
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2000

Cost-benefit analysis for software process improvement Cost-benefit analysis for software process improvement

Daniel T. Fetzer

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Fetzer, Daniel T., "Cost-benefit analysis for software process improvement. " PhD diss., University of
Tennessee, 2000.
https://trace.tennessee.edu/utk_graddiss/8274

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Daniel T. Fetzer entitled "Cost-benefit analysis

for software process improvement." I have examined the final electronic copy of this

dissertation for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Jesse H. Poore, Major Professor

We have read this dissertation and recommend its acceptance:

Michael W. Berry, Kenneth C. Gilbert, Thomas E. Potok, Robert C. Ward

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

Iam submitting herewith a dissertation written by Daniel T.Fetzer entitled “Cosifienefit
Analysis for Software ProcessImprovement.”I have examined the final copy of(this dis
sertation forform and content and recommend that it be accepted in partial fulfillment of
the requirements for the degree ofDoctor ofPhilosophy,with a majorin Computer Sci-
ence. /O /

Poore,MajorProfessor

We have read this dissertation

and recommend its acceptance.

Michael W.B^rry

Kenneth C.Gilbert

fliomasE.Potok

Robert C.Ward

Accepted for the Council:

Interim Vice Prov(^and \
Dean ofthe GraduW-SchQol

Cost-Benefit Analysis

FORSoftwareProcess

Improvement

ADissertation

Presentedfor the

Doctor ofPhilosophy Degree

The University ofTennessee,Knoxville

Daniel T.Fetzer

December2000

Cost-Benefit Analysisfor SoftwareProcessImprovement page ii

Copyright© Daniel T.Fetzer,2000

All rights reserved.

page 111

Dedication

This workis dedicated to the memory ofmy late brother,Dr.John W.Fetzer.My old

estbrother wasarole modelwhoinspired meby his optimistic spirit and his persistencein

setting and reaching high goals.Hesupported my goal ofattaining thisPh.D.and offered

frequentencouragement.

page IV

Acknowledgments

Iam very grateful for the opportunity I’ve had to conductthis research and to work

underthe guidance ofDr.JessePoore,He has consistently provided good advice andlead

ership for this dissertation.Thanks also to my committeefor their excellentsuggestions

and insight:Dr.Mike Berry,Dr.Ken Gilbert,Dr.TomPotok,andDr.Bob Ward.

Thanks to the many participants in the Software Quality Research Laboratory semi

narsfor theirfriendship and encouragement as well as their comments and helpful discus

sion:LauraPrados,Dr.Stacy Prowell,Dr.Kirk Sayre,Dr.Carmen Trammel,Michael

Corum,ThomasSwain,LeeHamner,and Janet Seib.

Special thanks to Will Snipes,John Hudepohl,and CrisKemakofNortel Networks

who provided comments,guidance,and data to support the developmentofthe prototype

tool. Nortel’s financial supportfor this research is greatly appreciated.

Iam gratefulfor the love and support network provided by myfriends and extended

family.My parents,John and Helen Fetzer,instilled the value ofeducation and provided

constantencouragementasdid my brother,sister,in-laws,and others.MostofallIwantto

thank myloving wife,Beth,for her enduring love,understanding,and support.And spe

cial thanksto our wonderfulson,Elijah,whocontinues to keep us entertained and helps us

keep the importantthingsin life in perspective.

page V

Abstract

Justification ofinvestments toimprove software development processes and technol

ogy continues to be asignificant challengeforsoftware management.Managersinterested

in improving quality,cost,and cycle-time oftheir products have alarge set ofmethods.

tools,and techniquesfrom which to choose.Theimplementation ofone or more ofthese

potentialimprovementscan require considerable time and cost.Decision makers mustbe

able to understand the benefitsfrom each proposedimprovementand decide which

improvements to implement.While a variety;ofapproaches existfor evaluating the costs

and benefits ofafew specificimprovementssuch asinspections orsystematic reuse,there

is no general modelfor evaluating software processimprovements.

The result of this research is a practical,usefulframework to assist practitioners in

evaluating potential processimprovements.This generalframework can accommodate a

variety ofmethodsforestimating the cost-benefiteffects ofa processchange.Toillustrate

thisframework a set ofcost-benefittemplatesforEmerald and Cleanroom technologies

were developed and validated. Methodsfor evaluating effects rangefrom constants and

simple equations to bayesian decision models and dynamic process simulations.A proto

type tool was developed to assist in performing cost-benefit analysis ofsoftware process

improvements.

page VI

Contents

Chapter1:Introduction 1

1.1 Statement ofthe Research Problem 1

1.2 Motivation for the Research 1

1.3 CurrentImpediments 3

1.4 Goals 4

1.5 Research Contributions 5

1.5.1 Whatis NotNew 5

1.5.2 Whatis New 5

1.6 Organization ofthe Dissertation 6

Chapter2:Background 7

2.1 Software Process 7

2.2 Software ProcessImprovement 8

2.3 Current Approachesto Evaluating SPIProposals 10

2.3.1 Industry Data Supporting Process Lnprovement 10

14

18

25

.. 25

2.3.2 Project Cost-Estimation Models
2.3.3 Economic Models 16
2.3.4 CostofSoftware Quality
2.3.5 Software Process Simulation Models 20
2.3.6 Other Benefit Evaluation Approaches
2.3.7 Summary ofEvaluation Metrics and Methods

2.4 Cost-benefit analysis 27

2.4.1 Decision Criteria 28

2.4.2 Structuring the Decision Problem 32

2.4.3 Identifying Costs and Benefits 33

2.4.4 Quantifying Costs and Benefits 34

2.4.5 Setting the DiscountRate 35

2.4.6 Performing Sensitivity Analysis 36

2.5 Summary 39

page vii

Chapter3:A Frameworkfor EvaluatingSoftwareProcessImprove
mentInvestments 41

3.1 A Formal Model ofInvesting in ProcessImprovement 42

3.1.1 Cost-Benefit Analysis Principles 42

3.1.2 NetPresent Value 43

3.1.3 Parameter Attributes ofaDevelopment Organization 46

3.1.4 Cost-BenefitEffect Classification 48

3.1.5 Drivers Behind theFunctions 49

3.1.6 Justification ofChoices Made 51

3.2 Using the Framework 52

3.2.1 Template Construction and Validation 54

Chapter4:Architecture and Design ofPrototype .. 59

4.1 Functional Overview 60

4.1.1 Define SPITemplates 60

4.1.2 Define Cost-BenefitEffects 61

4.1.3 ProvideIndustry Data and Models 61

4.1.4 Run SoftwareProcess Model Simulations 64

4.1.5 Define Baseline Environments 64

4.1.6 Create a Cost-Benefit Analyses 65

4.2 CBA-SPIPrototype Architecture 66

4.3 Internet Service Concept 67

4.3.1 User Functionality 69

4.3.2 AdditionalRequirementsfor WebImplementation 70

4.3.3 Architecture 71

Chapter5:Cost-Benefit TemplatesforEmerald 73

5.1 Using Emeraldfor Targeted DefectReduction 74

5.1.1 Overview and Rationale ofBenefits 74

5.1.2 Quantifying the Benefits 77

5.2 Emerald’s SupportofReengineering Decisions 94

5.2.1 Modeling the Benefits oftheImproved Decision 96

5.2.2 Estimating Development,Adaptation and Reengineering Costs 97

5.2.3 Estimating Enhancementand Maintenance Costs 100

5.2.4 Estimating Decision Results and Probabilities 103

5.3 Using Emerald for Software Acquisition 108

5.3.1 Risks in Software Acquisition 109

5.3.2 Software Acquisition Overview 112

page viii

5.3.3 Using Emerald in Software Acquisition 115

5.3.4 Benefits ofUsing Emeraldin Software Acquisition 117

5.3.5 Quantification ofBenefits 120

5.4 The Costs ofUsing Emerald 127

5.4.1 License and Maintenance Fees 127

5.4.2 Training 128

5.4.3 Use and Operations 128

5.5 Validation 129

5.6 Summary ofthe Emerald Cost-BenefitTemplates 130

Chapter6:Cost-Benefit Templatesfor Cleanroom 132

6.1 Cleanroom Software Engineering 132

6.1.1 Sequence-Based Specification 135

6.1.2 Functional Verification 136

6.1.3 IncrementalDevelopment 137

6.1.4 Statistical Testing and Certification 137

6.2 Quantifying the Cost-BenefitEffects ofCleanroom 138

6.2.1 Summary ofCleanroom Effects 139

6.2.2 Sequence-Based Specification Effects 144

6.2.3 Functional Verification Effects 150

6.2.4 IncrementalDevelopmentEffects 155

6.2.5 Statistical Testing and Certification Effects 164

6.3 Validation 173

6.4 Summary ofCleanroom Templates 174

Chapter7:Conclusions 175

7.1 Research Contributions and Summary 175

7.2 DirectionsforFuture Activities and Research 177

References 180

Appendix 191

Appendix A:Cost-Benefit Effects Hierarchy 192

Appendix B:DatabaseSchema 196

Appendix C:UserInterface Samples

C.1 Define Baseline Environment

C.2 Create,a Cost-Benefit Analysis

C.3 Define SPITemplates,Effects,andParameters

C.4 Provide Industry Data and Models

AppendixD:SoftwareProcess Simulation Model

D.1 System DynamicsModeling Concepts

D.2 Cleanroom Process Model

D.2.1 ModelBoundary

D.3 Supporting Software

AppendixE;SoftwareProcessImprovementTemplates

E.1 Emerald Template forTargeted DefectReduction..;

E.2 Cleanroom Template for Statistical Testing

Appendix F:Example Cost-Benefit Analyses.

F.1 Emerald ExampleforTargeted DefectReduction

F.2 CleanroomExamplefor Statistical Testing

Appendix G:Acronyms,

Appendix H:Glossary

Vita

pageix

203

204

206

207

209

210

210

211

215

216

217

217

229

245

245

255

263

265

268

pagex

Tables

Table 2.1:Example studies on the value ofSoftware ProcessImprovement 11

Table 2.2:Commonly cited SPIevaluation measures 26

Table 2.3:ROIversus NetPresent Value 31

Table 3.1:Improvementproposal versus effectcategory matrix 47

Table4.1:Exampleindustry data byfunction points or subindustry 63

Table 5.1:Baseline parametersforinspection cost savings 78

Table 5.2:Example ofresource allocation costsavingsforinspections 79

Table 5.3:Parameters to estimate benefitfrom improved defectremoval efficiency ...81
Table 5.4: U.S.average defect potentials 83

Table 5.5:Defect potentials/defectremoval efficiency targets bySEICMM... 84

Table 5.6:Parameters for estimating defects per year 85

Table 5.8:Example application ofequation 15 89

Table 5.7:Example parametersfor estimating savingsfrom improved efficiency 89

Table 5.9:Parametersfor estimating the value ofcycle reduction 91

Table 5.10:Example calculation ofcycle reduction value 93

Table 5.11:Examplefor estimating an increasein business 94

Table 5.12:Example estimation ofcostto reengineer and costofreuse 99

Table 5.13:Example estimation ofcostofmaintenance 103

Table 5.14: Costofeach possible decision result 104

Table 5.16:Baseline probabilities for ‘neverreengineer’ case 105

Table 5.15:Example decision result 105

Table 5.17:Baseline probabilitiesfor‘could reengineer’case 106

Table 5.18:Decision probabilities when using Emerald 107

Table 5.19:Summary ofbenefitsfromEmerdd use in software acquisition 119

Table 5.20: Software acquisition risk model parameters 121

Table 5.21:Example calculation ofproject risks 122

Table 5.22:Lowerrework cost parameters 124

Table 5.23:Example estimate ofdevelopmentrework savings 124

Table 5.24:Lower support cost parameters 126

Table 5.25:Example estimate ofsupportcostsavings 126

Table 6.1:Parametersfor estimating the value ofreduced employee turnover costs...149
Table6.2:Example estimate ofadditional verification cost 151

Table 6.3:Requirementorigins and comparative costs 167

Table6.4:Parametersfor the value ofreducing requirements creep 168

Table6.5:Payoff matrix example 171

page XI

Table 6.6:Baseline decision probabilities 172

Table 6.7: Statistical usage testing decision probabilities 172

page XU

Figures

Figure 2.1:Effort multipliers by phase:Modem programming practices 16

Figure 4.1:CBA-SPI prototype architecture 68

Figure 4.2:Proposed architecture forinternet service 72

Figure 5.1: Cause-effectdiagram for targeted defectreduction use ofEi^rald 75

Figure 5.2:Parameter dependency graph to estimate defects per year 86

Figure 5.3:Parameter dependency chain for cycle reduction 92

Figure 5.4: Cause-effectrelationshipsfrom Emerald’s software acquisition support..118
Figure 6.1: Cleanroom reference model 1 133

Figure 6.2: Cause-effect relationshipsfrom using sequence-based specification 147

Figure 6.3: Cause-effectdiagram forfunctional verification 152

Figure 6.4:Regression testing simulation model 160

Figure 6.5: Cause-effectdiagram forincremental development 160

Figure 6.6:Projectcompletion time simulation model 163

Figure 6.7: Cause-effectdiagram for statistical testing 166

Figure B.l:Baseline environmentsubject area 198

Figure B.2:CBA effects subject area 199

Figure B.3:SPItemplate subject area 200

Figure B.4:Reference data subject area part 1 201

Figure B.5:Reference data subject area part2 202

Figure C.l:Parametersfor defining a baseline environment 204

Figure C.2:Describing quality appraisal steps for a baseline environment 205

Figure C.3: View or change quantified effects 206

Figure C.4:Defining cost-benefit effects for the SPItemplate 207

Figure C.5:Specifying aformulafor evaluating a cost-benefit effect 208

Figure C.6:Data by subindustry 209

Figure D.l:Life-cycle view ofsimulation model 212

Figure D.2:Computing TotalEffort Hours 214

Figure D.3:Example causes tree for a task unit cost 215

page 1

Chapter 1

Introduction

1.1 Statementofthe Research Problem

The main goal ofthis research is to develop a practical and useful cost-benefit analysis

frameworkfor evaluating theimpactofpotential software processimprovements.

1.2 Motivation for the Research

Mostsoftware managers are underenormous pressure toimprovethe quality oftheir prod

ucts and accuracy ofplans and budgets and to reduce the costofsoftware projects.Such

gains can be obtained by processimprovements.Veryfew software managers are able to

quantify the short- and long-term costs and benefits ofcontemplated software process

improvements.Efforts toimprove the software development process in an organization

are difficultfor managementto evaluatein advance.Many initiatives to improve the soft

ware process require significant expenditures ofresources to introduce the change and to

provide on-going organizational support.Managementmust be convinced the proposed

‘improvement” supports the organization’s strategic goals and will lead to positive finan

cialimpacts.The benefitsfrom investmentsin software technology are often long-term.

Introduction page2

uncertain and difficult to quantify.The costs ofimplementing the improvement are more

immediate,more certain,easier to quantify,and can have adverseimpacton short-term

financial profits andon developmentschedules.Furthermore,managementcould consider

several potential investments aimed atimproving the software development process but

with time and costconstraints that prohibitinvesting in the full range ofpossibihties.

Managers need assistance in evaluating these investment alternatives.

A critical step for evaluating a potential processimprovementis to estimate what

effect a proposedimprovement will have on the organization’s bottom line over an

extended period oftime.Before decision makersinvestinto such along-term initiative

they mustbe able to quantify a positive impacton meeting the organization’s strategic

goals.A cost-benefit analysis(CBA)can be conducted to help decision makers evaluate

such investments.

This dissertation considersissuesfor cost-benefit analysis ofsoftware process

improvement projects and outlines a methodologyfor evaluating software process

improvement proposals.A generalframework is constructed to demonstrate an approach

thatcan be usedfor evaluating anyimprovement.Toillustrate thisframework we develop

cost-benefittemplatesforEmerald and Cleanroom processimprovementtechnologies.A

prototype tool based on this framework is designed and developed to assist the decision

makerin identifying,collecting,and organizing data pertinent to the decision;exploring

various“what-if’scenarios;and simulating,projecting and quantifying the net benefits to

be received under each scenario.

Introduction pages

1.3 CurrentImpediments

1. There is extensive literature on cost benefit analysis and on potential software pro-

cessimprovements.However,the literature is so extensive thatitis bewildering to

make all the choices and know how to proceed.

2. Existing approaches are notreadily available to the decision maker.

3. Existing models require extensive data thatis notgenerally available.

4. Data thatis available may ormay not be relevantto a given situation.

5. Existing models require complex simulations thatrequire great effortto construct

and parameterize,and are ofdubious validity.

6. Existing approaches are morecomplex than necessary for most decisions,and

would take more time to apply than the decision maker has available.

7. Each improvementhas its own profile ofeffects that might varyfrom setting to

setting;thus,a solution in one instance mightnotbe applicablein another.

8. Benefits are often difficult to quantify andjustify. Benefits are less certain,less

tangible,and morelong term than costs.

9. Empirical studies are often missing orinconclusive.

Introduction page4

10. Software managers often lack the training to construct a business case with dis-

counted cash flows and appropriate financial analysis.

1.4 Goals

1. Readily available assistance to the decision maker.

2. Supportthe decision for any improvement,in any environment,for any industry.

3. Involve the minimaleffortand complexity thatis essential to supportthe decision.

and no more.

4. Useinformation thatis readily available.

5. Dothe bestthat can be done quickly.

6. Maintain an openframework that can be updated andimproved as better informa

tion becomes available.

Introduction pages

1.5 Research Contributions

1.5.1 Whatis NotNew

1. Basic concepts ofcost benefit analysis

2. Mathematics ofcost benefit analysis

3. The software process improvements

4. Public and private case study data

5. Process simulation models and case studies

6. Software engineering economic models

1.5.2 Whatis New

1. A frameworkforthe proposal,evaluation and decision support

2. An organized set ofchoices already made,each ofwhich can be changed ifcom

pelling reasons exist

3. An organized set ofdata thatcan be used,changed orignored

4. A dynamic simulation modelofthe Cleanroom software process

Introduction paged

5. An organized set ofprocessimprovementtemplates that can be extended

6. An organized set ofeffects assigned toimprovements that can be changed ifcom

pelling reasons exist

7. Specific quantification functions and modelsfor Cleanroom and Emerald technol

ogies

8. A tool to make cost-benefit analysis ofsoftware processimprovements easy to do

9. A prospectusfor a web-based service

1.6 Organization ofthe Dissertation

Chapter2reviews existing approaches to evaluating processimprovements and provides

an overview ofcost-benefit analysis methods.Chapter3presents a generalframeworkfor

evaluating processimprovementinvestments.Chapter4gives an overview ofthe architec

ture and design ofthe softwarefor analyzing processimprovementinvestments and pre

sents a prospectus for a web-based service. Chapter5describes cost-benefit templatesfor

using Emerald.Chapter6describes the cost-benefit templatesfor using Cleanroom tech

nologies.Chapter7summarizes the contributions ofthis research with directionsfor

future activities and research.

page?

Chapter2

Background

Thisresearch hasrequired study across severaldisciplinesincluding softwareengineering,

microeconomics,cost-accounting,management,and industrial engineering.This chapter

provides background and definitions on specific topics most pertinentto ourframework

including software process,software processimprovement,and cost-benefit analysis. We

also review industry data related to processimprovementas well as various approaches

for evaluating improvements.

2.1 Software Process

The Software Engineering Institute(SEI)defines softwareprocess as“a set ofactivities.

methods,practices,and transformations to develop and maintain software and the associ

ated products,(e.g.,project plans,design documents,code,test cases,and user manuals.)”

[60].Inputfactors to the software production process include methods,tools,training,

. compilers,computerequipment,and skilled labor.Large scale software developmentis a

notoriously complex and difficult production process.Most organizations are unable to

consistently produce systems on-time,within budget,and ofacceptable quality.

Background pages

2.2 Software ProcessImprovement

There are two general approaches to improving the software maturity and capabilities of

an organization atop-downframework based approach and a bottom-up goal-measure-

mentbased approach. With theframework based approach an organization seeks to emu

late practices contained in quality standards or a maturity model.Commonly used

frameworks are the Capability Maturity Model(CMM)[60]and theISO 9001 standard

[77].The current practices ofan organization are audited againstframeworkrequirements

(e.g.,theISO 9001 clauses or key practices in the CMM)to establish a baseline.Gaps

between the requirements and the current practice are used to guideimprovement plans.

Goal/measurement based processimprovementis a systematic approach to introduc

ing improvements to address specific organizational problems or goals.In this approach,

metrics may be used initially to answer questions and provide a baseline.Later metrics are

used to verify thatthe introduced improvement achieved the desired goal.An example of

this approach is Basili’s QualityImprovementParadigm(QIP)which usestwo tools:the

Goal/Question/Metric paradigm(GQM)and the Experience Factory Organization [6].

Bottom up andtop down approaches are notincompatible and can becombined with good

results[21].These approaches suggest process ortechnology changes that mayimprove

the software process ofan organization.However,they do not necessarily help an organi

zation evaluate theimpactthe proposed change will have on their organization.

We consider a softwareprocess improvementproposalto be any documented sugges

tion to injecttechnology,training,management,or processchangesinto a software organi-

Background page9

zation for the intended purpose ofimproving the quality,cost,or schedule ofthe resulting

software product.Strictly speaking,we are concerned with softwareproductimprove

ment,notjust processimprovement.The scope of a proposalcan rangefrom a single

incremental change(e.g.,introduce design reviews)to a sweeping set ofchanges(e.g..

ISO9001 registration).These proposals generally willhave in conunon agoalofreducing

the cost ofquality orincreasing productivity.Examplesofpotential software process

improvement proposals include estabhshing:

• Metrics and decision support

• Independentinspections and verification

• Systematic software reuse program(e.g.,domain engineering)

• Improved configuration managementsystem

Each improvement proposal can be considered as a potential investmentsince the

costs will be moreimmediate and the projected benefits will be long term.Thusthe stan

dard techniques ofbusiness investment analysis can be applied.In the case ofsoftware

processimprovement,the investmentis the total costinvolved in implementing and main

taining a process improvement.The expected higherprofit would resultfrom acombina

tion offactors:a reduction in cost overthe life ofthe software;higher salesfrom reduced

time to market or;a higher sale price and demandfrom producing asuperior quality prod

uct.

Background page 10

2.3 Current Approaches to Evaluating SPIProposals

Just because a processimprovementhas been proposed does not necessarily mean it will

in fact be an “improvement”to the organization when implemented.Software Process

Improvements(SPIs)are not withoutcosts and competing SPIscan provide various levels

ofcosts and benefits to an organization.Hence,an organization needs effective ways of

determining the bestimprovementtoimplementbased upon their current business envi

ronment.This section reviews industry data that supports software processimprovement

and provides an overview ofcurrent approaches tojustifying improvements within an

organization.

2.3.1 Industry Data Supporting ProcessImprovement

A considerable amountofempirical evidence has been published on the cost and benefits

ofSPIefforts. Many ofthese studies address broad classes ofimprovements such asintro

ducing Cleanroom[32] [33] [41][54][71],applying aGQM basedimprovementprogram

[7][54],or advancing alevel in the Capabihty Maturity Model[23][34].Table 2.1 pro

vides examples ofresultsfrom these studies.There are also studies that address specific

common improvements such as inspections[51] [61] [78],software reuse[46][63],and

the introduction oftools[14].For manyimprovements the published studies are inconclu

sive,contain wide variances,orlack any hard data.Forexample,there arefew hard num

bers to support productivity or quality increases due to the use ofobject oriented

programming,orformal methods[29][62].

Background page 11

Table 2.1:Example studies on the value ofSoftware ProcessImprovement

Ref. Organization(s)

[34] Survey of13 organiza
tions pursuingCMM
based improvement

[54] NASA SoftwareEngi
neering Laboratory
(SEL)reporton 120
projects over a7year
period ofapplying
Basili’s Quality Improve
mentParadigm.

[23] CMM based improve
[30] mentatRaytheon’s

EquipmentDivisionfrom
1988through 1996.

[32] IBM team used Clean-

room on an AOEXPERT/

MVS project which con
tained 107KLOC.

[32] Review of17Cleanroom

projects

[71] 90KSLOCCleanroom

project atU.S.Army’s
Picatinny Arsenal.

Results

• AnnualcostofSPIper software engineer ranged from $490to
$2004.The median cost was$1375.

Productivity gain per yearrangedfrom9%-67% with a
median of35%.

Yearly reduction intime to marketranged from 15%to23%
with a median of19%.

A return on investmentin SPIranged from$4to $8.80 with a
median of$5for each $1 invested.

CostofSPIis approximately 10% ofthe total software budget.

Errorrate ofcompleted software dropped by75%(from 4.5 to
1 defect/KSLOC).

Costofsoftware dropped by50percent.

Cycletime to produce equivalentsoftware products decreased
by40percent.

Return oninvestmentof$7.70for each$1 invested.

Productivity increased by 190%.

Reworkcosts decreasedto20%ofprojectcostsfrom41%.The
costoffixing sourcecode during integration dropped by80%
and the costofretesting decreased by half.

Defectdensity decreased to4trouble reports perKSLOCfrom
17.2 perKSLOC.

Improved predictability.Reduced costoverrun from40%to
within 3%.

Productivity increased 36%over projected.

Errorrate of2.6defects/KSLOCfrom firstexecution through
system testing.No operational errorsfound in production.

Productivity improvementsof 1.5 to 5.0times over baseline
projects.

Codeexhibited a weighted average of2.3errors perKSLOC
through all testing as measured from first execution vs.25-35
errors perKSLOCfor baseline development.

Return on investmentof20.8 to 1.

Productivity increased 4.6 timesover baseline.

Background page 12

There are generally three kinds ofempirical results in the literature: controlled experi

ments,case studies and correlational studies.

In the software engineering literature,controlled experiments are typically done with

groups ofstudents to study various code reading or programming techniques using small

segments ofcode.Thistype ofexperimentation can possibly revealsomeinsights regard

ing the particular techniques.However,few firm conclusions can be drawnfrom such

experiments thatcan be applied to large scale development.Some notable experiments

have been donein industrial settings.Forexample.Porter et. al.[61]conducted along

termexperimenttocompare differentinspection techniqueson areal developmentproject.

Experimentson industrial projects are expensive to conductand require skilled research

ers to carefully define the experiments and to control threats to validity.Further,any con

trolled experimentalresults on actual projects typically analyze a small setofvariables on

a single projectin one application domain using onelanguage and environment.Others

mustreplicate the experimentin other environments to gain confidence in the results—

something thatis rarely done dueto the expense and difficulty ofthis type ofexperimenta

tion.

Case studies typically describe the experiences ofasingle software organization in

implementing a processimprovement.Case studies are usefulforshowing thepotential

benefitsfrom implementing a technology and for providing success factors and lessons

learned.However,the setofcase studies for a technology have aselection bias since

unsuccessful attempts atimplementing the technology are unlikely to be pubhshed.Also,

the organizational culture,business environment,and software characteristicsfor a pub-

Background page 13

lished result may be vastly differentthan an organization considering the same SPI.

Hence,the results do not necessarily demonstrate a general association between the

improvementand the reported benefits.

Correlational studies compare datafrom a numberoforganizations and attemptto

show whether a general association exists. However,even these studies are likely to have

some selection bias because organizations elect to participate and provideinput to the

study.The majority ofsoftware organizations do nothave good measurementprogramsin

place to collectreliable,objective data to report to such studies. This is especially truefor

low CMM maturity organizations.Thus,low maturity organizations and organizations

thatlack measurement programs would be lesslikely to participate in correlational stud

ies.

There are also problemsin how results are reported.Forexample,the authors are typi

cally proponents ofthe technology and tend to emphasize benefits butsay little aboutthe

costs.The computation ofthe Return onInvestment(ROI)from using the technology is

often flawed.Forexample,there is a general failure to apply a discount rate to the cost-

benefitflows.This tends to skew the results in favor ofthe benefits since they are usually

realized later than the costs. Also,the benefit effects are often computedfrom a before-

after perspective rather than from a with-without perspective.Forexample,recent results

may becompared with productivity resultsfrom years earlier before the organization

embarkedon theimprovementprogram.The studies typically fail to accountfor otherfac

tors during the time period that may have contributed to the benefit effects,such as more

powerful workstations,improved developmenttools,or more talented developers.Finally,

Background page 14

the studies rarely provide quantitative data on benefits that occur outside the scope ofa

single project or after the release ofa product.Benefits that are difficult to quantify are

typically not quantified.

In spite ofthese difficulties,published results can be useful to supporta decision fora

processimprovement.The ROI,productivity,and defectreduction numbers provide sup

portforthe decision as well asthe successfactors andlessonslearned,butthey do notnec

essarily provide an accurate orcomplete picture ofcosts and benefits thatcan beexpected

forthe SPIin a specific organization.

Finally,managementis selfdefeating.Even when a software development unit pays

the price for training and technology and delivers phenomenal results,such results are

ignored as the unit is dismantled to staffnew projects,effectreorganization,or adjustto

mergers and acquisitions.

2.3.2 Project Cost-Estimation Models

Some cost-estimation modelscan be used to estimate the effectofanimprovementby pre

paring two estimates:one thatrepresents the cost and schedule ofa project withoutthe

proposedimprovement,and asecond estimate with theimprovement.Thetwo results are

then compared to estimate the impactoftheimprovement.Forexample,the intermediate

and detailedCOCOMO models[9]contain a setoffifteen effort adjustmentfactors or cost

drivers.Theform ofthe intermediateCOCOMO equation forestimating effort is:

Background page 15

15

PM = A{KSLOC)^• Yl(Fi)
i= 1

where,PMis the person-months ofeffort,A andB are equation parameters,KSLOCis the

estimated delivered Kilo-Source Lines ofCode,and the are the fifteen effort adjust

mentfactors.Two ofthese effort adjustmentfactors relate to process and technology

improvements:

• MODP-the use ofmodem program practices(MPPs)(i.e., processimprovements

such asinspections and incremental development),and

• TOOL-the use ofdevelopment tools.

The nominal value assigned to each factorisone with higher values assignedforimmature

organizations and lower values assigned for the most mature.The suggested value for the

MODPfactorrangesfrom 1.24for an organization who doesn’t use any MPPsto0.82for

an organization that routinely uses all suggested MPPs.This range allows a51%increase

in productivity(or decrease in project effort)based upon extensive use ofmodem pro

gramming practices.In the detailed COCOMO modelthe MODLeffort multipliers can be

adjusted by life-cycle phase asshown in Figure 2.1.Note that mostofthe costsavingsfor

MPPscome in the later Integration and Testlife cycle phases.

The more recentCOCOMO11 model[10]includes a scaling driverfor the organiza

tion’s estimatedCMM based process maturity(PMAT)that would allow similar“what-if’

scenarios. Using a general cost model such asCOCOMOto estimate theimpactofa tech-

1.6

Background page 16

1.4

Jk 1.2 <-
.2 Verylow
Q. 1 -■-Low

I 0.8 Nominal—g-r

^Higho 0.6
;t=
lU 0.4 ^Very high

0.2

0
Requirements Detailed Code and Unit litegration
and R-oduct Design Test and Test

Design

aFigure 2.1: Effort multipliers by phase: Modem programming practices
a. Source: [9], p. 453, Figure 27-1.

nology can be useful for determining an approximate range of cost savings. However, the

decision maker has little help in determining what adjustment factors to use for specific

improvements. Also, these models do not address organizational cost-benefit impacts for

implementing the technology and are unable to capture other effects outside the scope of

the model such as reduced maintenance, increased sales, or faster time to market.

2.3.3 Economic Models

Economic models have been developed to estimate the value of specific improvements. In

particular, the literature contains many cost-benefit models for systematic software reuse

Background page 17

[18][47] [52] [63].These models typically consider the additional cost to develop reus

able software components and compute the savingsfrom reuse,the return on investment,

and the numberoftimes a module mustbereused to breakeven.According to Lim[47],

mostofthese models do nottakeinto accountthe time value ofmoney,mostofthem do

notconsider savingsfrom the maintenance phase,mostofthem do not accountfor the

overhead cost ofreuse,and mostdo nottake into accountincreased profitfrom shortened

time to market.

Several ofthese reuse models consider how the business casefor software reuseis dif

ficulttojustify underasingle project view.The benefitsfrom systematicreuse accrue over

time and over a numberofprojects.A persistent difficulty in introducing systematic reuse

is the scope ofdecision making regarding reuse.Project managers make decisions that

optimize their current project,notfuture projects that could benefitfrom reuse. Although

reuse may yield significant cost-savings for a series ofprojects,individual project manag

ers have little or noincentive to incur costs and delays to make modulesreusable by other

projects.The reuse models ofMalan[52]and others[63]help to make the value ofreuse

acrossasuccession ofprojects morequantifiable and visible to assist higherlevel decision

making.

Taking a multi-project,organizational view also applies tojustifying other process

improvements.Much ofthe cost ofimplementing an SPIinvolves changing the organiza

tion’s culture and way ofdoing business.Forsomeimprovements it may take time and

twoorthree projectsin orderto finetunethe processchangesandto fully recoverthe orig

inalinvestment.

T

Background page 18

McGibbon[56]has prepared a useful setofeconomic modelsfor estimating the

effectsfrom severalimprovementsincludingCMM based software processimprovement,

inspections,reuse,and Cleanroom.He also provides rare examples ofquantifying the less

tangible secondary benefits ofprocessimprovementsuch as the value ofimproved sched

ules,reduced employee turnover,andimproved customer satisfaction.His models,param

eterized based on reports in the literature, are specific to each ofthe considered process

improvements.His analyses do nottakeinto accountthe time value ofmoney and do not

provide a direct way to be customizedfor a particular organization.

Economic models are usefulfor evaluating a specific improvementbut often do not

provide estimates on the full scope ofcosts and benefits to be considered.

2.3.4 CostofSoftware QuaKty

Manysoftware processimprovementprojects haveanimplicitorexplicitgoalofreducing

the cost ofquality.The cost ofquality concept was originally described by Juran and

Gryna[36]asthosecoststhatwouldbeeliminatedifall workers were perfectin theirjobs.

The American Society for Quality Control(ASQC)has defined thefollowing categories

ofquality costs[15][58]:

• Prevention costs -incurred to prevent poor qualityfrom being produced.For

example,analysis and planning for quality,training,developmentofprocess con

trols.In the software world,these costs wouldinclude training practitioners in a

new methodology,planning and establishing a metrics program.

Background page 19

• Appraisal costs - activities undertaken to prevent poor qualityfrom being pro

cessed beyond the point at which they become nonconforming orfrom being

delivered to customers(e.g.,inspection and testing ofsoftware or design documen

tation).

• Failure costs- costs required to evaluate and correct or replace software not per

forming to specifications or failing to meetcustomer needs.For software,this

would include the time spent analyzing and modifying source code,re-building

and regression testing ofexecutables in order to correct underlying faults.

+ Internal failure costs - associated with products that fail to meet specifications

and are identified before the productor service is delivered to the customer.

Forexample,ifan integration testreveals a problem,then the costto analyze.

correct,and retest the problem code would be considered an internal failure

cost.

+ Externalfailure costs -incurred because poor quality products are delivered to

customers.This category includes the cost ofhandling customer complaints.

returns and allowances,customer ill will,productliability,and loss offuture

business,as well as the cost ofanalyzing,correcting,testing,building,install

ing,and documenting code patches to correct problems.

Background page20

To achieve a goal ofreducing the cost ofquality may require increasing spending for

prevention and appraisal costin order to reduce the more expensive internal and external

failure costs.

The costofquality conceptprovides a convenientclassification system for costs

related to quality.The concept has been applied to software developmentby various prac

titioners and researchers.Forexample,Slaughter defines a CostofSoftware Quality

(COSQ)metric and aReturn on Software Quality(ROSQ)metric and usesthem to com

pute the value offourimprovements atBDMInternational[72].

2.3.5 Software Process Simulation Models

A software processsimulation modelis an abstractrepresentation ofan actual software

process thatcan be simulated computationally.Asdiscussed previously,the software engi

neering literature provides little data that scientifically proves the effect ofpotential pro

cessimprovements.It is extremely costly to perform controlled experiments ofactual

software projects andthus they are rarely done.Simulation offers aneconomicalapproach

to conducting experiments on an abstractrepresentation ofa real project.These models

are usefulfor gaining insight and understanding into the many interrelated,dynamicfac

tors involved in producing software.However,a modelis an abstraction and leaves out

many details.The cause-effect relationships codified into a model are often tenuous and

poorlyjustified.Thus the usefulness ofthe model dependson how well it captures the

mostimportant aspects ofareal software organization.

Background page21

In recent years a numberofapproaches have been explored for modeling the software

development process including specialized languages[67],precedence networks[24],

Petri nets[43],discrete simulation[31],state-based simulation[66],and system dynamics

[1][51].Many ofthe existing modeling approaches are concerned with understanding or

supporting the software process in an organization and do not haveSPIevaluation as their

primary goal[53].This section will further examine simulation modeling work that has

been used specifically for evaluating the impactofsoftware processimprovements—the

state-based Task ElementDecomposition approach ofRaffo[66]along with various

efforts using system dynamics modeling.

Task ElementDecomposition(TED)

Raffo[66]adapted methodsfrom the Operations Managementliterature to synthesize

the TaskElementDecomposition(TED)methodfor quantitative modeling ofsoftware

development.TED uses a Markov Chainframework with the states representing different

phases ofthe development process.Each task can be decomposed into kernel activities

with random processing times.The total processing time ofan operation is thesum ofthe

times for all activities associated with the operation.TED is used in conjunction with

Statemate,a commercially available process modeling tool.Raffo illustrated theTED

method using a small example problem to compare theimpact ofinspections on the pro

cess.From his analysis he wasable tocompute andcomparethe total duration,total effort.

and remaining errorsfor both the baseline process andthe “baseline with inspections”pro

cess.

Background page22

His approach is significantin that he offers a quantitative way to predict quality,cost,

and schedulefrom within one model.However,Potok[62]argues thatthe software devel

opmentprocess does not meetthe conditions ofa Markov Chain.Also,the modeliscom

plicated,difficult to constmct,and only models a small portion ofthe development

process.

System Dynamics

System dynamics(SD)is an approach to simulation modeling developed in the late

1950’s by Forrester[27]to study the behaviorofindustrial and business systems.Since

then,SD models have been developed to study a widerange of problemsfrom managing

research and developmentprojects to understanding urban decay to analyzing world

impacts ofpopulation growth.MorerecentlySD has been applied to studying software

development managementissues.

System dynamics is based on techniques and principles adaptedfrom control systems

theory.A priihary goal ofSD is usually to understand the behavior ofinformation feed

backloops related to a problem.Afeedback loop is a closed sequence ofcauses and

effects,often with some delay introduced.A system dynamics model consists ofa set of

differential equations to modela process.The modelcan be simulated overtime to test

various alternative policies.

A system dynamics modelofthe Cleanroom software developmentprocess was devel

oped as part ofthis research to analyze the cost-schedule impacts ofincremental develop-

Background page23

ment.More details on system dynamics and an overview ofthe Cleanroom model are in

Appendix D.

Abdel-Hamid and Madnick’s Model. The use ofSDfor understanding software

development was pioneered by Abdel-Hamid and Madnick[1].They developed a

detailed,integrated modelofthe software developmentprocessfor a project based on an

extensive review ofthe literature combined with interviews with several software project

managers.Thescope oftheir modelincluded personnel resources,software production,

planning,andcontrol sections.They validated theirmodelagainstan actualNASA ground

support software system for a satellite.They performed a variety ofexperiments on then-

model to study the interactions ofvarious phenomenasuch as Brook’sLaw,Parkinson’s

Law,and the Deadline effect.They also examined theeconomics ofsoftware quality

assurance(QA)to attemptto determine the optimal expenditure on QA.One interesting

resultfrom their experiments was that highercode writing productivity leads to an

increasein the optimal percentage ofeffortto spend onQA activities.Unfortunately,then-

definition ofQA lumped together requirements review,codereview and integration test

ing.This high amountofaggregation makes it difficult to isolate theimpactofspecific

improvements such as code inspections.Although their modelis usefulfor understanding

many software engineering phenomena,it is very complex and unsuited for quantitative

assessmentofcostand schedule impacts ofspecific process improvements in a particular

environment.

Background page24

Madachy’s model. Madachy[51]developed a system dynamics model ofan inspec

tion-based software process and used itto investigate theimpactofinspection practices on

cost,schedule,and risk.His model was calibrated with datafrom two similar projects at

Litton DataSystemsexceptthatone used inspections andthe otherdid not.He was able to

accurately reproduce the effectshown by the Litton data as well as experiment with modi

fying anumberof parameters ofthe model.Forexample,the Litton data showed an ROI

forinspections of2.32to 1 compared to an ROIof2.02to 1forinspections obtainedfrom

model simulations.His model can also produce effort and schedule predictions based on

differentinspection policies.

The Madachy modelis usefulfor estimating the effect ofdifferentinspection policies.

However,it is noteasy to tailor the modelfor a particular organization orfor a particular

processimprovement.Many software projects do notcollectthe data required to parame

terize the modelfor their organization.Madachy noted the difficulty in finding data for

validating the model:“No project data wasfound to be complete enoughfora globalcom

parison oftotal effort,schedule and inspection parameters.’

Problems With Existing Simulation ModelsforSPIDecisionSupport

Simulation models are often difficult to parameterize,understand,and use.The model

may not match the process used by an organization and require time-consuming modifica

tions by experienced modelers.Nogeneral modelofthe software development process is

capable ofevaluating the specific impact ofany arbitrary process change that mightbe

considered.Ifsuch a model did exist it would be too complicatedfor practical use.The

Background page25

decision makeris unlikely to place a high confidence in the results obtainedfrom ahighly

complex model thatis poorly understood.Software process models tend to be single

project oriented whereimprovements mayimpactthe capability ofan organization over

many projects.

2.3.6 Other Benefit Evaluation Approaches

There are a variety ofother approaches that have been reported in the literatureforevalu

ating benefits ofproposals including risk reduction and bayesian decision analysis.

Risk reduction involvesidentifying potential risks,the estimated loss that would occur

ifthe risk occurred,and the likelihood that the risk will occurfor the baseline(‘as is’)sce

nario.A potential SPIcan be evaluated for itsimpacton reducing the likelihood ofthe

risk. An example ofestimating an SPFs value in reducing risk is given in Section 5.3.5.

Bayesian decision analysis is a structured approach to evaluating choices with an

uncertain pay-offfor those choices.Decision analysis is usefulfor evaluating the value of

increased information on choicesinvolved in routine decision making.An example of

bayesian decision analysis is provided in Section 5.2.4.

2.3.7 Summary ofEvaluation Metrics and Methods

We havereviewed a variety ofapproachesfor estimating the benefits ofsoftware process

improvement.While all ofthese approachescan provide usefulinformation,none ofthem

bythemselves provide acomplete picture needed to evaluate all the cost-benefitimpacts

Background page26

for anyimprovementfor any organization.Further it is difficult to make useful compari

sons between competingimprovements or to understand the relationship among comple

mentaryimprovements.

From ourreview ofliterature, various metrics are usedfor evaluating process

improvementsassummarizedin Table2.2.Although these measures are useful data points

for a decision maker,no one ofthem is adequate as an overall measure ofthe value ofthe

SPI.Estimates ofproductivity,quality,effort,and schedule impacts can be useful to a

decision maker,butfail to provide a single criterion for evaluating theimprovement.The

Return on Investmentis the only metric thatcomes close to this goal.

Table 2.2:Commonly cited SPIevaluation measures

Type Measurement

Productivity Increase in productivity(output per unitinput).For software
productivity outputis typically measured in lines ofcode or
function points while input is measured in terms ofeffort
hours or cost.

Quahty Reduction in internal failures

Reduction in field defects

Reduction in error rate

Cost/Effort Effort orcostsavings realizedfrom improvement

Effort or costexpended toimplementimprovement

Reduction in non-conformance cost

Schedule Reduce schedule overrun andincrease schedule predictability.

Savings in overall schedule

Overall Return on Investment.Typically cited as the cost(or effort)
savings divided by the cost(or effort)toimplement an
improvement.

