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Abstract 

This dissertation has developed an individual-based,physiologicallystructured 

model for a fish population with diffusive and advective movement in a spatial 

environment. It incorporates spatio-temporal processes and individual processes 

simultaneously into the population dynamic model of a McKendrick-von Foer-

ster type partial differential equation. An individual fish is physiologically struc 

tured according to age, lipid and structure (protein and carbohydrates). Fish 

are assumed to be immobile in their embryonic stage and the fish begin to feed 

and might move after the embryonic stage. Advective processes are induced by 

environmental heterogeneity, in which fish move toward neighboring areas with 

different levels of, for instance,resource density or/and chemical toxicant concen 

tration. The population djmamic model is complicated,in that it is a mixed type 

partial differential equation that combines a quasi-linear hyperbolic equation in 

the embryonic stage and a degenerate parabolic equation in the older life stage. 

Some mathematical aspects of the model of primary interest have been dis 

cussed. The existence ofalocal weak solution hasbeenshown. Bythe constructive 

analysis used to demonstrate the existence of a local solution, a computational 

scheme for the mathematical modelhas been developed. Fortheindividualgrowth 

model, we simply use the implicit Runge-Kutta method. For the population dy 

namic model ofa partial differential problem,we use a characteristic finite differ-
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ence method in the age-time domain and a finite element method with numerical 

integration and upwind modification in the spatial domain. Furthermore,the nu 

merical scheme has been proved to yield numerical approximations with optimal 

error estimates and produce biologically reasonable approximate solutions as well. 

The mathematical and computational models have been used to study a spe 

cific model of a population of rainbow trout, Oncorhynchus mykiss, in a spatial 

environment. We have investigated numerically the dynamics ofspatio-temporal 

population distribution variations as they are viewed through the fish popula 

tion density, total fish biomass, total fish age, total fish lipid, total fish structure 

(protein) and total fish protected protein. Furthermore,the model has also been 

used to study the effects of a spatially distributed nonpolar narcotic chemical on 

arainbow trout population. The coihbihid effects oflethal and sublethal toxicant 

effects have been considered. 

The methodologies and conclusions in this dissertation can be extended im 

mediately into other populations and even some community settings,such as the 

&sh.-Daphnia predator-prey model if Daphnia are assumed to be immobile. 

vu 



 

Contents 

Overview 1 

1 Introduction and Preliminaries 8 

1.1 Fish Individual Model 10 

1.2 Population Dynamic Models 16 

1.3 Temperature and Dissolved Cixygen Effects 23 

1.4 Chemical Toxicant Effects 25 

1.5 Individual-Based Population Models 32 

2 Mathematical Models for Individual-Based Populations 40 

2.1 Mathematical Derivations 42 

2.2 Age Structured Population Dynamic Problems 50 

2.3 Mathematical Treatments 83 

3 Computational Techniques for an Individual-Based Population 

Model 91 

viii 



93 3.1 Numerical Methods for Ordinary Differential Problems 

3.2 Numerical Schemes for Population Models 96 

3.2.1 Numerical Scheme for Age structured Population Problem 

(I) 97 

3.2.2 Numerical Scheme for Age structured Population Problem 

(II) 106 

3.2.3 Numerical Scheme for Age structured Population Problem 

(III) . 140 

3.3 Numerical Scheme for Mathematical Models of Individual-Based 

Populations 153 

3.4 Computational Model and Algorithm Aspects 167 

3.5 A Parallel Procedure for the Linear Systems 172 

4 Modeling a Fish Population in a Spatial Environment 184 

4.1 Introduction 185 

4.2 A Physiologically-Based Fish Individual Model 187 

4.3 Fish Population Dynamics 189 

4.4 Numerical Computation Procedure 194 

4.5 Numerical Experiments 199 

4.6 Discussion and Future work 203 

5 Modeling Toxicant Effects on a Fish Population in a Spatially 

ix 



204 Heterogeneous Environment 

5.1 Introduction 205 

5.2 Exposure-Effect Model 207 

5.3 Individual-Based Population Model and Its Numerical Scheme . . 212 

5.4 Effects of Toxicant on Population 220 

5.5 Discussion and Further Work 224 

Bibliography 226 

Appendix 244 

Vita 287 



 

 

 

List of Tables 

1 Parameter values and units in the individual model(I) 245 

2 Parameter values and units in the individual model(II) 246 

3 The variables and parameters in the uptake model 247 

XI 



 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

List of Figures 

1 Individual Based Adult Fish Model 248 

Individual Fish Growth (1) 249 

Individual Fish Growth (2) 250 

Relationship between logLCso and logKam 251 

Flow Chart for Computational Model 252, 

Double Linked List of q-cohort 253 

Dequeue Structure of Age-Group 254 

Resource Distribution Patterns 255 

Total Fish Number of Case 4-i 256 

Population Dynamics/Distribution at a Location/Time of Case 4-1 257 

Total Biomass Distribution of Case 4-1 258 

Total Age Distribution of Case 4-i 259 

Total Lipid and Protein Distribution of Case 4-i 260 

Total Protected Protein Distribution of Case 4-1 261 

xu 



� 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

Total Fish Number of Case 4-^ 

Population Dynamics/Distribution at a Location/Time of Case 4-2 

Total Age and Protected Protdih Distribution of Case 4-4 • • • • 

Resource and Chemical Distribution 

Total Fish Number and Biomass Distribution of Case 5.1 

Total Lipid and Protein Distribution of Case 5.1 

Total Age and Protected Protein Distribution of Case 5.1 

Total Biomass Distribution of Case 4-2 

Total Lipid and Protein Distribution of Case 4-2 

Total Age and Protected Protein Distribution of Case 4-2 

Total Fish Number and Biomass Distribution of case 4-3 

Population Dynamics/Distribution at a Location/Time of Case 4-3 

Total Lipid and Protein Distribution of Case 4-3 

Total Age and Protected Protein Distribution of Case 4-3 

Total Fish number and Biomass Distribution of Case 4-4 

Total Lipid and Protein Distribution of Case 4-4 

Total Fish Number and Biomass Distribution of Case 5.2 

Total Lipid and Protein Distribution of Case 5.2 

Total Age and Protected Protein Distribution of Case 5.2 

Total Fish Number and Biomass Distribution of Case 5.3 

Total Lipid and Protein Distribution of Case 5.3 

xm 



36 Total Age and Protected Protein Distribution of Case 5.3 283 

37 Total Fish Number and Biomass Distribution of Case 5-4 284 

38 Total Lipid and Protein Distribution of Case 5.4 285 

39 Total Age and Protected Protein Distribution of Case 5.4 286 

XIV 



Overview 

Individual-based,physiologicallystructured modelsofecosystems(populations 

and communities)in a homogeneousenvironment have been animportant areafor 

many years (cf. [45,49,54,70,71]). Thistypeofmodeloften consists of1)an ener 

getics based growth modelfor each type ofindividualorganism,including physical 

and stresses that impact individual organisms; 2)each population represented by 

appropriate physiological variables through a McKendrick-von Foerster type par 

tial differential equation which incorporates the dynamics of the individuals (cf. 

[17,54,82,89]); and 3)the appropriate population models are combined through 

inter-specific interactions to form the community model (cf. [17, 44, 54, 82]). 

However,the development ofindividual-based structured ecosystems in a hetero 

geneous environment is still in its infancy, in spite of the fact that most natural 

environments are heterogeneous, especially,in spatial structure. In heterogeneous 

environments,an important aspect ofnatural populations is the structural varia 

tion which arisesfrom differences in individuals and environmental heterogeneities 

as well. This structural variability is compoimded when spatio-temporal pro 

cesses and their infiuence on population dynamics is considered. In particular, 

spatial structure and physical movements of individuals arise because of the en 

vironmental heterogeneity. In this dissertation, we develop an individual-based, 

physiologically structured population modelin a heterogeneous environment with 



different levels of food density or/and chemical toxicant concentration. Spatio-

temporal processes incorporates simultaneously into the population dynamic ofa 

McKendrick-von Foerster type partial differential equation. Diffusive and advec-

tive movements have been introduced into the population dynamics represented 

by McKendrick-von Foerster type partial differential equations. By an advective 

process, we mean movement ofindividuals towards neighboring areas with prefer 

ential quality,for instance,the areas where food resource density is higher and/or 

chemical toxicant density is lower. 

