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Abstract

This work primarily investigates use of the neural network(NN) method to analyze

spectral data collected in single molecule detection(SMD) and identification (SMI) ex

periments.. The 2-layer neural networks, with sigmoid as the activation function, are

constructed and trained on a set of simulated data using back-propagation and the 6-

learning rule. The trained networks are then used for identification of photon bmsts in

subsequent simulations. Results sliow that the NN method yields better identification

of individual photon bursts than the traditional maximum likelihood estimation (MLE),

particularly in cases where the fiuorophores have disparate fluorescence quantum effi

ciencies, absorption cross-sections, or photodegradation efficiencies.

In addition, this work reports several improvements over the prior version of the

Monte Carlo simulation program. The improved version considers the fluorescence prob

ability as the convolution of the pure exponential decay function characterized by the

fluorescence lifetime and the instrument impulse response function in the experiment.

The setting of the time window is then implemented by monitoring the variation of

signal and noise. A number of problems have been investigated by using the improved

version. In particular, the effects of the number and widths of the bins within the time,

window on the,precision of identification of molecules are studied. The results from the

improved version of the simulation show that only a small number of bins (4-8) are

required to achieve approximately 90% correct predictions with the NN method. Bin

widths chosen in accordance with the intuitive algorithm, or equal bin widths, generally
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give better predictions.

Experimental improvements are also reported in this work. In particular, the transit

time of BODIBY-TR(D-6116) dye molecules in an SMD experiment was improved to

less than 200 fis, and a circuit is implemented to accomplish fast and continuous data

collection to be used in future single molecule identification experiments.
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Chapter 1

Introduction

In the past decade, the detection of individual fluorescent molecules in solution, as well

as potential applications in the area of DNA sequencing, has drawn increasing attention

from scientists around world, and considerable progress has been made. As the SMD

experiment can be performed routinely in many labs, the main focus of the topic has

been switched to identify molecules individually by using ultra-sensitive fluorescence

spectroscopy techniques.

Ultra-sensitive fluorescence spectroscopy techniques for distinguishing between dif

ferent fluorophores have applications for several DNA sequencing technologies, including

'rapid' and 'conventional' DNA sequencing schemes, and in gene detection and analy

sis by hybridization techniques that utilizes DNA micro-chip arrays or single molecule

flow cytometry [1]. For example, for 'conventional' DNA sequencing by the Sanger

method, the electrophoresis within a capillary or slab gel may be multiplexed by the



use of spectroscopically identifiable fluorescent labels. Lieberwirth et al.[2] have recently

demonstrated such multiplex dye DNA sequencing in capillary gel electrophoresis by the

use of four dyes with disparate fluorescence lifetimes.

In the single-molecule detection (SMD) approach to DNA sequencing currently un

der development at Los Alamos[3] and elsewhere [4], different fluorescently-labeled DNA

bases are to be spectroscopically identified as they are enzymatically cleaved from a sin

gle strand of DNA and suspended in a flowing solution. For such applications, unequivo

cal identification of two different fluorophores with substantially different absorption and

emission spectra has beien demonstrated in SMD experiments [5]. However, the instru

mentation in these experiments wa;S complex in that it involved two laser sources, two

single-photon detectors, two associated sets of electronics, aiid two dichroic beam split

ters for combination of the laser beams and for separation of the collected fluorescence.

The measmement of the fluorescence lifetimes of individual molecules was also reported

in Reference [5], and alternative means for identification of different fluorophores based

upon measurements of lifetimes or other spectroscppic properties, such as photo-stability

and fluorescence quantum efficiency, were suggested. Such, measurements can be advan

tageous compared to spectral discrimination because the instrumentation can be more

cost effective, as it involves only a single excitation source and detector.

Spectroscopic identification of individually detected molecules based upon fluores

cence lifetime measurements has now been demonstrated by several groups, as reported

for example in references [6, 7, 8, 9]. In the first such experiments [6], Zander et al.



showed that Rhodamine 6G (R6G, with a lifetime of 3.79 ns), could be distinguished

from the Rhodamine B-zwitterion form (with a lifetime of 1.79 ns). In their exper

iments, SMD was achieved using a probe volume of a few femtoliters with confocal

epi-illumination and up to 320 photons were obtained from molecules diffusing through

the probe region. A Maximum Likelihood Estimation (MLE) technique that accounted

for the full decay curve and convolution with the prompt was used to estimate the fluo

rescence lifetime of each photon burst. Enderlein et aZ.[9] flrst reported the distinction

of fluorophores with different lifetimes within a mixture, R6G (with an experimentally

determined lifetime of 4.2 ns) and tetramethylrhodamine isothiocyanate (TRITC) (with

determined lifetime of 2.5 ns). Their experiments used a much larger picoliter probe

region, with the sample solution being injected from a capillary tip placed upstream

from the probe region. Their experimental geometry was similar to that of the SMD

experiments[10] in our lab at the University of Tennessee Space Institute (UTSI). En

derlein et al. used a MLE technique for categorization of the temporal decay spectra of

the photon bursts, similar to that described in chapter 3.

In a general sense, all spectroscopic means for categorization of different fluorophores

are alike in that the photons are eventually sorted into a number of different bins, re

sulting in a particular pattern for each type of fluorophore. Statistically speaking, the

MLE technique yields an 'efiicient' estimator in that it attains the smallest variance

possible for the given statistics [13]. This fact is pointed out in much of the literature

on spectroscopic identiflcation, with the implication that it would be impossible to im-



prove on such a means for categorization. However, in practical experiments there may

be other possible categories that are difficult to statistically calculate and include in the

MLE analysis. Also, there may be other factors that influence the statistics in a man

ner that is difficult, to track, but which may be helpful to include in the categorization

calculations. For SMD experiments, these include the possibility of photodegradation,

intersystem crossing, or multiple molecules passing simultaneously through the probe

region. Hence, in the derivation of the MLE method used in Reference [9], the as

sumption of Poissonian photon statistics within each spectral bin may apply only as an

approximation.

By contrast, the neural networks (NN) methods for categorization make no assump

tions on the statistics, but develop their own rules during the learniiig phase. The

developed rules are thus purely empirical and can more easily account for complicating

factors or alternate categorizations.

Therefore, the primary goal of this work is to investigate a new method of data

analysis, namely, the NN method [14], for single molecule identiflcation. The MLE

method will also be utilized to analyze the spectral data collected in the simulation,

and the prediction results are to be compared with those obtained by the NN method.

A procedure of how to incorporate the NN analysis into the real time SMD experiment

will be proposed in this work..

In our lab, Li et al. flrst demonstrated the high efficiency single molecule detec

tion experiment with sulforhodamine 101 (8-101) molecules in aqueous solution in 1990



[10], and the transit time of molecules in the experiment was in the order of one milli

second. In 1996, Bunfield et al [11, 12] developed a Monte Carlo simulation of the

single molecule detection experiment.. The simulation of the individual molecule identi

fication processes by the spectral information was also implemented as different types

of molecules were present. The MLE method was used to analyze data in that work.

Furthermore, the works [12, 15] showed that better accuracy for identification would be

obtained if bins of unequal widths were to be used.

However, the version of the Monte Carlo Simulation of the SMD experiment de

veloped by Bunfeld et al.[12], hasheen found to have two main problems. First, the

fluorescence decay profile of the molecule is considered to be a pure exponential func

tion, as characterized by the fluorescence lifetime. In fact, the fluorescence probability

is the convolution of the exponential decay and the instrument impulse response func

tion in the experiment. Second, the variation of the signal and noise with selection of

the time window setting is not modeled. In this case, the time window was assumed

to occupy a portion of the interval between successive laser pulses and the exponential

fluorescence decay, profiles were simply truncated to the time window. These two issues

are inter-related in that realistic temporal profiles for the fluorescence decay profiles and

the background noise must be considered in order to correctly model the selection of

the time window. Another point to note is that the prior version of the simulation did

not consider the difference of the time, gate efiiciency for dyes with different fluorescence

lifetimes. There is a practical limitation in the selection of the time window in that the



number of background scattered photons will substantially increase if the beginning of

the time window is selected to be too early. In this case, promptly scattered background

photons will overwhelm the collected time spectra of each photon burst, thereby making

the different types of molecules impossible to distinguish. When the convolution of the

prompt and the selection of the time window are included, the simulation of SMD and

SMI would give a useful direction for how to iinprove the selection of parameters and

analysis for the experiment.

Further, the division of the time window into a number of bins, and the selection of

the widths of each bin will influence the accuracy and precision of the identiflcation of

the dye molecules. Meanwhile, employment of a small .number of bins within the time

window will reduce the cost of the equipment and speed up the data collection in the

experimental setups. Such problems need to be investigated by using the simulation.

However, Bunfield et al. did not extensively study the effects due to the limitations of

the prior version.

Hence, the next task of this work is to extend the previous simulation code to

consider the fluorescence probability as the convolution of the exponeutial decay and

the instrument impulse response function in the experiment, and then to model the

selection of the time window. Having accomplished these, this work then considers

various of bin selection algorithms, and discusses the influences of the accuracy of the

identification of single molecules by utilizing different sets of bins. All the investigations

based on the improved version of the Monte Carlo simulation will provide a realistic



evaluation of how to increase the correct predictions of individual molecules by changing

the experimental setups, and to improve the efficiency of the detection.

SMD in solution offers the prospect for counting of individual molecules within

small quantities of sample for ultra-sensitive chemical analysis, and for enabling new

approaches for bio-technology applications. Further development of the technology and

capabilities is important to facilitate the practical realization of applications. In par

ticular, an increase in the rate at which single molecules may be efficiently detected is

necessary for several of the biotechnological and analytical applications. Hence, this

work also includes the experimental improvement of fast single molecule detection, and

the data acquisition schemes.

In Chapter 2, the main processes in the SMD experiment and main improvements

over the prior version of the simulation are explained. Implementation of such improve

ments are presented. A theoretical discussion of how the selection different number of

bins within the time window influences the accuracy and precision of lifetime measure

ments by Kollner et a/[16] is introduced, and various bin widths selection algorithms

axe also described. Chapter 3 gives the definition of the MLE method used in the SMD

simulation, several attempts to locate the optimal bin widths are presented. In chapter

4, the NN analysis is introduced, and its categorization power is discussed. The chapter

ends with the introduction of software tools used for the simulation, and of the varia

tion of the simulation code for the NN analysis. Chapter 5 presents the results.of the

simulations and experimental advancements. Finally, Chapter 6 is a sutnmary of this



work, and offers suggestions for the future work.



Chapter 2

Simulation of Single Molecule

Detection and Identification

2.1 Overview of the single molecule detection experiment

In the single molecule detection (SMD) experimental setup at UT Space Institute, a

synchronously pumped dye laser provides picosecond laser pulses at a nominal wave

length of 585 nm, and at a repetition rate of 76 MHz. The beam is focused to a waist

of 3.5 /xm in the sample flow cell. Ultra-dilute aqueous dye solution (~nM) is intro

duced into a sheath flow in the flow cell through the sub-micrometer opening of an

injection capillary, which is placed immediately up-stream from the focused laser beam.

Molecules in the sample solution are carried by the flow from the tip of the injection

capillary to the probe region. Given the small cross sectional area of the probe region,



the flow speed must be sufiiciently fast that very few molecules miss, detection due to

difiusion.

As each molecule passes through the focused laser beam, it experiences a laser

intensity that varies with its position. The laser may cause the molecule to become

excited, and this leads to various possibilities, including fluorescence, decay without

emission by internal conversion, inter-system crossing to the triplet manifold, and photo-

degradation [12]. If the molecule decays to the ground state by fluorescence, a photon is

emitted. The emission time is random, with an exponential probability density function

and a mean equal to the fluorescence lifetime. The dye molecule may then be excited

again, and it usually cycled many times and emits many fluorescence photons during

its passage across the probe region.

The experimental apparatus is designed to efficiently detect the fluorescence photons

from dye molecules and to discriminate the background from scattered light. A high

numerical aperture (N.A. 0.85, 60X) microscope objective collects the photons, and a

pinhole (radius 300/im), placed at the image plane of the objective, acts as a spatial

fllter to discriminate against laser light scattered from the walls of the sample cell.

Spectral filters are then used to block Rayleigh scattered light and most of the, Raman

scattered light from the solvent. Raman light that overlaps the fluorescence band passes

through the spectral filters, but is eliminated by an anti-coincidence time gate in the

electronics. This is possible because the Raman light is scattered promptly, i.e., with no

time delay, whereas most fluorescence photons are emitted with a delay characterized
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by the fluorescence lifetime of the dye. Only photons, falling within the time window

are collected and analyzed, and a bmst of such photons is the signatmre of a molecule

passing through the probe region.

Detected molecules may be ideiitifled by a variety of spectroscopic measurements. In

general, all such identiflcation methods require the collected photons to be sorted into

a number of bins, which depend upon the particular spectroscopic measurement. Here,

the main focus is on the identiflcation of molecules with different fluorescence lifetimes.

In this case, the nanosecond time interval between the laser excitation pulse and the

fluorescence photon is used to sort each photon into the appropriate bin. The particular

pattern of counts over the bins is dependent on the fluorescence lifetime of the detected

molecule. For example, if the molecule has a short fluorescence lifetime, most photons

will fall into bins corresponding to short time intervals. Therefore, each photon burst

can, be categorized by analysis of the pattern. Maximum Likelihood Estimation (MLE)

and ai, Neural Network (NN) method will be used in this work.

2.2 Overview of the simulation

The key physical processes of the SMD experiment, as described in section 2.1, have

been incorporated into a Monte Carlo simulation. These have been discussed in detail

in references [10, 12], and are listed below. ' ;..

• The delivery of new molecules from the injection capillary ^

• The transport of the molecule by the solution flow and by Einstein-Stokes diffusion

11



• The removal of the molecule due to transport out of the simulation region

• The possibility of excitation of the molecule, calculated with inclusion of polar

ization and saturation effects

• The possibility of inter-system crossing of an excited fluorophore to the meta-

stable triplet manifold

• The possibility that a molecule in a triplet manifold photodegrades

• The exponentially distributed random time until a molecule in the triplet state

relaxes

• The possibility that an excited fiiiorophore will otherwise decay to the ground

state with the emission and subsequent detection of a photon

• The possibility that a photon will be detected due to background or dark noise.

• If a photon is detected, the paralysis of the detector for a number of iterations

corresponding to its dead time.

• The possibility that the photon falls within the time window, and if so, the sub

sequent paralysis of the timing electronics.

Section 2.3 discusses how these processes are implemented into the simulation. The

general method for determining which spectroscopic bin each photon falls within, and

for recognizing photon bursts, is also discussed. Section 2.4 explains deficiencies in the

prior implementation of these aspects of the simulation. In particular, for fiuorescence
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lifetime measurements, the temporal profile is not a simple exponential decay but must

account for the time response of the detector and electronics. Section 2.4 elucidates

the corresponding changes to the implementation, including the method of selection of

the time gate in order to reduce the noise level. The number of bins to use, methods

for selection of the time intervals for each bin, and the choice of bins for a realistic

temporal profile are discussed in section 2.5. Section 2.6 examines the improvement

in the simulation for determining the begining and end of each photon burst, and for

recognizing which photons belong to the burst, particularly in the case of overlapping

bursts. It concludes with an explanation of the method for determining which molecule

has produced the burst.

2.3 Implementation of the simulation

The simulation deals with the situation where one or two types of dye molecules could

be present in the probe region. Photons could, be generated by the fiuorescence of

molecule type A only, molecule type B only, promptly scattered photons from the laser,

or dark noise. Eventually, each photon burst is to be categorized as due to the passage of

molecule A alone, molecule B alone, both A and B, or background noise due to either

promptly scattered photons fi:om laser or dark noise. The algorithms and equations

used by the simulation have been reported in detail elsewhere [11, 10] and are explained

only briefly below.

The simulation begins with the calculation of firequently used quantities, such as the

13



probability per time step for detection of a dark noise photon or a promptly scattered

photon, the net fluorescence detection efficiency, which accounts, for the throughput

of the optics and the time gate, the quantum efficiency of the single photon detector,

anH the fluorescence quantum efficiency of the dyes. The simulation then considers the

sequence of events that can occur with each step of time. With each iteration, a new

■ molecule might be introduced from the injection capillary. All molecules present are

advanced due to the flow and random diffusion. Then, for each molecule that is not in

the triplet manifold, theTaser intensity at the current location and the probability of

excitation are evaluated and used to stochastically determine if the molecule is excited

and subsequently intersystem crosses to the triplet manifold. If so, another uniform

random number is generated to determine if the molecule photodegrades. If the molecule

does not cross to. the triplet manifold, and if the detector'is not paralyzed by a previously

detected photon, the relative optical collection efficiency from the present location is

evaluated. This is used to accumulate the net probabilities for detection of a photon

from the particular type of molecule.

