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Abstract

Quantitative Electroencephalography (qEEG) as a tool for the diagnosis of neurological and

psychiatric disorders is receiving an increased interest. While qEEG analysis is restricted to the

scalp, the recent development of electromagnetic tomographies (ET) allows the study of the

electrical activity of cortical structures. Electrical measures of a patient can be compared to a

normative database derived on a large sample of healthy individuals. The deviance from the

database's norms provides a probabilistic measure of the likelihood that the patient's electrical

activity reflects normal brain frmctioning. The focus of this thesis is the method for estimating

such deviance. The method currently employed estimates the mean and the standard deviation of

the normative sample. The deviance is then expressed in terms of z-scores. This method is

referred to as the parametric method. The acciuacy of the parametric method relies on the

assumption that the distribution of the normative sample is gaussian, but this assumption is not

always fulfilled in real qEEG and especially ET data. A new method based on percentiles ("non-

parametric") is proposed. The parametric and the non-parametric methods are compared using

simulated data. The accuracy of both methods is assessed as a function of normative sample size

and gaussianity for three different alpha levels. Results suggest that the performance of the

parametric method is unaffected by sample size (bigger than 100), but that non-gaussianity

jeopardizes accuracy even if the normative distribution is close to gaussianity. On the contrary the

performance of the non-parametric method is imaffected by non-gaussianity, but is a function of

sample size only. It is shown that, with n>160, the non-parametric method can be considered

always preferable. Results are discussed taking into consideration technical issues related to the

peculiar nature of qEEG and ET data. It is suggested that the sample size is the only constant

across EEG frequency bands, measurement locations, and kind of quantitative measiues. As a

consequence, for a given database, the error rate of the non-parametric database is homogeneous,

however the same is not true for the parametric method.
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Introduction

The comparison to quantitative Electroencephalography (EEG) norms is a very valuable tool in

both the electrophysiological research and clinical practice. Typically, the individual's

electroencephalogram is analyzed in the frequency domain by means of time series analysis

techniques such as the Discrete Fourier Transform (DFT), or the computationally advantageous

Fast Fourier Transform, also called FFT (Beauchamp, 1973; Brillinger, 1975; Lynn and Fuerst,

1989). A certain number of features are extracted from the Fourier cross-spectral matrix, each one

describing a particular feature of the brainwaves in a specified frequency range. These may

include univariate and multivariate measures of absolute power, relative power and mean

frequency of each electrode, in addition to coherence, phase and asymmetry of each electrode

pair. Each individual's quantitative feature is called a descriptor. Descriptors are compared to

norms derived under the same conditions from a sample of healthy "normal" subjects, allowing

the statistical estimation of the deviance from the population norms. For example, one is able to

estimate the individual's deviance of the magnitude in the alpha frequency range, or the deviance

in the phase relationship in the beta range between electrode pairs. A recent trend in the

electrophysiological literature is the derivation of norms for electromagnetic tomographic data

(Bosch-Bayard et al., 2001). Electromagnetic tomographies (ET) make use of the EEG potential

difference recording on the scalp to estimate the current density within the brain. Functional

images of the current density distribution are then superimposed onto MRI standard atlas

anatomical images (Talairach and Toumoux, 1988), providing true neuroimaging of

electromagnetic brain activity either in the time or in the frequency domain (Fuchs et al., 1999;

Pascual-Marqui, 1995, 1999; Pascual-Marqui et al, 1994). The derivation of norms for current

density data in analogous to the derivation of norms for qEEG. In the former, electrical activity is

not measured on the scalp at the electrode level, but estimated within the brain in discrete cubic

regions of arbitrary size called voxels. Since, typically, one defines thousands of voxels, but

makes use of only tens of electrodes, the comparison to ET norms poses more stringent statistical

problems then the comparison to the qEEG norms. In both cases the deviance from each norm is

usually expressed in terms of z-scores. QEEG and ET data is log-transformed in order to

approximate a gaussian distribution of the normative sample. Means and standard deviations of

the normative sample are computed for each norm and used as parameters for the z-score

standardization. This method assumes gaussianity of the sample distribution and hereafter will be



referred to as "parametric". The assumption of gaussianity is not always matched with real data.

This is particularly true in the case of ET data where there is a very high chance that among the

tens of thousands distributions of descriptors, some will not be gaussian. The aim of this thesis is

to propose an equivalent non-parametric method based on percentiles for the estimation of the

deviance from the norms. The method applies equally well to qEEG and to ET data. It is clear

that in comparing to EEG norms we make several assumptions on the nature of human EEG.

Essentially we assume that the human EEG is a stationary process with relatively high intra-

subjects and inter-subjects reliability. Before any statistical concern on the method to estimate

deviances it is important to assess the tenability of such assumptions. Most of the initial work in

this respect has been done and integrated by E. Roy John and his associates (Ahn et al., 1980;

John et al., 1977, 1980, 1988). First, it has been shown that quantitative EEG measures follow

developmental equations, meaning that the frequency composition of the EEG reflects the age

and the functional status of the brain. In other words, in normal condition, their normal values

depend on, and can be predicted by age (Ahn et al, 1980; John et al., 1980; Matuiek and Petersen,

1973). Usually the relationship is quadratic on the log of the age. For example, the dominant

frequency power of the normal EEG increases during brain development and declines slowly

after age thirty or so (Bosch-Bayard et al., 2001; John et al., 1987; Szava et al., 1994). As a result,

data from a wide age range database is modeled by means of polynomial regression equations in

order to take into account the age differences (John et al., 1980). There is now evidence

suggesting that EEG norms may vary slightly as a function of sex and hemispheric dominance

(Veldhuizen et al., 1993). If these results are replicated, corrections for these two factors should

be applied as well. Second, it is well known that the intra-subject spectral descriptors of the EEG

are consistent over short period of time, probably as a result of stable homeostatic regulations of

the neurotransmitters (Hughes and John, 1999). This is particularly true for the EEG recorded

during a resting state where the subjects have the eyes closed, and for relative power measures

(John et al., 1987; Matusek and Petersen, 1973). Another advantage of relative measures is that

they are independent from subjective factors such as skin and skull thickness, and from a global

scale power factor that increases inter-subjects variability (Hemdndez et al., 1994). For these

reasons qEEG normative databases are usually generated for the eyes closed resting state only,

and relative power measures are preferred. Third, normative quantitative EEG (qEEG) descriptors

were foimd to be independent from cultural and ethnic factors. High reliability was found in

studies from Barbados, China, Cuba, Germany, Holland, Japan, Korea, Mexico, Netherlands,

Sweden, the United States, and Venezuela (quoted and referenced in Hughes and John, 1999).



The independence of the EEG spectrum from cultural and ethnic factors is a remarkable

characteristic of the EEG. It has been suggested that it reflects the common genetic heritage of the

mankind (Hughes and John, 1999). Fourth, qEEG norms proved to have high specificity and

sensitivity. When subjects with no neurological or psychiatric dysfunction are compared to

norms, only a few features show significant deviance (high specificity). On the contrary, when

subjects with neurological or psychiatric dysfunctions are compared to norms, the number of

significant deviant features greatly exceeds the number expected by chance alone (high

sensitivity) (John et al, 1988). To date, comparisons to qEEG norms has been proven useful in the

diagnosis of the attention deficit disorder with and without hyperactivity, learning disabilities,

dementia, schizophrenia, unipolar and bipolar depression, anxiety disorder, obsessive-compulsive

disorder, eating disorder, alcohol and substance abuse, head injury, lesions, tumors, epilepsy, and

cerebrovascular diseases (For a review see: Hughes and John, 1999; Newer, 1988). For many

other disorders and diseases, qEEG marks have been found, but additional research is needed to

establish usefulness for diagnosis purposes. The four characteristics of the EEG power spectrum

here mentioned can be considered the fundamental properties of qEEG, since they enable

objective assessment of brain integrity in persons of any age, origin and background. It is

important to keep in mind that EEG and qEEG are very peculiar functional neuroimaging

techniques. For several reasons they cannot be simply replaced by more recent techniques such as

