a length 4 performance -
vector: . ' | ‘ ) SR |

* - '3702/(4%) =14 Remainder 118

[
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Table 9: All populatlons and their associated canomcal numbers when X = {O 1, 2}
and Y = {0, 1}. Population {(z,a), (y, b) (z,c)) is represented as 2V,
L [pop| Ipopl Ipoplv Ipopl | pop |
0|0 16 { 10 32 |012 |48 { 102 | 64 | 201
0 10 |- |010 010 010
110 17 (10 |33 |012 |49 | 102 | 65 | 201
1 11 011 011 011
2 (1 18 | 12 34 [ 012 | 50.{ 102 | 66 | 201
' 0 00 100 100 100
311 19 | 12 35 {012 | 61 | 102 | 67 | 201
1 01 101 101 101
4|2 20 |12 |36 ;012 | 52 | 102 | 68 | 201
1 0 10 110 110 110
5|2 21 | 12 37 1012 | 53 | 102 | 69 | 201
1 11 111 111 111
6|01 22 120 38 | 021 | 54 | 120 | 70 | 210
00 00 000 000 000
7|01 23 (20 |39 {021 |55(120 |71 | 210
01 01 ‘| 001 -1 001 001
8 (01 24 120 |40 | 021 | 56 | 120 | 72 | 210
10 10 010 010 010
9 (01 25120 |41 (021 |57 | 120 | 73 { 210
11 11 .1 011 011 | 011
10{02 |26)21 42 | 021 [ 58 | 120 | 74 | 210
00 - | 00 100 | - 100 100
11102 (27|21 43 {021 | 59 | 120 | 75 | 210
01 01 101 101 101
12 | 02 28 | 21 44 |1 021 (60 | 120 | 76 | 210
10 10 ) 110 110 110
13 | 02 29 | 21 45 | 021 | 61 | 120 | 77 | 210
11 11 111 111 111
114110 30 {012 |46 | 102 | 62 | 201
00 000 000 000
15[ 10 [31|012 |47 | 102 | 63 | 201
' 01 | 001 001 001
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This yields 14 for the search phth and 118 for the performance vector. From there one
may create the search path and perform‘zihce vector és described in previous sections.

4
- N

2.5.5 Search Algorithms

U

As described in section 2.1, a sea;ch.algorithxﬁ consists. of a selection operator g :

P — X, i.e. a mapping from populations to points in the domain. What follows is a N

- means of representing this mapping as a table that will allow.a maximally compact

representation. Table 10 shows a search algorithm represented in this way, and can
serve as an example for the'following discussion. A deterministic non-i'epeating search

algorithm is limited in the populations it can-generate, a.i;d a maximally compact

. representation should only encode those populations. A table’s first entry is the empty

population and the search algorithm’s first choice from X. From thé,f first choice,
populations are created with all. M , pdssible values from ), and these populations
comprise the next M populations in the table (following the ordering of set V). The

table proceeds as follows: take each popuia.tion of length 7 as it occurs in the table, '

~and use it and its associated new choice from X to create M new populations of length

.n.+ 1. These new populations are entered into the table along with their associated

n=0

- new domain values. The table has M™ pomﬂatibns of length n, for a total of VZN —2 M

entries.®

This té.ble repfesentatibh allows’ a‘ means of .co'mpiiting t;I;e number of non-repeating
search algorithms: since there ’a,re' M™ popula,tigﬁg éf _length n in the wta,b'k;,, and
since there are N —n choices ‘for‘ 2 new z- value_«'af ea,ch such enfry, -there must be
Hn—O (N - n)M non-repeating search algonthms which is in accord with Search Al-
gorithm Count 1. ‘ '

BThe table need not include populations of size N — 1 since the sea.rch a.lgorxthm is non—repeatmg
and thus has no choxce in the final entry '
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Table 10: A table hstmg of the search a.lgonthm having canomcal number 13,407,874

in the case where X =) = {0 1,2, 3}

| popula.tlon [ new z || popula.tmn | new « l

{ 2 21 3
. © 12 ;

2 1 C 21 0
0 - ‘ . 13 ;
2 1 23 1-
1 a 20
2 3, 23 0
2 21
2 0 23 0
3 22 :
21 3 23 0
00. © 23 '
21 -0 . 20 1
01 . 30
21 0 20 1
02 31
21 3 20 3
03 4 32
21 0 20 1

- 10 ‘ 33
21 3

11
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"Table 11: A breakdown of table 10. The columns are divided by population-size. The
second row is an ordered listing of all new z values from table 10. The third row: is
. an ordered hstmg corresponding to the second row where each element indicates the '
index into a list of available values. Each element of the third row can be thought ofas |
‘a single number of base 4 3,'and 2 respectively. The forth Tow lists the correSpondmg‘

base 10 values of the elements of the third row.

1 E
1130 | 3003033010001131
1130 | 1001011010000010
42 | 38530

.’ = pop size

. new z values
new z indices
base 10 values’

NNl of

. Because s1ze n populat1ons can be built up from size n — 1 populat1ons already in the

o table, and smce the null populat1on always starts the table, a non-repeat1ng search

. "algor1thm can be represented by a hst1ng of new values from X alone. Table 11 shows

. such a l1st1ng Furthermore, smce th1s is a non-repeat1ng search algor1thm, tlus l1st1ng
.f: “can be transformed into another hst1ng where each .entry is an 1ndex 1nto a hst of
avaxlable pos1t1ons For example in table 10, note the last entry on the left s1de, where
populat1on 1s being mapped to new z value 3. Because the populat1on conta1ns T
values 2 and 1 the new z value could only be ‘a0ora 3. These two values 0 and 3, .
compr1se a listing of ava1lable pos1t1ons For new z value 3 the correspondmg index
into the hst of avaxlable pos1t1ons is 1 The tlurd row of table 11 l1sts each 1ndex value

for each new ; value from the second Tow. »

In this hstmg of md1ces, an element that corresponds to populat1on s1ze n can be
‘ Mthought of as-a base N n d1g1t s1nce there are N n cho1ces for a new value at that -
: p01nt For example, in table 11 when the populat1on size is 1 the 1ndex values can be

| seen as base 3. d1g1ts, and when the populat1on size is 2, the 1ndex values can be seen o

as base 2 d1g1ts

. All digits having the same population size can be combined into a single base N —n -
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number nlunber havmg M™ digits. This can be done for all values of n from zero to

N - 2. In the example of table 11, 10010110100000102 = 3853010, 11203 = 4219; and.

24 = 210.

~ To combine these numbers 1nto a smgle canomcal number, note that there are 216
. possible values when the populat1on size is 2, and 34 poss1ble values when the populatlon
size is 1. Generally, there w1ll be (N - n)M possible values when the. populatlon size

is n. The three nuinbers in the example can therefore be comb1ned as follows

2. 34” 216 + 42 . 216 + 38530 = 13, 407) 874

To arrive at the table form of a search algorithm given'its canonical number, start with
modulus arithmetic to decompose the single number into a number for each population
size. If the canomcal munber is 13 407,874 and N =M =4, the .modulus arithmetic.

proceeds as follows:

13, 407, 874/(34 216) — 2 Remainder 2,791,042

2 791 042/216 — 42 Remainder 38,530

This y1elds the numbers 2, 42 and 38530 These can be converted to base 4 3 a.nd 2
numbers respectlvely, creatmg the hst of new T 1nd1ces as shown in row 3 of table 11.
~ From here, the process of creatmg the table proceeds as described above, w1th the' ‘
following added step “as the p0pulat10ns are constructed a list of avallable values is

© created so that the new. z 1ndex can be converted‘rnto a new a:»value R

Table 12 lists all search algorithms and the1r canomcal numbers for the case when -
X= {0 1, 2} and Y = {O 1} Th1s table can be. compared against: the populat1on table

: 1n table 1 wh1ch contams the same 1nformat1on ina d1ﬂ'erent form '
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Table 12: All non-repeating search algoritlims and their associated canonical numbers
when X = {0,1,2} and Y = {0,1}. Compare against the population table in table 1.

[ num | pop | new z || num | pop | new = ||

| O 0 0 1

0 ° 1 6 5 2

v ] [T

(0) 0 (1) 1

1 8_‘ 1 7 0 2

i 2. ' 1 2

' 9 0 : 9 2

.2 0 .2 8 0 0

| 1 ¢ 0

() 1.0 L0 2

3-1 9 2 9 i 0

h T ] 2 .9 1
N R R
4. "(11, 0 10-.§ |

C i -0 ¢ 0

, (1) 1 - . 9 2

= MR
1 : 1 -
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A search algorithm will be said tobe compressible if it can be expressed in fewer bits
than its canomcal number It is well known [1] that the percentage of strings that
are compresmble is rather small, and thus the _percentage search algorithms that are

compressible must also be small.

For sufficiently largevdomain and co-domain, search aigorithms such as enumeration,
hill climbing, and GAs are highly’ compressihle. bne might think that a.search al(- :
gorithm’s complexity.might contribute'to its optimization power, but that need not
be the case. For example, a statlc enumeratlon is h1ghly compresmble, but the NFL
theorem guarantees that 1t has optimal expected performance in black box scenarios
On the other hand if there are known correlatlons between seen and unseen points,

memory and processmg of those seen fpomts may lead to improved performance.