This dissertation mainly focuses on the development and implementation of 

individual based, physiologically structured fish population models with diffusive 

and advective movements in heterogeneous spatial environments. However, the 

methodology and conclusions can be extended immediately to other populations 

and even somecommunities. Results apply toafish-Dqphmopredator-prey model 

if Daphnia are assumed to be immobile, perhaps a good initial approximation, 

since their movement is small,relative to fish movement. 

Chapter 1 covers introductory materials. The rest ofthis dissertation is com 

posed offour chapters, which discuss mathematical models and analyses, numer 

ical techniques and schemes, implementation and analysis of a model of a fish 

population with diffusive and advective movements in a natural spatial environ 

ment,and implementation and analysis of a model containing toxicant effects on 

a fish population whose individuals are influenced by both diffusive and advective 



movement processes, respectively. 

Chapter2presentssome mathematicalresults for individual-based,physiologi 

cally structured population modelsin a heterogeneous spatialenvironment,where 

the individuals are assumed immobile at the embryonic stage and are subject 

to both diffusion and advection in the rest of their life period. A mathematical 

derivation ofthe population model as a partial differential equation is given. The 

mathematical formulation ofthe model is a nonlocal initial-boundary value prob 

lem ofa nonlinear partial differential equation with discontinuous coefficients cou 

pled with an initial value problem ofa ordinary differential system. The existence 

of a local weak solution ofthe mathematical model problem is shown. The basic 

idea ofour mathematicalanalysis isfrom the method ofcompactness in functional 

analysis. The analysis is based on a Idealization technique, an unstructuraliza-

tion technique for physiological structures, and a linearization technique. We first 

localize the original problem. That is, we introduce a small positive parameter 

At > 0 and split the original mathematical problem into a sequence of local 

problems over the small time interval [ti, tj+i] (tj+i=ti+At, i=0,1,• • •).Then, 

for each local problem,we will separately consider the ordinary differential system 

ofthe individual growth model and the partial differential problem ofthe popula 

tion dynamic model. More precisely, we first solve the initial value problem ofthe 

ordinary differentialsystem for theindividual-based modeland then plugthe solu 

tion ofthe ordinary differential system into the partial differential problem ofthe 



population dynamic model. Then we only need solve a partial dijfferential prob 

lem for an age structured population over the smalltime interval. In other words, 

we unstructure the physiological structures in the population dynamic model of 

the original mathematicalsystem in local small time intervals. Therefore, we can 

obtain an approximate solution for the local problem, as well as an approximate 

initial-boundary condition for the local problem over the next smalltime interval. 

Moreover, we put these approximate solutions oflocal problems together to form 

an approximate solution for the original mathematical model problem. However, 

the induced local age structured population mathematical model is also not easy 

to solve since it is still a nonlocal initial-boundary value problem of nonlinear 

partial differential problem with discontinuous coefficients. To solve this kind of 

partial differential problem for the age structured population, we linearize it by 

using the technique involving a positive delay to overcome the nonlinearity and 

then applying a technique of fixed point theory to the related partial differential 

problem involving an integral equation in its nonlocalinitial-boundary conditions. 

These analysis strategies and conclusions provide the motivation and foundation 

to construct the numerical approximation schemes in Chapter 3. As a basis and 

preparation ofthe analysis, we first discuss three related auxiliary age-structured 

population dynamic models. In fact, as by-products, many of these results for 

auxiliary problems are also significant as partial differential equation problems. 

Chapter 3 considers some computational aspects of the models formulated in 



Chapter 2. The basic idea to construct the numericalscheme is motivated by the 

strategy ofmathematicalanalysis developed in Chapter 2,that is,the localization 

technique, the unstructuralization technique for the physiological structures, and 

the linearization technique. For the ordinary differential system problem for the 

individual model, we use the implicit Runge-Kutta method due to stiffiaess. For 

the partial differential equation problem associated with the population dynam 

ics, we use a characteristic finite difference discretization in the age-time domain 

and a finite element method with numerical integration and upwind modification 

of advective terms in the spatial domain. To do some numerical analysis, we 

also develop and analyze the numerical approximate schemes for the three auxil 

iary age structured population dynamic models of Chapter 2. The analyses have 

shown that the numerical schemes hot only have optimal error estimates from 

the perspective of numerical analysis, but they also always produce biologically 

reasonable approximate solutions. Finally, we discuss the computing and coding 

methodology for implementing the numerical scheme. As a very important re 

lated problem, we give a parallel procedure for solving large linear systems such 

as one obtained from our computational model,which is the core ofthe numerical 

implementation ofthe computational model. 

In Chapter 4, we apply the mathematical and computational model to dy 

namics ofa fish population in a bounded linear habitat in which the fish can have 

diffusive and advective movements. The fish population is structured according to 



the physiological variables age, lipid, and structure (protein and carbohydrates) 

and so an individual model,described as an ordinary differentialsystem,is needed 

to model the growth of those physiological variables. The individual model has 

been developed to deal with rainbow trout, Oncorhynchus mykiss, and is based 

on energy budget techniques. The movement behavior of the fish is a function 

of the physiological state of the individual. The fish is assumed to be immobile 

at the embryonic stage and may have diffusive and advective movements in the 

rest of life period. Diffusion is a kind of random dispersal or random walk plus 

density-dependent dispersal so that the local fiow of the population lies in the 

direction ofdecreasing density offish. Advection assumes the fish moves towards 

the location where the resource density is higher if its energy gained is less than 

energy demanded. More precisely, the advective movement is determined by the 

gradient offood resource density and whether the energy gained exceeds the en 

ergy demand. The development and discussion will focus on the spatio-temporal 

aspects ofthe population dynamics. 

In Chapter 5,we investigate the chemical toxicant effects on a fish population 

in a spatially heterogeneous toxicant environment. We apply the models devel 

oped in Chapter 2,3 and 4to a fish population in a bounded linear habitat with 

heterogeneous chemical toxicant levels and food resource levels. We only consider 

asimple diffusive process-random walk dispersal. The advective process is more 

complicated than that in Chapter 4 since individuals may alter their movement 



in response to changes in not only resource density, but to changes in the concen 

tration ofcontaminated media as well. In addition,exposed organisms may avoid 

contaminated media, may be attracted to contaminated resource (e.g. pesticide-

debilitated prey) or may lose their ability to detect contamination due to toxic 

effects. If the individual does not have the ability to detect contamination, we 

assume that there is no advective movement induced by chemical toxicant. As in 

Chapter 4,the advective movement induced by food resource heterogeneity is de 

termined by the gradient offood resource density and whether the energy gained 

exceeds the energy demands. The advective movement induced by chemical toxi 

cant is determined by the gradient oftoxicant concentration as well as whether an 

individual avoids contaminated media or is attracted to contaminated media. The 

chemical exposure might occur through the environmental and/or the food path 

ways. Like Chapter 4,the development and analysis focus on the spatio-temporal 

aspects of population dynamics. We demonstrate that spatial heterogeneity can 

influence the physiological structure ofthe population and determine the survival 

or extinction ofthe population. Effects depend on the spatial pattern ofthe tox 

icant and resource, as related to the distribution of individuals in space, during 

the exposure. 