After all molecules present are considered, a single uniform random number is gen

erated and compared with the above net probabilties to determine whether a photon

is detected, and if so, its origin.. In the previous version of the simulation, the net

probabilities account for the efficiency of the time gate. In the new version of the simu

lation, explained in section 2.4.1, the time gate is considered separately. If a phofon is

detected, both the detector and the electronics will be paralyzed for a number of time

14



steps according to their corresponding dead times. However, even if either the detector

or the electronics are hot active, the simulation still considers intersystem crossing and

photodestruction.

The type of each photon will not be available in the experiment, but is used in the

simulation to determine into which bin the photon will fall. This is done by assigning

the photon to the first bin with cummulative probability larger than a uniform random

number.

The passage of a molecule will produce a burst of photons. In order to distinguish

such bursts, the stream of detected photons, s{tn)\ is processed with a digital filter.

For optimal filtering, the photon stream is convolved with a weighting function w{Sk),

which has the same profile as that of the pattern to be recognized. In the simulation,

the weights are taken to be proportional to relation:

W{Sk) = V2exp{—25k'^/5i),Sk = —q,...,q (2.1)

where 5t is the number of iteration steps that correspond to the half-transit time of

molecules[ll], and q is the integer closest to dt. The digitally filtered photon stream,

S{tn), is calculated by:

S{tn)= ^ (2.2)
5k=—q

Whenever S{n) peaks at a value that exceeds a preset threshold, the simulation

must determine which photons contribute to the burst. The method for doing so is

15



discussed in section 2.4.1. The numbers of photons in each of the bins during the burst

are accumulated,, and are stored for further data analysis, together with information

such as the amplitude and duration of the burst. The burst is later categorized, as one

of the four types described in the beginning of this section using the MLE and/or the

NN methods.

2.4 Problems in the prior version of the simulation

As introduced in chapter 1, the prior version of the simulation has two main problems,

i.e., the fluorescence decay proflle of the molecule is considered as mono-exponential

function, and the selection of the time gate setting is not modelled. The corrections of

the problems and corresponding implmentations are described in section 2.4.1. Section

2.4.2 introduces how to process the experimentally collected prompt data, which are to

be used as the instrumental response function.

2.4.1 Correction and Implementation

The flrst approach to improve the simulation is to replace the mono-exponential decay

proflles for each molecule by profiles that account for the convolution with the prompt.

The ciuves for the decay proflles are evaluated over the entire time interval T between

laser pulses. The resolution used for the evaluation is 2091 channels, which is the same

as the number of channels of resolution in the experimentally measured prompt curve,

as explained in section 2.4.2.,
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Let pPrompt^^^ denote the normalizied probability for detection of a promptly scattered

photon within each channel, where i = 0,...,M — 1, with M = 2091. Then, the

probability that a fluorescence photon from a molecule of type 7 will be detected within

channel i, is expressed by;

k<i M—1

= a'r(Ep^'''^^^[k]exp[-{i-k)T/{MT^)]+ P^'°"'^^[k]exp[-{i-k+M)T/{MT^)]),
fc=0 k=i ' .

(2,3)

where is a normalization factor, defined as:

q:.^ = T/[Mtt,(1-exp(-r/r.y))], (2.4)

and is the fluorescence lifetime of molecule type j. In equation 2.3, the first term

describes the usual digital convolution function and the second term accounts for the

contribution from the fluorescence photons generated by the'prior laser pulse.

To simulate the selection of the time window in the SMD experiment, the probability

distributions of all types of photons must be considered. In this work, the time window

was at first selected by choosing the region over which both types of fluorescence photons

outnumber promptly scattered photons. To this end, the normalized probability curves,

py[i] (-y = A,B) and were scaled to account for factors such as difi'erences in

the excitation and fluorescence yields of the dyes, and in the throughput of the optics,

etc. The approach used was to scale the fluorescence probabilities with the expected

number of fluorescence photons per iteration time step from the corresponding dye
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molecules located at the origin (referred to as the brightness, B-y), and to scale the

prompt with the expected number of dark counts per iteration time step, Bp.

In the simulation, the brightness of molecule type j, Bj, is evaluated by;

Bry = Mo[l — exp{—{2Po(T^)I{Stv Rohi'u}oyLooz))]Q-Y (2-5)

where Mq is the number of pulses in each time step, Pq is the laser power, cr-y is absorption

cross section of molecule type 7, Ro is the laser repetition rate, u is the frequency of the

laser, and cjQy and woz ̂ '^e the laser beam waists. The quantity Q.y is the net eflficiency,

defined as

Qj = QEyLfLcQs^c, (2-6)

where Qej is the fluorescent quantum efiiciency for molecule type 7, Lf is the through

put of the interference filter, Lc accounts for the transmission loss of the remaining

optics, Qs is the SPAD quantum efiiciency, and denotes the efficiency of the collec

tion objective, given by,

= [1 - cos(sin~^((Ar.A.)/1.33))]/2, (2.7)

where N.A. is the numerical aperture of the collection objective and the factor of 1.33

is the refractive index of the aqueous sample.
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The scaling factor of the prompt is defined as

Bp = {Mo$PoV^c)liRo'^oy'^Oz)^ ' (2-8)

where /3 is an experimentally determined parameter with the units of counts s~ W~

m~^, and V is the effective sample volume evaluated in the initialization routine by

Monte Carlo integration. The source of these equations is documented in Chapter 4 of

reference [12].

Figure 2.1 shows typical scaled probability distributions of fiuorescence from two

types of dye molecules A and B {ja =4.2 ns, tb =2.5 ns) and of background from laser

prompt. The points at which the scaled prompt curve crosses the scaled curves for

molecule A or 5 could be used to choose the time window. However, if the left bound

ary of the time window were to be extended to below the crossing points, the promptly
z' ,

scattered photons would overwhelm the fiuorescence photons, and the histogram col

lected from an individual photon burst would not appear to be simfiar to the expected

distribution pattern from either molecule type. Note that even wlien'the time window

is selected such that the fiuorescence signal is expected to be marginally stronger than

that of the prompt, the photon burst would still generally contain a considerable num

ber of prompt photons superimposed with fluorescence photons, and consequently the

collected distribution would differ from that expected from fiuorescence alone. For this

reason, in practice, it was found to be beneficial to further tighten the time window

to reduce the number of background photons in the collected distribution. Figure 2il
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shows the time window selected for the simulation results presented in Chapter 5. The

use of the tighter time window is consistant with the approach taken in the experimental

work reported in reference [9]. Here, the time window was started at approximately 2.1

ns after the peak of the laser pulse a,nd ended at about 1.0 ns before the next pulse,

and the period between the consecutive laser pulses was 12.2 ns.

Once the time window is selected, it can then be divided into bins into which photons

belonging to each burst are sorted, as described in section 2.1. The bins are usually

assumed to be non-overlapping and contiguous although in section 5.9 overlapping bins

are considered. The use of a sufficiently large number of the bins is important for

acheiving a high percentage of correct identifications of photon bursts, as discussed in

section 2.5.1. In addition, the widths of the bins can be chosen (according to various

algorithms introduced in section 2.5.2) to improve the precision of identifying molecules.

2.4.2 Prompt Data

This section describes the methods available for obtaining the normalized probability

for detection of a promptly scattered photon, which is used in equation 2.3.

The Monte Carlo simulation may either read in an experimentally collected prorhpt

data file, or generate an ideal Gaussian shaped prompt. The. latter choice is useful for

debugging and testing the code, while the former generates data that more closely model

the actual experimental conditions. The experimentally collected prompt is found to be

assymmetric with an exponential tail characteristic of the electron diffusion time of the

SPAD detector [24].
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The experimental prompt data are obtained with only pure water in the sheath

flow system. The time correlated single photon counting instrumentation used for the

measurement was the same as that described in [10], with the exception that the prompt

data were collected by a multichannel analyzer (MCA) with 8192 channels of resolution.

Further, the widths of stop pulses for the time-to-amplitude converter were increased to

approximately 20 ns.' This enabled the prompt proflle to be collected over a duration of

longer than the 13.2 ns period T between laser pulses, thereby ensming that

could be deduced over the entire time interval T. The MCA accumulated data for

several minutes and the data were saved in instrument speciflc binary format (CHN

format) and later converted to an ASCII file for the simulation. Figure 2.2 presents

a semi-logarithmic plot of the experimental prompt collected in this way. There are

approximately 50,000 counts at each of the peaks.. Note that the time calibration (6.3

ps/channel) can be obtained by measuring the number of channels between the peaks

in Figure 2.2.

The experimental data exhibits shot noise and a small contribution of detector dark

counts, which are negligible compared to the number of the photons , in the prompt.

The fluctuations due to the shot noise are filtered by digitally smoothing the data. A

Gaussian digital filter with a standard deviation of 10 channels is used. Then, in order

to extract one period of prompt data from the 8192 channels, the starting point at the

half maximum of a pulse on its rising edge and the ending point at the half maximum

on the rising edge of the next pulse are located. As a result, the duration between
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the peaks is 2091 channels, and the corresponding are used to calculate the

convolution in section 2.3. A FORTRAN program was written to perform the data

analysis, namely to read in an experimentally collected prompt data stored in instrument

specific binary format, smooth the data, truncate over one period, normalize, and write

the resultant as an ASCII file for use by the simulation. In addition, a routine

was written for determining the width of the peak at any specified fraction of height, as

this information provides a helpful comparison between the fiuorescence decay profile of

dye and prompt profile. The full width at half maximum of the prompt peaks in Figure

2.2 is 309 ps, which is the same as that reported in reference [24] for an actively-quenched

SPAD.

2.5 Bin selection algorithms

Section 2.4 discussed modifications to the simulation to account for the convolution

with the instrument response function and to appropriately select the time window.

This section discusses the next step needed for spectropic identification of detected dye

molecules, namely the selection of bins within the time window. The questions that

need to be answered are:

• how many bins are needed to correctly distinguish different molecule types with

a certain degree of accuracy?

• how should the width of each bin be selected to give best accuracy?
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These questions are investigated by using Monte Carlo simulations, with the results
j

presented in Chapter 5. In an experiment, the number of bins to be used would be

determined by the complexity of the hardware and the processing time. Although the

number of bins inside the time window could be chosen to be large, the implemention of

hardware and data analysis for this would be more costly, and computationally slower.

Section 5.7 discusses hardware that would result in a small number of bins of arbitrary

width.

A related problem of how the mean variance in the determination of the fluores

cence lifetime of a single, detected molecule depends on the number of bins has been-

addressed using an analytical theoretical approach by Kollner et al.. [16]. Section 2.5.1

reviews this analysis, which predicts that there is little improvement in the precision

of determined lifetimes as the number of bins is increased above about 4. Accordingly,

little improvement in the accuracy of identiflcation of molecules with different lifetimes

IS expected if the number of bins is increased above about 4. The analysis of Kollner et

al. pertains to bins of equal width, but when the number of bins is small, experimental

hardware for bins of arbitrary width can be implemented. The question of how to best

select the bin widths is addressed in section 2.5.2. Several procedures for choosing bin

widths are also introduced, and details of the implementation are given in section 2.5.3.
N

2.5.1 Bin number theory

A typical data file from a SMD experiment consists of many sets, each of which corre

sponds to a photon burst. Each data set contains the total number of photons within

25



each bin for the burst. Kollner et al.. considers the analysis of the data set to estimate

the fluorescence lifetime of the dye molecule by a general statistical estimator. How the

estimator analyzes these data and determines the fluorescence lifetime, and precisely

how it works, are some of the important questions discussed in Kollner et al.'s paper

[16].

As stated in the Rao-Cramer theorem, the standard deviation or variance of an

estimate cannot be smaller than a well-deflned limit. Estimators reaching this limit

are said to be efficient. In addition, for sufficiently large signals, the distribution of the

parametric estimates for eflBcient estimators is normal with a covariance matrix equal to

the inverse of the Fisher-information matrix, F. For the problem of fluorescence lifetime

estimations, F is defined by

Fim = ̂{yyj){dyj/dai){dyj/dam), . , (2-9)
j=l

where yj is the expected number of photons in bin j, j = 1,..., AT, as predicted by the

model function y. The function y depends on the parameters ai, I = 1,...,L, where in

this case, one of the ai refers to the lifetime.

As single photon counting involves distributing a total of K photons, K =

over N bins, the for a particular distribution {uj} = ni,n2, is the multinomial

distribution, as discussed in reference [12]

P{{nj},ai,a2,...) = {K\/niln2l..nN\)Pi'- pT- pIn ^
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where rij is the number of photons observed in bin and pj is the probability that a

photon will fall into bin j. As yj = Kpj, equation 2.9 becomes

Fim^KY^{\IPj){dyjldai){dyjldam)- (2-11)

Note that equation 2.11 is linear in K and because the covarianCe matrix is equal to the

inverse of the matrix the variance of t given that K photons are observed equals to

1/K times the variance given that 1 photon is observed, i.e.,

varK{r) = {F)-^ = {llK)[F{K = l)]-l (2.12)

If •uari(r) denotes the variance of r when the signal contains only one photon, the

required number of photons for a desired variance vavDir) is

K >vari{T)/varD{T). (2.13)

Consider a simple case where only a constant background and a.pure mono-exponential

fluorescence decay are present. The decay is characterized by the fluorescent lifetime

T.y of the particular molecule, 'y. If a detected photon originates from dark noise, then

the arrival time with respect to a laser excitation pulse is random and the probability
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density for a photon to fall in the j-th bin is

(2-14)
ji=i

where Uj (i=l,2,..., N ) is the width of the j-th bin. If a detected photon originates

from fluorescence, the probabihty will be

p7 = [' exp{—tIT^)dt/ [ exp{—t/Tj)dt, (2-15)
Jtj—i •'0

where, for simplicity, the time window is assumed to start at 0 and end at T, the

temporal bin j starts and ends at ij_i and tj, respectively, and j= 1,2,...,N. Substituting

ujji = tN — to = T (2.16)
j/=i

into equation 2.15 gives

p7 _ exp[-(tj - to)/r^](exp[(tj - t,--i)/T.y] - 1) ,2.17)
J  1 - exp[-r/r.y]

Substituting P7 into equations 2.11, 2.12, and 2.13 yields

varKiT,T,N) - ̂̂ (^)%r/(iVr)(i _ e-r/r)/(eT/(iVr) _ 1)2 _ jv-2/(er/(iVr) _

Figure 2.3 plots vari{T,T,N)jT'^ calculated using equation 2.18 for selected values of
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■N.

Equation 2.18 can also be used to determine the number, of photons required for

a given precision. For example, suppose the desired precision, vavDij)^ is. 10%, the

lifetime, r, is 2.5 ns, the time window, T, is 10 ns, and the number of bins, JV, is 64.

Substitute these numbers and K = 1 into equation 2.18, and the result for variij) into

equation 2.13 yields K > 90, i.e., at least 90 photons are required to achieve the desired

precision.

It is impossible to choose a time window larger than the period between laser pulses,

and the expected range of T/r is around 2 to 5. If T/r is optimally selected, the number

of photons required to achieve 10% precision is found to be about 48. The example

demonstrates that the experimental setup heeds to be configured so that the number of

photons within each burst is as large as possible.

The equations can also be used to optimize experimental conditions such as the

width of the time window and the number of bins by finding the minimum in the plot

of uar-i(r)/T^. Prom figure 2.3, if a large time window is selected, say T/r is greater

than 100, and the number of bins is less than 16, most of the photons will fall into

the first bin and the precision of the measurement of r will be poor. Conversely, if

T/r is properly selected, little improvement in precision is gained beyond about .4-8

bins. Similarly, if molecules with different known lifetimes are to be identified from

the distribution of photons, little improvement in the accuracy in the identification is

expected if the number of bins is greater than about 4-8.
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2.5.2 Intuitive algorithm for bin width selection

This section considers how to select the widths of the bins in order to give better

identification of molecules with different fluorescence lifetimes. In particular, an intuitive

method Of bin width selection, which was introduced in [12], is explained. Section 2.5.3

describes how the intuitive method is implemented. Section 2.5.4 explains an alternate

bin selection method, and results in chapter 5 indicate that this method gives improved

molecule identification.

