
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2000 

Symbolization-based analysis of engineering time series Symbolization-based analysis of engineering time series 

Charles Edward Andrew Finney 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Finney, Charles Edward Andrew, "Symbolization-based analysis of engineering time series. " PhD diss., 
University of Tennessee, 2000. 
https://trace.tennessee.edu/utk_graddiss/8276 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Charles Edward Andrew Finney entitled 

"Symbolization-based analysis of engineering time series." I have examined the final electronic 

copy of this dissertation for form and content and recommend that it be accepted in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Mechanical Engineering. 

Ke Nguyen, Major Professor 

We have read this dissertation and recommend its acceptance: 

Duane D. Burns, C. Stuart Daw,Jeffery W. Hodgson,J. Rodger Parsons 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



I am submitting herewith a dissertation by CHARLES Edward Andrew Finney 
entitled Symbolization-based analysis ofengineering time series. I have examined the 
finalcopy ofthis dissertation for form and content and recommend that it be accepted 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with 
a major in Mechanical Engineering. 

, Major Professor 

We have read this dissertation and 

recommend its acceptance. 

Duane D. Bri^s 

Accepted for the Council: 

Dean of thk Gnaduate School 



Symbolization-based analysis of 

engineering time series 

A Dissertation 

Presented for the 

Doctor of Philosophy 
Degree 

The University of Tennessee, Knoxville 

Charles Edward Andrew Finney 

August 2000 



Acknowledgements 

The author thanks Professors Duane D. Bruns, Jeffrey W. Hodgson and J. 

Roger Parsons of the University of Tennessee for guidance as members of the 

doctoral committee. The author expresses appreciation to F.T. CONNOLLY of the 

Ford Motor Company,J.B. Green, Jr. ofthe Oak Ridge National Laboratory,and 

K.D. Edwards and M. Vasudevan of the University of Tennessee for supplying 

experimental data. The author offers an especial thanks to his mentors and advisors. 

Prof. Ke Nguyen of the University of Tennessee and Dr. C. Stuart Daw of the 

Oak Ridge National Laboratory, for their continued guidance and support. Further, 

he expresses appreciation to his colleagues K.Dean Edwards,Tiang-Yong Teh, 

Jonathan R. Vincent,Sandeep Rajput,Sachin Sarnobat,and Johney B. 

Green, Jr., mostly for their patience, as well as to his friends(ARB,DLG,JMH, 

AAMH,TEK,BWM,WS,RMW to name afew) who expressed interest and concern 
(and offered occasional goading) during his tenure in the Ph.D. program (likewise 
to his furry friends. Miss BOOTSIE and Mister Bobbit, without whose tutelage and 

divertissement he would not have passed his comprehensive examination). Most im 

portantly, he thanks his parents, RAYMOND and LiNDA, and his family, for their 

love and support during his protracted graduate studies. 

11 



Abstract 

Datasymbolization, derived from the study ofsymbolic dynamics,involves discretiza 
tion of measurement data to aid in observing and characterizing temporal patterns. 

In this study, symbolization-based methods are developed for analysis of time series 
from experimental engineering systems to test hypotheses concerning stationarity, 

temporal reversibility, and synchronization. Stationarity is examined in the context 

ofprocess control and dynamicalstate matching;temporal reversibility, in the context 

ofmodel discrimination and selection ofcontrolschemes(linear versus nonlinear); and 
synchronization, in the context of modes ofinteractions between system components. 

Statistical significance is estimated using the method of surrogate data with Monte 

Carlo probabilities. 
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Preface 

My attitude while writing this dissertation was that the document itself was pro 
forma, and thus when selecting content and scope, I tried to err on the side of suc 

cinctness, reasoning that “important” results should be reserved for papers of wider 

distribution. Here I briefly highlight what is not included but probably should be. 

Implicit throughout the work is that the methods described herein rely on the as 

sistance of a digital computer; nowhere are details made explicit. For the most part, 

the computational coding details are irrelevant. I chose to implement my algorithms 

in MATLAB, but they could have been implemented in other languages. The thread 

common to all the techniques is the concept of numerical nonparametric testing, the 

use of which is enboldened by “inspirational” essays such as one by Efrond “A theory 
which enables a scientist to understand his data with the help of a high speed com 

puter may now be as useful as a theory which only requires a table of the exponential 

function, particularly if the latter theory does not exist. Computer assisted theory is 

no less ‘mathematical’ than the theory of the past, it is just less constrained by the 

limitations of the human brain.” 

Many researchers claim that data symbolization is “robust to noise”; such claims 

are accepted without rigorous proof, partly because in the tradition of symbolic dy 

namics and datasymbolization,it is common knowledge,ifnot the very least intuitive, 

that symbolization allows discrimination of patterns in noisy data. I chose to omit 

strong claims regarding robustness to noise (both terms of which require careful def 
inition) and resulting trials using my methods because I viewed them as ancillary to 
the overall thesis. Although I have tested sensitivity to noise, I do not believe the 

results ofthose tests necessary for this work;anyone implementing these methods can 

easily repeat the exercise using different criteria. 

With a great many techniques in nonlinear time-series analysis, the nature of 

the results depends on the selection of parameters associated with the statistical 

metric and the associated null hypothesis. The question of selecting symbolization 

^Efron B.(1979). Computersand the theory ofstatistics: thinking the unthinkable,SIAMReview 
21(4), 460-480. 
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parameters has been addressed elsewhere, so detailed discussion is not necessary in 
this study. To some extent, choice of symbolization parameters depends on what 
is desired to be observed; again, anyone implementing these methods should in the 
course of learning their utility also explore the effects of symbolization parameters. 
This dissertation is not comprehensive in that regard. 

What is included in this work is a framework for using symbolic data transfor 

mations with appropriate metrics to test certain hypotheses. These methods, and 
resulting derivatives, are expected to find utility in analyzing time series from com 
plex engineering processes and for analysis of time series from measurement systems 

of severely limited digital precision. 
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Chapter 1 

Introduction 

Ancient humans viewed the heavens with wonderment and reverence, but eventually 

with pragmatism. The ancient “engineers”, those who developed technology to fur 

ther civilization, used the regular behavior of terrestrial rotation and planetary orbits 

to govern the activities of industry and society — they correlated geophysical events 

such as rainfall and flooding, important for agriculture; they developed a system for 

time, dates and for navigation. The regularity of nature’s cycles paced the activities 

of civilization. 

During the progress of natural philosophy, the prevailing world view depended on 

the concept of determinism. Prom Aristotle’s celestial-sphere model to the work of 

Newton, the universe was viewed to behave deterministically, like clockwork. This 

view pervaded the development ofscience and technology untilthe nineteenth century, 

when dynamicists such as Poincare modified the view ofabsolute determinism. On the 

microscopic scale, the quantum-mechanical viewpoint introduced the philosophically 

unsettling notion of probabilistic behavior. Lorenz and his successors modified the 

world view yet again with the development of chaos “theory”, the recognition that 

some behavior in nonlinear systems is neither perfectly regular nor random,not even 

stochastic. 

In the course of engineering study and practice, the prevailing view had been that 
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any complex, aperiodic behavior must be random in nature,a view which only in the 

1990s began to change as chaos and the more applicable methods of nonlinear time-

series analysis began to be adopted. Two impediments have retarded the adoption of 

a chaos framework into analysis of engineering systems utility and measurability. 

The utility of certain chaos methods has been demonstrated in engineering systems 

whose behavior is either enhanced by chaos or whose behavior may be controlled out 

of chaotic regimes. The measurability problem in some cases is unique to engineering 

systems, those in the domain of the “real world”. Nonlinear time-series analysis was 

primarily developed by mathematicians and physicists using mathematical models or 

simple experimental systems. Their resulting methods did not necessarily handle the 

effects of noise gracefully or robustly. 

Symbolic dynamics uses a data simplification to characterize complex behavior. 

Symbolization-based data analysis seeks to trade a degradation of measurement pre 

cision for a reduction in the effects of noise on statistics and descriptive metrics; alter 

natively, it seeks to reconstruct dynamical patterns out of intrinsically low-precision 

measurements. Data symbolization has not seen significant application to measure-

ments from engineering systems the present study seeks to remedy that deficiency. 

This dissertation is organized as follows. Chapter 2 provides background, state 

ments of problems and the motivation behind the present study. Chapter 3introduces 

the methodology developed in this work. Chapter 4 presents application ofthe meth 

ods and discusses the relevance of the results to systems of engineering relevance. 

Chapter 5 offers conclusions from the present study and recommendations for future 

study. 
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Chapter 2 

Background and objectives 

2.1 Precis 

Methods of chaotic or nonlinear time-series analysis were primarily developed using 

noise-free numerical models or on simple laboratory experiments. These methods are 

powerful for analyzing and predicting dominant systemic dynamics, but for applica 

tion to a broad spectrum of engineering systems, they must be able to cope with 

measurement and/or dynamical noise. 

The predominant techniques for coping with noise involve either linear filter 

ing (e.g., impulse-response filters, principal-components analysis) or nonlinear noise-

reduction filtering based on predictive models. Noise-reduction techniques can be 

undesirable because they either use models inappropriate for the dynamics of interest 

(e.g., linear models) or their effects on the dynamics of interest are unknown because 

they assume a certain model for the noise. Additionally, they can be ill-suited for 

real-time analysis because they can be computationally resource-intensive. 

Symbolization or quantization techniques initially seem counterintuitive because 

they effectively discard information, using a lower-precision representation of higher-

precision measurements. The objective ofsymbolization is to employ a coarse-grained 

description of signal behavior without allowing the high-dimensional or noise effects 
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to destroy statistical discrimination. 

In this study, the development of symbolic time-series analysis for noisy engineer 

ing measurement time series is presented. Novel techniques for testing for stationarity, 

temporal reversibility, and multivariate synchronization are introduced. Specific ap 

plicability to combustion and multiphase flow systems of engineering importance and 

relevance is emphasized. More specifically, this work will highlight the relevance of 

temporal irreversibility and synchronization to selection of models for and control 

schemes for cyclic variability in internal combustion engines, the nature of tempo 

rally irreversible dynamics in pulse combustion, and the relevance of stationarity for 

dynamical state matching in fluidization dynamics. 

2.2 Introduction and background 

2.2.1 Symbolization 

Data symbolization is derived from the discipline of symbolic dynamics. At the 

end of the nineteenth century, dynamicists were developing methods to describe the 

dynamical characteristics of complicated systems. Poincare developed a manner of 

stroboscopic sampling and projection onto a planar cross-section of the phase-space 

trajectory, a representation now referred to as a Poincare section.^ Another approach 

was to represent sections of the phase space in a coarse-grained manner using a 

discrete, symbolic data representation; the transitions of the symbols would then 

describe the dynamics of the system. This latter approach led to the discipline of 

symbolic dynamics(Morse and Hedlund 1938). 

^Fully termed a surface ofsection. 
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Symbolic dynamics is a well-studied topic among mathematicians and dynami-

cists, and consequently the main bent ofresearch has focused on modeling dynamical 

systems. Only recently has the use of a symbolic data representation been applied 

to statistical analysis of measurement time series. Time-series analysts, particularly 

those from the nonlinear and chaotic time-series communities, have begun to appre 

ciate symbolization as a useful approach to noisy, complex time series. In the chaotic 

time-series analysis community,there have been two primary approaches to character 

izing the strange attractors which serve as the icons of chaos: metric and topological. 

In the metric approach, attractors are characterized by the estimation of metrics or 

statistics, e.g., entropy, dimension, and Lyapunov spectrum. In the topological ap 

proach, attractors are characterized by the intertwining of(unstable) periodic orbits 

and how these orbits transition from one family to another. It is in this latter area 

that symbolic dynamics and more lately a data-symbolization approach have proved 

most useful. Only in the past decade has there been significant interest in applying 

symbolization to the metric approach. 

Data symbolization refers to the process of converting higher-precision data to 

lower-precision data(an example might be rounding off times recorded to the nearest 

minute or second to the nearest hour).^ Symbolic time-series analysis (also known as 

symbol-sequence analysis) refers to a set oftechniques merging the data structures of 

symbolic dynamics and the generality of information theory. This new approach to 

time-series analysis seeks to be more flexible with complex, nonlinear time series than 

linear time-series analysis as well as be less affected by noise than standard methods 

form of coarse-graining is making histograms of data,in which case the bins are the symbols 
and the number ofitems in each bin is the summary statistic. Histograms describe the frequency of 
the data symbolically, but temporal relationships between individual data records are destroyed. 
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of nonlinear or chaotic time-series analysis. As such, symbolic time-series analysis 

holds promise for application to time-series measurements from engineering systems. 

Although there has been significant recent interest in symbolization, its ideas are 

not new. Early in the age of digital computing, analysts had to cope with low-

precision digital data. One of the first applications of the digital computer was in 

computing the autocorrelation functions oftime series for the production of graphical 

displays called correlograms. In the 1940s, researchers in Britain concerned with air 

warfare were among the first to employ digital computers (Cunningham and Hynd 

1946): 

Being a digital machine,the relay computer is in one sense perfectly accu 

rate. It is, however, necessary to group the data to the nearest integer in 

the range±63;in general, this has a negligible effect on the correlogram, 

but if the grouping be very drastic, it is possible to introduce corrections 

analogous to Sheppard’s corrections, which are valid when certain plausi 

ble assumptions are satisfied ... 

Prom this statement, it is seen that data symbolization was forced by precision 

limitations of the machine: there are 127 values in the range of integers from —63 

to -t-63 (including 0), so the machine computed with 7-bit precision (because 127= 

2^-1). 

As digital computing for data analysis became more sophisticated, researchers 

became accustomed to expecting or even requiring higher measurement precision, 

perhaps 10-bit (1024 values) or 12-bit (4096 values) or up to today’s 16-bit (65536 

values) precision. Even as the trend for higher-precision measurements progressed, 

analysts found data symbolization convenient, particularly in cases in which the com 

puter hardware made symbolization desirable. A 1968 monograph (Enochson and 
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Otnes 1968) reported: 

Two different types of time series data arise that are to be processed by 

a digital computer. Some processes are discrete by their very nature, say 

for example,the daily closing prices of a given stock. On the other hand, 

some data arise naturally as a continuous record such as the continuously 

recorded output of an accelerometer on the skin of a missile structure, 

which is intended to give a measure of the vibration at that point. The 

continuous record is digitized for digital analysis by an analog-to-digital 

conversion procedure. In either case, an important observation to make is 

than only a finite number of bits in a binary digital computer are required 

to represent any given individual data point. In actual practice, many 

analog-to-digital converters present their output at a precision of8 to 10 

bits (including the sign bit). For almost all applications, the recording 

instruments are no more accurate than one part in 256 to 1024 and hence, 

that quantization is fine enough.... 

Asit turns out,for many time series ofinterest,'much coarser quantization 

is often acceptable. In the extreme case, one can quantize to a single bit. 

That is, if the value of a signal is larger than or equal to zero, set the 

bit equal to zero; if the value of the signal is less than zero, set the bit 

equal to one. In simpler terms, the sign bit of the data point is the only 

information retained. 

The above-referenced monograph detailed the methods for either 1- or 4-bit quan 

tization for computing autocorrelation functions. The advantage ofthe symbolization 

schemes was that for a small number of symbols (different data values), the results 

from every possible multiplication between two data records could be stored in a 

look-up table and accessed very efficiently with an intrinsic machine command. As 

autocorrelation calculations depend on many multiplications, reducing the calcula 

tions to a look-up process was more efficient. This is an example of a high-precision 

machine attenuating data precision to reduce cohiputational time. 
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Presently, computers are capable of performing many high-precision numerical 

operations extremely quickly, and memory and storage are becoming plentiful and 

inexpensive,so why is there interest recently in symbolization as a time-series analysis 

tool? Symbolic time-series analysis has been shown to be suited to handle data in the 

presence ofdynamicalor measurement noise, where having greater numerical precision 

can be more harmful than helpful. In some applications, being able to, manipulate 

symbolic or low-precision data, particularly noisy data, might be advantageous for 

memory or processing-speed concerns, so data symbolization is an important and 

apposite engineering research topic. 

