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ABSTRACT

This thesis discusses mathematics engineers use to produce computerized three dimensional im

ages of surfaces. It is self-contained in that all background information is included. As a result,

mathematicians who know very little about the technology involved in three dimensional imaging

should be able to understand the topics herein, and engineers with no differential geometry back

ground will be able to understand the mathematics.

The purpose of this thesis is to unify and understand the notation commonly used by engineers,

understand their terminology, and appreciate the difficulties faced by engineers in their pursuits. It

is also intended to bridge the gap between mathematics and engineering.

This paper proceeds as follows. Chapter one introduces the topic and provides a brief overview of

this thesis. Chapter two provides background information on technology and differential geometry.

Chapter three discusses various methods by which normal vectors are estimated. In Chapter four, we

discuss methods by which curvature is estimated. In Chapter six, we put it all together to recreate

the surface. Finally, in chapter seven, we conclude with a discussion of future research. Each

chapter concludes with a comparison of the methods discussed. The study of these reconstruction

algorithms originated from various engineering papers on surface reconstruction. The background

information was gathered from a thesis and various differential geometry texts.

The challege arises in the nature of the data with which we work. The surface must be recreated

based on a set of discrete points. However, the study of surfaces is one of differential geometry

which assumes differentiabile functions representing the surface. Since we only have a discrete set

of points, methods to overcome this shortcoming must be developed. Two categories of surface

reconstruction have been developed to overcome this shortcoming.

The first category estimates the data by data by smooth functions. The second reconstructs the

surface using the discrete data directly. We found that various aspects of surface reconstruction are

very reliable, while others are only marginally so. We found that methods recreating the surface

from discrete data directly produce very similar results suggesting that some underlying facts about

surfaces represented by discrete information may be influencing the results.
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1  INTRODUCTION

Over the course of human history, theoretical mathematicians have developed some amazing methods

by which to describe and quantify the world around us. Early engineers and scientists developed

and used mathematics to create the technological and scientific advances of each age. It was used

to determine when the rainy season would arrive, describe our solar system and how the planets

interact, erect monuments, build the earliest plumbing systems, and countless other discoveries.

These pioneers had to do the work of mathematicians, scientists,and engineers all at once. However,

as mathematics, the sciences, and engineering became more complicated and as more was learned,

they became separate pursuits and people started specializing on one area or the other.

Engineers and scientists study theoretical mathematics developed by mathematicians to develop

their theories and technologies. Unfortunately, theoretical mathematics cannot usually be applied

directly to the particular application they are developing. As a result, engineers and scientists are

challenged to either alter the mathematical theory to their application or alter their application to

fit mathematical theory. Mathematicians are often unaware of these challenges, and this thesis is an

exploration into one area where these challenges have arisen.

In recent years, engineers have produced technology written about only in science fiction stories

as recently as 40 years ago. Computer, space, and entertainment technologies have been built on

the foundation of theoretical mathematics. Three dimensional imaging is another area of promising

research which will eventually allow human beings to explore places currently inaccessible. It will

allow us to take vacations to exotic locations and interact with the environment without leaving

the comfort of our living rooms. It will allow robots to navigate their environment without human

intervention, and allow them to recognize objects and make judgements on those objects. The

challenge arises in how to use mathematical theory to create these images. The most obvious place

to begin looking for mathematical solutions is Differential Geometry because it contains a study of

surfaces in three-dimensional space. The challenge arises in the nature of the data we work with.

As pictured in figure 1, we obtain an unorganized set of points representing various portions of the

surface obtained via a range camera. Prom this set of points, our goal is to create an accurate

computerized image of our original surface.
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Figure 1: Illustration of a Point Cloud

We will be studying several different surface reconstruction algorithms developed over recent

years. Our purpose is to explore the mathematical implementation of these algorithms, unify the

notation between these methods, and, where possible, determine the mathematical viability of their

arguments. In most of the methods described, the mathematical arguments are incomplete and not

well organized. Attempts are made to complete these arguments and organize them into a logical

format. The arguments are only completed if the intentions of the original author are well-known.

No attempt is made to expand on an idea which is not started by the author. For example, if a

calculation for curvature is given for the sphere, but none is given for an ellipsoid even though an

ellipsoid is mentioned in the paper, this author will attempt to justify the calculation for the sphere,

but not for an ellipsoid.

This thesis is organized as follows:

Chapter 2 will consist of a discussion about the technology used to obtain data and the

terminology commonly associated with this technology. We will also discuss some errors



inherent in this technology. Finally, we will give a brief overview of differential geometry

consisting of commonly used definitions and theorems.

• Chapter 3 consists of a discussion about Normal Vector estimation. We begin by discussing

methods which estimate normal vectors on smooth functions which approximate the data.

Next, we will discuss methods which estimate normal vectors based on the discrete data di

rectly.

• Chapter 4 focuses on various curvature estimations. In this chapter we will begin with a

discussion about smooth function approximations. We will then discuss curvature estimation

directly on the discrete data.

• Chapter 5 finally puts it all together and focuses on actual surface recreation. The first method

focuses on the methods which initially fit smooth functions to the data. The last methods

focus on the methods which use the data directly to recreate the surface.

1.1 Notation

Throughout this thesis, we will use the following notation. M will represent the real numbers and

will represent three dimensional space. Let E represent the original object we want to recreate,

and S will represent the computerized image. Our set of sample points will be denoted by PC and

each individual point in the PC will be denoted by pi where 1 < i < n and n is the number of

data points making up our set of sample points. Thus, pi G PC is the i"' point in the point cloud.

Let upper case bold letters such as A represent matrices, and let Aj and ej be the eigenvalues and

corresponding eigenvectors for the matrix, 1 < i < m with m the number of eigenvalues, normally

m = 3. Other bold lowercase letters, such as v, will denote general vectors. The only exception to

this case will be the notation for the normal vector; the normal vector will be denoted as N. Thus,

the normal vector at point pi on some surface will be denoted Np,.. Finally, Aiminp; and /cmaxp. will

denote the minimum and maximum principal curvatures at point pi on some surface; will denote

the normal curvature at point p, on a surface, and Kp. and Hp; denotes the Gaussian and Mean

curvatures respectively at point Pi on the surface.



2 THE FIRST STEP

2.1 Surface Representation

Suppose we have a surface of some object S that we want to recreate as a computer image, call it

S. The first objective is to find a way to represent S in a way that the computer can interpret.

We accomplish this with a range camera, and the specifics about the camera can be found in Chase

[ CS99]. The range camera will give us a set of N points representing the surface which will

be fed into the computer. We will use these points to create S. Each point is represented by

Pi = {xi,yi,Zi), 1 < i < n. Here, Xi represents the horizontal distance from the center of the

camera; yi is the vertical distance from the center of the camera; and Zi is the distance from the

camera, or more easily stated, the depth from the center of the camera.

Definition 1 A point cloud, denoted by PC, is the set of data points {pt} 1 <i < N created from

a laser camera used to create S from S.

Definition 2 The finite set of points {pi} = PC discretizes the surface E. In other words, PC

is a discrete representation of E.

We begin by discussing the amount of information, or size of PC, the camera can create. Similar

to computer monitors, the cameras work in terms of pixels. Computer monitors are classified in

terms of pixels per square inch, or PPSI, cameras are classified the same way, and they range from

128 X 128 to 1024 X 2048. We can calibrate the camera to create the point cloud to any number

of pixels limited only by its PPSI. In three dimensional imaging, a pixel is also referred to as a

voxel. While a pixel is thought of generally as a fiat square of a certain length and width, a voxel

is a cube. Thus, a voxel is simply a pixel with depth equal to the length of its size.

Because we are creating a 3D image from a 3D surface, it is impossible to capture the entire

object with a single pass of the camera; therefore, it is usually necessary to take several passes with

the camera in different positions to capture obstructed portions of the object. Once we have taken

enough passes with the camera to capture the entire object, a registration algorithm is necessary to

merge these point clouds into a single set of data. The chosen algorithm should have a method to



locate points in each separate point cloud that represent the same portions of the object. This will

allow us to match those points so in the merged point cloud, we can avoid redundancies.

Over the years, the technology used to create these point clouds has improved immensely. There

are two primary methods by which cameras create the point cloud, sound and light. Each method

has primary drawbacks, and when we consider which kind of camera to use, we must consider these

drawbacks. There are two categories, accuracy and resolution. Accuracy refers to the "correctness"

of the information, while resolution refers to how "sharp" the information is.

Definition 3 We refer to accuracy as the correetness of the information received. In the eontext of

range cameras, accuracy refers to the correetness of the measurement of the coordinates; specifically,

the z-coordinate.

Definition 4 We refer to resolution as the sharpness of the information. In the context of range

cameras, resolution refers to the size of each point captured on the surface. The smaller the point,

the higher the resolution, the larger the point, the lower the resolution.

Before we discuss the difference between accuracy and resolution, we first want to clarify what

we mean by a "point in the point cloud," and what that point represents. Mathematically, it is

impossible to collect points on the surface because points are infinitesimally small; therefore, the

elements in the point cloud are not points as known to mathematicians; they would more accurately

be described as pixels. Now we can discuss the difference between accuracy and resolution in the

context of range cameras. A range camera is accurate if its measurements of the coordinates are

nearly correct. A camera with low resolution means that the pixels are larger, which results in the

image being blurry with some loss of detail. A camera with high resolution, on the other hand,

means that the pixels are very small. Therefore, the resultant image is sharper and not as much

detail is lost.

Remark 5 Throughout the rest of this thesis, we will refer to elements in the point cloud as points

to remain consistent with the name "Point Cloud."

We can now begin discussing two different kinds of range cameras. Some models of cameras

emit an ultrasonic "chirp" to determine the point cloud. Specifically, to create each element in the



point cloud, the camera emits a high-pitched chirp at the surface and calculates the time it takes

the sound to travel back to the camera. Thus, for some pi = {xi,yi,Zi) £ PC, xi is determined

by the horizontal distance the camera moves from center to capture the pi] pi is determined by the

vertical distance the camera moves from center to capture Pi, and Zi is determined by the formula

vAt

V is the speed of sound

At is the time it has taken for the sound to travel back to the camera.

The sound cameras are accurate because of the low velocity of sound. However, the resolution is low

because sound waves spread out as they leaves their source. As such, by the time it hits the surface,

it covers a larger portion of the surface so the pixels are larger. If users want to eliminate overlap,

they must calibrate the camera so that at each "chirp" covers a unique part of the surface. The

problem with this is that the resulting point cloud is very sparse which yields unreliable calculations

leading to an inaccurate surface reconstruction. If we allow the sound waves to overlap, we obtain

points in the point cloud that overlap resulting in inaccurate calculations and a blurry image.

Other cameras, such as those currently used by the University of Tennessee, Knoxville, use a light

laser to create the point cloud. Like the ultrasonic cameras, the Xi, and pi for pi = {xi,pi, Zi) £ PC,

are determined in the same manner. Zi is determined by

cAt

c is the speed of light

At is the time it has taken the light to travel back to the camera.

These cameras produce a high resolution image since the laser can be concentrated into a very

narrow beam; however, the information may be less accurate because of the high speed of light.

Because the distance in relatively short, any small error in measuring At will result in a relatively

large error in the Zi coordinate. However, because technology is so advanced, the laser light cameras

are becoming more and more accurate, and are the cameras of choice because of the high resolution



that is possible. In either case, determining the exact values Xi and yi for each pi £ PC is specific

to each camera and will not be discussed further. Of course, in both cases, the particular definition

assumes that the camera moves vertically and horizontally. If the camera is stationary and simply

rotates, the calculations would be converted to polar coordinates.

2.2 Errors

There are two different errors that can occur in the data set, or point cloud. One is inherent in the

surface and technology, the other is a random error.

Definition 6 We call noise the set of points in the point cloud that result from errors in measure

ment beyond a certain threshold.

Definition 7 We call outliers the set of points randomly created which are not indicative of a part

of a surface.

To illustrate the difference between outliers and noise, consider the following two examples.

Suppose the camera has an error in measurment of e. This means that the camera should measure

the range of the object within e of the true distance. Points that have an error si > e because of

the surface color or type, are called noise, see figure 2.

Noise can be created by any number of things, from the light interfering with itself, to small rough

regions on the surface on a microscopic level. However, we cannot do anything to accommodate

these problems, and we might want those small rough spots in our recreation. These problems

are irritating but are not the most common causes of noise in our data. The most common cause

of noise is the surface itself. Shiny and very dark surfaces will cause noise. Shiny surfaces are

reflective. A highly reflective surface, such as a mirrored surface, will reflect the light in the direction

of the surface. As such, if the surface is highly reflective, the light from the camera will not be

returned to the camera. Although our surfaces are usually not mirrored, noise may still occur.

Very dark surfaces may absorb some of the light before reflecting it back. Both of these situations

may cause errors in measurements, but are somewhat easy to accomodate by painting the surfaces

gray if possible.
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Figure 2: Illustration of Noise

For our example of outliers, suppose there is a bee in the room when we are using the laser

camera. Furthermore, suppose the bee flies directly into the laser while the camera is working.

Clearly, the bee is not part of the surface, yet a data point will be created as part of the PC. This

is called an outlier, see figure 3.

Although these errors have different causes, they can both be handled the same way by simply

ignoring those points. We have to determine how to decide whether an element in the point cloud

is an outlier or noise. With a few well-placed assumptions about the surface, we can determine

which points in the PC are outliers or noise. First, we can assume the surfaces are connected in

some way. If we obtain a group of points in the point cloud which seem to indicate levitation, we

consider those points to be outliers or noise. Another assumption we make is that the surfaces are

relatively smooth. By this, we mean that the surfaces contain no abrupt changes. For example,

we would not attempt to recreate a surface which has sharp spikes on it, or deep crevices.
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Figure 3: Illustration of an Outlier

We also assume that the camera is accurate more often than inaccurate. In both cases, we

would eliminate elements in the point cloud which are some predetermined distance from its nearest

neighbors. Finally, if we know something about the surface itself we can locate outliers and noise.

We can estimate the distance the surface is from the camera and use this information to locate

outliers and noise. Points which lie outside a predetermined distance threshold would be considered

as noise or outliers. Furthermore, we can locate the noise and outliers if we know the depth of the

object using a similar thresholding technique. Of course any algorithm designed to locate outliers

and noise must incorporate any acceptable error generated by the camera technology itself.

2.3 Basic Mathematical Tools

Now that we have the point cloud, we must determine how we can interpret the data set. To guide

us, we use differential geometry. Differential geometry is the study of curves and surfaces in some



kind of space. Applied to object recreation, we will look at properties of curves and surfaces in

3-space, or . Unfortunately, Differential Geometry cannot be applied directly to our data because

Differential Geometry is a study of differentiable, or at the least, piecewise differentiable curves and

surfaces. Nevertheless, we will define basic ideas from Differential Geometry drawn from DoCarmo

[ DC76].

Definition 8 S C is a regular surface if for each p G E, there is a neighborhood U C

containing p and a map f : U ̂  V HT, of a connected open set U onto U D S C E^ such that

1. f(u, v) = (x (u, v) ,y(u,v),z (u, v)) where {u, v) G U. The functions x {u, v) ,y{u,v),z (u, v)

have continuous partial derivatives of all orders in U.

2. f has an inverse f~^ : U PI S —> U which is continuous

3. For each q E U, the differential dfg : E^ —>• E^ is one-to-one. f is called a parametrization of

surface S.