' For bins of equal widths, molecules with different lifetimes tend to distribute photons

similarly, namely, with a monotonically decaying distribution with most photons falling

into the first few bins. Intuitively, one would expect molecules with different lifetimes'

to be more easily distinguishable if they yield dissimilar distributions. The distribution

for a molecule with a long lifetime may be made to increase if the widths of the earlier

bins are made narrower than those'of the later bins. The increase of the widths of the

bins must be chosen such that the distribuiion for molecules with the shorter lifetime

is still decreasing. Ideally, the widths of the bins should be chosen so as to make the

expected distributions for the different types of molecules as dissimilar as possible.

To this end, in reference [12], the widths of the bins were selected so as to yield a
\

. fiat distribution if the lifetime of a molecule were equal to the algebraic mean of the two

known lifetimes that were to be distinguished. That is, if the molecule were to have a

fluorescence lifetime equal to

t = {ta + tb)/2, . (2-19)
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where ta arid tb are the known lifetimes of molecules type A and B, then the expected

distribution should be flat. Figure 2.4 illustrates the selection of 8 bins for the case of

distinguishing between molecules with lifetimes of =4.2 ns and tb = 2.5 ns.

The equations for derivation of the widths of bins neccesary to yield a flat distri

bution for a hypothetical molecule with fluorescence lifetime t are given incorrectly in

reference [12], and hence are rederived below. Consider the case of N bins within the

time window. If background and convolutiori with the prompt are ignored so that the

probability density decays mono-exponentially, then, from equation 2.17, the probability

for bin j should be

pj ̂ .exp[-(tj - to)/r](exp[(tj - t.,-i)/r] - 1) ̂  ̂ ^2.20)
^  1 — exp(—T/t)

Substituing

ujj = tj — tj-i (2-21)

and

C = [1 - (2.22)

into equation 2.20 and rearranging equation 2.20 yields

exp(cjj/T) = 1-1 ^jv ^ ~ Gxp(—r/f)) = 1 -t- C 6xp[(tj — to)/T]. (2.23)
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This may be solved for each uj as follows:

j = 1, exp(a;i/r) = = —r ln{l — C) = T[ln{l) — ln{l — C)],

j = 2, exp{ijJ2/T) = ^2 = T[in(l — C) ~ '"(1 2C)],

j — 3, exp(u;3/f) = '^3 = — 2^) — ln{l — 3C)],

j = N, exp{u}N/f) = 1 = T[ln{l — {N — 1)C) — ''^(l — -^C)]-

(2.24)

The summation of all the widths in equation 2.24 should be T, i.e.,

N

'£uj = -rHl-NO=T. (2.25)
i=j

Section 2.5.3 discusses the extension of the above described bin selection algorithm

to the case where the decay profile is not a pure exponential but considers convolution

with the prompt.

2.5.3 Implementation of the intuitive algorithm

To account for the convolution with the prompt, equation'2.3 is used to evaluate the

probability that a fluorescence photon will be detected within channel i from a hypo

thetical molecule with fluorescence lifetime r as given by equation 2.19. Figure 2.5'

illustrates the probability densities if molecules A and B have fluorescence lifetimes of
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4.2 ns and 2.5 ns, and the hypothetical molecule has a fluorescence lifetime of 3.35 ns.

The figure shows that the probability density of the fluorescence is no longer a pure

exponential decay, and hence the bin widths given in equation 2.24 are not applicable.

In order to extend the intuitive algorithm to the case that considers the convolution

with the prompt, the probabilities for each bin for the hypothetical molecule with mean

fluorescence lifetime must be set to be equal, that is,.

=  (2.26)P7= f p'^{t)dt = l/N, j = l,2

where in equation 2.26 may be determined from equation 2.3, and tj-i and tj denote

the start and end time of the j-th bin. These locations are to be adjusted for each bin

in, order to satisfy equation 2.26.

As indicated by equation 2.3, the probability densities of the prompt and molecules

are known at M discrete channels. Therefore, the discrete form of equation 2.26 becomes

Pj= P^\7] = UN, j = l,2,:..,N, (2.27)
i=ij-l

where ij-i and ij correspond to the stmt and end channels of the j-th bin.

If the total number of channels is much larger than the number of bins, then the

discrete nature of the start and end channels will not pose a problem. However, when

only 1600 channels are to be grouped to 64 bins, the resultant probabilities per bin for

molecules of type A or 5 are bumpy, as shown in figure 2.6 (a). In order to solve this
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problem, lineax interpolatation (smoothing) is used, and the start and end of the j-th.

bin are defined as

tj-i = ij-i + Stj, (2.28)

.  . = + n (2.29)

where, for j = 1,2, ...,iV, , . • ■:

,  0 < 1 , 0<5tj <1 and tj = tj_i. (2.30)

Equation 2.27 then becomes

'• 1 ^pj= ^ p'^\i] + {l-6fj)p'^[ij-i]+5]p^[ij] = yN._ (2.31)
i—_ 1 ~}~1

By applying the linear interpolation algorithm, the bumpy probability densities in figure

2.6 (a) are smoothed, and results are shown in figure 2.6 (b).

An important point that needs to be made here is that the time window is now

shorter than the interval between two consecutive laser pUlses, and hence photons may

fall outside of the time window. However, the present MLE method only uses the

photons inside the time window, and the probabilities, such ^ Pj in equation 2.31,
pPrompt pA^ and Pf,' need to be re-normalized among all the bins that belong to

3  3 • j . . .

the . time window. All the probabilities are fe-normalized inside the time window by
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multiplying a normalization factor, defined as:

IN

= V[S = 7) Prompt, A, B. (2.32)
l=lQ

Thus, equation 2.31 becomes

ij—l

P] = P]I^ = I^ P''\i] + i^-SPj)p''[ij-i] + S^p''[ij] (2.33)
i=ij-i+i

= 1/N. (2.34)

2.5.4 Bin widths changing by a constant factor

Another bin-width selection procedure is also examined in the coming chapter, i.e., the

factorized bin-width selection, which uses a constant factor Co to obtain the consecutive

bin widths recursively,

Uj^i = CfjUj, (2.35)

where the first bin width is given by

= (Co - l)r/(Co^ - 1), (2.36)

and the widths are defined in equation 2.21. The selection gives a set of decreasing bin

widths when the constant, Co, is less than one, or a set of increasing bin widths when

it is larger than one.

As introduced in the above sections, several bin width selections are proposed. In the

.  . . 39-



simulation, the initialization stage gives the option to choose one of three methods for bin

width selection, viz., bin widths generated by the intuitive algorithm given by equation

2.31, equal bin widths, and arbitrarily defined bin widths (without interpolation). The

number of bins can be also specified at this stage. Typically, the intuitive algorithm is

used and the number of bins is chosen as 64. Then, in order to save time, data for the

case of 32 bin s are obtained by adding the photons in each of the consecutive pairs

of bins. The process is repeated to obtain data for the case of 16, 8, 4, 2, and 1 bins.

In this way, the probability density of the hypothetical mean lifetime molecule is still

flat among all newly combined bins, and the approach of the intuitive algorithm is still

valid.

2.6 Peak analysis

2.6.1 Determination of the start and end points of a burst

As introduced in section 2.3, the passage of molecules through the probe region produces

bursts of photons, and the photons collected from each burst above a pre-set threshold

are used to distinguish the identity of the molecule. The simulation must determine the

start and end of each burst and hence which photons are to be included in the analysis

of each bmst. In the previous version of the simulation, the start and end of each burst

is determined by locating the turning points of the weighted sliding sum. That is, the

simulation records the times at which the weighted sliding sum varies from going down

to up. The burst is discarded if the intervening maxima is below the pre-set threshold,
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nut otherwise the local minima in the weighted sliding sum are used to define the start

and end of each burst.

However, this method of determining the extent of a burst brings some problems

when background noise is present. As illustrated in figure 2.7, when a burst is super

posed on a broad pedistal of noise photons, the local minima are widely separated.

Consequently, there are many background photons contained between these two points.

The background photons degrade the performance of the data analysis, and result in

incorrect predictions of the identity of the bursts. To circumvent this problem, the

burst finding algorithm was modified to consider only those photons contained within a

constant time interval, centered about the maximum of the burst. A time interval equal

to the mean transit time of a molecule across the laser beam is used. This results in the

new choice of the start and end of the burst, as shown in figure 2.7. Only those photons

contained between the start and end of the burst are used in the subsequent analysis.

Furthermore, the duration of the burst is taken to be the time interval between the first

and last of these photons. If a molecule photodegrades during its transit through the

laser beam, the duration of the burst will be shorter than the mean transit time, unless

a background photon happens to fall just before the end point.

A problem with the new algorithm can arise if two photon bursts are closer together

than the mean transit time. Figure 2.8 illustrates two bursts that are close together but

not overlapping, together with the starts and ends of each of the bursts, as determined

by the new algorithm. If the start point of the second burst s2 were to occur earlier than
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the end point of the first burst el, then some of the photons belonging to the second

burst would be counted into the first burst, and vice versa. To minimize this effect, the

new algorithm is further modified to set the locations of el and s2 as the intervening

minimum point in this event.

2.6.2 Burst type determination

The simulation must determine the actual cause of each burst, i.e., whether the burst

originated from the transit of one or more molecules of type A, or of type B, or the

transit of both types of molecules simultaneously, or from background noise alone. The

type of each burst is output into a file for training the neural network analysis. It is

also used to evaluate the accuracies of the MLE and the NN predictions.

The process of determining burst type is as follows: As discussed in section 2.3,

whenever a photon is detected, the simulation records its origin, i.e., whether a photon

originated from fiuorescence from molecule type A, type B, from prompt, or from back

ground. This information is used to determine the cause of each of the bmrsts. Having

determined the start and end photons of each burst above the pre-set threshold, the

cause of the burst is then initialized as being produced by only background. The simu

lation traverses all the photons in the burst, and checks if there are fiuorescence photons

other than background ones. If it finds one, it continues to look for whether, among the

rest of the photons, there is a photon produced by the other type of molecule. If so, the

burst will belong to the simultaneous passages of both types of molecules. Otherwise,

the burst is due to the passage of only one type of molecule. If no fiuorescence photon
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is found in the burst, the burst will keep its initial type, i.e., from background.

45



Chapter 3

Maximum Likelihood Estimation

3.1 Overview

In the Monte Carlo simulation of single molecule detection, a maximum likelihood es

timation (MLE) method is used, to, categorize molecules according to their fluorescence

lifetimes, which differ for the distinct types of dyes. Other photophysical properties of

such dyes may also be different, although these are not used when molecules are dis

tinguished by the MLE method. In this work', only two types of dye molecules are to

be distinguished as they are detected in the sheath flow system. The number of photon

counts in each temporal bin are directly used in the categorization analysis.

In section 3.2, the principle of the MLE method for distinguishing two types of

mplecules is introduced. The implementation of the MLE method when background

from promptly scattered photons is present is explained in section 3.3. A log-likelihood

representation of the MLE analysis is introduced in section 3.4 for the case when counts
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are Poisson distributed, and equations for determining the mean error in predicting

, molecules are given. In section However, there is no clear solution in the error analysis

for considering a multinomial distribution and therefore, a direct approach to accumu

late the mean error is proposed in section 3.6. The computational complexity of the

direct approach is increased as the number of bins used becomes large or if background

is included in the analysis. Some results are shown for the selection pf 3 bins when

background is omitted.

3.2 MLE method for distinguishing two types of molecules

The MLE method uses the distribution of photon counts {n^} = ni, ̂2, •••) over each

of the temporal bins for categorization of molecules with different fluorescence lifetimes. ^

The conditional probabilities for obtaining the particular distribution of {nj}, given that

molecule or molecule B, is present in the probe region are evaluated and compared.

According to equation 2.10, the multinomial probability for obtaining the distribution

{rij} under the assumption that all the photons originate from one or more molecules

. of type A is

P({nj}\A) = K\ nCP/)"'/")!. (3-1)
,  , 3=\
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and for moleculo B, the probability is

=  (3.2)
j=l

where pf and pf are given by equation 2.33, in which p^\j] is replaced by and

as defined in equation 2.3. The ratio of the probabilities is

The events are then categorized by

if R>1, P{{nj}\A) > P{{nj}\B), predict molecule A,

if i? < 1, P{{nj}\A) < P{{nj}\B), predict molecule B. (3.4)

3.3 Inclusion of background in the MLE analysis

The MLE method described in section 3.2 does not consider the case in which some of

the photons in the burst originate firom background. In order to account for background

photons in general, all the possible distributions for all possible combinations of fluores

cence and background photons that can give rise to the observed distribution need to be

considered. For example, if photons could be generated by molecule A or backgroimd

with equal likelihood, the probability for obtaining the observed distribution {uj} would
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be given by

ni 712

P({n_, } I molecule A) — ̂  ̂ ̂  P{ni-bi,n2-b2,.--,nN — bN\A)P{bi,b2,..;bM\bg)i'i-5)
61=062=0 bfi—O

where P{ni — 61,^2 — &2) ~ &7v|-4) is determined by equation 3.1, and P{{bj}\bg)

is the multinomial probability for obtaining the distribution {6j} = 61,621 •••) ̂ iv if all

photons originate from background, i.e.,

j=i j=i

However, in most cases the majority of photons are from fluorescence and hence

background and fluorescence photons are not equally likely. Equation 3.5 would need to

be modified to account for the expected ratio of background and fluorescence photons.

However, due to the computational complexity, it would be impractical to obtain results

from such equations in a reasonable amount of time. Therefore, another approach is

taken to, account for the presence of background. If K photons are detected and if a

number of these are expected to be due to background, then the probability that any

given photon will fall within bin j is assumed to be the weighted average of Pj and

either Pf or Pf. The expected number of photons within a burst of duration of At is

bAt, where b is the mean rate of background photons. Hence, if a burst contains a total
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of K photons, the probabilities for each bin aie

Pf = [{K - bAt)pf + bAtpf]/K,

Pf = [{K-bAt)pf+ bAtpf]/K. (3.7)

The background is composed of dark noise and promptly scattered light, but the proba

bility of promptly scattered light is much larger than that of dark noise, and hence Pj

in equation 3.7 is replaced by Pj ̂ ^ , which is obtained by replacing 7 in equation

2.33 by Prompt.

Equation 3.3 then becomes

_ P({nj}[molecule .4) _ tt
P({nj} I molecule B) j

{K - bAt)pf + bAtPf°^^'
(if - -k bAtpf

(3.8)

Furthermore, if the photon burst is assumed to originate from either molecule A or

molecule B (i.e., there are ho other possibilities), then the confidence that a burst is^

due to or P, is given by , ,

P({hj} I molecule A) R
~ P({nj}[molecule A) + P({nj}jmolecule B) 1 -t- P'

P({nj}[molecule B) _ 1
~ P({nj}[molecule A) -1- P({nj}[molecule B) 1 + P

(3.9)

(3.10)

Note that CA + CB = 1, and thus only cb is calculated in the simulation. If cb is greater

than 0.5, the passing molecule is predicted as B, otherwise, the molecule is predicted
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as A.

As introduced in section 2.5, various numbers of bins are chosen in the simulation

to study the influence of changing the number of temporal bins on the precision of the

identification of the molecules. In the simulation, the data from the maximum number

of bins (64) generated in a single run are used in subsequent analyses for the cases

of 32, 16, 8, 4, 2 and 1 bins. In order to do so, some of the intermediate variables

of the simulation code must be recorded for each burst, in particular, the quantities

which are used in equation 3.8 must be saved and regrouped accordingly.

3.4 Log-Likelihood function and error calculation

Another approach of the MLE method, which is discussed for the case of negligible

background, is to evaluate the difierence of the logarithms of f ({"■jll-d) and P{{nj}\B),

instead of the ratio of the two probabilities, as given in. equation 3.3. The advantage

of this approach is that the computations are reduced from powers to multiplications,

and the execution time of the analysis is shortened. An overview of the Log-Likelihood

approach [9] will be briefly introduced in this section as some of the approaches to

evaluate the bin width selections are based on this information.

Recall that the pf and pf in section 3.2 satisfy the normalization condition, i.e..

y;p/ = i. =
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Reference [9] considers the case in which the probability of obtaining a certain photon

distribution in the time window, e.g., rij photons in the j-th. bin, is the product of

Poissonian probabilities, instead of multinomial distribution as formulated in equation
/

3.1. A clarification of the difference between the multinomial and Poisson description

of the. counts nj is given in reference [23]. Each rij is Poisson distributed only if the

total number of photons, K = Ylj rij, is Poisson distributed. In the case of SMD,

photodegradation, triplet crossing, and other processes result in K actually not being

Poisson distributed. On the other hand, once K is measured, Uj rigorously follows

a multinomial distribution. Thus the Poisson approach does not make use of all the

information, it introduces an insecurity in K that is actually not present.