Reduction in CostofSoftware Quality

Background page27

2.4 Cost-benefit analysis

This section reviews cost-benefit analysis literaturefrom microeconomics and manage

mentliterature outside the usual realm ofsoftware engineering.A cost-benefit analysis

(CBA)is an evaluation ofnet benefits associated with one or more proposed alternatives

for achieving a defined goal.Cost-benefit analysis is the term used by economistsfor the

evaluation ofpublic projects[69].A closely related term is capital investmentanalysis, a

collection oftechniquesfor comparing and deciding between capitalinvestment alterna

tives[16].Capital investment analysis uses many ofthe same methods as cost-benefit

analysis.The primary difference is in the scale ofthe problems being addressed.Because

CBA was developed to evaluate large public projects itincludes theory and methodsfor

evaluating effects that may not have readily available market prices.On the other hand,

capital investment analysis is typically focused on evaluating smaller,private capital

investment alternatives.This research adapts the cost-benefit analysis approach ofSas-

sone[69]with applicable investment analysis methods[16]to synthesize a method and

framework to supportSPIevaluation.

There are two primary ways aCBA can be used[42]:

1. Asa planning toolfor assistance in choosing among alternatives and allocating

scarce resources among competing demands.

2. As an auditing toolfor performing post hoc evaluations orfollow-up studies ofa

previously implemented proposal.

Background page28

Thisresearch focuseson the first use,buttheCBA methods andframework developed

here can be used for the latter purpose.Follow-up studies help show the value ofpast

improvements and provide valuable dataforfuture efforts.

2.4.1 Decision Criteria

A numberof different methods have been suggested for comparing alternative proposals,

butthe NetPresent Value method is considered to bethe superior to all the others.This

section examines threeconunon decision criteria: NetPresent Value(NPV),Internal Rate

ofReturn(IRR),and Return onInvestment(ROI).

NetPresent Value(NPV)

Netpresent value(NPV)is a methodfor discounting projected costs or benefits which

will occurin the future.Essentially,the NPV recognizes that money has atime value

(even in the absence ofinflation).Forexample,ifa proposalis expected to yield a benefit

of$100next year,we might value that$100next year as$90today.TheformulaforNPV

IS

NPV = ̂ (EQ 1)
\t

(1+r)
t=0

where

Bfis the dollar value ofbenefits received attime t.

Background page29

Qthe costs incurred attime t.

rthe discount rate,

n the life ofthe project,and

tis time in units such as years or months.

A proposal subjected to aCBA will typically have its costs and benefits spread over a

numberofyears.In ordertoreducethe stream ofcosts and benefitsto asingle number,the

NetPresent Value(NPV)is computed.TheNPV is examined in more detail in the next

chapter.

InternalRateofReturn(IRR)

TheInternal Rate ofReturn(IRR)is defined as the rate r used to discount the future

which would make the NPV ofthe projectequalto zero.A proposal with anIRR that

exceeds a predetermined social discountrate(e.g.,cost ofcapital)is deemed acceptable.

There are three problems with this criterion:

1. The rthat solves(EQ 1)is not necessarily unique.Since the equation is ofdegree

n,it has n roots.Suppose d is the predetermined discount rate,both ,r2 solve

(EQ 1),and r^<d<r2,then theIRR provides contradictory results.

2. The criterion assumesa single discountrate overthe life ofthe project.It may be

appropriate to set one social discount rate for the firstfew years(say d^)and a

higher rate for later years(say c?2)to accountfor higher risk in those years.Sup-

page 30Background

pose wecompute anIRR(say r)between those values(<r<J2)• Once again

theIRR provides contradictory results.

3. TheNPV andIRR can give contradictory results when comparing two different

proposals[16][69]with the NPV indicating the best alternative.

Return onInvestment(ROI)

The Return on Investment(ROI)(also called the Benefit-Cost Ratio(B/C)or a profit

ability index)is the ratio ofdiscounted benefits to discounted costs.Theformulaforcom

puting theROI(orB/C)is

B

ROI= B/C =

t=o

TheROIgives the discounted benefitper dollarofdiscounted cost.ROIisafrequently

cited metric in the software engineering literature,butit has afatalflaw when itis used to

comparetwo or more proposals in that it doesn’ttake into accountthe size ofthe invest

ment.Forexample,the smallest oftwo proposals may have alargerROIbuthave the

smallest total net benefit or NPV.

Background page31

Another problem with theROIcalculation is that it is sensitive to whetherafinancial

effect ofa proposalis classified as an increase(decrease)in benefits or as a decrease

(increase)in costs.

However,the ROIdoes play arolefor a certain type ofdecision.Thatis when the

decision involves choosing the optimal mix ofseveral proposals subjectto a capital con

straint.In this case,selecting proposal with the highestROI> 1 until the budgetis

exhausted will maximize the total NPV.

Although the ROImetric isfrequently used in software engineering literature,the met

ric is seldom discounted to accountfor the time value based on when the benefits are

received. Also,itis often inappropriate to use ROIasacomparison criterion between

mutuallyexclusive SPIs.McGibbon[56]provides anexample ofwheretheNPVandROI

lead to different ordering in comparing SPIs asshown in Table 2.3.Note thatthe NPV is

the superior criterion since it would provide the highest value to the company.

However,a direct comparison ofCleanroom to Inspections is also inappropriate for

another reason.Cleanroom represents a broader set ofmethods than Inspections and only

one ofthe Cleanroom methods—Functional Verification — directly compares with

Inspections. All the other methods ofCleanroom are compatible with,and are not

Table 2.3:ROIversus NetPresent Value^

SPI Costs Benefits Net Value ROI

FormalInspections $13,212 .$946,382 $933,170 71.63to 1

Cleanroom $77,361 $2,528,372 $2,451,011 31.68 to 1

a. Excerptofdata from[56],Table 18,p.26.The author implicitly assumed that r=0.

Background page 32

intended to replace the role ofInspections.In McGibbon’s example,Cleamoom requires

higher costto implementthan FormalInspections because more new methods are imple

mented.This example points to the need to better understand the relationships among

competing processimprovements.

2.4.2 Structuring the Decision Problem

There are three mutually exclusive forais aCBA decision problem may take:

1. Evaluate whetheror nottoimplementa single proposal.

2. Choose a single proposal toimplementfrom among several alternatives.

3. Selecta setofproposals toimplementfrom alarger set ofpossibilities.

For a simple decision problem that only involves whether or notto acceptone pro

posal,then the decision criterion would be to selectthe proposalifits projected NPV is

greater than zero.Ifchoosing asingle proposal among several alternatives,then select the

proposal with the maximum NPV.Ifchoosing multiple proposalfrom aset ofpossibilities

then the problem is a little more complicated.In this case,one mustfirst determine

whether or notthe proposals areindependentand ifthe proposals are subjectto a capital

constraint which limits the initial expenditures thatcanbe spenton the selected set ofpro

posals.A proposalis independentofother proposals ifthe NPV ofa proposal is not

affected by whether or not the other proposals areimplemented.If proposals are depen

dent,then one mustform all possible subsets ofcombinations ofproposals and evaluate

Background page33

the NPV ofeach combination.Use thefollowing algorithm to determine the decision cri

terion based upon theform ofthe decision problem.

SELECTform ofdecision problem
CASE Acceptor Reject OneProposal

AcceptproposalifNPV>0
CASEChoose OneofSeveralProposals

Select proposal with maximum NPV
CASESelectaSetofProposals

IF proposals are independent
THEN

IFCapital Constraint
THENrank byR0I>1
ELSErank by NPV>0
ENDIF

ELSE(ifproposals are dependent)
IFcapital constraint
THENfindfeasible sets maximize NPV

ELSEfind possible sets maximize NPV
ENDIF

ENDIF

2.4.3 Identifying Costs and Benefits

Identifying costs and benefits is the mostimportantand one ofthe most difficult steps in

conducting a benefit-cost analysis.

A costis measured by the resourcesrequired to procure orimplementsome aspectofa

proposal.Examples ofSPIrelated costs include extra time to perform a new process step,

consulting fees,training materials and the costoftools to supporttheSPI.In general costs

are relatively immediate,certain and tangible.

Benefits often take theform ofcost avoidance such as reduced rework,error reduc

tion,improved quality,time savings,reduced time to market,andimproved process con

trol.There are also less quantifiable benefits that are cited in the literature for SPIsuch as

Background page 34

improved customer satisfaction leading to higherfuture sales and customer retention.For

SPI proposals,benefits are often more long-term,uncertain and less tangible than costs.

Benefits should be defined in specific,quantifiable terms.A vague definition ofa ben

efit such as“improved quality”is oflittle value.This kind ofbenefitcan be broken down

into more specific quantifiable components,such as,reduced rework and reduced field

failures.

Costs and benefits for an SPIcan be identifiedfrom the literature andfrom consider

ing the impacts ofthe SPI within a particular environment.

A preliminary matrix ofcosts and benefits should be created.Columnscan be added

foreach type ofstakeholder.The cost-benefit list should bereviewed to insure it is valid

andto checkfor double counting.It mustbedetermined to whatextenteach costor benefit

can be quantified.The review should determine data availability and identify what data is

needed.

2.4.4 Quantifying Costs and Benefits

Thesecond mostcritical aspect ofconducting aCBA is quantifying the costs and benefits

and determining the time periods the costs and benefits will be realized.The main diffi

culty in quantification is the unavoidablefact thatthe analystisfaced with forecasting the

future.However,as much as possible,it is still importantto quantify these impacts.As

Sassone has stated:“Only through quantification isthe aggregation ofeffects andthe anal

ysis oftrade-offs generally possible”[69].There is no one procedure thatcan be used for

Background page 35

quantifying effects ofprocessimprovements.However,the use ofeconomic principles

and modelscan help guide usto reasonable quantification approaches.

The estimator should state the source ofall assumptions and estimates.The estimator

should only be concerned with marginalcost-benefitsflows(i.e.,cash flow differences

from the baseline scenario).The organization’s historical data as well as data and esti

matesfrom the literature can be usefulfor estimating cost-benefit effects.

2.4.5 Setting the DiscountRate

The discount rate is a critical parameterin the NPV calculation.The discountrate can

affect whether a single proposal has aNPV>0orchange the ratings among proposals.

High rates penalize proposals with benefits occurring farther in the future.A lowerrate

discounts the future less than a higher rate. Within a private business,the discountrate

should already be established by top managementbased on the cost ofcapitalforthe busi

ness orthe opportunity cost.

Ifthere is concern or uncertainty about which rate to use,it may be useful to compute

a critical rate.The critical discountrate is the rate at which the NPV calculation changes

sign.Ifthe rate is high orlow,then knowing the exact rate may not be important.For

example,suppose the critical rate is computed to be 18% and any rate at or below 18%

results in an NPV>0.Since you are confidentthe true discount rate is below 18%,you

conclude that the proposal is worth implementing.

Anotherconsideration in setting the discount rate is the risk of whether or notfuture

benefits will actually be realized.A risk premium can be added to the rate to accountfor

Background page36

benefits that are highly uncertain.Forexample,taking time now to investin making mod

ulesreusable maynotpay offiffuture software projectsfailtoreusethem.Hence,an extra

factorcan be added to the discount rate to accountfor that risk.

2.4.6 Performing Sensitivity Analysis

Some ofthe costs and many ofthe benefits in aCBA will be estimates.Such estimates

maybe based on a probability distribution(perhaps using acombination ofsubjective and

objective probabilities),butthe analyst must arrive at a single numberto putinto a CBA.

The problem with using an expected value is that it does not accountforsociety’s attitude

towards risk.

Forexample,we may believe that we have a50%chance ofreceiving$0and a50%

chance ofreceiving $1000forsome postulated benefit.The expected monetary value

(EMV)ofthis probability distribution is$500.However,would you as an individual be

willing to pay$500for a lottery ticket that has 50-50chance ofwinning$0or$1000?

Mostpeople would notbe willing to risk$500forsuch odds.

Since society in general is adverse to risk,the appropriate value to assign is the cer

tainty monetary equivalent(CME).Forexample,suppose theCMEorthe average price

members ofsociety would be willing to payfor the abovelottery ticketis$380.Then soci

ety is adverse to risk and is extracting a$500-$380=$120penalty for the risk presentin

the probability distribution.In other words,in estimating abenefit we mustdeductthecost

ofbearing riskfrom the expected value ofthe distribution.Higher variance in a probabil-

Background page37

ity distribution exacts higher costsfor bearing risk and thuslowers the value ofthe

expected benefit.

Finding theCMErequires knowing society’s utility function.Butthere is no specific

procedurefor determining such utility functions.In practice,sensitivity analysis is per

formed to estimate the degree oferrorin the CB A and to show what would happen given

certain combinations ofassumptions.

Let bit be the value ofthe ith benefit received in year t,and Cn bethe value ofthe ith

cost paid in year t.Then the NPV expression is

NPV =^
(1+r)'

Each component benefit(bu)and cost(c,-,)is often an estimate.Thusthe accuracy ofthe

NPV calculation depends on the accuracy ofthese estimates.There are three approaches

to sensitivity analysis thatcan be used to address the degree oferror in these estimates.

Subjective Estimates

Based upon experience and insight,the analyst might state that the NPV is subjectto

an error ofplus or minus 10%.A subjective estimate can be quite good depending on the

skill ofthe analyst.The advantages ofa subjective estimate are that itis quick,inexpen

sive,and can accountfor variability notreflected in the objective measures.The disadvan

tages are that it does not have a quantitative basis and the analystcould have difficulty in

defending the estimate to critics.

Background page 38

Selective Sensitivity Analysis

The analyst selects parameters involved in the NPV calculation thathe believes are

subjectto error and thatcould significantly affect the result.Foreach ofthese parameters,

he selects likely high andlow values andcomputesNPV values with each.The decision

makeris then presented with three NPV estimates - high,medium(the original value),and

low.

The advantages ofselective sensitivity analysis are thatitis objective and easy tocom

pute.The disadvantage is that it is only suitable for situations where only a small number

ofparameters are subjectto error.

GeneralSensitivity Analysis

This approach derives a probability distribution ofNPV outcomes.Each bi^ and

depend,in general,on a number ofparameters. Call these parameters the set

a = {ai,a2,

Suppose high,medium and low estimates are available foreach «,•. Now partition the

set of parameters into disjoint subsets Aj such that all parameters are placed in the same

setifand only ifthey are dependenton each other.Iftwo parameters are independentthey

must be in different subsets.Thuseach a, mustbe a memberofexactly one subsetA^-.

Since the a,,’s in eachAjare related,there are only certain combinations ofvalues each Aj

can assume.The analyst mustdetermine each ofthese combinations and their correspond

ing probabilities.Suppose the set A^- can assume configurations.Denote these configu-

page39Background

rations as Aj-^,Aj2, Ajq_ and the corresponding probabilities as

P{Aj{),P{Aj2), P(AjQ^).TheNPV cumulative probability distribution can becom

putedfrom these combinations ofparameters to provide risk information to the decision

makerin a convenientformat.

Risk and Uncertainty

Ifno meaningful probabilitycan be assigned to certain sets ofthe parameters,then this

situation is called an uncertainty, whereas the situation in which probabilities are assign

able is called a situation ofrisk.The discussion above addresses risk.One wayto handle

uncertainty is to giverangesofestimatesforeach uncertain parameter.Whenthe resultsof

theCBA are presented,a payoff matrix can be presented which computes the NPV under

each assumed value for the parameter.

2.5 Summary

The software engineering literature contains alarge amountofinformation thatcan be

used to help support processimprovementdecisionsincluding empirical data,process

improvementframeworks,cost-models,economic,models,and simulation models.As we

have seen,these approaches havelimitations and nosingle approach is adequateforevalu

ating thefullimpactofan SPI within aspecific organization.Thecost-benefit analysis and

investmentanalysis literature suggests a systematic method andframeworkfor evaluating

Background page40

potential SPIs as potential investments.Such aframework can serve to organize the avail

able data and models and provide decision supportto practitioners.

page41

Chapter3

A Frameworkfor Evaluating Software

ProcessImprovementInvestments

This chapter develops a general,unifyingframework to supportevaluating software pro

cessimprovements on the basis oftheir economic desirability.SPI proposals can be

viewed as potentialinvestmentalternatives aimed atimproving quality,cost,and schedule

ofsoftware development.Ourgo^is to provide aframework thatcan be used to build an

organized repository ofinformation and modelsfor potential processimprovements.For

each SPIatemplate mustbe constructed to identify the set ofcost-benefit effects along

with quantification functions and parameters based upon the best available industry data

or models.The relationships among SPIs should be identified to help the decision maker

understand which SPIs are mutually exclusive,which are prerequisites,and which are

complementary.

AFramework for Evaluating SoftwareProcessImprovementInvestments page42

3.1 A Formal ModelofInvesting in Process

Improvement

This section develops a general modelofthe investmentdecision for software process

improvements.The purpose ofany investment anMysisis to determine which investment

alternative is the best use ofthe organization’s resources.

3.1.1 Cost-Benefit Analysis Principles

OurCBAframework is based on the principles ofcost-benefit analysis as stated by tech

nology-economistPeter Sassone[70],highlights ofwhich are:

1. Effects will be expressed in dollars and schedule impacts.

2. Useofdiscounted cash flow analysis to accountfor the time value ofcost and

schedule impacts.

3. Use oflife cycle cost-benefit analysis.

4. Adoption of with-without rather than the before-after perspective in comparing

alternatives.

5. Use ofnet present value as the single bestfinancial criterion in aggregating costs

and benefits over time.

AFrameworkfor Evaluating SoftwareProcessImprovementInvestments page43

6. Useofcorporate opportunity cost ofcapital as the appropriate discountrate in dis

counted cash flow calculations.

Unfortunately,little ofthe software engineering literature uses these standard princi

ples.Thefew notable exceptions include Vienneau[76],Cruickshank[18],and Slaughter,

et. al.[72].

3.1.2 NetPresent Value

Ourframework uses the NetPresent Value(NPV)criterion for evaluating proposals.

Benefitand CostEffects

Let Ej= Bj-C,be the total cost-benefitimpact during time period t where is the

total value ofthe benefits received and C,is the total ofcostsincurred during time period

t. The total cost-benefitimpactE,can be divided into a numberofsubcategories ofcost-

benefiteffects.Let bethe value ofthe^costorbenefiteffectthatis expected to occur

during time period t.If >0,the effect will beconsidered a benefitforthattime period.

otherwise it will be considered a cost.Then

(EQ2)

J

and the NPV equation becomes

�

AFrameworkforEvaluating SoftwareProcessImprovementInvestments page44

n

NPV = J]—i (EQ3)

(1+r)'
r =0

We will let NPVjrepresentthe net present valuefor afixed costor benefit effect;.

Thus,

n

NPV:= y—^ (EQ4)

' t̂ (l+r)=

t

0

and

n

YNPV:= y y = y L = NPV (EQ5)

(1+r)'
J J /=0 f=0

Each cost-benefit effect, ej^,can be estimated by a real valuedfunction whose

domain is XxZx K,where X is the setofnatural numbers representing the apphcable

time period and each X represents a set ofvectorsfor predicting marginalimpacts to the

software development process.Thatis,X = X2,...,x^)|x^G X^,l<k<M}

where each X/^ represents the domain ofpossible valuesfor the ̂ th parameter.The first

vector represents the estimated parametersforthe baseline scenario and the second vector

represents the estimated parametersfor the alternative scenario under consideration.The

�

page45AFramework for Evaluating SoftwareProcessImprovementInvestments

estimation function/can be defined in terms offunction g,whereg quantifies the cash

flow ofeffect categoryjfor time period tunder the given scenariox.

Then ateach pointin time t.

fjtix,y) = gjt(y)-8jt(x) (EQ6)

Thejth cost or benefit effect attime tis the difference between the netcash flow for

effectcategoryjunderconditions ofan alternative in place(y)and the netcash flow

underthe condition ofthe baseline(x)in effect.Thatis,/is the monetary difference that

occursfor the effect categoryjand time period t when conditionsy are in effect.

We also define fj and gj as vector valuedfunctions thatreturn a stream of valuesfor

each time period.Thatis fj = (fjoJji, and gj = {gjQ,gj^,..., g^.„>.If we

define a discountfactor as d = and letthe vector d = {<f,d^, theformula

for net present value may be written in vector notation.TheNPV is afunction ofthe base

line parameters,parameters under an alternative scenario,and a discountfactor

NPV(x,y,d) = YNPVjix,y,d)=' (̂fjix,y) d)= d-Yfj(x,y) (EQ7)

J J J

Thisformulation allows us to consider the stream of values for each effect jsepa

rately. An estimation function fj mustbe developed for each primary effectjin terms of

the baseline parameters and the parametersfor the alternative scenario.

page46AFrameworkfor Evaluating SoftwareProcessImprovementInvestments

3.1.3 Parameter Attributes ofa Development Organization

Suppose a manageris considering a set of potentialimprovements to apply to a baseline

environment.The baseline process and environmentofan organization can be described

by a set of attributes.Examples ofattributes wouldinclude code size,labor costs,defect

rates and productivity rates.Letmeasures ofthese attributes be denoted by the vector

a: = {x^,X2,...,Xm) (EQ8)

Note that no particular structure is imposed on a given parameter Xf.Some ofthese

parameters may themselves be vectors orfunctions indexed by time.

Let n>0 bethe maximumnumberoftime periodsin thefuture overwhich the project

will be evaluated.Letthe setofpositive numbers Tbethe time intervalin the future over

which the project will be evaluated and te T,0<t<n an index into the time horizon.

Each trepresents a pointin future time with r = 0 representing the present.Forcost-ben

efit analysis,time periods are typically years,butcould be in any convenient unitoftime

(months,weeks,days,hours).Each Xj^ could beindexed by the time.

Let Ii, I2,. I denote a setof Np processimprovementproposals underconsider-

ation and let Iq representthe baseline alternative.Foreach improvement Ij we can esti

mate valuesfor a parameter vector Xje Xj which we believe will be in effectfor that

alternative. Again,we do notimpose any constraints on the structure ofthe individual

parameters.For a given effect category,distinct estimation functions may be required to

page47A Frameworkfor Evaluating SoftwareProcessImprovementInvestments

estimate theimpactsfor distinctimprovements.Thus,f^jis a vector valuedfunction that

evaluates effectcategoryjfor processimprovement i.

Let Ng bethe numberofeffectcategories that have been identified.(Categorization of

effects will be discussed in the next section.)The structure for assessing effect categories

across a numberofpotentialimprovementsis shown in Table 3.1.

Table3.1:Improvement proposal versus effectcategory matrix

effecteffect1 ^2 effect2Improvement\Effect

In Baseline alternative /o.i(^o»^o) /0,2(^0>V0

Zj Improvement 1

I2 Improvement2 A1(^0.^2) A2(^0’^2) /2,Ar/^0’^2)

Improvement fNp,

Note thatthe effectfunctionsfor the baseline alternative all evaluate to0since for any

effect I

A ^0)=So,ii^o)-go,iixo) = 0

This simplefactemphasizes thatthe decision structure is based upon a comparison of

marginal effects to the baseline.Cashflows that are hot affected by an improvement

should have noimpacton the decision.

AFrameworkfor Evaluating SoftwareProcessImprovementInvestments page48

3.1.4 Cost-BenefitEffect Classification

There are a wide range ofcost-benefit effects that have been claimed for the various soft

ware processimprovementsin the literature.To bring some orderto this chaos,we estab

lish a hierarchical classification taxonomy that will serve as an aide in identifying the

significant cost-benefiteffectsfor aSPIproposal.Thistaxonomy also can be used by soft

ware managers to help identifyimprovementsto achieve desired benefits.

The top level cost-benefit effect accounting categoriesfor this taxonomy are:

1. Implementation and Support

The costs ofimplementing and sustaining the processimprovement.

2. Production Effects

Staffeffort costimpactsfor developing software products as well asfor indirect

managementand supportcost.This category omits defect detection and resulting

rework and repair costs.

3. Quality Effects

Theeffecttheimprovementhas on quality costs. Quality costsinclude the costs of

assessing quality in software products and the costs that resultsfrom poor quality

in software products.

4. Cycle Time

The percentcalendartimeimprovementthe SPIis expected to have on the soft

ware product cycle time.

A Frameworkfor Evaluating SoftwareProcessImprovementInvestments page49

5. Customer/MarketEffects

Financial effects based on how the processimprovementimpacts the product’s

marketplace.

6. OtherEffects

Thisis a catch-all categoryfor other effects that do notfitinto the firstfive catego-

nes.

Thefull taxonomy ofcost-benefit effects is listed in Appendix A.Effectsfor a particu

larimprovement will be attached to nodesin this classification tree.Effects will be quanti

fied byfunctions associated with leafnodesin the hierarchy.The net present value

impacts ofcost-benefiteffectscan besummarized ateach interior nodein the hierarchy of

this classification.

3.1.5 Drivers Behind the Functions

Each function in the taxonomy delivers the datarequired by the NPV andROIcalcula

tions. Allfunctions have certain parameters in common,but may vary in many other

respects.

Common parameters

• SEICMMlevel ofthe organization

• Industry software subcategory classification

AFrameworkforEvaluating SoftwareProcessImprovementInvestments page50

• Size ofcurrentcode inventory(lines ofcode orfunction points)

• Percentage ofcodeinventory being changed per year

• Amountofnew code to be developed per year

• Current testing and verification process being used

• Numberofpersonnel

• Costofpersonnel(loaded laborrate)

• Size ofdevelopment budget

• Costoffailures(internal and external)

Functions

A variety ofapproaches can be utilized to estimate the effects ofan SPI.Estimating

the effects is the most difficult aspect ofperforming a cost-benefit analysis.Theframe

work providesfor estimation functions with suggested parameters forthose effects based

on the best available industry information.Estimation approaches include:

• Industry data or customer experience

• Mathematical models(simple orcomplex)

• Dynamic simulation models

AFramework forEvaluating SoftwareProcessImprovementInvestments page51

3.1.6 Justification ofChoices Made

Each choice and decision should bejustified as well as possible.As discussed earlier,very

few software engineering experiments orcase studies are conducted under scientifically

acceptable designs and controls.Instead,authors reportthe facts and conclusions as best

they can,butfew reports can be taken as more than anecdotal evidence. Still,one data

point is better than none.Better choices willemerge overtime and theframework will

readily acconunodate the better choices.Approaches used will include

• Literature reports ofcorrelational studies

• Literature reports ofcase studies

• Private,internalcompany data

• Compiled industry data

• Existing economic or simulation modeling approaches

• Analysis based on the role ofthe function,type ofeffect

• Expert opinion

• Folklore ofthe industry

AFramework for Evaluating SoftwareProcessImprovementInvestments page52

The decision makercan be given rationale for each ofthe cost-benefit effects along

with quality ofdata,success factors and potential pitfalls ofthe processimprovement

under consideration.

3.2 Using the Framework

A systematic procedurefor performing economic analysis ofprocess improvementusing

theframework follows.

1. Recognizing a problem or opportunity

Thisis the starting pointfor an organization to consider processimprovement.

Often the recognition ofthe need for processimprovementis obvious but only

occurs after much damage has already been done.Some combination of missed

deadlines,blown budgets,and unacceptable quality will prompt managementto

seek solutions to these problems.More proactive management will detect more

subtle warning indicators ofproblem areas earlierin the life cycle. Metrics pro

grams andimprovement models such as the GQM paradigm can be invaluable to

make problems visible before it is too late.Problems or opportunities can be

defined in terms ofthe effects they are experiencing and would like to correct or

improve.

AFrameworkfor Evaluating SoftwareProcessImprovementInvestments page53

2. Identify alternative SPIs

TheCBA-SPIframework helps managementidentify potential SPIsolutions.The

effects thatthey would like to changecan be compared to theframework to iden

tify SPIs that address those effects.The relationships among SPIs can suggest

which SPIs to consider first.

3. Determine the opportunity cost(discountrate)

Thisshould be based on the corporate costofcapital and the risk ofthe benefits to

be received in future time periods.

4. Determine the time horizon

Thetime horizon will depend on the type ofimprovementand the environment

where it is to beimplemented.A 5-10 year horizon is usually sufficient.Since

future benefits are discounted,benefits are greatly diminished beyond5-10 years

and would have minimalimpact on the decision.

5. Foreach SPI

a. Identify the cost-benefit effects

Theframework provides significant assistance to the decision maker by identi

fying the potential cost-benefit effects an organization may expectto receive

from an SPI.A decision analyst may choose to add or subtractfrom the pro

vided list of potential effects.

AFrameworkfor Evaluating SoftwareProcessImprovementInvestments page54

b. Estimate and quantify cash flowsfor each effect

Theframework allows the decision maker to estimate cash flows by time peri

odsin the future foreach effect.Estimation models and default parameters

help facilitate the estimation process,but allow the estimator the flexibility to

override values as needed.

c. Calculate the NPV andROImetricsfor each effect and summarizefor the SPI

These calculationsfollow from the effects and their cash flows.

6. Compare alternatives

Thesummarized cost-benefitinformation provides supportto the decision maker.

The decision process ofSection 2.4.2,“Structuring the Decision Problem,”can be

used to help determine the best solution.

3.2.1 Template Construction and Validation

Theframework requires that a template be constructed foreach SPIconsisting ofthe cost-

benefit effects,evaluation functions,required parameters,modeljustification,prerequi

sites,and success factors.Template construction and validation are described in general

here and illustrated in detail in chapters5and 6.

Template Construction

Thefollowing procedure was developed to guide the construction ofan SPItemplate.

AFrameworkfor Evaluating SoftwareProcessImprovementInvestments page55

1. Review effects currently in theframeworkfor similar SPIs

Identify effects that may apply to the current SPIbased on effects already in the

databasefor similar SPIs.

2. Survey literature and experiencefor the SPI

Review correlational studies,case studies,currenteconomic models,interviews

with practitioners,simulation models,claims ofexperts,and success factors

related to the SPI.

3. Identify the reported cost-benefit effects and determine the most significant effects

Incorporate these effects into the SPItemplate and classify the effects by the tax

onomy ofAppendix A,by the CostofSoftware Quality category,and bylife-cycle

development phase.

4. Analyze the dynamics and causes behind each significant effect.

Develop modelsto understand the dynamics that explain the effect(e.g.,between

possible parameters and resulting cost-schedule impacts).

5. Design and develop models orfunctionsfor the significant effects

The parameters required for the models should be readily available or easy to esti

matefor most practitioners.

6. Documentfunctions(or models)and assumptions used

AFramework forEvaluating SoftwareProcessImprovementInvestments page56

7. Define dependencies between the new SPIand other pre-defmed SPIs

When comparing two SPIs,the first SPIcould be(a prerequisite of,acomplement

of,independentof,a substitutefor,mutually exclusive with)thesecond SPI.These

relationships should be explicitly defined in the template.

Template Validation

Template validation is the process ofbuilding confidence in the soundness and useful

nessofanSPItemplate.The soundnessofatemplate should bejudgedonthe basisofhow

well it identifies,justifies,and quantifies the cost-benefit effects associated with a poten

tial processimprovement.However,the role ofa template is not to produce a perfect pre

dictive model ofthe processimprovement.The accuracy ofhow well a template models

the SPI’s cost-benefits should bejudged relative to the available empirical evidencefor

the SPI.Note that when an analyst uses atemplate to constructaCBA,the CBA itself

mustbe validated to ensure the results are reasonablefor the intended environment.

The usefulness ofan SPItemplate should.be measured by how well itfacilitates the

process ofconstructing a business casefor the processimprovement within a particular

environment.TheSPItemplate should reduce the effort required to constmctaCBA and

result in bettereconomicjustification for the time spent.

The process ofbuilding confidence in the template involves a combination ofstruc

tural analysis,peerreview,user testing,and comparing modelresults with available

empirical data and economic models.Structural analysis involves verifying thatthe set of

effects in the template include all significant effects knownfor the SPI,that all cost-bene-

https://should.be

AFrameworkforEvaluating SoftwareProcessImprovementInvestments page57

fit effects have reasonablejustification,and that effects are notdouble counted.The

results should be self-consistent and reasonable.Forexample,an estimate ofthe SPIsav

ingsfor atime period should notexceed the annual development budget.

Peerreview ofan SPItemplate with experts and practitioners ofthe SPIcan provide

valuablefeedback on how plausible and accurate the SPItemplate matches their experi

ence andjudgement.All aspects ofthe SPItemplate are subjectto peerreview including:

the identified cost-benefiteffects,thejustification foreach effect,the estimation functions

and required parameters.

Usertesting involves having software practitioners orSPIexperts use theframework

to constructa CBAfor the SPI.TheCBA could befor a hypothetical situation or,prefera

bly,for a real software organization that could potentially benefitfrom the SPI.Thisform

oftesting providesfeedback on the ease ofuse;difficulty ofobtaining parameters to drive

the models;and the reasonableness,credibility,and strength ofthe resulting business case.

The mosteffectiveform ofvalidation compares theCBA resultsfrom the template

againstknown empirical datafor the SPI.Empirical data can include published case stud

ies,economic models,or retrospective follow-up CBA studiesfrom organizations that

have implemented the SPI.

Thefeedbackfrom these variousforms of validation offers opportunities to continu

ously adapt,calibrate,andimprove the accuracy and usability ofthe templates. Actual

cost-benefits can be compared to those predicted by the template.Differences can be ana

lyzed to understand anddocumentthereasonsforthe variations.Variations may becaused

AFramework forEvaluating SoftwareProcessImprovementInvestments page58

by unique conditions associated with the developmentenvironmentor possibly indicate

the need to make modifications to the template.

page59

Chapter4

Architecture and Design ofPrototype

CBA-SPIis a prototype toolto assistsoftware managersin preparing cost-benefitanalyses

for use in evaluating software processimprovementinitiatives. Such a cost-benefit analy

sis can be used for any ofthe following purposes:

• To determine the potential value ofa proposedSPIto supportthe business casefor

its implementation.

• To aid in planning allocation ofresourcesfor software processimprovement.

• To auditthe costs and benefits for a previously implemented SPI.

• To assistin pricing an SPIproductby estimating the value to be received by poten

tial customers.

CBA-SPIis based upon theframework described in the previous chapterand contains

a collection ofsoftware engineering datafrom the literature as well as information about

potential processimprovements.AppendixB describes the underlying database schema

for the tool,and Appendix C provides example userinterfaceforms.This chapter

describes the high level functional design and architecture.

Architecture and Design ofPrototype page60

4.1 Functional Overview

TheCBA-SPItool set provides six main areas offunctionality: 1)define SPItemplates,2)

define cost-benefiteffects,3)provide industry data and models,4)run software process

simulations,5)define baseline environments,and6)calculate cost-benefit analyses.

4.1.1 Define SPITemplates

TheDefineSPITemplatefunction is to collect and organize information for a software

processimprovement.Theinformation requested by this function includes identification

and description ofthe SPI,published ROIdata,expected defectremoval efficiency

impacts,cost-benefit effects,effectformulas,required parameters,successfactors,and

relationships to other SPIs.A defect removal efficiency impactrefers to a percentage

change in defectremoval efficiency thatthe SPIis expected to have on aQA process.The

defectremovalefficiency impacts are used by a general model built into the tool which

estimates defectremovalefficiency and quality failure costsforan organization’s process.

A cost-benefit effect may have multipleformulas each assigned to differenttime periods.

The user may choosefrom a list ofdefined parameters to include in formulas.

A separate option is used to define parameters.A parameter definition includes an

identifier, variable name,data type,length,user prompt,explanation,default value,and a

^ valid range.Parameters may also have theirownformulasfor computing their default val

ues.The setofparametersfor all effectfunctions ofan SPIare explicitly linked to thetem

plate.

page61Architecture and Design ofPrototype

TheSPItemplate may be printed in a reportformat.

4.1.2 Define Cost-Benefit Effects

The Cost-benefitEffects function allows navigation and modification ofthe cost-benefit

effects taxonomy.The definition ofeach cost-benefit effectincludes the effect identifier,

effectname,cost/benefitindicator,effect explanation,tangibility code,effect categories,

SPItemplates that assign the effect,and links to parent and child effects.Effects can be

assigned Balanced Scorecard and CostofQuality categories.

4.1.3 Provide Industry Data and Models

Industry data and estimation models are provided by theCBA-SPItool to assistin cali

brating the baseline scenario and estimating parametersfor the cost-benefit effectfunc

tions.The sections below give examples ofavailable data and how it is organized.

ProcessStep Data

Process related industry information is organized by a process step taxonomy.A pro

cess step is a development activity classified as one ofthefollowing types:summary,pro

duce,assess,repair,and manage.

Summary process steps are the standard life-cycle development phases(e.g.,require

ments,design,coding,testing,and maintenance phases).Industry data provided for these

Architecture and Design ofPrototype page62

phases includes average defects generated perfunction point,defectremoval efficiency.

and defects delivered perfunction point.

Aproduce step is an activity that directly producesa work productsuch assourcecode

or documentation.Examplesofproduce stepsinclude“Specify Requirements”and

“Develop Data Model.

Manage activities plan,direct,control,or administratively supportthe software devel

opmenteffort. An example manage activity is“Develop Release Plans.'

An assess activity is a QA step.Examplesofassess activities include design reviews.

functional verification,orsystem testing.Each QA step has an associated average defect

removal efficiency and is linked to an associated repair step.

A repair step includes all effort to analyze,repair and retest defects found by the asso

ciated QA activity.Three levels ofrepair effort hours per defect are providedfor repair

activities as reported by Jones[37].

SEICMM Level

The prototype provides datafrom Jones[37]foreach SEICMMlevel including the

average,minimum,and maximum delivered defects perfunction point,percentage of

organizations atthe level,defect potential perfunction point,and the removal efficiency

percentage.HigherCMMlevels resultin higher quality.Descriptions ofthe Key Process

Areasfor eachCMMLevel and the KeyPractices ofeach KeyProcess Area are available

for organizations who wish to estimate their process maturity.

Architecture and Design ofPrototype page63

FunctionPointand SubindustryData

The prototype also contains a set ofdatafrom Jones[37]referenced by the size ofthe

software inventory(in units offunction points),by subindustry classification,or both.

Jones derives national averages ofsoftware productivity and quality based on his analysis

ofdatafrom some4,000software projects.The subindustry categories are: systems,mili

tary,MIS,outsource vendor,commercial,and end-user.The software inventory size cate

gories are0-1,2-10,11-100,101-1,000,1,001-10,000,and 10,001-100,000function

points.Examples ofthe available data attributes are listed in Table 4.1.

COCOMOEstimations

CBA-SPI also provides afunction for estimating cost,schedule,productivity,and

staffing sizes for software projects using the basic COCOMO equations[9].The produc-

Table4.1:Exampleindustry data byfunction points or subindustry

Attribute

Enhance%/yr

FP/Staffmonth

Defect origin%

Canceled percentage

Schedule months

Indexed by

Subindustry and FP

Subindustry and FP

Subindustry and pro
cess phase

Subindustry

Subindustry and FP

FP

Description

Theannual percentage ofenhancements to the exist
ing base each year.

Average productivity forfully tested,documented
code.

Forexample,40%ofdefects originate from thecod
ing phasefor the systems subindustry.

Approximately25%ofMIS projects are canceled.

Approximately45%ofMIS projects in the 1001-
10000FP size range are canceled.

Projectsin the 101-1000FPrangetake27monthsto
complete.

Staffsize Subindustry and FP Commercial projects in the 101-1000FPrange use
about 10people on the project.

Architecture and Design ofPrototype page64

tivity rates,costs,and schedule are available forthe project as a whole and by develop

ment phase.TheCOCOMO estimator can accept project sizes in terms offunction points

as well asin kilo-lines ofsource code.To assistin converting project sizes between func

tion points and kilo-lines ofsource code,alist ofdevelopmentlanguagesis provided with

conversion factors(in source lines ofcode perfunction point)for mostcommonly used

languages.

4.1.4 Run SoftwareProcess ModelSimulations

A tool named SimRunner is provided to assist in running and calibrating a software pro

cess simulation model.A function in CBA-SPIis used to define the name and location of

a system dynamics process model along with input parameters,default values,and result

variables.SimRunner calibrates the simulation model to a baseline,runs simulations

under various input configurations,and retrieves or graphs result variables ofinterest.

4.1.5 Define Baseline Environments

TheDefine Baseline Environmentfunction is to identify and define the baseline(“as-is”)

scenario for a specific software development organization.A quantitative description of

the basehne environmentis necessary before wecan begin to evaluate theimpactofpro

posed improvements.

The information requested by this option includes the organization’sCMM level,its

software subindustry classification,the size and growth ofits code inventory,the number

Architecture and Design ofPrototype page65

ofdevelopmentpersonnel,budgetaryinformation,and a description ofthe quality assur

ance(QA)processes used bythe organization.ACMMEvaluationfunction is available to

assistin reviewingCMMkey process areas and practicesfor estimating the organization’s

CMMlevel ifit is notknown.QA processesinclude all verification and testing steps used

to assess productquality and detect defects.Information abouteach QA step is captured to

identify quality costs incurred and defects detected during these stages. Also,annualinter

nal and external failure costs are estimated for these stages. When users assign values to

these parameters,they can documentthe source oftheir data atthe sametime.

Many organizations lack historical data or metricsto determine productivity rates and

quality costs. An estimator dialog and afailure cost model assists the userin estimating

defect levels and quality costs based on industry data.

A Baseline Environmentreportcan be producedfor verification that lists the supplied

parametersandestimates annual costsforinternal and externalfailures.The datacollected

by the baseline environment provides a broad set ofgeneral parameters that are available

for evaluating SPIscenarios.

4.1.6 Create a Cost-Benefit Analyses

The Cost-Benefit Analysisfunction assists a userin conducting a cost-benefit analysis

from collecting and organizing the datathrough preparing appropriate reports.Thisfunc

tion collects information aboutthe cost-benefit analysis itself,such as,the time-line for

implementing improvements,the discountrate,and the goals and purpose ofthe CBA.

TheCBA record is linked to a baseline scenario and to one or more SPIs being considered

Architecture and Design ofPrototype page66

forimplementation.Foreach SPIunder consideration,the useris provided a defaultsetof

effects,estimation functions,and parameters based upon the SPItemplate.The user can

add or delete cost-benefit effectsfrom the template as desired.The usercan directthe pro

gram to evaluate the functions.The user may override the values computed bythe func

tions.

The results are compiled into a convenientformat thatincludes thefollowing informa

tion for each software processimprovement:

• Estimated discounted cash flows for each SPIeffect andforeach time interval

under consideration

• The total NPV forthe SPI

• Listing ofintangible effects

• Parameters used in the calculations

• Success factors for the SPI

• Relationships to other SPIs

4.2 CBA-SPIPrototype Architecture

The CBA-SPIprototype was developed using a combination ofMicrosoft Access,Visual

Basic,MicrosoftExcel,and Vensim.The architecture ofthe prototype implementation of

Architecture and Design ofPrototype page67

the tool is shown in Figure 4.1.This selection oftools and architecture is suitable for a

stand-alone,single-user,prototypeimplementation.The developmentenvironment within

Access allowsfor rapid implementation of userinterface forms and reports using wizards

and data bound controls.

Ofcourse,the research prototype is not suitable for distribution and maintenance as a

product.Using the CBA-SPI prototype or an individually distributed product would

require each user to have licensed copies ofall subsystems and proprietary data.Installa

tion and updates to the program,estimation functions,industry data,etc. would require a

mechanism for each user. Also,it would be difficult to collectfeedback or datafrom orga

nizations using the tool.The costs and issues associated with product distribution would

make it difficult to reach many potential users. Widespread use and evolution ofthe

framework would best be done as a web application.

4.3 Internet Service Concept

Balanced Economic Analysis ofSoftware TechnologyInvestments is an internet service

concept to allow software managers to evaluate processimprovementtechnologies.This

section describes the purpose and functionality ofthe service and a software architecture

for its implementation.