Recently, symbolization has found applications over a wide range of disciplines 

such as astronomy (Schwarz, Benz, Kurths, and Witt 1993), psychology (Kurths, 

Schwarz, Witt,Krampe,and Abel 1996),and medicine(Kurths, Voss, Saparin, Witt, 

Kleiner, and Wessel 1995; Saparin, Gowin, Kurths, and Felsenberg 1998). In sys 

tems of engineering relevance, symbolization has been applied to internal combustion 

engines (Finney, Green, and Daw 1998; Daw, Kennel, Finney, and Connolly 1998; 

Green, Daw, Armfield, Finney, Wagner, Drallmeier, Kennel, and Durbetaki 1999), 

thermal pulse combustors (Edwards, Finney, Nguyen, and Daw 1998), and fluidiza 

tion (Halow and Daw 1994; vander Stappen 1996; Finney, Nguyen, Daw,and Halow 

1998) and multiphase flow systems (van der Welle 1985; Angeli and Hewitt 1996; 

Daw,Finney, Nguyen, and Halow 1998). 

2.2.2 Surrogates and surrogate generation 

Calculation ofthesymbolstatistics from different data-series segments allows compar 

ison ofthe data series based on difference measures ofthe symbolstatistics. In absence 
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of a priori estimates of significance, statistical significance of difference measures may 

be accomplished using a method of surrogate data. In this method, surrogate data 

sets are created from the original data to test a specified null hypothesis. When 

this process is repeated many times, the mean and variance of the surrogate-data 

statistical measures may be calculated to estimate significance of the original data 

measure. For instance, under the null hypothesis of no temporal correlation within 

a time series, surrogate data sets would be created by shuffling the order of the time 

series, and then a correlation metric would be calculated for each surrogate set. Given 

a battery of surrogates, the mean and variance of the surrogate correlation metrics 

could be used to test whether the correlation metric of the original time series shows 

correlation with statistical significance. 

The method of surrogate data as described above was used by Theiler, Eubank, 

Longtin, Galdrikian, and Farmer (1992). The process of creating surrogate data 

and of random data permutations is a combination of bootstrapping and Monte 

Carlo techniques and is common in nonlinear time-series practice (Rapp, Albano, 

Zimmerman, and Jimenez-Montano 1994; Voss and Kurths 1998; Timmer, Schwarz, 

Voss, Wardinski, Belloni, Hasinger, van der Klis, and Kurths 2000). Although Fisher 

(1935)advocated using randomization for testing statistical validity,the computer-age 

methodology of Monte Carlo techniques perhaps owes its origins to Barnard (1963)^. 

One disadvantage of the method of surrogate data is that it can be computationally 

intensive, so a test with a priori significance, if available, is preferred, provided that 

the assumptions underlying the statistical model be valid. 

^op. cit.: ... provided one has access to a reasonable amount oftime on a reasonably powerful 
computer, an exact test of significance is something one never need be without.” In his comments, 
Barnard provided a procedure and test for significance. 
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Hope (1968) provides a succinct explanation of Monte Carlo significance: 

Monte Carlo significance test procedures consist of the comparison of the 

observed data with random samples generated in accordance with the 

hypothesis being tested. A test criterion is chosen to facilitate this com 

parison. The outcome of the test is determined by the rank of the test 

criterion of the observed data relative to the test criteria of the random 

samples forming the reference set. 

Section 3.1.3 presents mathematical details of testing with surrogate data. 

2.2.3 Dynamical stationarity 

Dynamical stationarity refers to whether a signal remains statistically consistent over 

time. As applied to time-series analysis, stationarity may be related to ergodicity. 

Interesting signals (i.e., with finite entropy) contain many types of oscillations on 

many different time and length scales. A simple test for stationarity might involve 

statistical comparison of a short time-series segment with another observed some 

time afterward {e.g., comparing the data mean for the front and back halves ofa time 

series). 

There are many different manifestations of nonstationarity in signals. For in 

stance, there are simple drifts in the local mean (e.g., a steady trend, as in the Dow 

Jones Industrial Average) or seasonal changes (e.g., the mean outdoor temperature 

trend over a year). Ofinterest in nonlinear time-series analysis is whether nonstation 

arity in the signal fluctuations arises from measurement-system changes (i.e., drifts 

in signal mean or attenuation of signal amplitude, both of which might occur because 

ofinstrument dynamics)or are real changes in the nature ofthe dynamics. Thus,the 
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question of dynamical stationarity is one of whether the bounds of the phase-space 

attractor, as best one can define and measure, shifts over time. 

Stationarity is an important assumption in most methods of nonlinear time-series 

analysis. Until recently, stationarity was more assumed (or wished for) than verified 

because of the lack of practical tests. 

Schreiber (1997) proposed a stationarity test using nonlinear cross predictions, 

in which prediction errors from temporally separated segments of the time series, 

one used as the database and the other as the test segment, are evaluated. This 

approach is rather novel in that it compares portions ofthe time series directly rather 

than statistical parameters derived from the time series. Additionally, this method is 

useful if the nonstationarities arise from trajectory shape shifts in which dynamical 

invariant measures remain unchanged. 

Kennel(1997)presented a test based on the temporal distributions of near neigh 

bors. The premise of this test is that under stationarity, similar trajectory segments 

(near neighbors) should be equally likely to occur throughout the temporal record of 

the time series. The Kennel test is much more than an extension of the general class 

oftests outlined by Schreiber — it tracks temporal rather than spatial relations. This 

method was extended by Yu,Lu,and Harrison (1999). 

Witt, Kurths, and Pikovsky (1998) offered a series of tests based on temporal 

independence of probability density functions (data histograms) and power spectra. 

The implementation of this test relies on dividing the temporal record of the time 

series into segments, a process which is standard practice with nonlinear statistical 

measures. An undesirable feature of the method of Witt, Kurths, and Pikovsky 

(1998) is its reliance on a two-step data prefiltering, one a local linear detrender and 
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the second a Butterworth filter. 

Missing in the literature and in practice is a test for dynamical stationarity based 

on data symbolizauon. Any such symbolic stationarity test should complement other 

symbolic tests, si ch as for temporal irreversibility, using the same symbolization 

parameters, so that the two tests would have the same basis and not be disjointed 

in their data representations. This dissertation will present a symbolic approach for 

evaluating stationarity. 

2.2.4 Temp Dral reversibility 

A time series is termed temporally reversible if it appears similar whether viewed in 

forward or reverse time. Tong(1990) gives an accepted formal definition: 

Definition 4.6: A stationary time series is time reversible if for ev 

ery positive integer n,and every ti,t2,...,tn G Z,the vectors(At^,Atj,... ,At„) 

and (A_tj,A_t2,... ,A_(„) have the same joint distributions. 

A stationary time series which is not time reversible is said to be time 

irreversible. 

In other words, as phrased by Diks, van Houwelingen, Takens, and DeGoede 

(1995),“A time series is said to be reversible if its probabilistic properties are invariant 

with respect to time reversal. Otherwise it is said to be irreversible.” An important 

qualifier in this formal definition is the property of dynamical stationarity. 

An illustration ofreversibility and irreversibility in time series is shown in Figure 

1. The first signal(a)is a temporally symmetric sawtooth wave; the trough-to-peak 

rise time equals that of the peak-to-trough fall time. Thus,the signal looks the same 

whether viewed in forward or reverse time. The second signal (b) is a temporally 
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Figure 1: Illustration of temporal reversibility (a)and irreversibility (b). 
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asymmetric sawtooth wave; the trough-to-peak rise time is twice that ofthe peak-to-

trough fall time. Thus, the signal in forward time looks much different than that in 

reverse time, where the trough-to-peak rise time is one halfthat ofthe peak-to-trough 

fall time. 

Temporal irreversibility is an important characteristic of time series because the 

presence of irreversibility eliminates linear Gaussian random processes (LGRP), or 

static nonlinear transformations thereof, as potential models for the generating pro 

cess; conversely,irreversibility implies nonlinearity or(less likely) non-Gaussian linear 

ity. The implicit temporal reversibility ofLGRP was first formalized by Weiss(1975) 

and has important implications in modeling and analysis. As Lawrance(1991) notes: 

The view taken here is that directionality [temporal irreversibility] is an 

aspect of time series analysis which deserves wider recognition; for in 

stance, it does not make sense to forecast with a time series model which 

is reversible, when past data are definitely irreversible. In simulating in 

puts to a system based on directional historical data,directional simulated 

data should be used. Such obvious requirements are not met by the use 

of Gaussian ARMA [autoregressive moving average] models. 

This applicability to modeling extends to analysis most linear time-series anal-

ysis is inadequate to capture features such as temporal irreversibility which occur in 

nonlinear time series. Within the past decade,temporalirreversibility hasincreasingly 

gained favor in nonlinear time-series applications ranging firom economics to medicine 

to ecology to astrophysics to engineering systems (Diks, van Houwelingen, Takens, 

and DeGoede 1995; van der Heyden, Diks, Pijn, and Velis 1996; Palus 1996; Ramsey 

and Rothman 1996; Stone, Landan,and May 1996; Hoekstra, Diks, Allessie, and De 

Goede 1997;Stam,Pijn,and Pritchard 1998; Green,Daw,Armfield, Finney, Wagner, 
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Drallmeier, Kennel, and Durbetaki 1999;Timmer,Schwarz, Voss, Wardinski, Belloni, 

Hasinger, van der Klis, and Kurths 2000). However, statisticians working with time 

series had been aware for quite some time that temporal irreversibility implies non 

linearity, as evidenced in the discussion of a meeting of the Royal Statistical Society 

(Campbell and Walker 1977): 

Mr R. F. Galbraith’s point, also made by Professor H. Akaike, about 

the intervals from a minimum of the series to the following maximum 

being consistently about 2 years shorter than those from a maximum to 

the following minimum is most important. We certainly ought not to 

have overlooked this, and should have noted that our model, at least if 

Gaussian, could not possibly explain the asymmetry because of its time 

reversibility. We agree with Professor Cox that the time irreversibility 

thus indicated is more likely to arise from a non-linear process rather 

than a linear non-Gaussian process. 

On a historical note, the earliest known mention of a “directional effect” appears 

to have been by Daniels (1946) in the context of analyzing time series from textile 

processes (Lawrance 1991).^ 

There have been several types of tests for temporal reversibility or irreversibility 

in time series. Cox(1981)suggested a test based on alagged third cumulant estimate; 

{(n-y..)^) 
(1)i((n-y,_.)2)]t3 5 

^op. cit., p.87: “Ishould like to ask Mr. Foster whether he hasfound any evidence in cotton series 
of what might be called a directional effect. From the theory of drafting outlined in his paper, one 
might expect the thickness to increase relatively slowly up to a point, and then to diminish rapidly 
as the tuft is pulled through the front rollers, producing a kind of saw-toothed appearance in the 
thickness curve. That such an effect may exist in wool is suggested by a tendency to skewness in the 
form ofthe frequency distribution offirst differences,though the evidence is admittedly inconclusive 
in the absence of a suitable test of significance. It is perhaps worth observing that a directional 
effect of this nature is produced in an autoregressive series when the distribution ofthe residuals is 
skew.” 
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where Ug^h is the cumulant based on temporalindex s and delay h,(•) denotes expected 

value, Yg is a measurement at temporal index s, and Yg^h is a measurement h in time 

preceding Yg. 

Similarly, Pomeau (1982)suggested: 

•0"(r)={x^{t)x{t+r)-x{t)x^{t+r)). (2) 

where ijj is the temporal-symmetry index, r is the delay, x{t) is a measurement at 

temporal index t, and x(t -|- r)is a measurement r in time succeeding x{t). 

Following the terminology of Lawrance (1991), it should be noted that both the 

Cox and Pomeau statistics, as well as an alternate by Timmer et al. (1993), quantify 

lagged reversibility and rely on simple relationships of pairs of measurements. An 

advantage of this type of statistic is its sirnplicity, but a disadvantage is the low 

dimensionality of the input data(groups of two time-ordered data). 

Stone, Landan, and May (1996) offered a test based on a nonlinear predictive 

model using nearest-neighbor prediction. By comparing the effectiveness of the pre 

dictive regression for forward- and reverse-time versions of the time series, a measure 

of irreversibility is obtained. This test would be expected to be more robust than the 

tests mentioned above because of the higher dimensionality of the input data (the 

embedding process typically groups 2-10 time-ordered data). The scheme presented 

by Stone et al. does not employ any prefiltering before the phase-space embedding, 

so this test might be expected to be hampered by the effects of noise. 

An alternative phase-space test for irreversibility was proposed by Diks, van 
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Houwelingen, Takens, and DeGoede (1995) based on an attractor shape metric pre 

sented in Diks,van Zwet,Takens,and DeGoede(1996). The test comparesthe metrics 

between phase-space trajectories embedded from forward- and reverse-time versions 

of the time series. This test has been used in a variety of applications (van der Hey-

den, Diks, Pijn, and Velis 1996; Hoekstra, Diks, Allessie, and DeGoede 1997). For 

noisy time series, a filtering noise-reduction procedure would have to be employed at 

higher noise levels. 

Missing in the hterature and in practice is a test for temporal reversibility which 

utilizes symbolization and which does not rely on Fourier-transform surrogates. This 

dissertation will provide such a symbolization-based test. 

2.2.5 Synchronization 

Synchronization in dynamical systems refers to the phenomenon of multiple systems 

exhibiting similar behavior simultaneously, to within an appropriately defined level 

of discrimination of “similarity” and “simultaneity”. For physical relevance, the dis 

tinct systems should be coupled in an identifiable manner (e.g., gravity, mechanical 

linkages, mass exchange) so that the exchange of information between the systems, 

and not chance, may be identified as the source or driver of synchronization. 

The classical, canonical example of synchronization was described by Huygens 

(1673)in his treatise on the pendulum clock. Huygens described how the pendula of 

two pendulum clocks, mounted on a common beam,tended to synchronize in anticor 

related motion due to transmission of vibrations along the beam^; without the means 

®op. cit., p. 30: “It is quite worth noting that when we suspended two clocks so constructed 
from two hooks imbedded in the same wooden beam, the motions of each pendulum in opposite 
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of conveyance of information, the two clocks would not be expected to synchronize 

by chance, especially after application of disruptions intended to desynchronize. 

Rayleigh (1896) described synchronization of two organ pipes placed in sufficient 

proximity. When pipes of similar but distinct frequencies are sounded separately, 

frequency beating occurs when the pipe openings are distant, but when the openings 

are near,a single, mutualfrequency sounds. With acoustical and pressure-based phe 

nomena,this synchronization may be seen in other systems. For instance,two candles 

will flicker independently when placed apart, but when placed together, their flicker 

ing patterns are nearly identical and synchronous, because each flame’s combustion, 

with surrounding convective currents, affects the other’s. 

Synchronization is understood conceptually in many scientific disciplines, but 

there is no established, universal definition. Recognizing this deficiency, Schafer, 

Rosenblum, Abel, and Kurths'(1999) noted: 

Synchronization is a universal phenomenon that occurs due to the cou 

pling of two or more nonlinear oscillators. A number of quite different 

effects are referred to as synchronization. Understood in a wide sense as 

the mutual time conformity of two or more processes, this phenomenon 

lacks a unique deflnition and requires a more precise description in par 

ticular cases. For example, in the context of the interaction of chaotic 

oscillators one distinguishes between complete, generalized, phase and lag 

swings were so much in agreement that they never receded the least bit from each other and the 
sound of each was always heard simultaneously. Further, if this agreement was disturbed by some 
interference, it reestablished itself in a short time. For a long time I was amazed at this unexpected 
result, but after a careful examination finally found that the cause of this is due to the motion of 
the beam,even though this is hardly perceptible. The cause is that the oscillations ofthe pendula, 
in proportion to their weight, communicate some motion to the clocks. This motion, impressed 
onto the beam,necessarily has the effect of making the pendula come to a state of exactly contrary 
swings if it happened that they moved otherwise at first, and from this finally the motion of the 
beam completely ceases. But this cause is not sufficiently powerful unless the opposite motions of 
the clocks are exactly equal and uniform.” 
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synchronization, with all these states being defined in different ways. 

Schafer et al. explained that because ofthe effects of noise, phase- and frequency 

locking synchronization can experience phase slips, interruptions in the synchronicity 

ofthe oscillators, so that synchronization is best measured statistically.® They offered 

a graphical representation, called a synchrogram, of bivariate, multimodal synchro 

nization based on stroboscopically measured phase differences. The synchrogram, so 

defined, has the advantage over traditional phase-difference metrics in that it can 

represent multimode (i.e., n : m rather than n : 1) synchronous epochs, but it has 

the disadvantage of being limited to a bivariate relationship. 