Chapter 1 

Introduction and Preliminaries 

Naturalenvironments are usually heterogeneous from many perspectives including 

spatialstructure. In natural populations and communities,individuals ofdifferent 

age,size and other physiological variables display differencesin growth,movement, 

and behavior, and individuals ofthe same age, size and other physiological vari 

ables can display different responses in different environments. These differences 

among individuals within a population, which may be due to demographic, ge 

netic or environmental processes, often force consideration ofan individual-based 

approach instead ofan aggregated one when a more faithful ecological representa 

tion is desired. For the most part, environmental variables, such as chemicals or 

temperature, affect the physiological and behavioral processes ofindividuals,and, 

subsequently impact the behavior of the population as a whole. After the effects 

on the physiological processes at the individual level have been assessed and the 



individuals all combined to form a population, the study ofthe dynamics of the 

population is viable. Therefore, in a heterogeneous environment, an individual-

based modelis usually important tostudy environmental effects at the population 

or community level. 

In this thesis, we have developed and analyzed the mathematicaland computa 

tional models ofan individual-based, physiologically structured population offish 

in spatially heterogeneous chemical toxicant environment, and implement com 

putational simulation schemes for some typical cases. The mathematical models 

are described as a partial differential equation problem coupled with an ordinary 

differential system to model an individual-based fish population with diffusion 

and advection in a heterogeneous spatial chemical toxicant environment. More 

precisely, an initial value problem of an ordinary differential system is used to 

describe the growth ofindividual fish; a nonlocal initial-boundary value problem 

ofa partial differential equation with discontinuous coeflicients is used to describe 

the fish population dynamics and distribution,in particular,including reproduc 

tions and movements. Some mathematical analyses for the individual-based fish 

population mathematical models are presented. Then,the computational models 

for individual-based fish populations by using the mathematical models are con 

structed. Moreover,some considerations ofthe convergence analyses and aspects 

for the numerical approximateschemes are shown. Finally,the mathematical and 

computational models are applied to simulate a fish population in a heterogeneous 



closed bounded environment and toxicant effects on a fish population in a hetero 

geneous chemical environment, where the combined chemical toxicant eflfects of 

lethal and sublethal effects are considered. 

In the rest of Chapter 1,some preliminary materials including individual fish 

growth models, basic population dynamic models, models for temperature and 

dissolved oxygen effects, models for chemical toxicant effects and the individual-

based fish population mathematical models are presented. 

1.1 Fish Individual Model 

The individual-based model we use for the dynamics ofan individual fish is based 

on the physiological-based individual model introduced by Hallam et al [45, 47]. 

It has been parameterized for rainbow trout, Oncorhynchus mykiss. However, 

because ofthe generality ofthe energetics approach (cf. [70,71]),it can be used for 

other species of fish with some modifications. We here provide a brief description 

of fish individual model, which is summarized from [45, 47]. The mathematical 

individual-based fish model employed in [45, 47] is based on the energetics of an 

individual female fish (see Figure 1 ̂ ). Each organism is composed oftwo major 

components, lipid (^) and structure, rus {g) (protein and carbohydrates). 

Each of these components consists of a labile and nonlabile portion. The non-

'All Tables and Figiires appear in Appendix 
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labile portion is the mass of lipid and structure bound in somatic tissue that 

cannot be mobilized even under condition of starvation. The labile portion of 

lipid and structure is available for growth and reproduction. The dynamics of 

individual fish are represented by an ordinary differential equation system which 

gives the rates ofchange ofthe mass oflipid and structure. 

^ 
da 

= 9l=Gl-Fi, 
(1.1) 

^= gs=Gs-Fs, 

where Gl and Gs represent the growth of lipid and structure, respectively; and 

Fl and Fs represent the loss of lipid and structure, respectively. These rates 

are determined by the difference in the inputs and the outputs. The inputs are 

represented by the growth of the lipid and structure compartments whereas the 

outputs are the losses from the compartments. The growth of lipid and struc 

ture of a fish (measured by the assimilated lipid and structure) is obtained from 

feeding on a constant level of resource which also has lipid and structure compo 

nents, the densities of which are denoted by xl {g/cm?) and xs {g/cm?). The 

amount ofresource that can be converted to viable energy is based on the assim 

ilation efficiencies of the lipid and structure, represented by Aql {nondim) and 

.(4o5 (nondim)in the model. The losses represent lipid and structure matter al 

location to egg production, energy allocation to maintenance, specific dynamic 

11 



action, activity (including diffusion, advection etc.) and reproduction. The losses 

due to maintenance, specific dynamic action, and activity occur on a continuous 

time scale and reproductive losses occur periodically on a discrete time scale. 

The life history ofafemale fish is followed from the deposition and fertilization 

of the eggs to when the fish eventually dies. There are two sets of ordinary 

differential equation systems describing twostages in the life ofa fish. The first set 

is for the growth during the embryonicstage. The dynamics oflipid and structure 

massofanindividualfry(young trout before itstartsfeeding)are represented only 

bythe cost ofdifferentiation and maintenance,which is assumed to be proportional 

to the size ofthe components,and are modeled by the following equations: 

drriL 
da 

o 
=-BirriL 

(1.2) 

dms 

da 
=-Bznis 

where Bi and B2 are the compartmental rate coefficients in units of(1/d); and 

with the initial condition 

TUx, a=0 =TnLo 
(1.3) 

77151a=0 ="25,0 

where mx,o and tusq are the initial lipid and structure content ofan agg. Rainbow 

trout eggs hatch 34-36 days after fertilization at lO^C (cf. [103]), the yolk sac is 
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depleted 3-7 days later, and fry begin feeding about 51 days after hatching (of. 

[99]). So,in the embryonic stage, they actually decrease in size. 

The fry begin to feed after the embryonic stage. This is the second stage in 

the life of the organism and there is a new set of ordinary differential equations 

to describe the growth process. The dynamics ofthe lipid and structure mass are 

modeled by the following equations: 

— Grnps) fox D >E 
dmI AqiXl

F-< (1.4)
da X 

A / \^ 
Azirnt-emps)— foxD<E 

rj 

A4{ms — mps) foxD>E 
dms Aos^s 

F-< (1.5)~da ~ X 
D 

A4{ms-mps)r= foxD<E 
E 

where the initial conditions are given by the terminal conditions from the em 

bryonic stage equations (1.2) and (1.3) mz, ms, Aqi,, Aqs, are defined 

as previously; mps is the mass of protected structure, which is assumed to be 

nondecreasing with age and is computed as afraction ̂ ms ofthe structural mass, 

for example, mps — max{/3ms, mps). 

In the growth terms of (1.4) and (1.5), X = Xl Xs { g)represents the 

resource and F{g/d)represents the feeding rate of an individual, which is gov-
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eraed by constraints. The constraints are imposed by processes associated with 

encounter, pursuit and digestion of a prey. These processes are implemented se 

quentially, i.e., the encounter, pursuit and digestion ofa prey must be completed 

first before another prey may begin to be processed. For a sequential process,the 

feeding rate is given by the form (cf. [55]) 

F= (1.6)Te+Tp+Ti' 

The terms in the denominator represent the characteristic times {d/g) for en-
A V A IC 

counter,pursuit,and digestion ofprey. Therefore, and ^Frepresent 

the mass oflipid and the mass ofstructure gained by consumption per unit time. 

For a single predator feeding upon a single prey, F can be given by 

F= 

Inthelosstermsof(1.4)and(1.5),theterms{mL—cmps)(eis nondimensional: 

mass oflipid/mass ofstructure) and {ms-rrips) represent the labile portions of 

lipid and structural mass of an individual. E denotes the energetic equivalent of 

the mass that an individual utilizes in order to maintain basal metabolism. This 

energy is derived from the labile lipid and labile structure using the function 

E=3.768 • lO'^AsirriL-emps) 1.675•10^A^{ms-mps), 

14 



where and A4 axe the rates (1/d) at which lipid and structure are mobilized 

to maintain basal metabolism, and the numbers in each term are the energetic 

values in joules of 1 y of lipid and structure, respectively. The rates at which 

the labile lipid and structure are utilized depend on the energy demands, D, 

of the organism. This is accomplished via supply energy that is apportioned 

by the fraction D/E. The total energy demand, D, is comprised of a number 

of subcomponents: maintenance, specific dynamic action which represents work 

associated with feeding, and activity which represents the work associated with 

swimming. 

