University of Tennessee, Knoxville

na LNIVERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHEEH Exchange
Doctoral Dissertations Graduate School

12-2000

Cost-benefit analysis for software process improvement

Daniel T. Fetzer

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Fetzer, Daniel T., "Cost-benefit analysis for software process improvement. " PhD diss., University of
Tennessee, 2000.
https://trace.tennessee.edu/utk_graddiss/8274

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a dissertation written by Daniel T. Fetzer entitled "Cost-benefit analysis
for software process improvement." | have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Jesse H. Poore, Major Professor
We have read this dissertation and recommend its acceptance:
Michael W. Berry, Kenneth C. Gilbert, Thomas E. Potok, Robert C. Ward
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Daniel T. Fetzer entitled “Cost-Benefit
Analysis for Software Process Improvement.” I have examined the final copy of fthis dis-
sertation for form and content and recommend that it be accepted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy, with a major in Con}p ter Sci-

Jedse M. Poore, Major Professor

We have read this dissertation
and recommend its acceptance.

ekt 1) 5

Michael W. Bérry J

//Mﬁ/@%ﬁ,’

Kenneth C. Gilbert

Tl < J

ﬁlomas E. Potok

KA S

Robert C. Ward

Accepted for the Council:

Interim Vice Provest and
Dean of the Graduate-School

COST-BENEFIT ANALYSIS
FOR SOFTWARE PROCESS
IMPROVEMENT

A Dissertation
Presented for the
Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Daniel T. Fetzer
December 2000

Cost-Benefit Analysis for Software Process Improvement page ii

Copyright © Daniel T. Fetzer, 2000
All rights reserved.

page iii

Dedication

This work is dedicated to the memory of my late brother, Dr. John W. Fetzer. My old-
est brother was a role model who inspired me by his optimistic spirit and his persistence in
setting and reaching high goals. He supported my goal of attaining this Ph.D. and offered

frequent encouragement.

page iv

Acknowledgments

I am very grateful for the opportunity I’ve had to conduct this research and to work
under the guidance of Dr. Jesse Poore, He has consistently provided good advice and lead-
ership for this dissertation. Thanks also to my committee for their excellent suggestions
and insight; Dr. Mike Berry, Dr. Ken Gilbert, Dr. Tom Potok, and Dr. Bob Ward.

Thanks to the many participants in the Software Quality Research Laboratory semi-
nars for their friendship and encouragement as well as their comments and helpful discus-
sion: Laura Prados, Dr. Stacy Prowell, Dr. Kirk Sayre, Dr. Carmen Trammel, Michael
Corum, Thomas Swain, Lee Hamner, and Janet Seib.

Special thanks to Will Snipes, John Hudepohl, and Cris Kemak of Nortel Networks
who provided comments, guidance,ﬂand data to support the development of the prototype
tool. Nortel’s financial support for this research is greatly appreciated.

I am grateful for the love and support network provided by my friends and extended
family. My parents, John and Helen Fetzer, instilled the value of education and provided
constant encouragement as did my brother, sister, in-laws, and others. Most of all I want to
thank my loving wife, Beth, for her enduring love, understanding, and support. And spe-
cial thanks to our wonderful son, Elijah, who continues to keep us entertained and helps us

keep the important things in life in perspective.

Abstract

Justification of investments to @mprove software development processes and technol-
ogy continues to be a significant challenge for software management. Managers interested
in improving quality, cost, and cycle-time of their products have a large set of methods,
tools, and techniques from which to choose. The implementation of one or more of these
potential improvements can requirg considerable time and cost. Decision makers must be
able to understand the benefits from éach proposed improvement and decide which
improvements to implement. While a variety. of approaches éxist for evaluating the costs
and benefits of a few specific improvements such as inspections or systematic reuse, there
is no general model for evaluating software process improvements.

The result of this research is a practical, useful framework to assist practitioners in
evaluating potential process improvements. This generﬂ framework can accoxﬁmodate a
variety of methods for estimating the cost-benefit effects of a process change. To illustrate
this framework a set of cost-benefit templates for Emerald and Cleanroom technologies
were developed and validated. Methods for evaluating effects range from constants and
simple equations to bayesian decision models and dynamic process simulations. A proto-
type tool was developed to assist in performing cost-benefit analysis of software process

improvements.

page vi

Contents

CHAPTER 1: INtroOAUCHONM .+ covvveeeeeenccecccacecceacesoasaennesl

1.1
1.2
1.3
14
1.5

1.6

Statement of the Research Problemcci it 1
Motivation forthe Researchooi ittt et et eianan, 1
Current Impedimentsoituuiiiiinn ittt 3
GOalS . .ttt e e e e 4
Research Contributions. oottt it e e e e e e e 5
1.5.1 Whatis Not NeW.ooviti it e e e e e i, 5
1.5.2 WhatiS New . ..ooitii i e e e e e e e e e 5

Organization of the Dissertation.ot iinnnnnnn.. 6

CHAPTERZ:Backgroﬁnd.........a.............................7

21
22
2.3

24

25

SOftWare ProCess. . ..o vttt i i e e 7
Software Process Improvement e 8
Current Approaches to Evaluating SPI Proposals 10
2.3.1 Industry Data Supporting Process Improvement 10
2.3.2 Project Cost-Estimation Models...................coovvvi..... 14
233 EconomicModels.t 16
234 Costof Software Qualityccoiviiieiinnennnnnnnnnn.. 18
2.3.5 Software Process SimulationModels............................ 20
2.3.6 Other Benefit Evaluation Approaches 25
2.3.7 Summary of Evaluation Metrics and Methods 25
Cost-benefit analysis.ot e 27
24.1 Decision CHteria.vu ittt ittt i et 28
242 Structuring the Decision Problem.ooueneeneeernnnnnnn.. 32
2.43 Identifying Costsand Benefitsccouviirnnnnenn.... 33
244 Quantifying Costs and Benefitscccouueiviuneo..... 34
24.5 SettingtheDiscountRate....................ccoviiiiiun.. .. 35
2.4.6 Performing Sensitivity Analysis.cuuiuiiinneeeeenennn.. 36

page vii

CHAPTER 3: A Framework for Evaluating Software Process Improve-
mentInvestments..41

3.1

3.2

A Formal Model of Investing in Process Improvement 42
3.1.1 Cost-Benefit Analysis Principles i...42
312 NetPresentValue..........ooiiiiiiiiiiiiiiiiininiinnenenn. 43
3.1.3 Parameter Attributes of a Development Organization 46
3.14 Cost-Benefit Effect Classificationt 48
3.1.5 DriversBehindtheFunctions............. ... i, 49
3.1.6 Justificationof ChoicesMade.ciiiiiiiiian, 51
Usingthe Framework o iii i i i it i e iieneaans 52
3.2.1 Template Construction and Validation........................... 54

CHAPTER 4: Architecture and Design of Prototype 59

4.1

4.2
4.3

Functional Overview. v et ia e 60
4.1.1 Define SPITemplates.ccouiiiiiiiniiiiiiinineenenn. 60
4.1.2 Define Cost-Benefit Effectsccvrirriiiiiiiiiennn. 61
4.1.3 Provide Industry Data and Models. S P 61
4.1.4 Run Software Process Model Simulations 64
4.1.5 Define Baseline Environments.ccoiuiiiiiiennennnnnnns 64
4.1.6 Create a Cost-Benefit Analysesooiieiiiiiinn.. 65
CBA-SPI Prototype Architecturec.ciiiii it iiiiiennnn, 66
Internet Service Concept. oviiiii ittt i i e 67
43.1 UserFunctionality.........c.oviiniiiniiiii ittt 69
4.3.2 Additional Requirements for Web Implementation................. 70
433 Architectlureciiitiiiiit it ittt it eentennnennas 71

CHAPTER 5: Cost-Benefit Templates for Emerald 73

5.1

53

Using Emerald for Targeted Defect Reduction 74
5.1.1 Overview and Rationale of Benefits............................. 74
5.1.2 Quantifyingthe Benefits............ ... o it 77
Emerald’s Support of Reengineering Decisions. 9%
5.2.1 Modeling the Benefits of the Improved Decision. 96
5.2.2 Estimating Development, Adaptation and Reengineering Costs 97
5.2.3 Estimating Enhancement and Maintenance Costs 100
5.24 Estimating Decision Results and Probabilities. 103
Using Emerald for Software Acquisitioncoiieiieennn.... 108
5.3.1 Risksin Software Acquisitioncoviiiiiniaaan.. 109

5.3.2 Software AcquiSition OVervieWc.oveeirienneneann.. 112

page viii

5.3.3 Using Emerald in Software Acquisition......................... 115
5.3.4 Benefits of Using Emerald in Software Acquisition 117
5.3.5 Quantificationof Benefits.coiii i i, 120
54 The Costs of Using Emerald.uvvuinernernenenininennnnns 127
5.4.1 License and MaintenanceFees................... 127
542 Training.........c.oiiiiiiii ittt i e 128
543 UseandOperations.............cooouiiiiiiiiiiiii ... 128
55 Validation.........c.oiiiiiiiiiiii i e et e 129
5.6 Summary of the Emerald Cost-Benefit Templates....................... 130

CHAPTER 6: Cost-Benefit Templates for Cleanroom 132

6.1 Cleanroom Software Engineering. oot 132
6.1.1 Sequence-Based Specificationc...oiiiiLL 135
6.1.2 Functional Verification............ e 136
6.1.3 Incremental Development............ ..o, 137
6.1.4 Statistical Testing and Certification, 137
6.2 Quantifying the Cost-Benefit Effects of Cleanroom 138
6.2.1 Summary of Cleanroom Effects.................. 139
6.2.2 Sequence-Based Specification Effects 144
6.2.3 Functional VerificationEffects.ooviatt. 150
6.2.4 Incremental Development Effects 155
6.2.5 Statistical Testing and Certification Effects...................... 164
6.3 Validation........cooiiiiiiiiiii it i e e i e 173
64 Summary of Cleanroom Templatesoiiuiiniiiiiinnnnn.. 174

CHAPTER 7: ConclusionS . e ccccceeeeceecenccoccocannsonncasees 175

7.1 Research Contributionsand Summaryccoiiiiieiienin... 175
7.2 Directions for Future ActivitiesandResearch 177

References. . ccoeoeesssesresccesssssscsccssasesascesssnssesss 180
AppendiX.....cccceteeeettascnscrtesssscssescssssssssassssss 191
APPENDIX A: Cost-Benefit Effects Hierarchycc000veeee.. 192

APPENDIX B: Database Schemacccceeeeerenrcccccccnsass 196

page ix

APPENDIX C: User Interface Samples.........cccevvveenneeea... 203

C.1 Define Baseline Environment. ... 204
C.2 Create a Cost-Benefit AnalysiS.ccoviiiiin i, 206
C.3 Define SPI Templates, Effects, and Parameters......................... 207
C4 Provide Industry DataandModels.coviiiiiiiiiiinan., 209

APPENDIX D: Software Process Simulation Modelcccveee... 210

D.1 System Dynamics Modeling Concepts............ e 210
D.2 CleanroomProcessModelottty 211

D21 ModelBoundary.........covmiuiiiieniienennnnnenennnennns 215
D.3 Supporting Software.coviiiiiiii ittt i i 216

APPENDIX E: Software Process Improvement Templates 217

E.l Emerald Template for Targeted Defect RedUCtON.vvvvveveeennn.. 217
E.2 Cleanroom Template for Statistical Testing...................oooiuitn 229

APPENDIX F: Example Cost-Benefit Analyses........oeeeenssssss 245

F.1 Emerald Example for Targeted Defect Reduction 245
F.2 Cleanroom Example for Statistical Testing, 255

APPENDIX G: ACIODYINS. « s« svovescssconsssesscacsscsccsscsssse 263
APPENDIX H: GlOSSary..cocoeeeesececsccscssaascacascancsness 265

1 % . 3.

Tables

Table 2.1: Example studies on the value of Software Process Improvement. 11
Table 2.2: Commonly cited SPI evaluation measures e 26
Table 2.3: ROI versus NetPresent Value.coiiiiiiiiinin s, 31
Table 3.1: Improvement proposal versus effect category matrix................ ... 47
Table 4.1: Example industry data by function points or subindustry................ 63
Table 5.1: Baseline parameters for inspection cost savings.............c.covvn... 78
Table 5.2: Example of resource allocation cost savings for inspections 79
Table 5.3: Parameters to estimate benefit from improved defect removal efficiency . . . 81
Table 5.4: U.S. average defectpotentials.covviiiiinini ... 83
Table 5.5: Defect potentials / defect removal efficiency targets by SEICMM 84
Table 5.6: Parameters for estimating defectsperyear 85
Table 5.8: Example application of equation 15 iiiiiiaa., 89
Table 5.7: Example parameters for estimating savings from improved efficiency 89
Table 5.9: Parameters for estimating the value of cycle reduction. 91
Table 5.10: Example calculation of cycle reduction value. 93
Table 5.11: Example for estimating an increase in business 94
Table 5.12: Example estimation of cost to reengineer and costof reuse 99
Table 5.13: Example estimation of cost of maintenance 103
Table 5.14: Cost of each possible deciSion TeSult. ovvvvvvnenreennnnennnn. 104
Table 5.16: Baseline probabilities for ‘never reengineer’ case.................... 105
Table 5.15: Example decisionresult.ottt inennann..n. 105
Table 5.17: Baseline probabilities for ‘could reengineer’ case. 106
Table 5.18: Decision probabilities when using Emerald 107
Table 5.19: Summary of benefits from Emerald use in software acquisition. 119
Table 5.20: Software acquisition risk mode] parameters 121
Table 5.21: Example calculation of projectrisks o, 122
Table 5.22: Lower rework COSt parameters.covveeennienereeeneennnnnnn. 124
Table 5.23: Example estimate of development rework savings................... 124
Table 5.24: Lower support COSt Parameters «o oo vvvereenerneenrnernennenn. 126
Table 5.25: Example estimate of support cost savings.covveieenn... 126
Table 6.1: Parameters for estimating the value of reduced employee turnover costs. . . 149
Table 6.2: Example estimate of additional verificationcost 151
Table 6.3: Requirement origins and comparative costscceueveennn... 167
Table 6.4: Parameters for the value of reducing requirementscreep............... 168

Table 6.5: Payoff matrixexample.ouiitiiin ittt i, 171

page xi

Table 6.6: Baseline decision probabilitiesccoiiiiiiiiiiia.. 172
Table 6.7: Statistical usage testing decision probabilities 172

page xii

Figures

Figure 2.1: Effort multipliers by phase: Modern programming practices ‘16
Figure 4.1: CBA-SPI prototype architectureoiiiiiiiiniiieannn 68
Figure 4.2: Proposed architecture for internet serviceo ... 72
Figure 5.1: Cause-effect diagram for targeted defect reduction use of Erfiérald 75
Figure 5.2: Parameter dependency graph to estimate defects peryear............... 86
Figure 5.3: Parameter dependency chain for cycle reduction. 92
Figure 5.4: Cause-effect relationships from Emerald’s software acquisition support . . 118
Figure 6.1: Cleanroomreferencemodel.coiiiienenniaiin.., 133
Figure 6.2: Cause-effect relationships from using sequence-based specification 147
Figure 6.3: Cause-effect diagram for functional verification..................... 152
Figure 6.4: Regression testing simulationmodel oot 160
Figure 6.5: Cause-effect diagram for incremental development 160
Figure 6.6: Project completion time simulation model. P 163
Figure 6.7: Cause-effect diagram for statistical testing 166
Figure B.1: Baseline environment subjectareaot 198
Figure B.2: CBA effects subjectarea...........oovviiiinneiinnnenanennnen.. 199
Figure B.3: SPI template SUDJECt QT€a. . .+ vt v v v e eeaenenenenaeanennnennns 200
Figure B.4: Reference data subjectareapart1.........ot 201
Figure B.5: Reference data subjectareapart 2.coiiiiii ... 202
Figure C.1: Parameters for defining a baseline environment e 204
Figure C.2: Describing quality appraisal steps for a baseline environment.......... 205
Figure C.3: View or change quantifiedeffects. oot 206
Figure C.4: Defining cost-benefit effects for the SPI template 207
Figure C.5: Specifying a formula for evaluating a cost-benefit effect.............. 208
Figure C.6: Databy subindustry.covviiiiii ittt iaenann 209
Figure D.1: Life-cycle view of simulationmodel. 212
Figure D.2: Computing Total Effort Hours i, 214

Figure D.3: Example causes tree for a taskunitcostt 215

page 1

Chapter 1

Introduction

1.1 Statement of the Research Problem

The main goal of this research is to develop a practical and useful cost-benefit analysis

framework for evaluating the impact of potential software process improvements.

12 Motivation for the Research

Most software managers are under enormous pressure to improve the quality of their prod-
ucts and accuracy of plans and budgets and to reduce the cost of software projects. Such
gains can be obtained by process improvements. Very few software managers are able to
quantify the short- and long-term costs and benéﬁts of contemplated software process
improvements. Efforts to improve the software development process in an organization
are difficult for management to evaluate in advance. Many initiatives to improve the soft-
ware process require significant expenditures of resources to introduce the change and to
provide on-going organizational support. Management must be convinced the proposed
“improvement” supports the organization’s strategic goals and will lead to positive finan-

cial impacts. The benefits from investments in software technology are often long-term,

Introduction page 2

uncertain and difficult to quantify. The costs of implementing the improvement are more
immediate, more certain, easier to quantify, and can have adverse impact on short-term
financial profits and on development schedules. Furthermore, management could consider
several potential investments aimed at improving the softWare development process but
with time and cost constraints that prohibit investing in the full range of possibilities.
Managers need assistance in evaluating these investment alternatives.

A critical step for evaluating a potential process improvement is to estimate what
effect a proposed improvement will have on the organization’s bottom line over an
extended period of time. Before decision makers invest into such a long-term initiative
they must be able to cjuantify a positive impact on meeting the organization’s strategic
goals. A cost-benefit analysis (CBA) can be conducted to help decision makers evaluate
such investmepts. '

This dissertation considers issues for cost-benefit analysis of software process
improvement project$ and outlines a methadology for evaluating software process
improvement proposals. A general framework is constructed to demonstrate an approach
that can be used for evaluating any improvement. To illustrate this framework we develop
cost-benefit templates for Emerald and Cleanroom process improvement technologies. A
prototype tool based on this framework is designed and developed to assist the decision
maker in identifying, collecting, and organizing data pertinent to the decision; exploring
various “what-if”’ scenarios; and simulaLting, projecting and quantifying the net benefits to

be received under each scenario.

Introduction page 3
1.3 Current Impediments
1. There is extensive literature on cost benefit analysis and on potential software pro-

cess improvements. However, the literature is so extensive that it is bewildering to

make all the choices and know how to proceed.
2. Existing approaches are not readily available to the decision maker.
3. Exiéting models require extensive data that is not generally available.
4. Data that is available may or may not be relevant to a given situation.

5. Existing models require complex simulations that require great effort to construct

and parameterize, and are of dubious validity.

6. Existing approaches are more complex than necessary for most decisions, and

would take more time to apply than the decision maker has available.

7. Each improvement has its own profile of effects that might vary from setting to

setting; thus, a solution in one instance might not be applicable in another.

8. Benefits are often difficult to quantify and justify. Benefits are less certain, less

tangible, and more long term than costs.

9. Empirical studies are often missing or inconclusive.

Introduction page 4

10.

14

Software managers often lack the training to construct a business case with dis-

counted cash flows and appropriate financial analysis.

Goals

Readily available assistance to the decision maker.
Support the decision for any improvement, in any environment, for any industry.

Involve the minimal effort and complexity that is essential to support the decision,

and no more.

Use information that is readily available.

. Do the best that can be done quickly.

Maintain an open framework that can be updated and improved as better informa-

tion becomes available.

Introduction

1.5

1.5.1

1.5.2

page 5

Research Contributions

What is Not New

. Basic concepts of cost benefit analysis

Mathematics of cost benefit analysis
The software process improvements

Public and private case study data

. Process simulation models and case studies

Software engineering economic models

What is New

. A framework for the proposal, evaluation and decision support

. An organized set of choices already made, each of which can be changed if com-

pelling reasons exist

. An organized set of data that can be used, changed or ignored

. A dynamic simulation model of the Cleanroom software process

Introduction page 6

5. An organized set of process improvement templates that can be extended

6. An organized set of effects assigned to improvements that can be changed if com-

pelling reasons exist

7. Specific quantification functions and models for Cleanroom and Emerald technol-

ogies
8. A tool to make cost-benefit analysis of software process improvements easy to do

9. A prospectus for a web-based service

1.6 Organization of the Dissertation

Chapter 2 reviews existing approaches to evaluating process improvements and provides
an overview of cost-benefit analysis mt;thods. Ch;lpter 3 presents a general framework for
evaluating process improvement investments. Chapter 4 gives an overview of the architec-
ture and design of the software for analyzing process improvement investments and pre-
sents a prospectus for a‘web-based service. Chapter 5 describes cost-benefit templates for
using Emerald. Chapter 6 describes the cost-benefit templates for using Cleanroom tech-
nologies. Chapter 7 summarizes the contributions of this research with directions for

future activities and research.

Chapter 2

Background

This research has required study across several disciplines including software engineering,
microeconomics, cost-accounting, management, and industrial engineering. This chapter
provides background and definitions on specific topics most pertinent to our framework
including software process, software process improvement, and cost-benefit analysis. We
also review industry data related to process improvement as well as various approaches

for evaluating improvements.

2.1 Software Process

The Software Engineering Institute (SEI) defines software process as “a set of activities,
methods, practices, and transformations to develop and maintain software and the associ-
ated products, (e.g., project plans, design documents, code, test cases, and user manuals.)”
[60]. Input factors to the software production process include methods, tools, training,

. compilers, computer equipment, and skilled labor. Large scale software development is a
notoriously complex and difficult production process. Most organizations are unable to

consistently produce systems on-time, within budget, and of acceptable quality.

Background page 8

2.2 Software Process Improvement

There are two general approaches to improving the software maturity and capabilities of
an organization — a top-down framework based approach and a bottom-up goal-measure-
ment based approach. With the framework based approach an organization seeks to emu-
late practices contained in quality standards or a maturity model. Commonly used
frameworks are the Capability Maturity Model (CMM) [60] and the ISO 9001 standard
[77]. The current practices of an-organization are audited against framework requirements
(e.g., the ISO 9001 clauses or key practices in the CMM) to estéblish a baseline. Gaps
between the requirements and the current practice are used to guide improvement plans.

Goal / measurement based process improvement is a systematic approach to introduc-
ing improvements to address specific organizational problems or goals. In this approach,
metrics may be used initially to answer questions and provide a baseline. Later metrics are
used to verify that the introduced improvement achieved the desired goal. An example of
this approach is Basili’s Quality Improvement Paradigm (QIP) which uses two tools: the
Goal/Question/Metric paradigm (GQM) and the Experience Factory Organization [6].
Bottom up and top.down approaches are not incompatible and can be combined with good
results [21]. These approaches suggest process or technology changes that may improve
the software process of an organization. However, they do not necessarily help an organi-
zation evaluate the impact the proposed change will have on their organization.

We consider a software process improvement proposal to be any documented sugges-

tion to inject technology, training, management, or process changes into a software organi-

Background page 9

zation for the intended purpose of improving the quality, cost, or schedule of the resulting
software product. Strictly speaking, we are concerned with software product improve-
ment, not just process improvement. The scope of a proposal can range from a single
incremental change (e.g., introduce design reviews) to a sweeping set of changes (e.g.,
ISO 9001 registration). These proposals generally will have in common a goal of reducing
the cost of quality or increasing productivity. Examples of potential software process

improvement proposals include establishing:

Metrics and decision support

Independent inspections and verification

e Systematic software reuse program (e.g., domain engineering)

Improved configuration rhaﬁagemenf system

Each improvement proposal can be considered as a potential investment since the
costs will be more immediate and the projected benefits will be long term. Thus the stan-
dard techniques of business investment analysis can be applied. In the case of software
process improvement, the investment is the total cost involved in implementing and main-
taining a process improvement. The expected higher profit would result from a combina-
tion of factors: a reduction in cost over the life of the software; higher sales from reduced
time to market or; a higher sale price and demand from producing a superior quality prod-

uct.

Background page 10

2.3 Current Approaches to Evaluating SPI Proposals

Just because a process improvement has been proposed does not necessarily mean it will
in fact be an “improvement” to the organization when implemented. Software Process
Improvements (SPIs) are not without costs and competing SPIs can provide various levels
of costs and benefits to an organization. Hence, an organization needs effective ways of
determining the best improvement to implement based upor; their current business envi-
ronment. This section reviews industry data that supports software process improvement
and provides an overview of current approaches to justifying improvements within an

organization.

2.3.1 Industry Data Supporting Process Improvement

A considerable amount of einpirical evidence has been published on the cost and benefits
of SPI efforts. Many of these studies address broad classes of improvements such as intro-
ducing Cleanroom [32] [33] [41] [54] [71], applying a GQM based improvement program
[7] [54], or advancing a level in the Capability Maturity Model [23] [34]. Table 2.1 pro-
vides examples of results from these studies. There are also studies that address specific
common improvefnents such as inspections [51] [61] [78], software reuse [46] [63], and
the introduction of tools [14]. For many improvements the published studies are inconclu-
sive, contain wide variances, or lack any hard data. For example, there are few hard num-
bers to support productivity or quality increases due to the use of object oriented

programming, or formal methods [29] [62].

Background

page 11

Table 2.1: Example studies on the value of Software Process Improvement

Ref. Organization(s) Results
[34] Survey of 13 organiza- Annual cost of SPI per software engineer ranged from $490 to
tions pursuing CMM $2004. The median cost was $1375.
based improvement Productivity gain per year ranged from 9% - 67% with a
median of 35%.
Yearly reduction in time to market ranged from 15% to 23%
with a median of 19%.
A return on investment in SPI ranged from $4 to $8.80 with a
median of $5 for each $1 invested.
[54] NASA Software Engi- Cost of SPI is approximately 10% of the total software budget.
?g;iﬁg‘i‘:ﬁigo Error rate of completed software dropped by 75% (from 4.5 to
) Tep 1 defect/KSLOC). ,
projects over a 7 year
period of applying Cost of software dropped by 50 percent.
Basili’s Quz.ahty Improve- Cycle time to produce equivalent software products decreased
ment Paradigm.
by 40 percent.
[23] CMM based improve- Return on investment of $7.70 for each $1 invested.
[30] ment at Raytheon’s e
Equipment Division from Productivity increased by 190%.
1988 through 1996. Rework costs decreased to 20% of project costs from 41%. The
cost of fixing source code during integration dropped by 80%
and the cost of retesting decreased by half.
Defect density decreased to 4 trouble reports per KSLOC from
17.2 per KSLOC.
Improved predictability. Reduced cost overrun from 40% to
within 3%.
[32] IBM team used Clean- Productivity increased 36% over projected.
room on an AOE.XPERT/ Error rate of 2.6 defects/KSLOC from first execution through
MYVS project which con- system testing. N tional found i ducti
tained 107 KLOC. Y sting. No operational errors found in production.
[32] Review of 17 Cleanroom Productivity improvements of 1.5 to 5.0 times over baseline
projects projects.
Code exhibited a weighted average of 2.3 errors per KSLOC
through all testing as measured from first execution vs. 25-35
errors per KSLOC for baseline development.
[711 90 KSLOC Cleanroom Return on investment of 20.8 to 1.
project at U.S. Army’s s . .
Picatinny Arsenal. Productivity increased 4.6 times over baseline.

Background page 12

There are generally three kinds of empirical results in the literature: controlled experi-
ments, case studies and correlational studjfas.

- In the software engineering literature, controlled experiments are typically done with
groups of students to study various code reading or programming techniques using small
segments of code. This type of experimentation can possibly reveal some insights regard-
ing the particular techniques. However, few firm conclusions can be drawn from such
experiments that can be applied to large scale development. Some notable experiments
have been done in industrial settings. For example, Porter et. al. [61] conducted a long-
term experiment to compare different inspection techniques on a real development project.
Experiments on industrial projects are expensive to conduct and require skilled research-
ers to carefully define the experiments and to control threats to validity. Further, any con-
trolled experimental results on actual projects typically analyze a small set of variables on
a single project in one application domain using one language and environment. Others
must replicate the experiment in other environments to gain confidence in the results—
something that is rarely done due to the expense and difficulty of this type 6f experimenta-
tion.

Case studies typically describe the experiences of a single software organization in
implementing a process improvement. Case studies are useful for showing the potential
benefits from implementing a technology and for providing success factors and lessons
learned. However, the set of case studies for a technology have a selection bias since
unsuccessful attempts at implementing the technology are unlikely to be published. Also,

the organizational culture, business environment, and software characteristics for a pub-

Background page 13

lished result may be vastly different than an organization considering the same SPI.
Hence, the results do not necessarily demonstrate a general association between the
improvement and the reported benefits.

Correlational studies compare data from a number of organizations and attempt to
show whether a general association exists. However, even these studies are likely to have
some selection bias because organizations elect to participate and provide input to the
study. The majority of software organizations do not have good measurement programs in
place to collect reliable, objective data to report to such studies. This is especially true for
low CMM maturity organizations. Thus, low maturity organizations and organizations
that lack measurement programs would be less likely to participate in correlational stud-
ies.

There are also problems in how results are repo;tedl For example, the authors are typi-
cally proponents of the technology and tend to emphasize benefits but say little about the
costs. The computation of the Return on Investment (ROI) from using the technology is
often flawed. For example, there is a general failure to apply a discount rate to the cost-
benefit flows. This tends to skew the results in favor of the benefits since they are usually
realized later than the co;c,ts. Also, the benefit effects are often computed from a before-
after perspective rather than from a with-without perspective. For example, recent results
may be compared with productivity results from years earlier before the organization
embarked on the improvement program. The studies typically fail to account for other fac-
tors during the time period that may have contributed to the benefit effects, such as more

powerful workstations, improved development tools, or more talented developers. Finally,

Background page 14

the studies rarely provide quantitative data on benefits that occur outside the scope of a
single project or after the release of a product. Benefits that are difficult to quantify are
typically not quantified.

In spite of these difficulties, published results can be useful to support a decision for a
process improvement. The ROI, productivity, and defect reduction numbers provide sup-
port for the decision as well as the success factors and lessons learned, but they do not nec-
essarily provide an accurate or complete picture of costs and benefits that can be expected
for the SPI in a specific organization.

Finally, management is self defeating. Even when a software development unit pays
the price for training and technology and delivers phenomenal results, such results are
ignored as the unit is dismantled to staff new projects, effect reorganization, or adjust to

mergers and acquisitions.

2.3.2 Project Cost-Estimation Models -

Some cost-estimation models can be used to estimate the effect of an improvement by pre-
paring two estimates: one that represents the cost and schedule of a project without the
proposed improvement,l and a second estimate with the improvement. The two results are
then compared to estimate the impact of the improvement. For example, the intermediate
and detailed COCOMO models [9] contain a set of fifteen effort adjustment factors or cost

drivers. The form of the intermediate COCOMO eqﬁation for estimating effort is:

Background page 15

15
PM = A(KSLOC)® - T] (F))

i=1

where, PM is the person-months of effort, A and B are equation parameters, KSLOC is the

estimated delivered Kilo-Source Lines of Code, and the F; are the fifteen effort adjust-

ment factors. Two of these effort adjustment factors relate to process and technology

improvements:

* MODP - the use of modern program practiées (MPPs) (i.e., process improvements

such as inspections and incremental development), and

* TOOL - the use of development tools.
The nominal value assigned to each factor is'one with higher values assigned for immature
organizations and lower values assigned for the most mature. The suggest‘ed value for the
MODP factor ranges from 1.24 for an organization who doesn’t use any MPPs to 0.82 for
an organization that routinely uses all suggested MPPs. This range allows a 51% increase
in productivity (or decrease in project effort) based upon extensive use of modern pro-
gramming practices. In the detailed COCOMO model the MODL effort multipliers can be
adjusted by life-cycle phase as shown in Figure 2.1. Note that most of the cost savings for
MPPs come in the later Integration and Test life cycle phases.

The more recent COCOMO II model [10] includes a scaling driver for the organiza-
tion’s estimated CMM based process maturity (PMAT) that would allow similar “what-if”’

scenarios. Using a general cost model such as COCOMO to estimate the impact of a tech-

Background page 16

T
2 ——Very low
o
= —=— Low
- .
£ —i— Nominal
5 —— High
i o4 _x— Very high
0.2
0 r ey r .
Requirements Detailed Code and Unit Integration
and Product Design Test and Test
Design

Figure 2.1: Effort multipliers by phase: Modern programming practices?
a. Source: [9], p. 453, Figure 27-1.

nology can be useful for determining an approximate range of cost savings. However, the
decision maker has little help in determining what adjustment factors to use for specific

improvements. Also, these models do not address organizational cost-benefit impacts for
implementing the technology and are unable to capture other effects outside the scope of

the model such as reduced maintenance, increased sales, or faster time to market.

2.3.3 Economic Models

Economic models have been developed to estimate the value of specific improvements. In

particular, the literature contains many cost-benefit models for systematic software reuse

Background page 17

[18] [47] [52] [63]. These models typically consider the additional cost to develop reus-
able software components and compute the savings from reuse, the return on investment,
and the number of times a module must be reused to breakeven. According to Lim [47],
most of these models do not take into account the time value of money, most of them do
not consider savings from the maintenance phase, most of them do not account for the
overhead cost of reuse, and most do not také into account increased profit from shortened
time to market.

Several of these reuse models consider how the business case for software reuse is dif-
ficult to justify under a single project view. The benefits from systematic reuse accrue over
time and over a number of projects. A persistegt difficulty in introducing systematic reuse
is the scope of decisl,ion makmg regérding reusé. Project managers make decisions that
optimize their current project, not future projects that could benefit from reuse. Although
reuse may yield significant cost-savings for a series of projects, individual project manag-
ers have little or no incentive to incur costs and delays to make modules reusable by other
p?ojects. The reuse model§ of Malan [52] and others [63] help to make the value of reuse
across a succession of projects more quantifiable and visible to assist higher level decision
making.