Missing in the literature and in practice is a representation of multivariate syn 

chronization. Ofparticular engineering relevance is examination ofthe degrees of and 

conditions leading to synchronicity in multicylinder internal combustion engines in 

fuel-lean operation. Symbolization has successfully been applied to engine data to 

provide fundamental insight into the nature of unstable combustion variations, so the 

use ofa multivariate symbolic representation ofsynchronization seems an appropriate 

area for research. This dissertation will present such a representation. 

2.3 Scope ofthe present work 

This section introduces the development of the methodology for the proposed study 

and the application ofthese methods to observationsfrom physical systems and mod 

els of engineering relevance. 

®As noted by Tass et al. (1998), “Strong noise can cause phase slips, i.e., rapid unit jumps of 
the relative phase. In this case the question ‘synchronous or not synchronous’ cannot be answered 
unambiguously, but can be treated only in a statistical sense.” 
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2.3.1 Methodology 

In the course of the present research, three techniques will be developed to analyze 

noisy signalsfrom engineering measurements using symbolic time-series analysis. The 

first is a test for dynamicalstationarity. Thesecond is a test for temporal reversibility. 

The third is a representation of and test for synchronization of multiple measurement 

signals. 

As noted in Section 2.2.3, dynamical stationarity is a requirement of most tests 

developed in nonlinear time-series analysis. Until recently, stationarity has more 

often been assumed than verified because of the paucity of research into defining 

stationarity more appropriately in the context of noisy, nonlinear time series. Ofthe 

published tests for stationarity developed by nonlinear time-series analysts(Schreiber 

1997; Kennel 1997; Witt, Kurths, and Pikovsky 1998; Yu, Lu, and Harrison 1999), 

none employ symbol-sequence analysis.'^ A symbolic test is therefore warranted to 

define stationarity in a context more meaningful for other methods ofsymbolic time-

series analysis. For example, confirmation of stationarity is a requirement before a 

signal may be tested for temporal reversibility, as nonstationary signals are trivially 

irreversible. 

As discussed in Section 2.2.4, temporal irreversibility is a symptom of nonlin 

earity, and recent appreciation of this dynamical characteristic has led to increased 

research into irreversibility. Most recent tests for irreversibility rely on regression 

models or raw state-space methods, and to handle the effects of noise, they rely on 

’^At the time of writing. Kennel and Mees(2000)introduced a symbolic stationarity test. This 
test evaluates statistical significance differently than in this dissertation but is algorithmically more 
complicated. 
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some sort of filtering noise reduction. Most standard tests for nonlinearity rely on 

Fourier-transform surrogates and thus inherit the limitations and disadvantages as 

sociated with this method(Rapp, Albano,Zimmerman,and Jimenez-Montano 1994; 

Stam, Pijn, and Pritchard 1998; Kugiumtzis 1999). A test for temporal reversibil 

ity based on symbol-sequence analysis will be presented, and this test will provide 

statistical significance. 

Synchronization of signals from coupled dynamical systems is a topic of increased 

interest in the nonlinear-dynamics research community. A novel symbolic method for 

representing synchronization from multiple simultaneously measured signals will be 

presented. This algorithm will allow complete characterization of the system state 

using more than two signals, a distinct advantage over current methodologies which 

demonstrate synchronization in pairs of signals only. 

2.3.2 Application of methods 

The utility of the proposed methods will be demonstrated on measurement signals 

from several systems of engineering relevance. The first type of signal will be heat-

release and work estimates from several different spark-ignited internal combustion 

engines. The second type of signal will be pressure measurements from a thermal 

pulse combustor. The third type of signal will be differential pressure measurements 

from a fluidized bed. 

The dynamical behavior of internal combustion engines is very interesting from a 

nonlinear-dynamics perspective and extremely relevant from an engineering perspec 

tive. The cycle-to-cycle patterns of heat-release, work and pressure-derived quantities 
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have been demonstrated to be nonlinear in nature, particularly at lean fueling,and ex 

hibit characteristics ranging from stochastic to deterministically chaotic. This latter 

characteristic has important implications for control. The physics of the combustion 

process dictates that the measurement signals be inherently noisy, because of fluid-

dynamical and operational effects, and coupled with additive-noise effects, analysis 

of the high-dimensional signals can be problematic. Here, symbolization is a useful 

and appealing basis for signal analysis, and it fits in naturally with limited computa 

tional capabilities of existing hardware in production engine systems. In this study, 

data from several types of internal combustion engines will be examined temporal 

reversibility and synchronization. Temporal irreversibility places limits on the types 

of models of cyclic variability which one may employ and, as a measure of nonlinear 

ity, anticipated control strategies. Synchronization among various engine cylinders is 

very interesting in that it has not received much attention in the literature and in 

that exploration of the nature of synchronization can contribute greatly to the un 

derstanding of commonly known performance limitations such as the acoustic modes 

of manifold dynamics (e.g., intake-manifold tuning, a performance-enhancing tactic 

in automobile racing). 

Acoustical interactions are important for combustion systems,in the manifold dy 

namics of internal combustion engines and in the interactions of multiple flames in 

boiler systems. In the limiting case is the pulse combustor, a continuous-flow system 

in which the combustion occurs in phase with acoustic oscillations of the exhaust 

tailpipe. The dynamics of combustion-chamber pressure measurement time series 

has been shown to range from a stable, approximate periodicity near stoichiometric 

fueling to highly unstable oscillations near the fuel-lean flammability limit. Because 
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the pressure variations primarily occur in phase with the tailpipe acoustical standing 

wave,the pressure measurement time series are dominated bystrong periodicities, and 

instabilities associated with irregular combustion appear as modulation to the ampli 

tude ofthe periodic oscillations. Recent methods for testing for nonlinearity based on 

the method ofsurrogate data using Fourier-transform surrogates do notfunction prop 

erly in cases of strong predominant periodicities (Stam, Pijn, and Pritchard 1998), 

so a test for temporal irreversibility should prove more definitive for pulse-combustor 

data. Knowledge of the behavioral nature of pulsed combustion near the fuel-lean 

limit is important, as nonlinear and linear control responses differ. Additionally, the 

strong periodicities in the continuous measurement signals present unique challenges 

heretofore unmet by established symbolization analysis methods. The proposed study 

will demonstrate novel symbolization schemes well-suited for pulse-combustion time 

series and will test combustor behavior near the fuel-lean flammability limit for sig 

nificant temporal irreversibility. The data have been obtained from a laboratory-scale 

thermal pulse combustor. 

A very relevant question in the modeling of fluidization dynamics is how long 

the simulation should be run to capture converged dynamics. For instance, analysis 

of start-up transients is not necessarily indicative of the converged, post-transient 

dynamical state of the fluidization simulation (f.e., the actual dynamics of inter 

est), so identification of the convergence time is quite important. Equally relevant 

is whether experimental fluidization systems exhibit long-term dynamical drifts even 

after startup transients have passed. This question of ergodicity is important for dy 

namical state matching for process control (e.g., how similar a test time series is to 

previously observed reference tirne series) and for determining the minimal acceptable 
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observational time span, as well as numerical simulation duration, at a given operat 

ing condition. In this study, observations from an experimental fluidization system 

will be examined to demonstrate methods of stationarity testing for autostationarity 

and for dynamical state matching. 
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Chapter 3 

Methodology 

3.1 Symbolization 

Data symbolization is the first step in symbolic time-series analysis. This section 

presents terminology and basic algorithms for symbolization. 

3.1.1 Basic definitions 

A datum is an item of information, usually numeric; its plural is data. A datum 

might be the outdoor ambient temperature at a given instant or the high tempera-

ture the previous day such information might be quantitative {e.g., 291.32 K or 

<300 K)or qualitative {e.g. “warm” or “warmer than yesterday”). Although often' 

used interchangeably, the terms signal and time series are differentiated. A signal 

is a continuously variable analog information source (although in electronics, digital 

information sources ar6 also signals). A time series is a time-ordered sequence or 

collection of data, usually the result of digitization of a signal, in which case it is a 

discrete, finite-numerical-precision representation ofthe signal plus measurement and 

conversion uncertainty and channel noise. 

Time series are of two types, discrete and continuous, and the differences subjec 

tively depend on the timescales of measurement. A discrete time series is recorded 
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on an event basis to produce a datum representative ofa natural period of oscillation 

in a signal. A continuous time series is recorded at equally spaced intervals or on fast 

timescales relative to the natural period of oscillation in a signal. Prom a modeling 

standpoint, discrete time series are best represented by maps, continuous time series 

by differential equations. Examples of discrete time series might be the maximal daily 

outdoor temperature recorded over many days or the duration of a geyser spray each 

eruption. In the former case, days are cycles of equal duration. In the latter case, the 

geyser erupts erratically at unequal intervals between bursts. Examples ofcontinuous 

time series might be the instantaneous outdoor temperature measured each hour over 

many days or the pressure in an internal combustion engine cylinder measured once 

per crank-angle degree. In the former case, hours are equal intervals, and assuming 

that on average temperature oscillates between a minimum and maximum within a 

day, there would be 24 measurements per natmal period of oscillation of the temper 

ature. In the latter case, a typical four-stroke engine has 720 crank-angle degrees per 

engine cycle, so there would be 720 measurements per natural period of oscillation; 

because the piston accelerates and decelerates throughout the engine cycle, the time 

intervals between crank-angle degrees are unequal, but the basis for measurement is 

equal. 

The terms stream, series and sequence are also differentiated. A stream is a 

continuous data flow. A stream usually refers to an abstract source of available 

information (for instance, the output of a measurement transducer which is always 

working while the system is running regardless of whether one observes its output). 

A series is a finite-length, sampled subset of a stream. Usually, the beginning and 

ending instants of a series are chosen. A sequence is a short, ordered subset of a 
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series, usually grouped together for numerical analysis. 

Individual items in a series are records. The location of a record within a series 

is the record index, usually counted from 1 to the number of records in the series. 

Individual items in a sequence are elements. The location of an element within 

a sequence is the step. (Individual items in a stream are simply data, and their 

location is measured not by an index but by an external, usually absolute, time 

source. Streams here are defined as abstract entities, so their internal structure and 

terminology are not of much interest here.) 

A time series and a data series are usually the same. In series, most data occur 

in temporal order, but this is not always the case. The data might have been sam 

pled from randomly selected locations in a time series to create a data series the 

temporal order would be destroyed. The order of a time series might be shuffled for 

different types of numerical analysis this would create a data series, even though 

it might be referred to as a “shuffled time series”, so that the origin ofthe data would 

be known. 

As implied above, most real time series involve uncertainty and noise. Uncer 

tainty describes the quality of a measurement in terms of accuracy and precision. 

For instance, the ambient outdoor temperature might actually be 291.32 K,but the 

transducer might indicate a temperature of 290.6 K. The transducer’s reading is 

slightly inaccurate because of its design. Furthermore, the precision (least count) of 

its display or digital output might not be sufficient to distinguish between 290.58 and 

290.62K both would be reported as 290.6 K.Both inaccuracy and imprecision are 

factors which compromise the quality of physical measurements. 
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Noise generally describes dynamics other than those of interest, for lack of a va 

guer definition. In the thermocouple example, on the smallest length scales, there 

is thermal noise, the stochastic oscillations and vibrations of atoms and molecules 

which vary with the temperature and energy of the system. This thermal noise can 

be significant enough to cause the actual analog output(voltage) ofthe thermocouple 

to vary erratically over short time scales, even when supposedly maintained at con 

stant temperature. Additionally, in the connectors between the transducer and the 

recording device, there is thermal noise and electromagnetic interference {e.g., from 

nearby alternating currents in power lines). These factors all add fluctuations to the 

signal totally unrelated to the signal ofinterest (the actual temperature),even before 

the measurement is recorded. Additionally, all ofthe recording equipment suffer from 

the effects ofenvironmental noise contamination, bit noise and/or digital imprecision. 

All real measurement series should be affected by uncertainty and noise — it is 

up to the researcher to understand how significant both factors are. In addition to 

the measurement noise described above, most physical systems contain dynamical 

noise which sometimes affects their behavior and/or shows up in measurements. Dy 

namical noise generally arises from high-dimensional or complex physical processes 

in the system, and these processes can interact with the dynamics of interest, usually 

resulting in more complex behavior. 

3.1.2 Data symbolization 

Data symbolization (quantization) involves the conversion of data of many possible 

values into symbols of only a few distinct values. The actual quantization is applied 

to individual data records, but symbolization may be represented as a procedure 
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producing a symbol stream from a signal (if symbolization occurs at the time of 

recording)or asymbol series from a data series. This coarse-graining hasthe practical 

effect of producing low-resolution data from high-resolution data; only large-scale 

details are preserved, and in some cases the effects of dynamic and measurement 

noise on statistical algorithms are reduced. 

The basic idea in data symbolization is to quantize data into afew possible values. 

Depending on the value of a datum, it is assigned one of n symbolic values (e.g., 0 

or 1 for n = 2; 0, 1 or 2 for n = 3). The value n is termed the the symbol-set size, 

which denotes the number ofsymbols available to symbolize the data. As n becomes 

increasingly large, more detail of the original data is included, with the tradeoff that 

more noise is also included. In the liniit, when n equals the number of distinct values 

in the time series, the symbol series and the data series contain the same degree of 

precision, with the data representation (using symbols instead of numbers) being the 

only difference. 

Figure 2 illustrates the process of data symbolization (a) and a representation 

of the symbolized dynamics called a symbol-sequence histogram (b). Data are sym 

bolized based on their value relative to boundaries that partition the data range to 

produce a symbol series. Sequences are formed by defining a finite-length template 

to group consecutive symbols, and this template is shifted along the symbol series. 

Each sequence is decimally encoded to form a code series. A symbol-sequence his 

togram is a tally of the absolute counts or relative frequencies of each sequence code. 

The symbol-sequence histogram is a tabulation of all the dynamical patterns in a 

time series. This tabulation may be expected to change based on the symboliza 

tion parameters, viz., the symbol-set size, the sequence length, and the intersymbol 
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interval. 

The symbol-set size refers to the number of symbols used to partition the data. 

In the schematic (Figure 2), there is a single partition, so only two symbols(O and 

1) form the symbol set. As this symbol-set size increases, more details about the 

variations in the data are included, with the tradeoffthat the effects of noise become 

more pronounced. Practical symbol-set sizes range from 2-10(Daw,Kennel, Finney, 

and Connolly 1998). The choice of how to partition the data space to capture the 

temporal patterns faithfully, with some degree of sensibility, may be arbitrary. In 

formal symbol dynamics,there is a theoretical selection called a generating partition, 

in which a unique, perfect representation ofthe dynamics is obtained,for a noise-free, 

infinite sequence ofdata. In symbol-sequence analysis ofreal(noisy) data,this gener 

ating partion does not exist, even in theory,because ofthe effects ofnoise (Crutchfield 

and Packard 1983). Although some authors attempt to optimize partition locations 

(Lehrman, Rochester, and White 1997), others note that reasonable partition choices 

yield satisfactory results (Kurths, Schwarz, Witt, Krampe,and Abel 1996; Tang and 

Tracy 1998). A convenient and intuitive choice is to select partitions which make 

each symbol in the symbol series equally probable; this is called equiquantal (Palus 

1996) or equiprobable partitioning (Finney, Green, and Daw 1998). 

Sequences are short, sequential groupings ofsymbols and depend on two parame 

ters: sequence length and symbolization interval. The sequence length is the number 

of symbols in the sequence, and the symbolization interval is the number of sym 

bols in the original symbol series between each element in the sequence. For discrete 

time series, a natural choice for symbolization interval is one iterate, so that con 

secutive symbols are groups in the sequence. For continuous time series, the effects 
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of oversampling result in many consecutive instances of the same interval, so that a 

decorrelation interval is necessary to capture “interesting” dynamical features of the 

signal. There is no immediately obvious choice of sequence length. The process of 

selecting symbolization parameters can be complicated and depends on the nature of 

the data and on which dynamical features are to be highlighted. Finney, Green, and 

Daw(1998)and Daw,Finney, Nguyen,and Halow(1998)review criteria for selecting 

symbolization parameters. 