Positron Emission Tomography (PET) and frinctional Magnetic Resonance Imaging (fMRI). For

instance, EEG is truly non-invasive. Since recording units are portable and the recording process

is inexpensive, EEG can be easily recorded for a long period of time and left in place, even in the

operating room, in a ICU, or at the patient's bed. Finally, EEG has an unsurpassed temporal

resolution, which may be decisive in analysis of brain dynamics, especially those that are very

short in time. In summary: the comparison of quantitative electroencephalographic descriptors to

databases derived from large samples of normal healthy individuals is a very valuable and

powerful tool for the assessment of the integrity and changes of the brain's homeostatic

regulation processes. The tenability of the assumptions underlying this procedure has been

investigated for more than thirty years and is now well established. Some qEEG descriptors,

namely relative power measures, have high test-retest reliability under ey^ closed resting

conditions. Under normal brain functioning conditions the EEG descriptors are dependent on age

and other biological factors that can be taken into account, but they are independent of cultural

and ethnic factors, hence enabling an objective assessment of brain integrity and changes over a

lifetime. QEEG has been proven usefiil as a diagnostic aid in many neurological and psychiatric



disorders or diseases. For many others promising research aiming to define qEEG marks is in

progress. Since the spatial resolution of qEEG techniques and the nature of features that can be

extracted fi-om the EEG progress side-by-side with engineering, there is great hope in the

electrophysiological community that EEG-related techniques of investigation will disclose more

and more properties of the brain in the future.

Signal detection theory and Diagnostic Systems
»

In this section we briefly review some important concepts in the literature on signal detection

theory. These concepts will be of great utility in discussing the weaknesses of the parametric and

non-parametric methods for the estimation of deviances fi'om the norms. These concepts will also

provide us with a workable fi-amework to compare the parametric and non-parametric methods,

which is the aim of the simulation presented in this thesis. Normative databases are essentially

diagnostic systems. The general task of diagnostic systems is to discriminate among possible

states of the object under study, and to decide which one actually exists. In the case of normative

databases, the task is to label the descriptor of the new individual as "normal" or "abnormal", or,

using a more appropriate terminology, as "non-deviant" or "deviant". No diagnostic system is

perfectly accurate, and all of them have to face the problem of the detection of the true signal

fi-om the actual signal received, which is a mixture of signal and noise. Modern detection theory

treats the decision in probabilistic terms, according to which there are two statistical hypotheses.

In the following discussion we will refer to a particular descriptor only. The arguments readily

extend to whatever number of descriptors. The study of the accuracy of diagnostic systems sprang

fi'om the signal detection theory and is a common subject in the biomedical literature (Swets,

1988; Swets and Pickett, 1982). In comparing to norms, the system receives an input, the value of

the descriptor, and takes one of two possible decisions. We will refer to the input, or actual status

of the new individual, as the "event" (E). E can take on two mutually exclusive values. Let us

label them as positive (+) or negative (-), which we will use hereafter instead of, respectively,

"deviant" and "non-deviant". So, E+ is the event corresponding to a true deviance from the

norms, and E- is the event corresponding to a true non-deviance fi-om the norms. Notice that the

status of the subject is given, and not observed. The system output is fiie decision taken. We will



refer to this output, what the database decides, as the "diagnosis" (D). D also can takes on two

mutually exclusive values. Following the same notation we will have D+ in the case of a positive

decision (the new individual is decided to be deviant) and D- in the case of a negative decision

(the new individual is decided not to be deviant). With two alternative events and two

corresponding diagnosis, the data of a test of accuracy is conveniently summarized in a two-by-

two contingency table (tablet. All tables and figures are in the Appendix). We wish to obtain

perfect correspondence between the events and the diagnosis, that is, we wish that the value of the

descriptor for a new subject is labeled as deviant if it is in reality deviant and non-deviant if it in

reality non deviant. These two outcomes correspond to the agreement (or concordance) between

the input and the output of the diagnostic system, referred to in table 1 as true positive (TP) and

true negative (TN). When there is no agreement then we have an error, which can be of two

types: false positive (FP) and false negative (FN). If we consider proportions instead of raw

frequencies of the four outcomes, then just two proportions contain all of the information about

the observed outcomes (Swets, 1988). For instance we normalize each raw frequency in a cell by

the column total. We have now:

TP=TP/(TP+FN)

FN=FN/(TP+FN)

FP=FP/(FP+TN)

TN=TN/(FP+TN)

In this way we obtain proportion estimations (analogous to probability values) bounded between

zero and one and the following properties hold:

TP+FN=1;

FP+TN=I

In other words, the elements of the couples TP-FN and FP-TN are complement of each other and

all the information about the observed outcomes can be obtained considering only one element



for each couple. Furthermore, by normalizing the raw frequencies we obtain measures

independent of the prior probability of the event, meaning that the estimation of errors will be

independent of the proportions of positive events (E+) and negative events (E-) ent^ed in the

system (Swets, 1988). This is a fundamental property of any accuracy measure of diagnostic

system. Figure 1 show these normalized measures in a different, albeit equivalent, perspective.

Organizing the same data in a probability tree diagram we see that what we are computing,

equivalently, are the probabilities to have positive or negative diagnosis (D+ and D-) conditioned

on the probability that the event was positive or negative (E+ and E-). For example, the rate of

normalized true positives is the probability to have a positive diagnosis given (conditioned on the

fact) that the event was positive. In notation we write p(D+|E+). This quantity (normalized TP) is

also referred to as 'Sensitivity' (SN) and is usually reported together with the normalized TN, or

p(D-|E-), which is referred to as "Specificity" (SP). SN is a measure of the ability of the system to

take a positive decision when it is indeed the case. Its complement is the normalized FN

proportion. The SP is a measure of the ability of the system to take a negative decision when it is

indeed the case. Its complement is the normalized FP proportion. According to what we have said

before, SN and SP summarize the contingency table exhaustively. However, for the purpose of

our simulation, a more eomplete depiction of the errors committed by a normative database is

achieved considering two additional measures. These are the inverse probability of a true positive

response aiid the inverse probability of a true negative response. Practically, what we want to

know is the probability that a deviance exists when the system says it does, and the probability

that a deviance does not exist when the system says it does not. These definitions are not just a

play on the words (see previous definitions of SN and SP). We seek p(E+|D+) and p(E-|D-),

which are, respectively, the inverse probability of SN and SP (To obtain those you need to invert

the position of E and D). These probabilities are easily computed arranging the data as in figure 1

and using the formula defining the conditional probability or the Bayes' formula (Lipschutz and

Lipson, 2000). The agreement E+D+ corresponds to the true acceptance of the alternative

hypotheses "the new individual is deviant on that descriptor", while the agreement E-D-

corresponds to the true rejeetion of this alternative hypotheses. Accordingly, we will refer to the

quantity p(E+|D+) as "true aceeptance" (TA) and to the quantity p(E-|D-) as "frue rejeetion"

(TR). For reasons that will be clear later, only considering together SN, SP, TA, and TR, will

enable us to perform a complete and fair estimation of the systematic error rate for the parametric

and non-parametric methods.



The parametric method based on z-scores

We are now ready to turn to the issue of deviance estimation. The steps required in order to build

a normative database according to the parametric method (PM) and to the non-parametnc method

(nPM) are listed in table 2. The focus of this thesis is steps 5 and 7, and in fact, these are the only

two steps where the procedures for the PM and the nPM differ. We are concerned here with the

way in which the significance of the deviance is estimated. We will not discuss the sampling of

the normative subjects (which determine the homogeneity of the normative sample), or the issue

of multiple comparisons (which is essential to avoid false positives). To date, to my knowledge,

all published normative databases estimated the significance of the deviance according to a

parametric method based on z-scores (Bosch-Bayard et al., 2001; John et al., 1987; Thatcher,

1999; Veldhuizen, Jonkman, and Poortvliet, 1993). The work of John and his colleagues was

decisive for the development and assessment of this statistical methodology (John et al., 1977).