Definition 9 Let g :V CS—>E6ea function defined in an open subset V of a regular surface S.

Then g is differentiable atpGV if for some parametrization / : U C E^ -> E with p G f{U) C V,

the composition p o / : U C E^ E is differentiable at f~^{p). g is differentiable in V if it is

differentiable at all points of V.

Definition 10 Fix a parametrization f : U C ^ T, at p e T,, a regular surface. Then the unit

normal at q e f{U) is defined as

Where fu,fv are the partial derivatives of f with respect to u and v respectively, and A is the usual

vector product.

Definition 11 A tangent vector to H at a point p G E is defined as the vector a'(0) of a differ

entiable parametrized curve a : (-£,£) ->• E with a(0) = p.

Lemma 12 Let f : U C ̂  H be a parametrization of a regular surface E and let q G U. The

vector subspace

dfg{R^) c E^

10



coincides with the set of tangent vectors to S at f{q) = p. Denote this tangent space by Tp (S)

Definition 13 The quadratic form at p ̂  T,, called the First Fundamental Form of S at p,

denoted by Ip, is defined as

Ip : Tp(S) —> K defined by

Ip(w) = (w,w>p = |w|^

where w £ Tp (E) and (w, w)^ is the usual inner product of w with itself.

Proposition 14 If the tangent vector w coincides with the tangent vector to a parametrized curve

a{t) : (-£,e) -)■ E where p = q:(0) = f{uo,vo) then

= F(u')^ + Fu'v' + G{v')^ where for t = 0

EiUo,Vo) = {fu,fu)p

F(uo,Vo) = {fuifv^p

G(uo,Vo) = {fv,fv)p

Definition 15 >1 regular surface E is orientable if it is possible to cover it with a family of coor

dinate neighborhoods in such a way that if a point p £ E belongs to two neighborhoods of this family,

the direction of the normal vector Np with respect to these coordinates remains the same. N is the

orientation ofH.

Definition 16 Let E C be a surface with orientation N. The map N : S takes its values

in the unit sphere

= {{x,y,z) £ E®; +^2 = 1}

The map N : E —>• is called the Gauss Map of E.

Definition 17 The quadratic form Hp (v) defined on Tp(E) by IIp(v) = - (dNp,v) is called the

Second Fundamental Form ofE atp and dNp is the differential of the Gauss Map at p.

Proposition 18 Let a(t) = f {u{t),v{t)) be a parametrized curve on E with a(0) = p. The tangent

11



vector to a{t) at p is a' = f^u' + fvv'. Then

Ilp(a') = e(u')^ + gu'v' + h{v')^ where

c — — (Nu, fu) — (N, fuu)

9 = - (N„, /„) = (N, fuv) = (N, /,„) = - {N„, /„)

h = -{Nv,fv) = {N,fvv)

Proposition 19 The value of Hp (v) for v G Tp(S) is equal to the normal curvature of a regular

curve passing through p tangent to v. In fact, all curves a, lying on the surface E such that for

p G S, a (0) = p and a' (0) = v have the same normal curvature. We will denote the normal

curvature by kn- If we want to specify the normal curvature in a particular direction v, we will

denote it by kn (v).

The the normal curvature is the normal component of the acceleration vector. It captures

information about how the surface E forces a curve a (t) on the surface through p in a particular

direction away from the tangent plane while disregarding other information about the curve.

Definition 20 Let {81,02} be the orthonormal basis 0/Tp(E) such that dNp(ei) = —fciSi and

dNp(e2) = —k2G2. Then ki,k2 are the maximum and minimum values of the Second Fundamental

Form respectively restricted to the unit circle o/Tp(S). They are, therefore, the extreme values of

the normal eurvature at p, called Principal Curvatures. They are denoted by km\np and fcmaxp •

Finally, ei and 02 are ealled the principal directions at p.

Proposition 21 Let v G Tp(E). Then the normal curvature kn along v is

IIp(v) = kn = ki cos^ 6 + k2 sin^ 9

where 6 is the angle between v and the prineipal direction 01 corresponding to ki.

Definition 22 The Gaussian Curvature K is defined as

^  " EG-%^ " detdNp
The mean curvature H is defined as

H =^ih+ ̂2) = -^tr(dNp)

12



Definition 23 A point of a surface S is

1. Elliptic if K > Q

2. Hyperbolic if K <0

3. Parabolic if K = 0, with dNp ̂  0

4- Planar if dNp = 0

These are some of the main concepts of Differential Geometry used in many of the reconstruction

techniques we will discuss and explore. As we can see, each require that the surface be differentiable,

which implies continuity. Recall, however, continuity does not imply differentiability. A surface

can be continuous without being differentiable; the tip of a cone is one such example. Throughout

the documentation, engineers use continuity and differentiability interchangeably, so care must be

taken when reading the literature so we can correctly determine which they mean. Nevertheless,

to directly utilize Differential Geometry, we must have a differentiable surface. The discrete set

of points representing our surface is not differentiable, and before the surface is created, it is not

even continuous. Therefore, we have to find ways to overcome the shortcomings of the point cloud.

Basically, we can use the discrete data directly, or we can attempt to approximate the point cloud

by a set of differentiable functions which will represent well known shapes with well-known normal

and curvature values.

Engineers have come up with many methods by which to approximate the surface represented by

the point cloud. In the following chapters, we will explore these methods. We will discuss various

ways by which the normal vector is estimated, and the ways the normal vectors are used to recreate

the surface. We will also discuss various methods by which curvature values are estimated.

13



3 NORMAL VECTORS

Perhaps the most important component of surface recreation is the establishment of a unit normal

vector at each point on the point cloud PC or on our reconstructed surface S. Normal vectors are

the most important component because they determine how the surface is oriented. Without well-

estimated normal vectors, a non-oriented surface may be reproduced which bears little resemblance

to the original surface. Because we are working with discrete data, and because most surfaces

we want to reproduce will not have an associated parametrization, we cannot compute derivatives.

Therefore, we are unable to utilize the definition from differential geometry of the normal vector

directly. As we discussed earlier, there are two ways to overcome this shortcoming. We can either

find a continuous function approximating points in a neighborhood of p £ 5, or we can use the data

directly by using statistical analysis, difference equations, and vector products.

3.1 Smooth Function Approximation

As we have discussed, we will consider methods by which normal vectors are found after the data has

been manipulated. We will estimate the data by polynomials which describe well-known volumetric

primitives, defined below, about a neighborhood of p. The primitives are then pieced together to

form the computer generated surface. We can calculate the normal vector from these polynomials.

Definition 24 A volumetric primitive is defined as a three dimensional shape having some volume

associated with it. Some well-known volumetric primitives are spheres, cylinders and ellipsoids.

Polynomial estimation methods are appealing in the fact that we can apply differential geometry

directly to the polynomials. The drawback comes from the fact that only simple surfaces can be

described by volumetric primitives. More complicated surfaces cannot be modeled by this method if

the result is to be realistic. In some applications where realism is not essential it is preferred because

it requires less computer time to recreate the surface. We will look at two methods developed by

Ferrie [ FR98] [ FR93].

14



3.1.1 Method 1

Ferrie [ FR93] approximates neighborhoods of p G PC by a continuous function and calculates the

normal vector Np from this function using the definition from Differential Geometry. For each

p G PC, we parameterize the points in the neighborhood of p by the quadratic

w{u, v) — au^ + huv + cv^

This function is found by a least squares technique determined by the user. This local parametriza-

tion is chosen so that the p is origin, i.e. p = (0,0,0), of the parametric frame {u, v, w) with w

aligning with the normal. Thus, we need an initial estimation of the normal. To accomplish this,

we find a plane that best fits the data by any planar regression technique which is not discussed.

Because this normal vector is simply the initial estimation, we only concern ourselves with the final

estimation of Np.

Proposition 25 Let the local parametrization of S at p be f{u,v) = {u,v,w{u,v)). Then

^  y/wl+wl + 1

Proof. This is straight from the definition of the normal vector from differential geometry and

the proof of proposition 14. Np = have

fu = {l,0,Wu)

fv = (0,1,

TV -

ll/u X M

ei 02 03

1  0

0  1 ''Wv

Wfu X Ml
(01 (-W„) - 02(lU^) +03(1))

^ {-Wu,-Wy,l)
^Jwl + wl + l

This completes our discussion of the first of two methods developed by Ferrie.

15



3.1.2 Method 2

The second method, [ FR98], develops what he calls a "coarse" representation of the objects for the

purposes of allowing robots to determine whether an object is in their path or allowing them to

determine a method by which to grasp it. We begin with S represented as a set of discrete points

with the coordinates in the form (x,y, f{x,y)) which is done by either the camera or a software

program during preprocessing. We will approximate S with a function / based on the sample

points in a local neighborhood of p. Using a local coordinate system with the origin (u, v, w) at

p e 5 helps simplify the calculation. We want to define / so that it can fulfill the requirements of

difllerential geometry, so we choose the function

/ = aiu^ + a2U^ + asu + + a^u^v + a^uv^ +.a^uv + + agv"^ + a^ov + an

As with the method previously discussed, f is estimated using any least squares technique.

/ allows us to use the definition of Np from differential geometry by taking the derivatives and

the vector product. Although many primitives can be created by this funciton, Ferrie addresses

only spheres; we will do the same.

Proposition 26 For a sphere, Np =
V'al+afo+l

Proof. The parametrization of a sphere is,

w {u, v) = {u, V, + agu + agv^ + aiou + an)

It is easy to see that this is a sphere by simply completing the square. Using the definition, we let

Wu{u, v), Wviu, v) be the derivative of w with respect to u, and v respectively. Thus

■Wu{u, v) = (1,0,2a2U + 03)

u;„('u,u) = (0, l,2a9U + aio)

We center the coordinate system so that w (0,0) = p. By construction, p lies on the sphere so we
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evaluate the vector product at u = u = 0

Np =
Wu X Wy

\Wu X wJ

ei 02 03

1  0 Us

0  1 Oio

\\Wu X u;„|

01 (—Q3) ~ ̂2(010) + 03
||ei(—03) — 02(010) + 03II

_ (—03,-010,1)
^1 + O3 + Oil

10

Unfortunately, Ferrie leaves the discussion here and does not pursue other volumetric primitives.

Therefore, we will not be able to explore the methods he uses for other parametrizations. Although

we suspect he uses the same approach. Without any further guidance, we cannot explore other

volumetric primitives.

3.2 Discrete Data

Many methods have been developed that consider only the coordinates of the points in the PC.

Each method considers a single point p e PC along with the nearest neighbors of p.

Definition 27 Let p £ PC. We call the nearest k points to p, k = 1,..., m, the k-neighborhood

of p. The parameter k is usually set by the user, and we will denote this neighborhood as nbhd{p).

We might ask ourselves a few questions about this particular definition.

1. Why do we have the user specify the number of elements in the neighborhood rather than the

metric size of the neighborhood? We specify the number of elements because we have more

information at our^ disposal about the number of elements in the point cloud rather than how

far apart they are from each other. It also gives the user more control over the speed of the

reconstruction. Finally, it helps ensure that we have enough elements in the neighborhood to

work with.
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2. If there are two points, Pi,Pj, that are the same distance from p, how do we determine which

point to consider an element of nbhd (p)? Suppose A: = m, if we have not yet collected (m — 1)

elements, both pi and pj will be considered in the neighborhood of p. (i.e. pi £ nbhd (p) and

Pj e nbhd(p)). However, if we have collected (m — 1) elements, and we only have room for

one more element in nbhd (p), we must decide which one to include. This process depends on

the algorithm. If during the test p, € nbhd (p) we have two possible situations, one of which

would be included in the algorithm

If d (p,Pj) < d ip,Pi) Then pj G nbhd (p) or

In this case, if d (j>,Pj) = d (p,pi) and we only have room for one more element in nbhd (p) pj

will replace p,. Thus, pj G nbhd (p) but pi ̂  nbhd (p). The other situation we have is

If d (p,pj) < d ip,Pi) Then pj G nbhd (p)

In this case, if d {p,pj) — d {p,Pi), pj will not be included in nbhd (p) if . Any algorithm that

chooses elements based on distance, one of these two tests is necessary.

With these two questions answered, we can continue with our discussion about normal vectors.

3.2.1 Method 1

Hoppe et.al. [ HOP92] finds the normal vector at a point p G PC through a covariance matrix, to

be defined later. First, we will define the centroid of nbhd{p).

Definition 28 We call the centroid of nbhd{p) the point

o=iip.
1=1

where k is the number of elements in nbhd{p).

Thus, the centroid o, is simply the average location of all the points in nbhd(p), and is consistent

with the mathematical definition of the centroid with weights equal to 1. The covariance includes

the variance, which is defined in [ BM95] as the average of the square of the distance that each

values is from the expected location. Therefore, the values are real. In this case, we consider the
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expected location to be the mean of the values. Thus, if the values are near the mean, the variance

is small.

The following is the mathematical definition used for variance [ GB91]

Definition 29 The variance is defined as follows

Ux-ti)'
var — ;

k

where X is an individual value, n is the mean of these values, and k is the population size

The covariance is the measurement of the mutual dependence of the variables (in statistical

analysis, it measures the mutual dependence of the errors in those values). Now we will begin

developing the covariant matrix. In this method, the covariant matrix is defined as follows;

Definition 30 Let pi G nbhd{p), i = 1,... ,k. The Covariant Matrix is defined as

k

CM = ̂  (Pt - o) ® (pt - o)
1=1

where if {pi — o) = (a, b, c), then

aa ab ac

(Pi - o) (g) {pi - a) = ba bb be

ca cb cc

Notice that the covariant matrix is simply the sum of squares of the difference between each p,

and the centroid a. For the purposes of 3-dimensional reconstruction, the properties of this matrix

are well-suited for the information we can gain from it.

Proposition 31 CM is symmetric, real, and positive semidefinite

Proof. First, consider each pj € nbhd(p), i = 1,... ,k, and let o be centroid of nbhd{p). Since

Pi is real for every i, a is also real. Therefore, {pi — o) is real, and {pi — a) ® {pi — o) is real. Let

At = (pi - o) (g) (pi - o).

Before we proceed, we write (p; — o) as a real 3x1 matrix. Therefore, by definition, (pj — o)^

is a 1 X 3 matrix. We also know

(pi - o) gi {pi - a) = {pi - o) {pi - a)
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and it is symmentric. To see this, suppose (pi-o) = (a, b, c). Then

f  \
a

(pi - o) {pi -o) = {a, b, c)

\

aa ab ac

ba bb be

ca cb cc

= {Pi - o) 0 {pi - o)

Now we want to show that Aj is positive semidefinite. Recall that a form q (x) is positive

semidefinite if 9 (x) > 0 for all x. In terms of matrices, this means that x^Ax > 0 for all x. So,

our goal is to show that x^ {pi — o) (pi — o)^ x > 0 for all x.

By [ GB91], we see

2

> 0
rr^ jT / 7* 7* \ 7^X {pi-o){pi-o) X = {^{pi-o) X, (pi-o) X^ = (pi-o) X

This shows that {pi — 0) {pi - o)^ is semidefinite. Now, {pi — o) (pi — o)^ is 3 x 3, and

rank (jpi - o) (pi — 0)^^ < rank (pi- 0) = 1 <3

Thus, {pi — o) {pi — o)^ is singular.