For Poisson distributions within each bin, given that molecule A or .B is present, the

probabilities are defined as

P({n,}|A) = e-'' n
j=l J

P{{nj}\B) = e
•  1 ""7*j=i j

-K ̂  {KPjT' _ (312)

The log-likelihood function (or M function) is defined as

M = ̂Tijirij, (3.13)
j=i
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where

.Pf
m, = M^). (3.14)

j

To predict the event, a similar approach as in equation 3.4 is given by

if M > 0, predict molecule A,
\

if M < 0, predict molecule B. (3.15)

Further, the mean error for predicting molecule B when A is actually present is defined

as

errK{A)= r dMFi^\M), (3.16)
J — OO

and the mean error of predicting" A while B is present is defined as

errK{B) = dMF^ (M), (3.17)

where F^\m) and F^\m) are given by summing equation 3.12 over all possible sets

of {uj} that give a particular value of M. Reference [19] gives the form of F^\m) as

00 OO OO N ^

E E - E (3.18)
711=0 712=0 npf—O j=l F i—1

where 7 =A, or B. In order to evaluate the mean errors in equations 3.16 and 3.17, the
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Dirac 5 function in equation 3.18 is replaced by

1{Z) = r ±e"". (3.19)
y_oo 2-k

Substituting this into equation 3.18 yields

r°° dkpW(M) = / (3.20)
y—oo

where

N oo

j=lnj=0

= exp[iiL < exp(-ifcm) - 1 >7]. (3.22)

The abbreviation in equation 3.22 denotes

</>,=i:/if7. p-23)
j=i

Hence, the mean error of identification of molecule A in equation 3.16 or that of B in

equation 3.17 can be expressed as

errK{A) = dM H , (3.24)
J—oo y—00
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or

errK{B) = dM H . (3.25)
Jo J-oo 27r

The mean error for a mixture of molecules A and B is defined by

err = PAerr(^) + pBerrjB) 25)
PA + PB

where pA and pB are the actual concentrations for molecule A and B.

3.5 Errors for bin selection with widths changing by a con

stant factor

The bin selection algorithms introduced in section 2.5 can be evaluated by numerically

solving equations 3.24, and 3.25 by calling a standard math library for performing Gauss-

Kronrod integration, and comparing the predicted errors for different bin selections.

This is done here for the case of bin widths changing by a constant factor, and the

result is shown in figure 3.1.

In the calculation of figure 3.1,, the total number of bins, N, is 4, the fiuorescence

lifetimes of molecule A (ta) and B (tb) are 2.0 ns and 4.0 ns, the total number of photons

K is 100, the width of the time window T is set to be 8.0 ns, and the concentrations

of molecule A and B are equal. Figure 3.1 gives the results corresponding to the bin

widths eba.Tiging by a series of constant factors, Cq. For the purpose of comparison, a

straight line with mean error of 1.3%, which is obtained from the intuitive bin width
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algorithm introduced in section 2.5.2, is also illustrated.

In figure 3.1, the part of the cmve with Co <1 represients the selected bins with

a set of decreasing widths, and the corresponding error of identification is expected

to be large as discussed in section 2.5.2. Similarly, the identification error would also

be significantly increased if Cq is large, say Cq >2. Hence, the part of curve within

1 < Cq < 2 is expected to giye least error. For the assumed parameters, the lowest

error of 1.18% is achieved when Cq is 1.3. Under the same circumstances, the intuitive

algorithm gives 1.3% of identification error, which is higher than that of the bin widths

selection'changing by a constant factor of Co=1.3;

In summary, using the intuitive algorithm introduced in section 2.5.2 to select bins

may not be the best way to minimize the error. However, the bin width selection with

widths changing by a constant factor may not be the best solution either. There may be

another algorithm that yields an even lower error. Also, with another set of parameters,

bin widths determined by the intuitive algorithm may give a lower error than any of the

bin width selections changing by a constant factor. Note that a Poissonian rather than
/  • n , , n

multinomial distribution has been assumed in the analysis in section 3.4. An extension

of the above analysis to the multinomial case would not be straight forward because it

would no longer be possible to obtain the simplified form in equation 3.22, which is used

in the numerical evaluation of equations 3.24 and 3.25. In addition, the contribution

from background photons is not considered," and the addition of, background into the

analysis would further complicate the problem. Therefore, a direct approach to calculate
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the error is pursued, and details are given in the next section.

3.6 IDirect method for error calculation

Recall that, in equation 3.16 and 3.17, the error of predicting molecule A is accumulated

for those cases of {nj} that give rise to a negative M value, and the error of predicting

molecule B is accumulated for those cases of {«_/} that give rise to a positive M value.

Instead of evaluating the distribution of the Log-likelihood function, as well as the fol

lowing equations from 3.22 to 3.25, the error for predicting either type of molecule can

be obtained by systematically considering all possible distributions {n^} and accumulat

ing the probabilities for obtaining each such distribution for which M is negative when

A is present or for which M is positive when B is present. For simplicity, background

photons are not considered in the following discussions.

Consider the case in which there are totally K photons to be sorted into N bins,

and hence there is a total of (N-+-K)!/(N!K!) ways to sort them into the bins. Each way

of allocation of the photons into the bins has a certain probability, i.e., the multinomial

probability, given by ' ' " ' .'

J  (3-27)
-  j=i

where 7 =A, B. Therefore, the error of predicting molecule A (i.e., predicting B when
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A is actually present) is

errK(A) =
V{nj}9M<0

and error of predicting molecule B (i.e., predicting A when B is actually present) is

ervKiB) = (3-29)
V{nj}3M>0

Once the time window is selected, detected photons will always fall within the time

window and the probabilities Pj have accordingly been normalized in equation 3.27.

However, the problem of interest is how to simultaneously choose both the time window

and the bins within the time window to minimize the error. In order to address the

problem, consider the case in which the entire temporal decay profile is divided into JV

bins, with probabilities Pj, j=l, 2, ..., N. Only the distribution of photons within the

bins j=2, ..., iV — 1 is used for prediction, and hence M is evaluated using

JW=£n,ln&. (3.30)
j=2 Pj

rather than equations 3.13 and 3.14, but the multinomial probabilities in equations 3.28

and 3.29 are given by

J'Cf-jlJLilT) =(!;%)! WPlT'/njl (3.31)
j=l j=l
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Selection of the time window among 5 bins is illustrated in figure 3.2. All the bins

are numbered from 1 to 5, and the time window occupies bins 2, 3, and 4. Therefore,

the photons falling into bins 1 and 5 will not be considered when evaluating the Log-

likelihood function M.

A number of bin width selections are evaluated using the 3 bins case, illustrated in

figure 3.2. The widths of all the 5 bins are adjusted according to the selecting methods

below. The M function is evaluated by using equations 3.13 and 3.14 while the error is

accumulated by using equation 3.27, 3.28, and 3.29. The following bin width selections

are considered

• Case 1: Increasing bin widths by a factor of Co = 10,

• Case 2: Decreasing bin widths by a factor of Co = 0.5,

• Case 3: Intuitive bin width selection introduced in section 2.5.2,

• Case 4: Equal bin width, Co=1.0,

• Case 5: Increasing bin widths by a factor of Co = 1-3, with which the lowest error

is achieved in section 3.5.

The comparison among the above bin width selections is shown in figure'3.3. Here, the

mean errors axe evaluated for different total numbers of photons, K. Other parameters

used in the calculation are kept the same as in section 3.5.

The results show that the mean identification errors are large for all 5 cases when

K is sinall. This is consistent with the discussion in section 2.5.1, where the total
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number of collected photons was shown to influence the precision of the estimation of

the lifetime of a molecule. An important point to note here is that the total number

of photon counts K within the burst does not directly influence the decision, but it

does impact the reliability of the categorization. Furthermore, the cases for a selection
(  -

of decreasing bin widths and of increasing bin widths with Co=10 exhibit larger errors

than other cases. This is consistent with the results shown in figure 3.1.

The bin selections with equal widths, with a set of increasing widths by a factor,

Co, of 1.3, and with the widths chosen by using the intuitive algorithm have nearly the

same low error. There is no clear evidence showing which of these selections is the best. .

Minor differences in the errors obtained by each method are attributable to differences

in the widths of the time window, which causes the mean number of photons within the

time window to differ. The width of the time window formed by bins 2, 3, and 4 is 1.0,

4.5, 3.8, 6.0, and 5.7 ns for cases 1-5 respectively. The result from the set of bin widths

determined by the intuitive algorithm is expected to be poorer than that from the equal
/

bin widths because the time window is narrower. In practice, the time window selection
I

will be determined largely by the temporal profile of the background.

3.7 Possibility of systematically searching for the optimal

bin width selection

The motivation of the discussions in this section is to look for an approach for finding

an optimal selection ,of time window and bin widths within the time window, so as to
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achieve the minimum identification error of molecules. One possible way to accomplish

this would be to perform a systematic search over all possible bin width selections. In

specific, ail the start and end points of the time window and of the bins within the time

window can be varied within the allowed range such that

to <ti <t2< ... < tiv-i < tN- (3.32)

The time window starts at and ends at tjv-i- Thus, all possible bin widths could be

obtained, and, by recording the mean error for each set of widths, the minimum error

could be found. The identification error for a selection of bin widths is evaluated by the

direct method, introduced in section 3.6.

A simple illustration of the systematic searching approach uses the 5-bin case in

figure 3.2, and the points and t4 are fixed at 2.0 ns and 8.0 ns, i.e., the start and end

points of the time window are fixed. The inclusion of the variable start and end points

of the time window would require more computational memory and time. In addition,

the background is ignored to simplify the implementation of the analysis. The points <2

and tz in figure 3.2 are varied to give all possible widths for bins 2 , 3, and 4. The total

number of photons is set to be 100, and the resulting 2 dimensional surface is drawn in

figure 3.4. The data in figure 3.4 was obtained with approximately 90 minutes execution

time on a Pentium 200 MHz PC (64 MB memory).

The result shows that the mean error fiuctuates as the bin widths within the time

window are varied, resulting in a bumpy two dimensional surface with many local min-
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ima. This would make it difficult for a searching algorithm to locate the global minimum

without evaluation of the error at every point of the domain. In the calculation pre

sented in figure 3.4, the searching step is around 0.1 ns, and the lowest error is achieved

when *2 is 4;0 ns, and tz is 6.1 ns. This is approximately equivalent to selecting equal

widths for bins 2, 3, and 4.

Note that the total number of photons may differ over a wide range from one burst

to the next, whereas the calculation of figure 3.4 assumes a constant burst size of if=100

photons. A rigorous approach to finding the bin selection would require calculation of

the weighted average of the identification error errKij) for all possible burst sizes K,

i.e., ^
00

err{rf) = ̂  ̂KerrKil), (3.33)
K=1

where Q,k is the probability that a detected burst contains K photons. However, such

an approach would be. computationally intensive, and was not attempted here. Further,

it would be considerably more computa-tionally intensive to implement such a searching

algorithm to obtain a set of optimal bin widths when there is a large number of bins

within the time window. Even in the case of 3 bins within the time window, shown in

figure 3.2, the computational complexity would be substantially increased if one were

to allow to consider the selection of the start and end points of the time window, i.e.,

ti and ̂ 4 to also be varied. ;

The above illustration is simplified in that, from the point of view of the SMD

experiment, one would need to consider the situation described in section 2.4, where
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photons may originate from either background or fluorescence of molecules. The direct

method could be extended to consider the contribution from the background given that

all the collected bursts are generated by the fluorescence of niolecules. This could be

achieved by setting a higher threshold to block background bursts, which normally have

smaller peak amplitudes than those from molecules. To account for the influence from

the background, the Pj in equation 3.27 would be replaced by which is expressed

explicitly in equation 3.7 for 7= A, B. Thus, the multinomial probability of distribution

{rij}, considering the background, would be given by

P({nj}|molecule 7) = K\ (3-34)
j-i

and the error of predicting molecule A or molecule B would be defined as

errK{A) — ^ P({nj}[molecule ̂ 4), (3.35)
,V{nj}9Af<0 . n

or

errK{B) = ^ P({nj}|molecule B). (3.36)

The log-likelihood function wouM be evaluated by

iV+l pA
M = (3-37)

.  j=2 ^3

^ , ̂{K-bAt)pf + bAtPj"^^\
~ h iK-bAt)pf + bAtpf''^'"^'
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The above equations could be used to incorporate the presence of background in the

calculation of the weighted errors for identification of bursts, given by equation 3.33. In'

principle, the multidimensional parameter space representing the boundaries of the time

bins, ti, t2, ..., tAT-i, could be searched to find the minimum error. However, in practice,

a very large amount of computational power would be required for the calculations and

search. The selection of the tiine window by the method described in section 2.4.1, so

that the expected signal in the time window exceeds the background, would reduce the

dimensionality of the parameter space by. 2, but the computations required would still

be very large. The Monte Carlo simulations, as presented in Chapter 5, offer a viable

alternative approach for comparing the identification errors obtained with different bin

selections. For example, in section 5.5, a comparison of the errors in prediction are

made between equal bin widths and bin widths selected by the intuitive algorithm.
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Chapter 4

Neural Networks Analysis

4.1 Overview

Neural networks analysis provide a computational methodology different from that of

traditional hard computing or artificial intelligence. Hard computing methods normally

refer to scientific calculations, in which a complete set of inputs to a program is provided

and the exact results axe deduced by executing the program. On the other end, an

artificial intelligence system, such as the weather forecast system, does not strictly

require comprehensive inputs, and thus there may exist many possible outcomes for the

provided incomplete information. Neural networks model processes information in a
(

manner that imitates the functionality of human brains, where training is required prior

to testing or use. In the training stage, the network is provided information(training

data) that contains inputs to the networks and the corresponding desired outputs. In

the testing stage, the trained network, with its current state of knowledge, provides the
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answers to new problems (testing data), and-^such testing data contain only inputs to

the network in this phcise. ,

In section 4.2, the basic concepts of neural networks are introduced, and power of

the neural networks analysis is discussed in section 4.2.6. Section 4.3 discusses how to

implement the neural networks analysis for categorization of photon bmsts from sim

ulated SMD experiments. A procedure of how to incorporate nemal networks analysis

into the SMD experiment is proposed in section 5.8 of chapter 5 .

4.2 Basic concepts in NN analysis

The neural networks model was first introduced to imitate processes in human brain,

where information is processed in the form of electrical pulses, transmitting from one

neuron to others. Each neuron, as the basic processing unit in the brain, collects all

the incoming signals from its neighboring neurons, from which it determines whether

to activate its output to the next set of neurons. During training, the extent to which

it needs to activate each of the next set of neurons is .determined, and the connection

between neurons is strengthened or weakened accordingly. In general, human brains

contain up to 10^'' neurons, each one of which has a response time of the order of a

milli-second. However, due to the massive connections among the neurons(~ 10^ per

neuron), human brains are able to process information in a fast and accurate fashion,

and are more powerful than current computer implementations.

In a similar way, neural networks are constructed to have many processing units that
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connect to each other with certain weights. The weights denote the importance of each

connection in the network. Each unit first evaluates all its inputs in a.certain way, e.g.,

by summing up all the weighted incoming values. It then uses the resultant value to

calculate an activation function and output from this is passed to the next neuron. In

this way, input values to the network are propagated through a network of neurons. In

the training stage, the output neurons compare the final results with the desired results

provided by the training data. The, calculated error from such a comparison will provide

information for how much the weights of connections should be adjusted, and the goal

is to minimize this error. Having obtained the lowest error, the trained networks would

save the information of the training data in the form of its current state of the networks,

i.e., ,the set of fixed weights for each connection.

4.2.1 Architecture of neural networks

All the neurons in the neural networks are grouped into layers. The first layer of the

neural networks is the input layer, to which users provide the inputs of a particular task.

The last layer, the output layer, is composed of nemphs for outputting results. Users

could choose to have some intermediate layers or hidden layers to increase the analyzing

power as discussed in section 4.2.4. When counting the nuinber of layers in a network,

only the hidden layers a,nd the output layer are counted, e.g., 2-layer networks have one

input layer, one output layer, and one hidden layer. According to the location of layers,

processing units can be divided into three categories, i.e., input units that receive data

from outside of the network, output units which send data but of the network, and
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hidden units, whose input arid output signals remain within the neural networks.

There are two types of networks which diflFer from each other by the direction of

their connections. In feed-forward networks, the signals propagate only in the forward

direction, and all units receive values only from neurons in preceding layers and send

values only to following layers. Units may not connect to neurons in the same or

previous layers. In recurrent networks, feedback connections may exist. In contrast to

feed forward networks, the dynamical properties of recurrent networks are important;

In some cases, the activation values of the units undergo a relaxation process such that

the network evolves to a stable state in which the value do not change any more.. In

this work, only the feed-forward type of network is considered.