The sequence length dictates how much temporal information is included in the 

sequence; in this respect, it is analogous to the embedding dimension in phase-space 

reconstruction. Practically, sequence length may be selected based on the autocorre 

lation of the data or by convenience given a chosen symbol-set size. The number of 

possible sequences (bins in the symbol-sequence histogram)follows the relation 

N, =n^, (3)seq 

where n is the symbol-set size and L is the sequence length. 

Symbol-sequence histograms summarize the dynamic information of present, so 

metrics ofthe histograms can be used to characterize the generating time series. One 

metric used to describe the degree of organization is a modified form of the Shannon 

entropy: 

Hsm = (4) 

where p is the symbol-sequence histogram (with relative frequencies) and i is indexed 
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over all Nohs bins with non-zero frequency of occurrence. Using an equiprobable 

partitioning scheme and normalizing the entropy by A^obs results in values of Hsm 

ranging from 0to 1. For nearly “random” data,the modified Shannon entropy tends 

to unity, and lower values of entropy imply more organization in the data, to within 

finite-sample fluctuations. 

Algorithmically, the process of creating symbol sequences from a symbol series is 

the same as embedding vectors from a time series using time-delay embedding. How 

ever, there does not appear to be any obvious analogue of the geometric construction 

underlying time-delay embedding. The time-delay reconstruction theorems (Takens 

1980; Sauer, Yorke, and Casdagli 1991) are valid only with smooth transformations 

of the original state space, which do not exist with symbolized time series, which are 

discrete and not smooth. 

The symbol tree is a graphical representation of the symbol statistics as a func 

tion of the symbol-sequence length; this representation is derived from the study of 

symbolic dynamics. Here is an example symbol tree: 

Po Pi 

Poo Poi PlO Pll 

Pooo Pool POlO Poll PlOO PlOl PllO Pill 

In the bottom level of the tree, px:yz is the probability that the symbol sequence x y z 

occurs. In this example, the symbol-sequence length, denoted L, is 3, representing 

the probability of three successive symbols to occur. Some researchers refer to L as 

the tree level because it represents the depth in the symbol tree at which the symbol 

statistics are evaluated (Tang, Tracy, Boozer, deBrauw, and Brown 1995; Tang and 

Tracy 1998). The symbol statistics vary as a function of the symbol-sequence length. 
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A convenient numerical representation of each symbol sequence is achieved by 

converting the base-n sequence into a decimal (base-10) equivalent number, termed 

the sequence code. For instance, for the binary sequence 00 0 the sequence code is 0, 

for001 is 1,for010is 2,for01 1 is 3and so on. This encoding process is very sim 

ilar to the approach used by Lehrman, Rochester, and White (1997). Encoding each 

symbol sequence also allows for the symbol statistics to be displayed as a histogram, 

with the sequence code serving as the bin number; this representation of the symbol 

statistics is termed a symbol-sequence histogram. With equiprobable partitioning, 

the relative frequencies for truly random data sequences are equal, and all histogram 

bins are equally probable, within statistical fluctuations offinite-size sampling popu 

lations. Thus,any significant deviation from equiprobability is indicative oftemporal 

correlation and deterministic structure. 

All discussion hitherto has focused on the choice of a fixed symbol-set size to 

calculate symbol statistics for a given symbol-sequence length and symbolization in 

terval. In some cases, it is not desirable to have the same n at each step in the 

sequence. For instance, in the cases of fitting models to experimental data, using a 

different number of symbols in each step in the symbol sequence can provide better 

discrimination(Daw,Kennel, Finney, and Connolly 1998). Differing symbol-set sizes 

can provide better fits because the one-dimensional marginal distributions of trial 

simulations are constrained to match the data more closely when symbol partitions 

are not commensurate. Instead of using the parameters n and L to describe symbol-

tree geometry, a more generic symbolization key, denoted Kn, may be used. This 

key is a list of symbol-set sizes at each step in the symbol sequence. For example, 

a symbolization key of{3 2} denotes a symbol-set size of 3 for the first step of the 

34 



symbol sequence and a symbol-set size of 2 for the second step. Graphically,,the 

symbol tree would be: 

Po Pi P2 

Poo Poi Pio Pn P20 P21 

Mathematically, the symbolization transformation Q(n;•);x 1-^ s is defined such 

that the data series x is discretized using n symbols based on a partitioning function P 

which discretizes the range ofx. Here,the partitioning function is defined a posteriori 

such that the observed probabilities of each symbol in s are the same (i.e., using 

equiprobable partitioning). 

The encoding transformation E(L,/;•) : s c is defined such that the symbol 

series s is “embedded” into sequences of length L with intersymbol interval I and 

then decimally encoded to a scalar code series c. The code series c, then, contains 

the symbol statistics of time series x given symbolization parameters n, L, and I. 

The symbolization described here is homogeneous; i.e., fixed symbol-set sizes n and 

sequence lengths L are employed. 

The above steps are combined into a single transformation 

S(n,L,/;•):X I—»• c. (5) 

More generally, to account for nonhomogeneous symbolization,S may be defined as 

S{Kn,Ki\•):X c. (6) 

where Kn is the symbolization key (the number of symbols at each step in the se 

quence)and Ki is the interval key(the number oftimesteps or symbols between each 
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step in the sequence). Note that dimKi=dimKn — 1. 

The relationship between the symbolization and interval keys may be seen in 

Figure 3. In the figure,the smooth curve is the analog signal, and the open symbols 

represent measurement values. To the right of the signal are the partitions used to 

quantize the data range with symbol-set sizes of 2,3 and 4. Below the signal are three 

sequences. Sequence 0 1 1 1 is formed by homogeneously symbolizing the data series 

with a binary symbolset at each ofthefour steps in thesequence,so the symbolization 

key is {22 2 2}; consecutive measurements are used at each step in the sequence, so 

the interval key is{111}. Sequence023isformed by homogeneously symbolizing the 

data series with a quaternary symbol set at each ofthe three steps in the sequence,so 

the symbolization key is{444}; every other measurement is used at each step in the 

sequence,so the intervalkey is{22}. Sequence 0 11is anexample ofnonhomogeneous 

symbolization. The symbolization key is {24 3}, meaning that a symbol-set size of 

2 is used for the first step, of 4 for the second step, and of 3 for the third step in 

the sequence. The interval key is {1 3}, meaning that consecutive measurements are 

used between the first and second steps in the sequence, and three measurements 

separate the second and third steps in the sequence. Denoting this nonhomogeneous 

symbolization is awkward,but the nomenclature is useful for describing multichannel 

synchronization. 

A symbol-sequence histogram is the frequency histogram of c, denoted 

P (Pl)• • • jPiVseq)) (7) 

where pi is the relative frequency ofsequence i and is the number ofpossible sequences 
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  0 1 1 1 0 2 0 1 1IJ 
Kn{22 2 2} Kn{444} Kn{243) 
Ki{1 1 1} Ki{22) Ki{1 3) 

Figure 3: Symbolization and interval keys and resulting symbol sequences. 
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(n^ for homogeneous symbolization and generally). 

3.1.3 The Monte Carlo probability 

Using the method ofsurrogate data,a measure(usually asimple statistic)is compared 

for the original data and a large sample ofsurrogate realizations. There are two ways 

to test a chosen measure. First, if known that the distribution of the measure is 

Gaussian, then the significance may be computed using 

Afprig (.A^surr)
S= (8) 

^surr 

where Mprig is the measure value for the original time series, (Mgurr) is the expected 

(mean) value of all the surrogate time-series measures, and a. is the standard surr 

deviation of the surrogate time-series measures. After Rapp, Albano, Zimmerman, 

and Jimenez-Montano (1994),the corresponding probability is then 

Pa=Pr[M < Mprig. i[l+erf(S/V2)l. (9) 

Thus,S> 2.6 rejects the null hypothesis that the original and surrogate time series 

are the same with significance level ct =0.01, or with 99 percent confidence. 

Alternately,the Monte Carloprobability(Rapp,Albano,Zimmerman,and Jimenez-

Montano 1994) may be evaluated if it is not known whether M follows a Gaussian 

distribution: 

: M,< Mprig} 
Pm= (10)

K +1surr 
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where N, is the number of surrogate trials. Under a null hypothesis H : Morig < surr 

M the null is rejected if Morig < Mj for all surrogates, with p-value p = suri)surr5 

l/(-^surr + 1). Significance probabilities also may be calculated exactly using less-

strict criteria. 

This procedure may be modified for the inverse null hypothesis,H:Morig > Msurrj 

and adapted for two-tail tests. 

3.2 Test for symbolic stationarity 

Two time series are defined to be symbolically stationary if their symbol statistics 

are not significantly different. Because “significantly different” depends on how the 

difference is measured, this definition is not rigorous in itself. Stationarity, then, 

depends on the context of usage. 

Evaluation ofstationarity may be used to determine whether asystem has achieved 

ergodicity (e.g., passed startup or changepoint transients) or whether a reference 

state is dynamically similar to a reference or library state. As mentioned in Section 

2.2.3, nonlinear time-series analysis practice lacks an accepted, standard test, partly 

because stationarity is not a well-defined concept. In the context ofsymbolic analysis, 

verifying stationarity on the basis of a symbolic test is a reasonable and consistent 

approach. 

A simple difference metric between two symbol-sequence histograms is defined 

using a norm,such as Euclidean, maximum or superior, or chi-square. The Euclidean 
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norm is employed in this study, and for two time series A and B is defined as 

Tsut= i((pf- (11) 

where p denotes the symbol-sequence histogram and (•) denotes the expected value 

evaluated over all sequences in the histogram. 

Ascribing statistical significance to Tgtat is problematic because sequences in each 

symbol-sequence histogram are temporally dependent. For instance, the binary se 

quences 010 and 1 0 □ are correlated, as the latter sequence is a temporal shift of 

the former (□ could be either 0 or 1). Direct sequence-by-sequence comparison of 

the symbol-sequence histograms is possible but evaluating significance introduces the 

problem of multiple testing (Miller 1966; Timmer, Schwarz, Voss, Wardinski, Belloni, 

Hasinger, van der Klis, and Kurths 2000) along with presumption of the distribution 

of the test statistic. 

An intrinsic test may be fashioned using Monte Carlo probabilities. Under the 

null of stationarity, the expected value of Tgtat is zero. The range of variability may 

be evaluated by calculating Tgtat for surrogate symbol series or histograms, with the 

final probability calculated according to Equation 10, where Tstat serves as the mea 

sure M. The use of the Monte Carlo process allows direct nonparametric (i.e., not 

assuming Gaussianity) estimation of significance and obviates the need to account 

for correlation in symbol sequences but is computationally more intensive than direct 

evaluation with an a priori estimation of significance. 

The test procedure is as follows. Two time-series segments and xg are selected; 

these segments could be the front and back halves of a long time series (to test for 
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dynamical stationarity),two time series measured from the same process at separated 

times (to test for process stationarity), or one a test series and the other a library 

series (to test for achieving process dynamical similarity). Each time series is then 

transformed according to Equation 6, and the symbol-sequence histograms and 

Pb are tallied from and cb- Then, is calculated, according to Equation 

11. For each of Ksurr (typically 50-200) surrogates, the symbol series and Sb are 

shuffled (i.e., the order is randomized, much like shuffling a deck of cards) using the 

randomization operator 

R(-):X X, (12) 

where x is the randomly shuffled version of x. Thus, for each randomized pair of 

surrogate symbol series and Sb, a value of is calculated. When all of the 

values of have been recorded over all randomized surrogates, then the Monte 

Carlo probability may be computed according to Equation 10 and the null hypothesis 

of stationarity accepted or rejected based on Pm-

3.3 Test for temporal reversibility 

A time series is defined to be symbolically temporally reversible if its symbolstatistics 

are not significantly different under a temporal reversal transformation. As with 

symbolic stationarity,the term “significantly different” depends on how the difference 

is measured,so this definition is not rigorous. As discussed in Section 2.2.4,rejection 

of a null hypothesis of temporal reversibility rules out Gaussian models, or static 

(
transformations of a Gaussian, as a source for the time series. 

41 



For an observed time series, temporal reversibility may be tested by comparing 

the original time series with a temporally reversed version of itself. The reversal may 

be achieved using the reversal operator 

T(-):X x, (13) 

where x is the reversed version of x.^ 

In this study, the test used for measuring temporal reversibility is algorithmically 

similar to that used for stationarity. The metric is the Euclidean norm between the 

symbol-sequence histogram of the time series and its temporal inverse: 

Trev = {{Pi- (14) 

where p denotes the symbol-sequence histogram and (•) denotes the expected value 

evaluated over all sequences in the histogram. 

For hypothesis testing, temporally reversible surrogates of a code series may be 

generated using the symmetrization operator 

W(-): c. (16) 

The temporal symmetrization is achieved by flipping each temporally asymmetric 

sequence in c between its time-forward instance or its time-reverse instance with 

probability The result is a temporally reversible code series, within fluctuations 

of finite-sample statistics. As a concrete example for n = 2 and L = 3, possible 

^Explicitly, if x=(xi,X2,... then x={xn,xn-i,.. . ,X2,xi). 
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sequences are: 0 0 0,0 0 1,0 1 0,0 1 1, 1 0 0, 1 0 1, 1 1 0, 1 1 1. Sequences 0 0 0, 

010,101 and 1 11 are temporally symmetric, as their forward and reverse instances 

are the same (e.g.,000forward is the same as 0 0 0 backward). The other sequences 

are temporally asymmetric. 

Alternately, the metric in Equation 14 may be rewritten as 

Tiirr (16) 

where p represents the collection of time-forward instances oftemporally asymmetric 

sequences and p their corresponding time-reverse instances. For instance, if p repre-

sent the collection ofsequences0 0 1 and011,then p would represent the collection 

of sequence 10 0 and 110,the corresponding time-reverse sequences; redundant 

sequence pairs are ignored (e.g., the difference between 00 1 and 100 and between 

100 and 0 0 1 are the same,so only one difference is recorded in Equation 16. 

The test procedure is as follows. Given time series x, the time series is trans-
1 

formed according to Equation 6,and Tij-j- is calculated from Equation 16. For each of 

A^surr (typically 50-200)surrogates, a temporally reversible surrogate code series c is 

created, and from this a value of 7]®"’^’’ is calculated. When all of the values of 

have been recorded over all randomized surrogates, then the Monte Carlo probabil 

ity may be computed according to Equation 10 and the null hypothesis of temporal 

reversibility accepted or rejected based on Pm-

This test relies on the method of surrogate data. Another test, targeted false 

flipped symbols(TFFS),hasrecently been developed and provides an apriori estimate 

ofstatistical significance ofasymbolization-based test without the need for generating 
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surrogates. Daw, Finney, and Kennel(2000) provide a discussion to the advantages 

of TFFS over the method employed in this study. 

The above test for temporal reversibility directly compares symbol statistics of a 

time series by measuring the sensitivity ofthe time series ofsimple temporal reversal. 

Another test may be fashioned under the premise that rises and falls in data are, 

statistically, of equal duration, which would be expected of temporally reversible 

data.^ Naively, a statistic to measure such behavior would be calculated by tallying 

the number of positive versus negative first differences in the data.^ The utihty of 

the statistic should not be limited to first differences, however, as longer timescales 

may be more sensitive to rises and falls in data. Therefore, a lagged difference may 

be used more generically instead of the first difference, which has unit lag. 

The difference symbolization statistic is defined as 

‘S'a(t)=(sign[xi+.r -Xi]), (17) 

where r is the lag, sign[-] is the algebraic sign indicator(—1,0,+1), Xi is record x at 

index i, Xi^r is record x at index i+r, and (•) is the expected value. When r= 1, 

Xj+i — Xi is the familiar first difference of the data series. For temporally reversible 

data, E[5'a] = 0, where E[-] is the probabilistic expectation. The significance of 

Sa may be determined using the method of surrogate data and the Monte Carlo 

probability, based on a two-tailed test, as Sa may be positive, negative, or zero. 

In this case, surrogate data sets are created by randomly shuffling the original time 

^This observation is ubiquitous in the literature; vid. Section 2.2.4. 
^Difference symbolization is termed by Kurths et al. (1996)as a dynamic transformation. 
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series before applying the difference symbolization. A shuffle of a reversible time 

series should have minimal impact on .Sa, whereas a shuffle of an irreversible time 

series should force 5'a to approximately zero. 