We will now show that the sum of real, symmetric, and positive semidefinite matrices results in

a real, symmetric, positive semidefinite matrix. Since each Aj is real and symmetric,

k  k k

^ Ai = ̂  {pi -o) ®(pi-o) = '^{pi- 0) {pi - of
i=l i=l i=l

is a real matrix because the sum of real numbers is real. Notice also that Yli=i is symmetric,

because

(Aj + A.j) = Af + AJ = Aj + Aj

Finally, we need to show that the sum of positive semidefinite matrices results in a positive semidef

inite matrix. By [ ST86], we see that this is true. Again, consider Aj + Aj. Then

x^(Aj -I- Aj)x = x^AjX + x^AjX, since

20



x^AiX > 0 and x^AjX > 0

x^AiX + x^AjX > 0

Thus, CM is real, symmetric, and positive semidefinite. ■

We now turn back to the method of finding the normal vectors in [ HOP92]. After creating the

covariance matrix, we decompose CM into its system of ordered eigenvalues which are greater than

or equal to zero since the covariance matrix is positive semidefinite,

0 < Aj < A2 ̂  A3

The corresponding eigenvectors are

{01,62,63}

where 61 is the eigenvector corresponding to Ai, 62 is the eigenvector corresponding to A2, and 63 is

the eigenvector corresponding to A3. We define the normal vector at p to be Np = ±ei. The sign

determines the orientation of the tangent plane, and must be chosen so nearby tangent planes are

consistently oriented. In this method, the tangent planes are calculated next, so we will suspend

this discussion to a later chapter.

3.2.2 Method 2

Gopi et.al. [ GPOO] utilizes the dot product and variance to approximate the normal vectors. Again,

we utilize nbhd{p) defined earlier. For each pi 6 nbhd(p) we define Vj be the vector from p to pi.

= Pi-p

The normal vector to a surface at a point p and a vector at p tangent to the surface has a dot product

equal to zero since they are orthogonal. According to Gopi et.al., our approximated normal vector,

Np, will be the vector up to a sign that minimizes the cosine of the angle from each Vj to Np. We

will substitute the dot product in the definition of variance to obtain the definition by Gopi [ GPOO]

Definition 32 The Variance is defined as follows

var (p) = ̂  ^
i=l
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Minimizing the dot product will minimize the variance. Removing the factor ̂  will not change

which vector minimizes the variance, so we can remove the factor ̂  and minimize to obtain

min {var (p)) = min ^Np • v, - ^
k= imnl^( |y,-£^) N,

^i=l \ \

Proposition 33 Arrange the coordinates of the nbhd{p) so that p is the origin. Then

min {var (p)) = min ((vj - c) • Np)^^
where c is the centroid ofnbhd{p).

Proof. Since p is the origin, the centroid, with all weights equal to 1, we have

Ek
i=lPi

k

Since Vi = Pi— p, we have

_ Yli=i Vi
k

Thus

min(uar (p)) = min ( f ['vj -
•  1 V X ^k t=l \ \

= min ((vj - c) • Np)^ j

Define A to be the k x 3 matrix defined by row vectors Vj — c. We thus obtain

min(?;ar (p)) = min (HANpHj)

= min (NjA^ANp) ̂

It is claimed that the vector which minimizes the variance is the eigenvector corresponding to the

smallest eigenvalue of A. The difficulty with this assertion is that A is not square. By definition,

we can take the square root of the smallest eigenvalue of A^A. Another assertion is that it is the

smallest singular value in the singular value decomposition [ GB91][ GL83].
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Lemma 34 The vector that minimizes ||ANp||2 is the eigenvector corresponding to the smallest

eigenvalue of A^A up to a sign. It is also the vector, up to sign, corresponding smallest value in

the SVD of A.

Proof. The first part of this lemma is clear because by definition HANpUg = (NjA^ANp)^ ,

so naturally, the eigenvector corresponding to the smallest eigenvalue of A^A minimizes HANpHj.

The second part is straight forward from the SVD Theorem and proof immediately following. ■

To explore the second part of the lema, we will recall the Singular Value Decomposition Theorem.

We will denote real m x n matrices by and adapt the proof from [ GB91].

Theorem 35 Singular Value Decomposition (SVD). If A then there exist orthogonal ma

trices

U = and

V = [vi,V2,. ■. ,Vn] £ such that

U^AV = diag{Xi, X2,X3,0) = S where

Xi ̂  X2 ̂  X3 ̂  0

Since U and V are orthogonal and real, we can write

A = USV^ = USV^

where the columns of U are the eigenvectors of AA^ and the columns of V are the eigenvectors of

A^A

Proof. Since AA^ and A^A are Hermitian by definition, symmetric, i.e. ^AA^^ = A^^ A^ =
AA^, and positive semidefinite matrices, the nonzero eigenvalues are positive. We define the posi

tive square roots of these eigenvalues as the singular values of A. Let vi, V2, V3 be the eigenvectors

of A^A and let V be the matrix with the columns as the eigenvectors of A^A

V = Vl V2 V3

So by construction, V is a 3 x 3 matrix whose columns are orthonormal vectors that form an

orthonormal basis for . Suppose rank{A) - r. Then WLOG we can assume the first r columns
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of V are eigenvectors associated with the nonzero eigenvalues of A^A. In other words,

A^Avj = Afvi, 1 < i < r < 3

The remaining 3 — r columns in V are the eigenvectors of A^A corresponding to its zero eigenvalue.

We will now construct U. For 1 < i < r, set

u, = (i) Av,
Consider any two vectors Uj and Uj. Then

° (i) (^) = (aJ) = (I) ■'«
since (v,, Vj) = 1 if i = j, and (vj, Vj) = 0 if i 7^ j.

So the set {ui, . . . ,Ur} is orthonormal. The orthonormal vectors compose the first r columns of

U. The remaining k — r columns of U are orthonormal vectors forming a basis for null{AA^), the
eigenspace of AA^ corresponding to A = 0.

Finally, we calculate U^AV

U^AV = U^A

= U^

Vi V2 V3

Avi AV2 Av3

AiUj A2U2 A3U3 0 . . . 0

AiU^Ui A2U^U2 A3U^U3 0 ... 0

AiSi A2e2 A3e3 0 . . . 0 = S

where Oj is the fc x 1 vector with a 1 in the f"' row

So we see that S matrix with A,, 1 < i < r along the diagonal and zero everywhere else. Thus,

the smallest eigenvalue is the smallest value in the SVD of A, and the corresponding eigenvector is

the vector minimizing ||ANpl|.,. ■
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SVD is a diagonalization algorithm for any matrix A which utilizes the eigenvalues A^A for its

development. The purpose for specifying the fact that it is the smallest value in the SVD of A is

unnecessary. Calculating the eigenvalues directly from A^A would be simpler and more efficient.

Lemma 36 Methods 1 and 2 will result in the same normal vectors.

Proof. The centroid in method 1 is defined as

1  *

i=l

where pi £ nbhd (p). In method 2, we define a vector

'Vt = Pi-p

Then the centroid is defined as

1  "

i=l

Let p be the origin. Then c = o.

The covariance matrix in method 1 is defined as

k

CM = 'Ŷ{pi - o) ® (pi - a)
i=l

where if {pi — o) = then

^ {pi - o) ® (pi - o) = ̂
t=l i=l

0/j^ Qiihi CLiCi

hiOii biCi

Ci Cli Ci bi Cj

ELi of ELi ELi aiCi

Ei=l Ei=l Ei=l

Ei=l CiOi Et=l Ei=l

= A^A

Thus, finding the eigenvector which minimizes var (p) — ||Aep|| will also minimize CM.

Corollary 37 Np minimizes the dot product of the vectors making up the rows of A.
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Proof. Suppose |iAep|| is minimized for = Np. Then

((pi -o),Np)

ANp =
((P2 -o) ,Np)

{(Pk -o),Np)

IS minimum. ■

Therefore, in both cases, we have a good estimate of the normal vector.

3.2.3 Method 3

We now turn to another method used to estimate the normal vectors. Taubin [ TB95] discusses

primarily curvature. However, to calculate the curvature, we first approximate a normal vector.

Before we begin, we will set up some notation.

This method begins with a triangulation. It does not establish a triangulation, it simply takes

a triangulation T as input and calculates curvature from it. The triangulated surface S consists of

a list of vertices P and faces F. Denote this list by

5 = {P,F}

P = {pi : 1 <i <n}

n is the number of vertices.

-P" = {/j : 1 < J < rn}

m is the number of faces.

Each face consists of three nonrepeating vertices, so

fi = (Pli,P2,-,P3i)

Pj. ̂  Pii when

j 7^ I for

l<j<3.

1< / < 3
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We assume S is oriented. The set of vertices sharing a face with pi will be denoted P\ Thus iipj

belongs to P®, pj is a neighbor to pi. The set of faces containing vertex pi will be F®. If fk belongs

to F', fk is said to be incident to pi.

Remember that we are beginning with a triangulation, T, of a surface. This means that the

surface has already been approximated by a set of planar triangles. From basic calculus, there is

a well defined normal vector up to orientation on each triangle, call it N/j. Recall that for face fi

consisting of vertices (pii,P2, jPs.), where vi = p2; -Pi,- and V2 = ps, -Ph, then the normal vector

to the planar triangle fi is N/^ = vi x V2.

Since we are assuming that S is oriented, every Nf. points to the same side of the surface.

However, we do not want the normal vector of each face of T, we want to estimate the normal vector

at each vertex.

Definition 38 Let Np., the approximated normal vector at point pi E S, be defined as follows:

_ S/.eF"' l/il N/.

l/il N/.
Np.

where |/i| is the area of the face fi.

So by definition, the normal vector at pi is defined as the normalized weighted sum of the normal

vectors of the incident faces. Notice that the larger the incident face, the more weight that normal

has in the overall computation. In ordinary situations, this calculation would be sufficient because

we would end up with a normal vector that would average out over all the incident faces.

3.2.4 Method 4

Triangulations are not the only discrete recreation methods which require normal vector calculations.

Delingette [ DEL94] utilizes a generalized polynomial mesh, called a simplex mesh, to recreate the

surface. We categorize a siihplex mesh according to the number of vertices each element in the point

cloud is connected to. An N-Simplex Mesh connects each element in the point cloud to {N + 1)

vertices. Thus, a 1-Simplex Mesh connects each element in the point cloud to two other elements,

a 2-Simplex Mesh connects each element to three other elements. It is represented by a list of

pairs consisting of each vertex and the function connecting it to its three nearest neighbors. The
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connecting function is defined as a distance function, but is not discussed in detail. To define it

more precisely,

Definition 39 ̂ 4 2 simplex mesh, {2SM), ofR^ is defined as a pair {V{S),N{S)) where

1. V{S) = {pi}, i = 1,.. .n, is the set of all vertices making up S.

2. N{S) :pi {PiitPii^Pia}- is a function that connects eachpi is to three neighbors

3. Vie {!,...n},Vj€ {1,2,3},We {1,2,3}

Pi, 7^ Pi

Pij + Ph

So Pi is not connected to itself, and pi is connected to three distinct neighbors.

This method has many factors to it, most of which we will not explore because it utilizes virtual

reality technology to recreate the surface. However, we do want to notice a few properties.

First, we observe that a 2-simplex mesh can be obtained from a triangulation by connecting the

centers of each triangle in the triangulation, see figure 4 adapted from [ DEL94]. Thus, it is a simple

manner to estimate the normal vector on each face.

Definition 40 Let S be an oriented simplex mesh representing E. Let p, e S be a vertex of a

simplex mesh and let (PiuPijiPta) be the three neighbors of pi on the mesh. These three neighbors

define a plane P with a normal vector

^ jPi -Pii)x jpi - Pij) + {Pi2 X Pis) + jPh X Pis)
^  ll(Pi -Ph) X (Pi -PiJ + iPi2 X Pia) + (Pii X Pi3)||

We define the normal vector Np; = Np.

Thus, the normal vector at point p, is simply the normal of the plane defined by its neighbors in

the 2SM, see figure 5.
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Figure 4: A Simplex Mesh from a Triangulation
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Figure 5. The Normal at pj on a 2 Simplex Mesh
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This definition of the normal of the plane determined by {pii,Pi2,Pi3} is a common algorithm,

and can be found in [ MIL77]. Notice that we could simply take a single cross product to obtain

the same normal vector. It works well in this setting because the surfaces are not assumed to have

radical changes in the normal vector about the neighborhood of pi. We know this vector will always

exist unless the plane is degenerate. This will only happen if the neighbors are colinear. Because

the chances of this happening are very small given that the neighbors are determined via a distance

function, this possibility is not addressed. Furthermore, we can ensure non-collinearity by choosing

N (S) carefully.

This completes our discussion of methods used to estimate normal vectors. In the next section,

we will revisit these methods to determine which ones may be more accurate.

3.3 Conclusion

We discussed two general methods developed by engineers to estimate normal vectors. Although the

details may be different, the overall approaches between the two types of methods are very similar.

Which is more effective depends primarily on the application and the speed required to recreate the

object. Although a thorough discussion of the reliability of these methods must wait until our final

discussion, a preliminary discussion restricted to the normal vector calculations is possible.

The methods involving difference equations and statistical analysis generally produce very similar

results, and as we have found, two of these methods produce the same Normal vector. Nevertheless,

all of them measure how p, 6 nbhd{p) differs from p in each coordinate, collect this information in

a covariant matrix CM, and use this information to determine Np. All cases define Np = ±ei the

eigenvector corresponding to the smallest eigenvalue of CM. They choose this vector because it is

the one that will minimize CM, which minimizes the inner product.

We also looked at a couple of methods which approximate the data with continuous functions

and use those functions to estimate the normal vectors. By utilizing continuous functions, we can

calculate the normal vector by using the definition from differential geometry. Because this approach

is simpler, one might believe these methods would be preferable to the discrete case described in

the previous paragraph, but this is not the case. The discrete case will produce normal vectors

that more closely resemble the normal vectors of the original surface S because we do not restrict
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ourselves to specific smooth surfaces. The results produced by an approximating function will

produce normal vectors based on the surface represented by the smooth function rather than the

data itself. If the surface is complicated, these primitives may not be an accurate representation of

S. As a result of these differences, normal vector approximation based on the discrete data directly

is preferrable.
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4 CURVATURE

The shape of a surface is closely linked to its curvature. If the shape changes dramatically, the

curvature is highly positive or negative; if it changes only slightly, the curvature is near zero. For

example, a plane does not change its shape at all, so it has curvature equal to zero. As we discussed

in chapter 2, there are different measurements of curvature:

• Principal Curvatures

• Gaussian Curvatures

• Mean Curvature

• Normal Curvature

Although curvature is only used in a limited way during surface reconstruction, it is used exten

sively in other aspects of computer imaging. After a computer image has been generated, we often

wish to partition the surface into its constituent parts to facilitate manipulation or recognition. This

process is called surface segmentation and curvature estimation is used extensively in this process.

A surface is segmented based on curvature based on the idea that when two surfaces come together,

they meet at a deep concavity. Curvature values are also used in surface recognition methods.

Curvature can be estimated in different ways. One approach is a watershed segmentation

technique developed by Mangan and Whitaker [ MN99]. This approach simulates water filling

crevices in the triangulation. The crevices which hold the most water are estimated to be the areas

of lowest curvature. Another approach simulates electrical charge distribution over the triangulation.