Table 13 shows how the size of the ,d‘oma.inyand co-domain'aﬂ'ects the number of func- '
tions, performance vectors non-repeatihg search paths populations ‘ and non-repeating
search algorithms. Code was written to generate any of these obJects given their canon-
ical number, ‘and this was used to generate the population tables i in this dissertation
as well as the canomcal'tables in this section. The code was also.used extensively in
the Minimax section (2.'7)-belo'wlto test the perfonnance of all search 'algorithms over

all functions.
2.6 The No Free Lunch Theorems

In section 1.4 there was’ discussion regarding the lack of clarity of previous proofs of
the No Free Lunch theorem. On the other hand, the performance tabie data structure
provides a natural foundatlon for comparlng search algorlthms ThlS section will prove
the No.Free Lunch theorem as a direct and natural consequence of the basic properties

of performance tables. Previous statements of the NFL theorem will be discussed from

s
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" Table 13: The number of fuhvé:ﬁioﬁs:,:iperfclirr‘xlnal‘lée vectors,, non-repeatihg search paths,
' " populations, and non-repeating search algorithms for. various- values of N and M. -

PVs | SPs

—

-1 13740780

IN M {Ps . | SAs e
- MY | o M YN (N)a [ X (MM [Tl (N =)™ |
2 2114 16 : 4 - |12 B 2
2 39 . [12 4 24 2
12 4116. |20 4 R ER
(12 5 |25 30 4 60 - o2
.2 6 | 36 42 4 84 . - 2
4.2 7 |49 b6 4 112 12
13 2|8 14 15 78 . . S .12
13 3|27 39 15 225 ) 24
3 4 |64 84 15 - | 492 |48
3 5 | 125 155 15 | 915 ‘ 196 -
3. 6 [l 216 258 15 | 1530 192
13 7 ]343 399 . 15 2373 384
4 2 1|16 30 64 - 632 576
4 3 | 81 120 64 2712 . 55296
4 4 | 256. | 340 64 - 7888 ~21e7 -
4 5 || 625 | 780 . 64 18320 ~3.3el0
4 6 {1296 | 1554 64 36744 ~2.0eld
T4 7 | 2401 | 2800 64 . . 66472 ~49el8 -
5 2 ||-32 162 ' 325 6330 1658880 -
5 3 | 243 363 325 40695 ~ 8.4 el4
5 4 ] 1024 | 1364 - | 325 157780 ~ 1.0e30"
18 5 |[ 3125 | 3905 325 | 458025 = 1.8 eb0
5 6 || 7776 | 9330 325 | 1102350 ~ 3.2e86 -
|5 7 116807 | 19607 325 - 2326555 ~.3.5el3l
16 2 |64 - [126 1956 | 75972 =~ 1.7.€l3
6 -3 | 729 ‘[ 1092 1956 732528 ~ 3.6 ed
6. 4 | 4096 | 5460 - | 1956 3786744 - =~ 6.4 e120
6 5 || 15625 |.19530 . | 1956 = 1.3 €267.
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w1th1n the current framework and w111 all be shown to be equlvalent A proof w111
follow that demonstrates how the NFL theorem can be generahzed to other sets of
_ funct1ons Fmally, an NFL proof w111 be g1ven for stochast1c search (as defined in’
sect10n 2 4) » e C

Let Pm(A f) denote the length m populatron generated by search algor1thm A and
flmctlon f. S1m1la.rly Tet Vi (A4, f ) denote the length m performance vector generated
I‘by A and f. The size subscript, may be om1tted when it is not needed Let M (V(A )
be the value of the performance vector measure M when apphed to performance vector
VA, f ) Define an overall measure of search algor1thm A and set of ﬂmctlons F to be
a function that maps the set of performkanceuvectors generated by A and F to ‘a rea.l
number -An overall measure can be used\to compare the overall performance ‘of two
search a.lgonthms ona set of functlons, and if the two search algonthms have identical
overall measures, it can be sa1d that they perform equally well over F. An example
of an overall measure would be to take a performance vector measure and apply it
to every element in F' and then combme the results i in some way such as an average,
ie. Y sep M (V(A N/ |F| A complete measure is an overall measure , where the set of
functions F is the set of all funct1ons. from Y¥. Three statements of the NFL theorem

will now be proven.

Theorem 12 (NFL1) For any complete measure; .each non-repeating deterministic

search algorithm performs equally well.

Proof: Erom theorem 11, each row of a complete performance'table c0ntains the same
~ set of performance vectors, and thus any two rows will be ‘using the exact same data

for comput1ng the complete measure o : o B N EI

" The follovving statement of the _t_heorem is a pivotal component of the proof by Radcliffe
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and Surry [7], phrased more directly in the language of the current framework. In their

language, isomorphic search algorithms generate the same sequences.

Theorem 13 (NFL2) For any two determ1mst1c non-repeatmg search algorithms A
and B, and for a.ny function f, there exists a function g such that V(A, f) =V(B,g).

Proof: Theorem 11 states that all rows in a complete performance table are permu-’

tations of each other, and thus any performance vector in row A will necessarily occur

in row B. " _ : ) ’ o

As defined above, an overall measture is a function of a sét of performance vectors.

Consider instead a weighted overall measure which is defined with respect to a search

. algorithm’s 4‘r9w in a complete performance table. This allows the performance measure

of each performance vector to be weighted according to the function that generates

it, i.e. W(f)M(V (4, f)).-- A weighted overall measure is not generally subject'to the

" NFL theorem except in the case where the functions are equally weighted. An egually

wezghted overall measure isa we1ghted overall measure where each of the performance

vectors in the algonthm’s row is welghted equally, i.e. certain functions are not deemed

_more important than others The NFL theorem statement below is essentially that

“given in Wolpert and Macready [18]

Theorem 14 (NFL3) For any equally weighted overall measure, each deterministic

non-repeating search algorithm will perform e(iually_vrell.

Proof: When performance vectors are weighted eolially, W(f)M(V(A,f)) becomes

. eM(V(4,f)) for some constant’ c: Let -performance‘ rlector measure M' (V) =cM(V). .
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Thus an equally weighted overall measure is in fact a non-weighted overall measure M’,

allowing the result to follow as in NFL1. - . O

Note that all three versions of the NFL theorem are direct consequences of theorem 11,

demonstrating the significance of that theorem.

A corollary to theorem 11 is that if a search algorithm performs better than average
on one set of functions, it must perform worse on the complementary set. This is
essentially an argument for specialization: a search algorithm will perform well on a

small set of functions at the expense of poor performance on the complementary set.

An even stronger consequence follows from theorem 11: all deterministic non-repeating
search algorithms are equally specialized. This contradicts commonly stated beliefs
(e.g. [2, 3]) about how there can be robus;t'genera.l purpose search algorithms that
perform reasonably well on a broad class of functions at the expense of not performing
extremely well on any set of functions. Since every search algorithm has precisely the
same collection of performance vectors when all functions are considered, it follows that
if any search algorithm is robust, then every search algorithm is, and if some search

algorithm is not robust, than no search algorithm can be.

2.6.1 NFL Generalization

Let f : X — Y be a function and let ¢ : X — X be a permutation (i.e. o is one-

to-one and onto). The permutation of of f is the function o f : X — Y defined by
of(@) = f(o™}(@)).

Define a set F of functions to be closed under permutation if for every f € F, every

permutation of f is also in F. Define an NFL result over F to be a situation where any
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two deterministic non-repeating search algorithms will have equal overall performance

with respect to the set of functions F'.

Let A be a search algorithm v;vith'selgct’.ion operator g and let a‘be a permutation
(of X). The permutation cA of A is the search algorithm with selection operator og
defined by og(¢) = a_'l(g(am(tﬁ))) whe;;e 6:(¢)- operates on the z va.lpes of population
¢ by applying o to each of them, while leaving the.y values untouched.

