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Abstract

Latent Semantic Indexing (LSI) is a popular information retrieval model for

concept-based searching. As with many vector space IR models, LSI requires an

existing term-document association structure such as a term-by-document ma

trix. The term-by-document matrix, constructed during document parsing, can

only capture weighted vocabulary occurrence patterns in the documents. How

ever, for many knowledge domains (e.g., medicine) there are pre-existing semantic

structures that could be used to organize and to categorize information. The goals

of this study are to demonstrate how such semantic structures can be incorporated

into the LSI vector space model and to measure their overall effect on query match

ing performance. The new approach, called Knowledge-Enhanced LSI (KELSI),

is applied to documents in the OHSUMED medical abstracts using the semantic

structures provided by the UMLS Semantic Network and MeSH. Results based

on precision-recall graphs and 11-point average precision values (P) indicate that

a MeSH-enhanced search index is capable of delivering noticeable incremental

performance gain over the original LSI model - 28% improvement for P=.01 and

100% improvement for P=.30. This performance gain is achieved by replacing the

original query with the MeSH heading extracted from the query text via regular

expression matchs.
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Chapter 1

Introduction

Latent Semantic Indexing (LSI) is a popular information retrieval model for

concept-based searching [DDF+90]. As with many vector space IR models, LSI re

quires an existing term-document association structure such as a term-by-document

matrix [BB99]. The term-by-document matrix, constructed during document

parsing, can only capture the (weighted) vocabulary occurrence patterns within

the documents. However, for many knowledge domains (e.g., medicine) there are

pre-existing semantic structures that could be used to organize and to categorize

information. The goals of this study are to demonstrate how such semantic struc

tures can be incorporated into the LSI vector space model and to measure their

overall effect on query matching performance.

What motivated this study is the observation that if these semantic structures

can be used to organize and to categorize information for hand search by humans.



perhaps they can be similarly used for automated machine search encapsulated in

an existing vector space model. In that case, components of the added semantic

structures can be used to guide the query vector toward more relevant,documents

or be used to replace the query vector all together.

The approach presented in this thesis is called Knowledge-Enhanced LSI (KELSI).

There are two key differences between KELSI and the original LSI method:

1. The original term-by-document matrix is augmented with additional concept-

based vectors constructed from the semantic structures.

2. A number of query modification and query replacement methods (that ex

ploit the semantic structures) are applied during query-matching.

Other than those two differences, the original LSI model remains intact. In fact,

several of the analyses performed in this study utilize existing LSI software envi

ronments and tools [HTBMOO] [LB97].

The document collection used for KELSI development is from the field of med

ical informatics - the Oregon Health Sciences University MEDLINE abstracts

(OHSUMED) [HBLH94]. In addition, two medical semantic structures are used.

They are the Unified Medical Language System (UMLS) [SHB97] Semantic Net

work and the Medical Subject Heading (MeSH) [NBB+00]. Each of those semantic

structures is applied separately to produce two different enhanced search indices.

This thesis is organized as follows: Chapter 2 reviews how LSI and the new



KELSI vector space models are constructed. Chapter 3 discusses query-matching

methods that exploit these enhanced vector space models. Chapter 4 evaluates

the incremental performance gain from KELSI versus the original LSI method,

and a summary with concluding remarks is provided in Chapter 5.



Chapter 2

Building KELSI Search Indices

This chapter begins with a brief overview of the LSI vector space model. The

OHSUMED collection and two semantic structures (UMLS Semantic Network and

MeSH headings) are introduced, and methods for building KELSI search indices

are discussed.

2.1 LSI Overview

KELSI search indices are built by incorporating semantic structures (UMLS Se

mantic Network or MeSH headings) into the original LSI vector space model.

Before discussing how KELSI search indices are constructed, it may be helpful

to briefly review how the original LSI vector space model is constructed. First,

a term-by-document matrix A = [aij] is generated by parsing the document col

lection. Each matrix entry aij is a weighted representation of the occurrence of a



word token within a document. For example,

^ij — hj9i^ji (2*^)

where kj is the local weight for the term i in document j, gi is the global weight

for the term i in the collection, and dj is a document normalization factor which

specifies whether or not the columns of A (i.e., the documents) are normalized

[BB99]. The matrix A can be large and rather sparse^. The text parser also cre

ates a dictionary of word tokens and their corresponding global weights. For this

study, logarithmic local and global entropy weightings are used. For a detailed

discussion of different term weighting schemes, see [BB99]. To model the latent

structure of term-document associations represented by the term-by-document

matrix A, a reduced-rank approximation to the matrix A is computed via the

truncated Singular Value Decomposition (SVD) [GL96]. The optimal dimension

of the reduced-rank approximation to A is still an open research question. For this

study, 100 dimensions are used. Document parsing and SVD computations are im

plemented using the General Text Parser (GTP) software environment [HTBMOO].

The SVD of the original term-by-document matrix can be written as [GL96]

A = UEV^, (2.2)

^Relatively few nonzero elements compared to zero elements.



where A is the mxn term-by-document matrix, C/ is an m x m orthogonal matrix

whose columns define the left singular vectors of A; V is an nxn orthogonal matrix

whose columns define the right singular yectors of A; and E,is the mxn diagonal

matrix containing the nonnegative singular values cti > ai > ... > (7min{m,n)

of A in descending order along its diagonal. The fc-dimensional reduced-rank

approximation of A, denoted by A^, is constructed by setting all but the A:-largest

singular values of A equal to zero so that

At = UAV^, (2.3)

where [4 and Vk comprise the first k columns of U and V, and contains the k-

largest singular values of A. Using the components of A^, all terms and documents

can be encoded as vectors in the /^-dimensional space. For example, the j-fh

term and document vectors can be encoded as tj = EkUjej and dj = EkV^Cj,

respectively, where ej denotes the j-th canonical vector of dimension n.

Query processing is done by first transforming a query into a pseudo document

[BB99]. Given q, the vector whose non-zero elements correspond to the term

weights (see Equation 2.2) of all valid query words, the pseudo document q can

be represented by

g = (2.4)
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Figure 2.1: LSI flow chart

Thus, g is a A:-dimensional vector spanned by Ak. This vector is then compared

(via cosine calculations) with document or term encodings (also A:-dimensional

vectors) to generate ranked lists of similar documents or terms. Figure 2.1 is an

illustration of the LSI query-matching process.

Semantic structures (UMLS Semantic Network or MeSH headings) can be

added as either rows or columns into the original term-by-document matrix -

whichever is more convenient. In either case, the newly added rows or columns

are transformed to vectors in the reduced-rank space.



2.2 Overview of OHSUMED, UMLS, and MeSH

2.2.1 OHSUMED Collection

The OHSUM-ED collection was created to assist medical information retrieval. It

contains 348,566 abstracts from 270 medical journals dating from 1987 to 1991

[HBLH94]. A sample-entry of the OHSUMED collection appears in Appendix

A.l.

In addition to the abstracts, OHSUMED also provides 106 test queries. As

sociated with each query is a list of documents that are judged to be relevant.

Those relevance judgments are used to evaluate KELSI search performance.

2.2.2 UMLS Semantic Network

UMLS is a system of knowledge sources currently under development by the Na

tional Library of Medicine [SHB97]. It has three main components; the Semantic

Network, the Metathesaurus, and the SPECIALIST Lexicon.

The UMLS Semantic Network is one of the semantic structures that this study

will consider. It contains 134 nodes, where each node represents a knowledge

category in the medical domain. The nodes are organized into a tree structure,

and each node is populated by a number of concepts. A concept (comprised

of one or more word tokens) is the basic unit of knowledge in UMLS. There are

approximately 730,000 concepts in UMLS. The mapping between a concept and its



constituent word tokens is defined by an ASCII relational table - MRXNS.ENG

- in the Metathesaurus. Another Metathesaurus table - MRSTY - maps each

concept into a Semantic Network tree node.

2.2.3 MeSH Headings

MeSH is the other semantic structure for consideration. It is a controlled vocab

ulary created by the National Library of Medicine [NBB+00]. It contains 19,942

headings and is used for indexing and cataloging articles and books related to

medicine. Each MeSH heading has a description file. The ENTRY field of the

description file tracks synonyms and alternate spellings, and allows MeSH to func

tion as a thesaurus. A sample MeSH description entry appears in Appendix A.3.

In addition to providing descriptions, MeSH also defines the hierarchical re

lationships between headings. MeSH has 15 top level trees (Appendix A.4) and

MeSH headings are assigned to those trees. Such MeSH headings, which are as

signed by experienced human indexers, are specified in the .M fields of the entries

in the OHSUMED collection.

Having introduced the document collection and the two pre-existing semantic

structures (UMLS and MeSH), the subsequent sections discuss how to use those

structures are used to construct the KELSI search indices.