Taking a multi-project, organizational view also applies to justifying other process
improvements. Much of the cost of implementing an SPI involves changing the organiza-
tion’s culture and way of doing business. For some improvements it may take time and
two or three projects in order to fine tune the process changes and to fully recover the orig-

inal investment.

Background page 18

McGibbon [56] has prepared a useful set of economic models for estimating the
effects from several improvements including CMM based software process improvement,
inspections, reuse, and Cleanroom. He also provides rare examples of quantifying the less
tangible secondary benefits of process improvement such as the value of improved sched-
ules, reduced employee turnover, and improved customer satisfaction. His models, param-
eterized based on reports in the literature, are specific to each of the considered process
improvements. His analy;es do not take into account the time value of money and do not
provide a direct way to be customized for a particular organization.

Economic models are useful for evaluating a specific improvement but often do not

provide estimates on the full scope of costs and benefits to be considered.

234 Cost of Software Quality

Many software process improvement projects have an implicit or explicit goal of reducing
the cost of quality. The cosf of quality concept was originally described by Juran and
Gryna [36] as those costs that would be eliminated if all workers were perfect in their jobs.
The American Society for Quality Control (ASQC) has defined the following categories

of quality costs [15] [58]:

» Prevention costs - incurred to prevent poor quality from being produced. For
example, analysis and planning for quality, training, development of process con-
trols. In the software world, these costs would include training practitioners in a

new methodology, planning and establishing a metrics program.

Background page 19

e Appraisal costs - activities undertaken to prevent poor quality from being pro-
cessed beyond the point at which they become nonconforming or from being
delivered to customers (e.g., inspection and testing of software or design documen-

tation).

« Failure costs - costs required to evaluate and correct or replace software not per-
forming to specifications or failing to meet customer needs. For software, this
would include the time spent analyzing and modifying source code, re-building

and regression testing of executables in order to correct underlying faults.

+ Internal failure costs - associated with products that fail to meet specifications
and are identified before the product or service is delivered to the customer.
For example, if an integration test reveals a problem, then the cost to analyze,
correct, and retest the problem code would be considered an internal failure

cost.

+ External failure costs - incurred because poor quality products are delivered to
customers. This category includes the cost of handling customer complaints,
returns and allowances, customer ill will, product liability, and loss of future
business, as well as the cost of analyzing, coﬁwﬁng, testing, building, install-

ing, and documenting code patches to correct problems.

Background page 20

To achieve a goal of reducing the cost of quality may require increasing spending for
prevention and appraisal cost in order to reduce the more expensive internal and external
failure costs.

The cost of quality concept provides a convenient classification system for costs
related to quality. The concept has been applied to software development by various prac-
titioners and researchers. For example, Slaughter defines a Cost of Software Quality
(COSQ) metric apd a Return on Software Quality (ROSQ) metric and uses them to com-

pute the value of four improvements at BDM International [72].

2.3.5 Software Process Simulation Models

A software process simulation model is an abstract representation of an actual software
process that can be simulated computationally. As discussed previously, the software engi-
neering literature provides little data that scientifically proves the effect of potential pro-
cess improvements. It is extremely costly to perform controlled experiments of actual
software projects and thus they are rarely done. Simulation offers an economical approach
to conducting experiments on an abstract representation of a real project. These models
are useful for gaining insight and understanding into the many interrelated, dynamic fac-
tors involved in producing software. However, a model is an abstraction and leaves out
many details. The cause-effect relationships codified into -a model are often tenuous and
poorly justified. Thus the usefulness of the model depends on how well it captures the

most important aspects of a real software organization.

Background page 21

In recent years a number of approaches have been explored for modeling the software
development process including specialized languages [67], precedence networks [24],
Petri nets [43], discrete simulation [31], state-based simulation [66], and system dynamics
[1] [51]. Many of the existing modeling approaches are concerned with understanding or
supporting the software process in an organization and do not have SPI evaluation as their
primary goal [53]. This section will further examine simulation modeling work that has
been used specifically for evaluating the impact of software process improvements — the
state-based Task Element Decomposition approach of Raffo [66] along with various

efforts using system dynamics modeling.

Task Element Decomposition (TED)

Raffo [66] adapted methods from the Operations Management literature to synthesize
the Task Element Decomposition (TED) method for quantitative modeling of software
development. TED uses a Markov Chain framework with the states representing different
phases of the development process. Each task can be decomposed into kernel activities
with random processing times. The total processing time of an operation is the sum of the
times for all activities associated with the operation. TED is used in conjunction with
Statemate, a commercially available process modeling tool. Raffo illustrated the TED
method using a small example problem to compare the impact of inspections on the pro;
cess. From his analysis he was able to compute and compare the total duration, total effort,
and remaining errors for both the baseline process and the “baseline with inspections” pro-

CESS.

Background page 22

His approach is significant in that he offers a quantitative way to predict quality, cost,
and schedule from within one model. However, Potok [62] argues that the software devel-
opment process does not meet the conditions of a Markov Chain. Also, the model is com-
plicated, difficult to construct, and only models a small portion of the development

process.

System Dynamics

System dynamics (SD) is an approach to simulation modeling developed in the late
1950’s by Forrester [27] to study the behavior of industrial and business systems. Since
then, SD models have been developed to study a wide range of problems from managing
research and development projects to understanding urban decay to analyzing world
impacts of population growth. More recently SD has been applied to studying software
development management issues. |

System dynamics is basqd on techniques and principles adapted from control systems
theory. A ‘prirnary goal of SD is ﬁsually to uhderstaind tﬁe behavior of information feed-
back loops related to a problem. A feedback loop is a closed sequence of causes and
effects, often with some delay introduced. A system dynamics model consists of a set of
differential equations to model a process. The model can be simulated over time to test
various altematiyc policies.

A system dynarics model of the Cleanroom software development process was devel-

oped as part of this research to analyze the cost-schedule impacts of incremental develop-

Background page 23

ment. More details on system dynamics and an overview of the Cleanroom model are in

Appendix D.

Abdel-Hamid and Madnick’s Model. The use of SD for understanding software
development was pioneered by Abdel-Hamid and Madnick [1]. They developed a
detailed, integrated model of the software developﬁent process for a project based on an
extensive review of the literature corﬁbined with interviews with several software project
managers. The scope of their model included personnel resources, software production,
planning, and control sections. They validated their model against an actual NASA ground
support software system for a satellite. They performed a variety of experiments on their
model to study the interactions of various phenomena such as Brook’s Law, Parkinson’s
Law, and the Deadline effect. They also examined the economics of software quality
assurance (QA) to attempt to determine the optimal expenditure on QA. One interestiﬁg
result from their experiments was that higher code writing productivity leads to an
increase in the optimal percentage of effort to spend on QA activities. Unfortunatel&, their
definition of QA lumped together requirements review, code review and integration test-
ing. This high amount of aggregaﬁon makes it difficult to isolate the impact of specific
improvements such as code inspections. Although their model is useful for understanding
many software engineering phenomena, it is very complex and unsuited for quantitative
assessment of cost and schedule impacts of specific process improvements in a particular

environment.

Background page 24

Madachy’s model. Madachy [51] developed a system dynamics model of an inspec-
tion-based software process and used it to investigate the impact of inspection practices on
cost, schedule, and risk. His model was calibrated with data from two similar projects at
Litton Data Systems except that one used inspections and the other did not. He was able to
accurately reproduce the effect shown by the Litton data as well as experiment with modi-
fying a number of parameters of the model. For example, the Litton data showed an ROI
for inspections of 2.32 to 1 compared to an ROI of 2.02 to 1 for inspections obtained from
model simulations. His model can also produce effort and schedule predictions based on
different inspection policies.

The Madachy model is useful for estimating the effect of different inspection policies.
However, it is not easy to tailor the model for a particular organization or for a particular
process improvement. Many software projects do not collect the data required to parame-
terize the model for their organiz—ation. Madachy noted the difficulty in finding data for
validating the model: “No project data was found to be complete enough for a global com-

parison of total effort, schedule and inspection parameters.”

Problems With Existing Simulation Models for SPI Decision Support

Simulation models are often difficult to parameterize, understand, and use. The model
may not match the process used by an organization and require time-consuming modifica-
tions by experienced modelers. No general model of the software development process is
capable of evaluating the specific impact of any arbitrary process change that might be

considered. If such a model did exist it would be too complicated for practical use. The

Background page 25

decision maker is unlikely to place a high confidence in the results obtained from a highly
complex model that is poorly understood. Software process models tend to be single
project oriented where improvements may impact the capability of an organization over

many projects.

2.3.6 Other Benefit Evaluation Approaches

There are a variety of other approaches that have been reported in the literature for evalu-
ating benefits of proposals including risk reduction and bayesian decision analysis.

Risk reduction involves identifying potential risks, the estimated loss that would occur
if the risk occul_’red, and the likelihood that the risk will occur for the baseline (‘as is’) sce-
nario. A potential SPI can be evaluated for its impact on reducing the likelihood of the
risk. An example of estimating an SPI’s vélue in reducing risk is given in Section 5.3.5.

Bayesian decision analysis is a structured approach to evaluating choices with an
uncertain pay-off for those choices. Decision analysis is useful for evaluating the value of
increased information on choices involved in routine decision making. An example of

bayesian decision analysis is provided in Section 5.2.4.

2.3.7 Summary of Evaluation Metrics and Methods

We have reviewed a variety of approaches for estimatiﬁg the benefits of software process
improvement. While all of these approaches can provide useful information, none of them

by themselves provide a complete picture needed to evaluate all the cost-benefit impacts

Background page 26

for any improvement for any organization. Further it is difficult to make useful compari-
sons between competing improvements or to understand the relationship among comple-
mentary improvements.

From our review of literature, various metrics are used for evaluating process
improvements as summarized in Table 2.2. Although these measures are useful data points
for a decision maker, no one of them is adequate as an overall measure of the value of the
SPI. Estimates of productivity, quality, effort, and schedule impacts can be useful to a
decision maker, but fail to provide a single criterion for evaluating the improvement. The

Return on Investment is the only metric that comes close to this goal.

Table 2.2: Commonly cited SPI evaluation measures

Type Measurement

Productivity | Increase in productivity (output per unit input). For software
productivity output is typically measured in lines of code or
function points while input is measured in terms of effort
hours or cost.

Quality Reduction in internal failures

Reduction in field defects -

Reduction in error rate

Cost / Effort | Effort or cost savings realized from improvement

Effort or cost expended to implement improvement

Reduction in non-conformance cost

Schedule Reduce schedule overrun and increase schedule predictability.

Savings in overall schedule

Overall Return on Investment. Typically cited as the cost (or effort)
savings divided by the cost (or effort) to implement an
improvement. '

Reduction in Cost of Software Quality

Background page 27

24 Cost-benefit analysis

This section reviews cost-benefit analysis literature from microeconomics and manage-
ment literature outside the usual realm of software engineering. A cost-benefit analysis
(CBA) is an evaluation of net benefits associated with one or more proposed alternatives
for achieving a defined goal. Cost-benefit analysis is the term used by economists for the
evaluation of public projects [69]. A closely related term is capital investment analysis, a
collection of techniques for comparing and deciding between capital investment alterna- -
tives [16]. Capital investment analysis uses many of the same methods as cost-benefit
analysis. The primary difference is in the scale of the problems being addressed. Because
CBA was developed to evaluate large public projects it includes theory and methods for
evaluating effects that may not have readily available market prices. On the other hand,
capital investment analysis is typically focused on evaluating smaller, private capital
investment alternatives. This research adapts the cost-benefit analysis approach of Sas-
sone [69] with applicable investment analysis methods [16] to synthesize a method and
framework to support SPI evaluation.

There are two primary ways a CBA can be used [42]:

1. As a planning tool for assistance in choosing among alternatives and allocating

scarce resources among competing demands.

2. As an auditing tool for performing post hoc evaluations or follow-up studies of a

previously implemented proposal.

Background page 28

This research focuses on the first use, but the CBA methods and framework developed
here can be used for the latter purpose. Follow-up studies help show the value of past

improvements and provide valuable data for future efforts.

24.1 Decision Criteria

A number of different methods have been suggested for comparing alternative proposals,
but the Net Present Value method is considered to be the superior to all the others. This
section examines three common decision criteria: Net Present Value (NPV), Internal Rate

of Return (IRR), and Return on Investment (ROI).

Net Present Value (NPV)
Net present value (NPV) is a method for discounting projected costs or benefits which
will occur in the future. Essentially, the NPV recognizes that money has a time value
(even in the absence of inflation). For example, if a proposal is expected to yield a benefit
of $100 next year, we might value that $100 next year as $90 today. The formula for NPV
is
n
NPV = Z B-C

- t' .
t=0'(1+r) :

(EQL)

where

B, is the dollar value of benefits received at time z,

Background page 29

C, the costs incurred at time ¢,
r the discount rate,
n the life of the project, and
t is time in units such as years or months.
A proposal subjected to a CBA will typically have its costs and benefits spread over a
number of years. In order to reduce the stream of costs and benefits to a single number, the
Net Present Value (NPV) is computed. The NPV is examined in more detail in the next

chapter.

Internal Rate of Return (IRR)

The Internal Rate of Return (IRR) is defined as the rate r used to discount the future
which would make the NPV of the project equal to zero. A proposal with an IRR that
exceeds a predetermined social cﬁscount rate (e.g., cost of capital) is deemed acceptable.

There are three problems with this criterion:

1. The r that solves (EQ 1) is not necessarily unique. Since the equation is of degree

n, it has n roots. Suppose d is the predetermined discount rate, both r;, r, solve

(EQ 1), and ry <d <r,, then the IRR provides contradictory results.

2. The criterion assumes a single discount rate over the life of the project. It may be

appropriate to set one social discount rate for the first few years (say d;) and a

higher rate for later years (say d,) to account for higher risk in those years. Sup-

Background page 30

pose we compute an IRR (say r) between those values (d; <7 <d,). Once again

the IRR provides contradictory results.

3. The NPV and IRR can give contradictory results when comparing two different

proposals [16] [69] with the NPV indicating the best alternative.

Return on Investment (ROI)
The Return on Investment (ROI) (also called the Benefit-Cost Ratio (B/C) or a profit-
ability index) is the ratio of discounted benefits to discounted costs. The formula for com-

puting the ROI (or B/C) is

n
> %
(L+7r)
ROI = B/C = L:L——
> C’
(1+7)

t=0

The ROI gives the discounted benefit per dollar of discounted cost. ROl is a frequently
cited metric in the software engineering literature, but it has a fatal flaw when it is used to
compare two or more proposals in that it doesn’t take into account the size of the invest-
ment. For example, the smallest of two proposals may have a larger ROI but have the

smallest total net benefit or NPV.

Background page 31

Another problem with the ROI calculation is that it is sensitive to whether a financial
effect of a proposal is classified as an increase (decrease) in benefits or as a decrease
(increase) in costs.

However, the ROI does play a role for a certain type of decision. That is when the
decision involves choosing the optimal mix of several proposals subject to a capital con-
straint. In this case, selecting proposal with the highest ROI > 1 until the budget is
exhausted will maximize the total NPV.

Although the ROI metric is frequently used in software engineering literature, the met-'
ric is seldom discounted to account for the time value based on when the benefits are
received. Also, it is often inappropriate to use ROI as a comparison criterion between
mutually exclusive SPIs. lMcGibbon [56] provides an example of where the NPV and ROI
lead to different ordering in comparing SPIs as shown in Table 2.3. Note that the NPV is
the superior criterion since it would provide the highest value to the company.

However, a direct comparison of Cleanroom to Inspections is also inappropriate for
another reason. Cleanroom represents a broader set of methods than Inspections and only
one of the Cleanroom methods — Functional Verification — directly compares with

Inspections. All the other methods of Cleanroom are compatible with, and are not

Table 2.3: ROI versus Net Present Value?

SPI Costs Benefits - Net Value ROI
Formal Inspections $13,212 .$946,382 $933,170 | 71.63to 1
Cleanroom ’ $77,361 $2,528,372 $2,451,011 | 31.68to 1

a. Excerpt of data from [56], Table 18, p. 26. The author implicitly assumed that r = 0.

Background page 32

intended to replace the role of Inspections. In McGibbon’s example, Cleanroom requires
higher cost to implement than Formal Inspections because more new methods are imple-
mented. This example points to the need to better understand the relationships- among

competing process improvements.

24.2 Structuring the Decision Problem

There are three mutually exclusive forms a CBA decision problem may take:

1. Evaluate whether or not to implement a single proposal.
2. Choose a single proposal to implement from among several alternatives.
3. Select a set of proposals to implement from a larger set of possibilities.

For a simple decision problem that only involves whether or not to accept one pro-
posal, then the decision criterion would be to select the proposal if its projected NPV is
greater than zero. If choosing a single proposal among several alternatives, then select the
proposal with the maximum NPV. If choosing multiple proposal from a set of possibil_ities
then the problem is a little more complicated. In this case, one must first determine
whether or not the proposals ﬁe independent ar;d if the proposals are subject to a capital
constraint which limits the initial expenditures that can .Ibc.e spent on the selected set of pro-
posals. A proposal is independent of other proposals if the NPV of a proposal is not
affected by whether or not the other proposals are implemented. If proposals are depen-

- dent, then one must form all possible subsets of combinations of proposals and evaluate

Background , page 33

the NPV of each combination. Use the following algorithm to determine the decision cri-

terion based upon the form of the decision problem.

SELECT form of decision problem
CASE Accept or Reject One Proposal
Accept proposal if NPV > 0
CASE Choose One of Several Proposals
Select proposal with maximum NPV
CASE Select a Set of Proposals
IF proposals are independent
THEN
IF Capital Constraint
THEN rank by ROI > 1
ELSE rank by NPV >0
END IF
ELSE (if proposals are dependent)
IF capital constraint
THEN find feasible sets maximize NPV
ELSE find possible sets maximize NPV
END IF
END IF

243 Identifying Costs and Benefits

Identifying costs and benefits is the most important and one of the most difficult steps in
conducting a benefit-cost analysis.

A cost is measured by the resources required to procure or implement some aspect of a
proposal. Examples of SPI related costs include extra time to perform a new process step,
consulting fees, training materials and the cost of tools to support the SPIL. In general costs
are relatively immediate, certain and tangible.

Benefits often take the form of cost avoidance such as reduced rework, error reduc-
tion, improved quality, time savings, reduced time to market, and improved process con-

trol. There are also less quantifiable benefits that are cited in the literature for SPI such as

Background page 34

improved customer satisfaction leading to higher future sales and customer retention. For
SPI proposals, benefits are often more long-term, uncertain and less tangible than costs.

Benefits should be defined in specific, quantifiable terms. A vague definition of a ben-
efit such as “improved quality” is of little value. This kind of benefit can be broken down
into more specific quantifiable components, such as, reduced rework and reduced field
failures.

Costs and benefits for an SPI can be ideptified from the literature and from consider;
ing the impacts of the SPI within a particular environment.

A preliminary matrix of costs and benefits should be created. Columns can be added
for each type of stakeholder. The cost-benefit list should be reviewed to insure it is valid
and to check for double counting. It must be determined to what extent each cost or benefit
can be quantified. The review should determine data availability and identify what data is

needed.

244 Quantifying Costs and Benefits

The second most critical aspect of conducting a CBA is quantifying the costs and benefits
and determining the time periods the costs and benefits will be realized. The main diffi-
culty in quantification is the unavoidable fact that the analyst is faced with forecasting the
future. However, as much as possible, it is still important to quantify these impacts. As
Sassone has stated: “Only through quantification is the aggregation of effects and the anal-

ysis of trade-offs generally possible” [69]. There is no one procedure that can be used for

Background page 35

quantifying effects of process improvements. However, the use of economic principles
and models can help guide us to reasonable quantification approaches.

The estimator should state the source of all assﬁmptions and estimates. The estimator
should only be concerned with marginal cost-benefits flows (i.e., cash flow differences
from the baseline scenario). The organization’s historical data as well as data and esti-

mates from the literature can be useful for estimating cost-benefit effects.

24.5 Setting the Discount Rate

The discount rate is a critical parameter in the NPV calculation. The discount rate can
affect whether a single proposal has a NPV > 0 or change the ratings among proposals.
High rates penalize proposals with benefits occurring farther in the future. A lower rate
discounts the future less than a higher rate. Within a private business, the discount rate
should already be established by top management based on the cost of capital for the busi-
ness or the opportunity cost.

If there is concern or uncertainty about which rate to use, it may be useful to compute
a critical rate. The critiqal discount rate is the rate at which the NPV calculation changes
sign. If the rate is high or 10\lv, then knowing the exact rate may not be important. For
example, suppose the critical rate is computed to be 18% and any rate at or below 18%
results in an NPV > 0. Since you are confident the true discount rate is below 18%, you
conclude that the proposal is worth implementing.

Another consideration in setting the discount rate is the risk of whether or not future

benefits will actually be realized. A risk premium can be added to the rate to account for

Background page 36

benefits that are highly uncertain. For example, taking time now to invest in making mod-
ules reusable may not pay off if future software projects fail to reuse them. Hence, an extra

factor can be added to the discount rate to account for that risk.

24.6 Performing Sensitivity Analysis

Some of the costs and many of the benefits in a CBA will be estimates. Such estimates
may be based on a probability distribution (perhaps using a combination of subjective and
objective probabilities), but the analyst must arrive at a single number to put into a CBA.
The problem with using an expected value is that it does not account for society’s attitude
towards risk.

For example, we may believe that we have a 50% chance of receiving $0 and a 50%
chance of receiving $1000 for some postulated benefit. The expected monetary value
(EMV) of this probability distribution is $500. However, would you as an individual be
willing to pay $500 for a lottery ticket that has 50-50 chance of Winning $0 or $1000?
Most people would not be willing to risk $500 for such odds.

Since society in general is adverse to risk, the appropriate valug to assign is the cer-
tainty monetary equfvalent (CME). For example, suppose the CME or the average price
members of society would be willing to pay for the above lottery ticket is $380. Then soci-
ety i.s adverse to risk and is extracting z;.j$50()' - $380 = $120 penaity for the risk present in
the probability distribution. In other words, in estimating a benefit we must deduct the cost

of bearing risk from the expected value of the distribution. Higher variance in a probabil-

Background page 37

ity distribution exacts higher costs for bearing risk and thus lowers the value of the
expected benefit.

Finding the CME requires knowing society’s utility function. But there is no specific
procedure for determining such utility functions. In practice, sensitivity analysis is per-
formed to estimate the degree of error in the CBA and to show what would happen given
certain combinations of assumptions.

Let b;, be the value of the ith benefit received in year #, and ¢;; be the value of the ith

cost paid in year ¢. Then the NPV expression is

Zbit_zcit
NPV = Z_x_r_

= a+r

Each component benefit (b;,) and cost (c;,) is often an estimate. Thus the accuracy of the

NPV calculation depends on the accuracy of these estimates. There are three approaches

to sensitivity analysis that can be used to address the degree of error in these estimates.

Subjective Estimates

Based upon experience and insight, the analyst might state that the NPV is subject to
an error of plus or minus 10%. A subjective estimate can be quite good depending on the
skill of the analyst. The advantages of a subjective estimate are that it is quick, inexpen-
sive, and can account for variability not reflected in the objective measures. The disadvan-
tages are that it does not have a quantitative basis and the analyst could have difficulty in

defending the estimate to critics.

Background page 38

Selective Sensitivity Analysis

The analyst selects parameters involved in the NPV calculation that he believes are
subject to error and that could significantly affect the result. For each of these parameters,
he selects likely high and low values and computes NPV values with each. The decision
maker is then presented with three NPV estimates - high, medium (the original value), and
low.

The advantages of selective sensitivity analysis are that it is objective and easy to com-
pute. The disadvantage is that it is only suitable for situations where only a small number

of parameters are subject to error.

General Sensitivity Analysis

This approach derives a probability distribution of NPV outcomes. Each b;, and c;,
depend, in general, on a number of parameters. Call these parameters the set
0 = {0y, Oy ooy Oy} -

Suppose high, medium and low estimates are available for each «,. Now partition the
set of parameters into disjoint subsets A; such that all parameters are placed in the same

set if and only if they are dependent on each other. If two parameters are independent they

must be in different subsets. Thus each «; must be a member of exactly one subset A;.
Since the o;’s in each A; are related, there are only certain combinations of values each A;

can assume. The analyst must determine each of these combinations and their correspond-

ing probabilities. Suppose the set A; can assume ¢, configurations. Denote these configu-

Background page 39

rations as Ajl, Ajz, . Aje,. and the corresponding probabilities as
P(A jl), P(Ajz), ey P(Aje_) _The NPV cumulative probability distribution can be com-
7

puted from these combinations of parameters to provide risk information to the decision

maker in a convenient format.

Risk and Uncertainty

If no meaningful probability can be assigned to certain sets of the parameters, then this
situation is called an uncertainty, whereas the situation in which probabilities are assign-
able is called a situation of risk. The discussion above addresses risk. One way to handle
uncertainty is to give ranges of estimates for each uncertain parameter. When the results of
the CBA are presented, a payoff matrix can be presented which computes the NPV under

each assumed value for the parameter.

2.5 Summary

The software engineering literature contains a la.pge amount of information that can be
used to help support pfocess improvement decisions including empirical data, process
improvement frameworks, cost-models, economic models, and simulation models. As we
have seen, these approac?hes have limitations and no single approach is adequate for evalu-
ating the full impact of an SPI within a specific organization. The cost-benefit analysis and

investment analysis literature suggests a systematic method and framework for evaluating

Background page 40

potential SPIs as potential investments. Such a framework can serve to organize the avail-

able data and models and provide decision support to practitioners.

page 41

Chapter 3

A Framework for Evaluating Software

Process Improvement Investments

This chapter develops a general, unifying framework to support evaluating software pro-
cess improvements on the basis of their economic desirability. SPI proposals can be
viewed as potential investment alternatives aimed at improving quality, cost, and schedule
of software development. Our goal is to provide a framework that can be used to build an
organized repository of information and models for potential process improvements. For
each SPI a template must be constructed to identify the set of cost-benefit effects along
with quantification functions and parametérs based upon the best available industry data
or models. The relationships among SPIs should be identified to help the decision maker
understand which SPIs are mutually exclusive, which are prerequisites, and which are

complementary.

A Framework for Evaluating Software Process Improvement Investments page 42

3.1 A Formal Model of Investing in Process

Improvement

This section develops a general model of the investment decision for software process
improvements. The purpose of any investment analysis is to determine which investment

alternative is the best use of the organization’s resources.

3.1.1 Cost-Benefit Analysis Principles

Our CBA framework is based on the principles of cost-benefit analysis as stated by tech-

nology-economist Peter Sassone [70], highlights of which are:
1. Effects will be expressed in dollars and schedule impacts.

2. Use of discounted cash flow analysis to account for the time value of cost and

schedule impacts.
3. Use of life cycle cost-benefit analysis.

4. Adoption of with-without rather than the before-after perspective in comparing

alternatives.

5. Use of net present value as the single best financial criterion in aggregating costs

and benefits over time.

A Framework for Evaluating Software Process Improvement Investments page 43

6. Use of corporate opportunity cost of capital as the approp;iate discount rate in dis-
counted cash flow calculations.
Unfortunately, little of the software engineering literature uses these standard princi-
ples. The few notable exceptions include Vienneau [76], Cruickshank [18], and Slaughter,

et. al. [72].

3.1.2 Net Present Value

Our framework uses the Net Present Value (NPV) criterion for evaluating proposals.

Benefit and Cost Effects

Let E, = B,— C, be the total cost-benefit impact during time period 7 where B, is the
total value of the benefits received and C, is the total of cc;sts incurred during time period
t. The total cost-benefit impact E, can be divided into a number of subcategories of cost-
benefit effects. Let ¢;, be the value of the jth cost or benefit effect that is expected to occur

during time period z.If ¢ it > 0, the effect will be considered a benefit for that time period,

otherwise it will be considered a cost. Then

E, =e | (EQ2)
j

and the NPV equation becomes

A Framework for Evaluating Software Process Improvement Investments page 44

Z ,
NPV = Z—; (EQ3)
(1+r)

We will let NPV; represent the net present value for a fixed cost or benefit effect j.

Thus,

NPVJ- Z —-—-L—— (EQ4)
(1 +r)

and

Z.
NPV, =YY 2 _ =y i = NPV €Q5)
Z ZZ(H) Z(1+)

Each cost-benefit effect, e,

;2> Can be estimated by a real valued function f;, whose

domain is X X X X KX, where R is the set of natural numbers representing the applicable
time period and each X represents a set of vectors for predicting marginal impacts to the
software devglopment process. That is, X = {<x1, Xpy vens xM> |xk €X,1<k<M}

where each X, represents the t;lomain of possible values for the & th parameter. The first

vector represents the estimated parameters for the baseline scenario and the second vector

represents the estimated parameters for the alternative scenario under consideration. The

A Framework for Evaluating Software Process Improvement Investments page 45

estimation function f can be defined in terms of function g, where g quantifies the cash
flow of effect category j for time period ¢ under the given scenario x.

Then at each point in time ¢,

(%, 3) = 8;(¥) — 8;(x) EQ6)

The jth cost or benefit effect at time # is the difference between the net cash flow for
effect category j under conditions of an alternative in place (y) and the net cash flow

under the condition of the baseline (x) in effect. That is, fis the monetary difference that
occurs for the effect category j and time period ¢ when conditions y are in effect.

We also define fj and 8; as vector valued functions that return a stream of values for
each time period. That is fj = (fjo,fjl, ...,fjn) and g = (gjo, 8j1s -+ gjn) .If we

define a discount factoras d = l_-li-—r and let the vector d = (do , dl, vy d’) the formula

for net present value may be written in vector notation. The NPV is a function of the base-

line parameters, parameters under an alternative scenario, and a discount factor

NPV(x,y,d) = Y NPVi(x,y,d) = > (fi(x,y) -d) = d-> fi(x,y) EQ7)
j j j

This formulation allows us to consider the stream of values for each effect j sepa-
rately. An estimation function fJ must be developed for each primary effect j in terms of

the baseline parameters and the parameters for the alternative scenario.

A Framework for Evaluating Software Process Improvement Investments page 46

3.13 Parameter Attributes of a Development Organization

Suppose a manager is considering a set of potential improvements to apply to a baseline
environment. The baseline process and environment of an organization can be described
by a set of attributes. Examples of attributes would include code size, labor costs, defect

rates and productivity rates. Let measures of these attributes be denoted by the vector
X = (xls x2: LS] xM) (EQ 8)

Note that no particular structure is imposed on a given parameter x;. Some of these

parameters may themselves be vectors or functions indexed by time.
Let n > 0 be the maximum number of time periods in the future over which the project

will be evaluated. Let the set of positive numbers T be the time interval in the future over
which the project will be evaluated and 7 € T, 0 <z<n an index into the time horizon.

Each ¢ represents a point in future time with ¢ = O representing the present. For cost-ben-
efit analysis, time periods are typically years, but could be in any convenient unit of time

(months, weeks, days, hours). Each x; could be indexed by the time.
Let 1,05, ...,1 N, denote a set of Np process improvement proposals under consider-
ation and let I, represent the baseline alternative. For each improvement I; we can esti-

mate values for a parameter vector x; € X; which we believe will be in effect for that

alternative. Again, we do not impose any constraints on the structure of the individual

parameters. For a given effect category, distinct estimation functions may be required to

A Framework for Evaluating Software Process Improvement Investments page 47

estimate the impacts for distinct improvements. Thus, f; ; is a vector valued function that

evaluates effect category j for process improvement i.

Let N, be the number of effect categories that have been identified. (Categorization of

effects will be discussed in the next section.) The structure for assessing effect categories

across a number of potential improvements is shown in Table 3.1.

Table 3.1: Improvement proposal versus effect category matrix

Improvement \ Effect | €1 &ffect1 e, effect2 ... | en, effect N,

Io Baseline alternative fo’ l(xo, xo) fo’ 2(x0, xo) cee fo’ Ne(xo, xo)
Il Improvementl fl, l(xo,xl) fl’z(xo, xl) cen fl,Ne(xo,xl)
I2 ImprovementZ f2’ l(xo, x2) fz’z(xo, x2) cos fz,Ne(xo, x2)
INp Improvement Np pr’ l(xo, pr) pr’ 2(x0, pr) cee pr’ Ne(xo, pr)

Note that the effect functions for the baseline alternative all evaluate to 0 since for any

effect i
fo,i(xo, X) =8, i(xo)fgo, i(X0) = 0

This simple fact emphasizes that the decision structure is based upon a comparison of
marginal effects to the baseline. Cash flows that are not affected by an improvement

should have no impact on the decision.

A Framework for Evaluating Software Process Improvement Investments page 48

3.14 Cost-Benefit Effect Classification

There are a wide range of cost-benefit effects that have been claimed for the various soft-
ware process improvements in the literature. To bring some order to this chaos, we estab-
lish a hierarchical classification taxonomy that will serve as an aide in identifying the
significant cost-benefit effects for a SPI proposal. This taxonomy also can be used by soft-
ware managers to help identify improvements to achieve desired benefits.

The top level cost-benefit effect accounting categories for this taxonomy are:

1. Implementation and Support

The costs of implementing and sustaining the process improvement.

2. Production Effects
Staff effort cost impacts for developing software products as well as for indirect
management and support cost. This category omits defect detection and resulting

rework and repair costs.

3. Quality Effects
The effect the improvement has on quality costs. Quality costs include the costs of
assessing quality in software products and the costs that results from poor quality .

in software products.

4. Cycle Time
The percent calendar time improvement the SPI is expected to have on the soft-

ware product cycle time.

A Framework for Evaluating Software Process Improvement Investments page 49

5. Customer / Market Effects
Financial effects based on how the process improvement impacts the product’s

marketplace.

6. Other Effects

This is a catch-all category for other effects that do not fit into the first five catego-

ries.

The full taxonomy of cost-benefit effects is listed in Appendix A. Effects for a particu-
lar improvement will be attached to nodes in this classification tree. Effects will be quanti-
fied by functions associated with leaf nodes in the hierarchy. The net present value
impacts of cost-benefit effects can be summarized at each interior node in the hierarchy of

this classification.

3.1.5 Drivers Behind the Functions

Each function in the taxonomy delivers the data required by the NPV and ROI calcula-
tions. All functions have certain parameters in common, but may vary in many other
respects.