Theorem 15: If Pn(A1 O'f) = (('TO') yO)a (zla y1)7 LERE ] (,z‘n-jh yﬂ—l)) t’hen

Po(cA, f) =.((O'—1(:L‘.0), yO)a (0'_1(‘-""1)1 yl)a R (0'_1(:1:”_1), yn—l))

Proof: By induction on the length of the populations. The base case is true since all

populations of length 0 are the same, i.e. Py(c A, f) = Py(4,0f) = ().‘

Assume the inductive hypothesis:

Pa(4,0f) = {(@0,9),(@1,81)s-+ (@n-1,5n-1))

PaoA,f) = (07 0),50), (07 (@1), 1) -, (0~ (@nt)s Y1)
By definition,
ca(Pa( 1) = o7 o (oa(Palo 1) =07 o g(Pal4, o) = o1 (e)
Moreover, f(0~1(2n)) = 0 f(zn) = Yn. Accordingly:

Pn+1(A1 O'f) = Pn(Aa O'f) || (zn’yﬂ)

Poi1(cA, f) = Po(cA, f) || (0'—1(zn)uyn)
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,.Which‘ completes the proof. - C _ ‘ o » . O
* Corollary 3:V (o4, f) = V(4,0F)

Corollary 3 is true since the y values are the same in both populations. This corolla.ry
is strlklng in the way that it shows a correspondence between a permutat1on of a search

' algorithm and a permutatlon of a functlon

Lemma 2 If the set of functlons Fis closed under permutatlon then there is an NFL

- result over F

Proof Let A and Bbe a.rb1trary deterrmmstlc non—repeatmg sea.rch a.lgorlthms If one . ‘
| _can show that set S;'= {V(A f) f €.F} is equal to set 32 = {V(B g): g€ F}, the
result w1ll follow naturally Th1s w1ll be shown by double contamment By theorem 13
for any A B, and f, there ex1sts a: functlon h such that V(A f) = V(B,h). Because |
these two complete performance vectors are equal f and h must be permutat1ons, and
. thus h € F. It is therefore true that for any element V(A f ) € S1, there exists an equal

: ,element V(B g) € 32 The case in the other d1rectlon can be demonstrated in the same

o way, and so 51 S by double conta.mment Thus any two determlmstlc non-repeatmg

- search a.lgorlthms will be usmg the sa.me data to; compute thelr combined performance

‘measures and will therefore arr1ve at the same result L 0

~ The above lemma Waslan iintermedlate result in ‘Badcliﬁ'e and Surry’s proof of the NFL

theorem [7]. The conyerse' of this lemma is also true:

Lemma 3 If an_NFL result occ\ursv‘o’v'er the set of functions F, then F ’is'closed under

permutation. '




54

Proof: Assume by way of contradiction tha.t an NFL result 6ccurs over thé set F, but
that F is not closed under permutation. Consequently, there is somé function f in F
which has a permutation g which is not‘in F. Con‘sider a.n-ar‘bitraxy search algorithm
A. Let M (V(A, f)) = 1, and let M equal zero for all other performance vectors in
A’s row. Since rows in a performance fable‘axe permutations of one another, each
row v;/ill have a single performa.ﬁce vector having measure 1, and all other performance
vectors will have measure 0. Let the overall measure be a sum of performance vecfor
meésures, ie. Eﬁe M (V(A, ‘f)),'" Notg that this sum is 1 for search algorithm A, and
since an NFL result is assumed over F, the yﬁlﬁe of this islum'should be 1 for every
search algorithm. As f and g are permufations, let f = og. By corollary 3, V(A, f)=
| V(A,09) =V(0A4,g), and thus M(V(cA,g)) = 1. Accordingly, 3, M(V(c4,h)) =

.0, a contradiction. S o oL . O

Combining lemmas 2 and 3 yields the following theorem:

Theorem 16 (NFL Generalization) ‘An NFL result occurs over the set of functions

F if and only if F is closed under permutafio/n.‘

‘When an NFL result occurs, n§ search algorithm can outperform enumeration. More
generally the phrase “NFL curse” will be used to describe situations where enumeration

provides the best possible expected.peffor;nance.

2.6.2 NFL Theorem for Stochastic Search

_The definition of stochastic search in section 2.4 allows for the following proof of the
NFL theorem for stochastic search. Let A(A) be the probability that stochastic search

algorithm X behaves as deterministic search algorithm A. '
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Theorem 17 (NFL for Stochastic Search) For any equally weighted measure, each

non-repeating stochastic search algorithm has equal overall expected performance.

Proof: Let £, be the overall expected performance of stochastic search algorithm .
The following shows how the overall expected performance is constant and independent .

of A. A is a search algorithm and f is a function.

= ¢> A4) ' (by. NFL). .
A

2.6.3 Nonuniform Function Distributions

The NFL curse is not necessarily escaped with non-uniform distr_ibutioﬁs of functions,
as pointed out by Wolpert and Macready [18]. Appendix A presents two search algo-
rithms having identical performance with respect to a non-uniform function distribu-
tion. English proposes [2] that the NFL result occurs in an.“uncountable infinitude” of
function distributions, and he states that NFL consequences may occur whenever the
function set to be optimized is “large and diﬂ'usé,” -which is the very signature of black

box search.
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2.7 Minimax Distinctions Between Algorithms

Wblpert and Macready [18,19] discu:sﬂs; a sen‘selin which one. search algorithm can
outperform' anot.her search‘ a,lgorithrn “even when all functlons are considered. This
minimaz dzstmctzon between search algor1thms A and B is descr1bed as follows For
" each function f €F (where .7-' is the set of all funct1ons from the domain to the co-
domain), compare the performance measure of A on f to the performance measure of

Bon f. Keep a tally of the number of t1mes each algor1thm has the better performance
"measure when compared in th1s pa1r-w1se way If after all the compar1sons have been
“made A has a larger tally, then Ai is said to have a mzmmaz advantage over B, and the
value of the mammax advantage would be the value of A’s tally minus the value of B’s
tally. Let A > B denote the relat;on that algorithm A has a minimax advantage over
3 algorithmB.~ : L SRR

While it may at. ﬁrst ‘seem that the No Free Lunch Theorem would preclude one al-
‘gorithm from havmg a minimax advantage over another that is not the case. The
minimax distinction “loses mformatlon” in the sense that 1t does not take into account
how much better one algor1thm did on a f1mct1on but only that it d1d better When
| that mformatlon 1s accounted for the equal performance guaranteed by the NFL theo-
rem will be ev1dent Furthermore, it is conJectured that there is still a type equivalence .
between all search algorlthms even when mmrmax d1st1nct1ons are present as will be

' shown below

As a s1mple example of m1mmax, cons1der the followmg two-player game: each player
is g1ven a mckel a d1me, and a quarter a.nd each player then orders them without
the other player’s knowledge. When both players are satrsﬁed with the1r ordermgs, the
‘values at each.position are 'compared,’and thewinner is the one who has more positions

at higher value. The mm1max table for this game is presented in table 14. Each entry
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Table 14:. M1mma.x table for the coin’ game. NDQ indicates an order1ng of N1cke1
Dune, Quarter Each-entry denotes the minimax advantage of the.row’s strategy over
the column’s strategy. Minimax tables are symmetric across the maJor d1agona1 with
-a sign change. '

N ]NDQ NQD DNQ DQN QND QDN |
NDQ 0 0 -1 1 0
NQD 0' . -1 0. -0 1
DNQ| O 1 . 0 0 -1
DQN| 1 0 0 . 10000
QND| -1..-0 0o 1 . 0
QDN | © -1 1 0. 0 )

~ denotes the minimax advantage of the row’s strategy over the column’s strategv, with

“a negative value indicating a disadvantage.

For any strateg1c order1ng, there is one way to win, and one way to lose For exa.mple,
NDQ has minimax advantage over QND, QND has minimax advantage over DQN but'
DQN has minimax advantage over NDQ, showing that the relatlon is non-transitive.
:Radchﬂ'e and Surry (7] observed thrs circular refatlon under a dlﬂ'erent set of circum-

stances. -’

As a more genera.l example, ta,ble 15 lists the minimax dlstmctlons for all search algo-
N r1thms having X = {0,1 2} and Yy = {0, 1} (as in table 3) The obJectlve in thls case'l
is to find the first occurrence of the maximum value in- each performance vector An
assumptlon is made that the maximum w111 be recogmzed when it is seen, and thus the
. search may stop at the first such occurrence. The performance vector measure is-the
‘length of the performance vector minus the number of evaluatlons performed in ﬁndmg

" that maximum value. This has the eﬂ'ect that ﬁndmg the maximum value quickly will
| yield a h1gh score. Each entry (Aa, Ap) denotes the value of the minimax advantage of

A, over Ay, ‘with a negative number indicating that- Ay has a minimax advantage over
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_Table 15: Minimax Table: (¥ = {0,1 2} Y = {0,1}) The objective function is to
find the maximum value in the population. Note the non-symmetric relation 49 >
Ag > Ae > Ao

Ay A3 Ay As A Ag Ap  An |

[ T4 A Ay Ay

4 - 0 0 0 0 0 -1 -1 1 1 0 ©
4 {0 - 0 O O O -1 -1 1 1 0 O
A, O 0 - o0 1 1 0 0 0 0 -1 -1
A; /0 0 0 - 1 1.0 0 0 0 -1 -1
Ay {0 0 -1 -1 - 0 0 0 O 0 1 1
A 0O 0 -1 -1 0 - 0 0 0 0 1 - 1
A4 |1 1 0o 0 0 O - 0 -1 -1 .0 O
A7 {1 1 0 0 0 0 O - -1 -1 0 O
Ag |1 1 0 0 0 o0 1 1 - 0 0 O
Ag |-1 1 0 0 0 O 1 1 O - 0 O
Ap|0 0 1 1 -1 -1 0 0 0 O - O
A0 0 1 1 -1 -1 0 0 0 0 0 -

A,. For example, it can be seen that Ap has a minimax advantage over Ag and Ay,
and that algorithms Ag and A7 have minimax advantage over Ay. Consider the sum

across a row of a minimax table.

Table 16 also lists the minimax distinctions for all algorithms in table 3, but in this table
the objective function involves ﬁndmg the minimum value rather than the maximum.
The performance vector measure is the length of the performance vector minus the
number of evaluations -needed to find the minimum value. In this table too, all rows

- sum to zero.

