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Abstract

We consider the capacity determination problem of a hydro reservoir. The reservoir

is to be used primarily for hydropower generation; however, commitments on release

targets for irrigation as well as mitigation of downstream flood hazards are also sec

ondary objectives. This thesis is concerned with studying the complex interaction

among various system reliabilities (power, flood, irrigation, etc.) and to provide de

cision makers a planning tool for further investigation. The main tools are stochastic

programming models that recognize the randomness in the streamflow. A chance con

strained programming model and a stochastic programming model with recourse are

formulated and solved. The models developed incorporate a special target-priority

policy according to given system reliabilities. Optimized values are then used in a

simulation model to investigate the system behavior. Detailed computational results

are provided and analyzed.
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Chapter 1

Introduction and Literature review

1.1 Introduction

Life cannot exist without water. This is a truth held by all humans regardless of

their economic, social, or political status. Since the dawn of civilization, man has

struggled to secure this life-permitting source. Therefore, it is just common wisdom

to protect water resources and to manage water resources with utmost care. One

method for managing the water resources since ancient times is to collect water in

reservoirs which in turn can be regulated to feed consumption by various entities. For

instance, water for irrigation, recreational use, maintaining livestock or even water

for generation of hydroelectricity can be made avilable in a timely manner through

such regulation. Furthermore, water reservoirs may also be used to mitigate the

effects of natural disasters due to floods or droughts. This need to carefully manage

water resources has enticed scholars and governing bodies alike to devise strategies

for optimal management and operation of such facilities.

In the last three decades in particular, countless efforts have been expended on



optimal sizing and operation of water reservoirs. There are many facets in the man

agement of water reservoirs that can be optimized. The earliest water reservoirs in

history have focused mainly on maintaining a supply of life-supporting water and

mitigating flood hazards by building large controlling dams on water streams. With

the development of social systems and the progress of science, the need to build water

reservoirs to satisfy more than a single objective became more apparent. This led to

the emergence of so-called multi-purpose water reservoirs. In such reservoirs, several

objectives are considered simultaneously. The problem of planning the capacity of

these reservoirs is no longer a trivial problem. With several and often conflicting

objectives, the problem of planning the capacity and release policy of reservoirs be

comes very complex. Consequently, the models of Operations Research/Management

Science have been used extensively where one wishes to optimize the benefits of a

multi-purpose water reservoir under multiple conflicting objectives and constraints

on their operation.

Operations Research (OR) is a branch of applied mathematics. It is a multi

purpose discipline that utilizes mathematical models to represent real-life problems

and uses mathematical tools to determine optimal solutions or decisions. In the

context of the reservoir management problem, such a model attempts to determine

an optimal tradeoff among many conflicting objectives. Among OR tools there are

such modeling techniques as linear/nonlinear optimization, networks modeling, and

queueing theory. Applications of such prescriptive OR tools are becoming increasingly



valuable due to their powerful analytical capabilities and their abiblity to be used in

conjunction with descriptive techniques such as simulation modeling. OR tools have

been applied successfully in many areas, for instance, transportation and warehousing

problems, computer networks analysis and configuration, healthcare management, fi

nancial planning, as well as in water reservoir management and operational problems.

To analyze water reservoir problems one needs a comprehensive understanding of

the common terms used in the water reservoir context. We will divide this chapter

into three sections. In section 1.2, the reservoir operation practices and procedures

are defined and discussed. In section 1.3, several optimization models that have been

proposed in the literature are presented. Section 1.4 presents the motivation for the

problem setting discussed in this thesis.

1.2 Water reservoirs: purposes, practices, and op
eration

1.2.1 Water reservoirs defined

A reservoir can be considered to be an intermediate storage space, which acts as a

buffer between an uncontrolled supply of water and dem nd for water. It serves the

purpose of holding water in it when the supply of water was in excess of the demand,

so that demand could better be satisfied in a subsequent period when supply is scarce.

A reservoir has its inputs as water inflows (which are subject to random variations)

and output as water released from the reservoir for downstream use. One important

question that may arise is that how large should the reservoir size be selected, in order



to satisfy the demand. If there are no restrictions on the size of the reservoir, then

the reservoir can be built larger, thereby the input water resource can be fully made

use of for better satisfaction of the demand. However, construction costs of reservoir

increases with increased dam heights, and hence building excess capacity becomes

too costly. The demand for water is generally expressed as long term contracts or

agreements that have been framed at the time of feasibility and acceptability of

the water resource development project. Building a reservoir with an inadequate

capacity often results in nonobservance of such agreements, which could lead to severe

consequences, not only economic, but political and social as well. Thus, the optimal

size determination becomes a problem of paramount importance. This problem of

optimal sizing and allocation of the precious water resource, is complicated because

of the uncertainty associated with supply.

Figure 1.1 depicts a typical water reservoir. A reservoir can be considered to be

consisting of three major hypothetical storage volumes, as described below.

Dead Storage

This is usually the highest among the following:

1. level imposed for sediment impounding in the reservoir.

2. level imposed by the minimum operating head of turbines used for power gen

eration.

3. level imposed for recreational development.
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Figure 1.1: Typical water reservoir

Flood Storage

This storage is required to reduce potential downstream flood damage. This reserve

is generally determined by the decison maker a priori based on the concept of a

probable maximum flood occuring with a certain return period (say 50 years). Once

the decision is made by the management on a flood occuring with a certain degree of

severity, and when the amount of flood water coming into the reservoir is estimated,

through flood routing calculations, the flood reserve volume required in the reservoir

is generally determined.



Active Storage

This is the storage used for streamflow regulation for purposes of meeting downstream

water requirements (arising from agriculture, municipal and industrial uses) and ex

tracting energy as much as possible. If the runoff of the river impounding on the

reservoir fluctuates very much according to the season, and also if there is consider

able variation in annual runoff, it leads to the necessity of a reservoir with a larger

active storage capacity to fully utilize the resources of the river by carrying the water

from the wet periods over to dry periods.

1.2.2 Purposes of water reservoirs

Although the name can be misleading, water reservoirs are used for much more than

just storing volumes of water or generating hydro-electricity. Water reservoirs are

built for either one purpose or multiple purposes, in which case they are termed

multipurpose water reservoirs. The purposes of building reservoirs include electricity

generation, providing drinking water to human and animal populations, providing

irrigation water for farming or industrial needs, and controlling flood hazards.

Irrigation

Most reservoirs are built on water streams or rivers, so they limit, in a sense, the

downstream flow of water for agricultural needs. Almost every reservoir authority

has to take this into consideration to prevent damage to crops that rely on the flow

of water. Irrigation water demands have to be satisfied in general as a part of an



agreement between the energy authority and farmer's groups or the government that

oversees such agricultural activities. This purpose does not, in general, present any

tangible profit to the energy authority. Hence, there is a need to consider this issue

without hampering the energy generation which provides the main source of income

for reservoir management.

Hydro-energy generation

In addition to the downstream water demand for irrigation, the water released from

a reservoir can be utilized to generate electricity (known as hydro-power generation).

In such reservoirs, the difference in water altitude is exploited to produce electricity.

This is done by releasing water and letting the pressure generated by the flow of water

turn the electricity generating turbines. Before the invention of the nuclear power

plants, hydro-electricity was the main source of power for most developed nations. In

most under-developed nations, this is still the method of choice next to thermal power

generation. Its appeal comes mainly from the availability of water in most nations at

no cost. Fortunately, a reservoir does not have to release water through two separate

ways to satisfy both demands, because the release made to satisfy water demand can

be used to generate electricity as well, and vice versa. Generation of hydro electric

energy is extremely useful as a substitute for electricity that is normally produced by

burning fossil fuel. Therefore, operating these reservoirs in the most optimal manner

is a necessity to sustain the operation and growth of industries, as well as providing

needed electricity to civilian populations.

■ 7



Controlling Flood hazards

, Water reservoirs are also heavily used as a storage space for excess rain waters that

would otherwise overflow and cause floods that are costly to civilian lives and agri

cultural objectives. The water inflows are therefore stored in multi-purpose reservoirs

and released in a controlled manner to mitigate the flood hazard. That is, whenever

a flood inflow occurs, that excess water can temporarily be stored in the reservoir,

which could in a later period be released, thus eliminating possible flood damages.

This practice, known as flood routing, often requires reservoirs be provided with a

certain flood storage volume or flood release capacity. This is a very important as

pect of the operation of water reservoirs especially in areas where the amount of rain

water varies dramatically from one season to the next, for example in monsoon areas.

This purpose of water reservoirs, similar to the irrigation purpose, does not provide

the energy authority with a tangible revenue. However, governments usually impose

such agreements on reservoir authorities because of its tremendous economical and

political impact on the civilian population.

Commercial navigation

Since the early days of civilization, water streams have been a preferred means of

navigation. This fact remains true even in the twentieth century. Therefore it is

imperative that water reservoirs are built with this in mind. Typically, barges in

water ways are heavily used in the transportation of bulk commodities such as coal

due to the lower energy and cost requirements in transportation. Moreover, the



development of reservoirs and water ways is also considered a part of the national

defense, since these steams provide inland transportation routes during times of war.

Other purposes

The afore-mentioned purposes of water reservoirs are not exclusive. Depending on

its location, a water reservoir can provide a good natural recreational facility for the

population. In east Tennessee, for example, there are several public parks on the

sides of water reservoirs, such as Melton Hill dam and Norris lake. Other purposes

include the protection of wildlife by providing sanctuaries for several species. These

will require a certain minimum level of flow to be maintained in the river, which is

generally determined according to standards set by administrative authorities based

on environmental considerations. Maintainance of these minimum levels depends not

only on the reservoir size decision, but also on how the reservoir releases are times.

Hall and Dracup(1970) pointed out that the optimum design of any system depends

not only on objectives but on the operating policy as well.

1.2.3 Operation of water reservoirs

The operating policy of the reservoir is usually geared towards satisfying the primal

purpose of the project. A water release policy is deflned as the amount and frequency

of water release from the reservoir during a given period of time. A release policy that

is primarily designed to generate electricity will be geared towards maximizing the

benefits of energy generation. In a reservoir where the downstream water targets are

primal, the focus of the policy will be on minimizing the shortage of water supplied



for drinking, industrial, or farming needs. Reservoir authorities generally have broad

contractual agreements that constrain their releases, and the need for an optimal

release policy for operating the reservoir becomes inevitable. In the next section, we

present an overview of the literature in this domain, and indicate how researchers used

reservoir characteristics to devise objective functions and constraints to optimally plan

and control the operation of reservoirs.

Water reservoir models have been studied in a multitude of ways. The most com

mon are descriptive simulation models, prescriptive optimization models, and hybrid

combinations of optimization and simulation models (See Army Corps of Engineers,

1991). For the purposes of this thesis, we are mainly interested in the latter two, es

pecially the use of optimization tools such as stochastic programming and validating

them using simulation models. It is important to note though that much of the re

cent literature have focused on assessing the reliability rather than the design and/or

planning and operation of reservoirs. For an excellent review of the literature relating

to water reservoir models see Louck et al.(1981) and Yeh (1985).

Given the multiple objectives, the notion of optimizing a multi-purpose water

reservoir would be somewhat misleading. What one should consider is an optimal

trade-off of benefits and costs of the concerned objectives. Benefits could include such

things as the revenue from the energy generated, and costs could include construction

costs, costs of damages to farming crops due to floods or droughts. Such problems are

best studied under an optimization framework of modeling will be the emphasized in

10



the next section.

1.3 Optimization Models Applied to Water Reser
voirs

1.3.1 Linear Programming

Linear programming (LP) is a powerful, yet simple, modeling tool that can be used

to study a wide variety of application problems. Its ease of understanding and use

made it the tool of choice for much of the early applications of optimization model

ing in reservoir systems. Due to the complex nature of system constraints in reser

voir management and operation, a significant number of researchers have focused

on chance-constrained formulations, utilizing linear decision rules. Revelle, Joeres,

and Kirby (1969) published one of the key papers titled "the linear decision rule in

reservoir management and design: development of the stochastic model." Much of the

literature that followed built upon and extended the basic concepts laid out in that

pioneering paper, for example Loucks and Dorfman (1975), Nayak and Arora (1971),

Curry and Helm (1973), Houck (1979), Houck and Datta (1981), and Sreenivasan

and Vedula (1996). Several specific LP models have also been presented in the litera

ture. Loucks (1968) developed a stochastic LP model for a single reservoir subject to

random net inflows. Release rates were determined which minimized the sum of the

expected squared deviations from target reservoir volumes. Windsor (1973) developed

a LP model for analyzing multiple reservoir flood control operations. Sreenivasan and

Vedula (1996) present a chance constrained LP formulation for a multipurpose reser-

11



voir. The model determines a release policy that maximizes the annual hydro power

production while meeting the irrigation demand at a specified reliability level.

1.3.2 Dynamic programming

The dynamic programming (DP) approach involves decomposing a complex problem

into a series of simpler sub-problems which are solved sequentially, while transmitting

essential information from one stage of the decomposition to the next using state

space concepts. Louck et. al (1981) state that the generalization of deterministic

dynamic programming to the stochastic case is somewhat straightforward. Stochastic

dynamic programming can be used to study very complex situations, as long as a few

state variables are involved. However, the applicability of dynamic programming

is hindered by what is called "the curse of dimensionality", which means that the

problem at hand becomes computationally intensive as the number of state variables

increases.

Hall et al. (1968) used DP to determine releases over time for a single reservoir that

maximized revenues from the sale of water and energy. Giles and Wunderlich(1981)

describe a model based on DP and simulation that determines weekly releases and

end-of-week storage levels for a 19 reservoir system. Allen and Bridgeman (1986)

applied dynamic programming to three case studies involving hydroelectric power

scheduling. Martin (1987) incorporated a DP algorithm in a modeling procedure for

determining an optimal capacity expansion project for a water supply system. For

a method of transforming stochastic dynamic programming models into nonlinear

12



equivalents, see Ziemba (1971).

1.3.3 Nonlinear programming

The use of linear programming , despite its ease and tractability, is restrictive in mod

eling reservoir operations in many cases. The main reason is that several objective

functions or constraints of the model are nonlinear in nature and they have to be

linearized to fit in an LP framework. Nonlinear programming (NLP) can be used in

such instances to reduce the approximations introduced by linearizing functions, and

to provide a more general formulation than LP would. However, the mathematics

required is generally much more complex, which generally implies a more expensive

computational effort. For that reason, NLP techniques have not been applied ex

tensively to problems of optimizing reservoir system operations. The advances in

computer hardware and software in the recent years has alleviated the computational

burden, and could result in a greater use of NLP in the future. Duren and Beard

(1972) incorporated a univariate gradient search algorithm, with the Newton-Raphson

technique, into a reservoir simulation model to develop a method of determining

the economically optimum flood control diagram for a single multipurpose reservoir.

Rosenthal (1981) used a nonlinear network flow algorithm to maximize benefits in a

hydroelectric power system. Diaz and Fontane (1989) used a quadratic programming

approach for optimizing hydroelectric power releases from a multiple-reservoir system

based on the objective of maximizing economic benefits.

13



1.3.4 Stochastic Programming

Although stochastic programming can be presented as a special case of linear, dy

namic, or nonlinear programming, it is a field that has received much attention re

cently and deserves to be presented separately. In linear programming, we usually

assume complete knowledge of future events, and build models using deterministic

constraints with no possibility of recourse, i.e. changing the decision policy after some

random event that was approximated is realized. This limitation is overcome by us

ing multi-stage stochastic programming with recourse models. Decisions are made at

the beginning of the planning period, however, the model takes into account the ran

domness in the parameters and it penalizes deviations from their true realizations by

using suitable cost functions. Decisions are therefore more informed and provide the

decision maker an opportunity for taking corrective action once the random events

are realized. In the case of water resrvoirs, the main random event is the amount

of water infiow. Other parameters that can be viewed as random are the irrigation

water demands.

Under this framework, it is important to distinguish between the so-called "here-

and-now", or non-anticipative, and "wait-and-see", or anticipative, situations. In the

former, or non-anticipative, the decision maker takes a decision before observing the

stochastic events. In the latter, or anticipative situation, the decision maker is allowed

to make a decision after having observed the realization of the stochastic event, in

which case the optimal value of the objective function as a result of this decision

14



may itself be a random variable. We shall restrict our focus on non-anticipative

decision policies. The motivation here is that the reservoir management has to make

decisions on releases before observing the stochastic water inflows in our case. The

non-anticipative situation can be modeled as either a chance-contrained stochastic

problem, which we will present in Chapters 2 and 3, or as a stochastic programming

model with recourse, which will be presented in Chapter 4.

A computational procedure was presented for a two-stage stochastic LP model by

Dantzig (1955), in which the activity levels are determined in the first stage, then a

corrective action is followed in the second stage. In his monograph, Prekopa (1995)

presents a thorough overview of stochastic programming. A rich theoretical back

ground is provided together with a wide array of applications in such diverse areas as

water reservoirs scheduling, inventory control, and banking. Several other researchers

have studied the general theory of stochastic programming, see for example, Ediris-

inghe and Ziemba (1992), Salinetti (1983), Sengupta (1972), Wets (1983a, 1983b),

and Ziemba (1974). Edirisinghe (1999) considers bounding techniques within multi

stage stochastic programming models. Bound-based approximations are proposed as

means of solving large problems efiiciently.

In the context of water resources planning, Prekopa (1978a) used stochastic pro

gramming in a flood control reservoir system design. Neveda (1988) presented several

applications of stochastic optimization methods to the electric power system opti

mization. Multi-stage stochastic models have been used in the power scheduling of
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hydro-thermal systems under uncertainty on electrical load, see Nowak and Romisch

n  (1999). Several other reserachers have modeled the water reservoir problem using

stochastic programming, see for example, Dorfman (1962), Dupacova (1980), Dupa-

cova et al. (1991), Prekopa (1978b), and Rapcsak (1974).