When z-scores at each electrode location are interpolated to construct brain topographical maps,

the result is called "Significance Probability Mapping", or SPM (Duffy et al., 1981). In step 3 of

table 2 we defined the descriptors of our database. According to the notation used in table 2, there

are d=LxF descriptors for each normative subject, i.e, for each subject there is a descriptor for

each combination of location (electrode for qEEG and voxel for ET) and feature (quantitative

measure in a specified frequency range). For example, a descriptor is the relative power in the

alpha range, and another descriptor is the relative power in the theta range. Thus, each descriptor

can be conceived as a vector comprised of N values, where N is the number of subjects in the

database. Let us call Xd the vectors of descriptors, where the subscript d denotes a particular

descriptor in the LxF matrix. For each feature, the appropriate log-transformation is applied to all

subjects (John et al., 1987). The resulting data distribution of the vectors Xd is approximately

normal with mean yd and standard deviation Od- In step 6 we considered the LxF matrix of

descriptors referring to a new individual to be compared to the database. Notice that the LxF

matrix for the normative database is a matrix of vectors, i.e., that is a 3-D matrix. Instead for any

new individual the LxF matrix is a 2-D matrix of individual entries. Identical log-transformations

are applied to this matrix as well. Let us call yd each entry of the descriptor matrix for the new

individual. The task is to obtain an estimation of the deviance, from the mean of the Xd, for each

yd.. Given gaussianity of the normative sample distribution, the deviance of the new individual for

each descriptor d is estimated as



Zd=(yd-yd)l (^d [1.0]

The z-scores computed with 1.0 are accurate if the normative sample distribution is normal

(gaussian). The more the normative sample distribution deviates from normality, the less the z-

scores will be accurate, leading to more and more false negatives and false positives as a function

of the distribution skewness and kurtosis. Skewness refers to the third moment around the mean

of a distribution and is a measure of asymmetry. For example, a chi-square distribution with one

degree of freedom is said to be right-skewed. Kxutosis is the fourth moment around the mean and

is a measiue of the peakedness of the distribution. A "flat" distribution has higher kurtosis then a

"peaked" one. A theoretical standard normal distribution has skewness=0 and kurtosis=3. Given

an approximate gaussian distribution, the more these two values deviate from the theoretical

values, the more the distribution deviates from gaussianity. The problem with the rate of false

positives and false negatives in the case of non-gaussian distributions is a subtle one. We could

tolerate it if we could assess, or at least estimate, the rate of false positives and false negatives and

if these rates would be the same on the two sides of the distributions. Unfortunately this is not the

case. Indeed, with estimation [1.0] we will obtain different rates of false positives and false

negatives depending on the side of skewness (left-skewed or right-skewed distribution) and the

side of the test (left-handed or ri^t-handed test). Similar arguments apply to the amount of

kurtosis. The effects of skewness and kurtosis on the rate of false positives and false negatives are

easily captured in a graphical fashion (figure 2). This figure is crucial for the interpretation of the

results of the thesis and should be analyzed carefully by the attentive reader. Figure 2a depict a

normative sampling distribution very close to the theoretical gaussian. Suppose that distribution is

indeed gaussian. With an alpha level of 0.05, the decision criterion of the database is to label as

"deviant" all new observations with z-score >1.96 or <-1.96 (the area under the curve for z>1.96

or z<-1.96 equals 0.025, so their sum is 0.05). Let us consider the right-handed test first. A z-

score exceeding 1.96 leaves on its right a proportion of the area under the curve less then 0.025.

So the diagnosis will be positive (D+). By definition, a new individual's score with p<0.025 is

positive (E+). The result is a concordance between the event and the diagnosis (true positive).

Because of simmetricity, for a left-handed test the result will be the same. For all z-scores

comprised between -1.96 and 1.96 both the event and the diagnosis will be negative (E- and D-),

and we will have concordance again (true negative). We can see that if the normative sampling

distribution is gaussian, the normative database will virtually commit no error. Figure 2b depict a

normative sampling distribution right skewed. Notice that the mean of the distribution (blue line)

8



is no longer at the peak of the distribution since the density on the right side of the distribution is
bigger than the density on the left side. The two violet vertical lines delimitate the interval
including 95% of the density (area under the curve). On the right of the right violet line the

density is 0.025%, and so it is on the left of the left violet line. Let us consider the right-handed

test first. Because of skewness, for some z slightly bigger than 1.96 (D+), the area under the curve

on the right of the z-value is greater than 0.025 (E-). The diagnosis is positive (z>1.96), but the

event was not (area>0.025). We have a false positive. In figure 2b, the right-sided z interval for

which a false positive will happen is indicated in green. For the left-sided test the situation is

opposite. Here for some z?>-1.96 (D-) the area under the curve is already less than 0.025 (E+). The

diagnosis is not positive, but the event was indeed positive. We obtain a false negative. In figure

2b, the left-sided z interval for which a false negative will happen is, again, indicated in green. If

the distribution is left-skewed, we would have obtained mirror results, i.e., false negatives on the

right side of the distributions and false positive on the left side. At this time it should be clear that

with skewed normative sample distributions we obtain different types of error on the two sides of

the distribution. This means that what in reality are equivalent, but opposite, deviances, are

interpreted by the diagnostic system differently, according to the sign of the z-score. If the

amount of error generated is not negligible, this property of the parametric method would

constitute a serious problem. Therefore we need to estimate it, and this will be accomplished in

the simulation we are going to present. Before that, let us introduce an alternative method for the

estimation of the deviance, a non-parametric method based on proportions.

The non-parametric method based on proportions

The parametric method relies on the assumption of normality of the distribution. In a one-sided

testing fi-amework (see figure 2a for a graphical representation), a z-score =1.645 means that, on

the theoretical normal distribution, the 95% of the population fall below that value. In other

words, only 5% of the population exibits a value equal or greater. The corresponding value on the

other side of the distribution is -1.645, for which only 5% of the population exibits a value equal

or smaller. A non-parametric method, to obtain a similar result, is by use of the sample proportion

(sp). Sample proportions are analogous to percentiles and, like them, are obtained by sorting the



sampling distribution values. The method is easily illustrated with an example. Refer fust to a

right-handed test with alpha=0.05. In this case we label a new individual as deviant if his/her

value is large as compared to the normative database. For example, if the descriptor under

analysis is the alpha relative power at the electrode 02, then a deviant subject will show a large

power value as compared to the norm. Suppose our normative sample is comprised of 20 subjects

(N=20). Let us sort the normative values referring to any descriptor d in ascending order to obtain

the sorted Xd vector:

2 2.5 2.8 3.5 3.6 3.7 4 4.9 5.2 5.7 8.4 8.5 11.1 12.3 14.8 16.4 18.9 20 21 25.4

The 95th percentile is the value below which the 95% of the subjects fall. Values comprised

between 21 and 25,4, leave on the right-side 5% of the observations (5% of 20= 1). A value equal

to or bigger than 21 is associated with a p-value <0.05. We obtain a p-value with a counting

random variable (Holmes et al, 1996). Let us define the discrete random variable (RV), sample

proportion (O) as the proportion of values in the Xd vector falling above the new individual's

value. Then, O is indeed a p-value, although it is discrete and not continuous. By definition, if no

value in the Xd vector exceeds the new individual's value, then 0=0. In this case in fact the new

individual shows the most extreme value and this is as significant (unlike) as it can possibly be.