Just as in table 14, tables 15 and 16 exhibit circular non-tralnisitive minimax advantages.
For example, in table 15 Ag > Ag > Ag > A(';.' This suggests é notion of 'equivalgnce. )
Search algorithms A and B are said to be minimaz equivalent if there exists a circular
relation involving A and B or if neither A nor B has a minimax advantage over the

other.
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Table 16: Minimax Table: (¥ = {0,1,2}, = {0,1}) The objective function is to
find the minimum value in the population. Note that Ag > Ag > As.> Ao.

‘A Aw

o
(=]

| | 4o A1 Ay A3 Af A5 As Ar A
A [ - 0.0 °0..0--=1 -0 -1 I 0 .1 .0 ]|
‘Al 0o.- 0 01 0:-1 0 0 -1 0. -1
4 |0 0 - 0 0.1 0 -1 1 0 1 0
A3 /0 -0 07 170100 00 <10 -1
|4 {0 1.0 -1 -..0-0 0.0 1 0 .1
As |1 0 1 o0 O.: 0.0 -1 0 -1 0
4 |0 -1 0 -1 0 0 - 0 0 1 0 1
471 o0.1.0 0.0 0 - -1 0 -1 0
Ag |1 0 1.0 0 1 0 1: - 0 0 -0
A O 1 0 1 =1 0.1 0 0 - 0 -0
Ap|-1 0 -1 0-0.:10 1 0.0 . 0
Ay {0 I-0°-1 -1 0.- 0.0 0 0

~ Complete performance tables were create’d for many values of N and M and from

them minimax tables were’ produced 9 Let [:z: y] be shorthand for the minimax table

- where N = z and M = y. For [2, 2], [2, 3], [2,4], [2 5] [2 6] a.nd 2,71, theré are no

minimax d1stmctlons between search algor1thms For [3 2],'[3; 3] [3 4], 3, 5] 3, 6] [3, 7]

“and [4, 2], there are minimax d1st1nct10ns between search algor1thms, although in each‘

" 'table, every search algor1thm is in the same m1n1max equivalence class.

In these tables, the performa.nce measure was the number of evaluat1ons required to find

the maximum va.lue in the populat1on Tablu were a.lso created where the performance

Tmeasure was the number of evaluatlons requlred to ﬁnd the m1n1mum value in the .

populatlon, a.nd once agam all search algorlthms were found to be in the same mlmma.x:

equlvalence class. These results suggest to the follow1ng conJecture

. Mmlmax ConJecture All determmlstlc non-repeatlng search algorlthms w1th a g1ven

®Large values of N and M require prohlbltlve ‘amounts of memory (see table 2) a.nd thus only

. modestly sized ta.bles were crea.ted
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finite domain and co-domain will be in the same minimax equivalence class.

2.8 Other Possibilities

_The overr1d1ng value of somethmg as abstract as a p0pu.1at10n table is in how it fa~

c111tates conceptua.hzatlon Populat10n tables make clear how" each search algorlthm .

behaves under all possible scenarlos, and they prov1de a foundation for proofs that can

lead to greater ms1ght into how search‘algorltluns behave.

There are many cohjectures as to what‘makes a function hard for.a‘particular type
of search’ algorlthm Modahty, ep1stas1s, compress1b1hty, and other factors have been
1mp11cated It is poss1ble to con81der a search algor1thm class such as a GA, and to then
determine wh1ch funct1ons in the populatlon table perform best on that class These
functlons could be dlssected and their. propert1es could be stated" deﬁmtlvely, at least
for the glven domain a.nd co-doma.m Factors such as moda.hty cou.ld be exhaustively

exammed Such a.na.lysls may ta.ke some of the guesswork out of knowmg thch type

.~ of search algonthm to. apply to. whjch type of problem Part of such an analys1s would

mvolve the tra.nslatlon from what a search algonthm gets, i.e. the populatlons in the

_“table, to what the search a.lgonthm does, i e. how it makes its selectlons

These techniques can require 'vast a.mounts of. computational time and Space, but that

'does not necessanly make them impractical. For starters it may be suﬂic1ent in certam

S1tuat10ns to ra.ndomly sample funct1ons rather than testing all functlons ‘In add1t10n

d1rect s1mu.1at10n may be av01ded by mathematlca.l analysis apphed to the obJects

.+ . formalized in the framework deve10ped in this dissertation. Algorlthmlc 1nformat1on

theory (commonly known as the study of ‘Kolmogorov complexity) may well contribute

to th1s understandmg The fact that the table is full of functlons and search algonthms'

that are mcompress1ble makes it ripe for thls type of ana.lys1s Furthermore, the incom-




pressibility method [6] studies the ;eﬂ'ect of 'typt'ca‘l input, which will be used extensively :

" in the following sections with the discussion of uniformly selgcted' functions.

2.9 Sfummary of \Poptlﬂati.o‘n;'i‘atble‘Pifopei'tiqs o
e All Populhtion ."I‘ablés -'
— Wlthm a row, no two populattoné ma.y be permutatlons of each other unless
they are equal. ' o
- All possible populé.tiqné of si_ze m exist in Tj,
- \All royl;»vs'conta.ix‘ling P, wi-ll‘h'z;;ve t'h'at f;gpulé;tion in gxactly the éame coiumns
:' — Each row hats the's‘a,me”n'umber‘ of ‘urﬁqué p-(;pulation's‘ E
- Permutations of Py, will occur in the sa.tne columi;S as P |
.' - All permutatlons of a populatlon (a.nd thus all posmble sea.rch paths) exist .
. i each column - ' ‘
° Cgmplete Population Tables '
- Rpivs ai'.l;e,unjque' o
- E'a'ch popula.tion in a row’is uniqﬁe
) ‘— No two populatlons in a row are permuta.tlons of each other-

— Rows are not permutatlons of each other

- No popula.tion, exists in morethan one column

2.10 Summary of Pé'l'fblfménce‘ Table Properties ,

‘e All Performsnée Tables * "
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®
- ;ROWS are perinutatioﬁs _Qf" éach \_('):th'e;' :
L= Ep,ch row i1as thé ga,me" n1:1mb‘er of 'uﬁi(iﬁe pei'i;orrﬁé;ﬁce Qec,tors \
- Wit}ﬁn. a;‘ éolu;pn,' a:ll'perfdm}iancelygctors are pefrputgtiéﬁs of one a.pother
- W1t}una column,a.ll ';‘)er.fofi‘xia}’xigg' ‘vg(‘:t:ors exist
e Cbnipietg' PAeljf‘or‘mgnl‘c(_a Tables
- ’—\; R,ows.' are unique
- Each'perfbrmance vector in a row is ﬁnigue
- Samé number of fov?su a."s‘a gompléte p0pﬂation tablé ‘
- f‘dr any row,‘ few of its permutaéions are ;bd,ih the table
- All éeg;ch aigorithmé (rows) will hp,vga the same cc;mplet'e'measure (NFL)
— Two diﬂferent’colux‘nns will differ at éach bosition

— The number of unique elements in a column will depehd on the number of -

unique co-domain values of the function defining the column
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3  Analytical Methods in 'Bla‘ck Box Search

Because search 'a.lgovrithms such as genetic aléorithms and hill climbing are stochastic
infnature, performance results,'will vary according to the seed of thellpseudo-ra.ndom
number generator. To overc'0me th1s Variation 'statistica.l"methods can be used to allow
reasonable genera.hzatmns regardmg performa.nce One of the main goals of this section

is to determine a means of ﬁndmg the expected behav1or ofa glven search: algorlthm on

a given furiction. Th1s will allow performa.nce compansons over both algorlthms and

functions, as well as performance comparlsonsj of classes of a.lgonthms over‘ classes of

functions.

Random search (with and without replacement) and enumeration will be analyzed in

_ deta11 Since sets X’ and Y are ﬁmte they can be enumerated and therefore identified

with sets of non-negative mtegers And 80 w1thout loss of generahty, the analyS1s in
this section will pertain to functlons that map from X = {0,1,. -1} to J’ ="

{0,1,. M —1}. This sectlon w111 also mtroduce a means of graphing the expected

‘ performance of an algorlthm over a class of functions. -

" For most experiments, each function will be run’to convergence many.times, each

time with a new seed. 10 The number of evaluations required to converge is recorded

for each rumn. Note that it is the number of functlon evaluations being counted and
not the number of generatlons the GA is bemg run. 11 This a.llows hill chmbers and "’
" genetlc a.lgorlthms to be compared on equa.l footmg A11 runs were requlred to achieve

* acceptable performa.nce.

The data from running a stochastic search a.lgorithm on a function multiple times can

" - 10Unless otherwise specxﬁed convergence is defined as the first occurrence of a value in a given subset .

of the co-domain.
"In certain sxtuatlons an eva.luatlon will not be counted e g. when using elltlsm the best stnngs
need not be reeva.luated in the next genera.tlon
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be used to construct a h1stogram that shows the percenta.ge of runs tha.t converged at
each trial number Such a lustogra.m w1ll be ca.lled a performance histogram. With an
adequate sample s1ze, it can be thought of as'a way to v1sua.11ze the expected probablllty

of first.success at a glven evaluatlon number

Now consider a graph that charts the cumulative percentage of success at each trial

number, ie. f(z) = Y 5., h(i) whet‘e h(1) is the percentage of runs that converged
at trial i. This type of graph will be called a’\ performance profile. Notice that since

the percentages are summed, a performance profile graphs an approximation of the

probability of success by trial z.

