
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2001

Performance evaluation of Fast Ethernet, ATM and Myrinet under Performance evaluation of Fast Ethernet, ATM and Myrinet under

PVM PVM

Priyanka Dasgupta

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Dasgupta, Priyanka, "Performance evaluation of Fast Ethernet, ATM and Myrinet under PVM. " Master's
Thesis, University of Tennessee, 2001.
https://trace.tennessee.edu/utk_gradthes/9599

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Priyanka Dasgupta entitled "Performance

evaluation of Fast Ethernet, ATM and Myrinet under PVM." I have examined the final electronic

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Master of Science, with a major in Electrical Engineering.

J. D. Birdwell, Major Professor

We have read this thesis and recommend its acceptance:

T. W. Wang, H. Qi

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Priyanka Dasgupta entitled

"Performance Evaluation of Fast Ethernet, ATM and Myrinet under PVM". I have

accepted the final copy of this thesis for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Master of

Science, with a major in Electrical Engineering.

Dr. J. D. Birdwell, Major Professor

We have read this thesis and

recommend its acceptance:

W'-c ̂

Accepted for the Council:

Interim Vice Provost and

Dean of The Graduate School

PERFORMANCE EVALUATION OF FAST ETHERNET,

ATM AND MYRINET UNDER PVM

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Priyanka Dasgupta

May 2001

ACKNOWLEDGEMENTS

This work has been supported by the US Department of Justice, Federal Bureau of

Investigation under contract J-FBI-98-083. The views and conclusions contained in

this document are those of the author and should not be interpreted as necessarily

representing the official policies, either expressed or implied, of the U.S. Government.

I would like to thank my advisor. Dr. J.D. Birdwell for his continued guidance and

support during the preparation of this thesis. I also want to thank the other members of

my thesis committee. Dr. T. W. Wang and Dr. H. Qi for their advice and help.

I acknowledge the support of the Innovative Computing Laboratory at University of

Tennessee for allowing me to use the Tennessee Oak Ridge Cluster for the benchmark

studies.

ABSTRACT

Congestion in network switches can limit the communication traffic between Parallel

Virtual Machine (PVM) nodes in a parallel computation. The research introduces a

new benchmark to evaluate the performance of PVM in various networking

environments. The benchmark is used to achieve a better understanding of

performance limitations in parallel computing that are imposed by the choice of the

network.

The networks considered here are Fast Ethernet, Asynchronous Transfer Mode (ATM)

OC-3c (155Mb/s) and Myrinet. Together, they represent an interesting range of

alternatives for parallel cluster computing. A characterization of network delays and

throughput and a comparison of the expected costs of the three environments are

developed to provide a basis for an informed decision on the networking methods and

topology for a parallel database that is being considered for FBI's National DNA

Indexing System (NDIS)[17]. This network is used for communications among the

nodes of the parallel machine; thus the security requirements defined for the FBI's

Criminal Justice Information Services Division Wide Area Network (CJIS-WAN) [12]

are not a concern.

Ill

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION 1

PROBLEM STATEMENT 1

MOTIVATION 1

METHOD 3

SUMMARY OF RESULTS :...3

2. BACKGROUND 5

LITERATURE SURVEY 5

SUPERCOMPUTERS 10

CLUSTER COMPUTING 14

BEOWULF CLUSTER 17

PARALLEL COMPUTING 19

MPI 25

MPICH 26

PVM 27

COMPARISON OF PVM AND MPI 28

CHOICE OF PVM OVER MPI 29

iv

CHAPTER PAGE

PVM CONCEPTS 30

PVM COMPONENTS 31

MESSAGE PASSING IN PVM 32

COMMUNICATION PROTOCOLS IN PVM 33

BOTTLENECKS IN PVM APPLICATIONS 36

CONGESTION CONTROL IN TCP 38

NETWORKING TECHNOLOGIES 40

FAST ETHERNET 42

ATM 44

ATM ARCHITECTURE 46

LAN EMULATION (LANE) 47

MYRINET 48

3. EXPERIMENTAL DESIGN 52

ARCHITECTURE 52

TEST MACHINES ...56

PERFORMANCE TESTS 58

XPVM 62

CHAPTER PAGE

4. RESULTS AND DISCUSSIONS 67

TIMING SCENARIO I: EFFECT OF ENCODING 70

TIMING SCENARIO H: EFFECT OF DIRECT ROUTING 75

TIMING SCENARIO HI: LATENCY STUDIES 80

COMPARISON OF LATENCY ON FAST ETHERNET

AND MYRINET ON TORC 80

LATENCY MEASUREMENT ON ATM CLUSTER

AT LIT 83

COMPARISON OF LATENCY OF FAST ETHERNET

ON TORC AND LIT CLUSTER 83

TIMING SCENARIO IV: EFFECT OF MESSAGE SIZE ON

TRANSFER RATES 86

COMPARISON OF EFFECT OF MESSAGE SIZE ON

TRANSFER RATES FOR FAST ETHERNET

AND MYRINET ON TORC CLUSTER 88

EFFECT OF MESSAGE SIZE ON TRANSFER RATES

FOR ATM ON LIT CLUSTER 92

COMPARISON OF EFFECT OF MESSAGE SIZE ON

TRANSFER RATES FOR FAST ETHERNET

ON TORC AND LIT CLUSTER 96

vi

CHAPTER PAGE

TIMING SCENARIO V: EFFECT OF NUMBER OF NODES ON

TRANSFER RATES 96

COST ANALYSIS 98

SUMMARY OF RESULTS 106

5. RECOMMENDATIONS FOR FUTURE RESEARCH 108

BIBLIOGRAPHY 110

APPENDIX 115

VITA 124

Vll

LIST OF TABLES

TABLE PAGE

3.1 Specifications of the nodes in TORC cluster 57

3.2 Specifications of the nodes in LIT cluster 59

4.1 Comparison of delay times with encoding and using

raw format 71

4.2 Comparison of delay times with direct routing and

normal routing 76

4.3 Comparison of latency of Fast Ethernet and Myrinet

on the TORC cluster : 81

4.4 ATM Latency with varying number of nodes 84

4.5 Comparison of latency of Fast Ethemet on LIT and

TORC clusters 87

4.6 Summary of the Different Testing Scenarios 107

vm

LIST OF FIGURES

FIGURE page

1.1 Flow chart showing different testing scenarios 4

2.1 Message Size Vs Bandwidth using MPICH 1.0.12 [6] 7

2.2 Message Size Vs Bandwidth using PVM 3.3.11 [7] 8

2.3 Performance of the computer systems for the last 5

decades compared to Moore's Law [23] 13

2.4 Shared-Device Model 16

2.5 Shared-Nothing Model 17

2.6 Comparison of Performances of CPU and DRAM 20

2.7 Perfect Parallelism in CODIS search engine 22

2.8 Functional and Data Parallelism 24

2.9 Communication Protocols in PVM 33

2.10 Communication between tasks in Normal mode 35

2.11 Communication between tasks in Direct mode 35

2.12 Congestion control in TCP 41

2.13 ATM cell 45

2.14 The ATM Network Architecture 46

2.15 LANE Components 49

ix

FIGURE PAGE

3.1 Recommended implementation of CODIS parallel

search server ; 53

3.2 Redundant nodes connected through redundant

network switches 54

3.3 Architecture of each cluster 55

3.4 Overview of the benchmarking software 61

3.5 Network View 64

3.6 Space-Time View 65

3.7 Utilization View 66

4.1 Excel Pivot Table 68

4.2 Example Bubble Chart 69

4.3 Comparison of delays with encoding and using

raw format. 72

4.4 Comparison of transfer rates with encoding and

using raw format 73

4.5 Improvement in performance using raw format

over encoded format 74

4.6 Comparison of delays with direct routing and normal

routing 77

4.7 Comparison of transfer rates with direct routing and

X

FIGURE PAGE

normal routing 78

4.8 Improvement in performance with direct routing over

normal routing 79

4.9 Comparison of latency for Fast Ethemet and Myrinet

on TORC cluster 82

4.10 Improvement in performance of Myrinet over Fast

Ethemet on TORC cluster 84

4.11 ATM Latency 85

4.12 Comparison of latency of Fast Ethemet on LIT and

TORC cluster 88

4.13 Percentage increase in latency for Fast Ethemet on

LIT cluster over TORC cluster 89

4.14 Transfer rates for Fast Ethemet and Myrinet with

2 nodes on the TORC cluster 90

4.15 Transfer rates for Fast Ethemet and Myrinet with

4 nodes on the TORC cluster 90

4.16 Transfer rates for Fast Ethemet and Mj^inet with

6 nodes on the TORC cluster 91

4.17 Transfer rates for Fast Ethemet and Myrinet with

8 nodes on the TORC cluster 91

xi

FIGURE PAGE

4.18 Plot of ratio of transfer rates for Myrinet to Fast

Ethernet versus bytes transferred 93

4.19 Transfer rate for ATM with 2 nodes on the LIT cluster 94

4.20 Transfer rate for ATM with 4 nodes on the LIT cluster 95

4.21 Comparison of transfer rates for Fast Ethernet on TORC

and LIT cluster with 2 nodes 97

4.22 Comparison of transfer rates for Fast Ethernet on TORC

and LIT cluster with 4 nodes 97

4.23 Comparison of transfer rates for Fast Ethernet on TORC

and LIT cluster with 6 nodes 98

4.24 Effect on transfer rate with increasing number of nodes

(Bytes transferred 40 Mbytes) 99

4.25 Control Rack 100

4.26 PC Rack 102

4.27 Fully Configured System 103

A.l Bubble chart for message size of 40 bytes and on 8 nodes

of the TORC cluster 117

A.2 Bubble chart for message size of 400 bytes and on 8 nodes

of the TORC cluster 118

A.3 Bubble chart for message size of 4 Kbytes and on 8 nodes

xii

FIGURE PAGE

of the TORC cluster 119

A.4 Bubble chart for message size of 40 Kbytes and on 8 nodes

of the TORC cluster 120

A.5 Bubble chart for message size of 400 Kbytes and on 8 nodes

of the TORC cluster 121

A.6 Bubble chart for message size of 4 Mbytes and on 8 nodes

of the TORC cluster 122

A.7 Bubble chart for message size of 40 Mbytes and on 8 nodes

of the TORC cluster 123

Xlll

CHAPTER 1

INTRODUCTION

PROBLEM STATEMENT

The purpose of this research is to develop a computer network benchmark program for

parallel computation. The benchmark is used to evaluate the effect of various network

interconnection strategies on Parallel Virtual Machine (PVM) performance. Three

network interconnects were evaluated: Fast Ethernet, Asynchronous Transfer Mode

(ATM 0C-3c) and Myrinet.

MOTIVATION

The implementation of the new search engine for the FBI CODIS DNA database is

migrating from the original single process recursive implementation to a multithreaded

implementation and finally to a parallel machine implementation [30]. The parallel

implementation will execute Search Engine and Load Balancing objects on each host,

probably with as many Search Engine objects as there are processors on a host [31]. A

root host will be used to accept Client requests and create a Search Client object to

handle each request. A critical component of the parallel implementation is the

method used to balance the workload across the set of available hosts and processors.

During the transfer of workload between nodes, the traffic routed through a switch

may exceed the switch's bandwidth, resulting in congestion and degraded

performance.

Transport Control Protocol (TCP) uses a sliding-window flow control algorithm with

"Go-Back-N" packet retransmission upon timeout [14]. The flow control mechanism

of TCP avoids packet overflow at the receiver side; however, it cannot prevent buffer

overflow in a Local Area Network (LAN) switch due to network congestion. When

this occurs, the switch discards some packets. To control congestion, TCP slows down

the transmission of packets until congestion is alleviated. Eventually the

retransmission mechanisms of TCP on the sending hosts are triggered and start

resending more packets than needed, increasing network traffic and therefore making

the LAN even more congested.

This is very undesirable in our application, and so the timing and congestion studies

are very important as guides to choose both the type of network switch used and the

number of nodes in a cluster. The networks we discuss in this thesis are Switched Fast

Ethemet, ATM and Myrinet. Fast Ethernet gives higher bandwidth at low cost. ATM

was originally designed for applications in the telecommunications industry but it has

also been extensively used for real-time, multimedia and parallel applications. Myrinet

was designed especially for parallel computing applications.

METHOD

In order to evaluate the performance of various networking topologies, the benchmark

tests were done on each of the three network interconnects. Chapter 2 provides

background on the component technologies and a review of previous benchmark

studies. Our benchmarking software attempts to stress the network switch to gain

information on limitations imposed by the switch as well as the bandwidth of each

connection. The software used to perform the timing studies and the test conditions are

explained in Chapter 3. The testing scenarios consist of 2 broad categories - testing

options available in PVM and testing the different networking topologies.

In the first category, we have observed the effect of encoding and the improvement in

transfer rate due to direct routing. The second category involved testing of each of the

network technologies for latency and transfer rates with varying number of nodes and

varying message sizes. This can be illustrated as in the flow chart in Figure 1.1.

SUMMARY OF RESULTS

The results are discussed in detail in Chapter 4. From the timing studies it is observed

that Myrinet shows a 30-50% increase in performance over Fast Ethernet. But the

details discussed in Chapter 4 about the cost benefits make Fast Ethernet the best

option for our application.

