University of Tennessee, Knoxville

na LNIVERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Doctoral Dissertations Graduate School

5-2000

Analysis of ultra-sensitive fluorescence experiments

Yuxing Sun

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Sun, Yuxing, "Analysis of ultra-sensitive fluorescence experiments. " PhD diss., University of Tennessee,
2000.

https://trace.tennessee.edu/utk_graddiss/8417

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a dissertation written by Yuxing Sun entitled "Analysis of ultra-sensitive
fluorescence experiments." | have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy, with a major in Physics.

Lloyd Davis, Major Professor
We have read this dissertation and recommend its acceptance:
Chris Parigger, Bruce Whitehead, Horace Crater
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)






Analysis of Ultra-sensitive Fluorescence

Experiments

A Dissertatédr} ; |
Presented“ fof the
Doctor of Philosophy
Degree

- The University of Tennessee, Knoxville

Yuxing Sun -

‘May 2000



Dedicatioh

Dedicated to my parents, Guiying Qu and Xiang Sun.

ii



Acknowledgments
I Woukld like to thank Dr. Lloyd Davis who has been n;y mentor sim;e I arrived
at the University, for his patience and guidance to my .academi'c and experimental
© achievements. I .vv()uld like to thank Dr. Bruce Whitehead who has been very supportive
throughout the course of msf studies. I am also gratefu1 to othgr of my committee
members, Dr. Chris Parigger and Dr. Horace Crater; for their advice and assistance

over the past many years.

A special thank to the staff at the Center for Laser Application, Newton Wright,

Jim HornKohl and Diane Chellstrop. In addition, special thanks to my friends at UT

Space Institute, and they are (in alphabetic order): Dr. Ying-Lin Chen, Ivan Dors, Dr.
Meng Fan, Dr. Guoming Guan, Pavlina :]eleva, Mehul Kochar, Yongjing Li, Bin Liu,
Dr. Dinesh Mehta, Dr. Wenhong Qin, Jianmin Shen, Dr. Yuanji Tang, Leson Wang,
Guoping Xia, and Lin Zhu.

This work is partially supported by the National Science Foundation.



Abstract

" This work primarily investigates use of the neu;ra.l' network(NN) method to analyze
spéctral data collected in single molecuie detection(SMD) and id_él}tiﬁcation (SMI) ex-
peri'xﬁents‘._ Thé 2-layer neural networks, with sigmoid as the activation function, are
constructed-and trained on a set of simulateq dz}_mta using back-propagatioxi and the o-
learning rule. .The trained networks a;.lié:'tlien used for idént.ifi;:;tion‘oif ph(;ton bursts in
subsequent simulations. Resuits sh;ov;’ that theﬂ NN m?atliod "};iélds bétt;f identification
of individual photon bursts'thar; the Atradit'ion’éml. ma.x1mum likélihod"diéétim-ation (MLE),
particula.:rl}‘r in cases where the fluorophores have disparate fluorescence quantum effi-
ciencies, absorption cross-sections, or photodegradatic;x; efﬁcieﬁéieé.

In addition, this work reports se\ierai improvementé over the\pri(-n; version of 'th'e.
Monte Ca.rlolsimula.tic.)r.l program. 'i‘hga improve(i‘w;rsion considers ﬁhé fluorescence prob-
ability as the‘convolu.tion of the pure'e:;:;)onenyial deca? furjlc'tion ch?,racterized by the
. ﬂuoféscénce lifetime and ‘the inst:pfﬁ,eﬂt impulse response ‘function in the experiment.
The sétting of the time wiﬁdow is then vimplemernted by monitoring-the variation of
signal and noise.- A numbe;r of problems have been ihvestiéa.fed by using the improved
" version. In. particular, the effects of the nuﬁ.lber and vﬁdths of the bins within the time.
windovs-r on thé,precisibn of identiﬁc;ﬂ;ion Qf m_blequles are studied. The results from the
improved version of ythe simulation show -tl;at on‘ly» a small number of bins '(4—8) are.
required to achieve app_roxirﬁately 90% correct predictions with the NN m:ethod.‘ Bin
widths cﬂosen in accordance with the intui'tive algorithm, or equalﬁ bin widths, ggn(_ara.lly
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'give better predictiong.

a Expefimental improx.remven'fS are also reported in this work. In particular, the transit
‘tim.eIOf BODIBY-TR(D-6116) dye molecules in an SMD experiment was imprdved to
less than 200 s, and a circuit is implemented to accomplish fast and continuous data

collection to be used in future si-ngle molecule identification experiments.
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Chapter 1 |

Introduction

In the past decade, the detection of individual fluorescent molecules in solution, as well
as potential applications in the area of DNA sequencing, has drawn increa.sing attention
from scientists around world, and considerable progress has been made. As the SMD
experiment can be performed routinely in many labs, the main focus of the topic has
bee1-1 switched to identify molecules individually by using ultra-sensitive fluorescence .
spectroscopy techniques.

Ultrg.—sensitive fluorescence spectroscopy techniques for distinguishing between dif-
ferent fluorophores have a;pplications for several DNA sequencing technologies, including
‘rapid’ and ‘conventional’ DNA ééquencing échefnqs, and in’gene detection and analy-
sis 'by hybridization teéhniqﬁés tha.t utilizes DNA miblf(;—chip arrays or s‘ingle molecule
flow cytometry [1]. For example, lfor. ‘coﬁveﬁti’ona.f DNAlz‘ééqﬁencing by the Sanger

method, the electrophoresis within a capillary or slab gel may be multiplexed by the




use of spectroscopically identifiable fluorescent la.béls. Lieb;erwirth et al.[2] have recently
demonstrated such multiplex dye DNA sequencing in capillary gel electrophoresis ‘by the
use of four dyes with disparate fluorescence lifetimes.
In the single-molecule detection (SMD) approach to DNA sequencing currently un- .

der devel(;pment at Los Alamos[3] and elsewhere [4], different fluorescently-labeled DNA
" bases are to b(; spectroscopically identified as they are enzymatically cleaved from a sin-
gle strand of DNA and suspended in a ﬁowing solution. “For such applications, unequivo-
cal identiﬁcation-of two different fluorophores with substantially different absorption and
emis‘sign spectra has been demonstrated in SMD‘e}‘:cpériment‘s" [5]. However, the instru-
mentation. in these eip_eriments was complex. in that it involved two laser sources, two
single-photon detectors, two associated sets of electronics, and-two dichroic bearﬁ sﬁlit-
ters for conibinatioﬁ of the laser beams and for separation of the collected fluorescence.
The measurement of the fluorescence lifetimes of iﬁdividﬁal molecules was also reported
in Refereﬁ'ce [5], and alternative means for identiﬁcqtion’df different fluorophores based |
upon ﬁeasiﬁéments of lifetimes or other spectroscopﬁc propefties, such as photo-stability
and ﬂuoresc'epce qﬁantum efficiency, were suggested. Such measurements can be z;dva.n-
tageous compared to éi)ectral discrimination becguse tilé inétrumeptation can be more
cost effective, as it involve‘s‘ only a single excitation vsdurce and ‘devtector.

“Spectro;copic ide;ltiﬁcation of individAualhly' détgle(;ted molecules based upon fluores-
cence lifetime meaéurementé has ﬁow been demo‘nlstraﬁ(’ed- byiseveral groups, as reported .

for example in references [6, 7, 8, 9]. In the first such experiments [6], Zander et al.




showed that Rhodamine 6G (R6G, with a lifetime of 3.79 ns), could be distinguished
from the Rhodamine B-zwitterion form (with a lifetime of 1.79 ns). In their exper-
iments, SMD was achieved using a probe voh;lme of a few femtoliters with confocal
epi-illumination and up to 320 photons were obtained from molecules diffusing through
the probe region. A Maximum Likelihood Estima@ion (MLE) technique that accounted
for the full decay curve and convolution with the prémpt wés uéed tolresitimate the fluo-
rescence lifetime of each photon bu4rst. ‘Enderleiﬁ et al. [9] first repc;-r\ted the distinction
of fluorophores with different lifetimes within a mixture,‘ R6G (witi1 an experimentally
determined lifetime of 4.2 ns) and tetramethylrhodamine isothiocyanate (TRITC) (with
determined lifetime of 2.5 ns). Their experiments used a much larger picoliter probe
region, with tile sample solutiog being injected from a capillary tip placed upstream
from the probe region. Their experimental geometry was similar to that of the SMD
experiments[10] in our lab at the University of Tennessee Space Institute (UTSI). En-
derlein et al. used a MLE technique for cateéorizétion of the temporal decay spectra of
the photon bursts, similar to that described in chapter 3.

In a general sense, all spectroscopic means for categorization of different ﬂuorof)hores
are alike in that the photons are evenfually sorted into a number of different bins, re-
sulting in a particular pattern for each type of fluorophore. Statistically speaking, the
MLE technique yields an ‘efficient’ estimator in that it attains the smallest variance
possible for the given statistics [13]. This fact is pointed out in much of the literature

on spectroscopic identification, with the implication that it would be impossible to im-



prove on such a means for categorization. However, in practical experiments-there may
be other possible categories that are difficult to statistically cazlculate and include in the
MLE analysis. Also, there may be other factors that influence the statistics in a man-
ner that is difficult to track, but which may be helpful to include in the ;:ategoriza,tion
calculations. For SMD experiments, these includ(? the possibility of photodegradation,
intersystem crossing, or multiple molecules passing simultaneously through the probe
region. Hence, in the derivation of Jthe MLE method used in-Referenqe [9], the as-
sumption of Poissonian photon statistics within each spectral bin may apply only as an
approximation.

By contrast, the neural networks (NN) methods for categorization make no assump-
tions on the statistics, but develop their own rules dur’ingAt’he learnir%g phase. The
developed rules are thus purely empirical and can more easily account \for complicating
factors or alternate categorizations.

Therefore, the primary goal of this work is to investigate a new method of data
analysis, namely, the NN method [14], for single» mole;:ule identification. The MLE
method will also be utilized to analyze the spectral data collected in the simulation,
and the prediction results are to be compared with those obtained by the NN method.
A procedure of how to incorporate the NN an'alysis into the r(;a,l time SMD experiment
will be proposed in this work:\ )

In our lab, Li et al. first demonstrated the high efficiency single molecule detec-

tion experiment with sulforhodamine 101 (S-101) molecules in aqueous solution in 1990



[10], and the transit time of molecules in the experiment was in t1:1e order of one milli-
second. In 1996, Bunfield et dl.\ [11, 12] dgveloped a Monte Carlo simulation of the
single molecule detection experiment. The siﬁulation of the individuz—xl molg’cule identi-
fication proce;'ses b)v/.the' spectral information was aléo implemented-as different types
of molecules were pr.esent.} The MLE method was’ used toané,lyze data in that wgrk.
'Furthermore, the works [12, 15] showed that better aécu'racy for identification would be
obtained if bins of unequal widths were to be used. |

“However, the version of the Montg'Car,lb*Simuiation of the SMD "experiment de-
veldped by Bunfeld et al.[12], has been found to have tyvo"n}ain‘,pfoblems. First, ‘the
fluorescence decay profile of the moleculé is considered to l?‘? a pure exponential fun(;-

tion, as characterized by the fluorescence lifetime. In fact, the fluorescence probability

is the convolution of the exponential decay and the instrument impulse response func- .

tion in the experiment. Second; the variation of the signal and noise with selection of
the time window setting is not modeled. In this case, the time window was assumed
to occupy a portion of the interval betvx;een successive laser pu_lses and the exponential
fluorescence decéy\ profiles were simply truncated to the time winciow’. Thése t;avo issues
are iﬁter-ielated in that realistic temporal profiles for the ﬁ)uorescénce decay profiles-and
the baci{ground noise must .be considered in ordér to correctly modél the selection of
“the time v;rindb-w. Another point ;co note is ‘-chaf th;é prior V;/ersion of ti'le si@ulation did
" not consider the difference of the time, gaté 'efﬁciency for dyes vﬁtl; diﬂ'érerit fluorescence

lifetimes. There is a practical limitation in the selection of the time window in that the



number of background scattered photons will substantially increase if the beginning of
the time window is seleéted to be too eé.rly. In this case, promptly scattered background
photons will overwhelm t_hegcollected time spectra of each photon burst, theli‘eby making
the diifefent types of molecules impossible to distingpi‘sh. When the co;lvolution of the
prompt and the selection of the time window are iﬁéluded; the simuiétion of SMD and
SMI would givé a useful direction for how to improve the selection of parameters g.nd
analysis for the experiment.

f‘urther, the division of the time window i_nto a number of bins, and the selection of
the widths of each bin will influence the acéuracy and precision of the identiﬁcafion of
the dye molecules. Meanwhile, employment of a small number of bins within the time
-windéw will reduce the cost of the equip'mérié and ;peed up the data collectidn in the
experimental setupé. Such problems need to be ixivestigated by using the simulation.
Ho;;vever, Bunfield et al. did not exténsively study the effects due to the limitations of
the prior version.

Hence, the next task of this work is to extendl the previous simulation code to
(;onsider the fluorescence probability as the ;:onvoh'_1tion of the exponential decay and
the instrument impulse response functibn in the experiment, and then to model the
selection: of the time window. ‘Having accomplished these, this work then considers
various o‘f bin selection algorithms, apd vdiscusses the influences of the accuracy of the
identification of single moleculesL by— ;tilizix‘lé diﬁefent set;s of Biﬁs. All the investigations

based on the improved version of the Monte Carlo simulation will provide a realistic



evaluation of hqwl to increase the correct predict‘ions of individual molecules by changing
the eipefinieﬁtal setui)s, and to improve the efficiency of ‘the detection.

_. SMD. in solution offers the prospect for counting of indiw}idua,l molecules within
small quantities of sample for ultra-sensitive chemi;:al analysis, and for enabling new
ap;;roa,ches for bio-technology é.pplicé,tions. Furthgr‘ déveIOpmént of the technology and
capa.bilitievsAivs‘important to facilitate the pra.crtical‘ realization of applications. In par-
ticular, an inprease in-the ~rat<;, at which single molecules may be efficiently A(A1etected is
necessary for sei/eral of the biotechnological and analytical applications. Hence, this
work also‘includes the exi)erimental improvement of fast single molecule detection, and -
the data acciuisitioxi schemes.l | |

In Chapter 2, the main proc’éssés in the SMD éxpé'rirﬁent and main improvements
' 'oi(er thg prior véision of the simulation are .ezxpiz;iﬁed. In;plémentatiqn of such improve-
ments g.‘re p,resen.ted. A theoretical discussion of Ahow the selection different number of
biﬂs within the time window influences the accuracy and precision of lifetime measure-
ments by Kollner et al[16] is introduced, and various bin widths selection algorithms
a.re. also described. Chapter 3 gives the definition of the MLE method uséd in the SMD
simula.tidn, several atfempts to locate the optim;tl bin widths are présénted-. In chapter
4, the NN analysis is introduced, and its categorization power is discussed. The chapter
ends with the inﬁ;roduction of software tools used‘ for the simulation, and of the varia-
tion of the simulation code for the NN analysis. Chapter 5 presents the results.of the

simulations and experimental advancements. Finally, Chapter 6 is a summary of this



work, and offers suggestions for the future work.



Chapter 2 -

Simulation of Single 1Molecule

Detection and Identification

2.1 Overview of the single molecule detection experiment

In the single molecule detection (SMD) experimental setup at UT Space Institute, a
synchronously pumped dye laser provides picosecond laser pulses at a nominal wave-
length of 585 nm, and at a repetition rate of 76 MHz. The béam is. focused to a -waist
of 3.5 um in the sample flow cell. Ultra-dilute aqueous dye solution (~nM) is intro-
duced into a sheath flow in the flow cell through the sub-micrometer opening of an
injection capillary, which is placed immediately up-stream from the focused laser beam.
Molecules in the sgmple solution are carried by the flow from the tip of the ipjection

capillary to the probe region. Given the small cross sectional area of the probe region,



the flow speed must ‘bg sufficiently fast that very few molgcules ‘miss..-('ieté-ction‘due to
diffusion. - |
" As each molecule passes throﬁgh the focused laée¥ beam, it experiences a laser
intensity that varies with its position. The laser may cause the molecule to become
excited, and this leads to various possibilities, inqluciing ﬂuor‘es?:ence, decay without
" emission by internal conversion, inter-system croésing to the triplet manifold, and photo-
’degradation ’[12]. If the molecule decays; to the ground state by fluorescence, a photon is
emifted. The emission time is random, with an exponential probability density function
and a mean equé,l to the fluorescence lifét:ime.' The dye mt;létéﬁrie may then be excited
again, and it usually cycled many fimésj:and emits manywiyi‘il‘c‘)r'eséelicé Il)hotons during
its passage across the p?obe region. | |
The experimenta.l apparatus is designed to efficiently detect the fluorescence photons
from dye molecules and to discriminate the background from scattere;d’ light. A high
numerical aperture (NA 0.85, 60X) microscope objective éollects the photons, and a
plinhole (radius 360pm), plaiced at the i.mage plane of the obje;:tive, acts as a spatial -
filter to discrimiﬁate against laser light scattered from the walls of the- gdmple cell.
Spectral filters afe‘ then used to block Rayleigh scattered light and most of fhe,Ra’man
scattered light from tbe‘ solvent. Raman light that overla'ps the fluorescence band passes
through the spectral filters, but is eliminated by an' anti-coincidence time gate in the
electroﬁi;:s. This is possible because thé, Raman ligilf_ is S(;at-téred promptly, i.e., with no

time delay, whereas most fluorescence photons are emitted with a delay characterized
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by ;the ﬂuorescénce 1ifetime of the dye.. dnly i)hotons,falling within the time window
are collected and analyzed, and a burst of such photons is the signature of a molecule
péssing .through the probe region.

Detected molecules may be identified by a variety of spectroscopic measurements. In
"general, all such identification methods require the collected phbtons to be sorted into
a n.umber» of bins, which depeﬂd upon the particular spéctroscopic measurement. Here,
, the main focus is on the identiﬁcatioﬁ of moieCules.with different ﬂuoréscence lifetimes.
In this case, tﬁe nanosecond ‘time interval between the laser excitation pﬁlse and the
ﬂuoréécgnce photon is ﬁsed to sort each photon into the appropriate bin. The particular
‘ i)attern of counts oxlrer the bins is dependent on the .ﬂuorescence lifetime of thg detected
molecule. For éxample, if the molecule has a short fluorescence 1ifétime, most photons
will fall into bins corresp(;nding to short time intervals. Therefore, each photon bﬁrst
can. be categorlzed by analys1s of the pattern. Maximum Likelihood Estimation (MLE)

and a Neural Network (NN) method will be used in this work

2.2 . Overview of the simulation

" The key physical processes of the SMD experiment, as described in section 2.1, have
' been incorporated into a Monte Carlo simulation. These have been discussed in detail

in refereﬁceé [10, 12], and are listed below. . -

.....

e The transport of the molecule“b}; 'thé solutioﬂ flow and by Einstein—Stokes diffusion
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e The removal of the molecule due to transport out of the simulation region

e The possibility of excitation of the molecule, calculated with inclusion of polar-

ization and saturation effects

e The possibility of inter-system crossing of an excited fluorophore to the meta-

stable triplet manifold
e The possibility that a molecule in a triplet manifold photodegrades

e The exponentially distributed random time until a molecule in the triplet state

relaxes

e The possibility that an excited ﬂubrophore’ will otherwise decay to the ground

state with the emission and subsequent detection of a photon
e The possibility that a photon will be detected due to background or dark noise.

e If a photon is detected, the paralysis of the detector for a number of iterations

corresponding to its dead time.

e The possibility tﬂat the photon falls within the time window, and if so, the sub-

sequent paralysis of the timing electronics.