\

3.1 Expected Performance of Random Search

. Random search is an important benchmark to compare against, especially when consid-
ering the ramifications of the No Free 'thnch theorem. Therefore its expected behavior
will be studied in some’ deta.il. Let N. he the size of‘ the search space, let M be the
size of the co-domein, and let n be the size of the set that indicates convergence.!?

Convergence is recognized at the first evaluation of an element from the convergence

set.

The expected optimum value of a 'unjfbrinly selected function can be found with the
following analysis. P(S) will denote the probability of event S. Let y be the event that

the optimum co-domain value is y. Let A be the event that all co-domain values are

less than or equal to y, i.e. A={f : f(z) <y Vz € X}. Let B be the event that at

least one co-domain value is equal to y, i.e. B'= {f : IzeX: f(z) =y}. Let Cbe

the event that no co-doma,ih“value is equal to y, i.e. C={f : f(z)#£yVz € X}

12This definition. allows for two usages: either the maximum value is repeated n times, or more
generally, the top n va.lues in the space indicate adequa.te convergence.




65

P = PlAnE) -
| Z=LZ/*VP(-A)P(B|A)
| =;P(A)(1—P(0|A))
=@

N -y =¥
MN

The expected optimum \‘ra.lue'can,bepomputed as follows:

Ey) = Z ———(y—l)N)

M L .
: 1
= W Yoy Z(y+1)y
y=1 y—O
1 M=1 S M=1 ' '
- MN ZyN+1+MN+1 ZyN+1 0N+1 Zy
y=1 y=1 =0
M1 y ‘
=. M- (_
: M
y=1

. In the following éxperifnenté, thé doma.in size “a.nd" ,co-doina.in size will often be 10 bit

. and 16 bit respectively. In such a case, the expected optimum value is approximately, -

65,472, or about 64 le_s;s than the optirquni.

- 3.1.1 Random Search with Replacemént

Cousider a random search glgorithm that -chooses boints with replacement according

to a uxﬁformdistributioh, and consider the application of this search algorithm to an
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Expected Performance Hlstogram; — Random Search with .
’ Replacement
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Figure 2: Expected performance histograms for random search with replacement when
the size of the search space is 1024 and there are n global optima.

arbitrary function. Let p be the probability of generating an optimum value for a single

trial, let ¢ be the probability of not generating an optimum value for a single trial, and"

let P; be the probability that the first optimum occurs at, trial . First success at t'he‘z'tH

trial is a matter of i—1 failures and the;sin!gle final success, all of which are independent

because of replacement:

P = pqd!

I
2ls
AN
=
20
S
~—
|

This value allows the‘.e':'z:peéted ﬁeffofxﬁa.’nce histogram and performance profile to be
created, i.e. a profilé that outlines'the expected performance on black box search. The
expected performance histograms for various values of n are shown in figure 2. The

assocjated performance profiles are shown in figure 3.

Consider now the expected number of evaluations before convergence. For random
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Figure 3: Expected performance profiles for random search with replacement when the
gize of the search space is 1024 and there are n global optima.

search with replacement, the derivation for expected time to convergence is as follows:

E(z)

I
z|3
[
8
LS
&
L

In the case where there is a smgle global maximum, random search with replacement

will thus be expected to perform as many evaluations as there are pomts in the search
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space.

3.1.2 Random Search without Replacerhent

Just as with random search with replacement, this search algorithm will have equal
expected performance for any. two functions having ths same values _for N and n. Let
p,-vbe the event of finding a globai optimum at step ¢, and let F; bev the event of finding
the first optimum value at stepvz'., Let g; be the event of not finding a global optimum
at step 4, and let Q; be the event of not finding-a global optimum at a.ﬂy step less than
or equal to 7. As before, let N be the size of the search space and let n be the size
of the set that indicates convergence. The last step in the following derivation for the

probability of Q; utilizes a telescoping product simplification.

P(Q;) = P(aNQi-1)

= Pgi| Qi-1) - P(Qi-1)
N-n—-i+l1

= W'P(Qi—“

=HNn_1

"‘1N—i;k‘
N—k

- k=0

Note that in the ﬁnalAresulyt there is no danger of dividing by zero since n— 1 will always
be less than N. P(H), the probability of first success at step z, is the probability of

i—1 fa.llures and the smgle final success
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Expected Performance Histograms:- Random Search
- without Replacement )
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Figure 4: 'Expected performance histogramé for random search without replacement’
when the size of the search space is 1024 and there are n global optima.

P(P) = P(p:iN Qi)

= P(p:| Qi-1) - P(Qi1)

This formula was used to graph expected performance histograms and expected per-

formance profiles for random search without replacement, as shown in figures 4 and 5.

For random search without replacement, the expected number of evaluations would be

N
E@) = > z-P(P)
‘ =1 )
T-n ’ﬁN—a:+1-—k
N-z+1 N-—-k
=1 k=0
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Expected Performanee Proflles Random Search wlthout
Fleplaeement -

ulative probability o
[]
=~
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o
N
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- numberofevaluizllons - ’

F1gure 5 Expected performance proﬁles for random search w1thout replacement when

the size of the search space is 1024 andrthere are n- global opt1ma

_ N+1.
n+1

L Recall that the’ expected convergence t1me of random search w1th replacement isN / n, -

- and thus asn 1ncreases, the advantage of non-repeatmg search d1m1mshes

‘ 32 " Enumeration’

Search without'replacement is an enumeration, and by the NFI, theorem all enumer- '

ation strategles have equal performance over the ensemble of all functions. The NFL

+ theorem also makes clear that no other search algorlthm can have better performance

over all functions, and thus enumeration’s performancevproﬁle can serve as a useful

- baseline for judging the performance of other search algorithms If the search algo-

rithms are allowed to dlﬂ'erentlate themselves by the pomts they have already seen (as

is the case in populatmn tables), then the number of enumeratlon search algorlthms is ..




the Algorithm Count, Re'sult 1 from section 2.'2,1:'

' While random search w1thout replacement w1ll have the same expected performance
on all funct1ons having the same N and n values, enumerat1on strateg1es can perform

) ery d1ﬂ'erently depend1ng on the funct1on
33 "An Emplrical‘I_nve’stigation: of Robustness

Genet1c algor1thms and lull cl1mbers are w1dely beheved to be robust search algor1thms,
e they are expected to perform reasonably well on a very large set of funct1ons Th1sAE
section will 1nvest1gate th1s assert1on by explormg the performance of these two searchl' :
'algor1thms on randomly selected funct1ons and by compar1ng the1r performance agamst ‘ .

random search. -

A randomly selected funct1on is generated by randomly selectmg a co-doma1n element 4

i (w1th un1form probab1lxty) for each value in the domam It is clear that such a funct1on4

‘ generator selects umformly over all poss1ble funct1ons havmg the glven doma1n and co- w

'»’domam Even though these funct1ons have been randomly generated they should not
‘ :be called random funct1ons since they are completely determ1n1st1c, rather they are

randomly selected funct1ons Unless otherw1se ment1oned a randomly selected funct1on

L w1ll come from a umform drstr1but1on

" A funct1on havmg 10 b1t domam and 16 b1t co-domam was randomly selected for tlus(

exper1ment Th1s funct1on turns out to be extremely difficult for the GA 1more dxfﬁcult

than many of the toughest commonly used test funct1ons for GAs The performance . -

- proﬁles of tlus funct1on at d1ﬁ'erent mutat1on rates are shown in ﬁgure 6 Performance

1mproves as ‘the mutat1on rate is mcreased to 0. 5 at wluch pomt the proﬁle become

13For example, if the optimum value of the’ functlon occurs at the first value that the enumeratlon
tests, optlma.l performance is achieved. : : :
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Mutation Impact on a Randomly Selected Function

o o o
E-N [+,) o

o
o
:

cumulative number of runs converged

0 500 1000 1500 2000
number of evalustions

Figure 6: Performance profiles at various mutation rates for a randomly selected func-
tion. Profiles are shown at mutation rates of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, with
performance increasing with mutation.

indistinguishable from that of random search with replacement.

For this randomly selected function the genetic algorithm does not even beat random
search with replacement, no matter what the mutation rate. Furthermore, it performs
far worse than random search without. replacement. ‘Although this is only oﬁe ran-
domly selected function, its performance is typical, as will be shown by looking at large

numbers of raﬁdomly selected functions.

The poor performance of the GA begs the question: what percentage of functions are
well suited to solving with a GA? A performance summary can be produced over a set
of functions by running each function to convergence many times and accumulating
the results for all functions in the set. If the set of functions is very large,v a further
approximation may involve using a reasonable number of randomly selected functions

from that set.
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For this section, histograms were . generated by randomly select1ng 10, 000 functions
-(v1a a umform distribution), ‘where. each functlon is run 100 times to convergence The
- average convergence time_for each functlon is noted, and these averages ‘are graphed
‘as a h1stogram Such & }ustogram w1ll be called a black boz hzstogmm because of its
relevance to black box search. In th1s sectlon, the functlons used will have N = 1024
) '(10 bit) and M = 65,536 (16 bit). |

.' Because random search w1th replacement has the same expected performance for each
function, a black box histogram for it would be an impulse at the expected value of -
" N/n. For the same reason, a black box histogram of random sea.rch w1thout replacement»

would be an 1mpulse at- the expected ~value ‘of (N+1)/(n+1).