Fast Ethernet
Network

Interconnect
9

ATM

Vary number
of nodes

Myrinet

r

Message
Measui

(late

size = 0

e delay
ncy)

1 r

Vary
message size

Calculate Transfer

Rate

Figure 1.1: Flow chart showing different testing scenarios.

CHAPTER 2

BACKGROUND

LITERATURE SURVEY

Recent years have witnessed a growing trend towards parallel computing.

Performance evaluation plays an important role during the architecture design,

development and implementation stages of designing a parallel cluster for a particular

application. There have been many benchmark studies performed on different network

connections with different programming libraries.

In October 1993, Michael J. Lewis and Raynond E. Cline [1] of Sandia National

Laboratory described the results of performance tests of Parallel Virtual Machine

(PVM) in a switched Fiber Distributed Data Interface (FDDI) [2] heterogeneous

distributed computing environment. The test environment, called the Heterogeneous

Environment and Test bed (HEAT), was a group of 50 workstations consisting of 10

of each of the following: IBM/RS6000's, HP-9000 PA-RISC's, SGI IRIS Indigos,

DEC Alphas, and Sun SPARCstation lO's. These workstations were networked via a

100 Mbps DEC FDDI Gigaswitch and several DEC Concentrator 500s. Simple ping-

pong tests were carried out, and the results showed that pvmd, the PVM daemon,

could become a bottleneck in communication intensive applications, especially those

in which multiple tasks reside on the same machine. Also from the results, it was

concluded that PVM's efficiency needed to be improved in order to better exploit the

speed of the network hardware. These results are important for our application, as we

would need to take into account the bottlenecks due to PVM. These tests reported in

[2] were done only on FDDI and so do not provide a direct comparison of

performance with other interconnects.

In June 1996, latency and bandwidth-timing benchmarks were executed on various

networks of the Lewis Advanced Cluster Environment (LACE) at the NASA Lewis

Research Center [3]. LACE was a group of thirty-two networked IBM RS/6000

machines (laceOl - lace32) plus one 'control' node called lace. The tests bounced

messages of various lengths back and forth between lace 15 and lace 16. Messages were

bounced back and forth 100 times using Asynchronous Transfer Mode (ATM), Fiber

Distributed Data Interface (FDDI) and Fiber Channel Standard (FCS) [4] networks,

and the IBM ALLNODE switch [5], all in dedicated mode. The Message Passing

Interface (MPI) and PVM libraries were used. The results showed small differences

between the libraries on different networks for small message sizes. For large

messages, PVM performance was steady and predictable, with ATM 0C-3C

performing best, then FCS, FDDI, and ALLNODE. All three MPI implementations

tested performed best with FCS on large messages. ATM performance peaked on

messages of around 200KB. The comparison of the different networks using MPI is

shown in Figure 2.1 [6] and using PVM in Figure 2.2 [7]. These results were obtained

using a ping-pong test between 2 nodes only. For our application we need to support

Message Size vs. Bandwidth Using MPiCH 1.0.12
(Benchmark Data - June 1996)

^ 14

0 10

■a 6

262144 524288 786432

Message size in bytes

*—A LACE ATM
i3 a LACE FDDI
•» < LACE PCS
0 oLACEALLNODE

1048576

Figure 2.1: Message Size Vs Bandwidth using MPICH 1.0.12 [6].

Message Size vs. Bandwidth Using PVM 3.3.11
(Benchmark Data - June 1996)

18

16 -

I' 14
o
o
o

o

ra 10

A—A LACE ATM

n Q LACE FDDI

•« < LACE PCS

o—0 LACE ALLNODE

0)

E

£ ®
■o

1 6
(S
m

4 i .
2 1

0 , . , . .

262144 524288 786432 1048576
Message size In bytes

Figure 2.2: Message Size Vs Bandwidth using PVM 3.3.11 [7].

simultaneous communication among all nodes, so these results cannot be used as a

basis for selection of our network topology.

Different physical networks and protocols have different performance characteristics.

The Performance Based Path Selection (PEPS) strategy takes advantage of this

heterogeneity, selecting a path among the available options to minimize the

communication time. JunSeong Kim and David Lilja [8] of the University of

Minnesota studied latency characteristics as a function of the message size for

Ethernet, Fiber Channel and High Performance Parallel Interface (HiPPI) [9] networks

in order to evaluate PEPS. The results showed clear tradeoffs between Ethemet and

Fiber Channel: Ethemet produced higher transfer rates than Fiber Channel when

sending small messages (a few hundreds of bytes), while Fiber Channel produced

higher transfer rates for larger messages. These results are used as the basis to select

the appropriate path; that is, small messages was sent on Ethemet and others on Fiber

Channel. Inter-process communication libraries like PVM and MPI do not support

multiple communication paths, so a separate library was developed. In our application,

there is only one path type between any two hosts, so PEPS is not useful.

In April 1996, Michael Steed [10] developed the APACHE (Automated Pvm

Application CHaracterization Environment) performance prediction system for PVM

programs. This system represents performance with a set of equations. These

equations were verified to predict very close performance to those observed by

carrying out various tests such as a Jacobi algorithm, matrix multiplication, numerical

9

integration and a parallel sort. These equations could also be used to predict the

performance for different networks by changing the factors accordingly. Steed

compared the performance of Ethernet and ATM. The results showed the latency of

PVM communications was slightly higher over ATM than over Ethernet. Thus, the

performance advantage of ATM was more apparent for communications involving

large messages and a large number of processes, when the performance of Ethemet

began to suffer because of bandwidth restrictions and packet collisions. This

performance prediction system does not verify the performance of the system using a

ping-pong test, so the results have limited utility for our application.

We also found many studies, [36] which either evaluate performance for only one type

of network comparison between network types, or examine only isolated performance

factors such as the effect of the number of processors or the effect of message size.

These tests are pair-wise and do not simulate the stress that will be developed in the

network during a parallel data search of the magnitude we are considering. Hence, we

needed to develop a new benchmarking method to make a well-rounded decision for

our application.

SUPERCOMPUTERS

A supercomputer is a computer that performs at or near the currently highest

operational rate for computers [32]. A supercomputer is typically used for scientific

10

and engineering applications that must handle very large databases or do a great

amount of computation or both.

Supercomputer development began in the 1960s. The first big commercial

supercomputer was the Control Data Corporation (CDC) 6600 in 1964. IBM

developed the 360/90 in 1967 and many others in the 360 and 370 series during this

period. By 1975, Seymour Cray had left CDC and formed Cray Computer, developing

a separate line of supercomputers that dominated the supercomputer field for the next

two decades. Starting with the Cray 1 in 1976, with speeds of 100 million floating

point operations per second (Mflops), reliability and performance grew to about 1.9

Gflops with Cray 2. As the Cray 2 arrived in 1985, other companies also came into the

scene. CDC introduced the Cyber-205, while Hitachi, Fujitsu, and NEC each offered

their own design.

Initially supercomputers were limited to research areas and for applications in national

defense, weather modeling, aircraft and space research. With the growing popularity

of supercomputers in academic fields and industries, research began focusing on

building cheaper supercomputers, and in the 1996's, one of those ways turned out to

be using a big array of small computers or computer chips.

According to the Top 500 Supercomputer List [19], the most powerful supercomputer

is the Department of Energy's Accelerated Strategic Computing Initiative (ASCI)

White [20]. It has been developed by IBM and Lawrence Livermore National

11

Laboratory. It has 8192 processors and a peak performance of 12.3 teraflops (Tflops).

IBM's most ambitious supercomputer, the Blue Gene [21] is planned to have 1 million

processors in an array that will yield the first petaflop computer.

Despite all these changes, the evolution of performance on a large scale is a very

steady and continuous process. The trend seems to obey Moore's law. If we plot the

peak performance of various computers of the last 5 decades in Figure 2.3 [23], which

could have been called the 'supercomputers' of their time, we see how well this law

holds for almost the complete lifespan of modem computing. On average, we see an

increased performance of two orders of magnitude every decade.

These days there is another class of system that has supercomputer capability and has

become popular - cluster computing. One example of this class is the Beowulf cluster

[22] - multiple Linux computers tied together with fast communications links. There

are three primary limits to performance at the supercomputer level: individual

processor speed, the overhead involved in making large numbers of processors work

together on a single task, and the input/output speed between processors and between

processors and memory [18]. In the next section we discuss cluster computing.

12

Moore's Law
10'

10

10"

U)

O 10

10°

10'

10
19

1 r 1 1 1 1 I i ■ —I

ASCI WHITE

ASCI RED •

-

TMC CM-5 ♦ V'''
,,-CRAYT3D

TMC CM-2

CRAY 2

- • CRAYX-MP

* CRAY1

CDC 6600
CDC 7600

IBM 360/195

IBM 7090 •

■ ̂'CNIVACI

■' EDSAC 1
1 1 1 1 1 1 1 1 1

50 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 2.3: Performance of the computer systems for the last 5 decades compared to

Moore's Law [23].

13

CLUSTER COMPUTING

Cluster computing interconnects a number of computers and uses their total

computational power to solve a single problem. Clusters can be either a network of

workstations (NOW) or a collection of specialized processor nodes. There is no

restriction to the architecture of the nodes used in a cluster. It can range from Shared

Memory Processors (SMPs) to Vector Processors or to a cluster of independent

machines. Each of these architectures needs a different programming technique in

order to achieve the best performance. Clever programming could help in exploiting

this heterogeneity and improving the performance further, but it would make the

programming more complex.

Cluster computing is gaining popularity because of the low price to performance ratio

associated with it. With the falling prices of hardware such as the network interface

cards and switches needed for building a cluster, clusters are becoming cheaper. A

well-designed cluster can be scaled to very large systems without much trouble. This

is useful since the clusters can be expanded if the complexity of the problem increases.

The cluster can also be upgraded over the years by changing individual nodes or

network components to take advantage of the latest developments in technology.

In a cluster, a faulty node can be replaced without too many hassles. This may reduce

the performance of the cluster but the computation may still continue. This aspect of

cluster computing is very important in applications such as ours where continuous

operation is desirable.

14

When using a cluster, a programmer has to be careful of the data formats being used

by the individual nodes. Sometimes data formats are not compatible and the data sent

cannot be interpreted at the receiving end. This is taken care of by adopting a standard

encoding technique during communication.

Another important issue associated with efficient cluster computing is load balancing.

In a cluster some nodes may be faster than others and will finish their work faster and

then remain idle. Random effects can also cause imbalance and allow some processors

to become idle. This lowers the overall efficiency of the cluster. In order to make use

of the wasted time cycles, work from the busy nodes needs to be transferred to the idle

nodes. The implementation of load balancing needs to be based on the nature of

application and the communication and computation times. In the final

implementation of the search engine for the FBI CODIS DNA database, load

balancing will be an important feature to improve the search timing. The results of this

thesis assist in the final implementation of load balancing.

Sometimes a common problem in clusters is the network load imposed by other

network users. This will not be a problem for us because in our final design we are

using a network dedicated to the parallel machine.

There are two common implementation models for a cluster - the shared-device model

and the shared-nothing model. In the shared-device model, software running on any

computer in the cluster can gain access to any hardware resource connected to any

15

computer in the cluster. For example in Figure 2.4, both nodes A and B can access

data from the SCSI drive. In such models, synchronization is an important issue.

In the shared-nothing model, every node of the cluster has access to a subset of the

hardware resources available. For example as shown in Figure 2.5, node B cannot read

or write to the SCSI drive and so if it needs to retrieve data from the drive, it is routed

through node A that has the permission to do so. Shared-nothing models provide more

scalability. Also since a certain piece of hardware can be accessed by only one node at

a time, synchronization problems are reduced.

Node A NodeB

ReadAVrite

Access (

ReadAVrite

Access y

Shared SCSI Drive

Figure 2.4: Shared-Device Model.

Node A NodeB

ReadAVrite

Access ̂

No Read/Writf

.Access /
/

3
3

Shared SCSI Drive

Figure 2.5: Shared-Nothing Model.

BEOWULF CLUSTER

Beowulf is a method of supercomputer construction using a cluster of commodity off-

the-shelf (COTS) computers, interconnected with a technology such as Ethemet, and

running programs written for parallel processing. The original Beowulf cluster was

developed in 1994 at the Center of Excellence in Space Data and Information Sciences

(CESDIS) [22], under a contract from the US National Aeronautics and Space

Administration (NASA) at the Goddard Space Flight Center in Greenbelt, Maryland.

Thomas Sterling and Don Becker built a cluster computer that consisted of 16 Intel

DX4 processors connected by 10 Mbps Ethemet. Their success led to the Beowulf

Project, which resulted in the development of similar COTS clusters. A number of

clusters have been developed in universities and research groups, ranging from the

original 16-processor Beowulf to Avalon, a cluster of 140 Alpha processors built by

the Los Alamos National Laboratory.

To build a Beowulf cluster we need a certain number of compute nodes. The number

of nodes could depend on any of the following: size of the application, throughput

desired, budget of the project, and availability of nodes. An additional node is used in

the cluster for system management and cluster configuration. The nodes in the cluster

are connected using a system interconnect. There are various options available from

the traditional Ethernet to switched networks like ATM and Myrinet. The most

commonly used operating system in Beowulf clusters is Linux. This is attributed to its

free availability, high reliability and good efficiency. In addition, a Beowulf cluster

also needs a message passing protocol to communicate and coordinate between the

nodes of the cluster. The most commonly Used protocols are implemented by the

Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) libraries.

