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Abstract

Coding theoiy is a branch of mathematics that began in the 1940's to correct errors

caused by noise in communication channels. It is know that certain nonlinear codes

satisfy the MacWilliams Identify. Much research has been done to explain this relation

ship. In the early 1990's, five coding theorists discovered that nonlinear codes have linear

properties if viewed under the alphabet Z4 rather than the usual alphabet F2. In 1994,

these coding theorists published their results in a joint paper in IEEE Transactions on

Information Theory. In this study, linear codes and nonlinear codes are introduced and

characterized as Z4-llnear codes to understand the importance of this discovery.
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Chapter 1 Introduction to Coding Theory

With the use of high speed computers, digital phones, and credit cards, the transfer

of information from one source to another is going on continuously. This information

is sent from one source to another through a communication channel. Examples of a

communication channel are telephone lines, computer cables, and even the atmosphere.

Suppose we want to send a message through a communication channel. Because of noise

in the channel, the message received may not be the same as the message that was sent.

Noise is caused by many different things. Some of these include lightning, a scratch on

a compact disc, and even poor speech or hearing. Coding theory, which began in the late

1940's, aims to correct the errors caused by noise so that messages are communicated

reliably.

Definition 1.1: An alphabet A is a finite set of symbols.

Definition 1.2: A code C over an alphabet A is a subset of A^:= Ax ... x A (n copies). The

length of the code C is n. The elements of C are called codewords.

Often, we consider codes over F2 = {0,1}, called binary codes, or codes over extension

fields of F2. More generally, we will use the alphabet A = Fg, where Fg denotes the finite

field with q elements and g is a power of some prime number.

Figure 1 below provides a description of how a message is sent from one source to

another. Suppose we have a message in an alphabet A that we want to send. Let C be a

code of length n over alphabet A. The message to be sent is broken into message words of

equal length k, for some fc e N such that k <n. With each message word w = {wi,...,Wk),

Wi e A, we associate a codeword x = (xi,...,Xn) G C. The codeword x is sent through

the channel. Let y = {yi,—,Vn) denote the received word. Note that we will assume the

received word has the same length as the codeword. If no errors have occured, then y

= X. However, it is possible that y 7^ x. Regardless, it is the now the job of the decoder

to determine from the received word y the message word w that was originally sent. We

assume that the channel is not too noisy. In this case, it is the most likely that only a

few errors have occured. Thus, the decoder selects a codeword x' e C that most closely

resembles y. If there is not a unique codeword closest to y, then either a choice is
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Figure 1. The basic setup of coding theory.

made between codewords or we ask for a retransmission. This lype of decoding is called

maximum likelihood decoding. To make this more precise, we need a notion of distance.

Definition 1.3: The Hamming distance between two words x = (xi,...,Xn) andy= (yi,...,2/n)

in A" is defined to be d(x,y) = \{i •. Xi ̂  yi]\.

Using this terminology, the received word y is decoded as x, where d(x,y) = min{d(x',y) | x'

e C}. A choice is made if more than one x' satisfies this condition. From this, the decoder

determines which message word w* = e was orginally sent.

Definition 1.4: The Hamming weight of a word x = {xi,..,.Xn) € A" is the number of

nonzero coordinates, Xi, denoted wt(x). That is, wt(x) = |{i: Xi 7^ 0}|.

Example 1.5: Let x = (0,1,1,0) e Then wt(x) = |{i: Xi 7^ 0}| = |{2,3}| = 2.

Note that if z = x-y for words x,y e A", then wt(z) = wt(x-y} = d(x,y).

Definiton 1.6: Let v be the codeword that was sent and y be the received word. Then e

= v-y is called the error vector.

Note that if v is sent and y is received, then the number of errors that occurred is d(v,y}.

That is, the number of errors is wt(e), where e = v-y denotes the error vector.

Given an alphabet A, one would like to construct codes over A which correct many

errors. If a received word y is closest to a unique codeword x, then by maximum likelihood

decoding we assume that x was the codeword, sent through the channel. This means that

d(x,y) 7^ d(x',y) for all x' e C\{x}.



Definition 1.7: Hie minimum distance of a code C is

d := min{d(x, y) | x, y 6 C and x ̂  y}.

The minimum distance of a code tells how many errors the code can detect and correct.

Theorem 1.8: A code C with minimum distance d will detect all errors in d - 1 or fewer

positions. Moreover, there is at least one error in d positions that will not be detected

by C.

Proof: Suppose C is a code with minimum distance d. Let y be a received word such that

y = v-e, where v e C and e is a nonzero error vector of weight wt(e) < d - 1. Then

d(v,y) = wt(v-(v-e)) = wt(e) < d. Since C has minimum distance d and the distance

between y and the codeword v is less than d, y is not an element of C. Therefore C

detects any error in d - 1 positions.

By the definition of distance, there are codewords v and w in C with d(v,w) = d.

Suppose V is the codeword sent and w is received. Then the error vector e = v-w

is a nonzero vector of weight wt(e) = d. Since w is a codeword, C will not detect this

error of weight d. □

Notice that a code C may detect some error vectors of weight d or more, but C does not

detect all error vectors e such that wt(e) > d.

Example 1.9: Consider the International Standardized Book Number (ISBN) Code. The

ISBN is used to catalog books. Each book is assigned a ten digit number, ai,..., aio.

The first nine digits, ai,...,a9 e Zio, contain information about the book. The last

digit, flio 6 Zii, is called a check digit. It is chosen by computing a'^o := (ai + 2a2 +

... + 9a9). If aio — ^ (mod 11) for some 0 <i < 9, we set aio =i. If oio =10 (mod 11), we

set aio to be the symbol "X". The check digit is used to detect a mistake, or error, in

the number entered.

One can verify that the ISBN code has minimum distance 2. Therefore by The

orem 1.8, ISBN code detects all single-digit errors. Also, it detects if two posi

tions are transposed. Suppose ai,a2,a3,...,ai,ai+i,...,aio is the correct ISBN and



a\,a2, aj, ...,aio is the number entered. Since ojo = (oi + 2a2 + ... + iai + (i +

l)ai+i + ... + 9a9)(mod 11) (ai + 2a2 +... + (i + l)ai + mi+i +... + 9a9)(mod 11), the code

detects the transposition error. See [16].

The ISBN code cannot correct any errors, but it is efficient since only one non-information

symbol is used for every nine-symbol piece of data. Since the correct ISBN can be reen-

tered easily, detecting single errors and transposition errors is satisfactory.

In some applications, asking the source to resend the message could be very expensive

or not even possible. For example, the Voyager 11 spacecraft sent pictures of Jupiter and

• Saturn in the early 1980's. Each picture was broken up into pieces and the pieces were

sent one by one through the atmosphere. Asking the spacecraft to resend a piece of

the picture that is not readable would mean that the spacecraft was resending the piece

continously since the atmosphere is a very noisy channel. This would take time, and the

Voyager 11 had a limited life span. In this case we need a code that not only detects errors

but can also correct errors.

Theorem 1.10: A code C with minimum distance d = 2t-\-l can correct all errors in t or

fewer positions. Moreover, there is at least one error in i-l-1 positions which the code

C cannot correct.

Proof: Let C be a code in the alphabet A of minimum distance d = 2t + l. Given e e C,

let B((c) = {x s A" I d(x,c) < t} be the sphere of radius t about c. Since d = 2t + 1,

the distance between any two distinct codewords is at least 2t + l. Therefore, Bt(c)

f| Bt{c') = 0 for all c,c' s C such that c 7^ c'. Suppose a codeword u is transmitted

and t or fewer errors occur. Let y be the received word. Then y 6 Btiu) since d(y,u)

< t. Note that y ̂  Bt[c) for any c e C\{u} since Bt(c) f| Bt(c') = 0. Then y is decoded

to the codeword u, and the t errors are corrected.

Since d = 2t + l, there exists c,c' G C and c 7^ c' such that d(c,c') = 2t + l. Therefore,

Bt+i(c) n Bt+iic') 7^ 0. In particular, there exists y e jBt+i(c) f] Bt+i(c'). If y is a

received word such that e = y-c is the error vector of weight t -i- 1, then a choice

must be made in decoding y since y is not contained in a unique sphere of radius

i + 1. Therefore the 14-1 errors are not always corrected. □



Example 1.11: Let C = {(0,0,0), (1,1,1)}. Since min{d(x,y) | x,y e C and x 7^ y) = 3, C

has minimum distance d = 3. Thus, C will detect all error vectors of weight 1 or

2. Suppose X = (0,0,0) is the word sent and y = (1,1,1) is the received word. Since

(1,1,1) e C, C cannot detect the error of weight 3. Since ̂  = 1, C vdll correct

all error vectors of weight 1. Suppose y = (1,0,1) is the received word. Since y e

Bt(l,l,l) = (x e F| I d(x,(l,l,l)) < 1), y is decoded to the codeword (1,1,1).

Corollary 1.12: Let C be a code of minimum distance d. If d is even, the code can detect

all errors in | positions and correct all errors in positions.

Proof: Suppose the minimum distance d of a code C is even. By definition of minimum

distance, spheres of radius ̂  about the codewords of C are disjoint. Therefore, C

can correct error vectors e such that wt(e) = If wt(e) = the received word y

may be equidistant from two codewords, that is y e St(u) fj J5t(v) for some u,v e C

and u 7^ V. In this case, the code detects that | errors occurred but does not correct

them. □



Chapter 2 Linear Codes

One of the goals of coding theory is to construct codes which can be decoded by algorithms

which are faster than the brute force decoding scheme of comparing a received word with

all of the codewords in C. In this chapter, we will construct codes with algebraic structure

that make these codes easier to implement. The additional structure may aid in both

encoding and decoding.

Here, we take the alphabet to be F,, the finite field with q elements: Recall that a code

of length n over F, is a subset of F^.

Definition 2.1: Let C be a code of length n over the alphabet F,. The code C is called a

linear code if C is an F^-subspace of IP^. In other words, a subset C of is a linear

code if for all u,v e C and a G F,, u+v and au are codewords in C.

Being a vector space, a linear code can be described using a basis. Since a basis for a

linear code C spans the entire code, it provides a more efficient way of describing the

code than listing every codeword. Let {vi,V2 Vfe} be a basis for a linear code C. Then any

codeword w e C can be written uniquely as a linear combination of the basis elements.

In other words, C = {aiVi+a2V2+...+afcVfc: ai e F,}. Thus, to store a linear code C we need

only to store a basis for C, rather than a list of all codewords of C.

Definition 2.2: Let C be a linear code of length n over the alphabet F, with basis

Vl

V2

{vi,V2 Vfe}. The kxn matrixM =

Vfc

is called a generator matrix for the code C.

A generator matrix for a linear code is not unique. For example, a nontrivial permutation

of the rows of the generator matrix of a linear code C would give rise to another generator

matrix for C. However, there is a standard form for a generator matrix of a linear code.

Such a generator matrix is of the form , where X is a A: x {n — k) matrix withh X

entries in the alphabet F,. We will see that using a generator matrix in row reduced

echelon form as above makes it easier to encode message words.



Definition 2.3: Two linear codes of length n are equwalent if one code can be obtained

from the other by permuting certain coordinates of all codewords and adding a par

ticular vector X = (xi, x„) G to all codewords.

Any linear code C is equivalent to a code that has a generator matrix in standard form.

This can easily be seen by row reduction of the generator matrix for the code C and

permuting the columns if necessary.

Definition 2.4: The dimension k of a code C is its dimension as an F,-vector space.

Let C be a linear code of length n and dimension k. To encode a message using the code

C, the length of the message words must equal k. Hie reason for this will become clear

when we discuss encoding using a generator matrix in Section 2.1.

The code C uses n symbols to send k information symbols. Thus, it is said to have

information rate R = ̂. We would like R to be large so that the code is efficient.

Recall that the minimum distance of a code C is d:= min{d(x,y) | x,y G C and x 9^

y}. If C is a linear code, then the following proposition gives an equivalent description of

minimum distance.

Proposition 2.5: Let C be a linear code, the minimum distance d of C is the minimum

weight of a nonzero codeword in C. That is, d = min{wt(c) | c G C, c 0}.

Proof: Let u and v be codewords in a linear code C of minimum distance d. Let w = u-v.

Since C is a vector space, w = u-v is also a codeword in C. Thus d(u,v) = wt(u-v) =

wt(w). It follows that d = min{d(u,v) | u,v G C and u ,1^ v} = min{wt(w) | w G C and w

^ 0}. □

Definition 2.6: A linear code of length n, dimension fc , and minimum distance d is called

an [n, k, d\ code.

The code parameters length, dimension, and minimum distance describe the efficiency

and reliability of the code. According to Theorem 1.10, we would like to construct codes

with large minimum distance d so we can correct many errors. As seen above, we would

like the dimension k to be large with respect to the code length n so that the information

rate is high. This would give an efficient code. As the following theorem shows, these

goals are somewhat conflicting.



Theorem 2.7 (Singleton Bound): For any [n, k, d] linear code C,

k  d <n + 1.