1.4 Multipurpose Water Reservoir with Target-
Priority

1.4.1 Motivation for the Problem Setting

We consider that a choice on a particular dam site has already been made. Then

depending on the geological conditions, the type of the dam (rockfill, earthen, concrete

types, etc.) can be decided, and with this information the actual dam construction

cost for a given dam height can be worked out, Apart from the increased capital cost

required for a larger dam construction, there is an environmental or social problem

associated with a larger reservoir. That is, if the reservoir is to be built large then it

requires that a larger area be inundated, which may include certain resiential areas.

Thus it may be necessary to establish compensation and resettlement programs to

mitigate adverse effects on the existing inhabitants affected in the proposed reservoir

area. Therefore, in practice, reservoir sizing decision is much complicated by the issues

of socio-economic impact, downstream river development, probable environmental

effects, and resettlement and relocation aspects.
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1.4.2 Target-Priority Operation

In this thesis, we consider a situation witnessed in a number of reservoir applications

where an energy authority is responsible for the reservoir operation with its main

objective being generation of hydropower. It is assumed that the problem of choosing

a location for the hydro plant has already been made; however, its capacity has

yet to be determined. There is also a demand for water arising from downstream

irrigation requirements. Although satisfaction of these irrigation targets does not

bring explicit benefits to the energy authority, it is required to ensure an acceptable

level of reliability in meeting these water targets due to contractual agreements. In

recognition of these dual purpose services, in actual operation of such reservoirs,

operations managers are generally required to adopt a priority based operating policy,

which could be expressed as follows: If the target water quantity can he released while

the total amount of released water is used for generation of energy, then at least the

targeted amount of water must be released. In other words, so long as hydro power

can be generated, managers choose to satisfy water needs occurring in any given time

period. In this thesis, we consider a capacity-planning model that can accommodate

such a target-priority policy. The premise on which this policy is based is that if the

water level in the reservoir falls below a certain minimum level, as determined by the

hydro turbine minimum head requirement, no hydro-power can be generated.

The capacity planning model is formulated to maximize the monetary net benefit

due to power generation over a projected operational horizon, subject to constraints
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on reliabilities of operation. Apart from satisfying irrigation and power generation

needs, the reservoir is also operated to mitigate downstream flood hazards. During

flood inflow seasons, the reservoir is used for temporary storage of flood water that

can be released in a controlled manner in later periods, thereby eliminating potential

floods. This practice often requires reservoirs to be provided with a minimum flood

storage volume or flood reserve capacity, see Figure 1.1. The flood reserve capacity

to be maintained in any time period is assumed given and it is typically determined

outside the operational models, considering historic flood inflow patterns.

Since flood reserve and dead storage volumes are regarded as given, the problem

of reservoir capacity determination becomes a matter of optimally sizing the active

storage as shown in Figure 1.1.

1.4.3 Organization of The Thesis

This thesis considers a single multipurpose reservoir planning problem with target-

priority operation. The proposed models are intended to provide the decision maker a

good insight into the problem, so that further socio-economic analyses could be made

use of before making a final decision. In chapter 2, a chance constrained approach to

the capacity planning for a multipurpose water reservoir with target priority opera

tion is presented in detail. In chapter 3, a real life data set of cumulative inflows is

analyzed, and the model developed in chapter 2 is executed to validate the solutions

provided by the model. In chapter 4, we introduce a multi-stage stochastic program

ming approach that can be applied to determine real-time releases. In chapter 5,
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section 5.2, we present a dynamic programming model with independent inflows. In

section 5.3, we develop a dynamic programming model with restricted dependence

on the monthly inflows. In chapter 6, we present an aggregated dynamic program

ming model that will capture the general case of dependent inflows. Finally, in the

concluding chapter 7, we summarize the results of the different approaches we have

developed and provide guidelines for using these complex models in planning and

controlling multi-purpose water reservoirs.
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Chapter 2

Chance constrained model

2.1 Chance Constraints

Chance constrained programming is a deterministic model except that certain or

all of the constraints are required to be satisfied only in a probabilistic sense. The

idea of chance constraints for LP optimization was first introduced by Charnes et

al. (1958), for determining refinery rates for heating oils to meet stochastic weather

dependent demands. In the context of reservoir system optimization, the idea of

chance constraints was first proposed by ReVelle et al. (1969). A chance constrained

programming problem has the following structure;

min CX (2.1)

subject to

AX = b (2.2)

V{TX >0>p (2.3)
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X > 0 (2.4)

where V denotes the probability operator, X is the decision vector, A and T are

deterministic (fixed) technology matrices, and C is a random vector. The constraint

(2.3) is a chance constraint because the event TX > C is required to be satisfied

only with a given probability p (< 1). If T has only one row and C is a univariate

random variable, then (2.3) is called an individual chance constraint; otherwise if T

is a matrix and C is a vector then (2.3) is a "joint" chance constraint. In the latter

event, the satisfaction of the set of constraints TX > ̂ is given a single probability.

In the case of a single chance constraint, if the probability distribution of the

random variable C is known, (2.3) can -be converted to a deterministic equivalent

by using the cumulative probability distribution function of the random variable C;

denoted by Tq. That is,

V{TX>0>p

holds if and only if

T^{TX) > p

which thus implies that the resulting deterministic equivalent is

TX > T^\p) (2.5)

where J'^~^(.) is the inverse cumulative density of the random variable (. For example,

if p is chosen to be 0.9 then there will be, at most, 0.1 or 10% probability that the

constraint represented by (2.3) will not be met.
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2.2 Literature Review

Chance Constrained Programming, (CCP), models based on individual chance con

straints have been introduced by Charnes, Cooper and Symonds (1958). The more

general joint chance constrained models where the random right-hand-side vector is al

lowed to have stochastically dependent components was first introduced by Prekopa

(1970). The issue of transforming joint chance constraints into their deterministic

equivalents has been extensively researched by Prekopa, see for example Prekopa

(1999) where he shows how probability bounds can be incorporated in CCP models

in order to compute approximate solutions. In his monograph, Prekopa (1995) also

presents a thorough overview of the theory and applications of stochastic program

ming including the case of joint chance constraints in the context of water resources

management. Sengupta (1972) describes the idea of incorporating decisions on sys

tem reliability into a CCP model in a more general setting. ReVelle (1999) discusses

several models for optimizing reservoir resources including models for reservoir relia

bility.

Dupacova et al. (1991) describe the case of a multi-purpose water reservoir. Three

different formulations are described: a chance-constrained model, a stochastic pro

gram with penalties model, and a mixed model. The first model attempts to minimize

the capacity of the reservoir subject to chance constraints on the reliability of meet

ing demand for water for irrigation and industrial purposes. The second and third

models minimize the expcted total cost which includes losses due to failure of some
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reservoir functions. The treatment in this chapter differs from that in Dupacova et

al.'s in at least three dimensions. Firstly, we present a less aggregated model where

monthly time periods are used. Secondly, we consider the problem from a net benefit

perspective, where the benefit from generating energy is considered explicitly in the

objective function. Thirdly, we adopt a target-priority policy that requires the model

to choose a release that is greater than the targeted amount of water provided the

release will result in energy generation. These distinctions will become apparent as

the problem and the model are formally presented in subsequent sections.

In the proposed chance constrained planning model, maintaining minimum flood

reserve capacity and dead storage, satisfaction of water targets, and generation of elec

tricity are all considered in probabilistic sense, i.e., using chance constraints. More

over, some of these constraints are of reliability type since probabilities of satisfaction

for these constraints are not available a priori, and thus, they need to be treated as

model parameters. In the sequel, we take a two-phase approach in addressing the

capacity-planning problem:

(i) in phase one, optimize the energy generation for given reliability and capacity

parameters, and

(ii) in phase two, optimize the net benefit of system operation to determine optimal

capacity and reliabilities.

We assume that the hydro reservoir is to be used for providing base energy or firm

energy with guaranteed reliability. The approach in phase one, see (i) above, captures
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the stated target priority policy within a chance-constrained setting of system oper

ation to maximize the firm energy output. This is the focus of discussion in Sections

2 and 3. The approach in phase two, see (ii), which determines the optimal capacity

that maximizes the system monetary net benefit of power generation is considered in

Section 4. The solution of the resulting nonlinear model requires the solution of the

model in (i) iteratively, and thus, it is computationally tedious. We propose a Quasi-

Newton line search based on gradient estimation for efficient solution of the model,

utilizing an important sensitivity theorem in nonlinear programming, see Section 5.

The case study that motivated the present work is in Section 6, which also includes a

simulation analysis of the stochastic optimization model output to verify the validity

of the approach. This optimization-simulation framework is used for further analysis

and for providing insight into the capacity decision problem.

The notation required for subsequent development of the model would be intro

duced as it becomes necessary.

2.3 Decision Policy

Consider a time period t of reservoir operation. In this presentation, each period

of operation corresponds to a month. The total number of months in the planning

horizon is 12, thus repesenting a year. Denote the volume of water released in period

t by Rt- The amount of inflow to the reservoir in period t is denoted by It while

the reservoir storage at the beginning of period t is denoted by St-i- In general, Rt

would be a function of the history ht = {So, Ri, Rt-i, St-i, It}, i.e., Rt = ft{ht)-
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The set of releases /i(hi),/2(/i2),-■ ■ constitute a release policy. More

over, notice that such a release policy is non-anticipative, namely, release decisions

depend only on the random quantities realized so far and not on the hindsight of

future occurrences. Multi-period stochastic optimization models incorporating such

non-anticipative decision policy are extremely difficult to solve as the problem size

increases, see Dempster (1980). Therefore, it is customary to assume a convenient

functional form for ft{ht). While there can be a potentially large set of decision rules,

the one that is frequently used in water reservoir studies is the linear class of decision

rules, i.e. LDR, denoted by Ai.

On the other hand, there is the class of so called zero-order rules, denoted by

Ao, which require that the decision to be made at any time period be independent

of the observations of the random variables at all previous time periods. Gartska

and Wets (1974) give a detailed theoretical account of the drawbacks of restricting

the optimal policy to the class of Aq or Ai. For example, there are problems for

which there exist optimal decision rules, but no feasible Aq rule, and vice versa.

Also, the possibility exists that there are feasible solutions to the original problem

but no feasible solution to the equivalent LDR problem, and vice versa. Although

one cannot hope to find a 'true' optimal policy when the search is restricted to Aq

or Ai, for computational appeal, such have been used in the past literature. Prekopa

(1995, pp. 231-252) presents stochastic models applied to the optimization of water

resources where chance constraints are used together with a zero-order decision rule.
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For criticisms on using LDR in reservoir studies, see Curry et al. (1973), LeClerc and

Marks (1973), Loucks and Dorfman (1975), or Stedinger (1984).

In this formulation, we restrict the search of release policies to the class Aq. The

primary motivation for this restriction is that we are dealing with a long-term planning

problem. Moreover, in a chance-constrained model with a one-year horizon and 12

monthly periods, the computational advantage of using such a decision rule is that

it makes the multi-stage program collapse to a single-stage program. For details, see

Dirickx and Jennergren (1975), and for some generalizations, see Ziemba (1971). The

simulation study, reported in Section 6, establishes that the fixed Ao-optimal policy

from the chance-constrained model achieves the reservoir operational characteristics

as intended. Indeed, the Ao-policy that we seek must satisfy the target-priority

behavior.

2.3.1 Target-priority operating policy

As mentioned previously, the model has to accommodate the target-priority policy.

However, the hydro-turbines require a certain minimum water-head for generating

electricity, a level usually referred to as the dead storage level of a hydro-reservoir.

We denote this fixed storage by SD. In this regard, a necessary condition to be

satisfied, so that the target water amount released in period t can be used to generate

energy, is

St-i + It ~ Tt "> SD (2.6)
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where Tt is the given deterministic water target for period t, t = 1,... , 12. In the

event the condition in (2.6) is satisfied, the model must accomplish a release Rt > Tj.

Now, since {Rt} G Aq and targets Tt are deterministic values, the satisfaction of water

targets can be controlled via the constraint in (2.6). Consequently, the probability of

satisfaction of (2.6) will be used in the model as a surrogate for the "probability of

target satisfaction", denoted by 9. Thus, the target-priority policy in the context of

the model can be stated as follows:

(PI) If the condition in (2.6) is satisfied during some period t, then the model is

required to choose a release Rt not less than Tt.

The proposed approach for modeling the policy (PI) is described in the next section

under the development of chance constraints.

2.4 Chance Constrained Model

The energy authority measures its monetary benefit in terms of the firm energy it

generates, as this reservoir will be used to provide base energy. Firm energy is defined

as the monthly minimum guaranteed energy generation level, herein denoted by L.

B{L) denotes the discounted monetary benefit from the generation of a firm energy

level L over a specified planning horizon. The discounted capacity construction cost

is denoted by C{K) associated with a reservoir of capacity K. For a chosen capacity

K, the energy authority is concerned with maximizing the firm energy generation,

provided the system constraints are satisfied, including that of target priority water
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demand satisfaction. The maximized firm energy level is therefore dependent on the

chosen capacity K. The trade-off between capacity construction costs and energy

generation benefits will be investigated through maximizing the net benefit function

NB{K,L) expressed as,

NB{K,L)=B{L)-C{K). (2.7)

2.4.1 System Constraints

As mentioned before, the storage level St in a given month t must be at least SD, the

dead storage level, for energy to be generated. Since St is a stochastic variable, the

satisfaction of St > SD can only be made with a certain probability, herein denoted

by a. Typically, a. may be chosen to be large, say 99%; however, in our case the

water target satisfaction is closely associated with the event St > SD, and thus,

it is impossible to pre-specify a value for d without knowing its impact on target

satisfaction probability, 0. Therefore, we consider the constraints

V(St> SD) > a = ,12 (2.8)

in our model as reliability constraints where a is treated as a variable that must be

chosen optimally to maximize the net benefit in (2.7).

By allowing a hypothetical empty volume of Vt, known as the flood reserve, the

reservoir is intended to provide flood protection during month t. The corresponding

chance constraint is

V{St<K-Vt)>^ ,\lt = 1,... ,12, (2.9)
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where P is the flood protection probability pre-specifled by the management. The

value of Vt is typically determined a priori based on historical data.

Since the reservoir operation spans several years, while the model represents a

horizon of one year, it is necessary that the terminal storage of the reservoir should

ensure similar operation in the subsequent years as long as the inflow patterns remain

the same. This is achieved in the model by requiring that the over-year storage, 512,

will remain no less than the initial storage, denoted by 5o, with high probability,

denoted by p. The resulting over-year storage constraint is

^^(-512 > 5o) > p. (2.10)

As discussed in section 2.3.1, the satisfaction of water targets is accomplished through

the surrogate constraint

V{St-i + /t - Tt > 5T>) > ̂ , Vt = 1,... , 12, (2.11)

where 0 is a probability chosen by the reservoir management. However, a value of B

in (2.11) cannot be specifled a priori without knowing its implication on net benefits

for the energy authority. We will investigate the effect of 9 on reservoir capacity K

and other characteristics by analyzing the proposed model for various values of B.

Finally, the continuity equation is given by

St = 5t_i + /t - , Vt = 1,... , 12, (2.12)

assuming no evaporation or other losses. Observe that (2.12) is a physical constraint

and it must be satisfled for all random realizations (of scenarios up to time t) of
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inflow. For the ease of exposition, we collect the set of feasible pairs {St,Rt) for

all t = 1,... ,12 satisfying the chance constraints (2.8)-(2.11) and the continuity

equation (2.12), and define the feasible set C as follows:

r(ii:i,50 = ,12) : >1
C :=l I . (2.13)

l(i2i,5t) satisfy (2.8), (2.9), (2.10), (2.11), (2.12) J

2.4.2 Target-priority model

The firm energy level L must be maximized, for a given capacity K, using a re

lease policy that satisfies the constraint system presented in the preceding section.

However, the satisfaction of constraint (2.11) must also ensure that Rt > Tt due to

our target-priority policy. While there may exist several ways of enforcing this re

quirement on the model, we choose the following sequential optimization framework;

Define the target deficits Dt by

A := [Tt-A]+ ,Vt = 1,... ,12,

where the notation [rr]"^ = max{0, x}. Given a sequence of deficits incurred in months

1,... — 1, i.e., Di,... , A-i, the deficit in month t is minimized subject to the

constraints of system operation in the entire time horizon of one year. By doing so,

the deficit A in period t is chosen such that it will not lead to infeasibility in the

future periods t + 1,... , 12 of operation.

The sequence of deficit minimization problems that probabilistically ensure the
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target priority policy, for t = 1,... , 12, is given by:

{CCP)t-. D;:= min A (2.14)
S.t. Rj- + Dt > A, T = 1, . . . ,t

Dr<D*,, T = l,... ,t-l
{Rr, A}rLl € C, A > 0, r = 1, . . . ,t.

For t = 1, the constraints A < D* are considered void in the above formulation.

2.4.3 Firm Energy Generation Model

Corresponding to the sequence of deficits and releases, as determined by the mod

els (CCP)i, ..., [CCP) 12, the energy generated by the reservoir is denoted by

EGi,... , EGyz, respectively. Thus, the firm energy level so generated is

Ae ~ min{F(ji; • • • jFAa}- (2-15)

Noting that the firm energy level L/e is a stochastic variable, the reliability of ensuring

a (deterministic level) L for firm energy, denoted by 7, is

7:=P(Ae> A- (2.16)

However, determining the distribution function of L/e is quite complicated. For in

stance, it requires determining correlations among all random variables EGt, and it

is a statistically onerous task in itself. Therefore, we consider the following set of

chance constraints, ensuring that monthly energy production exceeds a certain level

L of firm energy with a fixed reliability 7 at all time periods, i.e.,

V{EGt > A > 7 , Vt = 1,... , 12, (2.17)
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where 7 is a prespecified probability. Given a value for 7 in the chance-constrained

optimization model, we simulate the optimal policy so obtained to estimate the cor

responding 7. These simulation results are discussed in Section 6.