Common parameters

e SEI CMM level of the organization

e Industry software subcategory classification

A Framework for Evaluating Software Process Improvement Investments page 50

Size of current code inventory (lines of code or function points)
Percentage of code'inventory being changed per year

Amount of new code to be developed per year

Current testing and verification procesls beipg used

Nurpber of pe;sonnel

Cost of personnel (loaded labor rate)

Size of development budget

Cost of failures (internal and external)

Functions

A variety of approaches can be utilized to estimate the effects of an SPI. Estimating

the effects is the most difficult aspect of performing a cost-benefit analysis. The frame-

work provides for estimation functions with suggested parameters for those effects based

on the best available industry information. Estimation approaches include:

Industry data or customer experience
Mathematical models (simple or complex)

Dynamic simulation models

A Framework for Evaluating Software Process Improvement Investments page 51

3.1.6 Justification of Choices Made

Each choice and decision should be justified as well as possible. As discussed earlier, very
few software engineering experiments or case studies are conducted under scientifically
acceptable designs and controls. Instead, authors report the facts and conclusions as best
they can, but few reports can be taken as more than anecdotal evidence. Still, one data
point is better than none. Better choices will emerge over time and the framework will

readily accommodate the better choices. Approaches used will include
» Literature reports of correlational studies
* Literature reports of case studies
* Private, internal company data
* Compiled industry data
 Existing economic or simulation mpdeling approaches
* Analysis based on the role of the function, type of effect
e Expert opinion -

* Folklore of the industry

A Framework for Evaluating Software Process Improvement Investments page 52

The decision maker can be given rationale for each of the cost-benefit effects along
with quality of data, success factors and potential pitfalls of the process improvement

under consideration.

3.2 Using the Framework

A systematic procedure for performing economic analysis of process improvement using

the framework follows.

1. Recognizing a problem or opportunity
This is the starting point for an organization to consider process improvement.
Often the recognition of the need for process improvement is obvious but only
occurs after much damage has already been done. Some combination of missed
deadlines, blown budgets, and unacceptable quality will prompt management to
seek solutions to these problems. More proactive management will detect more
subtle warning indicators of problem areas earlier in the life cycle. Metrics pro-
grams and improvement models such as the GQM paradigm can be invaluable to
make problems visible before it is too late. Problems or opportunities can be
defined in terms of the effects they are experiencing and would like to correct or

improve.

A Framework for Evaluating Software Process Improvement Investments page 53

2. Identify alternative SPIs

The CBA-SPI framework helps management identify potential SPI solutions. The
effects that they would like to change can be compared to the framework to iden-
tify SPIs that address those effects. The relationships among SPIs can suggest

which SPIs to consider first.

. Determine the opportunity cost (discount rate)
This should be based on the corporate cost of capital and the risk of the benefits to

be received in future time periods.

. Determine the time horizon

The time horizon will depend on the type of improvement and the environment
where it is to be implemented. A 5-10 year horizon is usually sufficient. Since
future benefits are discounted, benefits are greatly diminished beyond 5-10 years

and would have minimal impact on the decision.

5. For each SPI

a. Identify the cost-benefit effects
The framework provides significant assistance to the decision maker by identi-
fying the potential cost-benefit effects an organization may expect to receive
from an SPI. A decision analyst may choose to add or subtract from the pro-

vided list of potential effects.

A Framework for Evaluating Software Process Improvement Investments page 54

b. Estimate and quantify cash flows for each effect
The framework allows the decision maker to estimate cash flows by time peri-
ods in the future for each effect. Estimation models and default parameters
help facilitate the estimation process, but allow the estimator the flexibility to

override values as needed.

c. Calculate the NPV and ROI metrics for each effect and summarize for the SPI

These calculations follow from the effects and their cash flows.

6. Compare alternatives
The summarized cost-benefit information provides support to the decision maker.
The decision process of Section 2.4.2, “Structuring the Decision Problem,” can be

used to help determine the best solution.

3.2.1 Template Construction and Validation

The framework requires that a template be constructed for each SPI consisting of the cost-
benefit effects, evaluation functions, required parameters, model justification, prerequi-
sites, and success factors. Template construction and validation are described in general

here and illustrated in detail in chapters 5 and 6.

Template Construction

The following procedure was developed to guide the construction of an SPI template.

A Framework for Evaluating Software Process Improvement Investments page 55

1. Review effects currently in the framework for similar SPIs

Identify effects that may apply to the current SPI based on effects already in the

database for similar SPIs.

. Survey literature and experience for the SPI
Review correlational studies, case studies, current economic modéls, interviews
with practitioners, simulation models, claims of experts, and success factors

related to the SPI.

. Identify the reported cost-benefit effects and determine the most significant effects
Incorporate these effects into the SPI template and classify the effects by the tax-
onomy of Appendix A, by the Cost of Software Quality category, and by life-cycle

development phase.

. Analyze the dynamics and causes behind each significant effect.
Develop models to understand the dynamics that explain the effect (e.g., between

possible parameters and resulting cost-schedule impacts).

. Design and develop models or functions for the significant effects
The parémeters required for the models should be readily available or easy to esti-

mate for most practitioners.

. Document functions (or models) and assumptions used

A Framework for Evaluating Software Process Improveinent Investments page 56

7. Define dependencies between the new SPI and other pre-defined SPIs
When comparing two SPIs, the first SPI could be (a prerequisite of, a complement
of, independent of, a substitute for, mutually exclusive with) the second SPI. These

relationships Should be explicitly defined in the template.

Template Validation

Templéte validation is the process of building confidence in the soundness and useful-
ness of an SPI template. The soundness of a template should be judged on the basis of how
well it identifies, justifies, and quantifies the cost-benefit effects associated with a poten-
tial process improvement. However, the role of a template is not to produce a perfect pre-
dictive model of the process improvement. The accuracy of how well a template models
the SPI’s cost-benefits should be judged relative to the available empirical evidence for
the SPI. Note that when an analyst uses a template to construct a CBA, the CBA itself
must be validated to ensure the results are reasonable for the intended environment.

The usefulness of an SPI template should be measured by how well it facilitates the
process of constructing a business case for the process improvement within a particular
environment. The SPI template should reduce the effort required to construct a CBA and
result in better economic justification for the time spent.

The process>of building confidence in the template involves a combination of struc-
tural analysis, peer review, user testing, and comparing model results with available
empirical data and economic models. Structural analysis involves verifying that the set of

effects in the template include all significant effects known for the SPI, that all cost-bene-

https://should.be

A Framework for Evaluating Software Process Improvement Investments page 57

fit effects have reasonable justification, and that effects are not double counted. The
results should be self-consistent and reasonable. For example, an estimate of the SPI sav-
ings for a time period should not exceed the annual development budget.

Peer review of an SPI template with experts and practitioners of the SPI can provide
valuable feedback on how plausible and accurate the SPI template matches their experi-
ence and judgement. All aspects of the SPI template are subject to peer review including:
the identified cosi-beneﬁt effects, the justification for each effect, the estimation functions
and required parameters.

User testing involves having software practitioners or SPI experts use the framework
to construct a CBA for the SPI. The CBA could be for a hypothetical situation or, prefera-
bly, for a real software organization that could potentially benefit from the SPI. This form
of testing provides feedback on the ease of use; difficulty of obtaining parameters to drive
the models; and the reasonableness, credibility, and strength of the resulting business case.

The most effective form of validation compares the CBA results from the template
against known empirical data for the SPI. Empirical d;lta can include published case stud-

ies, economic models, or retrospective follow-up CBA studies from organizations that

have implemented the SPI.

The feedback from these various forms of validation offers opportunities to continu-
ously adapt, calibrate, and improve the accuracy and usability of the templates. Actual
cost-benefits can be compared to those predicted by the template. Differences can be ana-

lyzed to understand and document the reasons for the variations. Variations may be caused

A Framework for Evaluating Software Process Improvement Investments page 58

by unique conditions associated with the development environment or possibly indicate

the need to make modifications to the template.

page 59

Chapter 4

Architecture and Design of Prototype

CBA-SPI is a prototype tool to assist software managers in preparing cost-benefit analyses
for use in evaluating software process improvement initiatives. Such a cost-benefit analy-

sis can be used for any of the following purposes:

To determine the potential value of a proposed SPI to support the business case for

its implementation.
* To aid in planning allocation of resources for software process improvement.
¢ To audit the costs and benefits for a previously implemented SPI.

* To assist in pricing an SPI product by estimating the value to be received by poten-
tial customers.
CBA-SPI is based upon the framework described in the previous chapter and contains
a collection of software engineering data from the iiterature as well as information about
potential process improvements. Appendix B describes the ﬁnderlying database schema
for the tool, and Appendix C provides example user interface forms. This chapter

describes the high level functional design and architecture.

Architecture and Design of Prototype page 60

4.1 Functional Overview

The CBA-SPI tool set provides six main areas of functionality: 1) define SPI templates, 2)
define cost-benefit effects, 3) provide industry data and models, 4) run software process

simulations, 5) define baseline environments, and 6) calculate cost-benefit analyses.

4.1.1 Define SPI Templates

The Define SPI Template function is to collect and organize information for a software
process improvement. The information requested by this function includes identification
and description of the SPI, published ROI data, expected defect removal efficiency
impacts, cost-benefit effects, effect formulas, required parameters, success factors, and
relationships to other SPIs. A defect removal efficiency impact refers to a percentage
change in defect removal efficiency that the SPI is expected to have on a QA process. The
defect removal efficiency impacts are used by a general model built into the tool which

~ estimates defect removal efficiency and quality failure costs for an organization’s process.
A cost-benefit effect may have multiple formulas each assigned to different time periods.
The user may choose from a list of defined parameters to include in formulas.

A separate option is used to define pérameters. A parameter definition includes an

identifier, variable name, data type, lengﬂl, user prompt, explanation, default value, and a

, valid range. Parameters may also have their own formulas for computing their default val-
ues. The set of parameters for all effect functions of an Sf'I are explicitly linked to the tem-

plate.

Architecture and Design of Prototype : page 61

The SPI template may be printed in a report format.

4.1.2 Define Cost-Benefit Effects

The Cost-benefit Effects function allows navigation and modification of the cost-benefit
effects taxonomy. The definition of each cost-benefit effect includes the effect identifier,
effect name, cost/benefit indicator, effect explanation, tangibility code, effect categories,
SPI templates that assign the effect, and links to parent and child effects. Effects can be

assigned Balanced Scorecard and Cost of Quality categories.

4.1.3 Provide Industry Data and Models

Industry data and estimation models are provided by the CBA-SPI tool to assist in cali-
brating the baseline scenario and estimating parameters for the cost-benefit effect func-

tions. The sections below give examples of available data and how it is organized. -

Process Step Data

Process related industry information is organized by a process step taxonomy. A pro- -
cess step is a development activity classified as one of the following types: summary, pro-
duce, assess, repair, and manage.

Summary process steps are the standard life-cycle development phases (e.g., require-

ments, design, coding, testing, and maintenance phases). Industry data provided for these

Architecture and Design of Prototype page 62

phases includes average defects generated per function point, defect removal efficiency,
and defects delivered per function point.

A produce step is an activity that directly produces a work product such as source code
or documentation. Examples of produce steps include “Specify Requirements” and
“Develop Data Model.”

Manage acﬁvities plan, direct, control, or admihistratively support the software devel-
opment effort. An examﬁle manage activity is “Develop Release Plans.”

An assess activity is a QA step. Examplés of assess activities include design reviews,
functional verification, or system testing. Each QA step has an associated average defect
removal efficiency and is linked to an associated repair step.

A reéair step includes all effort to analyze, repair and retest defects found by the asso-
ciated QA activity. Three levels of repair effort hours per defect are provided for repair

activities as reported by Jones [37].

SEI CMM Level

The prototype provides data from Jones [37] for each SEI CMM level including the
average, minimum, and maximum delivered defects per function point, percentage o'f
organizations at the level, defect potential per function point, and the removal efficiency
percentage. Higher CMM levels result in higher quality. Descriptions of the Key Process
Areas for each CMM Level and the Key Practices of each Key Process Area are available

for organizations who wish to estimate their process maturity.

Architecture and Design of Prototype

Function Point and Subindustry Data

page 63

The prototype also contains a set of data from Jones [37] referenced by the size of the

software inventory (in units of function points), by subindustry classification, or both.

Jones derives national averages of software productivity and quality based on his analysis

of data from some 4,000 software projects. The subindustry categories are: systems, mili-

tary, MIS, outsource vendor, commercial, and end-user. The software inventory size cate-

gories are 0-1, 2-10, 11-100, 101-1,000, 1,001-10,000, and 10,001-100,000 function

points. Examples of the available data attributes are listed in Table 4.1.

COCOMO Estimations

CBA-SPI also provides a function for estimating cost, schedule, productivity, and

staffing sizes for software projects using the basic COCOMO equations [9]. The produc-

Table 4.1: Example industry data by function points or subindustry

Attribute Indexed by Description
Enhance% / yr Subindustry and FP The annual percentage of enhancements to the exist-
ing base each year.
FP / Staff month Subindustry and FP Average productivity for fully tested, documented
code.
Defect origin % Subindustry and pro- | For example, 40% of defects originate from the cod-
cess phase ' "ing phase for the systems subindustry.
Canceled percentage Subindustry Approximately 25% of MIS projects are canceled.
Subindustry-and FP Approximately 45% of MIS projects in the 1001-
10000 FP size range are canceled.
Schedule months FpP Projects in the 101-1000 FP range take 27 months to
complete.
Staff size Subindustry and FP Commercial projects in the 101-1000 FP range use

about 10 people on the project.

Architecture and Design of Prototype page 64

tivity rates, costs, and schedule are available for the project as a whole and by develop-
ment phase. The COCOMO estimator can accept project sizes in terms of function points
as well as in kilo-lines of source code. To assist in converting project sizes between func-
tion points and kilo-lines of source code, a list of development languages is provided with
conversion factors (in source lines of code per function point) for most commonly used

languages.

4.1.4 Run Software Process Model Simulations

A tool named SimRunner is provided to assist in running and calibrating a software pro-
cess simulation model. A function in CBA-SPI is used to define the name and location of
a system dynamics process model along with input parameters, default values, and result
variables. SimRunner calibrates the simulation model to a baseline, runs simulations

under various input configurations, and retrieves or graphs result variables of interest.

4.1.5 Define Baseline Environments

The Define Baseline Environment function is to identify and define the baseline (“as-is™)
scenario for a specific software development organization. A quantitative description of
the baseline environment is necéssary before we can begin to evaluate the impact of pro-
posed improvements.

The information requested by this option includes the organization’s CMM level, its

software subindustry classification, the size and growth of its code inventory, the number

Architecture and Design of Prototype page 65

of development personnel, budgetary information, and a description of the quality assur-
ance (QA) processes used by the organization. A CMM Evaluation function is available to
assist in reviewing CMM key process areas and practices for estimating the organization’s
CMM level if it is not known. QA processes include all veriﬁcgtion and testing steps used
to assess product quality and detect defects. Information about each QA step is captured to
identify quality costs incurred and defects detected during these stages. Also, annual inter-
nal and external failure costs are estimated for these stages. When users assign values to
these parameters, they can document the source of their data at the same time.

Many organizations lack historical data or metrics to determine productivity rates and
quality costs. An estimator dialog and a failure cost model assists the user in estimating
defect levels and quality costs based on industry data.

A Baseline Environment report can be produced for verification that lists the supplied
parameters and estimates annual costs for internal and external failures. The data collected
by the baseline environment provides a broad set of general parameters that are available

for evaluating SPI scenarios.

4.1.6 Create a Cost-Benefit Analyses

The Cost-Benefit Analysis function assists a user in conducting a cost-benefit analysis
from collecting and organizing the data through preparing appropriate reports. This func-
tion collects information about the cost-benefit analysis itself, such as, the time-line for
implementing improvements, the discount rate, and the goals and purpose of the CBA.

The CBA record is linked to a baseline scenario and to one or more SPIs being considered

Architecture and Design of Prototype page 66

for implementation. For each SPI under consideration, the user is provided a default set of
effects, estimation functions, and parameters based upon the SPI template. The user can
add or delete cost-benefit effects from the template as desired. The user can direct the pro-
gram to evaluate the functions. The user may override the values computed by the func-
tions.

The results are compiled into a convenient format that includes the following informa-

tion for each software process improvement:

Estimated discounted cash flows for each SPI efféct and for each time interval

under consideration
* The total NPV for the SPI
e Listing of intangible effects
* Parameters used in the calculations
* Success factors for the SPI

* Relationships to other SPIs

4.2 CBA-SPI Prototype Architecture

The CBA-SPI prototype was developed using a combination of Microsoft Access, Visual

Basic, Microsoft Excel, and Vensim. The architecture of the prototype implementation of

| |

Architecture and Design of Prototype page 67

the tool is shown in Figure 4.1. This selection of tools and architecture is suitable for a
stand-alone, single-user, prototype implementation. The development environment within
Access allows for rapid implementation of user interface forms and reports using wizards
and data bound controls.

Of course, the research prototype is not suitable for distribution and maintenance as a
product. Using the CBA-SPI prototype or an individually distributed product would
require each user to have licensed copies of all subsystems and proprietary data. Installa-
tion and updates to the program, estimation functions, industry data, etc. would require a
mechanism for each user. Also, it would be difficult to collect feedback or data from orga-
nizations using the tool. The costs and issues associated with product distribution would
make it difficult to reach many potential users. Widespread use and evolution of the

framework would best be done as a web application.

4.3 Internet Service Concept

Balanced Economic Analysis of Software Technology Investments is an internet service
concept to allow software managers to evaluate process improvement technologies. This
section describes the purpose and functionality of the service and a software architecture
for its implementation.

By making the functionality avaiiable on the web, the costs would be lower and the
logistics simpler. By reducing these barriers, it will be feasible to make the service avail-

able to a very large audience. Any user with access to a web browser would be able to use

Architecture and Design of Prototype page 68

User interface

Forms, Querys, Reports,

t At and Visual Basic
SimRunner CBA-SPI Application User Interface Code
VB Application | —=
CBASPI.mdb

CBA-SPI
Modules and

SimModel COCOMO

Spreadsheet
wrapper class

ActiveX DLL ActiveX DLL

Intermediaries

Microsoft Excel
Instance

Microsoft Jet

Vensim.DLL

Engine
Data storage
Database resuits
parameters, ° formulas
results ~commands . ’ parameters
" CBASPI_DATA.MDB
Vensim model - .
\ L2~ Baseline CBA and SPI
BB Environment Effects
: ; Temporary
Software Pracess ' CBA-SPI Templates
Simulation Model - - ‘ Spreadsheet
Industry Data Effect

taxonomy

Figure 4.1: CBA-SPI prototype architecture

Architecture and Design of Prototype page 69

the service and would not need to spend time installing or maintaining the application
software.

By reaching a wide audience at low cost, the service would facilitate transfer of the
SPI technologies as well as economic evaluation methods and models for improving soft-
ware management decision making. Another advantage of a web implementation is it
would be much easier to capture feedback on the use of the tool and to collect data from
each user’s organization. The data collected could be used for continuos improvement of
the tool, the SPI templates and models. It could also be used for other data analysis'and
research purposes. The service would implement data security and privacy policies to pro-

tect clients.

4.3.1 User Functionality

The service would provide services for two classes of users: software manager clients and
research personnel. The research personnel would be responsible for developing new SPI
templates, analyzing data to calibrate and improve existing SPI templates, and updating
industry data. The functionality used by research personnel would not be implemented
through a web browser and these users would be able to access the full rangé of function-
ality that is now in the CBA-SPI prototype.

The clients of the service would be software managers or software engineers who are
interested in evaluating SPI for their software development or acquisition. The service
would guide these users through the process of establishing a baseline, screening candi-

date SPIs, and performing full economic evaluation of each alternative. The reports pro-

Architecture and Design of Prototype page 70

duced by the service would provide a business case for implementing the SPIs that could
be presented to decision makers.

The clients could also use the service for conducting follow-up studies and reporting
actual results of previously implemented SPIs. This information would be particularly
valuable in improving and calibrating the SPI templates.

Clients would also be able to view industry data, run economic or simulation models,
or estimate their process‘maturity. ’fhey would also be able to make changes to their pri-
vate copy of SPI templates and could create new SPI templates for their own use. How-
ever, they would not be able to directly make changes to the base data that is shared by

other clients.

4.3.2 Additional Requirements for Web Implementation

Going from a stand-alone, single-user configuration to a multi-user web implementation
introduces additional requirements for usability, performance, and security. In the CBA-
SPI prototype, the user interface corresponds to the logical organization of the underlying
data model. Users must execute several different functions in the process of creating a
cost-benefit analysis. The prototype interface has worked well but experimental users
have required some training or consultation in order to understand how to use the tool
properly. The web implementation must provide a task-oriented interface to walk users
through the process step-by-step. In the web environment, clients could be anywhere in
the world and will not necessarily have training on how to use the tool or convenient

access to the author for consultation.

Architecture and Design of Prototype page 71

~ Because the web implementation would have a shared database with potentially many
concurrent users, a database server would be needed to meet higher performance, reliabil-
ity, and transaction control requirements.

Because multiple users would be interacting with the service and providing sensitive
data, the system must provide authentication and data security. A registration service ;nust
be provided to allow users access to the system. Users must be able to save their work for
retrieval on future sessions. No end-user should be able to view the data of another end-
user. Because the data provided by users may be business sensitive, a secure web server
protocol would be required between the user and server. Policies and procedures for pro-
tecting or using client data must be developed, implemented, and published on the web

site.

433 Architecture

The proposed architecture for the internet service is shown in Figure 4.2.

Architecture and Design of Prototype

page 72

-Web Intefface for Clients.. ..’

ENTvE
— - - K :
A‘CBA'-S‘EIV‘ICli;ep ;ts::for Res‘gafprllefS'« - C e . End-User Functions
DA L - =) -| - user registration / logon
‘ -] - establish baseline
e - evaluate SPls
. R . - view industry data
CBA-SPI User Interface ¢ use estimation models
- | - build SPI templates
- maintain industry data

- monitor end-user activity
- current tool functions

CBA-SPI Web Server-
.| - manage user sessions
~ - receive and validate data
- format web pages
- interface with application server

(CBA-SP! Application Server

- validate new user sessions)
o - data validation functions ..7" -Application Sérver-
S - receive and store user data ; Lo
. SimModel - compute estimation functions COCOMO
i K - - |ActiveX DLL ‘ i j RN ActiveX DLL| .-
AWK, " . "
Intermediaries - °
Simulation
Engine
resuits %%ﬁrrnntzt:z,. ‘ formulas, .- . o0 A p31351°@9e
T ., .parametersi “results - -y’ :
CBASPI
Data
Software Process T J
' e - . .3 Temporary .-
I Is'|m‘ul':aLt'|on ModeJ’ ..., Spreadsheet’ .~ -

Figure 4.2: Proposed architecture for internet service

page 73

Chapter 5

Cost-Benefit Templates for Emerald

Emerald is a software risk assessment product that can analyze the source code of a large
software system and pfedict the high risk areas of the code. This product was developed in
1992 by Nortel Networks as an internal project to improve the reliability of its telephone
switch products [35]. Emerald successfully demonstrated its value within Nortel Networks
and now is being marketed externally.

Emerald obtains code metrics, process metrics, and use metrics and applies statistical
risk models to predict the highest risk areas of the code. These are areas of the code most
likely to contain latent defects that escape detection during testing and lead to field fail-
ures. Also, these high risk areas are difficult to modify or repair and susceptible to the
introduction of new defects.

The information provided by Emerald can be used to improve the software process in
a number of ways. In the following three sections, we develop cost-benefit models for
three uses of Emerald: targeted defect reduction (Section 5.1), support of reengineering
decisions (Section 5.2), and support of the software acquisition process (Section 5.3). For
each of these uses of Emerald, we describe how it is used, identify and justify the resulting

benefits, and develop models for quantifying those benefits. Section 5.4 defines a cost

Cost-Benefit Templates for Emerald page 74

mode] that generally applies to all three of these uses. Section 5.6 summarizes the cost-

benefit templates for Emerald.

5.1 Using Emerald for Targeted Defect Reduction

This section examines the use of Emerald for targeted defect reduction. Defect reduction
includes activities to prevent defects ffom oclcurring as well as activities to find and
remove defects. Using Emerald for targeted defect reduction results in a number of bene-
fits. This section identifies these beneﬁts, provides justifications, and develops models for

quantifying these benefits for a software development organization.

5.1.1 Overview and Rationale of Benefits

The primary benefits are more efficient resource allocation and a gain from earlier defect
removal. Also, secondary benefits of reduced cycle time and improved customer satisfac-
tion can be realized. The diagram in Figure 5.1 illustrates the cause-effect relationships

between using Emerald and the potential financial effects.

More Efficient Resource Allocation
Emerald risk metrics can be used to identify the fault prone areas of the code and to

predict the number of defects that will occur in the field [35]. By identifying the high risk

Cost-Benefit Templates for Emerald page 75

Targeted Defect
Reduction

/\

Earlier detection and repair More efficient resource
of defects allocation

™,

More inspection
defects

/

Higher prevention
costs

Code Inspection
Time Savings

Fewer testing
defects

/

Less interal
rework

Fewer field defects

y
Reduced cycle Lower development Lower support Customer
time costs costs satisfaction

Figure 5.1: Cause-effect diagram for targeted defect reduction use of Emerald

areas in the code, Emerald helps management focus and allocate development, testing and
inspection resources where they can most efficiently prevent or remove defects.

Defects in code are not evenly distributed. The 80/20 rule (based on the Pareto Princi-
ple) generally applies to changes made to software [3]. That is, 20% of software modules
contain 80% of the defects. Stevenson cites several studies to support the contention that
most errors and subsequent code changes are concentrated in a small percentage of the
modules [73]. |

Given that the defects are not evehly distribhted, it is inefficient to evenly distribute
development, testing and inspection resources over all parts of the code. The information

from Emerald can help management plan and allocate development, inspection and testing

Cost-Benefit Templates for Emerald page 76

resources to the appropriate areas of the code. Organizational policies can be established
to require special authorization for high risk modules. Management can assign the most
qualified developers to modification tasks of high risk code. Inspection and testing

resources can be prioritized.

Gain from Early Defect Removal

Defects are less expensive to correct near their point of insertion [41]. The cost of cor-
recting a defect can be 10-150 times more expensive to fix at final testing, delivery and
operation stages than during the earlier design and coding stages [68]. Emerald metrics
increase the effectiveness of early defect detection efforts. Significant savings are realized
from reducing defects that occur in the field and in the final stages of testing. Several
Emerald customers report fewer field defects after using Emerald to improve their early

defect detection efforts [35].

Secondary Benefits
Important secondary benefits of using Emerald for targeted defect detection include

reduced cycle time and improved customer satisfaction.

Reduced Cycle Time. Using Emerald for targeted defect reduction results in higher
efficiency of early defect removal efforts and reduces late, pre-release defects. A reduction

in rework helps to improve schedule predictability and improve cycle time.

Cost-Benefit Templates for Emerald page 77

The benefits of reducing cycle time can include: avoiding financial penalties for over-
run, receiving financial incentives for meeting targets, greater market share, longer prod-

uct life, higher profit margins, and freeing resources for other projects.

Improved Customer Satisfaction. Using Emerald for targeted defect reduction reduces
errors in the field and promotes on-time product delivery. Reduced field errors and more
reliable schedules result in improved customer satisfaction. Customer satisfaction is the

vital factor in retaining existing customers and attracting new ones.

5.1.2 Quantifying the Benefits

This section develops models to quantify the cost-benefits from using Emerald.

Quantifying the Benefits from Efficient Resource Allocation

By using Emerald to improve resource allocation an organization can reduce the over-
all effort required for inspection, testing and development activities. We will illustrate how
this effect can be modeled for inspection activities. Similar models can be used for other
testing and development activities where Emerald can improve resource allocation. The
inspection cost savings model uses the parameters as shown in Table 5.1.

This model assumes that with Emerald the effort will be more concentrated on the high
risk (“red”) portion of the code with less attention given to the remaining low risk
(“green”) code. The formula for computing the annual baseline cost for inspecting the

code is:

Cost-Benefit Templates for Emerald page 78

Table 5.1: Baseline parameters for inspection cost savings

Parameter Description Example value

reviewed_loc Reviewed lines of code. Number of new or 150,000/ Year
changed lines of code reviewed each year by
the organization.

red_ratio Red ratio. Portion of the reviewed code esti- | 0.2
mated to be of high risk. '
avg_effort_insp | Average effort per inspection. 3.5 hours/inspection
avg_loc_insp Average lines of code pef baseline inspec- 250 loc/inspection
tion.

cost_staff hr Cost per staff hour. (fully burdened cost) $80

grn_effort | Green effort. Average effort hours to inspect | 2 hours/inspection
a low risk (“green”) module.

gm_loc_insp Green lines of code per inspection. Average | 400 loc/inspection
lines of code covered per inspection of a low
risk (“green”) module.

red_effort Red effort. Average effort hours to inspect a | 4 hours/inspection
high risk (“red”) module.

red_loc_insp Red lines of code per inspection. Average 150 loc/inspection
lines of code covered per inspection of a high
risk (“red””) module. -

avg_effort_insp
avg_loc_insp

baseline_cost = reviewed_loc X X cost_staff_hr EQ9

The cost for inspecting with Emerald is the expected cost of inspecting both high risk

code and low risk code at different levels of effort and concentration:

SPI_insp_cost = reviewed_loc X cost_staff_hr (EQ 10)

X (red_ratio X M + (1 —red_ratio) X L_m_effgrt
red_loc_insp grn_loc_ins

Cost-Benefit Templates for Emerald

Thus the annual cost savings is

cost_savings = baseline_cost — SPI_insp_cost

ple calculation.

Baseline parameters can be derived or estimated from previous organizational experi-
ence. Parameters for estimating the “with Emerald” case should be estimated based on the

planned or targeted usage of Emerald within the organization. Table 5.2 provides an exam-

Table 5.2: Example of resource allocation cost savings for inspections

Cost per staff hour $80

Reviewed LOC per year 120,000

Baseline

[Avg. effort hours per inspection 35

[Avg. LOC per inspection 250

Effort hours to inspect all code 1680

Baseline annual cost to inspect code $134,400
With Emerald Red Green

Ratio 0.2 0.8

Lines of code 24,000 96,000

Effort per inspection 4 2

LOC per inspection 150 400

Effort hours per KLOC 27 5

Effort to inspect 640 480

Cost to inspect $51,200 $38,400

Reliametrics annual cost to inspect code $89,600
Cost savings $44,800
Percent savings 33.33%

Cost-Benefit Templates for Emerald page 80

Quantifying Improved Defect Removal Efficiency

This section develops a model for estimating the cost-benefits of using Emerald to
improve the efficiency of defect detection efforts. This model assumes that a certain num-
ber of latent defects exist in the code initially. These defects are detected and removed
through a series of quality appraisal and repair steps. Late pre-release defects are costly
and post-release field defects are particularly expensive.

A series of quality appraisal steps is applied to identify and remove defects. A quality
appraisal step is an activity to identify potential defects with the code. Examples of qual-
ity appraisal activities include: unit testing, inspections, functional verifications, indepen-
dent testing, beta testing, acceptance testing, and system testing. Jones has published
defect removal efficiencies for most common quality appraisal activities [37]. A defect
removal efficiency is the number of defects identified by the activity as a percentage of all
defects found in the software through the first year of field use.

Each quality appraisal activity has an associated defect repair unit cost to estimate the
average cost of correcting a defect found by that activity. Ideally, defect repair costs
should be based on an organization’s specific experience. However, if this information
isn’t available default values based on specific sub-industry cla;ssifications are available to
help development organizations estimate these parameters.

The parameters for this model are described in Table 5.3.

The baseline cost to remove defects at QA step i is:

BCost; = cdi X bre; X bdefi

Cost-Benefit Templates for Emerald

page 81

Table 5.3: Parameters to estimate benefit from improved defect removal efficiency

Parameter

Description

Example value

defects_yr

Defects per year. The number code defects cre-
ated in new or modified code each year. A sepa-
rate model is described below to help estimate
this parameter.

10,000 defects/yr

The following parameters are associated with the sequence of Quality Appraisal (QA)
Steps used by the organization to identify faults (e.g., Informal code inspection, New
function testing, Regression testing, System testing, Beta testing).

Let n be the number of QA steps, let QA(7) represent the i QA step and QA(i).<param>

be the value of a parameter associated with the M QA step.
The following parameters are required for each QA step.

cd; Cost per defect. The average variable repair and | $100 for a defect found
failure cost for a defect when it is detected by during inspection.
this QA step. It includes the cost for repairing | $1,000 for a defect
the defect as well as for other costs resulting found during customer
from failures generated by the defect. It should | acceptance. $10,000
not include fixed costs related to defect preven- | for a field defect.
tion or testing.

bre; Baseline removal efficiency. The baseline 0.5 for code inspection.
removal efficiency of the QA step without mak-
ing changes to the process. Removal efficiency
is defined by the formula

defects found by QA step

defects present at start of QA step

ere; SPI removal efficiency. The removal efficiency | 0.575 for code inspec-
you expect to achieve using Emerald. These tion with Emerald.
amounts can be estimated by a percentage Suggested values are 5-

improvement over the baseline removal effi-
ciency.

15% over baseline
removal efficiencies.

Cost-Benefit Templates for Emerald page 82

where bdef; is the estimated number of defects remaining in the product before QA step i

is performed using the baseline scenario. We define bdef; recursively as follows:

bdef; = defects_yr

EQ12)
bdef, = bdef,_;x (1 -bre;_,),i>1

Similarly the annual cost for defects under the Emerald scenario is calculated as

ECost; = cd;X ere; X edef; EQ13)

where edef; is the number of defects remaining in the process prior to performing QA

step i and is defined as follows:

(EQ14)

edef,
edef;

defects_yr

edef,_X(1-ere;_;),i>1

The annual savings that can be achieved from this benefit are calculated as the differ-
ences of the defect costs under each scenario summed over all QA process steps.
n

Savings = Z (BCost;— ECost;) (EQ 15)

i=1
Estimating defects inserted per year. A key parameter of the above model is

defects_yr, the number of defects inserted into new or modified code by the organization
over a year. Internal defects from all quality assessment activities as well as field defects
|

Cost-Benefit Templates for Emerald page 83

must be included in the count. For organizations who lack this data, this section describes
an approach for estimating defects_yr.