By making the functionality available on the web,the costs would be lower and the

logistics simpler.By reducing these barriers,it will be feasible to make the service avail

able to a very large audience.Any user with access to a web browser would be able to use

••

V

Architecture and Design ofPrototype page68

User interface

Forms,Querys,Reports,
and Visual BasicCBA-SPI Application

User Interface Code
SimRunner

VB Application
CBASPI.mdb

Application logic

'v

SimModel COCOMO CBA-SPI
Spreadsheet i

Modules and
wrapperclass

ActiveX DLL ActiveX DLL Classes

y V.

Intermediaries

Microsoft Jet Microsoft Excel^ Vensim.DLL
Engine Instance

Data storage
Database results

parameters,
V formulas,commandsresults parameters ^

/■ CBASPI_DATA.MDB ‘
V
\ Vensim model

Baseline CBAand SPI
Environment Effects

Temporary
Software Process CBA-SPI Templates

Spreadsheet
Simulation Model

EffectIndustry Data taxonomy

Figure 4.1; CBA-SPI prototype architecture

Architecture and Design ofPrototype page69

the service and would notneed to spend time installing or maintaining the application

software.

By reaching a wide audience atlow cost,the service would facilitate transfer ofthe

SPItechnologies as well as economic evaluation methods and modelsforimproving soft

ware managementdecision making.Another advantage ofa web implementation is it

would be much easier to capturefeedback on the use ofthe tool and to collect datafrom

each user’s organization.The data collected could be used for continuos improvementof

the tool,the SPItemplates and models.It could also be used for other data analysis'and

research purposes.The service wouldimplement data security and privacy policies to pro

tect clients.

4.3.1 User Functionality

The service would provide servicesfortwoclasses ofusers:software manager clients and

research personnel.The research personnel would be responsible for developing new SPI

templates,analyzing data to calibrate and improve existing SPItemplates,and updating

industry data.The functionality used by research personnel would not be implemented

through a web browser and these users would be able to access the full range offunction

ality thatis now in the CBA-SPIprototype.

The clients ofthe service would be software managers or software engineers who are

interested in evaluating SPIfor their software developmentor acquisition.The service

would guide these users through the process ofestablishing a baseline,screening candi

date SPIs,and performing full economic evaluation ofeach alternative.Thereports pro-

Architecture and Design ofPrototype page70

duced by the service would provide a business caseforimplementing the SPIs thatcould

be presented to decision makers.

The clients could also use the service for conducting follow-up studies and reporting

actual results of previously implemented SPIs.This information would be particularly

valuable in improving and calibrating the SPItemplates.

Clients would also be able to view industry data,run economic or simulation models,

or estimate their process maturity.They would also be able to make changes to their pri

vate copy ofSPItemplates and could create new SPItemplatesfor their own use.How

ever,they would notbe able to directly make changes to the base data thatis shared by

other clients.

4.3.2 Additional Requirementsfor Web Implementation

Goingfrom a stand-alone,single-user configuration to a multi-user web implementation

introduces additional requirementsfor usability,performance,and security.In theCBA-

SPI prototype,the userinterface corresponds to the logical organization ofthe underlying

data model.Users mustexecute several differentfunctions in the process ofcreating a

cost-benefit analysis.The prototype interface has worked well butexperimental users

have required some training or consultation in order to understand how to use the tool

properly.The web implementation must provide a task-oriented interface to walk users

through the process step-by-step.In the web environment,clients could be anywhere in

the world and will not necessarily have training on how to use the tool or convenient

access to the authorfor consultation.

Architecture and Design ofPrototype page71

Because the webimplementation would have a shared database with potentially many

concurrent users,a database server would be needed to meethigher performance,reliabil

ity,and transaction control requirements.

Because multiple users would be interacting with the service and providing sensitive

data,the system mustprovide authentication and data security.A registration service must

be provided to allow users access to the system.Users mustbe able to save their workfor

retrieval on future sessions.No end-user should be able to view the data of another end-

user.Because the data provided by users may be business sensitive,a secure web server

protocol would be required between the user and server.Policies and proceduresfor pro

tecting or using client data mustbe developed,implemented,and published on the web

site.

4.3.3 Architecture

The proposed architecture for the internet service is shown in Figure 4.2.

Architecture and Design ofPrototype page72

.Web Interfacefor Clients...

CBA-SPI ClientsforResearchers /^d-User Functions
- user registration/iogon
- establish baseline

- evaluate SPIs

- view industry data

^BA-SPI User Interface^ \useestimation models J
- build SPI templates
- maintain industry data Internet
- monitor end-user activity
,- currenttool functions ,

Q I—Ethernet'
Secure WebSenrer >

c

/6bA-SPI Web Server ^
DDDDDDO

- manage usersessions
- receive and validate data

-format web pages
-interface with applicaticn senrer

CBA-SPI Application Senrer

- validate new user sessions
^5

-data validation functions Application Server
ESI - receive and store user data
MS

SimModel -compute estimation functions 4
[COCOMO

ActiveX DLL ActiveX DLL

'Intermediaries

; /calculation ■*1
DBSimulation

1 Engine ServerEngine

;SS»S1S«>!!«3S!{

parameters, Data storage
results formulas,

commands parameters; ; results ,

CBASPI
y Data

Software process " . Temporary
. Simulation Model Spreadsheet ,

Figure 4.2: Proposed architecture for internet service

page73

Chapter5

Cost-Benefit Templates forEmerald

Emerald is a software risk assessment product that can analyze the source code ofalarge

softwaresystem and predictthe high risk areas ofthe code.This product wasdevelopedin

1992by Nortel Networks as an internal project toimprove the reliability ofits telephone

switch products[35].Emerald successfully demonstratedits value within NortelNetworks

and now is being marketed externally.

Emerald obtains code metrics,process metrics,and use metrics and applies statistical

risk models to predictthe highestrisk areas ofthe code.These are areas ofthe code most

likely to contain latent defects thatescape detection during testing and lead to field fail

ures. Also,these high risk areas are difficult to modify or repair and susceptible to the

introduction ofnew defects.

Theinformation provided byEmerald can be used toimprove the software processin

anumberof ways.In thefollowing three sections, we develop cost-benefit modelsfor

three uses ofEmerald:targeted defectreduction(Section 5.1),supportofreengineering

decisions(Section 5.2),and supportofthe software acquisition process(Section 5.3).For

each ofthese usesofEmerald,wedescribe how itis used,identify andjustify the resulting

benefits,and develop modelsfor quantifying those benefits. Section 5.4 defines a cost

Cost-BenefitTemplatesforEmerald page74

model that generally applies to all three ofthese uses.Section 5.6 summarizesthe cost-

benefittemplatesforEmerald.

5.1 Using Emerald for Targeted DefectReduction

This section examines the use ofEmeraldfor targeted defect reduction.Defectreduction

includes activities to prevent defectsfrom occurring as well as activities to find and

remove defects. Using Emeraldfor targeted defect reduction results in a number ofbene

fits.This section identifies these benefits,providesjustifications,and develops modelsfor

quantifying these benefitsfor a software development organization.

5.1.1 Overview and Rationale ofBenefits

The primary benefits are more efficient resource allocation and a gainfrom earlier defect

removal.Also,secondary benefits ofreduced cycle time and improved customer satisfac

tion can be realized.The diagram in Figure 5.1 illustrates the cause-effectrelationships

between using Emerald and the potentialfinancial effects.

MoreEfficient Resource Allocation

Emerald risk metrics can be used to identify the fault prone areas ofthe code and to

predictthe numberofdefects that will occurin the field[35].Byidentifying the high risk

Cost-BenefitTemplatesforEmerald page75

Figure 5.1: Cause-effect diagram for targeted defectreduction use ofEmerald

areasin the code,Emerald helps managementfocus and allocate development,testing and

inspection resources where they can mostefficiently preventorremove defects.

Defects in code are notevenly distributed.The 80/20rule(based on the Pareto Princi

ple)generally applies to changes made to software[3].Thatis,20% ofsoftware modules

contain 80%ofthe defects. Stevenson cites several studies to support the contention that

mosterrors and subsequentcode changes are concentrated in a small percentage ofthe

modules[73].

Given thatthe defects are notevenly distributed,it is inefficient to evenly distribute

development,testing and inspection resources over all parts ofthe code.The information

from Emeraldcan help managementplan and allocate development,inspection and testing

Cost-BenefitTemplatesforEmerald page76

resources to the appropriate areas ofthe code.Organizational policies can be established

to require special authorization for high risk modules.Managementcan assign the most

qualified developers to modification tasks ofhigh risk code.Inspection and testing

resources can be prioritized.

Gainfrom Early DefectRemoval

Defects are less expensive to correct near their point ofinsertion[41].The costofcor

recting a defectcan be 10-150times more expensive to fix atfinal testing, delivery and

operation stages than during the earlier design and coding stages[68].Emerald metrics

increase the effectiveness ofearly defect detection efforts. Significantsavings are realized

from reducing defects that occurin the field and in thefinal stages oftesting.Several

Emerald customers reportfewer field defects after using Emerald toimprove their early

defect detection efforts[35].

Secondary Benefits

Importantsecondary benefits ofusing Emeraldfor targeted defect detection include

reduced cycle time andimproved customer satisfaction.

Reduced Cycle Time. Using Emerald for targeted defectreduction results in higher

efficiency ofearly defectremovalefforts andreduceslate,pre-release defects.Areduction

in rework helps to improve schedule predictability andimprove cycle time.

Cost-BenefitTemplatesforEmerald page77

The benefits ofreducing cycle time can include: avoiding financial penalties for over

run,receiving financial incentives for meeting targets,greater market share,longer prod

uct life,higher profit margins,and freeing resourcesfor other projects.

Improved Customer Satisfaction. UsingEmeraldfortargeted defectreductionreduces

errors in the field and promotes on-time product delivery.Reduced field errors and more

reliable schedules resultin improved customer satisfaction. Customer satisfaction is the

vitalfactor in retaining existing customers and attracting new ones.

5.1.2 Quantifying the Benefits

This section develops modelsto quantify the cost-benefitsfrom using Emerald.

Quantifying the Benefitsfrom EfficientResource Allocation

By using Emerald to improve resource allocation an organization can reduce the over

all effortrequiredforinspection,testing and developmentactivities.We willillustrate how

this effectcan be modeledforinspection activities. Similar modelscan be used for other

testing and development activities whereEmerald can improve resource allocation.The

inspection cost savings model usesthe parameters as shown in Table 5.1.

This modelassumesthat withEmeraldthe effort willbemoreconcentrated on the high

risk(“red”)portion ofthe code with less attention given to the remaininglow risk

(“green”)code.Theformulafor computing the annual baseline costfor inspecting the

code is:

Cost-BenefitTemplatesforEmerald page78

Table5.1:Baseline parametersforinspection cost savings

Parameter Description Example value

reviewed_loc Reviewed lines ofcode.Numberofnew or 150,000Afear

changed lines ofcodereviewed each year by
the organization.

red_ratio Red ratio.Portion ofthe reviewed code esti 0.2

mated to be ofhigh risk.

avg effort insp Average effortperinspection. 3.5 hours/inspection

avg_loc_insp Average lines ofcode per baseline inspec 250loc/inspection
tion.

cost_staff_hr Costperstaffhour,(fully burdened cost) $80

gm_effort Green effort. Average effort hours to inspect 2hours/inspection
alow risk(“green”)module.

gm_loc_insp Green lines ofcodeperinspection. Average 400loc/inspection
lines ofcode covered perinspection ofalow
risk(“green”)module.

red_effort Red effort. Average effort hours to inspect a 4hours/inspection
high risk(“red”)module.

redjocjnsp Redlines ofcodeperinspection. Average 150loc/inspection
linesofcodecovered perinspection ofa high
risk(“red”)module.

avg effort insp
baseline_cost = reviewedjoc x X cost_staff_hr (EQ9)

avg_loc_insp

The costfor inspecting with Emerald is the expected cost ofinspecting both high risk

code andlow risk code at different levels ofeffort and concentration:

SPI_insp_cost = reviewedjoc x cost_staff_hr (EQIO)

red effort gm effort ^
X red_ratiox -1-(1-red_ratio)x

red_loc_insp gm_loc_insp/

Cost-BenefitTemplatesforEmerald page79

Thus the annual cost savings is

cost_savings = baseline_cost-SPI_insp_cost (EQll)

Baseline parameters can be derived or estimatedfrom previous organizational experi

ence.Parametersfor estimating the“with Emerald”case should beestimated based on the

planned ortargeted usage ofEmerald within the organization.Table 5.2 provides an exam

ple calculation.

Table 5.2:Example ofresource allocation costsavingsfor inspections

Cost perstaffhour $80

Reviewed LOCper year 120,000

Baseline

Avg.effort hours perinspection 3.5

Avg.LOCperinspection 250

Effort hours to inspect allcode 1680

Baseline annualcost to inspectcode $134,400

WithEhierald Red Green

Ratio 0.2 0.8

Lmes ofcode 24,000 96,000

Effort perinspection 4 2

LOCperinspection 150 400

Effort hours perKLOC 27 5

Effort to inspect 640 480

Costto inspect $51,200 $38,400

Reliametrics annualcostto inspectcode $89,600

Costsavings $44,800

Percentsavings 33.33%

Cost-BenefitTemplatesforEmerald page80

QuantifyingImproved DefectRemovalEfficiency

This section develops a modelfor estimating the cost-benefits ofusing Emerald to

improve the efficiency ofdefect detection efforts. This model assumes that a certain num

ber oflatent defects existin the code initially.These defects are detected andremoved

through a series ofquality appraisal and repair steps.Late pre-release defects are costly

and post-release field defects are particularly expensive.

A series ofquality appraisal steps is applied to identify andremove defects.A quality

appraisalstep is an activity to identify potential defects with the code.Examples ofqual

ity appraisal activities include: unit testing,inspections,functional verifications,indepen

denttesting,beta testing,acceptance testing,and system testing.Jones has published

defectremoval efficienciesfor mostcommon quality appraisal activities[37].A defect

removalefficiency is the number ofdefects identified by the activity as a percentage ofall

defectsfound in the software through the first year offield use.

Each quahty appraisal activity has an associated defect repair unit cost to estimate the

average cost ofcorrecting a defectfound by that activity.Ideally,defect repair costs

should be based on an organization’s specific experience.However,ifthis information

isn’t available default values based on specific sub-industry classifications are available to

help developmentorganizations estimate these parameters.

The parametersfor this model are described in Table 5.3.

The baseline costto remove defects atQA step iis:

BCost^ = cd^xbre^xbdef^

Cost-BenefitTemplatesforEmerald page81

Table 5.3:Parameters to estimate benefitfrom improved defectremovalefficiency

Parameter Description Example value

defects_yr Defectsperyear. The numbercode defects cre 10,000 defects/yr
ated in new or modified code each year.A sepa
rate modelis described below to help estimate
this parameter.

Thefollowing parameters are associated with the sequence ofQuality Appraisal(QA)
Steps used by the organization to identify faults(e.g.,Informal code inspection.New
function testing,Regression testing.System testing.Beta testing).

Letn bethe numberofQAsteps,letQA(i)representthei*QAstep and QA(i).<param>
bethe value ofa parameter associated with the i*QA step.
Thefollowing parameters are requiredforeach QA step.

Costperdefect.The average variable repair and $100fora defectfoundcdi
failure costfor a defect when it is detected by during inspection.
this QA step.Itincludes the costforrepairing $1,000for a defect
the defect as well asfor other costs resulting found during customer
from failures generated by the defect.It should acceptance.$10,000
notinclude fixed costs related to defect preven for afield defect.

tion or testing.

bre^ Baseline removal efficiency.The baseline 0.5forcode inspection.
removal efficiency oftheQA step withoutmak
ing changesto the process.Removal efficiency
is defined by theformula

defectsfound byQA step
defects present at start ofQA step

ere^ SPIremoval efficiency.Theremovalefficiency 0.575for codeinspec
you expectto achieve using Emerald.These tion with Emerald.

amountscan be estimated by a percentage Suggested values are 5-
improvementoverthe baseline removal effi 15% over baseline

ciency. removal efficiencies.

Cost-BenefitTemplatesforEmerald page82

where bdef^ is the estimated numberofdefectsremaining in the productbeforeQA step i

is performed using the baseline scenario.We define bdef^ recursively asfollows:

bdefy = defects_yr
(EQ 12)

bdef. = bdefi_-^ x(1-brei_{),i> 1

Similarly the annual costfor defects under the Emerald scenario is calculated as

ECostI = cd^xereiXedef^ (EQ 13)

where edef^ is the numberofdefects remaining in the process prior to performing QA

step I and is defined asfollows:

ede/j = defects_yr
(EQ14)

edef^ = edefi_i x(1- j),i> 1

The annual savings thatcan be achievedfrom this benefit are calculated as the differ

ences ofthe defectcosts under each scenariosummed over all QA process steps.

Savings = '^{BCost^-ECost^) (EQ15)

f= 1

Estimating defects inserted per year. A key parameter ofthe above modelis

defects_yr,the numberofdefects inserted into new or modified code by the organization

over a year.Internal defectsfrom all quality assessment activities as well as field defects

Cost-Benefit TemplatesforEmerald page83

must be included in the count.For organizations wholack this data,this section describes

an approach for estimating defects_yr.

Jones has published average defect potentials perfunction pointbased upon industrial

datafor alarge numberofsoftware projectscovering arangeofindustries[37].Afunction

pointis a metric for estimating the size ofan application in terms ofits observable func

tionality.He defines defectpotential as the “total universe oferrors or bugsthat mightbe

expected in a software project.”He gives defect potential perfunction point valuesin a

table indexed by system size(in terms offunction points)and by a subindustry classifica

tion asshown in Table 5.4.His data generally indicates that the density ofdefects

increases as the size ofthe system increases.

Jones has also suggested that the process maturity ofan organization can affect its

defect potential.He suggests achievable defect potential targets for the five levels ofthe

SEICMM maturity model as shown in Table 5.5.

Table5.4:U.S.average defect potentials^

FP Size\ Outsource
Systems Military MIS Commercial End-user

subindustry vendor

1.00 1.00 1.00 1.00 1.00 1.00

2-10 3.00 3.25 2.00 2.00 2.50 2.50

11-100 5.00 5.50 4.00 3.50 4.00 3.50

101-1000 6.00 6.75 5.00 4.50 5.00 na

1001-10000 7.00 7.50 6.00 5.50 6.00 na

> 10000 8.00 8.50 7.25 6.50 7.50 na

a. Source:[37]Table 3.44,p.231.

Cost-Benefit TemplatesforEmerald page84

Table 5.5:Defect potentials/defectremoval efficiency targets bySEICMM^

Defect Removal Delivered
SEICMMLevel

potential efficiency defects

CMM 1 Initial 5.00 85% 0.75

CMM2Repeatable 4.00 90% 0.40

CMM3Defined 3.00 95% 0.15

CMM4Managed 2.00 97% 0.06

CMM5Optimizing 1.00 99% 0.01

a. Source:[39],Table4,p.393.

A case study at Motorolafound thatthe defectinjection rate decreased by roughly half

each time a project advanced aCMMlevel[22].The data in Table 5.5 represents expert

opinion and is not directly based on empirical data.However,it provides a general direc

tion and magnitude ofthe effect that process maturity is expected to have on defect poten

tial and is supported by industrial case studies.

Toestimate defects_yr using datafrom Table 5.4orTable 5.5,we need the parameters

listed in Table 5.6.Our approach for estimating defects per yearis to allow a managerto

provide the value based on historical organizational data,orto first estimate defects per

function pointand function points per year and then calculate defects per year asfollows:

defects_yr = defects_fp xfp_yr (EQ16)

Cost-BenefitTemplatesforEmerald page85

Table 5.6:Par^etersfor estimating defects per year

Parameter Definition Suggested data source

defects_fp Defectpotentialperfunction
Point.The total numberofdefects

Use historical organiza
tional data if available.

that are injected into the code per
function point.

Otherwise,estimate using
tables ofdefect potential
perfunction point.

fp_yr Function pointsper year. Total
new or changed function points
per year.

Source code library.Two
approachesfor estimating
this parameter are
described in the nextsec

tion.

avg_proj_size Averageprojectsize. Average Totalinventory in lines of
project size in function points. code divided by numberof

active projects. Convert
results to function points.

subindustry Subindustry category. Select the Select one of six subindus-

industry category which best tries basedupon definitions
describes the software being pro ofC.Jones(systems,mili
duced. tary,information systems,

outsource vendor,commer
cial,end-user).

SEI_CMM_Lvl CMMLevel.EstimatedCMM Formal SEI audit,or self
level ofthe organization. assessmentestimate.

Estimating defect potential.Four options are availablefor estimating defects_:^.The

next section provides guidancefor estimating fp_yr.

1. Use historical datafrom the organization to directly estimate defects_fp.

2. Estimate defects_fp by referencing Table 5.4.

3. Estimate defects_fp by referencing Table 5.5.

4. Estimate defects_fp by averaging valuesfrom Table 5.4 and Table 5.5.

Cost-BenefitTemplatesforEmerald page86

, Figure 5.2:Parameter dependency graph to estimate defects per year

5. The potential parametersfor estimating defects_yr,defects_fp,1^_yr and their

dependencies are shown in the graph ofFigure 5.2.The rounded boxes represent

estimation functions and the square boxesrepresent parameters.Forsome parame

ters,the user has a choice ofseveral approachesfor estimating the function,

including an override based on organizational data or a manager’s experience.

Note that defects_yr is itselfa parameterfor estimating the savingsfrom using

Emeraldfor targeted defectreduction(EQ 15).

Estimating new orchanged function points per year. A key variable in determining

defects_yris fp_yr,a measure in function points ofthe new orchanged software the orga

nization generates in a year.Two approachesfor estimating this parameter are:

1. Determine size ofcurrentinventory in lines ofsource code or byfunction points.

Estimate whatfraction ofthe currentinventory gets modified each year and esti-

Cost-BenefitTemplatesforEmerald page87

matenew code to be written during the year. Convertthese values to function

points using the conversion factorfor the language.Forexample,it takes about

128lines ofsoftware written in Cto equal onefunction point.LetIng representa

language used by an organization,and/roy(loc,lng)beafunction thatconvertslines

ofcode(loc)to function pointsfor a given language.Thenfp_yris calculated as

follows:

i^_yr=^Zro/(cur_size_loc xchum+newjoc,Ing) (EQ17)

Ing

2. Use tools with the source code library to compare beginning and ending software

inventoriesfor the year.Determine the actual new or changed lines ofcode overa

one year periodfor each language.Convertthe totalfor each language to function

points.Sum over all languages used by the organization.

Example. This section provides an example ofhow to estimate the savingsforimprov

ing defectremoval efficiency as given in(EQ 15).Letus consider a hypotheticalXYZ

organization that hastwo major projects with a total inventory of 1,000,000lines ofcode

written in theCprogramming language.Fortheforeseeablefuture they expectabout10%

ofthis code base to be modified each year.In addition,they expect to develop about

100,000lines ofnew Ccode each year.

By(EQ 17)the new orchanged function points per year are estimated asfollows:

Cost-BenefitTemplatesforEmerald page88

fp_yr = ltofil,000,000x 0.1 -i-100,000,C)

= 200,000-128

= 1,562.5

The softwareXYZproducesfalls underthe“Systems”subindustry category and the

organization has been certified atCMMLevel2.The average project size is

fcur size loc -i- newloc
avg_proj_size = Itof ,lng

num_projects

ri,000,000+100,000
= ItofI 2 ’ V

= 550,000/128

= 4,297

ByTable 5.4,the defect potentialforthe subindustry is7defects perfunction pointbut

by Table 5.5 the defect potentialfor organizations oftheir maturity level is4defects per

function point.For our example,wechoose to use Table 5.5 and estimate4defects per

function point.Hence,by(EQ 16),the total defects injected each year by the baseline

XYZorganization is

defects_yr = 1,562.5 x 5.5

= 8,594

Table 5.7 lists the quality appraisal steps used by theXYZorganization.Foreach qual

ity appraisal step a default baseline defectremoval efficiency is estimated based onindus

try data published by Jones[37].TheXYZsoftware manager estimates that by using

Emerald he will be able toimprove the efficiency ofcode inspections and system testing

Cost-Benefit TemplatesforEmerald page89

Table5.7:Example parametersfor estimating savingsfrom improved efficiency

Baseline SPI VariaHe

remo^ SPI removal costper

efficiency Improvement elBBciency defect

Informal designinspections 0.35 5% 0.37 $25

Formalcode inspections 0.65 10% 0.72 $50

Regression testing 0.23 5% 0.24 $300

Newfunction testing 0.30 5% 0.32 $300

System testing 0.36 10% 0.40 $800

Customeracceptance testing 0.15 0% 0.15 $1,000

FieldUse 1.00 0% 1.00 $5,000

by 10% and improve design inspections,regression testing,and new function testing by

5%.

The software manager derives the variable cost per defect based on historical failure

cost data and defect countsfor theXYZorganization.Wenow have all the needed param

etersfor the model.The resultofapplying(EQ 15)for theXYZorganization is shown in

Table 5.8.

Table 5.8:Example application ofequation 15

Baseline

defects SPIdefects

detected detected Cummulative

(bdef^bre) (edej*ere) DiiFerence Savings savings

Informal designinspections 3008 3158 -150 ($3.760) ($3,760)

Formalcodeinspections 3631 3886 -256 ($12,778) ($16438)

Regressiontesting 450 374 76 $22,666 $6,128

Newfunctiontesting 452 370 81 $24,448 $30476

Systemtesting 379 319 61 $48403 $79,079

Customer acceptance testing 101 73 28 $28,241 $107,320

Fleldlfee 573 413 160 $800,159 $907,479

Total 8594 8594 $907,479

Cost-BenefitTemplatesforEmerald page90

Secondary Benefits

This section develops modelsfor quantifying secondary benefits ofusing Emeraldfor

targeted defectreduction.Secondary benefits tend to beless tangible and more difficult to

quantify than the more direct benefits.However,secondary benefitssuch asreduced cycle

time andincreased customer satisfaction can be critical factorsfor the long run success of

an organization.

Reduced cycle time. Emeraldreduces schedule because ofbetter utilization ofdevelop

ment,inspection and testing resources and by reducing defects and reworkfromformal

testing.For a governmentcontractor,schedule reduction may translate into receiving

financial awardfeesfor meeting milestone target dates and avoidingfinancial penalties.In

the business world,reducing time to marketcan resultin increased sales,bigger profit

margins,and allowing resources to be applied toward new products to drive future profits.

The parametersfor our model ofcycle time reduction benefits are given in Table 5.9.

The strategy is to estimate the numberofproject days saved each year

(proj_days_saved_yr)and the value ofeach day ofcycle time saved each year

(cycle_day_value).Those value are multiplied to yield the annual value ofcycle reduction

(cycle_reduct_value).

Figure 5.3 illustrates the chain ofparameter dependencies.An example calculation is

shown in Table 5.10.

The pre-release labor costsavings is thesum oftheinspection costsavingsfrom Table

5.2and the cumulative savings through ‘Customer acceptance testing’ as shown in Table

Cost-BenefitTemplatesforEmerald page91

Table 5.9:Parametersfor estimating the value ofcycle reduction

Parameter

pre-release_savings

cost_staff_hr

staff_hrs_saved_yr

staff_proj_hrs_day

staff_days_saved_yr

staff_day_to_proj_day

proj_days_saved_yr

work_days_yr

cycle_reduct_yr

cycle_day_value

cycle_reduct_value

Definition

Pre-releaselaborcostsavings.Thetotal
annual labor costsavings(prior to
release)from more efficient allocation
ofresources and from early defect
detection.

Costperstaffhour. Average costofone
developer hour.

Staffhourssavedper year.Annual staff
hour savingsfrom targeted defect
reduction.

Staffhoursperdayonproject. Theaver
age amountoftime a staff person
spendson project activities.

Staffdayssavedper year.The average
number ofstaffdays saved per year
from targeted defectreduction.

Staffday to projectday.Thenumberof
staffdays required to reduce the cycle
timeofthe project by one day.

Projectdayssavedperyear.Thenum
berofproject days saved each year.

Workdaysperyear.Thenumberofdays
an employee workseach year.

Cycle time reductionper year.Theratio
ofproject days saved each year.

Valueforeach cycle day reduced. The
present value ofsaving a cycle day in
termsofincreased sales,awards

attained,penalties avoided.

Annual value ofcycle reduction.The
present valueofcyclereduction accrued
for the current year.

Suggested data source

Sum the costsavings from more
efficient development,inspection
and testing resource allocation. Add
in the cumulative savings prior to
field usefrom early defect detec
tion.

Company data or industry salary
surveysfor similar organizations.

pre-release savings

cost_staff_hr

6hours/day. Adjustdepending on
theamountofschedule pressure that
exists.

staff hrs saved yr
staff_proj_hrs_day

Average number ofdevelopers per
project(e.g.,5developers per
project).

staff days saved yr

staff_day_to_proj_day

52weeks times5days per week
minus holidays and vacation.E.g.,
work_days_yr=234allows for 11
holidays and 3weeks ofvacation.

proj days saved yr

work_days_yr

Value depends on the software prod
uct and its marketplace.

proj_days_saved_yr x
cycle_day_value

Cost-BenefitTemplatesforEmerald page92

Figure 5.3:Parameter dependency chain for cycle reduction

Cost-BenefitTemplatesforEmerald page93

Table5.10:Example calculation ofcycle reduction value^
Inspection cost savings $44,800

Pre-release labor cost savings $152,120

Cost per staffhour $80

Staffhours saved peryear 1901

Staffhours perday on project 4.8

Staffdays saved peryear 396

Staffday to project day . 5

Project days saved peryear 79

Workdays peryear 234

Cycle time reduction per year% 34%

Value foreach cycle day reduced $5,000

Annualvalue ofcycle reduction $396,146

a. Default value for Staffhours per dayfrom[1]

5.8. Note that wecould haveincluded savingsfrom improved allocation oftesting and

developmentresources had we elaborated those models.

Improved customer satisfaction. Customer satisfaction is frequently mentioned as a

benefitofprocessimprovement.Forexample,Diazand Sligo stated that Motorola cus

tomers valueimprovementsin quality,cycle time and productivity[22].Many organiza

tions fail to quantify such intangible benefits as customer satisfaction or employee

satisfaction.A common practice is to acknowledge thatthey existand then ignorethem in

the calculations.Oxenfeldtrecommendsthatintangibles“mustbe valued atsome specific

monetary figure,even while recognizing that such a figure is likely to be incorrect”[59].

McGibbon addresses this issue by providing modelsfor estimating the value ofcustomer

satisfaction from processimprovementin terms ofcustomer retention and the value of

employee satisfaction by reduced employee turnover costs[56].

Cost-BenefitTemplatesforEmerald page94

Table5.11:Examplefor estimating an increase in business

Baseline w/Etoerald

Repeatbusiness $1,000,000 $5,000,000

Additional business $4,000,000

Annualnet\alue $8,000,000

As we have shown earlier,the use ofEmeraldimproves the productivity,cycle time.

and quality ofthesoftware product.These are characteristics thatcustomers value and that

helps to earn their repeat business and attract new customers.McGibbon suggests a

straightforward approach asshown in Table 5.11.

To determine the value ofrepeat business a software manger should

1. consider the projected improvements to cycle time,quality and productivityfrom

using Emerald,and

2. estimate how much repeat or additional business can be achievedfrom these

improvements.

A second approach that we suggestis to relate the quality,productivity,and cycle time

improvements to a percentageincreasein annual netsales(attributed to repeat business

and additional business).

5.2 Emerald’s SupportofReengineering Decisions

This section examinesthe economic value using Emerald to support decisions to reengi

neer existing code modules.We develop an economic model and provide examples to

Cost-BenefitTemplatesforEmerald page95

show how these benefits can be estimated.A typical scenario for this decision is asfol

lows:

For anew system to be developed,assume thatthe functional requirements have been

specified,the preliminary high level design has been developed,and the system will be

composed ofa numberofcomponents to be developed.Furthermore,forsome subset of

these components,similar componentsfrom a previous development effort have been

identified on which to base the new code in the current effort.These existing code units

have uncertain quality,maintainability,adaptability and conformance to the current

requirements.Mostofthe existing codecomponents willrequire atleastsome adaptations

to meetthe functional requirements ofthe new system.

Foreach componentin this subset,the developers are faced with the decision ofadap

tive reuse versusreengineering.Wedefine adaptive reuse as adapting an existing software

unitfor use in a new application such that needed functional modifications are inserted

with the least perceived short-term effort.We use the term reengineering to mean the sys

tematic restructuring ofan existing software unitin ordertoimprovethe softwarein terms

offunctionality,performance,reliability, maintainability,reusability and adaptability.

Thus,the reengineering choice implies going beyond the functional requirements and

improving the quality and long-term costs and schedules associated with maintaining the

resulting code.Adaptive reuse on the other handimplies the least effortto getthefunction

to workin thenew system,and not addressing any other quality issues that may exist with

the code.

Cost-BenefitTemplatesforEmerald page96

Withouta tool such asEmerald to assess the risk ofthe existing modules,we believe

that developers would always select the adaptive reuse option.^ Whenlong-term benefits

are omittedfrom consideration,the decision typically is madeforthe choice with thelow

est perceived short-term costs. Since adaptive reuse is perceived to require less up-front

effortthan reengineering,adaptive reuse would win usually ifconsidering only short-term

costs and benefits.

With Emerald,the developer has a better understanding ofthe risks involved in reus

ing the existing modules.Long-term benefits are factored into each decision leading more

often to correct decisions.Forexample,ifEmerald reveals thatacode unit has a history of

frequent use,extensive modifications,and high risk offield failures then the choicefor

reengineering is indicated.Reengineering by definition wouldimprove the quality and

cost offuture maintenance and enhancements whilereducing the risk offield failures and

schedule overruns.

5.2.1 Modeling the Benefits oftheImproved Decision

Our goalis to develop a modelto quantify the value Emerald adds to the decision to

reengineer orreuse software modules.Forinputs to this model,we need to estimate the

average costs to adapt a module and to reengineering a module.We will also need to esti

mate long-term costs for maintenance ofhigh quality and low quality modules.In addi

tion,we need to estimate whatpercentage ofthe time the mosteconomical decision would

1. This assumption is notcritical to our model and,in fact, we also modelthe case thateven with
outEmerald the developer could decide to reengineer.

Cost-BenefitTemplatesforEmerald page97

be made both with and withoutEmerald.Once we have these inputs wecan constructa

Bayesian decision model to estimate the benefits. Section 5.2.2 develops an approach to

estimating adaptation and reengineering costs.Section 5.2.3 shows how to estimate for

long-term maintenance costsfor high quahty versuslow quality,code.Section 5.2.4con

structs the decision matrices and provides example calculations.

5.2.2 Estimating Development,Adaptation and Reengineering Costs

Ideally,acompany could usefinancial datafrom previous projects to estimate its costof

developing new code.Otherwise,industry costestimates could be used.Jones provides

average costs perfunction point to develop new codefor a given subindustry and system

size[37].Forexample,for a medium sized project(say around 500function points or64

KLOCsofCcode)in the ‘systems’ software subindustry we might derive an estimated

unitcostof$2,500perfunction point.Tocalculate the average costofdeveloping anew

module,the organization would need to estimate the average size ofeach module.For

example,suppose the average size ofa componentis 2,048 lines ofCcode or 16function

points.Then the average costofa module is 16times $2,500 or$40,000.This approach

will provide us with an estimate ofdeveloping new code but what wereally need is the

cost ofadaptive reuse and the costofreengineering existing code.

We believe reengineering requires more effort than standard new development

because: 1)the need to understand whatthe current moduleis doing requires detailed

analysis and reverseengineering to extract precise specifications,and2)the needformore

careful analysis,design,documentation and peerreview to ensure the new module doesin

Cost-BenefitTemplatesforEmerald page98

fact achieve intended quality,performance and adaptability improvements over its prede

cessor.In the absence ofcompany datato estimate reengineering costs,we can utilize

industry data on software reuse to derive an estimate ofreengineering.

Poulin examines anumberofstudies ofthe relative costofwriting software to belater

reused by others[63]. Writing software to be reused by others requires more effortfor

additional generalization,documentation,testing andfor needed library supportand main

tenance.Hefound that the median costofwriting softwarefor subsequentreuse requires

about50% additional effort over hew development.The extra effort required to write soft

warefor reuse is similar to the extra effort required to reengineer existing code to meet

higher standards.Soin the absence ofempirical evidence to the contrary,wecan estimate

thatthe relative cost ofreengineering existing software is 1.5,the same as Poulin’s esti

matefor the relative costof writingforreuse.

Adaptive reuse can be considered a combination of white box reuse and black box

reuse.Black box reuse means that no modification is required ofthe component whereas

white box reuse implies that modification will be required.Poulin reviewed the literature

forthe costofreusing code andfound thatthe relative cost ofblack box reuse(compared

to new development)rangedfrom 0.03to0.4 with a median ofabout0.2[63].

Poulin does not explicitly calculate a relative cost of white box reuse which requires

code modifications to meetfunctional requirements.However,he cites a study by Selby

who reported thatreuse with only slight modifications(less than 25%ofthe code

changed)required about40%the cost ofnew development.Ifmore than 25%ofthe code

required modifications then the amountofeffortincreased to90% ofthe cost ofnew

Cost-BenefitTemplatesforEmerald page99

development.Usingthese default valuesforrelative cost,wecan estimatethe relative cost

of white box reuse as an average that would range between 0.4 and0.9 depending on the

organization.We estimate a defaultindustry valuefor the relative cost ofreuse by assum

ing that ofthe reused components thatrequire modification,halfrequire only slight modi

fications and the other halfrequire more extensive changes.Thusthe default value for the

relative costfor white box modifications is 0.4 x 0.5+0.9 x 0.5 = 0.65.

Therelative costofadaptivereuseforan organization can beestimated astheexpected

value ofthe cost ofblack box and white box reuse.Thefollowing is an example calcula

tion for an organization that estimates that75%ofthe modulesto be reused require some

functional adaptations in order to work with the new system.

Relative cost ofadaptive reuse = 0.2x0.25+0.65 x0.75 = 0.5375

Wecan now calculate the estimated costofreengineering and reuse based on these rel

ative cost estimates and the average size ofa code unitconsidered for reuse.Table 5.12

shows an example calculation ofthe costofadaptation and the costofreuse.

Table5.12:Example estimation ofcostto reengineer and cost ofreuse

Language -SLOC/FP C 128

Avg.SLOCperCode Unit in C 2048

Avg.Size ofCode Unit in FPs 16

Avg.Cost perFP $2,500

Avg.Costto dev.New Code unit $40,000

relative cost cost

Costto reengineer 1.5 $60,000

Costfor black boxreuse 0.2 $8,000
Costfor white boxreuse 0.65 $26,000

Percentofunits needing adaptations 0.75

Costfor reuse 0.5375 $21,500

Cost-BenefitTemplatesforEmerald page 100

The main results we need for subsequent calculations are the costofreengineering a

module and the costfor adaptive reuse.Ofcourse,these cost estimates should be cali

brated to an organization’s pastexperience ifthat data is available.

5.2.3 Estimating Enhancementand Maintenance Costs

Stevenson reviewed several studies that wereconducted between 1975 and 1985 on the

cost ofmaintenance[73].He concluded that the proportion oftime spenton maintenance

can vary widely,from about30%to90%ofthe total costofthe system,but mostestimates

arefrom50% to70%.These estimates may below for the 1990’s as maintenance costs

have been expected toincrease overtime as a proportion oftotal development.In 1973

Boehm predicted the relative costofmaintenance would rise to over80%by 1985[8]and

the conventional wisdom is thatthis prediction has been fulfilled[76].With these consid

erations,we will estimate a presentday valueforthe costofmaintenance to be72%ofthe

total costofnew development.

Vienneau has pointed outthatestimates ofthe costofmaintenance do notproperly dis

countforthe costofcapital[76]."Vienneau derivesthe ratio ofthe present value ofthecost

of maintenance to the present value ofthe total life-cycle cost as

-i-i
PVM

PV.TC P m (l+rZ-lJ

Cost-BenefitTemplatesforEmerald page 101

where is the present value ofthe cost ofmaintenance,PVjq is the present value of

the total life-cycle cost,p is the undiscounted ratio ofthe cost ofmaintenance to the total

life-cycle cost,dis the numberof yearsin development,m is the number of years in oper

ations and maintenance phase,and ris the discountrate.

Stevenson cites a 1985study byFairley thatreportsthe typical life span fora software

productis 1-3 years in development,and 5-15 years in use(maintenance)[73].Ifwe

assume the undiscounted costofmaintenance is72% ofthe total cost,the discountrate is

10%,the project is in developmentfor2years and in operation and maintenancefor 10

years,the present value costofmaintenancecomputesto60%(using Vienheau’sformula)

ofthe present value ofthe total life-cycle cost.Thus the present value average costof

maintenance is 60/40=1.5times the cost ofnew development.

CostofMaintaining High and Low Quality Modules

The purposeofthis section is to calculate ’theaverage costofmaintaining a high

quality module,and ,the average cost of maintaining alow quality module.These

values will be used laterin Section 5.2.4 to estimate the values ofthe decision payoff

matrix.As discussed in Section 5.1.1,thePareto rule generally appliesto software mainte

nance as mosterrors and subsequentcode changes are concentrated in a small percentage

ofthe modules.The total cost ofmaintenance{TM)is thesum ofthe maintenance cost

for high quality(TM^jq)andlow quality programs(TMj^q).Thatis.

Cost-BenefitTemplatesforEmerald page 102

TMfjQ+TM^Q = TM (EQ18)

Letp be the ratio ofthe total maintenance costs absorbed by thelow quality programs

then,

TMj^q = px TM (EQ19)

TMjjq = {l-p)xTM

Thecostofmaintenance per module,M,can be calculated by dividing thetotal costof

maintenance by the numberofmodules,n,in the system,thatis M = TM/n.Ifwelet^

be the ratio oflow quality modules to the total numberofmodules,the cost ofmainte

nance perlow quality module,M^q,is

TM
M m = =£xM (EQ20)
LQ - qxn qxn

and the costofmaintenance per high quality module,Mjjq,is

^(l-p)xTM ̂ (1-p)
xM (EQ21)MHQ -{l-q)xn (l-^)xn (l-q)

Hence,ifwe assume that20% ofthe code islow quality(q=0.2)and consumes80%

ofthe maintenance cost(p=0.8)and we estimate the relative costofcode maintenance to

be 1.5,then the relative cost of maintaining low quality code is 1.5 x4 = 6,and the rela

tive cost of maintaining high quality code is 1.5/4 = 0.375.As an example,ifthe aver-

Cost-BenefitTemplatesforEmerald page 103

Table5.13;Example estimation ofcost ofmaintenance

relative cost cost

Maintenance Cost/Module 1.5 $60,000

Maintenance Cost/Low Quality Mod. 6 $240,000

Maintenance Cost/High Quality Mod. 0.375 $15,000

age costfor developing anew module is $40,000the resulting costsfor maintenance is as

shown in Table 5.13.

5.2.4 Estimating Decision Results and Probabilities

In the decision we are modeling,we havetwo choices.Wecan choose to either reuse the

module with possible adaptations orto reengineer the module.In addition,there are two

possibilities for the true state ofnature ofthe code module.Ifthe module is notreengi

neered,it could require either high orlow maintenance costsin thefuture.However,atthe

time ofthe decision,the true state ofthe code module is unknown.With two choices and

two unknown states ofnature,we havefour possibilities that we can examine.Wecan

either:

1. Reuse aLow Quality module.

2. Reuse a High Quality module.

3. Reengineer aLow Quality module,or

4. ReengineeraHigh Quality module.

Cost-BenefitTemplatesforEmerald page 104

In constructing a bayesian decision model,it will beconvenientto use matricesforthe

decision results and probability matrices.Each cell in a matrix will represent one ofthese

four decision possibilities in terms ofits cost or its probability ofoccurrence either with

Emerald or withoutEmerald.

In the following subsections we will consider these possibilities in terms oftheir

potential payoffs or decision result,and how to calculate their probabilities ofoccurrence

both withoutEmerald,and with Emerald.