The growth of each organism is described in equations (1.2)- (1.3) and (1.4) 

- (1.5) until reproduction occurs after the maturation size is reached and age is 

1 year or older. At the time when reproduction occurs, discrete losses of labile 

lipid and structure associated with reproduction are subtracted from rriL and ms-

The organism then begins to grow again according to (1.4)-(1.5) with the initial 

conditions on rui and ms reset to the values after the reproductive losses have 

occurred. This process is repeated periodically,with reproduction occurring every 

year aslong as the organism has sufficient lipid and structure to produce eggs and 

the energy required from the reproduction processes, until death occurs. 

For more details aboutthe definitions, we refer to Hallam et at[47,45]. Table 1 

and Table 2in Appendix summarize the model parameters and gives the default 

values used in the simulations. 
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1.2 Population Dynamic Models 

This section discusses mathematical formulations of individual-based fish popu 

lation models. We assume that p represents the population density function, o 

represents age and t represents time. Iffish live in a homogeneous environment 

and do not make any spatial movements,then the fish population dynamic model 

is the following extended McKendrick-von Foerster equation (cf. [17, 70]): 

where//(1/d)isthe mortalityrate. Clearly,(1.7)isahyperbolic partialdifferential 

equation. As is well-known, in addition to the partial differential equation (1.7), 

we need to adjoin the initial conditions 

piO,a,mL,ms)=pQ{a,mL,ms) (1.8) 

and also need the boundary condition, which is called the renewal equation, 

fAm roo roo 
p[t,0,mLo,mso)= / / /3p{t,a,mL,ms)dadmidms, (1.9) 

JO JO Jo 

where is the maximum age; and the reproduction rate, represents the ex 

pected number of eggs with lipid content and structure content ms^ bom to 

an individual of age a with lipid content mi and structure content ms at time t. 
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The renewal equation (1.9) describes the birth process mathematically. 

Iffish live in a heterogeneous spatially environment and can make diffusive and 

advective movements,then the fish population dynamic modelis another extended 

McKendrick-von Foerster equation (cf._ [17, 70]) as follows: 

where V = V®, x represents the spatial position, V is the fiux of p, which can 

have severalforms,in particular,the followingform will be thefocus in this thesis 

V=kVp-qp (1-11) 

(1.11)represents a diffusive and advective movement. Indeed, we mostly consider 

the simpler diffusion as follows: 

V=kVp (1.12) 

However, all the related results and methods can be applied to other cases with 

both diffusion and advection, such as (1.11). This is because, mathematically, 

the partial differential equation (1.10) with V in (1.11) can be easily rewritten 

the equation (1.10) with V in (1.12) in a new p. Clearly,(1.10) is a degenerate 

parabolic partial differential equation. We assume that fish live in a bounded 
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connected domain D, C 72." (n = 1,2,3), with the boundary . Similarly as 

before, in addition to the partial differential equation (1.10), we need to adjoin 

the initial conditions 

p{0,a,mj:„ms,x)=pQ{a,mi,ms,x), (1-13) 

and a spatial boundary condition such as 

V - u=0 or p=0, on dO,, (1-14) 

where u is the unit outward normal direction of dO,. The boundary condition 

asserts that there is no flow ofthe population across the boundary ofthe habitat 

or no flsh on the boundary,and the birth boundary condition or renewal equation 

pAm roo roo 
p{t,0,mLo,mso,x)= / / j3p{t,a,mL,ms,x)dadrriLdms, (1-15) 

JO JO JO 

where P is the reproduction rate. 

Furthermore, we now consider the third case which is more complicated and 

can be regarded as a combination of the population dynamic model (1.7) and 

(1.10). In this case, flsh are assumed to live in a heterogeneous bounded spa 

tial environment, to be immoble in their embryonic stage [0,J] and might have 

diffusive and advective movements in the older life stage (J,An]- Therefore, we 
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develop the population dynamic model by simply combining (1.7) and (1.10) to 

gether. That is, we use the population dynamic model (1.7) in the embryonic 

stgae [0,J] and (1.10) in the older life stage {J,Ar„\. Thus, we can write the 

population dynamic model as follows: 

dp dp djpgt) d{pgs) 
dt da drriL dms ^2 16) 

for V t e (0,T],a € (0,J],a: e 

with the initial and boundary condition 

V - v={) or /?=0, on 9Q 

p(0,a,mi,,7715,x) = po{a,mL,ms,x) (1-17) 
fAm roo roo 

p[t,0,mio,mso,X)= / / /3p{t,a,uil,tus,x)da drriL dms 
J0 Jq Jq 

and 

dp dp djpgi) djpgs) _ 
dt da dmL dms (1.18) 

for V t G (0,T],a G(J,Am],x ^fi, 

with the initial and boundary condition 

2?.1/ =0 or p=0, on 5f2 

p(0,a,mi„m5,x) = pQ{a,mL,ms,x), (1-19) 

p{t,J,mi,,ms,x) determined by (1.16)-(1.17) 
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Similarily, we mostly consider the flux V with the forms of (1.11) and (1.12). 

We now extend k and q as follows, 

0 if a E [0,J] 
k= < (1.20) 

k otherwise 

0 if o € [0,J] 
q= (1.21) 

q otherwise 

Thus,ifT> is defined as (1-11),then we can rewrite the population dynamic model 

(1.16)-(1.19) as a unified form: 

dp ^ dp ^ d(pgi,) , d{pgs) ^ ,r^ ~ s 

(1.22) 
for V t G (0,T],O G [0,Ara],X G 

with the initial and boundary condition 

^(^-q• 2^)=0 or p=0, on do, 
p(0,a,mi,m5,a:) =po{a,mL,ms,x) (1.23) 

rAm roo roo 

p{t,0,mLo,mso,x)= / / Pp(t,a,mL,ms,x)dadrrtLdms 
JQ JQ Jo 

If V is defined as (1.12), the unified form of the population dynamic model 
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(1.16)-(1.19) can be rewritten as 

dp dp dipgi) djpgs) ,j . _ 
dt da drriL dms 24) 

for V t G (0,T],a e [0,^],a; e fi. 

with the initial and boundary condition 

- dp
A: —=0 or p=0, on 
ov 

p{^,a,mL,ms,x) =po{a,mL,ms,x) (1-25) 
rAm TOO TOO 

p{t,0,7nLo,mso,x)= / / ^p{t,a,mi,ms,x)dadmLdms 
Jo Jq Jo 

Both (1.22)-(1.23) and (1.24)-(1.25) are nonlocal initial-boundary value 

partial differential equation problems with discontinuous coefficients. They are 

complicated and hard to be solve. are not aware of any discussions and 

analyses about such models. This thesis will analyze and discuss this kind of 

population dynamic model and apply it into individual-based population models. 
/ 

As we explained before, our mathematical analyses and discussions mostly focus 

on the problem (1.24)-(1.25) since the problem (1.22)-(1.23) can be easily 

rewritten as the form ofthe problem (1.24)-(1.25) with a new p. However, our 

numerical simulations and examples are shown for both problem (1.22)-(1.23) 

and problem (1.24)-(1.25). 

We now give a brief discussion about the reproduction and mortality. Fish axe 

assumed to reproduce almost periodically after attaining maturation size(Brown 
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[10]indicates that seasonal periodicity in egg production is characteristic ofmany 

fish species). More precisely, we assume that fish 365 days old or older reproduce 

once in a fixed time period (365 days in our computations) in a specific time 

window. Reproduction occurs in a time window to represent seasonal aspects of 

reproduction. The organism grows according to equations(1.2)-(1.3)and (1.4)-

(1.5) until reproduction occurs in the first reproductive window at the minimum 

adult age J. At this time, losses associated with reproduction are computed, 

and the initial conditions of(1.4) - (1.5) axe reset. The individual again grows 

according to (1.4)- (1.5) until it may reproduce again in the same time window 

of next year if it can meet all other physiological requirements. This process is 

repeated as an almost periodical event until the individual dies. An organism dies 

either because it reaches the prescribed maximum age or because its structural 

mass, ms, decreases below the protected structural mass mps. The latter may 

happen due to losses associated with reproduction and/or due to shortage offood. 