Section 2.3 discusses how these processes are implemented into the simulation. The
general method for determining which spectroscopic bin each photon falls within, and
for recognizing photon bursts, is also discussed. Section 2.4 explains deficiencies in the

prior implementation of these aspects of the simulation. In particular, for fluorescence
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lifetime measurements, the temporal profile is not a simple exponential decay but must
account for the time reSpc;nse of the detector and electronics. S.ection 24 Veluc'ida.tes
1':he corresponding changes to the impleme}ntatioh, inciuding the method of selection of
the time gate in order to reduce the noise level. The number of bins to use, methods
for sélection of the .tim,e intervals for each bin, and the choice of bins for a realistic
temporal profile are discussed in section 2.5. Section 2.6 ex,amines the improvement
- in the sim‘ula.%;io,n for determining the bégiﬁing and end of each phdtdh burst, and for
recogniz&ng which photons belo;:1‘g to tﬁe bﬁrét; pé.rtic’ularl/y m thg ca,se of overlai)ping
~ bursts. It 6onclﬁd§s with an explanation (;f'th;a »métho’d for detérn’iinjng v;rhich molecule

has produced the burst.

2.3 Implementation of the simulation

The simulation dea}s with the situation where one or two types of dye molequlés éould

" be pl;esent in the I;robe region. ?hotons cquld, be genefated by the fluorescence of
molecule type A only, molecule type B only, promptly scattered photons from the laser,
or dark noise. Eventually, each phdt';on burst is to be ca.tegkori‘zedv«é,s_dtllﬂe to the passage of
molecule A alone,’n;olecﬁle B alone, both~ A a.nd B, or ba;:kground noise--dué to either
promptly s;:at‘tered Ppotons from laser or dark noise. ‘The algorithms and equa.tidns
used by the simulation have been reported in detail elsev;/heré [11, 10] and aré explai_ne;i
only briefly below. ’

The simulation begins with the calculation of frequently used qﬁantities, such as the
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probability per time step for det'éctiox} of a d~a,»rk noise”photon or a promptly scattered
photon, the net fluorescence dg_té(étéon efficiency, ‘which af:cé)l;ﬂts,for the throughput
of the optics and the time éﬁte, the quav;,ntu‘m‘: efﬁc_iep_cy of thé ;ingle phot.;on det;ector,
and the ﬂuc?rescence quantum efficiency of the dy;aé. The six‘nuilat‘ion then coﬁsiders the
sequencé of events that can occur with each step of time. With each iteration, a new
" molecule might be introduced from the inj‘ec-tion “ca;pilla,ry. All molecules Apre\se'nt are
‘advanced due to the ,ﬁQ‘V_V ‘é‘,-nd random diffﬁs_i;)n. Then, for each molecule that is not in

the ‘triplet manifold, the-laser intensity at the current location and the probability of

excitation are evaluated and used to stochastically determine if the molecule is excited

and sibsequently iht;ersystem crosses to the triplet manifold. If so, another ‘uniform

-

réndom’ number is generated to determine if the molecule photodegrades. If the molecule

does not cross to, the triplet manifold, and if the-detector is not paralyzed by a previously

detected photon, the relative o.ptical‘collection' efficiency from the present location is
evaluated. This is-used to accumulate the net probabilitieé for detection of a phbton
" from the particular type of molecule.

After all molecules present are considered, a single uniform random number is gen-

" erated and compared with the above net probabilties to determine whether a photon -

- is detected, and if so, its: origin.. In the previous version of the simulation, the net
probabilities a,cédunt for the efficiency of the time gate. In the new version of the simu-

lation, expla,inéd in section 2.4.1, the time gate is considered separately. If a photon is

detected, both the detector and the electronics will be para,lyzéd for a numbef of time

PN
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| steps according to fheir corresponding dead times. However, even if either the detector
or the elect'rlonic‘s a,;é not active, the simulation still considers intersystem crossing and
photodestruction.

T-he tyi)e of eaéh photon will not be available in the experiment, but is used in the
sir‘nulaltionito determine into which bin the photon will fall. This is done by a,ssignil;g
the phofon to the first bin with cummulative probability larger than a uniform random
-number. ‘

The passage of a molecﬁle will produce a burst of phdtdns. In order to distinguish
such bursts, the stream of detected photons, s(t,), is pr(;cess‘,ed with a digital filter.
For optimal ﬁlfering, the photon streé,m is convolved with La lweighting :f;inétion w(ék), -
- which has the same profile as tha,t'o% ‘thézl,)"att;zrntﬁo :i)e r'ecx'ognized.: In '.‘tAh'e éimulation,

the weights are taken to be proportional 'tbf‘réla,tion:’
W (0k) = V2exp(—26k*/63), 0k = —q,...,q (2.1)

where d; is the number of iteration stéps that correspond to tﬁe ha,lf-tra,nsit‘ time of
molecules[11], and q is the integer closest to &;. The digitally filtered “phot(')n si:rea,m,
S(tn), is caiculatgd by: | |
S(tn) = Zq: s(tn, + 0k)W (0k) | (2.2)
Sk=—q . .

Whenever S(n) peaks at a value that exceeds a preset threshold, the simulation '

must determine which photons contribute to the burst. The method for doing so is
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discussed in section 2.4.1. ‘The numbers of photons in each of the bins during the bﬁrst
are accuxﬁulated,, and are stored for further data analysis, together with infoxlma.tion
su4ch- as the amplitude and dura£ion of the burst. The burst-is la,te'i‘ categorized as one
of the four types described in the beginning of this section using the MLE and/or the

NN methods.

2.4 Prbblems in the prior version of the simulation

As introduced in chapter 1, the prior version of the simulation has two main problems, -

i.e., the fluorescence decay profile of the molecule is considered as mono-exponential
function, and the selection of the time gat;e 'setting is not modelled. The corrections of
the p;ob}ems‘ and corresponding implmentations are described in section 2.4.1. Section
2.4.2'in£roduces how to process the experimentally collectéd proxﬁpt data, which are to

be used as the instrumental response function.

2.4.1 Correction and Implementation

The first approach to improve Ithe simulation is to.replace the mono-exponential decay
profiles fbr’ each molecule by profiles that account for the convolutioﬁ with the prompt.
The curves for the decay profiles are evaluated over the entire time interval T' between
laser pulsés. The 1:esolu—tio‘n used for the evaluation is 2091 channels; v(rhi(;h is the same
as the ni:lmber of channels of resc;lutioﬁ.in ghe experiﬁieni;a.lly measured prompt curve,

L

as explained in section 2.4.2..
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Let pfrompt [i] denote the normalized probability for detection of a promptly scattered
photon within each channel, where ¢ = 0,...,M =1, with M = 2091. Then, the
probability that a fluorescence photon from a molecule of type v will be detected within

channel 4, p7[i], is expressed by:

k<i M-1

0] = (3 PP k] expl ~(i—R)T/ (M )+ Y, 977 {K] expl—(i—k+M)T/ (M),
k=0 ’ k=i .
(2.3)
where a, is a normalization factor, defined as:
oy = T/[Mr,(1 — exp(=T/7,))], . (2.4)

and 7, is the ﬂuqrescence lifetime <;f‘ moiet;ﬁle typ;a 'y Ilhv‘e'qnatic;n 2.;‘*},"the first tenh
describes the usual digitg.l convoltitioni: f;inctid‘h ;'an'd' thé second term ak:i:ounts for the‘
COIl_t.l‘ibutiO‘I:l from'the fluorescence photons éenér;feti: by tﬁe' pfior la.;er pulse.

To simuléte the selection of the time window in the SMD experiment, the probability
distribu‘tipn‘s of all types of photons must be conside;'éd. In this work, the time window
was at first selected By choosing the region over whfch both types of fluorescence photons
outnumi)ef promptly scattered photons. To this end, the normalized prol?ability curves,
p"y [{] (v =4, B) and 'pP rompt (3], were scaled to account for factors such as differences in
the e?ccitation a.'nd'ﬂuorescencelyields of the dyeé, and in the throughpﬁt of the optics,

etc. The approach used was to scale the fluorescence probabilities with the expected

number of fluorescence photons per iteration time step from the corresponding dye
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molecules located at the origin (referred to as the brightness, B,), and to scale the
prompt with the expected number of dark counts per iteration time step, Bp.

'TIn the simulation, the brightness of molecule type j, Bj, is evaluated by:
By = M[l — ezp(—(2Py04) /(37 Rohvwoywo:))]Qy . (25)

where Mj is the number of pulses in each time step, P is the laser power, o is absorption
cross section of molecule type 7, Ry is the laser repetition rate, v is'the frequency of the
laser, and woy and wo, are the laser beam waists. The quantity ¢, is the net efficiency,
defined as

Q’y = QE’nyLcQs(I)C; (2'6)

where Qg is the fluorescent quantum efficiency for molecule type -y, Ly is the through-
put of the interference filter, L. accounts for the transmission loss of the remaining
optics, Q; is the SPAD quantum efficiency, and ®¢ denotes the efficiency of the collec-

tion objective, given by,
®¢c = [1 — cos(sin™}((N.A.)/1.33))]/2, (2.7)

where N.A. is the numerical aperture of the collection objective and the factor of 1.33

is the refractive index of the aqueous sample.
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The scaling factor of the -prompt is defined as

)

By = (MBRVES)/(Bownyens), coey

where J is an experimentally determined parameter with the units of counts s~} W1

m~!, and V is the effective sample volume evaluated in the initialization routine by

Monte Carlo integration. The source of these equations is documented in‘Chapte‘r 4of

reference [12].

Figure 2.1 shows typical scaled probability disﬁributions of fluorescence from two

" types of dye molecules A and B (14 =4.2 ns, 78 =2.5 ns) and of background from laser

prompt. The points at which the scaled prompt curve crosses the scaled curves for
molecule A or B-could be used to choose the time window. However, if the left bound-
ary of the time window were to be extended to below the crossing points, the promptly

scattered photons would overwhelm the fluorescence photons, and the histogram col-

lected from an individual photon burst would not appear to be similar to the expected

distribution pattern from either moleculé type. Note that even when'the time window

is selected such that the fluorescence signal is expected to be marginally stronger than

s

that of the prompt, the photon burst would still generally contain a considerable num-

ber of prompt photons superimposed with fluorescence photons, and consequently the

collected distribution would differ from that expected from fluorescence alone. For this

reason, in pracigiée, it was found to be beneﬁ_cia,l to further tighten the time window

to"redﬁcé the number of background bhotons in the collected -distribution. Figure 2:1
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> shows the time window selected for the simulation results presented in Chapter 5. The
use of the tighter time window is consistant with'the approach taken in the experimental
work reported in reference [9] Here, the time window was startea at approximzitely 2.1
ns after the peak of the la.§er pulse and ended at-about 1.0 ns before the next pulse,
and the pei‘iod between the con‘secutive laser pulses wa.; 12.2 ns. | |

Once the finie window is selected, it can then be Vdivided i\nto;bins into which photons
belonging to_each burst are sorted, as described in section 2.1. The bins are. usually
assumed to be non-overlapping an.d contiguous although in sectioﬂ 5.9 overlaﬁping bins
are considered. The use of a sufficiently large number of the bins'-is important for
- acheiving a high percentage of correct identifications of photon bursts, as discussed in
section 2.5.1." In aédition, the widths of the bins‘ can be ?;I;Oéén (accﬂordi1'1g to various

algorithms introduced in section 2.5.2) to improve the preci'si(")h'of identifying molecules.

2.4.2 Prompt Data

This section deécfibes the methods ayailable for obtaining the normalized probability
foxi detection of a promptly scattered photon, prromet[q], whichﬂis used in equation 2.3.
The Mon&e Carlo simulation may either read in an ex‘périmentally collected prompt
" data file, or generate an ideal Ggussian shaped prompt. The latt;er choice is useful for.
debugging and ‘;esting the code, v;rhile the former generates dataL‘ that more closely model
the actual e?cperimental conditions. The experimentally collected prom;;t is found to be
assymmetric with 'an expoﬁential tail characteristic of the electron diffusion time of the

SPAD detector [24].
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The experimental prompt data are obtained with only puré water in the sheath

flow system. The time correlated single photon counting instrumentation used for the

measurement was the same as that described in [10], with the exception that the prompt’

data wére collécted by a multichannel analyzer (MCA) with 8192 channels of resolution.
Further, t.he widths of stop pulses for the time-to-amplitude converter were increased to
: apprc;ximately; 20 ns. This_ enabled the prompt profile to be collected over a duration of

longer than the 13.2 ns period T between laser pulses, thereby ensuring that pP™omP![s]

could be deduced over the entire time interval T. The MCA accumulated data for

several minutes and the data were saved in instrument specific binary format (CHN

format) and later converted to an ASCII file for the simulation. Figure 2.2 presents”

a semi—loga.rithmic ‘plot of the experimental prompt collected in this way. There are
" approximately 50,000 counts.at each qf the peaks.. »Note that the time calibfation (6.3
ps/(;hannel) can be obtained by measuring the number of channels between the peaks
in Figure 2.2.

The experimental data exhibits shot noise and a small contribution of detector dark

counts, which are negligible compared to the number of the photons in the prompt.

e

The fluctuations due to the shot noise are filtered by digitally smoothing the data. A
Gaussian djgital filter with a star;dard deviation of 10 channels is used. Theﬁ, in order
to extract one period of prompt data from the 8192 channels, the starting point at 'ghe
_half maximum of a pulse on its rising edge and the ending point at the half maximum

on the rising edge of the next pulse are located. As a result, the-duration between

122



Counts

10000

1000 ¢

100 |

10

TV

Ty

0

( 1 L 2 ] N

il

1l

10

’* L L L L. -
4000 4400 4800 5200 5600 6000 6400 6800 7200
.MCA Channel

Figure 2.2: Experimentally collected prompt

23

7600

8000

10000

1000

100



the peaks is 2091 channels, and the corresponding pPrompt[i] are used to calculate the
convolution in section 2.3. A FORTRAN program was written to perform the data
analysis, namely to read in an experimentally collected prompt data stored in instrument
specific binary format, smooth the data, truncate over one perigd, normalize, and write
the resultant pP7o"P![i] as an ASCII file for use by the simulation. In addition, a routine
was written for determining the width of the peak at any specified fraction of height, as
this information provides a helpful comparison between the fluorescence decay profile of
dye and prompt profile. The full width at half maximum of the prompt peaks in Figure
2.2 is 309 ps, which is the same as that reported in reference [24] for an actively-quenched

SPAD.

‘2.5 Bin selection algorithms

Section 2.4 discussed 1;10diﬁcations to the simulation to account for the convolution
with the instrument response function and to appropriately select the time window.
This section discusses the next step needed for spectropic identification of detected dye
molecules, namely the selection of bins within the time window. The questions that

need to be answered are: -

e how many bins are needed to correctly distinguish different molecule types with

a certain degree of accuracy?

e how should the width of each bin be selected to give best accuracy?
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These qﬁesﬁons are investigatéd by using qute Carlo siﬁﬁilafions, with the resu}ts
I;resentéd (in ChapterAE;. In -a,n experiment, the number of l;ihé to be used would be
detérmined by the complexity of the hardware gnd the p;ocessir}g time. Although the
number of bins inside the time 'windqy\;._c(‘)u%(‘i bﬂe’,‘chosertx fo be lé,r:gé, the implementio£1 of
ha.rciware aﬁd data analysis for thisi w~0141v1‘d:b‘e moxle_wcc‘)stl‘y, and éoﬁ;;;u’t'\ationally slower.
- Section 5.7 g;lisc#sses hardware that would 'resurlt. in“a small rluxﬁbér 6f bins of arbitrary
. width. |

A related problem of how the mean variance in the determination of the fluores-

" cence lifetime of a single. detected molecule depends on the number of bins has been.

addressed using an analytical theoretical approach by Kollner et al.. [16]. Section 2.5.1

_Teviews th}s analysis, which ‘predicts that there is little improvement in the precisibn
of dgtérmjnéd lifetimes' as the number of bins ié increased above about 4. Accordingly,
little improvement in the'-acétiracy of identification of moleculgs with different lifetimes
is expected if the number of bins is inbreased'a;bove about 4. AThe analysis of Kollner et

- al.. pe-x-‘ta,ins to ;t)ins of equal width, but when the nﬁmber of bins is small, experimental

hardware .for bins of ,a,rbitra;ry width can be implemented_.‘ The question of how to‘beét

- select -fhe bifx widths is addressed in section' 2.5.2. Several procedures for ;:hoosing bin

widths are also introduced, and details of the implementation are given in section 2.5.3.

~N
2.5.1 Bin number theory .
A typical data file from a SMD experiment consists of many sets, each of ‘which corre-
sponds to a photon burst. Each data set contains the total number of photons within
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each bin for the burst. Kollner et al.. considers the analysis of the data set to estimate
thé fluorescence lifetime of the dye molecule by a general statistical estimator. How the
estimator analyzes these data and determines the fluorescence lifetime, and precisely
how it works, are some of the important questions discussed in Kollner et al.’s paper
[16].

As stated in the Rao-Cramer theorem, the standard deviation or variance of an
estimate cannot be smaller than a well-defined limit. Estimators reaching this limit
are said to be éfﬁcient. In addition, for sufﬁcient;ly large signals, the distribution of the
parametric estimates for efficient estimators is no'rmal with a covariance matrix equal to
the inverse of the Fisl.ler-information matrix, F. For the problem of ﬁuorescence lifetime

estimations, F' is defined by

N

I Y G R ¢ X )
j=1

where y; is the expected number of photons in bin j, j =1, ..., N, as predicted by the
model function y. The fuﬁction y depends on the parameters oy, [ = 1,..., L, where in
this case, one of the q; refers to the lifetime.