This approach developed by Wu and Levine [ Wu97] is based on the idea that on a perfect conductor,

the charge density in areas of low curvature is a local minima. We will not be discussing these

approaches; instead, we will concern ourselves only with more traditional mathematical approaches

to calculating curvature.

Two of these traditional methods are used to segment the point cloud itself into partitions. We

locate these partitions so primitives can be fitted to each one [ FR93][ FR98]. In one of these

methods, [ FR93] the principal curvature values are refined according to neighbors. In another
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method, we estimate curvature to set sampling criteria [ GPOO]. This chapter will be concerned

with these methods as well as other methods that estimate curvature on a triangulation or simplex

mesh [ DEL94].

We will begin with methods that calculate curvature on smooth functions.

4.1 Smooth Function Approximation

Recall that in both [ FR93] [ FR98] continuous functions were used to approximate the data in the

point cloud by some least squares technique. We will begin with the more general approach [ FR98].

The the local approximating function is of the form

w {u, v) = oiit^ + 02^^ + azu + + a^u^v + a^uv^ + a-^uv + + aiov + an

Thus, for each point p E PC we have

f{u,v) - {u,v,w{u,v))

We will use / and the second fundamental form to calculate the principal curvatures

Lemma 41 The principal curvatures fcmax o,nd kmin o,rc

kmaxp — fl2 + flg + \/ (^^2 + + fly

kmiup = a-z + as — ̂  (a2 + Ug)^ + Oy

The corresponding principal directions arc

e2„

■y^ag—02 ag+07 + 02 — 09+02
07

1

■y/og—Q2a9+Q7+af+a9—02

33



Proof. First, we use the basic definition of the coefficients of the second fundamental form.

DoCarmo [ DC76] shows us that

Np(u,u)=

e =

9 =

h =

yjl + wl+ wl

U

y/l + wl+ wl

'^UV

+ W2

IVyV

Because the local coordinate system is centered at p, we see that Wu (0,0) = 0 and (0,0) = 0.

By a simple calculation, we also observe that

fvLu — (0> '"'u u) = (0,0,6oiu + 2a2 + 2aiV^ + 2a^v)

fuv — (0) 0> ""^uv) = (0,0,4a4uv + 2a5U + 2o6U + 07)

fvv = (Oj 0) '^vv) = (0,0,2a4U^ + 2a6ii + 6asv + 209)
\

Now, evaluate /u«, /uui fw with u = v = 0. Thus

e =

9 =

h =

s/l + wl+ wl
Wnv

— 2a2

y/l + wl+ wl
= 07

— 209
s/l-\-wl + wl

Thus, the second fundamental form applied to vector v = (u, v) becomes

Hp (v) = edu^ + 2gdudv + hdv^

du dv
e  9 du

T
= V

9 h dv

2fl2 0,7

07 209
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By definition, the eigenvalues of A are the principal curvatures

kmaXp — 0,2 + ag + '\J (02 + flg)^ + fly
fcminp = 02 + 09 - \J(02 + Og)^ +

and the eigenvectors are the principal directions

y/ag — a2a9+aj +^— ag+02
07

e2„
\/a9 —0209+07+^+09—02

07

where ei^ corresponds to fcmaxp and 82^, corresponds to fcminp- This completes the proof. ■

In the second method developed by Ferrie, [ FR93] we began with quadratic functions with a

local coordinate system defined with the origin at p. The quadratic had the form

w {u, v) = au^ + buv + cv^

Notice that this is simply a special case of the previous method. In the previous method, we began

with the approximating function of the form

w {u, v) = Oiu^ + agu^ + agu + + asu^v + aguv^ + ayitn + agv^ + agv^ + awv + an

If

0-1 — 0,3 — Hi — ag — ag — ag — Oio = On = 0

we obtain our current approximating function. We approximate the point cloud with

7{u,v) = {u,v,w{u,v))

We can now calculate the principal curvatures and corresponding directions using the same approach.

Lemma 42 Let f {u,v) = (u,v,w {u,v)). Then the maximum and minimum principal curvatures,

^minp and ̂ maxp ? are given by

kmm„ =a + c+ \J{a- cf + b^
kmnxp =a + c- v'(a - c2 + b'^)
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and the corresponding principal directions are

—  — c + \J{a- c)^ + 62^
and

e2„ =

a — c+ \J{a — c)^ + 6^

Proof. Notice that from the previous corollary

-h

a — 02

b = ar

c = Og

Thus

kmaxp =a + c+ ̂J{a- cf + 62

fcminp = a + c - ̂(o - c)^ + 62

This concludes the curvature portion of our proof. Next, the principal directions in the previous

lemma are

ei„ =

62. =

\/a9 — a2Q9+a7+^—09+02
a^

•\/ O9 —a2Q9+07 + 02 + Q9~a2
ay

-y/c^ —gc+fr^+Q^—c+g
b

V c'-^—oc+6^+a^+c—a
b

Multiplying both by -6 will not alter the direction of the vector. Therefore, we obtain

ei„ =

— (a — c + \/c^ — ac + b^ + o^)

e2p =
-b

a — c+ ̂c^ — ac + b"^ + 0?

This completes our proof.
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These methods for estimating the principal curvatures at a point p when given a smooth function

approximation of our data simply use definitions and theorems from Differential Geometry. However,

to obtain reliable estimates of fcminp and fcmaxp, the choice of parameterizations is critical. It is for

this reason, that the parametrizations are defined only in very small neighborhoods defined by the

user. The specific method for defining the neighborhood is not discussed.

We will now continue with curvature determination from discrete data.

4.2 Curvature Estimation from Discrete Data

In the next two sections, we will discuss methods estimating curvature based on the mesh represent

ing the surface. We will first discuss approximations of principal and normal curvatures, then we

will discuss methods by which to estimate Gaussian and Mean curvatures.

4.2.1 Method 1

Two methods, Taubin [ TB95] and Gopi et.al. [ GPOO], estimate the curvature tensor and use it to

estimate the principal curvatures. We will approach this method in two distinct steps. First, we

will discuss the curvature tensor and related curvature values in the continuous case. Second, we

will use the continuous case as our foundation to develop a method to estimate these values from

discrete data.

Curvature Tensor in the Continuous Case The curvature tensor is simply a map which assigns

each point p on a surface E to a function that measures the normal curvature. Taubin [ TB95]

states the definition of normal curvature as follows:

Definition 43 The Normal Curvature, kn„ (v) at a point pe'E in the direction of a unit tangent

vector V is defined by x" (0) = kn^ (v) Np, where x (s) is a curve on S at p parametrized by arc length

such that x{0) — p and x' (0) = v

Notice that this is not the same as the mathematical definition of normal curvature. The

tangental component of the curve is ignored. By this definition the normal curvature is a quadratic
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form which satisfies the identity

(v) = Vi V2

Lll jul2Kp Kp Vx

_kf kf _ V2

where v is a tangent vector to E at p. We can represent v as a linear combination of an orthonormal

basis {vi, V2}of the tangent space to E at p. Thus, v = uiVi + U2V2 and

(vi)

kil = kll

We want our basis {vi,V2} to consist of the principal directions {61,62}; thus = 0, and

we obtain

kup (v) — kji Vi V2

ei

62

Vi V2

Vi V2

fell 0

0  kf

\

/

0

knr (e2)

111

V2

111

V2

So by definition, kp^ and kp^ are the principal curvatures km&Kp and k^iap-

Next, we add the normal vector Np to the basis {61,62}, and obtain the orthonormal basis

{61,62, Np} in three dimensional space. Thus, we can rewrite kp as

0  0 0

kfip (v) Tl Vx V2 0 ^maXp 0

0  0 ^minp

V = nN + uioi +11262 is some vector. We want it to be the tangent vector, so we let n = 0 to

obtain our original representation for T. Therefore, by construction, tangent vectors to E at p are

those vectors for which n = 0.

n

Vx

V2
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We want to generalize this expression. Notice that we can choose another set of orthonormal

vectors {Ui, U2, U3} as our basis and write v as a linear combination of these vectors. In this case

V = ttiUi + U2U2 + U3U3

We can substitute this expression for (v) to obtain

fcnp (v) = U^KpU

where u = {ui,U2, is some vector, and Kp is a 3 x 3 symmetric matrix with 0 as one eigenvalue

and fcmaxp and fcminp as the other two eigenvalues.

Because it may be very difficult to calculate Kp on our surface, we need to find a method by

which we can estimate the curvature tensor with an eye toward our eventual goal of estimating it

with discrete data. We will begin with a matrix Mp defined by an integral formula. Mp will have

the same eigenvectors as Kp, but the eigenvalues of Mp will be related to those of Kp by a linear

transformation. Recall that the eigenvalues of Kp are the principal curvatures.

Before formally defining Mp we want to notice that for -tt < 9 < n, the tangent vector vg =

cos (6) 01 + sin (6) 02, where {ei, 02} are the principal directions of S at p. Then

kup (Vfl) = fcminp COS 9 + fcmaxp sin 9

We will now define Mp:

Definition 44 The symmetric matrix Mp is defined as

Mp = ̂  knp (Vff) vgvjd9
TObtaining the principal directions and curvatures reduces to diagonalizing Mp. Because vgVg

is a rank 1 matrix for every 9, and -vg is tangent to E at p, Np is an eigenvector corresponding to

eigenvalue 0. Thus,

Mp = vfa
mf mf

Vi2

Here, Vi2 = [ei, 02] is the 3x2 matrix constructed by concatenating the column vectors 01,02- By

construction, Mp is symmetric, so .
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Lemma 45 Let k^, hp he the principal curvatures of S at p. Then hp = — rn^ and hp =

- m
11

p •

Proof. Notice

mp^=efMpe2

= ̂  cos® 6 sin OdO+
27r J

/  cos 9 sin® 6d6
27r y_,

= 0

since cos® 0 sin 0 and cos 0 sin® 0 are both odd functions. Thus, the two remaining eigenvectors of

Mp,other than Np, are the principal directions 61,02. However, the corresponding eigenvalues are

not the principal curvatures. We obtain

= ef MpSi

k^ f"
=  cos^ 6dd+

k^ f"
cos® 6 sin® 6d9

271

3,1 1,2= gK +

Similarly

m®® = e2Mpe2

= 7^ f cos® 9 sin® 9d9 + 7^ [ sin^ 9d9
271 J-„ 271 J_^

3,2 1,1
= s'- + &'''

Now, we have

+ gA:®

= 1^1 + ̂A:^
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Multiply the equation for rrip by 3, and subtract:

- ̂k^ = k^
Similarly, multiply the equation for by three and subtract

3rT?22 _ mil - Hp 4. Hp _ Hp _ Hp - po/iip nip 8 1' 8 P 8 ~

This completes the proof. ■

Our next task is to estimate the normal curvature kn^, (v).

Lemma 46 The normal curvature (v) is approximated by

Ih-Pll

where q £ x{s) is near p.

Proof. Consider some curve smooth x (s) parametrized by arc length contained in S such that

x' (0) = V. We know by definition x" (0) = k„^ (v) Np. We expand x (s) to obtain by Taylor

expansion:

x(s) = X (0) + sx' (0) + —x" (0) 4-...
A

5^
= p + sv + —kn^ (v) N + . . .

After some algebraic manipulation, we obtain

2N^ (a; (s) - p) = kn^ (v) + ...

and

||a; (s) -p|| = + ...

Therefore, after further manipulation and taking the limit, we obtain

,  , ̂ 2Nj{x{s)-p)(v) = lini 1, . , r—
s->0 ||x(s)-p|]

Suppose q ̂  pis close to p on the curve x (s) and T is the unit normalized projection of the vector

{q — p) onto the tangent plane. Then by replacing x (s) with q, we can approximate the normal

curvature as

,  ̂ ^ 2Nliq-p)
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This completes the proof ■

This completes our discussion of the curvature tensor and normal curvature estimation in the

continuous case. We will now use this information as a foundation to develop an algorithm for

estimating the curvature tensor in our discrete case.

Curvature Tensor Algorithm in the Discrete Case With the proper foundation laid, our

challenge is to calculate Mp from discrete data. We will approximate the formulas we have just

established to make our calculations. We begin with a triangulated surface S representing E. Our

goal is to estimate the principal directions and curvatures at the vertices of the triangles.

First, we need to set up some notation. A triangulated surface is represented by a pair of

lists L = {V,F} where V is the set of vertices, V = {uj : 1 < i < n^}, and a set of faces, F =

{fk ■ ^ < k < Uf}. Each face fk consists of a set of three non-repeating vertices {vi,V2,v^). The

set of vertices that share a face with Vi will be denoted by V\ and the set of faces that contain

vertex u, will be denoted F\ If the face fk belongs to F\ then fk is said to be incident to Vi.

We will estimate the matrices Mj,,. with a weighted sum over the neighborhood Vi. However,

before we formally define M„.. we will set up some notation used in the definition. Recall that in

Section 3.1.2 we defined the normal vector at vertex vi to be

N„, =

Now we define for each neighbor vj of Vi, the unit normalized projection of the vector {vj - Vi).

Definition 47 Let vj and Vi he neighboring vertices. We define Tij as

\\il-^ViNl){Vi-V^)\

where I is the 3 x 3 identity matrix and N^,. is the normal vector at vertex Vi.

Now recall that we approximated the normal curvature, which we will now denote by kij, as

kij —
Vj - Vi

Our last step before formally defining is to define our weights Wij.
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Definition 48 Wij be a weight assigned to the triangles incident to both vertices Vi and vj. Wij is

proportional to the sum of the surface areas of these triangles. The proportionality constant is set

so the sum of all weights in the neighborhood of Vj is equal to 1, i.e..

We can now formally define our matrix M„;.

Definition 49 We define M^; as

^ ̂ WijkijTijT^j
v,eV'

By construction, is an eigenvector of M^- associated with the eigenvalue of 0. We now have

to calculate the other two eigenvalues. We will restrict to the tangent plane using a householder

transformation. A discussion about Householder Transformations, also called Householder Matrices,

can be found in Golub [ GL83]. Here, we will give the basic definition and comments taken from

Golub.

Definition 50 Let u G be nonzero. We define a Householder Transformation, or House

holder Matrix, as the 3x3 matrix P of the form

vv^
P = I-2-^

u-* V

where I is the 3x3 identity matrix.

Remark 51 We can construct v such that given a nonzero a: G Px is a multiple of Ej =

(1,0,0)^ . Furthermore, Px reflects x in the hyperplane span{v}'^. Notice

2v^x
P

j  2vv^
x = X — X —

The requirement that Px G span {Ei} implies v G span {x, Ei}. So we can set v — x + aEi gives

us

v^x — x^x + aEi

and

v'^v = x^x + 2aEi +
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Thus

Px = 1-2
x'^x + axi

x'^x + 2q;Xi +
x — 2a

v^x
^Ei
V

For the first coefficient of x to he zero, we set a = ± ||x||2 . So, if v = x ± ||x||2 Ei then Fx =

ilkllzEi ,

We will use this information to help us calculate the eigenvalues of M^,. which will be related

ilSTto the principal curvatures by a linear transformation. Let W„,. = n ' "''n choosing Ei —

if ||Ei - N^i ll > ||Ei + N^ill. Then by construction, Wj.W^, = ||W„;|| = 1. Thus, by definition,

the Householder Transformation is given by

P„, = I - 2W,,Wl

This matrix has its first column equal to ±N„; by construction because we are working in the tangent

plane. The other two columns define an orthonormal basis of the tangent space, denote them by

Ti and T2. We already know is an eigenvector of corresponding to the eigenvalue of zero.