2.3 General Approach for Adding Semantic Structures

The semantic structures generated from the UMLS Semantic Network are added

as columns to the original term-by-document matrix A. As mentioned earlier, the

Semantic Network is based on UMLS concepts. As these concepts may or may not

be represented by the given document collection, their presence must be inferred

from terms contained in the dictionary. In this case, the number of term vectors

remain the same while concept vectors are added as columns (documents). If C

denotes the new concept vectors constructed from the UMLS Semantic Network,

then the augmented term-by-document matrix Aumls can be expressed as

Aumls = (•^|C')- (2.5)

In comparison, the semantic structures related to MeSH headings are added as

rows (or terms) to the original term-by-document matrix A. The MeSH headings

are defined in the .M fields of the document collection, and they are extracted

(during document parsing) as special tokens or phrases for the term-by-document

matrix. If M denotes the row vectors associated with all parsed MeSH headings,

then the augmented term-by-document matrix AmbSH can be expressed as

AmbSH = [j^] ■ (2.6)

10



Having seen how the original LSI vector space model can be constructed and

modified by the addition of new semantic structures, the next section discusses

the inclusion of UMLS concepts and MeSH headings in more detail.

2.4 Adding UMLS Concept Vectors

Adding Semantic Network tree nodes to the original term-by-document matrix
0

involves the following steps:

1. Map OHSUMED dictionary terms (created by GTP) to UMLS concepts.

2. Map those concepts into UMLS Semantic Network tree nodes.

3. Add Semantic Network nodes to the term-by-document matrix.

2.4.1 Mapping dictionary terms to UMLS concepts

Mapping OHSUMED dictionary terms to UMLS concepts requires two steps.

1. The entries of MRXNS.ENG are used to build a word-to-concept hash table.

MRXNS.ENG is one of the ASCII relational tables in the Metathesaurus.

Its key field is called the Concept Unique Identifier (GUI). MRXNS.ENG

relates each GUI to a set of constituent word tokens. A sample entry of

MRXNS.ENG is

ENGI compound drug iron poison IC0412842IL07931741S09921601.

11



Here, ENG stands for English language entries; compound drug iron poison

are the constituent word tokens for this concept; C0412842 is the GUI for this

concept, and the remaining two fields are called Term Unique Identifier and

String Unique Identifier, respectively. The key field of the word-to-concept

hash table entry is a word token and the value field contains all related GUI's

and word counts for each GUI.

2. For each OHSUMED dictionary word, the corresponding entry is selected

from the word-to-concept hash table that is keyed on the word. The value

field is then used to build a new hash table called holding. This new hash

table's key field is the GUI, and its value field contains the number of terms

in the GUI and the number of hits on those terms from the dictionary. When

the hit-count matches the number of terms in the GUI, that GUI is placed

into the accept file. When the dictionary is exhausted, the entries remaining

in the holding area can be accepted or rejected based on a user-specified

threshold. For this study, a concept is accepted if all of its constituent word

tokens appear in the dictionary. The number of matched concepts can be

certainly increased by relaxing this constraint.

12



2.4.2 Mapping the accepted concepts into UMLS Semantic Network

tree nodes

The UMLS Semantic Network defines a tree structure with 134 nodes. UMLS

concepts are mapped into tree nodes through the Metathesaurus table MRSTY.

A sample entry of MRSTY is

C0029122lT116|Amino Acid, Peptide, or Protein|.

Here, C0029122 is the GUI, T116 is the UMLS Semantic Network tree node iden

tifier, and Amino Acid, Peptide, or Protein is the tree node name.

Using the acceptance threshold mentioned earlier, 238,160 concepts can be

extracted from the document collection. To investigate properties of the Semantic

Network, all accepted concepts are mapped into the tree nodes. The distribution

of concepts among the tree nodes can vary a great deal (Figure 2.2). For example,

the node professional society contains 14 concepts, whereas disease or syndrome

contains 22,143 concepts. MRXNS.ENG reveals that a concept has on average five

terms. When the concepts within each node are expanded to individual terms, the

resulting concept vectors can be rather dense (spanning many dictionary terms).

2.4.3 Add Semantic Network nodes to term-by-document matrix

Having mapped the accepted concepts into UMLS Semantic Network tree nodes,

the concepts in each node are expanded back into word tokens - using a concept-to-

13



25000

20000

a 15000

10000

z

5000

0  10 20 30 40 50 60 70 80 90 100 110 120 130

UMLS Semantic Network Tree Nodes

Figure 2.2: Distribution of concepts among the UMLS Semantic Network tree nodes.

word hash table constructed from MRXNS.ENG. At this point, UMLS Semantic

Network nodes (each comprised by a set of word tokens) can be appended to the

term-by-document matrix as columns vectors. The non-zero elements of these vec

tors (referred to as UMLS concept vectors) are simply the global weights for each

word token in the dictionary. A reduced-rank approximation to the augmented

term-by-document matrix (Equation 2.5) is then computed using the truncated

14



SVD.

2.5 Adding MeSH Vectors

Compared to the UMLS concept vectors, it is relatively simple to add MeSH

headings into the original term-by-document matrix. Since the .M fields (Ap

pendix A, Table A.l) of the OHSUMED documents contain the MeSH headings

assigned to a document, they can be extracted during parsing using a special fil

ter. With this new filter, 13,853 out of a total of 19,942 possible MeSH headings

can be extracted from the OHSUMED collection. The words in each heading

are concatenated into a single string, that can be added to the dictionary. A

new row vector is then generated for the term-by-document matrix. During all

subsequent encounters, MeSH headings are similarly concatenated to ensure con

sistency. The newly added row vectors will be referred to as MeSH vectors. The

augmented term-by-document matrix (Equation 2.6) is then decomposed for the

reduced-rank vector space model using the truncated SVD.

15



Chapter 3

Query-Matching Methods for

KELSI

After the UMLS concept vectors and MeSH headings are incorporated into an LSI

model, the question becomes how can they be used to enhance query performance?

There are two possibilities:

1. Replace the original query vectors generated by the LSI model with the

newly added vectors, i.e., using them as proxies.

2. Modify the original LSI query vectors by aligning (or projecting) them to

ward the newly added vectors, i.e., using them as guides.

To see whether the new vectors can serve as proxies, their proximity to the

relevant documents within the reduced rank space needs to be investigated. For

16



each query, the OHSUMED collection provides a set of relevant documents. The

centroid vector for each set of relevant documents is calculated using document

vectors encoded (via the SVD) for 100-dimensional space. The centroid vector of

a set of n relevant document vectors (ri, r2, .. r^) is defined as:

1 "
Centroid — — (3.1)

^ i=i

Next, the average cosine between each relevant document vector and its corre

sponding centroid is calculated. The results are shown in Table 3.1. The Relv.

Doc. field shows the number of relevant documents provided by OHSUMED for

any given query. The Avg. Cos ± Std. Dev. field shows the average cosine be

tween each relevant document vector and its corresponding centroid. A high cosine

value indicates that angles between relevant document vectors and the centroid

are relatively small, and suggests that relevant documents are tightly-clustered

around the centroid.

In order to act as a proxy, a newly added vector should be close to one of

the centroid vectors. It is also necessary that the semantic structures (UMLS

and MeSH) organize knowledge at a granularity similar to the relevant clusters

targeted by the query. Granularity is determined by how broad or narrow the

semantic structures are constructed.

17



Table 3.1: Average cosine between each relevant document and the centroid for 106
queries.

Relv. Avg. Cos Relv. Avg. Cos Relv. Avg. Cos
Docs. ^ ± Std. Dev. Docs. ± Std. Dev. Docs. ± Std. Dev.