As single photon counting involves distributing a total of K photons, K = 2. N,
over N bins, the for a particular distribution {n;} = n1,ns,...,nny is the multinomial

distribution, as discussed in reference [12]

P({n;}, a1, 02,...) = (K!/nilnal...nn)pl* po*... PR, k (2.10)
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where n; is the number of photons observed in bin j, and p; 'is the probability that a

photon will fall into bin j. As y; = Kpj, equation 2.9 becomes

N
Fim = K )_(1/p;)(8y;/0c4)(8y;/ 0oim)- \ (2.11)
=1

Note that equation 2.11 is linear in K and becauée the covariance matrix is equal to the
inverse of the matrii F, the variance of 7 given that K photons are observed equals to

1/K times the variance given that 1 photon is observed, i.e.,
varg(7) = (F)7# = (/K)[F(K =), - (2.12)

If vari(7) denotes the variance of 7 when the signal contains only one photon, the

required number of photons for a desired variance varp(r) is’
K > wvary(r)/varp(r). \ o (2.13)

Consider a simple case where only a constant background and é,:,pure mono-exponéntial
fluorescence decay are present. The decay is characterized by the fluorescent lifetime
7, of the particular molecule, ~. If a detected photon originates from dai'k noise, then

the arrival time with respect to a laser excitation pulsé is random and the probability



‘density for é'pliotox_l to fall in the Aj-th'b'in is

X S -
B =i/ (3 wi), . (214)

jl:]_

where w; (i=1,2,..., N ) is the width of the j-th bin. If a detected photon originates

from fluorescence, the probability will be

F= exp(—t/m)at] [ exp(t/)d, (2.15)

ti—1

where, for simplicity, the time window is assumed to start at 0 and end at T, the -

temporal bin j starts and ends at ¢;_1 and Z;, respectively, and j= 1,2,...,N. Substituting

N .
Y wip=tn—to=T S (2.16)
into equation 2.15."gives
o _ expl=(t = t0)/mllexpllty = t5-)/m] = 1), -
J 1 —exp[-T/7,] ‘

Substitutihg P} into equations 2.11, 2.12, and 2.13 yields

’N? (1)2 1-eT/m 18
K T’ eTTND) (1 = e=T/m)[(eT/(N7) —1)2 — N2/(eT/(N7) — 1) )

varg(t,T,N) = T
Figure 2.3 plots vary(r,T,N)/ 72 calculated using equation 2.18 for selected values of
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'N.
Equation 2.18 can also be used to determine the ‘number. of photons required for
a given precision. For example, suppose the desired precision, varp (1), is. 10%,- the

lifetime, 7, is 2.5 ns, the time window, T, is 10 ﬂs, and the number of bins, N, is 64.

Substitute these numbers and K = 1 into equation 2.18, andvt_he result for var;(7) into .

Ae‘qu@tibn 2.i3 yiélds K > 90, i.e., at least 90 piloﬁons are r(_aquirea to achieve the desired
precision.

It is impossible to choose a time window larger than the period between vlaser pulses,
: va;ld the fexpected rang';a of T/t is a,ljo'und 2to 5. If T/ T is opi‘iifpally selepj:ed, the number
of phpfons "required-‘to achieve ,10%-»pre(;ision, is found to be ‘abgut; 48 The example
demonstrates that the experiment'al S(vatjuvp jiee;is; to l-)e_;'fco‘ﬁfiigu}“e-d so 1;hat t';he number of
photons within each bﬁrst is as large as possil;ie;. “

The eqﬁations éan also be used rto optiniize experimeﬁtal copditions such as thé
width of the time window and the number of bins by ﬁnding the minimum in the plot
~of varl‘('r) /72. From figure 2.3, if a large time window is gelected, say T/7 is greater
than 100, and the ‘number of bins is less than 16, most of the photons will fall into
til_é first bin‘and the precision of the mea.suremen£ of 7 will be poor. Conversely, if
T/t is properly selected, little Aimprov-ement in preciéiop is gained beyond about .4-8
bins. Similarly,’ if molecules with different known lifetime;fs ;.re to be identified from

. the distribution of photons, little improvement in the accuracy in the identification is

expected if the number of bins is greater than about 4-8.

29



Variance

T/tau

Figure 2.3: The normalized variance T, vary /72, for mono-exponential decays as a func-
tion of T'/7 for different number of bins.
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2.5.2. Intuitive algorithm for bin width selection

- This section considers how to select the widths of the bins in order to give better
identification of molecules with different fluorescence lifetimes. In particular, an intuitive

method of bin width selection, which was introduced in [12], is explained. Section 2.5.3

describes how the intuitive method is implemented. Section 2.5.4 explains an alternate

bin selection method, and results in chapter 5 indicate that this method gives improved
molecule identification.
* For bins of equal widths, molecules with different lifetimes tend to distribute photons

* similarly, namely, with a monotonically decaying distribution with most photons falling

into the first few bins. Intuitively, one would expect molecules with different lifetimes’

to be more easily distiﬁguisha.ble if they yield dissimilar distributions. The distribution
for-a nioiecule with a long 1ife§ime>ma‘y’be made to 'ihc1;ease if{the‘w‘idth’s of the ea.rlier
bins are ‘made narrower than thosejf'df ’t“he;lateli‘\bin's.’: The incféas;z of th"é widths of the
bins must be chosen such that the distribufi-on .for"molecules witil tﬁé shorter lifetime
is still decree;.sing. Ideally, the widths of the bins should be chosep so as to make the
ekpécted distributions for the different types of molecules as dis_simila.r as possible.
To this end, in're.fe‘rence [12], the widths of the bins were selected so as to yield a
. flat distribution if ithe lifetime of a molecule were equal to the algebraic mean of the two
>known lifeﬁimes that were to be distinguished. That is, if the molecule were to have a

fluorescence lifetime equal to

7= (14 +78)/2, L (2.19)

31



where 74 and 7p are the known lifetimes of molecules type A and B, then the expécted

distribution should be flat. Figure 2.4 illustrates the selection of 8 bins for the case of

distinguishing between molecules with lifetimes of 74 =4.2 ns and 75 = 2.5 ns.

The equations for derivation of the widths of bins neccesary to yield a flat distri-
bution for a hypothetical molecule with fluorescence lifetime 7 are given incorrectly in

reference [12], and hence are rederived below. Consider the case of N bins within the

" time window. If background and convolution with the prompt are ignored so that the
probability dénsity decays mono-exponentially, then, from equation 2.17, the probability

for bin j should be

el — )/l — /T = 1)
P] = J "1 e 1{ 5 =1 =1/N. | (2.20)
Sﬁbstituing
wj=t; —tj—1 . . (2.21)
and
(=l -ep(-T/TN, (2.22)

into equation 2.20 and rearranging equation 2.20 yields .

| exp(wj/T)=1+exP[(tjA_r /T () — exp(—T/m)) = 1+ ¢ expllty — to)/7.  (2:23)
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This may be solved for each w; as follows:

i1, ewf =ik, w=—7in(l-0) =Tin() — In(L - Q)]

j = 2a . exp(UJg/T _% w2 ?[ln(l - C) - ln(l - 2()],

j = 3’ exp(UJ3/T) __E" w3 = T[ln(l - 2C) - ln(l - 3()]7

j=N, explon/m) = ZEX, wy = 7lin(l - (N = 1)¢) ~ In(1 - NQ)L

1-N¢
(2.24) -
The summation of all the widths in eQua;tion 2.24 shogld be T, i.e.,
ij —FIn(l — N¢) = - (225)

i=j

" Section 2.5.3 discusses the extension of the above described bin selection algorithm
. W o K L
to the case where the decay profile is not a pure equqenti_a.l but considers convolution

with the prompt. .

2.5.3 Implementation of the intuitive algorithm.

“To account for the convolution with the prompt, equation 2.3 is used to evaluate the

probability that a fluorescence photon will be detected within channel ¢ from a hypo-

thetical molecule with fluorescence lifetime 7 as givén by equation 2.19. " Figure 2.5

-illustrates the probability densities if molépulés A and B have fluorescence lifétimes of
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4.2 ns and 2.5 ns, and the hypothetical molecule hajs a fluorescence lifetime of 3.35 ns.
;I‘he-ﬁgur'e.a.shows that the probability depsity of the ﬂﬁorescence 1s no longer a pure
exponential decay, and hence the bin widths given in equation 2.24 are not applicable.
In order to extend the intuitive a.lgorithm to the case; that considers the convolution
wiﬁh the prompt, the probabilities for each bin fo;"the hypothetical molecule with mean
ﬂuorescepce ‘lifetime ﬁust be set to be equal, that is,.

- F] .
where ‘pT in equation 2.26 may be dgtermined from equation 2.3, and ij_l and ¢; denote
the start and end time of the Jj-th bin. {I‘l&ese 19cation$ alre to be adj;1sted for each bin

‘in order to satisfy equation 2.26.

v

As indicated by equation 2.3, fhe probability densities of the prompt and molecules

are known at M discrete channels. Therefore, the discrete form of equation 2.26 becomes

— zj — ‘ R | .
PT= Y pll=1/N, j=12 Ny (2.27)

i=ij-1

where i;_; and i; C(I)rrespond to the start and end cha.nnelé of the j-th bin.

_ If the total number of cha.nnels_is much larger than the number of bins, then the
discrete nature of the start and end ~cha.n_nel.s will not pose a prqblem. Hoyvever, .when
only 1600 channels are to be gropped to 64 bins, the re;ultant probabilities per bin for

molecules of type A or B a.re'bumpy, as shown in figure 2.6 (a). In order to solve this
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problem, linear intérpqla.ta.tion (smoothing) is used, and the start and end of the j-th

bin are defined as

tji_1=1%-1+ 5t;,- : (2.28)
S 4 b=yt | . (2.29)
.\ where, for j =1,2,..., N, .
-0<at;<1 0 < 6te <1 and 1:s =ti_1. (2.30)
Eduation 2.27 then becomes
- \ .
B ii—1 N

Fl= 3 o+~ 86plis) + 6 p7lis) = 1N (2:31)

- i=ij_1+1 )

By applying the linear interpovlation‘algqrit‘hm, the bumpy probability densities in figure

2.6 (a) are smoothed, and results are shown in figure 2.6 (b).

An importa.nt‘ point that needs to be made here is that the time window is now -

shorter than the interval between two consecutive laser pulses, and hence .photons may

fall outside of the time window. Howé\}er, the preéent MLE method only uSes the

photons 1ns1de the time wmdow, and the proba.blhtles, such as P” in -equation 2.31,

‘ PPmmpt ‘PA, and PB ‘need to be re—norma.hzed among all the b1ns that belong to "

" the time wmdow All the probablhtles are re—normallzed inside the time wmdow by
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Figure 2.6: Accumulation of probabilities of 64 bins among the 1600 MCS channels
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multiplying a normalization factor, defined as:

iN .
L,=1/[Y p"Ell, »=7 Prompt,A,B. (2.32)

1=i0

Thus, equation 2.31 becomes \

P] = PlLy= Ly Z Pl + (1 = 6¢3)p"[i-1] + 65 p7[is] (2.33)
1=15-141 :

1/N. , - (2.34)

2.5.4 Bin widths changing by a constaﬁt factor

Another bin-width selection procedure is also examined in the coming chapter, i.e., the
factorized bin-width selection, which uses a constant factor Cy to obtain the consecutive

bin widths recursively,

Wj41 = ng_j, (2.35)

where the first bin width is given by

w = (Co — 1)T/(C} - 1), (2.36)

and the widths are defined in equation 2.21. The selection gives a set of decreasing bin
widths when the constant, Cj, is less than one, or a set of increasing bin widths when
it is larger than one.

As introduced in the above sections, several bin width selections are proposed. In the
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simulation, the initialization stage gives the option to choose one of three methods for bin
width selection, viz., bin widths generated by the intuitive algorithm given by equation
2.31A, equal bin widths, and arbitrarily defined bin widths (without interpolation). The
number of bins can be also specified at this stage. Typically, the intuitive algorithm is
used and the number of bins is chosen as 64. Then, in order to save time, data for the
case of 32 bin s are obtained by adding the photons in each of the consecutive pairs
of bins. The process is repeated to obtain data for the case of 16, 8, 4, 2, and 1 bins.
In this way, the probability density of the hypothetical mean lifetime molecule is still
flat among all newly combined bins, and the approach of the intuitive algorithm is still

valid.

2.6 Peak analysis

2.6.1 Determination of the start and end points of a burst

As introduced in section 2.3, the passage of molecules through the probe region produces
bursts of photons, and the photoné collected from each vburst above a- pre-set threshold
are used to distinguish the identity of the molecule. The simulation must determine the
start and end of each burst and hence which photons are to be included in the analysis
of each burst. In the previous version of the simulation, the start and end of each burst
is determined by locating (the turning p;)ints of the weighted sliding sum. That is, the
simulation records the times at which the weighted sliding sum varies from going down

to up. The burst is discarded if the intervening maxima is below the pre-set threshold,
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nut otherwise the local minima in the weighted sliding sum are used to define the start
and end of each burst.

However, this method of determining the extent of a burst brings some problems
when background noise is present. As illustrated in figure 2.7, when a burst is super-
posed on a broad pedistal of noise photons, the local minima are widely separated.
Consequently, there are maﬂy background photons contained between these two points.
The background photons degrade the performance of the data analysis, and result in
incorrect predictions of the identity of the bursts. To circumvent this problem, the
burst finding algorithm was modified to consider 6n1y those photons contained within a
_constant time interval, centered about the maximum of the burst. A time interval equal
to the mean transit time of a molecule across the Jaser beam is used. This results in the
new choice of the start and end of the burst, as shown in figure 2.7. Only those photons
contained between the start and end of the burst are used in the subsequent analysis.
Furthermore, the duration of the burst is taken to be the time interval between the first
and last of these photons. If a molecule photodegrades during its transit through the
laser beam, the duration of the burst will be shorter than the mean transit time, unless
a background photon happens to fall just before the end point.

A problem with the new algorithm can arise if two phc;ton bursts are closer together
than the mean transit time. Figure 2.8 illustrates two bursts that are close together but
not overlapping; together with the starts and ends of each of the bursts, as determined

by the new algorithm. If the start point of the second burst 52 were to occur earlier than
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the end point of the first burst el, then some of the photons belonging to the second

burst would be counted into the first burst, and vice versa. To minimize this effect, the

new algorithm is further modified to set the locations of el and s2 as the intervening

minimum point in this event.
)

2.6.2 Burst type determination

The simulation must determine the'actual cause of each burst, i.e., whether the burst
originated from thetransit of one or more molecules of type A, or of type B, or the
transit of both types of molecules simultaneously, or from background noise alone. The
type of each burst is output into a file for training the neural network analysis. It is
also used to evaluate the accuracies of the MLE and the NN predictions.

The process of determining burst type is as follows: As discussed in section 2.3,
~ whenever a photon is detected, the simul.ation records its origin, i.e., whether a photon
originated from fluorescence from molecule type A, type B, from prompt, or from back-
ground. This information is used to determine the cause of each of the bursts. Having
determined the start and end photons of each burst above the pre-set threshold, the
cause of the burst is then initialized as being produced by only background. The simu-
lation traverses all the photons in the burst, and checks if there are fluorescence photons
other than bacicground ones. If it finds one, it continues to look for whether, among the
rest of the photons, there is a photon produced by the other type of molecule. If S0, thé
burst will belong to the simultaneous passages of both types of molecules. Otherwise,

the burst is due to the passage of only one type of molecule. If no flucrescence photon
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is found in the burst, the burst will keep its initial type, i.e., from background.
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Chapt.er‘ 3
Maximum Likelihood Estimation

3.1 ' Overview

In the Monte Carlo simulation of‘-"sin“gle molecule detection, a maximum likelihood es-
timation (MLE) method is used, to categorize moleculés according to their fluorescence

lifetimes, which differ for the distinct types of dyes. -Other photophysical properties of

"such dyes may also be different, although these are not used when molecules are dis-

tinguished by the MLE metl;od. In this work, only two typés' of dye molecules are to
be distinguished as they are detected in the sheath flow system. The number of photon
counts in each temporal bin a.ré directly used in the ca.tegorizla.tion analysis.

In section 3.2, the principle of the MLE method for distinguishing two types of
mpleéules is introduced. The iﬁllpxlementation of the MLE method when background
from promptly scattered photons is présent is explained in section 3.3. A log-likelihood

representation of the MLE analysis is introduced in section 3.4 for the case when counts
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are Poisson distﬁbuted, and equations for determining the mean error in predicting

_molecules are given. In section However, there is no clear solution in the error analysis

\

for considering a multinomial distribution and therefore, a direct approach to accumu-

~ late the mean error is proposed in section 3.6. The computational complexity of the
direct approach is increased as the number of bins used becomes large or if ba,ckgr_oﬁnd
" is included in the a.né,lysis. 'Some results are shown for the selection of 3 bins when

background is omitted.

'« o M

3.2 MLE method for disti.n.guis}ii,ng tvs;o" typés of molecules
The MLE method uses the distribution of photon cotints {n_,} = 71,72, -1y N OVET each
of the tempora.lﬂ bins for categorization- of molecules with different ﬂuorescen;:g lifetimes.
The conditional piobabilities for obtain-ing the pa.rt1cula.r distributio'n of {n;}, given that
molecuie A, or molecule B, is presénﬁ_ in the probe region are e\.ral'uated }a'ncrl compared.
Accordiné to eqﬁaﬁion 2.10, the muitiﬁc;iﬁjal‘ prob_a,‘bilvity for. ob‘taining‘the diétribution
{n;} under the ‘assumpﬁic;n that all the phdto_né originate from one or more molecules

of type A is

. |
P({nj}|4) = K! T[ @)™ [nj, | (31) -

=1
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and for molecﬁle B, the probability is_
. N _é' - ,
P({n;}|B) = K! [T (P; )" [ns!, » - (3.2)
s S

*_ where _13? and '13;3 are given by equation 2.33, in which p7[i] is replaced by p“[i] and

pPli), as /deﬁned in equation 2.3. The ratio of the probabilities is

| o -
R= P({n;}|4) ﬁPJ e  (33)

({nJ}|B =1

"U||

The events are then categorized by

if R >.1, P({n;}|4) > P({nj}IB), predict molecule 4,

if R < 1, P({n;}|4) < P({n;}|B), predict molecule B. (3.4)

3.3 | Inclusion of background in the MLE analysis

The MLE ﬁlethéd described in sectibé 3.2’do¢s not,conéidﬁar"the cé,sg,iri yvﬁich some of
“ the phbtons‘ iﬁ*the bﬁrvst‘ originate from backgroﬁxid. In of‘der‘ té;_élccou}nt for background
‘photo'ns in genéral, all th p;)ssible distributions for .;411 poséible combinations of fluores-
.cen(;e and background photons that can give rise to the observed ciisti-ibutiou need to be
considered. For exa.mple, ;f photons could be generated by molecule A or background

with equal hkellhood the proba.blhty for obta.lmng the observed distribution {n;} would
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be given by .

. . - n1 no ny . i '
P({n;}|molecule 4) = 3" 3" ... 3" P(ny — b1, ng — bgy...y v — b A) P(b1, b2, ..., b [b9){3.5)
b1=0b2=0 bny=0 )

where P(n; — bi,ng — by, ...,ny — by|A) is determined by equation 3.1, and P({b;}|bg)
is' the multinomial probability for obtaining the distribution {b;} = b1, by, ..., by if all
‘photons originate from background, i.e.,
. . N N
 P({b;}ibg) = Qb [T (F5) /bst. (3.6)
¢ j=1 1 : .

J=1

However, in most cases th;e majority of photons are from fluorescence and hence
ba.ckgro.und and‘ﬂuoresgerice photons are not equally l.ikely.’ Equation 3.5 would need to
be modified to account for the expectéd ratio of Background and ﬂuoresceﬁce photons.
" However, due to the computational complexity, it would be impractical to obtain results
from such eqﬁa.tions in a reasonable amount of time.’ Therefore, anothgr approach is
taken to account for the presence of background. If K photons are detected and if a
number of these are expeétéd to be due to background, thén the probability that a,llly
given photon wiil fall wii;hin bin j is assumed to be the v;reighted average of ﬁ;’-g ‘and
either ?;-4 or ?f. The expected number of photons within a burst of duration of At is

_bAt, where b is the mean rate of background photons. Hence, if a burst contains a total
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of K photons, the probabilities for each bin are

PA = [(K - bAt)P} + bALPY)/K,

BB = [(K - bAY)P; +bALPS)/K. (8.7)

The background is composed of dark noise and promptly scattered light, but the proba-
bility of promptly sca.ttered light is much larger than that of dark noise, and hence ﬁsg

in equation 3. 7 is repla.ced by PPTOmpt

, which is obtained by replacing 7 in equation
2 33 by Prompt

Equation 3.3 then becomes

R=

P'({n:j}lmolecule A) H (K — bAt)P +bAtPPrompt n;

P({n;}molecule B) (K — bAt)P +bAtPP rompt (38)

Furtherniore, if the photon burst .is assumed to originate from either molecule A or-
molecule B (i.e., there are nio other possibilities), then the confidence that a burst is_

due to A, or B, is given by

{n,}|molecule A) - . R

cA = ({nJ}|molecule A)+ P({nJ}|molecule B) 1+ R’ (3.9)
P({n;}|molecule B) 1 6.10)

= P({n3}|molecule A) + P({n;}|molecule B) 1+R

Note that ¢4 +cp = 1, and thus.only cp is calculated in the simulation. If cp is greater

than 0.5, the passing molecule is predicted as B, otherwise, the molecule is predicted
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as A.