We have proposed a Beowulf topology for our implementation of parallel search.

Since our application requires a high bandwidth, ATM, Myrinet, Fast Ethernet or

Gigabit Ethernet, all switched networking topologies, will be used in our final

implementation. The task of this research is to provide a basis for an informed

decision among these choices.

18

PARALLEL COMPUTING

Parallel processing is the use of multiple processors to execute different parts of the

same program simultaneously. The main objectives of parallel computing are to

reduce the wall clock time for an application and to increase the throughput of the

system.

Programmers are moving from sequential programming to parallel programming.

According to Moore's law, CPU speed doubles every 18 months. CPU technology has

been maintaining this trend, but eventually there will be physical limitations to this

growth [43]. Using multiple processors is a way to improve the speed and capability of

large systems. In addition, the speeds of RAM and hard disks have not been keeping

up with CPU speed. This difference has been increasing over the years and introduces

a serious bottleneck in the performance that is illustrated in Figure 2.6. Parallel

computing can reduce this effect.

In order to coordinate between the processors working on a single problem, some

amount of communication is required. The ratio between computation and

conununication is known as granularity. If the granularity is too fine, that is, if the

ratio of computation to communication is too low, the speedup is limited. There is a

limit to the speedup that can be obtained by parallelizing a code. This is given by

Amdhal's law, which states that the speedup is limited by the fraction of the code that

must be executed sequentially.

19

10

Comparison of Performances of CPU and DRAM

10

0)
O

§ 10
o

at

Q.

10

Moore's Law

CPU speed
doubling every
18 months /

Improvement in DRAM speed

increasing gap in .

CPU and memory
performance

IS 7% per year ̂

5 10 15 20

Number of years

Figure 2.6: Comparison of Performances of CPU and DRAM.

20

Not every application is parallelizable. Sometimes, the speedup obtained by

parallelizing a code is not substantial compared to the efforts put in to develop it or the

money spent to implement it. Applications that can be parallelized fall under one of

these categories:

• Perfect Parallelism: In such an application, the work can be divided among the

processors, and computation can be done with minimal communication. These

applications provide very high speedup.

• Data Parallelism: In such applications, the data are divided among different

processors, and the same operations are performed on different data in each

processor.

• Function Parallelism: The entire application is divided into separate functions

that are distributed among the processors.

The CODIS search engine can benefit from all three types of parallelism. An easy way

to obtain almost linear speed-up of the search engine is to run identical search engines

with different databases on n processors. The stored data records are divided into n

roughly equal subsets that are assigned to the processors. A root processor node

distributes workload and collects results. This is shown in Figure 2.7.

Although the perfect parallelism of Figure 2.7 distributes workload effectively,

increasing demands for both storage of new data records and search requests will

eventually overwhelm the capacities of the host processors. Data parallelism and

function parallelism can be used to overcome this. Each host is replaced by a cluster of

21

ROOT HOST

M

DATA

SEGMENT

1

DATA

SEGMENT
2

DATA

SEGMENT

Figure 2.7: Perfect Parallelism in CODIS search engine.

hosts, each having identical data (data parallelism) as shown in Figure 2.8. Search and

data storage requests are divided into elementary processing requests that can be

distributed across the processors assigned to the cluster. These elementary requests

can be performed by any processor because of data parallelism. A load balancing

method transfers workload among the processors, ensuring a highly efficient

utilization of the cluster's resources.

There are two basic approaches to parallel programming - Data Parallel Programming

and Message Passing. Data parallel languages deal with single operations over large

collections of data. In data parallel languages, the programmer does not explicitly

handle communications and message passing. High Performance Fortran [16] and

Fortran 90 [15] are examples of data parallel languages. Data parallel programming

does not support functional parallelism, and does not appear to be relevant to the

requirements of the CODIS search engine.

Message passing is a programming paradigm in which the programmer explicitly

handles data distribution and communication. Non-local data are passed between the

processors using messages. Message passing supports all three types of parallelism -

perfect, data and functional parallelism. Parallel Virtual Machine (PYM) and Message

Passing Interface (MPI) are the most frequently used message passing libraries.

23

HOSTi

DATA

SEGMENT i

REPLACED BY

CLUSTER

a

Figure 2.8; Functional and Data Parallelism.

(Every host of Figure 2.7 is replaced by a cluster)

MPI

MPI is the first standardized message-passing library, a collection of routines for

facilitating communication among the processors in a distributed memory parallel

program. It has been defined by the MPI Forum, which consists of a broad group of

parallel computer users, vendors, and software writers [27].

In MPI a group and a rank relative to the group specify every process. Two MPI

processes can only communicate if they share a communicator. A process can belong

to more than one communicator. MPI_COMM_WORLD is a special communicator,

which includes all the tasks in an MPI application.

MPI provides a wide variety of message passing modes for point-to-point

communication. There are four options available to support blocking and non-blocking

sending of data - synchronous, buffered, ready and standard. The receive call does not

specify any mode. It only has options for a blocking or a non-blocking receive.

MPI also provides collective communication functions, which allow distribution and

collection of data across a group of processors. Functions are available to perform

global reductions, broadcasts, scatter and gather operations. All processes in a

communicator call collective functions. Each call blocks all routines until it is locally

completed.

25

MPI supports derived datatypes. This provides a method of communicating non

contiguous or mixed datatypes in a message. These datatypes are derived from the

basic MPI datatypes. MPI also supports Cartesian grid topologies which makes it

easier to program algorithms that-are based on regular grid structures. It does not

provide functions for multithreading, but it is designed to be thread safe.

MPICH

MPICH is a freely available, portable implementation of MPI. MPICH is a joint-effort

project between Argonne National Laboratory and Mississippi State University. The

main design goal of MPICH is to combine portability with high performance. MPICH

can be implemented on a distributed memory parallel supercomputer, shared memory

architectures and even a network of workstations.

MPICH divides its implementation into a top level, which translates the complicated

MPI API into calls to a small number of low-level routines called the Abstract Device

Interface (ADI). MPICH contains many implementations of the ADI. This makes it

portable. At the lowest level, one implementation of the ADI is the channel interface.

It consists of five functions and performs the basic task of transferring data from

address space of one process to another.

26

PVM

PVM (Parallel Virtual Machine) is the result of a research project that began in 1989

at Oak Ridge National Laboratory to harness a group of heterogeneous computers to

be used as a single 'virtual' machine. PVM predates MPI but has additional flexibility

that MPI does not offer. Since its inception, PVM has undergone a number of

revisions with new functions being added.

Under PVM, tasks are initiated under the control of a daemon that spawns the program

on other hosts. Every PVM task is associated with a unique task identifier (TID). PVM

tasks can be grouped. In each group, tasks are identified by a group instance number

along with their TID.

PVM provides functions for point-to-point communications and for synchronization. It

provides asynchronous blocking send, asynchronous blocking receive, and non-

blocking receive functions. Collective functions such as broadcast, multicast and

global reductions are available by linking to the group library (libgpvmS.a).

PVM provides dynamic resource management. It can add or delete hosts any time

during the application's runtime. It also provides a number of fault tolerant features by

which a host can notify other hosts of its status. These features make PVM attractive

for the CODIS search engine.

27

PVM can run over a wide variety of networks, architectures and applications. In order

to do so PVM provides various encoding techniques to overcome the difficulties due

to heterogeneity in data formats on the machines.

PVM provides bindings for Fortran??, C and C++. Programs written under PVM in

any of these languages are interoperable.

COMPARISON OF PVM AND MPI

Depending on the nature and the requirements of the application, a choice between

PVM and MPI must be made. This comparison of PVM and MPI is needed in order to

make an appropriate choice between the two message paradigms for our application.

In [11], Geist presented an excellent contrasted comparison of the two, which can be

summarized as:

• PVM can work across heterogeneous networks and architectures. MPI does not

support communication between two different architectures.

• Since PVM supports heterogeneous computing, it provides a number of functions

to facilitate better resource management and load balancing. MPI functions are

primarily concerned with messaging.

• In MPI, a group of tasks can be arranged in a specific logical interconnection

topology. In a PVM application a programmer has to manually arrange tasks into

groups according to the desired topology.

28

• PVM has more fault tolerant features than MPI. It provides functions to notify a

task being added, deleted or exiting.

• MPI was designed to be thread-safe. PVM was not explicitly designed to work in

a multithreaded environment and so prograimners have to be very careful when

writing multithreaded PVM applications.

• PVM can add or delete hosts during the application's runtime and so the resource

management provided in PVM is dynamic in nature. MPI lacks such dynamics,

which in turn helps in improving the efficiency of the MPI system.

• In PVM, programs in C, C++, or Fortran may freely intercommunicate whereas

this is not possible in MPI even if they are executing on the same architecture.

• PVM provides a command line interface that can be used to probe the state of the

different processes running or to add or delete hosts. MPI does not provide any

such interface.

CHOICE OF PVM OVER MPI

In our implementation of the parallel machine, the following features of PVM made it

a better choice over MPI for message passing.

PVM has the advantage for applications running on collections of hosts that are

heterogeneous. The final parallel computer hardware for the national CODIS database

search engine could be a set of heterogeneous hosts. This feature of PVM does not

restrict the addition of new hosts of a different architecture.

29

PVM supports dynamic configuration, so nodes can be added or deleted when tasks

are running. Also, PVM provides notification of each task's exit, addition or deletion.

This is an important feature because it assists the replacement of failed nodes or the

addition of new nodes.

In PVM, a C program can send a message that is received by a Fortran program and

vice-versa. In contrast, a program written in C cannot communicate with a program

written in Fortran under MPI, even if they are executing on the same architecture.

The parallel computer where the national database resides needs to be available

essentially all the time, 24 hours a day and 7 days a week. Down time will result in

backlogs of DNA profile data waiting for upload and search requests waiting for

processing. The parallel computer needs to be designed in a manner that minimizes the

potential for damaging down time and allows for easy isolation and repair of hardware

flaws when they occur. Thus, PVM's fault tolerant features become more important.

The ability to write long running PVM applications that can continue even when hosts

or tasks fail, and that can adjust as loads change dynamically due to outside influences

such as date and time, is quite important to heterogeneous distributed computing.

PVM CONCEPTS

In the following sections, we discuss some important concepts of PVM to get a better

understanding of message passing under PVM.

30

PVM COMPONENTS

There are two main components of PVM: the PVM daemon and the PVM libraries.

PVM Daemon (pvmd3)

The PVM daemon, pvmdS is a process that coordinates inter-process PVM

communications [12]. The first daemon started is called the master daemon. This

daemon starts all other PVM daemons in the parallel virtual machine. This master-

slave relationship between daemons exists only during startup or reconfiguration.

During normal operation they are all considered equal. Exactly one daemon per user

runs on each machine configured into a parallel virtual machine. Other users, with

their own parallel virtual machines, can have their own PVM daemons running on the

same hosts.

PVM Libraries

The three PVM libraries are:

• libpvm3.a - a library of C language interface routines, which is always

required.

• lib^vmS.a - a library that is required in addition to libpvmS.a for Fortran

codes

• libgpvmS.a - a library that is required for use with dynamic groups

Library routines do not directly communicate to other processes. Instead, they send

commands to the local daemon and receive status information.

31

MESSAGE PASSING IN PVM

PVM sends messages in three steps. The first step is to initialize a send buffer and

clear older buffers. Any encoding required for the message is also specified in this

step. PVM supports three encoding options - PvmDataDefault, PvmDataRaw and

PvmDatalnPlace. In PvmDataDefault, data is translated into the External Data

Representation (XDR) [38] format and copied into a buffer. This option is chosen

when communicating between heterogeneous hosts. PvmDataRaw option does not

encode the data. It sends it in the raw format. Only machines that have the same native

format can receive this data correctly. With the PvmDatalnPlace option, data are not

copied into the message buffer. Instead, only descriptors and pointers to the data are

copied. This reduces the packing costs.

The second step in sending is packing. PVM provides functions to pack data into the

send buffer. The last step is the actual call to a send function. PVM has an additional

send and receive function for a fixed type in contiguous form that avoids buffering and

makes message passing faster.

On the receiving end, messages are received in two steps. First a call to a receive

function is made, and then the returned buffer is unpacked. The unpack call must

match the pack calls. PVM provides blocking and non-blocking receive routines. It

also has a timeout version for receive.

32

COMMUNICATION PROTOCOLS IN PVM

Every host in a parallel machine can connect directly to every other host using the

Transport Control Protocol (TCP) and User Datagram Protocol (UDP). The

communication protocols used in PVM are as shown in Figure 2.9.

There are three types of communications: between two PVM daemons (pvmd's),

between a pvmd and its tasks, and between two tasks.

Pvmdl
UDP

UNIX DOMAIN OR

WINSOCKET

Task!

TCP

Machine I

X^Pvmd2^
UNIX DOMAIN OR
wiNsnrKPT

Task2

Machine 2

Figure 2.9: Communication Protocols in PVM.

33

Communication between two pvmds uses UDP. Even though TCP is a reliable

protocol, UDP is used because of the 3 limitations of TCP. The first is scalability.

Each TCP connection consumes a file descriptor in the pvmd. There is a limit to the

number of opened files. On the other hand, a single UDP socket can communicate

with a large number of remote UDP sockets. Since TCP is a connection-oriented

protocol it has to set up a connection with every other pvmd in the virtual machine.