1 24 0.871 ± 0.141 37 36 0.678 ± 0.138 73 4 0.904 ± 0.039
2 11 0.720 ± 0.113 38 7 0.848 ± 0.101 74 21 0.805 ± 0.067
3 118 0.757 ± 0.113 39 2 0.938 ± 0.030 75 30 0.719 ± 0.081
4 4 0.745 ± 0.054 40 9 0.735 ± 0.079 76 7 0.838 ± 0.031
5 18 0.792 ± 0.112 41 18 0.711 ± 0.136 77 14 0.749 ± 0.093
6 30 0.930 ± 0.038 42 14 0.918 ± 0.052 78 9 0.829 ± 0.075
7 4 0.919 ± 0.019 43 49 0.782 ± 0.068 79 37 0.605 ± 0.112
8 0 44 7 0.708 ± 0.128 80 15 0.855 ± 0.064
9 5 0.739 ± 0.237 45 4 0.844 ± 0.071 81 5 0.801 ± 0.092
10 5 0.775 ± 0.156 46 35 0.839 ± 0.079 82 45 0.819 ± 0.115
11 24 0.737 ± 0.073 47 29 0.817 ± 0.091 83 49 0.813 ± 0.095
12 3 0.932 ± 0.059 48 9 0.632 ± 0.152 84 26 0.815 ± 0.089
13 12 0.772 ± 0.097 49 0 85 1 1.000 ± 0.000
14 10 0.787 ± 0.048 50 31 0.796 ± 0.100 86 0

15 6 0.811 ± 0.076 51 4 0.667 ± 0.095 87 6 0.908 ± 0.036
16 47 0.687 ± 0.104 52 12 0.743 ± 0.155 88 50 0.874 ± 0.087

17 23 0.815 ± 0.121 53 63 0.713 ± 0.139 89 8 0.864 ± 0.068

18 15 0.841 ± 0.074 54 94 0.826 ± 0.098 90 6 0.777 ± 0.096
19 2 0.878 ± 0.076 55 24 0.719 ± 0.114 91 10 0.735 ± 0.095
20 1 1.000 ± 0.000 56 3 0.893 ± 0.039 92 6 0.924 ± 0.039
21 6 0.708 ± 0.180 57 29 0.656 ± 0.140 93 0
22 76 0.899 ± 0.058 58 83 0.883 ± 0.089 94 26 0.882 ± 0.062

23 5 0.721 ± 0.056 59 11 0.733 ± 0.135 95 13 0.764 db 0.115
24 2 0.727 ± 0.238 60 4 0.910 ± 0.028 96 24 0.726 ± 0.110
25 5 0.756 ± 0.071 61 4 0.923 ± 0.020 97 15 0.849 ± 0.050
26 19 0.719 ± 0.053 62 79 0.629 ± 0.150 98 6 0.803 ± 0.045

27 46 0.646 ± 0.092 63 47 0.709 ± 0.145 99 34 0.834 ± 0.071

28 0 64 52 0.671 ± 0.121 100 2 0.972 ± 0.008
29 28 0.808 ± 0.066 65 32 0.732 ± 0.106 101 15 0.927 dr 0.053
30 11 0.821 ± 0.082 66 6 0.662 ± 0.172 102 14 0.795 ± 0.126
31 13 0.848 ± 0.071 67 96 0.783 ± 0.098 103 15 0.770 di 0.056
32 18 0.727 db 0.119 68 7 0.779 ± 0.144 104 3 0.890 ± 0.039
33 26 0.892 ± 0.080 69 39 0.762 ± 0.100 105 12 0.760 di 0.092
34 14 0.824 ± 0.064 70 8 0.835 ± 0.052 106 49 0.782 ± 0.069
35 63 0.751 ± 0.096 71 6 0.813 ± 0.069

36 1 1.000 ± 0.000 72 27 0.813 ± 0.155

18



3.1 KELSI with UMLS Semantic Network

3.1.1 Query Replacement

Concept vectors (ct) built from the UMLS semantic network can be added as

columns to the original term-by-document matrix, To see if they can serve as prox

ies, the concept vectors are matched against the centroid vectors (corresponding

to the sets of relevant documents).

For each query, the concept vector that is the best match to its centroid vector

is selected. If the concept vectors can serve as proxies, the best-matched concept

vector should be close to the centroid and should return good results when used

for query replacement.

The LSI-b-b software environment [LB97] is used to match queries and gener

ate ranked returns. Specifically, a query is initially transformed into a vector in

the reduced-dimensional space, and then matched against all document vectors

to generate a ranked list of documents. This ranking is determined by the co

sine between query and the document vectors. After obtaining a ranked list of

documents, a series of post-processing scripts are used to compare, the ranked list

against the relevant documents for that particular query, calculate precision-recall

values, tabulate and graph results.

Search results can be represented in either graphical or tabular formats. The

graphical format is comprised of interpolated precision-recall plots [BYRN99].
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Specifically, the interpolated precision values at eleven standard recall points (0.0,

0.1, 0.2, ..., 1.0) are plotted. These interpolated precision values are based on the

pseudo-precision (P) [BB99]:

P = max Pi, where x < , and i = 1,2,..., n,
Tn

where ri denotes the number of relevant documents up to and including position

i in the ordered returned list of documents, and Pi is the precision at the z-th

document. Pi is defined to be the proportion of documents up to and including

position i that are relevant to the given query. The 11-point average precision

values (P) are calculated by taking an average of P at the standard recall points

with n ' 11;

2 n—1

P = -T,P
"Si Vn-1

P values are considered as concise representations of their corresponding interpo

lated precision-recall graphs. The tabular format is simply a listing of 11-point

. average precision values obtained from KELSI versus that obtained from the orig

inal LSI method.

As a primary goal of this study is to use external semantic structures for

enhancing query performance, overall performance gain is measured for a baseline

of precision-recall data obtained from the original LSI method. In all graphs
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presented, the results from the original LSI method are represented by dashed

lines and results from KELSI are represented by solid lines. For any query, if the

P value from KELSI is larger than that from the baseline, its corresponding graph

is shaded. For visible improvements, only those queries with Pkelsi > -01 are

shaded.

The precision-recall graphs for this round of searching are presented in Figure

B.l in Appendix B. There is not a single shaded graph in that figure - indicating

that the method of query replacement is very inefficient. The reason for this can be

attributed to the fact that the UMLS Semantic Network has only 134 nodes. They

often represent broad categories. For example, both query 5 (effectiveness of

etidronate in treating hypercalcemia of malignancy) and query 88 (lung

cancer, radiation therapy) are mapped to the concept vector Fully Formed

Anatomical Structure.

3.1.2 Adding Concept Vectors

The ineffectiveness of concept vectors to act as proxies does not preclude them

from redirecting the query vector toward the cluster of relevant documents. In

this case, they are used as guides by incoming queries. The investigation precedes

as follows: first, find the best matched concept vectors (cv), and modify the query

vector (^ as:
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Qadd = g + CT. (3.2)

The effect of the inodification is to redirect the query vector in the direction

of the concept vector. Next, the modified query is used to carry out the search.

Results are displayed in Figure B.2 in Appendix B. Here, there are only 134

concept vectors and they have on average 1,804 words. In contrast, the queries

have on average only 7 words. So, the concept vector tends to dominate the

direction of qadd and it effectively amounts to query replacement in most cases.

Recall that query replacement has not performed well.

3.1.3 Adding Projections

Having seen that query modification by concept vector addition does not perform

well, reducing the effect of query modification might be desirable. Instead of

adding the entire concept vector, only the projection of the query vector onto the

concept vector {projcv) could be added to the original query. In other words,

-T -
CV Q

Qproj g T pfoji^ g — g T _ g* (^■^)
CV CV

This still redirects the query vector in the direction of concept vector but the

query modification is much more modest. Again, the modified queries are used to

search the collection.
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The results of this round of searching is presented in Figure 3.1. There is

noticeable improvement for some queries (illustrated by shaded precision-recall

graphs). Performance comparisons for the three approaches considered (based on

P values) will be covered later in this chapter.

3.2 KELSI with MeSH Headings

As discussed in Section 2.5, adding MeSH headings introduces an additional 13,853

row vectors into the original term-by-document matrix. Again, the centroids (see

Equation 3.1) are used to determine how well the MeSH headings can serve as

proxies for the original queries. The centroids are used to extract the best-matched

MeSH vectors, which are then used as query replacements. Search results are pre

sented in Figure 3.2. The centroids returned better results (in terms of P values)

in 63 'out of 106 queries. Visual inspection of the figure reveals that significant

improvements in precision are achieved for many queries (detailed analysis is de

ferred until later). This set of results demonstrates that MeSH vectors can be

highly effective when used as search proxies.

The centroid approach involves working backward from the set of relevant

documents to establish the fact that MeSH vectors can serve as effective proxies.

So, the question becomes how can the best MeSH heading for each query be

identified without help from the centroid vectors (corresponding to the known
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relevant documents).

Three approaches are attempted:

1. Direct query approach: conduct direct query match against the 13,853 newly

added row vectors in the MeSH enhanced search space, pick the top ranked

MeSH headings as proxies.

2. Two-step approach: In Step 1, construct a-small term-by-heading matrix S

using the MeSH definition, files presented in Chapter 2. The best-matched

MeSH headings are then selected by matching queries against a low-rank

approximation (Sk) to matrix S using LSI. In' Step 2, use those heading to

search the larger MeSH enhanced term-by-document matrix.

3. Regular expression approach: utilize the thesaurus property of the MeSH

headings to extract MeSH headings directly from the query string using

regular expression match.