Therefore, from linear algebra, we have

P^ M P —

0 0 0

0 m}.}

0 ml] mil

where . Now we can diagonalize the 2x2 minor using a Givens Rotation which results

in an angle 6 such that vectors

01 = cos 0Ti - sin 0T2

02 = sin 6T1 + cos 6T2

are the eigenvectors of M^j. These eigenvectors are claimed to be estimates of the principal

directions of the surface S at the vertex Uj.

Remark 52 This assertion has proven to be difficult to verify mathematically, and information

about Givens Rotations has been difficult to come by. However, it is probably a fairly close estimate.
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We have succeeded in approximating the normal curvature and the principal directions. Our

final task is to estimate the principal curvatures kp and kp. To accomplish this, we simply use the

principal directions and use the linear transformation previously defined.

efMv^ei = Ai

e|'M„..e2 = A2

Thus, we estimate the principal curvatures at vertex Vi to be

= 3Aa„,. - A2„,.

= 3A2„. - •

4.2.2 Methods 2 & 3

The last two methods we will discuss are found in Delingette [ DEL94]. Throughout his discussion,

he compares triangulation methods with his own simplex mesh method asserting that they are

related to each other. We will concentrate on his estimates of the Mean and Gaussian curvatures

at p 6 5.

Mean Curvature Recall that Delingette reconstructs his surface utilizing a simplex mesh. He

begins his discussion about curvature by defining a simplex angle, used in his definition of Mean

curvature. However, we first want to recall our definition of a normal vector.

Definition 53 Let S be our 2-simplex mesh representing our surface E. Let pi E S be a vertex,

and {piuPi^iPis) be its three neighbors. The normal vector at vertexpi is defined

^  jPi -Ph)x {Pi -Pi2) + {Pi2 X Pt3) + (p»i X pia)
ll(Pi - Pii) X iPi - ) + (Pi2 X Pi3) + {pi, X pi3)II

We will use Np; to define the simplex angle.

Definition 54 Let Si be the circumscribed circle at the three neighboring vertices (pii,Pi2,Pi3)-

This circle is of radius ri and of center Ci. Let 82 be the circumscribed sphere at the four vertices

{Pi^PhiPi2^Pi3) Oi be the radius and center of 82. The Simplex Angle at vertex
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Pi, ipi = ̂{pi,Pii,Pi2,Pi3) is defined as

fi 6 [-TT, tt] :

sin {(fi) = {sign {p^ ■ Ni)) and
JLLi

cos {(pi) = ll^yi ̂sign {Oidi ■ Njj j
Here, ||OjCi|| is the distance of the plane {pi^ ,Pi2,Pi3) from the center of the sphere, see figure 6

adapted from [ DEL94]. Figure 7 shows that the simplex angle can be thought of as a planar angle.

We will use sin [pi) to define the mean curvature.

It?)

1(2

Figure 6: Local tetrahedron and the associated circumscribed sphere and circle
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Q

Figure 7: Cross Section of 6 through plane defined by pi, Oi, and C,

Definition 55 Let pi he the vertex of a simplex mesh S. If ipi and r, are its simplex angle and the

radius of the circumscribed circle, we define the Mean Curvature Hi at pi as

sin (ipi)
Hi =

Ti

Lemma 56 The absolute value of the mean curvature is the inverse of the radius of the circumscribed

sphere at pi

m = ̂
JtXi

Proof. This is straightforward. First, recall that

sin {ipi) = ̂  {sign • Nj))
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Then

\Hi\ =
sin (yjj)

-f-in \RiJ

Ri

This completes the proof. Figure 8 is an illustration of this method of estimating Mean Curvature

(adapted from [ DEL94]) ■

We obtain the correct value of the mean curvature of a sphere, so our definition is mathematically

equivalent except for a plane. Notice that we cannot classify a point on a surface with the mean

curvature as our only parameter. Consider two points p £ S and q £ S such that p ̂  q where

Hp = Hg. With mean curvature as our only descriptive parameter, we would have to assume that

the surface at p "looks like" a surface at q. However, this may not be the case. For example, suppose

Hp = Hg = 0 and that the surface at p is a plane. With mean curvature as our only parameter, we

are forced to assume the surface at g is a plane. But, minimal surfaces also have H = 0 which are

certainly are not planar. To accomodate this shortcoming, other metric parameters are introduced

to describe the location of a vertex with respect to its three neighbors.

Figure 8: Mean Curvature on a 2-Simplex Mesh
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We will now move onto our discussion about Gaussian Curvature.

Gaussian Curvature Finally, we want to discuss Gaussian curvature on a triangulation. This

approach is also discussed in Delingette. Consider a point p 6 5. The discrete Gaussian curvature

on a triangulation is estimated through the spherical excess.

Definition 57 Let pi be a vertex of a triangulation. Let pi^,pi^,... ,pi^ be the neighbors of pi

connected by edges ej,, 6,2,..., ei„ where ei^ connects pi to pj,, 6,2 connects p, to pi^ etc. Let

^2 ® ~ Let 9 = 27r • Finallyj let

Ai^ be the areas of the triangles formed by the neighboring vertices of pi, and let A =

Xl"=i ■ Then we define the Gaussian curvature, K, to be

This definition attempts to make use of the Local Gauss Bonnet theorem, which is stated as

follows from DoCarmo [ DC76]:

Theorem 58 (Local Gauss Bonnet Theorem) Assume x. : U —> S be a parametrization of an

oriented surface S. Let R C x (U) be a simple region of S and a :1 ̂  S be such a is piecewise

smooth and dR = al, I = [0,1]. Assume a is positively oriented, parametrized by arc length s, and

let a (so) I • • •, a (sfc) and Oq,. .. ,9k be the vertices and external angles of a. Then

rSi+i r r *

2Z j kg{s)ds+ / Kda + y^ 9i = 2-k
i=0 ■'®'' •' i=0

where kg (s) is the geodesic curvature of the regular arcs of a and K is the Gaussian curvature of S.

Remark 59 (Explanation of Gaussian Curvature Estimation on a Triangulation) We
will alter the notation to make this explanation a bit simpler. We will let 9i be denoted by .

Thus, (3i2 is now the vertex angle. Denote the other two angles in each triangle as and /Jjj.
Thus, the exterior angle, denoted by 9, in the Gauss Bonnet theorem, has measure

Oi=TT - (^,3 + J
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So the sum of the exterior angles is:

k

^ — TT - (/3i3 + ft J) + TT - (ftg + fti) + ... + TT - iPn-ls + ) + T - (/3„3 + ft j )
i=0

= (tt - fti - fts) + ... + (tt - /3„i - ft3)

= 0l2 + P22 + • • • + 0n2
n

= Eft.
1=1

TTius, the sum of the exterior angles is simply the sum of the vertex angles at vertex p. By DoCarmo

[ DC76] and the preceding discussion,

k  1*5-1-1 r p ^

271 = ̂  f kg{s)ds+ f f Kda + Bj
i=0 ■' i=l

=j:rkgis)ds+[ [ KdA+j^Pi:
1=0 •' 1=1

Assuming K is constant near the vertex p,

k271 = ^ kg is) ds + K f f dA + ^ft3
i=0 •'®" •' i=l

In our case, we are working with individual planar triangles, so the edges are straight which means

that kg (s) = 0. Therefore, we have

r._ 27!- - ELi ̂ 2
IfndA

Finally f dA = Ai because our region R is subdivided into a finite number of triangles (see

figure 9). Hence

^k

X = ^1=1 <^'2
2i=i Ai

A
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Figure 9: Gaussian Curvature on a Triangulation

4.3 Conclusion:

As we have seen, curvature can be estimated in several different ways. We have estimated curvature

directly from the discrete data and from functions which approximate the data. This has by no

means been an exhaustive study of every method for estimating curvature, this has simply been an

overview of a few of them. One issue we want to address is which approach is most reliable and

efficient. In both approaches, noise will play a role in the accuracy of each estimation.

1. Curvature is a second order quantity. Thus, it will be highly sensitive to noise.

2. Least squares formulas are highly affected by small changes in distances between data points.

Thus, function estimation is highly sensitive to noise.
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Because we do not take derivatives on a triangulation or simplex mesh, noise will be less significant

in these approaches because we can more easily adjust our triangulation to the effects of noise.

However, we do not have this luxury when we estimate functions. The effects of noise cannot be

filtered out.

Another difficulty with calculating curvature from approximating functions is at the intersection

of two functions. These intersections may not result in a smooth function. As a result, smoothing

may be required so that we can create a continuously smooth function. Doing this will further alter

our surface approximation and lead to further noise contamination. Unfortunately, Flynn [ FLN89]

asserts that this smoothing is necessary in order to obtain any decent estimation.

Finally, the size of the neighborhood we are approximating by smooth functions also affects

the accuracy of curvature estimation. According to Flynn, we cannot obtain a reliable estimate

of curvature with very small neighborhoods, but we cannot obtain a reliable continuous function

estimating the data with larger neighborhoods because of the problem with patching functions. In

experiments, Flynn [ FLN89] could not obtain better than 10% accuracy of the curvature values.

We also discussed curvature estimation directly from the triangulation or simplex mesh. These

approaches are also sensitive to noise, although the problem with the noise is not compounded further

by function estimation. As a result, the estimates are a bit more accurate than the function-based

approaches [ FLN89]. They also utilize the strength of computers to handle large amounts of

discrete data and make calculations from it. With these approaches, smoothing is not necessary

because we are not attempting to calculate second derivatives.

We also considered different kinds of curvature. Some are more useful in surface recreation

than others. As we discussed, different points on a surface may have the same Mean or Gaussian

Curvatures, but the surface at those points may be very different. Thus, other aspects of the surface

at those points must be evaluated to create an accurate reproduction. To reduce the number of

parameters required to reproduce the surface, principal curvatures and their corresponding directions

are usually chosen.

Curvature values are used in many aspects of computer visualization. They are used directly

in surface reconstruction when function estimation is used to recreate the surface, but they are

not used in surface reconstruction directly when a triangulation method is used. In one case, we
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will see that curvature estimation is used to determine sampling criterion. However, curvature

estimation is used extensively to partition the resulting surface into its constituent parts, called

segmentation[ Wu97][ MN99] [ RS93][ MDOO]. We do not discuss segmentation in this thesis.
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5  SURFACE RECONSTRUCTION

In Chapter 3 we discussed methods by which normal vectors are calculated from a point cloud. These

vectors are important in most surface reconstruction algorithms because normal vectors determine

how the reconstructed surface will be oriented. If the normal vectors do not adequately represent

the normal directions of the original surface, the reconstruction will be inaccurate. We have already

discussed each of these methods in chapter 3 except 1. A single method, the Ball Pivoting Algorithm

[ BN99], is not dependent on the method of calculating the normal vector nor on any other differential

geometry. It is a completely unique approach, but is included here because it produced very accurate

results by utilizing a very simple idea.

We will begin with a method that uses the point cloud to approximate smooth functions. The

properties of these functions will be used to partition the point cloud into volumetric primitives to

recreate the surface. The resulting surface will be the union of these volumetric primitives. We

will then discuss methods that produce a triangulation of the surface. In either case, the goal is

to recreate a surface, S, homeomorphic to the original surface S. Each discussion will begin with

an overview of the method being explored followed by its details. These methods are not always

mathematically precise; however, these methods are discussed because it is the purpose of this thesis

to explore the methods by which engineers use mathematics to create surfaces.

5.1 Smooth Function Approximation

Because surfaces can be represented and studied via Differential Geometry, perhaps the most obvious

method by which we can create the surface is to transform the data from the range camera into a

form which allows us to apply differential geometry directly. Since all surfaces can be described

locally by a smooth function, or parametrization of the surface, this is an obvious, if not the most

efficient or accurate, method to recreate a surface. We will take a look at one method which uses

this general philosophy.

This method is proposed by Ferrie [ FR98]. The primary goal of this particular method is to

create a surface which is based only on the primary components of the surface for the purposes of

allowing robots to recognize that something is in their path or determine a way to manipulate the
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object. For example, if a maniquin was in its path, the head would be represented by an ellipsoid,

the torso, two arms and legs would all be represented as cylinders as well as the ten fingers. No

details of the maniquin, such as eyes, would appear in the recreation.

The robot collects data about the surface via a range camera as it approaches the object. It

obtains different samples at different times, so a method must be developed to ensure that we do

not reproduce the same components of the object more than once. Because the goal of this method

is not to produce a detailed replica of the surface, but only a structural representation of it, it only

identifies basic structural properties such as the principal axes of the object and the relative size and

shape of the different components. Because the robot cannot obtain data over the entire surface,

we assume the object is symmetrical. For example, if the front of the surface is determined to be a

cylinder, the back of the surface is assumed to complete the cylinder.

As previously stated, differentiable surfaces can be represented by continuous functions. A

group of the surfaces we are concerned with is called volumetric primitives and was defined in

chapter 3. Ferrie utilizes a subgroup of these primitives to produce a surface as the union of these

primitives. The difficulty arises from the nature of the data we have to work with. Our data

is discrete, and functions require continuous data. To obtain a close approximation to discrete

data, we can only approximate very small neighborhoods by these smooth function. We use these

locally defined functions to estimate normal vectors and principal curvatures, discussed in previous

chapters. After this is accomplished, will trace through these estimates of principal curvatures to

locate large discontinuities in the curvature values. These discontinuities will determine partitioning

of the point cloud into larger neighborhoods. The volumetric primitives are fitted to these larger

neighborhoods and are determined by the ratios of the principal curvatures.

3-dimensional images can create problems in that no view of the surface, or data representing

the surface, can give us a complete picture. For instance, any view of a sphere can only reveal,

at most, a partial hemisphere. Without having to take additional data, we can extrapolate from

this surface patch that it is a sphere and complete the unseen portion. This leads to the guiding

principal:

If we can infer the larger geometry of a patch by extrapolating its properties, we can
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instantiate, or identify and describe, the volumetric primitive of which it is a part.

This will greatly reduce the amount of time needed to create an image, which is important if

the object is in the path of a moving robot. Furthermore, a robot will not have the ability to take

multiple passes with its camera, or eyes, at different positions around the object, thus, it is necessary

to "make the most" out of the little information we get. The process is broken down into three

steps:

1. Parts Decomposition: We partition the object into a set of regions, or patches, correspond

ing to a single part.

2. Primitive Instantiation: We assume each partition is a sample of a larger primitive and

estimate the parameters of the primitive from the sample.

3. Resolution: Eliminate multiple instantiations.

During the parts decomposition step, we want to find a partitioning of the data which is as

natural as possible. We have PC representing the surface S of the form (a;, y, f (x, y)). We define

a surface patch as a partition of PC.

Definition 60 We define a surface patch as a subset of PC.

PC = PCi such that PCi C PC and PCi n PCj = 0

i,j = l,...,n; i ̂  j

We now let F represent the set of volumetric primitives. From the set of partitions, we want to

infer a volumetric rendition of S.