Decision Results

A decision result is the costthat will resultfrom acombination ofa decision choice

andthetrue state ofasoftware module.There aretwosimplifying assumptions that weare

making aboutour decision:1)reengineering will convertalow quality moduleinto a high

quality module,and2)adaptive reuse will not affect the state ofa module.These assump

tions are supported by our definitions ofthe decision choices.

LetA bethe cost ofreuse ofa module and let R be the costofReengineering a mod

ule.Then the resulting costofeach decision possibility can be directly calculated as

shown in Table 5.14:

Table5.14:Costofeach possible decision result

choice\ state low quality high quality

reengineer R+M R+MHQ HQ

reuse A+M A+MLQ HQ

Cost-BenefitTemplatesforEmerald page 105

Table 5.15:Example decision result

Resulting Costs Low Quality High Quality

Reengineer $75,000 $75,000

Adaptive Reuse $261,500 $36,500

Table 5.15 gives an example decision result matrix based on the adaptive reuse,

reengineering and maintenance costfigures we computed in previous examples.

Estimating baseline decision probabilities

As discussed previously,we assume thatin the baseline environment(that is, without

the aid ofEmerald),the developer would never choose to reengineer.Since the model

does not depend on this assumption we will also show how to compute probabihtiesfor

the case where the developer could choose to reengineer.

Never reengineer case. Sincein this case you can never reengineer,the probability

matrix is entirely determined by the estimated percentage oflow quality(i.e.,high mainte

nance)modules.Let ^lq be the estimated percentage oflow quality modules.The calcu

lation is given in Table 5.16.

Table5.16:Baseline probabilities for‘never reengineer’ case

choice\state low quality high quality

reengineer 0% 0%

reuse ^lq l-PLQ

Cost-BenefitTemplatesforEmerald page 106

The costsfor this scenario is obtained by multiplying the corresponding cells ofthe

probability matrix with the decision result cost matrix and summing.If we assume that

20%ofthe modules arelow quality and use the decision matrix in Table 5.15,the baseline

cost per decision is $81,500.

Could reengineer case. Wecan also assume thateven withoutEmerald,the developer

could choose to reengineer.One approach would be to directly estimate all four cells of

the probability matrix.However,a simpler method is to estimate the percentage oftime

thatthe developer would makethe besteconomicalchoice.LetB representthefraction of

the timethe developer correctly determines(withoutEmerald)whether a moduleislow or

high quality.Thatis,B is the fraction ofthe time the developers choose to reengineerlow

quality modules and apply adaptive reusefor high quality modules.Then the baseline

probability matrix can be calculated as shown in Table 5.17.

If we estimate that B = 0.75,P
LQ = 0.20 and using the example decision result

matrix in Table 5.15 our baseline cost per decision evaluates to $64,630.

Table5.17:Baseline probabilities for‘could reengineer’case

choice\state low quality high quality

reengineer BxP
LQ (l-B)x(l-P^g)

adaptive reuse (l-B)xP^g

Cost-BenefitTemplates for Emerald page 107

Estimating the decision probabilities when using Emerald

LetE represent the probability that the developer accurately predict the quality ofthe

module and makes the correct choice when using Emerald.Our assumptions are that

Emerald will add information to help improve the prediction accuracy ofalow quality

module.Thus we expectE>B.The decision probabilities for each decision are given in

Table 5.18.

Table 5.18:Decision probabilities when using Emerald

choice\state low quality high quality

reengineer ExP
LQ {1-E)x{\-P^q)

adaptive reuse {\-E)xP^q Ex{1-P^q)

Ifwe estimate thatE = 0.85,P^q = 0.20 and use the decision result matrix in Table

5.15 ourcost per decision when using Emerald evaluates to$54,415.This would represent

a savings of$27,085 per decision when compared to the‘no reengineer’ baseline example,

or a savings of$10,215 per decision when compared to the ‘could Reengineer’ baseline

example.

Finalcomputations

After arriving at an estimated cost savings per decision,we can annualize this cost by

estimating the number ofdecisions ofthis nature that would be made during a year.

Finally,by providing a discount rate for the cost ofcapital and an assumed time horizon

Cost-BenefitTemplatesforEmerald page 108

for the decision,we can calculate the net present valuefor theimproved value ofthe deci

sion.

If we estimate 30decisions per year,a discountrate of10%,atime horizon of5 years

and acostsavings per decision of$27,085,our annual cost savings is $812,550 and the

NetPresent Value ofthese savings overfive years is $3,388,224.

5.3 Using Emerald for Software Acquisition

Organizations are often responsible for acquiring custom softwarefrom other sources.

Outsourcing,acommonform ofsoftware acquisition,has been a growing trend over the

last several years. Outsourcing is associated with a downsizing strategy that many organi

zations are pursuing.In order to focus on their core business,many software applications

are outsourced to third party software developmentcontractors. Anotherform ofsoftware

acquisition is associated with a planned company merger orcompany acquisition where

significant software assets will be combined in alargercompany.This situation could

involve combining software assetsin a commercial productline for anticipated competi

tive benefits. Also,acompany merger mayinvolve consolidating various internal account

ing,personnel,managementinformation systems and databases.

In any context,the software acquisition process poses many significantchallenges and

risks for the acquiring organization (i.e.,the buyer).Software products are complex and

difficult to evaluate apriori.Software procurementtypically involves the specification

and developmentofcode or the code may already exist butrequire customized modifica-

page 109Cost-BenefitTemplatesforEmerald

lions to meetspecific requirements.The way in which the acquisition process is managed

significantly affects the schedule,quality,costs,risks,and resulting value ofthe software

productto the acquiring organization.Thissection describesthe risksinvolvedin software

acquisition and reviews the life-cycle ofthe'acquisition process.Weshow how Emerald

can be used to manage risks through all phases ofthe acquisition.Finally,we develop

models to quantify the benefits an organization can expect to receivefrom this use of

Emerald.

5.3.1 Risksin Software Acquisition

The procurementofsoftware products entails risks.Serious problems existin acquiring

software thatis delivered on time,within budgetand ofacceptable quality.Considerthese

statistics:

• 30%ofoutsourcing agreementsinvolve dissatisfaction,a dissolution ofthe agree

ment,orsomeform oflitigation within two years[40]

• 28% ofallIT(Information Technology)projects fail(1998 Standish Group

report).

• 50%ofsoftware developmentschedules are not met[19].

• 10% ofsoftware developmentschedules slip more than 25%ofthe original esti

mate[37].

page 110Cost-BenefitTemplatesforEmerald

• 33% ofsoftware developmenteffort is spenton defectremoval and rework[37].

In addition,software is often delivered with many significant defects.The cost offail

ures in the field can be staggering for both the supplier and the customers ofthe software.

Here arejust afew examples:

• A one-daysystemfailurecan costabout$5.3-millionin lostrevenueforaninternet

auction site such as eBay(CahnersIn-Stat Group).

• The downtimefor an on-line retailer can cost as much as $10,000a minutein lost

sales(IBM).

• General Motors recalled about2.5 million pickups,sport utilities and vans with

two-wheel drive to correct software on the anti-lock braking systems(AP,Strong,

1999).

• Toshiba Corporation recently agreed to a settle $2.1 billion class action lawsuit

because ofan error in afloppy-disk controller thatcould lead to data corruption.

• A defectin the navigation software led to the$125 million Mars Climate Orbiter

spacecraftcrash in 1999.

There are wideranges ofproductivity and quality in organizations that produce soft

ware.Rubin reported that the range of performance ofsoftware organizations varied by a

factorof600in 1995.Also,therangein quality ofdelivered code(measured as post-deliv

ery defects per thousand lines ofcode)from these organizations varied by afactor of100

Cost-BenefitTemplatesforEmerald page 111

according to Rubin[68].These wide variations in productivity and quality suggesttre

mendous benefits thatcan be generated by improving risk managementin the software

acquisition process.

There are a variety ofpotential problems that can occur during the software acquisi

tion process:

• the selected software developmentcompany will be incompetent orincapable of

developing software ofacceptable quality that meets all requirements;

• the acquiring organization willbe unableto properly track,monitorand controlthe

project;

• proposed new or changed requirements will fail to be properly evaluated and man

aged resulting in features that add disproportionately more cost and schedule

delays but provide little benefit when putinto use;

• the software will be delivered late and over budget;

• the delivered software will not meetrequirements;

• the delivered software will be very difficult and expensiveto maintain and support;

• the delivered software will be difficult to adaptand evolve to meetchanging busi

ness requirements.

Cost-BenefitTemplatesforEmerald page 112

The acquiring organization can exercise a great deal ofcontrol over these potential

problems by managing risks during the software acquisition life-cycle.

Emerald helps managethe risks both for software acquisition organizations(buyers or

acquirers)andfor software development organizations(developers). Ata high level,

Emerald’s capabilities during this process can be summarized as follows:

• Emerald derives code,use and process metrics of3rd party suppliers and provides

a risk assessmentoftheir code and process.

• Supplier generated code can be compared with in-house code or with other sup

plier's code for quality,complexity,and maintainability using complexity metrics

and risk models.

• Emerald gives the customer a view into the quality ofthe code and costofsupport

and maintenance.

5.3.2 Software Acquisition Overview

The SoftwareEngineering Institute has published a Software Acquisition Capability

Maturity Model(SA-CMM)[26].This model is intended to be used to help organizations

assess the maturity level oftheir software acquisition processes and provide guidancefor

makingimprovements.Each level consists ofkeyprocessareas(KPAs),where each KPA

defines an areatofocus its improvement effort. We have derived a software acquisition

life-cycle based on key process areas oftheSA-CMM.

Cost-BenefitTemplatesforEmerald page 113

The major life-cycle phases ofthe acquisition are:

• Software acquisition planning

• Contract solicitation and evaluation ofvendors

• Contract performance management

• Evaluation and acceptance ofthe resulting software products

• Transitioning to support

Software acquisition planning

Software acquisition begins with the process ofdefining a setofsoftware related

requirements.The software requirements should include quality and supportability

requirements as well asfunctional and performance requirements. Acquisition planning

includes schedule determination,risk identification,solicitation managementand require

ments definition.

Contractsolicitation and evaluation ofvendors

The goal ofthe sohcitation is to select the contractor who is qualified and capable of

satisfying the requirements ofthe contractfor the least life-cycle cost.The software

requirements willform the core ofa solicitation package thatis prepared and distributed to

interested software developmentcompanies.In addition,the solicitation package should

Cost-BenefitTemplatesforEmerald page 114

include the estimated size and cost ofthe software to be developed,information on how

the project will be monitored,acceptance criteria forthe deliverables,information on how

the offerors will beevaluated,and whatdocumentation they mustsubmitin orderto bid on

the contract.The submitted bids are evaluated according to a documented evaluation pro

cedure and the contractis awarded.

Contractperformance management

During this phase,the acquirer is responsible for tracking the contractor’s perfor

mance,providing oversight,and approving new or changing requirements.Asthe devel

opment project proceeds the acquiring organization will need objective methods to

routinely track and monitorthe vendor’s progress.

Evaluation and acceptance ofthe resulting software products

When the software is completed and tested by the vendor,the acquirer mustbe able to

independently evaluate the software products to ensure all contractual requirements have

been met.Objective,measurable methods mustbe available to allow the buyerto verify

thatthe developer has metthe contractual requirements. Acceptance testing is typically

used to verify thatfunctional requirements have been met.However,for all butthe small

estsoftware systems it is usually cost prohibitive to perform exhaustive testing and accep

tance testing typically exercises only asmallfraction ofthe possible program paths.

According to Jones,acceptance testing only reveals aboutone third ofthe defects that

remain in the product[39]. Also,ifthe code is poorly designed it may be difficult and

Cost-BenefitTemplatesforEmerald page 115

expensive to repair those defects or to modify the code later to adaptto new or changing

requirements.Objective methods are needed to assess the quality characteristics ofthe

code.

Transitioning tosupport

Once the software has been accepted there is a phase oftransitioning the code to sup

port by the maintenance organization.The goal ofthis phase is to help ensure the support

organization willhave the capability to understand,maintain,and supportthe software.

The acquiring organization mustbe able to estimate the cost,resources,and requirements

for supporting the software.The support organization mustquickly learn the software

architecture,design,and organization in orderto supportit properly.

5.3.3 Using Emerald in Software Acquisition

Emerald can be used throughoutthe software acquisition life-cycle to mitigate potential

risks.This section describes how Emerald can be utilized in each ofthe acquisition

phases.

Software acquisition planning

Emerald provides a measurable,quantitative approach for stating quality and support

requirements.Such requirements can be used later to monitorthe projectas it is being

developed and provide acceptance criteria for thefinal product.Acceptance criteria and

evaluation methods should be included in the solicitation package and the resulting con-

Cost-BenefitTemplatesforEmerald page 116

tract. Making quality requirements explicit and measurable makesit hardfor contractors

to ignore and helps insure these issues will be addressed.

Contractsolicitation and evaluation ofvendors

Emeraldcan be used during the contract solicitation for evaluating the capabilities and

maturity ofpotential bidders to beincluded in solicitation package.Forexample,bidders

could be required to submitexample codeofrecent work to assistin evaluating their capa

bilities.

Forsome acquisitions,the vendor may be providing pre-existing code to be used in

constructing the new system.Emerald provides information to help assess the quality and

the costofadapting and supporting that code.

Contractperformance management

RoutineEmerald reviews can be used to track percentcomplete(as measured in code

written to total estimated)and to verify that risk factors related to the code are undercon

trol. When high risk factors are revealed through these reviews,managementcan plan

actions to mitigate those risks. Subsequentreviews can monitor the risk metrics to deter

mine ifthe planned actions are working to reduce the risks.

During the course ofany majorsoftware developmenteffortitisinevitable thatnew or

changed requirements will surface.Itis often difficult to understand the consequences of

making a change orintroducing anew feature in a development process.Emerald can be

used to help management assess the potential risks and costs involved for various imple-

Cost-BenefitTemplatesforEmerald page 117

mentation optionsforthe requirement.The analysis can help determine the lowestcost

implementation option,the impactit may have on schedule,and whetherthe proposed

change is worth the anticipated benefits.

Evaluation and acceptance ofthe resulting software products

The code,process,and risk metrics provided byEmerald can be obtained during the

evaluation and acceptance testing phase.These metrics complementthefunctional testing

and provide an objective measure ofhow well the product meets quahty and supportabil-

ity requirements.Thisinformation can help the acquirer understand the risks and costs of

accepting ownership ofthe resulting products.

Transitioning to support

Emerald can be useful in this phase by providing information that helps estimate and

plan the resources need to support the software.Also,the metrics help the supportteam

understand and maintain the code they are acquiring.

5.3.4 Benefits ofUsing Emerald in Software Acquisition

The previous section discussed the waysin which Emerald supports the software acquisi

tion process.This section analyzes how this supportleads to anumberofbenefits.Tosim

plify matters,we divide these uses into two categories:pre-award evaluation andproject

evaluation.Figure 5.4 suggests the cause-effectchainfrom these uses that results in a

numberofbenefits and Tablo 5.19summarizes Emerald’s benefits.

Cost-BenefitTemplatesforEmerald page 118

Software Acquisition
Support

Uses of Emeraid
Pre-award evaluation Project evaluation

- contractual requirementsManage and control
More capable contractor - project trackingcomplexity and risk

- corrective actions

- acceptance criteria

Reduced projectfailure risk Lower risk code

Lower repair and
Fewerfield faultsLess internal rework maintenance unit costs

Lower development Reduced cycle Lowersupport Customer
costs time costs satisfaction

Higher market Longer product Higher profit Customer
share life margin retention

Figure 5.4: Cause-effect relationshipsfrom Emerald’s software acquisition support

Cost-Benefit TemplatesforEmerald page 119

Table 5.19:Summary ofbenefitsfrom Emerald use in software acquisition

Benefit

Reduced acquisition risk

Lowerdevelopmentcost

Reduced cycle time

Lowersupportcost

Reduction in field failure

density

Reductionin repair unit
cost

Reductionin maintenance

unitcost

Highercustomer satisfac
tion

Rationale

Emerald can help evaluate a pre-existing code base and make acquisi
tion risks visible prior to awsuxiing the contract.Emerald can also assist
in evaluating the capabilities ofa contractor.

Emerald can help reduce system risk and complexity.Emerald provides
managementwith visible metrics to help control and reduce these risks.
High risk software contains a higher number ofdefects,requires a
greater numberof modifications,and those repairs and modifications
require more effort.

The use ofEmerald by the buyer as arisk control mechanism can help
reduce system risk.Thereduction ofhigh risk modules reduces late
stage rework and thus reduces cycle time and the risk oflate delivery.
Reducing cycle time can resultin significantfinancial benefits.
Also,note thatthe use ofEmerald by the contractor can help with tar
geted defect prevention which would reduces late stage rework thus
also reducing the risk oflate delivery.

Reduction in field failure density
Reduction in repair unitcosts
Reduction in maintenance unit costs

A reduction in system complexity reduces the faults in the code which
reduces the occurrence ofcostly field failures.

BecauseEmerald can be used to help analyzefailures and assess the
results,and because Emerald has helped reduce system complexity,it
leads to easier analysis offield failures,faster fault identification and
reduced risk ofintroducing new faults during the repair process.

Software oflower risk and complexity is easier to maintain and can be
more easily adapted to accommodatefuture business needs.

Emerald results in software thatcontainsfewerfield defects and

requires less time to correct problems or make changes.Customers are
more satisfied when the software they use is more reliable. Also,cus
tomers appreciate fast service response when problems occur.Higher
customer satisfaction encourages repeat business firom existing custom
ers and helps to attract businessfrom new customers.

Cost-BenefitTemplatesforEmerald page 120

5.3.5 Quantification ofBenefits

This section provides modelsfor quantifying the costs and benefits ofusing Emeraldfor

software acquisition.The benefits thatcan be achieved will depend on the economic char

acteristics ofeach particular acquisition and how effectively the metricinformation is used

to improve the process.

Reduced acquisition risk

Forourfirst model we will evaluate benefitsfrom the point ofview ofestimating how

Emerald can reduce the likelihood ofunwanted consequences.

The unwanted outcomes ofa software acquisition include:

• projectis cancelled,

• projectendsin litigation,

• software is delivered late.

• projectexceeds development budget.

• software is ofpoor quality and costly to maintain or to adapt to changing require

ments.

• various combinations ofthe above.

Our modelidentifies a default set ofrisks that can occurfor the organization’s soft

ware projects.Foreach identified risk, we mustestimate the average cost(over all

Cost-BenefitTemplates forEmerald page 121

projects)ifthe risk actually occurs.Also,wemustestimate the likelihood thatthe risk will

occur underthe baseline scenario and underthe processimprovementscenario using

Emerald.To estimate the impactofthe Emerald processimprovementforthe entire soft

ware acquisition organization,we need the number ofongoing projects subject to these

risks each year.To estimate thelikelihood ofrisk for the Emerald software process

improvement(SPI)scenario,weintroduce an SPIJmpactparameter thatis the estimated

fractionalimprovementin risk overthe baseline case to apply to all risks.The parameters

forour risk model are listed and described in Table 5.20.

Table5.20:Software acquisition risk model parameters

Parameter Description Suggested data source

SPIJmpact SPIimpact.The estimated improvementin Suggesta value in the range of
thelikelihood ofthe risk occurring underthe 0.1 to0.3 depending on the acqui
software process improvementscenario. sition environmentand how

effectively the SPIcan be applied.

num_projects Numberofprojects.The average numberof Numberofprojects wheretheSPI
software projects subjectto acquisition risks is to be applied.
each year.

LetRisk(O-n)representa setofidentified risksfor the software acquisition.

Letn be the numberofRisks,Risk(0representthe Risk and Risk(i).<param> bethe value ofa parame

ter associated with the i*Risk.
Thefollowing parameters are requiredforeach Risk:

potential_cost Potential cost.The total costimpactto the Forcostofprojectfailure,suggest
organization ifthe risk occurs. using the total costofthe project.

base_risk_likelihood Baseline risk likelihood.The estimated like Historical organizational data or
lihood thatthe risk will actually occur.For industry data.Forexample,Jones
some risks,industry data is availablefor has published estimatesfor
default values. projectcancellation.

SPI_risk_likeIihood SPIrisk likelihood.Theestimated likelihood base_risk_likelihood x
thatthe risk will actually occur under the (1 -f- SPIJmpact)
Emerald SPIscenario.

Cost-BenefitTemplatesforEmerald page 122

For each risk(0,the savingsfor an average projectcan be calculated asfollows:

project_savings = potential_cost x(base_risk_likelihood-SPI_risk_likelihood)(EQ22)

The savingsfor each risk over all projects is project_savings x nuni_projects.Ifthe risks

are independent,the value ofusing the SPIto mitigate risks over all projects can be calcu

lated as follows:

n

risk_savings = ̂ risk(i).project_savings (EQ23)

(•= 1

Table 5.21 provides an example calculation.For this example we considertwo poten-

Table 5.21:Example calculation ofproject risks

Likelihood Annualrisk

Potential savings per Risk savings

Risks Cost Baseline Ehderald tMToject per year

Project canceUation $3,000,000 0.25 0.2 $150,000 $450,000

Over25% late delivery $500,000 0.21 0.168 $21,000 $63,000

tial risks:“projectcancellation” and“over25% late delivery”.Jones has published esti

mates of project cancellation and projects being delivered over25% late[37].For

example,25% ofprojects in the systems software subindustry category that are between

1,000 to 10,000function pointsin size end up being cancelled and21% are delivered sig

nificantly late.^ Forthis example,weestimate a modest20%improvementin the risk like

lihood undertheEmerald scenario(SPI_impact=0.2)and assume the organization has an

1. Source:[37],Table 2-4,p.60.

Cost-BenefitTemplatesforEmerald page 123

average ofthree active projects per year(num_projects=3).The potential costofcancel

lation is estimated as the average costofa projectin the organization.Ifthe projectis can

celled,no economic value can be obtainedfrom the software and the entire cost of

developmenthas been wasted.Additional costs may be added to accountfor disruption of

business,and lost opportunities as a result ofthe cancellation.

When the project exceeds its schedule by over25 percent,the lengthened cycle time

can resultin penalties,lost award fees,additional resource costs,business disruption,and

lost opportunities to pursue.Note that this risk reduction estimate is another way ofesti

mating the value ofcycle time reduction.

Lower developmentcost

The primary componentoflower developmentcostisfrom a reduction in rework

costs.To model this effect we obtain the average annual developmentcostfor each soft

ware project,estimate the rework costs as a percentage ofthe total costs,and estimate an

expected savings asa percentreduction in rework.The parametersforour model are listed

in Table 5.22.

With this modelthe annual rework savings is computed asfollows:

annual_rework_savings = num_projects x avg_proj_cost_yr (EQ24)
X(base_rework_pct-SPI_rework_pct))

An example computation is given in Table 5.23 with valuesfor the num_projects and

SPI_impact parameters as before.

Cost-Benefit TemplatesforEmerald page 124

Table5.22:Lowerrework cost parameters

Parameter Description Suggested data source

SPIJmpact SoftwareProcessImprovement Suggesta value in the range of
(SPI)impact.The estimated 0.1 to0.3 depending on the
improvementin the likelihood of acquisition environment and
the risk occurring under the soft how effectively the SPIcan be
ware processimprovementsce applied.
nario.

num_projects Numberofprojects.The average Number ofprojects wherethe
numberofsoftware projects sub SPIis to be applied.
jectto acquisition risks each year.

avg_proj_cost_yr Averageprojectcostperyear. Accounting data.

base_rework_pct Baseline reworkpercent.The Historical organizational data
average percentage ofcost spent or industry data.Forexample,
on defectremovd and rework. Jones has published estimates

ofdefectremoval effortfor var

ious subindustties.

SPI_rework_pct SPIreworkpercent.The esti base_rework_pct x
mated percentage ofcostspenton (1+SPIJmpact)/100
defect removal and rework under

the Emerald SPI scenario.

Table5.23:Example estimate ofdevelopmentrework savings

Average project costs per year $3,553552
Baselinereworkpercent

SPIlevyotkpercent

Baselinereworkcosts $990,000

Emerald reworkcosts $792,000

Plrojectreworksavings $198,000

Annualreworksavings $594,000

Cost-BenefitTemplatesfor Emerald page 125

Reduced cycle time

Morecapable contractor selection and more control over project risk factors increases

the likelihood ofreduced cycle time.Reducing cycle time can result in significantfinan

cial benefits.Toquantify the benefitsfrom reduced cycle time,either estimate the reduced

riskofscheduleslippage asshownin Table5.21 or apply the modelforreducedcycletime

from Section 5.1.2.However,oneshould avoid applying both approaches as it would dou

ble countthe same benefit.

Lowersupportcost

To calculate the value oflower supportcosts,we will estimate a fractionalimprove

mentin current software support costs.The parametersfor this model are listed in Table

5.24.With these parameters the annual support savings are given by(EQ 25).We give an

example of this modelin Table 5.25.

Annual_support_savings = num_projects x (EQ25)

(base_maint_cost_yr+base_sup_cost_yr-
(SPI_maint_cost_yr+SPI_sup_cost_yr))

Higher customer satisfaction

Highercustomer satisfaction can be quantified using the approach we considered pre

viously in Section 5.1.2.

Cost-BenefitTemplatesforEmerald page 126

Table 5.24:Lower support cost parameters

Parameter

SPIJmpact

num_projects

base_maint_cost_yr

base_sup_cost_yr

SPI_maint_cost_yr

SPI_sup_cost_yr

Description

SPIImpact.The estimated
improvementin the likelihood of
the risk occurring under the soft
ware processimprovementsce
nario.

Numberofprojects. The average
numberofsoftware projects sub
ject to acquisition risks each year.

Baseline maintenance costper
year. Average maintenance cost
per year per projectfor the base
line scenario.

Baseline supportcostperyear.
Average project support cost per
yearfor the baseline scenario.

SPImaintenance costperyear.
Average maintenance cost per
year per projectfor the software
processimprovementscenario.

SPIsupportcostper year. Aver
age project supportcost per year
for the SPI scenario.

Suggested data source

Suggest a value in the range
from 0.1 to 0.3.

Number ofprojects where
the SPIis to be applied.

Accounting data and project
records.

Accounting data and project
records.

base_main_cost_yr
X(1-SPI_impact))

base_sup_cost_yr
X(1-SPIJmpact))

Table5.25:Exampleestimate ofsupport cost savings

Baseline supportcostper year

Baseline maintenance costper year

SPIsupportcostper year

SPImaintenance cost per year

Projectsupportsavings year

Annualsupportsavings year

$300,000

$250,000

$240,000

$200,000

$110,000

$330,000

Cost-BenefitTemplatesfor Emerald page 127

5.4 The Costs ofUsing Emerald

As with any processimprovement,there are costs involved in using a tool such asEmer

ald.Thissection presents a setofeffectfunctionsforestimating the costofusing Emerald.

These costs generally apply to each ofthe three templates that we have createdforEmer

ald.Thecosts ofusingEmerald primarily fall undertheImplementation and Supportmain

category ofthe cost-benefit hierarchy in Appendix A.These costs include:

• license and maintenancefees ofthe Emerald product

• training

• use and operations

5.4.1 License and Maintenance Fees

TheEnterprise version ofEmerald is targeted forlarge software development projects

(over2million lines ofcode).This price ofthis version will be approximately $150,000

and will include training,one year ofsupport,and the consulting needed to build and ver

ify custom risk modelsfor the organization.This version will be fully integrated into the

existing developmentenvironment and will deliver reports to the desktop via a multi-tier

architecture.

A web based version ofEmerald is also planned that will be targetedfor organizations

with a smaller code base ofunder2million lines ofcode orfor companies with a smaller

Cost-BenefitTemplatesforEmerald page 128

support Staffor a smaller hardware/software infrastructure. Customers will be able to

download athin Java client and use it to process their source code.It will produce metric

assessment data thatcan be uploaded back to the Emerald web site for processing.The

customer will then be able to view their risk assessmentresults using a Web browser.As

ofthis writing,the pricing for the Web version has not been announced.

The software server licensefor Emerald Enterprise is $130,000.This price includes a

custom statistical model,installation,training,and supportfor the first year.The price for

each client license is $4,000.A minimum offive clients are sold with the server which

brings the minimum configuration price to $150,000.After the first year,a supportcon

tractis available for 18% per year.

5.4.2 Training

Since the purchase oftraining is included in the initial purchase,the only additional train

ing costthat needs to be considered is the time that project personnel spend in learning

how to use the product.Emerald requires aboutfour hoursto train an administrator orfour

hours to train a user.

5.4.3 Use and Operations

This section presents equationsfor estimating the cost ofon-going use and operations of

the Emerald Enterprise system.

Cost-BenefitTemplatesforEmerald page 129

Operationssupport

Emerald requires about2-4 staff hours per weekfor system administration tasks.For

example,the system administrator would need to monitorthe status ofbatchjobs and

reconfigure systems as needed.Theformulafor estimating this costis given by(EQ 26).

op_support_yr = 4x cost_staff_hr x weeks_per_year (EQ26)

Use

Thetime required to useEmerald is will depend on specifics abouthow an organiza

tion plans to use theinformation.However,for mostapplicationsthe timeto use should be

fairly minimal.Theinformation is delivered to the desk top and is available as inputto

day-to-day decisions.The user can review the information or call-up additional detail

reports to support decisions such as resource allocation or reengineering decisions.The

annual costofusing Emerald(use_cost_yr)is based on estimating how many additional

hours per week(use_hrs_wk)managementand users will spend reviewing and analyzing

the information provided by Emerald(EQ 27).

use_cost_yr = use_hrs_wk x cost_staff_hr x weeks_per_year (EQ27)

5.5 Validation

SPI Templates were created in the toolforeach ofthe three uses ofEmerald described in

this chapter.Mosteffects are evaluated with hierarchicalformulas.TheEmerald Targeted

Cost-BenefitTemplatesforEmerald page 130

DefectRemovaltemplate also uses a ‘Gain from early defect detection’ model builtinto

the tool to model savings that occurfromimproved removal efficiencies early in the life-

cycle.The Supportfor Reengineering vs.Reuse template includes a bayesian decision

model with formulas to estimate the impacts ofeach decision.The Supportfor Software

Acquisition template provides modelsfor estimating risk reduction.

The targeted defectreduction model has been used by Nortel to develop cost-benefit

analysis ofEmerald for 17 software organizations representing a base ofover64,000

KLOCsofcode and developing over7,000KLOCsofnew orchanged code each year.

Three ofthe organizations represent aerospacecompanies with theremainderfrom Nortel.

Nortel personnel used the tool to estimate the basehnes and to develop CBAsfor these

organizations.Severaliterations ofrefinements were made to the templates and to the pro

totype tool based on commentsfrom the users.

The Emerald Targeted DefectRemovaltemplate is listed in Section E.l ofAppendix

E.An example baseline and cost-benefit analysis using this template is listed in Section

F.l of Appendix F.

5.6 Summary ofthe Emerald Cost-Benefit Templates

This chapter developed cost-benefit templatesfor three uses ofEmerald.Section 5.1

described the use ofEmeraldfor targeted defectreduction and how to quantify those

effects. Section 5.2described how Emerald can be used to support decisions to reengineer

existing code components and developed a bayesian decision model to quantify the bene-

Cost-Benefit TemplatesforEmerald page 131

fits ofthat support.Section 5.3 described the software acquisition process and how Emer

ald can be used to manage the risks in that process.A setofbenefit effects were identified

and quantified for the use ofEmerald.Section 5.4 summarized the costs ofusing Emerald

that apply to any ofthe three uses.Section 5.5 described our experiences in testing and

validating the templates.

page 132

Chapter6

Cost-Benefit Templates for Cleanroom

This chapter develops a set ofcost-benefittemplatesforfour Cleanroom software engi

neering technologies.Section 6.1 provides an overview ofCleanroom and these compo

nent technologies.Section 6.2identifies and quantifies the costs and benefits ofusing

Cleanroom.

6.1 Cleanroom Software Engineering

Cleanroom software engineering is a collection of principles and processes aimed atthe

economical production ofhigh quality software[65].An overview ofthe Cleanroom pro

cess is shown in Figure 6.1.The specification team works to develop both afunctional

specification and a usage specification to meetcustomerrequirements.Thefunctional

specifications are developed using a sequence enumeration process to precisely define the

required behavior.This process results in specifications that are complete,consistent,and

traceably correct.The usage specification identifies and classifies software users,usage

scenarios,environments,and establishes a usage model.TheIncrementPlanning process

partitions the set ofspecified functions into a series ofincrements and schedules their

Cost-Benefit Templates for Cleanroom page 133

Project Planning, Project Management, Performance Improvement, and Engineering Change

Architecture Spedficatibn

Software Reeingeering, T-,
Increment Design,

Correctness Verification
Function

Specification

Customer Statistical Testing
and Certification

Requirements
Analysis

Increment

Planning

Usage Modeling and
Test Planning

Accumulating
specifications
for customer

evaluation

Usage
Specification

Accumulating
certified

increments

for customer

evaluation

Figure 6.1: Cleanroom reference modeP
a. Source: [65], p. 14, Figure 1.5

development and certification. The ‘stacked boxes’ in the subsequent process steps repre

sent the multiple increments.

The Software Reengineering, Increment Design and Correctness Verification pro

cesses encompass developing the increment specification, reengineering existing code,

design and development of new code, and correctness verification. A black box specifica

tion is created to define the external behavior of a system component by mapping each

stimulus history to a correct response. State data is introduced to define a functionally

equivalent state box specification. From the state box, a procedural logic is added to

derive a structured clear box procedure. The clear box procedure may introduce new black

boxes to represent major operations which are subsequently refined into state box and new

Cost-Benefit Templatesfor Cleanroom page 134

clear box procedures.Every black box,state box or clear box structure is subjectto cor

rectness verification in developmentteam reviews.The correcmess ofeach refinement

step is verified againstthe previous step using reasoning based upon function theory.Cor

rectness verification is effective atfinding defects and can be used to replace unit testing

and debugging.

TheUsage Modeling andTestPlanning process develops detailed usage models which

are used to generate test cases.The Statistical Testing and Certification process executes

the testcases,evaluatesthe results,and recordsfailure data.Thefailure datais applied to a

quality certification modeland the resulting analysis providesfeedback aboutthe quality

ofthe software process as well as determining ifthe product meets requirements.

Cleanroom consists ofseveral componenttechnologies that can beintroduced into

organizations independently.Although these technologies are designed to work together.

Cleanroom processes can be independently introduced into an organization in a phased

approach.This research develops economic models and cost-benefittemplatesforfour

key component Cleanroom technologies:

• Sequenced based specification

• Functional verification

• Incremental Development

• Statistical Testing

Cost-BenefitTemplatesfor Cleanroom page 135

6.1.1 Sequence-Based Specification

Sequence-basedspecification is a systematic processfor developing complete,consistent,

and traceably correct software black box and state box specifications[64][65].A black

box specification defines afunction that maps a response for each sequence ofstimuli

(sequence-> response).Sequences ofstimuli are enumerated in strict order beginning

with sequences oflength zero,length one,length two,and so on.Sequences ofthe same

length are enumerated by afixed lexicographic ordering.Each sequence is evaluated to

determine its correctresponse based on user requirements.Ifthere is no documented

requirementfortheresponse,aderived requirementis documented thatis verified with the

customer.The sequence response mapping is tagged to the appropriate requirement.Ifthe

stimulus sequence is considered impossible it is m^ked illegal.Each legal sequence is

also checked to see ifit is equivalent to some previously considered sequence.Two

sequences are considered equivalentifthey will yield the sameresponse when extended

for all future stimuli.Thus,it is notnecessary to extend both sequencesfurther and only

the shorter oftwo equivalent sequences is extended.The enumeration process continues

until all sequences ofagiven length are either illegal or equivalentto a previous sequence.

Thefinished black box specification is complete since the process results in all

sequences being mapped to a response and it is consistent since every sequence mapsto

only one response.The specification is traceable to requirements thatcan be verified for

correctness with domain experts and customers.

The canonicalsequences are all the legal sequences in the enumeration that are not

equivalentto any previous sequence.This set ofsequences represents the unique condi-

Cost-BenefitTemplatesfor Cleanroom page 136

tions ofsystem usage.Canonical sequence analysis yields state data that encapsulates

stimulus history.The state box specification can be represented asafunction that mapsthe

current stimulus and state to aresponse and state update.Thecompleted state box specifi

cation is used forthe derivation and design ofthe clear box.

6.1.2 Functional Verification

In Cleanroom,every software productis verified with respect to its specification.The

overall black-box specification is verified againstcustomerrequirements.The state-box

specification is verified againstthe black-box specification.Thedear-box is verified

against the state-box specification using function theoretic verification[48].The Correct

ness Theorem defines correctness questionsfor every clear box control structure.A dear-

box procedure is verified by verifying all constituent control structures.Therigor ofthe

verification procedure can be adjusted depending on the risks offailure.Forexample to

keep the verifications as cost-effective as possible verbal verifications are typically ade

quate.The use ofstandard,uniform coding practices can also help streamline the verifica

tion process.

Cleanroom work products are developed byindividuals butevery work productis sub

ject to team verification reviews.However,it is usually not necessary or cost-effective for

all team membersto participate in the review ofevery work product.The allocation of

resources to reviews can be determined by the risk ofsystem failure,the risk ofthe work

product containing defects,and how important it is thatteam members understand the

work product and how it relates to the rest ofthe system.

Cost-BenefitTemplatesfor Cleanroom page 137

6.1.3 Incremental Development

Incrementaldevelopmentorganizes alarge projectinto a series ofsmall,manageablecode

developmentcycles.Ratherthan attempting to build alarge software productthrough a

single,long product developmentcycle,the developers grow the software incrementally

overa series ofsmaller,cumulative cycles.The incrementplanning process partitions the

required functions for a system into a series ofincrementsfor development and certifica

tion.Increments are integratedfrom the top down.In a new development effort the first

incrementtypically provides a complete end-to-endframeworkfor adding subsequent

functionality.Subsequentincrements will elaborate black box specification “stubs”in this

framework.

Aseachincrementis completed,the customercan review the system and providefeed

back aboutthe evolving product.This early feedback helps ensure the right productis

being developed. Also,the performance oftheteam can be compared against pre-defined

quality,schedule,and budgettargets. Unacceptable deviations are analyzed to determine

their causes.Incremental developmentaccommodates planned adjustments to the incre

mentplan orthe developmentprocess to correct performance deviations.

6.1.4 Statistical Testing and Certification

A premise ofCleanroom testing is that it is not possible to test all possible waysin which

asoftware system will be used,therefore,software testing is viewed as a statistical prob

lem.As a part ofthis approach a set ofrandomly generated test casesis viewed as aran-

Cost-Benefit Templatesfor Cleanroom page 138

dom sample obtainedfrom an infinite population ofpossible software uses.Thesample is

evaluated in order to draw conclusions aboutthe operational performance ofthe software.

In the Cleanroom approach to statistical testing, a usage modelis constructed to char

acterize how the system will be used,and is represented as a discrete time Markov chain.

The statesin the chain are states ofuse.Atany state ofusage,the user has a setofpossible

inputs that move to the next state ofuse.Each ofthese transition arcs is labeled with an

input and a transition probability that the input will occur given thatthe useris in the cur

rent state.The certification team constructs the initial framework structure for the usage

model directlyfrom the software specification.Forexample,ifsequence-based specifica

tion was used,the set ofcanonical sequences can representthe initial state space ofthe

usage model.Transition probabilities between states can be obtainedfrom customer esti

mates orfrom data collectedfrom previous versions ofthe software.

Once the usage model has been constructed,a numberofstatistics can becomputed to

help validate the usage model,plan the testing,evaluate the software under tests. Test

cases(scripts)can be generated automaticallyfrom the usage model and can be used as

inputto an automatic test tool or by human testers.

6.2 Quantifying the Cost-Benefit Effects ofCleanroom

This section identifies and quantifies the cost-benefit effectsfrom applying Cleanroom

technologies.Thetaxonomy ofAppendix A wasthe basis for this work.Mostofthe case

studies published in the literature describe experiences ofthe general application ofClean-

Cost-BenefitTemplatesfor Cleanroom page 139

room.We will first review the general costs and benefits ofCleanroom and then analyze

the cost-benefit effects for thefourkey Cleanroom technologies.

6.2.1 Summary ofCleanroom Effects

Theemphasisin Cleanroom is on building systems that are correct by design and to pur

sue defect prevention rather than defectremoval.The construction ofa black-box specifi

cation mayrequire more time to constructthan an informal specification. All Cleanroom

work products are subject to team reviews which consume additional resourcesfor both

specification and development.

Asaresultofthe moreintense specification andreview processes,Cleanroomrequires

more time and effortin specification and design phase than traditional development.In

fact,design and verification activities willconsumethe greatest portion ofthe schedulefor

a Cleanroom project.

Extra time is required to perform the verification step,but actual time writing code

decreases[54].Because ofthe moreintensefocus on defect prevention,the Cleanroom

developed code enters the testing phase with nearzero defects.Cleanroom requires less

time in the schedulefor testing than traditional methods[32],[54].Fewer defects remain

ing in the codeleads tofewercycles ofrework and retesting. Also,Cleanroom statistical

usage testing maximizes the increase in the operational reliability for the time spenttest

ing[28].

Thefollowing subsections summarize Cleanroom’s costs and benefits.

Cost-BenefitTemplatesfor Cleanroom page 140

Costs

Costs are divided into production costimpacts and implementation costs that can be

amortized over several projects.

Production CostImpacts.

Moretimeis spent developing and verifying the specification and design

More defects arefound during requirements,specification and design

Kelly[41]examined data setsfor 18 products utilizing the Raytheon baseline pro
cess and7products utilizing Cleanroom.Forthe Cleanroom projects more than
50% ofdefects werefound in requirements and design phases compared to30%
forthe baseline process.

Timeand effort required forIncrementPlanning,process

Time and effortfor Usage Specification

Time and effortfor Usage Modeling

Implementation Costs. These costs are amortized over several development projects.

• Training and coaching costs

Sherer[71]reported that these costs added 17.3% labor to the projectcosts for a
. first time use ofCleanroom ofa90KLOCAda projectrequiring seven increments.

• Process manuals and materials

• Time to understand Cleanroom

The“timeto understand”Cleanroom is technically notacost.However,itcould be
viewed as a constraint on how fast benefits will materialize. McGarry[54]stated

Cost-BenefitTemplatesfor Cleanroom page 141

that the time to understand the Cleanroom methodology was approximately 26
months.However,Sherer[71]reported thatbenefits were realized on the very first
project.

• Tool costs(license,maintenance,training)

Although Cleanroom technologies can beintroduced withoutthem,tools make
some ofthe Cleanroom techniques more cost-effective to apply.In particular,the
technologies ofstatistical usage testing based on Markov chain usage models and
sequence-based specification benefitfrom appropriate tools.

• On-going coordination and supportfor Cleanroom

MostCleanroom projects reported in the literature had staff and consultants to
train participants in the technology.These responsibilitiescould be performed bya
software engineering processgroup as defined in the context ofprocessimprove
ment[60].Forasmall organization,team memberscould provide this supporton a
part-time basis.

Benefits

• Reduced failures in the field

Many Cleanroom projectsreportdramatic reductions oferrorsin thefield[32].For
example.Head[33]reports on a Cleanroom project atHewlett-Packard where no
errors werefound during integration testing or after the product was release.He
reported that Cleanroom eliminates about99% ofdefects prior to release.

• Reduced error rates

Basil!observed errorratesof4.3to6/KSLOC versus7/KSLOConNASA baseline

projects[6]. Hausler reported 2.3/KSLOC versus25-35/KSLOC on traditional
software(as measuredfrom first execution ofcode)[32].Lingerfound 3.3/
KSLOC vs.30-50/KSLOC on traditional from first execution ofcode[49].

• Increased productivity

Hausler reports productivity improvementsfor Cleanroom of 1.5 to 5.0 have been
observed over traditional projects[32].A specific projectshowedimprovementof
36% more lines ofcode per person month.Sherer claims a productivity increase
from 121 SLOC/staff month to 559SLOC/staff month(increase of362%)[71].

Cost-BenefitTemplatesfor Cleanroom page 142

However,McGarry reported thatthe overall productivity was aboutthe same as
the baseline projects on a NASA case study[54].