Jones has published average defect potentials per function point based upon industrial
data for a large number of software projects covering a range of industries [37]. A function
point is a metric for estimating the size of an application in terms of its observable func-
tionality. He defines defect potential as the “total universe of errors or bugs that might be
expected in a software project.” He gives defect potential per function point values in a
table indexed by system size (in terms of function points) and by a subindustry classifica-
tion as shown in Table 5.4. His data generally indicates fhat the density of defects
increases as the size of the system increases.

Jones has also suggested that the process maturity of an organization can affect its
defect potential. He suggests achievable defect potential targets for the five levels of the

SEI CMM maturity model as shown in Table 5.5.

Table 5.4: U.S. average defect potentials?

sflznsc;lzlzu\'y Systems | Military | MIS O:;%‘g:e Commercial | End-user
<=1 1.00 1.00{ 1.00 1.00 1.00 1.00
2-10 3.00 3.25 2.00 2.00 2.50 2.50
11-100 5.00 550 | 4.00 3.50 4.00 3.50
101-1000 6.00 6.75| 5.00 450 5.00 na
1001-10000 7.00 7.50 6.00 5.50 6.00 na
> 10000 8.00 8.50 7.25 6.50 7.50 na

a. Source: [37] Table 3.44, p. 231.

Cost-Benefit Templates for Emerald

page 84

Table 5.5: Defect potentials / defect removal efficiency targets by SEI CMM?

SELCMMLevel | SO0 | tcency | defees.
CMM 1 Initial 5.00 85% 0.75
CMM 2 Repeatable 4.00 90% 0.40
CMM 3 Defined 3.00 95% 0.15
CMM 4 Managed 2.00 97% 0.06
CMM 5 Optimizing 1.00 99% 0.01

a. Source: [39], Table 4, p. 393.

A case study at Motorola found that the defect injection rate decreased by roughly half

each time a project advanced a CMM level [22]. The data in Table 5.5 represents expert

opinion and is not directly based on empirical data. However, it provides a general direc-

tion and magnitude of the effect that process maturity is expected to have on defect poten-

tial and is supported by industrial case studies.

To estimate defects_yr using data from Table 5.4 or Table 5.5, we need the parameters

listed in Table 5.6. Our approach for estimating defects per year is to allow a manager to

provide the value based on historical organizational data, or to first estimate defects per

function point and function points per year and then calculate defects per year as follows:

defects_yr = defects_fp X fp_yr

(EQ 16)

Cost-Benefit Templates for Emerald

page 85

Table 5.6: Parameters for estimating defects per year

new or changed function points-
per year.

Parameter Definition Suggested data source
defects_fp Defect potential per function Use historical organiza-
Point. The total number of defects | tional data if available.
that are injected into the code per | Otherwise, estimate using
function point. tables of defect potential
per function point.
fp_yr Function points per year. Total Source code library. Two

-| approaches for estimating

this parameter are
described in the next sec-
tion.

avg_proj_size

Average project size. Average
project size in function points.

Total inventory in lines of
code divided by number of
active projects. Convert
results to function points.

level of the organization.

subindustry Subindustry category. Select the Select one of six subindus-
industry category which best tries based upon definitions
describes the software being pro- | of C. Jones (systems, mili-
duced. tary, information systems,
outsource vendor, commer-
cial, end-user).
SEI_CMM_Lvl | CMM Level. Estimated CMM Formal SEI audit, or self

assessment estimate.

Estimating defect potential. Four options are available for estimating defects_fp. The

next section provides guidance for estimating fp_yr.

1. Use historical data from the organization to directly estimate defects_fp

2. Estimate defects_fp by referencing Table 5.4.

3. Estimate defects_fp by referencing Table 5.5.

4. Estimate defects_fp by averaging values from Table 5.4 and Table 5.5.

Cost-Benefit Templates for Emerald

page 86

Organization

(o
and CMM Ivi he

num_projects Equation

" Est. foreach P

m Source lib. data

2.Sub. Ind.
lookup
H detocts_t
CMM Lv! 3.CMM lovel

Figure 5.2: Parameter dependency graph to estimate defects per year

5. The potential parameters for estimating defects_yr, defects_fp, fp_yr and their

dependencies are shown in the graph of Figure 5.2. The rounded boxes represent

estimation functions and the square boxes represent parameters. For some parame-

ters, the user has a choice of several approaches for estimating the function,

including an override based on organizational data or a manager’s experience.

Note that defects_yr is itself a parameter for estimating the savings from using

Emerald for targeted defect reduction (EQ 15).

Estimating new or changed function points per year. A key variable in determining

defects_yr is fp_yr, a measure in function points of the new or changed software the orga-

nization generates in a year. Two approaches for estimating this parameter are:

1. Determine size of current inventory in lines of source code or by function points.

Estimate what fraction of the current inventory gets modified each year and esti-

Cost-Benefit Templates for Emerald page 87

mate new code to be written during the year. Convert these values to function
points using the conversion factor for the language. For example, it takes about
128 lines of software written in C to equal one function point. Let Ing represent a
language used by an organization, and /¢of{loc,Ing) be a function that converts lines
of code (loc) to function points for a given language. Then fp_yr is calculated as

follows:

fp_yr= thof(cur_size_loc X churn + new_loc, Ing) (EQ17)
Ing
2. Use tools with the source code library to compare beginning and ending software
inventories for the year. Determine the actual new or changed lines of code over a
one year period for each language. Convert the total for each language to function

points. Sum over all languages used by the organization.

Example. This section provides an example of how to estimate the savings for improv-
ing defect removal efficiency as given in (EQ 15). Let us consider a hypothetical XYZ
organization that has two major projects with a total inventory of 1,000,000 lines of code
written in the C programming language. For the foreseeable future they expect about 10%
of this code base to be modified each year. In addition, they expect to develop about
100,000 lines of new C code each year.

By (EQ 17) the new or changed function points per year are estimated as follows:

Cost-Benefit Templates for Emerald page 88

1t0f (1,000,000 x 0.1 + 100,000, C)

fp_yr =
= 200,000 + 128
= 1,562.5

The software XYZ produces falls under the “Systems” subindustry category and the

organization has been certified at CMM Level 2. The average project size is

cur_size_loc + new_loc
, Ing

avg_proj_size = ltof (num. projects

= Ito f(1,000,0002+ 100,000, C)

= 550,000/128
= 4,297

By Table 5.4, the defect potential for the subindustry is 7 defects per function point but
by Table 5.5 the defect potential for organizations of their maturity level is 4 defects per
function point. For our example, we choose to use Table 5.5 and estimate 4 defects per
function point. Hence, by (EQ 16), the total defects injected .each year by the baseline

XYZ organization is

1,562.5x5.5
8,594

defects_yr

Table 5.7 lists the quality appraisal steps used by the XYZ organization. For each qual-
ity appraisal step a default baseline defect removal efficiency is estimated based on indus-
try data published by Jones [37]. The XYZ software manager estimates that by using

Emerald he will be able to improve the efficiency of code inspections and system testing

Cost-Benefit Templates for Emérald page 89

Table 5.7: Example parameters for estimating savings from improved efficiency

Baseline SPl| Variable
removal SPI| removal| costper
efficiency| Improvement| efficiency defect
Informal design inspections 0.35 5% 0.37 $25
Formal code inspections 0.65 10% 0.72 $50
[Regression testing 0.23 5% 0.24 $300
New function testing 0.30 5% 0.32 $300
System testing 0.36 10% 0.40 $800
Customer acceptance testing 0.15 0% 0.15] $1,000
Field Use 1.00 0% 1.00] $5,000

by 10% and improve design inspections, regression testing, and new function testing by
5%.

The software manager derives the variable cost per defect based on historical failure
cost data and defect counts for the XYZ organization. We now have all the needed param-

eters for the model. The result of applying (EQ 15) for the XYZ organization is shown in

Table 5.8.
Table 5.8: Example application of equation 15
Baseline
defects |SPI defects
detected| detected Cummulative
(bdef*bre) | (edef*ere) | Difference Savings savings
Informal design inspections 3008 3158 -150 ($3.760) ($3.760)
Formal code inspections 3631 3886 -256 ($12,778) (516,538)
[Regression testing 450 374 76 $22,666 $6,128
New function testing 452 370 81 $24.448 $30,576
System testing 379 319 61 $48,503 $79,079
Customer acceptance testing 101 73 28 $28,241 $107,320
Field Use 573 413 160 $800,159 $907.479
Total 8594 8594 $907479

Cost-Benefit Templates for Emerald page 90

Secondary Benefits

This section develops models for quantifying secondary benefits of using Emerald for
targeted defect reduction. Secondary benefits tend to be less tangible and more difficult to
quantify than the more direct benefits. However, secondary benefits such as reciuced cycle
time and increased customer satisfaction can be critical factors for the long run success of

an organization.

Reduced cycle time. Emerald reduces schedule because of better utilization of develop-
ment, inspection and testing resources and by reduciﬁg defects and rework from formal
testing. For a government contractor, schedule reduction may translate into receiving
financial award fees for meéting milestone target dates and avoiding financial penalties. In
the business world, reducing time to market can result in increased sales, bigger profit
margins, and allowing resources to be applied toward new products to drive future profits.

The parameters for our model of cycle time reduction benefits are given in Table 5.9.
The strategy is to estimate the number of project days saved each year
(proj_days_saved_yr) and the value of each day of cycle time saved each year
(cycle_day_value). Those value are multiplied to yield the annual value of cycle reduction
(cycle_reduct_value).

Figure 5.3 illustrates the chain of parameter dependencies. An example calculation is
shown in Table 5.10.

The pre-release labor cost savings is the sum of the inspection cost savings from Table

5.2 and the cumulative savings through ‘Customer acceptance testing’ as shown in Table

Cost-Benefit Templates for Emerald

page 91

Table 5.9: Parameters for estimating the value of cycle reduction

Parameter

Definition

Suggested data source

pre-release_savings

Pre-release labor cost savings. The total
annual labor cost savings (prior to
release) from more efficient allocation
of resources and from early defect
detection.

Sum the cost savings from more
efficient development, inspection
and testing resource allocation. Add
in the cumulative savings prior to
field use from early defect detec-
tion.

cost_staff_hr

Cost per staff hour. Average cost of one
developer hour.

Company data or industry salary
surveys for similar organizations.

staff_hrs_saved_yr

Staff hours saved per year. Annual staff
hour savings from targeted defect
reduction.

pre-release_savings
cost_staff_hr

staff_proj_hrs_day

Staff hours per day on project. The aver-
age amount of time a staff person
spends on project activities.

6 hours/day. Adjust depending on
the amount of schedule pressure that
exists.

staff_days_saved_yr

Staff days saved per year. The average
number of staff days saved per year
from targeted defect reduction.

staff_hrs_saved_yr
staff_proj_hrs_day

staff_day_to_proj_day

Staff day to project day. The number of
staff days required to reduce the cycle
time of the project by one day.

Average number of developers per
project (e.g., 5 developers per
project).

proj_days_saved_yr

Project days saved per year. The num-
ber of project days saved each year.

staff_days_saved_yr
staff_day_to_proj_day

work_days_yr

Work days per year. The number of days
an employee works each year.

52 weeks times 5 days per week

minus holidays and vacation. E.g.,
work_days_yr = 234 allows for 11
holidays and 3 weeks of vacation.

cycle_reduct_yr

Cycle time reduction per year. The ratio
of project days saved each year.

proj_days_saved_yr
work_days_yr

cycle_day_value

Value for each cycle day reduced. The
present value of saving a cycle day in
terms of increased sales, awards
attained, penalties avoided.

Value depends on the software prod-
uct and its marketplace.

cycle_reduct_value

Annual value of cycle reduction. The
present value of cycle reduction accrued
for the current year.

proj_days_saved_yr X
cycle_day_value

Cost-Benefit Templates for Emerald page 92

Pre-release cost per
labor cost staff hour
savings
staff hour :t;ﬁdl;su;
savings project

projec project
staff qay staff day
to project savings
day factor

Value of project
cycle day days wc{er:< i?;s
reduction reduced pery
Annual
value of Cyclg
cycle : reduction
reduction per year

Figure 5.3: i"arameter dependency chain for cycle reduction

Cost-Benefit Templates for Emerald) page 93

Table 5.10: Example calculation of cycle reduction value?

Inspection cost savings $44,800
Pre-release labor cost savings $152,120
Cost per staff hour $80
Staff hours saved per year 1901
Staff hours per day on project 4.8
Staff days saved per year 396
Staff day to project day .5
Project days saved per year 79
Work days per year 234
Cycle time reduction per year % 34%
Value for each cycle day reduced 35,000
Annual value of cycle reduction $396,146

a. Default value for Staff hours per day from [1]

5.8. Note that we could have included savings from improved allocation of testing and

development resources had we elaborated those models.

Improved customer satisfaction. Customer satisfaction is frequently mentioned as a
benefit of process improvement. For example, Diaz and Sligo stated that Motorola cus-
tomers value improvements in quality, cycle tilﬁe_: and productivity [22]. Many organiza-
tions fail to quantify such intangible benefits as customer satisfaction or employee
satisfaction. A common practice is to acknowledge that they exist and then ignore them in
the calculations. Oxenfeldt recommends that intangibles “must be valued at some specific
monetary figure, even while recognizing that such a figure is liicely to be incorrect” [59].
McGibbon addresses this issue by providing models for estimating the value of customer
satisfaction from process improvement in terms of customer retention and the value of

employee satisfaction by reduced employee turnover costs [56].

Cost-Benefit Templates for Emerald page 94

Table 5.11: Example for estimating an increase in business

Baseline w/Emerald
Repeat business $1,000,000 | $5,000,000
Additional business $4,000,000
Annual net value $8,000,000

As we have shown earlier, the use of Emerald improves the productivity, cycle time,
and quality of the software product. These are characteristics that customers value and that
helps to earn their repeat business and attract new qustomers. McGibbon suggests a
straight forward approach as shown in Table 5 ..11.

To determine the value of repeat business a software manger should

1. consider the projected improvements to cycle time, quality and productivity from

using Emerald, and

2. estimate how much repeat or additional business can be achieved from these
improvements.
A second approach that we suggest is to relate the quality, productivity, and cycle time
improvements to a percentage increase in annual net sales (attributed to repeat business

and additional business). |

5.2 Emerald’s Support of Reengineering Decisions

This section examines the economic value using Emerald to support decisions to reengi-

neer existing code modules. We develop an economic model and provide examples to

Cost-Benefit Templates for Emerald page 95

show how these benefits can be estimated. A typical scenario for this decision is as fol-
lows:

For a new system to be developed, assume that the functional requirements have been
specified, the preliminary high level design has been developed, and the system will be
composed df a number of components to be developed. Furthermore, for some subset of
these components, similar components from a previous development effort have been
identified on which to base the new code in the current effort. These existing code units
have uncertain quality, maintainability, adaptability and conformance to the current
requirements. Most of the existing code components will require at least some adaptations
to meet the functional requirements of the new system.

For each component in this subset, the developers are faced with the decision of adap-
tive reuse versus reengineering. We define adaptive reuse as adapting an existing software
unit for use in a new application such that needed functional modifications are inserted
with the least perceived s\hort-term effort. We use the term reengineering to mean the sys-
tematic restructuring of an existing software unit in order to improve the software in terms
of functionality, performance, reliability, maintainability, reusability and adaptability.
Thus, the reengineering choice implies going beyond the functional requirements and
improving the quality and long-term costs and schedules associated with maintaining the
resulting code. Adaptive reuse on the other hand implies the least effort to get the function
to work in the new systém, ;cmd not addressiﬁg any other quality issues that may exist with

the code.

Cost-Benefit Templates for Emerald page 96

Without a tool such as Emerald to assess thé risk of the existing modules, we believe

that developers would always select the adapt.ive reuse option.! When long-term benefits
are omitted from consideration, the decision typically is made for the choice with the low-
est perceived short-term costs. Since adaptive reuse is perceived to require less up-front
effort than reengineering, adaptive reuse would win usually if considering only short-term
costs and benefits.

With Emerald, the developer has a better understanding of the risks involved in reus-
ing the existing modules. Long-term benefits are factored into each decision leading more
often to correct decisions. For example, if Emerald reveals that a code unit has a history of
frequent use, extensive modifications, and high risk of field failures then the choice for
reengineering is indicated. Reengineering by definition would improve the quality and
cost of future maintenance and enhancements while reducing the risk of field failures and

schedule overruns.

5.2.1 Modeling the Benefits of the Improved Decision

Our goal is to develoi) a model to quantify the value Emerald adds to the decision to
reengineer or reuse software modules. For inputs to this model, we need to estimate the
average costs to adapt a module and to reengineering a module. We will also need to esti-
mate long-term costs for maintenance of high quality and low quality modules. In addi-

tion, we need to estimate what percentage of the time the most economical decision would

1. This assumption is not critical to our model and, in fact, we also model the case that even with-
out Emerald the developer could decide to reengineer.

Cost-Benefit Templates for Emerald page 97

be made both with and without Emerald. Once we have these inputs we can construct a
Bayesian decision model to estimate the benefits. Section 5.2.2 develops an approach to
estimating adaptation and reengineering costs. Section 5.2.3 shows how to estimate for
long-term maintenance costs for high quality versus low quality. code. Section 5.2.4 con-

structs the decision matrices and provides example calculations. .

5.2.2 Estimating Development, Adaptation and Reengineering Costs

Ideally, a company could use financial data from previous projects to estimate its cost of
developing new code. Othelzwise, industry cost estimates could be used. Jones provides
average costs per function point to develop new code for a given subindustry and system
size [37]. For example, for a medium sized project (say around 500 function points or 64
KLOC:s of C code) in the ‘systems’ software subindustry we might derive an estimated
unit cost of $2,500 per function point. To calculate the average cost of developing a new
module, the organization would need to estimate the average size of each module. For
example, suppose the average size of a component is 2,048 lines of C code or 16 function
points. Then the average cost of a module is 16 times $2,500 or $40,000. This approach
will provide us with an estimate of developing new code but what we really need is the
cost of adaptive reuse and the cost of reengineering existing code.

We believe reengineering requires more effort than standard new development
because: 1) the need to understand what the current module is doing requires detailed
analysis and reverse engineering to extract precise specifications, and 2) the ;1eed for more

careful analysis, design, documentation and peer review to ensure the new module does in

Cost-Benefit Templates for Emerald page 98

fact achieve intended quality, performance and adaptability improvements over its prede-
cessor. In the absence of company data to estimate reengineering costs, we can utilize
industry data on software reuse to derive an estimate of reengineering.

Poulin examines a number of studies of the relative cost of writing software to be later
reused by others [63]. Writing software to be reused by others requires more effort for
additional generalization, documentation, testing and for needed library support and main-
tenance. He found that Fhe median cost of writing software for subsequent reuse requires
about 50% additional effort over new development. The extra effort required to write soft-
ware for reuse is similar to the extra effort required to reengineer existing code to meet
higher standards. So in the absence of empirical evidence to the contrary, we can estimate
that the relative cost of reengineering existing software is 1.5, the same as Poulin’s esti-
mate for the relative cost of writing for reuse.

Adaptive reuse can be considered a combination of white box reuse and black box
reuse. Black box reuse means that no modification is required of the component whereas
white box reuse implies that modification will be required. Poulin reviewed the literature
for the cost of reusing code and found that the relative cost of black box reuse (compared
to new development) ranged from 0.03 to 0.4 with a median of about 0.2 [63].

Poulin does not explicitly calculate a relative cost of white box reuse which requires
code modifications to meet functional requirements. However, he cites a study by Selby
who reported that reuse with only slight modifications (less than 25% of the code
changed) required about 40% the cost of new development. If more than 25% of the code

required modifications then the amount of effort increased to 90% of the cost of new

Cost-Benefit Templates for Emerald page 99

development. Using these default values for relative cost, we can estimate the relative cost
of white box reuse as an average that would range between 0.4 and 0.9 depending on the
organization. We estimate a default industry value for the relative cost of reuse by assum-
ing that of the reused components that require modification, half require only slight modi-
fications and the other half require more extensive changes. Thus the default value for the
relative cost for white box modifications is 0.4 X 0.5 + 0.9 x 0.5 = 0.65.

The relative cost of adaptive reuse for an organization can be estimated as the expected
value of the cost of black box and white box reuse. The following is an example calcula-
tion for an organization that estimates that 75% of the modules to be reused require some

functional adaptations in order to work with the new system.

Relative cost of adaptive reuse = 0.2 X 0.25 + 0.65 X 0.75 = 0.5375

We can now calculate the estimated cost of reengineering and reuse based on these rel-
ative cost estimates and the average size of a code unit considered for reuse. Table 5.12

shows an example calculation of the cost of adaptation and the cost of reuse.

Table 5.12: Example estimation of cost to reengineer and cost of reuse

Langunage - SLOC/FP C 128
|Avg. SLOC per Code Unit in C 2048
Avg. Size of Code Unit in FPs 16
Avg.Cost per FP $2,500
[Avg. Costto dev. New Code unit $40,000

: . . . relative cost cost
Cost to reengineer 1.5 $60,000
Cost for black boxreuse 0.2 $8,000
Cost for white boxreuse , 0.65 $26,000
Percent of units needing adaptations ' 0.75
Cost for reuse 0.5375 $21,500

Cost-Benefit Templates for Emerald page 100

The main results we need for subsequent calculations are the cost of reengineering a
module and the cost for adaptive reuse. Of course, these cost estimates should be cali-

brated to an organization’s past experience if that data is available.

523 Estimating Enhancement and Maintenance Costs

Stevenson reviewed several studies that were conducted between 1975 and 1985 on the
cost of maintenance [73]. He concluded that the proportion of time spent on maintenance
can vary widely, from about 30% to 90% of the total cost of the system, but most estimates
are from 50% to 70%. These estimates may be low for the 1990’s as maintenance costs
have been expected to increase over time as a proportion of total development. In 1973
Boehm predicted the relative cost of maintenance would rise to over 80% by 1985 [8] and
the conventional wisdom is that this prediction has been fulfilled [76]. With these consid-
erations, we will estimate a present day value for the cost of maintenance to be 72% of the
total cost of new development.

Vienneau has pointed out that estimates of the cost of maintenance do not properly dis-
count for the cost of capital [76]. Vienneau derives the ratio of the present value of the cost

of maintenance to the present value of the total life-cycle cost as

PVy _ |:1+(l—e)_ci(1+r)d§l+r)m—1]_l
PVrc p m (1+r)°-1

Cost-Benefit Templates for Emerald o : page 101

where PV, is the present value of the cost of maintenance, PV is the present value of

the total life-cycle cost, p is the undiscounted ratio of the cost of maintenance to the total
life-cycle cost, d is the number of years in development, m is the number of years in oper-
ations and maintenance phase, and r is the discount rate. .

Stevenson cites a 1985 study by Fairley that reports the typical life span for a software
product is 1-3 years in development, and 5-15 years in use (maintenance) [73]. If we
assume the undiscounted cost of maintenance is 72% of the total cost, the discéunt rate is
10%, the project is in development for 2 years and in operation and maintenance for 10
years, the present value cost of maintenance computes to 60% (using Vienneau’s formula)
of the present value of the total life-cycle cost. Thus the present value average cost of

maintenance is 60/40 = 1.5 times the cost of new development.

Cost of Maintaining High and Low Quality Modules

The purpose of this section is to calculate My, , the average cost of maintaining a high

quality module, and M, ,, the average cost of maintaining a low quality module. These

values will be used later in Section 5.2.4 to estimate the values of the decision payoff
matrix. As discussed in Section 5.1.1, the Pareto rule generally applies to software mainte-

nance as most errors and subsequent code changes are concentrated in a small percentage
of the modules. The total cost of maintenance (7M) is the sum of the maintenance cost

for high quality (TMy) and low quality programs (TM Lo)- Thatis,

Cost-Benefit Templates for Emerald page 102

Let p be the ratio of the total maintenance costs absorbed by the low quality programs

then,

TM,, = pxTM EQ 19)
TMy, = (1-p)XTM

The cost of maintenance per module, M, can be calculated by dividing the total cost of

maintenance by the number of modules, 7, in the system, thatis M = TM/n.If weletg

be the ratio of low quality modules to the total number of modules, the cost of mainte-

nance per low quality module, M Lo 18

Lo = gxn qxn q (EQ20)
and the cost of maintenance per high quality module, My, , is
™™pp _ (1-p)xTM _ (1-p)

My, = = = xM (EQ21

H = (Tog)xn = (I-g)xn (1-g))

Hence, if we assume that 20% of the code is low quality (g = 0.2) and consumes 80%

of the maintenance cost (p = 0.8) and we estimate the relative cost of code maintenance to
be 1.5, then the relative cost of maintaining low quality code is 1.5 x4 = 6, and the rela-

tive cost of maintaining high quality code is 1.5/4 = 0.375. As an example, if the aver-

Cost-Benefit Templates for Emerald

Table 5.13: Example estimation of cost of maintenance

relative cost cost
Maintenance Cost/Module 1.5 $60,000
Maintenance Cost/Low Quality Mod.) $240,000
Maintenance Cost/High Quality Mod. 0.375 $15,000

page 103

age cost for developing a new module is $40,000 the resulting costs for maintenance is as

shown in Table 5.13.

524 Estimating Decision Results and Probabilities

In the decision we are modeling, we have two choices. We can choose to either reuse the

module with possible adaptations or to reengineer the module. In addition, there are two

possibilities for the true state of nature of the code module. If the module is not reengi-

neered, it could require either high or low maintenance costs in the future. However, at the

time of the decision, the true state of the code module is unknown. With two choices and

two unknown states of nature, we have four possibilities that we can examine. We can

either:
1. Reuse a Low Quality module,
2. Reuse a High Quality module,
3. Reengineer a Low Quality module, or

4. Reengineer a High Quality module.

Cost-Benefit Templates for Emerald page 104

In constructing a bayesian decision model, it will be convenient to use matrices for the
decision results and probability matrices. Each cell in a matrix will represent one of these
four decision possibilities in terms of its cost or its probability of occurrence either with
Emerald or without Emerald.

In the following subsections we will consider these possibilities in terms of their
potential payoffs or decision result, and how to calculate their probabilitigs of occurrence

both without Emerald, and with Emerald.

Decision Results

A decision result is the cost that will result from a combination of a decision choice
and the true state of a software module. There are two simplifying assumptions that we are
making about our decision: 1) reengineering will convert a low quality module into a high
quality module, and 2) adaptive reuse will not affect the state of a module. These assu:hp—
tions are supported by our definitions of the decision choices.

Let A be the cost of reuse of a module and let R be the cost of Reengineering a mod-
ule. Then the resulting cost of each decision possibility can be directly calculated as

shown in Table 5.14:

Table 5.14: Cost of each possible decision result

choice \ state low quality | high quality

reengineer R+Mpy, R+My,

reuse A+M,, A+My,

Cost-Benefit Templates for Emerald ' page 105

Table 5.15: Example decision result

Resulting Costs Low Quality| High Quali
Reengineer $75,000 $75,000
Adaptive Reuse $261,500 $36,500

Table 5.15 gives an example decision result matrix based on the adaptive reuse,

reengineering and maintenance cost figures we computed in previous examples.

Estimating baseline decision probabilities

As discussed previously, we assume that in the baseline environment (that is, without
the aid of Emerald), the developer would never choose to reengineer. Since the model
does not depend on this assumption we will also show how to compute probabilities for

the case where the developer could choose to reengineer.

Never reengineer case. Since in this case you can never reengineer, the probability

matrix is entirely determined by the estimated percentage of low quality (i.e., high mainte-

nance) modules. Let P, , be the estimated percentage of low quality modules. The calcu-

lation is given in Table 5.16.

Table 5.16: Baseline probabilities for ‘never reengineer’ case

choice \ state low quality | high quality

reengineer 0% 0%

reuse Pio 1-Pr,

Cost-Benefit Templates for Emerald page 106

The costs for this scenario is obtained by multiplying the corresponding cells of the
probability matrix with the decision result cost matrix and summing. If we assume that
20% of the modules are low quality and use the decision matrix in Table 5.15, the baseline

cost per decision is $81,500.

Could reengineer case. We can also assume that even without Emerald, the developer
could choose to reengineer. One approach would be to directly estimate all four cells of

the probability matrix. However, a simpler method is to estimate the percentage of time

that the developer would make the best economical choice. Let B represent the fraction of
the time the developer correctly determines (withoﬁt Emerald) whether a module is low or
high quality. That is, B is the fraction of the time the developers choose to reengineér low

quality modules and apply adaptive reuse for high quality modules. Then the baseline

probability matrix can be calculated as shown in Table 5.17.

If we estimate that B = 0.75, Py, = 0.20 and using the example decision result

matrix in Table 5.15 our baseline cost per decision evaluates to $64,630.

Table 5.17: Baseline probabilities for ‘could reengineer’ case

choice \ state low quality high quality

reengineer Bx P, (1-B)x(1-Pp)

adaptive reuse (1-B)x Py, Bx(1-Ppg)

Cost-Benefit Templates for Emerald . page 107

Estimating the decision probabilities when using Emerald
Let E represent the probability that the developer accurately predict the quality of the
module and makes the correct choice when using Emerald. Our assumptions are that

Emerald will add information to help improve the prediction accuracy of a low quality

module. Thus we expect E > B. The decision probabilities for each decision are given in

Table 5.18.
Table 5.18: Decision probabilities when using Emerald
choice \ state low quality high quality
reengineer EXP;, (1-E)x(1-Ppg)
adaptive reuse (1-E)yxPp, Ex(1-Pp5)

If we estimate that £ = 0.85, PLQ = 0.20 and use the decision result matrix in Table

5.15 our cost per decision when using Emerald evaluates to $54,415. This would represent
a savings of $27,085 per decision when compared to the ‘no reengineer’ baseline example,
or a savings of $10,215 per decision when compared to the ‘could Reengineer’ baseline

example.

Final computations
After arriving at an estimated cost savings per decision, we can annualize this cost by
estimating the number of decisions of this nature that would be made during a year.

Finally, by providing a discount rate for the cost of capital and an assumed time horizon

Cost-Benefit Templates for Emerald page 108

for the decision, we can calculate the net present value for the improved value of the deci-
sion.

If We estimate 30 decisions per year, a discount rate of 10%, a time horizon of 5 years
and a cost savings per decision of $27,085, our annual cost savings is $812,550 and the

Net Present Value of these savings over five years is $3,388,224.

5.3 Using Emerald for Software Acquisition

Organizations are often responsible for acquiring custom software from other sources.
Outsourcing, a common form of software acquisition, has been a growing trend over the
last several years. Outsourcing is associated with a downsizing strategy that many organi-
zations are pursuing. In order to focus on their core business, many software applications
are outsourced to third party software development contractors. Another form of software
acquisition is associated with a planned company merger or company acquisition where
significant software assets will be combined in a larger company. This situation could
involve combining software assets in a commercial product line for anticipated competi-
tive benefits. Also, a company merger may involve consolidating various internal account-
ing, personnel, management information systems and databases.

In any context, the software acquisition process poses many significant challenges and
risks for the acquiring organizatibn (i.e., the Buyerj. Software products are complex and
difficult to evaluate a priori. Software procurement typically involves the specification

and development of code or the code may already exist but require customized modifica-

Cost-Benefit Templates for Emerald page 109

tions to meet specific requirements. The way in which the acquisition process is managed
significantly affects the schedule, quality, costs, risks, and resulting value of the software
product to the acquiring organization. This section describes the risks involved in software
acquisition and reviews the life-cycle of the acquisition process. We show how Emerald
can be used to manage risks through all phases of the acquisition. Finally, we develop
models to quantify the benefits an organization can expect to receive from this use of

Emerald.

5.3.1 Risks in Software Acquisition

The procurement of software products entails risks. Serious problems exist in acquiring
software that is delivered on time, within budget and of acceptable quality. Consider these

statistics:

* 30% of outsourcing agreements involve dissatisfaction, a dissolution of the agree-

ment, or some form of litigation within two years [40]

* 28% of all IT (Information Technology) projects fail (1998 Standish Group

report).
* 50% of software development schedules are not met [19].

e 10% of software development schedules slip more than 25% of the original esti-

mate [37].

Cost-Benefit Templates for Emerald , page 110

» 33% of software development effort is spent on defect removal and rework [37].
In addition, software is often delivered with many significant defects. The cost of fail-
ures in the field can be staggering for both the supplier and the customers of the software.

Here are just a few examples:

A one-day system failure can cost about $5.3-million in lost revenue for an internet

auction site such as eBay (Cahners In-Stat Group).

» The downtime for an on-line retailer can cost as much as $10,000 a minute in lost

sales (IBM).

» General Motors recalled about 2.5 million pickups, sport utilities and vans with
two-wheel drive to correct software on the anti-lock braking systems (AP, Strong,

1999).

» Toshiba Corporation recently agreed to a settle $2.1 billion class action lawsuit

because of an error in a floppy-disk controller that could lead to data corruption.

e A defect in the navigation software led to the $125 million Mars Climate Orbiter
spacecraft crash in 1999.
There are wide ranges of productivity and quality in organizations that produce soft-
ware. Rubin reported that the range of performance of software organizations varied by a
factor of 600 in 1995. Also, the range in quality of delivered code (measured as post-deliv-

ery defects per thousand lines of code) from these organizations varied by a factor of 100

Cost-Benefit Templates for Emerald page 111

according to Rubin [68]. These wide variations in productivity and quality suggest tre-

mendous benefits that can be generated by improving risk management in the software

I3

acquisition process.

There are a variety of potential problems that can occur during the software acquisi-

tion process:

the selected software development company will be incompetent or incapable of

developing software of acceptable quality that meets all requirements;

the acquiring organization will be unable to properly track, monitor and control the

project;

proposed new or changed requirements will fail to be properly evaluated and man-
aged resulting in features that add disproportionately more cost and schedule

delays but provide little benefit when put into use;

the software will be delivered late and over budget;

the delivered software will not meet requirements;

the delivered software will be very difficult and expensive to maintain and support;

the delivered software will be difficult to adapt and evolve to meet changing busi-

NEss I equirements.