Definition 61 We define our volumetric rendition of our surface recreation from the PC as follows

SkV = U]L^Vj -. VjeT

The challenge now become how to partition our point cloud. We utilize an idea from physical

psychology, [ MN99], which conjectures that the human vision system partitions objects based on

areas of undefined normal curvature. The idea is that when two objects come together, they form a
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contour which corresponds to a discontinuity in the normal direction which means that the normal

curvature is undefined. However, we can smooth out the contour so that the normal curvature is

defined at these points. Once smoothed, the values of the maximum and minimum curvature, kmin

and fcmax, will be a local extremaa at these points of intersection. Thus, we can decompose the set

of points according to the areas of local maxima of principal curvatures. We want to find a method

by which we can use our estimates the principal curvatures. We accomplish this by creating an

approximating function in a local neighborhood. We call this approximating function / with the

coordinate system centered at some p 6 PC. We define it as described earlier

/ = aiu^ + a2U^ + asu + + a^u^v + a%uv^ + ayuu + agu® + + aiou + flu

Recall that we found the principal curvatures, fcminp and fcmaxp, evaluated at p to be

kmaXp = 02 + flg + {0.2 — Og)^ + 07

^minp = O2 + Og — \J (og — Og)^ + O7

We now proceed with the next step in our algorithm.

Remark 62 / is no longer used throughout the rest of this algorithm. Its only purpose was to

estimate local values of principal curvatures. Notice that any algorithm to estimate these values

could have been used since because the main idea behind the algorithm is in partitioning the point

cloud into parts that represent the major components of the original surface.

One might naturally ask why we go through the trouble of approximating smooth functions to the

data if we are only going to use them for a specfic calculation and not in the rest of the algorithm.

Why not use some other curvature calculation already proven? Aceording to Ferrie, this calculation

may be faster than curvature approximation based only on the discrete data. We can also speculate

that because Ferrie is using volumetric primitives to recreate the surface, he wanted to be consistent

in curvature approximation by using smooth functions representing volumetric primitives. However,

this is not certain because he does not address this in his paper.

Primitive instantiation is the process by which we determine the primitives corresponding to the

partitions of PC. Table 1 shows the signs of the principal curvatures corresponding to the various

primitives.
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Table 1: Generic Surface Classification

Primitive Signs (Ajjnax! ̂ min)

Sphere (+)+)i(-)-)

Ellipsoid (+)+)>(-;-)

Cylinder; (+>0) ) (~)0)

Hyperboloid (+) ~)

Planar (0,0)

We differentiate the Sphere and Ellipsoid by their ratios 4°^- If ^ 1; the surface is a
'^min '^min

sphere. Otherwise, it is an ellipsoid. The difficulty occurs in regions which are partially hyperbolic

and partially elliptic. These transitions occur through inflections in the Gaussian curvature K =

^min * ̂max* These inflection points are called parabolic and have Gaussian curvature as defined

as in chapter 2 to be JsT = 0 and either fcmin ^ 0 or k^ax 0. Thus, to partition PC, we will

evaluate the Gaussian curvature. We parametrize K {u, v) = k^ax (u, v) x kmin (u, v) via a first

order approximation of the form K (u, v) = au + bv + c and evaluate whether or not there is a zero

crossing in the vicinity of p. We also want to locate the extremal points.

Definition 63 We define extremal points as those points pi as extremal points if | fcminp | or [ k^axp |

are local extrema.

To accomplish this, we assume that the magnitudes of curvature values are much higher in the

vicinity of part intersections than those of the surrounding neighborhood. We compute histograms

of |A:min| and i^maxi to locate these points in a local neighborhood. The local extrema within the

region will show up as a cluster in the histogram and can be identified as a peak at the higher

magnitudes that exceed a threshold. If there are no discernible peaks, we assume there are no

extremal points in the region. Examples of a histogram appear on the following page in figures 10

and 11 adapted from [ FR98].
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These feature points are now grouped into extremal and parabolic contours. Contours formed

by extremal points are used to partition the PC into a set of "patches" PCi, and contours formed

by parabolic points are used to subdivide PCi into elliptic and non-elliptic segments.

The final step in this process is resolution, or making the final inferences and eliminating multiple

instantiations of primitives. Consider different views of an object. These views are taken at times

tj; j = 1,..., n is the j"' view. First, each view is mapped into the same frame of reference via linear

transformation which maps coordinates of each surface patch at time j, PCj', into a common frame

of reference, call it W and infer a volumetric primitive of PCi using principal curvatures. Recall

that the principal curvatures were found from the local approximating function f about p E PC.

Thus, there is no approximating function for PCi from which to directly calculate the curvatures.

We address this by defining the global Gaussian curvature on PCi.

Definition 64 We define the Gaussian Curvature on PCi as follows:

_ SpCi ̂min y)

Z3pc, ̂max i^^y)

where kmin and fcmax are the mean values of k^m and kmax at eachp E PCi.

This is clearly not the usual definition of Gaussian Curvature (recall that Gaussian Curvature is

defined mathematically as knuup x ̂ maxp) and is mathematically misleading. This definition is used

because we want to be able to utilize the above table to determine our primitive. For a cylindrical

surface K will be very small; spheres and ellipsoids will have K > 0 with spheres having RT w 1;

hyperbolic surfaces will have K < 0.

We now have partitioned PC and characterized each partition as a corresponding primitive. To

parametrize the surface, we want to minimize

\gi{x,y,z)- S^{x,y,z)\

where gi ix,y,z) is the parametric representation of the instantiated model, or the primitive Si was

identified as. We can either minimize this function directly or use constraints obtained during

instantiation. The only example using this process given is when Si is a sphere. Suppose p E Si,

Si is identified as a sphere and Np is the normal vector to the sphere at p. Then we find gi {x, y, z)
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by evaluating the center.

rc=P - ̂Np

Note that k is the value of the second fundamental form at p and is the same for all directions. This

is a common formula and can be found in Millman [ MIL77]. The formulas for the other primitives

are much more complicated and are not discussed:

Second, overlapping surface patches are eliminated. We impose a uniqueness constraint so that

each volumetric primitive is instantiated no more than once in a sequence of views which can be

ensured by requiring that no two primitives with the same volumetric description can occupy the

same position in space. We accomplish this by comparing parametric descriptions. We will define

two similarity functions for ellipsoids and cylinders.

Definition 65 Define the similarity function for ellipsoids to be

DeiViX) = ae^J{Xc - X'f + (Te " K)' + ' Z'f

+7e (|a - a'l + |6 - b'\ + |c - c'|)

where {Xc,Yc, Zc) and (^X^,Y^, are the centroids, {0x,0y,0z) and (9^,6y,0^^ are the direction
cosines of the principal axes, and {a,b,c) and {a',b',c') are the axis lengths of elliptical volumes

Vi and V- respectively. ot,P, and 7 are weighting parameters which reflect the certainty of the

information.

Definition 66 Define the similarity function for cylinders to be

DciVuV;) = ae^/{Xi - X[)^ + (Ti - Y^)^ + {Z^ - Z[)^

+  {X2 - X'^f + (72 - Y;f + {Z2 - Z'^f

+ ̂e{\R-R'\)

where {Xi,Yi, Zi), {X2,Y2, Z2) and , (^X2,Y2, Z2^ are the endpoints and R and R'
are the radii of cylindrical volumes Vi and V- respectively, a, fi, and 7 are weighting parameters

which reflect the certainty of the information.
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In both of these definitions, a, 0, and 7 are determined experimentally. Notice that the param

eters used in these definitions will be unique for each primitive in a particular area. If the values

of Dc and £)« fall below a user defined threshold, we determine they are multiple instantiations.

We will eliminate one of them from our reproduction, and the union of the remaining primitives

represent our surface. Figure 12 is an example of this process taken from [ FR98].

5.2 Triangulation

In general, triangulation algorithms take points in the point cloud and determine how to connect

them in such a way as to approximate the original surface via a set of small, connected triangles.

In the first two methods, the general idea is that if you are close enough to a given point on a

smooth surface, those points will be near the points in the tangent plane. The primary challenge is

developing reliable methods to determine which points should be vertices of the same triangle. By

restricting ourselves to considering only points in small neighborhoods we will reduce computational

time cmd the chances of error. Points are considered vertices of the same triangle via a distance

evaluation.

ifes

Figure 12: A Recreation of an Owl



The third method we will study is a departure from these general approaches in that the tangent

plane is not used. Basically, the idea is to roll a ball across the point cloud to determine the

triangulation. The ball begins in contact with three points, called a seed triangle, and begins

rolling over one of the edges until it hits another data point. This point creates another triangle.

This process continues until all the points in the point cloud are touched by this ball.

Before we begin, we need to state a definition central to assumptions in these algorithms.

Definition 67 Letp G PC. A point cloud, PC, is considered S-dense if the distance between p and

the nearest element q 6 PC is no larger than some constant 6. We denote this by d (p, PC) < S. A

point cloud, PC, is considered e-noisy if the error in the point cloud is no more than some constant

e.

In each of these algorithms, we assume the point cloud is (i-dense and e-noisy. Notice that these

assumptions imply that d (p, PC) < S + e, so the distance between a point p and its nearest point

q 6 PC is less than or equal to 5 -I- e. We will begin with basic triangulation approaches.

5.2.1 Method 1

Hoppe et.al. [ HOP92] produces a triangulation using the normal vector calculation we discussed in

section 3.1.1. The following assumptions are made about both the surface S and the point cloud:

1. The point cloud is PC is (J-dense and e-noisy.

2. A surface can be locally approximated by tangent planes.

3. The original surface S is known

This algorithm begins by defining a tangent plane T (p) for each p G PC. Then, using what

is called the center of the tangent plane we consistently orient them. An initial triangulation is

determined by connecting these centers via a Riemannian Graph. To refine the triangulation, we

choose an arbitrary point P G and project it to the nearest tangent plane. Next, we define the

signed distance function, f : D R where Z) C is a region near the PC. f represents the signed

geometric distance from P to the surface S. Our final surface is determined by the zero set of /,
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denoted by Z (f). Z (/) is defined by all points F G such that / (P) = 0. To create the final

triangulation, we will use a modified marching cubes algorithm to connect the points in the zero set

of/.

Again, the central idea behind this algorithm is the signed distance function. This function takes

as input a point P 6 and computes the signed distance from P to the surface S approximated

locally by tangent planes associated with each pi G PC. Before we give the formal definition of /,

we need to define the tangent plane at each pi G PC and its orientation.

At each point p G PC we define a tangent plane T(p) by utilizing nhhd{p). The user determines

this neighborhood by specifying the number of nearest points to p to be considered. Let Cp be the

centroid of nbhd{p) and Np be the normal vector to p defined in Section 3.1.1. T(p) is defined in

the usual way with the point Cp and the normal vector Np.

Definition 68 The Tangent Plane containing Cp = {cp^^, Cp^, Cp^) with normal vector Np =

(ripj, np2, np3) is defined by

0 = (c- Cp,Np)

(^1 n-pg (C2 Cp2 ) + Upg (C3 Cp3 )

for c = (ci,C2,C3). We will denote this plane by T(p) = (cp,Np) and we call Cp the center o/T (p)

We concern ourselves now with consistent plane orientation, making sure that all the normal

vectors are consistently oriented. Remember, we chose the normal vector at p to be Np = ±ei, the

eigenvector corresponding to the smallest eigenvalue of the covariance matrix. The sign of Np is

chosen so that the nearby tangent planes are consistently oriented. Thus, we must discuss how to

choose either +ei or —ei. After this is done, we can define our distance function.

Consider pi e PC and pj G PC where pi ̂  pj. Suppose they are "geometrically close." Ideally,

they will be geometrically close if Np, and Np^ are nearly parallel. This assumption makes sense

since we assume the surface is smooth and contains no radical changes. Thus, (Npi,Np^.) ss ±1.

If the planes are consistently oriented, (Np,.,Np^.) w 1. If (Np;,Np^.) « -1, then either Np; or Np^.

should be flipped to orient them consistently. Finding a consistent global orientation turns out to

be a difficult problem because the condition should hold between all pairs of sufficiently close data

points.
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Definition 69 Two points Ci andcj are called sufficiently close ifci € nbhd{cj) orifc. e nbhd{ci)

To accomplish this, we assign to each tangent plane T{pi) a "node," or a point, denoted by ATj.

Our goal is to connect these nodes to each other to enrich the data. Ni and Nj will be connected

by edge {i,j) if Cp,. and Cp. are sufficiently close. The cost on edge (i,j) will encode the degree to

which Ni and Nj are consistently oriented and is taken to be Np; ■ Np^.. The goal is to minimize

this cost. We call this a Riemannian Graph and it encodes the geometric proximity of the tangent

plane centers, see figure 13 from [ HOP92].

Now we propagate the normal vectors to achieve global orientation. We assign to each edge (i, j)

the cost 1 - |Np; • Np^. | > 0. If the normal vectors are nearly parallel, the cost is very small. We

proceed along each neighborhood and calculate the cost. To assign orientation to an initial plane,

the unit normal of the plane whose center has the largest z-coordinate is forced to point toward the

+2 axis. Traverse the nbhd{cp.) and if the current plane T(pi) has been assigned orientation Np;

and T(pj) is the next plane to be visited, then Np^. is replaced with -Np. if Np, • Np. < 0.

Figure 13: Riemannian Graph over Tangent Plane Centers



We can now begin defining the signed distance function. First, we take an arbitrary point

P  close to the data set , find the tangent plane T (pi) whose center a is closest to P. This

plane is a local linear approximation of S, so we take the signed distance / (P) to be the signed

distance between P and its projection z onto the tangent plane.

Definition 70 The Projection z of arbitrary point P eR? onto the tangent plane T (pi) is defined

as

^ = -((P-Cp,).Np,)Np,

Definition 71 The Signed Distance Function is defined as

/(P)=di5tT,.(P) = (P-Cp,).Np,

for P gR?

We don t want to test points near the data if those data points are a result of errors during the

collection of data. To accomplish this, we calculate the Euclidean distance from z to the point

cloud. Recall that we are assuming that PC is d-dense and e-noisy. Thus, z will not be considered

a point of S if d{z,PC) > e + S. The following algorithm describes this process.

Algorithm 72 The algorithm for the signed distance function

1. i <- index of the tangent plane whose center is closest to P

2. z G- Cp. - ((P - Cp.) • Np.) Np, {z is the projection of P onto T (pj)}

3. if d(z, PC) <S + e then f (P) <-(P - Cp.) ■ Np, {= ± ||P - z||}

4- else f (P) ̂-undefined

This approach will create a zero set which is piecewise linear. It may contain discontinuities

where / (P) is undefined. However, according to Hoppe et.al. these discontinuities do not adversely

affect the algorithm.

The last step in this algorithm consisting of contour tracing is described; however, no details are

given. As a result, we will do the same. We define cubes throughout our modified point cloud.
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These cubes are defined with edge length no larger than £• + <5. The algorithm visits cubes that

intersect Z (/) by pushing onto a queue only appropriate neighboring cubes. As each neighbor

is visited, a new edge is created by connecting the previous element of Z (/) to the neighboring

element. For example, suppose Zi e Z (/) and zj e Z (/) are two distinct elements in the zero

set of /. Furthermore, suppose Cj and Cj are cubes intersecting Zi and Zj respectively. If Ci

and Cj are neighbors, an edge Cij will be created. Otherwise, no edge will be created: Finally,

the edges are collapsed, the process of which is left undiscussed, and the resulting triangulation is

our final reconstruction. Notice that the final reconstruction lacks the sharp edges of the object

being reconstructed. This is a consequence of the edge collapse. Thus, we may not always want to

collapse the edges as was done in this case. See figures 14, 15 and 16 from [ HOP92].