4.2.2 Weighted summation and activation rules

In a feed-forward network, each processing unit receives inputs from preceding neurons

or, in the case of input neurons, from external sources, and calculates the weighted

summation of all inputs and corresponding activation function. The output value from

the unit is propagated to the next set of neurons, and is re-calculated through each of the

units along the path. In the stage of learning or training,, the units in hidden layers and

output layer adjust the weights of those input connections according to their individual

importance leading to the desired output. The diagram.of a typical processing unit is

shown in figure 4.1. .

In figure 4.1, the unit k has a number of preceding connections, among which the

importance of the connection from unit j is denoted by a weight factor Wjk- In most-
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Figure 4.1: The basic components of an artificial neural networks
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cases, each processing unit performs a summation over all its weighted inputs, and a

bias or offset term 6k for unit k. In figure 4.1, the summation is expressed as

Skit) = 53 Wjk{t)yj{t) + Okit), (4.1)
j

where t denotes the current execution time, and yj(t) is the input value from unit j.

As described in the beginning of this section, whether the current inputting con

nection has the significant contribution to its output is determined by a pre-defined

threshold function (or activation function). Generally, the neural networks would pro

vide a rule that 'gives the effect of the total inputs on the activation of the unit. The

activation function, Fk, takes the total inputs Sk(t), and produces a new value of the

activation of the unit k at the next time step, i.e.,

yk(t + 1) = Fk[sk(t)] = Fk['£a;jk(t)yj(t) + 0fc(i)]. (4-2)
j

There are three types of threshold functions normally used. The sign function, as

shown in figure 4.2 (a), is defined as

Sk < Tq, Fk{sk) = 0,

Sfc > To, Fk{sk) = 1, (4-3)

where Tq is a pre-set constant. The linear or semi-linear function in figure 4.2 (b), is
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defined as

Sk < To, Fk{sk) = 0,

Sfc ^ Ti, Fi~{sk) = 1,

SfcG[To,Ti], Fk{sk) = ̂^^, (4.4)

where To and Ti are constants. The sigmoid function, shown in figure 4.2 (c), is defined

as

yk = Fk{sk)= 1 + (4-^)

4.2.3 Learning of the neural networks

There are two types of learnings for neural networks. One is supervised learning where

the networks is trained by provided inputs and corresponding desired outputs. The

other is the unsupervised learning where each unit is trained to recognize the pattern

of the input sets. In the latter learning process, the networks are supposed to discover

statistically salient features of the input, and no priori knowledge of categorization of

the input pattern is required. In this work, only the supervised training is considered.

As described in section 4.1, in the training stage, the weights of each connection get

updated upon receiving the input signals. The basic idea is that if the errors of the

desired activation of unit k are due to changing of the weight factor, Wjk, between the
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Figure 4.2: Activation functions
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two unit j and k, their inter-connection need to be corrected by a factor of

Swjk='y yj{dk-yk), (4-6)

where 7 is a constant representing the learning rate, and dk is the desired activation of

the unit k provided by the training set. This is called S learning rule or the steepest

gradient descent. In the training stage, the weights coming to the output layer are

adjusted by comparing the actual processing results and the desired results, and the

resultant desired activations of the hidden layer prior to the output layer are obtained.
/  _ n , _ _

Then, the hidden layer performs the same procedure until all the weights coming to each

hidden layer axe corrected., In this fashion, the error between the processing results and

the desired results is propagated backwards in the network, and the weights through the

paths are adjusted. This type of neural networks are also called the back propagation

networks.

The networks change the weights after each set of the training data is inputted.

Having trained by all the data in the training set, the networks may not reach the

miniTTiiim error, and multiple cycles,of trainings are required until the asymptotic limit

of the error is reached.
1

4.2.4 Single layer and multi-layer networks

For a single layer neural networks, there are no hidden layers, , and the input units go

directly to the output units. Thus, during the learning process, the weights of the
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connections between each input and output pair get updated directly. Prom equation

4.6, it is obvious that the changes of weights are linearly proportional to the activation

function in this case. If the total error function Ek of the output unit k prior to each

update is defined by -

,  = = , (")
P  P .

where represents the error on pattern p, p ranges over the set of input patterns. The

procedure finds that the minimum error has achieved when all the values of the weights

are adjusted by

d6wjk = -l{dEn/{dwjk), . (4.8)

which is proportional to the negative of the derivative of the error as measured on the

current pattern with respect to each weights. Note that is a linear function of its

input Xj, i.e.,

dyP _
dwjk.

(4.9)

and note that

thus.

is hold, therefore.

^ = . . . .

55wjk = ̂SPxj, (4.12)
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where — dP — y^. This means only a linear system could be analyzed. However, the

goal of the NN analysis is to study non-linear systems. The introduction of hidden layer

will solve this problem. ^ '

Under the generalized 5 learning rule, the multi-layer iDack-prbpagation networks

is suitable to solve the problem of nonlinear system. The basic idea is that when a

learning set is inputted, the activation values are propagated to the output imits, and

the actual outputs of the networks are compared with the desired output values. This

will result in an error for each of the output units, say eo for output unit o. Therefore,

all the preceding weights of all the output units and Mdden units have to be changed

accordingly in order to minimize the error. The general form is given by

6wjk = -'ydeoldwjk, (4.13)

and the partial derivative in equation 4.13 can be evaluated by the chain rule. The

adjustment of the weights preceding the output layer is no longer linearly proportional

to the inputs.

4.2.5 Addition of dimensions of input data

In the case where the existing networks is not able to distinguish the data patterns

and data belonging to different group are merged, addition of extra dimensions of in

formation may be helpful. However, these extra information needs not to be any linear

combination of the existing inputs.
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4.2.6 Discussion of the classification power of neural networks

In data categorization, there are some possible categories that are difficult to statistically

calculate and to be included by any formulated analysis. Also, there may be other fac

tors that influence the statistics in a manner that is difficult to track, but which may be

helpful to include in the categorization. In a practical SMD experiment, such informa

tion includes the brightness of each photon burst, the possibility of photon-degradation,

inter-system crossing, or multiple molecules passing simultaneously through the probe

region. Furthermore, the assumption of independent photon statistics within each spec

tral bin'used by MLE analysis may not be accurate in all occasions. By contrast, nemal

networks methods make no assumption on the statistics, but develop their own rules

during the learning phase. The developed rules are thus purely empirical and can more

easily account for complicating factors or alternate categorizations.

There are two main issues to be discussed in regard to whether the neural networks

method would give adequate performance. The flrst is whether the weights and bias at

each unit have been optimally set for the classiflcation task at hand. This is the issue

. of learning, and there are several dffierent convergent algorithms by which the weights

may be adjusted during the training of the networks. To obtain the optimal weights and

bias, one must ensure that the training set adequately spans the range of possibilities

that neural networks will encounter, and make sure that the training set has enough

distinguishable properties for different groups. The information content of the learning

data is crucial for the classiflcation ability of a networks.
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The second is the issue of representation, i.e., assuming that the weights have some

how been optimally chosen, does the neural networks have enough flexibility or degree

of freedom to give correct results for all possible inputs? In this regard, it has been

proven[18] that a single layer (no hidden layer) neural networks has severe limitations

in its representation power. However, when one or more hidden layer are added into

the networks, the representation power will be considerably enhanced. In addition, the

universal approximation theorem states that just a single hidden layer is suflficient to

approximate any function to arbitrary precision provided that the activation function in

the hidden layer is nonlinear. The currently used architecture in the SMD data analysis

provides sufficient representational power for most of the classification problems, and

also enables moderately fast speed for training.

4.3 Implementation of the NN analysis into the SMD sim

ulation

4.3.1 Construction of the training and testing data

In order to implement the neura,l networks analysis into the SMD simulation, some

changes have to be made in the simulatipn code so as to output the data for the training

and testing by the neural networks. Recall that, in the SMD simulation, having located

the starting and ending points of a detected burst, all the photons in a burst are then

sorted into temporal bins within the time window, as described in section 2.4, and hence
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the photon counts in each bin can be directly used as the inputs to the neural networks.

In addition, the peak amplitude and duration of each burst are also recorded for the NN

analysis as the extra dimensions of input, which might be benificial to the NN analysis,

as discussed in section 4.2.5. As described in section 2.2, the type pf each photon burst

is known in the simulation, thus the actual type of the burst can be used to construct

the training data for the NN analysis. Furthermore, it can be used to estimate the

effectiveness of the data analyses, and this is done by comparing the predictions by

either the NN or the MLE method with the desired types.

Note that training data and testing data are require to be generated under the

same experimental condition. Also, the testing data could not be statistically related to

the training data. A general approach is to generate statistically significant number of

bursts data under certain experimental condition, and then to randomly take a portion

of the data as the training sets and the remaining; of the data as the testing sets.
\

4.3.2 Tool for the NN analysis

The "NeuralWorks Professional II/Plus", by NeuralWare, Inc, is utilized to perform the

NN analysis. The software runs under 32-bit Microsoft Windows environment, and has

"the ability to construct up to 28 neural networks models plus their variations.

The software provides a userrfriendly interface for constructing neural networks, and

parameters, such as, the number of layers, units in each layer, type of activation function

and learning rule, etc., are specified in this stage. In addition, the software is able to

-train the networks, and to test the trained networks by user provided data..
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Another important feature of the software is that it is able to output the trained

networks in the form pf an ANSI C subroutine, which can be called in a real time

experiment, as being discussed in section 5.8. A typical pop-up window of constructing

a networks is shown in figure 4.3.

Figure 4.4 is produced by the neural networks software during the set up and learning

phase of the networks. The current value of weights is shown in the top right inset of

the figure. The weights are initially set as random and dming the training stage their

values fiuctuate while the weights are,adjusted. The goal of learning is to minimize the

root mean square (rms) error or the difference between the actual and desired output,

which is monitored in top left inset of figure 4.4. The fluctuation of weights diminishes

as the rms error approaches its asymptotic limit.

To implement, the NN analysis into the experiment, preliminary calibrations need

to be performed prior to the testing, i.e., in such calibrations, the experiment collects

burst data of individual molecule or background for training the neural networks. A

proposed procedure with calibrations will be introduced in chapter 5, and the results

are shown in the section 5.8.

4.3.3 Neural networks architectures used in the SMD simulation

The 2-layer back-propagation 6 learning rule networks are chosen to perform the data

analysis for the SMD simulation, and the sigmoid function is used as the activation

function for both the hidden layer and the output kyer., ,

In this work, two types of input formats are used for the neural networks. One that
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is used in section 5.2 contains only the photon counts in each bin as the inputs; the other

format that is used in sections from 5.4 to 5.9 contains also the peak amplitude and

the burst duration as the extra inputs besides the photon counts. The peak amplitude,

which denotes the brightness of each burst, and the duration of each burst are not

linearly dependent on the photon counts in each bin.

For the improved version of the SMD simulation, the format of the output is set up

to distinguish 4 types of events. The events and the corresponding output formats are

as below:

• Molecule A: 0?7Ti=l, 017T2=0,OC/T3=0,017T4=0

• Molecule B: OUTi=Q, 0UT2-=l,0UTz=^,0UT^^Q

• Backgrond: Of7Ti=0, OUT2—0,OUT3=1,OUT4=0

• Both molecule A and B present: OUTi—0, OUT2=0,OUT3=0,OUTji=1

For the prior version of the SMD simulation, there are only three groups being distin

guished, i.e.,

• Molecule A: OUTi=l, OUT2=0,OUT3=0,

• Molecule B: OUTi=0, OUT2=1,OUT3=0,

• Both molecule A and B present: OUTi=0, OUT2=0,OUT3=1.

As the sigmoid function is a continous function, and it provides float types of results

at the output layer, a step function is usually applied to the testing resulting of the
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neural networks. The processing result will be changed to 1 if it is larger than 0.5, or 0

if it is less than or equal to 0.5.

A rule of thumb for choosing the number of units in the hidden layer is that, for

a single hidden layer networks, the number of. units in the hidden layer are twice the

number of units as in the input layer. For a two hidden layers networks, the first hidden

layer has three times of units as in the input layer, and the second layer has one half

number of units as in the first hidden layer.

In the example of the 2-layer neural networks shown in figure 4.4, the improved

version of the SMD simulation has total of 10 inputs, which are composed of 8 inputs

from the photon counts in each bin and 2 inputs from the peak amplitude and burst

duration. According to the rule of thumb, 20 units are required in the hidden layer.

In the SMD data analysis, a further investigation of making direct connections be-
1

tween input and output layer is not promising, and the asymptotic limit of the rms error

is not substantially decreased. Extensive numbers of other type of networks and their

variations have been tried, and no obvious advantages have been observed. This indi

cates that the given architecture provides.ah;adequate representation for the training,

set.
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Chapter 5

Results and Discussions

5.1 Overview

As introduced in chapter 2, a burst of photons is detected when a molecule passes

through the probe region, and these photons are sorted into a number of bins according

to their arrival times with respect to the laser pulses. To identify each molecule, one

analyzes the distribution of the photons among all the bins within the time window. Two

methods axe be used to analyze the data for each burst, the MLE method introduced

in chapter 3 and the NN method introduced in chapter 4.

The development and implementation of the analysis software was undertaken before

the Monte Carlo simulation was extended to consider the convolution of the fluorescence

decay profiles with the instrument impulse response function, the temporal profile of the

background, and the improved method for determining the start and end of each photon

burst. Therefore, section 5.2 presents preliminary results of photon burst categorization



by the MLE and the NN methods using data generated by the previous version of the.

SMD simulation, described in section 2.2. The simulations used fluorophore parameters

obtained from the literature and indicated that the dyes S-101 and R640, with lifetimes

of 4.6 ns and 2.2 ns, would be readily distinguishable. In preparation for an experiment

using these dyes, measurements were made of their fluorescence lifetimes, as reported

in section 5.3. However, under the conditions of the SMD experiment, the dye R640

was found to actually have a fluorescence lifetime of 4.3 ns, comparable to that of S-

101. Lifetimes of other dyes were also measured, but two dyes with disparate lifetimes,

suitable for SMD with an excitation wavelength of 585 nm, could not be found. There

fore, the research efforts were directed towards the simulation of an experiment from

the literature[9] on single molecule identiflcation of R6G and TRITC, with fluorescence

lifetimes of 4.2 ns and 2.5 ns and an excitation wavelength of 514.5 nm. The simulation

was performed using the improved model described in section 2.4, and results are given

in section 5.4. Section 5.4 also presents a comparison of the MLE and the NN catego

rization methods. The NN categorization method is found to be superior and reasons

for this are discussed. In order to illustrate how the selection of the bins influences the
j

precision of the identiflcation of molecules, section 5.5 gives the results using different

numbers of bins and different bin width selections.

When preparing for the experiment for single molecule identiflcation of S-101 and

R640, several improvements in the experimental hardware were made. Improvements

aimed at speeding up single molecule detection are discussed in section 5.6, and results
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show that molecules can be detected with a transit time less than 200 //s. In order

to achieve identification of photon bursts in such experiments, low dead time circuit

was developed for temporal binning of photons, as described in section 5.7. The circuit

would be usable in experiments using other excitation wavelengths if suitable optical

filters were to be purchased. Because such filters were not available, only simulations

of single molecule identification experiments using such low dead time circuit could be

pursued.

In section 5.8, a.procedure for training of neural networks using experimental cali

bration data is proposed and evaluated using simulated data. The results indicate that

the procedure is viable. The low dead time circuit for temporal binning of photons

may result in the overlapping of bins, and therefore the results of simulations with such

overlapped bins are presented in section 5.9. Lastly, the issue of the time required for

the NN analysis is discussed in section 5.10.

5.2 Preliminary investigation with the previous version of

the simulation

5.2.1 Conditions of the simulation

In this section, both the MLE and the NN analyses are applied to data generated by the

previous version of. the SMD simulation. In the previous version of the SMD simulation

[12], only a small constant background, and a selection of the time, window with fixed
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width of 13.2 ns was considered, as described in.section 2.4. A total of 4 bins are used

to sort photons. The intuitive algorithm introduced in section 2.5.2 is applied to select

the widths of the four bins. The parameters used in this simulation are listed in Tables.

5.1-5.4.

As discussed in section 4.2, the NN analysis uses a 2-layer (1 hidden-layer) archi

tecture, and back-propagation S learning rule. A sigmoid function is applied as the

activation function to both the hidden layer and the output layer. The photon counts

in the 4 temporal bins are used as the 4 inputs of the neural network. By the rule of

thumb described in section 4.3.2, eight processing units are used in the hidden layer.