Proof: Let C be an [n,k,d] code. LetW := {(ai,...,ad_i,0...,0) e | Oj e F,}. Clearly W is a

linear subspace. By Proposition 2.5, C f| W = 0 since all words in W have weight less

than d and C has minimum distance d. Since a basis for W is {(1,0 0), (0,1,0 0),

(0,0,1,0,...,0) (0 0,1,0 0)}, the dimension ofW is d- 1. Therefore, we obtain

k + {d-1) = dimC+dimW = dim(C+W)+dim(C fj W) = dim(C+W} < n. See [14]. □

Notice that this theorem provides an upper bound on the cardinality of a linear code with

a given length and minimum distance. For a code over F,, the cardinality of a linear code

is q^. By the Singleton Bound, q'' <

Given two words v = {vi,V2,...,Vn) and w = (wi,W2,...,w„) in F^, one defines v • w =

viwi + ... + VnWn. If V • w = 0, then v and w are said to be orthogonal.

Definition 2.8: Let C be an [n, k, d\ code over F,. The dual code of C is defined to be

C-*- := {u e I V • u = 0 for all V G C}. If C = Q-*-, then C is said to be self dual.

Theorem 2.9: The dimension of the dual code of C is n - fc .

Proof: Let M(respectively M') be a generator matrix for C(respectively C-^). Since M' is

the nullspace of M, the dimension of C-*- is equal to the number of columns of M

minus the dimension of C. Since there are n columns and the dimension of C is A;,

the dimension of C-*- is n - A:. □

Let C be an [n, k, d\ code. Then its dual code C-*- has length n and dimension n - k.

However, there is not a formula relating the minimum distances of C and C-"-.

Definition 2.10: Let C be an [n, k, d\ code. An nx (n — k) matrix H is called a parity-check

matrix for C if the columns of H form a basis for the dual code C-*-.

By definition, if H is a parity-check matrix for C, then H-^ is a generator matrix for C-*-.

Proposition 2.11: Let C be linear code with parity-check matrix H. Then cH = 0 if and

only if c is a codeword in C.

8



Proof: Let C be a code in the alphabet F, of length n. Let c = (ci,C2, G and H

Hi

•  be the parity-check matrix for the code C. Suppose cH = 0. Then c is

H„

orthogonal to the columns of H. Since the columns of H form a basis for C-*-, c is an

element of the dual code of C-'-. Therefore, c 6 (C-'-)-'- = C.

Now suppose c is a codeword in C. Since the columns of H form a basis for the dual

code C-^, cH = 0 by definition of H. □

Theorem 2.12: Let H be a parity-check matrix for a linear code C. Then C has minimum

distance d if and only if any set of d - 1 rows of H is linearly independent, and at

least one set of d rows of H is linearly dependent.

Hi

Ha
Proof: Let H =

H„

be a parity-check matrix for a [n, k, d] code C. First, assume C has

minimum distance d. By Proposition 2.5, there exists a codeword c = (ci, ca, c„) of

C such that wt(c) = d. Then cH = ciHi -1- caHa + ... -t- c„H„ = 0. Since c ^ 0, there

is at least one coefficient a that must be nonzero. In fact, since wt(c) = d, there are

exactly d coefficients that are nonzero. Choose the set of d rows of H with nonzero

coefficients and renumber, if necessary, so that ciHi -t- caHa -I-... + c^Hd = 0. This

implies that {Hi,..., is a set of d rows of H that are linearly dependent.

Suppose there exists a set of d - 1 rows of H that is linearly dependent. Then there

exists ci,..., Cd-i € Fg not all zero such that ciHi -f caHa -I-... -f- Cd_iHd-i = 0. Let c =

(ci,c2, ...,cd-i,0, ...,0). Then cH = ciHi + caHa -I-... -I- Cd_iHd_i = 0 implies that c G C

by Proposition 2.II. Since the minimum distance of C is d and wt(c) = d- 1, this is

a contradiction. Therefore, any set of d - 1 rows of H is linearly independent.

Now assume any set of d - 1 rows of H is linearly independent, and at least one set

of d rows of H is linearly dependent. Then the minimum distance of C is less than

or equal to d. Let v = {vi,V2, ...,Vn) G C. Suppose that wt(v) < d. Then v has at most

d - 1 nonzero coordinates. Let Vi^,Vi^, ...,Vi^, where j < d - 1, be the set of nonzero



coordinates of v. By Proposition 2.11, vH = 0. Thus + ... + Vi.Hi. = 0,

which is a contradiction. Thus, the wt(v) cannot be less than d. By Proposition 2.5,

the minimum distance of C must be d. See [9]. □

If we are given a generator matrix for a linear code C, then we can find a parity-check

matrix H for C using the following algorithm.

Algorithm 2.13: Let C be an [n,k^d] code. Let A be the matrix whose rows are all the

words in C. Use elementary row operations to reduce A to reduced row echelon form.

Since the dimension of C is k, the matrix with all nonzero rows has dimensions kxn.

Let M be the kx-n matrix consisting of all nonzero rows of the reduced row echelon

form of A. Let X be the k x {n- k) matrix obtained from M by deleting the leading

columns of M. Form annx {n- k) matrix H as follows:

i. In the rows of H corresponding to the leading columns of M, place in order, the

rows of X. The first k rows of H are the rows (in order) of X.

ii. The remaining n-k rows of H (in order) are the rows of the {n-k)x{n- k) identity

matrix I^n-k) ■

See [9j. I

Let Mc and Mq± denote the generator matrices for the code C and the dual code C-*-,

respectively. Let He and Hc-l denote the parity-check matrices for the code C and the

dual code C-'-, respectively. Given either the generator matrix M or the parity-check matrix

H, we can form the remaining matrices using the diagram in Figure 2.

Algorithm 2.13
Hex ^ Mqx

transpose

Mc

transpose

He

Algorithm 2.13

Figure 2. A diagram for forming generator matrices.

10



Example 2.14: Let C be a linear code with generator matrix

M =

1  0 0 0 1 1 1 1  1 1

0  1 0 0 1 1 0 1  1 0
. Then X =

0  0 1 0 1 0 1 1  0 1

0  0 0 1 0 1 1 0  1 1

By the algorithm, H =

1  1 1

1  1 0

1  0 1

0  1 1

1  0 0

0  1 0

0  0 1

is the parity-check matrix for the code C.

2.1 Encoding

Let C be an [n, k, d] code over F, with generator matrix M =

Cll Ci2

C21 C22

Cln

^2n
. Sup-

^k2 * * * Cfcn

pose we wish to send a message using the code C. The message is broken into message

words of equal length k. Then matrix multiplication is used to encode the message words.

In particular, the message word w = [wi,W2, ...,Wk) G F, is encoded as the codeword wM =

(W)l - Cll -f'[1)2 -021 -I i-Wk'Ckl, Wi-Ci2+W2-C22-\ [-Wk-Ck2,- - -,Wi ' Cin +102 ■ C2n hWfc -Cfcn).

Thus the code C is the set of words {wM| w e IF^}.

For codes that are not linear codes, there is no easy way to associate a codeword

with a message word. In fact, a table may be used to encode codewords. Using matrix

multiplication to encode messages is advantageous since it is faster than using a table

and less storage space is needed to store the generator matrix than a list of codewords.

2.2 Decoding

Linear codes also have the advantage of decoding Avithout using a table to lookup the

most likely codeword sent through the channel. We decode received words using cosets.

11



Let C be an [n, k, d] code over F, with generator matrix M. Given a word u e , the set

u+C = {u+x I X e C} is called the coset of C determined by u. Note that two words u and

V in FJ determine the same coset of C if and only if u-v e C. Let w be a message word.

Then w is encoded as the codeword v = wM. The codeword v is sent through the channel.

Let y denote the received word. Due to noise in the channel, it may be the case that y

V. Let e = y-v denote the error vector. Then y and e determine the same coset of C since

y-e = y-(y-v) = v e C. Therefore the possible error vectors are exactly the vectors in the

coset of C determined by y. Since we use maximum likelihood decoding, we assume that

errors of small weight are most likely to occur. Therefore we choose a minimum weight

vector e in the coset containing y and decode y as y-e = v.

Note that there exists a unique vector of minimum weight if the weight of e is less than

t = [^J. This allows eorreet decoding up to minimum distance d.

Finding the coset containing the received word y and then finding an error vector of

least weight in that coset may make the decoding procedure difficult. To ease the process,

we can use a parity-check matrix for C.

Definition 2.15: Let H be a parity-check matrix for an [n, k, d] code C. Given a word u m

F", the syndrome of u is defined to be the word uH in F"~*'.

Syndromes help find the most likely positions where errors occurred. In the next theorem,

we see that if the s5mdrome of a received word y equals the sjmdrome of the most likely

error vector e, then y and e are in the same coset.

Theorem 2.16: Let C be an [n, A:,cZ] code over F, with pariiy-eheek matrix H. Then uH =

vH if and only if u and v lie m the same coset of C.

Proof: Let u,v e Suppose uH = vH. Then (u-v)H = 0. By Proposition 2.11, u-v e C.

Therefore u and v are in the same coset.

Now suppose u and v are in the same coset. Then u-v e C. By Proposition 2.11,

(u-v)H = 0. Thus uH-vH = 0 implies uH = vH. □

According to Theorem 2.16, a coset can be identified by its syndrome. For an error vector

Hi

e = (ei, ...,e„) and parify-cheek matrix H =

H,

, the syndrome eH = eiHi -t- ... -1- e„H„
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is the sum of the rows of H such that e, 7^ 0. Thus, the syndrome equals the sum of the

rows of H corresponding to the location of the most likely errors. Since a received word y

has syndrome equal to the error vector e of least weight, yH indicates the positions of the

most likely errors.

Example 2.17: Let C be a [n, k, d] linear code with pariiy-check matrix H given in Example

2.14. Supposey = (1,1,1,0,0,0,1) is the received word. The syndrome is yH = (1,0,1).

Since yH 7^ 0, y ̂  C implies an error occurred. Since (1,0,1) is the third row of H, the

most likely error is in position 3. We can conclude that e = (0,0,1,0,0,0,0) is the error

vector. Note that eH = yH. Thus y is decoded to v = (l,l,l,0,0,0,l)+(0,0,1,0,0,0,0) =

(1,1,0,0,0,0,1). Since vH = 0, v G C.

2.3 Cyclic Codes

Definition 2.18: A [n,k,d\ linear code C is called a cyclic code if c = (co,ci, ...,c„_i) e C

implies (c„_i,co,ci...,c„_2) e C.

Given a word v = {vQ,vi,...,Vn-i) 6 FJ', define v{x) = vq +vix + ... + e Fg[a;] to be

the polynomial with coeffieients from v. There is a one-to-one correspondence between a

word V e IB^ and pol5momial v{x) G F, [x] of degree less than n defined by

v = (?;o,Vi, <—> v{x) = vo +vix + ... -H

In this section, we will use the polynomial interchangeably with the codeword. Using

polynomials, we give an equivalent definition of cyclic codes.

Definition 2.19: A [n,fc,d] code C is cyclic if c{x) G C implies a:c(a;)mod(a;" - 1) G C.

Example 2.20: Let C be a linear code over F® with v = (1,1,0,1,0,0) G C. Then v corre

sponds to the polynomial v{x) = l + x + x^. Then the following are also codewords in

C:

x°v(x) = 1 -f a: -I- x^mod{x'^ - 1) <—> (1,1,0,1,0,0,0)

x^v{x) =x-\-x'^-\- x'^mod{x'' - 1) <—> (0,1,1,0,1,0,0)

x^v{x) = + X® + x^mod{x'^ - 1) <—)■ (0,0,1,1,0,1,0)

13



x^v{x) = x^ + x'^ + x^mod{x'^ — 1)

x'^v(x) = 1 + a:^ + x^mod{x'^ — 1) i

x^v{x) = X + x^ + x^mod{x^ — 1)

x^v{x) = 1 + + x^mod{x^ — 1)

(0,0,0,1,1,0,1)

(1,0,0,0,1,1,0)

(0,1,0,0,0,1,1)

(1,0,1,0,0,0,1)

Theorem 2.21: A linear code in Fg is cylic if and only if C is an ideal in F, [x]l{x^ - 1).

Proof: Suppose C is a cyclic code. Then c{x) e C implies that a:c(a:)mod(a;" - 1) e C.

Therefore, x®c(a;)mod(a;" — 1) e C for all i S N. Since C is linear, a(x)c(x) e C for all

a(x) e Fg[a:]. Thus, C is an ideal in Fg[a:]/(a;" - 1).

Suppose C is an ideal in Fg[a:]/(a;" - 1). Let c(a:) G C. Then for x G Fg[a;], xc(x) G C.

Thus, C is a cyclic code. □

Definition 2.22: Let C be a cyclic code of length n. A monic polynomial g(x) G C of

minimal degree such that C = (g(x)) is called the gerwrator polynomial of C.

Theorem 2.23: Let C be a cyclic code of length n. There exists a unique monic generator

polynomial g{x) of minimal degree.