Phase-I of the capacity planning model seeks to maximize this firm energy level L

subject to the minimum deficits prescribed by the sequential deficit minimization

models {CCP)t and satisfying the constraints of system operation. Consequently, the

resulting firm energy maximization model in Phase-I has the format:

(FEP) : L* := max L (2.18)
s.t. Rt + Di > Tt, t = 1,... ,12

Dt<Dl t = 1,... , 12
V{EGt>L)>^, t = l,... ,12

t = l,... ,12.

2.4.4 Net Benefit Maximization Model

For chosen model parameters K and a, let the corresponding maximum firm energy

level as determined by (FEP) be denoted by L*{K,a). This yields a net monetary

benefit of

NB{K,L*) = B{L*{K,a)) - C{K). (2.19)

In Phase-II of the proposed capacity planning model, we wish to maximize the net

benefit NB{K,L*) by optimally choosing the capacity K and dead storage reliability

a. The explicit constraints on the choice of K and a are given by,

0 < K < Kjnax and 0 < a < 1, (2.20)
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where K^ax is the maximum possible capacity for the reservoir based on the geo

graphical and morphological limitations of the dam site. However, there will also

be implicit constraints on K and a in order to ensure feasibility in the firm energy

maximization problem. These will be discussed in a subsequent section.

2.5 Equivalent Deterministic Models

As depicted in Figure 2.1, the proposed methodology involves a two-phase procedure

to maximize the net benefit function by searching over reservoir capacity (K) and

dead storage reliability (a), for a fixed target satisfaction reliability 9 and given values

of firm energy reliability 7, flood storage reliability P, over-year storage reliability p,

and initial storage Sq. In phase-I, for a current iterate {K,a), the twelve sequen

tial programs (CCP)i,... , {CCP)i2 are solved to minimize monthly target deficits.

These deficits are in turn used within the firm energy maximization program (FEP).

Phase-II then finds step-sizes (AA", Act) such that the new iterate of capacity and

dead-storage reliability pair yields an improvement of the net benefit function, that

is,

NB{K + AK, L*{K + AK,a + Act)) > NB(K, L*(K, a)). (2.21)

When such a step-size pair for improving the net benefit function can no longer be

found, the solution procedure is terminated. In the sequel, we will describe each of

these solution phases, along with the necessary algorithmic details.
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Figure 2.1: Proposed Methodology for the CCP Solution
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2.5.1 Phase-I

In order to solve the chance-constrained models of target deficit minimization and

firm energy maximization, the probabilistic constraints must first be transformed to

their deterministic equivalent forms. This will be done in two steps: first, the target

deficit minimization and then, the firm energy maximization.

Step one

The continuity equations in (2.12) imply that .

— Ri
S2 = Si 12 — R2 = iSo -f (/i "h I2) ~ {Ri + R2)

t  t

S, = So + J2lr-Y,^
T=1 T=1

or.

St — Sq + Qt — ̂  ] Rt (2.22)
T—l

where we have defined Qt := X1t=i the cumulative infiow from period 1 through

t. Consider the dead storage chance constraint (2.8):

V{St > SD) > a,Vt = 1,... ,12
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From the expression for St in (2.22), we can rewrite (2.8) as,

t

V{So+Qt-^Rr > SD) > Q;,Vt=: 1,... ,12
T=1

t

=>V{J2Rr + SD- So < Qt) > a,Vt = 1,... ,12
r=l

t

'P{Qt < + SD - So) < (1 - q), Vt = 1,... , 12
T=1

t

FQ^(^Rr + SD - So) < (1-Q;),vt = 1,... ,12
r=l

t

=4> il, + 5D - 5o < Fq^{1 - a), Vt = 1,... , 12
r=l

t

<F'Q,'(l-a) + 5o-5AVt=l,... ,12
r=l

where F'(3i(-) is the cumulative density function of the random variable Qt, t —

1,... ,12. Similarly, we can obtain the deterministic equivalents of the chance con

straints (2.8)-(2.11). Therefore, the deterministic equivalents of the chance con

straints (2.8), (2.9), (2.10), and (2.11) of {CCP)t are easily obtained as, respectively,

t

^Rr<FQ^{l-a) + So-SD, Vt = l,... ,12 (2.23)
r=l

t

^Rr>FQ^i/3) + So + Vt-K, Vt = l,...,12 (2.24)
T=1

12

(2.25)
t=l

t-1

Y^Rr<FQ^{l-9)+So-SD-Tt, (2.26)
T=1
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where FQ^{q) represents the quantile of Qt- For t = 1 in (2.26), we have set

= Oj which thus yields:

FQl{l-d) + SQ-SD-Ti>Qi. (2.27)

The constraints in set C, defined in (2.13), therefore, have the following equivalent

deterministic description:

Cd := {Ri,... ,Ri2>0 : {i7t} satisfies (2.23), (2.24), (2.25), (2.26)} . (2.28)

The deterministic equivalent linear program for deficit minimization problem {CCP)t

in month-t is then given by,

{DP)t : A* := niin A (2.29)
s.t. Rt + Dt ̂  Tt

Rr>Tr-D*, r = l,... ,t-l
G A,A>0,t = l,... ,12

Bounds on parameters

It must be noted that under certain combinations of values for parameters a, K, p

and 9, it may turn out that the problem {DP)t in (2.29), for t = 1,... ,12 are

infeasible. Using the upper and lower limits on cumulative releases in constraints

(2.23)-(2.26), and using K < Tfmax, bounds on the latter system parameters can

be determined to ensure feasibility of operation. Toward this, define the following

thresholds on dead storage reliability:

af.= l-FQAFQl,{l-e)-Tt+X t = l,...,ll
^  ̂ } (2.30)

ai2 := 1 - - p) - a + -F-D].
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Furthermore, define the capacity constants for t = 1,... ,12:

Fq! (« - (1 - S) + V, + SD + T,+, for t = 1.... , n

FQm - -fQ-'d -/>)+«
and consequently, for t = 1,... , 12, let:

Kt:= < (2.31)
FQ'iP)-FQ^i^-p) + So + Vt fort = 12

Kt if a < at
Kt{a) := <^ , , (2.32)

' F^^(fi)-F^^{l-a) + Vt + SD ifa>a,.
Then, the following bounds on the parameters of the optimization model can be

obtained:

Proposition 2.5.1 For the feasibility of Phase-I problem, the following bounds must

hold:

a < Oma^ := 1 - max {FQtlFqtiP) + Vt + SD- Kr^a^]} , (2.33)
t— i,... ylZ

^ < 0max := 1 - max [Fq^ (/5) + Vt + SD + Tt+, - } , (2.34)
t—i,... jil

and

K > Kmin{a) := ̂_max^2 (2.35)

Moreover, the bounds on the initial storage for the feasibility of the Phase-I problem

are given by,

'S'Ojmin ̂  Sq ̂  'S'o,nicix (2.36)

where 5o,inin o-nd So,max are defined by:

So,mm nn= Ti + SD- FqI{1 - 9) (2.37)

5o,max := (1 - p) - FqI^ (/5) - l/i2 + (2.38)
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Proof. See Appendix A. n

2.5.2 Step two

To determine the energy generation function EGt, we make the following simplifying

(but practical) approximations. First, we approximate the relationship between the

water head (h) acting on the turbine and water storage (5) by a linear function as

follows:

h = eS + f (2.39)

where e and / are constants based on a typical operating range of the reservoir. Figure

2.2 depicts the range of linear approximation for the dam site under consideration in

this chapter.

Since we are dealing with a capacity planning problem, with the system being

observed only at discrete points in time, i.e., t = 1,... , 12, the changes the system

may undergo in any period are presumed to take place at the end of that period.

Consequently, we approximate the effective water head acting on the hydro turbines

during any month by the average water head on turbines in that period. Thus, given

a transition of the system from St-i to St, associated with a release Rt, the amount

of energy generation is

+ St-i) + f] (2.40)

where w is a dimensional constant that reflects turbine efficiency. For a similar appli

cation of this approximation, see ReVelle (1999, pp. 46-48). However, notice that the
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Figure 2.2: Water head and storage relationship

above expression is valid only if both St-i and St are not less than the dead storage,

SD, to be maintained. Had one of these storage volumes been less than SD, then

only a partial amount of the releases Rt can contribute towards generating electricity.

To overcome this obscurity and to compute an average of the energy generated in

any period t (t = 1, . . . , 12), we simplify the transitions of the system as follows.

Transition,

(i) from {^t-i > SD^ to {St > SD} takes place with probability (a)^

(ii) from {5t_i < SD} to > SD} with probability 01(1 — a)

(iii) from [St-i > SD} to {St < SD} with probability q:(1 — a)

(In this case, the amount of water released that can generate power is Rt + Sf
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SD (< Rt). However, since the storage St is not expected to be significantly

below the dead storage SD, released amount in this case is approximated by

Jit.)

(iv) From < SD} to (St < SD} with probability (1 — does not produce

any energy for period t.

In the case where (St-i < SD) we approximate the average water head by (SD +

St), and in the case where (St < SD) we approximate the average water head by

(St-i + SD). The expected energy production can then be expressed as follows:

EGt = {a)^uRt[-iSt-, + St) + f] + a(l - a)uRt[-(SD + St) + f]

+ a(l-a)uRt[^{SD + St-i) + f]

EGt = (oi)'^'.^Rt['^(St-i + S^ + /] + oi(jjRt\'^(SD + St) + /]

n  — (a)'^LoRt[-(SD + St) + /] + au)Rt[-(St-i + SD) + /]

-(afuRt[^(St-i + SD) + f]

EGt = (a)''ujRt[^(St-i + St) + /] + aujRt[^(2SD + + St) + 2/]

-(a)''ujRt[l(2SD^St-i+St)^2J]

EGt - -{ocfu:Rt[^(2SD) + 2/] + aujRt[^(2SD + + St) + 2/]

EGt = ~ocu)Rt(St-i + St) + aijjRt[e(SD) + 2f — ae(SD) — af]

Therefore, under these assumptions and approximations, we can express the expected
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energy production function in the following simplified form, for t = 1,... , 12:

EGt = -auRt{St-i + St) + auj[2f - af + e(l - a)SD]Rt. (2.41)

To check the validity of the approximations in (2.39), (2.40), and (2.41), the energy

computed by the model using (2.41) are compared with that obtained by simulating

the optimal release policy using exact energy computations. One such comparison is

depicted in Figure 2.3, which provides the necessary justification. Detailed simulation

experiments are discussed in Chapter 3.

Noting that
t-i

5(_i + St = 2So + Qt-i + — 2 Rr — Rt
r=l

and denoting the sum of 'adjacent' cumulative infiows by the random variable Jt {'■=
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Qt-i + Qt), the energy generation function in (2.41) can be restated as;

EGt = acj Rt ht + {So + 2/ - a/ + e(l - a)SD) +
vr=l

.  (2.42)

The chance constraint V{EGt > T) > 7 for firm-energy generation can then be

written as follows:

V I aojRt

V

\jt + (5o + 2/ - a/ + e(l - a)SD) - + \Rt
1  1
-J, + {So + 2f-af + e{l-a)SD)- +

\T=1

>

>  > 7

L

acoRt
> 7

vijt<

2L

aujR

2L

--2(5„ + 2/-a/ + e(l-a)SD)-2f^ie, + ii?,)) >
- 2 (So + 2/- a/+ e(l - a)S£i) - 2 JJ, + iij.) )

7

't-l

<(1-7)

/ 2L
\auRt

2L 1 Ar - 2 (So + 2/ - a/ + e(l - a)SD) - 2 I ̂  A, + -rA < (1 - 7)

R. I ^^-2(So + 2/-a/ + e(l-a)SZ))-2 + ) < (1 -
s.r=l

auR

 7)

2L 1 \=s-^ < ■F'7(l - 7) + 2 (So + 2/- 7/+ e(l - a)SD) - 2 ( ^ B, +-B, j
Multiplying both sides by V{EGt > L) > 7 has the equivalent deterministic

form:

L < aojRt
1  1- 7) + {So + 2/ - c/ + e(l - a)SD) - ^ B, + -fi,

\r=l

(2.43)

where is the inverse cumulative density function of Jj. After algebraic manipu-
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lation, the deterministic equivalent of the firm energy chance constraint becomes:

L- ,Rt) <0 , t = (2.44)

where,

Ct{a) := au - 7) + So+ 2f - af + e(l - a)SD^ (2.45)
and

ipt{oi, Ri,... , Rt) nn= au ̂  Rr + j Rt- (2.46)
Observe that the firm energy constraint (2.43) is nonlinear in the release quantities

since ij)t is nonlinear in Rt- Therefore, the firm-energy maximization problem is the

following deterministic nonlinear program;

{FP) : L* := max L
s.t. Rt>Tt-D; , t = 1,... , 12

L - Ct{o:)Rt - tpt{oi, i^i,... , i?t) < 0 , t = 1,... , 12

(2.47)

2.5.3 Phase two

Having determined the maximum firm energy L* in Phase-I, see (2.47), according

to the current iterate {K,a), Phase-II seeks to maximize the net benefit function by

optimally choosing K and a, subject to the bounds computed in (2.33) and (2.35).

The resulting net benefit maximization problem is:

[NBP) : max NB{K, a) = B{L*{K, a)) - C{K) (2.48)
s.t. ^^^min(Q:) ̂  K ̂ Kjiigx

0 ̂  Q: ̂  Qlmax
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provided that the target satisfaction probability is chosen not to exceed ̂ max, be.,

0 < 9 < 6jnax, and the initial storage satisfies the bounds: S'o.min < -S'o < S'o.max- Note

that the Phase-II problem, (NBP), is a bivariate nonlinear programming problem on

variables K and a.

In general, the feasible region of the constraints of (NBP) may not be convex.

The latter convexity may be useful in devising solution procedures for (NBP). First,

we identify sufficient conditions under which the convexity can be ensured.

Proposition 2.5.2 Let the p.d.f of Qt be uni-modal with mode denoted by Mt, for

t = 1,... ,12. The feasible set of (NBP) is convex if

0 > 9mi„ := 1 - [M, + T,+,]} (2.49)

and

P ̂  Pmin := 1 — [-^12 + 'S'o — S'D]. (2.50)

Proof The unimodality of Qt implies that Pqj^(q:) is concave for a < FQ^{Mt) and

convex for a > Fq. {Mt). Given the definition of Kt{Q) in (2.32), requiring at >

FQt{Mt) yields that K^i^{a) is convex. Noting the definition of at in (2.30), the

inequalities in (2.49) and (2.50) are obtained. n

Nevertheless, NB{K,a) may still fail to be convex or concave in its arguments.

The difficulty lies in that the optimal value function L* of (FP) is neither convex

nor concave in a, although it is concave in K. In the next section, we describe a

procedure for solving (NBP).
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2.6 Solution Procedure

The sequential deficit minimization problems in (2.29) of Phase-I are all linear pro

grams which may be solved using standard LP solvers. However, the firm energy

maximization problem in (2.47) is a nonlinear program due to the nonlinearity in the

energy constraint. Furthermore, Phase-II involves a bivariate nonlinear program, the

solution of which would require iterative solution of the programs in Phase-L In this

section, we first discuss solution on the firm energy problem and then the solution

details of the Phase-II problem.

2.6.1 Solution of (FP)

This nonlinear program is solved by the following iterative methods. The primary

solution procedure is credited to Griffith and Stewart (1961); also see, Bazaraa et

al. (1993) for a detailed exposition of the basic algorithm. In this method, the

nonlinear program (FP) is solved by successively approximating it by a sequence

of linear programs. At the iteration of this algorithm, the nonlinear constraint

(2.44) is replaced by the first order Taylor's (linear) approximation, evaluated at

Rt{k — 1) where (A: — 1) is the optimal solution of the approximating linear program

at iteration A; — 1 for A: > 1. For k = l, the initial solution .^(0) is set to be the

releases provided by the optimal solution of (DP) 12. Although convergence of this

algorithm is not generally guaranteed, it has been reported to be effective for solving

many practical problems. Whenever the algorithm fails to converge, or when it cycles,
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two other secondary solution procedures were incorporated for solving (FP), the first

of which is the Merit Function Successive Quadratic Programming (MSQP) algorithm

given in Bazaraa et al. (1993). In this case, a Linear Complementary Problem (LOP)

is solved using Lemke's Complementary Pivoting Algorithm (CPA). Whenever this

procedure also fails to find a solution, the Penalty Successive Linear Programming

(PSLP) algorithm is employed as the second secondary solution procedure.

As a necessary condition for optimality, resulting solutions are verified to be

Karush-Kuhn-Tucker (KKT) points. Furthermore, the second order sufficient con

ditions (SOSC) for optimality, see Fiacco (1983, Lemma 3.2.1), are also checked. If

SOSC of (2.47) are violated at the current iterate {K,a), then a direct search grid

procedure is implemented within a specified neighborhood of {K, a) to seek an im

proved iterate at which SOSC can be satisfied up to a prescribed tolerance. Having

such an iterate in hand, we proceed to solving the (NBP) using a gradient-based

technique, as given in the following section.