With this definition the discrete RV O can take on N-i-1 values ranging fî om 0 to 1 and decreasing

by multiples of 1/n. O =1 (20/20=1) means that all normative subjects exceed the new

individual's value. In this case in fact the new individual's value is the smallest, and there is no

evedence at all that the new individual's value is significant (keep in mind that if our test is right-

handed we have to ignore the extreme values on the left of the distribution, no matter how

extreme they are). O =0 means that the new individual exibits the most extreme value. Suppose

our new individual's value for the descriptor d is 22.3. Comparing this value to the sorted vector

above we see that 5% of the observations fall above this value, thus O is 0.05 (there is only 1

observation falling above the value 22.3; 1/20=0.05). Suppose the value is 1.8; O is 1 (20/20=1).

Suppose it is 5.4; O is 0.55 (11/20). O = 0.05 can be considered deviant just like a z-score=1.645.

Both correspond to a probability of 0.05, with the difference that in a non-parametric fashion the

p-value is computed on the actual data and not as a result of the integrals of the theoretical normal

distribution. The same method, reversed, is applied in the case of a left-handed test. In this case

the discrete random variable (RV) sample proportion (O) is defined as the proportion ofvalues in

the Xd vector falling below the new individual's value. By definition, if all values in the Xd vector

are bigger than the new individual's value, then d)=0; In this case infact the new individual's
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value is the smallest and this provides the strongest evidence for his/her deviance on the left side

of the distribution. With this reversed definition the discrete RV O still can take on N+1 values

ranging form 0 to 1 and increasing by multiples of 1/n. 4> =0 means that all normative subjects

exceed the new individual's value. O =1 means that the new individual's value exceed all

normative subjects. Suppose again our new individual's value for the descriptor d is 22.3. For a

left-handed test, comparing this value to the sorted vector above we see that 95% of the

observations fall below this value, thus O is 0.95 (there are 19 observation falling below the value

22.3; 19/20=0.95). Suppose the value is 1.8; O is, by definition, 0. Suppose it is 5.4; O is 0.45

(9/20). If a two-tailed test is wished, then the median of the distribution is computed. If the new

individual's value is on the right of the median then a right-handed test as described is performed.

On the other hand, if the new individual's value is on the left of the median then a left-handed test

is performed. Of course, for a two-tailed test we need to halve the alpha level at the two sides of

the distribution, so that the total alpha level equals indeed alpha. For simplicity of display

purposes we usually wish to convert the sp estimation in a scale comprised of both positive and

negative values.

If O is the sample proportion (with 0< ® <I) then this is accomplished, for example, by

0'= (O-0.5)x2 (2.0)

As a result of the above tranformation the deviance <&' will now be comprised between -1 and 1.

(In fact, (0-0.5) x 2 = -1, and (1-0.5) x 2 = 1). After the tranformation, O' = -1 corresponds to O

= 0, = 0 corresponds to 0=0.5 (the median), and O' = 1 still corresponds to a 0=1. The reason

for this transformation is that maps generated are easier to interpret. To get the true sample

proportion estimation (O) one can use the reversing formula:

O=(O'/2)+0.5 (2.1)

Given the way in which the deviance is estimated with the transformed sample proportion <S>\ the

interpretation of maps is easier. Alternatively one can convert the p-value obtained in a z-score

using the integrals of a theoretical normal distribution. The result would be equivalent and in both

cases the transformation will help the interpretation of maps. The performance of the non-

parametric method here described is not affected by non-gaussianity of the sampling distribution.

However its performance is a function of the sample size. Considering sample proportions we

define a discrete RV, but the underlying phenomenon is continuous, hence we loose "resolution".

II



In the following simulation we assess the amount of errors generated because of this loss of

resolution and we compare it with the amount of error generated by the parametric method.

Simulation

Method

In order to perform a simulation aiming to evaluate the performance of a normative database we

need to define uniquely positive events (E+) and negative events (E-), i.e., we need to delineate

conditions under which a simulation entry is by definition deviant or non-deviant. Any particular

method to take a decision about the deviance of the event will provide a diagnosis, either positive

(D+) or negative (D-), according to its own procedure, and being unaware of the real status of the

event. The agreement, or concordance, between the event and the diagnosis can then be

estimated. By allowing a large number of events to enter the system we obtain reliable

estimations of concordance and discordance. In order to define unambiguous positive and

negative events we need to refer to theoretical distributions for which the "true" acceptance

interval of the null hypothesis is known. For instance, let us set the type I error (alpha) as 0.05.

For a random variable z distributed as a standard normal we accept the null h5q)othesis for -

1.96<z<1.96. In words, if z is comprised between -1.96 and 1.96, we accept the null hypothesis.

In terms of a normative database this means that the new individual is considered to be normal.

In our simulations the normative sample of reference was emulated by means of normal

distributions. New individuals were emulated as individual random samples distributed in the

same way as the normative reference. For all practical purposes they constitute events for which

the status (E+ or E-) is known a priori on the basis of the distribution of the normative reference.

In the discussion that follows we will call each event submitted to diagnosis a simulation entry.

As an example of the procedure followed to define simulation entries consider the following;

given a normative reference sample distributed as a random normal, alpha=0.05, and a right

handed test, we know a priori that any simulation entry with p(z)<0.025 is positive. For each

simulation entry, we computed the database outcome (D+ or D-) with both the parametric and
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non-parametric method, independently one from the other. According to what is seen above, the

parametric diagnosis is based on equation [1.0], and the non-parametric diagnosis is based on the

RV sample proportion. For each simulation entry there will be a concordant or discordant

outcome and this will add a raw frequency in a table just like table 1. This constitutes an outcome

among four possibilities (tablel). We submitted 100.000 simulation entries, under identical

conditions, for each normative reference sample considered. This allowed reliable estimations of

sensitivity (SN), specificity (SP), true acceptance (TA) and true rejection (TR). The evaluation of

concordance was repeated varying sample size and gaussianity of the normative reference

sample. This way we could assess the error rate of the parametric and non-parametric method in

critical situations. In addition, we repeated the simulations for three alpha levels (decision

criterion of the system). The latter variable must be included because all of the four measures of

accuracy we chose depend on the decision criterion used (Swets and Pickett, 1982), therefore we

need to monitor the error rate as a fimction of alpha. Finally, two simulations for all the above

conditions are needed, with one evaluating the right-handed test, and the other evaluating the left-

handed test. The reason for this fiirther splitting is that, as we have shown above in the case of

skewed distributions, the parametric method generates two different types of error at the two

sides of the distribution and we do not want to confuse them considering the outcomes of a two-

sided test. A total of 486 (9x9x3x2) simulations were performed, each one evaluating 100.000

simulation entries. The simulations were performed by a computer pro^am written in Delphi

Pascal (Borland Corporation). All together they required approximately 4 hours computation time

on a Dell personal computer equipped with a 1.8 GHz Pentium 4 processor and 512 Mb of RAM.

Normative samples, thex^ vector described above, were emulated by means of a gaussian random

number generator function embedded in Delphi Pascal. The function (called randO) generates

random samples gaussian-distributed with a specified mean and standard deviation. For all

simulations we used mean=10 and variance=l. In this way all random samples were non-

negative. This was required by the skewness manipulation we chose (performed by means of a

power transformation as seen below). Each distribution actually employed in the simulation was

computed as the (sorted sample-by-sample) average of 10,000 gaussian distributions generated

with the randO function. This ensured that correspondent distributions were very similar across

difierent conditions of the simulation.
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Alpha level manipulation

The alpha level is the decision criterion employed in the normative database. It quantifies the

amount of evidence requested by the system before a positive outcome is issued. Three alpha

levels were considered: 0.05, 0.025, and 0.0125. Since all tests were one-handed, these three

levels correspond to the two-handed test alpha levels 0.01, 0.05, 0.025. Keep this in mind while

analyzing results. All published databases considered in our review (Bosch-Bayard et al., 2001;

John et al., 1987; Thatcher, 1999; Veldhuizen, Jonkman, and Poortvliet, 1993) use the fixed alpha

level 0.05. In our simulations this corresponds to alpha=0.025. In addition to this alpha level we

considered a more stringent criterion (alpha=0.0125), and a more lenient criterion (alpha=0.05).