Proof: Every ideal in Fg[a;]/(a;" - 1) is a principal ideal. Thus, there exists a monic poly

nomial g{x) G C such that C = {g{x)).

Suppose f{x),g{x) G C are both monic generator polynomials of minimum degree r.

Since C is a linear code, f{x) - g{x) G C. However, deg(/(a:) - g{x)] < r. This is a

contradiction unless f{x) = g{x). □

Theorem 2.24: The generator polynomial for a linear cyclic code of length n is a factor of

a;" - 1.

Proof: Let C be a cyclic code of length n and ^(a;) be the generator polynomial of C. By

the division algorithm we rvrite a;" - 1 = f{x)g{x) + r{x), where g{x), f{x), and r(a;)

are polynomials in Fg[a:] and the deg(r(a;)} < deg(5(a;)). Then (a;" - 1) = {f{x)g{x) +

r(a:))mod(a;" - 1), which implies thatr(a:) = (-/(x)5(a:))mod(a:"' - 1). Since f{x)g{x) G

C, r(a:) G C. But deg(r(a:)) < deg(p(a;)) implies that r(x) = 0. Thus a:" - 1 = f{x)g{x).

This shows that g{x) divides a;" — 1. □
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Let g{x) be the generator polynomial for a cyelic code C of length n. By Theorem 2.24, g{x)

divides a;" - 1. Therefore, there exists a unique h{x) e Fg[a:] such that h{x)g{x) - x^ -1.

It follows that h{x)g{x) = Omod(a;"' - 1). Thus, h{x) = implies that the deg{/i(a;)) = n-

deg(g{x)).

Definition 2.25: Let g{x) be the generator polynomial for a cyclic code C. If h{x)g{x) =

Omod(a:" - 1), then h{x) is called the check-polynomial.

Let g{x) be a generator polynomial and h{x) be the eheek-polynomial for a eyelie code C.

Notice that c{x) = a(a:)5(a:)mod(a;" - 1) for all c(a:) e C for some a{x) G F5[a;]. Therefore,

c{x)h{x) = Omod(a;" - 1) since c{x)h{x) = a{x)g{x)h{x) = Omod(a;" - 1) for all c(a:) £ C.

Theorem 2.26: Let C be a eyelie code of length n and let g{x) be the generator pol5momial.

Let k = n—deg(5(a;)). Then the codewords corresponding to g{x),xg{x), x''~^g{x) form

a basis for C. Thus C has dimension k.

Proof: Let ̂(a;) = 6o + hx + ... + Suppose aog{x) + aixg{x) + ... + ak-ix''~^g{x) = 0.

Then ao(6o + hx + ... + hn-kx'^"^) + aia;(&o + hx + ... + bn-kX^~^) + ... + OA;_ia;*^~^(6o +

hix + ... + bn-kx"-~'') = 0. This implies aobo + (ao&i + ai6o)a: + (0062 + oi&i + 0260)2:^ +

... + ak-ibn-kx"'~^ = 0. Clearly, {l,a;,a;^, ...,a;"~^} is a linearly independent set over F,.

Thus, aobo — 0, ao&i + aibo — 0, 0062 + ̂ibi + 0260 = 0 and ak-ibn-k = 0. Consider

aobo = 0. If 60 = 0, then g{x) = 60 + bix + ... + bn-kx^~'' = x{bi + ... +

This implies that 61 + ... + bn-kx"'~''~^ G C with degree less than deg(5(a:)). This is a

contradiction. Thus, 60 0 and ao = 0. Now consider ao6i + oifco = 0. We know that

60 7^ 0 and ao = 0. This implies that ai = 0. Similarly for ao&2 + ai&i + 02^0 = 0,..., and

ak-ibn-k = 0. Thus, = 0 for all 0 < j < fc - 1. Therefore, {5'(a;),a:fif(a:),..., a:^~^5(a;)} is

a linearly independent set.

For all c{x) G C, c{x) = f{x)g{x) for some }{x) = /o + hx + - + fk-ix^~^ G F5[a;]. Note

thatdeg(/(a:)) = k-1 since deg(c(x)) < n-l. Thus, c(a;) = {fo-\-hx-\--+fk-ix''~'^)g{x) =

fo9{x) + hxg{x) + ... + fk-ix''-^g{x). Therefore, c(a;) G ({5(a:),a;g(a:), ...,x''-'^g{x)}). This

implies that {^(a:), a:p(a;),..., a:*'~^g(a;)} is a basis for C. □

We can form a generator matrix for a cyclic code C using the generator polynomial g{x).

From Theorem 2.26, we know that {g{x),xg(x), ...,x''~^g{x)} forms a basis for C. Thus
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gix)

xg{x)

„fc-i9{x)

is a generator matrix for C.

Example 2.27: Since v{x) from Example 2.20 divides x"^ - 1, v{x) is the generator poly

nomial for the linear cyclic code C = {v{x)). n = 7 and deg(?;(a:)) = 3 imply that the

dimension of C is /: = 4. Therefore the codewords corresponding to ■u(a;), xv(x), x^v(x),

1 1 0 1 0 0 0

x^v{x) form a basis for C. Thus, a generator matrix for C is
0  1 1 0 1 0 0

0  0 1 1 0 1 0

0  0 0 1 1 0 1

Encoding for cyclic codes is done by polynomial mulitplication. For a message word

a{x) e F,[a;], a(x)5(a:)mod(a:" - 1) is the corresponding codeword. The advantage of using

a cyclic code is that less storing space is required. Instead of storing a. k x n generator

matrix, we need only to store the generator polynomial g{x).

The additional structure of a cyclic code also aids in decoding. Finding the message

word corresponding to the closest codeword c{x) to the received word consists of dividing

poljmomials, namely c{x) by g{x). As in all linear codes, decoding consists of finding the

syndrome. For cyclic codes, we call this the syndrome polynomial. See [12] for more

information about decoding cyclic codes.

2.4 Hamming Codes

Now we will look at some examples of linear codes. We first consider an important family

of codes discovered by R.W. Hamming in the late 1940's. These codes, called Hamming

codes, are among the first error correcting codes discovered. All codes considered in this

section are binary.

Definition 2.28: Let r > 2 and be a (2'' - 1) x r matrix whose rows are all nonzero

binary words of length r. The binary code with parity-check matrix is called a

Hamming code, denoted Ham(r)19].
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Theorem 2.29: The Hamming code HamCr) has length n = 2'" - 1 and dimension k =

Proof: By definition, the length n of Ham(r) is 2*" - 1.

Since is the parity-check matrix, the r columns of Hr form a basis for the dual

code of Ham(r). By Theorem 2.9, the dimension of the dual code of Ham(r) is r = n-k,

where k is the dimension of Ham(r). Since n = 2''-l,fc = 2''-l-r. □

Corollary 2.30: Ham(r) has minimum distance d = 3.

Proof: Since no row of Hr is the zero word, no single row of is linearly dependent. By

Theorem 2.12, d > 1. Let Rj and Rj be two distinct rows of H^. Since Rj 7^ Rj and

Ri,Rj 7^ 0, oRj + bRj = 0 with a,b e {0,1} implies that a = b = 0. Thus any two rows

of Hr are linearly independent. Note that (1,0,0 0), (0,1,0 0), and (1,1,0 0)

are rows of by construction. These three rows form a linearly dependent set. By

Theorem 2.12, Ham(r) has distance d = 3. See [13]. □

Recall from Theorem 1.10 that a code with minimum distance d = t + 1 can correct all

errors in t or fewer positions. The ISBN code in Example 1.9 shows that some codes may

be able to detect certain kinds of errors.

However, there are [n, k, d] codes that cannot correct any error vectors of weight greater

than t = [^J. Such codes are called perfect codes. Perfect codes have maximum
dimension among the codes that can correct error vectors of weight less than t.

Definition 2.31: A code C of length n and odd distance d = 2t -i-1 is called a perfect code

Since a Hamming code Is a binary code with dimension k = 2^ — r — 1, there are 2''

codewords in the code. For a Hamming code of length n = 2'" - 1 and distance d = 3,
22"-1
1+n

perfect code.

, since t — = 1. Thus Ham(r) is a

Theorem 2.32: If C is a perfect code of length n and minimum distance d = 2t + l, then

C will correct all error vectors of weight less than or equal to t, and no other error

vectors.
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Proof: By Theorem 1.10, C will correet all error vectors of weight less than or equal to t.

Therefore Bt(u) f) Bt[v) = 0 for all u,v e C with ut^v. Recall that (f) is the number

of ways an unordered collection of t objects can be chosen from a set of n objects.

Thus, (J') is the number of binary codewords of length n and weight t. For each u e

C, Bt(u) contains (o) + (i) + - + (") words of length n and weight less than or equal to

t. Since there are \C\ disjoint spheres of radius t around the codewords of C, there

are exactly \C\ ■ ((q) + (5^) + ... + (")) words in the union of the spheres. By definition

of perfect codes, \C\ ■ ((q) + (") + ... + (")) = 2", which is the number of all possible

words of length n. This implies that C corrects only error vectors e such that wt(ej

<t. □

Since Hamming codes correet error vectors of weight t = 1, Hamming codes are perfect

single-error correcting codes.

1  1 1

1  1 0

1  0 1

0  1 1

1  0 0

0  1 0

0  0 1

Algorithm 2.13, we find that the generator matrix for Ham(3} is

1  0 0 0 1 1 1

0  1 0 0 1 1 0

0  0 1 0 1 0 1

Example 2.33: Let Hs = Hs is the parity-cheek matrix for Ham(3). Using

M = . Ham(3) has length n = 2'" - 1 = 7, dimension k

(} I) 0 1 0 1 1

2'" - 1 - r = 4, and minimum distance d = 3. Thus Ham(3) is a [7,4,3] linear code.

If y = (1,1,0,1,0,0,1) is the word received, then yH =(0,1,1) is the syndrome. Notice that

yH = (0,1,1) is the fourth row of H. Thus the error occurred in the fourth position. Since

Ham(3) is a binary code, we know that the error vector is e = (0,0,0,1,0,0,0). Therefore we

decode y as y-e = (1,1,0,0,0,0,1) to be the word sent.

18



2.5 Reed-Muller Codes

Our next family of codes to consider is the Reed-Muller codes. I.S. Reed and D.E. Muller

discovered these codes in 1954. The first order Reed-Muller codes are good codes for

very noisy channels. In fact, the first order Reed-Muller code RM(1,5) was used in 1972

by the Mariner 9 spacecraft to transmit a photograph of Mars. Beyond the first order

Reed-Muller codes, the minimum distances of Reed-Muller codes are less than the min

imum distances of BCH codes discovered in 1960. For more information on BCH codes

see [9], [12], [13], or [14]. Therefore BCH codes are used instead of Reed-Muller codes.

However, Reed-MuUer codes are used to form families of codes which we will discuss in

later Chapter 3.

Ifx = [xi,...,xm) e A"" andy = (2/1,...,yj e A", then (x,y) = {xi, ...,Xm,yi, ■..,yn) e 4"^+".

This notation will be used to describe codewords in Reed-Muller codes.

Definition 2.34: Let 0 < r < m. The order Reed-Muller code of length 2™ will be

denoted by RM(r,m). RM(r,m) is defined recursively as follows: RM(0,m) = {(0,0 0),

(1,1 1)}, RM(i-,m) = {(x,x+y) e la"" | x e RM(r,m - 1), y € RM(r — l,m - 1)} for
0 < r < m, and RM(m, m) = ^ .

Proposition 2.35: Let 0 < r < m. RM(r - l,m) C RM(r, m).

Proof: We induct on m. Suppose RM(r - l,m') C RM(r,m') is true for all m' < m. Let u e

RM(7- - l,m). Then u = (x,x+y) where x e RM(r - l,m - 1) and y e RM(r - 2,m - 1).

By hypothesis RM(7' - 1, m - 1) C RM(r, m - 1) and RM(r - 2, m - 1) C RM(r - 1, m - Ij.

Therefore, x e RM(r, m-l) and y e RM(r - 1, m - 1), which implies that u e RM(r, m).

□

Since RM(r, m) is a linear code, it has a generator matrix, which we will denote by G(r, m).

Proposition 2.36: LetO <r <m. G(0,m) = [11...1], G(m,m) =
G(m — l,m)

0- - -01
, and G(r, m)

for 0 < r < m.
G(r, m — 1) G(r, m-l)

0  G(r — l,m - 1)

Proof: Let r = 0. Then RM(0,m) = {(0,0 0), (1,1 1)} is clearly generated by G(0,m).

Next, let r < m. To prove RM(r,m) is the code generated by G(r,m), we induct on
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m. Suppose the hj^othesis is true for all m' < m. Let u = (iti,U2, S IFj. Then

G(r,m — 1)
u

u

u

Gl

0

= x+0, where x e RM(r, m - 1) by hypothesis and

G{r,m — 1)

G{r — l,m — 1)
= x+y, where y e IRMtr - 1, m - 1) by hypothesis. Thus

= (x,x+y) G RM(r,m). This implies that RM(r,m) C
G{r, m — 1) G{r, m — 1)

0  G{r — l,m — 1)

r,m). Since |RM(r, m)| = |G(r,m)|, RM(r,m) is the code generated by G(r,m). The

□proof is similar for r = m.