' *The s1tuat10n is. different for enumeration smce it can have dlﬂ'erent expected per-
. formances on dlﬂ'erent functlons In order to determme the expected percentage of
. functlons that converge at each evaluatlon number Tote that i in the case when n=1, V'
- the- number of functlons that have the s1ngle optimum at-point a is the same as the
number of flmctlons that have the s1ngle 0pt1mum at any other pomt b, leading to av
o :umform d1str1bution ThlS is the same dlStrlbuthIl that exists in enumeration 8 ex-
pected performance histogram for n=1. In general note that the formula for P(F;) in |
section 3. 1 2 is the. probabihty of ﬁrst success at evaluation %, and that for enumeration,
_tlus can be seen as the percenta.ge of functions that converge at the- given evaluation
number The expected performance hlstogram of enumeration (ﬁgure 4) is thus the

I

black box lustogram for. enu.meratlon

:Figure 7 shows a frequency distribution indicating hovv both a GA and a hill climber
perform over - 10 ,000 functions. The w1dth of-each b1n is 50 The expected distribution
of enumeration (n =.1) is included for compa.nson adjusted for bin width and the

number of functlons run. Recall that each functlon was run 100 t1mes to convergence, .
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Performance Dlstributions.'
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Flgure 7 Black box hrstograms This ﬁgure shows how both a GA and hill chmb-
ing perform over, 10,000 randomly selected functions. The expected distribution for
enumeratron is included for comparison.. .

and the average number of evaluatlons were noted...For the GA the average of these
o averages was 1447 evaluations, and for the thl clunber, the average ‘was 1185 Given
_n = 1, enumeration’s average run 1 time would be 512 5, less than half of either of its
' “'compet1tors These graphs can be scaled to show the expected percerntage of functlons

that converge at each evaluat1on number

The same experlment was performed at mutat1on rates’ of 0. 2 0.4, a.nd 0.5, w1th the
resultmg black box h1stograms shown in ﬁg'ure 8. Omce agam it is'clear that a low
'mutat1on rate leads to poor GA performance for black box search. As the mutat1on
’rate 1ncreases, the.G‘A ,approaches the performance of random search with replacement,
and at 0.5, the GA'fbec‘omes random search \lvith replacement since the ‘ele‘ments in
one generation 'are not expected to bear any resemblance to the :elements in the next
generation. o o ' |

o

At high mutation, lncreasing the nnmber of runs per function will have the effect of .
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Black Box Profiles for.a GA at Various Mutation Rates
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Figure 8: Black box histograms for a GA at various mutation rates, and the black box

" histogram spike of random search with replacement. As the mutation increases, the

GA’s black box histogram more closely resembles the profile of random search with
replacement. The profiles for 0.4 and 0.5 are almost indistinguishable.

narrowing and heightening the curve, making it even more like the expected black box
histogram spike for random search with replacement. The variation at high mutation
in figure 8 is attributable to-the modest sample size when computing the average for

each function.

Just as a GA becomes mére like random search with replacement as the mutation rate
increases, hill climbing can become more like random search without replacement by
changing a parameter, namely -the neighborhood size. The hill climbing experiment
above shows performance with neighborhood size s = 10. When s = N, hill climbing

is random search without replacement, and thus hill climbing performance is expected

to improve on a black box function as neighborhood size increases. Note that the per-

formance limit with hill climbing (random search without replacement) is significantly

better than the performance limit with GAs (random search with replacement). ‘
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In these experiments, only a small fraétiop of fonctions were solved faster than the
expected search tﬁné of enumeratioh: Thg NFL theorem makes clear that in black box
situations, enumeration can’t be beat, but.these experiments show that enmperation
is vastly superior to genetic algorithms and hill climbing for black box,éea.rch. By the
above experhnenﬁs And because of the patholtv)gica.lr way that a GA can retest points,

the following conjecture is made, which runs in stark contrast to hype in the field:

Black Box Futility Conjecture: In a black box search scenz;,rio, the following four
search algorithms will be expected to exhibit the following performance ranking, from
best fo worst: random search without replacement, random search with replacement,

hill climbing, genetic algorithms.

In [4], it is mentioned that Rik Belew “once jokingly remarked to [David Goldberg]
that it requires an evil mmind to dream up deceptive, blocked, or otherwise *"GA-yucky’
functions.” On the contrary, most functions are “GA-yucky” and finding one is as easy

as rolling the dice. -
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4 Representation and Black Box Search

Section 3 identified X and Y with sets of integers. Consider X = {&, <, 0, #} and
Y = {A,0,0}- These may be identified with sets {0,1,2,3} and {0, 1, 2} respectively. .

in tbe following manner:
=0 ¢=1 O0=2 &=3
. A =0 O=1 O => 2
In this’representat?on, the_ function

f={(®0),(,4),(9,0), (6,0}

" is represented by the function f' = |z.— 1|, i.e. {(0,1), (1,0),(2,1),(3, 2)'}. If, however,
set Y wa.é identified as above but set X was identified with {0,1,2,3} in some other
way, for.instance , | i ' ‘
&3 ¢=2 OU=1 &=0

Then f is represented by f” = |z — 2|, ie. {(3,1),(2,0),(1,1),(0,2)}.

It is thus clear that changing the representation as above changes one function into
another. Section 2.6;1 defined a permutation of a function as follows: of(z) = fo .
o~ 1(z). The perxhufation o that' allows of = f" is {(0,3),(3,0),(1,2), (2,1)}. This

can be verified by computing of’ for all elements in the domain and comparing the

results with f” as follows:

of'(0) = f'o~1(0) = £'(3) = 2= £"(0)



o) = fla ()= £y = 1= £1(1)
of )=o) =W =0=1"0)

of'3)=f'o -1(3) f(0)—1—f"(3)

Representatlons therefore can be 1dent1ﬁed w1th permutatlons The app11cat1on of a-
permutatlon to a ﬁmctlon w111 be called a change of representatlon (for ‘that funtlon) .
* In this sect1on it will be assumed that the co-domain y has a ﬁxed representatlon and

thus it is'a change of representatlon of the domam that w111 be dlscussed

_ The following section will demonstrate that ‘a‘change of representation can dramaticall'j' :
affect the performance of a search algontlun It will then be shown how" changmg
a representatlon impacts- the ensemble of all functlons by exammng its eﬂ'ect on a

- performance table

4.1 Changing a Representation

" As was seen in section 3.3,"a GA will generally perform,'mise"rably on a randomly
selected function. Vose and Liepins[13]- liave shown how a function can be made easier

. for _a GA by changmg its representation.-'I;his is 'illustrated in the following example.‘ A

Consider a functlon b wluch maps bmary str1ngs of length n to a real number, ie.

: {0,1}" —+ R. Create an- ordermg on the domam w1th the follow1ng two rules:
bmary strlngs w1th fewer 1’s w111 come before strings hav1ng more 1’ 8; 1f two strlngs
“have the same number of ones, leftmost b1ts will be deemed more s1gmﬁcant Create a

list X contalnmg all stnngs from the domaln of f and sort it based on thlS ordermg of

.*_ the domam, resulting in list X'.: Create another hst Y- where each element Y; = f (X,-)

(note 'that' Y"is a list, not a set, and may contain duplicates). Sort Y by numeric
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_ Table 17: Three bit linear sort.

| string | fitness |

‘ :.000 | lowest fitness

oot |l

| 010
100
011
<101 |
110
111 | highest fitness

-value resulting in ) Tist Y. Create a new functron f’ = {(X',,Y',) 0 < i< N -1k
The functlon f ! is thus a change of representation of the original flmctlon f where low
ordered domain elements are paired w1th low valued range elements, and high ordered
domain elements a.re'paired with high valued range elements. The function | f' will be

called a linear sort of function f, with an example given in table 17.

Such a change of representation effects a unimodal landscape in Hamming space. Fig-

ure 9-shows a performance profile for a GA working on a randomly selected function

and a performance proﬁle where the same funcétion is grven a linear sort and thus the

GAis worklng with a new representatlon The change of representatlon dramat1ca11y

1mproves performance Of course, sorting the search space is more difficult than search-

mg it and thus this is by 1no means practlcal but. it shows that a drfﬁcult problem can -

be made easy with a change of representatron

4.2 Change of Representation in a Population Table _

Population tables deal directly and completely with all functions and all deterministic

'non-repeating search algorithms of a finite domain and co-domain,'and thns incorporate
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Change of Representatioﬁ -- Performance Impact

o
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o o
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Figure 9: Performance'proﬁles for a GA on a-'randomly selected:ﬁtness function, and’

. 'on the same function after a linear sort was performed as a change of representation.

all representations.‘ -

R
, B

Cons1der the situation with & = {z, Y, z} and y = {0 1} There are eight poss1ble

. funct1ons and six poss1ble representatlons of the search space. An ordermg of {0, 1,2}

will show how the original input space is mapped to'a new representat1on Table 18

‘ shows how each representation alters the effect of the function in the or1g1nal domain. -

.For example, i ;n row 021 and column fj, f1(0) 0 fl(l) 0, and f1(2)'— 1. The effect

is that f1 with the, change of representat1on looks like. f2 without the change.