2.6.2 Solution of (NBP)

A two dimensional search technique based on a quasi-Newton line search algorithm is

used to solve the problem (NBP) for a given value of 0 e [0, ̂max]- For the exposition

here, consider the minimization version of (NBP). The iterative search procedure

is made more efficient by identifying the gradients of the function NB{K,a) with

respect to the variables K and a. Suppose at some iteration k of solving (NBP),

the gradient vector of NB{K, a) at the point x'' := [K'^, a'']' is given by g'^. Then, a
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descent search direction p'' is set by

where H'^ is a secant approximation of the Hessian matrix of NB at iteration k.

Then, a positive step length is chosen so that the changes to capacity and dead

storage reliability, represented by A^p^, yields a sufficient reduction of the objective

value, i.e., negative of the net benefit.

First, a maximum step length along is specified, satisfying the constraints

of {NBP). Then the backtracking line search strategy (i.e., the reduction of step size

from its initial value X^^ by quadratic and cubic interpolation) is implemented until

an acceptable value of A^ is found (see Dennis and Schnabel, 1983, p.l26), which

leads to the next iterate = x'' + X^p^.

Having determined the Hessian matrix update is obtained by the

"Broyden-Fletcher-Goldfarb-Shanno" (BFGS) update procedure, (Dennis and Schn

abel, 1983, Luenberger, 1984). The algorithm terminates at some iteration k whenever

one of the following conditions is met:

(i) The line search fails to produce a significant change in capacity and dead storage

reliability to improve the objective value (i.e., net benefit) along the direction

p^, or,

(ii) The gradient of the objective is zero. The gradient directions of the net benefit

function are computed as given in the next section.
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Gradients of the net benefit function

The gradients of the net benefit function are derived as follows, assuming that C(.)

is differentiable. Clearly,

dNB{K, a) dB{L) dL* {K, a) dCiK)
OK ~ dL dK dK

and

(2.51)

dNB(K,a) dB(L)dL'(K,a)
da dL da

(2.52)

Note that the optimal objective value L*{K,a) of problem (FP) in (2.47) depends

on the optimal objective value of the problem {DP)t in (2.29), t = 1,... ,12.

The relevant gradient expressions are derived by applying a sensitivity theorem in

nonlinear programming, given in Fiacco (1983, Theorem 3.4.1), under the assumptions

stated below.

Assumption 2.6.1 Given an iterate {K, a), at an optimal solution of the linear pro

gram {DP)t in (2.29), for t = 1,... , 12, and at an optimal solution of the nonlinear

program (FP) in (2.47),

1. the gradients of the active constraints are linearly independent

2. strict complementary slackness holds, i.e., if a constraint is held as an equality,

then the corresponding Lagrange multiplier is strictly positive.

Proposition 2.6.2 Given a current iterate {K, a), suppose the SOSC are satisfied for

the problem in (2.47). At this iterate, let the optimal Lagrange multipliers associated
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with the constraints identified below of the problem {DP)t in (2.29) be denoted by:

u\.j. : constraint (2.23) for r = 1,... ,12
W2t •' constraint (2.24) for r = 1,... ,12
: constraint Rr >Tr - D*, r = 1,... ,t-l

Moreover, let the optimal Lagrange multipliers be denoted by vj for the constraints of

the problem (FP) in (2.47):

v{ : constraint (2.23) for t=l,... ,12
vl : constraint (2.24) for t = 1,... ,12
^3 ; constraint Rt>Tt — D^, t = 1,... ,12
vl : constraint (2.44) for t — 1,... ,12

Then, under Assumption 2.6.1, the derivatives and ̂  are given by:

dL* A . A , dD: , ,
^ = + (2.53)

and

dL* ^ tdDl ^ ( dct{a) A . X

where and are determined for t = 1,... ,12 by the recursive equations:

(2.55)dK ^ ^ dK

and

T=1 r—1

(2.56)
T=1 T=1

t-1

*

T=1

For t = 1, the above notation sets ̂ ^(.) = 0.

Proof. See Appendix B. n
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The result in Proposition 2.6.2 is invoked only when the required SOSC conditions

are satisfied, as indicated previously. Our computational experience with the model

suggests that the use of the above gradient expressions can speed up the solution of

(NBP) by a several orders of magnitude, as opposed to using a pure direct search

technique.

2.7 Concluding Remarks

In this chapter, we proposed a model that captures the multipurpose objectives in

volved in the design of a water reservoir while recognizing the randomness in stream-

fiow. This is done through a chance-constrained optimization model for which some

of the reliabilities are specified a priori by the reservoir authority. The remaining

system reliabilities are determined as part of the solution of the capacity determina

tion model. Also, the model allowed the infcorporation of power generation aspects

of a reservoir to a sufficient degree of accuracy. A deterministic decision rule was

assumed for the model which in turn transformed the multi-stage problem to a sin

gle stage problem. However, consideration of a special target-priority policy helped

retain some of the dynamic aspects of the sequential decision problem. This leads

to a multi-staged goal programming formulation which was solved by a two-phased

iterative scheme.

In the next chapter, the model is applied to a real life situation. The data obtained

for the case study is fed into the model to determine the optimal dam size and an

optimal release policy. A simulation analysis of the release policy is carried out to
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validate the approximations and the modeling approach used in this chapter.
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Chapter 3

Application of the CCP Model

3.1 Data Analysis

The two phase optimization model in the preceding chapter is applied to a real-life

situation that involves planning the capacity (dam size) of a single hydro-reservoir.

This case study comes from the Sai-Buri reservoir project of the Energy Generat

ing Authority of Thailand (EGAT). The historical monthly inflow data is used to

form the random variables Qt (i.e., cumulative inflows), and their empirical distri

butions are generated. Tables 3.1, 3.2, and 3.3 provide the collection of cumulative

monthly inflows from 20 years of observations. The cumulative inflow is shown with

the corresponding cumulative probability.

Lognormal distributions are determined to closely approximate these empirical

distributions. However, various other types of theoretical distributions have also been

used in the literature, such as the uniform or multivariate normal distributions as in

Dupacova et al. (1991). The parameters of the lognormal distributions are determined

using the method of maximum likelihood estimation and the respective 'goodness-of-
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Table 3.1; Cumulative Inflows and corresponding cumulative probabilities (Months
1, 2, 3, 4)

Qi Q2 Qz Q4
CI(MCM) CP" CI(MCM) CP CI(MCM) CP CI(MCM) CP

20 0.14 50 0.08 75 0.06 80 0.03

35 0.325 80 0.18 110 0.08 125 0.08

50 0.47 110 0.37 145 0.25 170 0.21

65 0.71 140 0.54 180 0.37 215 0.35

80 0.815 170 0.69 215 0.54 260 0.39

95 0.83 200 0.82 250 0.69 305 0.68

110 0.89 230 0.86 285 0.79 350 0.75

125 0.91 260 0.92 320 0.82 395 0.83

140 0.93 290 0.94 355 0.88 440 0.92

155 0.94 320 0.94 390 0.92 485 0.93

170 0.96 350 0.96 425 0.92 530 0.94

185 0.96 380 0.96 460 0.94 575 0.94

200 0.96 410 0.96 495 0.94 620 0.94

215 0.97 440 0.98 530 0.96 665 0.94

230 0.97 470 0.98 565 0.96 710 0.96

245 0.98 500 0.98 600 0.96 755 0.96

260 0.98 530 0.98 635 0.96 800 0.96

285 0.98 560 0.98 670 0.98 845 0.98

300 0.98 590 0.98 705 0.98 890 0.98

315 1 620 1 740 1 935 1

"CI: Cumulative Inflow; CP: Cumulative probability
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Table 3.2:

5, 6, 7, 8)
Cumulative Inflows and corresponding cumulative probabilities (Months

Qs Qe Qr Qs
CI(MCM) Cpa CI(MCM) CP CI(MCM) CP CI(MCM) CP

100 0.02 140 0.01 250 0.04 360 0.02

155 0.07 200 0.03 315 0.08 444 0.06

210 0.12 260 0.14 380 0.16 528 0.11

265 0.28 320 0.2 445 0.23 612 0.26

320 0.4 380 0.29 510 0.36 696 0.38

375 0.64 440 0.55 575 0.61 780 0.51

430 0.81 500 0.73 640 0.69 864 0.67

485 0.83 560 0.79 705 0.74 948 0.78

540 0.89 620 0.86 770 0.83 1032 0.85

595 0.92 680 0.9 835 0.88 1116 0.87

.  650 0.94 740 0.9 900 0.88 1200 0.88

705 0.94 800 0.94 965 0.9 1284 0.9

760 0.94 860 0.96 1030 0.91 1368 0.95

815 0.94 920 0.96 1095 0.93 1452 0.95

870 0.96 980 0.96 1160 0.95 1536 - 0.95

925 0.96 1040 0.96 1225 0.95 ,1620 0.95

980 0.98 1100 0.98 1290 0.95 1704 0.95

1035 0.98 1160 0.98 1355 0.97 1788 0.95

1090 0.98 1220 0.98 1420 0.97 1872 0.98

1145 1 1280 1 1485 1 1956 1

"CI: Cumulative Inflow; CP: Cumulative probability
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Table 3.3: Cumulative Inflows and corresponding cumulative probabilities (Months
9, 10, 11, 12)

Q9 Qio <3ii Qi2
CI(MCM) Cpa CI(MCM) CP CI(MCM) CP CI(MCM) CP

690 0.04 750 0.02 800 0.02 825 0.02

790 0.12 850 0.06 900 0.06 927 0.06

890 0.24 950 0.17 1000 0.14 1029 0.1

990 0.31 1050 0.19 1100 0.16 1131 0.17

1090 0.4 1150 0.35 1200 0.31 1233 0.29

1190 0.5 1250 0.39 1300 0.36 1335 0.37

1290 0.56 1350 0.44 1400 0.41 1437 0.39

1390 0.65 1450 0.54 1500 0.49 1539 0.44

1490 0.74 1550 0.62 1600 0.58 1641 0.54

1590 0.81 1650 0.64 1700 0.6 1743 0.56

1690 0.88 1750 0.74 1800 0.66 1845 0.65

1790 0.89 1850 0.83 1900 0.72 1947 0.72

1890 0.89 1950 0.88 2000 0.82 2049 0.8

1990 0.91 2050 0.88 2100 0.88 2151 0.86

2090 0.92 2150 0.9 2200 0.9 2253 0.91

2190 0.93 2250 0.9 2300 0.92 2355 0.91

2290 0.95 2350 0.94 2400 0.92 2457 0.91

2390 0.95 2450 0.95 2500 0.98 2559 0.95

2490 0.97 2550 0.96 2600 0.98 2661 0.98

2590 1 2650 1 2700 1 2763 1

"CI: Cumulative Inflow; CP: Cumulative probability
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fit' x^-values are given in Table 3.5. The critical value is Xgs^ dof=9 — 16-919-

An alternative to the traditional hypothesis testing, one could use the more recent

information criteria measures, namely Akaikes's AIC and Bozdogan's ICOMP, see

Bozdogan (1990). These criteria define the statistical model as follows:

Statistical Model= Signal + Noise.

ICOMP, for example is designed to estimate a loss function of the form:

Loss= Lack of Fit + Lack of Parsimony + Profusion of Complexity.

By deriving the expression for lack of fit, lack of parsimony, and profusion of com

plexity for several theoretical possible distributions, AIC and ICOMP will select the

model that minimizes the loss function. For example, if we assume that the data is

normally distributed, then:

AIC (Normal) = nZn(27r) + nln(a'^) + n + 2(2),

where is the estimated variance. If we assume that data is lognormally distributed,

then:

AIC (Log Normal) = n/n(27r) -|- nln(a^) +n + 2 + 2(2),

where ~ ̂)^ is the estimated variance. If the data is assumed to

be exponentially distributed, then:

AIC (Exponential) = 2n + 2nln(x) -I- n -I- 2(1),

where x = ̂ sample mean. Similarly,
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Table 3.4: AIC Goodness of Fit Test
Month AIC Values

Geometric Poisson Normal Lognormal Exponential

Qi 246 GO 240 173 266

Q2 274 oo 267 200 294

Qz 282 oo 273 207 302

Qi 291 OO 283 214 311

Qz 299 OO 291 222 319

Qe 304 oo 294 228 324

Qr 312 oo 297 237 332

Qz 324 oo 308 248 344

Qd 338 oo 315 263 358

Qio 339 oo 315 265 359

Qn 340 00 315 266 360

Qi2 341 oo 315 267 361

AlC(Poisson) = 2nxln{x) + 2nx ln'r{xi + 1) + 2,

and

AIC {Geometric) = —2nxln{x) + 2n(l + a;) + ln{\ + rr) + 2.

Table 3.4 displays the goodness of fit results from using AIC. Note that the AIC crite

rion is minimized for the LogNormal Assumption indicating that that the lognormal

distribution best describes the set of data we have. For more on informational model

selection criterion, see Akaike (1973) and Bozdogan (1987, 1988).

The flood reserve capacities as well as the water targets are also reported in Table

3.5. Note that for the present analysis, Vt is constant at 124 MCM for all t = 1,... , 12.

The planning problem seeks to address three levels of water targets, labeled small,

medium, and large targets. The remaining given fixed data is: dead storage SD—IAQ

MCM and maximum reservoir capacity Kjnax= 2,500 MCM.
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Table 3.5: Inflow parameters and water targets
month lognormal flt of Qt flood target level

mean(MCM) std.dev(MCM) X^-value reserve" small medium large
1 66.82 44.49 4.378 124 11.05 38.95 66.85

2 154.01 93.36 1.536 124 33.34 60.25 87.15

3 237.46 128.83 4.025 124 29.91 56.68 83.45

4 320.22 170.66 4.389 124 23.38 53.07 82.76

5 392.29 192.62 7.643 124 23.07 47.57 72.07

6 493.24 219.71 7.151 124 30.52 65.86 101.2

7 631.44 246.65 4.123 124 22.15 80.05 137.95

8 867.83 284.38 3.992 124 30 133.2 236.4

9 1299.84 425.95 7.205 124 20 226.01 432.01

10 1507.19 481.03 10.478 124 15.41 111.76 208.1

11 1618.09 510.81 8.278 124 19.07 65.02 110.96

12 1692.56 534.32 11.244 124 8.45 41.48 74.51

Table 1: Inflow parameters and water targets

Tor the present analysis, Vt is constant for all t.

Linear approximation of the dam elevation-storage relationship, see (2.39), yields

e = 0.016m/MCM (t-statistic=15.139) and / = 28.67m (t-statistic=65.471). The

dam cost-capacity relation was extrapolated from historical records and is determined

to be linear with C{K) = 380.90 -f 0.136iir mp (million Baht - Thai currency), see

Table 3.6. Using simple linear regression, we get a Pearson correlation coefficient of

0.998 which indicates a strong positive relationship. The t-statistic was computed to

be 24.3, and the p-value is 0.4 %. Note, however, that the latter linearity is really not

a simpliflcation, as the Phase-2 model can handle nonlinearity (preferably concavity)

with equal ease. The constant for energy generation in (2.40) is a; = 1.962, assuming

an average efficiency of 90% for the turbine plant and making allowance for frictional

head loss along the penstock length by a factor of 80%. The beneflt function B{.) is

assumed to be linear based on a present worth factor of 0.4310m^per mega watt-hour.
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Table 3.6: Reservoir Cons
Reservoir size Cost (MB)"

450 445

675 468.5

950 510

1300 557.5

ruction Cost Data

"MB: Million Bahts

i.e. B{L) = 0.4310L.

3.2 Model Application and Simulation Analysis

The two-phase optimization model was run for various parameter combinations for

7, p, as well as for different initial conditions 5'o. The output from the optimization

model, i.e., the capacity and the release schedule, is used within a simulation model to

investigate the system behavior. While optimization models utilize many simplifying

assumptions, simulation models provide an alternative powerful tool for analyzing

the system with its real-world complexity. Simulation systems have been studied

extensively in the literature, see for example. Shannon (1975) and Law and Kelton

(1991). In the context of water resources, ex-post simulation analysis of decisions

obtained by optimization models has been recognized as a standard tool and has

been researched extensively, see for example Dupacova et al. (1991). For an excellent

review of simulation models, see US Army Corps (1991). In particular, simulation

is an ideal tool for validating the results given by optimization models that have

incorporated approximations for the purpose of solution tractability, as in our case.

The specific objectives of the present simulation study are:
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1. validating the solution given by the proposed optimization model, and

2. providing further insight into the problem and identifying complex interaction

that exists among various system parameters.

3.2.1 Simulation Experiments

For a specified set of input parameters (reliabilities), the optiihization model is first

run to determine the corresponding optimal reservoir capacity and the associated op

timal release schedule. Then, cumulative monthly inflows are simulated according to

the specified lognormal parameters. For each random scenario of 12-monthly cumu

lative inflows generated, the simulation model tracks constraint violations, as well as

the energy generation during each month. The simulation is carried out with 100,000

such scenarios generated randomly. Simulation procedure also tracks how often the

specified target-priority policy is violated. Consequently, the simulated values of tar

get satisfaction reliability {9s), dead storage reliability (a^), flood storage reliability

(Ps), and over-year storage reliability (ps) are computed. These probabilities are eval

uated by accumulating the number of times a given event is satisfied and then taking

the average over the number of simulation runs (scenarios). A comparison of these

simulated reliabilities with the reliabilities used within the optimization model is used

as one yardstick for validating the proposed optimization model.

It may be noted that when energy production is computed, the simulation model

applies the exact formulae rather than the linear approximations used in the opti

mization model. We also define the term potential energy as the (maximum) amount
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of energy that could be generated if the available storage can be released without

bringing the storage below the dead storage. The simulation model computes both

the monthly potential energy (PEGt) and actual energy generated {EGt) where the

actual energy is computed following the release schedule given by the optimization

model. The probability that actual monthly energy exceeds the firm energy level L*

determined by the optimization model, denoted by 7^, is also computed.