• Reduced amountofcode needed to meetfunctionality

Design simplification can occurfrom the Cleanroom specification and verification
process.Forexample,a Cleanroom developed prototype ofanIBMCOBOL
Structuring Facility,estimated to requirelOO KLOC,was developed using only 20
KLOC[32].However,Cleanroom is notimmune to estimation errors due to initial
lack ofknowledge oftarget environments and tools or to unanticipated require
ments.Hauslerreported a Cleanroom project that was49%larger than planned
(from 72KLOCto 107KLOC)because oflack offamiliarity with OS/2Presenta
tion Manager and unanticipated requirements[32].

• Reduced design errors and error severity

The rigorous specification,design,and verification processreduces difficult tofix
specification and design errors. Mills reported that Cleanroom errors take20%of
the time to fix [57].Linger noted that errorsfound during testing or operation are
simple mistakes not design mistakes[49].

• Improved defect containment

Cleanroom is more likely to detect errors in the same phase wherethe errors origi
nated.Kelly andPoore compared 18 baseline projects to7Cleanroom projects in
an internal Raytheon study[41].Theyfound thatfor the Cleanroom projects,
defects were more likely to be detected and corrected in the phase in which the
defects originated.The authors estimated theimproved defect containment
reduced the out-of-phase rework costby22%.

• Time spentin testing is less

Cleanroom case studies have shown thatthe testing phaseis reduced for Clean
room projects.Kellyfound thatCleanroom projects required 17%-30% ofsoft
ware developmentresources compared to 32%-47%for baseline projects at
Raytheon[41].McGarry reported Cleanroom projects required27%ofthe total
effortcompared with 30%forthe baseline projects atNASA[54].

• Reduced maintenance costs

The reduction in maintenance costs is a result offewer defects in the field and

defects that are easier to correct. Also,a Cleanroom design should prove easier to
modify and adaptfor new or changing requirements.

Cost-BenefitTemplatesfor Cleanroom page 143

Reduced risks

Improved cycle-time,quality,and requirements satisfaction,reduce the risk of
delay or cancellation.

Avoiding rework

Reduced percentage ofintroducing errors during rework when it does occur

Increasedjob satisfaction,team spirit and team morale

Sherer experienced this effect and attributed it to thefollowing: a)the team now
knows whatto do and when to do it and how it should be done—eliminating
uncertainty and anxiety;b)employees feel they finally have the tools to do high-
quality work;c)Cleanroom creates reliance on team activity and fosters shared
responsibility;and d)Cleanroom improves interface and communication between
testing and developmentteams[71].

Faster learning by new orinexperienced personnel

Cleanroom reduces training periodfor new hires and the acclimation period for
new project personnel as they learn and understand the system ata quicker rate
from the frequentinteraction ofteam verification reviews.Junior personnel
quicklyleam from their mistakes. All verification participants learn new coding
techniques and design ideasfrom each other.

Increased customer satisfaction

Customer satisfaction is a secondary effect thatresultsfrom better quality,more
predictable schedules,and software products that meetcustomerrequirements.

Successfactors

This section describes successfactors that are believed to help facilitate a successful

deployment ofCleanroom.Thefollowing is a consolidated list ofsuccess factors offered

by Sherer[71]andHausler[32].

• A defined process and a technology-transfer plan

Cost-BenefitTemplatesfor Cleanroom page 144

• Formal Cleanroom training

• Demonstration reviewsforteam education

• The use of qualified Cleanroom consultants

• Engineering handbooks

• Use ofan introductory implementation

• Early and ongoing managementcommitment

In the sections thatfollow we will identify and quantify the costs and benefits offour

Cleanroom componenttechnologies.

6.2.2 Sequence-Based Specification Effects

Sequence-based specification(SBS)improvesthe software developmentprocess by estab

lishing a complete,consistent,and verified specification as thefoundation forremaining

developmentand testing activities.The resulting specification helpsimprove coding pro

ductivity by eliminating questions orconfusion aboutthe design and whatitis supposed to

do.Also,the specification process resultsin a black box specification and afully traceable

state-box derivation thatis a strong foundation for subsequentdesign,increment planning

and test planning activities.

Cost-BenefitTemplatesfor Cleanroom page 145

Costs

Production Costs.

• Moretime spentin specification

Theincrease in specification cost(spec_incr_cost)is computed as a percentage
increase(spec_incr_pct)in baseline specification cost.The baseline specification
cost is estimated as a percentage(base_spec_pct)ofthe annual developmentbud
get(dev_budget_yr).According to Stephenson[73],specification and product
design is about15% ofthe developmentbudget.

spec incr pct base spec
spec_incr_cost = X dev_budget_yr x (EQ28)

100 100

The value ofthe spec_incr_pct depends on the current baseline specification prac
tices. A significantly higher increase will be expected for organizations that cur
rently useinformal specification approaches.Forthiscase a50%-100%increaseis
suggested.Ifthe organization currently uses aformal specification method the
increase should be minimal(e.g.,0-25%).This value also depends on the skills of
the specifiers as well as the effectiveness ofthe tools.

Implementation Costs.

• Costoftools to facilitate the specification process

Tool cost consists ofinitial license fees,annual maintenancefees,and documenta
tion. Usually software tools licenses are priced per client machine.Forsome tools
there may be an additional costfor a serverlicense.There may also be a mainte
nance contract atsome percentage ofthe original license.Thenumberoftool users
(num_tool_users)can be estimated as the number ofspecifiers to be trained.

tool_cost = tool_client_license_cost x num_tool_users (EQ29)
+tool_server_license cost

tool_maint_cost = tool_cost x tool_maint_pct (EQ30)

• Personnel time in training

This cost is estimated by the number oftrainees and the training time per trainee.

Cost-Benefit Templatesfor Cleanroom page 146

training_time_cost = num_specifiers x (EQ31)
training_hrs_per_trainee x cost_staff_lir

The default valuefor training hours needed per trainee is40hours.The numberof
trainees defaults to the estimated number ofspecifiers.

• Costs ofconsultants for coaching and training

Trainingcan beconductedin-house or off-site.Off-site training costshouldinclude
travel and lodging expenses.A default value of$1,500is suggested for
training_cost_per_trainee.

training_cost = num_trainees x training_cost_per_trainee (EQ32)

Consultants can be used to help coach initial sequence-based specification efforts.
Since these consultants will directly contribute to productdevelopmentonly a por
tion oftheir time,ifany,should be counted as a cost effect.

consulting_cost = consulting_hrs xf1- ^consult_hr_rate (EQ33)
V 100 J

Benefits

The sequence-based specification process results in a specification that is complete.

consistent,and traceably correct[65].These properties lead to anumberof benefits as

illustrated in Figure 6.2and described below.

• Reduced specification and design rework

Kelly reported improved defect containmentin the Requirements Analysis and
Preliminary Design phases[41].His data suggests that the use ofsequence-based
specification plays a significant role in reducing reworkin later stages.This value
is calculated as a percentage reduction in annual internal failure costs.

rework_savings = base_intemal_fail_cost_yr x SPI_defect_prevent_pct (EQ34)

where,base_intemal_fail_cost_yris the estimated baseline costspenton internal
rework each year and SPI_defect_prevent_pct is the estimated percentage of
defects prevented from the use ofsequence-based specification.

Cost-BenefitTemplatesfor Cleanroom page 147

Sequence-based
specification

Correct Consistent Complete
specification specification specification

Reduced Leaner, Facilitated testing,
Reduced

specification and cleaner documentation,
field failures

design rework design increment planning

I
Reduced risk Increased Higher design Increased
of project customer Lesscode > &coding > employee

cancellation satisfaction productivity satisfaction

Figure6.2: Cause-effect relationshipsfrom using sequence-based specification

• Reduced field failures

Kelly reported that 1.4% ofrequirements defects escaped to and were detected in
field usefor Cleanroom projects,versus5%for baseline projects[41].

This value is calculated as a percentage reduction in annual external failure costs.

field_savings = base_extemal_fail_cost_yr x SPI_defect_prevent_pct (EQ35)

• Leaner,cleaner design

The black-box specification states precisely and completely “what”asystem must
do without constraining“how”it should be done.By delaying any design commit
ments until the specification is fully understood,the designer is more likely to
choose an architecture and design representation that best fits the application.

• Lesscode

A leaner,cleaner design leads to less code—lesscode to write,less code to docu
ment,less code to verify,less code to test and less code to maintain.Less effortfor
the same level offunctionality contributes to higher productivity.

Cost-Benefit Templatesfor Cleanroom page 148

• Higher design and coding productivity

Higher design productivity is a result ofa complete and consistent specification.
Coding productivity is higher because design,specification and requirements
issues have been resolved priorto coding and because the design is more efficient.

Higher productivity results in lower design and coding costfor a given amountof
functionality.This effectcan be calculated by estimating a percentageimprove
mentin productivity(SPI_prod_imp_pct)due to the processimprovement.This
category should exclude productivity improvementsdueto reworkreduction since
rework reduction is counted under another category.

higher_prod_savings = (design_cost_yr -i- code_cost_yr) (EQ36)

rework budget pcf C 1 \
X 1- X 1-

100 1+SPI_prod_imp_pct/100/

According to Stevenson[73],design costis about13% ofthe development budget
while coding and unit testing is about22%.Toremove the rework cost we use the
percentage ofthe budgetspenton rework(rework_budget_pct).

• Facilitated testing,documentation,incrementplanning

Sequence-based specification enables test planning,usage modeling,test case gen
eration,increment planning,and documentation to proceed in parallel with design
and coding activities.The specification reduces risk ofmiscommunication among
developers,testers,and technical writers.

Thiseffect ultimately resultsin anincreasein testing,documentation,and planning
productivity and can be estimated in a manner similar to(EQ 36).

• Reduced risk ofproject cancellation

Precise specifications are a solidfoundation for the remainder ofa project.By
reducing rework and improving quality the projectis more likely to meetschedule
commitments.

Thereduced risk ofproject cancellation can be estimated as in Section 5.3.5.

• Increased customer satisfaction

This is a secondary benefit thatcomes aboutfrom building a system thatis more
likely to meet all customerrequirements.The value ofincreased customer satisfac
tion can be quantified by estimating an increase in business.See Table 5.11 for an
example calculation.

Cost-Benefit Templatesfor Cleanroom page 149

• Increased employee satisfaction

Employee satisfaction is a processimprovement benefit thatis frequently men
tioned butseldom quantified.The notable exception is McGibbon who quantifies
the value ofimprovementsin employee satisfaction in terms ofturnover costsav
ings[56].Turnover ratios are inversely proportional to employee satisfaction.
Turnover costs include recruiting costs,relocation costs,training costs,and lost
performance.Notonly is productivity lost while the position is being filled,but a
replacementemployee often requires several months oftraining,orientation,and
experience in the new environment before achieving full productivity.During this
period,the productivity is reduced ofthose who spend their time helping the new
employee learn thejob.When employee satisfaction is low,it is often the most
valuable employees wholeave,since they are also the most marketable to other
firms. Also,low employee satisfaction may make it difficult to attract the best tal
ent as replacements.Losing key contributors can increase developmentcosts and
risks,lengthen schedules,and lower quality.

Our modelfor estimating the value ofreduced employee turnover is adaptedfrom
McGibbon’s analysis.The parametersfor this model are listed in Table 6.1.The
value ofemployee satisfaction,in terms ofreduced turnover is given by(EQ 37).

emp_satisfaction_val = dev_staff_size x (EQ37)
(staff_tumover-SPI_staff_tumover)x tumover_cost_emp

SuccessFactors

Since the specification occurs early in the developmentlife-cycle,SBS requiresfew

prerequisite technologies.Appropriate toolsfor creating the specification can save consid-

Table 6.1:Parametersfor estimating the value ofreduced employee turnover costs

Parameter Definition Suggested data source

dev_staff_size Developmentstaffsize. Head countfrom personnel.

staff_tumover Staffturnover rate per year. Personnel office. Studies suggest 10-
30%.

SPI_staff_tumover Expectedstaffturnover rate with SPI. A modest5-10%reduction in the

baseline turnover rate is suggested.

tumover_cost_emp Turnover costsper employee. This value should include costs of

recruitment,relocation,training,ori
entation,and lost productivity.

Cost-BenefitTemplatesfor Cleanroom page 150

erabletime during the specification process.Detailed requirementsand accesstocustomer

domain expertsfor clarifying requirements will be needed to develop the specification.

6.2.3 Functional Verification Effects

Functional verification has been shown to be an effective approach to eliminating defects

in specifications,design,and code[32][33][71].In Cleanroom,functional verification

usually replaces unit testing.

Costs

Production Costs.

• Effortto perform verification process

Verification can be applied to requirements,specifications,and design documents
as well as to source code.Table 6.2 provides an example ofestimating the addi
tional costforreviewing both documentation and code:the organization produces
an estimated 3,125function points per yearrepresenting400,000lines ofcode and
46,000 pages ofdocumentation at a cost of$60per staff hour.

Implementation Costs.

• Training and coaching costs

These costs can be quantified using(EQ 31)and(EQ 32).

• Tool supportfor verification

Tools are not necessary for verification butcan behelpful in the managementof
verification status,defecttracking,and metrics collection.Iftools are used,their
costs can be quantified using(EQ29).

Cost-BenefitTemplatesfor Cleanroom page 151

Table 6.2:Exampleestimate ofadditional verification cost

Documentation Code

Outputunits Pages SLOCS

Units perFP 10 128

Units perreview session 20 320

FPs persession 2.0 2.5

Baseline percentofworkreviewed 40% 10%

SPIpercentofworkreviewed 90% 95%

SPIpercentofreviews repeated 30% 20%

Administrative hours/review 1 0.5

Hours/session participant 2.5 1.5

Avg reviewers /session 3.0 3.0

Person hrs/review 8.5 5

Additionalunits reviewed yr 15,625 340,000

AdditionalFPs reviewed yr 1,563 2,656

FPs in secondary reviews 469 531

Additionalreview sessions/ yr 1,016 1,275

Cost perreview $510 $300

Additionalreview hours/ yr 8,633 6,375

Additionalreview cost/ yr $517,969 $382,500

Additionalreview percentofbudget 5.26%

Review cost perUnit ^ $33 $1.13

Review costperFP $332 $144

Benefits

Functional verification leads to several benefits as illustrated in Figure 6.3 and

described below.

• Reduce unit testing and debugging

Headestimated that90%oferrors on Cleanroom projects atHewlett-Packard were
eliminated byinspections with functional verification and10% were eliminated by
testing[33].Experiments by Basili haveshown thatcodereading by programmers
otherthan the author is more effective and efficient atfinding defects than testing
[54]. Clear box verification is believed to be more effective than other kinds of
team code reviews because ofthe use offunction-theoretic reasoning.

If an organization chooses to completely eliminate unit testing,the cost savings
can be estimated by the currentcost ofunit testing.This costsavings is given by

Cost-BenefitTemplatesfor Cleanroom page 152

Functional

Verification

Reduce unit Improve defect Reduce Reduce design Increase
Improve

testing and removal error errors and employee
training

debugging efficiency rates errorseverity satsifaction

X
Reduce Reduce Higherdesign

Reduce
field testing and coding

rewori<
failures costs productivity

Increase Reduce risk of
Reduce

customer project
maintenancecost

satisfaction cancellation

Figure6.3:Cause-effect diagramforfunctional verification

unit_testing_cost = dev_budget_yrxunit_test_pct/100 (EQ38)

where unit_test_pctis the percentage ofthe budgetspenton unit testing. Accord
ing to Stevenson[73],unit testing consumes about11%ofthe total development
effort.

Some organizations may only reduce unit testing by a percentage,thus

unit_test_savings = unit_testing_costxunit_test_reduce_pct/100 (EQ39)

• Improve defectremoval efficiency

The mostsignificantbenefitoffunctional verification comesfi-om its higherdefect
removal efficiency over unit testing and informalreview approaches.Defects are
better contained to the phase wherethe defectisinserted and when it is less expen
sive to repair.

• Reduce error rates

See page 141.

• Reduce design errors and error severity

See page 142.

Cost-BenefitTemplatesfor Cleanroom page 153

• Improve training

Inexperienced personnel orpersonnelnew to the projector organization are able to
quickly learn coding standards,reusable procedures,and the system architecture
through the group interaction and reviews.

• Increase employee satisfaction

Head[33]observed that the daily team verification activities “created an environ
mentin which each person on the team took turns being in the ‘hot seat.’ People
quickly developed an understanding thatreasonable criticism was both acceptable
and beneficial.The resulting frankness and openness were perceived by all to be
remarkably refreshing and exhilarating.” Sherer also reported improved morale
and partly attributed itto the environment which “creates reliance on team activity
and fosters shared responsibility”[33].This effectcan be quantified using(EQ
37).

• Reducefailures in the field

Several Cleanroom projects report veryfew or no field defects[32],[33].Head
believes that Cleanroom eliminates about99%of defects prior to release[33].A
reduction offailures in the field and reduced maintenance costs are calculated as a

percentage reduction in external field failure costs.

field_failure_savings = base_extemal_fail_cost_yr x reduce_ext_fail_pct (EQ40)

• Reduced rework

Code and design rework is eliminated as a result ofimproved defectremoval effi
ciency,reduced error insertion rates,and reduced design errors.This effect is cal
culated as a percentage reduction in the baseline annual internal failure costs.

rework_savings = base_intemal_fail_cost_yr x reduce_int_fail_pct (EQ41)

• Reduce testing costs

Thetime required for testing is less because there arefewer defects andfewer
cycles ofrework and retesting.We accountfor this effect by a percentage reduc
tion(test_reduce_pct)in testing costs.The testing costs can.be estimated as a per
centage(sys_test_pct)ofthe development budget(dev_budget_yr).According to
Stevenson[73],system testing accountsfor about15%ofthe development budget.

reduc=d_tesUng.cost = dev.budgeljix x (EQ42)
lUU lUU

Cost-BenefitTemplatesfor Cleanroom page 154

• Higher design and coding productivity

Byimproving the skills ofthe new and inexperienced personnel,the overall devel
opment productivity is improved which helps to reduce design and coding cost.
Thus,this effect is estimated by a percentage reduction(SPI_prod_imp_pct)in
these costs. According to Stevenson [73],detailed design and coding
(dsgn_code_pct)accounts for about24% ofthe development budget.

dsgn code pct
dev_cost_savings = dev_budget_yr x (EQ43)

100

1
X 1-

/ SPI prod imp pcf
1-1-

100

• Increased customer satisfaction

Verification ofthe specification helps insure the system meets customerrequire
ments.Design and code verification also helps reduce field failures.The value of
increased customer satisfaction can be quantified by directly estimating an
increase ofbusiness thatindirectly resultsfrom functional verification.See Table
5.11 for an example calculation.

• Reduced risk of project cancellation

See the approach usedfor estimating the value ofreduced acquisition riskin Sec
tion 5.3.5.

• Reduce maintenance costs

Maintenance costs are reducedfromfewer errors in field andfrom defects that are

easier to correct.

Success Factors

The verification process is more effective when the product underreview has been

well defined.Forexample,it is easier to verify a design against a sequence-based specifi

cation than againstan informal specification becausetheinformalspecification is likely to

Cost-BenefitTemplatesfor Cleanroom page 155

beincomplete and ambiguous.The entry criteria to dear-box correctness verification is a

well-defined design specification.

Programming standards to limitthe allowed constmcts and pre-defming correctness

conditionsfor the standard constructs can help streamline the verification process.

6.2.4 IncrementalDevelopmentEffects

The benefits ofincremental developmentinclude better intellectual control,customer

feedback,risk management,andfacilitation ofstatistical process control.On the costside,

incremental developmentincurs an additionalincrement planning time to determine what

functionality should goin each increment and additional regression testing as each incre

ment after the first is certified.

To quantify incremental developmenteffects weexplorethe use ofasimulation model

in addition to conventional equations.We use a set ofequations to estimate the costof

training and the value ofincreased customer satisfaction,reduced cycle time,and

increased employee satisfaction.To estimate the additional cost ofincrement planning.

regression testing,and the value ofreduced rework and increased productivity we offer

two approaches:one using conventional equations and asecond using a simulation model.

Estimating Cost-BenefitEffects UsingSimulation

Our simulation modelcovers aspects ofasingle software project and contains a set of

input parameters and output variables.The project size(in function points),work produc

tivity rates(in function points per week),and staffcosts(staff person cost per hour)are

Cost-Benefit Templates for Cleanroom page 156

examples ofthe input parametersfor the model.The output variables allow us to measure

theimpactofpolicies on costand schedule.The use ofthis modelfor estimating cost-ben

efit effects involves thefollowing steps.

1. Build and calibrate the baseline modelfor a typical baseline project

This step involves gathering data to characterize the typical projectfor an organi
zation under the baseline scenario.Historic project and financial data can be used
to estimate these parameters.To derive datafor the typical project we use the total
financialfiguresforthe organization divided bythe numberofprojectsrepresented
by the data.

2. Modify modelinput parametersfor the SPI scenario

In this case the Software ProcessImprovement(SPI)is incremental development.
We make adjustments to the model parameters to representthe expected effects.
The subsequentsections on the cost-benefiteffects describe how these model
parameters are adjusted foreach effect underthe SPIscenario.

3. Simulate and obtain results for the single projectcase

Wesimulate modelsfor both the baseline andSPIscenarios.Thecost and schedule

differences give us an estimated valuefor each effect.

4. Generalize the single project case to the steady state organization

To generalize the project results to the steady state costfor an organization,we
multiply theresults ofthe simulationforatypical projectbythe average numberof
projects carried outeach year by the organization.

Thesimulation modelis describedin AppendixD.Thefollowing sections describethe

quantification details ofeach cost-benefit effect.Subsectionslabeled with(a)discuss how

the effectis estimated using equations and subsections labeled with(b)discuss how the

effectis estimated using simulation.

Cost-BenefitTemplatesfor Cleanroom page 157

Costs

Production Costs.

• Time to perform increment planning step

The purpose ofIncrementPlanning is to allocate requirements to a series ofsoft
ware increments,to develop schedules and resource allocations for development,
and to obtain customer agreement on the increment plan[65].Scheduling and
resource allocation are tasks that mustbe done with non-incremental development
and thus are notconsidered an additional cost.The only additional costthatneeds
to be considered for this category is the extratime it takes to make decisions on
how to allocate the functions to the increments.The extra time needed to make

these decisions is relatively minor.Strategies and considerationsforincrement
planning decisions are discussed in[74].

(a)The effortforincremental planning represents a smallincrease over ordinary
planning costs.Weestimate the baseline effort currently being used for software
developmentplanning as a percentage(sw_plan_pct)ofthe developmentbudget
(dev_budget_yr).The additional cost ofplanning(id_plan_cost)is computed as a
percentage increase(id_plan_incr_pct)in the planning budget.

(EQ44)i<i_plan_cost = dev.badget_yr x xid-Pl^-^-pct
lUU lOU

Thetime allocated to planning and requirements gathering occupies about6%of
projectresources[9].Since this value includes requirements gathering,it should
be considered an upper boundforsw_plan_pct.Wesuggest a default value for
sw_plan_pctof3%and a default value for id_plan_incr_pct of10%.

(b)To estimate this effect using simulation,we adjustthe effortforincremental
planning to represent the extratimefor allocating functions to increments.Asthe
numberofincrements increases an overhead factor increases at a more gradual
slope.The overheadfactor is used to lower the Plan IncrProductivity variable
which has the effect ofincreasing increment planning cost and schedule.

• Additional regression testing

Each incrementrepresents the sum ofall codefrom previous increments plus the
new code.Additional testing costis incurred since the codefrom previous incre
mentsis retested to some extenton each new increment,

(a)With incremental development,the entire cumulative setofsoftwareis tested at
the completion ofeach software increment.This regression testing represents an

Cost-BenefitTemplatesforCleanroom , page 158

additional costforincremental development.Theregression testing hoursfor a
single project(reg_test_hrs_proJ)can be estimated by

reg_test_hrs_proj = Px x reg_test_hrs_fp (EQ45)

where,P is the size ofa projectin function points, n is the numberofincrements
that will be applied to a project,and reg_test_hrs_fp is the numberofeffort hours
perfunction point needed for regression testing.ThefactorPx(n-1)/2 repre
sents the amountofcode in function points subjectto regression testing. Consider
asequence of n software increments where each incrementadds P/n function

points ofnew code.Foreach increment i,the amountofcodefrom previousincre

mentsthatis tested is(/-1)xP/n function points.The amountofcodefor all n
increments that must be regression tested is

n-l

fxy(i-i)=5xyi=^x2i^=px^.
n ' n ^ n 2 2

«• = 1 i= 1

To estimate the additional regression testing hoursfor the organization,we esti
mate reg_test_hrs for the average software release produced during a year and
multiply that result by the average number ofsoftware releases produced each
year.

The parameter reg_test_hrs_fp represents the unitcostfor regression testing in
terms ofeffort hours perfunction point.This value should always be less than the
unitcostfor new function testing(new_test_hrs_fp).This unitcost will vary
depending primarily on the use ofautomated testing.The suggested default value
for reg_test_hrs_fp is 20% ofnew_test_hrs_fp ifautomated regression testing is
used,or80%ofnew_test_hrs_fp otherwise.The valuefor new_test_hrs_fp can be
estimatedfrom the hours spenton new function testing for agiven amountoffunc
tion pointsforrepresentative projects.

The project size parameter(P)should representthe average size ofa project or
software release generated during a year underthe baseline scenario.The parame
ter n can be estimated indirectly by estimating the targeted size forthe average
software increment avg_incr_size <Punder theIncrementalDevelopmentsce
nario.Then wecan estimate n = P/avg_incr_size androunding n to the nearest
integer.The targeted avg_incr_size could represent the increment size that results
in the highest productivity for the organization.Banker and Kemerer[4]offer evi
dence that“for mostsoftware ‘production processes’ there existincreasing returns
to scale for smaller projects and decreasing returns for very large projects.Thatis.

Cost-BenefitTemplatesfor Cleanroom page 159

average productivity is increasing as long as project size is smallerthan the ‘most
productive scale size’(MPSS),and is decreasing for projects that are larger.The
actual MPSS may be differentfor different organizations.” Banker and Kemerer
show how managers can estimate the most productive scale size for their organiza
tion.We hypothesize thata similar situation exists with incrementsize.The most
productive increment size(MPIS)could be determined for an organization such
that average productivity is increasing forincrements smallerthan MPIS and
decreasing for largerincrements.

Consider a project ofafixed size over a series ofscenariosfor decomposing the
projectinto increments—^from many smallincrements tofew large increments.
Since there is afixed amountofoverheadforeach softwareincrementthe average
productivity increases initially as the fixed overhead is spread overalargerincre
mentsize. Also greater productivity occurs since the increased incrementsize
results inlowerregression testing cost.Eventually,forlarge projectstheincrement
size is so large that it is difficult to maintain intellectual control,and the marginal
productivity ofthe team declines.Methodsfor determining the mostproductive
incrementsize for an organization is a topic forfurtherresearch,

(b)With the simulation model we can representthe regression testing effort
through the Reg TestFlow rate shown in Figure 6.4.When an incrementis deliv
ered,the cumulativefunction pointsfor thatincrement are added into the“To
Regression Test”level.When itistime to testthe nextincrementthe “starttesting”
variable turns on the “reg testflow” valve to initiate the regression testing effort.

Implementation Costs.

• Training and coaching costs

• Costofconsultants to review plans

Training and coaching forincremental developmentis small relative to other
Cleanroom technologies.To estimate these cost use(EQ 31),(EQ 32),(EQ 33).

Benefits

Incremental development provides a manageable approach to software development

thatleads to a numberofsignificant benefits asshown in Figure 6.5 and described below.

Cost-BenefitTemplatesfor Cleanroom page 160

Regression testing perincrement

■cPendiug Delivery Codo <avg increiiffint size>

<T1V1ESTEP>

delivery pulse
< Tolal Tcsi C:;ibes> <Verified Code iiicremeuts>

.<PROJECT S1ZE>
leg test pulse

■aesling stiu1ed>
reg test delay pulse To Regression

O Test

<avg incremenl sii'e>

C 3reg test flow

Reg Test Rate
L

Reg Tested
<Reg Test Pnxlcotivity>

<Test ITEs used>

<Test Fl'Es avail!il)lc>

Figure 6.4; Regression testing simulation model

Incremental
Development

Functional Change Quality Intellectual Increased Concurrent
feedback accomodation feedback control productivity engineering

Increased
customer

Reduced
requirements

Reduced
rework

satisfaction creep cost

Increased
Reduced employee

cycle time satisfaction

Reduced risk
of project

cancellation

Figure 6.5; Cause-effect diagram for incremental development

Cost-BenefitTemplatesfor Cleanroom page 161

• Functionalfeedback and change accommodation

Incremental development allows users to examine early releases and providefeed
back to ensure they are getting the system they really want(which may notneces
sarily be the one they asked for originally). Subsequentincrements can be
replanned as needed to accommodate unanticipated requirementchanges.Require
mentchanges can be deferred to futureincrements reducing the harm that late
requirements can cause ifimplemented into the middle or later part ofa develop
menteffort.These effects are quantified through reduced costs ofincorporating
changing requirements and improvementsin customer satisfaction.

• Quality feedback

Quality measures atthe end ofeach incrementcan becompared with quality stan
dards and requirements.Smallerincrements and frequent milestones result in
increased visibility into the development process.Managementcan morefre
quently assess whether the process is in control and take corrective actions as
needed The value ofimproved quality feedback is realized through areduction in
rework.

• Intellectual control

Incremental developmentsupports intellectual control overthe system develop
ment.The value ofintellectual control is quantified through areduction in rework
and increased employee satisfaction.

• Increased productivity

Incremental developmentleads to higher productivity because the deliverable
goals are more manageable and attainable.Delivery datefor an incrementis
alwaysimminentand reduces the Parkinson’sLaw effect,

(a)This effectcan be estimated as a percentageimprovementin coding and design
productivity(SPI_prod_imp_pct)due to incremental development(EQ 36).

(b)In the simulation model,we modelthis effect by increasing the productivity of
development(Dev CodeProductivity)and test planning(Dev Usage ModelPro
ductivity)based on the reduced size ofthe incrementfrom the baseline.Default
valuesfor these productivity numbers are obtainedfrom basic COCOMO equa
tions[9]based on the size ofthe increment.

• Concurrentengineering

Incremental development allows hardware and software to be developed in paral
lel.Forexample,both the hardware and software can be developed incrementally

Cost-BenefitTemplatesfor Cleanroom page 162

in acoordinated effort.Ifthis effect applies(e.g.,for an embedded software project
involving hardware development)then its value should be included in the cycle
time reduction calculation(see below)by estimating additional cycle days saved
due to concurrent engineering.

• Increased customer satisfaction

Customers are able to participate in the development process and have opportuni
tiestoinfluence design decisions.The productfrom anincremental developmentis
morelikely to meetcustomer needs.The value ofcustomer satisfaction can be esti
matedfrom an anticipated increase in business asshown by the examplein Table
5.11.

• Reduced requirements creep cost

The costofincorporating new orchangedrequirements is reduced whenincremen
tal developmentis used.First,a smaller base ofcode and design is impacted for
each requirementchange requested.This requires less effort to understand what
needs to be changed to accommodate the new requirements.Second,because of
the smallercode base it takes less effortto modifythecode and to testthe changes.
Third,it is less likely that changes made willintroduce new defects.Finally,the
requirements change is less likely to require an emergency patch. Mostchanges
can be planned and incorporated into the nextincrement,

(a)In Section 6.2.5 we provide a modelfor estimating the reduced cost ofrequire
ments creep that resultsfrom statistical usage modehng and testing(see(EQ54)
and Table 6.4).In that case costs are reduced by improving the requirements anal
ysis process(through usage modeling).In the case ofincremental development,
wereduce the costinvolved forincorporating new orchanged requirements when
they occur.However,(EQ54)accommodates both scenarios since the creep reduc
tion percentage can be used to reduce either the cost orthefrequency ofcreep,

(b)In our simulation,reduced cost ofincorporating late requirements is repre
sented by increasing the productivity for developmentrework.The“Rework Code
Productivity”is increased by a percentage overthe baseline value.

• Reduced rework

Thetop-down approach ofcombining parts underintellectual control ensures all
the partsfittogether withoutrework ofcodefrom previousincrements.The quality
feedback providedfrom each increment allows the process to beimproved to
reduce defects and rework on subsequentincrements,

(a)Reduced rework can be quantified by estimating a percentage reduction in the
baseline costofrework.The baseline cost ofrework can be estimated as a percent-

Cost-BenefitTemplatesfor Cleanroom page 163

age ofthe developmentbudget.Some authorities have estimated thatfinding and
fixing errors accountsfor20-40% ofthe development budget[73].

rework_cost_yr = dev_budget_yr x rework_budget_pct (EQ46)

SPI_reduce_rework_savings = rework_cost_yr x SPI_reduce_rework_pct (EQ47)

(b)In the simulation model,wereduce the baseline percentages ofdefective code
found in developmentand testing.

• Reduced cycle time

Higher productivity,concurrent software engineering and reduced rework help to
reduce the cycle time,

(a)The value ofreduced cycle time can be estimated using(EQ 58).The number
ofdaysthat can bereducedfrom incremental development(proj_days_saved_yr)
should accountfor time savingsfrom increased productivity,reduced rework,and
concurrentengineering,

(b)The simulation modelcan be used to estimate how much cycle time can be
saved through incremental development,and to help determine the optimal incre
mentsize for a project.The productivity increases and reduction in rework are
effects thatlead to cycle time reduction.In the simulation model,cycle time is
measured with the “Project Completion Time” variable asshown in Figure 6.6.
The Project Completion Time is setto the Time(measured in Weeks)when the
totalfunctionality delivered to the customeris equal to the project size.

<FauliDensity Percent> <Delivered Product>
<PROJECTS1ZE>\ <Time>

stabilizeflow
Totalsz.

a fraction complete 1Delivered
Project

Completion
<ADJUSTED HOURSPERPW^ Average Staff^ ' Time

<Tolal Effort Hours>

Figure6.6:Projectcompletion time simulation model

Cost-Benefit Templatesfor Cleanroom page 164

• Increased employee satisfaction

Moraleis higher because real progress is visible and achievable[13].The value of
avoiding employee turnovercan be estimated using(EQ 37).

• Reduced risk ofproject cancellation

Incremental developmentreduces projectfailure risk. Customers have better
understanding ofprogress.Also,the productis morelikely to be delivered on-time
and within budget due to the reduced rework andincreased productivity.The
reduced risk of project cancellation can be estimated as in Section 5.3.5.

Success Factors

It is possible to begin increment planning directly from a statementof work orfrom a

set ofrequirements.However,it is better to begin with aFunction Specification, Usage

Specification,Software Architecture,ReuseAnalysis,Risk Analysis, eaid a.Schedule and

ResourcePlan as defined in[65].Guidelinesfor the incrementplanning process arein

[65]and[74].

6.2.5 Statistical Testing and Certification Effects

Statistical testing involves developing a usage modelin theform ofaMarkov chain torep

resent all possible ways the system can be used.The time spentcreating the usage model

is the most significant cost ofstatistical testing.This effort can bereduced by having a

complete specification and appropriate tools.The benefits of statistical testing include

automated testcase generation,efficienttesting,validation ofrequirements,andimproved

decision making.

Cost-BenefitTemplatesfor Cleanroom page 165

Statistical usage testing leads to a shiftin how testing resources are used.A primary

effectis thatless timeis spentin preparing testcasesand moretime is spentin developing

the usage specification and models. After the usage models have been created,testcases

can be automatically generatedfrom the usage models.

Our modelfor usage testing requires baselineinformation abouthow much the organi

zation is currently spending on software developmentand testing and how much code is

being generated each year.

Costs

Production Costs.

• Time to analyze,develop and maintain a usage model

Agrawal[2]reported on the use ofstatistical usage testing for testing three incre
ments ofembedded,real-time software to control a tape drive.The size and effort
data reportedfor three software increments can be described by(EQ48).We use
this equationforestimating the usage modeleffortrequired based on thecode size.
The cost ofconstructing the usage modelis given by(EQ49).

usage_model_dev_hrs = 36x KLOCS_per_year+15 (EQ48)

usage_model_cost = usage_model_dev_hrs x staff_cost_hr (EQ49)

The process ofconstructing the high level usage specification can be performed
prior to the functional specification.In that case we only wantto countthe addi
tionaltime involvedin documenting states ofusage and estimating transition prob
abilities.The additional effort required to make design decisions should directly
displace the functional specification effort.

Implementation Costs.

• Costoftoolsfor usage model development,statistical test case generation,analy

sis and certification,see(EQ29)and(EQ30)

Cost-BenefitTemplatesfor Cleanroom page 166

• Time to interface usage test generatorfor testing environment

Torealize the efficienciesfroniautomated testing there may be some effort
involved to interface the outputofthe usage model to a specific testing tool ortest
ing environment.This costis expected to be a one time cost.

interface_tool_cost = interface_tool_hrs x cost_staff_hr (EQ50)

• Personnel time in training,see(EQ31)

• Costs ofconsultantsfor coaching and training,see(EQ32)and(EQ33)

Benefits

Thebenefitsthatcan bederivedfrom statistical usage testing are outlinedin Figure6.7

and described below.

Statistical testing

Improved Automated Effective, Quantitative
Validation of

planning and testcase efficient test
requirements

scheduling generation testing management

Reduced

requirements
creep

Improved
Reduced Reduced Higher

release
cost cycle time quality

decisions

Figure6.7:Cause-effect diagram for statistical testing

Cost-BenefitTemplatesfor Cleanroom page 167

• Validation ofrequirements

The process ofbuilding the usage model provides intrinsic benefits asidefrom pro
viding afoundation for statistical testing. An early external view ofthe system is
generated thatcan be understood and verified by developers,customers and users.
Customer participation in constructing and validating the usage modelhelps to
elicit,confirm and stabilize userrequirements early in the developmentlife-cycle.
Wequantify the value ofthis effectthrough the reduced risk ofrequirements creep
(see below).

• Reduced risk ofrequirements creep

Usage specification and modeling mitigate the risk ofrequirements creep laterin
the life cycle.Jones states that“defect rates associated with new features added
during mid-development are about50% greater than those ofthe artifacts associ
ated with the original requirements.Defectremovalefficiency levels are depressed
as well,sometimes by morethan 15%.”He also states that“Because the costs of
creeping requirements climb steeply as the developmentcycle proceeds,there are
strong economic reasons for being very thorough early”[39].

Our modelfor computing the value ofthe reduced risk ofrequirements creep is
based on the idea thatrequirementsintroduced in later stages ofdevelopmentcost
morethan ifthey were identified during the requirements phase.Jones[39]has
suggested thatrequirementsintroduced during design cost about 1.25 times as
much asthose introduced during therequirements phase.Table6.3 providesexam
ple default valuesfor the rate ofgrowth and the relative cost ofrequirements.

When usage specification is used to validate requirements,itcan reduce require
ments rate ofgrowth in subsequent phases.Our modelfor analyzing this cost sav
ings requires estimatesfor the amountoftime spentin design,coding and test
phases.The parametersfor our model are described in Table 6.4.

Table6.3:Requirement origins and comparative costs^

Development Rate of Relative

phase growth cost

Feasibility 25% 0.75

Requirements 50% 1.00

Design 3% 1.25

Coding 1.50

Testing 0.5% 2.50

a. Based on Jones[39],p.136,Figure 1.

Cost-Benefit Templatesfor Cleanroom page 168

Table6.4:Parameters for the value ofreducing requirements creep

Parameter Description Example value

cost_per_FP Costperfunction point.The baseline life-cycle develop $1,000

mentcostperfunction point.This valuecan beestimated
by dividing the developmentcostper year by thefunction
points developed per year.

FPs_per_year Functionpointsper year.The numberoffunction points 100,000

developed each year.Can beestimatedbycounting lines of
code developed per year.

dev_budget_yr Development budgetperyear.

dev_phase(i).Thefollowing variables are needed for each major development phase after the require
ments phase is complete:Thedevelopmentphase ican be either design,code,or test.

rel_cost_fp Relative costperfunction point.Therelative cost perfunc 1.25,1.5,2.5

tion pointfor arequirementintroduced during this phase.

budget_pct Budgetpercent.The percentofthe developmentbudget 23%,21%,30%

spentin the design,code or test phases.

creep_mth Creep rate per month.Therequirements creep rate per 3%,1.25%,0.5%

month for the development phase.

creep_reduce Creep reduction percent.The expected percentreduction 10%

in the creep rate dueto the improvement.

The cost savingsfrom reducing requirements creep can'be estimated as the differ
ence in the costofrequirements creep with and without the process improvement.

reduce_rqmts_creep_savings = base_rqmts_creep_cost-SPI_rqmts_creep_cost (EQ51)

The baseline cost ofrequirements creep is obtainedfrom(EQ52).

base_rqmts_creep_cost = dev_budget_yr x 12 (EQ52)

X yfrel cost fp(0X X (0
100 100 j

The costofrequirements creep with the processimprovementis given by(EQ 53).

SPI_rqmts_creep_cost = dev_budget_yrx 12 (EQ53)

creep reduce(t)2;(ieLcost_fp(i)X x budgeLpot(t)X 1-
100 //

X

Cost-BenefitTemplatesfor Cleanroom, page 169

The resulting formulaforthe savings simplifies to(EQ54)

reduce_rqmts_creep_savings = dev_budget_yr x 12 (EQ54)

X 2:(reLcost_fp® x ^budgy(i)̂ creep^guce(i))

• Improved planning and scheduling

“Standard calculations on a usage modelprovide dataforeffort,schedule,andcost
projections,such as the minimum numberoftests required to cover all states and
transitions in the model.”[65]Improved planning and scheduling increase the effi
ciency ofthe testing effort.

• Automated test case generation

Once the usage modelis built,a considerable amountof timecan be saved in gen
erating test cases.Wecan estimate this savingsfrom the average time to prepare a
test case by hand,the numberoftest casesin the baseline environment,and the
cost per staff hour.

auto_test_gen_savings = avg_test_case_prep_hrs x (EQ55)
num_test_cases x cost_staff_hr

Alternatively,wecan compute these savings by estimating the portion ofthe
annual development budgetthatis currently spenton manual test case generation
that would be eliminated by the usage testing.

test_gen_pct
auto_test_gen_savings = dev_cost_yrx (EQ56)

100

• Effective,efficient testing

The generated test cases will test paths atthe rate expected during operational use.
Faults on frequently traversed paths have the highest probability ofcausing a fail
urein the field.Thus“the test budgetis spentin a waythatmaximizestheincrease
in operational reliabilityfrom testing.”[65]

Weestimate an improvement percentage due to statistical testing and apply it to
the annual testing budget.

test improve pct
test_eff_savings = test_cost_yr x (EQ57)

100

Cost-Benefit Templatesfor Cleanroom page 170

The annual system testing budgetcan be estimated by multiplying the annual
developmentcost by the percentofthe budget spenton testing. According to
Stevenson,system testing accountsfor about15%ofthe developmentbudget[73].

• Quantitative test management

Statistical usage testing provides quantitative estimates ofoperationalreliability as
well as other quantitative results to support decisions regarding the testing process.

• Reduced testing cost

Statistical testing reduces cost oftesting by improving the test planning and sched
uling process,by automating test case generation and execution,and by efficiently
improving the operational reliability.

• Reduced cycle time

Usage modeling and test generation activities can be performedin parallel with the
developmentteam without being on the critical path.When the developmentis
complete and ready to test,testing can be performed automatically and efficiently.
Also,a pre-determined quality target(MTTF)can be achieved faster.The value of
cycle time reduction will depend on theindustry and marketconditions.Wecom
pute the value ofreduced cycle time based on the numberofprojectdays saved
each year times the value ofeach cycle day saved.

cycle_reduct_value = proj_days_saved_yr x cycle_day_value (EQ58)

• Higher quality

Statistical testing contributes to improved field quality ofthe software product.
The quantitative analysis andimproved prediction offield quality improves pro
cess control and release decisions.Higherfield quality results in lowerfield sup
port costs and higher customer satisfaction.