Each row is a permutat1on of the others, and thus a change of representat1on shuffles

funct1ons when seen as the eﬁ'ect it has'on the or1g1nal problem space. From an abstract

: perspect1ve tlus corresponds to the fact that the map f —of is one-to-one and onto .

"(s1nce f > o1 f is the 1nverse) Because of th1s, a change of representat1on can be

seen as rearranglng the columns (funct1ons) of a populat1on table or a performance



- ‘Table 18: A table hstxng a.ll funct1ons a.nd representatlons when X = {:z:, 7, z} and Y =
- . {0,1}.. The row head1ng indicates how the domaln is remapped for each representation, .
"+ ‘and the row shows.the effect of the remappmg on the or1g1nal funct1on space. Each' Lo
= f*;",element of Tow ZYz | shows f (=)f (y) f (z) as a str1ng '

N

S SR
D -

C e h s s fefi |
[zyz.[000 001  010: 011. 100 101 110 : 111 "
- [012] 000 001 7010--011 -100 101- 110 111
-+ 021.]000 010" 00L- 011 . 100 110 ‘101 - 111
.. [102 | 000 001-+100 'i01 010 011110 111 |
120 | 000 010 100 110, 001 011 101 111

1201 | 000 100 001 101 010 110 O11  1i1
210 | 000 - 100° 010 110 001- 101 OL1 111

" table. Seen th1s way, 1t is clea.r that a change of representat1on can result in very: .
d1ﬁ'erent performance for a g1ven a.lgor1thm worklng on a g1ven funct1on, but that the ‘

overall measure of performance will be the same for any representat1on ThlS is one .

way to conclude that all representat1ons prov1de equa.l performa.nce over a.ll funct1ons,

" a foundation of the NFL proof of Radchﬂ'e and Surry [7]

Note that there are more rows in the population table than ,there are representations, L

B

- "-whi'ch makes it clear that search a.lgorithm A cannot always be transformed into search '

algonthm B through a change of representat1on On the other hand for any search

algor1thm and any change of representat1on, there exists another search algorithm in

vthe or1g1nal representat1on with exactly the same performa.nce for every functlon Ex-
. pressed formally, VA Vo 3B V fV(B, f) V(A of). ThlS may be v1ewed as saying
._tha.t a change of representat1on amounts toa cha.nge of search algor1thm In fact the

. search algorlthm B that ex1sts is none other than crA

o8l
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'~ 4.3 Problem Difficulty and Representation

The previous sections made clear that an optimization problem can have varying de-
“grees of difficulty dependmg on, the representa.tlon used However there is often a
desire t.oﬁt_hmk of an optlmlzatmn problem asf:bemg somehow independent of repre-
'sentatic;n; This sectibn;explofes how & fﬁﬁcﬁion’é difficulty can be thought of as being
independent of representa,tion by -a'Veraging' over rebresent'ations. The surprising re-
sult is that a flmction’e difficulty is tﬁe same whether a,veragea over representa.tiens or

search algorithms.

Function difficulty aexioss all representations for a fixed search algorithm A can be based
. on the performance vectors generated from A and G where G is a iisting of functions
tilat result from applying all representations to function f (this li§ting may contain
duplicates). Because G is closed under permuta.tion—, the value of a complete measure

over G is ihdependent of the search algorithm (by theorem 16). In order to determine a

function’s difficulty across all search algorithms, one can refer to that function’s column .

in a performance table. For example, the collection of performance vector measures

from a column could be combined in a normalized sum.

The following theorem shows that average difficulty of a function over all representa-

tions coincides with average difficulty over all search algorithms. Let |A| indicate the

number of rows in a performance table, and let |o| indicate the number of representa-.

tions (permutations), i.e. N!.

' Theorem 18: ‘ .
1« 1
i '\;M(WA, of)) = W;M(V(A, )

.where the left hand side of the »equa.ti\on is over all permutations o e.nd the right hand -

 side is over all search algorithms A.
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Proof: In the first step of the following derivation, o is applied to A without affecting
the sum since oA ranges over all search algorithms as A does. Because the sum is
independent of o, one may sum over 5,11 o and divide by the number of permutations
as is done in line two. In line three, the summation over o is moved inside, and
corollary 3 is applied, moving the o from the A to the f. Because ), M(V(4,0f)) is
search algorithm independent (theorem 16), it may be factored out of the summation |

over search algorithms as is done in line four.

2 ZM(V (4,f) = |A|Z:M(V(0A ) : (1)
_ HEWEM(V(m,f)). | 2)
- & HA‘EEM(V(A ,of)) 3)
= —EM(V(A,af))——Zl (4)
|o} p Al A
— %lZM(V(A,af)) (5)
O

In thebrem 18, the measure of overall function difficulty is the same whether one av-
erages over search algorithms or representations. Recall that in section 2.6, a version
of the NFL theorem (theorem 14) was given that required equally weighted functions.
The results from this section indicate that this restriction can be lifted provided that
an overali difficulty measure (over all representations) is used for each function rather
than a performaﬁce vector r'neasure:. Let D(f) indicate an overall difficulty measure
for function .f as described in theorem 18, and let W(f) indicate the weight given to
function f. Because both D(f) and W(f) are independent of search algorithm, the

combined measure ) . W(f)D(f) must be as well.
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5 Compressibility of Functions and Black Box Search

As d1scussed 1n section 2 6, the NFL theorem is pr1mar1ly concerned with a umform,

d1str1but1on of functions; search algorithms can perform better tha.n enumeration, but

only on a small subset of functions Holland' [5] has argued that‘compressible functions .

could be such a frlutful subset for local search. algonthms such as hill chmbmg and
" GAsM He argues that the NFL theorem 1s not part1cula.rly releva.nt in pract1ce for
Just this reason, i. e. since most funct1ons in pract1ce are compress1ble, the NFL theorem
w111 not nnpact such work.. Tlus sectlon will test the underlymg premise, namely that
non-compresmble funct1ons are Imore d1ﬂicult for a search algorithm than compressible

functions.

There are many examples of functions that‘ are easy to describe, but diﬂicult fora GA

-or a hill cl1mber For exa.mple, a needle in a haystack function is one where there i isa

smgle global maximum w1th relat1vely lugh ﬁtness, with all other pomts in the sea.rch

" space having relat1vely low fitness. It is- clear that no search algonthm can outperform |

enumerat1on on such a funct1on class, a.nd thus the NFL theorem can be applicable in

: As1tuat10ns mvolvmg lughly compresmble funct1ons Furthermore, sect1on 3.3 1nd1cated 4

“how enumerat1on performs better tha.n a GA or a hill cl1mber for the maJorlty of

randomly selected funct1ons Consequently, enumerat1on will be expected to perform ’

better than a GA or a hill climber on any size' set of randomly selected funct1ons The
original NFL sta.tement 1nvolves performance over all functlons, but even on a single
randomly selected functlon, enumeratlon is expected to have better performance than

" a GA or a hill cl1mber

In a test of how’ funct1on compress1b1l1ty 1mpacts search algorithm performance, one-

might wish to compare GA performa.nce ona compress1ble set of funct1ons against GA

. "Compressible functions are known to be a small fraction of all functlons .
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performance on an incom'pregsible set of functiohs. While compressible functions can '
be generated easily enough, obtaining a set of incompressible functions is problematic
since determining compressibility is in general uncomputable [6]. Instead of comparing
against a set of incompressible functions, this section will compare against a set of

functions whose members have a high probability of being incompressible.

One conceivable source of compressible functions takes functions from common testing
and benchmark functions for search algorithms. However, this is a problematic source
since so many of these functions are poor measures of performance (Whitley et. al.
[16]), commonly exhibiting low modality (Whitley et. al. [17]) and low .epistasis (Sa-
lomon [10]). Furthermore, in order to have the greatest relevance to black box search,
both compressible and incompressible function classes.should be as large and as diverse

as possible.

For the compressible set of functions, a pseudo-random number generator will be used.
Since it can be implemented in a relatively small number of bits, it will generate highly
compressible functions when the functions are sufficiently sized. Furthermore, since the
pseudo-random number generator will attempt to select numbers in a uniform fashion,
it will draw from a large and diverse class of functions. For the incompressible function
set, a source of truly random numbers will be used to build the functions. This provides
a function set that is maximal in that it includes all possible functions, and diverse
in that it will be expected to sample all functions uniformly. Because most functions
are incompressible, this set is expected to contain mostly incompressible functions.
Pseudo-random numbers were generated with the Random.nextInt(int n) function

of Java 1.2.1° The pseudo-random number generator in Java is extremely compact.

15http://java.sun.com/products/jdk/1.2/docs/api/java/util/Random. html. Java uses a linear con-
gruential pseudo-random number generator as described by Donald E. Knuth in The Art of Computer
Programming, Volume 2: Seminumerical Algorithms, section 3.2.1.
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True random functions were generated from streams of random bits produced bv

www.random.org, an orgamzatlon wluch uses atmospherlc data to generate a ran- -

dom b1t stream Their numbers have been tested in various ways to ensure a uniform
d1str1butlon at various resolutlons The details of their methodology can be found on

their web s1te.