Example 2.37:

i. RM(0.2) = {(0,0,0,0), (1,1,1,1)} and G(0,2) = [1111]

ii. RM(1,2) = ((x,x+y) | x G RM(1,1), y e RM(0,1)}

= ((x,x+y) I X G ((0,0), (0,1), (1,0), (1,1)}, y G ((0,0), (1,1)}}

= ((0,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,0), (1,0,0,1), (1,1,0,0), (1,1,1,1)}

G(0,1) G(0,1) 1 1 1 1

and G(l,2) =
G(l,l) G(l,l)

0  G(0,1)

iii. RM(2,2) = IP^ and G(2,2) =
G(l,2)

0...01

0...01 0...01

0  1...11

1 1 1 1

0  1 0 1

0  0 1 1

0  0 0 1

0  1 0 1

0  0 1 1

Proposition 2.38: The Reed-Muller code RM(r,m) has dimension k = Yh=o (T) mini

mum distance d = 2'""''.

To prove this proposition, we will use the foUoAving lemma. Let denote the mini

mum distance of RM(r,m). Note that dRM(o,7n) = 2"^ since (0,...,0) and (1 1) are the only

two codewords in RM(0,m).

Lemma 2.39: The minimum distance of KM(r,m) is d'= min(2'(iRM(r,m-i), c^RM(r--i,m-i)}-
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Proof of Lemma 2.39: Recall that RMtr, m) = {(x,x+y) £ | x e RM(r, m - 1), y e RM(r -

l,m-1)}. Let a = (u,u+v) , b = (u',u'+v') be distinct codewords of RM(r-,m} where u,u'

£ RM(r,m - 1), v,v' £ RM(r - l,m - 1). If v = v', then d(a,b) = d(u,u')+d(u4-v,u'+v') =

d(u,u')+d(u+v,u'+v) = 2d(u,u') > 2dRM(r,m-i). as u.u' £ RM{r,m-1). Since dRM(r,m-i)

is the minimum distance of RM(r, m - 1), the minimum distance of RM(r, m) =

2dRM(r,m-i)- Now suppose V ̂  v'. Then d(a,b) = wt(a-b) = wt((u,u+v)-(u',u'+v')) =

wt(u-u') +wt(u-u'+v-v') > wt(u-u')+ wt(v-v')-wt(u-u') = wt(v-v') > dRM{r-l,m-l)-

See [12]. □

Proof of Proposition 2.38: Let k denote the dimension of RM(r-, m) and d denote the

minimum distance of RM(r, m). We will prove k = (?) ^ — 2'""'" by induction

on m. Suppose the proposition holds for all RM(r',m'}, where r' < r and m' < m.

Then RM(r',m') has dimension (? ) minimum distance 2'"'"'"'.
Now consider RM(r,m). If m = r, then RM(m, m) = • Clearly, d = 1 since

(1,0 0) £ RM(

G{m — l,m)

0- - -01

plus one. Thus, the dimension of RM(m, m) is (?) + ! = (?) + (?) =

e:?o(?)-

If r < m, d = min{2-djiM(r,m-i), dRM(r-i,m-i)} = niin{2 • 2™-!-'", = 2™-L
G(r, m — 1) G(r, m — 1)

rn,m) and wt(I,0 0) = 1. RM(m,m) has generator matrix G(m,m) =

The matrix G(m, m) has rank equal to the dimension of RM(m -1, m)

G( hr, m) = as rank equal to the sum of the dimension
0  G{r - l,m — 1)

of RMfr, m -1) and the dimension of RM(r -1, m -1). Thus, the dimension of RM(r, m)

is Ei=o (""7^) + Ei=o C"7^)- Using the well-known fact that (7) = (""7^) -I- (?7?) and
("5') = CS) = 1. we have Eto ("l') + SS ("T') = ELi (("7') + (w')) + ("•;') =
EU(")-See 1121. □

Example 2.40: RM(1,2) is a [4,3,2] linear code.

2.6 Golay Code

The Golay code was constructed by M.J.E. Golay in 1949. The Golay code was used to

transmit photographs of Jupiter and Saturn in the Voyager spacecraft program in the
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early 1980's.

Definition 2.41: The extended Golay code G24 is the linear code with generator matrix

1  1 0 1 1 1 0 0 0 1 0

0 1 1 0 1 1 1 0 0 0 1

1 0 1 1 0 1 1 1 0 0 0

I7X7 1 07X5 0 1 0 1 1 0 1 1 1 0 0

0  0 1 0 1 1 0 1 1 1 0

0 0 0 1 0 1 1 0 1 1 1

1  0 0 0 1 0 1 1 0 1 1

1  1 0 0 0 1 0 1 1 0 1

1  1 1 0 0 0 1 0 1 1 0

05X7 1 /5X5 0 1 1 1 0 0 0 1 0 1 1

1 0 1 1 1 0 0 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1

G =

Proposition 2.42: The Golay code G24 is a [24,12,8] code.

Proof: Looking at the generator matrix G, it is clear that the length of the codewords is

24 and the dimension of the code is 12. To see that the minimum distance is 8 see

[12]. □

Theorem' 2.43: G24 is self-dual.

Proof: If u and v are rows of G, then by inspection, one sees that wt(u • v) =0(mod 2).

Therefore every row of G is orthogonal to every other row and so G24 C But the

dimension of G24 is 12 which is also the dimension of 0^4 (since n - k = 12). This

implies that G24 = G^i □

2.7 MacWilliams Identity for Binary Linear Codes

Let C be a binary [n, k, d] code. By Proposition 2.5, C has at least one codeword of weight

d. One may be interested in how many codewords have weight d. More generedly, we may

ask how many codewords there are of weight i, for d <i <n. Let Ai denote the number of
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codewords in C of weight i. Clearly, = 1. and Aj = 0 for alH, 0 < i < d, by Proposition

2.5.

Definition 2.44: The polynomial W^qIX.Y) = ^ Z[X,y] is called the weight

enumerator of C.

In the early 1960's, F. J. MacWilliams noticed an interesting relationship between the

weight enumerator for the code C and the weight enumerator for its dual code C-^. Hie

following identity allows us to find TFQi(X,Y) given Wc(X,Y). Thus, we are able to deter

mine the structure of the dual code Q-'- without knowing the actual code C-*-.

Theorem 2.45 (MacWilliams Identity): If C is an [n, k, d\ binary linear code with dual

code C^, then Wq±{X,Y) = ̂ Wc{X + Y,X-Y). Equivalently, =

]h\T:7=oMx + Yr-'ix-Yy.

The proof of this theorem can be found in [12].

Example 2.46: Let C = {(0,0,0), (0,1,1), (1,0,1), (1,1,0)}. Wc(X,y) = =

X^ + 3XF^. Using the MacWilliams Identity, we can find the weight enumerator for

the dual code C^. Wf^±{X,Y) = ̂ Wq{X + Y,X-Y) = i(X + r)3 + 3(X + y)(X-y)2 =

X^ + Y^. Therefore C-*- has one codeword of weight 0 and one codeword of weight 3.

Using Algorithm 2.13, we find that H = is the parify-check matrix for C. By defini

tion, the columns of H form a basis for C-*-. Thus C-*- = {(0,0,0), (1,1,1)} as expected.

Although Theorem 2.45 only applies to binary codes, there are MacWilliams Identities

for codes over arbitrary alphabets. Since the codes we consider are only defined over F2,

we wiU not include the MacWilliams Identify theorem for codes over F,. For this theorem

arid its proof, see [12].
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Chapter 3 Nonlinear Codes

Recall that a code C over an alphabet A is a subset of A". Thus, such a code is not

necessarily a vector space. Codes which are not vector spaces are called nonlinear codes.

We have already defined length and minimum distance for an arbitrary code. However,

since nonlinear codes are not vector spaces, there is no concept of dimension. Instead we

use the parameter m which will denote the number of codewords in the code. Notice that

m — q'' for a linear code over F, with dimension k.

Definition 3.1: A nonlinear code of length n with m codewords and minimum distance d

is called an (n, m, d) code.

While a nonlinear code lacks vector space structure, it may contain more codewords than

any linear code of the same length and minimum distance. For this reason, nonlinear

codes are veiy appealing in practice.

First, we will look at three examples of nonlinear codes. The Golay code defined in

Chapter 2 will be used to produce the nonlinear Nordstrom-Roblnson code. We will also

define the Kerdock and Preparata codes and look at the relationship between these two

codes.

3.1 Nordstrom-Robinson Code

In 1967, A.W. Nordstrom and J. Robinson constructed a nonlinear double error correcting

code using the extended Golay code G24.

Definition 3.2: The Nordstrom-Robinson code Nie is obtained by deleting the first 8 co

ordinates from those codewords in G24 with first 8 coordinates (0,0,0,0,0,0,0,0),

(1,0,0,0,0,0,0,1), (0,1,0,0,0,0,0,1) or (0,0,0,0,0,0,1,1)[12].

By doing this, we get a nonlinear code that contains more codewords than any other

linear code with the same length and minimum distance! 12].

Theorem 3.3: The Nordstrom-Robinson code is a (16,256,6) code.

Proof: Nie has length 16, since codewords in Nie are defined by deleting the first 8 coor

dinates from codewords in G24, a code of length 24.
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By looking at the generator matrix for G24, there are 2"^ possibilities for the first 7

coordinates for codewords in G24. G24 has dimension k —12 and thus 2^^ codewords.

Separating these 2^^ codewords in G24 according to the first 7 coordinates, we would

obtain 2"^ sets of coordinates with ̂  = 32 codewords in each set. By definition of

Ni6 . the codewords in Nie are formed from those codewords in G24 that begin with

one of (0,0.0,0,0,0,0,0), (1,0,0,0,0,0,0,1), (0,1,0,0,0,0,0,1) or (0,0,0,0,0,0,1,1).

Thus, there are 8 • 32 = 256 codewords in Nie.

Let X and y be distinct codewords in A^ie. Then there exist x',y' e G24 such that x

(respectively y) is obtained from deleting the first 8 coordinates of x' (respectively y').

Then d(x',y') > 8 as G24 has minimum distance 8. Therefore, d(x,y) > 6 since the

distance in the first 8 coordinates is no greater than two. □

Corollary 3.4: The Nordstrom-Robinson code is a double error correcting code.

Proof: Since the minimum distance is 6, the Nordstrom-Robinson code will correct =

[^J = 2 errors by Corollary 1.12. □

The Nordstrom-Robinson code gives an example for the most important advantage to

using nonlinear codes. The best known linear code that corrects 2 errors and has length

16 contains 128 codewords[4]. Because of the lack of vector space structure, nonlinear

codes contain more codewords while maintaining the same minimum distance between

words.

This lack of structure that enables a code to contain more codewords is also the biggest

disadvantage in using nonlinear codes. Since nonlinear codes have no algebraic struc

ture, there is no easy encoding and decoding scheme for these types of codes. This is a

barrier to using nonlinear codes in applications.

3.2 Kerdock Codes

Hie Kerdock codes were defined by A.M. Kerdock in 1972(10]. Since then, several equiv

alent definitions arose. See references [2] and [11].

To define the Kerdock code, we need to use the trace map.
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Definition 3.5: The trace map Tr : F2m F2 is defined by

rr(n) = n + n2 + +... + for any n e F2m.

Definition 3.6: Let m > 3, where m is an odd integer. Let h{x) e Z2[x] be a primitive

polynomial of degree m and ̂  be a root of h{x) in some splitting field. The Kerdock

code Km+i of length 2*"+^ is the binary eode which consists RM(l,m + 1) together

•with the 2"^ - 1 elements of the eoset space RM(2, m + 1)/RM(1, m + 1) "with coset

representatives

(in iD,Ln {e),-,Lu {C) ,Ru (O ,-Rn {f), -.Ru (r"'))

where Lni^) = and En(e) = Ln(e^)+ Tr(ne^) forj € {0,1 2^-

1} and n runs through Fjm. See [12] and [16].

In other words, the Kerdoek eode Km+i = {u + RM(l,m + 1) | u is a coset represen

tative in the form (in (^°°), Ln (^''), in , Rn (^°°), -Rn (^°), Ru- (^"~^))}- Notice

that RM(1, m -I-1) C Km+i C RM(2, m + 1).

Proposition 3.7: The Kerdoek code Km+i contains 2^^'"+^) codewords and has TninlmnTn

distance 2*" -

Proof: RM(1, m -M) contains 2^ codewords, where k = = m + 2. There are 2"®

cosets (including the (0 0) eoset) of RM{2, m + 1). Thus there are 2"^ (2^+2) = 2^'"+^

codewords in Km+i.