Cost-Benefit Templates for Emerald page 112

The acquiring organization can exercise a great deal of control over these potential
problems by managing risks during the software acquisition life-cycle.

Emerald helps manage the risks both for software acquisition organizations (buyers or
acquirers) and for software development organizations (developers). At a high level,

Emerald’s capabilities during this process can be summarized as follows:

* Emerald derives code, use and process metrics of 3rd party suppliers and provides

a risk assessment of their code and process.

» Supplier generated code can be compared with in-house code or with other sup-
plier's code for quality, complexity, and maintainability using complexity metrics

and risk models.

» Emerald gives the customer a view into the quality of the code and cost of support

and maintenance.

5.3.2 Software Acquisition Overview

The Software Engineering Institute has published a Software Acquisition Capability
Maturity Model (SA-CMM) [26]. This model is intended to be used to help organizations
assess the maturity level of their software acquisition processes and provide guidance for
making improveménts. Each level consists of key process areas (KPAs), where each KPA
defines an area to focus its improvement effort. We have derived a software acquisition

life-cycle based on key process areas of the SA-CMM.

Cost-Benefit Templates for Emerald page 113

The major life-cycle phases of the acquisition are:

Software acquisition planning

» Contract solicitation and evaluation of vendors

e Contract performance management

» Evaluation and acceptance of the resulting software products

* Transitioning to support

Software acquisition planning

Software acquisition begins with the process of defining a set of software related
requirements. The software requirements should include quality and supportability
requirements as well as functional and performance requirements. Acquisition planning
includes schedule determination, risk identification, solicitation management and require-

ments definition.

Contract solicitation and evaluation of vendors

The goal of the solicitation is to select the contractor who is qualified and capable of
satisfying the requirements of the contract for the least life-cycle cost. The software
requirements will form the core of a solicitation package that is prepared and distributed to

interested software development companies. In addition, the solicitation package should

Cost-Benefit Templates for Emerald - page 114

include the estimated size and cost of the software to be developed, information on how

the project will be monitored, acceptance criteria for the deliverables, information on how
the offerors will be evaluated, and what documentation they must submit in order to bid on
the contract. The submitted bids are evaluated according to a documented evaluation pro-

cedure and the contract is awarded.

Contract performance management

During this phase, the acquirer is responsible for tracking the contractor’s perfor-
mance, providing oversight, and approving new or changing requirements. As the devel-
opment project proceeds the acquiring organization will need objective methods to

routinely track and monitor the vendor’s progress.

Evaluation and acceptance of the resulting software products

When the software is completed and tested by the vendor, the acquirer must be able to
independently evaluate the software products to ensure all contractual requirements have
been met. Objective, measurable methods must be available to allow the buyer to verify
that the developer has met the contractual requirements. Acceptance testing is typically
used to verify that functional requirements have been met. However, for all but the small-
est software systems it is usually cost prohibitive to perform exhaustive testing and accep-
tance testing typically exercises only a small fraction of the possible program paths.
According to Jones, acceptance testing only reveals about one third of the defects that

remain in the product [39]. Also, if the code is poorly designed it may be difficult and

Cost-Benefit Templates for Emerald . page 115

expensive to repair those defects or to modify the code later to adapt to new or changing
requirements. Objective methods are needed to assess the quality characteristics of the

code.

Transitioning to support

Once the software has been accepted there is a phase of transitioning the code to sup-
port by the maintenance ofganization. The goal of this phase is to help ensure the support
organization will have the capability to understand, maintain, and support the software.
The acquiring orgémization must be able to estimate the cost, resources, and requirements
for supporting the software. The support organization must quickly learn the software

architecture, design, and organization in order to support it properly.

533 Using Emerald in Software Acquisition

Emerald can be used throughout the software acquisition life-cycle to mitigate potential
risks. This section describes how Emerald can be utilized in each of the acquisition

phases.

Software acquisition planning

Emerald provides a measurable, quantitative approach for stating quality and support
requirements. Such requirements can be used later to monitor the project as it is being
developed and provide acceptance criteria for the final product. Acceptance criteria and

evaluation methods should be included in the solicitation package and the resulting con-

Cost-Benefit Templates for Emerald page 116

tract. Making quality requirements explicit and measurable makes it hard for contractors

to ignore and helps insure these issues will be addressed.

Contract solicitation and evaluation of vendors

Emerald can be used during the contract solicitation for evaluating the capabilities and
maturity of potential bidders to be included in solicitation package. For example, bidders
could be required to submit example code of recent work to assist in evaluating their capa-
bilities.

For some acquisitions, the vendor may be providing pre-existing code to be used in
constructing the new system. Emerald provides information to help assess the quality and

the cost of adapting and supporting that code.

Contract performance management

Routine Emerald reviews can be used to track percent complete (as measured in code
written to total estimated) and to verify that risk factors related to the code are under con-
trol. When high risk factors are revealed through these reviews, management can plan
actions to mitigate those risks. Subséquent reviews can monitor the risk metrics to deter-
mine if the planned actions are working to reduce the risks.

During the course of any major software development effort it is inevitable that new or
changed requirements will surface. It is often difficult to understand the consequences of
making a change or introducing a new feature in a development process. Emerald can be

used to help management assess the potential risks and costs involved for various imple-

Cost-Benefit Templates for Emerald page 117

mentation options for the requirement. The analysis can help determine the lowest cost
implementation option, the impact it may have on schedule, and whether the proposed

change is worth the anticipated benefits.

Evaluation and acceptance of the resulting software products

The code, process, and risk metrics provided by Emerald can be obtained during the
evaluation and acceptance testing phase. These metrics complement the functional testing
and provide an objective measure of how well the product meets quality and supportabil-
ity requirements. This information can help the acquirer understand the risks and costs of

accepting ownership of the resulting products.

Transitioning to support
Emerald can be useful in this phase by providing information that helps estimate and
plan the resources need to support the software. Also, the metrics help the support team

understand and maintain the code they are acquiring.

5.34 Benefits of Using Emerald in Software Acquisition

The previous section discussed the ways in which Emerald supports the software acquisi-
tion process. This section analyzes how this support leads to a nﬁmber of benefits. To sim-
plify matters, we divide these uses into two categories: pre-award evaluation and project
evaluation. Figure 5.4 suggests the c'ause-effectlchain from these uses that results in a

number of benefits and Table 5.19 summarizes Emerald’s benefits.

Cost-Benefit Templates for Emerald

Support

Software Acquisition

Pre-award evaluation

Project evaluation

page 118

Uses of Emerald

More capable contractor

Manage and control
complexity and risk

- contractual requirements
- - project tracking
- corrective actions

- acceptance criteria

Reduced project failure risk Lower risk code
- Lower repair and Fewer field faults
Less intemnal rework maintenance unit costs
Lower development Reduced cycle Lower support Customer
costs time costs satisfaction
A
Higher market Longer product Higher profit Customer
share life margin retention

Figure 5.4: Cause-effect relationships from Emerald’s software acquisition support

Cost-Benefit Templates for Emerald

page 119

Table 5.19: Summary of benefits from Emerald use in software acquisition

Benefit

Rationale

Reduced acquisition risk

Emerald can help evaluate a pre-existing code base and make acquisi-
tion risks visible prior to awarding the contract. Emerald can also assist
in evaluating the capabilities of a contractor.

Lower development cost

Emerald can help reduce system risk and complei(ity. Emerald provides
management with visible metrics to help control and reduce these risks.
High risk software contains a higher number of defects, requires a
greater number of modifications, and those repairs and modifications
require more effort.

Reduced cycle time

The use of Emerald by the buyer as a risk control mechanism can help
reduce system risk. The reduction of high risk modules reduces late
stage rework and thus reduces cycle time and the risk of late delivery.
Reducing cycle time can result in significant financial benefits.

Also, note that the use of Emerald by the contractor can help with tar-
geted defect prevention which would reduces late stage rework thus
also reducing the risk of late delivery.

Lower support cost

Reduction in field failure density
Reduction in repair unit costs *
Reduction in maintenance unit costs

Reduction in field failure
density

A reduction in system complexity reduces the faults in the code which
reduces the occurrence of costly field failures.

Reduction in repair unit
cost

Because Emerald can be used to help analyze failures and assess the
results, and because Emerald has helped reduce system complexity, it
leads to easier analysis of field failures, faster fault identification and
reduced risk of introducing new faults during the repair process.

Reduction in maintenance
unit cost

Software of lower risk and complexity is easier to maintain and can be
more easily adapted to accommodate future business needs.

Higher customer satisfac-
tion

Emerald results in software that contains fewer field defects and
requires less time to correct problems or make changes. Customers are
more satisfied when the software they use is more reliable. Also, cus-
tomers appreciate fast service response when problems occur. Higher
customer satisfaction encourages repeat business from existing custom-
ers and helps to attract business from new customers.

Cost-Benefit Templates for Emerald page 120

5.3.5 Quantification of Benefits

This section provides models for quantifying the costs and benefits of using Emerald for
software acquisition. The benefits that can be achieved will depend on the economic char-
acteristics of each particular acquisition and how effectively the metric information is used

to improve the process.

Reduced acquisition risk
For our first model we will evaluate benefits from the point of view of estimating how
Emerald can reduce the likelihood of unwanted consequences.

The unwanted outcomes of a software acquisition include:
* project is cancelled,

* project ends in litigation,

* software is delivered late,

* project exceeds development budget,

» software is of poor quality and costly to maintain or to adapt to changing require-

ments,

¢ various combinations of the above,
Our model identifies a default set of risks that can occur for the organization’s soft-

ware projects. For each identified risk, we must estimate the average cost (over all

Cost-Benefit Templates for Emerald

page 121

projects) if the risk actually occurs. Also, we must estimate the likelihood that the risk will

occur under the baseline scenario and under the process improvement scenario using

Emerald. To estimate the impact of the Emerald process improvement for the entire soft-

ware acquisition organization, we need the number of ongoing projects subject to these

risks each year. To estimate the likelihood of risk for the Emerald software process

improvement (SPI) scenario, we introduce an SPI_impact parameter that is the estimated

fractional improvement in risk over the baseline case to apply to all risks. The parameters

for our risk model are listed and described in Table 5.20.

N

Table 5.20: Software acquisition risk model parameters

Parameter

Description

Suggested data source

SPI_impact

SPI impact. The estimated improvement in
the likelihood of the risk occurring under the
software process improvement scenario.

Suggest a value in the range of
0.1 to 0.3 depending on the acqui-
sition environment and how
effectively the SPI can be applied.

num_projects

Number of projects. The average number of
software projects subject to acquisition risks
each year.

Number of projects where the SPI
is to be applied.

Let Risk(0-n) represent a set of identified risks for the software acquisition.
Let n be the number of Risks, Risk(i) represent the iP Risk and Risk(i).<param> be the value of a parame-

ter associated with the i Risk. oo
The following parameters are required for each Risk:

potential_cost

Potential cost. The total cost impact to the

‘| organization if the risk occurs.

For cost of project failure, suggest
using the total cost of the project.

base_risk_likelihood

Baseline risk likelihood. The estimated like-
lihood that the risk will actually occur. For
some risks, industry data is available for
default values.

Historical organizational data or
industry data. For example, Jones
has published estimates for
project cancellation.

SPI_risk_likelihood

SPI risk likelihood. The estimated likelihood
that the risk will actually occur under the
Emerald SPI scenario.

base_risk_likelihood x
(1 + SPL_impact)

page 122

Cost-Benefit Templates for Emerald

For each risk(i), the savings for an average project can be calculated as follows:
project_savings = potential_cost x (base_risk_likelihood — SPI_risk_likelihood) (EQ 22)

The savings for each risk over all projects is project_savings X num_projects . If the risks
are independent, the value of using the SPI to mitigate risks over all projects can be calcu-

lated as follows:

n

risk_savings = Z risk(i) .project_savings (EQ23)

i=1

Table 5.21 provides an example calculation. For this example we consider two poten-

Table 5.21: Example calculation of project risks

Likelihood Annual risk
Potential savings per |Risk savings
Risks Cost] Baseline Emerald project per year
Project cancellation $3,000,000 0.25 0.2 $150,000 $450,000
Over 25% late delivery $500,000 0.21 0.168 $21,000 $63,000

tial risks: “project cancellation” and “over 25% late delivery”. Jones has published esti-

mates of project cancellation and projects being delivered over 25% late [37]. For

example, 25% of projects in the systems software subindustry category that are between

1,000 to 10,000 function points in size end up being cancelled and 21% are delivered sig-

nificantly Jate.! For this example, we estimate a modest 20% improvement in the risk like-

lihood under the Emerald scenario (SPI_impact = 0.2) and assume the organization has an

1. Source: [37], Table 2-4, p. 60.

Cost-Benefit Templates for Emerald page 123

average of three active projects per year (num_projects = 3). The potential cost of cancel-
lation is estimated as the average cost of a project in the organization. If the project is can-
celled, no economic value can be obtained from the software and the entire cost of
development has been wasted. Additional costs may be added to account for disruption of
business, and lost opportunities as a result of the cancellation.

When the project exceeds its schedule by over 25 percent, the lengthened cycle time
can result in penalties, lost award fees, additional resource costs, business disruption, and
lost opportunities to pursue. Note that this risk reduction estimate is another way of esti-

mating the value of cycle time reduction.

Lower development cost

The primary component of lower development cost is from a reduction in rework
costs. To model this effect we obtain the average annual development cost for each soft-
ware project, estimate the rework costs as a percentage of the total costs, and estimate an
expected savings as a percent reduction in rework. The parameters for our model are listed
in Table 5.22.

With this model the annual rework savings is computed as follows:

annual_rework_savings = num_projects X avg_proj_cost_yr (EQ24)
X (base_rework_pct — SPI_rework_pct))

An example computation is given in Table 5.23 with values for the num_projects and

SPI_impact parameters as before.

Cost-Benefit Templates for Emerald

page 124

Table 5.22: Lower rework cost parameters

Parameter

Description

Suggested data source

SPI_impact

Software Process Improvement
(SPI) impact. The estimated
improvement in the likelihood of
the risk occurring under the soft-
ware process improvement sce-
nario.

Suggest a value in the range of
0.1 to 0.3 depending on the
acquisition environment and
how effectively the SPI can be
applied.

num_projects

Number of projects. The average
number of software projects sub-
ject to acquisition risks each year.

Number of projects where the
SPI is to be applied.

avg_proj_cost_yr

Average project cost per year.

Accounting data.

base_rework_pct

Baseline rework percent. The
average percentage of cost spent
on defect removal and rework.

Historical organizational data
or industry data. For example,
Jones has published estimates
of defect removal effort for var-
ious subindustries.

SPI_rework_pct

SPI rework percent. The esti-
mated percentage of cost spent on
defect removal and rework under
the Emerald SPI scenario.

base_rework_pct X
(1 + SPI_impact)/100

Table 5.23: Example estimate of development rework savings

Average project costs per year | $3,000,000
Baseline rework percent 33%
SPI rework percent 26%
Baseline rework costs $990,000
Emerald rework costs $792,000
Project rework savings $198,000
Annual rework savings _ $594,000

Cost-Benefit Templates for Emerald page 125

Reduced cycle time

More capable contractor selection and more control over project risk factors increases
the likelihood of reduced cycle time. Reducing cycle time can result in significant finan-
cial benefits. To quantify the benefits from reduced cycle time, either estimate the reduced
risk of schedule slippage as shown in Table 5.21 or apply the model for reduced cycle time
from Section 5.1.2. However, one should avoid applying both approaches as it would dou-

ble count the same benefit.

Lower support cost

‘To calculate the value of lower support costs, we will estimate a fractional improve-
ment in current software support costs. The parameters for this model are listed in Table
5.24. With these parameters the annual support savings are given by (EQ 25). We give an

example of this model in Table 5.25.

Annual_support_savings = num_projects X (EQ25)
(base_maint_cost_yr + base_sup_cost_yr —
(SPI_maint_cost_yr + SPI_sup_cost_yr))

Higher customer satisfaction
Higher customer satisfaction can be quantified using the approach we considered pre-

viously in Section 5.1.2.

Cost-Benefit Templates for Emerald

Table 5.24: Lower support cost parameters

page 126

Parameter

~ Description

Suggested data source

SPI_impact

SPI Impact. The estimated
improvement in the likelihood of
the risk occurring under the soft-
ware process improvement sce-
nario.

Suggest a value in the range

from 0.1 to 0.3.

num_projects

Number of projects. The average
number of software projects sub-
ject to acquisition risks each year.

Number of projects where
the SPI is to be applied.

base_maint_cost_yr

Baseline maintenance cost per
year. Average maintenance cost
per year per project for the base-
line scenario.

Accounting data and project

records.

base_sup_cost_yr

Baseline support cost per year.
Average project support cost per
year for the baseline scenario.

Accounting data and project

records.

SPI_maint_cost_yr

SPI maintenance cost per year.
Average maintenance cost per
year per project for the software
process improvement scenario.

base_main_cost_yr
X (1 — SPI_impact))

SPI_sup_cost_yr

SPI support cost per year. Aver-
age project support cost per year
for the SPI scenario.

base_sup_cost_yr
X (1 — SPI_impact))

Table 5.25: Example estimate of support cost savings

Baseline support cost per year

$300,000

Baseline maintenance cost per year

$250,000

SPI support cost per year

$240,000

SPI maintenance cost per year

$200,000

Project support savings year

$110,000

Annual support savings year

$330,000

Cost-Benefit Templates for Emerald page 127

5.4 The Costs of Using Emerald

As with any process improvement, there are costs involved in using a tool such as Emer-

ald. This section presents a set of effect functions for estimating the cost of using Emerald.
These costs geﬁerally apply to each of the three templates that we have created for Emer-
ald. The costs of using Emerald primarily fall under the Implementation and Support main

category of the cost-benefit hierarchy in Appendix A. These costs include:
e license and maintenance fees of the Emerald product
* training

* use and operations

54.1 License and Maintenance Fees

The Enterprise version of Emerald is targeted for large software development projects
(over 2 million lines of code). This price of this version will be approximately $150,000
and will include training, one year of support, and the consulting needed to build and ver-
ify custom risk models for the organization. This version will be fully integrated into the
existing development environment and will deliver reports to the desktop via a multi-tier
architecture.

A web based version of Emerald is also planned that will be targeted for organizations

with a smaller code base of under 2 million lines of code or for companies with a smaller

Cost-Benefit Templates for Emerald page 128

support staff or a smaller hardware/software infrastructure. Customers will be able to
download a thin Java client and use it to process their source code. It will produce metric
assessment data that can be uploaded back to the Emerald web site for processing. The
customer will then be able to view their risk assessment results using a Web browser. As
of this writing, fhe pricing for the Web version has not been announced.

The software server license for Emerald Enterprise is $130,000. This price includes a
custom statistical model, installation, training, and support for the first year. The price for
each client license is $4,000. A minimum of five clients are sold with the server which
brings the minimum configuration price to $150,000. After the first year, a support con-

tract is available for 18% per year.

54.2 Training

Since the purchase of training is included in the initial purchase, the only additional train-
ing cost that needs to be considered is the time that project personnel spend in learning
how to use the product. Emerald requires about four hours to train an administrator or four

hours to train a user.

543 Use and Operations

This section presents equations for estimating the cost of on-going use and operations of

the Emerald Enterprise system.

Cost-Benefit Templates for Emerald page 129

Operations support
Emerald requires about 2-4 staff hours per week for system administration tasks. For
example, the system administrator would need to monitor the status of batch jobs and

reconfigure systems as needed. The formula for estimating this cost is given by (EQ 26).

op_support_yr = 4 x cost_staff_hr X weeks_per_year (EQ26)

Use

The time required to use Emerald is will depend on specifics about how an organiza-
tion plans to use the information. However, for most applications the time to use should be
fairly minimal. The information is delivered to the desk top and is available as input to
day-to-day decisions. The user can review the information or call-up additional detail
reporté to support decisions such as resource allocation or reengineering decisions. The
annual cost of using Emerald (use_cost_yr) is based on estimating how man); additional
hours per week (use_hrs_wk) management and users will spend reviewing and analyzing

the information provided by Emerald (EQ 27).

use_cost_yr = use_hrs_wk X cost_staff_hr x weeks_per_year EQ27)

5.5 Validation

SPI Templates were created in the tool for each of the three uses of Emerald described in

this chapter. Most effects are evaluated with hierarchical formulas. The Emerald Targeted

Cost-Benefit Templates for Emerald page 130 .

Defect Removal template also uses a ‘Gain from early defect detection’ model built into
the tool to model savings that occur from improved removal efficiencies early in the life-
cycle. The Support for Reengineering vs. Reuse template includes a bayesian decision
model with formulas to estimate the impacts of each decision. The Support for Software
Acquisition template provides models for estimating risk reduction.

The targeted defect reduction model has been used by Nortel to develop cost-benefit
analysis of Emerald for 17 software organizations representing a base of over 64,000
KLOC:s of code and developing over 7,000 KLOCs of new or changed code each year.
Three of the organizations represent aerospace companies with the remainder from Nortel.
Norte] personnel used the tool to estimate the baselines and to develop CBAs for these
organizations. Several iterations of refinements were made to the templates and to the pro-
totype tool based on comments from the users.

The Emerald Targeted Defect Removal template is listed in Section E.1 of Appendix
E. An example baseline and cost-benefit analysis using this template is listed in Section

E1 of Appendix F.

5.6 Summary of the Emerald Cost-Benefit Templates

This chapter developed cost-benefit templates for three uses of Emerald. Section 5.1
described the use of Emerald for targeted defect reduction and how to quantify those
effects. Section 5.2 described how Emerald can be used to support decisions to reengineer

existing code components and developed a bayesian decision model to quantify the bene-

Cost-Benefit Templates for Emerald page 131

fits of that support. Section 5.3 described the software acquisition process and how Emer-
ald can be used to manage the risks in that process. A set of benefit effects were identified
and quantified for the use of Emerald. Section 5.4 summarized the costs of using Emerald
that apply to any of the three uses. Section 5.5 described our experiences in testing and

validating the templates.

page 132

Chapter 6

Cost-Benefit Templates for Cleanroom

This chapter develops a set of cost-bc‘eneﬁt templates for four Cleanroom software engi-

neering technologies. Section 6.1 provides an overview of Cleanroom and these compo-
nent technologies. Section 6.2 identifies and quantifies the costs and benefits of using

Cleanroom.

6.1 Cleanroom Software Engineering

Cleanroom software engineering is a|collection of principles and processes aimed at the

economical production of high qualitly software [65]. An overview of the Cleanroom pro-
cess is shown in Figure 6.1. The specification team works to develop both a functional
specification and a usage specification to meet customer requirements. The functional
specifications are developed using a sequence enumeration process to precisely define the
required behavior. This process results in specifications that are complete, consistent, and
traceably correct. The usage specification identifies and classifies software users, usage
scenarios, environments, and establishes a usage model. The Increment Planning process

partitions the set of specified functions into a series of increments and schedules their

Cost-Benefit Templates for Cleanroom page 134

clear box procedmés'. Every black box, state box or clear box structure is subject to cor-
rectness verification in development team reviews. The correctness of each refinement
step is verified against the previous step using reasoning based upon function theory. Cor-
rectness verification is effective at finding defects and can be used to replace unit testing
and debugging.

The Usage Modeling and Test Planning process develops detailed usage models which
are used to generate test cases. The Statistical Testing and Certification process executes
the test cases, evaluates the results, and records failure data. The failure data is applied to a
quality certification model and the resulting analysis provides feedback about the quality
of the software process as well as determining if the product meets requirements.

Cleanroom consists of several component technologies that can be introduced into
organizations independently. Although these technologies are designed to work together,
Cleanroom processes can be independently introduced into an organization in a phased
approach. This research develops economic models and cost-benefit templates for four

key component Cleanroom technologies:
» Sequenced based specification
* Functional verification

* Incremental Development

» Statistical Testing

Cost-Benefit Templates for Cleanroom page 135

6.1.1 Sequence-Based Specification

Sequence-based specification is a systematic process for developing complete, consistent,
and traceably correct software black box and state box specifications [64][65]. A black
box specification defines a function that maps a response for each sequence of stimuli
(sequence — response) . Sequences of stimuli are enumerated in strict order beginning
with sequences of length zero, length one, length two, and so on. Sequences of the same
length are enumerated by a fixed lexicographic ordering. Each sequence is evaluated to
determine its correct response based on user requirements. If there is no documented
requirement for the response, a derived require;nent is documented that is verified with the
customer. The sequence response mapping is tagged to the appropriate requirement. If the
stimulus sequence is considered impossible it is marked illegal. Each legal sequence is
also checked to see if it is equivalent to some previously considered sequence. Two
sequences are considered equivaient if they will yield the same response when extended
for all future stimuli. Thus, it is not necessary to extend both sequences further and only
the shorter of two equivalent sequences is extended. The enumeration process continues
until all sequences of a given length are either illegal or equivalent to a previous sequence.

The finished black box specification is complete since the process results in all
sequences being mapped to a response and it is consistent since every sequence maps to
only one response. The specification is traceable to requirements that can be verified for
correctness with domain experts and customers.

The canonical sequences are all the legal sequences in the enumeration that are not

equivalent to any previous sequence. This set of sequences represents the unique condi-

Cost-Benefit Templates for Cleanroom page 136

tions of system usage. Canonical sequence analysis yields state data that encapsulates
stimulus history. The state box specification can be represented as a function that maps the
current stimulus and state to a response and state update. The completed state box specifi-

cation is used for the derivation and design of the clear box.

6.1.2 Functional Verification

In Cleanroom, every software product is verified with respect to its specification. The
overall black-box specification is verified against customer requirements. The state-box
specification is verified against the black-box specification. The clear-box is verified
against the state-box specification using function theoretic verification [48]. The Correct-
ness Theorem defines correctness questions for every clear box control structure. A clear-
box procedure is verified by verifying all constituent control structures. The rigor of the
verification procedure can be adjusted depending on the risks of failure. For example to
keep the verifications as cost-effective as possible verbal verifications are typically ade-
quate. The use of standard, uniform coding practices can also help streamline the verifica-
tion process. |

Cleanroom work products are developed by individuals but every work product is sub-
ject to team verification reviews. However, it is usually not necessary or cost-effective for
all team members to participate in the review of every work product. The allocation of
resources to reviews can be determined by the risk-of system failure, the risk of the work
product containing defects, and how important it is that team members understand the

work product and how it relates to the rest of the system.

Cos(t-Beneﬁt' Templates for Cleanroom page 137

6.1.3 Incremental Development

Incremental development organizes a large project into a series of small, manageable code
development cycles. Rather than attempting to build a large software product through a
single, long product development cycle, the developers grow the software incrementally
over a series of smaller, cumulative cycles. The increment planning process partitions the
required functions for a system into a series of increments for development and certifica-
tion. Increments are integrated from the top down. In a new development effort the first
increment typically provides a complete end-to-end framework for adding subsequent
functionality. Subsequent increments will elaborate black box specification “stubs” in this
framework.

As each increment is completed, the customer can review the system and provide feed-
back about the evolving product. This early feedback helps ensure the right product is
being developed. Also, the performance of the team can be compared against pre-defined
quality, schedule, and budget targets. Unacceptable deviations are analyzed to determine
their causes. Incremental development accommodates planned adjustments to the incre-

ment plan or the development process to correct performance deviations.

6.14 Statistical Testing and Certification

A premise of Cleanroom testing is that it is not possible to test all possible ways in which
a software system will be used, therefore, software testing is viewed as a statistical prob-

lem. As a part of this approach a set of randomly generated test cases is viewed as a ran-

Cost-Benefit Témplates for Cleanroom page 138

dom sample obtained from an infi_riite population of possible software uses. The sample is
evaluated in order to draw conclusions about the operational performance of the software.

In the Cleanroom approach to statistical testing, a usage model is constructed to char-
acterize how the system will be used, and is represented as a discrete time Markov chain.
The states in the chain are states of use. At any state of usage, the user has a set of possible
inputs that move to the next state of use. Each of these transition arcs is labeled with an
input and a transition probability that the input will occur given that the user is in the cur-
rent state. The certification team constructs the initial framework structure for the usage
model directly from the software specification. For example, if sequence-based specifica-
tion was used, the set of canonical sequences can represent the initial state space of the
usage model. Transition probabilities between states can be obtained from customer esti-
mates or from data collected from previous versions of the software.

Once the usage model has been constructed, a number of statistics can be computed to
help validate the usage model, plan the testing, evaluate the software under tests. Test
cases (scripts) can be generated automatically from the usage model and can be used as

input to an automatic test tool or by human testers.

6.2 Quantifying the Cost-Benefit Effects of Cleanroom

This section identifies and quantifies the cost-benefit effects from applying Cleanroom
technologies. The taxonomy of Appendix A was the basis for this work. Most of the case

studies published in the literature describe experiences of the general application of Clean-

Cost-Benefit Templates for Cleanroom page 139

room. We will first review the general costs and benefits of Cleanroom and then analyze

the cost-benefit effects for the four key Cleanroom technologies.

6.2.1 Summary of Cleanroom Effects

The emphasis in Cleanroom is on building systems that are correct by design and to pur-
sue defect prevention rather than defect removal. The construction of a black-box specifi-
cation may require more time to construct than an informal specification. All Cleanroom
work products are subject to team reviews which consume additional resources for both
specification and de'velopment.

As a result of the more intense specification apd review processes, Cleanroom requires
more time and effort in spécification and désign vphase than traditional development. In
fact, design and verification activities will consume the greatest portion of the schedule for
a Cleanroom project.

Extra time is required to perform the verification step, but actual time writing code
decreases [54]. Because of the more intense focus on defect prevention, the Cleanroom
developed code enters the testing phase with near zero defects. Cleanroom requires less
time in the schedule for testing than traditional methods [32], [54]. Fewer defects remain-
ing in the code leads to fewer cycles of rework and retesting. Also, Cleanroom statistical
usage testing maximizes the increase in the operational reliability for the time spent test-
ing [28].

The following subsections summarize Cleanroom’s costs and benefits.

Cost-Benefit Templates for Cleanroom page 140

Costs

Costs are divided into production cost impacts and implementation costs that can be

amortized over several projects.

Production Cost Impacts.

More time is spent developing and verifying the specification and design

More defects are found during requirements, specification and design

Kelly [41] examined data sets for 18 products utilizing the Raytheon baseline pro-
cess and 7 products utilizing Cleanroom. For the Cleanroom projects more than
50% of defects were found in requirements and design phases compared to 30%
for the baseline process.

Time and effort required for Increment Planning process
Time and effort for Usage Specification

Time and effort for Usage Modeling

Implementation Costs. These costs are amortized over several development projects.

Training and coaching costs

Sherer [71] reported that these costs added 17.3% labor to the project costs for a

. first time use of Cleanroom of a 90 KLOC Ada project requiring seven increments.

Process manuals and materials

Time to understand Cleanroom

The “time to understand” Cleanroom is technically not a cost. However, it could be
viewed as a constraint on how fast benefits will materialize. McGarry [54] stated

Cost-Benefit Templates for Cleanroom page 141

that the time to understand the Cleanroom methodology was approximately 26
months. However, Sherer [71] reported that benefits were realized on the very first
project.

Tool costs (license, maintenance, training)

Although Cleanroom technologies can be introduced without them, tools make
some of the Cleanroom techniques more cost-effective to apply. In particular, the
technologies of statistical usage testing based on Markov chain usage models and
sequence-based specification benefit from appropriate tools.

On-going coordination and support for Cleanroom

Most Cleanroom projects reported in the literature had staff and consultants to
train participants in the technology. These responsibilities could be performed by a
software engineering process group as defined in the context of process improve-
ment [60]. For a small organization, team members could provide this support on a
part-time basis.

Benefits

Reduced failures in the field

Many Cleanroom projects report dramatic reductions of errors in the field [32]. For
example, Head [33] reports on a Cleanroom project at Hewlett-Packard where no
errors were found during integration testing or after the product was release. He
reported that Cleanroom eliminates about 99% of defects prior to release.

Reduced error rates

Basili observed error rates of 4.3 to 6/KSLOC versus 7/KSLOC on NASA baseline
projects [6]. Hausler reported 2.3/KSLOC versus 25-35/KSLOC on traditional
software (as measured from first execution of code) [32]. Linger found 3.3/
KSLOC vs. 30-50/KSLOC on traditional from first execution of code [49].

Increased productivity

Hausler reports productivity improvements for Cleanroom of 1.5 to 5.0 have been
observed over traditional projects [32]. A specific project showed improvement of
36% more lines of code per person month. Sherer claims a productivity increase
from 121 SLOC/staff month to 559 SLOC/staff month (increase of 362%) [71].

Cost-Benefit Templates for Cleanroom page 142

 However, McGarry reported that the ovér‘all productivity was about the same as
the baseline projects on a NASA case study [54].

Reduced amount of code needed to meet functionality

Design simplification can occur from the Cleanroom specification and verification
process. For example, a Cleanroom developed prototype of an IBM COBOL
Structuring Facility, estimated to require100 KLOC, was developed using only 20
KLOC [32]. However, Cleanroom is not immune to estimation errors due to initial
lack of knowledge of target environments and tools or to unanticipated require-
ments. Hausler reported a Cleanroom project that was 49% larger than planned
(from 72 KLOC to 107 KLLOC) because of lack of familiarity with OS/2 Presenta-
tion Manager and unanticipated requirements [32].

Reduced design errors and error severity

The rigorous specification, design, and verification process reduces difficult to fix
specification and design errors. Mills reported that Cleanroom errors take 20% of
the time to fix [57]. Linger noted that errors found during testing or operation are
simple mistakes not design mistakes [49].

Improved defect containment

Cleanroom is more likely to detect errors in the same phase where the errors origi-
nated. Kelly and Poore compared 18 baseline projects to 7 Cleanroom projects in
an internal Raytheon study [41]. They found that for the Cleanroom projects,
defects were more likely to be detected and corrected in the phase in which the
defects originated. The authors estimated the improved defect containment
reduced the out-of-phase rework cost by 22%.

Time spent in testing is less

Cleanroom case studies have shown that the testing phase is reduced for Clean-
room projects. Kelly found that Cleanroom projects required 17%-30% of soft-
ware development resources compared to 32%-47% for baseline projects at
Raytheon [41]. McGarry reported Cleanroom projects required 27% of the total
effort compared with 30% for the baseline projects at NASA [54].