This would mean establishing up to n*(n-l)/2 eonnections for an n-node virtual

machine, which is expensive to maintain. The third reason is that it is easier to set

timeouts in UDP to detect host, pvmd, and network failures.

UDP has its drawbacks. It can lose, duplieate or reorder packets. UDP also limits

packet length so PVM has to break up long messages into smaller messages. PVM

also implements some reliability features, and the PVM daemons implement an

acknowledgment and retry mechanism. PVM maintains separate queues of packets

being sent, packets waiting for acknowledgements and other packet types. The

daemon also tracks round trip time and packet counts.

Communications between a pvmd and its tasks are through Unix Domain Sockets or

the NT equivalent, Winsocket. In the earlier versions of PVM, TCP was used but Unix

Domain Sockets results in faster communication.

Communication between two tasks can be accomplished in two ways - Normal mode

(Figure 2.10) and Direct mode (Figure 2.11). In the normal mode, in order for a source

34

UDP

Pvmdl

UNIX DOMAIN OR

WINSOCKET

Taskl

Machine 1

Pvmd2

UNIX DOMAIN OR

WINSOCKET

Task2

Machine 2

Figure 2.10: Communication between tasks in Normal mode.

Pvmdl

Taskl

Machine 1

TCP

Pvmd2

Task2

Machine 2

Figure 2.11: Communication between tasks in Direct mode.

35

task to communicate with a remote task, it must first communicate through a unix

domain socket to its local daemon. The local pvmd then communicates through a UDP

socket to the remote pvmd. The remote pvmd then communicates locally to the

destination task through a unix domain socket. In the direct mode, a message can be

directly sent from the source task to the destination task over a TCP connection by

using pvm_setopt (). The second method reduces message routing overhead, but there

are the drawbacks of TCP connections discussed above. In our benchmarks, the first

method has been used though we did try the direct mode to see the effect on transfer

rate. The results showed that direct routing made communication faster by 40% as

compared to normal routing.

BOTTLENECKS IN PVM APPLICATIONS

The processor, operating system, network hardware, and PVM all impose limits on

performance of an application.

Even if we use a fast switch in our application, the processor speed can be a limitation.

The operating system can also affect the performance of PVM application. The

TCP/IP protocol suite is the layer under PVM. For bulk data transfers, buffers in TCP

tend to get full and congestion occurs. The congestion control scheme in TCP is

explained in the following section. The layered structure of TCP/IP implies a certain

number of memory-to-memory data movements. This introduces an overhead in our

application. A network device driver attaches a network subsystem to a network

36

interface, prepares the network interface for operation, and governs the transmission

and reception of network frames over the network interface. The device driver could

also pose some restrictions but it could be tuned to suit the application.

The networking hardware also limits the performance of the application. The wire

speed, buffering available in the switches, latency in switches and error rates are some

of them. If the buffer available in the switch is not adequate, excess data is dropped

which is highly undesirable. It could lead to retransmission of the data and thus

affecting the transfer rate adversely.

The PVM daemon uses dynamically allocated memory to store message packets being

sent from one task to another [24]. When the sending task sends out packets, it is

accumulated in the daemon till the receiving task accepts the packet. The daemon does

not limit the sending task from sending new packets, and so the packets can

accumulate. If the receiving end is off or is not accepting the packets due to some

other reason, the system could eventually run out of memory.

Another limitation that we need to keep in mind for our application is the maximum

size of a PVM message. This is limited by the amount of memory available to the task.

Also when a message is sent, the packets are stored in memory and so this reduces the

available memory further.

37

CONGESTION CONTROL IN TCP

TCP connections provide reliable, stream-oriented, full duplex data transfer. In order

to make TCP reliable, sequence numbers and acknowledgements are used. When TCP

sends a large amount of data, it breaks the data up into smaller packets. At the

receiving end, these packets may arrive in random order and must be reassembled. The

sequence numbers are used in this process. Once the packet is received, the receiver

sends an acknowledgement (ACK) packet with the packet's sequence number to the

sender. This assures the sender that the packet has been received. If the packet does

not reach the destination, the sender waits for a certain amount of time (which is a

function of the approximate round trip delay time), and if it does not receive an ACK

packet within this time interval, it retransmits the packet.

TCP uses a sliding window scheme for flow control. The window is the maximum

number of packets that can be sent without receiving an ACK for the first packet. In

the sliding window scheme, all new segments in the window are transmitted, and as

ACKs are received the window is repositioned and equal number of new segments is

transmitted.

To prevent congestion and collapse of the transmission data rate, TCP implements

three mechanisms - multiplicative decrease, slow start and congestion avoidance [14].

When a packet times out, meaning that no ACK has been received within the allowed

waiting time, TCP assumes the timeout to be a result of congestion, and reduces the

38

window size by half. With this multiplicative decrease, traffic reduces exponentially,

quickly and effectively responding to network congestion.

When one ACK is lost, the packets that follow the lost packet cannot be ACK'ed as

ACKs are cumulative. When congestion is reduced, TCP starts receiving ACKs for the

packets transmitted. Since a large number of ACKs are likely to be received, this

results in a large number of packets being transmitted, which could exceed the

network's capacity and result in congestion again. To avoid this, TCP implements a

slow start method.

With slow start, TCP starts with a window size of one packet and increases the

window by one each time a packet is acknowledged. Once the sender receives one

ACK, the window size increases to two. The sender then sends two packets. When

both of those packets are acknowledged, the congestion window is increased to four.

This process continues, and the window size increases exponentially as a function of

round-trip time.

Exponential increase in the window size can lead to congestion. This is avoided by

forcing a linear window increase after the window reaches half the size when

congestion first occurred. The window size keeps increasing till either data packets

start getting lost or the maximum window size allowable (usually 2^^ bytes) is

reached.

39

Figure 2.12 explains the congestion control mechanism in TCP. If we assume that

congestion first occurred when the window size was 64, then slow start is used until

the window size reaches 32. After that there is a linear increase in window size to

avoid congestion collapse.

NETWORKING TECHNOLOGIES

The performance of cluster computing depends largely on the bandwidth and latency

of the inter-cluster network. Achieving high bandwidth and low latency requires not

only fast hardware but also efficient protocols and host-network interfaces that

minimize the communication software overhead.

Several types of networks are used in cluster computing. These networks include

Ethernet, Fast Ethemet, Gigabit Ethernet, Myrinet, ATM, HiPPI and Fiber Channel.

We have examined Fast Ethemet, Myrinet and ATM 0C-3c in this research. The

methods should be adaptable to other network topologies that support PVM.

Several issues have to be considered when designing a cluster interconnect. The most

important in this application is the price to performance trade off. Scalability is

another cracial issue. It refers to the network's ability to support an almost linear

increase in performance with the number of nodes. In addition, the cluster interconnect

should provide a reliable network without additional software overhead for safe data

transmission.

40

Congestion Control

5
o
■D

linear increase till packets
start getting lost or when it
reaches maximum allowable
window size

exponential increase

half window size

when congestion
first occurred

0 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15

window size 1 2 4 8 16 32 33 34 35 36 37 38 39 40 41 42

Round-trip times

Figure 2.12: Congestion control in TCP.

41

FAST ETHERNET

Fast Ethernet is a local area network transmission standard that provides a data rate of

100 megabits per second (Mb/s). In shared Ethernet technology, data packets are

visible to every other device in the network on a shared medium. Shared network

media create unnecessary traffic and reduce network performance. Total aggregate

bandwidth is limited to lOOMb/s; achievable bandwidth is significantly less (30-

40Mb/s) due to contention. Switched media are becoming more prominent with the

increasing size of networks and demand for network bandwidth.

Switches work by dividing a single large network into smaller, less congested LANs

and passing data packets from one segment to another. A switch provides the

capability to increase the total LAN bandwidth because it allows simultaneous

switching of packets between its ports. The switch determines the exact destination for

the data and transmits it only to the segment where the device is attached. A switch

can also handle multiple transmissions at one time. Fully switched networks are

becoming common as equipment costs continue to fall, where every host's connection

to the network is a dedicated point-to-point link between host and a network switch.

When point-to-point links are used, the links can be bi-directional. Since there is no

contention on each link, most of the available bandwidth is usable. Switched Fast

Ethemet links operate at 200Mb/s (bi-directional or full duplex, with lOOMb/s in each

direction).

42

In a switched network, bandwidth limitations generally occur at a higher level in the

network topology. For example, a 32-port Fast Ethernet switch could see transient

traffic to and from all of its ports simultaneously of 3.2Gb/s (32 x lOOMb/s, assuming

all traffic originates and terminates at hosts directly connected to the switch). If the

switch's design allows a maximum aggregate bandwidth of 2.5Gb/s (a common

limitation in low-cost switches), 600Mb/s of the traffic cannot be served. In this case,

packets will be dropped by the switch causing timeouts in the TCP/IP implementations

in the hosts and a subsequent reduction in traffic.

Two types of architectures determine switching applications and performance: cut-

through and store-and-forward [28].

• Cut-through switching starts sending packets to the destination port as soon as they

enter a switch. This reduces transmission latency between ports. In this

architecture, there is no error check and so it can propagate bad packets to the

destination port.

• Store-and-forward switching buffers incoming packets in memory until they are

fully received. A cyclic redundancy check (CRC) is run on the packets. Since the

packets are buffered in memory, this type of operation has high latency that is

proportional to the frame (packet) size. This latency reduces bad packets and

collisions that can adversely affect the overall performance of the segment.

A switching technique called threshold or adaptive switching takes advantage of both

of the above techniques. The switch first starts with cut-through switching but

43

I

implements a CRC check. In case there is large number of errors, a store-and-foiward

technique is used until the error rate is reduced. Once this occurs, the switch changes

modes to cut-through switching.

Network switches typically contain a small amount of memory to support store and

forward operations. This allows the switch to temporarily queue packets while waiting

for opportunities to send (forward) the packets to their destinations. Some

manufacturers advertise the memory buffer size available to support store and forward

operations, but others do not. Manufacturers may also advertise 'non-blocking'

performance or bandwidth, which is the peak bandwidth the switch can support

without restoring to store and forward operation. A few vendors provide equipment

with sufficient non-blocking bandwidth to guarantee that all packets will be properly

routed; this is the exception rather than the rule. The most important criterion for

selecting a switch for our application is that the switch should not drop packets. A

second criterion is the latency of the switch.

ATM

Asynchronous transfer mode (ATM) is a high-performance switching technology.

ATM breaks up the data to be sent into 53 byte cells and transports it over the physiczd

layer. At the receiving end, the cells have to be reassembled.

I

Every ATM cell consists of a 5-byte header and 48-b)^e payload (Figure 2.13). This is

an approximate overhead of 100 x 5/53 = 9.43%.

44

< -^x >►

HEADER PAYLOAD

< >
53 bytes

Figure 2.13: ATM cell.

The header consists of the following fields - flow control (4 bits), virtual path

identifier (8 bits), virtual channel identifier (16 bits), payload type (3 bits), cell loss

priority (1 bit) and cyclic redundancy check (8 bits). The 48-byte payload contains the

information that has to be transmitted. Since the cell is of fixed size, long frames never

delay communication.

ATM is a switched network technology, and all links are point-to-point. Since the cells

have a fixed format and a fixed length, switching is simpler than that for Ethernet, Fast

Ethernet and Gigabit Ethernet. Also since it is a switch-based technology, ATM gives

higher aggregate bandwidth than a shared resource solution.

ATM is a circuit-switched, rather than a packet-switched, technology. Calls (circuits)

may be set up and brought down dynamically, but this process incurs a performance

penalty. For data networks, ATM networks frequently employ LAN Emulation

(LANE), which imposes its own performance limitations, as discussed in the section

on LANE. '

45

An important feature of ATM is the sender's ability to negotiate with the network for a

connection, or virtual circuit, to its destination. It can specify the speed of connection,

the quality of service and the type of service. This is useful since ATM can be used for

all traffic types - voice, data and video and each of them has different requirements.

ATM Architecture

ATM is a layered architecture allowing multiple services such as voice, data and

I
video, to be mixed over the network. The different layers are shown in Figurd 2.14.

i
The Adaptation layer assures the appropriate service characteristics and divides all

i
types of data into the 48-byte payloads that make up the ATM cell. These are passed

down to the ATM layer that appends the 5-byte header information.

ATM Adaptation Layer

ATM Layer

Physical Layer

Figure 2.14: The ATM Network Architecture.

46

The header ensures that the cell is sent on the right connection. The Physical!layer

receives the cell from the ATM layer, converts it into electrical signals and passes it

over the physical network.

LAN Emulation (LANE)

There has been a growing trend towards ATM networks due to its high bandwidth and

scalability. ATM supports services for all traffic types - video, data and voice. A large

portion of the Internet backbone and the high bandwidth connections to this backbone
I

are now ATM connections. However, although ATM to the desktop was initially
I

considered to be a leading contender for next generation networks, switched Fast

Ethernet and Gigabit Ethernet have largely overtaken its role. To a large extent, ithis is

due to the complexities and limitations of LANE over ATM. The basic architecture of

ATM differs from the traditional LAN technologies. While ATM is a connection-

oriented protocol, LANs are traditionally connectionless. In order to use the available

i

LAN resources, it is necessary to emulate the services of existing LANs across an

ATM network. Emulation of some services, such as multicast, is quite difficult under

ATM.