The primary impact ofimproved field quality is reduced maintenance costs and
highercustomer satisfaction.Maintenance cost savings can be estimated by reduc
ing the annual maintenance cost by a percentage.

maint reduct pctmaint_cost_savings = maint_cost_yr x (EQ59)
100

Customer satisfaction can be quantified as in Section 5.1.2.

Cost-BenefitTemplatesfor Cleanroom page 171

• Improved release decisions

Quantitative datafrom the testing process can help managers make better deci
sions on when to stop testing and release the software.To quantify this improve
ment we use a bayesian decision model.Managementdoes notknow with
certainty how the software will perform in the field,but mustdecide whether to
releasethe software orto continue testingfora period oftime.There are economic
consequences ofeach choice depending on the true quality ofthe software.

A decision to release software resultsin severaleconomic advantagesifthe quality
ofthe software is good.The product has an advantage ofgetting to marketearlier
(possibly first)resulting in longer product life and potentially higher margins and
higher marketshare.For government projects awardfees may be won or penalties
avoidedfor meeting release milestones.Developmentand testing resourcescan be
freed to work on other projects.

However,ifthe software is released and the quality is poorthe results can be disas
trous.Development and testing resources continue to be tied up analyzing and
making corrections. Serious defects that destroy user data or prevent critical fea
turesfrom working properly can lead to acostly product update patch,recall,or
litigation.Poor quality software tarnishes theimage ofthe product and leads to
lower marketshare,lower margins,or both.

Developmentresources are used to review and rework code if significant defects
arefound.The delay has a cost,butit may have mitigated the higher cost ofa
product recall.

However,ifno more serious defects arefound and corrected during the extra test
ing,the cost ofthe additional testing may not have been worth the delay in the
productrelease.

With two decision choices(release or keep testing)and two unknown states of
“nature”(poororgood quality)we havefour potential outcomesasshownin Table
6.5.

The valuesin this matrix representtheaverage payoffforeach release decision and .
can be estimated by reviewing past experiencefor an organization.Forexample,
all release decisions overthe past yearcould be reviewed,categorized,and aver
aged according to this matrix categorization.Suppose the company correctly pre
dicts the software field quality(and thus makes the correct decision)85%ofAe
time.By using Statistical Usage Testing they anticipate thatthey will be able to

Table 6.5:Payoffmatrix example

Good Poor

$200,000 ($420,000)
keep testing ($300,000) ($300,000)

Cost-BenefitTemplatesfor Cleanroom page 172

Table6.6:Baseline decision probabilities

Baseline Good Poor

release 43%

keep testing 43%

Table6.7:Statistical usage testing decision probabilities

Statistical Usage Testing Good Poor

release

keep testing 3% 48%

correctly predict software field quality95% ofthe time.Supposefurther thatthe
true state ofthe software is good50% ofthe time when the release decisions are
made.Then the decision probabilities for the baseline case are shown in Table6.6
and the probabilities for the statistical usage testing case are shownin Table 6.7.

For the baseline case,the average decision costs$96,500.However,when statisti
calusage testing is usedthe average decision costs$65,500,representing asavings
of$31,000.Ifthe organization makes5 decisions each year the annualsavings is
$155,000.

Success Factors

The process ofdevelopingthe high level usage specification helpsto definefunctional

specifications and requirements.Iffunctional specifications already exist itis easier to

develop a user specification because decisions have already been made abouthow the

application willflow.Conversely oncea usage specification exists,it is easier to complete

afunctional specification.The usage specification processforces customers to specify

how the application will flow.The additional effortfor creating usage modelsisin docu

menting the usage states in the Markov chain formatand estimating transition probabili

tiesforeach mode ofuse.

Cost-BenefitTemplatesfor Cleanroom page 173

6.3 Validation

SPItemplates were created in the CBA prototype toolfor each ofthefour Cleanroom

technologies described in this chapter.The evaluation functions for each ofthese tem

plates were in theform offormulas.Many ofthe parameters in the formulas are also

defined in terms offormulas.Mostformulas are simple,butsome use the bayesian deci

sion model.As an example,the templatefor statistical testing is listed in Section E.2of

Appendix E.

Anexample baselineenvironmentwascreatedforeach template to support validation.

The baseline environments were created to be reasonable and self-consistent regarding

code size,numberofpersonnel,and budgets based upon available industry data.Having

the SPItemplatesin place greatly simplified the task ofproducing a cost-benefit analysis

for a hypothetical organization.

Once a baseline is described and an SPI has been chosen for evaluation,the user can

immediately focus on determining appropriate valuesfor the parameters.Default values

and a variety ofindustry data is available to help the user determine values when the user

lacks data.The parameters needed forSPIevaluation are divided into two categories:

those that depend only on the baseline environment(and not on the SPI)and those that

depend on the SPI.Once an SPIis chosen for evaluation,the user is prompted for the

appropriate parameters.The baseline parameters are recorded with the baseline and the

other parameters with the CBA-SPI evaluation. Asthe user provides a value for each

parameter,the sourcefor the data and any assumptions can be documented.Once all

Cost-Benefit Templatesfor Cleanroom page 174

parameters have been provided,a cost-benefit analysis reportcan be automatically gener

ated.Several iterations ofreview,modifications to parameters,and regeneration are rec

ommended.Effects can beremoved,added,or modified as needed.Effectfunctions and

parameterfunctionscan be altered as needed.

An example cost-benefit analysis was performed for each Cleanroom technology tem

plate. Section F.2 ofAppendixF presents an exampleCBAfor statistical testing.The

focus ofeffortfor each CBA was on providing reasonable parametersfor the effect evalu

ation functions.On reviewing the CBA reports,it waseasy to spoteffects that were unrea

sonable when compared to other effects for the CBA orforthe size and budgetofthe

baseline organization.

6.4 Summary ofCleanroom Templates

This chapter has developed cost-benefittemplatesforfour Cleanroom technologies.Sec

tion 6.1 provided an overview ofCleanroom and thefourcomponenttechnologies of

sequence-based specification,functional verification,incremental development,and sta

tistical testing. Section 6.2surveyed available literature to identify,justify,and quantify

the primary cost-benefiteffectsfor the Cleanroom technologies.Section 6.3 described our

experiences in constructing, validating,and testing these templates.

page 175

Chapter7

Conclusions

7.1 Research Contributions and Sununary

This research has resulted in a practical economicframeworkfor evaluating software pro

cessimprovements.Theframework applies the principles ofcost-benefit analysis and

leverages available economic modelsand data.Decision makingisimproved by providing

an organized setofprocess improvementtemplates which includes identified cost-benefit

effects,evaluation functions,and default values based on industry data and models.

Based upon thisframework,we developed a prototype tool to supporteconomic anal

ysis ofSPIinitiatives.Thetool containsarich setoffunctionality to establish an economic

baselinefor the user’s situation,explore alternatives,and build a business casefor the best

process improvementinitiative.The prototype provides the ability to specify SPItem

plates that can be evaluated using built-in economic models,user-definedfunctions,pro

cess simulation models,and industrial data.The SPItemplates,functions and data can be

extended as needed.

To validate theframework,we constructed SPItemplatesforEmerald and Cleanroom

technologies.TheEmerald templates correspond to three ways the Emerald riskinforma

tion can be used:to improve the efficiency ofdefect detection efforts,to supportreengi-

Conclusions page 176

neering decisions,and toimprove the software acquisition process.The prototype has

been used successfully on several large industrial software projects to estimate the value

ofusing Emerald toimprove their software process.

We also constructed SPItemplatesforfourkey Cleanroom technologies:sequence-

based specification,functional verification,incremental development,and statistical test

ing.The cost-benefit effectsforthe Cleanroom technologies wereidentified,justified,and

quantified based on the published literature.

As an integral part ofthis effort,a Cleanroom software process simulation model was

developed and tested.This simulation model was used specifically to investigate the

effects ofincrementaldevelopment.However,the modelis generalenough thatitcould be

used to study other aspects ofCleanroom processimprovements.

The value ofourframeworkisin improving how decisions are madeforimplementing

and sustaining processimprovementefforts.Theframeworkand prototypereduce barriers

and costsfor performing proper economic analysis.The resulting CBA can be used to

communicate the value ofSPIinitiatives to project sponsors and upper managementin a

language they can understand.Also,the tool can be used to compile metricsfrom on

going SPIefforts to support continued funding ofSPIinitiatives that are contributing to

the bottom line.

The software crisis continuesin this country and around the world with unacceptable

projectfailure rates,missed schedules,budget overruns,andlow quality products.

Improvements to the software process can address these problems. Yet75%ofsoftware

development organizations in the U.S.are atthe lowestCMMlevel—characterized by

Conclusions page 177

‘chaotic developmentmethods with littleformality and uninformed project management.

[39]A significantchallenge to introducing processimprovements is in winning the sup

port ofproject sponsors and upper management.Theimpactofpotentialimprovements is

difficultfor software managers to assess and even more difficultfor sponsors to under

stand.Intense schedule pressure often leads to afocus on short-term gains(e.g., writing

code with insufficient design,poor architecture,and no code review)atthe expense of

long-term losses(e.g.,extendedtesting cycle,high rework,unacceptable defectlevels).To

acertain extent,thefailure toimplementand sustain improved practices is caused by unin

formed(or outofcontrol)managementfaihng to understand their long-term costs and

benefits.Ourframework and prototype may help remedy this situation by making it easy

to evaluate and visualize the economicimpactofimproved practices.

7.2 Directions for Future Activities and Research

There are many interesting and challenging directions in which this research can be

extended.Theimplementation ofthe internetconcept as described in Section 4.3 offers

the possibility ofa mutually beneficial collaboration between software engineering

researchers and industrial organizations.The industrial clients would benefitfrom the eco

nomic analysis capabilities ofthe service andthe research community would gain dataand

feedbackforimproving the models.An internetimplementation could evolve into acom

prehensive repository ofSPItemplates,economic models,and industrial data.

Conclusions page 178

Many moreSPItemplates mustbe added to theframework to cover all common pro

cessimprovements.Example SPIsto addinclude systematic software reuse,inspections,

and variousformal methods.Asthe repository increases,morefunctions,parameters,and

models would need to be added.An ongoing challenge will be to limitthe complexity of

the models and the total numberofparameters that must be provided.Keeping theframe

work practical and useful requires that we maximize the SPIs thatcan be evaluated with

the minimal numberofunique parameters.

The tool can be extended to accountfor risk and sensitivity analysis using the tech

niques described in Section 2.4.6.To handle sensitivity analysis,the SPItemplates would

need extensionsfor classifying parameters into dependent subsets,and to provide default

high andlow valuesfor parameters.

Many additional cost models,SPI-specific economic models,process simulation mod

els,and process simulation approachescan be incorporated into theframeworkthat would

be usefulfor evaluating SPIimpacts.Forexample,COCOMOn[10]could beincorpo

rated for estimating effects ofsoftware process maturity. Various reuse models[47]could

be usedforestimating the effects ofsystematicreuse.Othersystem dynamics models[51],

and othertypes ofprocess simulation models[66]could be used for modeling effects of

inspections and other specific improvements.

An important areaforfurtherresearch is continues empirical validation andimprove

mentofthe SPItemplates.Measures and classification ofthe quality ofthe evidence back

ing the claimed benefit effects would be useful.Asnew evidence accumulates on an SPI,

it can be systematically evaluated against earlier evidence for modifying theframework.

Conclusions page 179

This research has also identified some areas where economic models are needed.As

discussed in Section 6.2.4,research and methods are needed to help identify the most pro

ductiveincrement size.Incremental developmentis widely believed to be a very produc

tive approach to development,but little guidance is provided in the literature on

specifically how to organize and size increments.We explored the factors that contribute

to economiesofscale and diseconomiesofscale related toincrementsize using simulation

models.However,more empirical validation is needed.

Therelationship among usage modelsize,software size,and developmenteffort needs

more empirical research.Since usage modeling is often performed early in the develop

mentlife-cycle to help establish requirements,it can potentially help predictthe size ofan

application early in the life-cycle.

In summary,everyone seems to agree thateach organization needs to maintain base

line performance data,collect metrics,and manage quantitatively, yetfew do so.This is a

first step in providing the tools to help errant managers do whatneedsto be done.

References

t

page 181

References

[1] Abdel-Hamid,T.,andS.E.Madnick,SoftwareProjectDynamics:AnIntegrated

Approach,Prentice Hall,New Jersey,1991.

[2] Agrawal,K.,and J.A.Whittaker,“Experiencesin Applying Statistical Testingto

a Real-Time,Embedded Software System,”Proceedingsofthe Pacific North

westSoftware Quality Conference,Portland,Oregon,October,1993,pp.154-

170.

[3] Arthur,L.J.,Software Evolution:The Software Maintenance Challenge,New

York;John Wiley&Sons,Inc.

[4] Banker,R.D.,and C.F.Kemerer,“Scale Economiesin New Software Develop

ment,”IEEE Transactionson Software Engineering,Vol. 15,No.10,October

1989,pp. 1199-1205.

[5] Basih,V.,F.McGarry,G Page,R.Pajerski,S.Waligora,M.Zelkowitz,“Soft

ware ProcessImprovementin the NASA Software Engineering Laboratory,'

Technical Report CMU/SEI-94-TR-22,Pittsburgh,Pennsylvania:Software

Engineering Institute,Carnegie Mellon University,December,1994.

[6] Basili, V.,and S.Green,“Software Process Evolution at the SEL,”IEEESoft

ware,July 1994,pp.58-66.

page 182

[7] Birk,A.,P.Derks,R.van Solingen,J. Jarvinen,“BusinessImpact,Benefit,and

CostofApplying GQMin Industry: AnIn-Depth,Long-Term Investigation at

SchlumbergerRPS,”FraunhoferInstitute forExperimental Software Engineer

ing,Germany,August 1998,lESE-Report040.98/E.

[8] Boehm,B.W.,“Software and its Impact:A Quantitative Assessment,”Datama

tion,Volume 19,Number5,May 1973.

[9] Boehm,B.W.,Software Engineering Economics,Prentice-Hall,Englewood

Cliffs,New Jersey,1981.

[10] Boehm,B.W.et. al., COCOMOIIModelDefinition Manual,Version 1.4,Uni

versity ofSouthern California.

[11] Briand,Lionel,BemdFreimut,Ferdinand Vollei,“Assessing the Cost-Effective

nessofInspections by CombiningProjectDataandExpertOpinion,”Fraunhofer

InstituteforExperimentalSoftwareEngineering,Germany,1999,ISERN-99-14,

also published aslESE-Report No.070.99/E.

[12] Brodman,Judith G,andDonnaL.Johnson,“Return on Investmentfrom Soft

wareProcessImprovementas Measured by U.S.Industry,” CrossTalk,vol.9,no.

4,April 1996.

[13] Brooks,Jr.,FrederickR,The MythicalMan-Month:Essays on Software Engi

neering,Addison-Wesley,1975.

[14] Bruckhaus,Tilman,“TheImpactofTools on Software Productivity,”IEEESoft

ware,Vol. 13,No.5,September 1996,pp.29-38.

page 183

[15] Campanella,Jack,et. al., GuideforReducing Quality Costs,Milwaukee,Wis

consin,American Society for Quality Control,1987.

[16] Canada,John R.,William G Sullivan,and John A.White,CapitalInvestment

AnalysisforEngineering andManagement,Prentice-Hall,Inc.,1996.

[17] Coallier,Frangois,Jean Mayrand,BrunoLague,“Risk Managementin Software

ProductProcurement,”Elements ofSoftware ProcessAssessmentandImprove

ment,IEEE Computer Society,June 1999.

[18] Cruickshank,R.D.,J.E.Gaffney,Jr.,“AnEconomics Model ofSoftware

Reuse,”Analytical Methods in Software Engineering Economics,Springer-Ver-

lag,1993,pp.99-137.

[19] Curtis,W,“Building a Cost-benefit Case for Software ProcessImprovement,'

Notesfrom Tutorial given at the Seventh Software Engineering Process Group

Conference,Boston,MA,May 1995.

[20] Cusumano,M.A.,and R.W.Selby,MicrosoftSecrets:How the World’sMost

PowerfulSoftware Company Creates technology.ShapesMarkets,andManages

People,TheFreePress,New York,1995.

[21] Daskalantonakis,Michael K.,“Achieving HigherSEILevels,”IEEESoftware,

July 1994,vol. 11,no.4,pp.17-24.

[22] Diaz,Michael,Joseph Sligo,“How Software ProcessImprovementhelped

Motorola,”IEEESoftware,September/October 1997,Vol. 14,No.5,pp.75-81.

[23] Dion,Raymond,“ProcessImprovementand the Corporate Balance Sheet,'

IEEESoftware,July 1993,vol. 10,no.4,pp.28-35.

page 184

[24] Elmaghraby,Salah E.,Elizabeth I. Baxter,Mladen A.Vouk,“An Approach to

the Modeling and Analysis ofSoftwareProduction Processes,”International

Transactions on OperationsResearch,Vol.2,No.1,1995,pp. 117-135.

[25] Fenton,Norman,Phleeger,S.L.,Glass R.L.,“Science and Substance:A Chal

lenge to Software Engineers,”IEEESoftware,July 1994,vol. 11,no.4,pp.86-

95.

[26] Ferguson,J.,et. al..Software Acquisition Capability Maturity Model(SA-CMM)

Version I.OI,TechnicalReportCMU/SEI-96-TR-020,December 1996,Software

Engineering Institute,Carnegie Mellon University,Pittsburgh,PA.

[27] Forrester,Jay,IndustrialDynamics,The M.I.T.Press,New York,1961.

[28] Fuhrer,D.,and J.H.Poore,“On the Efficiency ofCleanroom Certification,'

Internal report.DepartmentofComputerScience,University ofTennessee,Janu

ary 1991.

[29] Glass,RobertL.,“The Realities ofSoftware Technology Payoffs,”Communica

tions ofthe ACM,February 1999,Vol.42,No.2.,pp.74-79.

[30] Haley,Thomas J.,“SoftwareProcessImprovement at Raytheon,”IEEESoft

ware,November 1996,vol.13,no.6,pp.33-41.

[31] Hansen,Gregory A.,“Simulating SoftwareDeveloprpentProcesses,” Computer,

IEEE,January 1996,pp.73-77.

[32] Hausler,P. A.,R.C.Linger,C.J.Trammell,“Adopting Cleanroom Software

Engineering with aPhased Approach,”IBMSystemsJournal,Vol.33,No.1,

1994,pp.89-109.

page 185

[33] Head,G E.,“Six-Sigma Software Using Cleanroom SoftwareEngineering Tech

niques,”Hewlett-PackardJournal,June 1994,pp.40-50.

[34] Herbsleb,James,et. al.,“Benefits ofCMM-Based Software ProcessImprove

ment:Initial Results,” Technical ReportCMU/SEI-94-TR-013,Software Engi

neering Institute.

[35] Hudepohl,John,et. al.,“Emerald:Software Metrics and Models on the Desk

top,”IEEESoftware,vol. 13,no.5,September 1996,pp.56-60.

[36] Juran,J. andR Gryna,Quality ControlHandbook,4th ed:,McGraw-Hill,New

York,1988.

[37] Jones,Capers,AppliedSoftware Measurement,McGraw Hill,1996.

[38] Jones,Capers,PatternsofSoftware SystemsFailure andSuccess,International

Thomson ComputerPress,1996.

[39] Jones,Capers,Software Quality:Analysisand GuidelinesforSuccess,Interna

tionalThomson ComputerPress, 1997.

[40] Jones,Capers,“Marry in Haste,Repent atLeisure: Successful Outsourcing

Requires Careful Consideration and Planning,” CutterITJournal,vol.11,no.7,

July 1998,pp.22-29.

[41] Kelly,D.P.,and J.H.Poore,“From Good to Great:LifecycleImprovementscan

Makethe Difference,” CutterITJournal,vol. 13,no.2,February 2000,pp.7-14.

[42] King,John Leslie,and EdwardL.Schrems,“Cost-Benefit Analysis in Informa

tion Systems Developnient and Operation,” Computing Surveys, vol. 10,no.1,

pp.19-34,March 1978.

page 186

[43] Kramer,Bemd and Luqi,“Toward Formal ModelsofSoftware Engineering Pro

cesses,”JournalofSystemsSoftware,1991,No.15,pp.63-74.

[44] Krasner,H.,“Accumulating the Body ofEvidence forthePayoffofSoftware

ProcessImprovement,”(1997 version),http://www.utexas.edu/coe/sqi/archive.

also in“ThePayofffor Software ProcessImprovement:WhatItIs andHow to

GetIt,”ElementsofSoftwareProcessAssessmentandImprovement,IEEECom

puter Society,June 1999.

[45] Kyle,Brett,SuccessfulIndustrialExperimentation,VCHPublishers,Inc., 1995.

[46] Lim,W.C.,“Effects ofReuse on Quality,Productivity and Economics,”IEEE

Software,September,1994,pp.23-31.

[47] Lim,W.C.,“Reuse Economics:A Comparison ofSeventeen Models and Direc

tionsforFuture Research,”FourthInternational Conference on Software Reuse:

proceedings, 1996,IEEE,pp.41-50.

[48] Linger,R.C.,H.D.Mills,B.I. Witt,StructuredProgramming:Theory and

Practice,MA:Addison-Wesley,1979.

[49] Linger,R.C.,“Cleanroom Software EngineeringforZero-DefectSoftware,”Fif

teenth International Conference on Software Engineering,1993,pp.2-13.

[50] Linger,R.C.,“Cleanroom Process Model,”IEEESoftware,March 1994,pp.50-

58.

[51] Madachy,Raymond J.,“System Dynamics Modeling ofan Inspection-Based

Process,”Proceedingsofthe I8th International Conference on Software Engi

neering,IEEE,1996,pp.376-386.

http://www.utexas.edu/coe/sqi/archive

page 187

[52] Malan,Ruth;Kevin Wentzel,“Economics ofSoftware Reuse Revisited,’

Hewlett-Packard Laboratories Technical Report,HPL-93-31,April,1993.

[53] McChesney,1.R.,‘Toward a Classification Schemefor Software Process Mod

elling Approaches,”Information andSoftware Technology,Vol.37,No.7,1995,

pp.363-374.

[54] McGarry,Frank,Rose Pajerski,GeraldPage,Sharon Waligora,Victor Basili,

Marvin Zelkowitz,“SoftwareProcessImprovementin the NASA Software

Engineering Laboratory,”TechnicalReport,CMU/SEI-94-TR-22,December

1994.

[55] McGibbon,Thomas,“A Business Casefor Software ProcessImprovement,'

DACSState-of-the-ArtReport,AirForce Research Laboratory,Rome,NY,http:/

/www.dacs.dtic.mil,September 1996.

[56] McGibbon,Thomas,“A Business Casefor SoftwareProcessImprovement

Revised,”DACSState-of-the-ArtReport,AirForce Research Laboratory,Rome,

NY,http://www.dacs.dtic.mil, 1999.

[57] Mills,H.D.,M.Dyer,R.C.Linger,“Cleanroom Software Engineering,”IEEE

Software,September 1987,pp. 19-24.

[58] Morse,Wayne J.,Harold P.Roth,Kay M.Poston,Measuring,Planning and

Controlling Quality Costs,National Association ofAccountants,1987.

[59] Oxenfeldt,Alfred R.,Decision Economics,Crisp Publications,1997.

http://www.dacs.dtic.mil
www.dacs.dtic.mil

page 188

[60] Paulk,M.C.,C.V.Weber,B.Curtis,M.B.Chrissis,The Capability Maturity

Model:GuidelinesforImproving the Software Process,Addison-Wesley,Read

ing,MA,1995.

[61] Porter,Adam A.,Harvey P.Sly,Carol A Toman,LawrenceG Votta,“An Exper

imentto Assess the Cost-Benefits ofCodeInspections,”IEEETransactionson

Software Engineering,Vol.23,No.6,June 1997,pp.329-346.

[62] Potok,ThomasE.,Developmentofa Quantitative ProcessModelfor ObjectOri

entedSoftware Development,Ph.D.Dissertation,North Carolina State Univer

sity, 1996.

[63] Poulin,J.S.,Measuring Software Reuse,Addison-Wesley,1997.

[64] Prowell,S.J.,Sequence-Based Software Specification,Ph.D.dissertation.Uni

versity ofTennessee,1996.

[65] Prowell,S.J.,C.J.Trammell,R.C.Linger,J. H.Poore,Cleanroom Software

Engineering:TechnologyandProcess,Addison-Wesley,1999.

[66] Raffo,David M.,and Marc I. Kellner,“Modeling Software Processes Quantita

tively and Evaluating thePerformance ofProcess Alternatives,”Elementsof

Software ProcessAssessmentandImprovement,IEEE Computer Society,June

1999, pp.297-341.

[67] Reimer,Wiebke,Wilhelm Schafer,ThomasSchmal,“Towards aDedicated

Object Oriented Software Process Modelling Language,”ECOOP Workshops

1997:299-302.

page 189

[68] Rubin,Howard A.,“Global Software Economics,” CutterITJournal,vol. 12,

no.3,March 1999,pp.6-21.

[69] Sassone,PeterG,William A.Schaffer, Cost-BenefitAnalysis:A Handbook,

AcademicPress,New York,1978.

[70] Sassone,PeterG,“A Survey ofCost-benefit MethodologiesforInformation

Systems,”ProjectAppraisal,vol.3,no.2,June 1988,pp.73-84.

[71] Sherer,S.W.,A.Kouchakdjian,P.G Arnold,“Experience Using Cleanroom

Software Engineering,”IEEESoftware,May 1996,pp.69-76.

[72] Slaughter,Sandra A.,D.E.Harter,M.S.Krishnan,“Evaluating the Cost ofSoft

ware Quality,” CommunicationsoftheACM,August 1998,vol.41,no.8,pp.67-

73.

[73] Stevenson,C.,Software EngineeringProductivity:A Practical Guide,Chapman

&Hall,1995.

[74] Trammell,C.J.,M.G Pleszkoch,R.C.Linger,A.R.Hevner,‘TheIncremental

DevelopmentProcess in Cleamoom SoftwareEngineering,”Decision Support

Systems,17(1996),pp.55-71.

[75] Velez-Pareja,Ignacio,“Value Creation and its Measurement:A CriticalLook at

EVA”,Social Science Research Network,Financial Accounting(WPS)Vol.3,

No.17May 24,1999.

[76] Vienneau,R.L.,“ThePresent Value ofSoftware Maintenance,”Journalof

Parametrics,Vol.XV,No.1,April 25,1995,pp. 18-36.

page 190

[77] Weissfelner,Sam,“ISO9001forSoftware Organizations,”ElementsofSoftware

ProcessAssessmentandImprovement,IEEE Computer Society,June 1999,pp.

77-100.

[78] Weller,EdwardR,“Lessonsfrom Three Years ofInspection Data,”IEEESoft

ware,Vol. 10,No.5,September 1993,pp.38-45.

Appendix

page 192

Appendix A

Cost-BenefitEffects Hierarchy

This appendix gives the hierarchy used to classify the costs and benefit effects that result

from implementing the software processimprovements.

1.0 Implementation and Support
1.1 Tools andInformation Systems

Costsfor the acquisition and maintenance oftools and systems that may be
needed to implementa processimprovement.

1.1.1 Survey and assessment

1.1.2 Costto buy or make productor tool

1.1.3 Costofmaintenance

1.1.4 Validation for use

1.2 Training

Costs required for training personnelin the new processimprovementor
associated tools.

1.2.1 Personneltime in training

1.2.2 Costoftraining

1.2.2.1 Train the trainer

1.2.2.2 Administrative training

1.2.2.3 Training classes

1.2.2.4 Outside consultants and coaching

1.2.2.5 Computer based training

1.2.2.6 Training materials

1.3 Use and operations

1.3.1 Process start-up

Cost-BenefitEffects Hierarchy page 193

1.3.2 Operations support

1.3.3 Data collection

1.3.4 Data sununarization and reporting

1.4 Infrastructure

1.4.1 SupportGroup

1.4.2 User Group

1.4.3 Documentation

1.4.3.1 Standards

1.4.3.2 Procedures

2.0 Production Effect

We use this category for annual staffeffort costimpactsto developing documenta
tion and code as well asindirect managementand support costs.This category
omitsimpacts to defect detection and resulting rework and repair costs.However,
other maintenance work(excluding rework)would be categorized undercorre
sponding documentation or code categories.

2.1 Documentation

Includes electronic media and databaseforms ofdocumentation as well as

paper documentation.

2.1.1 Requirements

2.1.2 Specification

2.1.3 Architecture

2.1.4 Design

2.1.5 UserDocumentation

2.1.6 Training Materials

2.2 Code

This category is for activities thatresults in machineinstructions and
includes the time spent using atool to generate a userinterface or a database
design as well as conventional source coding.

2.2.1 Processing

2.2.2 Database

2.2.3 UserInterface

2.3 Management

2.3.1 Planning

2.3.2 Oversight&Tracking

2.3.3 Decision Support

Cost-BenefitEffects Hierarchy page 194

2.3.4 Configuration Management

2.4 Operations Support

2.5 Installation&Training

3.0 Quality Effect

This category is for costimpacts ofassessing quality in software products or han
dling failures that have occurred in software products.

3.1 Appraisal

3.1.1 Inspection and Verification

3.1.2 Testing

3.2 Internal failure

Costofrepairing defectsfound before productreaches customer.

3.3 Externalfailure

Costofhandling and repairing productfailures after delivery to customer.

4.0 Customer/MarketEffect

4.1 RevenueImpact

4.1.1 Marketlife extension

4.1.2 Larger market share

4.1.3 Higher profit margin

4.2 Financial Risk Reduction

4.2.1 Reduced risk oflitigation

4.2.2 Reduced risk ofproject cancellation

4.2.3 Reduced risk offinancial penalties

5.0 Cycle Time

Weintend to report the impacton cycle time as a percent calendar time savings
without a direct dollar valuation.Thefinancialimpacts ofcycle timereduction
would appear under4.1.

6.0 Other

Thiscategory isforidentified effects thatdo notcleanly fitin to the other5catego
ries:

6.1 Broad based effects -impacts quality,productivity,cycle time

6.1.1 Promote SEICapability Maturity Model(CMM)progression

Cost-BenefitEffects Hierarchy page 195

6.2 Personnel Resource

6.2.1 Improve employee morale

6.2.2 Fasterramp-up and training ofproject personnel

6.3 Miscellaneous

6.3.1 Showcasing the Emerald toolset and reselling,bestin class

6.3.2 Ability to selfregulate,self audit

page 196

AppendixB

Database Schema

This appendix provides an overview ofthe data model used by the CBA-SPI prototype

software tool.The tool uses a relational database thatcan be conceptually divided into a

numberofsubject areas orlogical views.Each subject area contains a collection ofrelated

entities where each entity represents an objector concept about which we wish to store

data.

• Baseline Environment.This subject area holdsinformation to characterize specific

baseline environmentsfor an organization.Theinformation includes an estimate

ofthe organization’sCMM level,the industry,size and annual budget,the size of

the code base,how much the code base is expected to change or grow each year.

and information aboutthe quality appraisal and defectremoval activities.SeeFig

ure B.l.

• CBA Effects.This subject area holds specific information abouteach cost-benefit

analysis,links to the associated baseline environments,the set ofSPI alternatives

being considered,the estimated effects,and theirestimated cash flowsforthe time

horizon ofthe decision.See Figure B.2.

Database Schema page 197

• SPITemplate.These are entities that hold datafor representing each potential soft

ware processimprovement,its profile ofcost-benefit effects,and parameter infor

mation for quantifying those effects.See Figure B.3.

• ReferenceInformation.These entities provideindustry data thatis used to estimate

the baseline scenarios and provide default parametersfor quantification functions.

See Figure B.4and Figure B.5.

Thefollowing pages show the entity-relationship diagramsfor these subject areas. Note

thatthe rectangles represententities,and thelines representrelationships between entities.

The attributes foreach entity are shown inside the rectangle with the primary key

attributes appearing above the dividing line.Solid.linesrepresentidentifying relationships

and the black dotsignifies the“many”side ofa one-to-many relationship.The diamond

shape on the“one”side ofa relationship indicates that the relationship is optional.

DatabaseSchema page 198

1

ii.
5

g
UJ

J

i

5 D)

I—
I»§>
J

o'
□)

A
o>

eo< J

f

mis
(D

D ^ p E£ 2 S S9>.1O J =1«'
51

1

!
•o

'<5 S
o! s.

t
Q.

•o

S2 .1
S
ra

§
■a
*5

Q

3^
2

1
£

li
« Sa 2gg

fe W 5 WW
£ i si o

4

!
ffi

§
J

J

s

5*
u.

5 £
I

Q

J *5 J
I

^15
I

J

CO
CO

CO g
ui

CO
e

I i

I
E

o

J

o

,§2
o

o;

5
a

to «

S ra
■ Z

I

12
81
•5

3
ffi CO

1
.5

S
Q.

>

CD

o S
n

T3

£L

S'
id:.

I

o

o 1
8

I

^8'

2
c
UJ

o'

I

2 t
1 iS
UJ

1
O

a
J

Figure B.l: Baseline environment subject area

DatabaseSchema page 199

H. ■o
I

SI

a.
CO.

0)

a £

.1

CL M
CO

2-

I

I? I
©
CO o c

A
ra 51CO

I rere
A ffi

&
$

=1
2-

0)t.
CO i a 0 E

?-ij 8,
I

o K g-
O

0.

III si
I

I

fl

u.

a.
CO

1
S

£^ =
.|t°=S
<8 I
liJ

d)

s

I

<

I

I

^^2 §
I

5

Q.
CO

W

“i =18
a
0.O

J
0.

I

S
1

0.

O

5 =

I

2-

S
0.
-J
CL
CO

2
•s I

irf
al! ©̂

liJ
CL

0)

s
o

ai J
©i23 CO

n'

1

jr

I

W.
o

re
CD

i

c

a

0.

1

Figure B.2; CBA effects subject area

DatabaseSchema page200

o

e

UJ
.1

> I <0

>
Q -n

15 111
S.

j 2^
So! •o.

5 1 gI J 1 J J J I
03

>,c (0 & a. 2 .1 ®•s 0)AS
e' e' O 3

E •o.
S s iP/' ■§

ESS <d'
CD .? iS iSft 0. 0. 0. Q. 0.If

a

2
u.

J

i
2
CO
Q.

S 2

■|

S s'
“■I

5
0. a. CO

<0
ir

g
2 1. I

o E
E

o 8K J J .1

2

E
2

55"'
O D

s, 2-'
CD CL :

CL CO I

o !!:.

•1 =
CO ft

I
M

J
0.O. Q.C0

CO

It
IE

I

E
I

ts

Irf'l
i€

S S.E

!

5

2
2'£

I &
S'",
Q.
-I

%

5

J,

s

2
u.

I

|[|S5

I

}

2 2"
10 It

s
0. lE

f

?

CL OS
I-I

CL
CO Cl CL CL 0) §

5

2

li
ii

o

"g
c

I
its’

CL
CO

77

o

o

la E
•“I

<

2

il
‘2

0‘
UJ

■g
E

o
a

-l-l-p-l
0} 0> Q> 0)

ggig
2 E g. E

'
'

?

<

O
e'CL CO

CO

I
o

H

E
s

a
CO

I

%

S.£
I

1 1?'2 o

Figure B.3: SPI template subject area

page201DatabaseSchema

E
I

O

■•s. s

£
o

•a

ii.5!l!5l35 o

Q.

*5

-•51(0 (s iS j
s

■o
ca

-l_l

o

§ I

a

o

ii E E a.E a.

E
o'
T3 S

8 8
5

A LU
(/)

S
o 0} t
(0

s

2
.1 StiS

w
2 j j 5i

a. is.i££«o§i I
O) £

I
(0
>

5 eo*
*35

•o,
E

t

it

o I
§5,

g
.ts

J
^

5

ill ra
u.

i 77 a >

•§oI
I

£ s

s Iills o' o 8b0 1S

m

IT3'“M 1 ? Jsilii
o

o'o!
<:

o

1
I
5

.*.WC, £ i
•s

S.t
k2 I

0.,
£u
c'C|

I
H. .1

I fi
*o “i

E
E
ca
0. •o

I

^ Jc ^

o
I

Q.
W%
¥

HI

LU

w
0.

i

I
CL

3
>
0)
O

o>

I
I

8 jI

■5
>

E
<:

i
<0
z

,1

cc

Q

5
i
i

SI, i,fp,
& £&

J ?

^ =
g= 3

gs
3" 3

® 0^. I
0.

al si «

Figure B.4: Reference data subject area part 1

DatabaseSchema page202

-J m

O

I

i“i
I s'

illli
1
s

o

*5

I I
tJ

s
W

a

i

■y

o I o

a
£

4

3

2
I

Q.

y

a-
J
£

I

§

5

X

i

§

1

I

t
I

XI 5
o

1
2

4

s (D
TS

(O

I

Is
(0

I
a

i

y

i

d
S'

I o

£
M

CL
M Q.'D Q.

2*

2

ct
I

Of
q:

IISe
<8 X

I
as
sJ -o S
Hz'

I

i

CO

I
S

I

S'
TS

■s CO
CO

1
a*

•o

i

■A

1I•I s, rt: I

o>

I *§
"O

i
3 11

0) o.CO

s
>

S.

i=,

o

s

2'
to

CO

>

I
2

I

= o 1

I 8
a.

•5
a.

J'l
J|
ffl

J“I

B

Figure B.5: Reference data subject area part 2

page203

Appendix C

UserInterface Samples

TheCBA-SPIprototype includes76 userinterface forms.These userinterfaceformscan

be organized into four areas:1)define baseline environment,2)create a cost-benefit anal

ysis,3)defineSPItemplates,effects,parameters,and4)provideindustry data and models.

This appendix exhibits one ortwosampleformsfrom each ofthese areas.

page 204User Interface Samples

C. 1 Define Baseline Environment

This section shows the forms used for defining a baseline environment.

@ Define Baseline Environment

Entity Id: JiDolCom eBusiness ^ ' Baseline Environment: [Baseline Sequenced-based specification tempk

W'BasefneinvifCinmentH*^ Candidate S^s ! 3 Pafair^ere
Describe paratnetets lor this environment

languages
''Hi tv

►

hidden I lodkfed^Value . ■Parameter

3Number of projects developed within
one year

Software development budget per
year

Avg. loaded annual salary for a
developer position

Average loaded salary for a q.a. /
testing specialist

Record: ^jJ I
r~ Display hidden parameters

►

~ > o

□□

$10,000,000 □ ’ □

$80,000
□

$80,000
□ ! □

“If 19
■y-

X ■
X '

' ' \ ̂ Qt ^

Record: l< I ^ I [30 > of 33 , <'

Figure C.l: Parameters for defining a baseline environment

page 205User Interface Samples

W Jl2SiS Define Baseline Environment

Entity Id [iPotCom eBusiness f Baseline Environment: - jlaseline Sequenced-based specjfication tempit rj

ST Ca-xidate SHs 1 ~M Parar^s | ^ Languages Used Quality Appraisal fjmm nvironment
■m-

‘0wa»be quaSty appraisal steps for thb baseline environment
^ appraisal ' failure cost / defeirts fail cost defect -1^

A- yr foumlJVr /defect remi.etficimmi costyr& i

-if
' appraisal step . '

z:* ;S

H $563,738 8414^j $67 55.00%ti-
H $207,566 ri 3098tj $67 HI 45.00%ti- '
Ifj $132,500 l|j 1325ti $100 III 35.00%^'

$258.300 861 li $300 I 35.00%^!
H $440,000 lli 88011 $500 g 55.00%^^II

I

"fiS

N5« V

. jlntormal code reviews 5100 -

lUnit testing ^ 5150
“ Integraftion testing "jij 5300

H^ JSvstem testing 5370(<
r?:

n5 ICustomer acceptance J!lI 5700 $86,400 H 108ll
$918,000 III 612tI $1,500 111 100.00%

15.00% BJ 53: SI

z3 6500l nField use
S'

totals: il $2,806.504 tn
26.07%||""5

IiT-

Fail cost % of SO budget:' ? ? II
r

v<./

■■

>1-

■'if''' ^7.

mji— 30

Figure C.2: Describing quality appraisal steps for a baseline environment

page 206User Interface Samples

Create a Cost-Benefit AnalysisC.2

Figure C.3: View or change quantified effects

��

page 207User Interface Samples

Define SPI Templates, Effects, and ParametersC.3

—,

aa ml

*

111
<«» |r«> i

i 7?g X ^

15^^ *-9

^ s
U m

U) o

ocI r u FJ0)^ ̂
0) 0
3 0) >
CO -c a>
CO o

COiw O)I 0)o
0) >
-C P>< p 9^O)CO t-

05x- ̂ o CO p fV'

c c o
O "O "O O "O "O

— ir c “O po CT5 c ̂ -o
5 -c 0)
P o

o
(0

s S
CO .=

1 ^ ̂ ® CO
CD 0) O
C2- >

"’Sc<u E
E c V- -g E c
„S.Jg£^S.S2^§§
2co_ — 2“>_'^ ■—>

<“c5co ®-H§: (0
CO 55 CO

0)O) CO
: -O o ^

= 0) CO

3 CO
0) “O p .ES c C •=

® -g iS W .£
O)

o o

-Si g.? °
O) ' CD

® - E
= JsC

o ^ CO

X CO 03
O £

p «= *.3
*3 COCO ^ CO

03

/'xv
I

fo jt
(0

■ts •Xu
>•§«

5. -5 s
I te*» §•

o ->,: .'£ ' d: i*♦
c a-5

> X ^ ____
: Ui

J

0) .S- CO Q> 0) .S- CO ®
1^ crfll^ c.rl:-75~
M g.E 1 M S.E E I i =
— 03 — *-a3 a3 .^£;
o3 (ua> co coa) a) co c2.oa3
SE2? c" lEE2coxcjcH-i E^ i=~ E=5 iiJS 5

-■ CO£■03
cc -5
a: 'S0)

I-1OJ
CO

o
'S

' ■’?;
* ^i'?3i .§/:

^1“ ■ 'fes '.7s

*03s
> 'C 03 MmE-<o 0)

to
9< iCO

Q>§ 3 0) 0)

J Io -o

V. yf't/';-'

Io o CD •■=
ECO 3

o 4’''>■ a
-o os 0) cs

0) CM I:E E1/1 s I!
§ i O)

'

■I 0) o
'

o ; .i pd) t•9o. CD CD■

i tE
^

O)8
^

a. CD c
<0 O)
c O)

o o
o ij-x-vr

o O .3
-►- COo <K 1CO0) trt CJt:’o

d £ig ■=
lU >0)

: $c m >0) HI -Oa

□=
0) ..^X .Vxi q:

o
-p

a:P'/.
x~v«C &

Figure C.4: Defining cost-benefit effects for the SPI template

User Interface Samples page 208

^ SPI Effect Formula

m

3.’