Figure 14: Original Object
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5.2.2 Method 2

The approach developed by Gopi et.al. [ GPOO] will be presented in two phases. First, we will

consider the sampling criteria developed to accommodate changes in the surface S which is supposed

to ensure a more accurate recreation. After that, we will proceed with the algorithm used to recreate

the surface. Before we begin, we want to specify the assumptions about the surface we are recreating

and give a brief overview of the algorithm. First, we will state our assumptions about the surface

and data set:

1. We assume proper sampling. This is determined by the sample density S defined at the

beginning of this section.

2. We assume that S is smooth and the ratio of the maximum to minimum principal curvature

at any point is bounded by some constant a.

3. We assume that for small 6, an arc from p to pi on S can be replaced by an edge p to pi.

The surface recreation algorithm takes as input a point cloud gathered by a range camera. The

output is a set of triangles passing through our data which will represent our surface. The algorithm

proceeds through four steps:

1. Normal Computation: This was discussed in section 3.1.2

2. Candidate Point Selection: This step will choose points which may be possible neighbors to

a vertex in the final triangulation Using the sample criteria, described later, we will compute

the candidate point set for every point p G PC.

3. Neighbor Computation: We will map each point in the point set onto the tangent plane to

compute the neighbors. We will do this for each point in the point cloud.

4. The final triangulation will be determined from the neighbor relationships found in step 3.

Now that we have an overview of the algorithm, we will begin with a discussion about the density

S of our point cloud. The sampling criteria is based on the normal curvature.
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Sampling Criteria Because we will be working in the tangent plane, we want to ensure proper

sampling in areas of high normal curvature. Normal curvature describes how fast the surface

"bends" away from the tangent plane. Essentially, the larger the value of the normal curvature,

either positive or negative, the faster the surface pulls away from the tangent plane. As a result, in

areas of high curvature we want the data points to be closer together to accommodate this bending.

This will ensure a more accurate reproduction of our surface without "flattening out" these areas of

high curvature. Accommodating these areas of high curvature is an essential element of this method.

The proofs in this section are mathematically unsatisfying. However, they are included because

portions of them appear in [ GPOO]. This author simply completes the portions not specified but

makes no assertions about their viability.

The foundation of the sampling criteria is the normal curvature of the surface being sampled.

To fully utilize the results, the normal curvature of the surface in the areas of highest curvature

should be estimated before the sampling from the range camera can begin. However, this is usually

not possible in general surfaces being reconstructed. As a result, in practice, most of the following

discussion must be applied to an initial point cloud.

This discussion will take place in the context of classical differential geometry. As such, we will

assume smoothness. To make the assertions simpler to show, we first will show that we can express

the surface in local neighborhoods as a height function in terms of the normal curvature kn^.

Lemma 73 A surface S can be approximated locally as a height function h{r,6) w where

^np (S) is the normal curvature atp in the direction 6.

Proof. Let E represent our original surface and let p 6 S. WLOG, assume p = (0,0,0) is

the origin, the tangent plane T(p) is the z = 0 plane, and the two principal directions of S at p

are Sp, = (1,0,0) and = (0,1,0). From DoCarmo [ DC76], we know that there is a small

neighborhood centered at p, denoted by Wp, such that the projection map rr : {x,y,z) -> {x,y) is

one-to-one and a diffeomorphism with open image Pp C .

Let the point {x,y,z) £ E be a point in the local neighborhood ofp defined in a local coordinate

system at p. Since tt is a diffeomorphism, exists and is smooth. Since is open in

is differentiable and (p) = (0,0,0), by the implicit function theorem, there exists a function
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h : {x,y) ̂  R such that we can approximate the surface in the neighborhood of p by

Wp {x, y) = {(re, y, h (re, y)) V (re, y) eVp)

The tangent plane is given by the basis vectors

Tw = (l.0.g(0.O))
T,„ = (o,l.g(0,0))

Because we assumed that the tangent plane at p is the z = 0 plane, (0,0) = f^(0,0) = 0.

The shape operator (see [ ON83]) applied to our basis vectors is defined as

d'^h d^h ,

„  d'^h . . d'^h, ,
~ dxdy^^^^"' ̂  dy^

Because and Sp^ are the principal directions, we know = 0' (0;0)! and (0,0) are

the principal curvatures, denoted by, kp^ and kp^ respectively.

Using Taylors formula, we expand h (rc, y) about the origin (0,0)

uf ^ ), en n\ 1 en /-n ^ f od'^h d'^hh (X, ri = /. (0.0) + (0,0) + (0,0) + - + 2x„^ + j

+ Higher order terms

= ̂ {kp-^x^ + kp^y^) + Higher order terms

If we convert to polar coordinates where r = ̂Jx^ + y^ and 6 is the angle the vector determined by

point (a:, y) makes with the x-axis, or Sp;, we obtain

h (r, ̂) = 2 ^ + kp^r^ sin^ 6) + Higher order terms
p2

~ — (kp^ cos^ 6 + kp2 sin^ 6)

In section 2.2, we found that the Euler Equation relates normal curvature kn^ to the direction

V, here v is the vector determined by {x,y). The Euler Equation is given by

^up {S) = kp^ cos^ 0 + kp2 sin^ 6
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Thus,

This completes the proof. ■

The ability to represent the surface as a local height function based on normal curvature allows

us to set sampling criteria more easily. We would like to be able to describe the behavior of the

normal vector, Np, along a space curve a on surface E through p. [ MIL77] tells us that we can

describe this behavior by the derivative of the Prenet-Serret apparatus.

Np (a) = —kn^da^ — tda^

|N;(a)| = y&t7^|da|
or

Where t is the geodesic torsion and |5q| is the arclength. By definition (see[MIL77]), is

called the total curvature of a. In our case, we can simplify the equation for planar curves through

p where t = 0, so we obtain

|N;(a)| = y^|aa|

=  \da\

We assume |N^ (a)| is some constant at p, so replace |5Np (a)| by 5. We also assume p is a regular

point; as such, the neighborhood of p is homeomorphic to an open disk. Let Bs (p) be a closed ball

centered at p with radius 5. We will call Eg (p) the immediate S-neighborhood of p Let q E Eg (p).

We will replace the arclength |5a| by the Euclidean arc length \pq\ to obtain

^ = kn^ \pq\ V? e Eg (p)

Definition 74 We will call a point cloud a 6-sample if every point p € E has a closest point q in

the point cloud such that q E Eg (p). 6 can be changed to obtain different sampling densities of the

surface.

We will use the following proposition to find an initial estimate for 5.

Proposition 75 Suppose p = (0,0,0) is the origin and the normal vector at p is Np = (0,0,1) and

q = [x, y, h{x, y)), where q E Eg (p). Then S w kn^ \Jr^ +
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Proof. Let p = (0,0,0), Np = (0,0,1), and q = {x,y,h{x,y)) where q € Bs(p). We know

h{r, 9) fa where kn^, is the normal curvature at p in the direction of 6 and r = + y^.

Then

^ = kn^ {0) \pq\

= K„ {0) since p = (0,0,0)

= kn^ {9) y/(x,y,h{r,9)) ■ {x,y,h{r,9))

= kn, {9) V(x2+2/2+^2 ̂r,9))

A;2

knAe)il[r^ + -^

Now we will discuss some properties of a 5-sample.

Proposition 76 Consider two points q ̂  Bg (p) and r & Bg (p). Then the maximum ratio of edge

distances W is bounded above by a function of the principal curvatures. Specifically, W .
I" I IP^I "^minp

Proof. Because we assumed 6 = kn„ \pq\ \/q G Bg (p) is constant, we have \pq\ = kn,. |pr| =

^  ~ and kn,. are the curvatures at q and r in the direction of p. It is

easy to see, by definition, that this ratio will reach a maximum when is the maximum principal

curvature and is the minimum principal curvature at p. Thus, the maximum ratio at every

point is the ratio of the principal curvatures at that point. ■

Proposition 77 Let Np be the unit normal to S at p. Let^ be the vector from p to q such that q £

Bg {p). Define the height function to be the function Hp{q) = |Np -^1. Then, Hp{q) < .

Proof. Assume, WLOG, that p = (0,0,0) is the origin and the normal vector at p is Np = (0,0,1)

and q = {x,y,h{x,y)). This can.be done for any p G T, and Np by a simple translation and

rotation. Then Hp {q) = h{x,y) since p is the origin and Np = (0,0,1). We shown that shown
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that S w knp Thus

■s'»"i (>•' + =►
l4 „4

"p 4

= 2kn^h + kl^h^ ^

0 ?» + 2kn^h — 5^

The positive solution is

-2kn, + ^Akl^+AklP

_ ~^knp + 2fc„p-\/l + <5^
~  w,

_ vTTF -1
^jip

It reaches a maximum when the normal curvature is minimum, which is kminp • Thus, h is bounded

by
VT+P-1

kjnin^

This result can be used to define how close two different parts of the surface can come so a

J-sampling is sufficient for our reconstruction algorithm. Since the maximum height value for any
/T+a^-
^minp

parts to be greater than 2h.

point in (p) is bounded by h = ^, we bound the distance between the two samples of the

Proposition 78 Define the angle function D{p,q) = |Np -pql, where pq is the unit vector from p

to q. Then D (p, q) « for all q G

Proof. As before, assume p is the origin, p = (0,0,0), Np = (0,0,1) and q = {x,y,h{x,y)).

Then as we have just seen, D{p,q) = |Np -^1 = , , —=, (remember that pq is the unit
^/x^-\-y^'hh^(x,y)
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vector). Then, as we have done in the previous proof, we obtain

h? {x, y)
D {p, q) =

+ 2/2 + h? {x,y)

1  fMzl)
4 )+ 4

4 + fc2r2

Substituting by d, we obtain

,2 ,/ N dD {p,q) =

D {p, q) =
V4d

4 + d

d

 + d2

We know from the previous proof that

Ui „4
X2 7 2 2 , "p0 = H 2—

4

-^+T
0 = 4^ _ 4j2

The positive root of this equation is the constant

-4 + Vie + 16(52

2

= -2 + 2a/1 + (52

d =

= 2 (Vl + ,52 - 1)
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Now we plug this value into the original (p, q)

h? {x,y)
D (p, q) =

D (p, q)

(x, y)

d
(•vj

4 + d

2(vrT^-i)
~ 4 + 2VT+¥ - 2
_ 2{^/lTP-l)
~ 2 (vTT^ +1)

_ vTT^-i
~ VT+P + i

'vr+5[^V
yiTP+i)

ViT¥-i

v/IT#+ 1

This completes the proof ■

This last proof shows us that all the points in Bs (p) make the same angle with the normal vector

at p. This makes sense because they lie in the plane normal to Np, i.e. in the same plane as p.

Recall that in our development of S, we assumed the curve s to be a planar curve containing p. The

normal vector to p, Np, is unique; thus for every q £ Bs (p), there is some curve s containing p and

q that is planar, and, therefore, in the plane normal to Np.

This proposition will allow us to further define our value for 6. If we know two different parts

of a surface are within distance d from each other, we impose a J-sampling 6 < v

Corollary 79 If two parts of a surface are within distance d from each other, we set

v/'^^^minp + 4<ifcrninp
5 < ^

2

Proof. We want to set the smallest value for S. We know two parts of the surface are within
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distance d — k'^r^. In this instance,

<

A  h J2 ,

= fenp^4r2+A:2^r4

= ̂/Ad + <P■

+ 4dfcminp

Remark 80 Taken in totality, the propositions show that the points in the neighborhood of p on a

6-sampled surface satisfy strict hounds on the discretized normal curvature at p. Notice that in each

of the above propositions, knp is taken to be some number. However, in the continuous case, it is a

function of direction, so it is not independent of direction 6, so in the propositions, we had to alter

them to specify a specific direction. If we are to accept them as stated in [ GPOO], the propositions

will be valid only if we discretize knp. Because we must calculate the curvature values on our discrete

set of data, which we will discuss shortly, knp, kmaxp and kminp are naturally discrete.

Furthermore, these propositions also force us to assume that the local neighborhood ofp is planar.

This is generally not true for regular surfaces in . For the purposes of recreating a surface based

on discrete data, this assumption will not affect the end result because the triangulation consists of

a set of planar triangles.

The entire discussion in this section would be much more relevant if there were methods by which

to estimate curvature values before taking a S-sample. However, doing this is not possible because

we do not have a parametrization of the surfaces we would be recreating, nor do we have methods to

measure the curvature on the surface itself. Thus, we are forced to use data points from the point

cloud to make our initial estimates. i4s such, the value we obtained

S~k„p]lr^ + —^
may be very difficult to achieve in practice.

These issues are not discussed in the paper [ GPOO].
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If various portions of the surface fail to meet the sampling criteria, further samples of those

portions of the surface can be taken. It is questionable as to whether or not using our point cloud

will make any difference on our sampling density. Furthermore, obtaining a point cloud, and then

using the same point cloud to determine whether or not it is dense enough in particular areas is

mathematically unappealing. Nevertheless, with current technology, it is our only option. The

concerns about obtaining a sufficient sample of the surface in high normal curvature areas are well-

founded because the neighborhoods in these areas pull away from the tangent plane more rapidly.

Therefore, we would want our data to be more dense in these areas. One method by which this could

be accomplished is by visually locating these high curvature areas and setting the range camera to

increase the density of our data in these areas.

The Triangulation We will now begin discussing the algorithm of the triangulation process. We

will assume a proper 5-sample throughout this discussion. Our first task is to estimate the unit

normal vector, Np, at each p 6 PC. We propagate the normal vectors to obtain a global orientation

using the same method as Hoppe et.al. [ HOP92] discussed in the previous section. Thus, we also

estimate the tangent plane, T (p) at each p e PC, also using the same method as Hoppe et.al..

Finally, we estimate the principal curvatures at each point.

We now have at each point p G PC an associated normal vector, Np, and an associated tangent

plane, T(p). We also have at each p 6 PC estimates of principal curvatures, fcminp ^ kmax^, and

principal directions, Sminp & emaxp • Given a J-sample of a surface, we consider all points within a

2S neighborhood of p G PC as possible neighbors of p. By this, we mean that we will consider all

points pj, j = 1... n, such that d{pj,p) < 26.

We have shown that the maximum ratio of distances between two points in Bg (p) is bounded

by . Since we are considering all points within a 26 neighborhood, the distances are bounded
2k

by dp — ■ We will prune this set of points so we can choose neighbors of p more efficiently,

and we will use dp in this process.

Let s denote the distance from p to its nearest neighbor. The pruning stage begins by defining

a box centered at p with the lengths of the sides L = 2dpS and returning all the data points inside

it. The next pruning stage defines a sphere with radius dpS and rejects all points outside it. This
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sphere is called the sphere of influence, and it is contained inside our box;

Definition 81 The sphere of influence contains all points less than distance dpS from p, where

dp = and s is the distance from p to its nearest neighbor.

We prune the set further by computing the height values of these points in the local tangent

plane of p. If the height value is greater than (developed in the previous section), they

are removed from consideration as possible neighbors of p. The points that remain are possible

neighbors of p.