For a proof that ICm+i has minimum distance 2*" - see [12]. □

Example 3.8: Let m = 3. The primitive polynomial of degree 3 is h(x) = x^ + x + 1. Then

+ ̂  +1 = 0. Thus ¥*s = {1, ^2 1 + ̂ , ^ + ̂ 2 1 + ̂  + 1 + ̂ 2^^ The Kerdoek Code

of length n = 2*"+^ = 16 is the binary eode which consists of RM(1,4) together with
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2^-1 — 7 cosets of RM(2,4) with coset representatives

(0, 1, 0, 0, 1, 0, 1, 1, 0. 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0. 0, 0)

(0, 0, 1, 0, 1, 1. 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 1, 1, 1. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 1, 1, 1, 0, 0, 1, ,0' 0, 0, 0, 0, 0, 0, 0)

(0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 1, 0, 0. 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0).

3.3 Preparata Codes

In 1968, the Preparata Codes were introdueed by F.P. Preparata. An equivalent definition

was given by R.D Baker and R.M. Wilson in jlie early 1980's. We will use the definition of

Baker and Wilson[l].

Definition 3.9: Let m be an odd integer such that m > 3. The Preparata code Pm+i

of length 2*"+^ consists of all codewords (x,y), where x = y

= (j/o,2/c,2/j2, € Pf", satisfying the following properties:

i. wt(x) and wt(y) are even

"• Ex.=l « = Ey^=l a

iii. a' + (E:.„=1«)' = Ej,„=i «'•

Proposition 3.10: The Preparata code, Pm+i> has minimum distance 6 and contains

22'"+i-2rn-2 codCWOrds.

Proof: See [12]. □

Since the smallest Preparata code P4 consists of 256 codewords, we will not list all code

words of a Preparata code. However, we will give an example of a codeword in P4 and a

word that is not in P4.

Example 3.11: Consider the code P4, where m = 3. Let x = (1,1,1,1,0,0,0,0) and y

= (0,0,1,0,0,0,0,1). Since wt(x) = 4 and wt(y) = 2, condition (i) is satisfied. Now,
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a = 0 + ̂ + and a = ̂̂ + ̂''' = satisfies condition (ii). Since

Ex„=i +(E.„=i a)'=e+e+e+e' = e and e,„=i +(f)' = i
condition (iii) is satisfied. Thus (1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1) e P4.

Now let X = (1,0,1,0,1,0,1,0) and y = (1,1,1,0,0,0,0,1). Although condition (i) is

satisfied with wt(x) = wt(y) = 4, Ea:„=i + (Ea:„=i

and Ej,„=i = 1 + imply that condition (iii) is not satisfied. Thus

(1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,1) ̂  P4.

Although for nonlinear codes there is no formal dual code, the Preparata code acts in

some sense like a dual to the Kerdock code. In fact, the weight distributions of Pm+i and

Km+i are related by the MacWilliams Identity just as the weight distribution of a linear

code and its dual[12]. That is, Wp„^i {X, Y) = (X + Y,X -Y). This fascinating

relationship was explained by two separate groups of coding theorists in the early 1990's

with the concept of Z4-linear codes[8]. The theory of Z4-linear codes will be the focus of

Chapters 4 and 5.
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Chapter 4 Quaternary Codes

In this chapter, we will eonsider codes in the alphabet Z4. Reeall that a eode of length n

in alphabet Z4 is a subset of ZJ = {(a:i, a;„) | Zi e Z4}. We will be interested in codes with

additional structure, called quaternary codes.

Definition 4.1: Let C be a code of length n over the alphabet Z4. The code C is called a

quaternary code if C is a subgroup of Z

A quaternary code is not linear in the sense of Chapter 2. Quaternary eodes are not

veetor spaces due to the faet that Z4 is not a field. However, they do share some of the

nice properties of linear codes. For example, in a quaternary eode, the sum of any two

codewords and any scalar multiple of a codeword is a codeword.

Since quaternary codes are not vector spaces, we do not have the concept of dimen

sion. However, type is similar to dimension in that it describes the number of eodewords

in a code.

Definition 4.2: Letp be a prime. A finite abelian p-group G is said to be of type

if G is isomorphic to the product of cyclic groups of orders p'"-' where i = l,..,s.

The additive abelian group Z" is of type (2^)" since it is a direct sum of n cyclic subgroups

of order 2^. Since a quaternary code of length n is a subgroup of Z^, it has type 4''^ 2'''^ for

some ki and k2.

Another niee property of quaternary codes is that sueh eodes ean be described by a

generator matrix.

Definition 4.3: Ak xn matrix M with entries in Z4 is said to be a generator matrix for

a quaternary code C if each codeword of C is a linear combination of the rows of M

and no proper subset of the rows of G generates C.

For words x = [xi, ...,Xn),y = {yi,--,yn) € Z", the eomponentwise product of x and y is

defined to be the word x*y = [xiyi,..., a;„pn).

Definition 4.4: Two quaternary codes are said to be equivalent if one code can be ob

tained from the other by a permutation of coordinates and componentwise product
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by a vector. Two quaternary codes that differ only by a permutation of coordinates

are said to be permutation-equivalent

Clearly, quaternary codes that are permutation-equivalent are certainly equivalent codes.

Example 4.5: LetCi = {(0,0,0,0), (1,1,1,1), (2,2,2,2), (3,3,3,3), (1,3,1,3), (3,1,3,1), (0,2,0,2),

(2,0,2,0)}. By permuting the coordinates xq and xi, we get a permutation-equivalent

code Cz = {(0,0,0,0), (1,1,1,1), (2,2,2,2), (3,3,3,3), (3,1,1,3), (1,3,3,1), (2,0,0,2),

(0,2,2,0)}. If we then multiply C2 by (1,1,-1,1), we get an equivalent code C3={(0,0,0,0),

(1,1,3,1), (2,2,2,2), (3,3,1,3), (3,1,3,3), (1,3,1,1), (2,0,0,2), (0,2,2,0)}.

Notice that componentwise multiplication by (1,1,-1,1) changes the sign of the xz coordi

nate.

The following theorem is analogous to Definition 2.3. A quaternary code with a genera

tor matrix as in following theorem has type and contains codewords,

where ki,kz £ N.

Theorem 4.6: Any nonzero quaternary code C is permutation-equivalent to a quaternary

code with a generator matrix of the form

M =
4, A B

0  24, 2D

where 4; and 7^2 denote the ki x fci and kz x kz identity matrices, respectively, A and

D are matrices with entries in Z2, and B is a matrix with entries in Z4(8].

Note that if C is of length n, A is a fci x kz matrix , B is a ki x {n - ki - kz) matrix, and D

is akz X (n — ki — kz) matrix.

Proof: Let C be a nonzero quaternary code of length n. Since C is a subgroup of Z J, all

elements of C have order 2 or 4. That is, each codeword has order 2 or 4. We induct

on the code length n. We distinguish two cases depending on whether or not C has

a codeword of order 4.

First, assume there is a codeword of order 4 in C. After permuting the coordinates of

the codewords and (if necessary) multiplying the codeword by -1, we can assume that
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the codeword of order 4 is of the form (1,C2, Cn) where Ci e Z4. Let C = {(0,a:2, Xn)

e C}. Clearly, C is also a quaternary code and can be regarded as a code of length

n - 1 by deleting the first coordinate of each codeword. By the induction h3q)othesis,

C has a generator matrix of the form

0  /fci-i Ai Bi

0  0 2/fc2 2D

where Ai and D are matrices with entries in Z2 and Bi is a matrix with entries in

Z4. Then C has a generator matrix of the form

0  hi-l Ai B\

0 0 2Ik2

Row reducing the first ki rows will result in
4,

0

2D

for the first ki columns. By

adding certain linear combinations of the last k2 rows we obtain [4^+1, ...,4^4.^2]

such that cj e Z2 . Thus, we get a matrix in the form

h, A B

0  2Ik, 2D

This completes the proof in the case that C contains a codeword of order 4.

Now suppose that C has no codewords of order 4. Then all nonzero codewords in C

are of order 2. Since C ̂  {0}, there is a codeword of order 2 in C. We can assume

that this codeword is of the form (2, 2c2 2c„) where Ci e Z4. As done previously,

define C = {(0,a;2, ...,a;„) £ C}. Then C is also a quaternary code without codewords

of order 4; Thus the type of C is which implies that fci = 0. C can be regarded

as a code of length n - 1. By the induction hypothesis, C has a generator matrix of

the form

0  2/*;2_i 2Di
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where Di is a %i matrix. Then C has a generator matrix of the form

2  2c2, 2c;.2 2cft2+i) •••)

0  27fo_i 2Di

After adding a certain linear combination of the last ̂ 2 - 1 rows of the above matrix

to the first row, we obtain a matrix of the form

2/fc, ID

which is a matrix of the form

h, A B

0  27fc, 27?

with ki - 0. See [16]. □

This allows for encoding of message words via matrix multiplication as is the case with

linear codes. Let C be a quaternary code with generator matrix M. Thus, the quaternary

code C is C = (uM: Uf e Z4 for 1 < i < ki and Uj e Z2 for fci + 1 < f < fci + ^2}.

The inner product of two words x = [xi, ...,Xn) and y = (yi, ...,2/„) in ZJ is x ■ y = xiyi +

... + Xnyn- If xiyi + ... + Xnyn = 0, then X and y are orthogonal.

Definition 4.7: Given a quaternary code C of length n, let C-^:= { x e Z" | x • y = 0 for all

y e C}. C-*- is called the dual code of C.

Proposition 4.8: C-*- is a subgroup of ZJ, and thus is a quaternary code.

Proof: This is immediate from Definition 4.1 and the definition of inner product. □

Theorem 4.9: Let C be a quaternary code of length n with generator matrix M as in

Theorem 4.6. The dual code C-^ has generator matrix

=

-B'-D'A' D' In-k,-k,

2A' 2Ik, 0

See [8].
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Proof: Consider the quaternary code C defined by the generator matrix M-*- above. We

claim that C = C-*-. Since = 0, we have that C c C-*-.

Let c = (ci, c„) e C-"-. We can choose a linear combination of the first n-ki - k2 rows

of M-*- to c to obtain a codeword of C-*-, which is of the form c' = {ci,...,ck^,cki+i,...,

Cki+k2! 0) 0)- Since c' is orthogonal to the last k^ rows of M, each Ck^+i, Cki+k2 is

0 or 2. We can also choose a linear combination of the last k2 rows of M-^ to c' to

obtain a codeword of C-*-, which is of the form c" = (ci,...,cfc,0,...,0,0). Since c" is

orthogonal to the first ki rows of M, ci = • • • = = 0. Therefore c e C. Thus C = C-'-

with generator matrix M-*-. See [16]. □

Definition 4.10: Let C be a quaternary code with generator matrix M. Then is

called the parity-check matrix for C, where M-*- is the generator matrix for the dual

code of C.

For 3 e Z4, notice that 3 = -l(mod 4). Therefore, the distance of 3 from 0 is the same

as the distance of 1 from 0. We take this properly into account and define weight and

distance for quaternary codes. For equivalent codes, we do not distinguish between 1

and 3 since multiplication by -1 is allowed.

Definition 4.11: The Lee weights, wtL, of 0, 1, 2, 3 e Z4 are defined to be 0, 1, 2, 1,

respectively. The Lee weight of x = [xi, ..., x„} e Z" is wtL(xj = weight

of X at a e Z4 is defined to be Wa(x) = |{i | Xi — a}|. See [8] .

Definition 4.12: The Lee distance between x,y e Z" is dL(x,y) = wtL(x-y}. The minimum

Lee distance for quaternary code C is defined to be dj^ = min{dL(x,y) | x,y e Z4 and

X 7^ y}[8].

Recall Proposition 2.5. The relationship between Lee distance and Lee weight of a qua

ternary code is similar to that of distance and weight of a linear code.

Proposition 4.13: wtL(x)=wi(x)+2w2(x)+W3(x) for all x e ZJllG).

Proof: Let Xi = 0. Then wtL(O) = Wi(0)+2W2(0}+W3(0) = 0. For Xi = 1. Then wtL(l) =

Wi(1)+2w2(1)+W3(1) = 1. Now let Xi — 2. Then wtL(2} = Wi(2)+2W2(2)+W3(2) = 2. Let

Xi = 3. Then wt^tS) = Wi(3}+2W2(3)+W3(3) = 1. Extend this to Z". □
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4.1 MacWilliams Identity for Quaternary Codes

As with codes over alphabet Fg, it is useful to describe the structure of a quaternary code

by a weight enumerator. The complete weight enumerator classifies codewords c e C

according to the number of times each element a e Z4 appears in c.

Definition 4.14: Let C be a quaternary code. The complete weight enumerator, ewe, of C

is

cwec{Xo,XuX2,X3) = Y, Xp^"^ e Z[Xo, Ai,X2,X3].[8]
cec

Example 4.15: Let C = {(0,0), (2,2)}. Then 'u;o((0,0)) = |{i | Xi = 0}| = 2, rr)i((0,0)) =

|{i I xi = 1)1 = 0, W2 ((0,0)) = |{t 1 Xi = 2}| = 0, W3 ((0,0)) = |{i | Xi - 3}| = 0, wq ((2,2)) =

\{i I = 0}| = 0, wi ((2,2)) = \{i | Xi = 1}| = 0, W2 ((2,2)) = |{t [ 0:^ = 2}| = 2, W3 ((2,2)) -

|{i I Xi = 3}| = 0. Thus cwec[Xo,XuX2,X3) = Ecec Xp^"^ = X^+Xl

The following theorem gives a MacWilliams Identity for quaternary codes.