A GA with 10 bit strings was ’run “on:100—differ‘ent pseudo-random functlons with
- 16 bit Alco-domain Such a function can be expressed as a table in 2 kilobytes (1024
entr1es at 2 bytes each), and there- are roughly 104 932 functions havmg th1s domaln
' "',and co-domam The pseudo-random number generator is easily express1ble in less than
1200 bytes, and is therefore generating compress1ble flmctlons For each functlon a

‘ performance proﬁle was generated based .on 1000 runs to’ convergence The average of

- - the average run lengths was 1438 evaluatlons, w1th a standard dev1at10n of 276. When

" the same experrment ‘was performed w1th 100 true random funct1ons, the results were‘ ,
’ almost 1dent1cal the average of the average run lengths was - 1405 w1th a standard ,

dev1at10n of 274 W1th both true random and - pseudo-random, the performance was’

* worse than the expected performance of random search w1th replacement and more

than tw1ce as bad as-the expected performance of enumeration (512.5 evaluations for

. functlons w1th a single global optlmum)

: These results can be compared with the results from section 3.3 where 10, 000 randomly

selected funct1ons (also havmg 10 b1t .domain and 16 bit co-domain) were converged
‘w1th a GA and a hrll chmber In that exper1ment enumeratlon performed better than
" 'the GA and the hill chmber on the vast maJorlty of those 10, 000 functions. Because

that experlment used a pseudo-random number generator the resultmg functions were

all compress1ble, and yet enumeration was still the clear winner. Furthermore, -this -

sampling of 10,000 was only a tiny fraction of all fnnctions, amounting to a one in 104928

e sampling. By contrast, there is estimated to be about 107 atoms in the universe, and
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thus even with extremely small samphngs of functlons (less tha.n an atom per umverse), '
the NFL result can be ev1dent The above experrment w1th true random nu.mbers had

a sa.mple size of only 100, and yet the results were qua.nt1tat1vely the same. Indeed 1n-
this dissertation, roughly a milhon pseudo-randomly selected functions were converged, -
and even though they were in actuahty h1ghly compressible, almost all of them resulted

in miserable performa.nce for both GA and hill chmber.

Because no significant performance difference was found in the previous experiment, an-

other experiment was performed w‘here-the functidn domains were considerably larger.
“In this ce.se, the GA searched over '15 bit strings, seeking the optimum 16 bit number ‘
There are roughly 10157:826 functrons havmg this domaln and’ co-domam and such a

function can be described as a table in 64 kilobytes The pseudo-random nu.mber gen-
erator will therefore be producmg functlons at a much higher rate of compress10n.161 '
The GA optimized 100 pseudo-ra.ndom functions, and 100 true ra.ndom functions, with
each function being run to convergence 100 times. For each function, the average ’tiine
to convergence was noted, and from those averages, an average oirer the 100 functions
was found. For pseudo-random functions, the average of the averages was 32,190 with
a standard deviation of 9121 while for true random functrons, the value was 32,040
with a sta.ndard devratron of 9361.17 Once 2 again, the pseudo-random number generator
creates functions that are just as difficult for a GA as a true random number generator,
even though the functions from the pseudo-random number generator are hrghly com-
pressible. As in the previous experlment, the GA’s performance i is far worse than the

expected performance of enumeration (16,384 evaluations for functions with a single

global optimum).

Because the GA’s performance in both of these experiments was so much worse than

16The pseudo-random number genera.tor need not be a.ny larger than in the prevxous expenment -
it simply generates more numbers. :

"The range of averages was from 11,427 to 47,923 for pseudo-ra.ndom functlons and from 8415 to
45,894 for true random functions. :
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enumeration, it is clear that the NFL curse is not being circumvented, even when
using small sets of highly compressible ré.ndoxllﬂy”selected functions. As discussed:in
section- 2.6.3, English claimed 2] ‘that NFL consequences may occur whehever the
function set to be optimized is “large and diffuse,” but the results from this section

underscore the fact that the set of functions does not need to be large. -
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6 Conclusions

A framework was introduced for the study of deterministic non-repeating search algo-
rithms. Population tables were developed to capture the dynamics of all such search
algorithms on all functions of a finite domain and co-domain. Many properties of this

framework were proven, and the number of deterministic non-repeating search algo-

rithms was estabﬁshe&.

All objects associated with the framework were put into canonical form, allowing for
tables to be produced and experiments to be performed over all search algorithms of a
given size. The canonical form of each object was designed to be maximally compact.
Methods were provided for translating an object to its canonical number and back

again.

The framework demonstrated its usefulness with a much-needed straightforward proof
of the NFL theorem. The framework also proved useful in describing the works of
others on the subject, and in extending the NFL result to non-complete function sets
and to a meaningful definition of stochastic search. It facilitates an understanding of

how a change of representation affects search.

Section 2.7 used performance tables to explore in detail the minimax relation between
search algorithms with the unique benefit of being able to compare all such search
algorithms for a.given domain and co-domain. This relation was studied for two per-

formance measures and for many values of N and M. The notion of a minimax equiv-

" alence class was introduced, and at each domain and co-domain size studied, all search

algorithms were found to be in the same minimax equivalence class.

The expected performance of random search (with and without replacement) and enu-
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meration were explored. Commonly stated claims regarding the robustness of hill
climbing and genetic algorithms were tested with randomly selected functions, and
both search algorithms were shown to perform poorly when compared against random
search without replacement. The genetic algorithm even performed worse than ran-
dom search with replacement. The expected performance of random search without
" replacement serves as an important baseline since no search algorithm is expected to

beat it in a black box scenario.

There has been increased criticism of the test suite functions used to determine search
algorithm performance. The use of randomly selected functiéns can provide a ‘good
alternative, providing an unbiased sampling of function space, and thereby allowing
results to be generalized to the set of all functions. Results from randomly seiected
functions of a certain property can generalize to all functions havihg the given prop-
erty. For these reasons, randomly selected functions were used at several points in this

dissertation.

The analytical methods described in section 3 were put to use to determine the impact
of compressibility on search algorithm performance. A set of compressible fuﬁctions
was pitted against another set of functions where most elements were expected to be
incompressible. A simple genetic algorithm ran each function in both sets to conver-
gence 1000 times, and the overall performance was judged to be the same for both
sets, and thus compressibility was not a factor in performance. In accordance with the
results from section 3.3, enumeration is shown to outperform a GA even with small
sets of randomly selec’ged functions. In short, neither compressibility nor small set size

can be expected to save randomly selected functions from the NFL curse.
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- 61 Further Research

The framework introduced in section 2 can serve as a foundation for further theoreti-

.cal work, allowing more properties of popilletion f,ebles and performance tables to be

discovered. Because search' algorithms-’a.ré rela.fed by row permutations in a population
table, minimax relations could possibly be formahzed using group theory, which may
also be useful in exploring relatlons other than minimax. Section 2.8 dlscussed several

possible applica.tions of the framework. The,ﬁeld»of algorithmic information theory

© (also known ‘as the study of Kolmogorov complexity) should be able to make contri-

_ butions to the study of black box search, ‘since it concerns itself with incompressible

objects.

The compress1b1hty results could be extended to include randomly selected determin-
istic non-repeatmg search -algorithms. Such a search algorithm could be generated by
randomly selectmg a permutation for each new function encountered. It is speculated

that the results ;;vould mirror the‘resuits of section 5.
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A NFL Result with Unequaliy Weighted Functions

One version of the NFL theorem (theorem 14) applies when the overall measure uses
equally weighted performance vector measures. It is easy to see how placing greater
importance on a set of functions could lead to results contrary to the conclusion of the

NFL theorem since search algorithms that‘; did best on the favored functions could have

a large advantage over others. However, under certain circumstances, the NFL result

occurs even when overall measures are not equally weighted, as the following example

illustrates:

When N = M = 2, there are only two possible non-repeafing search algorithms: either,

o is chosen first (search algorithm A) or z; is chosen first (search algorithm B). There

are four possible functions, and without ‘loss of generality we will assume that yp < y;.

Table 19 shows how ea.ch function maps the two pomts zo and T1,- -and also shows the
number of evaluations reqmred to find the Optlmum value for each search algorithm.
. That number of evaluations wrll be used‘as the performance vector measure.

Table 19: An example of when the NFL result occurs when the funct1ons are not
weighted equally. - '

l N | Algorithm A Algorithm B J

1 fo| % % 1 1
filyw w1 2 ' 1
felym % 1 2
falm wn | 1 1

The overall measure will be weighted, and the desire is to know where in weight space
the NFL result occurs, i.e. where the overall measures for the two search algorithms

~ are equal. The following two equations follow from table 19:
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overall measure for Algorithm A = wg + 2w; + w2 + w3

overall measure for Algorithm B = wy + w; + 2we + w3

Setting these two equations equal shows that the NFL result occurs when w; = ws,
independent of the values of wy and w3, showing that all the weights need not be equal

for the NFL result to hold.
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