3.2.1 Direct Query Match

In the first approach, the search space has already been constructed and queries

are fixed. There is very little flexibility. The precision-recall graphs (Figure C.l

in Appendix C) show that finding the best MeSH vector by direct query matching

is not very effective. Again, specific performance comparisons are deferred to the

end of this chapter.
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3.2.2 Two-step Approach

Results from two-step approach are shown in Figure C.2 in Appendix C. Those

results indicate that this approach yields very little improvement. The description

fields of MeSH headings are used to construct the smaller term-by-heading matrix.

Those fields are usually short (33 words on average). With limited scope for term

co-occurrence, and concept specificity. LSI does not perform well in this particular

case [Kow97].

3.2.3 Regular Expression Match

The third approach utilizes the thesaurus property of the MeSH Headings. The

ENTRY fields (see Table A.3 in Appendix A) in the MeSH description maps alter

nate spellings and synonyms into a MeSH heading. Regular expression matching

can be used to extract these headings within query strings.

It is possible that more than one MeSH heading can be extracted from a single

query. In those cases,~ the MeSH tree structure is used to select the one with the

smallest granularity, i.e., furthest from the root. For this purpose, each heading is

associated with a number indicating how many levels removed it is from the top.

The heading with the largest number is selected. In case of ties, the first one gets

selected. In addition, headings from the top two levels are rejected as they are

typically very broad (or abstract). Abstract concepts, as shown earlier in UMLS

semantic nodes, often perform poorly as proxies. Finally, there is a stop-list of 25
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very broad MeSH headings that include disease, syndrome, and pain etc. Those

are general concepts that are located outside of the top two levels of MeSH tree.

To illustrate this approach using an example, consider query 37:

Fibromyalgia/fibrositis, diagnosis and treatment.

Regular expression match extracted the following MeSH headings (Table 3.2):

Table 3.2: MeSH regular expression match for query 37

Query Word(s) -)• MeSH Heading MeSH Tree ID Distance to Root
diagnosis —)• diagnosis ^ EOl 1
fibromyalgia fibromyalgia ClO 4
fibrositis fibromyalgia ClO 4
treatment —)• therapeutics EQ2 1

The MeSH heading the furthest from the root is fibromyalgia. It appears in the

MeSH tree ClO (see Table 3.3).

Following the methods mentioned above, MeSH headings are found for 89 out

of the 106 possible queries. Fourteen of them match the best MeSH headings se

lected by the centroids. All 89 are used as proxies for their respective queries and

the search results are displayed in Figure 3.3. Queries for which the MeSH en

hanced method did better (i.e., higher P values were obtained) are lightly shaded.

Queries for which the MeSH headings based on regular expression matching per

formed the same as the version based on centroid matching are denoted by a

darker shade.
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Table 3.3: Location of Fihromyalgia within the MeSH tree ClO.

Nervous System Diseases [ClO]
.. Neuromuscular Diseases [ClO.668]
.... Muscular Diseases [ClO.668.491]

, Muscular Disorders, Atrophic [ClO.668.491.175] +
Eosinophilia-Myalgia Syndrome [ClO.668.491.387]
Fibromyalgia [ClO.668.491.425]
Mitochondria! Myopathies [ClO.668.491.500] +
Myopathies, Structural, Congenital [ClO.668.491.550] +
Myositis [CIO.668.491.562] +
Myotonic Disorders [Cl0.668.49T.-606] +
Paralyses, Familial Periodic [ClO.668.491.650]

3.3 Performance Comparison

The performance of KELSI with three approaches for exploiting UMLS concept

vectors and three approaches for including MeSH headings has been studied. All

approachs are evaluated on a query-by-query basis, the 11-point average precision

values from the new methods against those from the original LSI. Such a crude

comparison would give a first-order indication of how effective the new methods

are.

As illustrated in Table 3.4, the vector projection approach returns the best

results for KELSI with UMLS concept vectors. At the same time, the regular ex

pression match approach returns the best results for KELSI with MeSH headings.

Subsequent analysis will focus on those two approaches.
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Table 3.4: Performance comparison for UMLS concept vectors and MeSH headings

Versions of Queries with
KELSI irhprovement over LSI
Queries (Out of 106 Queries)

UMLS

Query Replacement 0

Add Concept Vector 9

Add Vector Projection 44

MeSH

Direct Match 19

Two-Step Match 3

Regular Expression Match 37
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Chapter 4

Incremental Performance Gain

As discussed in the previous chapter, out of a total of 106 queries, the LSI enhance

ment based on UMLS concept vectors did better (in terms of average precision)

than the original LSI method for 44 queries. The LSI enhancement exploiting

MeSH headings did better than the original LSI method for 35 queries. Those

results cloud the prospect of using the new methods as replacements for LSI.

However, there remains the possibility that they can be used as complements to

the original LSI approach. Subsequent analysis is focused on the subset of queries

where the new methods performed better. That is, the identification of queries

which show significant improvement (in precision) for the new methods but limited
^  a

or poor retrieval by LSI.

For notational convenience, LSIumls is used to refer to results obtained from

LSI enhanced by UMLS concept vectors and LSImbSH is used for LSI enhanced
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by MeSH vectors.

4.1 Magnitude of Improvement

Table 4.1 shows the magnitude of improvement for queries that have produced

larger P values under the enhanced methods than under the original LSI method.

The magnitude of improvement is calculated as

, „ . PlUMLS\MeSH] " ̂LSIImprovement r actor — -p ;

where Pumls or PueSH is the 11-point interpolated average precision (see Chapter

3) obtained by LSI enhanced with UMLS or MeSH. Notice that at the lower end

of the improvement scale (.1 or .2), LSIumls and LSImsSH perform better than

LSI on. a comparable number of queries. However, at the upper end, LSImcSH

does noticeably better than LSIumls- For example, LSImbSH did twice as well

as LSI on 27 queries, versus 5 for LSIumls-

4.2 Incremental Performance Gain

To be an effective complement to LSI, any enhanced method should return good

results for queries where LSI does poorly, i.e., there should be some incremental

performance gain. One way to evaluate this performance gain is from the user's
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Table 4.1: Magnitude of improvement for new methods which performed better.

Improvement LSIumls Better LSImbSH Better
Factor (No. of Queries) (No. of Queries)

.1 36 n  34

.2 27 32

.3 20 31

.4 16 29

.5 12 29

1 5 27

10 0 13

100 0 8

perspective. Here, the user specifies a threshold of relevance based on an 11-point

average precision (P) value, and the original LSI method is then evaluated at

each threshold level. For all 106 queries, the queries that meet the threshold are

accepted and all others are collected into a rejected pool. Next, the user examines

results of LSIumls and LSlMeSH for queries in the rejected pool. Queries that

meet the threshold are accepted and signify an incremental performance gain.

The thresholds selected for this analysis are: .30, .20, .10, .05, and .01. Ta

bles 4.2 and 4.3 show two examples of a ranked list of relevant documents from

LSImcSH that correspond to the low and high ends of the threshold scale: query

15 with P = .0125 and query 95 with P = .3285. Document ID is the unique

OHSUMED ID of a relevant document. Rank denotes the position of those rele

vant documents in the ranked list returned by query matching.

Table 4.4 shows the incremental,performance gain obtained for the LSIumls
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Table 4.2: Ranked return set for query 15: P = .0125

Document ID Rank

86570 30

300573 127

207730 241

321704 1024

140596 1408

238356 3803

Table 4.3: Ranked return set for query 95: P = .3285

Document ID Rank

3343 1

62473 2

81232 5

12873 6

119850 10

99052 34

54393 157

278133 351

36726 697

265924 839

181481 960

162561 1736

266317 2124
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Table 4.4: Incremental performance gain from LSIumls and LSImbSH ~ number of
queries accepted for each threshold.

User Specified
Threshold (P) LSI Accept

Out of LSI Reject Pool
LSIumls Accept LSImbSH Accept

.30 2 1 2

.20 8 1 3

.10 17 . 6 5

.05 30 4 13

.01 53 1 15

and LSImbSH methods. The number of queries accepted by the original LSI

method is shown first, followed by the number of queries accepted out of the

rejected pool by LSIumls and LSImbSh- The number of acceptable queries for

the original LSI method is cumulative, whereas the number of queries accepted

by the enhanced methods are not - the rejected pool shrinks as the threshold is

progressively lowered.

Table 4.5 shows the detailed breakdown (by threshold) of queries accepted

by LSIumls out of the rejected pool. Similarly, Table 4.6 shows the detailed

breakdown (by threshold) of queries accepted by LSImbSh out of the rejected pool.