The reason is that the measures of accuracy we used are independent of the prior probabilities of

positive or negative events, but are not independent of the decision criterion (Swets and Pickett,

1982). Since we expect different errw rates solely because the decision criterion is changed, we

might want to monitor the behavior of our system as a function of the decision criterion.

Sample size manipulation

Nine sample sizes were considered, ranging from 80 to 720 with increment of 80 (80, 160, 240,

320, 400, 480, 560, 640, 720). The choice for the increment was contingent. It can be shown that

the accuracy of the non-parametric method for the minimum alpha level we considered

(alpha=0.0125) increases discretely in steps of 80 (sample size). The reason is intuitive. We

shown that the RV sample proportion (€>) can take on only discrete values ranging between 0 and

1 increasing by a factor of 1/N. Consider the alpha level alpha=0.0125. With N=80, the possible

values that the RV O can take, sorting them in ascending order, are 0, 0.0125,.... 1. With N=160,

they will be 0, 0.00625, 0.0125 .... 1. As you can see now, as soon as N reaches 160, the random

variable O gains resolution, having the ability to take on three possible values less than the alpha

level (p<alpha).
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Gaussianity manipulation

Gaussianity was manipulated transforming the normal averaged distribution with a power

function. For each level of gaussianity considered each sample of the normative distribution was

raised to a fixed power. This resulted in a ske\yed distribution respecting the order of the original

samples. Nine levels of gaussianity were considered, corresponding to nine different powers

ranging fi-om 1 to 3 with an increment of 0.25 (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3). The first

distribution always remained unchanged after transformation (power of 1) and constituted a true

empirical random gaussian distribution. In this case the performance of the parametric method

was expected to he excellent. The fi"equency polygons (analogous to the more common

histogram) of the nine distributions actually employed for both the left-handed and right-handed

tests, are shown in figure 3. More precisely, shown are the empirical distributions generated for

the maximum level of sample size (N=720), removing the displacement along the x-axis due to

the power transformation. Table 3 reports the mean and standard deviations of the skewness and

kurtosis of the empirical distributions actually used in the left-handed test and right-handed test

simulations. Mean and standard deviation were computed across the different sample sizes used

in the simulations. From table 3 we can see that, because of the averaging procedure, the gaussian

random distributions had all very similar skewness and kurtosis for all the levels of sample size

(small standard deviation), yielding almost identical distributions to be used in the left-handed

test and right-handed test simulations. Table 3 also shows how skewness deteriorates with higher

powers. The same effect is seen graphically in figure 3. Figure 3 shows also that the actual

empirical distributions used in the simulations were pretty smooth. We can now state more

precisely how we defined positive and negative events and how we computed positive and

negative diagnosis in our simulations. For power=l the reference distribution remains unchanged.

It will be normal with mean=10 and variance =1. Simulation entries are random samples of the

same distribution. We need to define a confidence interval for a simulation entry to be defined

positive (E+) or negative (E-). This is accomplished by means of integrals of standard normal

distributions. For example, for alpha=0.05 and a right-handed test, the confidence interval is

given by [x=-oo; x=(10+1.96)]. In other words, p<0.025 (E+) is obtained only for simulation

entries which value is bigger than 11.96. With x<=l 1.96 the event is negative (E-). The diagnosis

outcome for the parametric method is given by means of the theoretical probability associated

with the z-score. The z-score is based on the empirical mean and standard deviation of the

reference distribution ([1.0] ). The diagnosis outcome for the non-parametric method is given
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directly by means of the random variable O, which express already a p-value. The diagnosis

outcomes for the two methods results in either D+ or D-. They are computed independently from

each other and independently of the real status of the simulation entry (E+ or E-). We obtaine in

this way the status of the event and the status of the diagnosis according to both the parametric

and the non-parametric method. Therefore a concordant or discordant outcome is established for

each method and the respective counts are increased in tables like table 1. For higher powers the

mechanism is the same but the confidence interval and the simulation entries are defined

accordingly. For example, the confidence interval for power=1.25 is given by [x=-oo;

x=(10+1.96)''^] = [x=-oo; XS22.2415]. The simulation entries are now sampled with a normal

distribution with mean 10 and variance 1 and raised to the power of 1.25, before a diagnosis is

issued. The above examples can be easily extended to all simulations employed, i.e, for every

level of gaussianity, sample size and alpha.

Results

To capture the essence of our results we need to consider again figure 2b. Let us anticipate the

results for the parametric method. For a right-handed test, since the distribution has positive

skewness, we expect three possible outcomes; E+D+ (red area on the right of the distribution), E-

D+ (green area on the right of the distribution), and E-D- (all the area left). The only discordant

outcome (error) is the E-D+ pairing. These are false positives. The error is due to the fact that

although the area on the left of the observation is bigger than alpha (E-), the z-score computed

with [1.0] is bigger than 1.96, leading to a p-value less than alpha (D+). Since this error happens

on the right side we wish to compare it to the TP proportion. In other words (referring to figure

2b), we wish to compare the green area (error) with the red area on its right. We will show now

that the specificity measure (SP) does not give us this information, but the true acceptance

measure (TA) does. Remember that SP has been defined as TN/(FP+TN). Remember also that

TN= p(D-|E-) and FP=p(D+|E-). In our simulations most entries are negative events. In fact the

simulation entries were always random samples of the normative sample distribution. Hence (1-

alpha)% of them is by definition a negative event and will fall in the E-D- (TN) category. The

remaining will include E+D+ and E-D+ outcomes. Even if the FP proportion is large as compared

to the TP proportion (the green area is big as compared to the red area) the specificity will be
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excellent, since it does not compare FP with TP, but FP with TN. On the other hand TA, defined

as p(E+|D+), has as complement p(E-|D+). Its value is the right estimation of errors for this

simulation, i.e., it compares the FP proportion to the TP proportion. This is the information we

need; it is telling us among the events with positive diagnosis (green area +red area), how many,

in proportion, were in reality positive (TP; red area) as compared to negative (FP: green area).

Consider next the left-handed test. Refer again to figure 2b. Here we expect three different

possible outcomes: E+D+ (red area on the left of the distribution), E+D- (green area on the left of

the distribution), and E-D- (all the area left). The only discordant outcome (error) is the E+D-

pairing (false negative), which is different from the type of error found on the right side. Here the

error arises because although the area on the left of the observation is less than alpha (E+), the z-

score computed with equation [1.0] is bigger than -1.96 (non-significant), leading to a p-value

less than alpha (D-). We obtain some false negatives. Again, we wish to compare them to the TP

proportion, and not to the TN proportion. In this case the sensitivity measme (SN) will give us

this information. Remember that SN has been defined as TP/(TP+FN). Remember also that FN=

p(D-|E+) and TP=p(D+lE+). For a left-handed text, (l-alpha)% of the outcomes will fall in the E-

D- category (notice that on this side of the distribution errors (FN) come at the expenses of the TP

proportion and the TN proportion is exactly (l-alpha)% ). The remaining 5% will include E+D+

and E+D- outcomes. SN compares indeed TP to FN. It is telling us among the positive diagnosis,

how many, in proportion, were in reality positive events (TP) as compared to negative events