Formula id I 110 SR project_ iFunctional Verification

Effect V*" jReduced risk of proi^t cancellation
Formula 5,-"l=potential proi cancel cost “base risk cancel likelihood “

m

PI risk cancel imi

m

1-
J1

m

% Ifarting period T Ending period' I
si t. *

M

I

'-
■M

* Show avaiable verifies - .* m.$M

J*" Select Variables (by doublMiSal "
^"■’=''^S£v;'?^"Sfl3i

user promptName
i!:' vi-mW-

34,group id
S Pl repeat business yr Annual repeat business under SPI SPI Customer / f
SPI risk cancel impact Percent reduction in the likelihood SPI Risk Pararrn X

SPI_staff_turnovei_reductior^ SPI staff turnover reduction pet SPI Cost Paramr •
1 What percentage of code is stable Code Parameter
Staff churn per year percentage General Develop |

Decision parame '4
Decision parame ▼ I

stable_code_pct
staff_churn_pct
state_1
state_1_prob

State of nature 1
State 1 probability

"‘bv'c ^ *^'''yy'4'''s
y'^y -y /X

-r.kA

1 of 1 (Filtered)

Figure C.5: Specifying a formula for evaluating a cost-benefit effect

•rr-^'^'Vsy

Record: M | ^ (f J

User Interface Samples page 209

Provide Industry Data and ModelsC.4

gi Subindustry Averages
J

► Lookup Siiiindustry: |Systems
Subindushy) FunctioirPoint Level I Process Stgi | After Release |

rZHT

¥slitAndustry name | [Systemssubrdusby id 1
desaiption | Applications that control physical devices such as operating systems,

navigation and flight control telecommunication systems, process control
systems, automotive fuel injection, medical instruments, etc. Concerned
with operating large, complex physical devices.

avg ontime prob | 73.33^1
avg canceled pxob 1 1 13 85^i
avg 25^ late prob | T2^^

Total

defect removal effort Z: | [^^0^
I 16.00^1coctng effort^:

Totals

paperwork effort Z:
mgmt effort Z:

avg monthly salaiyj I $5,250 li
avg burden pet I F salary effect date: H VV19961

1 > i H of 7Record: l< I < I

,jnlx}^ Subindustry Averages

► 3^Lookup Sri^hdustry: | Systems
Subindustiy Function Point Level Process Step | After Release !

fp level rarige enhance cost/fp fp/ defect remove defects divrd staffing
staff mth potential efficiency divrd/fp defects level

3| 6 38^ I $2,773 J TiTj 5.001 95.73^1 0.29 j 142121 '
ur 6.38SJ I $1,008 I 8l3 j 1.00 1 99.90% | oMj

/inZ

F 0| o.e
►

f
F° 3Jj 6.381^ j SI-STS") 1!3T[3.00 (99.50^J 0-02) 0|
|11-10Q
|l 01-1000

3r 7.005i I $2,016 I aTt'J’
■331 6.50S£ |$2,587 | 3.25 f

|l 001-10000 ijj 8.00% j $3,553) 23Bf

5.001 98.00%! 0.10 f 10| 21
6.00 I 94.ra% I 0.36} 360 I TU

93.00% I Olsl 4900 [■ 90 f7.00

|10001-100001:^1 4.00%j$5,897 [1.42 [8.00 j 90.00% j 0.80 I 80000 I 900 f
±1 I

Record: 1 > l>l|t*l of 7

Figure C.6: Data by subindustry^
a. Sources for data are [37], [39]

page210

AppendixD

Software Process Simulation Model

This appendix describes the Cleanroom software simulation model that wascreated as

part ofthis research.This model wasincorporated into the cost-benefitframeworkfor ana

lyzing theimpactofincremental developmentas described in Section 6.2.4. Although we

use the modelfor the specific purpose ofanalyzing the effects ofincremental develop

ment,the model could be used for analyzing other processimprovements.Also,although

the model has the name Cleanroom,it can be calibrated to mostsoftware development

processesfor baseline calibration.We provide a brief description ofsystem dynamics

modeling notation in the next section followed by an overview ofour model.

D.l System Dynamics Modeling Concepts

There are three types ofequations in a system dynamics model that are represented by

three types ofgraphical elements:levels,flows and auxiliaries.Levels(also called stocks,

states,or accumulations)are represented by rectangles.Flows(also called rates)are repre

sented by the pipes and valves and indicate aflow between two levels.The auxiliaries are

either constants,equations,or data that are used to calculate intermediate resultsfor usein

SoftwareProcess Simulation Model page211

computing rates. Auxiliary constants do notchange with time and are shown in uppercase

letters. Auxiliary variables representequationsthatcan change overtime and are shownin

lowercase letters.The connecting single line arrows represent dependencies between

equations.

The mathematical relationships between these elements are represented by the follow

ing equations:

7
levelsy = flows,dt

•'0

flows, = ^(levels,,aux,,const)

aux,= /(levels,,aux,,const)

D.2 Cleanroom Process Model

Astock andflow diagram ofthe system life-cycle view forthis modelis shownin Fig

ure D.l.The levels in this diagram represent an amountofsoftware functionality as it

passes through various stages ofthe software developmentprocess.Each level equation is

expressed in units offunction points where afunction pointrepresents an amountofsoft

warefunctionality in some state(e.g.,the level“CodeToDo”represents the function

points that have been designed butnot yetcoded at any given pointin time).Theflow

equations in this modelrepresent the team’s productivity at performing software develop-

SoftwareProcess Simulation Model page212

Customer

Its Cleanroom

Single Project Model

^ ̂requirements flow Detailed Lifecycle View
PlanTesting Rate

Function
TestPlanSpeciflcation <ic».t planninti ijdom'>Requirements

7
function

specificaton t 3
rework: flow test planrqmt

C
rework flow

i
Function Test plan

Speciflcation

TESTPLAN

stablefnspec flow D ^stable test plan flow RQMT
REWORKPCT

i
StableTest

REWORKRQMTPCT fion
PROJECTSIZE

Plan Incr Rate ‘plan incr flow ^ ̂

NUMBEROFINCREMENTS

Planned

incrementpulse »vgI
Increment

ReflneIncrSpecRate
Plan

refine Dev Usage ModelRate
incre^t
speefl^

Increment

specification

%
incrementspecflow

Dev CodeRate
I Usage Model

CodeToDo
^ ToDo

z
devcodeflow t dev usage modelflow

•.'[jcv ITE:avatiablo i
Testcases

ApplyTests Rate
{apply tests flow

ReworkCodeRate :codeflow

REWORKTESTSPCT

Codeto
1

Statistical

Rework Tested
Code

/
rework tests flow

pending delivery flow C 3
y^ply Retest Rate

i

t Reworked
«fn'‘)-KCTIVr- CXtiVl; VCT>

Verified Code
applyretest flow Incrementofincr'•ize o:i iii'CrJous-

delivery pulse ^
field code flow

Field Rework Jz \1 CodeToDo

Rework Field CodeRate

DeliveredStableFPs g I
stabilize flow Product fault identify flow

Fault DensityPercent

<'i-AMTDE.N.SnYPCr> S.51 jucr ssAL'OH dd'o.1

Figure D.l:Life-cycle view ofsimulation model

SoftwareProcess Simulation Model page213

menttasks in units offunction points per week.The Customer Requirements level is ini

tialized with the size ofthe projectto be developed as given byPROJECTSIZE.Astime

progressesfrom one week to the next,this amountoffunctionality flows through the

model with various tasks performed on the required software functionality at each flow

valve.

The primary results we are concerned with are costs and schedule.The projectis con

sidered complete when the full amountofstable functionality is delivered to the customer.

The variable “Project Completion Time”gives the week in which this milestone is

achieved.Total costsfor the project is given by the level Total Effort Hours asshown in

Figure D.2.Like mostcostestimation models,this one computes costs in terms ofeffort

hours which are easily converted to monetary units.A unit costfactor is computedfor

each task in effort hours perfunction point.The unitcostfactoris multiplied by the work

flow for the task to give the effort cost rate in effort hours per week.

Unitcosts are based on the productivity for a given task asshown by the example

causes tree in Figure D.3.The unit costs for any task is given by

HOURSPERPERSON WEEK
<task> Unit Cost =

<task> Productivity

where,HOURSPERPERSON WEEKis a constantthatis set to the default value of22.

This constanttakes into account vacations,holidays,training,and other non-productive

time averaged over the entire year.

SoftwareProcess Simulation Model page214

Cleanroom - Effort Distribution View

standard Costs(hours/fp) Workflow(fp/week)

ApplyTests UnitCost-
<app!y tests Sowy

Apply Retest UnitCost-
<apply retest flow?

Dev Code UnitCost-

<df:v coda flow:''

Dev Usage Model UnitCost-

<dcv usage modelflo\c"

FnSpec Unit Cost-
<runction specificau-'n ilor?5^

Plan Incr UnitCost-

cplan incr flow

Plan Testing Unit Cost-

<plan testing flow”

Refine Incr Spec UnitCost-

<refiae iucremenl spec flo'-v?

Rework Code Unit Cost-

<rework code flowa^

Rework Field Code UnitCost-

<rcwork field code flow

REWORKRETESTUNITCOST-

-ci'ewoi-k relesi tiow;r

REWORKTESTS UNIT COST-

-a-ewoi-k tests flo\v:>’

Reg Test Unit Cost-

<ieg lestflows'

DEUVERYUNITCOST

<pen<lin[> deliveryflow’

FAULTIDENTIFY UNITCOST

<faultidentily flow'?'

REWORKRQMTUNITCOST-
•creworkrqmtflow>'

TESTPLANRQMTREWORKUNIT

<test plan rqmt rework flow>

Effort Cost Rate(hours/week)

:apply tests cost

ly retests costrate

:dev codecostrt

;dev usage model

t^funcdon specification costrate

cumulative costrate
TotalEffor

O A
tplanincr costrate Hours

tplan testing costrate

;tefine incrementspeccostrate

ireworkcode costrate

rk field codecostrate

rework retestcostrate'

:rework tests costrate

;teg testcostrate

t^deliverycostrate

ifaultidentify cost rate

rework rqmtcostrate

;test planrqmtreworkcostrate

Figure D.2:Computing Total EffortHours

SoftwareProcess Simulation Model page215

DEVCODEPROD
Dev CodeProductivity-

effectofincr size on productivil Dev Code Unit Cost

HOURSPERPERSON WEEK

Figure D.3:Example causes tree for atask unitcost

The team’s potential productivity rate(<task> rate)is computedfrom the number of

staffresources available(<phase>FTEsAVAILABLE)fora task times the person produc

tivity for a task(<task> Productivity).There are three types ofresources we estimate for

this model corresponding to three phases ofthe developmentlife-cycle: Specifiers,Devel

opers,and Testers.These constants are setby using the phase distribution tables forthe

1COCOMO model.

The model adjust allocations ofthese resources so that competing task demandsfor

the sameresources has the correctimpacts on costs and schedule.

D.2.1 ModelBoundary

The model assumes that the effort begins after requirements have been generally

defined and excludesfeasibility and requirements efforts. Also,the modelexcludes indi

rect activities such as user training,documentation,management,and support activities.

Since the COCOMO modelincludes indirect activities, we reduce the COCOMO values

where needed to accountfor outofscope activities.

1. See Table6-8on page90of[9].

SoftwareProcess Simulation Model page216

D.3 Supporting Software

The model was developed using the Vensim simulation environmentfrom Ventana

Systems.This simulation tool provides a dynamic link library(DLL)ofroutines forcon

trolling the modelfrom an external program.An ActiveXDLLCOM object was created

in order to control the modeland simulationsfrom the CBASPItool. Also,a separate

COM object was created for performing the COCOMO estimations ofproductivity con

stants and staff allocations.

page217

AppendixE

Software Process ImprovementTemplates

This dissertation work resulted in templatesfor three uses ofEmerald andforfour Clean-

room technologies.This appendix provides listings ofthe Emerald templatefortargeted

defect reduction and ofthe Cleanroom template for statistical testing.

E.l Emerald Template for Targeted Defect Reduction

page 218Software Process Improvement Templates

-S-;:

-K

Software Process Improvement SPI Type

Emerald Targeted Defect
Reduction

Emerald Targeted QA

Description Using Emerald to target defect reduction efforts. Defect reduction includes activities to
prevent defects from occurring as well as activities to find and remove defects. The
primary benefits from this use of Emerald are more efficient resource allocation and a
gain from early defect detection.

'—

'm
m

ImM
m:

m
W

'

Costs

lmplementation->Tools and information systems

Cost to acquire product or tool

COSQ Cat: Prevention

Cost to make or buy tool or system.

Equations:

start endyr formula

1 1 =-tool_cost

TANGIBLE

BSC Cat: Intemal/Business Process

label

Tool / system maintenance costs

COSQ Cat: Prevention

Cost for maintenance of tool or service.

Equations:

start end yr formula

TANGIBLE

BSC Cat: Intemal/Business Process

label

2 =-tooLmaint_cost

I

Monday,pct(^r23.2000 Page 1 of 11

page 219Software Process Improvement Templates

Emerald Targeted Defect Reduction

lmplementation->Training

Personnel time in training

COSQ Cat: Prevention

Cost for the time personnel will spend in training.

Equations:

start ehdyr formula

BS

TANGIBLE

C Cat: Learning and Growrth

label

1 =-num_trainees * training_hrs_per_trainee *
loaded labor rate

lmplementation->Use and operations

Operations support TANGIBLE

Equations:

start end yr formula label

=-tooLadmin_hrs_per_wk* Loaded_labor_rate *
Weeks_Der_vear

1

Data analysis, summarization and reporting

COSQ Cat: Prevention

Additional time each week for reviewing and analyzing Emerald information.

Equations:

start ehdyr formula

=-use_cost_yr

BSC Cat: Intemal/Business

1

TANGIBLE

Process

label

Benefits

Customer / Market lmpact->Revenue Impact

Customer satisfaction SEMITANGIBLE

BSC Cat: Customer

Emerald improves productivity, cycle time, and quality of the software product. These are
characteristics that customers value and that helps to earn their repeat business and attract new
customers.

Equations:

start endyr formula label

1 =SPI_add_business_yr + SPLrepeat_business_yr -
baseline_repeat_business_yr

WM % ii Page 2 of11

Software Process Improvement Templates page 220

Emerald Targeted Defect Reduction

SEMITANGIBLECycle Time Reduction

COSQ Cat: Internal failure

Emerald reduces schedule because of better utilization of development, inspection, and testing
resources and by reducing defects and rework from formal testing.

Equations:

start endyr formula

BSC Cat: Customer

label

Value of cycle
time reduction

1 =cycle_reduct_value

Production Cost impact->IVIanagement->Decision Support

Improve managing process change

COSQ Cat: Prevention

Provides objective data to quantify and support change decisions.

BSC Cat: Learning

SEMITANGIBLE

and Growth

Production Cost lmpact->Management->Project Oversight and Tracking

Keeping project on schedule SEMITANGIBLE

Schedule slippage leads to inefficient use of resources and increases overall cost of the project.
Metrics inform management decisions early and often to enable corrective actions

Production Cost lmpact->Management*>Project Planning

Improved project planning and estimating SEMITANGIBLE

Improved resource allocation decisions and staffing assignments SEMITANGIBLE

Quality Effect->Extemal Faiiure Costs

Enhanced understanding of field problems SEMITANGIBLE

tS:-.
iiifk-i

Monday, If: Page 3 of 11ii m iiHi

Software Process Improvement Templates page 221

Emerald Targeted Defect Reduction

Quality Effect->Quality Appraisal->lnspection, Validation and Verification->lnspection
Time Savings

Code Inspection Time Savings

COSQ Cat: Appraisal

By using Emerald to improve resource allocation an organization can reduce the overall effort
required for inspection, testing and development activities.

Equations:

start end yr formula

TANGIBLE

BSC Cat: Intemal/Business Process

label

=baseline_insp_cost - SPI_insp_cost
--

1

'

data type

lowval hival default

laMi

1

4

ii ml

m
m

lenparameter name

hide lock formula

user prompt

avg_effort_insp Average effort hours per inspection Single 5

□ □ 3.5 3.5

avg_loc_insp Average lines of code per baseline inspection Long Integer 5

□ □ 250 250

base_pct_of_code_reviewe Baseline percent of code reviewed each year Percent 5
d

□ □ 80% 80%

The percentage of code subject to code review each year

Baseline inspection cost

=reviewed_loc * (avg_effort_insp / avg_loc_insp)
* loaded_labor_rate

baseline_insp_cost Currency 8

0 □

baseline_repeat_business Baseline repeat business per year Currency 10
yr

□ □

How much net repeat business occurs each year.

Churned lines of codechurned_loc Long Integer 8

0 0 =current_size_LOC * code_churn_pct

■ m•i
«■»»

.ISonday, 0ctober23.2000 Page 4 of'll '

Software Process Improvement Templates page 222

Emerald Targeted Defect Reduction

Percentage of code "in play"?code_churn_pct Percent 3

0% 100%

The active code that is subject to active maintenance or modifications. Populated
automaticallv from language form.

Current code base size in Lines of Code Long Integercurrent_size_LOC 7

B B

Calculated based on other values. Automatically populated by Baseline
Language form.

cycle_day_value Value of each cycle day saved Currency 10

□ □ $1,000 $1,00

The value of a reduced cycle day. The present value of saving a cycle day in
terms of increased sales, awards attained, penalties avoided. The value depend:
on the software product and its marketplace.

Annual value of cycle reduction

=proj_days_saved_yr * cycle_day_value

The present value of cycle reduction accrued for the current year

Size of deyelopment staff

Currency

Long Integer

cycle_reduct_value 5

B □

dev_staff_size 5

B □

List the number of deyelopment personnel involved in the software projects bein<
developed in this environment. Do not include managers, or QA/testing personne

Average effort to inspect a low risk ("green")
module

Singlegm_effort 4

□ □ 2 2

Average effort hours to inspect a low risk green module.

Average lines of code covered per inspection Long Integer
of a low risk module

grn_loc_insp 5

□ □ 400 400

loaded_labor_rate

□ □

Loaded hourly labor rate Currency 6

$60 40 200 80

Average loaded hourly rate for development and testing personnel.

New lines of code Long Integnew_loc er 8

B B

iSiiii

MilBA
* Ml iSi^

Page 5 Of 11

Software Process Improvement Templates page 223

Emerald Targeted Defect Reduction

Long IntegerNew_or_changed_LOC New or changed lines of code

=New_LOC + churned_LOC

Calculated by language form.

Number of projects developed within one year Integer

7

num_proJects 4

□ □

Specify the number of active software projects are being developed or maintained
in this environment.

How many administrators needed for the tool? Long Integernum_tool_administrators 5

□ □ 1 1

The number of administrators needed for the tool.

num_tooLusers Number of tool users Long Integer 4

□ □ 5 0 1000 5

The number of potential users who would need access to an SPI tool.

Number of people to be trained

=num_tool_users + num_tooLadministrators

The number of people to be trained in the SPI technology or tool.

Pre-release labor cost savings

={baseline_insp_cost - SPI_insp_cost)
+SPI_lntemalFailureSavings

Long Integer

Currency

num_trainees 4

□ □

prerelease_savings 8

B □

proj_days_saved_yr Project days saved per year

= staff_days_saved_yr / staff_day_to_proj_day

An estimate of the number of project days saved per year due to the SPI.

Average effort hours to inspect a high risk
("red") module

Single

Single

5

□ □

red_effort 5

□ □ 4 4

red_loc_insp Average lines of code reviewed per inspection Long Integer
of a high risk ("red") module

4

□ □ 150 150

red_ratio Portion of the reviewed code estimated to be of Single
high risk ("red")

5

□ □ 0.2 0.2

mm
Monday, October 23,^00 i Page 6 of 11WM

page 224Software Process Improvement Templates

Emerald Targeted Defect Reduction I

7Long Integerreviewed_loc Reviewed lines of code

0 □ =New_or_changed_LOC *
base_pct_of_code_ reviewed

The number of new or changed lines of code reviewed each year by the
organization.

10CurrencyAdditional business per year under SPI
scenario

SPLadd_business_yr

□ □

Additional business expected each year under the SPI scenario.

CurrencyEmerald inspection cost 8SPI_insp_cost

0 □ =reviewed_loc * loaded_labor_rate * (red_ratio *
(red_effort / red_loc_insp) + (1 - red_ratio) *
(grn_effort / gm_loc_insp))

The estimated cost to review code when using Emerald to focus inspection effort;

Currency 8SPLIntemalFailureSavings Internal failure cost savings

0 0

Savings in internal rework by reducing internal failures. This variable is set by the
Gain From Early Defect Detection model built into the tool. (See the
est_project_impact_early_detection function).

SPLrepeat_business_yr Annual repeat business under SPI scenario Currency 10

□ □

Repeat business expected each year under the SPI scenario.

Singlestaff_day_to_proj_day Staff day to project day

□ □ = dev

5

_staff_size / num_projects

The number of staff days required to reduce the cycle time of the project by one
day. Suggested value is the average number of developers per project. (The
default formula below estimates the average project size as the total staff divided
by the number of projects.)

Staff days saved per year

=staff_hrs_saved_yr / staff_proj_hrs_day

The average number of staff days saved per year from targeted defect reduction.

Staff hours saved per year

=prerelease_ savings / loaded_labor_rate

Annual staff hour savings from targeted defect reduction.

Single

Single

staff_days_saved_yr 10

0 □

8staff_hrs_saved_yr

0 □

1 ■MMonday, October 23,2000 Page? of 11
•3;

Software Process Improvement Templates page 225

Emerald Targeted Defect Reduction

staff_proj_hrs_day

0 □ 6
Staff hours per day on project Single 3

1 8 6

The average amount of time a staff person spends on project activities.

Tool administration hours per week Singletool_admin_hrs_per_wk 4

□ □ 4 4

Estimated hours per week for tool system administration tasks such as
maintaining users, monitoring batch jobs, usage, and reconfiguring the system £
needed.

tool_client_license_cost Cost of client license for SPI tool Currency 7

□ □ $4,000 0 50000

The cost of each client license for an SPI tool.

Initial cost of tools to facilitate SPItooLcost Currency 7

0 □ =tooLclient_license_cost*num_tool_users+tool_
erver_license_cost

This is the initial cost to purchase client and server licenses for the tool.

Tool maintenance cost CurrencytooLmaint_cost 7

0 □ =tooLcosrtooLmaint_pct

The annual cost of tool maintenance

Annual tool maintenance percentagetooLmaint_pct Percent 4

□ □ 18% 0.00 0.50 0.05

The annual cost of a tool maintenance contract as a percentage of the initial
purchase.

tool_server_license_cost Server license cost

$130,000

The cost of a server license for the SPI tool.

training_hrs_per_trainee Training hours per trainee

Currency

□ □

Single

5

5

□ □ 4

The number of hours each trainee would need to spend in traininq.

The annual cost of using the tool

=use_hrs_wk * loaded_labor_rate *
weeks_per_year

The annual cost of taking additional time to review and analyze metrics and
decision support information.

Currencyuse_cost_yr 8

0 0

'wmwi
Wmm

Monday, October 23,2000 m Page 8 of 11

Software Process Improvement Templates page 226

Emerald Targeted Defect Reduction

use_hrs_wk Effort hours spent reviewing metrics
information each week

Currency 8

□ □ 4 4

An estimate of the additional hours per week management and users will spend
reviewing and analyzing metrics and decision support information.

Weeks per year Integerweeks_per_year 2

0 □ 52 50

■Us

m

W
m

il.

action appraisal step seq description rem. eff. impact:
Requirements
Inspections

1600 A formal review of the requirements
specification intended to find inconsistent,
invalid or missing requirements.

Informal design reviews 2500 An informal review of the design to verify
that it meets requirements.

35.00% 0.00%

30.00% 0.00%

Formal design
inspections

2600 A formal review of the design to verify that
the system design meets the intended
requirements.

3500 Informal review of code

3600 Formal code inspection

3700 Rigorous verification of software products

3800 Testing of subroutines. Usually informal
testing of a subroutine by the developer to
ensure it compiles and performs properly.

5150 The execution of a complete module or
small program that will normally range from
about 100 to 1000 source code statements,
or roughly 1 to 10 function points.

5200 Aimed at validating new features that are
added to a new or modified program and to
check for intermodule interfaces. This form
of testing is also called “component testing."
Often combines the work of multiple
programmers in to a component of a larger
system. New function testing is normally
supported by formal test plans and planned
test cases.

65.00% 0.00%

Informal code reviews

Formal code inspection

Functional verification

Subroutine testing

30.00% 10.00%

65.00% 10.00%

70.00% 10.00%

19.00% 0.00%

Unit testing 30.00% 0.00%

New function testing 30.00% 5.00%

Regression testing 5260 Test code against accidentally damaging an
existing feature from adding a new feature.
Also, insure that prior known bugs are
actually removed from code modifications
intended to correct the problems.

23.00% 0.00%

Integration testing 5300 Testing of a number of modules or programs
that have come together to comprise an
integrated software package.

35.00% 5.00%

iiB *110'

m Pages of 11

Software Process Improvement Templates page 227

Emerald Targeted Defect Reduction

5350 Testing aimed at judging whether or not an
application can meet specified performance
requirements.

5370 System testing of the full application. This is
often the last form of internal testing before
customers get involved with field (or beta)
testing.

5400 A specialized form of testing found among
companies whose software operates on
different hardware platforms under different
operating systems.

5420 Testing performed by a separate company
or organization from the one that built the
application.

5440 A special form of beta testing where a
company has a laboratory where clients can
test out both hardware and software prior to
having the equipment installed on their own
premises.

5450 Testing to ensure software security
requirements have been satisfied.

Stress or capacity testing 5470 A form of testing that verifies the system will
perform properly for large transaction or data
loads.

5500 Testing involving a random selection of test
cases in order to make statistical inferences

about the quality of the software.

5520 Statistical testing that models the expected
usage patterns of the software in order to
make inferences about the reliability of the
software in field use.

5550 Testing often performed by actual end users
who utlize the system under controlled
conditions (often video taped) where the
user's actions can be analyzed.

5600 Testing aimed at ensuring software viruses
have not been introduced into the product.

5650 A specialized form of testing aimed at
identifying the presence of Year 2000
problems.

5670 A specialized form of testing for ensuring the
Euro currency will be handled properly.

5690 Testing to ensure versions of software work
correctly for an international audience; test
for language, currency conversions, all
strings stored in separate configurable files,
etc.

5700 Customers test the software prior to
accepting it.

5710 Set of formal tests.

Performance testing

System testing

Independent testing

Lab testing

Security testing

Random testing

Usage based testing

Usability testing

Viral protection testing

Year 2000 testing

Euro conversion testing

International testing

Customer acceptance
testing

Formal Qualification

23.00% 0.00%

Modify 36.00% 10.00%

Modify Platfomi testing 24.00% 5.00%

31.00% 0.00%

38.00% 0.00%

16.00% 0.00%

29.00% 0.00%

30.00% 0.00%

15.00% 0.00%

14.00% 0.00%

16.00% 0.00%

16.00% 0.00%

16.00% 0.00%

16.00% 0.00%

Testing (FQT)

15.00% 0.00%

1.00% 0.00%

Monday, October 23,2000 Page 10 of 11
1

Software Process Improvement Templates page 228

Emerald Targeted Defect Reduction

5750 External field testing performed by less than
10 customers.

5752 Flight testing.

5770 Field testing performed by 10 to 1000
customers.

5790 Extensive field testing performed by over
1000 clients.

6500 Application is deployed and customers find
uction use of the softwareerrors durin

30.00% 0.00%Low volume Beta test (<
10 clients)

Flight test

Med volume Beta test

(10-1000 clients)

High volume Beta test
(> 1000 clients)

Field use

30.00% 0.00%

0.00%50.00%

0.00%75.00%

90.00% 0.00%

Relation SPI Comments

is enhanced by Metrics and Decision

Support
»

Emerald Targeted QA

Citation

[Hudepohl 1996] J. P. Hudepohl, et. Al., Emerald: Software Metrics and Models on the Desktop,
IEEE Software, 56-60, SepL 1996

Ref Id

[Hudepohl 1997] Hudepohl, J. P., Network Software Reliability and Quality, The Froehlich/Kent
Encyclopedia of Telecommunications, 281-314,1997

Monday, October 23/2000 Page 11 of 11

SoftwareProcessImprovementTemplates page229

E.2 Cleanroom Template for Statistical Testing

Software Process Improvement Templates page 230

Software Process Improvement

Statistical Testing

Description Statistical testing involves developing a usage model (e.g., in the form of a Markov
Chain) to represent all possible ways the system can be used. Statistical testing provides
improved decision support of when testing is completed and can be safely released.

•■I-
•p r-

w }
y. , e

'o.i
1’

1#? Hk-’
- V

Costs
lmplementation->Tools and information systems->Cost to acquire product or tool

Purchase of Usage Modeling tool

COSQ Cat: Prevention

TANGIBLE

BSC Cat: Learning and Growth

Specialized tools for usage modeling greatly facilitate the process.

Equations:
start end yr formula

=-tool_cost

la

1

bel

lmplementation->Tools and information systems->Tooi / system maintenance costs

Annual maintenance fees for Usage Modeling tool

COSQ Cat: Prevention

Tools typically require annual fees to cover maintenance, access to a help desk and new releases.
Equations:
start end yr formula

TANGIBLE

BSC Cat: Learning and Growth

label

1 =-tool_maint_cost

' • ..
ip.

m^Monday, OctobOT23; 2000 liiilii Page1 of 15m

Software Process Improvement Templates page 231

Statistical Testing

lmplementation<>Training

Personnel time in training

COSQ Cat: Prevention

Personnel who currently perform testing can be re-trained to perform usage modeling and statistical
testing. An estimate of the number of usage modelers can be estimated by dividing the total usage
model development hours required each year by 150.

Equations:

start end yr formula

1 1 =-num_usage_modelers * training_hrs_per_trainee *
loaded labor rate

TANGIBLE

BSC Cat: Learning and Growth

label

lmplementation->Training->Costs to purchase training

Training class

COSQ Cat: Prevention

TANGIBLE

BSC Cat: Learning and Growth

The cost to purchase training for those who will perform usage modeling.

Equations:

start endyr formula

1 1 =-num_usage_modelers * training_cost_per_modeler

Cost of consultants and coaching

COSQ Cat: Prevention

Consultants to provide advice and coaching to help teams implement a new technology or process
improvement.

Equations:

start end yr formula

1 1 =-consulting_hrs*(1-consult_direct_pct)*consult_hr_rate

label

TANGIBLE

BSC Cat: Learning and Growth

label

*:
si.Monday, October^, 2000 Page 2 of 15

Software Process Improvement Templates page 232

Statistical Testing

Quality Effect->Quality Appraisal->Testing

Time to analyze, develop and maintain usage model

COSQ Cat: Prevention

The process of developing the high level usage specification helps to define functional specifications
and requirements. If functional specifications already exist it is easier to develop a user specification
because decisions have already been made about how the application will flow. Conversely, once a
usage specification exists, it is easier to complete a functional specification. The usage specification
process forces customers to specify how the application will flow. The additional effort for creating
usage models is in documenting the usage states in the Markov chain format and estimating
transition probabilities for each mode of use.

Equations:

start end yr formula

TANGIBLE

BSC Cat: Customer

label

=-usage_modeLdev_hrs * loaded_labor_rate

Time to interface usage test generator to testing tool

COSQ Cat: Appraisal

1

BSC Cat: Intem

SEMITANGIBLE

al/Business Process

To realize the efficiencies from automated testing there may be some effort involved to interface the
output of the usage model to a specific testing tool or testing environment. The capabilities of usage
testing tools should provide interfaces to most common automated testing environments. However,
there may be some work required to tune output for specific environments.

Equations:

start end yr formula

1 1 =-interface_tooLhrs * loaded_labor_rate

label

Benefits

Customer / Market impact->Revenue Impact

Customer retention SEMITANGIBLE

BSC Cat: Customer

Improved field quality leads to higher customer satisfaction which can help retain existing customers
and attract new customers.

Equations:

start end yr formula label

=SPI_add_business_yr + SPI_repeat_business_yr -
baseline_repeat_business_yr

1

Monday, October 23,2000 Page 3 of 15

Software Process Improvement Templates page 233

Statistical Testing

SEMITANGIBLEReduced cycle time value

BSC Cat: Customer

The test cycle time is reduced by the same factors that reduce testing cost. The usage modeling and
test case generation can be performed in parallel with the software development.

Equations:

start end yr formula label

1 =proj days saved yr * cycle day value

Production Cost lmpact->Documentation->Requirements

TANGIBLEReduced requirements creep cost

COSQ Cat: Prevention

Usage specification and modeling mitigate the risk of requirements creep later in the life cycle. Jones
states that "defect rates associated with new features added during mid-development are about 50%
greater than those of the artifacts associated with the original requirements. Defect removal
efficiency levels are depressed as well, sometimes by more than 15%.'

Equations:

start endyr formula

BSC Cat: Customer

label

=reduce_rqmts_creep_savings1

Production Cost lmpact->Maintenance

Reduced maintenance cost TANGIBLE

COSQ Cat: External Failure

Statistical testing contributes to improved field quality of the software product. Defects are
efficiently removed for a given test budget resulting in higher quality once the testing budget has
been exhausted. Also, the quantitative analysis and improved prediction of field quality improves
process control and release decisions. Higher field quality results in lower field support costs and
higher customer satisfaction.

Equations:

start endyr fonnula

BSC Cat: Customer

'.W.'

label

1 =maint_cost_savings

,v«35

Monday, October 23,2000 Page4of15

Software Process Improvement Templates page 234

Statistical Testing

Production Cost lmpact->Management->Decision Support

Improved support for release decisions SEMITANGIBLE

COSQ Cat: External Failure BSC Cat: Intemal/Business Process

Quantitative data from the testing process can help managers make better estimates and decisions on
when to stop testing and release the software.

Equations:

start endyr formula label

1 =SPLdecision savings yr

Production Cost lmpact->Management->Project Planning

Improved resource and schedule planning for testing phase

COSQ Cat: Appraisal BSC Cat:

SEMITANGBLE

Intemal/Business Process

The usage model can provide data for effort, schedule, and cost projections that will be required for
the testing effort.

Quality Effect->Quality Appraisal->lnspection, Validation and Verification

Validation of requirements

COSQ Cat: Prevention

Better validation of requirements results in better requirements stability less growth of requirements
later on in the lifecycle.

SEMTIANGBLE

BSC Cat: Customer

Quality Effect->Quality Appraisal->Testing

Targeted more effective testing efforts and test automation efforts

COSQ Cat: Appraisal BSC Cat: Intem

SEMTIANGBLE

al/Business Process

Statistical testing and being able to generate random test cases from a usage model so that the test
budget is spent in a way that maximizes the increase in operational reliability.

Automated test case generation

COSQ Cat: Appraisal

SEMOTANGBLE

BSC Cat: Intemal/Business Process

Once a usage model is built it can be used to generate random test cases from the usage model. Test
cases are generated by taking random walks through the model and generating program input for
each arc transition. Automated test case generation saves human effort to manually generate the
same number of test cases. Also, the test cases can be automatically executed saving additional effort.

Equations:

start end yr formula

;;

label

=auto_test_gen_savings11

ia^
.»') k” y.

-sr*

Monday, October 23,2000 Page 5 of 15•v^

Software Process Improvement Templates page 235

Statistical Testing

SEMITANGIBLEEffective, efficient testing

COSQ Cat: Appraisal

The generated test cases will test paths in the program with the same frequency distribution as is
expected during operational use. Faults on frequently traversed paths have the highest probability of
causing a failure in the field. Thus "the test budget is spent in a way that maximizes the increase in
operational reliability from testing." Note that this improvement should not include efficiencies due
to automatic test case generation.

Equations:

start end yr formula

BSC Cat: Intemal/Business Process

label

=test_cost_yr * test_improve_pct

data type

low val hi val default

parameter name

hide lock formula

user prompt

Currency 8auto_test_gen_savings1 Automatic test generation savings 1

=avg_test_case_prep_hrs * loaded_labor_rate
*SPLnum_test_cases_vr

One approach to estimating the amount of manual effort that is displaced from
having the ability to automatically generate test cases. (See
auto_test_gen_savings2 for a second approach.)

0 □

avg_test_case_prep_hrs Average time to prepare a test case in hours Single 5

□ □ 0.5 0.5

base_decision1_state1_pr(Baseline probability of decision 1 and state 1 Percent 5
b

0 0 =state_1_prob 'baseline. correct_prediction

The probability that decision 1 is selected given that state 1 is the true state of
nature.

base_decision1_state2_pr(Baseline probability of decision 1 and state 2 Percent 5
b

0 0 =(1 -state_1_prob)*(1 -
baseline_correct_prediction)

The probability that decision 1 is selected given that state 1 is the true state of
nature.

base_decision2_state1_pr(Baseline probability of decision 2 and state 1 Percent 5
b

0 0 = state_1_prob * (1 - baseline.correct.prediction)

Probability of decision 2 is made and state 1 is true state of nature

s
■-g£.7

Monday, October 23,' 2000 .:,P^e6of 15

page 236Software Process Improvement Templates

Statistical Testing

base_decision2_state2_pr(Baseline probability of decision 2 and state 2 Percent 5

b

=(1 -state_1_prob)* baseline_correct_predictior

Probability that decision 2 is chosen and state 2 is true state of nature.

Percent 5baseline_correct_predictior Percentage of time correct decision made
under baseline scenario

B B 60%

Percentage of time the organization correctly make the correct choice under the
baseline scenario. This variable must always point to a specific variable for the
baseline.

baseline_cost_per_decisio Baseline cost per decision Currency 8

n

B B =payoff_decision1_state1 *
base_decision1_state1_prob +
payoff_decision1_state2 *
base_decision1_state2_prob +
payoff_decision2_state1 *
base_decision2_state1_prob +
payoff_decision2_state2 *
base_decision2_state2_prob

10baseline_repeat_business. Baseline repeat business per year Currency
vr

□ □

How much net repeat business occurs each year.

Churned lines of code Long Integer 8churned_loc

B B =current_size_LOC * code_churn_pct

3code_churn_pct Percentage of code "in play"? Percent

B B 0% 100%

The active code that is subject to active maintenance or modifications. Populated
automatically from language form.

Coding phase creep reduction Percentcode_ creep_red uce 5

B □ 10% 10%

Percentage of reguirements creep eliminated from coding phase from the SPI.

Probability that code is high quality at time of
release decision

Percentcode_high_quality_prob 5

□ □ 50% 50%

At the time a decision is made to release the software, the true quality of the code
is unknown. This represents the probability that the code is of acceptable release
oualitv at the time of the decision.

3

Page 7 of 15Mo^ay^ October23,-2000
aafBM 11ia

Software Process Improvement Templates page 237

Statistical Testing

code_phase_budget_pct

□ □ 21%

Percent of budget spent during coding phase Percent 5

21%

code_phase_creep_mth Percent of new requirements per month of
coding phase

Percent 5

0 □ 1.25% 1.25%

code_rel_cost_fp Relative cost per function point for
reguirements introduced during coding

Single 5

0 □ 1.5 1.5

The relative cost per function point for requirements introduced during coding.

Consulting direct contribution percent Percentconsult_direct_pct

□ □

4

0.90 0 1 0.90

The percentage of consulting time that directly contributes to product
development.

consult_hr_rate Consultant hourly rate Currency 5

□ □ 80 $20 $500 $80

The hourly cost per consultant that is needed to implement the SPI.

Consulting hours to implement SPI Long Integconsulting_hrs er 5

□ □ 80

The number of consulting hours that will be needed to implement the SPI.

Current code base size in Lines of Code Long Integercurrent_size_LOC 7

0 0

Calculated based on other values. Automatically populated by Baseline
Language form.

cycle_day_value Value of each cycle day saved Currency 10

□ □ 1000 $1,00

The value of a reduced cycle day. The present value of saving a cycle day in
terms of increased sales, awards attained, penalties avoided. The value depend;
on the software product and its marketplace.

Decisions made per year Long Integerdecisions_per_year 4

0 0 5
The number of decisions made each year.

Percent of requirements creep reduced in
design phase

design_creep_reduce Percent 5

0 □ 10% 10%

- ' -/Kxv.

V.'5miiUtond^, October 23.2000 Page 8 of 15
L

Software Process Improvement Templates page 238

Statistical Testing

clesign_phase_budget_pct Percent of budget spent during design phase Percent

23%□ □

5

23%

The percentage of the development budget spent during design phase.

Percentdesign_phase_creep_mth Percent of requirements introduced during
design phase per month

5

0 □ 3% 3%

design_rel_cost_fp Relative cost per function point for
requirements introduced during design

Single 5

0 □ 1.25 1.25

The relative cost per function point for a requirement introduced during this phase

Effort hours to adapt tool to particular
environment

Singleinterface_tooLhrs 5

□ □ 80

The hours involved to adapt and implement a tool for a particular development
environment.

KLOCS_per_year

0 0

New or changed KLOCS per year

=New_or_changed_LOC /1000

Single 5

loaded_labor_rate Loaded hourly labor rate Currency 6

□ □ $80 40 200 80

Average loaded hourly rate for development and testing personnel.

Maintenance cost savings

=maint_cost_yr * maint_reduct_pct

A reduction in software maintenance cost due to the SPI.

Maintenance cost per year

=maint_effort_pct * software_budget_per_yr

The annual cost of software maintenance.

Percent of budget spent on software
maintenance

Currency

Currency

Percent

maint_cost_savings 8

0 □

maint_cost_yr 8

□ □

maint_effort_pct 5

□ □ 20%

The percentage of the software budget spent on maintenance of existing systems

Percent reduction in maintenance cost Percentmaint_reduct_pct 5

□ □ 10%

A percentage reduction in maintenance cost due to implementation of the SPI.

m
< Monday, October 23,2000 ' ^Page 9 of 15 i

£ iie.

Software Process Improvement Templates page 239

Statistical Testing

Long Integer 8new_loc New lines of code

New_or_changed_LOC New or changed lines of code

=New_LOC + churned_LOC

Calculated by language form.

Number of tool users

Long Integer 7

num_tool_users Long Integer 4

□ □ 1000 5=num_usage_modelers

The number of potential users who would need access to an SPI tool.

Number of usage modelers

0

Long Integernum_usage_modelers 4

□ □

The number of people that will develop statistical usage models.

Payoff for decision 1 when state 1 occurs

=payoff_release_good_quality

Currencpayoff_decision1_state1 y 10

payoff_decision 1 _state2 Payoff for decision 1 when state 2 occurs

=payoff_release_poor_quality

Currency 8

payoff_decision2_state1 Payoff for decision 2 when state 1 occurs

=payoff_test_good_quality

The payoff for decision 2 when state 1 occurs

payoff_decision2_state2 Payoff for decision 2 when state 2 occurs

=payoff_test_poor_quality

The payoff for decision 2 when state 2 occurs.

payoff_release_good_quali Payoff for releasing good quality code on-time Currency

Currency

Currency

B B

8

8

8
ty

□ □

payoff_release_poor_qualit Payoff for releasing poor quality code Currency 10
y

□ □

What is the financial consequence of releasing poor quality code.

payoff_test_good_quality Payoff for delaying release of good quality code Currency 10

□ □

What is the financial consequence of delaying the release in order to test code
that is already of acceptable quality?

14.-
M %M-'

smMonday, October 23,2000 Page 10 of 15- 15JUL

page 240Software Process Improvement Templates

Statistical Testing

8payoff_test_poor_quality Payoff for delaying the release of poor quality Currency
code for continued testing

□ □

What is the payoff for delaying the release of poor quality code for continued
testing?

Single 5Project days saved per yearproj_days_saved_yr

□ □ 20

An estimate of the number of project days saved per year due to the SPI.

reduce_rqmts_creep_savin Savings from reduction of requirements creep Currency 10
gs

0 B =software_budget_per_yr * 12 *
(design_phase_budget_pct * design_reLcost_fp
* design_phase_creep_mth *
design_creep_reduce + code_phase_budget_pct
* code_reLcost_fp * code_phase_creep_mth *
code_creep_ reduce + test_phase_budget_pct *
test_rel_cost_fp * test_phase_creep_mth *
test_creep_reduce)

Currency 7software_budget_per_yr Software development budget per year

□ □

Enter the estimated development budget per year. This can be estimated from
the average fully loaded developer salary times the size of the staff.

CurrencyAdditional business per year under SPI
scenario

10SPI_add_business_yr

n □

Additional business expected each year under the SPI scenario.

Percentage of time correct decision will be
made under SPI scenario

Percen 5SPI_correct_prediction t

0 0 95%

The right choices are considered to be decision 1 when state 1 is the true state of
nature, and decision 2 when state 2 is the true state of nature.

SPI cost per decision

=payoff_decision1_state1 *
SPI_decision1_state1_prob +
payoff_decision1_state2 *
SPLdecision1_state2_prob +
payoff_decision2_state1 *
SPI_decision2_state1_prob +
payoff_decision2_state2 *
SPLdecision2_state2_prob

CurrencySPLcost_per_decision 8

B B

'kt - .!!