The test procedure is as follows, Given time series x, the symbolic lagged-

difference statistic is calculated, according to Equation 17. For each of Nsun 

(typically 50-200) surrogates, a randomized time series x is created and 5'a calcu 

lated. When all ofihe values of have been recorded over all randomized surro 

gates, then the Monte Carlo probability may be computed according to a two-tailed 

version of Equation 10 and the null hypothesis of stationarity accepted or rejected 

based on Pm-

Note that a useful signature of irreversible timescales within a time series may be 

obtained from a functional form of S'a, i.e., evaluated over a range ofr. 

3.4 Test for symbolic synchronization 

Two or more physically coupled systems are defined to be symbolically synchronized 

if, within a finite period of observation, their symbolic dynamics are statistically sim 

ilar, either with instantaneous or lagged simultaneity. Depending on the degree of 

coupling and on the regularity of each independent system, synchronization may be 

episodic or protracted. Synchrograms are graphical displays of synchronous behav 

ior, and the symbolization-based synchrograms developed in this study are motivated 

by the lack of methodology in nonlinear time-series analysis practice for register 

ing synchronization among more than two measurement series, either continuous or 

symbolized. 
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The symbolic synchrogram depends first on the ability to encode multiple (two 

or more)symbol series, each arising from a different measurement series. Figure 4 

illustrates the process of multi-series encoding. In the figure, there are three symbol 

series. A,B and C,each symbolized from three separate but simultaneously measured 

time series. The process of encoding relies on grouping symbols together. In single 

series encoding, all elements ofthe symbol sequence occur sequentially from the same 

symbol series; in multi-series encoding,symbols are taken from different symbol series 

to form a “sequence”, which might not be in temporal order after the grouping. 

To specify which symbol series and in what order symbols are to be grouped,two 

keys, the series key and the interval key, are needed. The series key specifies from 

which symbol series symbols are taken at each step in the sequence. The interval 

key, denoted Ki, specifies the interval of separation between steps in the sequence. 

Because multiple symbol series are used, it it possible for an interval to be negative 

as well as positive. Figure 4 explains this process schematically. In the figure, the 

series key is{A A B B C C},meaning that the first two steps in the sequence draw 

symbols from series A, the third and fourth steps from series B, and the fifth and 

sixth steps from series C. The interval key is{-|-l —1 -1-1 —1 -Hi}, meaning 

that step two lags step one by an interval of one, but step three and step one are 

simultaneous (because the —1 decrements the pointer, and -Hi — 1 = 0). Similarly, 

step five and step one are simultaneous. The combined effects of the series key and 

the interval key are seen in the(red)order guide numbers 1-6. The symbols adjacent 

the guide numbers are combined,in order 1-6,into the specified sequence010 10 1, 

which then is encoded into code 21. In the resulting code series, sequence 010 10 1 

occurs twice all three symbol series {A,B,C)exhibit self-anticorrelation (0 1) but 
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Symbol
series

1 1 O^ l^ l 1 0 0 1 0 0
1 0 0^ 1^ 1 0 1 0 1 1 1
0 l .O^ l.^ O 1 1 0 1 1 0

Multi-series symbol sequence created
by embedding symbols [1 2 3 4 5 6]
with series key [A A B B C C] and
interval key [+1 -1+1-1 +1]

Y

010101.^
L I

A

B

C

<a-
Decimal encoding

Code

series
57 34 21 62 57 39 10 21 47 14

Figure 4: Construction of a multi-series code series used in the symbol synchrogram.
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mutual synchronization (at the first timestep, all three series have a symbolic value 

of 0; at the next timestep, all three series have a symbolic value of 1). 

The symbol synchrogram is a graphical display of the code series, with time on 

the abscissa and the code at each temporal index on the ordinate. When certain 

codes dominate the mutual behavior of the symbol series, “banding” (many proxi 

mate consecutive instances of the same code) will occur; for asynchronous or weakly 

synchronized behavior, any banding will be episodic and by chance. 

An intrinsic advantage in the symbolsynchrogram is the combined systemic state 

may be determined and viewed at any instant in time. Additionally, the combined 

systemic symbol statistics may also be tallied, so that the primary modes of mutual 

behavior, and their transitional states, may be recorded and interpreted. 

The goal in constructing the synchrograms is to test the null hypothesis that 

there is no significant synchronization between time series. Because the synchrogram 

is a multivariate, temporally embedded code series, a natural, perhaps naive, choice 

for statistic is the modified Shannon entropy. For instance, very strongly correlated 

behavior would result in a finite number of sequence codes predominating the syn 

chrogram,so entropy would be expected to be low; weakly correlated or uncorrelated 

behavior would result in higher values of entropy. However, the Shannon entropy is 

nonspecific in which patterns it measures it simply quantifies the degree of orga 

nization of the symbol statistics and cannot discriminate sequences 1, 2 and 3 from 

4,5 and 6. 

Therefore,a second,specific statistic is employed,one which measures the relative 

frequencies of occurrence ofsequences associated with the types ofsynchronization of 

interest. One statistic is S+,which is the sum offrequencies of occurrence for purely 
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correlated sequences; another is S-,the sum of frequencies of occurrence for purely 

anticorrelated sequences. By using the targeted statistics S, only the sequences of 

interest are counted, thus allowing a much more powerful statistical test. 

When significant synchronization occurs, it is expected that the modified Shan 

non entropy for the original synchrogram should be less than entropy values for the 

phase-randomized surrogate synchrograms; i.e., the phase randomization destroyed 

real synchronization, and the resulting symbol statistics are more complicated. Al 

gorithmically, the phase randomization is achieved by selecting the starting locations 

of each symbol series at random, so that each surrogate synchrogram should have a 

difference phase relationship than the original data. When the synchronization is in 

the form of strong correlation, it is expected that the statistic S+ should be higher 

than those for the phase-randomized surrogates. Similarly, when the synchronization 

is in the form of strong anticorrelation, it is expected that the statistic S- should be 

higher than those for the phase-randomized surrogates. It should be noted that S+ 

and S- could fail to account for synchronization based on systematic phase slipping 

(switching between correlated and anticorrelated behavior), so an alternate statistic 

S±=S^+S- could then be employed. The significance of these statistical tests can 

be measured with a Monte Carlo process employed in previous sections. 

The test procedure is as follows. Given time series Xi...xm, code series c is 

created by using a multivariate transformation described by the parameters Ks, Kn 

and Ki (see Figure 4 for a schematic). Then, Hsm and/or S are calculated for c. 

For each of Agurr (typically 50-200) surrogates, a phase-randomized code series c is 

created, from which and/or are/is calculated. When all of the values of 

the statistical metrics have been recorded over all randomized surrogates, then the 
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Monte Carlo probability may be computed according to Equation 10 and the null 

hypothesis of stationarity accepted or rejected based on Pm-

As mentioned above, the appropriate surrogate transformation is to randomize 

the phase relationships of the time series used to construct the synchrograms. Algo 

rithmically, the phase randomization is achieved by selecting the starting locations 

of each symbol series at random, so that each surrogate synchrogram should have a 

different phase relationship than the original data. In the present study, the starting 

locations are chosen at random (uniformly) in the interval of the first 10 percent of 

each time series. Each resulting code series, including that for the original data, is 

then limited to a length of 90 percent of the original time series. In this manner, all 

code series will have the same length, but each, to varying degrees, neglect portions 

of the first and last 10 percent of the original time series. The phase-randomization 

process, as implemented, loses some information in the original data, but for long, 

stationary data sets, this information loss should not be significant or bias the test. 
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Chapter 4 

Results and discussion 

4.1 Stationarity 

This section presents application of the stationarity test presented in Section 3.2 to 

measurement data from a fluidized-bed system. 

4.1.1 Data 

Datafrom alaboratory-scale fluidized bed system are examined using the stationarity 

metric and test. Two types of stationarity are measured: dynamical state matching 

and dynamical stationarity. The data were obtained by the author and by M. Va-

SUDEYAN of the University of Tennessee. 

4.1.1.1 Experimental apparatus and procedure 

The experimental fluidized-bed data were obtained at the Fluidization Laboratory of 

the University of Tennessee. Figure 5 displays the fluidized-bed system schemati 

cally. The fluidized-bed vessel was a 10.2-cm inner diameter by 260-cm tall Plexiglas 

tube with a perforated-plate distributor. House air was used as the fluidizing gas. 

Dynamic differential-pressure measurements were obtained from taps located 10 and 

23 cm above the distributor using a Baratron differential-pressure transducer. The 
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Figure 5: Schematic of the fluidized-bed system. 
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transducer signal was analog bandpass filtered between 0.1 and 40 Hz to remove long

time-scale instrument drift and 60-Hz power-line contamination before being digi

tized with a 12-bit precision Nicolet digital recording oscilloscope. Time series were

recorded at 200 samples per second for 300 seconds, for a total of 60000 records.

Glass ballotini with a mean diameter of 0.27 cm and a density of 2.6 gm/cm^

were used as the fluidizing solids; these particles are classified as Geldart Group D

and reach minimum fluidization at approximately 142 cm/sec air velocity at ambient

conditions (operating temperature of 298 K and pressure of 1 atm). For the complete

measurement record, two groups of data were obtained. The first group, termed

the reference group, was recorded at 16 different gas-flow conditions; at each flow

condition, two time series (replicates) were recorded within several minutes of each

other to test for long-term stationarity. The second group, termed the test group,

was recorded at 8 different gas-flow conditions, with two time series per condition.

Figure 6 shows schematically the relationships between the reference and test flow

conditions. The reference time series are labeled  1 through 16, and the test time

series are labeled A through H. Additionally, the first replicate at each condition is

labeled “a”, the second “b”.

ABC D E F G H
Test

|l|l)
1 234

Reference
5678 910 11 12 13 14 15 16

1.5 2
U/Umf

Figure 6: Relationship of the relative conditions for the reference and test sets for
the fluidized-bed data.
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4.1.1.2 Dynamical behavior ofthe fluidized-bed data 

The fluidization behavior of the ballotini varies significantly over the range of condi 

tions encompassed in the measurement record, with states changing from bubbling 

to slugging to turbulent transition in a manner consistent with that described by 

Vasudevan, Finney, Nguyen, van Goor, Bruns, and Daw (1995). 

Figure 7shows short time-series segments from the first replicates of all 16 con 

ditions ofthe reference group;the segments are standardized (converted to zero mean 

. and unit variance) for visual comparison. All flows are standardized with respect to 

the minimum fluidization velocity, the gas flow at which incipient fluidization is 

observed. Near minimum fluidization (1), the bed is in a bubbling regime, character 

ized by irregular oscillations with flattened peaks in the pressure trace. Here, bubble 

size is quite variable and unstable. With further increase in gas flow (2), the bed 

transitions into the slugging regime, characterized by more regular oscillations in the 

pressure trace. The slugging regime is quite stable with further increases in flow(3-4), 

although variations in the pressure-cycle magnitudes and waveforms are discernible. 

With further increases in flow(5-12)past the maximum-stable slugging condition (4), 

the regularity ofthe slugging rhythm is interrupted occasionally with briefepisodes of 

smaller-than-average pressure cycles; these interruptions become more frequent with 

increasing flow. The bed enters the turbulent transition regime(13-15)at still higher 

flows; here, slugging is very violent and punctuated by brief episodes of swirling of 

particles near the distributor before the resumption of slugging. Near turbulence is 

seen at the highest flow condition (16), at which the dominant mode of bed motion 

is vigorous mixing of particles in the lowest area of the bed; bubbles or slugs rarely 
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Figure 7: Short time-series segments for the reference group from the fluidized bed 
over a range of fluidization conditions. Segments are standardized to aid in visual 
comparison. 
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are observed. 

The time series in the test group were taken at flow conditions between those 

taken in the reference group. Figure 8 shows short time-series segments from the 

first replicates of all 8 conditions of the test group; the segments are standardized 

(converted to zero mean and unit variance)for visual comparison. Visually,these time 

series appear consistent with their nominal flow value and with the corresponding 

reference sets. For instance, test set A is between reference sets 1 and 2,and its trace 

most closely resembles reference set 1; test set H is between reference sets 15 and 16, 

and its trace most closely resembles reference set 16. 

4.1.2 Results ofthe stationarity test 

An important validation ofthe stationarity metric is whether this metric can identify 

a given test case based only on the library of reference cases. The simplest form 

of this library system is a direct comparison of each reference time series against 

the test time series. Figure 9 shows direct comparison of each test case against all 

reference cases using the stationarity metric Tgtat- In the top plot, test sets A-C are 

compared; in the middle, test sets D-F;in the bottom, test sets G-H. In each case, 

the test case is correctly matched into its appropriate fluidization state (see Figure 

6 for comparison of states based on fluidization gas flow). For instance, test set D 

dynamically should be most similar to reference sets 10 and 11; the value of stat for 

test set D with respect to all the reference sets reaches a minimum at reference set 11, 

indicating best dynamical similarity. Tests sets G and H both lie between reference 

sets 15 and 16;for G,Tgtat is minimal when compared with reference set 15,indicating 

closest dynamical agreement, whereas for H,best agreement is with reference set 16. 
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Figure 8: Short time-series segments for the test group from the fluidized bed over 
a range of fluidization conditions. Segments are standardized to aid in visual com 
parison. 
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The simple comparisons displayed in Figure 9 do not address statistical signifi 

cance. By the test presented in Section 3.2,statistical significance can be estimated 

using Monte Carlo probabilities. In this case, surrogates are generated by randomly 

shuffling the symbol series and then calculating the stationarity statistic Tgtat for each 

surrogate. Thus,the final test determines whether the observed differences in symbol 

statistics occur from real, dynamical differences or are within finite-sample variations. 

An example of the stationarity test is shown in Table 1, which gives results 

for reference set 4 and test set C, its closest neighbor in fluidization state. For all 

tests, 30000 records from each time series were used so that all time series would be 

compared on a consistent basis. An important first question is whether a given time 

series exhibits autostationarity, specifically, whether the symbol statistics in the first 

half ofthe time series are statistically the same as those from the the second half. In 

the table, autostationarity results are shown for the two replicates of reference set 4 

and for the two replicates of test set.C. For each time series, the stationarity statistic 

ffstat is reported. Additionally,the upper bound for 95 percent confidence based on 200 

surrogate trials(T95)and the p-value of the statistic are reported. Prom the table, in 

the “Autostationarity” block,it is seen that time series 4a,4b and Ca are statistically 

stationary, as their p-values exceed the defined significance of 0.05. However, set Cb 

is statistically symbolically nonstationary and is excluded from further analysis. 

Prom the table, in the “Stationarity” block, time series 4a, 4b and Ca are all 

statistically different based on their symbol statistics. All trials strongly reject the 

null hypothesis(p < 0.005)of stationarity (in this case, dynamical equality), but the 

differences between 4a and Ca and 4b and Ca are much greater than that between 4a 

and 4b. In the former case,the primary difference is the fluidization state, determined 
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Table 1: Stationarity test results for the fluidized-bed data for reference set 4, repli 
cates a and b,and test set C,replicates a and b. T95 is the 95 percent upper confidence 
bound on T Symbolization parameters were ifn ={444} and Ki={21 21}.stat-

Set(s) Tstat T95 p-value 

Autostationarity 
4a 0.008038 0.008957 0.279 

4b 0.008322 0.008912 0.184 

Ca 0.007111 0.008783 0.642 

Cb 0.012106 0.008871 <0.005 

Stationarity 
4a & Ca 0.072131 0.008671 <0.005 

4b & Ca 0.062969 0.008783 <0.005 

4a & 4b 0.024364 0.008696 <0.005 
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by the gas flow; in the latter, weak differences between replicates measured at the 

same experimental conditions several minutes apart are suggestive of a long time-

scale drift inherent in fluidized-bed dynamics (Daw 2000). Because of the Monte 

Carlo methodology employed here, acceptance probabilities are discrete, so that the 

differences between 4a and Ca are registered with the same strength as those for 4a 

and 4b. Had a continuous probability distribution (e.g., Gaussian) been employed, 

then the rejection strengths would have been registered as clearly as they are visible 

in the table. 