(FN). Errors with the non-parametric method follow a different pattern. For this method the best

measure of accuracy timis out to be the true acceptance (TA) for tests on both sides of the

distribution. This means that for both the right-handed and left-handed test, the non-parametric

method results in only three outcome pairings: the two concordant pairs E+D+, E-D-, and the

discordant pair E-D+. In other words, the non-parametric method tends to issue positive diagnosis

when it is not the case. In summary, considering that real normative distributions can be both left

and right skewed, with the parametric method we expect both FP and FN errors depending on the

side of the test and on the side of the skewness. With the non-parametric method we expect FP

only, regardless the side of the test and the side of the skewness. We now show quantitative

results of these errors. As expected, the accuracy of the parametric method was found to be the

same (with little random error) at different sample sizes (N>100) for all levels of non-gaussianity

and alpha. Thus it will be shown as a function of non-gaussianity and alpha levels only. The

accmacy of the non-parametric method was found to be the same (with little random error) at

different non-gaussianity levels for all levels of sample size and alpha. Thus it will be shown as a
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function of sample size and alpha levels only. In every simulation performed, two out of the four

measures of accuracy employed in this thesis always display a value of 1.0 (perfect accuracy) for

all levels of the manipulated variable, i.e., they do not constitute a valuable test at all. The reason

why this is the case has just been discussed. For example, for a right-handed test we do not expect

false negatives at all for both methods, regardless the gaussianity, sample size, and alpha. The

remaining two measures are reported in the results section. They both always displayed values of

accuracy less then or equal to 1.0 and changed monotonically across the levels of the manipulated

variables. However only one of these two measures provides us with a useflil estimation of

inaccuracy. We have just seen that those are either the SN or the TA for the parametric method,

and the TA for the non-parametric method.

Right-handed test

Results for the right-handed test are reported in figure 4. 4a and 4b refers to the parametric

method (PM), while 4c and 4d refers to the non-parametric method (nPM). The blue lines

indicate the 0.95 level of a measure of accuracy. This level of accuracy can be considered

excellent for any diagnostic system. The red lines indicate the 0.85 level of a measure of

accuracy. This level of accuracy can be considered the minimum required for a normative

database. Figure 4a reports the PM true acceptance (TA) proportion as a fimction of gaussianity

of the normative reference sample (x-axis) for the three alpha levels employed. As explained in

the above discussion, this is the critical test for the parametric method for a right-handed test

when the reference distribution is right skewed. The TA is excellent in the case of normality of

the reference distribution (power of 1) and deteriorates rapidly as the power increases; for

power>1.5 the TA proportion for the usual alpha level (0.025) is unacceptable (<0.85). Figure 4b

reports the specificity (SP) of the parametric method. For all alpha and gaussianity levels the SP

is excellent. We commented before that this last result is meaningless, and the figure is here

included for completeness (hereafter we will describe critical tests only). The critical test of the

nPM method under identical conditions is shown in figure 4c. This graph plots the TA proportion

as a fimction of the sample size. As expected, the performance of the nPM increases

monotonically with N. For the usual alpha level (0.025), the performance is acceptable (TA>0.85)

for N=160, Md excellent (TA>0.95) for N=400 or more. Figure 5 reports the uncollapsed data of

the critical tests for the two methods with alpha=0.025. For the PM method, data has been
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expanded over the nine levels of sample size, while for the nPM method data has been expanded

over the nine levels of distribution gaussianity. These graphs do not add any information not

already shown, but depict the rationale for collapsing data across sample size levels for the PM,

and across gaussianity levels for the nPM. Corresponding graphs showing collapsibility in the

case of the left-handed test will not be shown, being practically identical.

Left-handed test

Results for the right-handed test are reported in figure 6. 6a and 6b refers to the parametric

method (PM), while 6c and 6d refers to the non-parametric method (nPM). The blue lines

indicate the 0.95 level of a measure of accuracy. This level of accuracy would be considered

excellent for any diagnostic system. The red lines indicate the 0.85 level of a measme of

accuracy. This level of accuracy can be considered the minimum required for a normative

database. For reasons that should be clear now, we will describe graphs in figure 6a and 6c only.

Figure 6a reports the PM Sensitivity (SN) proportion as a fimction of gaussianity of the normative

reference sample (x-axis) for the three alpha levels employed. As explained in the above

discussion this is the critical test for the parametric method for a left-handed test, when the

reference distribution is right skewed. The SN is excellent in the case of normality of the

reference distribution (power of 1) but deteriorates rapidly as the power increases. The decline is

faster for the left-handed test than for the right-handed test (compare with figure 4a). This

phenomenon can be easily captured inspecting the two tails of the distribution in figure 2b and

considering the definition of SN and TA. In fact on the left side the distribution the proportion of

errors (green area) grows at the expenses of the true positive proportion (red area), while on the

right size the proportion of error (green area) grows at the expenses of the true negative

proportion (all the area remaining on the left of the green area), hence the true positive proportion

(red area) here remains imchanged. For power>1.25 the SN proportion for the usual alpha level

(0.025) is already unacceptable (<0.85). The critical test of the nPM method under identical

conditions is shown in figure 6c. This graph plots the TA proportion as a fimction of the sample

size. Like for the right-handed test, the performance of the nPM increases monotonically with N.

For the usual alpha level (0.025), the performance is acceptable (TA>0.85) for N=160, and

excellent (TA>0.95) for N=480 or above. Allowing little random errors, these results for the nPM
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are comparable to those obtained for the right-handed test. In fact the nPM performs equally at

both sides of the distribution, no matter what the skewness is.

p-values histogrmns

Further insight in the behavior of the two methods is provided by the histograms of the p-values.

Each simulation entry leads to a binary decision of the system. However the system bases its

decision on a continuous random variable, which is the p-value associated with the simulation

entry. If this p-value exceeds a certain threshold, then the null-hypothesis is rejected and the

diagnosis is positive. For a one-handed test (see figure 2a) the p-value of a z-score is the

cumulative distribution function (cdf) of the standard normal distribution. Consider a right-

handed test. The cdf corresponds to 1 minus the integral form -infinity to z, or, 1 minus the area

under the curve from x=-infinity to x=z (remember that the total area under the curve equals 1). If

we keep sampling from a standard normal distribution we obtain a uniform distribution of the p-

values associated with the samples, with all p-values comprised between 0 and 1. Our simulation

entries are nothing more than repeated samples of a transformed normal distribution. When the

power equals 1, of course, the transformation does not alter the distribution at all. Figure 7 shows

the histograms of the p-value computed from the two methods for both the right-handed and left-

handed tests, in the case of alpha=0.0125, sample size=320, and power tranformation=2. This

simulation refers to a strict alpha level, an intermediate sample size, and a moderate-high amount

of skewness. Notice that while the non-parametric method yields a imiform distribution of p-

values, the parametric method yields an irregular distribution, with the frequency of extreme p-

values overestimated at one tail of the distribution and underestimated at the other. The left-

handed and the right-handed test lead to mirror results. The reason why it happens is the

distribution skewness (see the distribution corresponding to power of 2 in figure 3), which makes

the density of the curve to be different at the two tails. The interested reader will find an

explanation for the irregularity of the p-values distribution produced by the parametric method,

analyzing and comparing figure 2b and figure 7. The interpretation of the phenomenon is as

follows; regardless the distribution skewness, submitting random simulation entries to a non-

parametric database will return a uniform distribution of p-values, as it should be. In the case of

skewed distributions the parametric method, instead, will judge the significance differently.
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overestimating or underestimating entries falling at the very end of two tails of the distribution.

The more the skewness, the more important the error in the estimation.

Conclusions

A total of 486 simulations were performed in order to compare two methods for the comparisons

to EEG norms. The parametric method is based on z-scores and has been employed so far. The

non-parametric method is based on sample proportions, or, equivalently, percentiles, and has been

proposed in this thesis to overcome some problems related with the use of the parametric method.