The data for each burst are saved in the required format for the analyses by the MLE

and,the NN methods, as introduced in sections 3.3 and 4.3, respectively. A step function

is applied to all the testing results of the NN analysis, and the values of all the outputs

from the networks are changed to either 0 if they are less than or equal to 0.5, or Tif

they are larger than 0.5. Following this, the testing results have the same formats as

defined in section 4.3.2, representing different types of molecule detection events.

Table 5.1: Laser related parameters

Variable Nhme Description (Units) Value

lambda

p_energy

rep_rate
pulses-per_time_step
wOy/wOz
power

laser wavelength (pm)
calculated by hc/A(J)
repetition rate of laser pulses (Hz)
laser pulses per defined time step
beam waists in y or z (/.tm)
laser power (W)

0.585

3.4 X 10-^®
7.6 X 10'^
1

45 •

0.1
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Table 5.2: Optical parameters in the light path

Variable Name Description Value

pinhole diameter of the spatial filter (/xm) 600

magnification magnification of the collection objective 60

NA numerical aperture of the collection objective 0.85

imageJoss optical losses due to uncoated optics 0.75

filter throughput of interference filter 0.5

spad_eff quantum eflficiency of SPAD 0.65

tgate time gate efficiency for passing signal 0.6

refract Jndex refiractive index of the solvent 1.33

tip_radius capillary tip radius {fiTo) 0.5

tip_to_beam distance, from the tip to beam (//m) 15

Table 5.3: Photo physical parameters for the molecules

Variable Name Description Value

S-lOl(A) R640(B)

Fluor-QE
SIGMA

PHIJD

PHI.CROSS

lifetime

fiuorescence quantum efficiency
absorption cross section
photon-destruction quantum efficiency
triplet crossing probability
fiuorescence lifetime(ns)

0.35

3.7 X 10"®
5.5 X 10"®
0.002

4.6 ,

0.35

3.7 X 10-®
5.5 X 10-®
0.002

2.2 '

Table 5.4: Other simulation parameters

Variable Name Description , ' Value

daxk_in_window detector dark count (counts/s) 50.0

noise_in_prompt counts s-^W-^m"® " 3.5 X 10® '

noiseJn_window counts s-^W-^m-® ' 3.48 X 10®

diffusion molecular diffusion coefficient .4.5 X 10^

ratio_0 fraction of molecule of type A 0.5

concentration solution concentration(M) 1.0 X 10-^^

flow_rate sheath flow rate {fim s-^) 1.0 X 10"

ns_SPAD _dead_tirhe dead time of SPAD (ns) 65

ns_TAC_dead_time dead time of TAG (ns) 1000

NUM_OF_BINS number of temporal bins 4

thres threshold introduced in section 2.3 30
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5.2.2 Results and discussions

Over a simulation run time corresponding to 231.6 seconds, 8161 photon bursts were

recorded. The data from the first 4081 bmsts are used for training the neural network,

and that from the remaining 4080 bursts are tested by both the MLE and the NN

methods. In the first 4081 data, 1945 are due to the passage of only molecule type A,

1917 are due to only molecule type B, and 219 contain photons from both A and B.

Among the last 4080 data, 1903 are due to the passage of only molecule type A, 1966

are due to the passage of only molecule type B, and 211 contain photons from both

types of molecules and thus are specified as being due to the simultaneous passage of

both types.

According to the intuitive bin width selection algorithm, the widths of each of the

bins are chosen to make the two types of molecules most distinguishable, as discussed

in section 2.5.2. The photons in all bursts generated by each type of molecule should be

distributed within the bins in a different manner. To illustrate this, the average numbers

of photons in each bin for bursts due to molecule type A, and due to molecule type B

are calculated for the testing data, and the results are drawn in figure 5.1. Photons from

bursts due to molecule type A (ta=4.2 ns) yield an increasing distribution, while those

due to molecule type B (tb=2.6 ns) yield a decreasing distribution over the bins. This

is consistent with the motivation pi the intuitive bin width selection algorithm. The

presence of background photons within the bursts can reduce the diflference between the

two distributions.
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The results of the predictions by the MLE and the NN analysis, listed in tables

5.5 and 5.6, show that, both methods categorize the bursts well when only one type of

molecule passes through the probe region. However, bursts that have been attributed

to both A and B are not predicted by either method. The MLE method is of course

limited by its definition in section 3.2 so that it is not an option to predict bpth A and

B. The NN method is more flexible in that both A and B is an option, but it fails

to identify any of the 211 bursts attributed to both molecules. Actually, this is most

probably a consequence of the algorithm by which the bursts were located and initially

identified in the simulation, rather than a failure of the NN method. In the previous

version of the simulation, the start and end points of bursts are located at the transition

points of the weighted sliding sum, as described in section 2.6.1. This causes one burst

to immediately follow another and hence photons from one burst to often fall, within

the limits of an adjacent burst. Consequently, a relatively large number of bursts (211)

are attributed to both molecules, but the photons in many of these bursts would be

predominantly from one species.

The expected number of bursts due to the simultaneous passage of A and B can be

Table 5.5: Identification of burst type by the MLE method

Type of
burst

Actual

Occasion

Correct prediction
(incorrect prediction)

% of the correct

predictions

molecule A 1903 1734(169) 91.1

molecule B 1966 1886(80) 95.9

both A and B 211 0(211) 0.0

Total 4080 3620(460) 88.7
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Table 5.6: Identification of burst type by the NN method

Type of Actual Correct prediction % of the correct

burst Occurrence (incorrect prediction) predictions

molecule A 1903 1839(64) 96.6

molecule B 1966 1922(44) 97.8

both A and B 211 0(211) 0,0

Total 4080 3761(319) 92.2

estimated as follows. The parameters of the simulation are such that the mean transit

time of a molecule across the laser beam is 0.9 ms and the mean time between molecules

is 21.15 ms, and thus the probability that a second molecule enters the laser beam before

the first one leaves is 1 - exp(-0.9/21.15) = 0.04. If the molecule detection efficiency

were 100%, approximately 5256 bursts would be expected during a 115.8 s interval,

including only about 110 due to both A and B.

To illustrate how the NN performs the analysis in general, difierences in the infor

mation content of the data from dffierent types of bursts are considered. The input data

set from each burst is multidimensional, and in the case of 4 inputs corresponding to

the number of photons within 4 temporal bins, the number of dimensions is 4. If bursts

are to be successfully identified, the data sets from dffierent types of bursts must sep

arate into regions within the multidimensional space that are largely non-overlapping.

Further, the NN must sufficiently grasp the differences between the different regions,

so as to categorize the bmsts. In order to demonstrate the salient differences in a 2-

dimensional plot, figure 5.2 plots the fraction of photons within the first'two bins versus

the total number if photons. A clear separation of the data from molecule type A and
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molecule type B is apparent, and this depends primarily on the difference of the fluo

rescence lifetimes of the two types of molecules. The more the lifetimes of the two types

differ, the further the two groups of data are separated, and the better the chance that

they can be distinguished. Therefore, the choice of dye molecules with widely different

lifetimes is crucial for effective categorization.

If the lifetimes of the two types are well separated, either the MLE or the NN

analysis will work. However, the MLE method, as defined in section 3.2, is only able

to utilize the information pertaining to differences in the fluorescence lifetimes and is

unable to classify bursts that are separated by other factors. On the other hand, the

NN analysis utilizes all information in an empirical manner, and is able to discern

differences that are not readily apparent, or for which a statistical analysis would be

difficult to formulate. Such information could be originated from the brightness of each

burst, photo-degradation, or inter-system crossing, etc. The results obtained by the NN

method, shown in table 5.6, generally gives better predictions than the MLE analysis,

shown in table 5.5.

5.3 Experimental measurements of lifetimes

To further investigate the possibility of an experiment for the single molecule identifi

cation, the fluorescence lifetimes of the dyes R640, and S-101, which were used in the

simulation in section 5.2, are measured.

The measurement is performed by the time correlated single photon counting tech-
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nique, which is explained in detail in section 5.6.1. The experimental setup is similar

to that of section 5.6.1 except that the data is collected by a multi-channel analyzer

(MCA). In the measurement, micro-molar concentrations of dye solutions are flushed

into the sheath flow capillary. The MCA collects data for several minutes, and saves

the data in CHN file format. The data are processed as described in section 2.4.2, and'

results are shown in figure 5.3. The figure also contains the curve for dye DCM-S.

In reference [25], the fluorescence lifetimes of S-101 and R640 were taken to be

4.6 and 2.2 ns, respectively. However, at an excitation wavelength of 585 nm, the

fluorescence lifetimes of S-101 and R640 are found to be approximately 4.3 ns and 4.4 ns,

which are not sufficiently different from each other for the single molecule identification

experiment. Although the fluorescence lifetime of DCM-S is found to be about 2.7 ns,

its. absorption spectrum has a peak at 475 nm, and little absorption exists at 585 nm.

It was not possible to detect single molecules of DCM-S in our system.

The dye DODCI was also considered. It has moderate absorption at 585 nm. How

ever, its fluorescence lifetime has been measured to be 0.66 ns [26], which is rather short

and indicates a low fluorescence quantum yield. Because of the short lifetime, few pho

tons would be captured beyond the instrument prompt and within the time window.

Indeed, it was found to be not possible to detect single molecules of DODCI within our.

instrument.

Although two dyes suitable for single molecule detection with an excitation wave

length of 585 nm and with disparate lifetimes could not be found, such dyes are known
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to exist for use of other wavelengths. However, it h^^d been decided not to change the ex

periment to another excitation wavelength, because of other ongoing research projects,

and also the high cost of the optical filters that would be needed. Therefore, efforts at

this point were directed towards the simulation of a single molecule, identification exper

iment that had been recently reported in the, literature, using an excitation wavelength

of 514.5 nm. - : ^ ,

5.4 The SMD simulation with the improved version of the

simulation

5.4.1 Conditions of the simulation

By using the improved version that considers the background, as introduced in section

2.4, a similar approach as in section 5.2 is carried out in this section to simulate the

experiment published in reference [9]. As the experiment in the literature was done by

using a laser wavelength at 514.5 nm, which is not usable in our lab, only the simulation

is presented in this section.

The parameters used in the simulation are obtained from references [9], [10] and

[11], and are listed in Tables 5.7-5.10. Parameters not listed here are the same as

those given in section 5.2. The photo-physical constants of the dyes, R6G (type A) and

TRITC (type H), as listed in table 5.9, are obtained from reference [17]. The parameter

"beta-prompt" in table 5.10, which denotes the degree of the background noise from
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Table 5.7: Laser related parameters

Variable Name Description Value

lambda

p_energy

rep_rate
pulses_per_time_step
wOy/wOz
power

laser wavelength (fim)
calculateed by hc/A(J)
repitition rate of laser pulses (Hz)
laser pulses per defined time step
beam waists in y or z (/xm)
laser power (W) .

0.5145

3.866 X 10"^^
8.2 X 10^
50

10.0

0.03

Table 5.8: Optical parameters in the light path

Variable-Name Description Value

pinhole diameter of the spatial filter (/^m) 500

magnification magnification of the collection objective 40 .

tip capillary tip radius (^m) 2.0

tip_to_beam distance from the tip to beam (//m) 50.0

Table 5.9: Photo physical parameters[17] for the dye molecules

Variable Name Description Value

R6G(A) TRITC(B)

Fluor-QE
SIGMA

PHIJD

lifetime

fiuorescence quantum efficiency
absorption cross section (/xm^)
photon-destruction quantum efiiciency
fiuorescence lifetime (ns)

0.45

2.2 X 10"®
1.9 X 10"®
4.2

0.15

1.6 X 10"®
5.6 X 10"®
2.5
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Table 5.10: Other simulation parameters

Variable Name Description Value

beta_prompt prompt photons per second 1.0 X 10®

total-dark average dark counts per laser pulse 220

102diffusion molecular diffusion co efficiency (//m^s"^) 4.5 X

ratio_0 fraction of molecule of type A 0.33
10-13

concentration solution concentration(M) 5.0 X

flow_rate sheath flow rate (/xms~^) 5.0 X 10^

ns_SPAD -dead-time dead time of SPAD (ns) 65

ns-TAC_dead-time dead time of TAG (ns) 0

NUM_OF-BINS number of temporal bins 64

convChNumber number of bins per period of laser
pulse output from the MCS 2090

startCh start bin of time window , 200

endCh end bin of time window 1800

thres threshold introduced in section 2.3 10

laser pulses, is set to be 1.0 x 10® counts per second so as to obtain approximately 5%

of the bursts due to background. Other parameters, such as the distance between the

tip and beam, and capillary tip radius in table 5.8, are obtained from the experiment

current developed in our lab [10], and [11]. As the fluorescence lifetimes of R6G and

TRITC are not as well separated as the two dyes in the simulation of section 5.2, poorer

differentiation between the dyes is expected.

In the simulation, photons may originate from background or from fluorescence from

either type of molecule. Each photon burst is then categorized as due to molecule type

A, type B, both A and B simultaneously, or background only. As mentioned above,

the time window is set so as to obtain- 5% of bursts due to background among all the

collected bursts. The setting of the time window, effectively reduces the influence from
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the background noise, and in this ca^e, the time window is started at approximately 1.3

ns after the peak of the laser pulse and ended at about 1.9 ns before the next pulse,

as compared to the time window setting in reference [9]. The bin widths are chosen

by the intuitive algorithm introduced in the section 2.5.2. In addition, the dead time

of-Time-to-Amplitude converter (TAG) is set to be zero because a high-speed multi

channel scalar (MCS) is used to collect data in/the experiment in replacing of the TAG

with long dead time. A total of 64 bins are chosen within the time window, and the

data for the case of 4 bins is obtained by joining adjacent bins, as described in section

2.5.4. The results for other numbers of bins(i.e., 64, 32, 16, 8, 2, and 1 bins), will be

presented in section 5.5. In addition to the numbers of photons in each bin, the dmation

and the peak amplitude of each burst, are also recorded and taken as the inputs for the

NN analysis.

In the NN analysis, a 2-layer (1 hidden-layer) back-propagation network is con

structed. The S learning rule and sigmoid activation function are applied to the network.

The number of processing units in the network is obtained by the rule of thumb de

scribed in section 4.3, and all inforniation pertaining to the architectures is summarized

in table 5.1,1.

5.4=2 Results and discussions

The improved version of the SMD simulation is used to generate a total of 16384 bursts,

of which the first 8192 are used as the training set for the NN analysis. The prediction

of the identities of each of the bursts is obtained for the last 8192 bursts by using both
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Table 5.11: The NN parameters selected for the data analysis-

Number of bins Number of Number of units Number of

in time window input units in the hidden layer output units

64 66 132 4

32 34 68 4

16 18 36 4

8 10 20 4

4 6 12 4

2 4 8 4.

1 3 6 4

Table 5.12: Identification of molecule by MLE in 4 bin case

Type of Actual Correct prediction % of the correct

. burst Occasion (incorrect prediction) predictions

molecule A 3662 2943(719) 80.4

molecule B 4233 2330(1903) 55.0

Prompt 131 0(131) 0.0

both A and B 166 0(166) 0.0

Total 8192 5273(2919) 64.4

the MLE and the NN methods. Among the training set for the NN analysis, there, are

3725 bursts due to the passage of molecule type A, 4184 bursts due to the molecule type

B, 129 bursts due to the background, and 154 due to both A and B. Among the testing

data set, there are 3662 bursts due to the passage of molecule type A, 4233 bursts due

to the molecule type S, 131 bursts due to the background, and 166 due to both A and

B. The results of the prediction by the MLE and the NN methods are shown in tables

5.12 and 5.13, respectively.

The results show that neither the MLE nor the NN method performs as well as in

section 5.2. The NN analysis out-performs the MLE method when only a single type
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Table 5.13: Identification of molecule by NN in 4 bin case

Type of Actual Correct prediction % of the correct

burst Occasion (incorrect prediction) predictions

molecule A 3662 3282(380) 89.6

molecule B 4233 4153(80) 98.1

Prompt 131 0(131) 0.0

both A and B 166 0(166) 0.0

Total 8192 7435(757) 90.8

of molecule is present. However, the NN. analysis is not able to correctly categorize

the bursts due to both molecule A and B present simultaneously, and it incorrectly

categorizes such events as due to either type Aoi B only.