Theorem 4.16: Let C be a quaternary code. Then cwec±(Xo,Xi,X2,X3) =

l^citiec {Xo + Xi + X2 + X3, Xq + iXi — X2 — 1X3, Xo — Xi + X2 — X3, Xg — iXi — X2 + 1X3).

We omit the proof, which can be found in [8].

Example 4.17: Let C = {(0,0), (2,2)}. Then by the MacWilliams Identity for quaternary

codes, cweQ± (Xq, Xi, X2, X3)

= I [{Xo + X1+X2+ ̂3)2 + {Xo -X1+X2- ̂3)2]

= Xi + xi + xi + XI + 2X0X2 + 2X1X3

is the complete weight enumerator for the dual code C-^. Note that this classifies all

codewords in = {(0,0), (1,1), (2,2),(0,2), (2,0), (1,3), (3,1)).

Permutation-equivalent codes have the same complete weight enumerator. Recall that

permutation-equivalent is a stronger property than equivalence. As the next example

shows, equivalent codes may have different complete weight enumerators.

Example 4.18: Ci = {(0,0,0,0), (1,1,1,1), (2,2,2,2), (3,3,3,3), (1,3,1,3), (3,1,3,1), (0,2,0,2),

(2,0,2,0)} and C2 = {(0,0,0,0), (1,1,1,1), (2,2,2,2), (3,3,3,3), (3,1,1,3), (1,3,3,1), (2,0,0,2),
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(0,2,2,0)} are permutation-equivalent. cweci{Xo,Xi,X2,X3)— Xq + Xf + X2 + X^ +

2X^X1 + 2XiXi = cwecAXo,Xi,X2,X3). Cj is equivalent to C3 = {(0,0,0,0), (1,1,3,1),

(2,2,2,2), (3,3,1,3), (3,1,3,3), (1,3,1,1), (2,0,0,2), (0,2,2,0)} which has

cwecs (Xo, Xi,X2,X3) = X^ + + 2X^X3 + 2XiX| -t 2XiXi ̂  cwec, (Xo, Xi, X2, X3).

Since for equivalent codes we identify 1 with 3, we want a weight enumerator that also

identifies 1 with 3.

Definition 4.19: Let C be a quaternary code. The symmetrized weight enumerator, swe,

is defined as swec{Xo,Xi,X2) = ct(;ec(Xo,Xi,X2,Xi): that is, swec{Xo,Xi.,X2,X3) is

obtained by identifying 1 with 3 by setting Xi = X3 in the complete weight enumer-

.  ator[8].

Example 4.20: Let Ci and C2 be as in Example 4.18. st(;eci(Xo,Xi,X2) = Xq+4X* + X2 +

2XiXi = swec,(Xo,Xi,X2).

Note that the symmetrized weight enumerator does not give as much information about

the codewords in C2 as does the complete weight enumerator. Equivedent codes have the

same symmetrized weight enumerator since the symmetrized weight enumerator does not

distinguish between 1 and 3.

Definition 4.21: Let C be a quaternary code. The Lee weight enumerator is defined as

Leec{X,Y) = ̂
cec

The following gives a MacWilliams identity for the Lee weight enumerator.

Theorem 4.22: For a quaternary code C,

Leec±(X, Y) = pieec(X + F,X - F)[8].

Proof: By using Definition 4.17 and 4.12, we find that swec(X^, XF, F^)

= cu;ec(X2,XF,F2,XF) = 2^^^(x2)t<;o(c)(xF)'"dc)+«'3(c)(y2)^2(c)_ it follows by Propo-
■ v2Mi;fsition 4.11 that (x2)^<'W(XF)«'^('=)+'"=W(F2)»2W
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_X'2n-u)i,(c)y«;i,(c) = LeeciXjY).

Thus, since swec± iX\XY, Y^) = cwec± {X^XY, Y\XY)

= j^^cweciX^ + 2XY + Y^,X^ - Y^,X^ - 2XY + Y^,X^ - Y^), we have that

LeeG±{X,Y) = swec^{X\XY,Y^) = j^sweciX^+ 2XY+ Y^,X^-Y^X^-2XY+ Y^)

= y^st/;ec [{X + Yf ,{X+ Y) {X-Y) ,{X - T)'] = ̂Leec {X+ Y,X - Y). See [16], □

4.2 Quaternary Cyclic Codes

Definition 4.23: A quaternary code C of length n is cyclic if

(Cq j Ci 5 ..., Cj2_i) G C (Cti—1, Co, Ci, ..., Cji~2^ ^

Given a word v G ZJ, we define a polynomial in Z4[x] with coefficients coming from v.

There is a one-to-one correspondence between words in Z" and polynomials of degree

less than n in Z4[a;] defined by ?; = (I'oji'i, ...,Vn-i) <—> v(x) = vq + vix + ... + Vn-ix"''^. Thus,

we identify a codeword in a quaternary code with a polynomial.

Definition 4.24: A quaternary code C of length n is cyclic if c(x) G C ^ a:c(a;)modfy" - 1)

G C.

Definition 4.25: Let C be a quaternary cyclic code of length n. g(x) is called the generator

polynomial of C if g(x) is a monic poljmomial dividing x" - 1 such that C = {g{x)).

As in the linear case, we know that a poljmomial g{x) such that C = {g{x)) exists since C

is a principal ideal of Z4. Any codeword c{x) G C can be written as c{x) = f{x)g{x) where

f{x) G Z4[a;].

We can see that {g{x),xg{x), ...,x''~^g{x)} forms a basis for the cyclic code of length n,

9{x)

xg{x)
iwhere k — n— degfy(a;)). Therefore

^g{x)

s a generator matrix for the quaternary

cyclic code C = {g{x)).

Since g{x) divides x" — 1, there exists an h(x) G Z4[a;] such that h{x)g{x) = Omod(a;" - 1).

Definition 4.26: Let C be a quaternary cyclic code of length n such that C = {g{x)). Then

h{x) = x"-!
fl (®)

[a;] is called the check-polynomial.

36



Let h{x) be a eheek-polynomial for a quaternary cyelic eode C. Then c{x)h{x) = 0 for all

c{x) e C.

4.3 Quaternary Kerdock Codes

In this section we will need the following map from Zji[x] to Z2[x]. Let tp : Z4[x] —> Z2[x]

be the map defined by ao + aix + ... + a„a;" i—> 5^ + oix + ... + where 0 = 2 = 0 and

1 = 3 = 1.

Definition 4.27: Let m > 2 be an integer and h{x) e Zi[x] be a monic polynomial of

degree m. Then h{x) is a basic primitive polynomial over Z4IX] if il>{h{x)) is a primitive

polynomial over Z2[x].

Definition 4.28: Let h{x) be a monic basic primitive polynomial of degree m > 2 over Z4[x]

such that h{x) \ [x^"'-^ - l) and g{x) = (|) . where g{x) = The

shortened quaternary Kerdock code K{m)~ is the quaternary cyclic code of length

n with generator polynomial g{x). The coordinates of codewords of K{m)~are num

bered as 0,1, ...,n - 1. The quaternary Kerdock code K{m) is the code obtained from

K{m)~ by adding a zero-sum check symbol to each codeword of K(m)~ at the posi

tion 00, which is situated in front of the position 0. See [16].

Proposition 4.29: Let 6 = 2"^ - m - 2, g{x) — go + gix + ... + gsx^ 6 Z4[x], and g^o = -(50 +

9oo 9o 9i ■ ■ ■ 9s

gi -\- ... -I- gs) G Z4. Then the (m -t-1) x 2"^ matrix

is a generator matrix for iif(m)18].

9oo

9oo

9o 9i 95

90 9i 95

Example 4.30: Let m = 3. A basic primitive pol5momial of degree 3 over Z4 is \i{x) =

a:^-l-2a;^+a;-l-3. Theng(a:) = 7^(a!-i)/i(a:) ~ x^+Sx^+2x+3 Impllcs that g{x) = Sx^+2x^+Sx+l
1  3 2 3 1 0 0 0

is a generator polynomial for K (3) with generator matrix
1  0 3 2 3 1 0 0

1  0 0 3 2 3 1 0

1  0 0 0 3 2 3 1
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Notice that if we change the signs of the all coordinates, we will get an equivalent

code with generator polynomial g'{x) = + 2x^ + a; + 3 and generator matrix

1 3 1 2 1 0 0 0

1 0 3 1 2 1 0 0

1  0 0 3 1 2 1 0

1  0 0 0 3 1 2 1

In Chapter 3, we defined the trace map, Tr, from F2m to F2. Here we define a similar

map for the Galois ring Zi[x]/{h{x)), where h{x) e Iii[x] is a basic irreducible polynomial

of degree m.

Definition 4.31: The relative trace map T : Ii4/{h{x)) -i- Z4 is defined by

Tio^^+e+^'+-+^''

It is easy to verify that the relative trace map is a ring homomorphism since r(c + c') =

r(c) + T(c') and T{cc') = T(c)T(c') for all c, c' e ZJihix)).

Proposition 4.32: Let T be the relative trace map and Tr be the trace map. Then ipoT =

Tr o '0[8].

Proposition 4.33: The trace description over the ring Z4 of the quaternary Kerdock code

K{m) is K{m) = {£l"+^ + u-^ | £ £ Z4, A £ where 1"+^ is the (n + l)-tuple,

u-^ = (T(A^°°),T(A^°), ...,T(A^"~^)), and ̂  is a root of the basic primitive polynomial

h{x) £ Z4[a;].

Proof: See [8] and [16]. □

4.4 Quaternary Preparata Codes

Using the same notation as for Kerdock codes, let h{x) be a basic primitive polynomial of

degree m > 2 such that h{x) \ - l).

Definition 4.34: The quaternary cyclic code of length n = 2™ - 1 with generator polyno

mial h{x) is called the shortened quaternary Preparata code F{m)~. The quaternary
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code obtained from P(m)~ by adding a zero-sum check symbol to each codeword of

P{m)~ is called the quaternary Preparata code P{m). See [16].

Proposition 4.35: Let h{x) = ho + hx -t-... -I- hmx"^ be the basic primitive polynomial of

degree m, where m is an integer > 2. Let hoo = —h{l) = ±1. Then the following

(2'" — m - 1) X 2™ matrix is a generator matrix for P{m)

hoo ho h\' • • hni

/loo ho h\' ■ • hfji

he ho h\ ... hfj

[8].

Example 4.36: Let m = 3. The basic primitive poljmomial of degree 3 is h{x) = x^ + 2x^ -l-

X - 1. Now -/i(l) = -3 = 1 implies that hoo = 1- Thus

1 3 1 2 1 0 0 0

1 0 3 1 2 1 0 0

1 0 0- 3 1 2 1 0

1  0 0 0 3 1 2 1

is a generator matrix for the Preparata code P(3).

Notice that g'{x) — h{x) from Example 4.30. This may give rise to the question of whether

the quaternary Kerdock and quaternary Preparata codes have any relationship.

Theorem 4.37: The quaternary Preparata code P{m) is the dual code of the quaternary

Kerdock code Kim).

Proof: See [16]. □

Thus, the quaternary Preparata code and quaternary Kerdock code satisfy the MacWilliams

identity for quaternary codes. In other words, cwep(^m)i.Xo,Xi, X2, X3) = jKf^\CweK{m){Xo +
Xi + X2 + X3, Xo + iXi -X2- 1X3, X0-X1+X2- X3,Xo - iXi -X2+ iXo). For m = 3, K{3)

is self-dual since P(3) = K{3), which is the octacode 0$ in Example 5.16.

We will see in the next chapter that Theorem 4.37 helps explain the dual like relation

ship between the binary Kerdock and Preparata codes.
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Chapter 5 Z4-linear Codes

Beginning in early 1990's, an important discoveiy was made by five coding theorists,

Robert Calderbank and Neil Sloane of AT&T Bell Laboratories, Roger Mammons of Hughes

Aircraft, Vijay Kumar of the University of South Carolina, and Patrick Sole of the Centre

National De La Recherche Scientifique in Valbonne, France. They discovered that binary

nonlinear codes viewed in a different way have many algebraic properties. The fact that

the binary Kerdock and Preparata codes act like dual codes even though it doesn't make

sense for nonlinear codes to have duals can be explained by looking at these codes under

the alphabet Z4 rather than the usual alphabet Z2. In this chapter we will explain the

dual relationship between these codes using the Z4 alphabet. To do this, we need the

gray map.

Definition 5.1: The gray map ̂  : Z4 -> Z2 is defined by 0 (0,0), 1 (0,1), 2 1), and

3i-^ (1,0).

Clearly, is a bijection. However, <j> is not an additive group homomorphism since

+ 3) 7^ $^(1) + ̂(3).