Losses associated with reproduction represent lipid and structural mass needed 

for eggformation as well as the energy utilized to accomplish this transfer ofmass. 

These allocations obviously do not occur instantaneously. Because there is little 

specificinformationon thetimescales ofthese processes and they areshort relative 

to population time scales, we treat them as discrete events. 

The number ofeggs produced by an individual willbe constrained by both lipid 

and structural mass available for reproduction. Although variation in egg size is 
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probably controlled by many factors, we assume here that only lipid constrains 

this process. Therefore, the egg is assumed to be composed of a fixed amount 

of structural material and a variable amount of lipid. The governing factors for 

allocation of lipid to eggs are assumed to be labile lipid, tul — emps, and a 

counteractive coupling with labile structure. The computational formula for the 

number ofeggs and their lipid amount can be found in Hallam et al [47, 45]. 

The mortality function fx is assumed to have the form (cf. [47]) 

— jJia ~t~ /At) t^y "i" t^d: (1.26) 

where fXa represents the mortality in the population due to age, //„, represents 

weight-dependent mortality, /Xy represents the mortality to the young ofthe year 

and fXd represents a density dependent mortality. For their compuationalformula, 

we refer to [47, 45]. 

Table 1 and Table 2in Appendix summarize the model parameters and gives 

the default values used in the simulations. 

1.3 Temperature and Dissolved Oxygen Effects 

This section introduces the effects of temperature and dissolved oxygen on fish 

population dynamics. The individual-based fish population models ofthe last two 

sections are modified to include the effects of change in temperature and concen-

23 



tration of dissolved oxygen. Effects of both temperature and dissolved oxygen 

occur on three physiological processes in the individual level and one parameter 

at the population level. The three physiological processes are the feeding rate, 

length ofthe embryonic stage and respiration rate, and the population parameter 

is egg mortality. 

Temperature is considered one of the most critical environmental factors af 

fecting the success offish (cf. [19,62,71, 80]). It has a direct effect on spawning, 

egg and larval development,activity,feeding,and,in general,on the growth ofthe 

fry and older life stages (i.e. after embryonic stage). Experimental studies have 

shown that increasing the temperature of the environment increases the respire^ 

tory metabolism and maintenance requirements offish. In addition to the effects 

that excessively low and high temperature can have on fish, the level of dissolved 

oxygen also play an important role (cf. [13, 19,20, 101]). The literature presents 

information and sources for a number of different species of fish which indicate 

how reduced levels of dissolved oxygen can have undesirable effects on physiolog 

ical processes, including feeding, swimming ability, repiration, activity,fecundity 

and spawning activity. Experimental studies have shown that reduced levels of 

dissolved oxygen inhibit the developmental rate of the embryos and the time to 

hatching increases as well as the appearance ofthe various developmental stages. 

Also,other experimental studies that the size at hatching,the initial feeding,the 

percentage oflarvae that suvive to thejuvenile period,and,in general,the growth 
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ofembryos, are effected by the level of dissolved oxygen. 

Although the numerical simulation code of this research do include the tem 

perature and dissolved oxygen effects, the related numerical simulation examples 

are not included in this thesis. So, we here do not provide the details nor the 

mathematical formulations and functions of the temperature and dissolved oxy 

gen effects on fish. For the details about theses mathematical formulations and 

functions, we refer to Lovelock [87] and the references therein. 

1.4 Chemical Toxicant Effects 

Tostudy theimpactofchemicalstress on a biologicalsystem,Hallam et al[43,44] 

state thatin mostcases this is best measured at theindividuallevel,then extrapo 

lated to the population and higher levels ofbiological organization. The degree of 

toxic chemical stress is related to level ofchemical in a compartment ofthe body 

or in a target organ of the individual. The amount of chemical in the organism 

is determined by uptake from the biotic and abiotic environments. In our mathe 

matical model,a toxicant uptake equation is applied to represent this procedure 

at individual level. Theoretically, there are lethal effects and sublethal effects 

which presents two different cases at population level. In real problems,these two 

effects usually occur simultaneously aad combine together to infiuence the popu 

lation dynamics. We discuss the combined effects in the numerical simulations in 
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Chapter 5. 

Chemical Uptake Model in Individuals: To adequately address problems of eco-

toxicology,it is necessary to consider the manner in which chemical exposure and 

the biological-chemical interfaces axe formulated. The uptake of chemical from 

the environment and food represents the chemical exchange between the aqueous 

environment and the individual fish across the gill membranes and the chemical 

exchange between the fish and its intestinal food across the intestinal wall. The 

uptahe model we use is a modification ofFGETS developed by Barber et al (cf. 

[4]) to handle exposure of fish to non-polar, hydrophobic, reversible chemicals. 

The model wasformulated based on the assumption that both environmental and 

food exposure axe gxadient-driven pxocesses. 

The mathematical model that describes the processes ofchemical uptake from 

the environment and food and includes dilution of chemical due to organism 

growth is defined as: 

dJBT Bt =SgkyjCy,-|- CpF — £(JP(^9^^+ (l-27) 

where Bt represents the total toxicant in the organism; and Cp represents 

the concentration of toxicant in the environment and in the food, respectively; 

F and E are the mass fluxes of food and feces, respectively; Wr is the total 

weight of the organism;EOF is the bioconcentration factor (total concentration 
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in the organism/C^); is the unit conductance and ks is the partition coefficient 

of chemical to excrement, which is given by Ce ICa, where Ca and Ce are 

concentrations of the chemical toxicant in the aqueous portion of the organism 

and itsfeces,respectively. (1.27)is easy to handle numerically and mathematically 

since it looks linear in form. We are going to use this form of uptake equation 

to build our numerical scheme for individual-based fish population model with 

chemical toxicant effects. However, in order to understand the mechanism of 

toxicant effects easily, we need rewrite it as the following (1.28). Noting that 

Bt=Ct'Wt,then we have, by plugging Bt into (1.27) 

dCr .^ F EUe^ 1 _ 

where k\ and k2 are the uptake and deputation rates ofthe environmental chem 

ical, respectively, and are specified by 

ki = Sgkv,V~'^, 

k2 = Sgk^V-^PA+PiKL+PsKs)-'' 

and Sg is the exposed surface area. Pa,Pl, and Ps are the aqueous, lipid, and 

structural fractions ofthe organism,respectively;Kl is the partition coefficient of 

the chemical between the organism lipid and water; Ksis the partition coefficient 

ofthe chemical between the organism structure and water. Clearly,(1.28)stands 
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for the dynamics ofthe total concentration ofchemical toxicant in the whole fish, 

1 dVin particular,the last term of(1.28), stands for the dilution ofchemical 
V da 

toxicant due to organism growth. 

Hypotheses imposed in the model development include the following. An in 

dividual organism is assumed to be comprised ofthree chemical phases: aqueous, 

structural, and lipid. The structural component is generally viewed as beingcom 

posed of(physiologically active) protein and carbohydrates. A second hypothesis 

is that the time scales for the exchange across the exposed surface area, Sg, are 

regarded as being much slower than the distribution of chemical within the or 

ganism. Using this assumption,Ca is expressed in terms ofCt via 

Ct=[Pa+PlKl+PsKs)Ca. 

A third hypothesis was imposed to deal with difficulties of the transient events 

during digestive processes. The simplest assumption that avoids most of these 

difficulties is that of equilibration of chemical between the organism's body and 

the gut contents. This assumption,however,is not necessarily true. Hallam et al. 