Comparing those two tables, there are striking differences in both magnitude of

improvement and in number of queries accepted. At its best, LSIumls delivered

improvement over original LSI by a factor of 3.92 - a value that was exceeded

26 times in LSImsSh- In addition, summing up across all thresholds, LSIumls

picked up 13 additional queries, whereas LSImbSH picked up 38.
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Table 4.5: Incremental performance gain for LSIumls-

Threshold Query Number Plsi PuMLS Factor

0.3 54 0.2684 0.3081 0.15

0.2 48 0.1894 0.2134 0.13

-  0.1 43 0.0261 0.1285 3.92

0.1 50 0.0754 0.1247 0.65

0.1 58 0.0876 0.1054 0.20

0.1 60 0.0995 0.1627 0.63

0.1 67 0.0590 0.1378 1.34

0.1 . 99 0.0424 0.1357 2.20

0.05 43 0.0261 0.1285 3.92

0.05 47 0.0485 0.0610 0.26

0.05 57 0.0114 0.0539 3.71

0.05 99 0.0424 0.1357 2.20

0.01 37 0.0065 0.0100 0.53

These results indicate that LSImbSH is far superior than LSIumls when it

comes to delivering incremental performance gain over original LSI. Here are a few

examples that demonstrate the improvement in precision achieved by LSlMeSH-

Query 64: prevention, risk factors, pathophysiology of hypothermia

LSImbSH replaced this query with the MeSH heading hypothermia. The resulting

P = .2290, versus P = .0007 for the original LSI method — a 320-fold improvement,

(see Table 4.6). In this case, the query reflects a single concept, hypothermia, and

it is mapped to the corresponding MeSH heading.

Query 55: course of anticoagulation with coumadin

LSI MeSH replace this query by the MeSH heading warfarin and improved the
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Table 4.6: Incremental performance,gain for LSlMeSH-

Threshold Query Number Plsi PmsSH Factor

0.3 54 0.2684 0.3024 0.13

0.3 95 0.1703 0.3285 0.93

-  0.2 46 0.0821, 0.2724 2.32

0.2 64 0.0007 0.2290 320.80

0.2 95 0.1703 0.3285 0.93

0.1 16 0.0388 0.1234 2.18

0.1 46 0.0821 0.2724 2.32

0.1 55 0.0248 0.1382 4.58

0.1 64 0.0007 0.2290 320.80

0.1 99 0.0424 0.1071 1.52

0.05 16 0.0388 0.1234 2.18

0.05 26 0.0011 0.0581 50.58

0.05 37 0.0065 0.0659 9.09

0.05 43 0.0261 0.0603 1.31

0.05 45 0.0065 0.0643 8.92

0.05 53 0.0120 0.0760 5.33

0.05 55 0.0248 0.1382 4.58

0.05 62 0.0005 0.0921 188.63

0.05 64 0.0007 0.2290 320.80

0.05 69 0.0019 0.0766 39.43

0.05 72 0.0017 0.0950 54.32

0.05 99 0.0424 0.1071 1.52

0.05 102 0.0007 0.0859 124.05

0.01 15 0.0001 0.0125 120.43

0.01 17 0.0003 0.0445 163.34

0.01 25 0.0001 0.0398 355.60

0.01 26 0.0011 0.0581 50.58

0.01 29 0.0044 0.0161 2.68

0.01 37 0.0065 0.0659 9.09

0.01 41 0.0010 0.0109 9.61

0.01 42 0.0002 0.0479 282.46

0.01 45 0.0065 0.0643 8.92

0.01 52 0.0036 0.0100 1.80

0.01 62 0.0005 0.0921 188.63

0.01 64 0.0007 0.2290 320.80

0.01 69 0.0019 0.0766 39.43

0.01 72 0.0017 0.0950 54.32

0.01 102 0.0007 0.0859 124.05
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average precision by a factor of 4.58 (P = .1382, versus P = .0248 over the

original LSI method). In this case, the thesaurus property (see Chapter 3 Section

3.2.3) of MeSH is utilized to map coumadin directly to warfarin.

Query 71: cystic fibrosis and renal failure, effect of long term

repeated use of aminoglycosides

Regular expression matching produced the following replacements: (values shown

are distances to the tree root, see Section 3.2.3)

aminoglycosides —> aminoglycosides 4

cystic fibrosis —> cystic fibrosis 3

renal failure —> kidney failure 4

Here the situation becomes murkier. The query involves several interrelated con

cepts,' but only one is selected for query replacement (by design). LSImbSH uses

the MeSH heading farthest from the root, so the choice is between aminoglyco

sides and kidney failure. Aminoglycosides is arbitrarily chosen. This results in

P = 0.0054 versus P = 0.0004 for the original LSI method, hence, a 12-fold

improvement. Still this query cannot make even the lowest threshold.
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Chapter 5

Summary and Conclusions

In summary, KELSI search indices are built by augmenting a term-by-document

matrix-with vectors constructed from UMLS semantic network and MeSH head

ings. During query matching, original queries are either modified, as in the case

of UMLS concept vector, or replaced as in the case of MeSH headings. Results

based on precision-recall graphs and P values show that LSlMeSH is superior to

LSIumls with respect to incremental performance gains over the original LSI

model. For P=.30, LSImbSH delivered 100% (2/2) incremental improvement over

the original LSI versus 50% (1/2) for LSIumls- For P=.01, LSImbSH delivered

28% (15/53) incremental improvement over the original LSI. versus .19% (1/53)

for LSIumls (Table 4.4). The effectiveness oi LSlMeSH can be attributed to three

factors:

1. Concepts within documents from the OHSUMED collection are unambigu-
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ously identified by MeSH headings. This simplifies the process of incorpo

rating semantic structures into an existing LSI model (Section 2.5).

2. MeSH headings organize or categorize information in granularities similar to

that targeted by the queries. This is certainly necessary for query replace

ment to be effective (Figure 3.2).

3. The thesaurus functionality of MeSH headings is instrumental in mapping

query text into MeSH headings through regular expression matching. The

tree structure of MeSH headings is especially helpful for narrowing the scope

of a query, i.e., traversing the hierarchy to find the most specific heading

(Section 3.2.3).

In. contrast, the UMLS semantic tree categorizes knowledge at more abstract

levels. In addition, there is no explicit information (metadata) within OHSUMED

documents that identify UMLS concepts, and to identify them externally involves

cumbersome mappings (Section 2.4).

It is possible that the incremental performance gains from LSImbSh can be

delivered for a relatively small computation cost during query matching. This can

be done by matching each MeSH heading against the search index a priori and

caching the results. Later, when an user's query is entered, cached results could

be returned as soon as a query replacement is found.
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As shown in Figure 3.2, LSImsSH is capable of delivering much better incre

mental performance gains over the original LSI model. Finding the best possible

MeSH headings for query modification is the challenge. The regular expression

approach used in this study is straightforward and effective but it does leave plenty

of room for improvement.

For this study, it is very fortunate that the MeSH headings happen to orga

nize information at granularities similar to that targeted by the queries. It is

even more fortunate that OHSUMED documents are directly linked to the MeSH

headings. KELSI's application will be very limited if its effectiveness hinges on

such good fortunes. The two main factors that can potentially limit KELSI's

general application are: the requirement of an external semantic structure that

organizes information at granularities similar to that targeted by user queries, and

direct linkage (perhaps by metadata) between the documents and that semantic

structure.

The emerging web standard - Extensible Markup Language (XML) [BPSMMOO]

- holds immense promise for clearing these hurdles. XML documents can explic

itly identify themselves to external semantic structures through semantic markup

tags. Those tags are defined in external semantic structures such as the Document

Type Definition (DTD) [BPSMMOO] or some other framework. Should a DTD be

designed with user queries in mind, it may be possible to use them as external

semantic structures in KELSI to improve search performance.
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In conclusion, this study has shown that external semantic structures can be

incorporated into the original LSI model to produce enhanced search indices.

Query modification and query replacement methods can then be applied during

query matching to exploit the enhanced search indices. In the case of LSImsSH,

noticeable incremental performance gains over the original LSI were achieved.
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Appendix A

Sample Entries from OHSUMED

and MeSH

Sample entries from the OHSUMED collection and MeSH headings are included in this

section.

1. Table A.l shows a sample entry from the OHSUMED collection.

2. Table A.2 is a list of data fields for the OHSUMED collection.

3. Table A.3 is a sample entry from the MeSH heading description file.

4. Table A.4 is a list of top-level MeSH trees.
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Table A.l: A sample entry from the OHSUMED collection.

.1

125536

•U

89315773

•S

Proc Natl Acad Sci U S A 8910; 86(14) :5242-6
•M

Amino Acid Sequence; Animal; Argipressin/GE; Base Sequenc e; Cloning,
Molecular/*; Comparative Study; DNA/*CE; DNA Polymerases; Fishes/*CE;
Cene Amplification; Cenes, Structural; Human; Molecular Sequence Data;
Oxytocin/*AA/CE; Protein Precursors/*CE; Sequence Homology,
Nucleic Acid; S upport, Non-U.S. Cov't; Vasotocin/*CE.
.T

Vasotocin and isotocin precursors from the white sucker, Catostomus
commersoni: cloning and sequence analysis of the cDNAs.
.P

JOURNAL ARTICLE.