LANs are connectionless whereas ATM technology is connection oriented. Broadcast

and multicast are features of traditional LANs and since ATM is connection oriented,
ia different approach has to be used for these features. LAN MAC addresses arej stored

in the adapter card and so do not change. An ATM adapter's address is determined by
i
!

47 I

I

i

the switch to which it is attached. If ATM is used with existing LANs, it must have a

database to map from LAN addresses to ATM addresses.

LANE follows a client/server model, with multiple clients connecting to LAN

Emulation components. LANE defines three different types of components: the LAN

Emulation Server (LES), the Broadcast and Unknown Server (BUS), and the LAN

Emulation Configuration Server (LEGS). The functions of each of these components

are summarized in Figure 2.15.

LANE provides MAC to ATM address resolution. This introduces latency, thus

affecting the network performance. LANE uses network layer routing. As the number

of hosts increase, the computational requirements to calculate routes among different

hosts and the memory requirements to store these routes also increases. It could

exceed the capacity of the routers and so scalability is limited. The broadcast server

could be another performance limitation. Since this implementation does not use any

ATM point-to-point connections, it provides a negligible advantage over a traditional

LAN.

MYRINET

Myrinet is a local area networking technology based on the technology used for packet

communication and switching within massively parallel processors. A Myrinet link is

a full-duplex pair of 1.28Gb/s point-to-point channels [25].

48

^ LAN ^ • Initialization

[Emulation \ • Address registration

\ Server (LES) I • Address resolution

/ • Data forwarding

> <

/ L/tN \ • Address resolution
[Emulation I • Data Forwarding
V Client (LEG) y • Other control

3
3

3

functions

3
3

3
3

3

^ LANE ^ y Broadcast \
j Configuration 1 f Unknown \
V Server (LEGS) y V Server (BUS) J

• Provides configuration • Flood unknown
information to clients destination traffic

• Assign individual LAN • Forward multicast
Emulation clients to and broadcast
particular Emulated traffic to clients of
LAN a specific ELAN

Figure 2.15: LANE Components.

49

A data-communication, flow-control unit in Myrinet is called a flit. Each flit is either a

byte of data or a control symbol. Control symbols are used for flow control, to mark

packet boundaries, and to indicate error conditions. Myrinet link has very low bit error

rates, usually below 10"'^.

A Myrinet host interface is controlled by a general-purpose microprocessor called a

LANai. The LANai executes a Myrinet control program (MCP) in order to handle

sending, receiving and buffering of packets. It also performs network monitoring and

mapping functions.

A Myrinet packet consists of a header, payload and a trailer. The header is a minimum

of four bytes long. It consists of the source route (zero or more bytes) and the packet

type (4 bytes). The payload of a packet is of arbitrary length. Myrinet computes a CRC

on the entire packet including the header at each link because the header is modified at

every switch. If the CRC on a packet is incorrect when it enters a switch, it will be

incorrect in the same bit positions when it leaves the switch. Thus, if there is an error

on any link on a routing path, the error can be detected at the destination. The CRC is

sent in the trailer. Two packets are separated by the GAP control symbol.

Myrinet uses a crossbar switch and cut-through routing. When a packet reaches the

switch, the destination port is extracted from the header. Myrinet switches use a

relative addressing scheme to route packets from one port to another inside the switch.

The output port is interpreted as an offset from the message's input port.

50

If the output port required by a message is being used, the switch uses flow control to

block the incoming message. Flow control is accomplished on Myrinet channels by

the receiver injecting STOP and GO control symbols into the stream being produced

by the sender of the opposite-going channel [34]. Flow control applies only to data

packets. Control symbols cannot be blocked using flow control and have higher

priority over the data packets. Every link has flow control, so the sender will

eventually be blocked if the output port remains unavailable. This protocol ensures

that the network never drops a message. Contention for a receiver can reduce the flow

of traffic from a sender. This may be problematic in the design of parallel algorithms.

The absence of buffering means the effect of network loads is passed back at least to

the host/network interface of the sender. This will probably occur more frequently in a

Myrinet based parallel machine than one using store and forward technology. Whether

this affects performance is unknown. This is one of the effects this research attempts

to measure.

51

CHAPTERS

EXPERIMENTAL DESIGN

ARCHITECTURE

The recommended implementation of the CODIS parallel search server is a multi-level

parallel machine. The machine will consist of a number of Linux clusters with 4-8

hosts in each cluster. The number of clusters will depend on the size and complexity

of the database.

The system consists of a root server, which divides the database and the processing

load between the various clusters, and one or more clusters of 4-8 hosts as shown in

Figure 3.1. The entire system operates using the Parallel Virtual Machine (PVM)

parallel-computing environment.

Each cluster consists of 4-8 nodes. Each node may have dual processors and will

implement a database Search Queue. Within the cluster the hosts will be

interconnected using 100 base-TX Fast Ethernet through redundant network switches

as shown in Figure 3.2 and Figure 3.3.

52

EXTERNAL NETWORK

ROOT

HOST

SWITCH

SWITCH SWITCH
• •

DATABASE

SWITCH

CLUSTER \ / CLUSTER
CLUSTER

Figure 3.1: Recommended implementation of CODIS parallel search server.

53

SWITCH SWITCH

NODES

Figure 3.2: Redundant nodes connected through redundant network switches.

54

1 Gbps bi-directional

SWITCH

100 base-TX

Fast Ethernet

• •

EACH HOST RUNS A SEARCH QUEUE

Figure 3.3; Architecture of each cluster.

55

The CODIS database will be partitioned and each partition will reside on the hosts of

one cluster. Within each cluster, searches will be performed in parallel through load

balancing and the generation of search requests. Searches initiated by the root host

will be performed in parallel on independent partitions of the database across all

clusters.

A high performance network switch, most likely providing Gigabit Ethernet service to

each cluster's network switches will connect the parallel machine's clusters and its

root host. This switch is anticipated to provide at least 16Gbps non-blocking

bandwidth. To address security issues, either the root host or a network switch will be

configured as a network filter to allow packets to or from the external network to only

travel from or to the root host. The clusters of hosts will not have access to the

external network.

TEST MACHINES

The benchmark tests for Fast Ethernet and Myrinet were done on identical machines to

give an objective comparison for the two interconnects. Eight nodes of the

Tennessee/Oak Ridge Cluster (TORC) [26] were used. TORC is a set of dedicated

clusters of Linux/NT PCs used for research in parallel computing and applied math

and scientific computations. The compute nodes used were dual processor Pentium HI

550MHz computers running Red Hat Linux release 6.1.

56

The Fast Ethernet interface uses a 16-port Fast Ethernet switch (BayNetworks 350 T).

This switch cost $1744 US when it was purchased. The network interface card is the

3Com EtherLink 10/100 PCI NIC, which cost approximately $133/node.

The Myrinet interface uses an 8-port Myrinet switch with 4 LAN ports and 4 SAN

ports and PCI LANI 4.1 cards. The switch costs $1600 and the network interface card

cost approximately $1300/node when they were purchased.

The machines (torcl through torc8) used in the benchmark tests are identical.

Specifications of these machines are given in Table 3.1.

Table 3.1: Specifications of the nodes in TORC cluster.

Architecture Dual processor Intel Pentium HI

Clock Rate 550MHz

Operating System Red Hat Linux release 6.1

Memory 512M

Network Connection Switched Ethernet / Myrinet

57

The same tests were repeated on the Fast Ethernet and ATM cluster in Laboratory of

Information Technology (LIT) at University of Tennessee, Knoxville. The Fast

Ethernet interface uses an 8-port Fast Ethemet Switch (Netgear 508), which cost

approximately $400. A 16-port switch from Netgear, the Netgear 516 cost $530.

Therefore the cost of this switch is almost half that of the switch used in the TORC

cluster. Also the network interface card used is the Netgear FAB 10, which costs less

than $25/node. The ATM infrastructure LIT uses is the Fore Systems ASX-200BX

that cost roughly $20-30K. Specifications of the machines in the LIT cluster are

summarized in Table 3.2.

PERFORMANCE TESTS

A new benchmark program was developed to evaluate the effect of various network

interconnection strategies on Parallel Virtual Machine (PVM) performance. The

following network interconnects were evaluated: Fast Ethemet, Asynchronous

Transfer Mode (ATM OC-3c) and Myrinet. We found that for small clusters (8 or less

hosts) and the communication strategy implemented in the benchmark, the costs of

ATM and Myrinet are not justified by a corresponding performance improvement. We

also observed the effects on the transfer rate of encoding instead of using the raw

format and of choosing the direct route option instead of normal route.

58

Table 3.2: Specifications of the nodes in LIT cluster.

Host Architecture Clock

Rate

Operating
System

Memory Network

Connection

stout Dual processor Sun
E450

250MHz SunOS 5.8 256M ATM 0C-3c

spliff Sun Ultra 1/140 143MHz SunOS 5.8 320M ATM 0C-3c

ice Sun Ultra 1/140 143MHz SunOS 5.8 160M ATM 0C-3c

linden Sun Ultra 1/170 166MHz SunOS 5.7 128M ATM OC-3c

dust Sun Ultra 1/170 166MHz SunOS 5.7 128M ATM 0C-3c

zero Dual processor Intel
Pentium IH

667MHz

Red Hat

Linux

Release 6.2

512M ATM 0C-3c

one

through
five

Intel Celeron 333MHz

Red Hat

Linux

Release 6.0

256M SW

lOObase-TX

six Intel Celeron 333MHz

Red Hat

Linux

Release 6.2

128M SW

lOObase-TX

gum Dual processor Intel
Pentium HI

350MHz

Red Hat

Linux

Release 6.2

256M SW

lOObase-TX

sycamore Dual processor Intel
Pentium II

333MHz

Red Hat

Linux

Release 6.1

256M ATM OC-3c

chestnut Dual processor Intel
Pentium n

333MHz

Red Hat

Linux

Release 6.2

256M ATM 0C-3c

59

The software exchanges data back and forth from every node simultaneously to

simulate the stress on the network fabric that is expected in the parallel search engine.

Each host measures the average, minimum and maximum times required to exchange

data between itself and every other node in the PVM environment. The node initiating

the send starts the timer, initiates a transfer and stops the timer when it receives the

data back, so the round-trip transfer time is measured. This also avoids the problem of

synchronizing clocks on two different machines. The data sizes vary from 40bytes to

40Mbytes. In order to ensure that anomalies in message timings are minimized the

tests are repeated 20 times for each message size. In order to measure the latency or

the timing overhead to establish communication, messages with a data size of zero

bytes are transferred between the nodes. An overview of the software is shown in

Figure 3.4.

The tests were repeated with a varying number of nodes to compare the effect on

bandwidth and latency of the number of nodes. Additional runs were done to evaluate

the effect of data encoding and also of using the direct routing option in PVM

communication.

From these timing studies, the following performance metrics can be obtained:

• the time taken to transfer zero bytes gives a measure of the latency (L), or timing

overhead required to establish and manage the communication process, and

60

Gather results from child tasks

PARENT

Spawn

Every child task transfers data to/from other children tasks

CHILD CHILD CHILD

Figure 3.4: Overview of the benchmarking software.

61

• the average round trip time (2D) of b bytes of data can be used to characterize the

end to end delay D(b) of the messaging system for a message of size b

D(b) = L+b/B

where the asymptotic bandwidth is B = bi/Di. Asymptotic bandwidth is calculated by

transferring a large amount of data, bi bytes. The average round trip time

corresponding to it is approximately 2Dl. When a large amount of data is transferred,

the effect of latency is minimized.

XPVM

XPVM [24] provides a graphical interface to the PVM commands. It can be used to

analyze the performance of a particular application and so could be used as a

management utility.

Figure 3.5 shows the Network view. This view displays the high-level activity on each

of the hosts in the PVM environment. Each host is represented by an icon, which

includes the architecture and the name of the host. In Figure 3.5, when an icon is white

in color, it depicts that there are no tasks on a given host. Yellow color indicates that at

least one task is executing PVM system routines. If the icon is green, it indicates that

at least one task is executing user computation.

62

The Space-Time view shows the status of individual tasks as they execute across all

hosts. The colors depict the same things as in network view. In this view there are

additional red lines, which depict message transfers as seen in Figure 3.6.

The Utilization View summarizes the space-time view at each time instant, showing

the number of tasks computing, in overhead, or waiting for a message at any given

time. This information is represented by three colored rectangles, stacked vertically at

each time instant, with computing on the bottom, overhead in the middle, and waiting

on top as seen in Figure 3.7. The default colors are green for computing, yellow for

overhead, and red for waiting.

Each of these views can be used to obtain a better understanding of the application's

execution. It can be used to identify the areas where overheads are more and to

improve the performance.

63

* ̂ M 1.5.5 CTlLsiK4rtXCi

[ita»-ji;. Teitt TII)«i'.v4ft''A'c Ccrrec^fC to WMI

Vl«8

Qpticr»...|

UNUX

one

LZNUX

three

LINUX

f is«e

FS
LINUX

fow

LINUX

Six

• Cln«| SuHee' T«8ist ;

aaiiffjg

iM r? "'.an;

Figure 3.5; Network View.

64

' xpviu misimi

j X P V t1 1,2,51 <PVH s,4,bet87) |TIB=0>;40CiOf]

j Error - infinite Zocw |
j jHeip: Left Mouse ftjtton Query. Middle Button Zoow, Right Button Urcoon

File...[Hoste...j Tasks,,.j Views.,.) Options...! R<sset....l H«lp,..j

j 1! i5j "J M r> Tltrta: 20,376900

{v PldylSck (>;erUrit?