It should be noted that the degree of measured stationarity or nonstationarity 

depends on the symbolization parameters used to construct the symbolstatistics — in 

some instances, dynamics will appear similar, whereas in others, dynamics will appear 

dissimilar. The problem of choosing parameters for statistical tests is ubiquitous 

except in the simplest, and least informative, tests and should not be viewed as 

a deterrent in implementing a symbolization-based stationarity test. A reasonable 

practice would be to choose a small set of reasonable symbolization parameters and 

to apply the test multiple times, using aggregate results to determine acceptance 

overall acceptance or rejection of the null. Additionally, if other symbolization-based 

tests such as temporal reversibility are to be applied, then testing for stationarity 

based on the symbolization parameters used in the other test would be reasonable 

and would offer comparison on a consistent basis. 
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4.2 Temporal irreversibility T,irr 

This section presents application ofthe temporal-irreversibility test based on a static 

symbolization transformation presented in Section 3.3 to measurement data from 

an internal combustion engine. 

4.2.1 Data 

Data from a production internal combustion engine are examined for evidence of 

temporal irreversibility. The data were supplied by F.T. Connolly of the Ford 

Motor Company. These data are labeled Ford. 

4.2.1.1 Experimental apparatus and procedure 

The Ford data were obtained at the Science Research Laboratory of Ford Motor 

Company using a 1993-model V-8 engine manufactured by Ford Motor Company. 

The engine had 4.6 liter total displacement with production port fuel injection,a two-

valve head, a bore of 9.02 cm,a stroke of 9.0 cm,and a compression ratio of 9. The 

nominal operating conditions were 1200revolutions per minute and 20 degrees before-

top-center spark timing. The fuel-air equivalence ratio was controlled by adjusting 

the fuel-injection pulse width and the throttle position while maintaining a 25 N-m 

load with an absorbing/motoring dynamometer. 

Continuous cylinder-pressure time series were sampled from a head-mounted trans 

ducer in one cylinder. The pressure time series were sampled once per crank angle 

degree so that there were 720 pressure measurements per engine cycle. Estimates of 
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combustion heat release were computed from the pressure time series using an inte 

gral method similar to that of Rassweiler and Withrow(Heywood 1988), so that the 

resulting time series were discrete, with one heat-release estimate per engine cycle. 

The time series had approximately 2843 consecutive engine cycles. 

4.2.1.2 Dynamical behavior ofthe engine data 

For the types of measurements in the engine described above, the dynamical be 

havior of combustion quality varies dramatically with fueling changes. Specifically, 

cycle-to-cycle combustion variations change from Gaussian in nature at stoichiomet 

ric fueling to a noisy period-2 behavior at lean fueling(Daw,Finney, Green, Kennel, 

Thomas,and Connolly 1996; Finney, Green, and Daw 1998; Wagner,Drallmeier, and 

Daw 1998; Daw,Kennel, Finney, and Connolly 1998; Green, Daw,Armfield, Finney, 

Wagner, Drallmeier, Kennel, and Durbetaki 1999; Scholl and Russ 1999). In the 

lean-fueling regime, the period-2 behavior is the result of anticorrelated (alternating 

higher and lower) variations in combustion quality. As explained in the model of 

Daw et al., the nonlinear nature of these oscillations is primarily the result of the 

sensitive dependence of combustion quality on equivalence ratio, which is a function 

of perturbations to the amount of fuel injected and in the amount of unburned fuel 

in the residual gas. The severity of the cyclic variability at lean fueling conditions 

limits the operating range of spark-ignition engines, so understanding the causes of 

this variability is important for design and control considerations. 

The nature of the heat-release oscillations as equivalence ratio changes may be 

seen in Figure 10, which displays typical, short segments of the heat-release time 

series over a range of equivalence ratios. At the nearly stoichiometric fueling to 
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Figure 10: Short time-series segments from the Ford engine at a range of equivalence 
ratios (ordinate labels). Segments are plotted on the same scale. 
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moderately lean conditions (equivalence ratios 0.91-0.71),the range of cycle-to-cycle 

variability in heat release is small and without apparent temporal correlation; in 

this range, combustion efficiency is most linearly dependent on equivalence ratio, 

and combustion variations primarily depend on random parametric fluctuations. As 

the fueling is leaned further (equivalence ratios 0.71-0.63), the range of variability 

increases (larger variance), and some noticeable oscillations are apparent (e.g., for 

(j) — 0.63,cycles 6-14,with alternating higher and lower heat-release values). At very-

lean fueling(equivalence ratios 0.59-0.53),the variability and anticorrelated structure 

(“sawtooth” appearance ofthe oscillograms)becomes greatest as the engine dynamics 

are best described as noisy period-2in nature. Here,the residual-gas effect dominates 

the dynamics— unburned fuel left in the cylinder feeds alarger-than-average burn on 

the next cycle, after which, the fuel inventory being depleted, combustion is weaker 

than average, resulting in a weaker burn. 

Prom the figure (Figure 10), it is difficult to discern the nature of the oscilla 

tions at the nearly stoichiometric conditions because their variabilities are so small 

compared with those at the leanest conditions. To aid visual inspection, the seg 

ments may be standardized (converted to zero mean and unit variance), as is shown 

in Figure 11. When viewed in standard units, the nearly stoichiometric conditions 

also contain frequent oscillations, but it is not obvious whether these oscillations 

are generated by largely random sources such as gas turbulence and charge mixing 

or because of the fuel-inventory effect believed to dominate at very lean conditions. 

This question may be answered by testing for presence of significant irreversibility, 

which would rule out a Gaussian model, or static transformations of a Gaussian, as 

the most likely source for the dynamics. Resolution of this question is important to 
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Figure 11: Short time-series segments from the Ford engine at a range of equivalence 
ratios (ordinate labels). Segments are standardized to aid in visualization of the 
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resolve which type of model, a noisy nonlinear dynamics model or an anticorrelated 

oscillation(AGO)model^ best describes (or is prohibited from describing) observed 

combustion variability. 

4.2.2 Results ofthe symbolic temporal-irreversibility test 

Figure 12displays the results for the temporal-irreversibility test based on the statis 

tic Tirr for 200 surrogate trials. In each plot, the Ti„ statistic for the original time 

series at each equivalence ratio is displayed with red lines and symbols, and the blue 

broken line represents the 95 percent confidence interval based on Monte Carlo prob 

abilities (values of Tirr greater than the confidence bound signify irreversibility). For 

each plot, a unit symbolization interval was used, and symbolization keys for each 

case were ={22 2 2 2 2}(a), ={444}(b), and Kn={8 8} (c). 

With the binary symbolization (a), at all equivalence ratios the data appear to be 

temporally reversible^. However, with the quaternary (b) and octonary (c) symbol 

izations, significant temporal irreversibility is registered at equivalence ratios at and 

below 0.71. The maximal degree of irreversibility occurs at an equivalence ratio of 

0.59, where the noisy anticorrelated behavior is most pronounced. For this reason, 

the anticorrelated-oscillation model is confidently rejected. The noisy nonlinear dy 

namics model accounts for the temporal irreversibility at very fuel-lean conditions, so 

it at least is not invalidated based on the lack of temporal irreversibility. This topic 

^In the AGO model, acoustic fluctuations in the intake manifold and fuel-intake system account 
to the source ofthe anticorrelated combustion variations. The AGO model is inherently temporally 
reversible(Green et al. 1999; Daw et al. 2000). 

^As discussed in Section 3.3, binary symbolization cannot distinguish temporal irreversibility 
— only symbol-set sizes greater than two can — as is verified in the present example. 
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is addressed comprehensively by Green,Daw, Armfield, Finney, Wagner, Drallmeier, 

Kennel, and Durbetaki(1999) and Daw,Finney, and Kennel(2000). 

4.3 Temporal irreversibility 5a 

This section presents application of the temporal-irreversibility test based on a dy 

namic symbolization transformation presented in Section 3.3 to measurement data 

from a thermal pulse combustor. 

4.3.1 Data 

Data from a laboratory thermal pulse combustor are examined for evidence of tem 

poral irreversibility. The data were supplied by K.D. EDWARDS ofthe University of 

Tennessee (Edwards 2000b). 

4.3.1.1 Experimental apparatus and procedure 

The data consist of combustion-chamber pressure time series measured from a labo 

ratory-scale thermal pulse combustor operating over an equivalence-ratio range from 

nearly stoichiometric to flameout in fuel-lean conditions. 

Figure 13 displays the pulse-combustor system schematically. The combustor 

consists ofa 0.295-liter,5-cm inner diameter cylindrical combustion chamber coupled 

with a 91-cm long tailpipe. A ceramic flameholder is installed in the combustion 

chamber to provide an ignition heat source and to help stabilize the flame. Air 

and propane enter the combustor past swirl-inducing vanes at a constant flow rate 

through separate choked-flow oriflces. A spark plug is used to initiate; once ignited. 
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Figure 13: Schematic of the thermal pulse combustor. Source: (Edwards et al.
1998).
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the combustion reaction is self-sustaining. Although unnecessary for combustor op 

eration, the spark plug is left running to prevent excessive fuel buildup in the case of 

flameout. 

A piezoelectric pressure transducer was used to measure the pressure fluctuations 

inside the combustion chamber. A damping volume attached to the pressure tap 

reduces acoustic coupling between the tap and the combustion chamber by lowering 

the natural acoustic frequency of the tap. The transducer signal was conditioned 

using a dual-mode amplifler and bandpass Altered from 0.1 to 2000 Hz. Data were 

digitally recorded at 5000 Hz. 

The global equivalence ratio of the fuel-air mixture is controlled by varying the 

pressure drop across the choked-flow orifices. By monitoring this pressme drop 

and measuring the orifice flow area, the global equivalence ratio is calculated using 

compressible-flow relations. 

The combustion pulses because it is driven by acoustical oscillations in the com 

bined chamber-tailpipe system. A fraction of the exhaust energy leaving the tailpipe 

is reflected at the exit boundary, creating a standing compression wave at the natu 

ral acoustic frequency of the tailpipe. This acoustic wave propagates back into the 

combustion chamber, compressing and igniting the fuel-air mixture. Expansion and 

exhaust of the combustion gases through the tailpipe completes the cycle. 

For the purposes ofthis study,the two experimental parameters which control the 

pulse-combustor operating state are the global equivalence ratio the quotient of 

the actual fuel-air ratio and the stoichiometric fuel-air ratio and the gas residence 

time the time for a unit mass of fuel-air mixture to pass from the gas inlets 

out of the combustion chamber. The residence time is equal to the quotient of the 
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combustion-chamber volume and the combined fuel-air volumetric flow rate. A series 

of experimental data typically is measured by setting a flxed residence time and then 

adjusting the fuel-air ratio to achieve different equivalence ratios. Edwards (2000a) 

provides more information about the relationship of equivalence ratio and residence 

time on the nature of pulse-combustor operation. 

4,3.1.2 Dynamical behavior ofthe pulse combustor 

The dynamical behavior of the thermal pulse combustor varies dramatically over a 

range of global equivalence ratios and residence times. Figure 14 illustrates typical 

time-series segments over arange ofequivalence ratios at a flxed residence time. For a 

set residence time,combustion dynamics are observed to vary with equivalence ratio. 

At nearly stoichiometric fueling (in the figure, $ = 1.004), pressure oscillations are 

fairly regular, with small variations in peak pressure related to cycle-to-cycle com 

bustion variations. As equivalence ratio decreases into the fuel-lean operating regime 

($=0.888to$=0.700),cycle-to-cycle variability actually decreases,largely because 

in this region the combustion efficiency is very stable with respect to equivalence ratio 

(at leaner or richer conditions, there is a nonlinear relation between combustion effi 

ciency and equivalence ratio). Less discernibly, the dominant frequency of oscillation 

decreases from 117 Hz at$= 1.004 to 102 Hz at =0.700. This frequency change 

is caused primarily by the operating temperature of the combustor decreasing with 

decreasing fuel-air equivalence, and secondarily by the gaseous composition chang 

ing to include more air than propane (because air and propane behave similarly as 

ideal gases with similar molecular weights, this effect is negligible compared with the 
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temperature decrease). Asfueling is leaned further($=0.647), combustion variabil 

ity becomes more structmed and pronounced, with modulation of trough values as 

well. The amplitude-modulation becomes more pronounced and almost “regular” as 

equivalence ratio is decreased($= 0.540). At these lowest equivalence ratios, there 

is a competing ignition-extinction process, in which, because of the overall limited 

amount of fuel in the mixture, the combustor must build up an inventory of fuel 

to burn well, but once the inventory is depleted, the combustion is very poor (or 

negligible). As a result, cyclic pressure oscillations vary from nearly zero to very 

large in packets of approximately eight acoustic cycles, and the maximal peak-to-

trough variations exceed those of the more regularly behaving conditions at higher 

equivalences. This ignition-extinction process is thought to occur in many chemically 

reactive systems and has been observed in other combustion systems such as inter 

nal combustion engines (Daw, Finney, and Kennel 2000) and utility burners (Daw 

1999). Because operating in and extending the usability of the fuel-lean regime is an 

apposite engineering concern, understanding the nature — linear or nonlinear — of 

the combustion-magnitude oscillations is important for choosing design and control 

parameters. 

To study the amplitude modulation of the pressure-measurement time series and 

thus the variability of combustion strength, the continuous time series depicted in 

Figure 14are discretized by recording the peak-to-trough magnitude ofeach pressure 

cycle. In the pressure signal, a cycle is defined as the upward transversal ofthe signal 

through the time-averaged signal mean to a peak point, followed by a downward 

transversal of the signal through the mean value to a trough point, and ending with 

an upward approach of the signal to the mean value. A cycle magnitude is then the 
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algebraic difference of the peak value and the trough value. By recording the cycle 

magnitude for each cycle throughout the pressure time series, the discrete time series 

is created. 

Figure 15 shows short segments of the cycle-magnitude time series created from 

the full pressure time series partially displayed in Figure 14. In the segments for 

equivalence ratios from 1.004 to 0.700, the cycle-magnitude variability is relatively 

small and without apparent structure. In the segments for equivalence ratios from 

0.647 to 0.540,the cycle-magnitude variability becomes markedly larger and assumes 

structured cyclic behavior of apparent limit-cycle nature. 

A distinguishing feature ofwhether these discrete time series arelinear or nonlinear 

in nature is asymmetry in time, particularly regarding trends in rise and fall times. 

To facilitate visual inspection, the segments in Figure 15 are rescaled to have unit 

variance and plotted in Figure 16. In the segments for equivalence ratios from 1.004 

to 0.700, deviations from point to point do not follow clear trends of bias toward 

longer rise versus fall times, or vice versa. In the segments for equivalence ratios from 

0.647 to 0.540, a bias of shorter rise times (three-to-four successive points upward) 

and longer fall times (four-to-five points downward) becomes apparent. Because of 

the overall variability ofcombustion patterns at these fuel-lean equivalences, this bias 

is not wholly systematic. It is therefore desirable to quantify the overall trends of 

rise and fall times to characterize the nature of the cycle-magnitude variations of the 

range of equivalence ratios. 
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Figure 15: Segments of peak-to-trough cycle-magnitude time series from the thermal 
pulse combustor at a residence time of 50 msec. Segments are displayed in decreasing 
equivalence ratio, from nearly stoichiometric ($ = 1.004) to very fuel-lean, approach 
ing fiameout ($ = 0.540). Segments and are plotted on the same scale. 
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Figure 16: Segments of peak-to-trough cycle-magnitude time series from the thermal 
pulse combustor at a residence time of 50 msec. Segments are displayed in decreasing 
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4.3.2 Results ofthe symbolic difference statistic test 

The difference symbolization statistic S'a presented in Section 3.3 is designed to 

tally the overall difference of data rises and falls. Under the null hypothesis, S'a =0 

for temporally reversible time series. To quantify the variance in S'a and establish 

a confidence interval on the test, the method of surrogate data is employed, and 

confidence is determined based on Monte Carlo probabilities. For the given statistic 

and null, a proper surrogate transformation is to shuffle the original time series before 

dynamically symbolizing. For reversible data,the shuffle transformation should have 

no effect on 5a, within the finite-sample error bounds. For irreversible data, the 

transformation should remove any temporal asymmetry, and 5a should tend to zero, 

within the finite-sample error bounds. 

Figure 17 displays the difference symbolization statistic 5a for peak-to-trough 

cycle magnitudes over a range of equivalence ratios. In the figure, the filled points on 

the plot correspond to the time series depicted in Figure 16. The broken lines corre 

spond to 95 percent confidence bounds based on Monte Carlo probabilities obtained 

from 200 surrogate trials. 