.W

The nucleotide sequences of cloned cDNAs encoding the pre cursors
for vasotocin and isotocin have been elucidated by analyzing a lambda
gtll library constructed from poly(A)+ RNA from the hypothalamic region
of the teleost fish Catostomus commersoni. Screening of the library was
carried out with synthetic oligonucleotide probes deduced from the amino
acid sequences of the nonapeptides vasotocin and isotocin. The cDNA
nucleotide sequences predict isotocin and vasotocin prohormone precursors
each consisting of a signal peptide, a hormone moiety, and a
neurophysin-like molecule. However, in comparison to their mammalian
counterparts, both fish neurophysins are extended at their C termini
by an approximately 30 amino acid sequence with a leucine-rich core
segment. These extensions show striking similarities with the glycopeptide
moiety (the so-called copeptin) present in mammalian vasopressin precursors,
except that they lack the consensus sequence for N-glyco sylation. These
data suggest that mammalian copeptin is derived from the C terminus of
an ancestral neurophysin.
.A

Heierhorst J; Morley SD; Figueroa J; Krentler C; Lederis
K; Richter D.
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Table A.2: Data fields of an OHSUMED entry.

Entry Field Field Definition

.1 Unique entry ID
•U MEDLINE identifier

n.M Human-assigned MeSH terms
■T Title
.P Publication type
•W Abstract
.A Author
•S Source
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Table A.3: A sample entry from the MeSH heading description file.

*NEWRECORD

RECTYPE = D

MH = Viral Structural Proteins

AQ = AD AE AG AI AN BI BL OF CH CL OS CT DE DP DU EC GE
HI IM IP ME PD PH PK PC RE SD SE ST TO TU UL UR

ENTRY = Polypeptide VPl, Structural
ENTRY = Simian Virus 40 Virion Protein 1:

ENTRY = VP(1):T116:T123:ABB:NRW:NLM (1990):890208:abbcdef
ENTRY = VP(2):T116:T123:ABB:NRW:NLM (1990):890208:abbcdef
ENTRY = VP(3):T116:T123:ABB:NRW:NLM (1990):890208:abbcdef
ENTRY = VP(6):T116:T123:ABB:NRW:NLM (1990):890208:abbcdef
ENTRY = VP(7):T116:T123:ABB:NRW;NLM (1990):890208:abbcdef
ENTRY = Viral Structural Proteins

ENTRY = Proteins, Viral Structural
ENTRY = Structural"Polypeptide VPl
ENTRY = Structural Proteins, Viral
ENTRY = VPl, Structural Polypeptide
MN = D12.776.964.970

MH-TH = NLM (1990)
ST = T116

ST = T123

RN = 0

AN. = IM; coord with specific virus (IM); /drug effultrastruct permitted
PI = Viral Proteins (1973-1989)
MS = Viral proteins that do not regulate transcription. They are coded by viral
structural genes and include nucleocapsid core proteins (gag proteins), enzymes
(pol proteins), and membrane components (env proteins). Tran scription of viral
structural genes is regulated by viral regulatory proteins.
PM = 90

HN = 90

MED = *205

MED = 320

MR = 19950609

DA = 19890525

DC = 1

DX = 19900101

UI = D015678
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Table A.4; A list of all top-level MeSH trees with the node Chemicals and Drugs ex
panded to the next level.

1. Anatomy [A]
2. Organisms [B]
3. Diseases [C]
4. Chemicals and Drugs [D]

Inorganic Chemicals [DOl] -|-
Organic Chemicals [D02] -t-
Heterocyclic Compounds [DOS] -f-
Polycyclic Hydrocarbons [D04] -f-
Environmental Pollutants, Noxae, and Pesticides [DOS] +
Hormones, Hormone Substitutes, and Hormone Antagonists [D06] +
Reproductive Control Agents [D07] 4-
Enzymes, Coenzymes, and Enzyme Inhibitors [DOS] -|-
Carbohydrates and Hypoglycemic Agents [D09] -f
Lipids and Antilipemic Agents [DIO] -|-
Growth Substances, Pigments, and Vitamins [Dll] -|-
Amino Acids, Peptides, and Proteins [D12] 4-
Nucleic Acids, Nucleotides, and Nucleosides [D13] 4-
Neurotransmitters and Neurotransmitter Agents [D14] 4-
Central Nervous System Agents [D15] 4-
Peripheral Nervous System Agents [D16] 4-
Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation

Mediators [D17] 4-
Cardiovascular Agents [D18] 4-
Hematologic, Gastrointestinal, and Renal Agents [D19] 4-
Anti-Infective Agents [D20] 4-
Anti-Allergic and Respiratory System Agents [D21] 4-
Antineoplastic and Immunosuppressive Agents [D22] 4-
Five more ...

5. Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
6. Psychiatry and Psychology [F]
7. Biological Sciences [C]
8. Physical Sciences [H]
9. Anthropology, Education, Sociology and Social Phenomena [I]
10. Technology and Food and Beverages [J]
11. Humanities [K]
12. Information Science [L]
13. Persons [M]
14. Health Care [N]
15. Geographic Locations [Z]
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Appendix B

Results of Query Matching Using

UMLS Concept Vectors

Results of query matching in Chapter 3, Section 3.1 are presented here. They include:

1. Precision-recall graphs for cu query replacement versus the original LSI method.

2. Table of Pcv query replacement verSUS JPjJSI'

3. Precision-recall graphs for qadd versus the original LSI method.

4. Table of versus Plsi-

5. Table of Pq^~^. versus Plsi-
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Table B.l; cv query replacement versus original LSI: P values.

Query Plsi Pkelsi Query Plsi Pkelsi Query n Plsi Pkelsi
1 0.0863 0.0002 37 0.0065 0.0002 73 0.0567 0.0001

2 0.2657 0.0001 38 0.0033 0.0000 74 0.1388 0.0002

3 0.0714 0.0004 39 0.0303 0.0000 75 0.0280 0.0001

4 0.0001 0.0000 40 0.0081 0.0000 76 0.0318 0.0000

5 0.0557 0.0001 41 0.0010 0.0001 ,  77 0.2584 0.0002

6 0.1007 0.0008 42 0.0002 0.0000 78 0.0073 0.0000

7 0.0010 0.0000 43 0.0261 0.0003 79 0.0007 0.0005

8 0.0000 0.0000 44 0.0007 0.0000 80 0.0025 0.0000

9 0.0002 0.0001 45 0.0065 0.0002 81 0.0143 0.0001

10 0.2734 0.0000 46 0.0821 0.0003 82 0.1001 0.0010

11 0.0046 0.0001 47 0.0485 0.0001 83 0.0847 0.0002

12 0.0000 0.0000 48 0.1894 0.0002 84 0.0170 0.0001

13 0.0003 0.0000 49 0.0000 0.0000 85 0.0001 0.0000

14 0.0012 0.0002 50 0.0754 0.0001 86 0.0000 0.0000

15 0.0001 0.0000 51 0.0089 o.oooq 87 0.0167 0.0001

16 0.0388 0.0002 52 0.0036 o.ooof 88 0.1557 0.0003

17 0.0003 0.0001 53 0.0120 O.0OO2 89 0.1456 0.0000

18 0.2584 0.0007 54 0.2684 0.0007 90 0.0006 0.0000

19 0.0176 0.0000 55 0.0248 0.0001 91 0.0003 0.0001

20 0.0006 0.0000 56 0.0075 0.0000 92 0.2077 0.0002

21 0.0085 0.0000 57 0.0114 0.0001 93 0.0000 0.0000

22 0.0511 0.0002 58 0.0876 0.0002 94 0.0796 0.0001

23 0.0001 0.0000 59 0.0003 0.0002 95 0.1703 0.0000

24 0.0015 0.0001 60 0.0995 0.0001 96 0.0009 0.0007

25 0.0001 0.0001 61 0.0161 0.0000 97 0.4390 0.0000

26 0.0011 0.0003 62 0.0005 0.0002 98 0.0003 0.0000

27 0.1348 0.0002 63 0.0295 0.0001 99 0.0424 0.0001

28 0.0000 0.0000 64 0.0007 0.0002 100 0.0036 0.0000

29 0.0044 0.0009 65 0.0085 0.0002 101 0.0318 0.0001

30 0.0049 0.0003 66 0.0005 0.0001 102 0.0007 0.0000

31 0.0302 0.0000 67 0.0590 0.0003 103 0.1261 0.0001

32 0.0135 0.0039 68 0.0319 0.0000 104 0.0010 6.0001
33 0.0613 0.0002 69 0.0019 0.0013 105 0.0262 0.0001