To understand why both methods predict poorer results, the information content of

the data is investigated. The fraction of photons that fall within the first two bins versus

the total number of photons in the burst is plotted in figure 5.4. Bursts corresponding

to molecule type A with a longer fiuorescence lifetime are centered at 0.4 in the x axis,

i.e., on average, such bursts distribute 40% of their photons into the first two bins

and the remaining 60% into the second' two bins. For bursts due to molecule type B,

the photons are distributed evenly between the two portions of the time window. The

mean separation of the two groups is only about 0.1, which is smaller, than the value

of 0.5 obtained in section 5.2.2. Note that on the basis of the fiuorescence lifetimes,

the distance between the two groups is not expected to be this close. Also, molecule

B, which has a shorter fiuorescence lifetime, would be expected to distribute more than

50% of the photons into the first two bins. There are two reasons why the distributions
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do not appear according to these expectations.

First, more of the bursts from molecule B are not detected, as molecule B is less

bright. Recall that a threshold, which is set to be 10 in this case, is introduced to block

the background bursts, and some of the bursts from molecule B will also be blocked.

In the simulation, molecule B is introduced at twice the rate as that of molecule A, but

the number of detected bursts due to B is only 1.15 times that of A.

Second, and more importantly, most bursts contain a large number of background

photons, which distort the resultant distributions. As shown in section 2.4, if not for

background, the distribution of photons into each bin would follow the probability den

sity of the corresponding molecule type, as illustrated for molecule A, B, and background

in figure 5.5(a). However, when background is included, the number of photons in each

bin for bursts due to A or R becomes distorted as shown in figure 5.5 (b). The curves

corresponding to A and B have a similar shape, which is similar to the probability den

sity of the background in figure 5.5(a). Thus, if a burst contains too many background

photons, the fluorescence photons will be overwhelmed by the background photons, and

the timing information from the fiuorescence decay profile will not be sustained.

The NN method yields niore accurate predictions than the MLE method because

of the same reason as discussed in section 5.2.2. In this case, the brightnesses of the

fiuorescence for each type of molecule differs, and is apparently used by the NN method

to help classify the bursts. To illustrate how the classification of a burst is correlated

to its brightness, a comparison between the MLE and NN methods is shown in figures
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5.6 to 5.9. Figure 5.6 shows the events predicted correctly by both methods, figure

5.7 shows predicted incorrectly by the MLE method but correctly by the NN method,

figure 5.8 shows the events predicted correctly by the NN method but incorrectly by

the MLE method, and figure 5.9 shows where both methods fail to correctly predict the

events. The numbers of events predicted by each method are also included in each figure

legend. Note that in figure 5.7, where the NN outperforms the MLE method, all the

bursts from molecule A contain more photons than those from molecule B. However,

in figure 5.8, where the MLE outperforms the NN method, there are smaller number

of bursts and for these, molecule B is brighter than A. Prom this it can be inferred

that the NN method yields more accurate predictions than the MLE method when the

bursts from molecule A are brighter than those from molecule B. Note that molecule

A has a higher quantum efficiency than molecule B, and hence its bursts are expected

to be brighter.

In the cases where both methods fail, the bursts are due to background or both

types of molecule, and are only 2% among all the collected events, all such bursts were

categorized as single molecule events, i.e., either type A or type B. lots of bursts due to

the prompt and both molecules presenting. In the simulation, the NN fails to predict

the events where the burst is from either background or both types of molecules because

the bursts belonging to these two cases are mixed with the cases where only single type

of molecule is present, as illustrated in figure 5.9. Furthermore, the failure of classifying

these cases by the NN method is expected since the majority (96%) of the bursts are
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originated from the passage of only a single type of molecule in the learning set. The

NN analysis always favors the majority of the data group so as to achieve the minimum

error.

The results above are what are expected as the background was introduced into the

simulation, and this also can be used as the direction of designing an efficient SMD

experiment. Firstly, dye molecules with distinctive fluorescence lifetimes are preferred,

as discussed in section 5.2.2. Secondly, the dye molecules need to have high quantum

efficiency, and hence, under the high laser power, a burst would contain many photons

from the fluorescence. Thirdly, the dye molecules with other photo-physical properties

that discriminate them would help the NN analysis, for example, different internal con

version, inter-system crossing, and, photo-degradation properties. Finally, the solution

used in the experiment need to be diluted so as to avoid occasions where both types of

molecules are present.

5.5 SMD simulation with different bin selection schemes

In section 2.5.1, the influences of choosing various number of bins within the time window

oh the precision of identification of molecules was discussed, and the conclusion was that

only a small number of bins is needed to obtain fairly good results. Addition of extra

bins within the time window is not expected to gain much benefit, and furthermore a

small number of bins will speed up the process of data collection and analysis. In this

section, the MLE and NN methods will be used to analyze the cases for which different
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numbers of bins within the time window are chosen.

The simulations in this section use the same parameters as in section 5.4. Only the
\

data for the case of 64 bins are generated by the simulations, and the other cases of 32,
r

16, 8, 4, 2, arid 1 bins are obtained as described in section 2.5.4. The equal bin widths

and bin widths selected by the intuitive algorithm, introduced in section 2.5.2, are used

to select the bins within the time window.

There are 16384 bursts collected in the simulations, and among these bursts, the

first 8192 are used for training the neural network and the last 8192 are used for testing

by both MLE and,NN methods. The results for the selection of equal bin widths is

shown in table 5.14. The total number of correct predictions by the MLE method for

each case of total number of bins within the time window is drawn in figures 5.10,

where the squares correspond to the results from the equal bin widths selection. It is

apparent that the reduction of temporal bins will lead to the decrement of total number

of correct prediction when the resolution of the bins is less than 8. The NN analysis

gives consistent results for all cases of equal bin widths, as shown in table 5.14 and

figure 5.11.

Table 5.15 gives the results for the bin selection determined by the intuitive algo

rithm. The corresponding total number of correct predictions by the MLE method for

each case of total number of bins within the time window is also illustrated in figure

5.10 (circles in the figure). In this case, the MLE method' is able to give consistent

prediction results for all the cases of bin selections. The NN method also gives results
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Table 5.14: Results for even bin width selection case for various number of bins: A:
Fluorophore A (R6G), B: Fluorophore B (TRITC), C: Background, AB: Both fluorophore

Number of

temporal bins

Categories A B C AB Total

Actual number of cases 366L 4233 131 167 8192

64 Cases correctly predicted by NN

Cases correctly predicted by MLE

3249

2965

4158

2294

0 0 7407

5259

32 Cases correctly predicted by NN

Cases correctly predicted by MLE

3242

2966

4166

2289

0 0 7408

5255

16 Cases correctly predicted by NN

Cases correctly predicted by MLE

3251

2966

4169

2305

0 0 7420

5271

8 Cases correctly predicted by NN

Cases correctly predicted by MLE

3246

2955

4171

2313

0 0 7417

5268

4 Cases correctly predicted by NN
Cases correctly predicted by MLE

3274

2902

4157

2293

0 0 7431

5195

2 Cases correctly predicted by NN

Cases correctly predicted by MLE

3261

2749

4151

2289

0 0 7412

5038

1 Cases correctly predicted by NN

Cases correctly predicted by MLE

3254

3661

4152

0

0 0 7406

3661

Learning set: Actual number of cases 3725 4184 129 154 8192
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Table 5.15: Results for bin selection determined by the intuitive algorithm for various
number of bins: A: Fluorophore A (R6G). B: Fluorophore B (TRITC), C: Background, AB:
Both fluorophore.

Number of

temporal bins

Categories A B C AB Total

Actual number of cases 3662 4233 131 166 8192

64 Cases correctly predicted by NN

Cases correctly predicted by MLE

3262

2966

4148

2294

0 0 7410

5260

32 Cases correctly predicted by NN

Cases correctly predicted by MLE

3220

2970

4174

2292

0, 0 7394

5262

16 Cases correctly predicted by NN

Cases correctly predicted by MLE

3254

2974

4170

2296

0 0 7424

5270

8 Cases correctly predicted by NN

Cases correctly predicted by MLE

3250

2955

4166

2308

0 0 7416

5263

4 Cases correctly predicted by NN

Cases correctly predicted by MLE

3282

2943

4153

2330

0 0 7435

5273

2 Cases correctly predicted by NN

Cases correctly predicted by MLE

3267

2891

4153

2344

0 0 7420

5235

1 Cases correctly predicted by NN

Cases correctly predicted by MLE

3253

3662

4155

0

0 0 7408

3662

Learning set: Actual number of cases 3725 4184 129 154 8192

comparable to the results of those for the equal bin width selections as shown in figure

5.11.

The results above show that, under the current conditions, the total number of bins

within the time window needs to be at least 8 if the widths of each bin is chosen to

be equal and the MLE method is used to analyze the data. If the intuitive algorithm

is applied, the required resolution of bins by the MLE method can be further reduced.

In addition, the selections of bin-width within the time Window infiuence more to the
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MLE method than the NN analysis. Prom the point of view of the NN analysis, the

bursts belonging to molecule type either Aoi B are clearly separated by the information

of fluorescence brightness (or total number of photons in each burst), other than the

timing information. Hence, the selection of the nurnber of bins, are not as important to

the NN analysis as to the MLE analysis.

In the 1 bin case, only the NN method gives the consistent result with respect to
7

other bin selections. The MLE method predicts stll the events as the passage of molecule

type B. This is another evidence to show that the classiflcation of bursts by the NN

analysis depends almost entirdy on the brightness of the molecules in this case.

In summary, the NN analysis is superior than the MLE method in that it is able

to grasp the information difiicult to be formulated and to be implemented into the

statistics, such as the information of the brightness of bursts. The selection of small

number of bins, such as 4 bins, is sufficient to achieve the required accuracy, and will

saVe time in the data collection stage.

5.6 Experiment Improvements

5.6.1 Motivation for Fast SMD

SMD is believed to be an enabling techriology for searching for rare molecules due to

its sensitivity. To accomplish the task, it is necessary to process a very large number

of molecules and spectroscopically distinguish the rare molecules from the majority

species. Rapid detection of molecules is necessary if large numbers of fluorescent-labeled
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molecules are to be processed within a reasonable time. In addition, rapid detection

requires the transit time of molecules to be minimized when the molecules pass through

the probe region, and the capability to distinguish the simultaneous passage of two or

more molecules. For example, for the assay of 1 micro-liter of solution at a concentration

of 1 pico-molar, 6 x 10® molecules must be counted. If the. time required for each

detection is 100 /iS, and if molecules were processed at a mean rate of 10® s~^, then the

assay would take about 10 minutes, and the Poisson probability that a photon burst is

due to two or more molecules passing simultaneously through the detection zone would

be ~5%.

5.6.2 Details of experimental improvements

In our lab, Li et al. had constructed an experimental system enabling the single molecule

detection with an efficiency of ~80% and with a transit time of 15t =1.0 ms. Improve

ments in the speed of SMD are considered in this work. Detection of BODIBY-TR dye

molecule with a transit time of 25t =176 /iS has been achieved in the recent measure

ments. Improvements of the SMD apparatus will be introduced in this section, and the

experimental results are shown in section 5.6.3.

The experimental setup is shown in figure 5.12. The laser used in the experiment is

a synchronously-pumped dye laser (Coherent 702-1-), which provides 8 ps pulses at 76

MHz and 585 nm. The horizontally polarized beam is expanded and collimated with

a pair of doublet lenses and focused with another doublet to a beam waist of 3.5 /xm,

as measured in air by scanning a 1.0 /im pinhole through the waist. When focused
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into water, the waist would theoretically be smaller by a factor of 1.33 due to the

refractive index of water, if it were not for aberrations introduced at the glass walls of

the square-bore flow cell. The fluorescence is collected using a x60 microscope objective

(Nikon CF Plan Achromat, model 79173), which has a numerical aperture of NA= 0.85,

and an adjustable cover-glass aberration correction. When micro-molar concentration

dye is introduced through the injection capillary, the image appears as a slightly fuzzy

circular disk and hence there appears to be no advantage to the use of crossed slits for

the spatial filter. Instead, a round pinhole of radius ro — 250 /im is used as a spatial

filter. This just accommodates the image. Within the approximation of geometric optics

and no aberrations, the pinhole defines a double-conic shaped region of maximum light

collection efficiency C = (1 — cosq:)/2 = 0.12, with radius so = J^o/OO = 4.2 //m, conic

half-angle oc = sin~^(NA/1.33) = 40° and half-depth sotano: = 5.0/im (see section 3C of

reference [11]). The intersection of the flow stream and laser beam would be completely

contained within the double cone.

Following the pinhole, the collected light passes through a Raman notch filter (Kaiser),

which rejects Rayleigh scattered laser light at 585 nm with an optical density of 6.0 while

transmitting fluorescence with an efficiency of 0.9, and then a band-pass interference

filter (Omega Optical). The interference filter pass band was selected to reject the ma

jor Raman scatter component from the solvent, which is the 0-H stretching mode at

3000 cm~^ and which falls at 709 nm for an excitation wavelength of 585 nm. The

light passed by the pinhole and filters is then imaged by a Newport M-10 microscope
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objective to a disk of diameter ~ 50//m at the center of a single photon avalanche diode

(SPAD).

In preliminary experiments to determine the complete optical throughput, a highly

attenuated portion of the dye laser beam was focused into the flow cell so as to directly

pass into the collection objective, through the pinhole and towards the SPAD. When the

dye laser was tuned to 600 nm, the weak broad-band fluorescence within the dye laser

beam was identifled as the major source of background. Hence to reduce the background

count rate, the laser beam is passed through a narrow-band interference filter, placed

iaefore the focusing lens.

In Li's experiment [10], single molecules of S-101 in aqueous solution are eflB.ciently

detected as they pass from a 0.8 fim microcapillary injection tip into a sheath flow,

which carries them through an elliptical cylindrical excitation volume of 1.9 pi with

a mean transit time of 1.0 ms. Analytical calculations and Monte Carlo simulations

[22] of the experiment indicated that the 0.8 /is dead time of the avalanche photodiode

was the most significant factor limiting the time required for the detection of each

molecule. Although photo-multiplier tubes exhibit considerably less dead time, use of

a high quantum eflficiency (> 0.6) avalanche photodiode (EG&G Canada SPCM-200)

minimizes the number of molecular excitations required for detection and hence the

photodegradation probability.

A new active-quenching circuit has been developed and custom modified for sub-

nanosecond time-gated detection [24]. Best timing performance and background after-
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pulse rate are obtained with a dead time of 65 ns, which enables instantaneous photon

count rates of up to 1.9 x 10® s"^ with only 10% loss due to pile-up. The previous ex

perimental results were obtained at excitation intensities well below saturation, because

of the high rate of promptly scattered photons from solvent molecules (~ 3 x 10® s ^),

which were removed by the time-gating circuit but nevertheless gave significant pile-up

at the passively-quenched avalanche photodiode. The reduced dead time of the new

actively-quenched detector enables higher laser intensities to be used, which in turn

enables single molecules to be detected with shorter transit times and faster solution

fiow rates.

The Monte Carlo simulation indicates that for faster sheath fiow rates less diffusional

spreading occurs over the same distance downstream from the microcapillary injector

and hence ejfficient detection can still be accomplished with an lexcitation volume of

smaller cross-section. Diffusion of the sample in the sheath flow is reduced and the vol

umetric rate at which the sample is processed is increased. For our present experiments,

we have accordingly reduced the excitation volume to ~ 0.25 pi while increasing the

laser excitation intensity by a factor of ~ 5.

To accomplish single molecule detection within faster transit times and higher in

stantaneous fluorescence photon rates, the components of the data acquisition system

have been replaced. Previously a time-to-amplitude converter (TAG) with 2.5 fis dead

time and an analog-to-digital converter with 1 /LiS conversion time were used to provide

software controllable time-gating, while most of the Raman background was removed
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by a temporal pre-filter (a sub-nanosecond anti-coincidence circuit) with a dead time of

~ 10 ns. During the passage of a single molecule, the instantaneous rate of the counts

that pass the pre-filter was 20 photons in 1.0 ms, and hence the 2.5 /is TAG dead

time gave < 5% loss. For detection of molecules within shorter transit times, signifi

cantly higher instantaneous fiuorescence rates occur. Therefore, the output signal from

the temporal pre-filter is connected directly to a 100 MHz multi-channel scalar (Ortec

ACE-MCS) and time-gating is accomplished solely by the hardware.

5.6.3 Fast SMD results and discussions

Figure 5.13 shows an example of photon bursts of BODIPY-TR(D-6116) dye obtained in

a bulk fiow cell with the capillary injector, under the following conditions; Laser power

P = 23 mW; circular beam waist uq = 3.5 fim; spatial filter object space diameter

= 8.4 /im. The molecular transit time obtained from the auto-correlation function,

shown in figure 5.14, is 26t = 176 fis. The dwell time of the multi-channel scalar is

50 IIS and the data is processed by a simple sliding sum filter with a bin time of 200 fis

to yield the graph in figure 5.13. The background bursts in the figure is obtained by

shutting off the flow in the capillary, and hence no dye molecule will diffuse into the

probe region.