Reduced maintenance costs
The reduction in maintenance costs is a result of fewer defects in the field and

defects that are easier to correct. Also, a Cleanroom design should prove easier to
modify and adapt for new or changing requirements.

Cost-Benefit Templates for Cleanroom page 143

Reduced risks

Improved cycle-time, quality, and requirements satisfaction, reduce the risk of
delay or cancellation.

Avoiding rework
Reduced percentage of introducing errors during rework when it does occur

Increased job satisfaction, team spirit and team morale

Sherer experienced this effect and attributed it to the following: a) the team now
knows what to do and when to do it and how it should be done—eliminating
uncertainty and anxiety; b) employees feel they finally have the tools to do high-
quality work; ¢) Cleanroom creates reliance on team activity and fosters shared
responsibility; and d) Cleanroom improves interface and communication between
testing and development teams [71].

Faster learning by new or inexperienced personnel

Cleanroom reduces training period for new hires and the acclimation period for
new project personnel] as they learn and understand the system at a quicker rate
from the frequent interaction of team verification reviews. Junior personnel
quickly learn from their mistakes. All verification participants learn new coding
techniques and design ideas from each other.

Increased customer satisfaction

Customer satisfaction is a secondary effect that results from better quality, more
predictable schedules, and software products that meet customer requirements.

Success factors

This section describes success factors that are believed to help facilitate a successful

deployment of Cleanroom. The following is a consolidated list of success factors offered

by Sherer [71] and Hausler [32].

A defined process and a technology-transfer plan

Cost-Benefit Templates for Cleanroom page 144

* Formal Cleanroom training

» Demonstration reviews for team education
* The use of qualified Cleanroom consultants
* Engineering handbooks

¢ Useof an introductory implementation

¢ Early and ongoing management commitment

In the sections that follow we will identify and quantify the costs and benefits of four

Cleanroom component technologies.

6.2.2 Sequence-Based Specification Effects

Sequence-based specification (SBS) improves the software development process by estab-
lishing a complete, consistent, and verified specification as the foundation for remaining
development and testing activities. The resulting specification helps improve coding pro-
ductivity by eliminating questions or confusion about the design and what it is supposed to
do. Also, the specification process results in a black box specification and a fully traceable
state-box derivation that is a strong foundation for subsequent design, increment planning

and test planning activities.

Cost-Benefit Templates for Cleanroom page 145

Costs

Production Costs.

More time spent in specification

The increase in specification cost (spec_incr_cost) is computed as a percentage
increase (spec_incr_pct) in baseline specification cost. The baseline specification
cost is estimated as a percentage (base_spec_pct) of the annual development bud-
get (dev_budget_yr). According to Stephenson [73], specification and product
design is about 15% of the development budget.

spec_incr_cost = %&t X (dev_budget_yr X l&e_isg(e)c__m) (EQ28)

The value of the spec_incr_pct depends on the current baseline specification prac-
tices. A significantly higher increase will be expected for organizations that cur-
rently use informal specification approaches. For this case a 50%-100% increase is
suggested. If the organization currently uses a formal specification method the
increase should be minimal (e.g., 0-25%). This value also depends on the skills of
the specifiers as well as the effectiveness of the tools.

Implementation Costs.

Cost of tools to facilitate the specification process

Tool cost consists of initial license fees, annual maintenance fees, and documenta-
tion. Usually software tools licenses are priced per client machine. For some tools
there may be an additional cost for a server license. There may also be a mainte-
nance contract at some percentage of the original license. The number of tool users
(num_tool_users) can be estimated as the number of specifiers to be trained.

tool_cost = tool_client_license_cost X num_tool_users (EQ29)
+ tool_server_license cost

tool_maint_cost = tool_cost X tool_maint_pct (EQ 30)
Personnel time in training

This cost is estimated by the number of trainees and the training time per trainee.

Cost-Benefit Templates for Cleanroom page 146

" training_time_cost = num_specifiers X (EQ 3D
training_hrs_per_trainee X cost_staff_hr

The default value for training hours needed per trainee is 40 hours. The number of
trainees defaults to the estimated number of specifiers.

e Costs of consultants for coaching and training

Training can be conducted in-house or off-site.Off-site training cost should include
travel and lodging expenses. A default value of $1,500 is suggested for
training_cost_per_trainee.

training_cost = num_trainees X training_cost_per_trainee (EQ32)

Consultants can be used to help coach initial sequence-based specification efforts.
Since these consultants will directly contribute to product development only a por-
tion of their time, if any, should be counted as a cost effect.

consultiggect_LCt) x consult_hr_rate (EQ33)

consulting_cost = consulting_hrs X (1 -

Benefits
The sequence-based specification process results in a specification that is complete,
consistent, and traceably correct [65]. These properties lead to a number of benefits as

illustrated in Figure 6.2 and described below.

» Reduced specification and design rework

Kelly reported improved defect containment in the Requirements Analysis and
Preliminary Design phases [41]. His data suggests that the use of sequence-based
specification plays a significant role in reducing rework in later stages. This value
is calculated as a percentage reduction in annual internal failure costs.

rework_savings = base_internal_fail_cost_yr x SPI_defect_prevent_pcf (EQ 34)

where, base_internal_fail_cost_yr is the estimated baseline cost spent on internal
rework each year and SPI_defect_prevent_pct is the estimated percentage of
defects prevented from the use of sequence-based specification.

Cost-Benefit Templates for Cleanroom

page 147

Sequence-based

specification
Correct Consistent Complete
specification specification specification
F'(t::-duc‘:ed Reduced Leaner, Facilitated tes?tmg,
specification and field failures cleaner documentation,
design rework design increment planning
Reduced risk Increased Higher design Increased
of project customer Lesscode ——» & coding employee
cancellation satisfaction productivity satisfaction

Figure 6.2: Cause-effect relationships from using sequence-based specification

Reduced field failures

Kelly reported that 1.4% of requirements defects escaped to and were detected in
field use for Cleanroom projects, versus 5% for baseline projects [41].

This value is calculated as a percentage reduction in annual external failure costs.

field_savings = base_external_fail_cost_yr x SPI_defect_prevent_pct (EQ 35)

Leaner, cleaner design

The black-box specification states precisely and completely “what” a system must
do without constraining “how” it should be done. By delaying any design commit-
ments until the specification is fully understood, the designer is more likely to
choose an architecture and design representation that best fits the application.

Less code
A leaner, cleaner design leads to less code—less code to write, less code to docu-

ment, less code to verify, less code to test and less code to maintain. Less effort for
the same level of functionality contributes to higher productivity.

Cost-Benefit Templates for Cleanroom page 148

Higher design and coding productivity

Higher design productivity is a result of a complete and consistent specification.
Coding productivity is higher because design, specification and requirements
issues have been resolved prior to coding and because the design is more efficient.

Higher productivity results in lower design and coding cost for a given amount of
functionality. This effect can be calculated by estimating a percentage improve-
ment in productivity (SPI_prod_imp_pct) due to the process improvement. This
category should exclude productivity improvements due to rework reduction since
rework reduction is counted under another category.

higher_prod_savings = (design_cost_yr + code_cost_yr) (EQ36)
y (1 3 rework_budget_pct) y (1 N 1 0)
100 1 + SPI_prod_imp_pct/10

According to Stevenson [73], design cost is about 13% of the development budget
while coding and unit testing is about 22%. To remove the rework cost we use the
percentage of the budget spent on rework (rework_budget_pct).

Facilitated testing, documentation, increment planning

Sequence-based specification enables test planning, usage modeling, test case gen-
eration, increment planning, and documentation to proceed in parallel with design
and coding activities. The specification reduces risk of miscommunication among
developers, testers, and technical writers.

This effect ultimately results in an increase in testing, documentation, and planning
productivity and can be estimated in a manner similar to (EQ 36).

Reduced risk of project cancellation

Precise specifications are a solid foundation for the remainder of a project. By
reducing rework and improving quality the project is more likely to meet schedule
commitments.

The reduced risk of project cancellation can be estimated as in Section 5.3.5.
Increased customer satisfaction

This is a secondary benefit that comes about from building a system that is more
likely to meet all customer requirements. The value of increased customer satisfac-
tion can be quantified by estimating an increase in business. See Table 5.11 for an
example calculation.

Cost-Benefit Templates for Cleanroom ' page 149

Increased employee satisfaction

Employee satisfaction is a process improvement benefit that is frequently men-
tioned but seldom quantified. The notable exception is McGibbon who quantifies
the value of improvements in employee satisfaction in terms of turnover cost sav-
ings [56]. Turnover ratios are inversely proportional to employee satisfaction.
Turnover costs include recruiting costs, relocation costs, training costs, and lost
performance. Not only is productivity lost while the position is being filled, but a
replacement employee often requires several months of training, orientation, and
experience in the new environment before achieving full productivity. During this
period, the productivity is reduced of those who spend their time helping the new
employee learn the job. When employee satisfaction is low, it is often the most
valuable employees who leave, since they are also the most marketable to other
firms. Also, low employee satisfaction may make it difficult to attract the best tal-
ent as replacements. Losing key contributors can increase development costs and
risks, lengthen schedules, and lower quality.

Our model for estimating the value of reduced employee turnover is adapted from
McGibbon’s analysis. The parameters for this model] are listed in Table 6.1. The
value of employee satisfaction, in terms of reduced turnover is given by (EQ 37).

emp_satisfaction_val = dev_staff size X EQ37N
(staff_turnover — SPI_staff_turnover) X turnover_cost_emp

Success Factors

Since the specification occurs early in the development life-cycle, SBS requires few

prerequisite technologies. Appropriate tools for creating the specification can save consid-

Table 6.1: Parameters for estimating the value of reduced employee turnover costs

Parameter Definition Suggested data source

dev_staff_size Development staff size. Head count from personnel.

staff_turnover Staff turnover rate per year. Personnel office. Studies suggest 10-
30%.

SPI_staff_turnover Expected staff turnover rate with SPI. | A modest 5-10% reduction in the

baseline turnover rate is suggested.

turnover_cost_emp Turnover costs per employee. This value should include costs of

recruitment, relocation, training, ori-
entation, and lost productivity.

Cost-Benefit Templates for Cleanroom ! page 150

erable time during the specification process. Detailed requirements and access to customer

domain experts for clarifying requirements will be needed to develop the specification.

6.2.3 Functional Verification Effects

Functional verification has been shown to be an effective approach to eliminating defects
in specifications, design, and code [32] [33] [71]. In Cleanroom, functional verification

usually replaces unit testing.

Costs

Production Costs.
» Effort to perform verification process

Verification can be applied to requirements, specifications, and design documents
as well as to source code. Table 6.2 provides an example of estimating the addi-
tional cost for reviewing both documentation and code: the organization produces
an estimated 3,125 function points per year representing 400,000 lines of code and
46,000 pages of documentation at a cost of $60 per staff hour.

Implementation Costs.
e Training and coaching‘costs
These costs can be quantified using (EQ 31) and (EQ 32).
* Tool support for verification |
Tools are not necessary for verification but can be helpful in the management of

verification status, defect tracking, and metrics collection. If tools are used, their
costs can be quantified using (EQ 29).

Cost-Benefit Templates for Cleanroom

Benefits

Functional verification leads to several benefits as illustrated in Figure 6.3 and

Table 6.2: Example estimate of additional verification cost

' Documentation Code
Output units Pages SLOCS
Units per FP 10 128
Units perreview session 20 320
FPs per session 2.0 2.5
Baseline percent of work reviewed 40% 10%
SPI percent of work reviewed 90% 95%
SPI percent of reviews repeated 30% 20%
Administrative hours / review 1 0.5
Hours / session participant 2.5 1.5
|Avg reviewers / session 3.0 3.0
Person hrs / review 8.5 5
Additional units reviewed yr 15,625 340,000
Additional FPs reviewed yr 1,563 2,656
FPs in secondary reviews 469 531
Additional review sessions / yr 1,016 1,275
Cost per review $510 $300
Additional review hours / yr 8,633 6,375
Additional review cost / yr $517,969 $382,500
Additional review percent of budget 5.26% 3.88%
Review cost per Unit $33 $1.13
Review cost per FP $332 $144

described below.

Reduce unit testing and debugging

page 151

Head estimated that 90% of errors on Cleanroom projects at Hewlett-Packard were
eliminated by inspections with functional verification and 10% were eliminated by
testing [33]. Experiments by Basili have shown that code reading by programmers
other than the author is more effective and efficient at finding defects than testing
[54]. Clear box verification is believed to be more effective than other kinds of

team code reviews because of the use of function-theoretic reasoning.

If an organization chooses to completely eliminate unit testing, the cost savings
can be estimated by the current cost of unit testing. This cost savings is given by

Cost-Benefit Templates for Cleanroom page 152

Functional
Verification
Reduce unit | | Improve defect | | Reduce Reduce design Improve Increase
testing and removal error errors and t ra?nin employee
debugging efficiency rates error severity 9 satsifaction
Reduce Higher design
field and coding
failures productivity
i e Rakce
satisfaction cancellation maintenance cost

Figure 6.3: Cause-effect diagram for functional verification

unit_testing_cost = dev_budget_yr X unit_test_pct/ 100 (EQ 38)

where unit_test_pct is the percentage of the budget spent on unit testing. Accord-
ing to Stevenson [73], unit testing consumes about 11% of the total development
effort.

Some organizations may only reduce unit testing by a percentage, thus
unit_test_saifings = unit_testing_cost X unit_test_reduce_pct/ 100 (EQ 39)
» Improve defect removal efficiency
The most significant benefit of functional verification comes from its higher defect
removal efficiency over unit testing and informal review approaches. Defects are
better contained to the phase where the defect is inserted and when it is less expen-
sive to repair.
* Reduce error rates
See page 141.

* Reduce design errors and error severity

See page 142.

Cost-Benefit Templates for Cleanroom page 153

Improve training

Inexperienced personnel or personnel new to the project or organization are able to
quickly learn coding standards, reusable procedures, and the system architecture
through the group interaction and reviews.

Increase employee satisfaction

Head [33] observed that the daily team verification activities “created an environ-
ment in which each person on the team took turns being in the ‘hot seat.” People
quickly developed an understanding that reasonable criticism was both acceptable
and beneficial. The resulting frankness and openness were perceived by all to be
remarkably refreshing and exhilarating.” Sherer also reported improved morale
and partly attributed it to the environment which “creates reliance on team activity
and fosters shared responsibility” [33]. This effect can be quantified using (EQ
37).

Reduce failures in the field

Several Cleanroom projects report very few or no field defects [32],[33]. Head
believes that Cleanroom eliminates about 99% of defects prior to release [33]. A
reduction of failures in the field and reduced maintenance costs are calculated as a
percentage reduction in external field failure costs.

field_failure_savings = base_external_fail_cost_yr X reduce_ext_fail_pct (EQ 40)

reduced_testing cost = dev_budget_yr X

Reduced rework

Code and design rework is eliminated as a result of improved defect removal effi-
ciency, reduced error insertion rates, and reduced design errors. This effect is cal-
culated as a percentage reduction in the baseline annual internal failure costs.

rework_savings = base_internal_fail_cost_yr X reduce_int_fail_pct EQ41)
Reduce testing costs

The time required for testing is less because there are fewer defects and fewer
cycles of rework and retesting. We account for this effect by a percentage reduc-
tion (test_reduce_pct) in testing costs. The testing costs can be estimated as a per-
centage (sys_test_pct) of the development budget (dev_budget_yr). According to
Stevenson [73], system testing accounts for about 15% of the development budget.

sys_test_pct test_reduce_pct
100 100

(EQ42)

Cost-Benefit Templates for Cleanroom ' page 154

Higher design and coding productivity

By improving the skills of the new and inexperienced personnel, the overall devel-
opment productivity is improved which helps to reduce design and coding cost.
Thus, this effect is estimated by a percentage reduction (SPI_prod_imp_pct) in
these costs. According to Stevenson [73], detailed design and coding
(dsgn_code_pct) accounts for about 24% of the development budget.

dev_cost_savings = dev_budget_yr X ‘—iign——lgggi'-‘l)it (EQ43)
xX|1- 1
(1 + SPI_prod_imp_pct)
100

Increased customer satisfaction

Verification of the specification helps insure the system meets customer require-
ments. Design and code verification also helps reduce field failures. The value of
increased customer satisfaction can be quantified by directly estimating an
increase of business that indirectly results from functional verification. See Table
5.11 for an example calculation.

Reduced risk of project cancellation

See the approach used for estimating the value of reduced acquisition risk in Sec-
tion 5.3.5.

Reduce maintenance costs

Maintenance costs are reduced from fewer errors in field and from defects that are
easier to correct.

Success Factors

The verification process is more effective when the product under review has been

well defined. For example, it is easier to verify a design against a sequence-based specifi-

cation than against an informal specification because the informal specification is likely to

Cost-Benefit Templates for Cleanroom ‘ page 155

be incomplete and ambiguous. The entry criteria to clear-box correctness verification is a
well-defined design specification.
Programming standards to limit the allowed constructs and pre-defining correctness

conditions for the standard constructs can help streamline the verification process.

6.2.4 Incremental Development Effects

The benefits of incremental development include better intellectual control, customer
feedback, risk management, and facilitation of statistical process control. On the cost side,
incremental development inqurs an additional increment planning time to determine what
functionality should go in each increment and additional regression testing as each incre-
ment after the first is certified.

To quantify incremental development effects we explore the use of a simulation model
in addition to conventional equations. We use a set of equations to estimate the cost of
training and the value of increased customer satisfaction, reduced cycle time, and
increased employee satisfaction. To estimate the additional cost of increment planning,
regression testing, and the vaiue of reduced rework and increased productivity we offer

two approaches: one using conventional equations and a second using a simulation model.

Estimating Cost-Benefit Effects Using Simulation
Our simulation model covers aspects of a single software project and contains a set of
input parameters and output variables. The project size (in function points), work produc-

tivity rates (in function points per week), and staff costs (staff person cost per hour) are

Cost-Benefit Templates for Cleanroom page 156

examples of the input parameters for the model. The output variables allow us to measure
the impact of policies on cost and schedule. The use of this model for estimating cost-ben-

efit effects involves the following steps.

1. Build and calibrate the baseline model for a typical baseline project
This step involves gathering data to characterize the typical project for an organi-
zation under the baseline scenario. Historic project and financial data can be used
to estimate these parameters. To derive data for the typical project we use the total
financial figures for the organization divided by the number of projects represented
by the data.

2. Modify model input parameters for the SPI scenario
In this case the Software Process Improvement (SPI) is incremental development.
We make adjustments to the model parameters to represent the expected effects.
The subsequent sections on the cost-benefit effects describe how these model
parameters are adjusted for each effect under the SPI scenario.

3. Simulate and obtain results for the single project case

We simulate models for both the baseline and SPI scenarios. The cost and schedule
differences give us an estimated value for each effect.

4. Generalize the single project case to the steady state organization

To generalize the project results to the steady state cost for an organization, we
multiply the results of the simulation for a typical project by the average number of
projects carried out each year by the organization.
The simulation model is described in Appendix D. The following sections describe the
quantification details of each cost-benefit effect. Subsections labeled with (a) discuss how

the effect is estimated using equations and subsections labeled with (b) discuss how the

effect is estimated using simulation.

Cost-Benefit Templates for Cleanroom page 157

Costs

Production Costs.

Time to perform increment planning step

The purpose of Increment Planning is to allocate requirements to a series of soft-
ware increments, to develop schedules and resource allocations for development,
and to obtain customer agreement on the increment plan [65]. Scheduling and
resource allocation are tasks that must be done with non-incremental development
and thus are not considered an additional cost. The only additional cost that needs
to be considered for this category is the extra time it takes to make decisions on
how to allocate the functions to the increments. The extra time needed to make
these decisions is relatively minor. Strategies and considerations for increment
planning decisions are discussed in [74].

(a) The effort for incremental planning represents a small increase over ordinary
planning costs. We estimate the baseline effort currently being used for software
development planning as a percentage (sw_plan_pct) of the development budget
(dev_budget_yr). The additional cost of planning (id_plan_cost) is computed as a
percentage increase (id_plan_incr_pct) in the planning budget.

sw_plan_pct _ id_plan_incr_pct
100 100

id_plan_cost = dev_budget_yr X (EQ 44)
The time allocated to planning and requirements gathering occupies about 6% of
project resources [9]. Since this value includes requirements gathering, it should
be considered an upper bound for sw_plan_pct. We suggest a default value for
sw_plan_pct of 3% and a default value for id_plan_incr_pct of 10%.

(b) To estimate this effect using simulation, we adjust the effort for incremental
planning to represent the extra time for allocating functions to increments. As the
number of increments increases an overhead factor increases at a more gradual
slope. The overhead factor is used to lower the Plan Incr Productivity variable
which has the effect of increasing increment planning cost and schedule.

Additional regression testing

Each increment represents the sum of all code from previous increments plus the
new code. Additional testing cost is incurred since the code from previous incre-
ments is retested to some extent on each new increment.

(a) With incremental development, the entire cumulative set of software is tested at
the completion of each software increment. This regression testing represents an

Cost-Benefit: Tefnplates for Cleanroom . page 158

additional cost for incremental development. The regression testing hours for a
single project (reg_test_hrs_proj) can be estimated by

reg_test_hrs_proj = P X '%1 X reg_test_hrs_fp (EQ45)

where, P is the size of a project in function points, 7 is the number of increments
that will be applied to a project, and reg_test_hrs_fp is the number of effort hours
per function point needed for regression testing. The factor P X (n—1)/2 repre-
sents the amount of code in function points subject to regression testing. Consider
a sequence of n software increments where each increment adds P/n function
points of new code. For each increment i, the amount of code from previous incre-

ments that is tested is (i — 1) X P/n function points. The amount of code for all n
increments that must be regression tested is

—XZ(Z—)——XZz=P n(n 1)_ Px 21

i=1 i=1

To estimate the additional regression testing hours for the organization, we esti-
mate reg_test_hrs for the average software release produced during a year and
multiply that result by the average number of software releases produced each
year.

The parameter reg_test_hrs_fp represents the unit cost for regression testing in
terms of effort hours per function point. This value should always be less than the
unit cost for new function testing (new_test_hrs_fp). This unit cost will vary
depending primarily on the use of automated testing. The suggested default value
for reg_test_hrs_fp is 20% of new_test_hrs_fp if automated regression testing is
used, or 80% of new_test_hrs_fp otherwise. The value for new_test_hrs_fp can be
estimated from the hours spent on new function testing for a given amount of func-
tion points for representative projects.

The project size parameter (P) should represent the average size of a project or
software release generated during a year under the baseline scenario. The parame-
ter n can be estimated indirectly by estimating the targeted size for the average
software increment avg_incr_size < P under the Incremental Development sce-
nario. Then we can estimate n = P/avg_incr_size and rounding = to the nearest
integer. The targeted avg_incr_size could represent the increment size that results
in the highest productivity for the organization. Banker and Kemerer [4] offer evi-
dence that “for most software ‘production processes’ there exist increasing returns
to scale for smaller projects and decreasing returns for very large projects. That is,

Cost-Benefit Templates for Cleanroom page 159

average productivity is increasing as long as project size is smaller than the ‘most
productive scale size’ (MPSS), and is decreasing for projects that are larger. The
actual MPSS may be different for different organizations.” Banker and Kemerer
show how managers can estimate the most productive scale size for their organiza-
tion. We hypothesize that a similar situation exists with increment size. The most
productive increment size (MPIS) could be determined for an organization such
that average productivity is increasing for increments smaller than MPIS and
decreasing for larger increments.

Consider a project of a fixed size over a series of scenarios for decomposing the
project into increments—f{rom many small increments to few large increments.
Since there is a fixed amount of overhead for each software increment the average
productivity increases initially as the fixed overhead is spread over a larger incre-
ment size. Also greater productivity occurs since the increased increment size
results in lower regression testing cost. Eventually, for large projects the increment
size is so large that it is difficult to maintain intellectual control, and the marginal
productivity of the tearn declines. Methods for determining the most productive
increment size for an organization is a topic for further research.

(b) With the simulation model we can represent the regression testing effort
through the Reg Test Flow rate shown in Figure 6.4. When an increment is deliv-
ered, the cumulative function points for that increment are added into the “To
Regression Test” level. When it is time to test the next increment the “start testing”
variable turns on the “reg test flow” valve to initiate the regression testing effort.

Implementation Costs.

Training and coaching costs

Cost of consultants to review plans

Training and coaching for incremental development is small relative to other
Cleanroom technologies. To estimate these cost use (EQ 31), (EQ 32), (EQ 33).

Benefits

Incremental development provides a manageable approach to software development

that leads to a number of significant benefits as shown in Figure 6.5 and described below.

Cost-Benefit Templates for Cleanroom page 160

Regression testing per increment

<Pending Delivery Code> <avg increment size>
\){/d‘l\rﬂi STEP>
T Ty (e delivery pulse
<Tuotal Test Cises> / / <Verified Code increments>
T~ 2+ <PROJECT SIZE>
reg test pulse
<!cslm" staried>
reg test delay pulse To Regression
Test start testin;
g‘\< lcst Cases>
<avg mcsexmm sives>
reg test ﬂow
. Reg Test Rate

Reg Tested

eg Test Productivity>

<Test FTEs used>
<Test FIEs uvailuble>

Figure 6.4: Regression testing simulation model

Incremental
Development

Intellectual Increased Concurrent
control productivity engineering

Functional Change |
feedback accomodation feedback

AW=caN

Increased Reduced
customer requirements
satistaction creep cost

Increased
Reduced employee
cycle time satisfaction

Reduced risk
of project
cancellation

Figure 6.5: Cause-effect diagram for incremental development

Cost-Benefit Templates for Cleanroom . page 161

Functional feedback and change accommodation

Incremental development allows users to examine early releases and provide feed-
back to ensure they are getting the system they really want (which may not neces-
sarily be the one they asked for originally). Subsequent increments can be
replanned as needed to accommodate unanticipated requirement changes. Require-
ment changes can be deferred to future increments reducing the harm that late
requirements can cause if implemented into the middle or later part of a develop-
ment effort. These effects are quantified through reduced costs of incorporating
changing requirements and improvements in customer satisfaction.

Quality feedback

Quality measures at the end of each increment can be compared with quality stan-
dards and requirements. Smaller increments and frequent milestones result in
increased visibility into the development process. Management can more fre-
quently assess whether the process is in control and take corrective actions as
needed. The value of improved quality feedback is realized through a reduction in
rework.

Intellectual control

Incremental development supports intellectual control over the system develop-
ment. The value of intellectual control is quantified through a reduction in rework
and increased employee satisfaction.

Increased productivity

Incremental development leads to higher productivity because the deliverable
goals are more manageable and attainable. Delivery date for an increment is
always imminent and reduces the Parkinson’s Law effect.

(a) This effect can be estimated as a percentage improvement in coding and design
productivity (SPI_prod_imp_pct) due to incremental development (EQ 36).

(b) In the simulation model, we model this effect by increasing the productivity of
development (Dev Code Productivity) and test planning (Dev Usage Model Pro-
ductivity) based on the reduced size of the increment from the baseline. Default
values for these productivity numbers are obtained from basic COCOMO equa-
tions [9] based on the size of the increment.

Concurrent engineering

Incremental development allows hardware and software to be developed in paral-
lel. For example, both the hardware and software can be developed incrementally

Cost-Benefit Templates for Cleanroom ' page 162

in a coordinated effort. If this effect applies (e.g., for an embedded software project
involving hardware development) then its value should be included in the cycle
time reduction calculation (see below) by estimating additional cycle days saved
due to concurrent engineering.

Increased customer satisfaction

Customers are able to participate in the development process and have opportuni-
ties to influence design decisions. The product from an incremental development is
more likely to meet customer needs. The value of customer satisfaction can be esti-
mated from an anticipated increase in business as shown by the example in Table
5.11.

Reduced requirements creep cost

The cost of incorporating new or changed requirements is reduced when incremen-
tal development is used. First, a smaller base of code and design is impacted for
each requirement change requested. This requires less effort to understand what
needs to be changed to accommodate the new requirements. Second, because of
the smaller code base it takes less effort to modify the code and to test the changes.
Third, it is less likely that changes made will introduce new defects. Finally, the
requirements change is less likely to require an emergency patch. Most changes
can be planned and incorporated into the next increment.

(a) In Section 6.2.5 we provide a model for estimating the reduced cost of require-
ments creep that results from statistical usage modeling and testing (see (EQ 54)
and Table 6.4). In that case costs are reduced by improving the requirements anal-
ysis process (through usage modeling). In the case of incremental development,
we reduce the cost involved for incorporating new or changed requirements when
they occur. However, (EQ 54) accommodates both scenarios since the creep reduc-
tion percentage can be used to reduce either the cost or the frequency of creep.

(b) In our simulation, reduced cost of incorporating late requirements is repre-
sented by increasing the productivity for development rework. The “Rework Code
Productivity” is increased by a percentage over the baseline value.

Reduced rework

The top-down approach of combining parts under intellectual control ensures all
the parts fit together without rework of code from previous increments. The quality
feedback provided from each increment allows the process to be improved to
reduce defects and rework on subsequent increments.

(a) Reduced rework can be quantified by estimating a percentage reduction in the
baseline cost of rework. The baseline cost of rework can be estimated as a percent-

Cost-Benefit Templates for Cleanroom page 163

age of the development budget. Some authorities have estimated that finding and
fixing errors accounts for 20-40% of the development budget [73].

rework_cost_yr = dev_budget_yr X rework_budget_pct (EQ 46)

SPI_reduce_rework_savings = rework_cost_yr X SPI_reduce_rework_pct (EQ47)

(b) In the simulation model, we reduce the baseline percentages of defective code
found in development and testing.

Reduced cycle time

Higher productivity, concurrent software engineering and reduced rework help to
reduce the cycle time.

(a) The value of reduced cycle time can be estimated using (EQ 58). The number
of days that can be reduced from incremental development (proj_days_saved_yr)
should account for time savings from increased productivity, reduced rework, and
concurrent engineering.

(b) The simulation model can be used to estimate how much cycle time can be
saved through incremental development, and to help determine the optimal incre-
ment size for a project. The productivity increases and reduction in rework are
effects that lead to cycle time reduction. In the simulation model, cycle time is
measured with the “Project Completion Time” variable as shown in Figure 6.6.
The Project Completion Time is set to the Time (measured in Weeks) when the
total functionality delivered to the customer is equal to the project size.

<Fault Density Percent> <Delivered Product>

\ / <PROJECT SIZE>
‘ <Time>

stabilize flow Total
£3 % - . {—®fraction complete ‘
Delivered ~—al L
Project
Completion

<ADJUSTED HOURS PER PW=——pu 4 vara ff“"/ Time
ge Sta
/

<Total Effort Hours>

Figure 6.6: Project completion time simulation model

Cost-Benefit Templates for Cleanroom page 164

* Increased employee satisfaction

Morale is higher because real progress is visible and achievable [13]. The value of
avoiding employee turnover can be estimated using (EQ 37).

* Reduced risk of project cancellation

Incremental develoﬁment reduces project failure risk. Customers have better
understanding of progress. Also, the product is more likely to be delivered on-time
and within budget due to the reduced rework and increased productivity. The
reduced risk of project cancellation can be estimated as in Section 5.3.5.

Success Factors

It is possible to begin increment planning directly from a statement of work or from a
set of requirements. However, it is better to begin with a Function Specification, Usage
Specification, Software Architecture, Reuse Analysis, Risk Analysis, and a Schedule and

Resource Plan as defined in [65]. Guidelines for the increment planning process are in

[65] and [74].

6.2.5 Statistical Testing and Certification Effects

Statistical testing involves developing a usage model in the form of a Markov chain to rep-
resent all possible ways the system can be used. The time spent creatin% the usage model
is the most significant cost of statistical testing.-This effort can be reduced by having a
complete specification and appropriate tools. The benefits of statistical testing include
automated test case generation, efficient testing, validation of requirements, and improved

decision making.

Cost-Benefit Templates for Cleanroom page 165

Statistical usage testing leads to a shift in how testing resources are used. A primary
effect is that less time is spent in preparing iest cases and more time is spent in developing
the usage specification and models. After the usage models have been created, test cases
can be automatically generated from the usage models.

Our model for usage testing ;equires baseline information about how much the organi-
zation is currently spénding on software development and testing and how much code is

being generated each year.

Costs

Production Costs.
» Time to analyze, develop and maintain a usage model -

Agrawal [2] reported on the use of statistical usage testing for testing three incre-
ments of embedded, real-time software to control a tape drive. The size and effort
data reported for three software increments can be described by (EQ 48). We use
this equation for estimating the usage model effort required based on the code size.
The cost of constructing the usage model is given by (EQ 49).

usage_model_dev_hrs = 36 x KLOCS_per_year + 15 (EQ48)

usage_model_cost = usage_model_dev_hrs X staff_cost_hr (EQ 49)

The process of constructing the high level usage specification can be performed
prior to the functional specification. In that case we only want to count the addi-
tional time involved in documenting states of usage and estimating transition prob-
abilities. The additional effort required to make design decisions should directly
displace the functional specification effort.

Implementation Costs.

* Cost of tools for usage model development, statistical test case generation, analy-

sis and certification, see (EQ 29) and (EQ 30)

Cost-Benefit Templates for Cleanroom

» Time to interface usage test generator for testing environment

page 166

To realize the efficiencies from automated testing there may be some effort
involved to interface the output of the usage model to a specific testing tool or test-
ing environment. This cost is expected to be a one time cost.

interface_tool_cost = interface_tool_hrs X cost_staff_hr

o Personnel time in training, see (EQ 31)

« Costs of consultants for coaching and training, see (EQ 32) and (EQ 33)

Benefits

(EQ50)

The benefits that can be derived from statistical usage testing are outlined in Figure 6.7

and described below.

,/

Statistical testing

R

- Improved Automated Effective, Quantitative
Xe:t?ggg nct’; planning and test case efficient test
scheduling generation testing management
Reduced
requirements
creep
Reduced Reduced Higher improved
cost cycle time quality decisions

Figure 6.7: Cause-effect diagram for statistical testing

Cost-Benefit Templates for Cleanroom page 167

Validation of requirements

The process of building the usage model provides intrinsic benefits aside from pro-
viding a foundation for statistical testing. An early external view of the system is
generated that can be understood and verified by developers, customers and users.
Customer participation in constructing and validating the usage model helps to
elicit, confirm and stabilize user requirements early in the development life-cycle.
We quantify the value of this effect through the reduced risk of requirements creep
(see below).