Space-Tiftcr Tasks vs. Tim

f ive:p^'fi>tegt \
five:puw.te$t \
flwe:p'v'!iB_f«$t I
fi\/*e:pv(H.test j
five:Pvm^test :
fiverpvtti.test;
f i\/e:pv«n tf'-ST •
fsitr-:pww.tast}
fo»jr :pvft_test j
fotr:pvtii_test
foLir:ps,'w_te5;t
four-:pui».tact I
four:pvM.te5t ?
onejp'^m test2 |
■i>r»e:pvm.te5t2!
on©: F«/t« ..tests j
cmipvw,tests j
one:pvj«..tMt5 5
cmejpvfiutest^i •
5lx:p';'ft_test2
5:ix:pV«..t«t2
six:pvw..testj^
slx:pv»fi.tests
Si>::p-.;»_te3t2 c
siz:p'.'ift_te5t2 ■
t|irc«:p7w_te5 i
trreetpvm.tes;
thr©e:pvm_tes •
tlveejpvo-.tes .
three: pvni_te.' 1
tr"iree:p'.'iii_te-3 ^
two:pvi't_:;ett21
ttJo:pv#._te.st2 >
ttfo:pvjfi_test^' *
tM^i:p'^/M^test2
two:p'/w_test2
tijotpvw tests

=3^

cznka

-4 iClose} 4=(^
Vieu Info: Qua'y Ti«e; <ii.398795

driet> unc£tf:i^^ radiooa;> J jTciQet:^:192. •>} ''jy Microsoft Wo;,,i|3gsee

Figure 3.6: Space-Time View.

65

utilization

UtllU'Stlon Tiffie

N 51

> ' 1)< t fli i« I IHK II 1 III H 4ni

Uaitjri9|CcMnPutinc

Figure 3.7: Utilization View.

66

CHAPTER 4

RESULTS AND DISUSSIONS

The timing results of the benchmark are used to build an Excel pivot table. An

example of such a pivot table is shown in Figure 4.1. The timing results have also

been represented in the form of bubble charts [A.1-A.7]. An example bubble chart is

shown in Figure 4.2. A description of how one should interpret the bubble charts is

explained in the appendix. Bubble charts give a better view of the round trip times

between two nodes. The area of the circle is proportional to the round trip time. A

smaller circle is always desirable. When calculating the average round trip times,

measurements that are significantly smaller or larger than the average, are neglected.

This minimizes the effect of variations in the network traffic.

In the following sections, we evaluate the effect of encoding and direct routing on

transfer rates for Fast Ethemet, ATM and Myrinet. We also study the latency and the

transfer rates for each of these networking technologies. The benchmark tests include

the comparison of Fast Ethemet and Myrinet on the TORC cluster, ATM and Fast

Ethemet on the LIT cluster. The comparison of ATM and Fast Ethemet on the LIT

cluster is limited because of the differences in the processors used for the benchmarks.

67

Average of Average To

From Length tord torc2 torc3 torc4 Grand Total

tord 10 0.00056285 0.0010875 0.00377245 0.0011048 0.0016319

ICQ 0.000597 0.0014975 0.001101 0.0012469 0.0011106

1000 0.0007269 0.0027814 0.0025913 0.0029256 0.0022563

10000 0.00403 0.0238441 0.0249794 0.0255792 0.019608175

100000 0.0496516 0.251886 0.268647 0.265269 0.2088634

1000000 0.479179 2.44642 2.58829 2.68785 2.05043475

10000000 4.88151 22.5655 27.533 28.7011 20.9202775

tord Total 0.77375105 3.613288071 4.34605445 4.526439357 3.314883232

torc2 10 0.0010564 0.0006448 0.0033613 0.00103465 0.001524288

100 0.001206 0.0006007 0.00110915 0.00122515 0.00103525

1000 0.00272665 0.00082845 0.0025631 0.0026573 0.002193875

10000 0.0227084 0.0045754 0.0239553 0.0242841 0.0188808

100000 0.23966 0.0544529 0.255194 0.238586 0.196973225

1000000 2.39364 0.46909 2.49731 2.49629 1.9640825

10000000 24.4374 4.69811 26.278 26.4468 20.4650775

torc2 Total 3.871199636 0.746900321 4.151641836 4.172982457 3.235681063

torc3 10 0.00106505 0.0010559 0.00049845 0.00139395 0.001003338

100 0.00118695 0.0013969 0.0005069 0.00128035 0.001092775

1000 0.00263635 0.0037856 0.00074145 0.0029703 0.002533425

10000 0.0204525 0.023496 0.00292925 0.0264607 0.018334613

100000 0.215889 0.258407 0.0372984 0.275224 0.1967046

1000000 2.09506 2.40955 0.363021 2.70057 1.89205025

10000000 21.455 25.1896 3.7725 28.8193 19.8091

torc3 Total 3.398755693 3.983898771 0.596785064 4.546742757 3.131545571

torc4 10 0.0016182 0.00100785 0.0008564 0.00030655 0.00094725

100 0.000998 0.00125155 0.00109235 0.0003242 0.000916525

1000 0.00234925 0.0026558 0.002597 0.00046275 0.0020162

10000 0.0220697 0.0238206 0.0210936 0.0028549 0.0174597

100000 0.237099 0.238885 0.224271 0.0367746 0.1842574

1000000 2.33475 2.46307 2.16753 0.365577 1.83273175

10000000 23.5167 25.7966 23.1505 3.69002 19.038455

torc4 Total 3.730797736 4.075327257 3.652562907 0.585188571 3.010969118

Grand Total 2.943626029 3.104853605 3.186761064 3.457838286 3.173269746

Figure 4.1: Excel Pivot Table.

68

Maximum Delay Tlme=30.576200 seconds(Fast Ethernet)

Minimum Delay Time=3.531330 seconds(Fast Ethemet)

Figure 4.2: Example Bubble Chart

69

TIMING SCENARIO I: EFFECT OF ENCODING

Two separate runs of the benchmark software were performed on 8 nodes with the

Fast Ethernet interconnect on the TORC cluster - one with data being transferred in

the raw format and the other with data encoding. The raw format can be used only

when a homogeneous cluster is used.

The comparison of delay times with encoding and using raw format for varying

message sizes is shown in Table 4.1. Figure 4.3 depicts the delay and Figure 4.4 shows

the transfer rates obtained with raw and encoded formats.

As expected, sending data using raw format is more efficient than encoding it. From

the results, it can be seen that on an average, the raw format improves communications

data rates by 20% over the encoded transfer method. The improvement in performance

when using raw format is shown in Figure 4.5. The raw format may not be used,

however, if the cluster is heterogeneous.

When sending data, PVM has to allocate the buffer, insert the buffer in sending queues

and pack data in the buffer in an architecture independent format (if it has not been

explicitly set to send them in a raw format). This requires time. Comparing the

columns for delay with encoding and delay with raw format, we can see that for short

messages there is no big improvement, probably because buffer management takes a

significant fixed amount of the time.

70

Table 4.1: Comparison of delay times with encoding and using raw format.

Bytes
Transferred

Delay with
encoding (s)

Delay with raw
format (s)

Ratio

(encoding/raw)

40 0.0007254 0.00071105 1.020223051

400 0.0005705 0.00054914 1.038900741

4K 0.0013948 0.00118727 1.174822294

40K 0.0133012 0.01065752 1.248061082

400K 0.1367898 0.10972358 1.246676764

4M 1.3791657 1.10355937 1.249743056

40M 15.285612 11.3410066 1.34781794

71

I I
40K 400K 4M

transferred

1th encoding and using raw format

[□With encoding MRaw fornnat|

400 4K 40K 400K
Bytes transferred

4M 40M

Figure 4.4; Comparison of transfer rates with encoding and using raw format.

25

Q.
20

15D)
a

10

Q.

100 1000 10000

Bytes being transferred

100000 1000000 1000000 1E+08

0

Figure 4.5: Improvement in performance using raw format over encoded format.

74

TIMING SCENARIO II: EFFECT OF DIRECT ROUTING

PVM can communicate between the tasks using the normal mode, by which the tasks

communicate with their local daemons and the daemons communicate with each other.

Another option for small cluster of machines is the direct route mode by which the

tasks establish a direct TCP connection. The benchmarks were run on 8 nodes with the

Fast Ethernet interface on the TORC cluster to evaluate the improvement in

performance using the direct route mode.

Table 4.2 and Figure 4.6 compares the delay times obtained with normal and direct

routing. The comparison of transfer rates using the two different modes of

communication is shown in Figure 4.7.

From the results, when using the direct route method, the time taken to transfer a

certain number of bytes is approximately 70% of the time taken to transfer them using

the normal route method. In other words, direct routing makes communication 40%

faster than normal routing. The improvement in performance with direct routing over

normal routing is shown in Figure 4.8. The curve in Figure 4.8 shows an increase in

improvement in performance first, and then it reduces and later increases again. We

repeated the tests again to verify if the shape of the curve was consistent. On repeating

the measurements it was observed, that the improvement in performance is always

around 40% and that the shape of the curve varies. Therefore, we can conclude that the

shape of the curve is not significant in this case.

75

Table 4.2: Comparison of delay times with direct routing and normal routing.

Bytes
Transferred

Delay with direct
route (s)

Delay with
normal route (s)

Ratio

(direct/normal)

40 0.00052961 0.00071105 0.744826

400 0.000374743 0.00054914 0.682418

4K 0.00087466 0.00118727 0.736701

40K 0.00838824 0.01065752 0.787072

400K 0.081123936 0.10972358 0.739348

4M 0.800975242 1.10355937 0.725811

40M 7.749094297 11.3410066 0.683281

76

□ Direct Route ■Normal Route

40 400 4K 40K 400K 4M 40M
Bytes transferred

Figure 4.7: Comparison of transfer rates with direct routing and normal routing.

40

350) 0)

o c
^ n

30

E I 25
- o

S> t: 20
D) 0)
•0 Q. H ITt; 15

10

100 1000 10000 100000 1E+06 1E+07 1E+08

Bytes being transferred

Figure 4.8: Improvement in performance with direct routing over normal routing.

79

The improvement in performance is obvious because with the direct route a single

TCP connection is enough to communicate between the tasks whereas in the normal

route, two unix domain socket connections and two UDP connections are needed.

Although there is an improvement of performance, direct routing is normally not used

because of the drawbacks of TCP. TCP opens a file descriptor for every connection.

The operating system limits the number of opened file descriptors. Also since TCP is

connection oriented in a parallel machine of N tasks, it would need to establish N(N-

l)/2 connections, which can be a huge overhead.

TIMING SCENARIO III: LATENCY STUDIES

COMPARISON OF LATENCY ON FAST ETHERNET AND MYRINET ON TORC

In order to measure latency of Fast Ethernet and Myrinet, messages with a data size of

zero bytes were sent to/from the nodes on the TORC cluster and the timing was

measured. The number of nodes for the tests used varied from 2 to 8, so the effect of

the number of nodes used during communication could also be evaluated.

Table 4.3 and Figure 4.9 show the comparison of latency for Fast Ethernet and

Myrinet on the TORC cluster.

80

Table 4.3: Comparison of latency of Fast Ethernet and Myrinet on the TORC cluster.

Number of

nodes

Latency for
Ethernet (s)

Latency for
Myrinet (s)

Ratio

(Ethernet/Myrinet)

2 0.000325959 0.000319909 1.018912

4 0.000524429 0.000487037 1.076776

6 0.000578377 0.000496902 1.163966

8 0.000607737 0.00048973 1.240963

81

IB Fast Ethernet BMyrinet|

T3

o 0.0004

o 0.0003

I
I I
II

I
I

I I I
4 6

Number of nodes

Figure 4.9: Comparison of latency for Fast Ethernet and Myrinet on TORC cluster.

The results show higher latency for Fast Ethernet as compared to Myrinet. The

improvement in latency times of Myrinet over Fast Ethernet is shown in Figure 4.10.

Myrinet specifications give a very low latency for Myrinet networks, but the results

don't support the claimed specifications. One of the reasons could be that these values

are not the measure of latency times for the network only. The values also include the

PVM overhead of packing data and initiating transfers.

LATENCY MEASUREMENT ON ATM CLUSTER AT LIT

The same latency tests were carried out on the ATM cluster at LIT. The tests are

repeated for 2 and 4 nodes. The latency values observed with ATM cannot be

compared with the other testing scenarios for latency as the ATM cluster at LIT

consists of slower processors. As seen in Table 4.4 and Figure 4.11, latency is quite

high. This could be attributed to the fact that ATM delivers 53-byte packets even if

data size is very small. Also, this latency time includes the PVM overheads for

packing and unpacking data.

COMPARISON OF LATENCY OF FAST ETHERNET ON TORC AND LIT

CLUSTER

The Fast Ethemet switch used in the LIT cluster (Netgear 508) is cheaper than the one

used in the TORC cluster (BayNetworks 350 T). Also, the nodes in the TORC cluster

83

25

E
0) 0) 20
> o
o c
V (0

II 15
- o
0) t

n Q. 10

Q.

0

4 5 6

Number of nodes

Figure 4.10: Improvement in performance of Myrinet over Fast Ethernet on TORC

cluster.