For the experimental parameters used, the peak excitation probability per laser

pulse, which occurs when a molecule is in the center of the sample volume, is ̂ excite ~

0.44. This indicates a moderate level of saturation of the absorption of the molecule.

The mean number of excitations per molecule is ~ 4500, comparable to that in reference
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[10], and hence the burst amplitudes are also of comparable size as shown in figure 5.15.

5.7 Fast data collection scheme

Section 2.1 explained that the nanosecond time interval between the laser excitation

pulse and the fluorescence photon can be used to sort each photon into an appropriate

bin for use for identification of molecules. The usual experimental hardware for acheiving

this involves the use of a time-to-amplitude converter (TAG) and pulse height analyzer,

or TAG and analog to digital converter [10], or time to digital converter [28]. The

time interval is typically measured with a precision of 8 to 14 bits, i.e., with 256 to

16,184 fViarmpIs of resolution. Adjacent channels may be arbitrarily grouped in the

software to produce a smaller number of bins. Such hardware invariably introduces

a dead time of the order of a millisecond and is not suitable for experiments for . fast

single molecule identification. This section discusses alternate experimental hardware

for directly measuring and sorting the time interval into a'small number (2 to 4) of bins.

The hardware utilizes fast coincidence or time-gate circuits, with widths that may be

varied by adjusting the threshold of the discriminators and the lengths of co-axial cables.

Thus, bins with desired widths and temporal positions can be obtained. However, the

bins need not be contiguous, and ako they need not be non-overlapping.

As implemented in the fast SMD experiment, a multi-channel scalar (MGS)(AGE-

MGS) was used to collect the data. The main disadvantage of this scheme is that the
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data acquisition is not continuous, and the analysis of the data is not performed at the

exactly same time as it is acquired. The display of the photon bursts is delayed. For each

run of data collection, the acquisition is inactive for a period of time while the Fortran

program reads in the 4096 point data file generated by the MCS and processes it with

the simple sliding sum algorithm. Therefore, this inevitable loss of data, or interrupted

data collection must be accounted for in the algorithm for obtaining the auto-correlation

function. Moreover, in order to implement the single molecule identification experiment,

multiple bins within the time window must be implemented. The ACE-MCS can only

collect data from one bin at a time, and a MCS with multiple inputs is required.

To overcome the above limitations, a new data collection scheme was constructed

using a National Instruments PC-TIO data acquisition card. The PC-TIO card is a

timing and digital I/O interface for the ISA bus of IBM compatible PCs, with up to 10

10 MHz counters or clocks, which may be read under interrupt control. For the reason

that two counters of the PC-TIO card are used to alternatively count TTL at low or

high voltage output for each channel and one counter is required to provide the clock

signal, only 3 channels is able to be constructed on one PC-TIO card. It is possible

to read the counters and continuously stream data to memory for real time analysis

in such a way as to emulate a 3-channel MCS. In this work, a C program, which was

written by L. Davis for emulating a 1-channel MCS with the PC-TIO card and which

was used in reference [27], was modified and extended to give a 3-channel MCS.

As the output signal from the prefilter circuits are negative and relatively small(~ IV),
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yet the PC-TIO card needs a driven signal larger than 2.4V, a fast invert amplifier cir

cuit is required to be used as the interface between the prefilter circuit and the data

acquisition card. A comparator circuit is chosen for such purpose, and the diagram of

such a circuit is illustrated in figure 5.16. The 4-/— 6V power is supplied by the Nuclear

Instrument Module (NIM).

Figure 5.17 illustrates the block diagram of the connection between the PC-TIO card

and 3 comparator circuits. Counter 1 of the PC-TIO card is used to provide a lOMHz

clock signal to all the other gates. Counters 2 and 3 are used by channel 1, counters 6

and 7 are used by channel 2, and counters 8 and 9 are used by channel 3. Among all

the counters, 2, 6, and 8 are configured to collect data during the high voltage clock

cycle, and 3, 7, and 9 are configured to collect data during the low voltage cycle. The

ground of all 3 channels is connected to pin 33 of the PC-TIOcard.

5.8 Simulation with calibration runs

As described in chapter 4, the neural networks require learning prior to the testing, and

hence a calibration run needs to be preformed to train the neural networks before any

real time detection in the SMD experiment. Therefore, a corresponding procedure is

proposed to implement the NN analysis for the experiment, and in such a experiment,

• the experiment conditions need to be kept the same for all the runs below,

• run 1: only molecule A goes through the probe region, the corresponding bursts

are collected, and the desired output for the NN training is set to be molecule
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type A,. . r •

• run 2: only molecule B goes through the probe region, the corresponding bursts

are collected, and the desired output for the NN training is set to be molecule

type B,

• run 3: no molecule goes through the probe region and the desired outputs of the

corresponding collected bursts are set to be type background,

• the data of the above runs axe combined, and are used as the training data for the

NN analysis('note that the NN software can be configured to read in the training

data in a random order),

• the trained neural networks are outputted as a C subroutine, and the subroutine

can be implemented into the data analysis of the experiment,

• run 4: finally the real time detection can be performed by using the trained

network.

Clearly, the case for the passage of both types of molecules is beyond the ability

of this procedure. Therefore, the concentration of the solution needs to be sufficiently

diluted and the flow rate needs to be kept sufficietly fast to avoid such events from

happening, and minimize the error where both types of molecule are present in the

probe region.

According to the procedure described above, a SMD experiment with calibration

runs is simulated with the improved version of the SMD simulation. Most of the pa-
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Table 5.16: Parameters in the simulation with calibration

Parameters Run 1 Run 2 Run 3

Used in Bursts from Bursts from Bursts from

each run A&Prompt B&Prompt Only Prompt

Fraction of type
A among the total 1.0 0.0 0.333

Concentration

of solution

0.0 X 10-"(mol/picoliter) 1.0 X 10-" 2.0 X 10-"

rameters are the same as those in section 5.4.1, and other changed parameters are listed

in table 5.16.

In the simulation, data for the run 1 and the run 2 are collected by using different

solutions containing molecule A and B respectively, this is acheived by varying the

value of fraction of ̂ s among all the molecules. In third run, only pure water goes

through the probe region, and data for the background is collected. All the above 3

runs are subjected to a fixed amount of time. A value of 2 x 10® total time steps are

used in the simulation, and it corresponds to 1220 seconds worth of data collection in

the calibrations. As the result, there are totally 4513 bursts from molecule A, 5240

bmsts from B, and 163 from the background. These data are combined and used as

the training data of the NN analysis in a 64 bins case. The trained network is then

implemented into the real time simulation, and the 8192 bursts generated from the

simulation with the solution of mixture of A and B are tested by the network. The

results of identification, of molecules by the NN and the MLE methods are shown in

tables 5.17 arid 5.18, respectively.
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Table 5.17: Identification of molecule by the NN method, simulating a real time experi-
mentv

Type of
burst

Actual'

Occasion

Correct prediction
(incorrect prediction)

% of the correct

predictions

molecule A 3650 3254(396) 89.2

molecule B 4240 4124(116) . 97.3

Prompt 145 0(145) 0

both A and B 157 0(157) , 0

Total 8192 7378(814) 90.1

Table, 5.18: Identification of molecule by the MLE method, simulating a real time experi
ment

Type of
burst ,

Actual

Occasion

Correct prediction
(incorrect prediction)

% of the correct
predictions

molecule A 3650 2912(738) 79.8

molecule B 4240 2394(1846) 56.5

Prompt 145 0(145) 0

both A and B 157 0(157) 0

Total 8192 5306(2886) 64.8

The results from the NN and MLE methods are comparable with the results in

sections 5.4 and 5.5. The NN. method again outperforms the MLE method, and gives

above 90% correct predictions of individual molecules. In comparison, the MLE method

gives only 64.8% correct predictions, and more than 1/3 of the events are predicted

wrong. Therefore, it is an applicable approach to implement the NN analysis into a real

time single molecule identification experiment.
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5.9 Simulation with overlapped bins -

With the hardware discussed in section 5.6, the sorting bins within the time window are

selected by varying the thresholds of discriminators and the lengths of co-axial cables.

The widths and positions of each bin may be monitored on an oscilloscope during

experimental setup. The bins may be selected in such a way that they overlap, and hence

a photon may contribute a count to two or more bins. According to the assumption

made in the MLE method, introduced in section 3.2, the spectroscopic bins are not

allowed to overlap each other, and each bin should be statistically independent of all

others. Therefore, with overlapping bins, the MLE method based upon the multinomial

distribution would no longer be valid. It would be too complicated to implement the

MLE analysis to consider the case of overlapped bins, and hence only the NN analysis

is used in this section.

Note that the overlapping of bins may provide extra sorting space for photons, and

hence further reduce the required number of bins within the time window. This could

also speed up the data analysis. For example, using 2 overlapped bins rather than 3 non-

overlapping contiguous bins reduces the data storage and analysis time requirements.

In addition, in the 2-bin example above, the photon count in the overlapped bin can

not be obtained as the arrival time of each photon with respect to the laser pulse is

no longer available in the experiment. The photon counts in bin 1 and 2 will not be

sufficient to give the number of photons falling within the overlapped bin.

As before, in the NN analysis, a 2-layer back-propagation neural network with S
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Table 5.19: Identification of molecule by the NN for 5 overlapping bins

Type of
burst

Actual

Occasion

Correct prediction
(incorrect prediction)

% of the correct

predictions

molecule A 3662 3264(398) 89.1

molecule B 4233 4158(75) 98.2

Prompt 131 0(133) 0

both A and B 166 0(166) 0

Total 8192 7422(770) 90.6

learning rule and sigmoid activation function is used for data analysis. The 7 inputs of

the network include the photon counts in each bin, the peak amplitude and the dmation

of each burst, and the hidden layer contains 14 nodes. The bins and the corresponding

widths are arbitrarily chosen to be as shown in figure 5.18. To simulate a 5 overlapped

bins case, the same set of 16384 burst data as in section 5.4 are used. The first 8192

data are used to train the network, and the remaining 8192 sets of data are used as the

testing data. The result is shown in table 5.19.

To simulate situation where overlapped bins exist, a similar approach with calibra,-

tion runs as in section 5.8 is carried out. The bursts data for training and testing the

neural network in section 5.8 are used for the overlapped bins case, respectively. The

result is shown in table 5.20.

The results show that the NN analysis still gives a good result under the condition

where the bursts data firom each bin are dependent to each other. This is because the

classificatiori of molecules by the NN analysis is based on not only the timing information

but also the information of fiuorescence brightness of dye molecules.
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Table 5.20: Identification of molecules by the NN method in the case of a selection of 5
overlapping bins by the procedure introduced in section 5.8

Type of Actual Correct prediction % of the correct

burst Occasion (incorrect prediction) predictions

molecule A 3650 3237(413) 88.7

molecule B 4240 4155(85) 98.0

Prompt 145 0(145) 0

both A and B 157 0(157) 0

Total 8192 7392(800) 90.2

Table 5.21: Identification of molecules by the NN analysis for the case with 3 overlapping
bins within the time window by the procedure introduced in section 5.8

Type of Actual Correct prediction % of the correct

burst Occasion (incorrect prediction) predictions

molecule A 3650 3248(402) 89.0

molecule B 4240 4145(95) 97.8

Prompt 145 0(145) 0

both A and B 157 0(157) 0

Total 8192 7393(799) 90.2

' A case with 3 overlapped bins within the time window is also simulated as there

are only 3 bins available in the currently developed experiment in our lab. The widths

of the 3 bins are chosen arbitrarily, and are illustrated in figme 5.19. The same set of

parameters in section 5.8 are used here, and the result is shown in table 5.21.

5.10 Time consumption by the NN analysis

This section will investigate the total time used for performing the NN analysis. In

general, the time is composed of that taken during the calibration experiments, i.e., the
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time spent on training nemal networks, and that taken during the real time testing.

According to the procedure proposed in section 5.8, the total time that the calibration

experiments take is typically 3 times of the training time used in a single run. In this

section, onlt a single run of the NN training is simulated, and the time spent in such a

run is recorded.

The hardware setup and other conditions for training the neural network are listed

as below:

• Hardware: Pentium II 300MHz, 128MB memory, windows 95 operating system,

• Software: NeuralWare Professional II/Plus,

• Achetecheture of the networks: 2-layer back-propagation networks, 6 learning rule,

sigmoid activation function, number of nodes in inputs, outputs, and hidden layers

are defined in table 5.11,

• Total learning times: 100000.

The results for selections of different number of input and hidden nodes are shown in

table 5.22.

Table 5.22 shows that" if ,a small number of bins is chosen within the time window,

e.g., less than 16 bins, the training process takes no more than 1 minute, and the

asymptotic limit of root mean square error of the network can be reached with the

current total number of trainings, i.e., 100000.

The time taken by the NN analysis during the real time testing is comparable to
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Table 5.22: Training time for the networks define in table 5.11

Number of bin Number of Number of units Number of Total Training

in time window input units in the hidden layer output units Units Time (s)

64 66 132 4 202 363

32 34 68 4 106 175

16 18 36 4 58 93

8 10 20 4 34 70

4 6 12 4 22 62

2 4 8 4 16 61

1 3 6 4  . 13 60

that of the MLE method according to the investigation on the SPARC workstations for

both methods. The costs of predictions for both the methods are around a few clock

cycles per identification, and the NN analysis normally takes one or two more cycles

than the MLE method.
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Chapter 6

Summary and Future Work

This work is the first that incorporates the NN method in the research area of the data

analyses of SMD and SMI experiments and simulations. Results show that the NN

analysis for categorization can be superior to the traditional MLE niethod, particularly

in cases where fluorophores that are subject to be classified have distinctive photo-

physical properties. In addition, a procedure of how to implement the NN analysis

in real-time .for experiments is proposed. The results of the simulation with the NN

procedure are promising.

In this dissertation, the prior version of the simulation code for single molecule

detection and identification experinients has been extended to include the fluorescence

probability as the convolution of the exponential decay and instrument impiilse function.

The selection of the time window has been implemented by monitoring the variation of

signal and noise as anticipated to occur in experiments. The so-called intuitive algorithm
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for selecting bin widths within the time window has also been extended accordingly.

Several approaches to optimize the SMI have been evaluated theoretically, for exam

ple, errors of predictions of fluorescence bursts have been investigated, (1) by adjusting

the start and end points of the time window, (2) by changing the number of sorting

bins within the time window, and (3) by selecting the bin widths. Results show that
I

several bin-width selections are favorable, for example, equal bin widths or bin widths

chosen by the intuitive algorithm. The investigation clarifles that the choice of a set of
/

optimal bin widths is largely determined by the speciflc experimental conditions.

A number of cases have been simulated by using the improved version of the simu

lation program. Results confirm that at most 8 bins are required to sort photons within

the time window given all bin widths are equal; more bins, e.g., 16, 32 and 64 bins

yield hardly any improved identification. Results also show that the number of bins

within the time window can be further reduced if all the widths were determined by

the intuitive algorithm. The simulations with bin widths determined by the intuitive

algorithm generally yield improved results compared to those with equal widths when

the total number of bins within the time window is less than 8.

Simulation results provide a useful direction for the SMD and SMI experiment.

Fluorophores need to have as distinctive photo-physical properties as possible, and such

properties may be chosen, for example, the difierent fluorescence lifetimes or difierent

fluorescence quantum efficiencies of dyes. Furthermore, properly setting the width of

the time window will reduce the portion of background photons in each burst, and
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substantially improve the precision of identification of molecules. In the single molecule

identification experinient, the concentration of the solution containing dye molecules

needs to be further diluted to avoid the cases where multiple molecules are present

at the probe region simultaneously. For diluted samples, a reduction of the error is

expected for both the MLE and the NN-methods.

The futme work may include finding suitable dyes that have large signal strength

at 585 nm excitation wavelength, otherwise, other excitation wavelengths need to be

explored, and corresponding spectral filters are required. To further suppress the back-

groimd photon counts, an experimental setup with a probe volume in the order of

femtoliters needs to be pursued, including the use of confocal epi-illumination. In ad

dition, the new data collection scheme using the PC-TIO card and the pre-amplifier

circuitry needs to be evaluated together prior to experiments. Currently, 3 bins are

configured for the PC-TIO card and the circuitry, but only one bin of data collection

is available fi:om the signals of the SPAD and the PD. Therefore, extra hardware is

required for implementation for the multiple bin data acquisition. Incorporation of the

NN method in the data acquisition of SMD experiments can be done according to the

procedure proposed in this work. Finally, with the suggested preparation work, the

real-time single molecule identification experiment is expected to show the simulated,

predicted results.
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