Reduced risk of requirements creep

Usage specification and modeling mitigate the risk of requirements creep later in
the life cycle. Jones states that “defect rates associated with new features added
during mid-development are about 50% greater than those of the artifacts associ-
ated with the original requirements. Defect removal efficiency levels are depressed
as well, sometimes by more than 15%.” He also states that “Because the costs of
creeping requirements climb steeply as the development cycle proceeds, there are
strong economic reasons for being very thorough early” [39].

Our model for computing the value of the reduced risk of requirements creep is
based on the idea that requirements introduced in later stages of development cost
more than if they were identified during the requirements phase. Jones [39] has
suggested that requirements introduced during design cost about 1.25 times as
much as those introduced during the requirements phase. Table 6.3 provides exam-
ple default values for the rate of growth and the relative cost of requirements.

When usage specification is used to validate requirements, it can reduce require-
ments rate of growth in subsequent phases. Our model for analyzing this cost sav-
ings requires estimates for the amount of time spent in design, coding and test
phases. The parameters for our model are described in Table 6.4.

Table 6.3: Requirement origins and comparative costs?

Development Rate of Relative
phase growth cost
Feasibility 25% 0.75
Requirements 50% 1.00
Design 3% 1.25
Coding 1% 1.50
Testing ' 0.5% 2.50

a. Based on Jones [39], p. 136, Figure 1.

Cost-Benefit Templates for Cleanroom

page 168

Table 6.4: Parameters for the value of reducing requirements creep

developed each year. Can be estimated by counting lines of
code developed per year.

Parameter Description Example value
cost_per_FP Cost per function point. The baseline life-cycle develop- $1,000
ment cost per function point. This value can be estimated
by dividing the development cost per year by the function
points developed per year.
FPs_per_year Function points per year. The number of function points 100,000

dev_budget _yr

Development budget per year.

dev_phase(i). The following variables are needed for each major development phase after the require-
ments phase is complete: The development phase i can be either design, code, or test.

month for the development phase.

rel_cost_fp Relative cost per function point. The relative cost per func- | 1.25, 1.5,2.5
tion point for a requirement introduced during this phase.

budget_pct Budget percent. The percent of the development budget 23%, 21%, 30%
spent in the design, code or test phases.

creep_mth Creep rate per month. The requirements creep rate per 3%, 1.25%, 0.5%

creep_reduce

Creep reduction percent. The expected percent reduction
in the creep rate due to the improvement. ‘

10%

The cost savings from reducing requirements creep can be estimated as the differ-
ence in the cost of requirements creep with and without the process improvement.

reduce_rqmts_creep_savings = base_rqmts_creep_cost — SPI_rqmts_creep_cost (EQ 51)

The baseline cost of requirements creep is obtained from (EQ 52).

base_rqmts_creep_cost = dev_budget_yr x 12

X Z(rel_cost_fp(i) X

creep_mth(i) % budget_pct(i))
100 100

(EQ52)

The cost of requirements creep with the process improvement is given by (EQ 53).

SPI_rgmts_creep_cost = dev_budget_yr x 12

X Z (rel_cost_fp(i) X

(EQ53)

100 100

creep_mth(?) x budget_pct(i) x (1 3 creep_reduce(i)))
100

Cost-Benefit Templates for Cleanroom page 169

The resulting formula for the savings simplifies to (EQ 54)

reduce_rqmts_creep_savings = dev_budget_yr X 12 (EQ54)

creep_mth(i) _ budget_pct(i) creep_reduce(i))

X Z(rel_cost_fp(z) X 100 X 100 X 100
l

Improved planning and scheduling

“Standard calculations on a usage model provide data for effort, schedule, and cost
projections, such as the minimum number of tests required to cover all states and
transitions in the model.” [65] Improved planning and scheduling increase the effi-
ciency of the testing effort. ‘

Automated test case generation

Once the usage model is built, a considerable amount of time can be saved in gen-
erating test cases. We can estimate this savings from the average time to prepare a
test case by hand, the number of test cases in the baseline environment, and the
cost per staff hour.

auto_test_gen_savings = avg_test_case_prep_hrs X (EQ55)
num_test_cases X cost_staff _hr

Alternatively, we can compute these savings by estimating the portion of the
annual development budget that is currently spent on manual test case generation
that would be eliminated by the usage testing.

auto_test_gen_savings = dev_cost_yr X wS#gfo_Leon_wt (EQ56)

Effective, efficient testing

The generated test cases will test paths at the rate expected during operational use.
Faults on frequently traversed paths have the highest probability of causing a fail-
ure in the field. Thus “the test budget is spent in a way that maximizes the increase
in operational reliability from testing.” [65]

We estimate an improvement percentage due to statistical testing and apply it to
the annual testing budget.

test_improve_pct
100

test_eff savings = test_cost_yr X EQ57)

Cost-Benefit Templates for Cleanroom) page 170

The annual system testing budget can be estimated by multiplying the annual
development cost by the percent of the budget spent on testing. According to
Stevenson, system testing accounts for about 15% of the development budget [73].

Quantitative test management

Statistical usage testing provides quantitative estimates of operational reliability as
well as other quantitative results to support decisions regarding the testing process.

Reduced testing cost

Statistical testing reduces cost of testing by improving the test planning and sched-
uling process, by automating test case generation and execution, and by efficiently
improving the operational reliability.

Reduced cycle time

Usage modeling and test generation activities can be performed in parallel with the
development team without being on the critical path. When the development is
complete and ready to test, testing can be performed automatically and efficiently.
Also, a pre-determined quality target (MTTF) can be achieved faster. The value of
cycle time reduction will depend on the industry and market conditions. We com-
pute the value of reduced cycle time based on the number of project days saved
each year times the value of each cycle day saved.

cycle_reduct_value = proj_days_saved_yr X cycle_day_value (EQ58)
Higher quality

Statistical testing contributes to improved field quality of the software product.
The quantitative analysis and improved prediction of field quality improves pro-
cess control and release decisions. Higher field quality results in lower field sup-
port costs and higher customer satisfaction.

The primary impact of improved field quality is reduced maintenance costs and
higher customer satisfaction. Maintenance cost savings can be estimated by reduc-
ing the annual maintenance cost by a percentage.

maint_reduct_pct
100

maint_cost_savings = maint_cost_yr X EQ 59)

Customer satisfaction can be quantified as in Section 5.1.2.

Cost-Benefit Templates for Cleanroom page 171

Improved release decisions

Quantitative data from the testing process can help managers make better deci-
sions on when to stop testing and release the software. To quantify this improve-
ment we use a bayesian decision model.-Management does not know with
certainty how the software will perform in the field, but must decide whether to
release the software or to continue testing for a period of time. There are economic
consequences of each choice depending on the true quality of the software.

A decision to release software results in several economic advantages if the quality
of the software is good. The product has an advantage of getting to market earlier

(possibly first) resulting in longer product life and potentially higher margins and

higher market share. For government projects award fees may be won or penalties
avoided for meeting release milestones. Development and testing resources can be
freed to work on other projects.

However, if the software is released and the quality is poor the results can be disas-
trous. Development and testing resources continue to be tied up analyzing and
making corrections. Serious defects that destroy user data or prevent critical fea-
tures from working properly can lead to a costly product update patch, recall, or
litigation. Poor quality software tarnishes the image of the product and leads to
lower market share, lower margins, or both.

Development resources are used to review and rework code if significant defects
are found. The delay has a cost, but it may have mitigated the higher cost of a
product recall.

However, if no more serious defects are found and corrected during the extra test-
ing, the cost of the additional testing may not have been worth the delay in the
product release. ,

With two decision choices (release or keep testing) and two unknown states of
“nature” (poor or good quality) we have four potential outcomes as shown in Table
6.5.

The values in this matrix represent the average payoff for each release decision and .
can be estimated by reviewing past experience for an organization. For example,
all release decisions over the past year could be reviewed, categorized, and aver-
aged according to this matrix categorization. Suppose the company correctly pre-
dicts the software field quality (and thus makes the correct decision) 85% of the
time. By using Statistical Usage Testing they anticipate that they will be able to

Table 6.5: Payoff matrix example

Payoff Good Poor
release $200,000 ($420,000)
keep testing ($300,000) ($300,000)

Cost-Benefit Templates for Cleanroom

Table 6.6: Baseline decision probabilities

Baseline Good Poor

release - 43% 8%

keep testing 8% 43%
Table 6.7: Statistical usage testing decision probabilities

Statistical Usage Testing Good Poor

release 48% 3%

keep testing 3% 48%

page 172

correctly predict software field quality 95% of the time. Suppose further that the
true state of the software is good 50% of the time when the release decisions are
made. Then the decision probabilities for the baseline case are shown in Table 6.6
and the probabilities for the statistical usage testing case are shown in Table 6.7.

For the baseline case, the average decision costs $96,500. However, when statisti-

cal usage testing is used the average decision costs $65,500, representing a savings

of $31,000. If the organization makes 5 decisions each year the annual savings is

$155,000. ‘
Success Factors

The process of developing the high level usage specification helps to define functional

specifications and requirements. If functional specifications already exist it is easier to
develop a user specification because decisions have already been made about how the
application will flow. Conversely once a usage specification exists, it is easier to complete
a functional specification. The usage specification process forces customers to specify
how the application will flow. The additional effort for creating ﬁsage models is in docu-

menting the usage states in the Markov chain format and estimating transition probabili-

ties for each mode of use.

Cost-Benefit Templates for Cleanroom page 173

6.3 Validation

SPI templates were created in the CBA prototype tool for each of the four Cleanroom
technologies described in this chapter. The evaluation functions for each of these tem-
plates were in the form of formulas. Many of the parameters in the formulas are also
defined in terms of formulas. Most formulas are simple, but some use the bayesian deci-
sion model. As an example, the template for statistical testing is listed in Section E.2 of
Appendix E.

An example baseline environment was created for each template to support validation.
The baseline environments were created to be reasonable and self-consistent regarding
code size, number of personnel, and budgets based upon available industry data. Having
the SPI templates in place greatly simplified the task of producing a cost-benefit analysis
for a hypothetical organization.

Once a baseline is described and an SPI has been chosen for evaluation, the user can
immediately focus on determining appropriate values for the parameters. Default values
and a variety of industry data is available to help the user determine values when the user
lacks data. The parameters needed for SPI evaluation are divided into two categories:
those that depend only on the baseline environment (and not on the SPI) and those that
depend on the SPI. Once an SPI is chosen for evaluation, the user is prompted for the
appropriate parameters. The baseline parameters are recorded with the baseline and the
other parameters with the CBA—SPI evaluation. As the user provides a value for each

parameter, the source for the data and any assumptions can be documented. Once all

Cost-Benefit Templates for Cleanroom page 174

parameters have been provided, a cost-benefit analysis report can be automatically gener-
ated. Several iterations of review, modifications to parameters, and regeneration are rec-
ommended. Effects can be removed, added, or modified as needed. Effect functions and
parameter functions can be altered as needed.

An example cost-benefit analysis was performed for each Cleanroom technology tem-
plate. Section F.2 of Appendix F presents an example CBA for statistical testing. The
focus of effort for each CBA was on providing reasonable parameters for the effect evalu-
ation functions. On reviewing the CBA reports, it was easy to spot effects that were unrea-
sonable when compared to other effects for the CBA or for the size and budget of the

baseline organization.

6.4 Summary of Cleanroom Templates

This chapter has developed cost-benefit templates for four Cleanroom technologies. Sec-
tion 6.1 provided an overview of Cleanroom and the four component technologies of
sequence-based specification, functional verification, incremental development, and sta-
tistical testing. Section 6.2 surveyed available literature to identify, justify, and quantify
the primary cost-benefit effects for the Cleanroom technologies. Section 6.3 described our

experiences in constructing, validating, and testing these templates.

page 175

Chapter 7

Conclusions

7.1 Research Contributions and Summary

This research has résulted in a practical economic framework for evaluating software pro-
cess improvements. The framework applies ;he principles of cost-benefit analysis and
leverages available economic models and data. Decision making is improved by providing
an organized set of process improvement templates which includes identified cost-benefit
effects, evaluation functions, and default values based on industry data and models.

Based upon this framework, we developed a prototype tool to support economic anal-
ysis of SP1 initiatives. The tool contains a rich set of functionality to establish an economic
baseline for the user’s situation, explore alternatives, and build a business case for the best
process improvement initiative. The prototype provides the ability to specify SPI tem-
plates that can be evaluated using built-in economic models, user-defined functions, pro-
cess simulation models, and industrial data. The SPI templates, functions and data can be
extended as needed.

To validate the framework, we constructed SPI templates for Emerald and Cleanroom
technologies. The Emerald templates correspond to three ways the Emerald risk informa-

tion can be used: to improve the efficiency of defect detection efforts, to support reengi-

Conclusions page 176

neering decisions, and to improve the software acquisition process. The prototype has
beén used successfully on several large industrial software projects to estimate the value
of using Emerald to improve their software process.

We also constructed SPI templates for four key Cleanroom technologies: sequence-
based specification, functional verification, incremental development, and statistical test-
ing. The cost-benefit effects for the Cleanroom technologies were identified, justified, and
quantified based on the published literature.

As an integral part of this effort, a Cleanroom software process simulation model was
developed and tested. This simulation model was used specifically to investigate the
effects of incremental development. However, the model is genéral enough that it could be
used to study other aspects of Cleanroom process improvements.

The value of our framework is in improving how decisions are made for implementing
and sustaining process improvement efforts. The framework and prototype reduce barriers
and costs for performing proper economic analysis. The resulting CBA can be used to
communicate the value of SPI initiatives to project sponsors and upper management in a
language they can understand. Also, the tool can be used to compile metrics from on-
going SPI efforts to support continued funding of SPI initiatives that are contributing to
the bottom line.

The software crisis continues in this country and around the world with unacceptable
project failure rates, missed schedules, budget overruns, and low quality products.
Improvements to the software process can address these problems. Yet 75% of software

development organizations in the U.S. are at the lowest CMM level — characterized by

Conclusions page 177

“chaotic development methods with little formality and uninformed project management.”
[39] A significant challenge to introducing process improvements is in winning the sup-
port of project sponsors and upper management. The impact of potential improvements is
difficult for software managers to assess and even more difficult for sponsors to under-
stand. Intense schedule pressure often leads to a focus on short-term gains (e.g., writing
code with insufficient design, poor architecture, and no code review) at the expense of
long-term losses (e.g., extended testing cycle, high rework, unacceptable defect levels). To
a certain extent, the failure to implement and sustain improved practices is caused by unin-
formed (or out of control) management failing to understand their long-term costs and
benefits. Our framework and prototype may help remedy this situation by making it easy

to evaluate and visualize the economic impact of improved practices.

7.2 Directions for Future Activities and Research

There are many interesting and challenging directions in which this research can be
extended. The implementation of the internet concept as described in Section 4.3 offers
the possibility of a mutually beneficial collaboration between software engineering
researchers and industrial organizations. The industrial clients would benefit from the eco-
nomic analysis capabilities of the service and the research community would gain data and
feedback for improving the models. An internet implementation could evolve into a com-

prehensive repository of SPI templates, economic models, and industrial data.

Conclusions page 178

Many more SPI templates must be édded to the framework to cover all common pro-
cess improvements. Example SPIs to add include systematic software reuse, inspections,
anci various formal methods. As the repository increases, more functions, parameters, and
models would need to be added. An ongoing challenge will be to limit the complexity of
the models and the total number of parameters that must be provided. Keeping the frame-
work practical and useful requires that we maximize the SPIs that can be evaluated with
the minimal number of unique parameters.

The tool can be extended to account for risk and sensitivity analysis using the tech-
niques described in Section 2.4.6. To handle sensitivity analysis, the SPI templates would
need extensions for classifying parameters into dependent subsets, and to provide default
high and low values for parameters.

Many additional cost models, SPI-specific economic models, process simulation mod-
els, and process simulation approaches can be incorporated into the framework that would
be useful for evaluating SPI impacts. For example, COCOMO II [10] could be incorpo-
rated for estimating effects of software process maturity. Various reuse models [47] could
be used for estimating the effects of systematic reuse. Other system dynamics models [51],
and other types of process simulation models [66] could be used for modeling effects of
inspections and other specific improvements.

An important area for further research is continuos empirical validation and improve-
ment of the SPI templates. Measures and classification of the quality of the evidence back-
ing the claimed benefit effects would be useful. As new evidence accumulates on an SPI,

it can be systematically evaluated against earlier evidence for modifying the framework.

Conclusions page 179

This research has also identified some areas where economic models are needed. As
discussed in Section 6.2.4, research and methods are needed to help identify the most pro-
ductive increment size. Incremental development is widely believed to be a very produc-
tive approach to development, but little guidance is provided in the literature on
specifically how to organize and size increments. We explored the factors that contribute
to economies of scale and diseconomies of seale related to increment size using simulation
models. However, more empirical validation is needed.

The relationship among usage model size, software size, and development effort needs
more empirical research. Since usage modeling is often performed early in the develop-
ment life-cycle to help establish requirements, it can potentially help predict the size of an
application early in the life-cycle.

In summary, everyone seems to agree that each organization needs to maintain base-
line performance data, collect metrics, and manage quantitatively, yet few do so. This is a

first step in providing the tools to help errant managers do what needs to be done.

REFERENCES

page 181

R _ N

References

[1]

[2]

[3]

[4]

[5]

[6]

Abdel-Hamid, T., and S. E. Madnick, Software Project Dynamics: An Integrated
Approach, Prentice Hall, New Jersey, 1991.

Agrawal, K., and J. A. Whittaker, “Experiences in Applying Statistical Testing to
a Real-Time, Embedded Software System,” Proceedings of the Pacific North-
west Software Quality Conference, Portland, Oregon, October, 1993, pp. 154-
170.

Arthur, L. J., Software Evolution: The Software Maintenance éhallenge, New
York: John Wiley & Sons, Inc.

Bénker, R.D., and C. E Kemerer, “Scale Economies in New Software Develop-
ment,” IEEE Transactions on Software Engineering, Vol. 15, No. 10, October
1989, pp. 1199-1205.

Basili, V,, E McGarry, G. Page, R. Pajerski, S. Waligora, M. Zelkowitz, “Soft-
ware Process Improvement in the NASA Software Engineering Laboratory,”
Technical Report CMU/SEI-94-TR-22, Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University, December, 1994.

Basili, V., and S. Green, “Software Process Evolution at the SEL,” IEEE Soft-

ware, July 1994, pp. 58-66.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

page 182

Birk, A., P. Derks, R. van Solingen, J. Jirvinen, “Business Impact,’Benefit, and
Cost of Applying GQM in Industry: An In-Depth, Long-Term Investigation at
Schlumberger RPS,” Fraunhofer Institute for Experimental Software Engineer-
ing, Germany, August 1998, IESE-Report 040.98/E.

Boehm, B. W., “Software and its Impact: A Quantitative Assessment,” Datama-
tion, Volume 19, Number 5, May 1973.

Boehm, B. W., Software Engineering Economics, Prentice-Hall, Englewood
Cl.iffs, New Jersey, 1981.

Boehm, B. W. et. al., COCOMO II Model Definition Manual, Version 1.4, Uni-
versity of Southern California.

Briand, Lionel, Bernd Freimut, Ferdinand Vollei, “Assessing the Cost-Effective-
ness of Inspections by Combining Project Data and Expert Opinion,” Fraunhofer
Institute for Experimental Software Engineering, Germany, 1999, ISERN-99-14,
also published as IESE-Report No. 070.99/E.

Brodman, Judith G, and Donna L. Johnson, “Return on Investment from Soft-
ware Process Improvement as Measured by U.S. Industry,” CrossTalk, vol. 9, no.
4, April 1996.

Brooks, Jr., Frederick P., The Mythical Man-Month: Essays on Software Engi-
neering, Addison-Wesley, 1975.

Bruckhaus, Tilman, “The Impact of Tools on Software Productivity,” IEEE Soft-

ware, Vol. 13, No. 5, September 1996, pp. 29-38.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

page 183

Campanella, Jack, et. al., Guide for Reducing Quality Costs, Milwaukee, Wis-
consin, American Society for Quality Control, 1987.

Canada, John R., William G. Sullivan, and John A. White, Capital Investment
Analysis for Engineering and Management, Prentice-Hall, Inc., 1996.

Coallier, Frangois, Jean Mayrand, Bruno Lague, “Risk Management in Software
Product Procurement,” Elements of Software Process Assessment and Improve-
ment, IEEE Computer Society, June 1999.

Cruickshank, R. D., J. E. Gaffney, Jr., “An Economics Model of Software
Reuse,” Analytical Methods in Software Engineering Economics, Springer-Ver-
lag, 1993, pp. 99-137.

Curtis, W., “Building a Cost-benefit Case for Software Process Improvement,”
Notes from Tutorial given at the Seventh Software Engineering Process Group
Conference, Boston, MA, May 1995.

Cusumano, M. A., and R. W. Selby, Microsoft Secrets: How the World's Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages
People, The Free Press, New York, 1995.

Daskalantonakis, Michael K., “Achieving Higher SEI Levels,” IEEE Software,
July 1994, vol. 11, no. 4, pp. 17-24.

Diaz, Michael, Joseph Sligo, “How Software Process Improvement helped
Motorola,” IEEE Software, September/October 1997, Vol. 14, No. 5, pp. 75-81.
Dion, Raymond, “Process Improvement and the Corporate Balance Sheet,”

IEEE Software, July 1993, vol. 10, no. 4, pp. 28-35.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

page 184

Elmaghraby, Salah E., Elizabeth I. Baxter, Mladen A. Vouk, “An Approach to
the Modeling and Analysis of Software Production Processes,” International
Transactions on Operations Research, Vol. 2, No. 1, 1995, pp. 117-135.
Fenton, Norman, Phleeger, S. L., Glass R. L., “Science and Substance: A Chal-
lenge to Software Engineers,” IEEE Software, July 1994, vol. 11, no. 4, pp. 86-
95.

Ferguson, J., et. al., Software Acquisition Capability Maturity Model (SA-CMM)
Version 1.01, Technical Report CMU/SEI-96-TR-020, December 1996, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Forrester, Jay, Industrial Dynamics, The MLL.T. Press, New York, 1961.

Fuhrer, D., and J. H. Poore, “On the Efficiency of Cleanroom Certification,”
Internal report, Department of Computer Science, University of Tennessee, Janu-
ary 1991.

Glass, Robert L., “The Realities of Software chhnology Payoffs,” Communica-
tions of the ACM, February 1999, Vol. 42, No. 2., pp. 74-79.

Haley, Thomas J., “Software Process Improvement at Raytheon,” IEEE Soft-
ware, November 1996, vol.13, no. 6, pp. 33-41.

Hansen, Gregory A., “Simulating Software Development Processes,” Computer,
IEEE, January 1996, pp. 73-77.

Hausler, P. A, R. C. Linger, C. J. Trammell, “Adopting Cleanroom Software
Engineering with a Phased Approach,” IBM Systems Journal, Vol. 33, No. 1,

1994, pp. 89-1009.

[33]

[34]

[35]
[36]

[37]

(38]
[39]

[40]

[41]

[42]

page 185.

Head, G E., “Six-Sigma Software Using Cleanroom Software Engineering Tech-
niques,” Hewlett-Packard Journal, June 1994, pp. 40-50.

Herbsleb, James, et. al., “Benefits of CMM-Based Software Process Improve-
ment: Initial Results,” Technical Report CMU/SEI-94-TR-013, Software Engi-
neering Institute.

Hudepohl, John, et. al., “Emerald: Software Metrics and Models on the Desk-
top,” IEEE Software, vol. 13, no. 5, September 1996, pp. 56-60.

Juran, J. and F. Gryna, Quality Control Handbook, 4th ed., McGraw-Hill, New
York, 1988.

Jones, Capers;, Applied Software Measuremeﬁt, McGraw Hill, 1996.

Jones, Capers, Patterns of Software Systems Failure and Success, International
Thomson Computer Press, 1996.

Jones, Capers, Software Quality: Analysis and Guidelines for Success, Interna-
tional Thomson Computer Press, 1997.

Jones, Capers, “Marry in Haste, Repent at Leisure: Successful Outsourcing
Requires Careful Consideration and Planning,” Cutter IT Journal, vol. 11,no0.7,
July 1998, pp. 22-29.

Kelly, D.P.,, and J.H. Poore, “From Good to Great: Lifecycle Improvements can
Make the Difference,” Cutter IT Journal, vol. 13, no. 2, February 2000, pp. 7-14.
King, John Leslie, and Edward L. Schrems, “Cost-Benefit Analysfs in Informa-
tion Systems Development and Operation,” Computing Surveys, vol. 10, no. 1,

pp- 19-34, March 1978.

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

page 186

Kramer, Bernd and Lugi, “Toward Formal Models of Software Engineering Pro-
cesses,” Journal of Systems Software, 1991, No. 15, pp. 63-74.

Krasner, H., “Accumulating the Body of Evidence for the Payoff of Software
Process Improvement,” (1997 version), http://www.utexas.edu/coe/sqi/archive,
also in “The Payoff for Software Process Improvement: What It Is and How to
Get It,” Elements of Software Process Assessment and Improvement, IEEE Com-
puter Society, June 1999.

Kyle, Brett, Successful Industrial Experimentation, VCH Publishers, Inc., 1995.
Lim, W. C., “Effects of Reuse on Quality, Productivity and Economics,” IEEE
Software, September, 1994, pp. 23-31.

Lim, W. C., “Reuse Economics: A Comparison of Seventeen Models and Direc-
tions for Future Research,” Fourth International Conference on Software Reuse:
proceedings, 1996, IEEE, pp. 41-50.

Linger, R. C., H. D. Mills, B. 1. Witt, Structured Programming: Theory and
Practice, MA: Addison-Wesley, 1979.

Linger, R.C., “Cleanroom Software Engineering for Zero-Defect Software,” Fif-
teenth International Conference on Software Engineering, 1993, pp. 2-13.
Linger, R.C., “Cleanroom Process Model,” IEEE Software, March 1994, pp. 50-
58.

Madachy, Raymond J., “System Dynamics Modeling of an Inspection-Based
Process,” Proceedings of the 18th International Conference on Software Engi-

neering, IEEE, 1996, pp. 376-386.

http://www.utexas.edu/coe/sqi/archive

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

page 187

Malan, Ruth; Kevin Wentzel, “Economics of Software Reuse Revisited,”
Hewlett-Packard Laboratories Technical Report, HPL-93-31, April, 1993.
McChesney, I. R., “Toward a Classification Scheme for Software Process Mod-
elling Approaches,” Information and Software Technology, Vol. 37, No. 7, 1995,
pp- 363-374.

McGarry, Frank, Rose Pajerski, Gerald Page, Sharon Waligora, Victor Basili,
Marvin Zelkowitz, “Software Process Improvement in the NASA Software
Engineering Laboratory,” Technical Report, CMU/SEI-94-TR-22, December
1994.

McGibbon, Thomas, “A Business Case for Software Process Improvement,”
DACS State-of-the-Art Report, Air Force Research Laboratory, Rome, NY, http:/
/www.dacs.dtic.mil, September 1996.

McGibbon, Thomas, “A Business Case for Software Process Improvement
Revised,” DACS State-of-the-Art Report, Air Force Research Laboratory, Rome,
NY, http://www.dacs.dtic.mil, 1999.

Mills, H.D., M. Dyer, R. C. Linger, “Cleanroom Software Engineering,” IEEE
Software, September 1987, pp. 19-24.

Morse, Wayne J., Harold P. Roth, Kay M. Poston, Measuring, Planning and
Controlling Quality Costs, NaFional Association of Accountants, 1987.

Oxenfeldt, Alfred R., Decision Economics, Crisp Publications, 1997.

http://www.dacs.dtic.mil
www.dacs.dtic.mil

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

page 188

Paulk, M. C., C. V. Weber, B. Curtis, M. B. Chrissis, The Capability Maturity
Model: Guidelines for Improving the Sofiware Process, Addison-Wesley, Read-
ing, MA, 1995.

Porter, Adam A., Harvey P. Sly, Carol A Toman, Lawrence G. Votta, “An Exper-
iment to Assess the Cost-Benefits of Code Inspections,” IEEE Transactions on
Software Engineering, Vol. 23, No. 6, June 1997, pp. 329-346.

Potok, Thomas E., Development of a Quantitative Process Model for Object Ori-
ented Software Development, Ph.D. Dissertation, North Carolina State Univer-
sity, 1996.

Poulin, J. S., Measuring Software Reuse, Addison-Wesley, 1997.

Prowell, S. J., Sequence-Based Software Specification, Ph.D. dissertation, Uni-
versity of Tennessee, 1996.

Prowell, S. J., C. J. Trammell, R. C. Linger, J. H. Poore, Cleanroom Software
Engineering: Technology and Process, Addison-Wesley, 1999.

Raffo, David M., and Marc I. Kellner, “Modeling Software Processes Quantita-
tively and Evaluating the Performance of Process Alternatives,” Elements of
Software Process Assessment and Improvement, IEEE Computer Society, June
1999, pp. 297-341.

Reimer, Wiebke, Wilhelm Schafer, Thomas Schmal, “Towards a Dedicated
Object Oriented Software Process Modelling Language,” ECOOP Workshops

1997: 299-302.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

page 189

Rubin, Howard A., “Global Software Economics,” Cutter IT Journal, vol. 12,
no. 3, March 1999, pp. 6-21.

Sassone, Peter G., William A. Schaffer, Cost-Benefit Analysis: A Handbook,
Academic Press, New York, 1978.

Sassone, Peter G, “A Survey of Cost-benefit Methodologies for Information
Systems,” Project Appraisal, vol. 3, no. 2, June 1988, pp. 73-84.

Sherer, S. W., A. Kouchakdjian, P. G. Amold, “Experience Using Cleanroom
Software Engineering,” IEEE Software, May 1996, pp. 69-76.

Slaughter, Sandra A., D. E. Harter, M. S. Krishnan, “Evaluating the Cost of Soft-
ware Quality,” Communications of the ACM, August 1998, vol. 41, no. 8, pp. 67-
73.

Stevenson, C., Software Engineering Productivity: A Practical Guide, Chapman
& Hall, 1995.

Trammell, C. J., M. G. Pleszkoch, R. C. Linger, A. R. Hevner, “The Incremental
Development Process in Cleanroom Software Engineering,” Decision Support
Systems, 17 (1996), pp. 55-71.

Velez-Pareja, Ignacio, “Value Creation and its Measurement: A Critical Look at
EVA”, Social Science Research Network, Financial Accounting (WPS) Vol.3,
No.17 May 24, 1999.

Vienneau, R. L., “The Present Value of Software Maintenance,” Journal of

Parametrics, Vol. XV, No. 1, April 25, 1995, pp. 18-36.

page 190

[77]1 Weissfelner, Sam, “ISO 9001 'f'or Software Organizations,” Elements of Software
Process Assessment and Improvement, IEEE Computer Society, June 1999, pp.
77-100.

[78] Weller, Edward E., “Lessons from Three Years of Inspection Data,” IEEE Soft-

ware, Vol. 10, No. 5, September 1993, pp. 38-45.

APPENDIX

page 192

Appendix A

Cost-Benefit Effects Hierarchy

This appendix gives the hierarchy used to classify the costs and benefit effects that result

from implementing the software process improvements.

1.0 Implementation and Support

1.1 Tools and Information Systems

Costs for the acquisition and maintenance of tools and systems that may be
needed to implement a process improvement.

1.1.1 Survey and assessment
1.1.2 Cost to buy or make product or tool
1.1.3 - Cost of maintenance
1.1.4 Validation for use
1.2 Training

Costs required for training personnel in the new process improvement or
associated tools.

1.2.1 Personnel time in training

1.2.2 Cost of training
1.2.2.1 Train the trainer
1.2.2.2 Administrative training
1.2.2.3 Training classes
1.2.24 Outside consultants and coaching
1.2.2.5 Computer based training
1.2.2.6 Training materials

1.3 Use and operations
1.3.1 Process start-up

Cost-Benefit Effects Hierarchy page 193

2.0

1.3.2 Operations support
1.3.3 Data collection
1.3.4 Data summarization and reporting
1.4 Infrastructure
1.4.1 Support Group
1.4.2 User Group
1.4.3 Documentation
1.4.3.1 Standards
1.4.3.2 Procedures

Production Effect

We use this category for annual staff effort cost impacts to developing documenta-
tion and code as well as indirect management and support costs. This category
omits impacts to defect detection and resulting rework and repair costs. However,
other maintenance work (excluding rework) would be categorized under corre-
sponding documentation or code categories.

2.1 Documentation

Includes electronic media and database forms of documentation as well as
paper documentation.

2.1.1 Requirements

2.12 Specification

2.1.3 Architecture

2.14 Design

2.1.5 User Documentation

2.1.6 Training Materials
2.2 Code

This category is for activities that results in machine instructions and
includes the time spent using a tool to generate a user interface or a database
design as well as conventional source coding.

2.2.1 Processing
2.2.2 Database
2.2.3 User Interface
2.3 Management
2.3.1 Planning
2.3.2 Oversight & Tracking
2.3.3 Decision Support

Cost-Benefit Effects Hierarchy - page 194

3.0

4.0

5.0

6.0

234 Configuration Manégemgnt
2.4 Operations Support
2.5 Installation & Training

Quality Effect
This category is for cost impacts of assessing quality in software products or han-
dling failures that have occurred in software products.
3.1 Appraisal
3.1.1 Inspection and Verification
3.1.2 Testing
3.2 Internal failure
Cost of repairing defects found before product reaches customer.
3.3 External failure ,
Cost of handling and repairing product failures after delivery to customer.

Customer / Market Effect

4.1 Revenue Impact
4.1.1 Market life extension
4.1.2 Larger market share
4.1.3 Higher profit margin
4.2 Financial Risk Reduction
4.2.1 Reduced risk of litigation
4.2.2 Reduced risk of project cancellation
4.2.3 Reduced risk of financial penalties

Cycle Time

We intend to report the impact on cycle time as a percent calendar time savings
without a direct dollar valuation. The financial impacts of cycle time reduction
would appear under 4.1.