For further validation of the proposed optimization model in terms of energy

generation, we develop simulated probability (frequency) distributions of.firm energy.

Under a particular scenario of 12-monthly infiows, the realized value of the firm energy

random variable Lfg is given by Lfe = min{£?Gt : t = 1,... , 12}. We focus on the

expected firm energy E[Lfe] of the distribution of Lfe, as well as the probability %

that the simulated firm energy exceeds L*, where L* is the firm energy determined

by the optimization model corresponding to the input reliability level 7. Note that

the simulated reliability % provides an estimate of the 'true' firm energy generation

reliability 7 = P{Lfe > L*}, see (2.16).

In addition to the validation of the output of the optimization model, sensitivity

analysis of the output is also performed via simulation. This analysis focuses on such

questions as:

1. the effect of varying water targets on system performance attributes,

2. the effect of initial storage on optimization model output and its simulation,

and
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3. the effect of varying the release schedule while fixing the reservoir capacity at

a certain optimal size.

3.2.2 Computational Results

The optimization model was run for a broad range of input parameters. Generally,

the simulation of the optimal capacity and releases confirms that resulting simulated

system reliabilities exceed those specified in the optimization model. However, a

particularly interesting feature needs to be highlighted here. Consider the case ofO —

0.8 and setting the initial storage Sq to S'o.min = 191.15 - see (2.37) applying medium

targets - along with p = 0.95, /5 = 0.8, and 7 = 0.9 in the optimization model. Three

different options are investigated; no targets, small targets, and medium targets. No

targets case is modeled by setting Tt = ̂ and 0 = 0 in the optimization model.

The simulated reliabilities of the resultant optimal capacity and releases are in

Figures 3.1 and 3.2, respectively, for monthly energy production and dead storage

reliabilities. In Figure 3.1, the simulated firm energy (monthly) reliability falls below

7 = 0.9 for no targets and small targets, during months 2 through 8. Coincidentally,

the optimal dead storage reliabilities as determined by the optimization model for the

no target and small target cases remain at low levels of 0.60 and 0.68, respectively,

while that for the medium target case is 0.88. This behavior characterizing simulated

7^ falling below the specified 7 occurs almost consistently when the corresponding

optimal a turns out to be rather small (a < 0.70), while simulated fig or ps remain

above the specified reliability levels. This leads us to the conclusion that at low levels
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Figure 3.1: Simulated firm energy generation reliability for 5'o=191.15
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Figure 3.2: Simulated dead storage reliability
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of q;, the energy generation function EGt in (2.41) over-estimates the actual energy

production. This may be attributed to the simplifying approximation incorporated

in the derivation of the EGt expression. However, at higher values of a, this anomaly

is not as prominent, see Figure 3.3, where the initial storage is set at Sq = 669 and

the corresponding optimal a at all target levels turns out to be 1.0. Consequently, in

the remaining analysis, a minimum level for a, denoted amin, is specified in (NBP)

to ensure that no over-estimation of energy generation would occur in the optimiza

tion phase. Figures 3.4 and 3.5 show the sensitivity of L* (firm energy from the

optimization model) on the initial storage volume and the over-year storage relia

bility p, as targets vary from small to medium. These figures correspond to the case

P = 0.65,7 = 0-85, and 6 = 0.65. Even at these moderate values of reliability, it

appears that firm energy output is significantly affected by increased water targets.

Figures 3.6 and 3.7 depict the latter sensitivity for the setting: ̂  = 0.95,7 = 0.95, and

9 = 0.95. Evidently, with stronger requirement on performance reliability, presence

of larger targets dramatically affects the optimized firm energy production level.

The simulated firm-energy production agrees closely with that produced by the

optimization model. Figures 3.8 and 3.9 depict the sensitivity of the distribution of

simulated L/e on the over-year storage reliability p, for the case of medium targets

and setting = 669, /? = 0.8, 7 = 0.9, and 9 = 0.8. As evident from these plots,

as p increases, the variance of the distribution of firm energy diminishes while the

expected firm energy also decreases. Thus, it appears that a higher level of over-year
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Figure 3.3: Simulated firm energy generation reliability for 5o=609.02
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Figure 3.4: Sensitivity of L* on p and Sq for small targets (low reliabilities)
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Figure 3.5: Sensitivity of L* on p and Sq for medium targets (low reliabilities)

F irm tnargy L* 4000

0.95 0.725

r« Ma b HIty rh o

Figure 3.6: Sensitivity of L* on p and Sq for small targets (high reliabilities)
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Figure 3.7; Sensitivity of L* on p and Sq for medium targets (high reliabilities)
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Figure 3.8; Simulated firm energy; p=0.725
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Figure 3.9: Simulated firm energy: /9=0.95

storage reliability is preferable in the optimization model, which is also consistent with

the intended long-term planning nature of the problem. Furthermore, as indicated

on these figures, the simulated reliability 7s of actually meeting the firm energy level

L* produced by the optimization model also improves with larger p.

To study the impact of varying reservoir releases from their optimal values, con

sider the case of medium targets with = 0.95, 9 = 0.9, 7 = 0.9, p = 0.95, and

5o = 450. As releases are decreased from their optimal values, see Figure 3.10,

the simulated firm energy reliability, 7s, drops drastically; in contrast, the over-year

storage reliability (p) improves only slightly. Increasing releases, on the other hand,

improves % up to a certain level, but p is adversely affected. From a practical stand-
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Figure 3.10: Sensitivity on optimal releases

point, it would be preferable to use a release schedule slightly larger than the optimal

releases so that a stable 7^ is ensured at the expense of a slight degradation in p.

3.3 Concluding remarks

As demonstrated in this chapter, the methodology appears as an efficient and accurate

procedure for determining the optimal reservoir capacity. The proposed model along

with the simulation of its solution may be used by decision makers as a way of gain

ing further insight into the capacity planning problem at hand. Due to the longterm

planning nature of the capacity determination problem, the use of the specific deter

ministic release policy within a monthly model to trade oiff longterm benefits versus

costs may be appropriate. However, chance constrained formulations neither penal-
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ize explicitly the constraint violations nor provide recourse action to correct realized

constraint violations as a penalty. For this reason, Hogan et al. (1981) warn that

the practical usefulness of chance constrained programming as a modeling technique

is limited and it should not be regarded as a substitution for stochastic program

ming with recourse. In the next chapter 4, we shall develop a multi-stage stochstic

programming model where we take into account explicitly the magnitude of the de

viations rather than only the frequency of violations as in the chance constrained

formulation.
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Chapter 4

Multi-stage stochastic
programming model

4.1 Introduction

Stochastic programming with recourse provides a framework for modeling multiperiod

sequential decision problems with uncertain data. Such a model corresponds to the

real-life situation where, first, a decision is taken subject to the system constraints,

and subsequently, upon observing realizations of random parameters, a second, re

course, decision is taken. This may be continued over many future decision epochs

where a decision at some period t is taken contingent upon all observations made so

far, but without hindsight of the future. This yields a multiperiod stochastic program

ming model with recourse. Dantzig (1955) pioneered this approach. He suggested a

LP model with uncertain data for a two stage problem. Activity levels, or decisions,

are determined in the first stage subject to the problem constraints. In the second

stage, after some of the random parameters have been observed, a corrective action

is made.
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Stochastic Programming with recourse is conceptually straightforward but repre

sents some difficulties in applications. In general, it is easier to solve linear simple

recourse problems with random variables being discrete, uniform, or normal, see for

instance Ziemba (1974). Stochastic linear programs with discrete random variables

usually lead to deterministic equivalents of large size. Other types of random distri

butions either require discrete approximations, as in our case as we will show later,

or resolve themselves into nonlinear deterministic equivalents, see Kail (1982), and

Wets (1974). For computational approximations for such problems, see Edirisinghe

and Ziemba (1992, 1996a, 1996b). Complete analysis by a stochastic programming

with recourse model requires that consequences of recourse actions be modeled and

computed for all possible realizations of the random variables. Recourse actions are

evaluated by an adequate estimation of losses resulting from random variation, which

is difficult to find in most cases. It is our intention to present the general multi-stage

stochastic formulation in this chapter, and then in later chapters adapt dynamic pro

gramming type algorithms to solve this multi-stage stochastic programming model

efficiently.

4.1.1 Literature Review

Stochastic LPs for Markov processes have been studied by Manne(1962) and Thomas

and Watermeyer(1962). Loucks(1968) developed a stochastic LP for a single reservoir

subject to random, serially correlated, net inflows that were described by a first or

der Markov chain and transition probabilities were estimated using historical inflows.
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Houck and Cohon(1978) also assumed a discrete Markov structure for the stream-

flows. Dorfman(1962) and Dupacova(1980) applied the same idea to the problem of

water resources management and planning. In this type of models, the decisions in

the consequent periods may be represented by loss functions of not meeting some op

erational characteristics. Arunkumar and Yeh(1973) used the stochastic DP method

to maximize firm power output. Turgeon(1981) developed stochastic DP models for

the optimization of weekly operating policies of multireservoir hydroelectric power

systems.

4.1.2 Problem Setting

In chapter 2, we developed a chance-constrained programming model that recognizes

the randomness in monthly water inflow while allowing for target priority operation.

The results obtained from the solution of the model were robust when validated

through the simulation model. However, the CCP model allows only for uncertainty

being described according to a probability density function, (pdf), and thus sequential

realization of random inflow does not directly influence its release policy.

In this chapter, we develop a multi-stage stochastic programming with recourse

model for the reservoir problem involving multiple periods representing 12 months

of operation. However, we have to take into account the actual inflows and adapt

the release policy to the sequential unfolding of the random parameters. The main

source of randomness in the reservoir is the monthly water inflow to the reservoir.

The downstream demand for irrigation water is prescribed a priori and thus it is not
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t=3

t=2

t=l

Figure 4.1: Scenario tree

random, see Chapter 2. During any month, the randomness of inflow will be modeled

by a sample of discrete outcomes, generated randomly subject to the history of inflow

up until that month. In the sequel, we will describe how such samples are generated
\

to develop what is termed a scenario tree, see Figure 4.1, of potential future inflow

patterns. With fairly dense scenario trees such models tend to become exponentially

large as the number of stages and periods increase, and thus the computational cost

to solve them also increases exponentially. Therefore, it would be imperative to

either use approximation techniques such as Edirisinghe (1996, 1999) and Edirisinghe

and You (1996), and/or exploit the structure of the problem and identify or devise

decomposition techniques that render efficient solution of the multiperiod reservoir
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model with scenario trees.

4.2 Multistage Stochastic Model

When developing a stochastic programming model, it is important to understand

the distinction between anticipative versus nonanticipative release policy. The former

case corresponds to the situation where release decisions in a given month are made

after observing, or forecasting, a particular sequence of inflows for future months.

Needless to say that such a release policy suffers from the drawback of being tailor-

made to a simple (sequential) forecast of inflow for future months. Among other

things, such an anticipative release policy could lead to severe problems in meeting

requirements such as energy generation, flood protection or irrigation demand and

thus it is unimplementable. On the other hand, in a nonanticipative release policy,

the model makes a decision at the present time while taking into account the diflFerent

outcomes of the random event in a probabilistic sense. In the problem at hand, the

reservoir manager must make a release decision before knowing what the inflows will

be in the future. Therefore, the model we devise is nonanticipative, and it requires

a "here-and-now" solution. As in the chance constrained model, the proposed model

will maximize the net benefit from the energy generation less the costs associated with

the reservoir construction as well as other operational or recourse costs. Operational

or recourse costs are imposed on the model so as to penalize the system operation

that would tend to violate the specified system constraints. These will be discussed

next.
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4.2.1 System Constraints

We consider the problem of planning and operation of a multi-purpose water reservoir

as described in Chapter 2. In the OOP model, the system constraints are specified as

chance constraints, where constraint violations are allowed and controlled via proba

bilities. In the model presented in this chapter, the degree of violation of a constraint

is considered explicitly and controlled. First, the storage level at the beginning of

month (t +1), St, must be at least SD, the dead storage level, for energy to be gener

ated. Therefore the deviation from SD, denoted by is modeled by the following

equation:

St-SD = (4.1)

Note that is a random variable and > 0 indicates the satisfaction of the

dead storage constraint in month t. In the COP model, we considered the chance

constraint > 0) > a requiring a 100% satisfaction of the constraint. In

the present model the quantity max{5f^, 0} is penalized directly under all possible

realizations of infiows.

The reservoir is also used to mitigate fiood hazards during high infiow seasons.

The deviation from maintaining a specified fiood reserve, Vt in month t, is given by

the equation:

St-{K- K) = . (4.2)

In order to ensure continued operation of the reservoir in subsequent years provided
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that the inflow distribution remains unchanged, we require the terminal storage, St,

be close in value to the initial storage, Sq. The deviation of St from the initial storage

level is given by the equation;

St-So = (4.3)

In chapter 2, modeling the target priority directly with a linear constraint was not

possible since the releases were considered to be deterministic. A surrogate constraint

was used to ensure demand for water was satisfled with a certain probability. In the

present model, releases are not constrained to be deterministic, i.e. releases conform

to a nonanticipative policy. Therefore, the deviation of meeting water targets are

given by:

Rt-Tt = 5f. (4.4)

Note that flood reserve constraint violations correspond to > 0, and water target

constraint violations correspond to < 0. However, violation of the overyear storage

requirement indicates 5^ ̂  0. Since the operation of a water reservoir is a continuous

process in time, the ending storage and the beginning storage are related by the

continuity equation,

St = Si-\ + /t — Rt, (4.5)

assuming no other loss of water is possible. In the next section, we consider the case

of modeling the energy generation under the stochastic programming with recourse

approach.
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4.2.2 Energy generation

In chapter 2, the firm energy level, defined as the minimum guaranteed energy gener

ated throughout a planning horizon, was maximized subject to the system constraints

and that the target priority in the release policy is satisfied. In order to maintain

the target priority nature and for computational convenience, a Aq release policy was

considered in the CCP model. However, in the present model, such a restriction is

not needed and the releases are random functions that depend on the history of infiow

realizations. In order to maximize the firm energy level, a certain firm energy level is

specified to the model and the deviation of min(£'Gf, t = 1,... , T), is accounted for

and minimized as will be explained in the next subsection.

Energy generation constraint

The energy generated is a function of the release and the average water head on the

turbines. Given a transition of the system form St-i to St, as in (2.40), the energy

generated at period t can be represented by the following

EGt = uRt[^{St + St-,) + f]. . (4.6)

Note that the release Rt will not contribute towards energy generation if both St and

St-i are below the dead storage level. In order to compute the exact value of the
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energy generation, we define the variables Xt, yt, ht, and zt as follows

^t= ■{^ 1 . (4.7)
10 otherwise

fO' if5t>SD,{-Sf otherwise '
ifS.>SD,

0  otherwise

=  if ̂ =10R.,=l,
10 otherwise

Note that [St + St-i) may be restated as:

St + St-i = 2SD + (4.11)

For the case when both the beginning and ending storages in month t are above the

dead storage,

St + St-i = 2SD + ht + ht-i (4-12)

holds. In general, however, ^{2SD+ht+ht-i) represent the average "effective storage"

available for hydropower generation. We also want to determine the effective release,

defined as the released amount of water that contributes towards energy generation.

This can be done by subtracting the amount of water below SD from the release Rt

as follows

Reff = Rt-yt- yt-i (4.13)

The energy generation function can therefore be written as follows

— ajzt{Rt — yt~ yt-i)[—(25'Zl -\- ht-\- ht-i) + /] (4-14)
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Observe now that only the amount of water released that contributes towards energy

generation is taken into account. Likewise, the average water head on the turbines is

not over-estimated by taking the simple average of St-i and St as in the CCP model.

Now to ensure a given firm energy level, say rj, any deviation from 77, which we shall

represent by 6^^, is penalized. Therefore, the energy generation constarint violation

can be written as follows:

ri-EGt = 5f''. (4.15)

4.2.3 Multistage stochastic model

Rewriting the constraints

As we mentioned in the introduction, the energy authority has to make here-and-now

decisions regarding the releases. This implies that the release in the first period, J?i,

is independent of the infiow. The same holds true for the target violation variable

Sf since the target satisfaction depends only on the release. However, the storage

at the end of period 1 depends on the infiows due to the continuity equation (4.5).

This dependence implies that 6f, and Sf^ also depend on the realization of the

random event, i.e. which infiow occured. Note, however, that the release in period 2

depends on the ending storage of period 1, 5i, and does hence depend on the inflow

in period 1, /i. To reflect these dependencies on which of the infiows was manifested,

let ?it-i := /i,... ,Jt_ 1 be the history of infiows up to a period t. The constraints

(4.5),(4.4),(4.2), (4.1), and(4.3), are written as follows

+ A'Ht-i - Rt,nt-i ', t = 1,... ,T (4.16)
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(4.17)

St.n..,-(K-V,) = S[;^_^-, t = l,...,T (4.18)

5.,k,-. -SD = 5™ i = l,...,T (4.19)

~ So = ^ — 7^ (4.20)

The energy generation constraint is more cumbersome since we want to consider a

firm-energy level, which is the same over a specified time horizon. Therefore, the

penalty 5f^ is taken as the deviation of the firm energy level from the specified

energy level across a scenario. This delicate dependence can be easily represented by

rj - EGt,nt-i = ^ = 1, n • n , T (4-21)

The objective funtion

In the elective function, we want to minimize the penalty from operating the reser

voir. The penalty being the cost of deviating from the reservoir operating character

istics. So it can be represented by the following

min t = (4.22)

Note, however, that need not be considered explicitly in the objective function

since it's impact is implicitly penalized in the energy generation function EGt- The

cost function in (4.22) is nothing but the sum of the expected cost of each variable
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in each scenario. The complete objective function can be written therefore as

1  ̂ (4.23)

t=l t=l

where (p is the set of all possible scenarios.