Table 4.4: ATM Latency with varying number of nodes.

Number of nodes Latency (s)

2 0.001799

4 0.002817

84

m

m

are Intel Pentium in 550MHz dual processors whereas the nodes in the LIT cluster are

Intel Celeron 333MHz. These results evaluate how the performance is affected on

using a cheaper switch and slower processors. The latency tests were carried out on 2,

4 and 6 nodes of the LIT cluster and compared with the results obtained with the

TORC cluster as shown in Table 4.5 and Figure 4.12.

The results show that LIT cluster has a latency of approximately 2.5 times that of the

TORC cluster. The increase in latency with the LIT cluster when compared with the

TORC cluster is shown in Figure 4.13. Each node of the TORC cluster costs

approximately 3-4 times a node of the LIT cluster. The difference in cost gets more

significant with increasing number of nodes. But our decision for using a cheaper switch

cannot be based only on latency measurements. We need to see the maximum transfer

rates and then decide if a cheaper switch would be a better altemative.

TIMING SCENARIO IV; EFFECT OF MESSAGE SIZE ON TRANSFER

RATES

COMPARISON OF EFFECT OF MESSAGE SIZE ON TRANSFER RATES FOR

FAST ETHERNET AND MYRINET ON TORC CLUSTER

Benchmark tests were repeated on 2 (Figure 4.14), 4 (Figure 4.15), 6 (Figure 4.16) and

8 (Figure 4.17) nodes respectively. Messages of sizes varying from 40 bytes to

86

Table 4.5: Comparison of latency of Fast Ethemet on LIT and TORC clusters.

Number of nodes

Latency for
Ethernet on LIT

(s)

Latency for
Ethernet on TORC

(s)

Ratio

(LIT/TORC)

2 0.000919239 0.000325959 2.820111412

4 0.001065943 0.000524429 2.032578487

6 0.001492774 0.000578377 2.580969692

87

200

180

160

140

120

100

80

O) 60

40

20

Number of nodes

Figure 4.13: Percentage increase in latency for Fast Ethernet on LIT cluster over

TORC cluster.

89

□ Ethernet(Mbps) ■Myrinet(Mbps)

60

5" 50

I~ 40
«

a

s 30
M

a 20

10

Data size in bytes

Figure 4.14: Transfer rates for Fast Ethernet and Myrinet with 2 nodes

□ Ethernet(Mbps) ■ Myrinet(Mbps)

Data size in bytes

Figure 4.15: Transfer rates for Fast Ethernet and Myrinet with 4 nodes

□ Ethernet(Mbps) ■Myrinet(Mbps)

400 4K 40K 400K 4M 40M

Data size in bytes

Figure 4.16: Transfer rates for Fast Ethernet and Myrinet with 6 nodes

^ Ethernet(Mbps) ■ Myrinet(Mbps)

Data size in bytes

Figure 4.17: Transfer rates for Fast Ethernet and Myrinet with 8 nodes.

40Mbytes were transferred, and round trip times were measured. Using these timing

results, transfer rates were calculated.

Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 can be summarized as in Figure

4.18. The graph in Figure 4.18 is a plot of ratio of transfer rates for Myrinet to Fast

Ethernet versus bytes being transferred.

The results show that Myrinet performs better than Fast Ethemet but the performance

is on the average only 30-50% better. Performance is affected by both network

constraints and host processors, memory and bus clock rates. The first, however, is

probably a realistic prediction of actual performance for communications-intensive

applications.

EFFECT OF MESSAGE SIZE ON TRANSFER RATES FOR ATM ON LIT

CLUSTER

Messages of varying sizes from 40 bj^es to 40 Mbytes were sent to and from the

nodes and the round trip times measured. Using these timing results, the transfer rates

for ATM were evaluated and plotted as shown in Figure 4.19 and Figure 4.20.

92

-2 nodes nodes 6 nodes --»^8 nodes

40K 400K

Bytes transferred

1.8
n.

1.6 ■-

-11=
£ 1.4 ■- u c

!y 1.2--
IT

Is 1 -■
I ®

0.8 -- u tj

Y
0.6 -

400 40M

Figure 4.18: Plot of ratio of transfer rates for Myrinet to Fast Ethernet versus bytes

transferred.

93

4K 40K 400K

Bytes being transferred

Figure 4.19: Transfer rate for ATM with 2 nodes on the LIT cluster.

I
■1 "

4K 40K 400K
Bytes being transferred

Figure 4.20: Transfer rate for ATM with 4 nodes on the LIT cluster.

COMPARISON OF EFFECT OF MESSAGE SIZE ON TRANSFER RATES FOR

FAST ETHERNET ON TORC AND LIT CLUSTER

This comparison together with the latency comparison can help us to decide if a

cheaper switch could be used as an alternative to the more expensive Fast Ethernet

switch and how much degradation in transfer rate would it lead to. But this

comparison is limited as the processors used in the TORC cluster are much faster than

the ones used in the LIT cluster.

As seen from Figure 4.21, Figure 4.22 and Figure 4.23, the transfer rates observed on

the TORC cluster is 1.5-3 times that obtained on the LIT cluster. Each node of the

TORC cluster is 3-4 times more expensive than the LIT ones. This difference in

transfer rates could be mainly due to the machine differences between the two clusters.

Additional work is necessary, using the same host hardware for all tests, to establish if

there is a benefit to more expensive Fast Ethemet switches.

TIMING SCENARIO V: EFFECT OF NUMBER OF NODES ON TRANSFER

RATES FOR LARGE MESSAGE SIZES

The benchmark studies were repeated for 2, 4, 6 and 8 nodes on the TORC cluster

with a fixed message size of 40 Mbytes.

96

□ LIT cluster ■TORC cluster

Bytes being transferred

Figure 4.21: Comparison of transfer rates for Fast Ethernet on TORC and LIT cluster

with 2 nodes.

□ LIT cluster ITORC cluster

Bytes transferred

Figure 4.22: Comparison of transfer rates for Fast Ethernet on TORC and LIT cluster

with 4 nodes.

LIT cluster ■TORC cluster

Bytes transferred

Figure 4.23: Comparison of transfer rates for Fast Ethernet on TORC and LIT cluster

with 6 nodes.

As seen in Figure 4.24, transfer rate reduces as the number of nodes increase for large

message size. This is possibly due to the saturation of the switch's backbone or bus.

The effect could also result from contention for resources within the network switches

or host processors. We have yet not attempted to isolate the cause.

COST ANALYSIS

The generic PC implementation will consist of a control rack as shown in Figure 4.25.

The control rack will house either of the following high performance switches.

ATM switch, such as the Fore Systems (now Marconi) ASX-1200

Myrinet switch, such as Myricom's M2LM-Clos64

Gigabit Ethernet switch, such as Extreme Networks Summit 71

The control rack also houses the control processors, a tape backup subsystem, a video

and keyboard switch, and dual uninterruptible power supplies (UPS). The control

processor is specified as 1.4 GHz Pentium FVs with 2 GB of RAM and 54GB of hard

disk space.

□ Ethernet(Mbps) ■ Myrinet(Mbps)

Number of nodes

Figure 4.24: Effect on transfer rate with increasing number of nodes

(Bytes transferred 40 Mbytes)

Nccn ork Switch

'i' liiifniii

Video/Keyboard Switch

Control Processor

Tape Backup

UPS

UPS '

o

Figure 4.25: Control Rack.

This implementation can contain from one to eight PC racks, each housing eight rack

mounted dual processor PCs, a midrange switch and an UPS. The alternatives for the

Myrinet switch could be

• ATM switch, such as Fore Systems ASX-200

• Myrinet switch, such as Myricom's M2LM-Clos64

• Fast Ethernet switch, such as Netgear FS518T

One such rack is shown in Figure 4.26. The fully configured system with 8 racks will

look like Figure 4.27.

To compare the effect of the network hardware on the cost of a parallel computer

cluster, a hypothetical moderately sized cluster of 128 hosts is assumed. The cost of a

Myrinet network for a 128-host parallel machine is roughly $1,500 per host. A sample

configuration consists of 2 M2LM-Clos64 switches providing 64 LAN + 64 SAN

connections each ($40,000 each), 128 Myrinet network interface cards (NICs) at $995

per card, 32 5' SAN cables at $140, and 128 30' LAN cables at $160, totaling

$192,320 and supporting 128 hosts. The costs are current from the Myrinet website

[25]. The hardware for Fast Ethemet is substantially cheaper if unmanaged switches

are used in each rack of host computers. For example, 16 Netgear FS518T switches

can be used, each providing 16 ports of 10/100 (Fast Ethemet) and 2 10/100/1000

(Gigabit Ethemet) up-link ports, costing about $1300 each, with two Netgear FA310

(10/100) NICs installed per host at $25 each, an Extreme Networks Summit 71 switch

with 28 lOOObase-T Gigabit Ethemet ports at roughly $15,000, and 272 Cat-5/Cat-6

networking cables at $15 each, totaling $46,280. The cost figures are extracted from

101

PCO

« III

*''PC1

m nil

PCS

Cf PC3

Network Switch • '

PC4

III "If

»i«PCS

• nil C<

III V
II i>T<i

v

C« PC7

V

►:« UPS
111
o ■>!<■

• V

Figure 4.26: PC Rack

102

1
1
1
1

1
I
f

[Il " "I "1 - 1 "1' I: 1
: \

« D| " D|' "1 - 0|' 1 1- i| - 0| " "1 » n| -? D| - 1 1" [l| - D| •' D| " Dj " fl|" D|
LJ:

■- i: - 1 ' 1 ^ 1 " 1 ;■ 1' t'i
1: ■ 1 ■ 1 " "1 " f - 1 - ,
i; " 1 " ii| « D| - I ■ 1 " 1

1' 1 ■ 1 - ■] fl| - n " 1

.11,11,u

'Dl

Figure 4.27: Fully Configured System.

Price Watch [37], except from the Extreme Networks switch, which is from

discussions with a sales representative.

This is about $360 per host or over four times cheaper than a Myrinet solution. This

cost difference is diluted over the total cost of the parallel machines, since each host

costs roughly $2,500 to $4,500. At the low end of this range, the per-host cost of the

parallel machine is roughly $4,000 for a Myrinet topology, versus roughly $2,860 for

a Fast Ethernet/Gigabit Ethemet topology. Thus, the trade-off becomes whether a

faster network or more hosts in the parallel machine would be more beneficial for a

given application.

The Fast Ethemet solution that is outlined provides two full-duplex lOOMb/s

interfaces to each host, with each host connected to two unmanaged network switches

for automatic fail over redundancy on the switches. A total bandwidth of 400Mb/s is

available to/from each host. The Netgear FS518T provides 9.6Gb/s bandwidth on its

backplane and 2Gb/s bandwidth out of each rack of 8 hosts. In comparison, the

Myrinet solution provides 2.48Gb/s (1.28Gb/s full duplex) bandwidth to each host,

and 10.24Gb/s out of each rack of 8 hosts (due to the 20.48Gb/s maximum throughput

of the Myrinet Xbarl6 crossbar switch). On the surface, there is substantially more

bandwidth at all levels of the Myrinet network except the main switch. (The Extreme

Networks switch has a non-blocking bandwidth of 64Gb/s.) Based upon the

bandwidth to each host, Myrinet offers a 6.2x improvement in bandwidth for 4x the

cost. This decreases to a 2.6x improvement in bandwidth out of each rack (10.24Gb/s

104

/ 2Gb/s). At the level of the main switch, performance is difficult to compare due to

the difference in networking topologies. For Myrinet, all network traffic passes

through the two M2LM-Clos64 units, which have an aggregate bandwidth of about

160Gb/s. For the Fast Ethernet / Gigabit Ethernet solution, only a portion of the traffic

passes through the Extreme Networks switch, and the limitations of the switches in

each rack can impose a maximum of 32Gb/s load, which is well within the switch's

maximum bandwidth of 64Gb/s.

The results that have been presented using our benchmark indicate that the achievable

performance in a Linux cluster using Pentium HI processors favors the use of Fast

Ethernet and Gigabit Ethemet over either Myrinet or ATM (which has costs

comparable to or exceeding those of Myrinet). A Myrinet solution can be expected to

provide between 1.2-1.5x improved performance based upon the benchmarking

software discussed in Chapter 3. These measurements are for a Fast Ethemet topology

with only one connection to each host, rather than the two connections discussed

earlier, so even less improvement than is indicated by the test results can be expected.

We believe that for CODIS applications the equipment funds would be better spent in

acquiring additional or faster computer nodes in the parallel machine rather than

further improving network performance. In addition, the simplicity of cabling that is

possible with a Fast Ethemet or ATM application is lost in a Myrinet network, as is

partially indicated by the relative costs of the cables in the previous discussion.

Therefore, our recommendation is that a combination of Fast Ethemet and Gigabit

Ethemet be utilized for the parallel machine. This approach also provides a natural

105

migration path to Gigabit Ethernet. Gigabit Ethernet is currently in a very rapid

growth phase of its development and deployment. If the current trends continue, a

situation similar to what has occurred over the past couple of years with Fast Ethernet

is likely, in which the selection of available equipment increases and prices fall

dramatically.

SUMMARY OF RESULTS

The different testing scenarios and the conclusion derived from the benchmark studies

discussed in the previous sections can be summarized as in Table 4.6.