As introduced in section 2.5, various numbers of bins are chosen in the simulation

to study the influence of changing the number oi; temporal bins on the precision of the
identiﬁcatior} of the molecules. In the simu‘latior;, the data from the ma.xirﬁum number
of bins (64) ,generzited in a sfngle run are used in subsequent analyses for the cases
of 32, 16, 8, 4, 2 and 1 bins. In order to do so, some of the intermediate variables
of the simulation code must be recorded for each burst, in pa.rticula;r, the. quantities

bAt_ﬁ]I-) rome t, which are used in equation 3.8 must be saved and regrouped accordingly.

3.4 . Log-Likelihood function and error calculation

Anothef approach §f the MLE method, which is discussed for the case of negligible
background, is to evaluate the diﬂ'erence of _the _logaa“ithms of P({n_,}lA) and P({n;}|B),
instead of the ratio of the two probab1ht1es as given. in. equatlon 3 3. The advantage
of this approach is that the comlputatmns a‘mre reducea from powers ;o multiplications,
and the ;ai;ecution time of the analysis is shorte£1ed. 'An overview (_)f the Log-Likelihood
approach. [9] will be briefly introducgd in this section as some of the approaches to
evaluate the bin width selections are based on this information.

Recall that the ﬁf and 75_? in section 3.2 satisfy the normalization condition, i.e.,

N, N ’
S Pi=1, YP =1 : (3.11)



Reference [9] considers the case in which the probability of obtaining a certain photon
distribution in the time window, e.g., n; photons in the j-th bin, is the product of

Poissonian probabilities, instead of multinomial distribution as formulated in equation

/
3.1. A clarification of the difference between the multinomial and Poisson description
of the. counts n; is given in reference [23]. Each n; is Poisson distributed only if the
total number of phot‘ons, K = 3 ;nj, is Poisson distributed. In the case of SMD,
photodegradation, triplet crossing, and other processes result in K actually not being
Poisson distributed. On the other hand, once K is measured, n; rigorously follows
a multinomial distribution. Thﬁs the Poisson approach does not make use of all the
informatioﬁ, it introduces an insecﬂrity in K that is actually not present.

For Poisson distributions within each bin, given that molecule A or B is present, the

probabilities are defined as.

- (KP; )
({nJ}|A =e€ K H ’
xt (KP} )
P({n;}|B) =¥ H (3.12)
j=1 ;!
The log-likelihood function (or M function) is defined as
N .
M =) njmj, (3.13)

j=1

l
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where

A
' mj = In(=%). (3.14)
Pj

To predict the event, a similar approach as in equation 3.4 is given by

if M >0, predict molecule A,

if M <0, predict molecule B. (3.15)

Further, the mean error for predicting molecule B when A is actually present is defined

as

erri (A / aM P (M), (3.16)

and the mean error of predicting' A while B is present is defined as
+o0 (B)
errge(B) = / dM PP (), (3.17)
A 0

where PI((A) (M) and PI((B) (M) are given by summing equation 3.12 over all possible sets

of {n;} that give a particular value of M . Reference [19] gives the form of PI(Q )(M) as

o) DI\n
=3 H KPJ) expl—KPIM =S mjmg, (3.18)
2 (1 z

o0
(7) Z

||[VJ8

where v =A, or B. In order to evaluate the mean errors in equations 3.16 and 3.17, the

53



Dirac ¢ function in equation 3.18 is replaced by

[e e}
() = [ Set

Substituting this into equation 3.18 yields

P};Y)(M) _/OOZWQ(’Y)( ) ikM,

where

N oo (KPP '
0@ = IS L cxp(-KP] — ibngmy)
j=ing=0 "7’

= exp[K < exp(—ikm) —1>,].

The abbreviation in equation 3.22 denotes

N
< f>q= ijﬁay
j=1

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Hence, the mean error of identification of molecule 4 in equation 3.16 or that of B in

equation 3.17 can be expressed as

0
errg(A) = / dM / (A)
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or

errge(B) = / dM / Q‘B)( kM (3.25)

The mean error for a mixture of molecules A and B is defined by

oy AETT(A) + pperr(B) , (3.26)

PA~+ pB

where p4 and pp are the actual concentrations for molecule 4 and B.

3.5 Errors for bin selection with widths changing by a con-

stant factor

The bin selection algorithms introduced in section 2.5 can be evaluated by numerically
solving equations 3.24, and 3.25 by calling a standard math library for performing Gauss-
Kronrod integration, and comparing the predicted errors for different bin selections.
This is done here for the case of bin widths changing by a constang factor, and the
result is shown in figure 3.1.

s :

In the calculation of figure 3,.1,:th,e total number of bins, N, is 4, the fluorescence
lifetimes of molecule A (74) and B (Tg) are 2.0 ns and 4.0 ns, the total number of photons
K is 100, the width of the time window T is set to be 8.0 ns, and the concentrations
of molecule A and B are equal. Figure 3.1 gives the results corresponding to the bin

widths changing by a series of constant factors, Co. For the purpose of comparison, a

straight line with mean error of 1.3%, which is obtained from the intuitive bin width
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Figure 3.1: Mean identification error of a mixture of molecule A and B using a set of bin
widths changing by a constant factor Cp.

56



algorithm introduced in section 2.5.2, is also illustrated. -
In figure 3.1, the part of the curve with Cp <1 represents the selected bins with
a set of decreasing widths, and the corresponding error of identification is expected

to be large as discussed in’ section 2.5.2. Sirnilarly, the identification error would also

be significantly increased if Co is large, say C'o >2. Hence, the part of curve within

1< Cy<2is expected to give least error. For the assumed parameters, the lowest

error of 1.18% is achieved when Cy is 1.3. Under the same circumstances, the intuitive

“algorithm gives 1.3% of identification error, vv(rhioh is higher than that of the bin widths

selection- changing by a constant factor of Co=1.3:
. In summary, using the intuitiw}e'algorithm introduced in section 2.5.2 to select bins

may not be the best way to minifnizé the e'rror. HoWever, the bin width selection with

'w1dths changmg by a constant factor may not be the best solution either. There may be -
" another algorlthm that y1elds an even lower error. Also, w1th another set of parameters,

" bin widths deterrnined by the\intu1t1ye algor1th1r1 may g1ve a lower error than any of the

bin width selections changing by a constant factor. Note that a Poissonian rather than
multinomial distribution has been assumed in the analysis in section 3.4. An extension
of the above analysis to the multinomial case would not be straight forward because it

would no longer be poss1b1e to obtaln the s1mp11ﬁed form in equatlon 3.22, wh1ch is used

_in the numencal evaluat1on of equat1ons 3.24 and 3.25. In add1t10n, the contr1but1on‘
" from background photons is not ,considered,‘ and the addition of background into the

"analysis would further complicate the ‘prohlem. Therefore, a direct approach to ealculate
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the error is pursued, and details are given in the next section.

3.6 Direct method for eérror calculation

Recall that, in ecidation 3.16 and 3.17, the error of bredictiﬁg m,c_)leculel A is accumulated
for those cases of {n;} that give rise to a negative M vaiﬁe, and the err'or of predicting
' nioleculé B ‘is‘ a;,ccumulated foi: those cases of {n,} that Vgiv‘e rise to a positive M value.
Instead of evaluating the distribution of the Ldgllikeliﬁbod function, as well a.s the fol-
lowing equations from 3.22 to 3.25, the erfof for p;ediqting either type of molecule can
be; obtained by systematically considering a;ll poséible distr’ibuﬁons {n;} and acc{lmulat;
ing the probabilities for oi)taihing qa(;h such distribqtibn for wh1ch M is negative whe;n
A is present or fox.; which M js bositive wheﬁ B is present. For simplicity, background
photdhs are not considered in the following discussions.

Consider the case in which there are totally K pixotons'tq be sorted into N bins,
and hence there is a total of (N+K)' /(NIK!) w—ays to sqrt_'thér;l- into the bins. Each way
of allocation of the photons into the bins has a certain pfobability, i.e., the multinomial
prol?gbilify, given by

. .

Pndi) = KU [@DM/nsty, -+ @2
.g=1 . ‘

where v =A, B. Therefore, the error of predicting molecule A (i.e., predicting B when
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A is actually present) is

errg(A) = Z P({n;}|A), (3.28)
V{n;}2M<0

and error of predicting molecule B (i.e., predicting A when B is actually present) is

Ve

errig(B) = Z P({n;}|B). (3.29)

V{n;j}oM>0

Once the time window is selected, detected photons will always fall within the time
window and the probabilities ?;7 ha.ve accordingly been normalized in equation 3.27.
However, the problem of interest is how to simultaneously choose both the time window
and the bins within the time window to minimize thé error. In order to address the
problem, consider the case in which the entire temporal decay profile is divided into N
bins, with probabilities PJ7 , =1, 2, ..., N. Only the distribution of photons within the

bins j=2, ..., N — 1 is used for prediction, and hence M is evaluated using

M= Z n;In(=5 (3.30)

Y

—B
J

"U

rather than equations 3.13 and 3.14, but the multinomial probabilities in equations 3.28

and 3.29 are given by

N

N ' .
P({n}Y a1y =X )t TT (B /. (3.31)
=1
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Selection of the time window among 5-Bins is illustrated \in ﬁgu1;e 3.2. All the bins
' are numbere(i from 1 to E;, and the time window occupies bins 42, 3, and 4. Therefc;rg,
the photons falling into bins 1 and 5 will not be cqnsidered when evaluating the Log-
likeliilpéd function M. |

A nu;ﬁber of bin width selections are evaluated us;ing the 3 bins case, illustrated in

figure 3.2. The widths of all the 5 bins are adjusted accbrding to the selécting methods’

below. The M function is evaluated by using equations 3.13 and 3.14 while the error is

accumulated by using equation 3.27, 3.28, and 3.29. The following bin width selections -

are considered

o Case 1: Increasing bin widths by a factor of Cp = 10,

Case 2: Decreasing bin widths by a factor of Cy = 0.5,

Case 3: Intuitive bin width selection introduced in section 2.5.2,

Case 4: Equal bin width, Co=1.0,

e Case 5: Increasing bin widths by a factor of Cp = 1.3, with which the lowest error

is achieved in section 3.5.

The comparison among the above 41:)i‘n width selgct.ions is shgv?h_in figure 3.3. Here, the
mean érrors are évaluated for different total numbefs of photons, K..Other paramet_érs
‘used in the calculation are kept the same as in section 3.5.

The results show that the mean identiﬁcation errors are large for all 5 cases wheﬁ

K is small. This is consistent with the discussion in section 2.5.1, where the total
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_ Figufe 3.2: 3 bins out of 5 form the time window
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number of collected photons was shown to influence the preci\sion of the estimation of
- the lifetime of a molecule. Aﬁ important point- to note here is that the total number
of photon counts K within the burst does not directly influence the decision, but it
does impla,ct the reliability of the categorization. Furthermore, the cases for‘ a selection
of decreasing bin widths and of increa.s(ing‘ bin widths with Co=10 exhibit larger errors
than other cases. This is consistent with the results shown in figure 3.1.

The bin selections vs}ith equal widths, with a set of increasing widths by a factor,
Cq, of 1.3, and with the widths chosen by using the intuitive algorithm have nearly the
sa,m;e low error. There is no clear evidence showing which of these selections is the best. .
Minor differences in the errors ébtéined By ;,ach method are attributable to differences
" in the widths of t‘he time window; ‘which ;:auée§ the ﬁean number ;)f 'photons within the
time window to differ. Th;a width of the time window f(;rmed by bins 2, 3, and 4 is 1.0,
4.5, 3.8, 6.0, and 5.7 ns for cases 1-5 respectively. The result from the set of bin widths .
determined by the intuitive algorithm is expected to be poorer than that from the equal |

/

bin widths because the time window is narrower. In practice, the time window selection

: l
will be determined largely by the temporal profile of the background.

3.7 'Possibility of systematically searching for the optimal

bin width selection

A

The motivation of the discussions in this section is to look for an approach for finding

an optimal selection,of time window and bin widths within the time window, so as to
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achieve the minimum identification error of molecules. One possible wéy to accomplish

this would be to perform a systematic search over all possible bin width selections. In

specific, all the start and end points of the time window and of the bins within the time

window can be varied within the allowed range such that

A

to<ti <ty <..<ty—1<tn. \ : (3.32)

The time window starts at ¢; and ends at ty_;. Thus, all possible bin widths could be

obtained, and, by recording the mean error for each sét of widths, the minimum error

" could be found. The identification error for a selection of bin widths is evaluated by the

direct method, introduced in section 3.6.

A simple illustration of the systematic searching approach uses the 5-bin case in

ﬁgure 3.2, and the points ¢; and t4 are fixed at 2.0 ns and 8.0 ns, i.é., the start and end .
points of the time window: are fixed. The inclusion of the variable start and end points -
‘of the time window would require more computational memory and time. In addition,

the background is ignored to simplify the implementatfon of the analysis. The points ¢,

and 3 in figure 3.2 are varied to give all possible widths for bins 2 , 3, and 4. The total

number of photons is.set to be 100, and the resulting 2 dimensional surface is drawn in

figure 3.4. The data in figure 3.4 was obtained w1th approximaféiy 90 minutes execution
time on a Pentium 200 MHz PC (64‘MB memory).

The result shows that the mean error fluctuates as the bin widths within the time

window are varied, resulting in-a bumpy two dimensional surface with many local min-
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ima. 'Thi_s.v;/ould make it difficult for a searching algorithm to locate the global minimum
wit.hout_evalua,tiorn of the error at every point of the dpﬁain. In the calculation pre-
sented in figure 3.4; the searching step is around 0.1 ns, and the léwest error is achieved
when %9 is 4:0 ns, and t3 is 6.1 ﬁs. This is ap_proximately equivalent to selecting equal
widths for bins 2, 3, and 4.

Note ’cha'; tﬁe total number of photons may differ over a wide range from one burst
t;) the next, whereds -the ca,lcula,ﬁon of figure 3.4 assumes a, const‘ant burst size of K=100

photonsv. A rigoroﬁs ‘approach to finding the bin se_lectibn would require calculation of

the weighted'-avera,ge of the identification error errg(y) for all possible burst sizes K,

ie.,

err(y) = i Qger}‘K('y), . (3.33)
- K=1 . )

. where Qg is the probability that a detected burst contains K photons. However, such

an approaéh would be. computationally intensive, and was not attempted here. Further,
it would be considerably more computationally intensive to implement such a searching
algorithm to obtain a set of optimal bin widths when there is a large number of bins

within the time window. Even in the case of 3 bins within the time window, shown in

~ figure 3.2, the computational complexity would be sﬁbstantially increased if one were

to allow to consider the selection of the start and end points of the time Window, ie.,
t1 and 4 to also be varied.
The above illustration is simplified in that, from the point of view of the SMD

experimént, one would need to consider the situation described in section 2.4, where

~
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photons. may originate from either ba.ckgr(_)und.oi' ﬁuorescence of molecules. The direct

method could be extended to consider the contribution from the background given that

all the collected bursts are generated by the fluorescence of molecules. This could be

a.chleved by settmg a higher threshold to block background bursts, which normally have

smaller pea.k amphtudes than those from molecules To account for the mﬂuence from

the ba.ckground, the P- in equation 3.27 would be repla.ced by P]fy , which is expressed

exp11c1t1y in equation 3.7 for y= A, B. Thus, the multinomial proba.blhty of distribution

{n;}, con51der1ng the background, would be given by

P({n;}molecule 7) = K'H[K bAt_'y bgtﬁfwmpt]""/nj!,

and the error of predicting molecule A or molecule B would be defined as

errg(d)= 3 P({n;}molecule A),
. V{n;}aM<0

or

erri(B) = Z P({n]}]molecule B)
V{n,}3M>0 o .

The log—hkehhood function would be evaluated by
' N+41 1‘5A
M = Z n; ln

N+1’ (K bAt )P + bAtP;

= Z nj In]

).
= 7 (K —bAYP; +bAtPP rompt

—Prompt
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N T'he above equé,tioﬁs could be used to incorporé.té the preseﬁce of background in the
calculation of the v‘yéighted errors for identification of bursts, given by equation 3.33. In
principle, the ml;ltidime'nsioilal pa.ra.nieter space representing the boundaries of the time
bins, ti, t2; s IN-1 could i)e searched to find the minimum error. However, in practice,
a very la.,rge’ améunt of complutatio;lal power would be required for the calculations and
search. They selection of the time window bsf the method deécribed in section 2.4.1, so
' that the expectqd signal in thé vf,ime wihdow-exceeds the background, would reduce the
dilhensionalitsr of the pa.ramelter space by 2, bgt the computatidps required vx;ould still
be very large. The Monte Catlo simulations, as presented in Ché,pter 5, offer a viable '
alternative g;%proach for compa.r\(ing} the identification errors obtained with different bin
;selections.A For example, in séc@:ién 5.5, a coinpa.risdn of t:,hé”‘eﬁ;)rs in prediction are

made between equal bin widths ahd b1n widths selected by the intuitive algorithm.
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Chapter 4

Neural Networks Analysis

4.1 O.vervieW

Neural networks analysis provide a computational methodology different from that of
traditional hard computiﬁg or artificial intelligence. Hard computing methods normally
refer to scientific calculations, in which a corﬁplete set of inputs to a program is provided
and the exact results are deduced by executing the program. On the other end, an
artificial intelligence system, such as the weather forecast system, does not strictly
require comprehensive inputs, and thus there may exist many possible outcomes for the
provided incomplete information. Neural networks model processes information in a
manner that imitates the functionality of human braiins, where training is required prior
to testing or use. In the training stage, the network is provided information(traiﬁing
data) that contains inputs to the networks and the correspondigg desired outputs. In

the testing stage, the trained network, with its current state of knowledge, provides the

69



answers to new pro’blems(testAing data), av,r{d“,‘such. testjng data contain Aonly inputs to
the network in this phase. o N . N o
" In section 4.2, the basic concepts of neural networks are introduced, and power of
the neural networks analysis is discussed in section 4.2.6. Section 4.3 discusses how to -
implement the neural networks‘ analysis for categorization of photon bursts fromisim—

ulated SMD experiments. A procedure of how to incorporate neural networks analysis

into the SMD experiment is prdposed in section 5.8 of chapter 5 .