Other
This category is for identified effects that do not cleanly fit in to the other 5 catego-
ries:
6.1 Broad based effects - impacts quality, productivity, cycle time
6.1.1 Promote SEI Capability Maturity Model (CMM) progression

- Cost-Benefit Effects Hierarchy page 195

6.2 Personnel Resource
6.2.1 Improve employee morale
6.2.2 Faster ramp-up and training of project personnel
6.3 Miscellaneous
6.3.1 Showcasing the Emerald toolset and reselling, best in class
6.3.2 Ability to self regulate, self audit

page 196

Appendix B

Database Schema

This appendix provides an overview of the data model used by the CBA-SPI prototype
software tool. The tool uses a relational database that can be conceptually divided into a
number of subject areas or logical views. Each subject area contains a collection of related
entities where each entity represents an object or concept about which we wish to store

data.

* Baseline Environment. This subject area holds information to characterize specific
baseline environments for an organization. The information includes an estimate
of the organization’s CMM level, the industry, size and annual budget, the size of
the code base, how much the code base is expected to change or grow each year,
and information about the quality appraisal and defect removal activities. See Fig-

ure B.1.

* CBA Effects. This subject area holds specific information about each cost-benefit
analysis, links to the associated baseline environments, the set of SPI alternatives
being considered, the estimated effects, and their estimated cash flows for the time

horizon of the decision. See Figure B.2.

Database Schema page 197

» SPI Template. These are entities that hold data for representing each potential soft-
ware process improvement, its profile of cost-benefit effects, and parameter infor-

mation for quantifying those effects. See Figure B.3.

* Reference Information. These entities provide industry data that is used to estimate
the baseline scenarios and provide default parameters for quantification functions.
See Figure B.4 and Figure B.5.
The following pages show the entity-relationship diagrams for these subject areas. Note
that the rectangles represent entities, and the lines represent relationships between entities.
The attributes for each entity are shown inside the rectangle with the primary key
attributes appearing above the dividing line. Solid lines represent identifying relationships

and the black dot signifies the “many” side of a one-to-many relationship. The diamond

shape on the “one” side of a relationship indicates that the relationship is optional.

page 198

P R TP P T PN N N L

a . ,
PO | siy~yedary : foueaye™(enowe: |
pr-dejsniedas siy~aedas epow ! &l._onum_oouwv..vwsz_ou
il wd Aouspye jerowas Bne W siyJjedesmoj dj~sad"sp0j0p
. Ol prdajs-sseooid | | (i) pirdaisTsseonid | O1d) prdeisTssecoid PE——
NEnD oIS Tjedoy B}SUoRINpOid E.J_.wﬁ”ﬂ
_ e uepy S
P ———— eweu Jajawesed m
|| PI de)s~ssesosdJed (54) pI wesedyuapuadep
4 adki de)s™sseoord 014) pIdnos6 wesed °
edA)~dejsssesosd _ :@n_..omou enjeATnejeg 51
{ oweu—deisTssesoud i enfeA ubiH B
3 oubes i onjeA Mo 3
s) pr-dors-sse901d i uopeuedejwerey “
oo e e ees e s e varn games s : [eA7}S00 ——dei5 550001 3 yiBua Jajeelsd e
P - ~ i| eweusos ; ydwoid Jsjeweisd
i Bujujeusar™sjaejop § (544) prrepou : 014) 8dK | “1ejewwered 2]
. Aouapyye [eAOWaITIO3ep E { i m
: ejepIad ysooaInle) : prisco ! PI lajaweled e v m
H 1eek~s0d "punojs}oe)o| L $1S00 ey : -
w. ._mc>|_ou|umh0|”=___md ° ¢ uonduosagedAL"Aipu3 m
; oubes R Y ; epog-edk 1 Aipu3 =
: 013) pi-edAL a3 PI"epou” Bujais eu T S o
: 14) pi daissseo01d PI"epoupjyo sy uoduoseq IeploLexEiS m
w Bid) ouTYy 01d) pr-epouTied oweN"Japjoysxels =
| 01) ouego elEppuo § Otd) piraugTeuyeseg . Y YOO Q
! 01d) Pi~Au3 eujeseg hww.ﬁ“ ; PIJepioyenelg seloN d
AouaoyyeT|eAOWwaI oBjep odAL 1apjoyonElS : sselppyjiews m
7 J08jepJad)s00 unjR) TN i Euw___h%ﬂmu_ -
e e v e e i Jsoo70Y pIreomosTeep | ! a3 :
| {7 eBenbue ; 04=1) shunewp i oA mRweR] | eguneuold =)
1 "184s)ine4 B Iy eI SR i el uopeinp } = f]
E_owmu.uw__go:_.ﬂ_dwn.mn_uo._m BujulewasTs198jep : awp~ey : {514) pi”Jojaureied ; |auroidioeiels Bt
W — j| AouspiyejeAowe)Jo0jep ” dj"1adspejep palesep ! (1) pi"Auz"eUjlesEE : epoojejsod Wa
4 pI ebenbueq i 1oajapTIedscoemnye) H Kousdyja~jeAowes opwered Auj ouieseg] o=
abenbue AeQ i 1eak~1ad punojsioejep § dj~1ad"spajep B sselppy =
H 1eak~1ad 500 auN|IE} ! oubas Y. M B 110Eu0D
§| Jeak"sadTys0o jesjerdde { (d) pydajs~sseaoud s ; BWENIPBUC)
: oubas ! (i) pIAu3 eujeseg odA"sulieseq : swenAiug
PO W : ST ; i Fopou Wun4ouauno :| O14) epogTedAL~Auz
b - . "de}s—ss820J : ™ ¢
B . og-oom 0P P) L o _“._.Em._.o:__%mm w_hw_wﬂ%mmﬁﬁ.w . pAnua
8 9 o ooiuone AT eulesen Oid) ouTiener o | Aoz
Q 1K 19d78d{"MeN BA 4 3 jeq oAel3
7 dd MeN DAy uopdussage
8 S ominueLny o] 0w N o
. - ; E I
: AUz ey J = !
| (a) (1) pI"auz eujjaseg : PITVIW a1emljos T T =R sujjeseq eqo

sbenbue| Aug oujjaseg OdK 1 JoERy SIEMOS

page 199

eleq ppy
aleq by I Ty s B e ey ereree
) 1807089 : Bujujewals)99)9p
H 18D DS0D Kousjoysa jeAowalIYIeep
i (M) P 1opow § 108j3p1ad}s00 aIN|IB}
il Old) pImedALY0ay3 Jed H Jeak~1ad "punojsioejep
; w04~ Anug i Jeak~1ad}s00"eInje} o
| oo m ot | i B
! uojjeue; g _ § i .
i mm__un_Jc_w_mm._Mwww ¥ (1) pI~adA1 Yoay3 ; sjegpelepdnise -
: eweN 1093 i (0d) pi~dajs"ssaooid JUBWWO 3
H _ p (1) ouyy f 8ouepeA)
J pI"edAL Y093 ¥ (34) ou™eqa ; qosdT}oaye"mo) ..w
SakL 19503 q (1) PI"AUZ "auljoseg | : qoudyoaye pew 7
199))3 108014~ d8)S Jddy AUz eujjesegq : qo:d7joeyeTy “a
{ [EAT1990~MO| 139
s en [eAT0ay8 paw m.uv
P4 enuLo; g e W [eAJoege Y 5
paj20| ! ou~popadpus i eleg pu3 <
woppI : ou-poved yiels JUST Y DRSO ,m e 5oa =
; . sweulajeweled i Pqleqe| Mﬂ =o=m=m_nxm|~omtmld ON"beg ¢ (M) pPI"Iepioyexels O
il (14) pI"weseduspuadap ! _ baejnuuo) I (13) predhLoona juawwioy i O1d) PiredAL a3 e
(1) pidnos6-weied i O1d) prredAL a3 | (314) 2dALYoaf0Id1dS apo)ojqibueL (1) ou v o~
: enjeATinejeq i{ Otd) 8dAL7y03f0sdIdS 5oug S0k 1d% 1 O1) preds Yoayz (4d) ou™eqa oA
Mﬁﬂyu.ﬁﬁ i Pl elnuuoj ! (4d) ouly TV REEEREE O] »
Y uopeuedxg Iejoweled T enuwiod WaRT 1dS poos sz » o v 0td) ou"eqo We
ibus]elowesey onjenJejowered | wa aloid 5
: 1dwosdisjawesed (5d) pIe1ewesed s B
(M) adA L 1e)oweied | 514) ou | paseanoslqoyoslord
Pl Isjawered (1d) ou"eqo ; alep uels 4
IBpWeRd 1S vao N P d ajep~yelsford

ejep~paje|dwoseqo

O1d) m%hdom_en_a_m& oIEP-pajENUIEqD

BU|[0seq eqd —

SN B 1) oy . uopduosapeqa
_ — M) ouTeqa ; opo2-abesn
o ;
m SjueLod SJMM_MWM SANeWIAy 199l0Id Va0 : adfy"uoisioap
NPT Y. _ ’ sweu"eqo
..m ﬁ 4 uopduasagedA) Josloig £>|=on_5:..o.m=
1951 - : sweN"adA | Joafoid (544) yun~Adueund
o : (1) Pl 1ej8Wwesey il (4d) edA 1 V03loid ey {(344) Piks
| {3) edA L Vosford TIdS : = —) PiAinuz
8 PTEE B adA 1 Y0sl0id T1dS (%) pImau3 euyaseq oje)7Junoas)p
m d S 80K 1030id 148 () oueqo ou eq
A

page 200

Database Schema

:o_::cauuo:_mb

enjeA™pljea
(3d) pi edfelep

i 1) edky elep_eseq

uotjonujsulIndu)

Beyelesownus
yibue| ejepxew

pIedAyejep
L 2ea

!

19 ejnuuoj
pexoo)
uspply

(1)) eweu~ejewesed

(Md) pr wesedyuspuedep

(231 (1) pr"dnos6~wesed

anjeA nejeq

eneA ybiH

£ e e A s

(%3) piTjepow

(1) pi"Iejewesed
18j8Wered |apoly

e wm e ==

UYL VLS U AL Sy o Y iy

]

0Otd) pi"edA Yoey3
012) edALyoelosd " |dS
(Md) pi_dajs ssao0:d

10913 $89201d |dS

e o N «\— Sy ey sy o

Ry

(1) pi"edA L Yoay3
(1) pI"se1owered
Iajollieiey sseq0id 60A] 109)g

19d epnjoul
10edwyAouaye Jedas
13edw) Aousiolja T |eAoLwal
Joedwy—Apanonpoud

(4d) edAL08(01d 1dS
(Md) pi~days—ssaocoid

\

_

enjeA Mo
uojeueldx3 tejswesed

yibuelejewesed
1dwoidIejeweied
(0d) edA1 "1ojowesed

ot g e w32 s

1oedw|sse00id” |dS

i
!
i

Pl Jojewesed’
adk] Jejellieled SSa001d

s b yere

uoyduasap~dnosB~wesed

(131) pi—dnos6-wesed

dnoig)~1ajeweled

1) piedA L Yoaya
(1d) edA | oalosdTIdS
(1) p1 1ejowereg

Jajawesed 1083 1dS

uogeueldxg oau3

(1) pi7edA L1083

i (514) 8041 oefosdT1dS

(1) pi2eeweled

SUAWWOD " 82IN0S T I0Y
10Y 159

uopduoseqedAL J9foid
oweN"edAL afoig

041) edA L o8fo:d ted

; adA)"|apoiu

m einpasosd

i uogduosep @pow

m eweu-[apow

M (131) pI 1opow

[BPO_enduic)

o3
9j1eqppv
ereq By
1807088
: 1#07DS00
i (131) O1d) prfepow
il (4d) pITedALYoay3 1ed
! w0 Anu3
W opoQejqibuel
; uopeuejdxg 1093 Tl

i fej3Jyeuagsod
; eweNI8)3
H piTedA Yoay3
adAL 5ji3

: ou~pouadpus
ou~pousdue)s
pq7eqe|
PqenuLoj

N (4d) piTedA1 Yooug
i O1d) edA 1 oolosd ids
{ PrejnuLo)
B[nuLog 993 1dS

Sianer L Namt g rveen sy vy seey

V— _omnE_lkEo_oEol_goEoJ

PI"edA109)3

(z31) prdejs~ssecosd

Tjeweieg 6dAL |dS

adA) Yoafoid [dS

6k aloid 1d5

SPI template subject area

Figure B.3

page 201

Database Schema

J0joB) 89P0 MaL

d4 " 1ed"peseayepTsjosjep xew
d<"1ed"pasanljiepsjoajep ujw
dj~1adenuajod osep
jod"bay eouaunodo
1od~Aouejoyje jeaowel
d)j1edpaseniep sjoajep Bae
uojjduosaplane| TWND
eweuT[eAs WIND

21 8 S sa ey v e

OuTjoAs " WND

18AeT WND 13S

; JeAT)snipe ozis “opod
wns™Apxejdwod
juswysnpejujoduojoun)

edfy jepow
aJnpasosd
uojiduosap|epow
sweuTjepow

RO p———

pIiapow

T Y pe vy s gevereny

il uojsiepJuaung) M |aneebenbue
i Jaquinnxed 1 oo ad sines Bay
i saquinNauoyyg .| WwioduonoungT1ed"00T1S
W Anyunod : —
i epogeisog ! pIsbenbuen
il souoIdIO8lEIS ebenbue] AeQ
© Ao

e e i sseIppy

mﬁ .._oz_:covlc:_g}_ W aweNAuedwo) s s e

H njeATplleA H aidmes uojdposap—dnoi6wesed

(1) prredAy ejep

enjeA plleA edAL ejeq

uoponusuyTIndu)
(1d) edA eepeseq
bey~ejesowinus
yiBue| ejep xew

pImedAy ejep
edk1 eeq

R R

uopeInbyuo)

18RO BINdWODO—

H

pI~dnos6~weJed
OEWEEE

P ejnuo)
p8exo0]
uapply

eweule)ewesed

(31f) pi"wesed Juspuedep
(314) pi—dnos6wesed

enfea ynejeg

enfeA YsiH
enjeA~moT

uojjeue|dx3g "Isjewesed
yibue 1ej)8WeIEd
JdwordIejewered
(Md) edA} T1ejewered

Pl Ieewered
adA| IojpliEIeg S5800id

4
14) pI"edA L YoB)3

(1) pI 1el0weIEq
I9j9WeIed S53001d edAl Y943

soavrn e

v_lw_am_ j wEs_Mﬂ x i % s iy
pirunioyns ! ONTIIED w oleqppY
piuuo} W _ z.mmn_ ejeq byo
e .
P oy —— uojejouue L (1) prjepow
pI-wayy : Jaysignd (M) pi"edAL Y003 ted

odfy i adf) eunos w uuo4Angu3

sabed i Jeak~gnd § apop e|qibue }

(514) p-aainos ; Joyine uojeuejdxg ey
— } 1) Bej4euegysod
ouTwey | PreoInos eweNTP8Y3

g s2inos 60In0S80uBIaje) pIredA1yoay3
adA1 o83

e feeaves o

{ voneveidaoeya)
¥ Oid) piTedAiNaeya
i (4d) edA) yoeloid 1dS

Wojg 6dAL 1dS

ejep eAloa)e
1 joquAsAouennd
:| eATyunT1ed"asn
eweu—Aoueund

pun—Agueuny
W Aduaun)

Lire B e iy We mvpenSEr oA

~

joedwj—Aouajoyje jeAowsl
piredA 1 oay3

pI—deys~ssesoid
(1) edALYoef01d71dS

P

SJUBWIWO0282IN0S T |OY
oYy Ise

uoyduaseq~edA1 Joajoid
sweN"edA} Josloid

(1d) edA L Yosf0ad ed

: odA1 100[01d " 1dS

adA1j0alo1d"1dS

Reference data subject area part 1

Figure B.4

page 202

S g n s veas antoas masericas

o e e g s s s PSS
B E e = = £ p|~dejs sedes siy~nedas)y 3 Aouaoyje[eaowsal
W wwhuw”msm_%hu | uonduossg~edA1"Apus : snugcm_osm.._goEm._n?a‘_ w sy Jedes apows i| dy1edspejeppaianlep
W Spun=oun H epod edA] Ay £ (33) pr-dejs-sseoaid w sy~ sedesmo| H djJedspeep
e 1 Anu3 eno il (4d) pidejsssecoid i (%4) pida)s~ssazord
" B ETIEL B2 B]S UOHoNPoId
gt et sow mn e ppts o e (o]
M_ yod uope _ ! edh~Ayapoered m
I (1) ed&y Ayanoe uoydyasapAyanoe S
- (14) 1one)dy edAy Aymjoe 3
@ GdAy Ajaoe edfydajs~ssecord() =]
wei.\,.\.ﬂ P TR T o L N L a
W uopduoseg P eremyos o
¢ — ..m
i Pl PIN alemyjos =]
GOAL JOHEN OIemPos (73
il pI"de)sTsseo01d1ed k|
sy e gonr ool ot e e e e | edf~dejsTsseooud 3
; >£o&%|vw._o>__ounum»m_mu i &:._oadsm_ol _ , oEm:n%_-%ﬁﬁHm e e e o 9
| AoueoyyejeAcwespakelo i — ; H -
: _m__EuwuoﬂTo&mulwgm“ow {| (1) pITde)sssagoud | ! ou bes w_w td Emcodo&mL m
" S}08jop paIeAep eWNUO (42) 1ene)d) : oI days-ssaooid 01) pideyssseooid 5
) Aduejoyjo |eAoWE."BWUO b sicsso00 {34) pI-Anysnpuigns =
: [epuajodo8jepBLUO 1S 55630id APUIGNS M
; S)09jap~ palea|ep—Aped

AdsuejoiyyajeacwelApues

|epuejod Joejep Aues 5

: syyse =]
Sy XRW e g e e e ermim g e e e o -5y
syl BaeJoe i|aoud~djis"payosyod gz Bae Jodpoye Jwbw Wb
: sy U e qosd pajesues~bae Jod"uoge yomiaded
’ qoid~pejeaued qoisd ewyuo Bae 1od uoye Bupos wﬂ
: . qoud~pakejep syjuow~payos~osd " Bae Jod "Hoys jeAowwas Josep
w qoJsd"awpuo |oAe| Butyejs e e)ep eAyoayaAejes
d qudApes sjoejop™paseaep Bae ; 1od " ueping~Alejes Bae
|| dysed-spajeppopodar—i ik dj"1ed"pesanyapTsoajep KiejesyjwBae
: wd AleacasipT LA AouaoiyeeAowar109jep o qosd—dys"payssjod gz Bae

< ; ~10d"PoIGA|epTS|I8)ep dj"1ed |enuejod jajep ¢ qoid pajesuesBae

m | 1vod—foueayejerowaiyoajep yYuowyejs"ad"dj f qoid~ewpuo~Bae

£ . dj 1ed " jejuejod Joajep dj"1edT)soo Bae uopduasap~Aisnpuigns PR

A elweuT|oAs] d) jod"1K"eoueyua BAe aweuAnsnpujgns i a.E..E?oow_uJo&ou‘_

9 ane1d) O1) ionar dy | PI Ansnpujgns : poyed

2 04d) pr-fnsnpuig RISnRUIAnS N () PIAnsnpujans

m foAS] dj Aisnpujans aseajoy Joyy Asnpuans

n

. page 203

Appendix C

User Interface Samples

The CBA-SPI prototype includes 76 user interface forms. These user interface forms can
be organized into four areas: 1) define baseline environment, 2) create a cost-benefit anal-
ysis, 3) define SPI templates, effects, parameters, and 4) provide industry data and models.

This appendix exhibits one or two sample forms from each of these areas.

page 210

Appendix D

Software Process Simulation Model

This appendix describes the Cleanroom software simulation model that was created as
part of this research. This model was incorporated into the cost-benefit framework for ana-
lyzing the impact of incremental development as described in Section 6.2.4. Although we
use the model for the specific purpose of analyzing the effects of incremental develop-
ment, the model could be used for analyzing other process improvements. Also, although
the model has the name Cleanroom, it can be calibrated to most software development
processes for baseline calibration. We provide a brief description of system dynamics

modeling notation in the next section followed by an overview of our model.

D.1 System Dynamics Modeling Concepts

There are three types of equations in a system dynamics model that are represented by

three types of graphical elements: levels, flows and auxiliaries. Levels (also called stocks,
states, or accumulations) are represented by rectangles. Flows (also called rates) are repre-
sented by the pipes and valves and indicate a flow between two levels. The auxiliaries are

either constants, equations, or data that are used to calculate intermediate results for use in

Software Process Simulation Model page 211

computing rates. Auxiliary constants do not change with time and are shown in uppercase
letters. Auxiliary variables represent equations that can change over time and are shown in
lowercase letters. The connecting single line arrows represent dependencies between
equations.

The mathematical relationships between these elements are represented by the follow-

ing equations:
levelsy = fﬂowst dt
0

flows, = g(levels,, aux,, const)

aux, = f(levels,, aux,, const)

D.2 Cleanroom Process Model

A stock and flow diagram of the system life-cycle view for this model is shown in Fig-
ure D.1. The levels in this diagram represent an amount of software functionality as it
passes through various stages of the software development process. Each level equation is
expressed in units of function points where a function point represents an amount of soft-
ware functionality in some state (e.g., the level “Code To Do” represents the function
points that have been designed but not yet coded at any given point in time). The flow

equations in this model represent the team’s productivity at performing software develop-

Software Process Simulation Model page 212

Customer il)
Requirements Cleanroom
e e e Single Project Mode!
D¥drequirements flow Detailed Lifecycle View
Fn Spec Rate .
Plan Testing Rate
il <iest planjung is done>
fnpfclion . 1
at .
rework rgmt Pe‘nﬂ:)w on q[pian testing flow b test plan rqmt
flo rework flow
Test plan
TEST PLAN
Bfstable test plan flow ~=t———r———err——— RQMT
v REWORK PCT
S!allle Stable Test
Functy
REWORK RQMT PCT specilication Plan PROJECT SIZE
Plan Incr Rate ———————————plan incr flow 3]
NUMBER OF INCREMENTS
avg il size

Dev Usage Model Rate

«Jo Regressiop Tests»

Dev Code Rate
\ testing started
dev code flow
. o orestart testing
Apply Tests Rate
Rework Code Rate
REWORK TESTS PCT
defective code flow 44— Code rework tests flow
rework retest flow
peading delivery flow Apply Retest Rat
ply Retest Rate
Defective Code Percent

<P

TIVE COREPCT>

B . N apply retest flow -a—1
<artevt of mer sizg on defeet finertions PPy

delivery pulse [rework field code flow

Field Rework
Code To Do

Rework Field Code Rate
Delivered

[AY
1‘&]/,&«11 identify flow

Fault Density Percent

Stable FPs =2
stabilize flow

AT TTDRENSITYPUTS eflect of sacr st on dafodd msccaons

Figure D.1: Life-cycle view of simulation model

Software Process Simulation Model page 213

ment tasks in units of function points per week. The Customer Requirements level is ini-
tialized with the size of ﬁe project to be developed as given by PROJECT SIZE. As time
progresses from one week to the next, this amount of functionality flows through the
model with various tasks performed on the‘r'e.quired software functionality at each flow
valve. ’

The primary results we are concerned with are costs and schedule. The project is con-
sidered complete when the full amount of stable functionality is delivered to the customer.
The variable “Project Cbmpletion Time” gives the week in which this milestone is
achieved. Total costs for the project is given by the level Total Effort Hours as shown in
Figure D.2. Like most cost estimation models, this one computes. costs in terms of effort
hours which are easily converted to monetary units. A unit cost facto; is computed for
each task in effort hours per function point. The unit cost factor is multiplied by the work
flow for the task to give the effort cost rate in effort hours per week.

Unit costs are based on the productivity for a given task as shown by the example

causes tree in Figure D.3. The unit costs for any task is given by

HOURS PER PERSON WEEK
<task> Productivity

<task> Unit Cost =

where, HOURS PER PERSON WEEK is a constant that is set to the default value of 22.
This constant takes into account vacations, holidays, training, and other non-productive

time averaged over the entire year.

Software Process Simulation Model

page 214

Cleanroom - Effort Distributipn View

Standard Costs (hours/fp)

Work flow (fp/week) Effort Cost Rate khourslweek)

Apply Tests Unit Cost:

/apply tests cost ral
<apply tests flow;

e

Apply Retest Unit Cost

Dev Code Unit Cost

(’_’_____’apply retests cost rate

<upply retest flowss

/——-—gdev code cost

<dev code flows

Dev Usage Model Unit Cost

dev usage model cost rate_

<dev usage model flows

- r__;funcﬁon specification cost rate
<fuuction specificaton oW,

cumulative cost rate Total Effo
/;plan iner cost rate S) Hours
<plun incr flows

plan testing cost rate

B refine increment spec cost rate

Fn Spec Unit Cost:
Plan Incr Unit Cost
Plan Testing Unit Cost
<plan testing flow>
Refine Incr Spec Unit Cost
<refine increment spec Now>
Rework Code Unit Cost

Rework Field Code Unit Cost

_—___—____grework code cost rate

<rework code flows

________grework field code cost rate

<rework field code flows

REWORK RETEST UNIT COSTF /_:;rework retest cost rate
<rework reiest flows

REWORK TESTS UNIT COSF- Brework tests cost rate

<rework tests flow>

Reg Test Unit Cost: reg test cost rate
<reg test flows

DELIVERY UNIT COSF delivery cost rate
<pending delivery flows

FAULT IDENTIFY UNIT COSF /gfault identify cost rate
<ault identily (losws

REWORK RQMT UNIT COST: ———————fprework rqmt cost rate

TEST PLAN RQMT REWORK UNIT COST—

<rework rqoit flow>

> test plan rgmt rework cost rate
<test plan rgen sewurk flows>

)

Figure D.2: Computing Total Effort Hours

Software Process Simulation Model page 215

DEV CODE PROD e '
Dev Code Productivity’
effect of incr size on productivi > Dev Code Unit Cost

HOURS PER PERSON WEEK

Figure D.3: Example causes tree for a task unit cost

The team’s potential productivity rate (<task> rate) is computed from the number of
staff resources available (<phase> FTEs AVAILABLE) for a task times the person produc-
tivity for a task (<task> Productivity). There are three types of resources we estimate for
this model corresponding to three phases of the development life-cycle: Specifiers, Devel-

opers, and Testers. These constants are set by using the phase distribution tables for the

COCOMO model.!
The model adjust allocations of these resources so that competing task demands for

the same resources has the correct impacts on costs and schedule.

D.2.1 Model Boundary

The model assumes that the effort begins after requirements have been generally
defined and excludes feasibility and requirements efforts. Also, the model excludes indi-
rect activities such as user training, documentation, management, and support activities.
Since the COCOMO model includes indirect activities, we reduce the COCOMO values

where needed to account for out of scope activities.

1. See Table 6-8 on page 90 of [9].

Software Process Simulation Model page 216

D.3 Supporting Software

The model was developed using the Vensim simulation environment from Ventana
Systems. This simulation tool provides a dynamic link library (DLL) of routines for con-
trolling the model from an external program. An ActiveX DLL COM object wés created
in 6rder to control the model and simulations from the CBASPI tool. Also, a separate
COM object was créated for performing the COCOMO estimations of productivity con-

stants and staff allocations.

Appendix E

Software Process Improvement Templates

This dissertation work resulted in templates for three uses of Emerald and for four Clean-
room technologies. This appendix provides listings of the Emerald template for targeted

defect reduction and of the Cleanroom template for statistical testing.

E.1 Emerald Template for Targeted Defect Reduction

Software Process Improvement Templates page 229

E.2 Cleanroom Template for Statistical Testing

page 245

Appendix F

Example Cost-Benefit Analyses

Examples cost-benefit analyses were created which used the templates for the three uses
of Emerald and for the four Cleanroom technologies. This appendix presents example

CBA reports Emerald targeted defect reduction and for Cleanroom statistical testing.

EF.1 Emerald Example for Targeted Defect Reduction

Example Cost-Benefit Analyses

E2

Cleanroom Example for Statistical Testing

page 255

Appendix G

Acronyms

ASQC American Society for Quality Control
CBA Cost-Benefit Analysié

CME Certainty Monetary Equivalent
CMM Capability Maturity Model
COCOMO COnstructive COst MOdel

COSQ Cost of Software Quality metric
EMV Expected Monetary Value

FP Function Point

GQM Goal/Question/Metric Paradigm
IRR Internal Rate of Return

ISO International Standards Organization
KLOC Kilo-Lines of Code

KPA Key Process Area

KSLOC Kilo-Source Lines of Code

MIS Management Information Systems

MPIS

Most Productive Increment Size

Acronyms page 264

MPP Modem Programming Practices

MPSS Most Productive Scale Size

MTTF Mean Time to Fail

NPV Net Present Value

PM Person-months of effort

QA Quality Assurance or Quality Assessment depending on the context.
QIP Quality Improvement Paradigm

ROI Return on Investment

ROSQ Return on Software Quality metric.

SA-CMM Software Acquisition Capability Maturity Model

SBS Sequence-based specification
SD System dynamics

SEI Software Engineering Institute
SPI Software Process Improvement

TED Task Element Decomposition

page 265

Appendix H

Glossary

Bayesian decision analysis A structured approach to evaluating choices with an uncer-
tain pay-off for those choices. Decision analysis is useful for evaluating the value
of increased information on choices involved in routine decision making.

capability maturity model (CMM) A software process maturity model developed by
the Software Engineering Institute that describes the stages through which soft-
ware organizations evolve as they improve their software processes. The model
consists of five maturity levels and serves as a guide to help organizations select
process improvement strategies.

certainty monetary equivalent (CME) The average price members of society would
be willing to pay for a potential cost or benefit that has a degree of uncertainty as
to whether the cost or benefit will be realized.

Cleanroom software engineering A collection of principles and processes aimed at the
economical production of high quality software. Cleanroom processes include
sequence-based functional specification, functional verification, incremental
development, and statistical usage testing.

cost-benefit analysis (CBA) An evaluation of the net benefits associated with one or
more proposed alternatives for achieving a defined goal.

defect potential The total number of defects per function point that might be expected
to occur in a software application.

defect removal efficiency The percentage of defects that will be removed by a quality
appraisal step. This percentage is calculated as the number of defects found and
repaired by the step divided by the total number found in the software through the
first year of use.

discount rate A rate which, when applied to future costs and benefits, yields the present
value of those costs or benefits.

Glossary page 266

function point (FP) A metric for measuring the size of a software application by mea-
suring visible aspects of the application’s functionality. On average, it takes about
128 lines of C code to develop a function point.

functional verification A systematic approach to team software verification where the
correctness of a software product is Verified against its specification using correct-
ness conditions and reasoning based on function theory.

incremental development The organization of a large software project into a series of
smaller, cumulative, and more manageable increments.

internal rate of return (IRR) The rate used to discount the future which would make
the NPV of the project equal to zero. A proposal with an IRR that exceeds a prede-
termined social discount rate (e.g., cost of capital) is deemed acceptable.

key process area A set of related activities that are considered important for achieving a
process capability as defined by the SEI’s Capability Maturity Model.

net present value (NPV) A method for discounting projected costs or benefits which

will occur in the future. Essentially, the NPV recognizes that money has a time
value (even in the absence of inflation). The formula for NPV is

!

B,-C,
: (EQ 60)

NPV = .
)2 1 +r)

t=0

where
B, is the dollar value of benefits received at time ?,

C, the costs incurred at time ¢,
r the discount rate,

n the life of the project, and

tis time in units such as years or months.

quality appraisal step An activity to identify potential defects with a software product.
Examples of quality appraisal steps include: unit testing, inspection, functional
verification, beta testing, acceptance testing, and system testing.

Glossary page 267

return on investment (ROI) The Return on Investment (ROI) (also called the Benefit-
Cost Ratio (B/C) or a profitability index) is the ratio of discounted benefits to dis-
counted costs. The formula for computing the ROI (or B/C) is

n
5 B
(1+7)
= B/C = L=0
ROI=B/C =120~

>

t
r=oll1+7)

!

In the software engineering literature, the ROI is often expressed without discount-
ing future values (i.e., r = 0).

sequence-based specification A systematic sequence enumeration process for develop-
ing complete, consistent, and traceably correct software specifications.

Software Engineering Institute (SEI) A federally funded research institute of Carn-
egie Mellon University that was established by the Department of Defense to help
facilitate transfer of software engineering technology.

software process The Software Engineering Institute defines software process as “as set
of activities, methods, practices, and transformations to develop and maintain soft-
ware and the associated products, (e.g., project plans, design documents, code, test
cases, and user manuals.)” '

software process simulation model ~An abstract representation of an actual software
process that can be simulated computationally.

statistical usage testing An approach to testing of software that views software testing
as a statistical problem that requires sampling. A usage model is constructed to
characterize how the system will be used, and is represented as a discrete time
Markov chain. Randomly generated test cases from the usage model are used to
evaluate the software under test.

page 268

Daniel T. Fetzer is from Elizabethton, a small town nestled in the mountains of north-
east Tennessee. He graduated from Elizabethton High School where he played trombone
in the band and keyboards in the stage band. He attended East Tennessee State University
(ETSU) with a major in Music. After a three year break to pursue a career as a profes-
sional musician, he resumed his education at ETSU and earned a Bachelor of Science in
Computer Science.

Upon graduation, he accepted a software analyst / developer position with Oak Ridge
Associated Universities where he worked for over nine years. He subsequently worked as
a Computing Specialist with Lockheed Martin Energy Systems in Oak Ridge for eight
years. While working in Oak Ridge, he enrolled in the evening school at the University of
Tennessee (UT) to pursue a Master’s degree in Computer Science which he was awarded
in May 1992. A few years later he re-enrolled in the University of Tennessee to pursue a
Doctorate of Philosophy in Computer Science which he was awarded in December 2000.

Presently, he is working for the Reliametrics software reliability organization of Nortel

Networks in the Research Triangle region of North Carolina.

	Cost-benefit analysis for software process improvement
	Recommended Citation

	Cost-benefit analysis for software process improvement