Each simulation estimated the error rate in the diagnosis of the two methods for both left-handed

and right-handed test. Variables manipulated included the decision criterion of the normative

database (alpha level), sample size, and non-gaussianily of the normative reference sample. For

each combination of the side of the test and the method employed, the critical test was

individuated. This was one of the four accuracy measures considered in this study (Sensitivity

(SN), Specificity (SP), True Acceptance (TA), and True Rejection (TR)). The performance on the

critical tests provided a framework for comparing the two methods. The performance of the

parametric method (PM) was found to be unrelated to the sample size, given that N is not too

small. With N=80 the performance of the method starts deteriorating (figure 5), therefore we

conclude that this independence is true for N>100. The performance of the parametric method

was found related to the non-gaussianity of the normative sample distribution. Typical

distributions for which the parametric performance can be considered acceptable are shown in

figure 8. Notice how close to gaussianity (black distribution) the two skewed distributions (green

and red) for which the error rate was found to be acceptable. For a left-handed test the situation is

even worse, with the simulation referring to the red distribution already leading to an

unacceptable error rate (figure 6; see parametric sensitivity for power of 1.5). The performance of

the non-parametric method was unaffected by the non-gaussianity of the normative reference

distribution but was affected by the sample size. Acceptable (>0.85) accuracy (enough resolution)

can be attained with N=160. Excellent accuracy (>0.95) can be attained with no less than around

440 subjects. This result contradicts the common notion that non-parametric statistics "should be

used with a small sample size". For both methods, for both the right-handed and lefl-handed tests.
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the critical tests results in worse accuracy the smaller the decision criterion (alpha level). This

important result contradicts the intuitive notion that reducing the alpha level would lead to a

smaller rate of false positive. This is definitely not the case. Indeed alpha affects positively all

measures of accuracy proportionally to its value; the bigger the alpha level, the better the

accmacy. This result is here explained with a specific example. The reasoning extends readily to

all possible situations. Consider the left-handed test for the parametric test. The critical test for

this situation is the sensitivity (SN). Remember the SN is defined as TP/(TP+FN) and that under

these circumstances the database is going to issue only TP, FN and TN outcomes. SN increases

proportionally as TP increases and as FN decreases. Refers to figure 2b and look at the left tail of

the distribution. This figure refers to a one-handed alpha level equals 0.025. Imagine we halve the

alpha level. Both the green area under the curve (FN) and the red area under the curve (TP) will

decrease (they will be displaced on the left and here the height of the curve is smaller). However

the red area will decrease more than the green one, the reason being that the curve is shorter at the

left extremity. As a result, the ratio TP(TP+FN) will be smaller, i.e., sensitivity wiU se smaller.

Doubling the alpha level, on the contrary, will result in a sensitivity increase.

Discussion

We have been shown by means of simulations that the performance of the parametric test is

impaired as a function of skewness. Non-gaussianity due to high or low kurtosis is known to

affect the test even more (Pollock et al., 1990). These results are not a surprise. The problem is to

assess how good the approximation to gaussianity for qEEG and ET data is, and to evaluate the

advantages acquired by using an alternative method. About the approximation to gaussianity the

literature is scattered and inconsistent. Only a few studies have been investigating specifically the

gaussiantity approximation for qEEG data, and none, to my knowledge, investigated the

gaussianity approximation for electromagnetic data. Nonetheless the same transformations

applied for qEEG measures have been recently applied to this kind of data to generate a

normative database (Bosch-Bayard et al., 2001). Electroencephalographic data in the frequency

domain is markedly non-gaussian. Each measine is distributed in a particular way and the

theoretical studies on their distribution are not exhaustive. For example, the power spectrum
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(absolute power) is distributed approximately as a chi-square (Beauchamp, 1973; Brillinger,

1975). The degrees of jfreedom (dQ are a ftmction of the EEG recording length (number of

epochs), the FFT frequency resolution, wideness of the frequency band considered, the time-

domain tapering employed, and other technical factors. One should take into consideration all

these factors in estimating the df associated with a power spectrum chi-square distribution. It is in

principle possible to adjust the power spectrum estimate so as to have a large number of df and

the same number of df for all electrodes, frequency bands, and subjects, but this is elaborate and it

is not usually done. Even doing so, one should then model the data by means of the chi-square

distribution, and not by means of a normal distribution. For another measure, say the relative

power, one should try to model the distribution of the measure with some theoretical distribution

and adjust the FFT algorithm to obtain estimations conforming to that distribution consistently

across electrodes, frequency bands, and subjects. At the time when the databases were first

developed (1970's) a more simple approach was decided. For each measure a suitable data

transformation (based on the log) was employed to approximate gaussianity. The idea was to

allow a general method for the assessment of the deviance form the norms (the parametric

method described above) and also to allow parametric statistics to be employed in research

comparing groups. It has been this way for the past several years. A few specific studies provided

evidences of the appropriateness of these transformations (Gasser et al., 1982; Oken and Chiappa,

1988; Pollok et al., 1990). Other evidence has been provided in papers describing the construction

of normative databases but they are not as stringent studies from a statistical point of view (e.g.:

John et al., 1988). A review of the literature convinced us that the gaussian approximation is not

good enough to allow the use of parametric statistics. All specific studies found that the log-based

transformations approximate fairly well gaussianity, but all of them found exceptions. Gasser et

al. (1982) found exceptions in Delta, Theta, Beta 1 and Beta 2 for the absolute power measures.

Oaken and Chiappa (1988) found approximately 1/8 of the descriptors for absolute power to be

still non-gaussian after transformation. Relative power behaved a little better. Pollock et al.

(1990) found the transformation of amplitude (square root of absolute power) to be excellent in

all frequency bands but in theta. While John and his colleagues (1987, 1988) insist on data

transformation, Thatcher (1998) found that for all measures, with the exception of phase, the

imtransformed data approximated gaussianity better than the transformed data, contradicting all

previous results. It is worth noting that the sample size used in John's and Thatcher's studies was

similar, so the unreliability of results cannot be explained by means of "deus ex machina" such as

the central limit theorem. Furthermore, all of these studies used different montages, electrode
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reference, age range of subjects and even different measures. Finally, if in the case of qEEG a few

proportions of departure from gaussianity can be ignored, for ET data it cannot be done so lightly.

Before compiling a parametric database one has to check that the distribution for all descriptors is

approximately gaussian. In the case of ET data this involves tens of thousands of checks. With

such a large number and all the variability of EEG data, many of them will not pass the tests. The

question is how one should behave with them. Should the non-gaussian descriptors be excluded

from the database? Even ignoring this problem, we will be left with a normative database in

which accuracy is different for each descriptor. In fact we shown that the accuracy is a fimction of

skewness and each approximation to gaussianity will lead to different skewness levels.

Furthermore, the outcome of the normative database will be different on the two sides of the

distribution. These are not desirable characteristics for a normative database. One may jump over

all these problems using a non-parametric approach, given that the sample size is large enough. It

is fortunate that normative databases of clinical usefulness are constructed on the basis of large

samples. Actually the sample sizes commonly employed are so large (500-600) that they would

lead to more then 96% accuracy if the non-parametric method described in this thesis would be

employed. Furthermore, the validity of results would be the same for the right-handed and the

left-handed test, for all electrodes, frequency band and for whatever measure employed,

regardless of its distribution. In fact the sample size is the only true constant across descriptors

and we have shown in this thesis that the accuracy of the non-parametric method, given a fixed

alpha, depends solely on sample size. This is a distinct advantage of the non-parametric method.

In addition the extension of the method to ET data and to new electroencephalographic measures

is straightforward. It should be pointed out also that developmental equations and other kind of

between-subject differences can be taken into account while compiling a non-parametric

normative database. For instance, polynomial regression equations based on age can be

computed. Each descriptor value can be normalized over its regression predicted value to remove

any unwanted trend in the data. Back in the 1970's it was not easy to perform a non-parametric

test. Computers were slow and the computations required could take hours. Today they would

take a minute. Another possible reason why non-parametric methods have not been employed yet

is that they require more intense computer programming. However one does not have to check

data gaussianity, does not have to transform the data and does not have to be concerned about the

distribution of new measures any longer. In perspective, by using a non-parametric method one

would actually save time.
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Table 1: Two-by-two contingency table. Schematic results summarizing the outcome
of an experiment testing the accuracy of a diagnostic system.