34 0.4432 0.0000 70 0.0108 0.0001 106 0.0038 0.0004

35 0.0383 0.0002 71 0.0004 0.0001

36 0.0040 0.0000 72 0.0017 0.0001
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Table B.2: versus Plsi-

Query Plsi Pkelsi Query Plsi Pkelsi Query Plsi Pkelsi
1 0.0863 0.0001 37 0.0065 0.0001 73 0.0567 0.0002

2 0.2657 0.0000 38 0.0033 0.0003 74 0.1388 0.0001

3 0.0714 0.1338 39 0.0303 0.0011 75 0.0280 0.0003

4 0.0001 0.0000 40 0.0081 0.0001 76 0.0318 0.0310

5 0.0557 0.0001 41 0.0010 0.0001 77 0.2584 0.1812

6 0.1007 0.0001 42 0.0002 0.0002 78 0.0073 0.0001

7 0.0010 0.0002 43 0.0261 0.0007 79 0.0007 0.0005

8 0.0000 0.0000 44 0.0007 0.0006 80 0.0025 0.0000

9 0.0002 0.0000 45 0.0065 0.0022 81 ■' 0.0143 0.0142
10 0.2734 0.0000 46 0.0821 0.0001 82 0.1001 0.0002
11 0.0046 0.0048 47 0.0485 0.0001 83 . 0.0847 0.0002
12 0.0000 0.0000 48 ■'0.1894 0.0006 84 0.0170 0.0079
13 0.0003 0.0000 49 0.0000 0.0000 85 0.0001 0.0000
14 0.0012 0.0001 50 0.0754 0.0001 86 0.0000 0.0000
15 0.0001 0.0000 51 0.0089 0.0050 87 0.0167 0.0010
16 0.0388 0.0002 52. 0.0036 0.0000 88 0.1557 0.0089
17 0.0003 0.0001 53 0.0120 0.0033 89 0.1456 0.0462
18 0.2584 0.3298 54 0.2684 0.0004 90 0.0006 0.0000
19 0.0176 0.0000 55 0.0248 0.0001 91 0.0003 0.0000
20 0.0006 0.0000 ,56 0.0075 0.0029 92 0.2077 0.0229
21 0.0085 0.0002 57 0.0114 0.0001 93 0.0000 0.0000
22 0.0511 0.0069 58 0.0876 0.0029 94 0.0796 0.0006
23 0.0001 0.0001 59 0.0003 0.0000 95 0.1703 0.0001
24 0.0015 0.0000 60 0.0995 0.2954 96 0.0009 0.0008
25 0.0001 0.0000 61 0.0161 0.0141 97 0.4390 0.0000
26 0.0011 0.0001 62 0.0005 0.0003 98 0.0003 0.0001
27 0.1348 0.0005 63 0.0295 0.0002 99 0.0424 0.0003
28 0.0000 0.0000 64 0.0007 0.0009 100 0.0036 0.0000
29 0.0044 0.0023 65 0.0085 0.0001 101 0.0318 0.0002
30 0.0049 0.0051 66 0.0005 0.0003 102 0.0007 0.0000
31 0.0302 0.0005 67 0.0590 0.0911 103 0.1261 0.0001
32 0.0135 0.0122 68 0.0319 0.0001 104 0.0010 0.0000
33 0.0613 0.0027 69 0.0019 0.0014 105 0.0262 0.0275
34 0.4432 0.0001 70 0.0108 0.0002 106 0.0038 0.0002
35 0.0383 0.0276 71 0.0004 0.0001
36 0.0040 0.0000 72 0.0017 0.0001
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Table B.3: versus Plsi-

Query Plsi Pkelsi Query Plsi Pkelsi Query Plsi Pkelsi
1 0.0863 0.0785 37 0.0065 0.0100 73 0.0567 0.0419

2 0.2657 0.2346 38 0.0033 0.0027 74 0.1388 0.1012

3 0.0714 0.0962 39 0.0303 0.0284 75 0.0280 0.0140

4 0.0001 0.0001 40 0.0081 0.0084 76 0.0318 0.0175

5 0.0557 0.0670 41 0.0010 0.0015 77 0.2584 0.2844

6 0.1007 0.1529 42 0.0002 0.0002 78 0.0073 0.0066

7 0.0010 0.0015 43 0.0261 0.1285 79 0.0007 0.0007

8 0.0000 0.0000 44 0.0007 0.0008 80 0.0025 0.0031

9 0.0002 0.0002 45 0.0065 0.0090 81 0.0143 0.0106

10 0.2734 0.2733 46 0.0821 0.0581 82 0.1001 0.0997

11 0.0046 0.0045 47 0.0485 0.0610 83 0.0847 0.0731

12 0.0000 0.0000 48 0.1894 0.2134 84 0.0170 0.0105

13 0.0003 0.0002 49 0.0000 0.0000 85 0.0001 0.0000

14 0.0012 0.0011 50 0.0754 0.1247 86 0.0000 0.0000

15 0.0001 0.0001 51 0.0089 0.0074 87 0.0167 0.0128

16 0.0388 0.0390 52 0.0036 0.0052 88 0.1557 0.1692

17 0.0003 0.0002 53 0.0120 0.0060 89 0.1456 0.1267

18 0.2584 0.2856 54 0.2684 0.3081 90 0.0006 0.0007

19 0.0176 0.0325 55 0.0248 0.0159 91 0.0003 0.0003

20 0.0006 0.0008 56 0.0075 0.0038 92 0.2077 0.2211

21 0.0085 0.0079 57 0.0114 0.0539 93 0.0000 0.0000

22 0.0511 0.0797 58 0.0876 0.1054 94 0.0796 0.0793

23 0.0001 0.0002 59 0.0003 0.0005 95 0.1703 0.1441

24 0.0015 0.0015 60 0.0995 0.1627 96 0.0009 0.0009

25 0.0001 0.0001 61 0.0161 0.0082 97 0.4390 0.4386

26 0.0011 0.0011 62 0.0005 0.0006 98 0.0003 0.0001

27 0.1348 0.0993 63 0.0295 0.0265 99 0.0424 0.1357

28 0.0000 0.0000 64 0.0007 0.0007 100 0.0036 0.0029

29 0.0044 0.0039 65 0.0085 0.0041 101 0.0318 0.0365

30 0.0049 0.0045 66 0.0005 0.0004 102 0.0007 0.0009

31 0.0302 0.0293 67 0.0590 0.1378 103 0.1261 0.0680

32 0.0135 0.0456 68 0.0319 0.0127 104 0.0010 0.0009

33 0.0613 0.0537 69 0.0019 0.0017 105 0.0262 0.0269

34 0.4432 0.4396 70 0.0108 0.0147 106 0.0038 0.0042

35 0.0383 0.0276 71 0.0004 0.0004

36 0.0040 0.0019 72 0.0017 0.0025
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Appendix C

Results of Query Matching Using

MeSH Vectors

Results of query matching in Chapter 3, Section 3.2 are presented here. They include:

1. Precision-recall graphs for directly matched MeSH vectors versus the original LSI

method.

2. Table of Direct Match verSUS PlSI-

3. Precision-recall graphs for two-step matched MeSH vectors versus the original LSI

method.

4. Table of PmcSH Two-step Match versus PlsI-

5. Table of PmcSH Regular Expression Match verSUS PlST
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Table C.l: PmsSH Direct Match versus Plsi for 106 queries.

Query Plsi Pkelsi Query Plsi Pkelsi Query Plsi Pkelsi
1 0.0863 0.1187 37 0.0065 0.0011 73 0.0567 0.0331

2 0.2657 0.0283 38 0.0033 0.0016 74 0.1388 0.0030
3 0.0714 0.1354 39 0.0303 0.5492 75 0.0280 0.0020
4 0.0001 0.0000 40 0.0081 0.0009 76 0.0318 0.0001

5 0.0557 0.0127 41 0.0010 0.0004 77 0.2584 0.1798

6 0.1007 0.0204 42 0.0002 0.0001 78 0.0073 0.0022

7 0.0010 0.0009 43 0.0261 0.0161 79 0.0007 0.0001

8 0.0000 0.0000 44 0.0007 0.0007 80 0.0025 0.0017

9 0.0002 0.0001 45 0.0065 0.0067 81 0.0143 0.0010

10 0.2734 0.0003 46 0.0821 0.0010 82 0.1001 0.1136

11 0.0046 0.0049 47 0.0485 0.0326 83 0.0847 0.0071

12 0.0000 0.0000 48 0.1894 0.0004 84 0.0170 0.0115

13 0.0003 0.0001 49 0.0000 0.0000 85 0.0001 0.0000
14 0.0012 0.0012 50 0.0754 0.0161 86 0.0000 0.0000