Complete Multistage Stochastic Model

We have defined the variables Xt, yt, ht, and zt earlier to define the energy generation

constraint. However, we have introduced them as indicator function rather than

constarints that can be included in the complete formulation of the model. To convert

those to constraints, we proceed as follows. Let M denote a very large number.

t = (4.24)

-Afit.w,-, t=l,...,r (4.26)

> 0; t = l,...,T (4.26)

t = 1,... ,T (4.27)

t=l,...,T (4.28)

Kut-, = t = (4.29)
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With these definitions (constraints) in place, the multistage stochastic model is com

pletely defined. The formulation is peresented in its general form as the following

Multistage Stochastic Program (MSSP).

{MSSP)r: min .)
+  )) + + Efc. (7""-Jf," (C«.-.))]

S.t.

~  ; t = 1,... , T

~ So = t = T

- yt,nt-i S: ^ = 1) • • n , ̂
> 0; t =

Si t = 1, . . . ,T

t = 1,... ,T

V - ^ = 1, - • • , T

(4.30)

This is a general formulation in all aspects. The time horizon is left as a parameter,

T, and so are the penalty cost functions. Now that the model is complete, a solution

procedure needs to be devised. In the next section, we propose stochastic dynamic

programming as a solution technique to solve this model efficiently.
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4.3 Solution procedure: Stochastic Dynamic Pro
gramming

4.3.1 Use of Stochastic Dynamic Programming

Dynamic programming (DP) is a solution procedure credited largely to Bellman(1957).

The popularity and success of this technique can be attributed to the fact that most

multistage optimization problems can be translated into a sequence of nested evalu

ation problems. In addition, it has the advantage of effectively solving highly com

plex problems with a large number of variables by decomposing it into a series of

subproblems which are solved recursively, see Yeh (1985). To decompose a general

problem into multiple stages with decisions required at each stage, the value of ev

ery stage should satisfy the separability condition and the monotonicity condition,

see Nemhauser (1966). A linear objective function, for instance, is separable if the

different decision variables, say Xj, appear in separate terms CjXj. The problem at

hand has these separability and monotonicity properties. However, Yeh (1985) states

that the usefulness of the technique is limited due to the computational complexity

arising from the curse of dimensionality. The latter refers to the fact that a DP size

increases exponentially with the number of periods/stages and outcomes considered

in the model. He further states that stochastic DP is extremely well suited by its

nature to handle stochastic problems for long-range operation, which is part of what

our model accomplishes. By exploiting the special nature of the model, we intend to

solve the model efficiently using stochastic DP.
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4.3.2 Stochastic Dynamic Programming Model

By inspecting equations (4.1),(4.2),(4.3),(4.4), and (4.5), it becomes apparent that

all these constraints depend on two variables, St-i and Rf. In other words, given

the beginning storage and the release at period t, one can compute the deviations

and the value of the objective function explicitly. This is a very important remark,

it basically reduces the model (4.30) to an evaluation problem. One can, therefore,

consider a grid of discretized St-i and Rt and compute all other values, including the

energy generated, and find which combination minimizes the cost or maximizes the

benfit depending on the objective.

To apply this idea to the model, we need first to introduce the notion of a "scenario

tree". A tree is a connected graph that contains no cycles. A graph consists of a set of

nodes that are connected together with a set of arcs. A graph is connected if every two

nodes are connected in the sense that there is a path, or a walk without repetition of

nodes, between the two nodes. A rooted tree is a tree with a specially designated node

called the root. We often view arcs in a rooted tree as defining predecssor-successor

relationships. The predecssor of a node is the next node in the unique path from that

node to the root. Each node in a tree has one unique predecessor, but not necessarily

one successor. A scenario tree is a tree where the nodes represent decision points,

and the arcs represent possible realizations of a random parameter. In our model, the

nodes coorespond to the beginning of each period following a specific scenario, and

the arcs correspond to the possible realizations of the montly infiows.
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Consider period T — 1 and at each node in that period compute the reservoir

characteristics for each combination iSj-Li For each discretized release, we

compute the expected cost depending on the set of inflows It- For each beginning

storage St^i, we flnd the release that minimizes the penalty cost. We store the

information from each node as an array indexed on the discretized Once all

nodes in period T — 1 are done, we proceed backwards to period T — 2. We repeat

the same procedure with one exception, which is that for each combination 5y_2 and

Bt_i, the cost function for each inflow needs to include the cost from period

T — 1. This is accomplished by computing St-i which is the ending storage at period

T — 2 and the beginning storage at period T — 1, and finding the cost associated with

that volume from the cost arrays that have been computed in the previous step for

period T — 1. The exact ending storage may not be in the cost array in which case

we can use any of the interpolation techniques. We proceed iteratively backwards

until we reach the starting point with given So and search on Ri- This basic idea will

be utilized in the coming chapters to devise algorithms depending on the different

assumptions we make on the monthly water inflows.

4.4 Concluding Remarks

In this chapter, we have developed a mulit-stage stochastic program for the capacity

planning of a multi-purpose water reservoir. This model is presented in its most

general form, where all the model parameters are left as general. A solution approach

using stochastic dynamic programming will be implemented. However, due to the size

87



of the MSSP problem, it would not be possible to solve this problem in a reasonable

amount of time. To solve this problem efficiently, we have to recourse to either

restricting assumptions that will lead to approximate rather than optimal solutions,

or aggregation which is in itself a decompoisition method that will yield a bound on

the optimal solution. In other words, one cannot hope to solve a problem of this size

to optimality using available methodologies and available computational tools.

In the ensuing chapters, we present three different stochastic dynamic program

ming models that would enable us to provide computational procedures that will

also be validated using simulation. In chapter 5, we present a stochastic dynamic

programming model for the case of independent monthly inflows, and the case of

restricted dependent cumulative monthly inflows. We will show that under these two

assumptions we devise a very efficient solution algorithm. Then, in chapter 6, we

peresent an aggregated dynamic program where we conserve the dependence among

monthly water inflows, but reseort to aggregation to reduce the problem size. We

develop an efficient dynamic programming algorithm to solve the problem.
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Chapter 5

Dynamic Programming Models of
Independent and Dependent
Inflows

In Chapter 4, we developed a multi-stage stochastic program in a general setting.

However, the solution of such a model in its full generality would be computation

ally very difficult. This is owing to the fact that the deterministic equivalent of the

stochastic program is a massively large scale nonlinear mixed integer programming

formulation. For instance, with 12 monthly periods and 10 outcomes of random

inflows per period, the model has 10^^ diistinct scenarios and thus the size of the

problem is of 0(10^^). To overcome this seemingly impossible task, we propose a

dynamic programming based solution technique. However, stochastic dynamic pro

gramming as a general solution technique suffers from the computational drawback

known as the curse of dimensionality. The latter term refers to the fact that as the

number of stages in a dynamic program increases, the computational complexity in

creases exponentially with the flneness of state space discretization. In a stochastic
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dynamic program, the complexity is even worse due to increases in the number of ran

dom outcomes per stage. In this chapter, we present two special cases of the model in

Chapter 4 that can be solved rather efficiently, namely the case where monthly inflows

are independent of each other, and the case when monthly inflows depend only on the

cumulative inflow thus far. In Section 5.1, we present the general recursive formulae

for the dynamic programming approach. In section 5.2, a "Dynamic Programming

with Independant Inflows" model is presented. Then, in section 5.3, we present a

"dynamic programming with resricted dependence" model.

5.1 Dynamic Programming General Recursion

In chapter 4, we proposed a multi stage stocahastic program with recourse, and we

proposed dynamic programming as a solution approach. Let Ht-i = {/i,.. •

be defined as the history of the inflows realized up to a period t. Define the state

space as being the pair (J-Lt-u St-i)■ The state of the system is completely defined

by this state space definition. The history of inflows l-Lt-i provides the information

on what scenario of inflows has realized up to the period t. The model is to select

the release Rt that would minimize the expected penalty cost, less energy benefits,

relative to the inflows. The value function, denoted by ^6t(.), at the node %t-i of
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uncertainty resolution is then defined by the following, for a given value of St-i'.

St-i) = niin St-i, It, Rt) + (f>t+{'Ht, -S't)]

si.

St + Rt = St-1 + It

St-SD = ^

Rt-Tt = (5.1)

St-{k-V) = 5!

u-EGt =

St-So = 5^°, m = T

Rt > 0.

Where,

T{%t-i,St-i,It,Rt) is the net cost function due to the penalties 5^^, 5^, S[, 5f°,

and 5^° and benefit due to the firm energy v. Also, denotes the conditional

expectation with respect to the random inflow R given the resolution of uncertainty

up to period t, i.e., Rt-i-

5.2 Dynamic Programming: Independent Inflows
Models

Solving the dynamic program (5.1) requires the solution of the nonlinear program

at each node Rt-i, for a specified 5f_i. This is an orenous task as the number of

such nodes increases exponentially with the addition of periods and/or outcomes.

Furthermore, the latter computation need to be performed for every possible ̂ f-i,
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s determined by a suitable grid of values for St-i- In this section we present an

efficient version of the above DP under the assumption that the monthly inflows are

independent.

Assumption 5.2.1 The monthly inflow at period t, namely the random variable It,

is assumed independent of the history of inflows, Ht-i n

5.2.1 Modeling Inflows in the DP model

Under assumption (5.2.1), note that random variables Qt-i and It are stochastically

independent. Therefore, the mean and variance of a distribution of the individual

monthly inflows are determined as follows.

Qt=It + Qt-i, = 1) 12

^[Qt] = E[It] + E[Qt-i], t = l,...,12 (5.2)

Var[Qt] = Var[It] + Var[Qt-i], t=l,..., 12.

This yields the following mean and variance for It:

E[It] = E[Qt] — E[Qt-i\, t = l,...,12
(5.3)

Var[It] = Var[Qt] - Var[Qt-i], t = l,..., 12.

Note here that we don't have a description of the distribution of the monthly

inflows, although lognormal distributions were fitted for Qt in Chapter 3. There are

two approaches by which one is able to generate outcomes for /<. The first is to

assume a distribution for the inflow with the mean and variance defined by (5.3). For

example one can assume a uniform distribution with 3cr limits, i.e.

It := U(max(0, E[It] - 2,^Var[It]),E[It] +
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or a lognormal distribution, i.e.

It -.= CU{E[ItlVar[It]).

A more convenient approach where we do not need an explicit functional form for the

individual monthly inflows is to simulate the distribution of It from the distributions

of Qt and Qt-i which we have already determined to be lognormally distributed. A

scenario branch at a particular node in period t in this case is generated by considering

the lower and upper limits,

Ut = E[It] + siVar[It]Y/^

Lt = Max{0, E[It] - s{Var[It]Y^^ (5.4)

where s represents the number of standard deviations around the mean.

With these limits on hand and the assumption that this is a uniform distribution,

we can simply divide this interval [Lt, Ut] into n subintervals Af, where n is the

number of outcomes in each period. The midpoint of each subinterval A" would be

the inflow at that particular outcome. If we assume a uniform distribution, then

each outcome is equally likely with probability 1 /n. If the lognormal distribution is

assumed, then we generate a large number of random variates and place them into the

appropriate subinterval. A frequency count divided by the total number of random

variates generated. The final approach is to simulate the individual monthly inflows

from the cumulative monthly inflows distributions which have been determined to

be lognormal. To generate a scenario branch at a particular node of a particular

period, we generate a random variate qt-i from Qt-i and a random variate qt from
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Qt, and define variate it (for It) as qt — qt-i provided that qt > qt-i- The variate it

thus generated is placed in the appropriate subinterval. A frequency count is made,

and the probability of each outcome is computed as the frequency of variates in each

subinterval divided by the total number of variates generated.

Model Description

Under Assumption (5.2.1), the outcomes at period t are determined independently

of the historical scenario being followed until period t. Thus, the outcomes and

their corresponding probabilities of occurence in each node in period t are identical.

Therefore, the DP model in this can be presented as follows:

'Pt{St-i) = rain [J-{St-i,It,Rt) + 0t+i('S't)]
Kt

S.t.

St + Rt = St-i + It

St-SD = (Jf ̂

Rt-Tt = 5^ (5.5)

St-{k-V) = 5[

i^-EGt^

St-So = 6^°, for t = T

Rt > 0.

Note that the value function does not depend on the history Ht-i of the inflows,

and hence, for a given beginning storage St-i, the value function is identical for all

nodes Rt-i in period t. This is a very important result since it implies that we only
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solve the model in (5.5) once in each period. For instance, for 12 periods with with

10 outcomes, instead of solving problems corresponding to the number of

nodes, we only have to solve 12 problems of the format (5.5) for each value of

We also propose to solve the minimization in (5.5) by a grid search on thereby

avoiding a possibly difficult nonlinear programming procedure.

5.2.2 Pseudo Code

Given a set of discretized beginning storages S^_i, for n = 1,... ,N, and a set of

discretized releases for j = 1,... , J, we compute the value function for one node

in period 12 and copy it to all other nodes in the period.

Step O:lnitialization

1. Set reservoir size and maximum firm energy level

2. Obtain inflow data (mean, standard deviation, and number of outcomes per

period; we also need probability of each outcome if a distribution other than

the uniform distribution is used)

3. Set t= T-1, where T= number of periods to be considered in the model

Step l:DO WHILE n < N

1. Set St-i = 5^1, Let ̂ 6*(5t_i) = M, where M denotes a large positive number.

Step 2: DO WHILE j < J

1. evaluate as described in (5.5)
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2. ioT<f>*{St-i) < MSl,,Ri)

let - MSURi) and Rt{St-i) = 4-

END DO

END DO

Step 3:

1. Set t=t-l.

2. if t < 0, STOP,

else go to Step 1

5.2.3 Results Analysis and Simulation

Model Solution

As mentioned above, based on the assumptions we made, we only need to the value

function at one node per period. This is a tremendous advantage since it reduces

the problem to a simple evaluation problem that is solved in seconds even when we

consider cases with large number of outcomes per period. This actually turns out

to be very useful since we can make up for the loss of the dependence structure by

considering more outcomes per period. It would seem fairly reasonable to assume

that the larger the number of outcomes, the closer the model gets to resembling

scenarios from a pure dependent inflows model. This remark will actually be made

more clear in chapter 7. However, the accuracy of the solution is dependent largely

on the flneness of the grids chosen for St-i and Rt.
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The solution from this model is somewhat different from the CCGP model dis

cussed in Chapter 2. The optimal solution from the CCGP model consisted of an

optimal reservoir capacity, optimal dead storage reliability and a Ao-release policy.

In the current model, however, the reservoir size is treated as input. The optimal

solution is a release policy that is a nonanticipative policy that depends on the begin

ning storage since = .F(.S't_i). An example of a releeise policy output by the model

for 12 monthly periods is shown graphically in Figures Cl-Cll in Apeendix C. Two

important remarks need to made here. First, note that as we move from the early

periods to the later periods, the function becomes smoother. This can

be explained by the fact that as we progress into the future months, more monhtly

inflows are realized, and thus, we have less uncertainty to account for. Secondly, note

that to a certain beginning storage level, the release policy fluctuates considerably.

For larger values of the beginning storage, it becomes smooth in a direct relation

ship with the beginning storage. This is a very interesting behavior in its own right.

It may be explained by first observing that the release amount is generally smaller

than the beginning storage level. This indicates that up to a certain level of storage,

the model chooses optimal releases with the knowledge of the expected value of the

inflows in the coming periods, heavily affecting the choice of the optimal solution.

When the beginning storage level becomes larger than a certain level, the informa

tion from the knowledge of the expected value of the inflows in the coming period

has a lesser weight in the choice of the optimal release. Although, the releases are
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smaller than the beginning storage levels, in some cases rather drastically, this can be

explained by the fact that this is a long-term planning problem. The model could for

instance make the maximum release and generate a larger amount of energy, but due

to the conflicting objectives, this might hamper the operation in subsequent periods.

Simulation Analysis

The simulation study of the results developed by this DP model is also different from

that of the CCGP model. The input parameters input to the model are: reservoir

size K, the flrm energy level v, the mean and standard deviation of the cumulative

inflows, the targets, and the release policy R^{St-\). The output is the simulated

reliabilities, Oj, 6si ̂ si Is, Ps- The simulation model also outputs the average energy

generated each period, the average potential energy generated during each period,

an average simulated flrm energy level, and the firm energy reliability measure. We

do 100,000 simulation runs, by changing the inflow sequence for 12 months. At each

iteration, a release is selected from the optimal release policy depending on the period

and the beginning storage level of that period, St-i- As evident from Figure 5.1,

the simulated reliabilities as, 6s, Ps, remain consistently above 0.9. This indicates

that the model does take into account these secondary objectives and they are all

satisfied with very high probabilities. Figures 5.2 and 5.3 depict the simulated

for both the actual energy generation and the potential energy generation. The

potential energy generation is defined as the energy generated if all available water

above the dead storage volume is released. Both remain consistently high indicating

98



Simulated Reliabilities

1.01

0.99

0.96

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9

Month

-simlhela Hi—sim alpha A simbeta I

Figure 5.1: Simulated reliabilities a, 13, and 6

Ys

0.4

0.2

Month

Figure 5.2: Simulated actual firm energy generation reliability js

99



Figure 5.3: Simulated potential firm energy generation reliability

that the model is indeed maximizing returns for the energy authority through high

firm energy levels. More importantly, the actual energy generation and the potential

energy generation reliabilities are almost equal, indicating that the release policy

chosen by the model maximizes firm energy benefits without bringing the level of

water below the dead storage level. Figures 5.4 and 5.5 are of particular importance

as they reveal the distribution of 5i2 and Lfe- Recall that one of the reasons we

decided to use a reliability level on the firm energy constraint was that determination

of its distribution was a complex matter as it requires the knowledge of the covariance

terms among EGt, t=l,..., 12.
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5.2.4 Summary

In this section, we have presented the first of this modeling effort using stochastic

dynamic programming. We have made several assumptions that allowed us to devise

a rather efficient alogorithm. The drawback of loosing the inherent dependence of

the monthly inflows has been countered by the fact that we consider a large number

of outcomes in each period which could essentially cover most of the scenario space

even in the dependent inflows case. The results given by the model were validated

using simulation. As evident from the discussion in the previous section, results of the

model are fairly coherent. Through the simualtion experiments, it was shown that the

optimal release policy maintained high reservoir reliabilities throughout most cases.