[46] have indicated that this is the worst case assumption during increasing body 

concentration when exposed to contaminated food (i.e., no more chemical could 

be taken up under any thermodynamically consistent assumption than would be 

taken up when food and body equilibrate). During deputation, however, this 
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assumption leads to predicted minimum deputation times;that is, any other ther-

modynamically consistent assumption would lead to longer predicted deputation 

times. For toxicity evaluations, this would usually not be considered the worst 

case scenario. 

To calculate the concentration ofthe chemicalin thefood,we assumeinstanta 

neous chemical equilibration with the water and within the organism. The food, 

like the consumer, consists of the aqueous, lipid and structural phases and the 

chemical is distributed among them according to its affinity for these phases. 

Lethal Effects: To modelthe effects ofchemicals on individuals we need to couple 

the uptake modelwith modelsforthe modeofaction and modelsforconcentration-

response relations. Effects of chemicals on individuals focus on mortality but 

sublethal effects, such as reduction of growth rate, could be considered using a 

similar method [43, 58]. The assessment of mortality due to chemical action is 

implemented by utilizing formulations based upon quantitative structure-activity 

relations (QSARs). There are numerous QSARs in the literature for chemicals 

with different modes of action. We utilize results of Veith et al. [Ill] and Kone-

mann[69]developed for baseline narcoticchemicals and relate achemicalproperty, 

the octanol/water partition coefficient, Kqw,to mortality ofindividuals(see Fig 

ure 1). For a single individual, an effect occurs when concentration ofchemical in 

the aqueous phase reaches a critical level, denoted by LCgo (cf. Figure 4), and is 
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calculated from the equation logl/Cgo = —0.8 — logKom-

The exposure-effect modelis coupled with the physiologically-based individual 

model which yields expressions for the weight and surface area of the organism. 

This model of an individual fish includes lipid and structural components nec 

essary for assessing effects of lipophilic chemicals on individuals. The aqueous 

component of an individual needed for the exposure model is assumed to be pro 

portional to the structural mass ofthe individual. 

Sublethal Effects: The chemical toxicant sublethal effects for fish have been dis 

cussed in [26], in which the same mechanism for the Daphnia is applied (cf. 

[43, 48]). While the toxicant effect is sublethal, the individual model (1.1) need 

to be modified since the chemical toxicant effects reduce the rate ofaccumulation 

oflipid and the rate ofgrowth ofstructure at individual-level. 

dmi, — _ 
—j— = 9l=xGl-Fl 
da 

(1.29) 

dms _ ^ ci 
= 9s=xGs-Fs 

da 

where x is the reduction in the accumulation and growth duetosublethal chemical 

effects. We choose the reduced rate of accumulation oflipid and the reduced rate 

ofgrowth ofstructure for individual fish to be the same as ones for an individual 

30 



Daphnid as follows. 

0 ifc^>io-o-«ii:^i 

where Ca is the internal aqueous concentration of chemical in an individual fish 

and Koyj is the octanol/water partition coefficient of the chemical. The value 

10-1.83^^1 jjg ijjg experimental no effect threshold. There is no effect on the 

growth of a fish, until Ca exceeds the threshold value the no growth 

threshold. While Ca exceeds this threshold, individual fish have a negative net 

growth rate, which only includes the loss functions. 

Combined Effects: In our numerical simulations of Chapter 5, we consider the 

chemicaltoxicant effects combiningthe lethal and sublethal effects together. That 

is, the representation of chemical toxicant sublethal effects results in the growth 

reduction occurring continuously as a response to continuous internal toxicant 

concentration. Death ofthe organism caused by lethal toxicant effects is assumed 

to fall exactly at the time when the concentration in the aqueous phase ofthe fish 

reaches the value LC50 and, different from the growth,is quantally rather than 
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continuously, assessed. 

A summary ofthe related variables and parameters used in the uptake model 

is given in Table 3. 

1.5 Individual-Based Population Models 

In this section, we give a completed description of a mathematical model for 

individual-based fish populationsin a spatially heterogeneous environment,which 

is studied in the rest ofthis thesis. The model consists oftwo parts: an individ 

ual model and population dynamic model. In particular, the population model 

here includes fish immigration in the older life stage (i.e. after the embryonic 

stage) due to diffusion and the environmental heterogeneity, for example, differ 

ent concentrations of chemical toxicant and food density in the spatial domain 

(cf. [50, 83, 93,96]). We here assume that fish live in a bounded connected spa 

tial domain with the fiux type as in (1.11) or (1.12). We are going to use the 

same notations and definitions as previously given unless special declarations are 

presented. 

We first consider the fish individual model. Prom Section 1.1,the fish individ 

ual model can be defined as follows: 
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Individucd Model: 

drriL 

da = Sl=Gi-Fl 
(1.31) 

7Ml,|a=o — '^Lo 
(1.32) 

"^510=0 — "inSo 

Furthermore, if the environment is polluted by a chemical toxicant and the 

toxicant effects on fish, then the fish individual model should be modified by 

including a chemical toxicant uptake equation and the toxicant effects on the fish 

growth. Prom Section 1.1 and 1.4, the fish individual model with toxicant effects 

can be written in the following. 

Individual Model with Toxicant Eflfects: 

= 9l= xGl- Fl 

(1.33) 

dlTls 
= 9s= xGs- F.s

da 

ni£,|o=o — "^Lq 
(1.34) 

^s|o=0 = TTT'So 
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_ g.-Sgk^C^+CpF ^^^^^{Sgk^+EkE) 

■6r|a=0 = Btq 

When the combined toxicant effects occurs, the growth rate of fish is reduced if 

the chemical concentration is less than the level LC50 by x aJttd fish is killed if the 

chemical concentration reaches the level LC^q. 

We now consider population dynamic models. If fish might have movements 

due to both diffusion and advection as (1.11), the fish population dynamic model 

has been defined in Section 1.2, that is. 

Population Dyneimic Model (I): 

dp dp djp gi) d{p gs) ^ _ 
dt da drriL dms (1.36) 

for t € (0, T], a € (0, J],x G Q, 

dt da drriL dms (1-37) 
for t 6 (0, T], a G (J, G fi , 

with the initial-boundary condition 

ki^ — q • I') = 0 or /? = 0, x G ,
dv 

p(0, a, mz,, m5, x) = po(a,rni,m5,x), (1-38) 
rAm rco roo 

p{t,0,mQL,mos,x) = / / / /3p{t,a,mL,ms,x) dadmidms 
Jo Jo Jo 
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By using the extensions (1.20) and (1.21), we can rewritten as a unified form: 

Population Dyneimies Model (/'): 

Ot OQ UTUl OTflS 

forte(0,T],a€ 

(1.39) 

k{^ — q • I/)=0 or p=0, x e , 
ou 

p(0,a,tul,ms,x)= po{a,rriL,ms,x), (1-40) 
Mm fOO roo 

pit,0,rriQL',rnQS,x)= / / /3p(t,a,mL,ms,x)da drriL dms 
Jo Jo Jo 

Iffish have a pure diffusive movement asin (1.12),the fish population dynamic 

model is: 

Population Dynsimic Model(II): 

dp dp d{p gi) d{p gs)^ _ 
dt da drriL dms (1-41) 

for t6(0,r],a e(0,J],a;e fl. 

eft Od OTUIj OTTls (1.42) 

for t G (0,T'],tt G {J,A.jf^,x G fl. 
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with the initial-boundary condition 

=0 or p=0, X e9Q, 
av 

p(0,a,mL,ms,x)= po{a,mL,ms,x), (1-43) 
rAm TOO TOO 

p{t,0,moL,mos,x)= / / /3p{t,a,rriL,ms,x)dadmidms 
Jq Jo Jo 

Its unified form is: 

Population Dynamics Model {II'): 

Ot Od OTUjj UTTls 44^ 

for t € (0,T],a e[0,Am],xeQ, 

=0 or p=0, X Gd^l, 
ov 

p(0,a,rriL,ms,x)= po(o,ttil,ms,x), (1-45) 
rAm roo roo 

p(t,0,moL',mos,x)= / / / ^p{t,a,mL,ms,x)dadm^dms 
Jo Jo Jo 

Moreover, from the view point of biology and ecology, we assume that k, p 

and P are nonnegative functions and dependent ofthe total population function 

P=P{t,mjs,ms,x). That is, 

k= k{t,x,P)> ki> 0 

p=p{t,a,mL,ms,x,P)>0 (1-46) 