Definition 5.2: The following three maps from Z4 to Z2 are defined using the chart

Z4 a 0 7

0 0 0 0

1 1 0 1

2 0 1 1

3 1 1 0

The map a is an additive group homomorphism since a{u + v) = a (u) + a (v) for all u, v

e Z4. However, P and 7 are not group homomorphisms since ,8 (1 + 3) ̂  ̂{1) + ̂ (3) and

7(1 + 3) 7^ 7(1)+7 (3).

Note that (l>{x) = [I3[x),'y[x)) for aU a; £ Z4. We extend the gray map in Definition 5.1 to

a map ̂  : ZJ ->■ Z|" in the following way. Let x = (xi, ...,x„) e Z^. Define (j)[x) = (/3(x),7(x)),

where p[x) = Wixi),^{x2) /3(a;„)) and 7(x) = (7(2:1),7(2;2) j[xn)). We refer to ^^(x) as the

binary image of x under (j).
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Example 5.3: Letx = (1,2,3,0). Then (^(x) = (/>(1,2,3,0) = (/3(1,2,3,0),7(1,2,3,0))

= (0,1,1,0,1,1,0,0).

Definition 5.4: For all x e Z4, x = a(x) + 2^(a;) is called the 2-adic representation of a:[8].

PToposition 5.5: If a; = a (a;) + 2/3 (x) is the 2-adic representation of a: e Z4, then (f>{x) —

{P{x),a{x) -1-/3(a;))[16].

Proof: Notice that a {x)+P (x) -I-7 (a;) = 0 for all a; € Z4. Then 7(a;) = a(x) + /3(x) implies that

(/)(xl = i/3(x),j(xl) = (/)[x) = (/3(x),a(x) -I- /3(x)) for all a; S Z4. □

Let C be a quaternary code of length n. Then C is a subgroup of Z". We can consider

the image of C under the gray map </> : Z" Z^". Clearly, (/>(C) is a binary code of length

2n. We will explore the properties of First, we will see that the gray map preserves

weight and distance.

Lemma 5.6: WL(a:) = w((/i(a:)) and dL(a:,2/) = d(0(a:),i/!i(2/)) for all x,i/ G Z4[8].

Proof: We will show that WL(a:) = w((/»(a;)) holds for all a; e Z4. Wl(0) = 0 = w((0,0)) = w((/i(0)).

Wl(1) = 1 = w((0,l))= w((/)(l)). Wl(2) = 2 = w((l,l)) = w((/)(2)). Wl(3) = 1 = w((l,0)) =

w(</>(3)).

Now, dL(a;,2/) = Wj^ix -y)= WL(a;)-WL(2/) = w((/>(a;))-w((/i(2/)) = w(</.(a;)-0(y)) = d(</>(a;),</.(y)).

□

Theorem 5.7: The gray map (/> is a weight and distance preserving map from ZJ to Z2"[8].

Proof: Let a = (ai, ...,a„) e ZJ. Then WL(a) = YZ=i'^L{a.i) w((/>(a)) = w(;5(a),7(a))
=w(^(a))-hw(7(a)) = Y.U w (a^) + Er=i w (7 (a^) = Eti w (/3 (a^ , 7 (a^))

= Er=i w {</> (ai)) = Er=i WL (aO = WL(a).

Now let b e Z'^. d(^(a),(/>(b)) = w((/)(a)-(^(b)) = w(0(a))-w((/i(b)) = WL(a)-WL(b) =

WL(a — b) = dL(a, b). See [16]. □

Theorem 5.8: Let C be a quaternary code and C'=(/i(C) be the binary image of C under the

gray map. Then the minimum Lee distance of C is equal to the minimum Hamming

distance of C'[8].
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Proof: From Theorem 5.7, we know that the gray map is a distance preserving map

such that d(0(a),(?!)(b)) = dL(a,b) where a,b e C. Let dh denote the minimum Lee

distance of C and d denote the minimum Hamming distance of C. Then dL =

mln{dL (c, c') | c, c' G C,c 7^ c'} = mln{d(0 (c), (j) (c')) | c, c' G C, c 7^ c'} =

mln{d((/>(c), (;i(c')) | <j){c),^{c') G C, (t>{c) 7^ = d. □

Definition 5.9: A binary code C Is called a Zi-linear code If It Is the Image of some

quaternaiy code under the gray map. That Is, C Is Z4-llnear If C = (^(C) for some

quaternaiy code C.

Let C be a quaternaiy code. The binary Image of C under the gray map Is not necessarily

a linear code In the alphabet Z2. See Example 5.16. Therefore (^(C) need not have a duail

code In the usual sense. However, we can define the dual of (p[,C) In the following manner.

Definition 5.10: Let C be a quaternaiy code of length n with dual C-*-. Let C = </>(C) G

denote the binary Image of C. The quaternaiy dual of C Is defined to be G Z2";

that Is, C'j. = (/"(C-'-). If C = C'_L, then C Is called a self-dual Zi-linear code.

Theorem 5.11: Let C and C-*- be dual quaternaiy codes, and C = (f>{,C) and C = be

their binary Images. Then the weight enumerators Wq' (X,Y) and Wq'^ (X,Y) of C and
C'x, respectively, are related by the binary MacWllllams Identity

TFc'^ {X, Y) = (X + y, X - y)[8].

Proof: Let C be a quaternary code and C be Its binary Image under the gray map. Since

(j)is a bljectlon, |C| = |C'| . Since (j) Is weight preserving,

Wq'^ (X, Y) = Lee^x {X, Y) = |^Leec(X + X, X - X) = j^Wc (X + y, X - T). □

Since C = 0(C) Is not necessarily linear. It Is natural to ask under what conditions C Is

linear. We would also like to know when any binary code C Is the Image of a quaternary

code. To answer these questions, we need the notion of a swap map.
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Definition 5.12: Let {x\ ,...,Xn, Xn+i, •••, a;2„) e be a word of length 2n. The permutation

a : ->• defined by

(xij ,..j Xnj 2^71-f-i] •••; ̂ 2n) ' ^ (^n+1 j •••) ̂ 2ni j •••t ̂ n)

is called the swap map[8].

The swap map is an automorphism that interchanges the left and right halves of each

word. For all x e Z^, (t((^(x)) = a(i8(x),j(x)) = [y(x),/3(x)) = <^(-x)l7].

Lemma 5.13: Forallx.y e Z^, we have (^(x+y) = (^(x)+(^(y)+(^A(x)+CT(0(x)))*((^(y)+(7(0(y))}.

Proof: Let x,y e ZJ. Then (^(x)+al(^(x)))*(^(y)+a((p(y)))=

= ((^ (x), 7 (x)) + (7 (x), P (x))) * ((^ (y), 7 (y)) + (7 (y), (y)))

= {P (x) + 7 (x) ,7 (x) + /? (x)) * {p (y) + 7 (y) .7 (y) + ̂ (y))

= (a (x), a (x)) * (a (y), a (y))

= (a (x) * a (y), a (x) * a (y))

We claim that 0(x)+(^(y)+<^(x + y) = (a (x) * a (y),a (x) * a (y)). Now,

(^(x)+(^(y)+^(x + y) = (jd (x) + /S (y) + /? (x + y),7 (x) + 7 (y) + 7 (x + y)). This implies

that if j3(x) + jd(y)+j3(x + y) ='y (x) + 7 (y) + 7 (x + y) = a (x) * a (y) for all x, y e Z

we are done. It is easy to verify this for all a;, y G Z4. Now extend to Z". See [16]. □

Corollary 5.14: For all x,y e Z", we have <^(x + y) = </)(x)+(/>(y)+<^(2a(x) * a(y))[81.

Proof: Let x = (xi, ...,Xn) and y = (yi,---,yn) G ^4- If Xi and yi are both odd for some i,

then a[xi)*al.yi) = 1. This implies that P{2a{xi) *a{yi)) = P (2) = 1 = a{xi) * a{yi)

and 7 (2a (xi) * a (yi)) = 7 (2) = 1 = a (xi) * a (yt). If Xi or yi are even for some i, then

a(xi)*a(yi) = 0. This implies that P (2a (xi) * a (yi)) = (0) = 0 = a (xi) * a (yi) and

7 (2a (xi) * a (yi)) = 7 (0) = 0 = a (xi) * a (yi). Thus P (2a (x) * a (y)) = a (x) * a (y) ^d

7 (2a (x) * a (y)) = a (x) * a (y).

Now <l)(2a(x) * a(y)) = (^ (2a (x) * a (y)), 7 (2a (x) * a (y))) = (a (x) * a (y), a (x) * a (y))

= (a(x),a(x)*a(y),a(y)) = (^ (x) + 7 (x) ,7 (x) + ^ (x)) * (^ (y) + 7 (y) ,7 (y) + ^3 (y))
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= {4, (x) + 4 (-x)) * ((^ (y) + 4 (-y)) = {4) (x) + (T (0 (x))) * {4> (y) + a{4> (y))). By Lemma

5.13, {4) (x) + (7(4) (x))) * {4> (y) + (T (0 (y))) = 0 (x) + (^ (y) + (x + y).

Therefore 4> i'x. + y) = 4> i^) + 4> (y) + ̂ (2q: (x) * a (y)). See [16]. □

The following theorem answers our first question.

Theorem 5.15: The binary image C = 4>[Q of a quaternary code C is linear if and only if

a,b e C implies 2Q:(a) *a(b) £ C[8].

Proof: Assume C is linear. Since C is a quaternary code, x + y e C for all x, y e C. Then

4){x), 4) {y), and </> (x + y) are elements of C. Since C is linear, 4>{x)+4>{y)+4>{^ + y) £

C. By Corollary 5.14, (/> (x) + (^ (y) + </> (x + y) = 4 (2a (x) * a (y)). This implies that

4) (2a (x) * a (y)) £ C. Since ^ is a bijection, 2a (x) * a (y) £ C.,

Now assume that 2a (c) * a (c') £ C for all c,c' £ C. Let u, v £ C. There exists some

X, y £ C such that (jii(x) = u and 4{y) = v. Since C is linear, x + y + 2a (x) * a (y) £

C and (^(x + y+ 2a(x) *a(y)) £ C. By Corollary 5.14, ^(x + y + 2a(x) * a (y)) =

^(x + y) + (?i(2a(x) *a(y)) + 0(2a(x + y) *a(2a(x) *a(y))) £ C. Since a (2) = 0,

a (2a (x) * a (y)) = 0 implies that 4> (2q: (x + y) * a (2a (x) * a (y))) = 0. Therefore,

4) {y. + y) 4) (2a (x) * a (y)) £ C. By Corollary 5.14, 4) (2a (x) * a (y)) = 4) (x) + 4) (y) +

4){x + y). Thus 4>(x + y) + 4>{x) + 4){y) + 4){x + y) = 4>{x) + 4){y) = u + v £ C. See [16].

□

Example 5.16: The octacode Os is defined to be the quaternary code with generator

matrix

1 0 0 0 3 1 2 1

0  1 0 0 1 2 3 1

0 0 1 0 3 3 3 2

0 0 0 1 2 3 1 1

Letxi = (1,0,0,0,3,1,2,1) and X2 = (0,1,0,0,1,2,3,1). 2a(xi)*a(x2) = (0,0,0,0,2,0,0,2)

^ 0%. This implies that ^(Og) is nonlinear. In fact, 4>^0s) is the Nordstrom-Robinson

code. Therefore, the Nordstrom-Robinson code is Z4-linear[8].

In Chapter 3, we found that the Nordstrom-Robinson Nig code is equal to the Kerdoek

code Km+i and Preparata code Pm+i when m - 5. Since Km+i and Pm+i satisfy the
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MacWilliams Identity, W^ie = jj^Wnib{X+Y,X-Y). Therefore, The Nordstrom-Robinson

code acts like a self-dual code even though duality for nonlinear codes does not make

sense. From Example 5.16, we see that Nie is the image of a self-dual quaternary code Os

under the gray map. By Definition 5.10, iVie is a self-dual Z4-linear code. Therefore, The

orem 5.11 explains why the Nordstrom-Robinson code has this "dual" like relationship.

Next, we focus on the second question; when is a binary code C a Z4-linear code? To

answer this question we have the following theorem.

Theorem 5.17: A binary linear code C of even length is Z4-linear if and only if its coor

dinates can be permuted so that u, v e C implies (u -I- (t(u))*(v + c7-(v)) e C'[8].

Proof: Suppose C is a Z4-linear code. Then for u,v e C, (^(x) = u and (y) = v(f) for some

x,y e C, where C is a quaternary code. Since C is linear, x-i-yG C. Thus (^(x-l-y) = w

for some w € C. By Lemma 5.13, (u-|-cr(u))*(v-|-(7(v)) = (9!»(x)-f-c7((?i>(x)))*((;!>(y)-|-cr(<?!>(y)))

= 4){x)+(j>{y)+(j){-x. -t-y) = u-|-v-|-we C since C is a binary linear code.