4.2 Basic concepts in NN analysis

The neural networks model was first introduced to imitate processes in human brain, A
where information is processed in the form of electrical pulses, transmitting from one
‘neuron to others. Each neuron, as the basic processing unit in the brain, collects all
the ineoming signals from its neighboring neurons, from which it determines whether
to activate its oﬁtput to the next set of neurons. During training, the extent to which
" it needs to aetivate each of the next set of neurons is ,determined, and the connection
between neurone is strengthened or weakened accordingly. In general, human brains
contain up to 1010 neurons, each one of which has a response time of the order of a
milli-second. Hewever, due to the massive connections among the neurons(~ 104 p,er:
neuron), human braiﬁs are able to process informat;ion in a fast and accurate fashion,
and are more powerful than current computer implemen4t'a.ltions.

In a similar way, neural networks are constructed to have many processing units that
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connect to each other with certain weights. The weights denote the importancerof .each
connectidn in fhe network. Eﬁch unit first e;ral.uates all its inputs in a,(‘:ert‘ain way, e.g.,
by~summing up all the weightéd incoﬁling values. . it then uses the resultant value to
calcula‘te an activﬁtion' function and output from this is passed to the next neuron. In
this!way, in'put‘ values to vthe nétv;'ork are propé.ga.ted. through a.vnetworlvt of neurons. Iﬁ
tﬁe tfaining stage, the ogtput 1-1eu1;ons compare the final results with the desired results -
provided' ’by thé traiﬁing data. The calculated error from such a,j comparison will provide
infor-rnaifioﬁzfcv)r how much the weights of cénﬂections should be a,dj-ﬁsted, and the goal
is to n;'ir;imize this error. Having obtained the lowest er'r4o.r,- the 'trai.nled networks would
" save th'é iﬁforma.tion oi" fhe training data in the form of its curreét state 6f the networks,

i.e., the set of fixed weights for each connection.

4.2.1 Architecture of neural netwdrks

All the neurons in the neural netwdxjks are groupeci into ls.yers. The first layer of the
: neu;‘al' ﬁetWorks is the input ldyer, to .which users provide thé inputs of a particular task.
The last layer, the output layer, i‘s.céfnpc‘)vsed'of >;1eurtof1s:‘fof oufp{lttihg reéults._ Users
could choose té have some interinéfdaiétw:e;"layérs‘ orh1dden \la,yersh to i.I;Creé,;“.e the a,na,lyzing
power as discu_wssed in section 4.2.4. When éoﬁhtingﬂié nummber of layers in a néwtwo;k,
‘ only the hidden 1a,yer's a;ﬂd t};e‘output layer a.ure éounted, e.g., 2-layer ﬁetworks' have one
input layer, one output‘l‘ayer, and one hidden la&er. According to the location of layers,
processing units caﬁ be divided into three cé.tegories, i.e., input un_itsv that receive da;ta.

from outside of the network, output units Awhich'se'nd data out of the network, and
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hidden ﬁnits, whose input and output signals remain within the neural networks.

There are two types of networks which differ from each other by the direction of

their connectjons. In feed-forward networks, the signals propagate only in the forward

direction, z;nd ail ﬁpits re(;eive values only from neurons in preceding layers and send
va,lues‘(‘)nly to fqilowiné layers. Units may not connect to neuroﬁs in the same or
prew')ions layers: In recurrent nétworks,-fe'edba,ck- connections ma,y exist. Iﬂ contrast to
feed forwa,rci networks, the dynamical properties of recurrent networks are important.
In some cé.ses, the activation values of the 1.m‘its undergo a relaxation process such that
the netwc;rk evolw‘_les to a stable st;e\,te in which the value do not change aﬁy more. In

this work, only the feed—forwa,rd type of network is considered.

4.2.2 - Weighted summation and activation rules - - .’
_ In a feed-forward network, each proces(sirig‘fux‘lit feceives iﬂputs from preceding neurons
or,' in the case of input neurons, from external so‘ui*céé, and calculates the weighted

summation of all inputs and corresponding activation function. The output value from

the unit is propagated to the next set of neurons, and is re-calculated through each of the

units along the path. In the.stage of learning or training, the units in hidden layers and

output layer adjust the weights of those input connections according to their individual
imi)ortance leading to the desired output. The diagram of a typical processing unit is
$hown in figure 4.1.

In figure 4.1, the unit £ has a number of preceding cohnections, dmong which the

importa,nce of the connection from unit j is denoted by a weight factor wjx. In most-
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Figure 4.1: The basic components of an artificial neural networks
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cases, each processing unit performs a summation over all its weighted inputs, and a

bias or offset term 6 for unit £.. In figure 4.1, the summation is expressed as

sk(t) = D win(t)y;(t) + Ox 1), (41)
J

where t denotes the current execution time, and y;(¢) is the input value from unit j.
As described in the beginning of this section, whether the current inputting con-
nection has the significant contribution to its output is determined by a pre-defined
threshold function (or activation function). Generally, the neural networks would pro-
vide a rule that ‘gives the effect of the total inputs on the activation of the unit. The
activation function, Fj, takes the total inputs Sk (t), and produces a new value of the

activation of the unit k at the next time step, i.e.,

gt +1) = Felsp(®)] = B[S wu ()i (0) + 05 (0)]- (4.2)
J

There are three types of threshold functions normally used. The sign function, as

shown in figure 4.2 (a), is defined as

sk < Tp, Fk(sk) =0,

Sk > TOa Fk(sk) = 11 (43)

where Tj is a pre-set constant. The linear or semi-linear function in figure 4.2 (b), is
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defined as

sk < To, Fi(sk) =0,
sg > T, Fi(sg) =1, -
Sk —To

Sk € [To,Tl], Fk(sk) = m, (4.4)

where Ty and T} are constants. The sigmoid function, shown in figure 4.2 (c), is defined

as

1

e (4.5)

vk = Fr(sk) =

4.2.3 Learning of the neural networks

There are two types of learnings for neural networks. Oﬁe is supervised learning where
the networks is trained by provided inputs and corresponding desired outputs. The
other is the unsupervised learning where each unit is trained to recognize the pattern
of the input sets. In the latter learning process, the networks are supposed to discover
statisfically salient features of the input, and no priori knowledge of categorization of
the input pattern is required. In this work, only the supervised training is considered.
As described in section 4.1, in the training stage, the Weights of each connection get
updated upon receiving the input signais. The baéic idea is that if the errors of the

desired activation of unit k are due to changing of the weight factor, w;x, between the
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(a) Sign function

(b) Linear/ Semi-linear Function

(c) Sigmoid function

Figure 4.2: Activation functions
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_two unit j and k, their inter-connection need to be corrected by a factor of

dwjx =y yi(dk — Yk), (4.6)

, , / P
where 7 is a constant representing the learning rate, and dy is the desired activation of

the unit k£ provided by the Atraining set. This is called ¢ learning rule or the steepest
gradient descent. In the training stage, théweiights coming to the output layer are
adju_sted by comparing the actual processing results and the desired resnlts,"and the
resultant desired activations of the hidden layer prior to the output layer are obtalned.
Then, the hidden layer performs the same procedure until all the weights coming to each
“hidden layer are corrected. In this fashion, the error between the processing results and
the desired results is propagated backwards in the network and the weights through the
paths are adjusted. This type of neural networks are also called the back propagation
networks. B | |

The networks change the weiéhts after each .set ol' the training data is .inputted.
Having trained by all the data in the training set, the networks may not reach the

minimum error, and multiple cycles of trainings are required until the asymptotic limit

of the error is reached.

-4.2.4 " Single layer and multi-layer networks

‘For a single layer neural networks,{there are no hidden layers, and the input units go

directly to the output units. Thus, during the learning process, the weights of the |
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“_‘update is defined by

connections between each input and output pair get updated directly. From eq’qa{:ion

4.6, it is obvious that the changes of weights are linearly proportional to the activation

function in this case. If the total error function Ej of the output unit & prior to each

B=Y = YIE-oP wn
2 “p , . ‘

where E’ﬁ represents the error on pattern'p, p ranges over the set of input patterns. The

.

* procedure finds that the minimum error has achieved when all the values of the weights

are adjusted by o .

Sug = 0P Gu), - (49

which is proportional to the negative of the derivative of the error as measured on' the
current pattern with respect to each weights. Note that yﬁ is a linear function of its

input z;, ie.,

Bwye fl:?', (4.9)
and note that ‘
(OF)(Guse) = Gy o (410
thus,
i S
is hold, therefore,
0wy =v6Pz5, - : - (4.12)
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where 67 = dp —yP. This"means only a linear system could be analyzéd. However, the
A goal of the’'NN analysis is to studyA.‘Iibn-.lihéai' sj';étems: ‘The.introduction of hidden layer
will solve this proi)lem. ‘

Under the generalized § learning rlzinléq,vtihe 'Iﬁﬁlti-la&ér back-pr‘opagation networks
is suitable to solve the problem of nonlinear system. The basic idea is that when a
learning 'setlis inputted, the activation values are propagated to the output units, and
the aétual outputs of the networks are compared with the desired output values. This
will result in an error for each of the output units, say e, for outp1.1t unit 0. Therefore,
all thé preceding‘weights of all the output units and hidden units have to be changed
accordingly in order to minimize the error. The general forﬁl is given by

Swi = —Yeo/Owjk; ‘ (4.13)

and the partial derivative in equation 4.13 can be evaluated by the chain rule. The
adjustment of the weights preceding the output layer is no longer linearly proportional

2

to the inputs.

4.2.5 Addition of dimensions of input data

In the case where the existing networks is not able to distinguish the data patterns
and data belonging to different group are merged, addition of extra dimensions of in-
formation may be helpful. However, these extra information needs not to be ariy linear

combination of the existing inputs.
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4.2.6 Discussion of the classification power of neural networks

In data categorizdtioﬁ, there are some possible categories that are difficult to statisfiéa.lly :

calculate and to _be ‘included’by any formulated #na.lysis. ‘Also, there may be other fac-
tors that inﬂi1"ence the statiétics ina maﬁﬁer that is difficult to track, but which may be
: helpful to include in tﬁe categorization. In a p‘ractica.l SMD experimefnt; such informa-
tion includes the bfigiltness of each photon burst, the possibility of photon-.degra,‘dation,‘
inter-system crossing, or multiple‘mOIeculeé passing sin:lultaneously 'through the p.robe
region.: Ehrther_f;ioré, the assumption of independent photon sta.tistii:s within each Aspec-
tfa,l bin’ uséd by MLE analysis may not be acéu:a.té in aﬂ occasions‘. By céntra.st, neural
networks methods make no ‘a:ssumption on thé statistics, but develop their own rules
during thé learning phésve. ‘The developed rulés are "thus purely empirit;al and can more
easiISr a.c‘couyr‘lt' for compli_ca.ting factors or é.l‘ternate categorizations.

Theré .a.re two main issues to be discussed in regard td whéther the neural networks
method would giveT a;deqﬁate performance. The first is whether the weight_s and bias at
’ ea,cﬁ unit have been *optiln,\ia.ll-y set for:'the classiﬁcationl task :'it hand. Thié is the issue

.of learning, and there are several different convergent algorithms by which the weights

may be adjusted during the training of the networks. To obtain the optimal weights é.nd .

bias, one must ensure that the training set adequately spans the range of possibilities

that neural networks will encounter, and make sure that the training set has endugh
distinguishable properties for different: gioups. The information content of the learning

data is crucial for the classification ability of a Inétv;works.l

80



‘The second 1s the issue of representation, i.e., assujming that the weights .have some-
how been-o'pfimally chosén, does the neural ngtworks have enough flexibility or degree
of freedom to give correct results for ;a.ll possible inputs;.’ In this regard, it has been
;;roven’[18] that a.lsingle layer (no hidden layer) neural ﬁetworks has séVere limitations
in its representation power. However, when one or more hidden layer are added into
the networks, the representation power will be cor;siderably enhan‘ced. In addition, the

universal approximation theorem states that just a single hidden layer is sufficient to

approximate any function to arbitrary precision provided that the activation function in

the hidden layer is nonlinear. The currently- used architecture in the SMD data analysis
provides sufficient representational power for most of the classification problems, and

also enables moderately fast speed for training.

4.3 Implementation of the NN analysis into the SMD sim-
- ulation

4.3.1 Construction of the training and testing data .

In order to implement the neural networks analysis into-the SMD simulaﬁion, some

changes have to be made in the simulation code so as to output the data for the training

and testihg by the neural networks. Recall that, in the SMD simulation, having located .

the starting and endiﬁg points of a detected burst, all the photons in a burst are then

» sorted into temporal bins within the time window, as described in section 2.4, and hence
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the photon counts in egch bin can be (iirectly used as the inputé to the neural net;;vorks.
In addition, the peak amplit“ude and duration of each burst are also recorded for tﬁe NN
anal\ysis as the extra dimensions of input, which n;igl;t-be benificial to the NN analysis,
as discussed in section 4.2.5. As déscribe'd i1‘1 section 2.2, the t;ypé of each photon burst
is knqwn in the simulation, thus the actuai type of t1.1e burst can be used to ‘construct
the training data for the NN analysis. Furthermore, it can be used to estimate the
effectiveness of the data analyses, aﬁd this is' done by comparing the predictions by
either thelNN or the MLE method with the desired types.

~

Note that training data and testing data are require to be generated under the

same experimental condition. Also, the testing data could not be statistically related to
the training data. A general approach is to generate statistically significant number of

bursts data under certain experimental condition, and then to randomly take a portion

of the data as the training séts and the remaining of the data as the testing sets.

'43.2 Tool for the NN analysis
;I‘he »Neural Works .Professio'nal 11/ Piﬁs” , b); ;:\I;euralw;re, Inc, is utilized tc; perform the
NN \anall}}s‘is. Thg software runs undgr 32-bit Microsoft% Windows exllvironment, agd has
“the ab_ility t6 coﬁstruqt up to 28 neural networks models blus their vz)l,ria’c—iops.
The software provides‘ a user-friendly interface for con;tructing neural networks, and
parameters, éﬁch -’a.s, the num;t)ér of layers, units in each layer, type of a.ctiv_a;tion function
) a.nd' learning rule, etc.; a.r(;, specified in this stage. In a.ddi"cion, the.softwa;.re is able Fo
train ’qhe networks, and to test thg trained networks by user pr’ovided data..
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Another important featfn‘e of the software is that it is able to output the trained

networks in the form of an ANSI C subroutine, which can be called in.a real time

‘experiment, as being discussed in section 5.8. A typical pop-up window of constructing

a networks is shown in figure 4.3.

Figure 4.4 is produced4by the neural networks software during the set up and learning
phase of the networks. The current value of weights is shc;wn in the top right inset of
the iigure. The weights are initia’lly set as random and during the training stage their
values fluctuate while thé weighfs arei,a.djusted. The goallof learning is to minimize the
root mean square (rms) error or the difference between fhe actual and desired output,
which is monitored in top left inset of figure 4.4. ’I“'he ﬂuétuation of weights diminishes
as the ~rms error a.pproa,chesv its asymptotic limit.

To implement ;he NN analysis into the experiment, preliminary calibrations need
to be perforr;led pribr to the testing, i.e., in such calibrations, the experiment\collects
burst data of individual molecule or background for training the neural networks. A
proposed procedure with: calibrations will be introduced in ch_apter 5, and the results

are shown in the section 5.8.

- 4.3.3 Neural networks architectures used ih the SMD ,.simulation

The 2-lajrer back-propagation § learning rule networks are chosen to perform the data
analysis for the SMD simulation, and the sigmﬁid function is used as the activation

function for both the hidden layer and the output layer.. : . ,

In this work, two types of input formats are used for t_‘hg neural networks. One that
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is used in section 5.2 contains only the photon counts in each bin as the inputs; the other
forma.t. that is used in sections from 5.4 to 5.9 »conta.ins also tl’1e péak amplitude and
the burst duration as the extra inputs besides the photon counts. The peak amplitude,
which denotes the brightness of each burst, and the duration of each burst are not
linearly dependent on the photon counts in each bin.

For the improved version of the SMD simulation, the format of the output is set up

to distinguish 4 types of events. The events and the corresponding output formats are

as below:
e Molecule A: OUT;=1, OUT5>=0,0UT3=0,0UTy=0
¢ Molecule B: OUT;=0, OUT2=1,OUT3=O,OUT4=O
e Backgrond: OUT;=0, OUT2=O,OUT3=1?OUT4=O
e Both molecule A and B present: OUTy=0, OUT>=0,0UT3=0,0UT;=1

For the prior version of the SMD simulation, there are only three groups being distin-

guished, i.e.,
e Molecule A: OUT =1, OUT>=0,0UT3=0,
e Molecule B: QUT;=0, OUT2=1,OUTI'.3=O, ‘
e Both molecule A and B present: OUT1“=Q, OUT2=6,OUT3=1.

As the sigmoid function is a continous function, and it provides float types of results

at the output layer, a step function is usually applied to the testing resulting of the
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. neural ilgtworks. Thé processing result will be‘cha.nged to 1 if it is larger than 0.5, or 0.
if it is less than or equal to 0.5. '

A rule of thuinb forl choosing the nﬁn1-ber of‘ uni:té in the hidden layer is that, for
a single‘lhidd<e,n layer netWori{s, th;a numbef Qf.ﬁnits 'in the:hic_lden 1a}r,er ‘a.r‘e‘ t.;wice the
number ;)f units as in the input layger. 'For a tv>vo(hidden layers .networksl, the.ﬁrst hidden
layer has three times of units as in the inpu:t lé;y(;r,_ ;«md the second layer has one half
number of h‘nits as in the first hiddén layer.

- In the e¥a1ﬁpie of the_ 2-layer n"eural netwérks shown in ﬁéure 4.4, the improved
version of thg SMD simulation has total of 10 inputs, which are composéc_l of 8 inputs
from thé photon counts in each ‘,bin ;.nd 2 inputs from thé pe'a.k a.rﬁplitude and burst
duration. According to the rule of thumb, 20 units are required in the hiddeﬁ layer.

In the SMD data analysis, a further investigation of making direct connections be-

|
tween input and output layer is not promising, and the asymptotic limit Qf the rms efror
is not substantially de;crea.sed. Eﬁ%eﬂsivé .’11-111\n‘tk>efs_‘of other ‘type of .n‘etworks and their
variationé have béen tried, and };6 '6bvi6ﬁ$"a%iv5ﬁt';.geé h_é,ve beén' observed. This indi-
cates ‘tha.;t the giveni architecture providés: arii;a.c:lequa{;e‘ réﬁrésen@tioﬁ for the training.

set.
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Chapter 5

Results and Discussions

5.1 Overview

As introduced in chapter 2, a burst of photons is detected when a molecule passes
through the probe region, and these photons are sorted into a number of bins according
to their arrival times with respect to the laser pulses. To identify each molecule, one
analyzes the distribution of the photons among all the bins within the time window. Two
methods are be used to analyze the data for each burst, the MLE method introduced
in chapter 3 and vthe NN method introduced in chapter 4.

The development and implementation of the analysis software was undertaken before
the Monte Carlo simulation was extended to consider the convolution of the fluorescence
decay profiles with the instrument impulse response function, the témporal profile of the
background, and the improved method for determining the start and end of each photon

burst. Therefore, section 5.2 presents preliminary results of photon burst categorization
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by the 'MLE and the NN methods using data generated by the previous version of the.