P= P{t,a,mi,ms,x,P)>Q 
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where 

r^m 

P= p{t,a,mi,ms,x)da. (1-47)
•/o 

We now can define the complete forms ofindividual-based population model, 

which are discussed in the rest ofthis thesis. We first consider that fish live in a 

heterogeneous spatial environment with diffusive and advective movements as in 

(1.11) at the older life stage (after embryonic stage). Then the individual-based 

population model can be defined as 

Individual Model (1.31) 
; (1-48) 

Population Dynamic Model(I)(1.41) — (1.42) 

or defined by using the unified form (1.22) 

Individual Model (1.31) 
(1.49) 

Population Dynamic Model(I')(1.39)— (1.43) 

Moreover, if there are chemical toxicant effects on fish, then the individual-based 

population model is 

Individucd Model with Toxicant Effects (1.33) 
(1.50) 

Population Dynamic Model(I)(1.41)-(1.42) 
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or 

Individual Model with Toxicant Effects (1.33) 
(1.51) 

Population Dynamic Model (I')(1.39)— (1.43) 

Asexplained before,mostofour analyses and discussions focus on the diffusion 

as in (1.12). Then,the above models with diffusion (1.12)can be rewritten as 

Individual Model (1.31) 
(1.52) 

Population Dynamic Model(II)(3.110) (3.111) 

or defined by using the unified form (1.24) 

Individued Model (1.31) 
(1.53) 

Population Dynamic Model (II')(1.44)— (3.112) 

Moreover,if there are chemical toxicant effects on fish, then 

Individual Model with Toxicant Effects (1.33) 
(1.54) 

Population Dynamic Model(II)(1.41)-(1.42) 

or 

Individual Model with Toxicant Effects (1.33) 
(1.55) 

Population Dynamic Model (II')(1.44)— (3.112) 

It is not very hard to check that all of the above models are well-posed. Each 

of them is a mixed type problem of a ordinary differential system and a partial 
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differential problem. In particular, the partial differential problem is a degen 

erate parabolic problem with discontinuous coefficients and nonlocal boundary 

conditions. 
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Chapter 2 

Mathematical Models for 

Individual-Based Populations 

In this chapter, we discuss mathematical models for individual-based, physio 

logically structured fish populations with diffusive and advective movement in a 

spatially heterogeneous environment defined in Section 1.5. The component mod 

els consist of representations of an individual fish and a fish population. Prom 

a biological point of view, the individual model depicts the growth of individual 

(or cohort) and the population dynamic model depicts the structural variation 

and distribution of the fish population. We have considered a fish population as 

well as the combined effects of chemical toxicant on a fish population in a spa 

tially heterogeneous environment. Prom mathematical view point, our model is 

an initial problem for ordinary differential systems coupled with a nonlocal initial-
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boundary problem for nonlinear partial differential equations. The ordinary dif 

ferential problem includes growth processes ofthe physiological variables and may 

also include a chemical toxicant uptake equation for chemical toxicant exposure 

which describes the various processes of chemical toxicant in a fish. The partial 

differential problem is a mixed problem oftwo coupled extended McKendrick-von 

Foerster type partial differential equations, which depicts fish population dynam 

ics and distribution in two different age sets, the embryonic stage and older life 

stage. We consider fish in the time period (0,T]and the age period [0,Am],where 

Am is the maximum age. We also assume fish are in a connected spatial domain 

n C 72."(n=1,2,3) with a smooth boundary dO,. 

The individual-based,physiologically structured fish population mathematical 

models are presented. We then give a mathematical derivation for the mathemat 

ical models. Moreover, a primary mathematical analysis for the mathematical 

models is also shown, which contains the key idea to construct the computational 

models in Chapter 3. In addition, as a basis and preparation of mathematical 

analysis for the mathematical model, three closely related auxiliary age struc 

tured population dynamic models are discussed first. The first two have been 

studied before by several researchers (cf. [14, 37, 38, 77, 78, 79,89]). The third is 

close to our model. 

The notations in the previous chapter are utilized here. Crepresents a generic 

constant, which is only dependent the related given initial data and may take 
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different values in the different places. 

2.1 Mathematical Derivations 

In this section, we show a mathematical derivation for the individual-based pop 

ulation mathematical models proposed in last section. Since the detailed mathe 

matical derivations for the individual model,the chemical toxicant uptaJce equa 

tion, and the population dynamics without movements of Chapter 1 are already 

published (cf. [45,47,49,46,70,89]), we here only give a mathematical derivation 

for the population dynamic model with spatial movements. 

We consider a fish population, which is sufficiently dense so that a continu 

ous theory can be applicable, and assume that the fish move in a bounded con 

nected spatial region (open domain) c 7^°(n=1,2,3). Let p{t,a,mL,7ns,x) 

{number/d • • m")be the density function, that is, the number offish per age, 

per massoflipid,per mass ofstructure, per volume ofspatial environment at time 

t\ where a represents age (d), a: € represents the location. 

Suppose that we arbitrarily choose the following variables such that 

B C fi. At> 0, 0< tti < 02, 0< mx,, < mi^, 0< msi < ms^. 

Now we consider the variation of fish numbers in B x [01,02] x [mL^^mL^] x 

[msi,TOsj] from time t to time t+At, where when we say a fish is in B,that 
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means,the fish is living in the spatial domain jB; a fish in [ai,02], an age interval, 

means that the age of the fish is not greater than 02 and is not less than ai; 

similarly understanding applies for a fish in [mL^.mL^] and [msi,ms2]- Let N{t) 

be the number offish in B x [01,02] x [7711,1,^1,2] x [msijms^] at time t, then, 

r ro,2 

~ / / / / [pit,a,mL,ms,x)]dxdadmLdms.JB Jai JrtiLi Jms-^ 

Thus, the change of fish number in 5x [01,02] x [7711,1,7711,2] x [^51,77752] from 

time t to time t+At is: 

iv(t+At)-iv(t) = / rnP
JB Jai JniLi •''™5i ^2 1) 

[p(t+At,o,niL,ms,x)— p{t,a,rriL,ms,a:)]dxdadrriLdms. 

On the other hand,we can calculate iV(t+At)— N{t)by counting how many fish 

come into5x [01,02] x [777^1, x [77751,77752] from outside in the time interval 

[t, t+At], how many fish go out ofB x [oi,02] x [777L1,777i2] x ["^5ij"752]in the 

time interval [t, t+At],and how many fish in Bx[oi,02]x[777ii,7771,2] ["^Si,1^32] 

die in the time interval [t, t+At]. Then,N{t+At)— N{t)can be expressed as 

N{t+At)-N{t)=No-Ni-N2-Ns+Nr, (2.2) 

where Ni (i=0,1,2,3) and Nr will be defined. Let Ami,{t+At,o,ttil,ms,At) 
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Jai 

and Ams{t+At,a,mL,ms,At)be the average increase in the mass oflipid and 

structure of a fish of age a in the time interval +At], respectively; and T> be 

the flux through out ofdB,the boundary ofB. 