Furthermore, the firm energy, which is the primary concern of the energy authority,

remained consistently higher in simulation than that specified to. the DP model. The

firm energy relaibility also remained high indicating the robustness of the optimal

release policy as validated by in simulation runs of 100,000 iterations. The main

drawback still remain that the dependence structure in inflows has been ignored.

In the next section, we present a model that would take into account the inherent

dependence among the cumulative monthly inflow, yet taking advantage of a similar

efficient algorithm as presented in this chapter.
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5.3 Dynamic Programming: Restricted Dependent
Inflows Models

5.3.1 Introduction

In Section 5.2, we presented a dynamic programming model with independent inflows.

The results given by the model are satisfactory in general based on the simulation val

idation and analysis. We have shown, however, that the resulting optimal release pol

icy is of the form = f{St-i), which means that the release policy does not depend

on the inflows realized so far explicitly. The continuity equation, St = St-i + /t - Rt,

may suggest that there has to be implicit dependence between Rt and R . In this

section, we further strengthen the analysis by incorporating the monthly inflows in

formation explicitly into the release policy, under the more realistic case that monthly

inflows are dependent. This implies that the set of inflows and corresponding prob

abilities are not necessarily the same for each outcome in a given period. If we use

dynamic programming in such a setting, we will run into major computational diffi

culties as the problem grows exponentially with the number of periods and scenarios.

This is due to the fact that we would have to solve the DP model in (5.1) for each

node in the scenario tree, which is 0{N^) where T is the number of periods and N

is the number of outcomes in each period. The challenge is to develop a model where

the inflows do not depend on the history of the inflows Rt-i: and yet make use of

the cumulative inflow information. We will show in the coming section that we can

accomplish this by considering the cumulative monthly inflows instead of the individ-
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ual monthly inflows in constructing the scenario tree. In section 5.3.2, we formally

present the dynamic programming model with restricted dependence. In Section 5.3.4

we present a suitable algorithm to solve the model efficiently. In Section 5.3.5, we

present a simulation study of the results obtained using the model. And finally, in

Section 5.3.6, we present some concluding remarks.

5.3.2 Dynamic Programming Model with Restricted depen
dence

In this section, cumulative monthly inflows will be explicitly considered in the decision

policy. However, if we were to consider a full scale dependence, we would end up with

a problem that is no easier to solve than the multi-stage stochastic program with

recourse developed in Chpater 4. The restrictive nature of the dependence structure

of inflows is described in the following assumption.

Assumption 5.3.1 The individual monthly inflow at period t, random variable It, is

assumed stochastically dependent only on the cumulative inflows up to period t, Qt-\-

5.3.3 Model Description

Under Assumption (5.3.1), for a given cumulative inflow Qt-i, a given beginning stor

age level St-i, and a given release i?t, the dynamic programming recursive formulation
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can be rewritten as follows:

St-i) - niin£'/j|Qj_i [T{qt-i^ St-i^ It, Rt) + <f>{Qt, •S't)]
Kt

S,t.

St + Rt = St-i + It

St-SD = ^

Rt-Tt = 5f
(5.6)

-  St-{k-V) = S[

v-EGt =

St-So = 5^°, if t = T

Qt = Qt-i + It

Rt > 0.

Given a realization qt-i of Qt-i, we have

It\qt-i — Qt — qt-i,

R[lt\qt-i] = E[Q^ — qt-i,

V ar[It\qt-i] = V ar[Qt].

Thus to generate a scenario tree for R in this case, one needs the distribution of

It\qt-\- This is due to the fact that for each instance of qt-i, one needs to generate

a set of outcomes from the distribution of It\qt-\- This will, however, lead to a

DP which is as complex and computationally tedious as that in the general setting

.  Note that we have a given distribution for Qt and we need only generate one

sample from the distribution of Qt- Therefore, if we generate the scenario tree where
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the outcomes are cumulative monthly inflows, we get the same outcomes for each

node in a particular period. However, the individual monthly inflows are dependent

on the level of cumulative inflows of the previous period and are thus different in

each outcome. This is also evident from the DP recursive formula in (-5.6), as the

value function is only dependent on the level of cumulative inflows realized thus

far. From these observations, if we generate the senario tree where the outcomes in

each period are based upon the cumulative inflows, then we need only to solve the

problem for one node in each period. This is a tremendous advantage because it

reduces the computational burden from solving 10' problems to only solving 12

such problems.

5.3.4 Solution Algorithm

Given a set of discretized cumulative inflows n = 1,... ,N, a set of dis-

cretized beginning storages Sl_^, j = 1,... , J, and a set of discretized releases R\,

1 = 1,... , L, the algorithm can be described as follows.

Step Orlnitialization

1. Set reservoir size and maximum firm energy level

2. Obtain inflow data (mean, standard deviation, and number of outomes per

period)

3. Generate outcomes and probabilities for each period from the provided distri

bution
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4. Set t= T-1, where T= number of periods to be considered in the model

Step 1: DO WHILE n<N and j<J

1. Set Qt-i = Qt-i, and St-i = S{_i, Let St-i) = M, where M denotes a

large positive number.

Step 2: DO WHILE KL

1. evaluate St-i, Rt) as described in (5.6)

2. if<^*((3t_i,5i_i) < MQt-i,St-i,Ri)

let r{Qt-i, St-i) = MQt - 1, R't) and Rl{Qt-u St-i) = R[.

END DO

END DO

Step 3:

1. Set t=t-l.

2. if i < 0, STOP,

else go to Step 1

5.3.5 Analysis and Simulation

In this section, we analyze the release policies generated by the preceding DP model.

We first describe how random outcomes of different scenarios are generated and also

how the discretized cumulative monthly inflows used in the model are generated.

Then a simulation of the release policy is carried out to gain some insight into the

107



complex structutre of the problem and to also validate the model's solution. The

release policy of the current model is no longer a function of the beginning storage

St-i only. The release in each period t depends on both the beginning storage St-i

and the cumulative inflow of the previous period Qt-i- Figures D.l through D.ll, in

Appendix D, are a typical example of such a release policy. Note that the optimal

release functions in Figures D.8 through D.ll, which correspond to periods 9, 10,

11, and 12, are smoother than those in Figures D.l through D.3 for instance, which

correspond to periods 2, 3, and 4. This can be explained by the fact that uncertainty

becomes smaller as monthly inflows are realized.

Furthermore, we notice a phenomenon that was not apparent in the independent

inflows DP model of Section 5.2. Consider Figure D.7 for instance, which corresponds

to the optimal release policy at the beginning of period 8, for a flxed beginning storage

level, the optimal release level increases up to a certain critical cumulative inflow,

Qt-i 3.nd then starts decreasing as the cumulative inflow level Qt-i increases. This

is an interesting remark as it highlights one of the important tasks that the model is

accomplishing. This is due to the fact that the model uses the knowledge of the value

of the cumulative inflows in deciding which optimal release to choose. Before that

critical point Qt_i, the releases increase to maximize the energy generation. However,

once that level is exceeded, the model realizes that the probability of large inflows in

the coming periods decreases and so the releases are chosen to be smaller so as not

to hamper energy generation in coming periods.
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Simulation Analysis

[p] The simulation routine for this model is not too different form that of the previous

model. The inputs consist of the reservoir size, the frim energy level desired, and the

optimal release policy obtained from the model. The outputs include the simulated

reservoir reliabilities, the simulated firm energy reliability, and the frequency files

for the distribution of L/g and S'12. Consider the case where the reservoir size is

2,000(MCM) and the frim energy level is required to be 4,000. In Figure 5.6, the

simulated target satisfaction reliability 6s is reported, and as evident form the graph,

this reliability is very high ( > 0.99). This proves that the model takes the target-

priority operation in to consideration. Figure 5.7 depicts the simulated dead storage

reliability as- The lowest level attained was 0.98.

Figure 5.8 shows the simulated flood storage reliability and we notice that it stays

very high up to month 8 then drops a little before recovering in period 12. The lowest

level attained was 0.65 which is still high for a flood storage reliability. Figures 5.9

and 5.10 depict the reliability of the potential energy generated and the reliability

of the actual energy generated respectively. Two important observations in this

regard. The first is that he simulated energy generation reliability 71,^^, in Figure

5.9, remains very high ( > 0.9), in fact in 7 of the 12 monthly periods 7^,^^ = 1.

This indicates that the model does cater to the primary concern of the reservoir

management which is the generation of energy. The second remark is that the levels

of the reliabilities of the potential energy and actual energy generation are close. This
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indicates that although the release policy is nonanticipative, the information provided

by the cumulative inflow, the releases are fairly close to the potential release defined

as the release of available water above the dead storage level SD. This validates the

claim made in the preceding section that the knowledge of the level of the cumulative

inflow helps the model in "estimating" the level of inflow in subsequent periods.

5.3.6 Summary of Results

To retain some of the inherent dependencies in the individual monthly inflows, and at

the same time retain the computational efficiency of the independent inflows model,

we have developed a model that is based on the cumulative inflow data. A scenario

tree is generated from the lognormal distributions of the cumulative inflows. The
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model uses a dynamic programming algorithm that solves only one node per period.

The model's solution seems to be very reliable when the results are analyzed. The

simulation experiments further validate the model's solution. We have noted that

although this is an independent inflows case, the restricted dependence formulation

helped retain some of the dependence structure as was evident from the analysis of

the results.

5.4 concluding Remarks

We have presented two efficient models that solve the multi-stage stochastic program

presented in Chapter 4. The models solutions were analyzed and further validated

using simulation models. However, neither model takes into account the inherent

dependence among the individual monthly inflows. In a life supporting system like

this one, it would be imperative to consider such dependencies explicitly. This will

be the topic of the next chapter, where we develop a model that recognizes the

dependence more rigorously. However, the model becomes extremely large, so we

apply an aggregation technique as a means to reduce the size of the problem for

efficient solution.
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Chapter 6

Aggregated Dynamic
Programming: Dependent Inflows
Model

6.1 Introduction

In Chapter 5, we presented a dynamic programming model with independent inflows

and a DP model for restricted dependence on the monthly inflows. In the former

we have made the assumption that the individual monthly inflows are independent.

We obtained an optimal release policy of the form = f{St-i). In the DP model

with restricted dependent inflows, we used the assumption that the monthly infows

are only dependent on the level of cumulative inflows realized thus far and not on

the particular history of the inflows. We derived an optimal release policy that is

explicitly dependent on the beginning storage St-i as well the cumulative inflow Qt-u

i.e. = f{St-i,Qt-i)- While the latter model remained computationally tractable,

it does not fully capture the dependence that exist among monthly inflows.

In this chapter, we consider a technique known as the "time-stage aggregation"

114



whereby one combines or aggregates variables and constraints of several time periods

into a grand/aggregated period. This concept was used in Edirisinghe and Ziemba

(1992) to develop efficient bounds in the case of multistage stochastic convex models.

We utilize this concept to develop an efficient DP-based solution technique to the

multi-period reservoir problem presented in Chapter 4. In Section 6.2, we formally

develop and present the proposed "aggregated dynamic programming" (ADP) model.

Then, in Section 6.3, we develop a solution algorithm that solves the problem. In

Section 6.4, we study the results obtained with the model and validate them using

a simulation study. Finally, in Section 6.5, we conclude by summarizing the main

aspects of the model and the main results obtained.

6.2 ADP Model With Dependent Inflows

6.2.1 Prelude

To solve the model developed inChapter 4 in its full dependent inflows formulation

would be a formidable task. As menetioned previously, even a simple case of 12

periods with 5 outomes per period translates to solving 5' subproblems, and thus

even if each subproblem can be solved in y^th of a second, it would take about 68

hours to come to determine an optimal policy. Furthermore, the memory requirements

in the solution process would be simply astronomical. The method of aggregation

is a general decomposition method that has been used to reduce the probem size.

The general idea of aggregation within mathematical programming has been studied

extensively in the literature. The typical approach involves aggregating rows and/or
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columns to yield an approximate mathematical program that is easier to solve, see

Zipkin (1980a, 1980b). In the context of stochastic mathematical programs, Birge

(1985) and Edirisinghe and Ziemba (1992) developed approximations by aggregating

constraints according to the underlying probability distributions. For a state fo the art

survey on aggregation in optimization, see Rogers et al.(1991). Its applications span

over a wide scope of applications. Aggregation can be applied at several levels. Some

methods aggregate the search space by reducing it using some limiting assumptions.

Other more commonly used methods of aggregation is to reduce the scenario space

whereby several scenarios of the original problem are grouped together as one scenario,

see Rockefeller and Wets (1991). The solution obtained would not be optimal to

the original problem. It would, however, be feasible and would present a bound on

the original solution. In a world puctuated by uncertainty, this limitation could be

tolerated to achieve an implementable solution that can be obtained faster.

In our problem, the monthly inflows are highly uncertain random variables, i.e.

they have high variance. For that matter, we use the aggregation principle to pro

vide a good solution, although it might no be optimal. One way of aggregating the

scenarios is to combine months or periods as stages and solve a smaller stochastic

program. For example, if we divide the 12 periods into 4 stages where each stage has

3 periods, with 10 outcomes in each period, we solve 10^ problems. Although the size

of each subproblem may increase, the overall size of the DP model reduces to a more

manageable size.
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6.2.2 Model Description

Suppose we divide the number of periods, T, in the planning horizon into IT number

of stages. This yields ̂  periods in each stage assuming ̂  is integral. Let be

defined as the history of inflows up to stage tt, i.e.,

T/tt—1 — /i, . . . , /jr—1

where Lr is the vector of inflows in stage tt. Note here that the history of the inflows

is a series of vectors of size g. For instance, if T = 12, and 11 = 3, then we get

y = 4 periods per stage. In this case, the inflows vector in stage 1, /i, consists of

the random inflows of periods 1, 2, 3, and 4, i.e h = n With these, we

define the state of the system to be <S7r-i), where 5.,r-i is the storage level of

the reservoir at the beginning of stage tt. Also define Lr to be the vector of inflows

and Rt^ to be the vector of releases in stage tt. Note that in the following, we use the

notation that to denote the inflow in period i of stage tt, and the same holds for

the releases. Hence, we write the DP recursion formulae as the following:
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Where p is the index of the last period in each stage tt.

6.3 Solution Algorithm

At each node in the scenario tree, we compute the value function defined in (6.1).

Note that each node in stage tt is completely defined by the history of inflows, ?^7r-i.

Consider a set of discretized beginning storage levels <?"_!, n = 1,... ,N, and a set

of discretized releases R^, j = 1,... ,J. The following algorithm evaluates the value

function at each node of each stage for a pre specified set of discretized beginning

storage levels and releases. Note, however, that releases in this model are vectors, in

which case we would have a p-dimensional search on the releases.

Step O:lnitialization

1. Set reservoir size and maximum firm energy level

2. Obtain inflow data (mean, standard deviation, and number of outomes per

period; we also need probability of each outcome

3. Set 7r= n - 1, where 11= number of stagess to be considered in the model

4. The number of periods per stage is p = ̂

Step 1: DO WHILE n<N:

1. Set 5;r-i = Let S^-i) = M, M denotes a large number.

Step 2: DO WHILE j<J:
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1. evaluate 5^_i, as described in (6.1)

Set<^;(?^,_i,<s^_i) = Mn..^,s,^uRi)

and = R{

END DO

END DO

Step 3:

1. Set TT = TT — 1.

2. if TT < 0, STOP,

else go to Step 1

6.4 Results Analysis and Simulation Study

6.4.1 Results Analysis

The model presented in thsi chapter is an attepmt to retain some of the dependence

structure among the monthly inflows, and by using an aggregation technique, we

reduce the overall problem size. The use of DP enabled us to decompose the general

problem into smaller problems relevant to each node in the scenario tree. There is a

potentially large number of experiments that could be run on the model to see the

effect of changing the number of stages for a 12 monthly periods model. As expected,

the computational cost increases with the addition of stages. Memory requirements

also increase exponentially makning it almost impossible to solve the model for a
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reasonable number of outcomes (>20 per stage). This restricted the scope of our

experiments to the case where we either use a small number of stages, say 3, or use a

small number of outcomes, say 10. Despite this drawback, the model's results seemed

quite accurate. The model's solution in this case is a release policy for each stage.

The release policy is a vector of releases for the number of periods in a particular

stage.

6.4.2 Simulation Study

Finding The Appropriate Scensirio

The simulation study for this model is different from that of the previous models. In

the previous models, we have considered scenarios that are based on the individual

monthly inflows. We have also assumed independence among the inflows, so it did

not matter which inflows was realized. We have considered one node in each period,

so the release policy in each node of a particular period is the same. In the present

model, this is no longer the case. The release policy does depend explicitly on which

inflows have been realized. Say we are at stage 0, and we generate a random vector of

inflows for the number of periods in that stage, the release policy for the next stage is

dependent on which inflow vector has realized. Recall that in generating the scenario

tree, each branch corresponds to a vector of inflows, say P. In the simulation, we

generate a vector of equal size /^, and that decides which of the nodes of the comflng

stage will be the node of reference, i.e. which release policy to use for the next stage.