SMD simulg,tion, described in section 2.2. The simulations used fluorophore parameters
obtained from the literature and indicated that t’he»dyes S-101 and R640, with lifetimes
‘of 4.6 ns and 2.2 ns, wc;uld be rea.dily distinguisha;Ble. In prepa;ratit;n for an experiment
‘usmg these dyes, measurements .\;velle ﬁade of the1r ﬂuc.)rescence hfetlmes, as reportéd
in section 5.3. However, under the condltlc;ns of the SMD experiment, the dye R640
was found to actually have a fluorescence lifetime of 4.3 ns, compa,rable to that of S-

101. Lifetimes of other dyes were also measured, but two dyes with disparate lifetimes,

suitable for SMD with an excitation wavelength of 585 nm, could not be found. There-

fore, the research efforts were directed towards the simulation of an experiment from’

the literature[9] on single molecule identification of R6G and TRITC, with fluorescence
lifetimes of 4.2 ns and 2.5 ns and an excitation wavelength of 514.5 nm. The simulation
was performed using the improved model described in section 2.4, and results aﬁre given

in section 5.4. Section 5.4 also presents a comparison of the MLE and the NN catego-

rization methods. The NN categorization method is found to be superior and reasons

for this are discussed. In order to illustrate how the selection of the bins influences the -

J
precision of the identification of molecules, section 5.5 gives the results using different

numbers of bins and different bin width selections.
When preparing for the experiment for single molecule identification of S-101 and
R640, several improvements in the experimental hardware were made. Improvements

aimed at speeding up single molecule detection are discussed in section 5.6, and results
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show that molecules can be detected- with a transit time less than 200 ps. In order
to achieve identiﬁcation of photon bu;rsts in such experiments, low dead time circuit
was deveioped for te»mpo.‘ral binning of photons; as described i;l section 5.7. The circuit
would be usable in experiments using other excitation wavelengths if sﬁitable optical
ﬁ_lters were to b.e;'purchased. Bec:;use such filters ‘weré not available, only simulations
of sihgle molecule identification experiments using such low dead time circuit could be
pursued.

In section 5.8, Ia.procedure for training (;f neural networks using experimental cali-
bratio;l data is proi;osed and evaluated usé'ng siml;lated data. The results indicate that
the procedurg is viable. The lqw dead time circuit for temporal binning of photons
may result in the overlapping of bins, and ‘therefore the results of simulations with such
Qveﬂappéd bins are presented in sectign 5.9. Lastly, the issue of the time réquired for

the NN analysis is discussed in section 5.10.

5.2 _'P:i'elimeinary; _investi‘gation with the previous version of

the simulation

5.2.1 Conditions of the simulation’

In this section, both the MLE and the NN analyses are applied to data generated by the

previous version of the SMD simulation.. In the previous version of the SMD simulation

‘[12], only a small constant background, and a selection of the time.'wind'ow with fixed’



widfh of 13.2 ns was considered, as described in section 2.4. A total of 4 bins are used
to sort photons. Thé intuitive algorithm introdﬁ;éd in section 2.5.2 is applied to select
the widths of the four bins. The parameters used hin this si;r11;lation are listed in Tables
5.1-5.4.

As _discussed in section 4.2, the NN analysis uses a 2-layer (1 hidden-layer) archi-

tecture, and back-propagation § learning rule. A sigmoid function is applied as the

activation function to both the hidden layer and the output layer. The photon counts

in the 4 temporal bins are used as the 4 inputs of the neural network. By the rule of

thumb described in section 4.3.2, eight processing units are used in‘£he hidden layer.
Thé da;ta for each burst are saved in the required fomiat fc;r the analyses by the MLE
and the NN methods, as introduced in sect;ons 3.3 and 4.3, respectively. A step fun'ction
is applied to ail fhe testing results of the NN analysis, and the values of all the outputs
from the networks are changed to either 0 if they are less tﬁa.n or equal to 0.5, of 1-if
they are larger than 0.5. Following this, the testian results have the same formats as

defined in section 4.3.2, representing different types of molecule detection events.

Table 5.1: Laser related parameters

- Variable Name Description (Units) Value
lambda laser wavelength (um) 0.585
p_energy . | calculated by he/A(J) © | 3.4x1071°
rep_rate repetition rate of laser pulses(Hz) | 7.6 x 107
pulses_per_time_step | laser pulses per:deﬁned time step | 1
wly/wlz beam waists in y or z (um) 1 45~
power laser power(W) . 0.1
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Table 5.2: Optical pa,rarﬁeters in the Iigh;c path

Variable Name | Description | Value .
pinhole :| diameter of the spatial filter -(um) 600
~magnification | magnification of the collection objective 60
‘NA ’ numerical aperture of the collection objective | 0.85
iage_loss optical losses due to uncoated optics 0.75
filter throughput of interference filter 0.5
spad.eff quantum efficiency of SPAD 0.65
tgate time gate efficiency for passing signal 0.6
- refract_index refractive index of the solvent - 1.33 -
‘tip_radius capillary tip radius (um) 0.5
tip_to_beam distance from the tip to beam (pm) 15
Table 5.3: Photo physical parameters for the molecules
Variable Name | Description ) Value
I ' S-101(A) [ R640(B)
Fluor_QE fluorescence quantum efficiency . - 0.35 0.35
SIGMA absorption cross section (um?) 3.7x 1078 | 3.7 x 1078
PHI.D photon-destruction quantum efficiency | 5.5 x 108 | 5.5 x 1075
PHI_CROSS triplet crossing probability 0.002 0.002
lifetime fluorescence lifetime(ns) , 46 2.2
Table 5.4: Other simulation parameters - \
Variable Name Descr1pt1on P + i | Value
. dark_in_window detector dark count (counts/s) - -~ 150.0 .
noise_in_prompt counts s=!W~1m=3 - 135x%x10°" .
noisé_in_window counts s~ 'W-lm™3 - 3.48 x 103.
diffusion molecular d1ffus1on coefficient (um?s~!) |.4.5 x 10
ratio 0 fraction of molecule of type A 0.5
concentration '| solution concentration(M) 1.0 x 10~
flow rate sheath flow rate (um s™*) 1.0 x 10* -
ns_SPAD_dead time | dead time of SPAD (ns) 65
ns.TAC_dead_time | dead time of TAC (ns) . - 1000
NUM-OF _BINS number of temporal bins 4
thres - threshold introduced in section 2.3 30
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5.2.2 Results and discussions

Over a simulation run time corresponding to 231.6 seconds, 8161 photon bursts were
recorded. The data from the first 4081 bursts are used for training the ﬁeural network,
and that from the rema.ining 4080 bursts are tested by both the MLE and the NN
methods. In the first 4081 data, 1945 are due to the passage of only molecule type A,
1917 'are due to only molecule type B, and 219 contain photons from both A and B.
Among the last 4080 data, 1903 are due to the passage of only molecule tjpe A, 1966
are due to the p'ass.age of only molecule type B, and 21‘1 contain photons from both
types of molecules and thus are specified as being due to the simultaneous passage of
both types.

According to the intuitive bin width selection algorithm, the widths of each of the
bins are chosen to make the two types of molecules most distinguishable, as discussed
in section 2.5.2. The photons in all bursts generated by each type of molecule should be
distributed within the bins in a different manner. To illustrate thié, the average numbers

of photons in each bin for bursts due to molecule type A, and due to molecule type B

are calculated for the testing data, and the results are drawn in figure 5.1. Photons from

bursts due to molecule type A (T4=4.2 ns) yield an increasing distribution, while those
due to molecule type B (78=2.6 ns) yield a decreasing distribution over the bins. This
is consistent with the motivation of the intuitive bin width selection algorithm. The
presence of background photons within the bursts can reduce the difference between the

two distributions. ’
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The ;results of the predictioﬁs by“the MLE and the NN analysis, listed in tables
5.5 and 5.6, show tilat, both methods categorize the bﬁrsts well whén only one type of
molecule passes through the probe region. Ho;;vever, bu;sts that have been attributed
to both A a'ndl B are n;)t predicted by either method. The MLE method is of céurse '
limited by ifs deﬁnition in seqtion 3.2 so that it is not an option to predict both A and
B. The NNA‘ method is more flexible in that both A and B is an option, but it fails
to identify any .6f the 211 bursts attributed to b_'oth I:nolecules. ‘Actually, this is rr;ost
probably a cons‘equencevof the alg;)rithm by which the bursts were located and initially
identiﬁed in the simulation, rather than a failure of the NN method. In the previous
version of the simulation, the start and end points of bur§ts are locaged at the transition
* points of the wgighted sliding sum, a,s-described iﬁ section 2.6.1. This causes one burét
to immediately féllow another and hence photons frorp one burst to often fall within
the limits of an adjacent burst. :Conse.quently, arelatively large number of bursts (211)
are attributed to both molecﬁles, but the photons in mahy of these bursts would be
pred‘o\minantly from one species.

The expécted number of bursts due to the simultaneous passage of A and B can be

Table 5.5: Identification of burst type by the MLE method

~ Type of Actual Correct .prediction | % of the correct
burst Occasion | (incorrect prediction) predictions
molecule A 1903 1734(169) . 911
molecule B 1966 1886(80) , 95.9
both Aand B | 211 0(211) A 0.0

Total 4080 3620(460) . 88.7
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Table 5.6: Identification of burst typé by the NN method

Type of Actual Correct prediction | %-of the correct
burst -Occurrence | (incorrect prediction) predictions
molecule A 1903 - 1839(64) . 96.6
molecule B 1966 o 1922(44) 97.8
both A and B 211 0(211) : - 0.0
Total 4080 3761(319) 92.2

estimated as follows. Th;a parameters of the simuiation are such that the mean transit
time of a molecule across the laser beam is 0.9 ms a.nd‘the mean time betweé_n molecules
is 21.15 ms, and thus the plroba,bility that a second molecule enters the laser beam before
the first one leaves is 1 — exp(—0.9/21.15) = 0.04. If the molecule defec;tion efficiency
. were 100%, approximately 5256 bursts would Be expected ciuring a 115_.8 s interval»u,
including only about 110 due to both A and B. )

To illustrate how the NN performs the analysis in general, differences in the infor-
mation content 'of the data from different types of burstg are considered. -’];'he input data
set f-rom each burst is multidimensional, and in'the case of 4 inputs corresponding to
the nur_nber of photons within-4 temporal bins, thg number of dimensions is 4. If bursts
are to be successfully identified, the data sets from different types of bursts must sep-
arate into ;eéions vs}ithif; the multidimensional spa.ce»that are largely non—overlapp’ing.
Further, the NN must sufficiently grasp the differences b;etween the different regio‘ns,

.80 as to (;ategorize the bursts. Iri o¥dér:tc; demo;lstfaté the salient (iiﬁereﬁces in a 2-
dimenéional plot, figure 5.2 pldtgs thé ‘ffa;:tic‘;r:l' of vp'liétdns ‘w:ithi\n thé ﬁrst two bins versus

the total number if photons. A clear éeparation“ of the data from molecule type A and
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molecule type B is apparent, and this depends primarily on the difference of the fluo-
rescence lifetimes of the two types of molecules. The more the lifetimes of the two types-
differ, the further the two groups of data are separated, and the better the chance that
they can be distinguished. Therefore, the choice of dye molecules with widely different
lifetimes is crucial for effective categorization.

If the lifetimes of the two types are well separated, either the MLE or the NN
analysis will work. However, the MLE method, as defined in section 3.2, is only able |
1:.0 utilize the informa.ti.on f)ertaining to differences in the fluorescence lifetimes and i\s
unable to classify bursts that are separated by other factors. 'On the other hand, the
NN analysis utilizes all information in an empirical manner, and is able to discern
differences that are not readily apparent, or for which a statistical analysis would be
difficult to formulate. Such information could be originated from the brightness of each
burst, photo-degradation, or inter-system crossing, etc. The results obtained by the NN
method, shown in table 5.6, generally gives better predictions than the MLE analysis,

shown in table 5.5.

5.3 Experimental measurements of lifetimes
To further investigate the bossibility of an experiment for the single molecule identifi-
cation, the fluorescence lifetimes of the dyes R640, and S-101, which were used in the

simulation in section 5.2, are measured.

The measurement is performed by the time correlated single photon counting tech-
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nique, which is eﬁcpla.ined in detail in section 5.6.1. The experimental setup is similar
to_that of section 5.6.1 except that .the data is collected by & multi-channel analyzer
(MCA). In the measurement, micro—mole,r concentre,tions of dye soluti_ons are flushed -
into the sheeth flow capillary. The MCA collects data for several m1nutes, and saves
| the data in CHN file format. The da,ta, are processed as described in sectlon 2.4.2, and"’
results are shown in figure 5. 3 The ﬁgure also contams the curve for dye DCM—S

In reference [25], the fluorescence lifetimes of S-101 and R640 were taken to be
4.6 and 2.2 ns, respectively. However, e,t an Iexcitetion wavelength of 585 nm, the
fluorescence lifetimes of S-101 and R640 are found to be apnroxinrately 4.3 ns and 4.4 ns,
which are not sufficiently different from each other for the single molecule identification
experiment. Although the ﬂuorescence lifetime of DCM-S is founti to be e,bout 2.7 ns,
its. absori)tionl spectrum has a peak at 475 nm, and little absorptron exists at 585 nm.
It was not possible te detect single moleculee of DCM-S in our system.

Tne d}re DODCI was also considered. It has moderate absorption at 585 nm. How-
ever, its fluorescence lifetime has been measured to be 0.66 ns [26], which is rather short
and indicates a low fluorescence quantum yield. Because of the ehort lifetime, few pho-
tons would be ceptured beyond the instrument prornpt and vtri_thin the time Windov_v.
- Indeed, it was found to be‘ not pcssible to detect single molecules of DODCI yvithin our,
instrument.

Although two dyes suitable"for single molecule detecticn with an excitation wave-

length of 585 nm and with diéparate lifetirnes could not be found, such dyes are known
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to exist for ﬁse of other wavelengths. However, it had been decided ﬁot to change the ex-
periment to another excitation 'wavelength, because of other ongoing research projects,
and also the high cost of the optical ﬁiters that would be needed. There;forg, efforts at
this point were directed towards the simulation of a single molecule. identification exper-
iment that had been recently reported in the literature, using an exc?tation wavelength

of 514.5 nm.

5.4 The SMD simulation with th>e‘impr0\\fed version of the
simulation

5.4.1 Conditions of the simulation

By using the improved version that considers ';he background, as introduced in section
2.4, a similar approach as in section 5.2 is carried out in this section to simulate the
experiment. published in reference [9]. As the experiment in the liter.a,ture was done by
using a iaser wavelength at 514.5 nm, which is not usable in our lab, only the simulation
is presented in this section.

The parameters used'in the simulation are obtained from references [9], [10] and
[11], and are listed in Tables 5.7-5.10. Parameters not listed here are the same as
those given in section 5.2. The photo-physical constants of the dyes, R6G (type A) and

TRITC (type B), as listed in table 5.9, are obtairied from reference [17]. The parameter

”Beta_prompt” in table 5.10, which denotes the degree of the background noise from .
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Table 5.7: Lasér related parameters

Variable Name . Description. , Value
lambda laser wavelength (pm) - 0.5145
p-energy calculateed by hc/A(J). - 3.866 x 1071°
rep.rate repitition rate of laser pulses(Hz) | 8.2 x 107

" pulses_per_time_step laser pulses per defined time step | 50
w0y /w0z beam waists in y or z (um) 10.0

' power laser power(W) . =~ . 0.03

Table 5.8: Optical parameters in the light path

Variable:Name | Description Value
pinhole " | diameter of the spatial filter (upm) 500
magnification | magnification of the collection objective | 40 .
tip - - capillary tip radius (um) -2.0
tip_to_beam distance from the tip to beam (um) 50.0

Table 5.9: Photo physical parametérs[l?] for the dye molecules

Variable Name | Description Value ) _
S R6G(A) TRITC(B)
Fluor QE - fluorescence quantum efficiency 0.45 0.15
SIGMA absorption cross section (pm?) 2.2 x 10~8 | 1.6 x 1078
PHID photon-destruction quantum efficiency | 1.9 x 1075 | 5.6 x 1076
lifetime. fluorescence lifetimé(ns) 4.2 2.5
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- Table 5.10: Other simulation parameters

Variable Name Description Value
beta_prompt prompt photons per second 1.0 x 10°
. total_dark average dark counts per laser pulse 220
diffusion molecular diffusion co efficiency (um?s~!) | 4.5 x 10
ratio.0 fraction of molecule of type A 0.33
concentration solution concentration(M) 5.0 x 10713
flow_rate sheath flow rate (ums™') 5.0 x 103.
ns_SPAD_dead_time | dead time of SPAD (ns) 65
ns.TAC_dead_time | dead time of TAC (ns) 0
NUM_OF _BINS number of temporal bins 64
convChNumber number of bins per period of laser
pulse output from the MCS 2090
startCh start bin of time window . 200
endCh end bin of time window 1800
thres threshold introduced in section 2.3 10

laser pulses, is set to be 1.0 x 10° counts per second so as to obtain approximately 5%
~ of the bursts due to background. Other parameters, such as the distance between the
tif) and beam, and capillary tip radius in table 5.8, are obtained from the experiment
current developed in our lab [10], and [11]. As the fluorescence lifetimes of R6G and
TRI’I:C are not as well separated as the two dyes in the simulation of section 5.2, poorer .
differentiation between the dyes is expected.

In the simulation, photons may originate from background or from fluorescence from
either type of molecule. Each photon burst is then categorized as due to molecule type
A, type B, both A and B simultaneously, or background only. As mentione(i above,
the time window is set so as to obtain 5% of bursts due to background among all the

collected bursts. The setting of the time wirld,dw, effectively reduces the influence from “

103




the background noise, and in this case, the time window is started at approximately 1.3
ns aft;er the peak of the laser pulse and ended at about 1.9 ns before the next lpulse,
as compared to the time window setting in reference [9]. The bin widths are choéen
by the intuitive algorithm introduced in the section 2.5.2. In a,ddi"cion, the dead time
of\»Time-to-Amplitude converter (TAC) is set to be zero because a high-speed multi-
cha,nnei scalar (MCS) is used to collect data inthe experiment in replacing of the TAC
with long dead time. A total of 64 bins are chosen within the time window, an(i the"
data for the case of 4 bins is obtained by joinin;g adjacent bins, as described in section
2.5.4. The results for other numbers of bins(i.e., 64, 32, 16, 8, 2, and 1 bins), will be
presented in section 5.5. In addition to the nﬁmbers of photvons in each i)in, the duration
and the peak amplitude of each burst, ‘a,re also recorded and taken as the inputs for the
NN ana,l'ysis. ’

In the NN analysis, a 2-layer (1 hidden-layer) back-propagation network is con-
structed. The § learning rule and sigmoid activatic;n function are applied to the network.
The n.umber of processing units in the network is obtained by the rule of thumb de-
scribed in section 4.3, and all information pertaining to the architectures is summarized

in table 5.11.