Event(E) [input]

Positive Negative

Diagnosis
(D)

Positive TRUE

POSITIVE

FALSE

POSITIVE

[Output] Negative FALSE

NEGATIVE

TRUE

NEGATIVE

D+

D-

p(D+|E+)

p(D-|E+)

D+ P(D+|E-)

TRUE Positive

"Hits"

FALSE Negative

FALSE Positive

"False Alarm"

p(D-|E-) TRUE Negative

Figure 1: Probability Tree. The same data summarized in table 1 can be arranged, after
normalization, in a probability tree. The tree shows the resulting conditional probabilities.
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Table2: Table of Normative Database Steps. Description of steps required in order to
build a Normative Database in the case of the parametric method and of the non-parametric
method.

Steps Parametric Method Non-Parametric Method

1 A reference Population (usually
normal) is defined and a sample of N
subjects is selected. Each subject is
screened in order to match inclusion

criteria previously chosen.
The N subjects constitute the
database.

A reference Population (usually
normal) is defined and a sample of N
subjects is selected. Each subject is
screened in order to match inclusion

criteria previously chosen.
The N subjects constitute the database.

2 The set of F features is defined. Each

feature refers to a quantitative
measure for a particular frequency
range. For example, a feature could be
"Delta Relative Power" or " Alpha
Coherence".

The set of F features is defined. Each

feature refers to a quantitative measure
for a particular frequency range. For
example, a feature could be "Delta
Relative Power" or " Alpha
Coherence".

3 For each of the N subject constituting
the database, for each location
(electrode or voxel) or pair of
locations (electrodes or voxels), L
measures for each of the chosen set of

F features are derived. Each

combination of measure and Feature is

called Descriptor.

For each of the N subject constituting
the database, for each location
(electrode or voxel) or pair of
locations (electrodes or voxels), L
measures for each of the chosen set of

F features are derived. Each

combination of measure and Feature is

called Descriptor.

4 Database Data form a L x F x N

matrix

Database Data form a L x F x N

matrix

5 For each feature, an appropriate
transformation (based on log) is
applied to all locations and subjects in
order to approximate gaussianity.

For each feature and location the N

data of the database subjects is sorted.

6 For each new individual to be

compared to the database, a
corresponding data matrix of
descriptors (LxF) is derived.

For each new individual to be

compared to the database, a
corresponding data matrix of
descriptors (LxF) is derived.

7 For each location (L) and feature (F),
i.e., for each descriptor, the deviation
from normality is expressed in terms
of z-scores, using the mean and
standard deviation of the descriptor
computed for all database subjects.

For each location (L) and feature (F),
i.e, for each descriptor, the deviation
from normality is expressed in terms
of discrete random variable sp (sample
proportion) expressing the proportion
of the subjects in the database falling
above (ri^t-handed test) or below
(left-handed test) the new individual.

8 Additional statistics are performed in
order to correct for multiple
comparisons.

Additional statistics are performed in
order to correct for multiple
comparisons.
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Figure 2: Depiction of gaussianity and non-gaussianity. 2a: The normality
case. If the sample is truly gaussian then the outcome of the normative
database leads to true positives and true negatives only. 2b: The non-normality
case. The sample distribution is right skewed. On the right side of the
distribution we have false positives, while on the left-side of the distribution
we have false negative. See text for details.
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Table 3: Skewness and kurtosis table. Means and standard deviations

(across sample size) of the skewness and kurtosis of the empirical
distributions employed in the simulations for both the right-handed test and
the left-handed test.

Distribution Mean Sk Sd Sk MeanKt SdKt

Pwofl.OO 0.000 0.002 2.869 0.085

Pwofl.25 0.070 0.004 2.870 0.082

Pw ofl.50 0.140 0.006 2.884 0.084

Pwofl.75 0.209 0.009 2.916 0.091

Pw ofZ.OO 0.279 0.010 2.962 0.093

Pw of2.25 0.347 0.015 3.022 0.103

Pw of2.50 0.417 0.017 3.100 0.113

Pw of2.75 0.486 0.021 3.192 0.124

Pw ofB.OO 0.556 0.024 3.299 0.137

Right-handed test

Distribution Mean Sk SdSk Mean Kt SdKt

Pwofl.OO 0.000 0.001 2.869 0.085

Pwofl.25 0.070 0.004 2.870 0.083

Pw ofl.50 0.140 0.006 2.886 0.086

Pw ofl.75 0.210 0.008 2.916 0.089

Pw of2.00 0.279 0.012 2.962 0.095

Pw of2.25 0.348 0.015 3.026 0.102

Pw of2.50 0.418 0.017 3.104 0.111

Pw of2.75 0.486 0.021 3.193 0.125

Pw oG.OO 0.555 0.025 3.298 0.141

Left-handed test

34



Enipirical Distributions
—Normal
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Left-handed Test

Figure 3: Empirical distributions. Frequency polygons of the empirical
distributions employed in the right-handed and left-handed test simulations for
N=720. Shown are the nine distributions corresponding to the nine kinds of
power transformation used to vary gaussianity. The displacement along the x-
axis due to the power transformation has been removed in these pictures.
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Figure 4: Results of the simulations for the RIGHT-HANDED test. Reported
are the proportion of true acceptance (a) and specificity (b) for the parametric
method, and the proportion of true acceptance (c) and specificity (d) for the non-
parametric method. For the parametric method results are shown as a function of
non-gaussianity of the normative reference distribution and alpha level. For the
non-parametric method results are shown as a function of sample size and alpha
level. The green line indicates where the measure of accuracy is equal to 0.95
(very good level of accuracy). The red line indicates where the measure of
accuracy is equal to 0.85 (acceptable level of accuracy).
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Figure 5: UncoUapsed data for the RIGHT-HANDED test with
alpha=0.025. Top; critical test for the parametric method. Bottom: critical
test for the non-parametric method. These graphs show the rationale for
collapsing data across sample size levels in the case of the parametric
method, and across gaussianity levels for the non-parametric data.
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Figure 6: Results of the simulations for the LEFT-HANDED test. Reported
are the proportion of sensitivity (a) and true rejection (b) for the parametric
method, and the proportion of true acceptance (c) and specificity (d) for the non-
parametric method. For the parametric method results are shown as a function of
non-gaussianity of the normative reference distribution and alpha level. For the
non-parametric method results are shown as a function of sample size and alpha
level. The green line indicates where the measure of accuracy is equal to 0.95
(very good level of accuracy). The red line indicates where the measure of
accuracy is equal to 0.85 (acceptable level of accuracy).
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Figure 7: Histograms of p-values. p-values as computed by the parametric
method and the non-parametric method in the case of the right-handed and
left-handed test. All histograms are based on 100.000 simulation entries,
with N=320, power transformation=2, and alpha=0.0125. Since the
normative reference sample is skewed, the histogram of the p-values for the
parametric method is not uniform.
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Empirical Distributions
50
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30

20

Empirical normal distribution smoothed with a Hanning routine.
N=720, skewness=0, kurtosis=2.94

Empirical normal distribution power (1.25) transformed and smoothed
with a Hanning routine. N=720, skewness=0.07, kurtosis=2.94

Empirical normal distribution power (1.5) transformed and smoothed
with a Hanning routine. N=720, skewness=0.15, kurtosis=2.95

Figure 8; Smoothed distributions. Typical distributions leading to an
acceptable error rate (<0.15) in the case of the parametric method. The black
distribution is a true normal empirical distribution, while the green and the red
distributions have been obtained elevating to the power each sample (the
exponent was 1.25, and 1.5 respectively). Notice the low value of skewness for
the red distribution. A value bigger than that leads to an unacceptable error rate
(>0.15) for the parametric method.
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