We are left with a small set of candidate neighbors of p and are ready for the triangulation

process. These candidate points are transformed into a local coordinate system with p at the origin

and mapped to the tangent plane at p using the same method as Hoppe [ HOP92]. These points

now have 2 dimensional coordinates. The projected point set is partitioned on the basis of which

quadrant they lie in with respect to this local coordinate system. We create a triangulation method

by ordering the points according to angle. Using the square of the sine function, we discretize the

angles between 0 and | and store the values in a table. We use the table to order the points in

each quadrant by angle. If a value is between two values in the table, we approximate the angle

linearly. This ordering determines how we proceed testing each point to see if it is a neighbor of p

and should be a vertex of a triangle at p.

Now that we have ordered the points in each quadrant, we can proceed with the triangulation.

Given three consecutive points in angle order pi_i, pi, pi+i, we check to see whether the middle

point. Pi, is a neighbor to p. The algorithm is as follows:

Algorithm 82 Check Neighbor:

Lpi_, = Perpendicular Bisector of line segment ppi-i

Lp = Perpendicular Bisector of line segment ppi

Lp+i = Perpendicular Bisector of line segment ppp+i

-fpi-i.Pi+i = Intersection point of Lp._^ and Lp;_^_^

Lip = Line parallel to Lp and passing through /p,_ip;^,

Mp = Midpoint of the line segment pp.

If both p and Mp lie on the same side of Ljp
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Then p is a neighbor to p when compared with pi-i and pi+i

Else p is not a neighbor to p

This algorithm is explained pictorially in figure 17 adapted from [ GPOO]. If {pi,... ,p„} are the

ordered projected candidate neighbors of p, then the above algorithm is performed for every triplet

Pi-i,Pi,Pi+i- If Pi is calculated to be a neighbor of p, then the triplet pj,pi+i,pi+2 is tested. If pi

is not calculated to be a neighbor ofp, then pi is rejected and we test pi_2,Pi_i,pi+i to test pi_i for

viability as a neighbor of p. The neighbors of each vertex is stored in a table ordered by angle with

Pi-i,Pi,Pi+i forming a triangle. Once this is done for each point in the point cloud, the surface

reconstruction is complete.

The most difficult part of this algorithm is from the beginning when setting the sampling criteria.

As we previously stated, using our original point cloud to determine whether or not it is sufficient

may not make much of a difference. We could simply choose the areas of high curvature before

taking our original sample and program our equipment to obtain higher sampling density in these

areas. We can choose these areas visually. The properties of a J-sample are also used in the

algorithm in determining the neighbors of each p 6 PC. Using these properties is an effective way

to prune our data set. For an example of the result of this method, refer to figure 18.

AC A

Figure 17: Finding Neighbors of p. Here B — pi, A = pi-i, C = pi+i
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5.2.3 Method 3

Figure 18: A Triangulation of a Surface

Our final triangulation method simulates a sphere rotating on the point cloud to create the trian

gulation.

Remark 83 We will refer to this sphere as a ball to remain consistent with the name of the algo

rithm.

The Ball Pivoting Algorithm (EPA) was designed by engineers who were commissioned to create

a computer model of Michelangelo's Florentine Pieta. It was created by Bernardini et.al [ BN99].

We begin with a point cloud which is (5-dense, so that a ball with radius <5, denoted by Bg, can

rotate on the points without falling through. Recall that a point cloud is (5-dense if d {p, PC) < 6

for p 6 PC. In this case, the value for 6 is determined by the user.

To accommodate uneven sampling, the algorithm can be run again with where u> 6. We

calculate normal vectors at points p £ PC and orient them in the same direction to ensure an

oriented recreation. This method does not develop a specific algorithm to calculate the normal



vectors. As such, any reliable method is sufficient. As the ball passes over the point cloud, it

connects the points it comes into contact with to create the triangulation. This algorithm makes

no estimation of curvature. The normal vectors are used to ensure that the initial triangle is

consistently oriented with its three vertices and to determine which triangles to reject in the final

triangulation. A triangle is rejected if the dot product with the triangle normal, Nxp, and vertice

normals is negative.

Let PC = {pi,P2, • • • ,Pn} and {Npj,Np^,... ,Np„} be their associated normal vectors. The

first challenge is determining a seed triangle

Definition 84 We call a seed triangle our initial triangle.

For each connected component of the surface, we locate one seed triangle. From this initial

seed triangle, we will create the triangle mesh for the entire connected component. We begin by

selecting an arbitrary p G PC not yet used in the triangulation. Now consider all pairs of points

Pi,Pj G nbhd{p) in order of distance from p and build a potential triangle with vertices {p,Pi,Pj}.

This will be our seed triangle if the {Np, Np;, Np^.} and Nt^ are consistently oriented. Finally, we

test to make sure the ball touches {p,Pi,Pj} but not any other pk G PC. If one of these conditions

is not satisfied, we test another seed triangle. Once a seed triangle is found, store the edges and

proceed. These edges are stored in a linked list called the Front.

Definition 85 We call the Front, denoted by F, a collection of linked lists of edges, their opposite

vertex, the center of the ball that touches all three points, and links to the previoius and next edge.

If Pi and pj are an edge of a triangle, it is stored in F as {Pi,Pj). We will denote the edge,

Now that we have our seed triangle, we can proceed with the triangulation. We began with a

ball of radius 6 resting on all three vertices of a triangle." Assume eyj-) is the pivoting edge. Staying

in contact with the two endpoints pi and pj, we pivot Bg until it comes into contact with another

point, call it p^. This will form a new triangle with vertices Pi,Pj,Pk. If no point is hit, the edge

eyj) is labeled a boundary edge.

Definition 86 We call an edge active if it is used for pivoting.
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Definition 87 We call an edge boundary if it is not possible to pivot from it.

Of course we cannot roll a ball on our point cloud, so we want to develop a way to simulate this

process. First, we will calculate the midpoint, mij, of e^ij)

1 /= 2 W

Next, we consider all points within a 25 neighborhood of For each such point px, compute the

center Cx of the ball touching Pi,Pj,Px- Each Cx should lie on the circular trajectory, 7, around mij

and can be computed by intersecting a (i-ball centered at px with circular trajectory 7. Of these

centers, Cx, we pick the one that is first along the trajectory, and choose the first point Pk that is

hit. For a pictorial explanation, see the figure 19 adapted from [ BN99].

We perform two operations which affect T. They are called join and glue. The easier one

is join. When the ball pivots around edge e(i„j) and touches a new unused vertex pk- In this

case, we have developed a new triangle with {pi,Pj,Pk} as the vertices. We update T by removing

edge and adding the two edges e^i^k) and e^^kj)- For an example, see figure 20 adapted from

[ BN99].

Initial ball

d.

p, pj .

center

N

FigurelQ: The Ball Pivoting Operation
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Figure 20: The Join Operation

When pk is already part of the mesh, one of two cases arises:

1. pfc is an internal mesh vertex, i.e. no front edge uses pk- This means that it is only an oppostie

point and is not used as a a pivot edge vertex. The corresponding triangle cannot be created.

In this case is marked as a boundary edge.

2. pfc belongs to the front. In other words, it is used as a vertex on a pivoting edge. After checking

edge orientation with the corresponding vertices, we apply a join operation and output the

new mesh triangle with vertices Pi,Pj,Pk- This could potentially create pairs of coincident

edges with opposite orientation which are removed by the glue operation. Coincident edges

are edges c^i^k) a^nd c^k,i)'

As stated in the above case, glue removes from the front pairs of coincident edges with opposite

orientation. For example, when edge e^i^k) is added to .F by a join operation. If edge e(^k,i) is on

T, glue will remove the pair of edges e^i^k) and e^k,i) and update iF accordingly. For an example of

the glue operaton, see figure 21 adapted from [ BN99].
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The process is completed when all points in the point cloud have been visited and there are no

coincident edges . In some cases, the J-sample is uneven so the ball may not visit all data points on

a connected component or may "fall through" the data set and we may have to select another seed

triangle. This may cause the algorithm to create two separate components when there should only

be one. When this happens and we have exhausted all points that could create triangles using Bg,

we can run the algorithm again with a larger ball.

This process seems to be intuitive and efficient. It allows the technology to do all the work and

because no manipulation of the data is required. The only calculations are those to estimate the

normal vectors and midpoints of line segments. Tangent planes, which are used in the previous two

algorithms, can introduce errors because assumptions are needed about the data itself. No such

assumptions are necessary with this algorithm. The algorithm does not attempt to compensate for

noise, but it does assume that a preprocessing algorithm was performed to filter out the outliers

(those points which are created that are a large distance from the point cloud). An example of the

result of this process is shown in figure 22 from [ BN99].

Figure 21: The Glue Operation. Points in the circle represent the same point
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Figure 22: Output of the BPA

This concludes our discussion of triangulation methods.

5.3 Conclusion

Each of the methods described in this chapter was developed for a specific purpose. Each one works

well for the specific purpose for which it was created. However, as we can readily see from this

last approach, if we want a detailed, accurate model of the surface, this procedure would be highly

insufficient. Similarly, if we need a speedy algorithm for a robot to recognize that objects are in

its path, the first two methods discussed in this chapter require too much time. This lack of speed

may cause the robot to run into the object before it is able to recognize how to avoid it or move it.

The one algorithm which seems to satisfy both of these situations, and thus, almost any situation

in general, is the BPA. It is efficient while producing a detailed reproduction. Specifically, in the

robotic case where data is not attainable from every angle, we can make assumptions about the

"unscanned" portions of the surface, such as those used in the last method about symmetry and

continuity, to create a complete 3D reproduction of the surface so the robot can use the information



to either avoid the object or move it.

Overall, the function approximation method is less attractive and accurate than the others in

this chapter. The function approximations are much more sensitive to noise, and thus, the values

such as curvature and normal vectors are more subject to error. Furthermore, the strength of

computers lie in their ability to handle large amounts of discrete data efficiently and effectively. The

triangulation methods take full advantage of this strength. Errors can occur during the transition

to the respective tangent planes and returning them in the end to their final positions. However,

this is a small consideration because we can easily store these original positions.
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6  CONCLUSION

6.1 Summary

This thesis has been an exploration into aspects of computerized 3-dimensionaI surface recreation.

First,we discussed the methods by which data is collected for the computer to analyze. We found

that, although not perfect, laser range cameras are preferred over the ultrasonic range cameras

because of the resolution we are able to obtain. Furthermore, with advances in the technology, laser

range cameras are becoming more accurate. We also discussed some of the terminology associated

with these range cameras. After discussing the methods used to obtain the original data, we

discussed some important definitions and theorems from differential geometry. The proofs of these

theorems are not given because they can be found in any quality differential geometry text. With

this foundation, we began discussing calculations on the data obtained from the range cameras.

In general, the first calculations in the reconstruction process are centered around estimating a

normal vector at each element of the point cloud. Although differential geometry provides a direct

method to calculate a normal vector from a differentiable parametrization of a surface, we were

unable to utilize this tool because our data is comprised of discrete data points. We developed to two

general categories. The first category estimates the normal vectors from this discrete set of points

using difference equations or vector products [ DEL94][ HOP92][ TB95]. The calculations were

performed on the neighborhood of the point in question. The neighborhood was defined by either

distance functions [ HOP92][ TB95] or by connectivity in the mesh [ DEL94]. The second category

estimates very small neighborhoods of the point in question by a differentiable parametrization

and uses this parametrization to estimate the normal vector [ FR93][ FR98]. The approximating

functions were found using least squares techniques which were not discussed in any detail.

Next, we discussed methods by which various curvature values are estimated. Again, two

general categories were found. In this chapter, we began by discussing curvature estimation from

approximating functions [ FR93][ FR98]. From the approximating functions, principal curvatures

were estimated directly using the definitions from differential geometry. To reduce the influence of

noise in our data, [ FR98] attempts to refine the value of the principal curvature values by taking into

consideration curvature values at another point in the data set. The second category approximated
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curvature directly from a triangulation or simplex mesh [ DEL94][ TB95]. In this category, we

began with a triangulation or simplex mesh before curvature was calculated. We estimated Gauss,

Mean, and principal curvatures from this category. We discovered that of these two categories, the

discrete case is probably more accurate.

Finally, we put it all together in Chapter 5 to recreate the surface. For each method, we found

that the results from the triangulation techniques were close to the original surfaces being recreated.

Since the goal of the approximating function was primarily to reproduce a rough image, this category

was less accurate in reproducing the details of the suface, but was also sufficient for its purpose. The

only technique we did not discuss until this chapter was the Ball Pivoting Algorithm. This technique

was more of a combinatorial approach and relied very little on differential geometry. Nevertheless,

it produced a triangulation very close to the very complicated surfaces being recreated. It was also

more intuitive than the other algorithms. Although we attempted to address some of the questions,

there are still many questions left unanswered.

6.2 Further Research

The more interesting approaches discussed in this thesis are the triangulation approaches which

do not attempt to use approximating functions or volumetric primitives to recreate the surface.

Although each method differs in the details, each one produces a reasonable approximation of the

surface to be recreated. There may be some underlying facts about surfaces in general which support

the discrete case. More study of differential geometry in this discrete case is warranted. This study

could produce an approach to surface reconstruction which would produce accurate results for any

general surface reconstruction application, reducing the need for different algorithms for each specific

application.

Furthermore, many of the proofs in this thesis contain some assumptions about the surface which

are generally untrue about surfaces in general. For example, normal curvature on a regular surface

is not a constant at a particular point unless the normal curvature is discretized, although the

assumptions in this case do not affect the outcome of the algorithm because normal curvature is

discretized naturally by calculating curvature on the discrete set of data points. We may also want

to explore the viability of determining whether a 5-sampled surface is dense enough by performing
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calculations on that same (J-sample.

This author has learned that, in general, the proofs in all of these methods are mathematically

incomplete and unsatisfying. Attempts have been made to complete these proofs, but in some cases

this has been impossible because the arguments were difficult to follow.

By no means has this been an exhaustive study of all reconstruction algorithms. Other methods

exist which would provide an interesting study. Two examples consist of methods discussed briefly

in this thesis [ DEL94] [ FR98]. We have already given overviews of these methods and leave the

details to the reader. Another method developed over several years would also provide an interesting

study. Medioni et.al. [ GUY97][ MDOO][ TG96][ TG99] have developed a tensor voting technique

which seems to provide some promising results. Unlike the approaches discussed in this thesis, this

one does not attempt to quantify curvature measurements. It categorizes each tensor, a symmetric

covariance matrix, as either a stick, plate, or ball tensor at each element in the point cloud. These

tensors are categorized according to their eigenvectors and eigenvalues. A stick tensor indicates

that the element lies on a surface; a plate tensor indicates that the element lies on a curve, or at

the intersection of two surfaces; and a ball tensor indicates that the element lies at the intersection

of two curves.

The center of this process involves a voting procedure in which each element influences and refines

the information associated with their neighbors. After the voting procedure, if the tensor is a stick,

this means that the element associated with this tensor has a well defined normal vector associated

with it, as does its neighbors. The confidence, or saliency, of the normal vector measurement is

encoded in the tensor's eigenvalues. If the tensor is determined to be a plate, the element has a

well defined tangent vector associated with it. Again, the confidence of this tangent direction is

encoded in the tensor's eigenvalues. Finally, a ball tensor has no associated normal or tangent

direction associated with it. These ball tensors help locate outliers and noise, and are generally

ignored in the voting and reconstruction process. The mathematics involved with this method are

very interesting. Unfortunately, this author did not have the time to do a thorough review of them

to include a proper discussion of them in this thesis. However, the results seem to be promising

and this method should be studied further.
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