5.4.2 Results and discussions

The improved version of the SMD simulation is used to generate a total of 16384 bursts,
of which the first 8192 are used as the training set for the NN analysis. The prediction

of the identities of each of the bursts is obtained for the last 8192 bursts by using both
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Teble 5.11: The NN parameters selected for the data analysis

Number of bins | Number of | = Number of units Number of
in time window | input units | in the hidden layer | output units
64 66 132 4
32 34 68 4
16+ 18 36 4
8 10 20 - 4
4 6 - 12 4
2 4 8 4.
1 3 6 4

Table 5.12: Identification of molecule by MLE in 4 bir case

% of the correct

"Type of - Actual Correct prediction
. burst Occasion | (incorrect prediction) | ' predictions
molecule A" 3662 - "2943(719) 80.4
molecule B 4233 2330(1903) 55.0
" Prompt 131 0(131) 0.0
- both A and B 166 0(166) . -~ 0.0
Total 8192 5273(2919) 64.4

o. 12 a.nd 5.13, respectlvely

105

the MLE and the NN methods. Among the tra1n1ng set for the NN analysis, there are
3725 bursts due to the passage of molecule type A 4184 bursts due to the molecule type
B, 129 bursts due to the background and 154 due to both A and B. Among the testmg
data set, there are 3662 bursts due to the passage of molecule type A, 4233 bursts due
to the molecule type B, 131 bursts due to the background, and‘ 166 due to both A and

-B. The results of the prediction by the MLE and the NN methods are shown in tables

The results show that neither the MLE nor the NN method performs as well as in

section 5.2. The NN analysis out-performs the MLE method when only a single type



Table 5.13: Identification of molecule by NN in 4 bin case

Type of Actual Correct prediction | % of the correct
burst Occasion | (incorrect prediction) predictions
molecule A 3662 3282(380) 89.6
molecule B 4233 4153(80) - 98.1
Prompt 131 0(131) 0.0
both A and B | 166 0(166) 0.0
Total 8192 7435(757) -90.8

of molecule is preserit. However, the NNa.naly51s is not able to vcor_revctly" caﬁegorize
the bﬁrsts dufa to both molecule A and B Prgs;ant ‘simulta.,neouslﬂy, and it_inporrectly
categorizes such events as due to either typg A or B only.

To understand why both methods predict podrer results, the information content of
the data is jnvestigated. The fraction of photons-that fall within the first two bins \{e¥sus
the total nuiﬁber of photons in the burst is plotted in figure 5.4. Bursts corfespon‘ding
to molecule type A Witil a longer fluorescence lifefimg are centered‘ at 0.4 in the x axis,
i.e., on average, su.ch' bursts distribute 40% of their photons into the first two bins
and the remgining 60% into the second’ two bms For burgts due to molecule type B,

the photons are distributed evenly between the two portions of the time window. The 5

‘mean sépara.tion of the two groups is only about‘O.l, which is smaller than the value

of 0.5 obtained in section 5.2.2. Note that on the basis of the fluorescence lifetimes,
the distance between the two groups is not expected to be’ this close. Also, molecule
B, which has a shorter fluorescence lifetime, would be expected to distribute more than

50% of the photons into the first two bins. There are two reasons why the distributions
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.d’c‘> not appear according to these expectations.

'First, morekof the bursts from molecule B are not detected, as molecule B is less

bright. Recall !:hat a threshold, which is set to be 10 in this case, is introduced to Block

the backgrbunci bursts, and some of the bursts from molecule B will also be blocked.

In the simulation, molecule B is intr'oduced at twice the rate as that of molecule 4, but
' the number of detected bursts due to B is only 1.15 times that of A.

Second, and more importantly, most bursts contain a large number of bagkground
‘photonsl, -which distort the resultant distributions. As shown in section 2.4, if not for
background, the distribut‘ion of photons into each bin would foilow the probability den-
sity of the corr'espbnding‘molecule type,la,s illl‘ustrzlatted fo;' molecule 4, B, and background
in figure 5.5(a5. However, when background is included, the number of photons in each
bin for bu-rsts‘ due to A or B becomes distorf;ed as shown in figure 5.5 (b). The curves
corresponding to A and B have a similar ‘shape, whi(;h Iis similar to the probability den-
sity c;f the backgr'ound' in figure 5.5(a). Thus, if z; bﬁrst"contains too many background |

‘ photons, the fluorescence photons will be ox;éryvhelmed by the backgrdﬁnd photons,r apd
the timing ix%forrhation from the fluorescence debay proﬁle wili not be sustained.

The NN r;;ethod yields more accurate prédici;ions fhan the 'MLE method because
of the same reason as discussed in section 5.2.2. In this case, the bright‘nesseslof the
ﬂuprescénce fordeach type of molecule differs, and is apparently used by the NN method
) to help classify the bursts. To. illustrate how tile Vcla,ssiﬁc'ation of a burst is correlf;tted

“to its bfightness,' a comparison between the MLE and NN methods is shown in figures
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5.6 to 5.9. Figure 5.6 shows the events predicted correctly by both methods, figure
5.7 shows predicted incorrectly by the MLiE) method but correctly by the NN method,
figure 5.8 shows the events predicted correctly by the NN method but incorrectly by
the MLE method, and figure 5.9 shows where both methods fail to correctly predict the
events. The numbers of events predicted by each method are also included in each figure
legend. Note that in figure 5.7, where the NN outperforms the MLE method, all the
bursts fro‘m molecule A contain more photons than those from molecule B. However,
inl figure 5.8, where the MLE outperforms the NN method, there are smaller number
of bursts and for these, molecule B is brighter than A. From this it can be inferred
that the NN method yields more accurate predictions than the MLE method when the
bursts from molecule A are brighter than those from molecule B. Note that molecule
A has a higher quantum efficiency than molecule B, and hence its bursts are expected
to be brighter.

In the cases where both methods fail, the bursts are due to background or both
types of molecule, and are only 2% among all the collected events, all such bursts were
categorized as single molecule events, i.e., either type A or type B. lots of bursts due to
the prompt and both molecules presenting. In the simulation, the NN fails to predict
the events where the burst is from either background or both types of molecules because
the bursts belonging to these two cases are mixed with the cases where only single type
of molecule is present, as illustrated in figure 5.9. Furthermore, the failure of classifying

these cases by the NN method is expected since the majority (96%) of the bursts are
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originated from the passage of 'oxﬂy a single type of molecule in the léé,rning set. The

NN analysis always favors the majority of the data group so as to achieve the minimum

_ error.

The results above are what are expected as the background was intro.duced into the
simulation, and this also can be used as the dire;:tion of designing an eﬁi;:ient SMD
ex-periment. Firstly, dye molecules with distiilcti{re ﬂuo;‘escence lifetimes.a,re preferred,
as discussed in section 5.2.2; Secondly, the dye lm{olecules need to have high qpa,ntum
efficiency, and hencg, under the high laser powe;:, a bﬁrst would contain many photons
from the ﬂuores;:ence. Thirdly, the dye molecqles with other photo-physical properties
that dis.crimina,te them would help the NN analysis, for gxample, different inte;nal con-

version, inter-system crossing, and. photo-degradation properties. ‘Finally, the solution

used in the experiment need to be diluted so as to avoid occasions where both types of

molecules are present.

55 SMD simulation with different bin selection sqhemés

In section 2.5.1, the influences of choosing various number of bins within the time window

on the preéision of identification of molecules was discussed, and the conclusion was that

only a small number of bins is needed to obtain fairly good results. Addition of extra

bins within the time window is not expected to gain much benefit, and furthermore a

small number of bins will speed up the process of data collection and analysis. In this

section, the MLE and NN methods will be used t6 analyze the cases for which different

! !
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numbers of bins within the time w‘indouf are chosen.

The simulations in thrs section use the same parameters as ih section 5.4. Only the
data for-the case. of 64lbins a.re generated by the simulations, and the other cases of 32,
16, 8, 4, 2, and 1 bins are obtained as described in section 2.‘5.4. The equral bin wtdths
and bin wrdths selected by the i‘ntuitive algorithm, rntroduced ‘ink section 2.5.2, are used
to select the bins within the time window.

There are 16384. bursts collected in the simulations, and among these bursts, the
first 8192 are used for training the neural networlr and» the last 8192 are used for testing
by both MLE and NN methods. The results for the Aselection -of equal bin widths isv
shown in table 5. 14 The total number of correct predrctrons by the MLE method for
each case of total number of bins w1th1n the time window is drawn in figures 5 10,
where the squares correspond to the results’-frorn the ‘equal bin widths selection. It is
apparent that the reductron of temporal bms will lead to the decrement of total number
of correct predrctron when ‘the resolutron of the bins is 1ess than 8. The NN ahalysis
gives/ consistent results for a}l cases of equal brn w1dths; as shown in table 5.14 and
ﬁgure 5.11. -

Table 5“15 gives the results for the bin selection determined b)r the‘intuitive algo-
.rlthm The correspondmg total number of correct predlctrons by the MLE method for

N

each case of total number of b1ns w1th1n the t1me w1ndow is also 1llustrated in figure

‘5 10 (circles in the figure). In th1s case, the MLE method is able to give consistent

prediction results for all the cases of bm selectlons “The NN method also grves results
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Table 5.14: kesults for even bin width selection case for various number of bins: A:
Fluorophore A (R6G), B: Fluorophore B (TRITC), C: Background, AB: Both fluorophore

Number of | Categories A B | C | AB | Total
temporal bins | Actual number of cases 3661, | 4233 | 131 | 167 | 8192
64 Cases correctly predicted by NN | 3249 | 4158 0 0| 7407
Cases correctly predicted by MLE | 2965 | 2294 - - | 5259

32 Cases correctly predicted by NN | 3242 | 4166 0 0 7408
Cases correctly predicted by MLE | 2966 | 2289 - - | 5255

16 Cases correctly predicted by NN | 3251 | 4169 0 0| 7420
Cases correctly predicted by MLE | 2966 | 2305 - - | 5271

8 Cases correctly predicted by NN | 3246 | 4171 0 0| 7417
Cases correctly predicted by MLE | 2955 | 2313 - - | 5268

4 Cases correctly predicted by NN | 3274 | 4157 0 0| 7431
Cases correctly predicted by MLE | 2902 | 2293 - - | 5195

2 Cases correctly predicted by NN 3261 | 4151 0 0| 7412
Cases correctly predicted by MLE | 2749 | 2289 - -{ 5038

1 Cases correctly predicted by NN 3254 | 4152 0 0| 7406
Cases correctly predicted by MLE | 3661 0 - - | 3661

Learning set: | Actual number of cases 3725 | 4184 | 129 | 154 | 8192
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Table 5.15: Results for bin selection determined by the intuitive algorithm for various
number of bins: A: Fluorophore A (R6G), B: FluorophoreB(TRlTC) C: Background, AB

" Both fluorophore.

Number of | Categories A ‘B C | AB | Total
temporal bins | Actual number of cases 3662 | 4233 | 131 | 166 | 8192
64 Cases correctly predicted by NN | 3262 | 4148 | -0 0| 7410
Cases correctly predicted by MLE | 2966 | 2294 - - | 5260
32 Cases correctly predicted by NN | 3220 | 4174 0 0 7394
, Cases correctly predicted by MLE | 2970 | 2292 - - | 5262
16 Cases correctly predicted by NN | 3254 | 4170 0 0| 7424
Cases correctly predicted by MLE | 2974 | 2296 - -| 5270
8 Cases correctly predicted by NN | 3250 | 4166 | 0| 0| 7416
Cases correctly predicted by MLE | 2955 | 2308 | - | - | 5263

4 Cases correctly predicted by NN* | 3282 | 4153 | 0 0| 7435 |
Cases correctly predicted by MLE | 2943 | 2330 - - | 5273
2 Cases correctly predicted by NN |3267 4153 | -0 0| 7420
Cases correctly predicted by MLE | 2891 | 2344 - - | 5235
1 Cases correctly predicted by NN | 3253 | 4155 0 0| 7408
) ~ | Cases correctly predicted by MLE | 3662 0 - - | 3662
Learning set: | Actual number of cases 3725 [ 4184 | 129 | 154 | 8192

comparable to the results of those for the equal bin width selections as shown in figure

5.11.

The results above show that, under the current conditions, the total number of bins

within the time window needs to be at least 8 if the Qidths of each bin is chdsen to

be equé,l and the MLE method is used to analyze the data. If the intuitive algorithm

is applied, the required resolution of bins by the MLE method can be further reduced.

In addition, the selections of bin-width within the time window influence more to the
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MLE method ‘tl'm.n the NN analysis. Froni the vpoint of view of the NN analysis, the
bursts belonging to moiecule type either A or B are clearly separated 1;>y the information
of ﬂuorespénce —brig.htness (or total number of photons in ea.c‘h‘burstr), other tlrla.n» the
timing ii;formé.tion. Hence, the‘selection of the number of binrs_ are not a,s important to
the NN a._na.lysis‘as to the MLE analysis.

' Inltﬁe 1~bi}1 cése, only the NN method gives the consistent result with respect to -
) othell' bin selections. The MLE method predicts a:llvthe e;rents as the passage of molecule
‘type B. "I“his is another evidence to show- that the classiﬁcaﬁon of bursts by the NN
a.na.lyéis depends almc;st entirely on the b;ightnésé of t'he molecules in this case.

In summary, the NN é.na.lysis is superior tha;n‘the MLE method in that it is able
to grasp the information difficult to be formulated and to be implemented into "the
 statistics, such as: the information of the brigﬁtness of ‘bursfs. The selection of small
ﬁumber c;f bins, such as 4 bins, is sufficient to a.chieve‘the‘ required accuracy, and will

save timé in the data cqlleétiox;'stage.
5.6 Experimeg’p Improveménts :

5.6.1 Motivation for Fast SMD

SMD is believed to be an qna.bling technology for searching for rare molecules due to
its sensitivity. To accomplish the task, it is necessary to process a very large number
~of molécules and spectroscof)ica,lly distingliish the rare 'mqlécuiés from the majority

spécies. Rapid detection of molecules is neééssa.:ry“{ if large numbers of fluorescent-labeled
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molecules are to be processed within a reasonable time. In addition, rapid detection
requires the transit time of molecules to be minimized when the molecules pass through
the probe region, and the capability to distinguish the simultaneous passage of two or
more molecules. For example, for the assay of 1 micro-liter of solution at a concentration
of 1 pico-molar, 6 x 10° molecules must be counted. If the time required for each
detection is 100 s, and if molecules were processed at a mean rate of 10% s71, then the
assay would take about 10 minutes, and the Poisson probability that a photon burst is
due to two or more molecules pa.ssing» éimultaneously through the detection zone would

be ~5%.

5.6.2 Details of experimental improvements

In our lab, Li et al. had constructed an experimental system enabling the single molecule
detectioﬁ with an efficiency of ~80% and with a transit time of 26¢ =1.0 ms. Improve-
ments in ti1e speed of SMD are considered in this work. Detection of BODIBY-TR dye
molecule with a transit time of 26t =176 us has been achieved in the recent measure-
ments. Improvements of the SMD apparatus will be introduced in this section, and the
experimental results are shown in section 5.6.3.

The experimental setup is shown in figure 5.12. The laser used in the experiment is
a synchronously-pumped dye laser (Coherent 702-1), which provides 8 ps pulses at 76
MHz and 585 nm. The horizontally polarized -beam is expanded and collimated with
a pair of doublet lenses and focused with another doublet to a beam waist of 3.5 pm,

as measured in air by scanning a 1.0 um pinhole through the waist. When focused
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into water, the waist would theoretically be smaller by a factor of 1.33 due to the
refractive index of water, if it were not for aberrations introduced at the glass walls of
the square-bore flow cell. The fluorescence is collected using a % 60 microscope objective
(Nikon CF' Plan Achromat, model 79173), which has a numerical aperture of NA= 0.85,
and an adjustable cover-glass aberration correction. When micro-molar concentration
dye is introduced through the injection capillary, the image appears as a slightly fuzzy
circular disk and hence there appears to be no advantage to the use of crossed slits for
the spatial filter. Instead, a round pinhole of radius ro = 250 pm is used as a spatial
filter. This just accommodates the image. Within the approximation of geometric optics
and no aberrations, the pinhole defines a double-conic shaped region of maximum light
collection efficiency € = (1 — cos@)/2 = 0.12, with radius so = r9/60 = 4.2 pm, conic
half-angle o = sin™}(NA/1.33) = 40° and half-depth‘sotana = 5.0pum (see section 3C of
reference [11]). The intersection of the flow stream and laser beam would be completely
contained within the double coné.

Following the pinhole, the collected light passes through a Raman notch filter (Kaiser),
which rejects Rayleigh scattered laser light at 585 nm with an optical density of 6.0 while ’
transmitting fluorescence with an efficiency of 0.9, and then a band-pass interference
filter (Omega Optical). The interference filter pass band was selected to r'eject the ma-
jor Raman scatter com\pyonen’t \from the solvent, which is the 0-H stretching mode at
3000 ¢m~! and which falls at 709 nm for an éxcitation wavelength of 585 nm. The

light passed by the pinhole and filters is then imaged by a Newport M-10 microscope
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objective to a disk of diameter ~ 50pm at the center of a single photon avalanche diode
(SPAD).
In preliminary experiments to determine the complete optical throughput, a highly

atténuated portion of the dye laser beam was focused into the flow cell so as to directly

* pass into thé collection objéctiye, through the pinhole and towards the SPAD. When the

dye laser was tuned tb 600 nm, the “’rea,k"broac.l-ba,nd fluorescence within the dye laser
beam was icientiﬁed asﬂthe major source of background. Hence itc') reduce the ba,ckgrouﬁd
count rate, the laser ‘béa,m is péséed through a ﬁarrow-ba,nd in';erference filter, placed
before ther.fog:us'ing lens. | |

In Li’s experiment {10], single molecules of S-101 in‘a,queous §01u£ion are efficiently

- detected as they pass from a 0.8 pm micfocapillary injection tip into a sheath flow,

which carries them through an elliptical cylindrical excitation volume. of 1.9 pl with

a mean transit time of 1.0 ms. Analytical calculations and Monte Carlo simulations

[22] of the experiment indicated that the 0.8 s dead time of the atwalanche photodiode

was the most significant factor limiting the time required for the detection of each -

molecule. Although photo—mulﬁiplier tubes exhibit considerably less dead time, use of

a high quantum efficiency (> 0.6) avalanche photodiode (EG&G Canada SPCM-200)

minimizes the number of molecular excitations required for detection and hence the
photodegradation prdbability.
A new- active-quenching circuit has been déveloped and custom modified for sub-

nanosecond time-gated detection [24]. Best timing performanée and background after-

-~
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1

pﬁlse rate are obtained with a dead time <;f 65 ns, which enables instantaneous photon
count rates of up to 1.9 x 108 s=! with only 10% loss due to pile-up. The previous ex-
perimental results were obtained at excitation intensities well below saturation, because
of the high rate of promptly scattered photons from solvent molecules (~ 3 X 10% s71),
which were removed by the time-gating circuit but nevertheless gave signiﬁcﬁnt pile-up
at the passively-quenched avalanche photodiode. The reduced dead time of the new
actively-quenched detector enables hiéher laser intensities to be used, which in turn
enables single molecules to be detected with shorter transit times and faster solution
flow rates.

The Monte Carlo simulation indicates that for faster sheath flow rates less diffusional
spreading occurs over tile same distance downstream from the microcapillary injector
and hence efficient detection can still be accomplished with an 'excitatiorl volume of
smaller cross-section. Diffusion of the sample in the sheath flow is reduced and the vol-

N

umetric rate at which t—he sample is processed is increased. For our present experiments,'
we have accordingly reduced the excitation ;rolume to ~ 0.25 pl while increasing the
laser excitation intensity by a factér of ~ 5.