15 0.0001 0.0000 51 0.0089 0.0023 87 0.0167 0.0009

16 0.0388 0.0049 52 0.0036 0.0012 88 0.1557 0.0165

17 0.0003 0.0001 53 0.0120 0.0130 89 0.1456 0.0056

18 0.2584 0.0093 54 0.2684 0.3024 90 0.0006 0.0004

19 0.0176 0.0005 55 0.0248 0.0536 91 0.0003 0.0006

20 0.0006 0.0001 56 0.0075 0.0005 92 0.2077 0.0758
21 0.0085 0.0033 57 0.0114 0.0031 93 0.0000 0.0000

22 ̂ 0.0511 0.0074 58 0.0876 0.0342 94 0.0796 0.0413

23 0.0001 0.0001 59 0.0003 0.0017 95 0.1703 0.3285

24 0.0015 0.0013 60 0.0995 0.0045 96 0.0009 0.0012

25 0.0001 0.0000 61 0.0161 0.0000 97 0.4390 0.2016

26 0.0011 0.0015 62 0.0005 0.0002 98 0.0003 0.0000

27 0.1348 0.0003 63 0.0295 0.0125 99 0.0424 0.0046

28 0.0000 0.0000 64 0.0007 0.0003 100 0.0036 0.0026

29 0.0044 0.0021 65 0.0085 0.0005 101 0.0318 '0.0193

30 0.0049 0.0004 66 0.0005 0.0006 102 0.0007 0.0000

31 0.0302 0.0076 67 0.0590 0.0261 103 0.1261 0.0028

32 0.0135 0.0057 68 0.0319 0.0003 104 0.0010 0.0003

33 0.0613 0.0465 69 0.0019 0.0006 105 0.0262 0.0010

34 0.4432 0.0028 70 0.0108 0.0446 106 0.0038 0.0037

35 0.0383 0.0004 71 0.0004 0.0003

36 0.0040 0.0333 72 0.0017 0.0002
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Figure C.2: Precision-recall graphs: Two-step matched MeSH vectors versus LSI.
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Table C.2: PmsSH Two-step Match versus Plsi for 106 queries.

Query Plsi Pkelsi Query Plsi Pkelsi Query Plsi Pkelsi
1 0.0863 0.0003 37 0.0065 0.0002 73 0.0567 0.0000
2 0.2657 0.0001 38 0.0033 0.0000 74 0.1388 0.0001
3 0.0714 0.0007 39 0.0303 0.0016 75 0.0280 0.0001
4 0.0001 0.0000 40 0.0081 0.0000 76 0.0318 0.0001
5 0.0557 0.0001 41 0.0010 0.0001 77 0.2584 0.0000
6 0.1007 0.0004 42 0.0002 0.0001 78 0.0073 0.0001
7 0.0010 0.0000 43 0.0261 0.0002 79 0.0007 0.0002
8 0.0000 0.0000 44 0.0007 0.0000 80 0.0025 0.0000
9 0.0002 0.0000 ,45 0.0065 0.0643 81 0.0143 0.0002
10 0.2734 0.0000 46 0.0821 0.0001 82 0.1001 0.0006
11 0.0046 0.0001 47 0.0485 0.0001 83 0.0847 0.0002
12 0.0000 0.0000 48 0.1894 0.0002 84 0.0170 0.0001
13 0.0003 0.0001 49 0.0000 0.0000 85 0.0001 0.0000
14 0.0012 0.0000 50 0.0754 0.0001 86 0.0000 0.0000
15 0.0001 0.0000 51 0.0089 0.0000 '  87 0.0167 0.0000
16 0.0388 0.0001 52 0.0036 0.0001 88 0.1557 0.0032

17 0.0003 0.0001 53 0.0120 0.0008 89 0.1456 0.0000
18 0.2584 0.0001 54 0.2684 0.0046 90 0.0006 0.0001
19 0.0176 0.0004 55 0.0248 0.0001 91 0.0003 0.0000
20 0.0006 0.0000 56 0.0075 0.0003 92 0.2077 0.0025
21 0.0085 0.0000 57 0.0114 0.0001 93 0.0000 0.0000
22 0.0511 0.0002 58 0.0876 0.0003 94 0.0796 0.0049
23 0.0001 0.0000 59 0.0003 0.0001 95 0.1703 0.0221

24 0.0015 0.0000 60 0.0995 0.0000 96 0.0009 0.0005

25 0.0001 0.0001 61 0.0161. 0.0000 97 0.4390 0.0001

26 0.0011 0.0001 62 0.0005 0.0004 98 0.0003 0.0000
27 0.1348 0.0017 63 0.0295 0.0001 99 0.0424 0.0001
28 0.0000 0.0000 64 0.0007 0.0002 100 0.0036 0.0074
29 0.0044 0.0022 65 0.0085 0.0001 101 0.0318 0.0000
30 0.0049 0.0036 66 0.0005 0.0001 102 0.0007 0.0001
31 0.0302 0.0000 67 0.0590 0.0005 103 0.1261 0.0002
32 0.0135 0.0001 68 0.0319 0.0000 104 0.0010 0.0016

33 0.0613 0.0007 69 0.0019 0.0001 105 0.0262 0.0001
34 0.4432 0.0006 70 0.0108 0.0000 106 0.0038 0.0001
35 0.0383 0.0004 71 0.0004 0.0000

36 0.0040 0.0000 72 0.0017 0.0001
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T&bl© C.3. PmbSH Regular Expression Match V6rsUS PlsI 106 qUGriss.

Query Plsi Pkelsi Query Plsi Pkelsi Query Plsi Pkelsi
1 0.0863 0.0023 37 0.0065 0.0659 73 0.0567 0.0331

2 0.2657 0.0283 38 0.0033 0.0000 74 0.1388 0.0710

3 0.0714 0.0349 39 0.0303 0.0033 75 0.0280 0.0203

4 0.0001 0.0000 40 0.0081 0.0002 76 0.0318 0.0002

5 0.0557 0.0000 41 0.0010 0.0109 77 0.2584 0.1798

6 0.1007 0.1514 42 0.0002 0.0479 78 0.0073 0.0002

7 0.0010 0.0000 43 0.0261 0.0603 79 0.0007 0.0029

8 0.0000 0.0000 44 0.0007 0.0004 80 0.0025 0.0000

9 0.0002 0.0002 45 0.0065 0.0643 81 0.0143 0.0032

10 0.2734 0.1644 46 0.0821 0.2724 82 0.1001 0.0043

11 0.0046 0.0049 47 0.0485 0.0312 83 0.0847 0.0000

12 0.0000 0.0000 48 0.1894 0.0004 84 0.0170 0.0377

13 0.0003 0.0000 49 0.0000 0.0000 85 O.OOOl' 0.0079

14 0.0012 0.0012 50 0.0754 0.0161 86 0.0000 0.0000

15 0.0001 0.0125 51 0.0089 0.0000 87 0.0167 0.0004

16 0.0388 0.1234 52 0.0036 0.0100 88 0.1557 0.0165

17 0.0003 0.0445 53 0.0120 0.0760 89 0.1456 0.0013

18 0.2584 0.0021 54 0.2684 0.3024 90 0.0006 0.0004

19 0.0176 0.0002 55 0.0248 0.1382 91 0.0003 0.0000

20 0.0006 0.0001 56 0.0075 0.0006 92 0.2077 0.0000

21 0.0085 0.0033 57 0.0114 0.0024 93 0.0000 0.0000

22 0.0511 0.0135 58 0.0876 0.0000 94 0.0796 0.0413

23 0.0001 0.0082 59 0.0003 0.0000 95 0.1703 0.3285

24 0.0015 0.0003 60 0.0995 0.0002 96 0.0009 0.0001

25 0.0001 0.0398 61 0.0161 0.0000 97 0.4390 0.0000

26 0.0011 0.0581 62 0.0005 0.0921 98 0.0003 0.0000

27 0.1348 0.0000 63 0.0295 0.0057 99 0.0424 0.1071

28 0.0000 0.0000 64 0.0007 0.2290 100 0.0036 0.0000

29 0.0044 0.0161 65 0.0085 0.0000 101 0.0318 0.0012

30 0.0049 0.0004 66 0.0005 0.0006 102 0.0007 0.0859

31 0.0302 0.0011 67 0.0590 0.0261 103 0.1261 0.0079

32 0.0135 0.0057 68 0.0319 0.0051 104 0.0010 0.0013

33 0.0613 0.0000 69 0.0019 0.0766 105 0.0262 0.0010

34 0.4432 0.0000 70 0.0108 0.0446 106 0.0038 0.0031

35 0.0383 0.0000 71 0.0004 0.0054

36 0.0040 0.0001 72 0.0017 0.0950
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