From equivalence ratios 1.07 leaning to 0.62, the cycle-magnitude oscillations do 

not exhibit significant temporal irreversibility. In this range, combustion variations 

appear to be Gaussian in nature and result fi:6m random fluctuations such as chamber 

and tailpipe turbulence. From equivalence ratios 0.61 to 0.54, the cycle-magnitude 

oscillations exhibit statistically significant temporal irreversibility, implying that they 

doindeedform alimit cycle, which is inherently nonlinear. In this range,the nonlinear 

ignition-extinction process ofthein-chamber fuelinventory dominates the combustion 
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nitudes for the pulse-combustor data over a range of equivalence ratios. The filled
points on the plot correspond to the time series depicted in Figure 16. The broken
lines correspond to 95 percent confidence bounds based on Monte Carlo probabilities
obtained from 200 surrogate trials.
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variations. Verification that this combustion-quality modulation is nonlinear has 

important implications for control, because it defines a range in which nonlinear 

(chaos) control might be feasible and validates an assumption ofa physical model for 

the process. Indeed,in this fuel-lean operating regime,a chaos-based feedback control 

of pulse-combustor dynamics has been implemented (Edwards, Finney, Nguyen, and 

Daw 2000; Edwards 2000a), with dramatic improvement in emissions quality. 

It is important to note that the difference statistic employed here measures the 

summed bias of rises versus falls over the entire time series. Physically, it is not 

expected that the transition from turbulence-based to inventory-based combustion 

variations should be as sharp as implied in the preceding text. Rather, there is ex 

pected to be a gradual increase in the influence of the inventory effect as equivalence 

ratio is decreased. Thus, the statistic is not altogether sensitive to marginally irre 

versible time series such as is seen a;t equivalence ratio of 0.647. In this case, as is 

seen in the time-series plot in Figure 16,there are episodes ofapparently irreversible 

behavior (e.g., cycles 0-50 and 65-100) and reversible behavior (e.g., cycles 50-65). 

Overall, within the confidence bands, the time series is temporally reversible, but 

clearly the effects ofthe nonlinear oscillations are beginning to become visible. Addi 

tionally, the anomalous point in Figure 17 at$=0.72 is not explained physically, 

specifically whether the algorithm indiscriminantly highlights dynamics not of inter 

est or whether there indeed is significant temporal irreversibility at this condition. 

In this case, to quantify irreversibility, it might be more advantageous to quantify 

the irreversibility based on a static symbolic transformation using the Ti„ statistic 

developed in Section 3.3 or using a sensitive statistic such as Targeted False Flipped 

Symbols(Daw, Finney, and Kennel 2000). However, for the purposes of this study. 
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the diflPerence symbolization statistic adequately registers the temporally irreversible 

behavior which was conjectured to exist based on a physical model for the process. 

4.4 Synchronization 

This section presents application of the synchronization test presented in Section 

3.4 to two series of measurement data from internal combustion engines. 

4.4.1 Data 

Two groups of measurement datafrom spark-ignition internal combustion engines are 

examined for evidence of intercylinder synchronization. The data were supplied by 

J.G. Green,Jr. ofthe Oak Ridge National Laboratory(Green 2000). The different 

data groups are labeled Expedition and Quad-4. 

4.4.1.1 Experimental apparatus and procedure 

The Expedition data were obtained at the Science Research Laboratory ofFord Motor 

Company using a 1999-model production Expedition V-8 engine manufactured by 

Ford Motor Company. The engine had 4.6 liter total displacement with production 

port fuel injection, a two-valve head, a bore of 9.02 cm, a stroke of 9.0 cm, and a 

compression ratio of 9. The cylinder firing order, used to label the cylinders in the 

succeeding text, was 1-3-7-2-6-5-4-8; firing order is labeled from 0 to 7. The nominal 

operating conditions were 1200 revolutions per minute and 20 degrees before-top-

center spark timing. The fuel-air equivalence ratio was controlled by adjusting the 

fuel-injection pulse width and the throttle position while maintaining a 25 N-m load 
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with an absorbing/motoring dynamometer. 

The Quad-4 data were obtained at the Advanced Propulsion Technology Center 

of the Oak Ridge National Laboratory from a 1995-model production Quad-4 1-4 

engine manufactured by General Motors Corporation. The engine had 2.3 liter total 

displacement with port fuel injection, a bore of 9.2 cm, a stroke of 8.50 cm, and a 

compression ratio of 9.5. The cylinder firing order, used to label the cylinders in the 

succeeding text, was 1-3-4-2;firing order is labeledfrom0to 3. The nominaloperating 

conditions were 1200 revolutions per minute and 23 degrees before-top-center spark 

timing. The fuel-air equivalence ratio was controlled by adjusting the fuel injection 

pulse width with an adjustable load on an absorbing dynamometer. 

For both engines, continuous cylinder-pressure time series were sampled from 

head-mounted transducers in each cylinder. The pressure time series were sampled 

once per crank angle degree so that there were 720 pressure measurements per engine 

cycle. Estimates of combustion heat release were computed from the pressure time 

series using an integral method similar to that of Rassweiler and Withrow(Heywood 

1988), so that the resulting time series were discrete, with one heat-release estimate 

per engine cycle. Because of data-acquisition system limitations, data segments from 

the Expedition engine were limited to approximately 354 contiguous engine cycles; 

the Quad-4 engine time series had between 3000 and 10000 consecutive engine cycles. 

4.4.1.2 Dynamical behavior ofthe engine data 

For the types of measurements in the engines described above, the dynamical be 

havior of combustion quality varies dramatically with fueling changes. Specifically, 
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cycle-to-cycle combustion variations change from Gaussian in nature at stoichiomet 

ric fueling to a noisy period-2 behavior at lean fueling(Daw,Finney, Green, Kennel, 

Thomas,and Connolly 1996; Finney, Green,and Daw 1998; Wagner,Drallmeier, and 

Daw 1998; Daw,Kennel, Finney, and Connolly 1998; Green, Daw,Armfield, Finney, 

Wagner, Drallmeier, Kennel, and Durbetaki 1999; Scholl and Russ 1999). In the 

lean-fueling regime, the period-2 behavior is the result of anticorrelated (alternating 

higher and lower) variations in combustion quality. As explained in the model of 

Daw et ai., the nonlinear nature of these oscillations is primarily the result of the 

sensitive dependence of combustion quality on equivalence ratio, which is a function 

of perturbations to the amount offuel injected and in the amount of unburned fuel in 

the residual gas. The severity ofthe cyclic variability at lean fueling conditions limits 

the operating range of spark-ignition engines, so understanding the causes of this 

variability, particularly whether there is interplay among cylinders, is important for 

design and control considerations. Specifically, random phase relationships result in 

smoother operation, as strong combustion events would be distributed more evenly 

along the crankshaft cycle, whereas synchronous operation would results in power 

surges and rougher operation. Asa result, synchronization among cylinders enhances 

the coefficient of variability (Daw, Green, Wagner, Finney, and Connolly 2000), so 

disrupting synchronization would facilitate lean-mode operation. 

The nature of the heat-release oscillations in the lean-fueling regime may be seen 

in Figures 18 and 19. In Figure 18, segments firom all eight cylinders from the 

first 30 engine cycles at a nominal equivalence ratio of 0.59 are shown. These seg 

ments are typical of the behavior of each cylinder for the entire 354 engine cycles 

which were recorded. A common feature to all cylinders is the “sawtooth”-shaped 
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Figure 18: Short time-series segments from the Expedition engine at an equivalence 
ratio of 0.59. Segments are listed in firing order from top to bottom and are plotted 
on the same scale. 
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anticorrelated oscillations from cycle to cycle. These oscillations represent alternat 

ing cycles of stronger and weaker combustion quality. Although the anticorrelation 

is fairly consistent, the amplitudes of combustion heat release vary noticeably from 

cycle to cycle, and the rhythm ofthe anticorrelation is sporadically interrupted (e.g., 

in cylinder 0 during cycles 6-9). This behavior is characteristic of “noisy period-2” 

oscillation. Also noteworthy is that although all cylinders are nominally at the same 

fueling level and presumably at similar stoichiometries, the severity of oscillation dif 

fers from cylinder to cylinder. For instance, cylinders 5 and 7 are less variable than 

the other cylinders, probably caused by fueling effects such as fuel-injector malfunc 

tion or fuel or air intake difference caused by manifold acoustical oscillations. In 

nonlinear-dynamics terminology, the magnitude and character of the variability is 

largely determined by the degree of bifurcation that each cylinder is in; cylinders 5 

and 7 are less bifurcated than the others. 

In Figure 19,segmentsfrom all four cylinders ofthe Quad-4 engine from the first 

30 engine cycles at a nominal equivalence ratio of 0.536 are shown. These segments 

are typical ofthe behavior ofeach cylinder for the entire 3000engine cycles which were 

recorded. As with the Expedition engine, all cylinders exhibit behavior characteris 

tic of noisy period-2 oscillations. A brief episode of correlation and anticorrelation 

between cylinders is seen in in cycles 22-29. In this episode, cylinders 1 and 3 are 

correlated in their behavior: at cycles 22, 24, 26 and 28,they both exhibit relatively 

strong combustion, whereas at cycles 23, 25, 27 and 29, they both exhibit relatively 

weak combustion. Conversely, cylinder 2 is exactly out of phase with cylinders 1 and 

3, meaning they are anticorrelated. Of interest is whether this episode of correlation 

and anticorrelation is the statistically normal behavior or is a chance occurrence. The 
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symbolic synchrogram, with the Monte Carlo probability test described in Section 

3.4, quantifies intercylinder dynamical relationships. 

4.4.2 Two-cylinder synchrograms 

Two-cylinder synchrograms are constructed to verify that the patterns ofsimple cor 

relation and anticorrelation between cylinders as described above do exist and have a 

physical basis. Because each cylinder’s behavior naturally oscillates in a noisy period-

2 mode,a finite degree of correlation would be expected to be seen by chance,even if 

the cylinders were not physically coupled. The goal in constructing the synchrograms 

is to test the null hypothesis that there is no significant synchronization between cylin 

ders. Because the test proposed in Section 3.4 relies on the method of surrogate 

data to estimate significance, the appropriate surrogate transformation is to random 

ize the phase relationships ofthe two time series used to construct the synchrograms. 

Algorithmically, the phase randomization is achieved by selecting the starting loca 

tions of each symbol series at random, so that each surrogate synchrogram should 

have a difference phase relationship than the original data. By constructing symbol 

synchrograms with ={2 2 2 2 2 2}, ATi ={0 1 0 1 0} and ={1 2 1 2 1 2}, 

correlated sequences are 0 0 1 1 0 0 (code 12)and 110011(code 51), and anticor 

related sequences are011001(code 25)and 10 0 110(code 38). In this manner, 

coarse-grained patterns of three-cycle behavior are cataloged. 

Symbol synchrograms for the Expedition engine are shown in Figure 20. The 

top synchrogram (a) shows the relationships between cylinders 0 and 3, judged to 

be relatively uncorrelated. Although sequences 12, 25, 38 and 51 appear to have 

slightly elevated frequencies of occurrence, no one sequence appears to dominate. In 

87 



 

 

 

 

 

60

•%m m m % •%

50
mm a • ^ A

O
■o I
8 40 . ^ f fa a a ■ a a aa

■ a aa"a "aa f a a

1

' ’•*% • "Ml"!*. A
. ■

a %a • %"■
a a

8 (a)c 30 ■
0) %•
3 -Ha "a «S

20 ■(8
'a. •’ *f # :«*■. ■

10 •

«
0

J.

60 f

50 "fc •—w'
0)

O 40 f
a ” if a aa a aO

(b)o
c 30
0) %
3 % n ^ •

S’ 20 a a a

<0
af ‘ aaaa

a aa10 ■ ■ afa a

0 -I

60 ■
«

50 • % a a 1% S

■o r

8 40 ■ i^a ffd* f>
0)

. (C)u
c 30
0)
3

« 20 a

(0
■ ^ a:■/10 f a aa a a

a

0 T

0 50 100 150 200 250 300 350

Time [engine cycles]

Figure 20: Symbol synchrograms for the Expedition data at an equivalence ratio of
0.59. Cylinders 0 and 3 (labeled in firing order) are relatively uncorrelated (a); 0 and
5 are correlated (b); 0 and 1 are anticorrelated (c).

88



contrast, the middle synchrogram (b) shows the relationships between cylinders 0 

and 5,judged to be correlated. Here, sequences 12 and 51 predominate, resulting in 

“banding” (dark stripes) ofthe synchrogram. Similarly, the bottom synchrogram (c) 

shows the relationships between cylinders 0 and 1,judged to be anticorrelated. Here, 

sequences 25 and 38 predominate (except between cycles 45-140), also resulting in 

banding”. 

The patterns seen in the synchrograms occur because oftwo causes: physical cou 

pling and/or chance. By chance, the period-2 oscillations would result in episodes of 

apparent synchronization. As an illustration of the effect of removing the influences 

of the period-2 behavior. Figure 21 shows a synchrogram between cylinders0 and 1 

when order ofthe symbol series was shuffled before the synchrogram was constructed. 

No longer are sequences 12, 25, 38, and 51 remarkable or predominant, as any sig 

nificant synchronization was destroyed during the shufile. Thus,the natural period-2 

behavior plays an important role in appearance of correlation patterns in sequences 

12, 25, 38, and 51. The crux of the problem then is to quantify how significant the 

occurrence of the correlation patterns are given that each time series is inherently 

anticorrelated within itself. 

For quantification ofsynchronization in the synchrograms,two statistics are used. 

First, because the synchrogram is simply a multivariate code series, the modified 

Shannon entropy is an obvious measure of the degree of organization of its symbol-

sequence histogram. For instance, very strongly correlated behavior would result 

in a finite number of sequence codes predominating the synchrogram, so entropy 

would be expected to be low; weakly correlated or uncorrelated behavior would result 

in higher values of entropy. However, the Shannon entropy is nonspecific in which 
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patterns it measures it simply quantifies the degree of organization of the symbol 

statistics and cannot discriminate sequences 12, 25, 38, and, 51 from, say, 0, 17, 

43, 62. Therefore, a second type of statistic is employed. S+ represents the sum of 

frequencies of occurrence for purely correlated sequences (12 and 51, and also the 

very rare instances of 0, 21, 42, and 63), and S- represents the sum of frequencies 

of occurrence for purely anticorrelated sequences. By using the targeted statistics 

S, only the sequences of interest are counted, thus allowing a much more powerful 

statistical test. 

When significant synchronization occurs,it is expected that the modified Shannon 

entropy for the originalsynchrogram should be less than entropy values for the phase-

randomized surrogate synchrograms; i.e., the phase randomization destroyed real 

synchronization, and the resulting symbol statistics are more complicated. When the 

synchronization is in the form of strong correlation, it is expected that the statistic 

S+ should be higher than those for the phase-randomized surrogates. Similarly, when 

the synchronization is in the form of strong anticorrelation, it is expected that the 

statistic S- should be higher than those for the phase-randomized surrogates. 

Figure 22 shows the entropy values for the shuffled surrogates for the synchro 

grams depicted in Figure 20. In each plot,the entropy value for the original synchro 

gram is marked with a horizontal line from the ordinate intersecting the probability 

function of the surrogates and projected to the abscissa. 

The top plot(a)shows results for cylinders 0 and 3, which were judged to be un 

correlated based on visual inspection of their synchrogram. The entropy value of the 

original synchrogram is 0.813, corresponding to Monte Carlo probability of approxi 

mately 0.36, based on 200 surrogate trials. Thus,64 percent of the surrogate trials 
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exhibited lower Shannon entropy than the original synchrogram, which is contrary 

to what would be expected had there been significant organization of the symbol 

statistics in the original synchrogram. For a generous significance level of a = 0.1, 

the p-value of approximately 0.64 is much greater, meaning there is no evidence to 

reject the null of no synchronization. 

The middle plot(b)shows results for cylinders 0 and 5, which were judged to be 

correlated based on visual inspection of their synchrogram. The entropy value of the 

original synchrogram is 0.731, corresponding to Monte Carlo probability of approx 

imately 0.95, based on 200 surrogate trials. Thus, only 5 percent of the surrogate 

trials exhibited lower Shannon entropy than the original synchrogram. The p-value 

is approximately 0.05, meaning there is sufficient evidence to reject the null of no 

synchronization, strongly with a=0.1 and marginally with a=0.05. 