Now suppose the coordinates can be permuted so that u, v e C implies (u-|-t7(u))*(v-t-

o-(v)) e C. Let the length of C = 2n. Define C = {c e ZJ | 9!>(c) e C'}. We want

to show that C is a quaternary code. Let x,y e C. Then <j){x) ,<p{y) 6 C implies

(?i(x)+a((;!i(x)))*($i(y)-l-(7(^(y))) £ C. By Lemma 5.13, (?i(x)-|-(?!>(y)-l-(<?!'(x)-|-iT((?i(x)))*((/.(y)-|-

a{^{y))) = (j){x -f y) G C. Therefore, x -I- y £ C which implies that C is a quaternary

code. □

Example 5.18: Letu = (0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,1) and

v = (0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1) to be the 7th and 8th rows of the

generator matrix for G24. Then u,v £ G24. It follows that (u -I- (r(u))*(v -|- (t(v)) = w

= (0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1) ^ G24 since the wt(w) = 6 < 8, the

minimum distance of G24. By Theorem 5.17, the Golay code G24 is a [24,12,8] linear

code that is not a Z4-linear code.

Certain Reed-Muller codes are examples of linear codes that are Z4-linear codes.

Theorem 5.19: The r"' order binary Reed-Muller code RM(r,m) of length n = 2"^, m > 1

is Z4-linear for r = 0,1,2, m - 1, and m.

Proof: See [8]. □
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Let ZRM(r, m—1) =
G{r — l,m — 1)

2G{r,m — 1)

that maps to RM(r, m) by the gray map.

denote the generator matrix for the quaternary code

Example 5.20: Let ZRM(1,1) =
G(0,1)

2G(1,1)

under the gray map since (^(ZRM(1,1)) =

1  1

2  2

0  2

1 1 1 1

0  0 1 1

G(l,2) is the image of ZRM(1,1)

= G(l,2). Thus. RM(1,2) is

0  1 0 1

also the image of the quaternary code generated by ZRM(1,1).

Theorem 5.17 gives a requirement for linear codes to be Z4-linear. Since linear codes have

nice algebraic properties, it is not useful information. However, for codes that do not have

algebraic structure, this information could be very useful is explaining certain properties,

namely duality, of these types of codes. Theorem 5.21 allows us to qualify a nonlinear

code as a Z4-linear.

Theorem 5.21: A binary, not necessarily linear, code C of even length is Z4-linear if and

only if after a permutation of its coordinates, u, v e C implies

u + v+(u+o-(u)) * (v+o-(v)) e C'I8].

Proof: Suppose C = where C is a quaternary code. Let u, v G C, then there are x, y G

C such that (/>(x) = u and (t>{y) = v. Since C is a quaternaiy code, x + y G C. Thus by

Lemma 5.13, u + v + (u+cr(u)) * (v+<t(v)) = (^(x)+(^(y)+((/>(x)+cr((j!>(x)) * {4>{y)+o-{<i>{y))

= (j){yi + y). Since ̂  is a bijection and x + y G C, ̂(x + y) G C, which implies that

U + V + (u+cr(u)) * (v+(t(v)) G C.

Now suppose that u, v G C implies u+v+(u+(7(u))*(v+cr(v)) G C. Let the length of C

equal 2n. Define C = {c G ZJ | <j){c) G C'}. We want to show that C is a quaternaiy code.

Letx,y G C. Then (?i(x),fl!.(y) G C. Thus, ?i(x)+0(y)+(?!.(x)+£T(^i(x)) * (0(y)+(j((?i(y)) G

C. By Lemma 5.13, 0(x + y) G C. Therefore, x + y G C, which implies that C is a

quaternary code. See [16]. □

In the next two subsections, we will show examples of nonlinear codes that are Z4-linear.
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5.1 Kerdock Code as a Z4-lineaT code

Let m > 2 be an integer. Denote the binary image of the quaternary Kerdock code K (m)

by ̂  {K{m)), which is a Z4-linear code.

Theorem 5.22: Let m > 2. The Z4-linear code 4>{K{m)) is a nonlinear binary code of

length 2"^+^ with 4™+^ codewords.

Proof: Since the length of K{m) is 2'", (j){K{m)) has length 2(2"®) = 2™+^.

Since the gray map is a bijection, \K{m)\ = \(f>{K{m))\. K{m) has type 4"^+^ and

thus 4™+^ codewords. Therefore (j){K{m)) has 4"^+^ codewords. □

Theorem 5.23: Let m > 3 be odd. Then ^{K{m)) = Km+i, where Km+i is the nonlinear

binary Kerdock code defined in Chapter 3[16].

To prove this theorem, we will need the following lemma.

Lemma 5.24: Let m > 3 be an odd integer and c = (coo,co,ci, ...,c„_i) e K{m). Then

the 2-adic representation of ct = at + 2bt is given by at = A + Tr(n| *■) and bt =
where t e {oo,0, l,...,n-l}, A,B e Z2, and II.tj G F2'" [8].

Recall that J is the image of ̂  under the map defined by i/* : Iii[x] —> Z2[x].

Proof: Let A = ^'' + 2^® £ Z4[^] where r,s £ {cxd, 0,1, ..., n — 1}. By Proposition 4.33, Cf = e +

=e+r(r+*+2^®+*) =£+r(r+')+r(2^®+') =e+T(C''+0 + 2T(^®+'). Since

ct = at + 2bt is the 2-adic representation of Cf, at+ 26f = £-f-r(^''+') + 2r(^®+'). Appl3dng

the map ip := Z4[a:] Z2[a;], we obtain ip{at + 2bt) — ipie + -I- 2r(^®+^)). Since

the map 1(1 is a homomorphism, 'ipiat) + tl){2)il){bt) = ipie) + + ■tp{2)ip{T{^^'^*)).
Note that Of,&t e Z2. Thus, ipiot) = at and ip{bt) = bt. Since 1/1(2) = 0, we obtain

at = ti){e) + i/'(T(^''+')). Since e G Z4, ijiie) = £ G Z2. By Proposition 4.32, ipoT — Troip.

Thus, '4>iT{^^+^)) = Tr{ip{^^+'') = Tr(^''+*). Therefore, Of = 4.-H Tr(n^'), where A = £
andn = ?'-.

Nowct-c? = at+ 26f-(at+ 2&f)2 = at + 2bt-aj. Since at G Z2, at = af.Thus, 2bt = ct-c\.
Therefore, 2bt = £+T(e'-+') + 2T(e+')-(e+T(r+*) + 2T(e+0)2 = £-hT(e'-+')+2T(f+*)-

(£2 + 2£r(r+') -I- T2(r+')) = e - £2 + T(r+') - T2(^'-+*) - 2£r(e+0 + 2T(e+*).
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Since e e Z4, e = a{e) + 2/3(e) is the 2-adic representation for e. Thus e - a(e) = 2^0(e).

By checking all possible choices for e, we see that Q:(e) = e^. Therefore, e — e^ = 2/3(£:).

One can verify that, T(r+*)-T2(^'-+') = r(r+')(l-T(e'-+')) = =

2Eo<j</b(r+*)''+''° = 2Ej=r'^^'rKr+')'+''since m is odd.

Now,-2£r(^'-+0 + 2r(^®+') = 2eT(^'-+') + 2r(^'+') = 2(£r(^''+*) + T(^«+')). Since T is a

homomorphism, we obtain 2(£T(^''+') + = 2(r(£^''+*) + = 2T(£^''+' +

=2(T(£e + e)e').

Thus, 2bt = 2/3(£) + 2(T(£r + + 2ES=r^^^^2^r(e'"+')^+2'. Dividing through by 2,

we obtain bt = P{e) + (Tie^ + + Ej=r^^''^ r,.(|r+t)i+25 _ ^ ■i/'(;0(e) + (Tfy^'' +
Tr(e'-+^)i+2') = V-CiSCe)) + ̂ ((T(er Tr(|'-+*)i+2')

= ^{e) + Tr{7p{se + f )e')) + This implies that h = B +

Trirj^^) + E5=r^^^^Tr(n?')i+2\ where B = p{e), 77 = +?®, and H = ^^ See [16].D

Proof of Theorem 5.23: Let c = (coo,co,ci, ...,c„_i) £ K{m). Then c = a + 2b is the 2-

adic representation of c for some a = (aoo,ao, ...,an_i),b = (&00,60, •■•, 6n-i) €

By Lemma 5.24, there exists A,B e Z2 and 11,7? e Z2'" such that ct = at + 2bt for

t = {00,0,1, ..., 71-1}, where at = A+Tr{UC*) and h = B+rr(7??')+ES=r'^'" .
Let Q(n|') = ES=r^^^^Tr(n?')i+2\
Consider «i(c)-(Q(n?°°),g(n|0),...,Q(nr-i),T7-(n?°°)+g(n?°°),Tr(n?°)+Q(n^0), ...,

Tr(ne"-^)+g(nC"-^). By Proposition 5.3, 0(c) = (b,a+b). Thus, 0(c)-(g(n|°°),g(n?''),
...,g(nr-i),T7-(n?~) +g(ne°°),Tr(n?'') + g(n?o),...,rr(n?"-i) + g(nr-i)

= (b,a + b)-(g(n? °°), g(n?"}, ...,g(n| "-i),Tr(n| ~) + g(nf °°),Tr(n|«) + g(n^«),

...,T7'(n^ + g(n^"~^) = (600, bo, ..., 6n-l, ̂ oo + boo, O-O + bo, ...,a„_i + bn-l)

-(g(n?~),g(nf0),...,g(ni"-i),r7-(n|°°)+g(n|°°),Tr(nf0) + g(n|0), ...,Tr(n^"-i) +

g(nr-i)) = (6oo-g(n?°°),6o-g(ne°),...,bn-i-g(nr-i),aoo+6cx=-Tr(n|°°)-g(ne°°),

ao + 60 - T7-(np) - Q(M%..., a„_i + 6„_i - r7-(n?"-i) - g(n?"-i)).

Let u = (600 - g(ne°°),&0 - g(n?°),. - g(ne'^-i)) and v = (aoo - Tr(ne°°),ao -

Tr(nf°), ...,o„_i -T7-(n^"-!)). Since at = ^ + Tr(ne') and h = B+ Tr{ri^*) + Q{U^').

u = 51^"* + Tr{T)^^) and v = 41^". By Definition 3.6, L,, = Q{r)^*) is the left side

and Rq(A*) = Qivl^) + Tr(7?|') is the right side of a codeword in RiVI(2,7n + 1). This
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implies that Tr{ri^^) £ RM(l,m). Clearly 51^"* £ RM(l,m) and j41^'"RM(0,Tn). Thus

u £ RM(l,m) and v £ RM(0,m). This implies that (u,u+v) = (j){c) - (Q(n|'),rr(nJ*) +

g(n^*)) £ RM(l,m + l). Thus, (^(c) £ (Q(n|'),Tr(n?')+ Q(n|*))+RM(l,m +1). Sinee

((3(nJ*),Tr(n^') + (3(nJ*)) is a coset representative for Km+i as in Definition 3.6,

(p{c) £ Km+i- Thus K{m) C Km+i- Since \K{m)\ = \Km+i\, K{m) = Km+i- See [16]. □

Thus the Kerdock code Km+iis Z4-linear. By Definition 5.10 , K^+i has a quaternary dual

code. Since the quaternary Kerdock code K{m) and the quaternary Preparata code P{m)

are Z4 duals, the quaternary dual code for Km+i is (j){P{m)).

5.2 Preparata Code as a Z4-linear code

Let m > 2 be an integer. Denote the binary image of the quaternary Preparata code P(m)

by <j) {P (m)), which is a Z4 -linear code.

Theorem 5.25: Let m > 2. The Z4-linear code (f>{P{m)) is a binary code of length 2"+^

with codewords.

Proof: Since the length of P(m) is 2™, (f>{P{m)) has length 2(2"^) = 2"^+^. Since the gray

map ^ is a bijection, |P(m)| = \<j){P{m))\. P(m) has type 42""-™-! and thus 42'"-'n-i

codewords. Therefore 0 (P(m)) has 42'"-m-i codewords. □

Since the quaternary Preparata code P(m) is the dual to the quaternary Kerdock code

K{m), (j){P{m)) is the quaternary dual of Km+i = Thus, W^(p(^rn)){X,Y) =

- F) by Theorem 5.11. In Chapter 3 we found that the binary

Preparata code Pm+i satisfies the MacWilliams Identity, Wp^^^{X,Y) = +

Y,X -Y). Does this mean that Pm+i is the image of the quaternary Preparata code P(m)

under the gray map; i.e. does cp (P (m)) = Pm+i? The answer is yes[8]. Hie algebraic struc

ture of Z4-linear codes explains why Pm+i acts like a dual code for the binary Kerdock

code Km+i even though duality does not make sense for nonlinear codes.

With this new structure of being Z4-linear, the Kerdock code K^+i and the Preparata

code Pm+i have overcome the downfall of being nonlinear codes. Since the quaternary

Kerdock and Preparata codes have nice decoding algorithms[8], the same decoding algo

rithms are used for the binary nonlinear Kerdock and Preparata codes. Now these codes.
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which contain more codewords than any linear code with the same length and minimum

distance, are predicted to be used in such applications as modems and digital cellular

radios. This is only the beginning. There is no stopping these codes from being used in

many other areas of communication.
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