106

Table 4.6: Summary of the Different Testing Scenarios

1

Comparison of transfer rates using

raw format and encoding

Transfer rate is higher when raw format is

used. The percentage improvement increases

as the message size increases.

2

Comparison of transfer rates with

normal and direct routing.

Direct mode shows an improvement of

approximately 40% over normal mode.

3

Effect of number of nodes on

transfer rate for large messages.

Transfer rate reduces with increasing number

of nodes due to saturation of switch's

backbone.

4

Comparison of latency for Fast

Ethernet and Myrinet on identical

machines.

Latency of Fast Ethernet is higher than

Myrinet. The difference becomes prominent

with increasing number of nodes.

5

Performance of ATM switch on

LIT Cluster.

ATM shows high latency. Transfer rate

obtained is low. The performance is bad due

to LANE.

107

CHAPTERS

RECOMMENDATIONS FOR FUTURE RESEARCH

In this thesis, the following network interconnects - Switched Fast Ethernet, ATM and

Myrinet were evaluated. The cost and performance comparisons make Fast Ethemet

the best option for our parallel machine.

A networking method that has not been studied in this research is the Gigabit Ethemet.

Gigabit Ethernet technology had been gaining acceptance, and this could lead to price

reductions quite similar to the trend seen for Fast Ethemet. This means that Gigabit

Ethemet could be an option for network interconnects in our application. Tests should

be conducted to evaluate the performance of a Gigabit Ethemet switch interconnecting

the hosts using the benchmark software described in this research. It is expected,

however, that while Gigabit Ethemet will probably be a good choice for the network

uplink ports from each equipment rack containing eight computer hosts, it will prove

to be too expensive at this time to justify the benefit of Gigabit Ethemet connections to

each host.

Another interesting point would be to compare the performance of the cheaper Fast

Ethemet switches, such as the Netgear 508 and 516 (used in LIT cluster) and more

108

expensive switches, such as the BayNetworks 350 T (used in TORC cluster) with

identical hosts. The tests that were performed on these switches in this research

showed an improvement of approximately 1.5-3 when using the expensive switch;

however much or all of this improvement could be due to differences in host

processors. Testing both switches with identical hosts would help isolate the cause for

the improvement in performance. If the improvement is due to performance limitation

of the hosts, then a cheaper switch could be used in the final implementation of the

parallel machine.

109

BIBLIOGRAPHY

110

BIBLIOGRAPHY

[1].Lewis, M., and Cline, E., "PVM Communication Performance in a

Switched FDDI Heterogeneous Distributed Computing Environment,"

Proceedings of the IEEE Workshop on Advances in Parallel and Distributed

Systems, October 1993, pages 13-19.

[2].Michael, W., Cronin, J., and Pieper, K., FDDI: an introduction to fiber distributed

data interface, Digital Press, June 1992.

[3].Blade, E., et al., "An experimental assessment of network impact on cluster based

computing," Proceedings of the Gigabit Network Workshop, Toronto, Canada,

June 1994.

[4].Benner, A., Fibre Channel: Gigabit Communications and I/O for Computer

Networks, McGraw-Hill, November 1995.

[5].IBM, IBM Allnode Interconnect System: Overview. Part # 5702977, April 1994.

[6].Graphs comparing bandwidths using MPICH on LACE,

http://www.lerc.nasa.govAVWW/ACCL/PARALLEL/TIMING/iune96/graph.mpic

h.big.ps

[7].Graphs comparing bandwidths using PVM on LACE,

http://www.Ierc.nasa.govAVWW/ACCL/PARALLEL/TIMING/iune96/graph.pvm.

big.ps

[8].Kim, J., and Lilja, D., "Performance-Based Path Determination for Interprocessor

Communication in Distributed Computing Systems," IEEE Transactions on

Parallel and Distributed Systems, Vol. 10, No. 3, March 1999.
Ill

[9].Bell, J. "The HiPPI protocol", 1995.

[10]. Steed, M., "Performance Prediction of PVM Programs", Proceedings of the

l(f'' International Parallel Processing Symposium, April 1996.

[11]. Geist, A., et al., "PVM and MPI: a comparison of features", Calculateurs

Paralleles, Vol. 8, No. 2, 1996.

[12]. Jackson, W., "Network access speeds bureau's forensic data to law

enforcement officers," Government Computer News, Vol. 18, No. 34, October 11,

1999. http://www.gcn.com/vol 18_no34/com/788-1 .html

[13]. Bu5^a, R., High Performance Cluster Computing: Architectures and Systems,

Vol. 1, Prentice Hall, 1999.

[14]. Stevens, R., TCP/IP Illustrated - The Protocols, Vol. 1, Addison-Wesley,

1994.

J., Introducing Fortran 90. Springer-Verlag,[15]. Chivers, I., and Sleightholme,

Sept. 1995.

[16]. High Performance Fortran Forum, High Performance Fortran Language

Specification, IdvavxQiy 3\, 1997.

[17]. FBI Press Room, "DNA Indeii System", Press Release, October 13, 1998.
I

Website http://www.fbi.gov/pressmi/pressrel/pressrel98/dna.htm

[18]. Calle, D., "Supercomputers", Website

I
http://ei.cs.vt.edu/~historv/SUPERCOM.Calle.HTML

I

[19]. Top 500 Supercomputer List (November 2, 2000) Website,

http://www.netlib.org/benchmark/top500/top500.list.html

[20]. ASCI White Website, http://www.llnl.gov/asci/news/white news.html

112

[21]. Blue Gene Project Website, http://www.research.ibm.com/bluegene/

[22]. Beowulf Project Website http://www.beowulf.org

[23]. Dongarra, J., et al., "The Marketplace for High-Performance Computers",

Parallel Computing, 1999.

[24]. Beguelin, A., et al., PVM: Parallel Virtual Machine - A User's Guide and

Tutorial for Networked Parallel Computing, MIT Press, Massachusetts Institute of

Technology, 1994.

[25]. Myrinet Website, http://www.mvri.com

[26]. Tennessee Oak Ridge Cluster Website, http ://icl .cs .utk.edu/proi ects/torc/

[27]. Walker, D., et al., MPl: The Complete Reference, MIT Press, Massachusetts

Institute of Technology, 1996.

[28]. Riley, S., and Breyer, R., Switched, Fast, and Gigabit Ethernet, Macmillan

Technical Publishing, January 1999.

[29]. Siu, K., and Jain, R., "A Brief Overview of ATM: Protocol Layers, LAN

Emulation, and Traffic Management," Computer Communications Review (ACM

SIGCOMM), vol 25, no 2, April 1995, pages 6-28.

[30]. Birdwell, J., et al., "A Hierarchical Database Design and Search Method for

CODIS," Promega Conference, Orlando, Florida, September 1999.

[31]. Wang, T., et al., "CODIS Matching Algorithm for Large Databases," Fifth

Annual CODIS User's Group Meeting, November 18-19,1999.

[32]. Scientific Supercomputer Subcommittee of the Committee on Communications

and Information Policy, Supercomputing - An Informal Glossary of Terms.

113

[33]. Fosdick, L., and Jessup, E., "An Overview of Scientific Computing",

September 28,1995.

[34]. Boden, N., et. al., "Myrinet~A Gigabit-per-Second Local-Area Network,"

IEEE Micro, Vol. 15, No. 1, February 1995.

[35]. Fischer, M., and Dongarra, J., "Another Architecture: PVM on Windows

95/NT," October 4, 1996.

[36]. Dunigan, T., "Performance of ATM/OC-12 on the Intel Paragon," May 1996.

[37]. Price Watch Website, http://www.pricewatch.com

[38]. Sun Microsystems Inc, "XDR: External Data Representation Standard," June

1987, RFC 1014.

114

APPENDIX

115

APPENDIX

The bubble charts show the average round trip time between any two nodes for a

particular message size. In the timing studies, we obtain the round trip times for 20

ping-pongs between any two nodes. The area of the bubble is proportional to the

average delay time between the two nodes. The bubbles on the leading diagonal are

always smaller compared to the other bubbles in the chart because, the bubbles on this

diagonal represent the time required to send a packet to itself. If the nodes are

identical, it is expected that all bubbles be of comparable size. Each bubble chart can

be sununarized as a single point by calculating the average of each of the bubble sizes.

Bubbles, which are significantly larger or smaller, are not included when calculating

the average to minimize the effect of variations in the network traffic.

116

Fo»t Ethcrrct

Myrlnet
CN CO ^ CO CO

(\ ft n n n n (t it

0 O O O O O C O lord

V o Ci o O O toic2

(G) • V V V o o (orc3

0 0 (2) ^ 0 0 0 0 torc4

O O « o o o torcS

O O O O l^o) ® o o lorc6

O O O O . o I'O} Q torc7

O O O O O O O o torcS

Maximjm Delay Tlme=O.OCF610 s0conds(Fast Ethernat), 0.C22519 secords(Myrlnet)

Mil iiriii,rii Delcy TinicF0.00C343 seuui iila(FasL Elhcn itl), 0.00033S iieuui iiJs(Myri lel)

Figure A.l: Bubble chart for message size of 40 bytes and on 8 nodes of the TORC

cluster.

117

o
in
o

CO
o

oOOOOOOO
OoOOOOOO
OOoOOOOO
OOO oOOOO
OOOOoOOO
OOOOOOOO
OOOOOO oO
OOOOOOOo

Fast Ethernet

Myrinet

torcl

torc2

torc3

torc4

torcS

torc6

torc7

torc8

Maximum Delay rime=0.001472 seconds(Fast Bhernet), 0.001426 seconcls(Myrinet)

Minimum Delay Time=0.000350 seconcls(Fast Ethernet), 0.000459 seconcls(Myrinet)

Figure A.2: Bubble chart for message size of 400 bytes and on 8 nodes of the TORC

cluster.

118

lordn O c

O O O
O O O

o

o

o

o

oo

o

OOO o

Fast Bhernet

Myrinet

Maximum Delay Time=0.003157 seconcls(Fast Ethernet), 0.003174 seconcls(Myrlnet)

Minimum Delay Time=0.000506 seconcis(Fast Ethernet), 0.000498 seconds(Myrinet)

Figure A.3; Bubble chart for message size of 4 Kbytes and on 8 nodes of the TORC

cluster.

119

04
O

b

CO
O

o

o o

b

Fast Ethernet

Myrinet

O

lord

torc2

Q Q lorc3

D O O

D O O

o O O

3 O (Q) l(xc7

O O O O o

o

Maximum Delay Tlme=0.026840 seconcls(Fast Ethernet), 0.048506 seconds(Myrinet)

Minimum Delay Time=0.002934 seconds(Fast Ethernet), 0.003131 seconds(Myrinet)

Figure A.4: Bubble chart for message size of 40 Kbytes and on 8 nodes of the TORC

cluster.

120

o
CN
O

(D K OO
O O O
L- ^ l_
o o o

Fast Ethernet

Myrinet

0 (

lord

torc2

O O

O © O O O

^ O O O

o O O

0 torc7

OOOOOOO o

Maximum Delay Tjme=0.292469 seconds(Fast Ethernet), 0.488403 seconds(Myrlnet)

Minimum Delay Time=0.037129 seconds(Fast Ethernet), 0.039475 secondsCMyrinet)

Figure A. 5; Bubble chart for message size of 400 Kbytes and on 8 nodes of the TORC

cluster.

121

o
I.

o

o

o

u I U

1
© o

hw
O

O

oo
u

fe

Fast Ethernet

Myrinet

O

o

0

O n.

o i

O

U

o

o

tord

O torc2

torc3

Li o

O

o

o

uo

oo ooo o

torc4

torcS

torcB

1} torc7

O torc8

Ivlaximum Delay Tlme=2.939250 secondsCFast Ethernet). 4.192570 seconds(Myrinet)

Minimum Delay Time=0.367700 secondsCFast Ethernet), 0.424444 seconds(Myrinet)

Figure A.6: Bubble chart for message size of 4 Mbytes and on 8 nodes of the TORC

cluster.

122

<8 O
oo
u

h

Fast Ethernet

Myrinet

tordUOOO OD
O o OOOOOO
O O O O O O O
© O O O O O O
©OOO ̂ OOO

) torcS()) ((1) O (O) {T 1 O

o

J Ui

Maximum Delay Tlme=30.576200 seconds(Fast Bhernet), 23.080800 seconds(Myrlnet)

Minimum Delay Time=3.531330 seconds(Fast Hhernet), 3.651550 seconds(Myrinet)

Figure A.7: Bubble chart for message size of 40 Mbytes and on 8 nodes of the TORC

cluster.

123

VITA

Priyanka Dasgupta was bom on April 24, 1978 in Jabalpur, India. She received her

Bachelor of Engineering (B.E.) degree in Electronics and Telecommunications from

Government College of Engineering, Pane, India in May 1999. In August 1999, she

joined the Master's program in Electrical Engineering at University of Tennessee,

Knoxville. She began working for Laboratory of Information Technologies in January

2000 on the project ''Rapid DNA Identification for Forensic Application' funded by

the Federal Bureau of Investigation (FBI). Her Master's thesis was on Performance

Evaluation of Fast Ethernet, ATM and Myrinet under PVM. She graduated with her

Master's Degree in December 2000.

124

	Performance evaluation of Fast Ethernet, ATM and Myrinet under PVM
	Recommended Citation

	Performance evaluation of Fast Ethernet, ATM and Myrinet under PVM