To accomplish single molecule detection within faster transit times and higher in-
stantaneous fluorescence photon rates, the components of the data acquisition system
have been replaced. Previously a time-to-amplitude converter (TAC) with 2.5 us dead

time and an analog-to-digital converter with 1 us conversion time were used to provide

software controllable time-gating, while most of the Raman background was removed
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- by a temporal pre-filter (a sub-nanosecond anti-coincidence circuit) with a dead time of
~ 10 ns. During the passage of a single molecule, the instantaneous rate of the counts
that pass the pre-filter was ~ 20 photons in 1.0 ms, and hence the 2.5 us TAC dead
time gave < 5% loss. For detection of molecules withiﬂn shorter transit times, signifi-
cantly higher instantaneous fluorescence rates occur. Therefore, the output signal from
the temporal pre-filter is connected directly to a 100 MHz multi-channel scalar (Ortec

ACE-MCS) and time-gating is accomplished solely by the hardware.

5.6.3 Fast SMD results and discussions

i

Figure 5.13 shows an example of photon bursts of BODIPY-TR(D-6116) dye obtained in
a bulk flow ce}l with the capillary injector, under the following conditions: Laser power /
P = 23 mW; circular beam waist wp = 3.5 pm; spatial filter object space diameter
= 8.4 pym. The molecular transit time obtained from the auto-correlation function,
shown in figure 5.14, is 26; = 176 ps. The dwell time of the multi-channel scalar is
50 us and the data is‘processed by a simple sliding sum filter with a bin time of 200 us
to yield the graph in figure 5.13. The background bursts in the figure is obtained by
shutting off the flow in the capillary, and hence no dye molecule will diffuse into the
probe region.

For the experimental parameters used, the peak excitation probability per laser
pulse, which occurs when a molecule is in the center of the sample volume, is Foycite =
0.44. This indicates a moderate level of saturation 4of the absorption of the molecule.

The mean number of excitations per molecule is ~ 4500, comparable to that in reference
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[10], and hence the burst a.mplitﬁdes are also of comparable size as shown in figure 5.15.

5.7 Fast daffa collection scheme -

Section 2.‘1 explained that the nanosecond time interval between the laser excitation
" pulse and the fluorescence photon can bel used to sort each photoxi into an appropriate
bin for use for identification of molecﬁles. The usual experiinenta.l hardware for acheiving
this involves the use of a time-to-amplitude converter (TAC) and pulse height analyzer,
| or TAC and aﬁalog to digital converter [10], 01; time to digital converter [28]. The
time interval is typically measured with a precision of 8 to 14 bits, i.e., with 256 to
16,184 .channels of resolution. Adjacent channels may .;be arbitrarily. groﬁfed in the
software to produce a smalier nurgber‘ of bins. Such hardyva.re invariably introduces
a dead time of the order of a ’111illis{ecdnd and is not si;lita.ble for experiments for,fa,s;c
single ﬁlolecule identification. This‘section discusses alternate experimental hardware
for directly measﬁring. and sorting the time:interval into a small number (2 to 45 of}bins. :
The hardware utilizes fast coincidenc;a or tirﬁe—gate circuits, with widths that may be
varied by adjusting the threshold of the discriininators and the lengths ;of co-axial cables.
Tﬁus, bins with desired widths and temporal posi;cisns can be obté.ined.‘ However,: the
bins neeci not be contiguous, and also they need 11'6t be non-overlapping.

As implemented in the fast SMD experiment, a multi-channel scalar (-MCS)(ACE—

MCS) was used to collect the data. The main disadvantage of this scheme is that the
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data a.cquisi“cion is not éontinuous, and the analysis of the data is not performed at the
exactly same time as it is acquired. The display of the photon bursts is delayed. For each
run of data collection, the acquisition is inactive for a period of time while the Fortran
program reads in the 4096 point data file generated by the MCS aqd processes it with
thg simple sliding sum algorithm. Therefore, this inevitable loss of data, or interrupted
data collection must be accounted for in the algorithm for obtaining the auto-correlation
function. Moreover, in order to implement the single molecule identification experiment,
multiple bins within the time window must be implemented. The ACE-MCS can only
collect data from one bin at a time, and a MCS with multiple inputs is required.

To overcome the above limitations, a new data collection scheme was constructed
using a National Instruments PC-TIO data acquisition card. The PC-TIO card is a
timing and digital I/O interface for the ISA bus of IBM compatible PCs, with up to 10
10 MHz counters or clocks, which may be read under interrupt control. For the reason
that two counters of the PC-TIO card are used to alternatively count TTL at low or
high voltage output for each channel and one counter is required to provide the clock
signal, only 3 channels is able to be constructed on one PC-TIO card. It is possible
to read the counters and continuously stream data to memory for real time analysis
in such a way as to emulate a 3-channel MCS. In this work, a C program, which was
written by ‘L. Davis for emulating a 1-channel MCS with the PC-TIO card and which
was used in reference [27], was modified and extended to give a 3-channel MCS.

As the output signal from the prefilter circuits are negative and relatively sﬁ1a11(~ 1V),
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Figure 5.17: Pulse conditioning circuit and connection to PC-Tio board
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yet the PC-TIO card needs a driven signal larger than 2.4V, a fast invert amplifier cir-
cuit is required to be used as the interface between the prefilter circuit and the data
acquisition card. A cdmparator circuit is chosen for such purpose, and the diagram of
such a circuit is illustrated in figure 5.16. The +/— 6V power is supplied by the Nuclear
Instrument Module (NIM).

Figure 5.17 illustrates the block diagram of the connection between the PC-TIO card
and 3 comparator circuits. Counter 1 of the PC-TIO card is used to provide a 10MHz
clock signal to all the other gates. Counters 2 and 3 are used by channel 1, counters 6
and 7 are used by channel 2, and counters 8 and 9 are used by channel 3. Among all

the counters, 2, 6, and 8 are configured to collect data during the high voltage clock

cycle, and 3, 7, and 9 are configured to collect data during the low voltage cycle. The

ground of all 3 channels is connected to pin 33 of the PC-TIOcard.

5.8 Simulation with calibration runs

As described in chapter 4, the neural networks require learning prior to the testing, and
hence a calibration run needs to be preformed to train the neural networks before any
real time detection in the SMD experiment. Therefore, a corresponding procedure is

proposed to implement the NN analysis for the experiment, and in such a experiment,

e the experiment conditions need to be kept the same for all the runs below,

e run 1: only molecule A goes through the probe region, the corresponding bursts

are collected, and the desired output for the NN training is set to be molecule
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type 4, . . S

run 2: only molecule B.go’es'thrbugh the probe region, the corresponding bursts
are collected, and the desired output for the NN training is set to be molecule

type B,

run 3: no molecule goes through the probe region and the desired outputs of the

corresponding collected bursts are set to be type background,

the data of the above runs are combined, and are used as the training data for the
NN analysis(note that the NN software can be configured to read in the training

data in a random order),

the trained neural networks are outputted as a C' subroutine, and the subroutine

can be implemented into the data analysis of the experiment,

run 4: finally the real time detection can be performed by using the trained

network.

Clearly, the case for the passé.ge of both types of molecules is beyond the ability

of this procedure. Therefore, the concentration of the solution needs to be sufficiently

diluted and the flow rate needs to be kept sufficietly fast to avoid such events from

bappening, and minimize the error where both types of molecule are present in the

probe region.

According to the procedure described above, a SMD experiment with calibration

runs is simulated with the improved version of the SMD simulation. Most of the pa-
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Table 5.16: Parameters in the.simulation with calibration

Parameters Run1l Run 2 Run 3
Used in Bursts from | Bursts from | Bursts from
each run A&Prompt | B&Prompt | Only Prompt

Fraction of type
A among the total 1.0 0.0 0.333
Concentration

of solution - . _

- (mol/picoliter) | 1.0x 10713 | 2.0x 1073 | 0.0 x 107%3

rameters are the same as those in section 5.4.1, and other changed parameters are listed
in table 5.16.

In the simulation, data for the run 1 and the run 2 are collected by using different
-solutions containing molecule A and ‘B respectively, this is acheived by varying the
value of fraction of As “among all the molecules. In third run, only pure water goes
through the probe region, E;.nd data for the background ‘is collected. All the above 3
runs are subjected to a fixed amount of time. A value of 2 x 10° total time steps are
used in the simulation, and it corresponds to 1220 seconds worth of data collection in
the c,alibratipns. As the result, there are totallyv4513 bursts from molecule A4, 5240
bursts from B, and 163 from the background. These data are combined and used as
the training data of the NN analysis in a 64 bin; case. Th;e trained network is then
implemented into the real timé simulation, and the 8192 bursts generated from the
simulation 'with the’solution of mixture of A and B a.fe tested by the network. Ti1e
results of identiﬁcqtion.gf moleculgs by yhe‘NN and the MLE methods are shown in

tables 5.17 and 5.18, respectively.
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Table 5.17: Identification of molecule by the NN method, simulating a real time experi-

ment,
h Type of Actual’ Correct prediction | % of the correct
burst Occasion | (incorrect prediction) predictions

molecule A 3650 3254(396) 89.2
molecule B 4240 4124(116) - 97.3

Prompt 145 0(145) 0

both A and B 157 0(157) 0
Total 8192 7378(814) 90.1

A

Table 5.18: Identification of molecule by the MLE ‘method, simulating a real time experi-

ment
Type of Actual Correct prediction | % of the correct
burst . Occasion | (incorrect prediction) predictions
molecule A 3650 2912(738) 79.8
molecule B 4240 2394(1846) 56.5
Prompt 145 0(145) 0
both A and B 157 0(157) 0
Total 8102 5306(2886) 64.8

The results -from the NN‘ra.‘r‘ld“MLE methods are comparable with the results in

se(;tions 5.4 and 5.5. The Nl}ll.me};hgodl qgain outpgrforms the MLE method, and gives
above 90% correct ’yprediclti_ons of .i‘r‘idividual‘ molgculeé. In comparison, the MLE method
gives only 64.8% correct predictions, and more than 1/3 of the events are prédicted
wrong. ’i‘herefore, it is an applipable approach to implement the NN analysis into a real

" time single molecule identification experiment.
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5.9 Simulation with overlapped bins -~

i

With the hardware discussed in section 5.6, the sorting bins within the time window are
selected by varying the thresholds of discriminators and the lengths of co-axial cables.
The widths and positions of each bin may be monitored on an oscilloscope duriné
experimental setup. The bins may be selected in such‘a, way that they overlap, and hence
a photon may contribute a count to two or moré bins. According to the assumption
made in the MLE method, introduced in section 3.2, the spectroscopic bins are not
allowed to overlap each other, and each bin shoqld be statistically independent of all
others. Therefore, with overlapping bins, the MLE method based upon the multinomial
distribution would no longer be valid. It would be too complicated to implement the
MLE analysis to consider the case of overlapped bins, and hence only the NN analysis
is used in this section.

Note that the overlapping of bins may provide extra sorting space for photons, and
hence furtI;er reduce the required number of bins within the time window. This could
also speed up thé data analysis. For exambie, using 2 overlapped bins rather than 3 non-
overlapping contiguous bins reduces the data storage and analysis time requirements.
In addition, in the 2-bin example above, the photon count in the overlapped bin can
not be obtained as the arrival time of each photon with respect to the laser pulse is
no longer available in the experir;lent. The photon counts in bin 1 and 2 will not be
sufficient to give the number of photons falling within the overlapped bin.

As before, in the NN analysis, a 2-layer back-propagation neural network with ¢
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Table 5.19: ldentification of molecule by the NN for 5 overlapping bins

Type of Actual Correct prediction | % of the correct
burst Occasion | (incorrect prediction) predictions
molecule A 3662 3264(398) 89.1
molecule B 4233 4158(75) 98.2
Prompt 131 0(133) 0
both A and B 166 0(166) 0
Total 8192 7422(770) 90.6

learning rule and sigmoid activation function is used for data analysis. The 7 inputs of
the network include the photon counts in each bin, the peak amplitude and the duration
of each burst, and the hidden layer contdins 14 nodes. The bins and the corresponding
widths are arbitrarily chosen to be as shown in figure 5.18. To simulate a 5 overlapped
bins case, the same set of 16384 burst data as in section 5.4 are used. The ‘ﬁrst 8192
data are used to train the network, and the remaining 8192 sets of data are used as the
testing data. The result is shown in table 5.19. |

To simuiaté situation where overlapped bins exist, a similar approach with calibra-
tion runs as in section 5.8 is carried out. The bursts data for training and testing the
neural network in sect.ion 5.8 are used for the overlapped bins case, respectively. The
result is shown in table 5.20.

The results show that the NN analysis still gives a good result under the condition
where the bursts data from each bin are dependént to each other. This is because the
classiﬁca.tjoﬂ of molecules by the NN analysis is based on not only the timing information

but also the information of fluorescence brightness of dye molecules.
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Table 5.20: Identification of molecules by the NN method in the case of a selection of 5

overlapping bins by the procedure introduced in section 5.8

% of the correct

Type of Actual Correct prediction
burst Occasion | (incorrect prediction) predictions
molecule A . 3650 3237(413)  88.7
molecule B 4240 4155(85) 98.0
Prompt 145 0(145) 0
both A and B 157 0(157) 0
Total - 8192 7392(800) 90.2

. Table 5.21: |dentification of molecules by the NN analysis for the case with 3 overlapping

~

bins within the time window by the procedure introduced in section 5.8

Type of Actual Correct prediction | % of the correct
burst Occasion | (incorrect prediction) predictions
molecule A 3650 3248(402) 89.0
molecule B 4240 4145(95) 97.8
Prompt 145 0(145) 0
both A and B 157 0(157) 0
Total 8192 7393(799) 90.2

. A case with 3 overlapped bins within the time window is also simulated as there
are only 3 bins available in the currently developed experiment in our lab. The widths
of the 3 bins are chosen arbitrarily, and are illustrated in figure 5.19. The same setlof

parameters in section 5.8 are used here, and the result is shown in table 521

5.10 -Time consumption by the NN analysis

This sectionwill investigate the total tim'e“used for performing the NN analysis. In

general, the time is‘co'mpo‘s:ed of that taken during the calibration experiments, i.e., the
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time spent on training neural networks, and that taken during the real time testing.
According to the procedure proposed in sectior‘l 5.8, the total time that the calibration
éxperiments take is typically 3 times of the training time used in a single run. In this
section, onlt a single run of the NN training is simulated, and the time spent in such a
run is recorcied.

The hardware setup and other conditions for training the neural .network are listed

as below:

Hardware: Pentium II 300MHz, 128MB memory, windows 95 operating system,

Software: NeuralWare Professional I1/Plus,

Achetecheture of the networks: 2-layer back-propagation networks, § learning rule,

sigmoid activation function, number of nodes in inputs, outputs, and hidden layers

are defined in table 5.11,

Total learning times: 106000.

~ The results for selectioris‘ of different ;1umber of input and hidden nodes are shown in
table 5.22.

Table 5.22 shows that if a small number of bins is chosen within the’time window,
e.g., less than 16 bins, the training process takes no more than 1 minute, and the
asymptotic limit of root mean. square error of the network can be reached with the
current total number of tra.ininés, i.e., 100000.

The time taken by the NN analysis during the real time testing is comparable to
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Table 5.22: Training time for the networks define in table 5.11

Number of bin | Number of | Number of units | Number of | Total | Training
in time window | input units | in the hidden layer | output units | Units | Time (s)
64 66 132 4 202 363
32 34 68 4 106 175
16 18 36 4 58 93
8 10 20 4 34 70
4 6 12 4 22 62
2 4 8 4 16 61
1 3 6 4 13 60

that of the MLE method according to the investigation on the SPARC workstations for

both methods. The costs of predictions for both the methods are around a few clock

cycles per identification, and the NN analysis normally takes one or two more cycles

than the MLE method.
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| Chapter 6

Summary and Future Work

This work is the first that incorporates the NN method in the research area of the data
aﬁa.lyses of SMD and SMI experiments and simulations. Results show that the .NN
analysis for categorization can be superior to the traditional MLE method, particularly
in cases 'Whei‘év ﬂubfbphdre(s‘that are .subje(:'t to‘be classified have disf;inctive pﬁot&
physical prob‘eri;ies. In additi‘(jr‘l,-'“a‘ -procedure of how to implement the NN analysis
in real-time.for e:‘cperimenté- is proposed. The results of the siﬁﬂation with the NN
procedure are promising.

In this dissertation, the prior version of the simulation che for single molecule
detection and identiﬁcétion experiments has been exj;ended to include the fluorescence
probability as the coﬁvolution of the exponential decay and instrument impulse function.
The selection of the time window has been implemented By monitoring the variation of

signal and noise as anticipated to occur in experiments. The so-called intuitive algorithm
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for selecting bin widths within the time window has also been extended accordingly.

Several approaches to optimize the SMI have been evaluated theoretically, for exam-

ple, errors of predictions of fluorescence bursts have been investigated, (1) by adjusting
the start and end points of the time window, (2) by changing the number of sorting

bins within the time window, and (3) by selecting the bin widths. Results show that
|

several bin-width selections are favorable, for example, equal bin widths or bin widths

chosen by the intuitive algorithxh. The ihve‘stigation clarifies that the choice of a set of

7

optimal bin widths is largely determined by the specific experimental conditions.

A number of cases have been simulated by using the improved version of the simu-

latioxt pregram. Results confirm that at most 8 bins are required to sort photons within

~ the time wmdow glven all bin widths are equal more bms, e.g- 16, 32 and 64 bins

yield hardly any 1mproved 1deet1ﬁcat10n Results also show that the number of bins

w1th1n the tlme wmdow can be further reduced if all the widths were determmed by

the intujtive algorithm. The simulatioﬁs with bin widths determined by the intuitive

- algorithm generally yield improved results compared to those with equal widths when
the tote,l number of bins within the time window is less than 8.

Simulation results provide a useful direction for the SMD and SMI experiment.

Fluorophores need to have as distinctive photo-physical properties as possible, and such
properties may be chosen, for example, the different fluorescence lifetimes or different
fluorescence quantum efficiencies of dyes. Furthermore, properly setting the width of

the time window will reduce the portion of background photons in each burst, and
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substantially improve the precision of identification of molecules. In the single molecule
identification experiment, the concentration of the solution containing dye molecules
needs to be further diluted to avoid the cases where multiple molecules are present
at the probe region simultaneously. For diluted sarr;ples, a reduction of the error is
expected for both the MLE and the NN.methods. -

The future work may include finding suitable dyes that have large signal strength
at 585 nm excitation wavelength, otherwise, other excitation wavelengths need to be
explored, and corresponding spectral filters are required. To further suppress the back-
ground photon counts, an experimental setup with a probe volume in the order of
femtoliters needs to be pursued, including thé use of confocal epi-illumination. In ad-
dition, the new data collection scheme using the PC-TIO card and the pre-amplifier
circuitry needs to be evaluated together prior to experiments. Currently, 3 bins are
configured for the PC-TIO card and the circuitry, but only one bin of data collection
is available from the signals of the SPAD and the PD. Therefore, extra hardware is
required for implementation for the multiple bin data acquisition. Incorporation of the

NN method in the data acquisition of SMD experimeﬁts can be done according to the
procedure proposed in this work. Finally, with the suggested preparation work, the
real-time single molecule identification experiment is expected to show the simulated,

predicted results.
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