Basically, the branch of the scenario tree that most closely resembles the randomly
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generated vector of inflows is the scenario we follow to get the release policy. There

are potentially several methods of measuring the distance between vectors. The most

common being the Euclidean distance, ED, computed as follows:

where p is the number of periods in each stage. The scenario branch that minimizes

the Euclidean distance is chosen as the scenario that is being manifested.

Simulation Experiments and Results

The simulation is designed to not only validate the solution given by the model,

it is also designed to provide further insight into the problem. The setup for the

simulation remains no different from the one used in the previous models. We feed

into the simulation model the reservoir size, the firm energy level, and the release

policy tree. The release policy is now a tree since it depends on which scenario

manifested. In other words, the release policy that is a function of the beginning

storage is different for each node in a period, and betwen periods. The outcome of

the simulation is similar to the previous models, where the intention is to validate

the model's solution through the observation of the frequency of deviating from the

optimal reservoir characteristics. Since the energy generation is of primal concern to

the energy authority, we also validate the solution by observing the simulated firm

energy level and reliability. The simulated target satisfaction relaibility is depicted in

Figure 6.1. As evident form the graph, 6s remains very high. In 10 of the 12 periods,

6s = 1, indicating that the target priority operation is being carried out by the model.
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Figure 6.1: Simulated 9 for Aggregated DP Model

We see a slight drop in the target satisfaction reliability in months 9 and 10, which

correspond to the two months with the highest demand, see Figure 6.2. Even in such

circumstances, the target satisfaction relaibility does not fall below 0.975. Another

important aspect of the reservoir operation is the dead storage reliability a. Figure 6.3

depicts the simulated and its level is consistently higher than 0.9. To control flood

hazards, the model provides a release policy that yields a high flood reserve relaibility

Psi as evident from Figure 6.4. Note the slight drop in towards the later months.

This may be explained by the fact that towards the end of the planning horizon, the

overyear storage reliability becomes a concern. In order to satisfy the condtion that

St > Sq, larger volumes of water are stored in the reservoir in the later periods.
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Firm energy is the primary concern of the reservoir authority as it provides the main

source of income. Figure 6.5 depicts the reliability of the potential energy generation,

and Figure 6.6 depicts the reliability of the actual energy generation. Recall that

the actual energy generated is the energy generated by following the optimal release

schedule provided by the model, and potential energy generated is the energy that

could be generated if the volume of available water above the dead storage level is

relesed. Two important remarks on the performance of the model in this regard

have to be mentioned here. The first is that the actual energy generation reliability

remains consistently higher than 0.9 as shown in Figure 6.5. This indicates that the

model's release policy is maximizing the energy generation. The second remark is
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that the levels and the behavior of the potential energy and actual energy generation

relaibilities are close. This leads us to the conclusion that the release policy is in

effect releasing as much water as possible without dropping the water level below the

dead storage reliability, given that all other reservoir reliabilities are not degraded as

eveident form the discussion of Figures 6.1, 6.3, and 6.4.

6.5 Concluding Remarks

In this chapter, we presented a dynamic programming solution for the multi-stage

stochstic model we have developedin chapter 4. The model considers the case of

dependent inflows. To alleviate the computational burden, a "time-stage" aggregation

scheme was used as a means of reducing the problem size. An efficient solution

technique was developed. The model's release policy was validated using a simulation

study. The reservoir reliabilities, namely the dead storage, the target satisfaction, the

flood reserve, and the firm energy relaibilities remained consistently high, indicating

the accuracy of the approach developed.
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Chapter 7

Conclusion

7.1 Comparison of the Different Models

We have presented several state of the art models to study the planning and operation

problem for a single mulit-purpose water reservoir. For each model presented, we have

carried out a detailed simulation analysis. What remains to be done is to compare

the performance of each model relative to the other models. This is an important

issue since there are several factors that influence the performance of a model, such

as the planning horizon, the data available, and decision time frame. We have shown

(

through the use of simulation that all of the models performed fairly well given the

assumptions that were imposed. In this chapter, we will compare these models on

several aspects: validity of model results, computational efflciency, as well as the

model robustness. In section 7.2, the thesis is concluded with possible directions for

future research.
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7.1.1 Validity of Optimal Solution

We have shown through the results analysis and the simulation study of the differ

ent models that all of the models generated accurate results. The chance constrained

model have the flexibility of providing an optimum reservoir size and an optimum dead

storage reliability. The three stochastic programming models with recourse have the

flexibility of accounting for inflow dependence to a certain degree. We have shown

that these models, being planning models, have all suceeded in meeting the multiple

and conflicting objectives of the reservoir operation and management. We have also

shown, however, that the optimal solution and especially the flrm energy level and

reliability, are signiflcantly affected by the beginning storage level So and the over

year storage reliability p. Overall, the stochastic programming models with recourse

provided solutions that could better accomodate the reservoir operating characteris

tics. This is due to the fact that these models actually consider the randomness in the

inflows explicitly in the search for a solution through a scenario approach, whereas

the CCP model only uses the marginal distributions.

7.1.2 Computational Efficiency

The chance constrained model is generally efficient in computation; for instance, for

the case of a specifled reservoir relaibilites, the problem is solved in less than 60

seconds. The computational efficiency of the three stochastic programming with re

course models, however, depend on the number of random inflow outcomes considered

in each period, and on the flneness of the discretization of beginning storage and be-
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ginning cumulative inflow vectors. This is understandable since these two parameters

increase the search space exponentially. Despite this fact, solution of the independent

inflows model, for the case of 50 outcomes per period and 50 discrete points for the

search space arrays, takes about 12 seconds including generating the scenarios. The

restricted dependent inflows model takes about 6 minutes, because we are adding a

new search dimension, i.e., cumulative inflows. Computational time of the aggragated

dependent inflows model depends not only on the above dimensions but also on the

number of aggregations. For example, the case with 4 stages, i.e. 3 periods per stage

in a 12 month planning horizon, and 30 outcomes per stage takes approximately 30

minutes. In a situation where a preliminary solution is desired, it can be concluded

that the restricted dependent inflows model is the preferred choice because of its so

lution efficiency, and its ability to incorporate partial inflow dependence information

by considering a large number of outcomes in each period.

7.2 Summary

In this thesis, we have considered the problem of optimally planning the capacity of

a water reservoir under a special target priority operation. To account for the ran

domness in the monthly water inflow, we have used stochastic programming as a tool

to represent the random event. In Chapters 2 and 3, we have presented a chance

constrained goal programming model. We have shown via the model analysis and the

simulation study that one obtains robust release policies. We have investigated, in

particular, the effect that the beginning storage and the year ending storage reliability
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have on the firm energy and relaibility of operation. Realizing the fact that a chance

constrained formulation fails to take into account the magnitude of the constraint vi

olations, three different models based on stochastic programming with recourse were

proposed. Modeling the problem with explicit dependent structure among monthly

inflows is computationally intractable since it makes the problem very large. To al

leviate this burden, we have made certain simple, but practical, assumptions on the

structure of inflows. On one hand, we assumed that monthly inflows are independent

of each other. This is not a very restrictive assumption as long as a large number of

outcomes is generated. The resulting nonanticipative release policy was analyzed via

simulation and the results are shown to be quite accurate. On the other hand, we

assumed that the monthly inflows are dependent only on the cumulative inflow real

ized thus far, but not on the complete history of inflows. Under this assumption, an

effcient solution algorithm was developed to evaluate the DP recursion. The optimal

relase policy generated by the model depends on the beginnning storage and on the

cumulative inflow realized so far. Thus, although the releases do not depend explic

itly on the history of the inflows, some dependence is preserved in the information in

the cumulative monthly inflows. In other words, although the release do not depend

on which scenario was followed, they depend on the accumulation of inflow thus far.

In the final modeling effort using stochastic dynamic programming with recourse, we

propose a model that captures dependence among monthly inflows in a more general

setting. However, an aggregation methodology was proposed to circumvent the ex-
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ponential growth of the resulting DP model. The aggregated dynamic programming

model so obtained was solved using an ejfficient algorithm and the resulting release

policy, which now is dependent on a particiialr scenario being foloowed, was validated

using simulation. The results show that the latter release policy outperforms the op

timal policies of the other models in the metrics of reservoir reliability and the firm

energy production and reliability.

7.3 Future research

This thesis presents a comprehensive study of the optimal capacity planning problem

of a multi purpose water reservoir under uncertainty. While the proposed models pro

vided robust results, their focus is limited to monthly decision periods. An operational

model would have to take into account a decision period much shorter than a month,

and would need to have the flexibility of providing better solutions as random events

unfold. One possible alternative is the rolling horizon approach, where the model is

re-solved at the end of each operational period, the model being revised with the new

data being observed. These avenues would certainly be worth considering and should

be the subject of future research.
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Appendix A

Bounds on Parameters

1. at.

By taking the difference, (2.26)-(2.23), fot t = 1,... , 11, we get:

^ 1 - a < Fe,[^'o7_,.(i -0)- r,+i]

thus a > 1 - (!-«)- T.+il, i = 1,.... 11

2. 0:12:

By taking the difference (2.25) - (2.23) for t = 12, we get:

0<Fq,U1-p)-^Qi3(1-«)-^o + 5P

^Qi'(1 - ") < -^Qi'(1 -P)-S, + SD

1-a < Fq,,[FqI^{1 - p) - 5o + SD]

which yields, a > 1 - Fq^^[FqI^{1 - p) - 5o + SD]

3. Kt-

By using the fact that (2.24) < (2.26), fort = 1,... , 11, we get:
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FqW + v. - ir < -e)-SD- r,+i

therefore K > F^l (0) - (1-6) + SD+ T,+i

For t = 12, we use the fact that (2.24) < (2.25), for t = 12, which yields the

following:

+ Sq + Vi2 - K < - p)

therefore, K > FqI^{/3) + + V12 - Fq^\(1 - p).

4. Ktioi) if q; > Q!t:

By using the fact that (2.24) < (2.23), we get:

FqIW) + V,-K< F^l(l -a)-SD

Therefore, k > Fq,'(/3) - Fq^{1 - a)+ Vt + SD.

5. ttmax in (2.33):

We use the fact that (2.24) < (2.23) and subsituting Kmax for K, we get:

+ Vi - Krnax < FqI{1 -a)-SD

FqH^) + y, - + SD< FqI{1 - a)

FQiiFqli^) + y — Kmax + 'S'-D] < 1 — q;

thus a <1- Fq,[FqI{^) + y - Kmax + SD]

Therefore, by taking the maximum value for t = 1,... , 12, we obtain:

Qlmax := 1 — maxt=i_... ,12 {Fq^[FqI{P) + y + SD — Kmax\}

6. 6'n,ax in (2.34):

We use the fact that (2.24) < (2.26) for t = 1,... , 11, and substituting Kmax
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in (2.24), we get:

Fq'W + V,-K^< {i-e)-SD- T,+,

^  - «) s -fft W) + V,-K^ + SD + T,u

1 — 0 > Fq^_^_^[Fq^ (P) + Vt — K-nax + SD + T(+i]

thus, s < 1 - Fq,„[f^I(P) + Vt- + SD+r,+ij

By taking the max over the range t = 1,... , 11 we get:

^max := 1 - maxt=:i,...,11 {Fq^_^.^[Fq^{^) + Vt + SD + Tj+I — iiTmax]}-

7- 5'o,min in (2.37):

Prom (2.27), we get:

'S'o > 7i + SD — Fq^{1 — 6), therefore

So,min ■' = Ti + SD — Fq^[1 — 6)

8. So,max in (2.38):

By observing that for t = 12, (2.24) < (2.25), and substituing Kmax for k in

(2.24), we get:

^Qu + iSo - Kmax < -Pq'i2 (1 " P)

So < FqI^{1 -p)-

Therefore,

'S'o.max := -^^12(1 ~ P) — FqI^{^) — V12 + Kmax- This concludes the derivation of

the expressions in chapter 2.m
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Appendix B

Proof of Proposition 2.6.2

Consider the following parametrized family of LP problems Pj{e) of {DP)j in (2.29),

for i = 1,... ,12:

Pj{s) : min fj{x,e):=Dj
t

s.t. glix,e) :=-J2Rr + Fq^ (1 - (a + Ao)) + So - SD > 0, t = 1... ,12
T=1

t

gl{x, e) := — FqliP) — So — Vt + {K + AK) >0, t = 1,... ,12
T=1

12

goix, e):=-^Rr + - p) > 0
T=1
t

gl(x,6) := -Y^Rr + Fq^{1 - 9) + So - SD -Tt>0, t = l,...,12

95{x,s)

9Ux,e)
98{x,s)

T=1

= Rj + Dj — Tj ̂  0
= Rt-Tt + D*t{K + AK, a + A(x)>0, t = l,... ,j-l
= Rt >0, t = l,... ,12
= Dj>0

(B.l)

where x = (i?i,... , R12, Dj)' and the perturbations s = {AK, Aa)'. Let x*{e) denote

an optimal solution of Pj{e), where we have suppressed the explicit dependence of the

solution on index j. Also denote the Lagrange multipliers associated with constraints

9i, - - - ,98 by u{^{e), u^2t{^), u^e), u{t{e), ul{e), uli{e), u^jtie), and ul{e), respectively.
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Define the optimal (Lagrangian) value function by fj(e) i.e.,

f-{e) = C{x*{e),u{e),e) = fj{x*{e),£)- < u^,g > .

Notice that functions fj and gi are continuosly differentiable w.r.t. x. Furthermore,

they are (sub) differtiable in e, since is an optimal value function of a linear pro

gram. Furthermore, Pj (0) is a linear program, ensuring the second order optimality

conditions. Under the Assumption 2.6.1, thus, one can verify the regularity conditions

of Theorem 3.2.2 of Fiacco (1983). Consquently, applying the sensitivity Theorem

3.4.1 of Fiacco (1983, pp.83),

1=1,2,4,7 t=l

3-1

-  (B.2)
i=3,5j8

Since Vg/j (3;*(£),e:) = 0, we have

1=1,2,4,7 t=l

3-1

-  (£),£) \s=o-J2'^itiO)^s9l{x*{£),e) |.=({B.3)
1=3,5,8 t=l

Observing Vg/;(e) ig=o= , it follows that for j = 2,... , 12:

dD* Pi'Pi*

"ox ~ ^ "2t(0) - '"6<(0) (B.4)
t=i t=i

and

^ = (B.5)
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For j = 1, we have

g.-Ei,., - M._E.|,(.iS|zia.

dK

t=l t=l

Thus, using (B.6) and applying (B.4) and (B.5) recursively, the expressions for

and are obtained.

Next, consider the following parametrized family of programs P(s) of the model

(FP) given in (2.47):

P(s) : min f{x,e) := —L
t

s.t. e) := — y )iTr + Fq^ (1 — (a + Aa)) + 5*0 — SF ̂0, t = 1... , 12
r=l

t

hl(x,£) :=J^Rr-FQ^\j3)-So-Vt + (K + AK)>0, t =
T=1

12

h3(x,£) :=-J2^ +
r=l
t

hl(x,£) + - 0) + So - SD - Tt > 0, t = 1,... ,12
T=1

h^six, e) := Rt-Tt + D;{K + AK, a + Aa) > 0, t = 1,... , 12
h\{x,£) :=i2i > 0, t = 1,... ,12
hj{x, e) := —L + Ctioi + Aoi)Rt + tpt{oc + Aa, Ri,... , Rt) >0, t = 1,... ,12

(B.7)

where x = {Ri,... , R\2,L)' and e = {AK, Aa)'. Let x{e) be the optimal solution of

P(e:) and denote the associated Lagrange multipliers of hf (.) by for ? = 1,... ,8

(for t = 1,... , 12). Since functions Ct and V't are (twice) differentiate w.r.t. their

arguments, one can ensure the differentiability requirements of the conditions in The

orem 3.2.2 of Fiacco (1983). Moreover, SOSC conditions for (FP) in the proposition,

along with Assumption 2.6.1, allow us to apply Theorem 3.4.1 of Fiacco (1983) on
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the optimal (Lagrangian) value function f{e), defined by

f{e) := f{x{e),e)- <v,h> .

Then, it follows that

7  12

V./(£) |„0= -Y.T. (S(e),£) l.=o . (B.8)
i=l t=l

Noting that ̂  |,=o= we get

r)r* flD*^=E''2(») + E''S(0)^ (B.9)
t=l t=\

and

This completes the derivation of the gradient expressions.

(B.IO)
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Appendix C

Sample release policies from
Independent SDP Model
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Figure C.l: Independent inflows DP Model: Optimal Release Policy for month 2
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Figure C.2: Independent inflows DP Model: Optimal Release Policy for month 3
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Figure C.3: Independent inflows DP Model: Optimal Release Policy for month 4
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Figure C.4: Independent inflows DP Model: Optimal Release Policy for month 5
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Figure C.5: Independent inflows DP Model: Optimal Release Policy for month 6
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Figure C.6: Independent inflows DP Model: Optimal Release Policy for month 7
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Figure C.7: Independent inflows DP Model: Optimal Release Policy for month 8
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Figure C.8: Independent inflows DP Model: Optimal Release Policy for month 9
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Figure C.9: Independent inflows DP Model: Optimal Release Policy for month 10
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Figure C.IO: Independent inflows DP Model: Optimal Release Policy for month 11
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Figure C.ll: Independent inflows DP Model; Optimal Release Policy for month 12
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Appendix D

Sample optimal release policies
from Restricted SDP Model
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