Page 11 of 15

page 241Software Process Improvement Templates

Statistical Testing

8CurrencySPI_decision_savings_yr Annual SPI decision savings

=(SPLcost_per_decision -
baseline_cost_per_decision) *
decisions_per_year

0 □

5SPI_decision1_state1_prol: SPI probability of decision 1 and state 1

=state_1_prob * SPI_correct_prediction0 0

Percent

5SPLdecision1_state2_prol: SPI probability of decision 1 and state 2

0 0 =(1 - state_1_prob) * (1 - SPLcorrect_prediction)
Percent

SPLdecision2_state1_profc SPI probability of decision 2 and state 1

=state_1_prob * (1 - SPI_correct_prediction)0 0

Percent 5

SPI_decision2_state2_prol: SPI probability of decision 2 and state 2

=(1 - state_1_prob) * SPI_correct_prediction0 0

Percent 5

How many KLOCs are subject to the SPI each Double
year

5SPLKLOC_yr

□ □ =new_loc/1000

This value is the estimated Kilo- lines of source code (non-comment, non-blank
lines containing source code) where the software process improvement will be
applied each year.

SPI_num_test_cases_yr Number of test cases applicable to the SPI
each year

Long Integer 4

□ □

The number of test cases applicable to the SPI each year.

Annual repeat business under SPI scenario Currency 10SPI_repeat_business_yr

□ □

Repeat business expected each year under the SPI scenario.

State 1 probability

=code_high_quality_prob

The percentage of the time that state 1 is the true state of nature. Note that the
probabilty of state 2 is (1 - state_1_prob).

Testing cost per year

=test_effort_pct * software_budget_per_yr

Annual budget spent on testing each year.

Percent

50%

Currency

5state. 1_prob

0 0

8test_cost_yr

□ □

- -.i

Monday, October 23,2000 ' j Page 12 of 15

page 242Software Process Improvement Templates

Statistical Testing

Percent 5Test phase creep reductiontest_creep_reduce

□ □ 10%10%

5Percent of budget spent on testing Percenttest_effort_pct

□ □ 15%15%

The percent of the budget spent on testing.

Percentage of testing budget that would be
displaced bv SPI

Percent 5test_gen_pct

□ □ 5%5%

The portion of the annual development budget that is currently spent on manual
test case generation that would be displaced bv the SPI.

Percent improvement in testing productivity Percent 5test_improve_pct

□ □ 10%

Percentage improvement in testing productivity as a result of the SPI

Percentage of budget spent during testing
phase

Percenttest_phase_budget_pct

□ □ 30%30%

Percent of new requirements per month of
testing phase

test_phase_creep_mth Percent 5

0 □ 0.5%0.5%

test_reLcost_fp Relative cost per function point for
requirements introduced during testing

Single 5

□ □ 2.5 2.5

7Cost of client license for SPI tool Currencytool_client_license_cost

□ □ $500 0 50000

The cost of each client license for an SPI tool.

Initial cost of tools to facilitate SPItooLcost Currency 7

0 □ =tooLclient_license_cost * num_tool_users +
tool_server_license_cost

This is the initial cost to purchase client and server licenses for the tool.

CurrencyTool maintenance costtool_maint_cost 7

0 □ =tooLcost*tool_maint_pct

The annual cost of tool maintenance

•Page 13 of 15
lilS *Slii

m
l

T-

sisailfl'SiMonday, October 23,2000
yftliaasagiig

page 243Software Process Improvement Templates

Statistical Testing

4Percenttool_maint_pct Annual tool maintenance percentage

□ □ 0.00 0.50 0.055%

The annual cost of a tool maintenance contract as a percentage of the initial
purchase.

tooLserver_license_cost Server license cost Currency 5

□ □ $1,000

The cost of a server license for the SPI tool.

Currency 5training_cost_per_modeler Training cost per modeler

$1,500

Expected cost of training each trainee.

Training hours per trainee

0 □

training_hrs_per_trainee

1500

Single 5

□ □ 40

The number of hours each trainee would need to spend in training.

Annual effort hours to develop usage models

=36*SPLKLOC_yr+15

We have low confidence in the default equation as it is based on only a very few
data points. More study is needed to establish improved measures.

Double 5usage_model_dev_hrs

0 □

SPI CommentsRelation

Sequence Based
Specification

enhances The process of developing the high level usage
specification helps to define functional
specifications and requirements. Once a usage
specification exists, it is easier to complete a
functional specification. The usage specificatior
process forces customers to specify how the
application will flow. The additional effort for
creating usage models is in documenting the
usage states in the Markov chain format and
estimating transition probabilities for each mod<
of use.

Provides feedback on process quality by
performing statistical testing at the end of each
increment.

Incremental Developmentenhances

is component of Cleanroom Software
Engineering

Im mMonday, October 23.2000 Page 14 of 15

��

Software Process Improvement Templates page 244

Statistical Testing

If functional specifications already exist it is
easier to develop a user specification because
decisions have already been made about how
the application will flow. Usage models can be
generated from sequenced-based
specifications.

is enhanced by Sequence Based
Specification

-iiiai li

lislipSF-’''*'
iiwigl Si

■#

Statistical Testing

Ref Id

[Agrawal93]
Citation

K. Agrawal, J. Whittager, Experiences in Applying Statistical Testing to a Real-
Time, Embedded Software System, Proceedings of the Pacific Northwest Software
Quahty Conference, 154-170,1993

[Basihl994] Basili, Victor, and Scott Green, Software Process Evolution at the SEE, IEEE
Software, 58-66, July 1994

M. Brewer, P. Fisher, D. Fuhrer, K. Nielsen, Poore, The Application of Cleanroom
Software Engineering to the Development of Embedded Control Systems Software,
Proceedings of the Second European Industrial Symposium on Cleanroom Software
Engineering,, Mar

[Brewei95]

[Fuhrer 1992] David Fuhrer, Hailong Mao, J.H. Poore, OS/2 Cleanroom Environment: A Progress
Report on a Cleanroom Tools Development Project, Proceedings of the Hawaii
International Conference on System Sciences (1992), 449-458,1992

[Poorel998] Poore, Jesse H., and Carmen J. Trammell, Application of Statistical Science to
Testing and Evaluating Software Intensive Systems, Statistics, Testing, and Defense
Acquisition,, 1998

[Tann 1993] L-G Tann, A Successful Cleanroom Project - OS32, European Industrial Symposium
on Cleanroom Software Engineering, 40,1993

[Whittakei94] James A. Whittaker, A Case-Study in Software Reliability Measurement, Quality
Week'94,1-17, May 1994

g Monday, October 23i 2000 Page 15 of 15Wm

page245

Appendix F

Example Cost-Benefit Analyses

Examples cost-benefit analyses were created which used the templatesfor the three uses

ofEmerald andfor thefour Cleanroom technologies.This appendix presents example

CBA reports Emerald targeted defectreduction and for Cleanroom statistical testing.

El Emerald Examplefor Targeted DefectReduction

�

Example Cost-Benefit Analyses page 246

o00 h-
oCO O) CO

r^ CO CO
{

Q

ft3S .o o § O i
in 00

CO o> h-

I

c 5?
o

^ ^ ^o
o g o g o

o o oo

2 CO o LO o
o j0> (0 CO CM CO

a
oI
a 5S SS s?

1 8 § 8 8 8
O i
o ̂

(0
o

I
I St

3
B in o CO CO U) O ;

<=> COCO CM COI
>

CO
s

<0
LU

I c

I 5 O -o o o o■5 g o o o o o
f?St CM CO in 00 inCO ••

I ^
£

s:

K

I

i ^
4 5 o

^ I
Q

O) r«- s o CMin h- CO <N
00 CO CM CO

•iiSt COCM NO

s:

1.1“"4 \

I CO50S s Si COCO o 00
O

00 CM <NCM00 CM
-St in CM CM NOCOCM

CO
■o

o §O 8 §
C

o oc o> CM CM-C5 N
W

O
in
o o

CM CM CO CD
2 >in \

iA iAISt •o iA
® is3

^.%L
a: 9

*oo
K.

I ®

®St 8 8
h

8 O oQ <0 m lO
o« CM

m 00CO CM CO 00 CO o

: S 50 in h- in COs >»•® <» o>cco

” -5
- i2

Qs.)1
■5•o i®V.

0)I s: aQ

" I^ ®
o g>

ffi

LU

a>R
o>'S. § g 8 O

o
O o g

CM

s

, (0
H

o oIt CM<s>•c*s in CM O CO O
COCO cr> CO in h- CM 00

I ^ < <o•Offi ® CO
K

in CM 00 CO in
.COffi <s «i0 4Ao 2 5

rere O® re

I IS Q ® ^ E
T3 UJa> LU tJJ

'S® ^
2> a S toI ^

re
I rere9 HSIr: IS*■o 1 II

It;

f I
a ®

8 ' V resc
-Uj&

s
re

re

$
re CMs re> : s crere rj

<Nre a -fe O)4 re> o c& to

a
re o>re SS

Q
B- Q. re

reI §
•rj

■§
CJ -C

.C5^ re rere reo> c 8re uc re
Cre re re >o60 ,rere c re

lb•D

I Si, o re60
6

o 8 ig
:o U S
:r C«

re0 re ic ■s* re'CO EEre3 ■reE s:£ 2reSi sre$t io> rep reftQ re
>re re s 3Pc 01 cn o 5?

Example Cost-Benefit Analyses page 247

}y%

j*0K

jgiagiBiiiaf if

'mm^ms.

CBA title: ...

.-tff!?
;

Entity: iDotCom eBusiness
$

cba no 35

CBA description: Determine the cost-benefits of using Emerald for Targeted
Defect Reduction

9.00% Time horizon in years

Type of decision supports Whether or not to implement a single SPI

How analysis will be used Cost justify funding for an initiative

Objectives to be achieved

Project start date

CBA initiated date

5 CurrencyDiscount rate

1/1/01 Fiscal year start date

11/1/00 CBA completed date

1/1

United States Dollars

/01

Emerald Targeted Defect ReductionAlternative# 1

Effect Yean Year 2 Years Year 4 Years Total

Siosis I

Quality Effect->lnternal Failure

More defects found

during inspections

Total Quality Effect- ($12300) , ($11,835) ($10,858) ($9,961)
. >lnternatfiaHtii«

($12,900) ($11,835) ($10,858) ($9,961)

1.^ • 4:"■o!

4:-

($9,139) ($54,692)

''($9'l39) ($54,692)

. . —.4s.

lmplementation->Tools and information systems
($150,000)Cost to acquire product

or tool
($150,000)

Tool/system
maintenance costs

($24,771) ($22,725) ($20,849) ($19,127) ($87,472)

S'®
Total Implementation-

>Tools and
information ' •'
systems .• i .

:i5s#aaI

($1^^ -($24,771) • ($22,725) . ($20,849), ($19,127)
' :f-'5 ^ ^ ^

f

. ($237,472)
iW

I% m

lmplementation->Training
Personnel time in training ($1,440) ($1,321) ($1,212) ($1,112) ($1,020)

Total implementatlon'- ^"' ($1,440)"; ($1,321) • ($1,212). ($1,112) -, ($1,020)
- >Training • ^ '

r

($6,105)

■'i
a

: J

Disclaimer: The user is respon^Jc for verifying fhereasonablenessof the cost and benefit
estj^tesaad easurinsrjte benefits zk not double counted or overstated.

ifeiia&iislsteiii'is
' 5--'

, - . i . .

Monday, Oct(d)8r23.2000 Page 1 of 8•*rv
iMSi

�

�

page 248Example Cost-Benefit Analyses

r .

JCBAMe; CBA Of Ein&iaTargeted Defect Reduction

vWr 1 f ,Yaar 2 < Year 3 Y«ar4^^ YearS

m

Effect

m

Total ~

lmplementation->Use and operations

Operations support

Data analysis,
summarization and

reporting

($12,000) ($11 ($50,877)

($50,877)

,009) ($10,100) ($9,266) ($8,501)

($12,000) ($11,009) ($10,100) ($9,266) ($8,501)

Total Implementation- ^ ($24,000), f$22.018) ’ ($20,200) ,,($18,#32)? .«17,002) (
> >Usean(l •, C ' t X—" X-. V'- -'""g
'; operations^-

($101,753)

lal
($188,340) ($59,945) ($54,995) ($50,454) ($46,289) ($400,023)Sum of Costs

Benefits |

Quality Effect->External Failure Costs

Fewer defects found
from customer use

$151,500 $138 $642,318,991 $127,515 $116,986 $107,326

mm.
"$642,318$151,500 : $138,991 ' $127,515 $116,986 .^^10|.3^Total Quality Effect-

>Extemal Failure
Costs

m1

Quality Effect->Quality Appraisal

$26,174 $24,013 $22,030 $20,211 $18,542 $110,970Code Inspection Time
Savings

$110,970Total Quality Effect- ' '$26,174 ' $24,013
>Quality - • ,
App^saig:^'

Quality Effect->lnternal Failure

$12,200Fewer defects found $11,193 $10,268 $9,421 $8,643 $51,725
during new function
testing

Fewer defects found

during regression testing

Fewer defects found
during system testing

Fewer defects found
dunng Customer
Acceptance

Total Quality Effect-
>lntemat Fj^ore^-.;

CustoHfier / Market lmpact->Revenue Impact

Customer satisfaction

Cycle Time Reduction

$12,385$13,500

$16,500 $15,138

$14,400 $13,211

?■

$56,800 -g $51,927 *

$180,000 $165,138

$102,756 $94,271

$57,236$11,363 $10,424 $9,564

$13,888 $12,741 $11,689 $69,955

$12,120 $11,119 $61,052$10,201

j'^^,706
r' • ' t ,
. ’ " J"./. I'- . f

$40,097 $239,968 '

$151,502 $138,993 $127,517 $763,150

$86,487 $79,346 $72,795 $435,656

V
Disclaimer: The e&d user is responsible for verifying the reason^leness of the cost and benefit

estimaies and ensuring thaT^elits are not double counted or overstated

Monday, October23, 2000^ ,3 ^

t"' ’

Pa^2of8

Example Cost-Benefit Analyses page 249

CBA title: Test CBA of Emerald Targeted Defect Reduction

Year; 5'

$200,311 # $1,198,805

^Yearl 4;.. Year 3 Year4

$237,990 $218,339

Total
- •

Effect -

Total Customer/ - $282,756 \ $259,409
Market Impact-

Year 2

-4>Ri Impact^ -

$474,339 $435,174

•

$399,242 $366,277

$319,988

•? ^

Sum of Benefits $517,030 $2,192,061

Total Net Present Val $328,690

Return on Investment 2.75

$414,394 $380,178 $348,787 $1,792,038

7.91 7.91 7.91 7.91 5.48

Disclaimer: the end user is responsible the reasonableness of the cost and benefit
estimates and ensuring that benefits are not double counted or overstated.

m
Mondayrlpctoter23,2000 Page 3 of 8

Example Cost-Benefit Analyses page 250

- : ' • • “T - I
Test CBA of Emerald Targeted Defect Reduction fCBA title: .

M
—

M m

Intangi^ / ̂ mitangible Effects
*JEffect

SEMITANGIBLE BENEFITS
ii

• Comment
W:

i?

liSiii--^lii
mm.

tSr:S

Analyze failures and help identify areas where process
improvement is needed

Clone detection and Reuse evaluation

Enhanced understanding of field problems

Evaluate outsourced 3rd party software Third party software quality increases
reducing the cost of usage,

e.g., design specifications, software, test
plans, user documentation

Evaluate the quality of software products

Focused reviews and reengineering on modules more
likely to have faults

Improve decision making

Improve managing process change Provides objective data to quantify and
support change decisions.

Incorporate the risk of defective patchesImproved patch design decisions

Improved productivity, reduced rework, detecting low
productivity

Improved project planning and estimating

Improved resource allocation decisions and stafFmg
assignments

Keeping project on schedule Schedule slippage leads to inefficient use
of resources and increases overall cost of

the project. Metrics inform management
decisions early and often to enable
corrective actions

Promote SEI Capability Maturity Model (CMM)
progression

Reduce risk of financial penalties In some environments, missing schedules
doesn't just lead to inefficient use of
resources, but also to missed award fees or
to direct assessment of penalties.

Targeted more effective testing efforts and test
automation efforts

Tracking development status in terms of complexity

?
Disclaimer: The end user is responsible forverifymg^Teascnft&leness of the cost and benefit

^^tes,aiid «as^^ that be^ts are not double counted or overstated. ̂ ̂ "

Monday, October 23,2000 ' Y Page 4 of $

page 251Example Cost-Benefit Analyses

'.I

. Test CBA of Emerald Targeted Defect ReductionCBA title:

1^'1a

Validate the results of process improvement initiatives

INTANGIBLE, • BENEFITS

Ability to self regulate, self audit

Avoid cost-overruns

Avoid losing market share

Bring unknown factors to the designer regarding
module usage.

Enterprise distribution of information on which to make
decisions

More effective design decisions can be
made regarding product usage.

Showcasing the Emerald toolset and reselling, best in
class

Disclaimer: end user 1$ respoirsiUe for verifying the reasonabienesa-of the cost and benefit
are not double cotmted’OT overstated. . jestimates

ii

pH
^tiday^ October 23,2000 '00§ ^4* PM

I’

Example Cost-Benefit Analyses page 252

Test CBA of Emerald Targeted Defect Reduction |CBA title:

SPI: Emerald Targeted Defect ReductionCBA Parameters for SPI Alternative # i

SPI Cost Parameter

=proLdays_saved_yr *
cycle_day_value

Annual value of cycle reduction cycle_reduct_value

How many administrators needed for the tool? num_tooLadministrators

Number of tool users

Number of people to be trained

num_tool_users

num_trainees

1

5

=num_tooLusers +
num_tooLadministrators

=(baseline_insp_cost -
SPLinsp_cost)
+SPLIntemalFailureSavings

Pre-release labor cost savings prerelease_savings

0.2Portion of the reviewed code estimated to be of red_ratio
high risk ("red")

Tool administration hours per week

Cost of client license for SPI tool

Initial cost of tools to facilitate SPI

tool_admin_hrs_per_wl<

tooLclient_license_cost

tooLcost

4

$4,000

=tooLclient_license_cost*num_tool
_users+tool_server_license_cost

=tooLcost*tooLmaint_pct

18%

$130,000

Tool maintenance cost

Annual tool maintenance percentage

Server license cost

Training hours per trainee

The annual cost of using the tool

tool_maint_cost

tool_maint_pct

tool_server_license_cost

training_hrs_per_trainee

use_cost_yr

4

=use_hrs_wk * loaded_labor_rate
* weeks_per_vear

Effort hours spent reviewing metrics
information each week

Weeks per year

SPI Customer / Market Parameters

use_hrs_wk 4

50weeks_per_year

Value of each cycle day saved

Project days saved per year

cycle_day_value

pro]_days_saved_yr

$9,000

= staff_days_saved_yr /
staff_dav_to_proLdav

$80,000Additional business per year under SPI
scenario

Annual repeat business under SPI scenario

SPI Productivity Parameter

SPI_add_business_yr

SPI_repeat_business_yr $1,100,000

Average effort to inspect a low risk ("green”) grn_effort
module

Average lines of code covered per inspection grn_loc_insp
of a low risk module

Average effort hours to inspect a high risk
("red") module

Average lines of code reviewed per inspection red_loc_insp
of a high risk ("red") module

Staff days saved per year

red_effort

sfaff_days_sa

2

400

4

150

ved_yr =staff_hrs_saved_yr /
staff_oroLhrs_dav

Disclaimer:' The end user is responsible for verifying the reasonableness of the cost and benefit
estimates and ensuring that benefits^e not double runted or overstated. ■'

sn.^11Monday^ Octc^t2$ 2000 Page 6 of 8•<v.’

page 253Example Cost-Benefit Analyses

JTea CBA of Emerald Targeted Defect igaWaSih ’CBA title: .

- . . u. .
mW-

siaff_hrs_saved_yr =prerelease_savings /
loaded_labor_rate

Staff hours saved per year

SPI Quality Assessment Parameter

SPLIntemalFailureSavings $43,700

SPI: Emerald Targeted Defect Reduction

Internal failure cost savings

Baseline Environments

Baseline Env

Test Emerald Targeted
Defect Removal

CMM level/sublvl 2 Repeatable

subindustry Systems

Baseline Environment Parameters

Organization
iDotCom eBusines

Consolidate° ̂ baseline type

currency unit United States Dollars

Code Parameters

3.5Average effort hours per inspection

Average lines of code per baseline inspection

Baseline percent of code reviewed each year

Churned lines of code

Percentage of code "in play”?

Current code base size in Lines of Code

New lines of code

New or changed lines of code

Number of projects developed within one year

Reviewed lines of code

avg_effort_insp

avg_loc_insp

base_pct_of_code_reviewei 80%

chumed_loc

code_chum_pct

current_size_LOC

new_loc

New_or_changed_LOC

num_projects

reviewed_loc

250

835

14.2

2

=New

0

7%

58500

108500

116850

_or_changed_LOC *
base_Dct_of_code_reviewed

=reviewed_loc ’
loaded.labor_rate * (red.ratio *
(red.effort / red_loc_insp) + (1 -
red.ratio) * (grn_effort /
gm_loc_insp))

Emerald inspection cost SPI_insp_cost

Cost Parameters

=reviewed_loc * (avg_effort_insp
/ avg_loc_insp) *
loaded_labor_rate

Baseline inspection cost baseline_insp_cost

Loaded hourly labor rate

Staff day to project day

Staff hours per day on project

Customer / Market Parameters

$60loaded, labor, rate

staff.day.to.proj.day

staff_proj.hrs.day

= dev.staff.size / num.projects

6

Baseline repeat business per year baseline_repeat_business_y $1,000,000
r

General Development Parameters

Disclaimer: The end is.ijssponsible for verifying the reasonableness of the cost and benefit
estima^l^ i^um^.jfliat benefits are not double counted or ow^tated.'^ J-

if
Monday, October 23,2000 ~ Page 7 of 8

r-'

�

Example Cost-Benefit Analyses page 254

Test CBA of Emerald Targeted Defect Reduction |CBA title:

. •«

-•A

Size of development staff
Jliti

34dev_staff_si2e

*Tr

Disclaimer: The end user is responsible for verifying the reasonableness of the cost and benefit
estinut^^and ensuring that benefits are ny double counted or overstated.

" -m;
Monday, October 23,2000 Page 8 of 8

Example Cost-Benefit Analyses page255

F.2 Cleanroom Examplefor Statistical Testing

Example Cost-Benefit Analyses page 256

-

'■’ ’-L'^r;m

:■ :
Mf:

wM$^
w

w1,
... '= m . -m

JCBA title: Test CBA for statistical te^ng
'
.t .■fc..,.*.^. »...„.>. ji..

m
A....» Wfc--.,—*-._.

i

%

mmsmmmm

cba no 32

J...

Entity: iDotCom eBusiness

CBA description: An example cost-benefit analysis to estimate the value of
statistical testing.

9.00% Time horizon in years

Type of decision supports Whether or not to implement a single SPI

How analysis will be used Cost justify funding for an initiative

Objectives to be achieved Improve release decisions

Project start date

CBA initiated date

5 Currency United StatesDiscount rate

11/1/00 Fiscal year start date

11/1/00 CBA completed date

1/1/01

Dollars

Alternative # 1 Statistical Testing

Effect Year 1 Year 2 Years Year 4 Years Total

SiQSIS I
lmplementation->Tools and information systems->Cost to acquire product or tool
Purchase of Usage
Modeling tool

($35,000) ($32,110) ($29,459) ($27,026) ($24,795) ($148,390)

Total Implemeatation- ($3^000) ($32,110) 'X$29.459J^^ ($27,026) ^ j^2
>To<^safid‘ ” “ ^ —u_ t ? ‘-t r 2.

. information ^ - ./.-j. t. " j
rr systems.>Costt.
'*' acquire product ” ‘

or tool

mi liwmmrn^r>.w m

. ($148,390)

p

'g
.i» m

lmplementation->Training->Costs to purchase training
($7,500)Training class ($7,500)

($1,600)Cost of consultants and
coaching

($1,600)

A-"’ ■

^Total implementation- . . ($9,100)
* r >Training-^Costs

to purchase
training •

' ■■ ■■ '

■ -m
($9,100)

Disclaimer: The end user is responsible for verifying the reasonableness of the cost and benefit
esths^u and ensuring Iwnefits are not doo^e comited or overstated.

Monday, October 23^2000^ /*

•e

>- Page 1 of 7
at .. > t-' ■V-v/T,

�

Example Cost-Benefit Analyses page 257

»

\CBA title: Test CBA for statistical testing
V

Year 4 Years otalEffect Yearl « Year 2 Year 3
.1

Quality Effect->Quaiity Appraisal->Testing

($314,100) ($288,165) ($264,372) ($242,543) ($222,516) ($1,331,696)Time to analyze, develop
and maintain usage
model

($4,800)Time to interface usage
test generator to testing

($4,800)

tool

TotapQuallty Effect- ($318,900), ($288,165). ($264,372) ,j($242,543)F ($222,516) ($1,336,496)
^Quality "

V Appraisal-
>Testing

lmplementation->Tools and information systems->Tool / system maintenance costs

Annual maintenance fees ($5,250) ($4,817) ($4,419) ($4,054) ($3,719) ($22,259)
for Usage Modeling tool

“•r

i

•S i.

($5,250) ($4,817) ($4,419) ($4,054) ($3,719) ($22,259) ;TotaMmplementation-
>Tools and
information

-T systems->Tool /
system
maintenance

costs

ar
1 1

Slip
u ^

iLl-.A' •'if '* ft

lmplementation->Training

Personnel time in training ($12,000) ($12,000)

A

Total Implementation'
>Trainina

($12,000) ($12,000)
M f

■CX,

Sum of Costs ($380,250) ($325,092) ($298,249) ($273,623) ($251,030) ($1,528,245)

Benefits

Production Cost lmpact*>Management->Decision Support
$155,000 $142,202 $130,460 $119,688 $109,806Improved support for

release decisions
$657,157

iTotal Production Cost $155,000-'-$142,202 $130,460 $119,688 $109,806
Impact-
>Management-.
>Oecision
Support

Production Cost lmpact->Maintenance

-».sSs_

$657,157

.iflSF

Reduced maintenance
cost

$58,320 $53,505 $49,087 $45,034 $41,315 $247,260

■V TT-

Disclaimer: The «and user is responsible foTverifying the reasonableness of the cost and benefit
estimates and ensuring that benefits are not doublejtounted or overstated.

Monday, October 23,2000 Page 2 of 7

�

�

��

Example Cost-Benefit Analyses page 258

Jtest CBA for statistical testing ^ j m

r.T:gg‘r
.. Vearl Year2 Year3 Year4 * = Years- ,Total:;p

I » T" * "AV. , F. r.

$58,320 . $53,505 $49,0871"-: $45,034 , $41,315 ' $247,260 .
- - - . *

Production Cost lmpact->Documentation->Requirements

$57,081 $52,368 $48,044 $44,077

mEffect wW-

Total Production Cost

Impact-
- >Maintenance f

m
Si w

imMM ima

$40,437 $242,006Reduced requirements
creep cost

SS5SS3
$242,006 ,

I •

Total Production Cost

"’sf Impact- -
>Docuraentation- .
^Requirements/

,

i»

i:f?

$57,081 $52,368 ! $48,044 Sill
’

lassl'ml

Customer / Market lmpact->Revenue Impact

i'ii-

$20,000 $18,349 $16,834 $15,444 $14,169 $84,794Customer retention

$15,000 $13,761 $12,625 $11,583 $10,626

$35,000 $32,110 $29,459 _ $27,026 ’ , .

$63,596Reduced cycle time value

$148,390Total Customer/

Market Impact-r^.
>Revenue Impact

Quality Effect->Quality Appraisal->Testing

$195,000 $178,899 $164,128 $150,576 $138,143 $826,745Automated test case

generation

Effective, efficient testing $32,076 $29,428 $26,998 $24,769 $22,723

Total Qua% Effect- 1 $227,076 $208,327' $191,125" *$175,344 $160,866

Appraisal*^ \ - i "> J"
- >Testing /»

Sum of Benefits

Total Net Present Val

Return on Investment

Mm

$377,220$532,477 $488,511 $448,175 $411,170

$152,227 $163,419 $149,926 $137,546 $126,189

1.50 1.50 1.501.40 1.50

$135,993

$962,739

PPP?
Mii*'mek

W-
w-

$2,257,552

$729,307

1.48

M'

Disclaimer: The end user is respons&le for verifying the reasonableness of the cost ead benefit
r estiinates and ensuring that b«iefits are not double counted’-^^rwigiti^iSl^-- —

Monday, October Bl2(W0‘ „ ml: 3' 3'f '3Page3of7

Example Cost-Benefit Analyses page 259

^CBA title:
to

m-sm

. Jtest CBAfer statistical jesting ^
-;:

iiiipi—=■. iry ’

CBA Parameters for SPI Alternative # i

m m

I
iM iii

iSP/; Statistical Testing

SPI Cost Parameter

Consulting direct contribution percent
Consultant hourly rate
Consulting hours to implement SPI
Effort hours to adapt tool to particular
environment

Maintenance cost savings
Number of tool users

Number of usage modelers
Savings from reduction of requirements creep reduce_rqmts_creep_saving =software_budget_per_yr ’ 12 *

(design_phase_budget_pct ’
design_rel_cost_fp *
design_phase_creep_mth *
design_creep_reduce +
code_phase_budget_pct *
code_rel_cost_fp *
code_phase_creep_mth *
code_creep_reduce +
test_phase_budget_pct *
test_reLcost_fp *
test_phase_creep_mth *
test_creep_reduce)
$5,000
=tool_client_license_cost *
num_tool_users +
tooLserver_license_cost
=tool_cost*tool_maint_pct
15%

$10,000
$1,500

90%consult_direct_pct
consult_hr_rate
consulting_hrs
interface_tool_hrs

$100

160

80

=maint_cost_yr * maint_reduct_pmaint_cost_savings
num_tool_users
num_usage_modeIers 5

s

Cost of client license for SPI tool

Initial cost of tools to facilitate SPI

tool_client_license_cost
tooLcost

Tool maintenance cost

Annual tool maintenance percentage
Server license cost

Training cost per modeler

tool_maint_cost
tool_maint_pct
tooLserver_license_cost
training_cost_per_modeler

ct
=num_usage_modelers

Training hours per trainee

SPI Customer / Market Parameters

training_hrs_per_trainee 40

Value of each cycle day saved
Project days saved per year
Additional business per year under SPI
scenario

Annual repeat business under SPI scenario SPLrepeat_business_yr $20,000

SPI Decision parameters

cycle_day_value
proJ_days_saved_yr
SPI_add_business_yr

1000

15

$10,000

Percentage of time correct decision will be
made under SPI scenario

S P LcorrecLpred iction 95%

Disclaimer: The end user is responsible for verifying the reasonableness of the cost and herwfi^ j fc' - -estimates and ensuring that benefits are not dou^ counted or overstated.'^ *'7

Monday, October 23,2000 < - P
’;r

-1% 3

i
age 4 of 7

.

�

Example Cost-Benefit Analyses page 260

Test CBA for statistical testingCBA title:
tmkm

B

=payoff_decision1_state1 *
SPLdecision1_state1_prob +
payoff_decision1_state2 *
SPLdecision1_state2_prob +
payoff_decision2_state1 *
SPI_decision2_state1_prob +
payoff_decision2_state2 *
SPI_decision2_state2_prob

=(SPLcost_per_decision -
baseline_cost_per_decision) *
decisions_per_vear

SPI_decision1_state1_prob =state_1_prob *
SPLcorrecLprediction

SPI_decision1_state2_prob =(1 - state_1_prob) * (1 -
SPI_correct_prediction)

SPLdecision2_state1_prob =state_1_prob * (1 -
SPI_coiTect_prediction)

SPI_decision2_state2_prob =(1 - state_1_prob) *
SPI_correct_prediction

S;
SPI_cost_per_decision

SPI_decision_savings_yr

SiteMi

X,IS

SPI cost per decision

Annual SPI decision savings

SPI probability of decision 1 and state 1

SPI probability of decision 1 and state 2

SPI probability of decision 2 and state 1

SPI probability of decision 2 and state 2

SPI Productivity Parameter

Automatic test generation savings 1 auto_test_gen_savings1 =avg_test_case_prep_hrs *
loaded_labor_rate
*SPI_num_test_cases_vr

10%Coding phase creep reduction

Percent of requirements creep reduced in
design phase

Percent reduction in maintenance cost

How many KLOCs are subject to the SPI each
year

Number of test cases applicable to the SPI
each year

Test phase creep reduction

Percentage of testing budget that would be
displaced by SPI

Annual effort hours to develop usage models

SPI Quality Assessment Parameter

code_creep_reduce

design_creep_ reduce 10%

maint_reducLpct

SPLKLOC_yr

10%

=new_loc/1000

SPI_num_test_cases_yr 6,500

test_creep_reduce

test_gen_pct

10%

5%

usage_model_dev_hrs =36 * KLOCS_per_year + 15

Percent improvement in testing productivity

Baseline Environments

test_improve_pct 10%

SPI: Statistical Testing

Baseline Env

Baseline for Statistical

Testing template

Organization
iDotCom eBusines

CMM level/sublvl 3 Defined

subindustry Systems

0 % baseline typ

currency unit

Consolidate

United States Dollars

Baseline Environment Parameters

Disclaimer: The end user is rcspwisible for verifying the reasonableness of the cost and benefit ‘ '
estima^ and ensuring that benefits are not double counted or overstated. ̂ SUM

.

4 r

Monday, October 23,2^
•••. . .

Page 5 of 7
5-

Example Cost-Benefit Analyses page 261

- - Test CBA for statlsticai testing ,CBA tille: *

MU ■liiwM

Code Parameters

45,000
15.00%

1.25%

Churned lines of code

Percentage of code "in play"?
Percent of new requirements per month of
coding phase
Current code base size in Lines of Code

Percent of requirements introduced during
design phase per month
New or changed KLOCS per year
New lines of code

New or changed lines of code
Percent of new requirements per month of
testing phase

Cost Parameters

chumed_loc
code_churn_pct
code_phase_creep_mth

current_size_LOC
design_phase_creep_mth

300,000
3%

=New_or_changed_LOC /1000
100,000
145,000

0.5%

KLOCS_per_year
new_loc
New_or_changed_LOC
test_phase_creep_mth

Average time to prepare a test case in hours
Relative cost per function point for
requirements introduced during coding
Relative cost per function point for
requirements introduced during design
Loaded hourly labor rate
Maintenance cost per year

avg_test_case_prep_hrs
code_rel_cost_fp

0.5

1.5

design_rel_cost_fp 1.25

$60loaded_labor_rate
maint_cost_yr =maint_effort_pct *

software_budget_per_vr
$2,916,000
=test_effort_pct *
software_budget_per_vr
11%

Software development budget per year
Testing cost per year

software_budget_per_yr
test_cost_yr

Percent of budget spent on testing
Relative cost per function point for
requirements introduced during testing

Customer / Market Parameters

test_effort_pct
test_rel_cost_fp 2.5

Baseline repeat business per year baseline_repeat_business_y $10,000
r

Decision parameters

Probability that code is high quality at time of code_high_quality_prob 50%
release decision

Payoff for releasing good quality code on-time payoff_release_good_qualit $200,000
V

Payoff for releasing poor quality code
Payoff for delaying release of good quality code payoff_test_good_quality
Payoff for delaying the release of poor quality payoff_test_poor_quality
code for continued testing

Effort distribution

payoff_release_poor_quality -$420,000
-$300,000
-$300,000

Percent of budget spent during coding phase code_phase_budget_pct 21 %
Percent of budget spent during design phase design_phase_budget_pct 23%

Disclaimer; The end user is responsible for verifying the reasonableness of the «ost and benefit ‘r
estimates and ensuring that benefits are not double counted or overstated.

'A
TT — V. tt:.

s.Monday, October 23,2000 A Page 6 of 74- S^.

Example Cost-Benefit Analyses page 262

^S^?^y"lgstJCBATfofc:statfeticai,testing ^

Percent of budget spent on software
maintenance

Percentage of budget spent during testing
phase

SPI Decision parameters

iSKJ

20%maint_effor1_pct

test_phase_budget_pct 30%

J

Baseline probability of decision 1 and state 1 base_decision 1 _ state 1 _pro =state_ 1 _ prob
*baseline_correct_prediction

base_decision1_state2_pro =(1 - state_1_prob) * (1 -
baseline_correct_prediction)

base_decision2_state1_pro = state_1_prob * (1 -
baseline_correct_prediction)

base_decision2_state2_pro =(1 - state_1_prob) *
baseline_correct_prediction

b

b

b

b

Baseline probability of decision 1 and state 2

Baseline probability of decision 2 and state 1

Baseline probability of decision 2 and state 2

Percentage of time correct decision made
under baseline scenario

Baseline cost per decision

baseline_correct_prediction 85%

baseline_cosLper_decision =payoff_decision1_state1 *
base_decision1_state1_prob +
payoff_decision1_state2 *
base_decision1_state2_prob +
payoff_decision2_state1 *
base_decision2_state1_prob +
payoff_decision2_state2 *
base_decision2_state2_prob

Decisions made per year

Payoff for decision 1 when state 1 occurs

Payoff for decision 1 when state 2 occurs

Payoff for decision 2 when state 1 occurs

Payoff for decision 2 when state 2 occurs

State 1 probability

decisions_per_year

payoff_decision1_state1

payoff_decision 1 _state2

payoff_d ecision2_state 1

payoff_decision2_state2

state_1_prob

5

=payoff_release_good_quality

=payoff_release_poor_quality

=payoff_test_good_quality

=payoff_test_poor_quality

=code_high_quality_prob

ri

Disclaimer: TheenduserisTespo&$a)]eforveiifyJ[^^.teasoiiableae$$oftIiecostaiulbenefit

-r-*.
-/i-

Monday, Octobef&S, 2000 ii*

page263

Appendix G

Acronyms

ASQC American Society for Quality Control

CBA Cost-Benefit Analysis

CME Certainty Monetary Equivalent

CMM Capability Maturity Model

COCOMO constructive COstMOdel

COSQ Cost ofSoftware Quality metric

EMV Expected Monetary Value

FP Function Point

GQM Goal/Question/Metric Paradigm

IRR Internal Rate ofReturn

ISO International Standards Organization

KLOC Kilo-Lines ofCode

KPA KeyProcess Area

KSLOC Kilo-SourceLines ofCode

MIS ManagementInfomiation Systems

MPIS MostProductive Increment Size

Acronyms page264

MPP Modem Programming Practices

MPSS MostProductive Scale Size

MTTF Mean Time to Fail

NPV NetPresent Value

PM Person-months ofeffort

QA Quality Assurance or Quality Assessment depending on the context.

QIP QualityImprovementParadigm

ROI Return on Investment

ROSQ Return on Software Quality metric.

SA-CMM Software Acquisition Capability Maturity Model

SBS Sequence-based specification

SD System dynamics

SEI Software Engineering Institute

SPI Software ProcessImprovement

TED TaskElementDecomposition

page265

Appendix H

Glossary

Bayesian decision analysis A structured approach to evaluating choices with an uncer
tain pay-offfor those choices.Decision analysis is usefulfor evaluating the value
ofincreased information on choices involved in routine decision making.

capability maturity model(CMM) A software process maturity model developed by
the Software Engineering Institute that describes the stages through which soft
ware organizations evolve astheyimprove their software processes.The model
consists offive maturity levels and serves as a guide to help organizations select
processimprovement strategies.

certainty monetary equivalent(CME) The average price members ofsociety would
be willing to pay for a potential cost or benefit that has a degree ofuncertainty as
to whetherthe cost or benefit will be realized.

Cleanroom software engineering A collection ofprinciples and processes aimed atthe
economical production ofhigh quality software.Cleanroom processesinclude
sequence-based functional specification,functional verification,incremental
development,and statistical usage testing.

cost-benefit analysis(CBA) An evaluation ofthe net benefits associated with one or
more proposed alternatives for achieving a defined goal.

defect potential The total numberofdefects perfunction point that mightbe expected
to occurin a software application.

defectremovalefficiency The percentage of defects that will be removed by a quality
appraisal step.This percentage is calculated as the number ofdefectsfound and
repaired by the step divided by the total numberfound in the software through the
first year ofuse.

discountrate A rate which,when applied tofuture costs and benefits,yields the present
value ofthose costs or benefits.

Glossary page266

function point(FP) A metric for measuring the size ofa software application by mea
suring visible aspects ofthe application’s functionality.On average,it takes about
128 lines ofCcode to develop a function point.

functional verification A systematic approach to team software verification where the
correctness ofa software productis Verified against its specification using correct
ness conditions and reasoning based bn function theory.

incremental development The organization ofa large software projectinto a series of
smaller,cumulative,and more manageable increments.

internal rate ofreturn(IRR) Therate used to discount the future which would make
the NPV ofthe projectequal to zero.A proposal with anIRR thatexceeds a prede
termined social discountrate(e.g.,cost ofcapital)is deemed acceptable.

key process area A setofrelated activitiesthat are consideredimportantforachieving a
process capability as defined by the SEFs Capability Maturity Model.

net present value(NPV) A methodfor discounting projected costs or benefits which
will occurin the future.Essentially,the NPV recognizes that money has atime
value(even in the absence ofinflation).Theformulafor NPV is

NPV = ̂ ?li£l (EQ60)

(1+r)'
f=0

where

Bfis the dollar value ofbenefits received attime t.

Cfthe costs incurred attime t,

rthe discount rate,

n the life ofthe project,and

tis timein units such as years or months.

quality appraisalstep An activity to identify potential defects with a software product.
Examples ofquality appraisal steps include: unit testing,inspection,functional
verification,beta testing,acceptance testing,and system testing.

Glossary page267

return oninvestment(ROI) The Return on Investment(ROI)(also called the Benefit-
CostRatio(B/C)or a profitability index)is the ratio ofdiscounted benefits to dis
counted costs.Theformulaforcomputing theROI(orB/C)is

Z
(1+r)

r =0
ROI = B/C =

(l+r)
t

t=o

In the software engineering literature,theROIis often expressed without discount
ing future values(i.e.,r=0).

sequence-based specification A systematic sequence enumeration processfor develop
ing complete,consistent,and traceably correct software specifications.

Software Engineering Institute(SEI) A federally funded research institute ofCarn
egie Mellon University that wasestablished by the DepartmentofDefense to help
facilitate transfer ofsoftware engineering technology.

software process TheSoftwareEngineering Institute definessoftwareprocessas“asset
ofactivities, methods,practices,and transformations to develop and maintain soft
ware and the associated products,(e.g.,project plans,design documents,code,test
cases,and user manuals.)”

software process simulation model An abstract representation ofan actual software
process that can be simulated computationally.

statistical usage testing An approach to testing ofsoftware that views software testing
as a statistical problem that requires sampling. A usage modelis constructed to
characterize how the system will be used,and is represented as a discrete time
Markov chain.Randomly generated test casesfrom the usage model are used to
evaluate the software under test.

page268

Vita

Daniel T.Fetzerisfrom Elizabethton,a smalltown nestled in the mountains ofnorth

eastTennessee.He graduatedfrom Elizabethton High School where he played trombone

in the band and keyboardsin the stage band.He attended EastTennessee State University

(ETSU)with a majorin Music.After a three year break to pursue a career as a profes

sional musician,he resumed his education atETSU and earned a Bachelor ofScience in

Computer Science.

Upon graduation,he accepted a software analyst/developer position with Oak Ridge

Associated Universities where he workedfor over nine years.Hesubsequently worked as

a Computing Specialist with Lockheed Martin Energy Systemsin OakRidge for eight

years. While workingin Oak Ridge,he enrolled in the evening school atthe University of

Tennessee(UT)to pursue a Master’s degreein Computer Science which he wasawarded

in May 1992.Afew years later he re-enrolled in the University ofTennessee to pursue a

Doctorate ofPhilosophy in Computer Science which he was awarded in December2000.

Presently,heis workingforthe Reliametricssoftwarereliability organization ofNortel

Networksin the Research Triangle region ofNorth Carolina.

	Cost-benefit analysis for software process improvement
	Recommended Citation

	Cost-benefit analysis for software process improvement