The bottom plot (c) shows results for cylinders 0 and 1, which were judged to 

be anticorrelated based on visual inspection of their synchrogram. The entropy value 

of the original synchrogram is 0.732, corresponding to Monte Carlo probability of 

approximately 0.975, based on 200 surrogate trials. Thus, only 2.5 percent of the 

surrogate trials exhibited lower Shannon entropy than the original synchrogram. The 

p-value is approximately 0.025,meaning there is sufficient evidence to reject the nullof 

no synchronization, both with reasonable significance levels of a=0.1 and a=0.05. 

Figure 23shows the frequency-summation statistic S values for the shuffled sur 

rogates for the synchrograms depicted in Figure 20. In each plot,theSvalue for the 

original synchrogram is marked with a horizontal line from the ordinate intersecting 

the probability function of the surrogates and projected to the abscissa. 

The top plot (a) shows results for cylinders 0 and 3, which were judged to be 
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uncorrelated based on visual inspection oftheir synchrogram. In this case, because no 

correlation implies neither correlation- nor anticorrelation-dominant synchronization, 

both S+ and S- are examined. For the original synchrogram,S+=0.208(p=0.796) 

and S-=0.284(p=0.184), based on 200 surrogate trials. Neither S+ nor S-,tested 

independently, offers significant basis for rejecting the null of no synchronization, a 

conclusion which confirms the test based on a metric of modified Shannon entropy. 

The middle plot (b)shows results for cylinders 0 and 5, which were judged to 

be correlated based on visual inspection of their synchrogram. In this case, only 5+ 

is examined. For the original synchrogram, = 0.461 (p < 0.005), based on 200 

surrogate trials. Such a low p-value suggests that the null of no synchronization may 

be rejected confidently, a conclusion which confirms the test based on a metric of 

modified Shannon entropy. 

The bottom plot (c) shows results for cylinders 0 and 1, which were judged to 

be anticorrelated based on visual inspection of their synchrogram. In this case, only 

S- is examined. For the original synchrogram, S- = 0.413(p= 0.1), based on 200 

surrogate trials. The resulting p-value would offer only marginal rejection of the null 

at a high {a=0.1) significance level, suggesting that the null of no synchronization 

should not be rejected. This conclusion conflicts with that based on a metric of mod 

ified Shannon entropy. One reason for this inconsistency is the limited number of 

data (354 records) in the time series for analysis of engine data, 1000 cycles is 

generally considered acceptable. Another, less probable reason for the inconsistency 

is that entropy is a more generic metric and S- is a targeted metric, implying that 

entropy detects organization in the symbol statistics not related to the type of syn 

chronization patterns of interest. For resolution of the question of limited data-set 
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size, the Quad-4 data, with 3000 records per time series, were expected to be more 

conclusive and consistent. 

Symbol synchrograms for the Quad-4 engine are shown in Figure 24. The top 

synchrogram (a) shows the relationships between cylinders 0 and 2, judged to be 

relatively uncorrelated. The middle synchrogram(b)shows the relationships between 

cylinders 0 and 3,judged to be correlated. The bottom synchrogram (c)shows the 

relationships between cylinders2and 1,judged to be anticorrelated. Visualinspection 

of the synchrograms is not as conclusive as with those for the Expedition, partly 

because of the plotting scale (3000 instead of 350 cycles) and partly because the 

dynamical relationships between the cylinders appear more complex (the strength of 

the period-2 bifurcation is less), leading to more occurrences of sequences other than 

the targeted sequences described above (12, 25, 38,and 51). 

Figure 25 shows the entropy values for the shuffled surrogates for the synchro 

grams depicted in Figure 24. In each plot,the entropy valuefor the original synchro 

gram is marked with a horizontal line from the ordinate intersecting the probability 

function of the surrogates and projected to the abscissa. 

The top plot (a) shows results for cylinders 0 and 2, which were speculated to 

be uncorrelated based on visual inspection of their synchrogram. The entropy value 

of the original synchrogram is 0.74, corresponding to Monte Carlo probability of 

approximately 0.955,based on 200surrogate trials. Thus,4.5 percent ofthe surrogate 

trials exhibited lower Shannon entropy than the original synchrogram, which is a 

sufficiently low p-value to suggest rejecting the null of no synchronization. Visual 

inspection of the synchrogram (Figure 24) reveals that other activity other than 

synchronization of period-2 behavior might account for the low entropy value. For 
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instance, sequence 9(001 00 1)is prevalent, which could be viewed as a transition 

sequence from correlated (0 0) to anticorrelated (100 1) behavior. The increased 

prevalence ofthe transition sequences suggests that the cylinders were phasing in and 

out ofdifferent degrees ofsynchronization, with neither correlation nor anticorrelation 

favored in the sum,the cylinders were not intrinsically synchronized, a conclusion 

not directly obtainable from the modified Shannon entropy of their synchrogram. 

The middle plot (b) shows results for cylinders 0 and 3, which were judged to 

be correlated based on visual inspection of their synchrogram. The entropy value 

of the original synchrogram is 0.723, corresponding to Monte Carlo probability of 

approximately 0.995, based on 200 surrogate trials. Thus, only 0.5 percent of the 

surrogate trials exhibited lower Shannon entropy than the original synchrogram. The 

p-value is approximately 0.005, meaning there is strong evidence to reject the null of 

no synchronization. 

The bottom plot (c)shows results for cylinders 2 and 3, which were judged to 

be anticorrelated based on visual inspection of their synchrogram. The entropy value 

of the original synchrogram is 0.697, corresponding to Monte Carlo probability of 

approximately 0.995, based on 200 surrogate trials. Thus, only 0.5 percent of the 

surrogate trials exhibited lower Shannon entropy than the original synchrogram. The 

p-value is approximately 0.005, meaning there is strong evidence to reject the null of 

no synchronization. 

Figure 26 shows the frequency-summation statistic S values for the shuffled sur 

rogates for the synchrograms depicted in Figure 24. In each plot,theS value for the 

original synchrogram is marked with a horizontal line from the ordinate intersecting 

the probability function of the surrogates and projected to the abscissa. 
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0 

The top plot (a) shows results for cylinders 0 and 2, which were speculated to 

be uncorrelated based on visual inspection of their synchrogram. For the original 

synchrogram, S+ = 0.241 (p = 0.91) and S- = 0.275 (p = 0.174), based on 200 

surrogate trials. Neither S+ nor S-,tested independently, offers significant basis for 

rejecting the null of no synchronization, a conclusion with contradicts the test based 

on a metric of modified Shannon entropy. As discussed previously, the reason for 

this discrepancy is that entropy, being a generic metric, is nonspecific and to some 

degree is ill-suited as a statistic for testing synchronization in symbol synchrograms. 

Conversely, the targeted summation statistics are specific to the specific question of 

whether certain types of correlated behavior (synchronization) occur. 

The middle plot (b)shows results for cylinders 0 and 3, which were judged to 

be correlated based on visual inspection of their synchrogram. For the original syn 

chrogram, S+ = 0.39(p= 0.01), based on 200 surrogate trials. Such a low p-value 

suggests that the null of no synchronization may be rejected confidently, a conclusion 

with confirms the test based on a metric of modified Shannon entropy. 

The bottom plot (c)shows results for cylinders 2 and 3, which were judged to 

be anticorrelated based on visual inspection of their synchrogram. For the original 

synchrogram, S- = 0.425 (p = 0.005), based on 200 surrogate trials. Such a low 

p-value suggests that the null of no synchronization may be rejected confidently, a 

conclusion with confirms the test based on a metric of modified Shannon entropy. 

4.4.3 Three-cylinder synchrograms 

Three-cylinder synchrograms are constructed to quantify the degree and type ofsyn 

chronization among three engine cylinders. Because of the limited nature of the 
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Expedition data as described above, discussion here will focus on the Quad-4 data. 

In the noisy period-2 mode of present interest, a finite degree of correlation would be 

expected to be seen by chance,even if the cylinders were not physically coupled. The 

goal in constructing the synchrograms is to test the null hypothesis that there is no 

significant synchronization between cylinders. Because the test proposed in Section 

3.4 relies on the method of surrogate data to estimate significance, the appropriate 

surrogate transformation is to randomize the phase relationships of the three time 

series used to construct the synchrograms. Algorithmically, the phase randomization 

is achieved by selecting the starting locations of each symbol series at random, so 

that each surrogate synchrogram should have a difference phase relationship than 

the original data. For three-cylinder synchrograms, symbolization parameters are 

An ={2 2 2 2 2 2}, Aj={00 1 00} and Ag ={1 2 3 1 2 3}, meaning that three 

time series are examined for temporal patterns over two consecutive engine cycles. It 

should be noted that more cylinders could be included over a longer span of consec 

utive engine cycles but here are not to facilitate visualization of the synchrograms, 

specifically to limit the number of possible sequences to 64. 

With the symbolization scheme described immediately above, purely correlated 

sequences are0001 1 1 (code 7)and 1 1 1 0 0 0(code 56). In these two instances, all 

three cylinders oscillate in phase. Other purely correlated sequences are 0 0 0 0 0 0 

(code 0)and 111111(code 63), but these represent the rare events not of interest 

presently. With three cylinders, pure anticorrelation does not exist. Instead, mixed 

correlation and anticorrelation is of interest. These hybrid correlated sequences are 

0 0 1110(code 14) and 1 1 0 0 0 1 (code 49)(cylinders A and B correlated, C 

anticorrelated); 0 1010 1 (code 21) and 10 10 10 (code 42)(cylinders A and C 
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correlated,B anticorrelated);01110 0 (code 28)and 10 0 0 1 1 (code 35)(cylinders 

B and C correlated, A anticorrelated). In this manner, coarse-grained patterns of 

two-cycle behavior are cataloged. 

A symbol synchrogram for the Quad-4 engine is shown in Figure 27. Because 

of the complicated nature of each cylinder’s individual behavior (even in the noisy 

period-2regime),thissynchrogram visually is more complicated than the two-cylinder 

synchrograms. Of note is the “banding” at the hybrid sequences of 14, 21, 28, 35, 

42, and 49. This hybrid would be expected given the observations that cylinders 1 

and 3are correlated and 1 and 2 are anticorrelated. The three-cylinder synchrogram, 

then, is a composite of the different two-cylinder synchrograms but also contains 

additional information. For instance, sequence 10 (0 0 1 0 1 0) is more prevalent 

early in observational record (cycles 1-2000) and gradually becomes less frequent. 

This sequence reveals that cylinders 2 and 3 continue an anticorrelated relationship 

whereas cylinder 1 somewhat misbehaves(two consecutive 0 cycles). 

The quantification ofhow significant the synchronization patterns described above 

may be seen in the modified Shannon entropy and thefrequency-summation statistics, 

as employed in the previous section. Figure 28shows the entropy values for the shuf 

fled surrogates for the synchrogram depicted in Figure 27. The entropy value for the 

original synchrogram is marked with a horizontal line from the ordinate intersecting 

the probability function of the surrogates and projected to the abscissa. The entropy 

value of the original synchrogram is 0.769,corresponding to Monte Carlo probability 

of >0.995,based on 200 surrogate trials. Thus,the p-value is 0.005, meaning there is 

strong evidence to reject the null of no synchronization. 

Figure 29 shows the frequency-summation statistic S values for the shuffled 
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Figure 27: Symbol synchrogram depicting correlation patterns between cylinders 1,
2 and 3 (firing order) for the Quad-4 data at an equivalence ratio of 0.536.
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surrogates for the synchrogram depicted in Figure 27. The S value for the original 

synchrogram is marked with a horizontal line from the ordinate intersecting the prob 

ability function of the-surrogates and projected to the abscissa. Here, S+ is the sum 

of the observed frequencies of sequences 7 and 56, representing pure correlation, and 

S± is thesum ofthe observed frequencies ofsequences 14,21,28,35,42and 49,repre 

senting hybrid correlation. For the original synchrogram,S+=0.052(p > 0.995)and 

S± — 0.565 {p < 0.005), based on 200 surrogate trials. Alone, S± offers significant 

basis for rejecting the null ofno synchronization,a conclusion which confirms the test 

based on a metric of modified Shannon entropy. In other words, the synchronization 

patterns are very unlikely to have occurred solely by chance. 

The synchrogram is very telling in an additional, unexpected aspect pure cor-

relation among cylinders 1, 2, and 3 is avoided innately by the system. In all 200 

surrogate trials, randomly shifting the phases of the three time series yielded higher 

frequencies of sequences 7 and 56 than were present in the original data. It is specu 

lated that acoustical effects within the intake manifold are a primary mode ofcoupling 

the cylinders, and if there were pressure oscillations within the manifold,the air/fuel 

intake of any three cylinders would not be in phase because they would be a dif 

ferent locations in relation to the waveform nodes. More rigorous experimentation 

could help to identify the modes of systematic synchronization and whether manifold 

acoustics or some other phenomenon is most influential. 
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Chapter 5 

Conclusions and recommendations 

This work has presented methods of symbolization-based analysis to measurement 

time series from systems of engineering relevance. Tests have been developed to 

indicate stationarity, temporal irreversibility and synchronization with provisions for 

estimating statistical confidence. All the confidence measures presented in this study 

were obtained from a bootstrapping approach to Monte Carlo probability. In doing 

so, a unified, straightforward and uncomplicated methodology has been employed at 

the expense of the computational simplicity and without the distribution-theoretical 

basis of tests with a priori significance. However, the Monte Carlo approach should 

not be discounted its power lies in the ability to gage the variability and range of 

a statistic when its distribution is unknown, and in cases in which the distribution 

is known, it provides a good approximation to the theoretical value. Because it is 

discrete in nature (limited by the number of surrogate trials), good agreement with 

any true distribution depends largely on the number ofsurrogate trials, the larger of 

which yields better agreement but which is more taxing computationally and which 

can behave badly for limited data(when some surrogate trials are too similar). Thus, 

the approach presented in this study is generic but should be viewed as a foundation 

for other, perhaps more sophisticated, methods. 

The stationarity tests presented herein are applicable to a range of problems in 
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engineering systems. Besides the general question ofergodicity,the stationarity meth 

ods developed in this study are useful in systems of dynamical libraries, in which the 

objective is to match a test case against a library of reference cases. Metrics based 

on symbol statistics are natural choices to classify temporal data paterns,just as the 

Fourier spectrum is a natural choice to classify frequency content. A useful extension 

ofthe methodology presented in this work would be a multiple test using two or more 

difference metrics, which would allow a more robust determination of matching than 

the singular testing presently employed. 

The temporal-irreversibility tests presented herein have utility in selecting a proper 

or consistent modelfor observed dynamics. For instance, with the internalcombustion 

engine, temporal irreversibility has been shown to discriminate between two compet 

ing models, one reversible and the other irreversible. The overwhelming presence 

of irreversibility in the observed record discounts the reversible model. In the pulse 

combustor,the presence oftemporal irreversibility in fuel-lean amplitude modulation 

suggests that the hypothesized fuel-inventory effect, known to be nonlinear and tem 

porally irreversible, is a better modelthan the Helmholtz-resonator model as a source 

of the modulation. 

The synchronization test presented herein provides important information regard 

ing the strength and significance of correlated activity among different measruement 

signals. In the case of the internal combustion engines, synchronization becomes an 

important contributor to degraded engine performance at fuel-lean conditions,so un 

derstanding the phasic relationships between cylinders is important for design and 

control. However, because of the limited nature of the data analyzed in this study, 

no conclusions regarding a modelfor mainfold acoustic oscillations can be drawn and 
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should be addressed in future studies with more targeted experimentation. 

In this study, data symbolization and the proposed derivative tests are presented 

without comparison with other, non-symbolization-based tests, if available. In some 

respects, direct comparison is often not available (most synchrograms are based on 

only two signals, whereas the present work extends capability to more than two 

signals) or not meaningful. For testing generic concepts such as stationarity, tests are 

often catered to the definition at hand, so tests are chosen based on what is desired 

to be measured. In this sense,the present work extends the corpus of nonlinear time-

series analysis methodology, with applicability being decided by the analyst. Future 

studies might include a rigorous comparison of the tests developed in this study 

against other available tests, but this is not really necessary or even desired except in 

the context of sensitivity to noise and data-set sample size. The general framework 

presented in this study provides a basis for such future study and for applicability to 

engineering time series. 
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