No represents the number of fish which are not in [01,02] x 

[77151,77152] but are in B at time t, and which are in 5x [01,02] x [777ii,777L2] x 

[77751)^^52] ^ mathematicalform ofNq can be defined as follows 

r rai rmi,2-Ami,(t+At,a+At,mz,^,ms2At) /•msj-AmsCt+At.o+AtjJTixij.'nsjjAt) 
^0= /

JBJai—At Jmr,-Amr(t+A7,o+At,mr,,,m<5,.ArtIB Jai—At Jm/ii-Ami,(J:+At,a+At,mi,^,77151 At) •'^Si {t+At,a+At,mi,^,msi,At) 

[p{t,a,rriL,ms,a;)]dxdadmLdms 

f ra^-At r77ii;2-AmL(«+At,a+At,77i£,2,77i52,At) tmsi 

+IB Jai Jma.—lJB Jmr,,—Amr.(t+At,a+At,mr.,,m.(^,.At)Jm£i-A77ii(t+At,o+At,7n£,i,77i5i,At) Jmsi—Ams(t+At,a+At,mi,,^,msi,At) 

[p{t,a,mL,ms,x)]dxdadmidms 

r raz-At rmi^ riraz—i^t f^Li rms^~Ams{t-\-At,a+At,mLn,m.s2At) 
+ 
JB Jai •/mti—A77ii,(t+At,o+At,77ii;i,msi,At) Jms^ 

[p{t,a,rriL,ms,x)]dxdadmjjdms-

Ni represents the number of fish which are in 5 x [01,02] x [7771,1,777x2] 

[77751,77752] at time t, but are not in [01,02] x [777x1,777x2] x [77751,77752] and are still 
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f^Sz

JrriLi 

in B at time t+At. The mathematicalform of Nx is defined as 

f f"'^ f^S2^1= / / [p{t,a,mL,ms,x)]dxdadmLdms
JB Jaz—At Jmjj^ •'msi 

az—At rmi,2r raz—^t rTTiL^ f^Sz 

ai ''ms2-Ams{t+At,a+At,mi,2,ms2,At)JB Jai JrriLi •''"S2-

[p{t,a,rriL,ms,a:)]dzdadmidms 

^ r raz-At rms2-Ams{t+At,a+At,mL2,ms2,At) 
JB Jai Jmt2-Amz,{t+At,a+At,mL2>ms2tAt) Jmsi 

[p{t,a,rriL,ms,a;)]dxdadmLdms. 

N2 represents the number of fish which are not in B at time t, but are in 

B X [01,02] X [mil,70^2]^[^Sij'TiSz] time t+At. is defined as 

rt+Atrt+n.t raz—At+Traz—ixt+T f^Li-/•mr,^—AmL(t+At,a+At,mr,2,ms2,t+At)—T 
N2 

Jt Jai—At+T Jmi,^ —Ami(i+At,a+Ai,m£,i,77151,t+At)—T 
rTns2-Ams{t+At,a-i-At,mL2,ms2>t+At)-r / r \ 
/ { j D'vds)drdadmidms. 
Jmsi—Ams(t+At,a+At,mL,,ms,,t+At)-r \JdB / 

where v is the outer unit normal direction ofdB. 

Nz represents the number of fish which were in 5 x [01,02] x [mLi,mLz] x 

[m5i,m52] in the time interval [t. At] and who died in time interval [t,t+ At]. 
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This is defined in the following 

^ yt+Atrt+m pa2-At+T pmL^-AmL(t+At,a+At,mL2,ms2,t+At)-Trmi,^-r raz-^t+T 
Ns 

JB Jt Jai-At+T Jmz,i-Ami,it+At,a+At,mL^,msi,t+At)-t
Afmsj-Ams(t+At,a+At,mi,2,ms^,t+At)-r 
fJmmsj—Am5(t+At,o+At,niij,msj,t+At)—t 
[np{t,a,rriL,ms,x)]dxdTdadmz,dms. 

Nr represents the portion of Nz which also belong to N2. So, it has been 

calculated twice, once in N2 and once in Nz. This can be estimated as 

rt+At rr raz-At+r rmi,^-AmLit+At,a+At,mL^,ms2,t+At)-T 
Nr < /•ft Jt Jai-At+T Jmi,j-Amz,(t+At,o+At,m£i,m5j,t+Af)-T 

rms2-Ams(t+At,a+At,mi,2j'ns2>t+At)-T y
I (/ ^• JJds)dtdTdadTnLdms
Jmsi-Ams(i+At,a+At,j7ii;j,ms^,t+At)-r JdB 

= o{{Atn 

Hence, using the Mean Value Theorem for Integration, Mean Value Theorem for 

Differentiation, Gauss Divergence Theorem (cf. [34, 117]) and individual model 

(2.51), we have that by direct computation 

Nq r f^s2 

A^oAt = LL, p(t,a„mi.,ms,x)dxdm^dms 

'^'IbL Sm'[^^^kmL„ms,))pity<'^"'L,ms„x)jdxdadmL 
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+mc OjTTl^jjTTlS)Sj)! dxdOidTTlg. 

Nl f /""IX-Z /*"^S2 
i'SoAi = IbL L P(*:'^:"'L,ms,x)dxdmBdm,'mLi Jmsi 

'^Lf f'[i9s\imL,,ms.))p{i,0','^L,ms2,x)]dxdadmLJB J0,1 

*L£C I(jTiiig ^)j dxdad/fTig, 

N2 f f^L2 r^S2 

ias=/«).. L. L.aj •''TiSi 

Pl^N, r foz fmL2 fms2 

ii^SiA+^L/JB Jai / •'7715j [Mi>05"^i»"^5ja;)]dxrfadmLdms.LXC •'7711,1 / 

Then, the above four formulas, together with (2.2) and the basic theorem for 

calculus,imply that 

lim ~ 
At-»-0 At 

^ r rat rmL^ ms^ ̂  djgLp) d{gsp 
dxdadniLdms

Jb Jai JTriL^ Jmsi Lda drriL drng 
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r ra2 rmij 

+/ / / / -IJ'P{t-iO>,rnL,ms,x)]dxdadmLdrns.
JB Jai -/msj 

On the other hand,it follows from (2.1) that 

N{t+At)-iV(t) r /•02 rmL^ fins2 do 
ia At -LL I, 

Therefore, we obtain that 

f r n n^d.dadm.dms 
JB Jai JrriL, Jms, Ot 

_ r /""Z rrriL^ rms^ dp d{gLp) d{gsp)'
■?;—I— r dxdadmi,dms (2.3)JB Jai Jmu^ JfU'Si da drriL dms 

r rat ftiSz 
+ / / / / [V-I? — (ip{t, a, rriL, ms, a;)] dxdadrriLdms.JB Jai JrriLi Jms^ 

In view of the arbitrary character of B, ai, a^, • • •, (2.3) immediately implies 

dp , dp ^ d{gLp) , d{gsp) „ ^ 

If we consider a non-spatial model, or one without fish movement, we can sim 

ply take X> = 0. Hence, (2.4) implies the nonspatial (or without any movements) 

population dynamic model (cf. [89]) (where we may just regard a; as a parameter 

not a variable for the difierential equation). In general, there are many types of 
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fish movements. We now list some t3^ical cases as follows. 

Case 1. If we consider the advection movement case so that fish alter their move 

ment in response to conspecifics and/or environment spatial heterogeneity, then 

we take T>=pq(t,a,mi, ms, x,P). Hence,(2.4) implies that (cf. [50, 83,96]) 

dp dp d{gLp) d{9sp) 

Case 2. If we consider the directed dispersal in the direction of least crowding, 

then we take V=kpVP. Hence,(2.4)implies that (cf. [11, 91,96]) 

dp dp d{gLp) d{gsp) „„ 

Case 3. If we treat random dispersal so lhat the local fiow of population lies in 

the direction of decreasing density, then we take D=kV p. Hence,(2.4)is just 

the model(1.10) with D as in (1.12), that is, the individual-based model for fish 

population dynamics with difiusion (cf. [17, 96]). 

Case 4- When we assume that fish do not make any spatial movement in the 

embryonic stage (0,J]but do have movements in the older life stage(J,Aj,^,then 

we should choose that V=1^^p where k is defined as in (1.20). Hence, we obtain 

the model (1.24). 

Case 5. We may mix some ofthe above cases,in particular, diflFusion and convec 

tion. For example, V=kVp— qp,then the population model is (1.10) with T> 
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as in (1.11), and T>=kV p — qp,then the population model is (1.22). 

2.2 Age Structured Population Dynamic Problems 

In order to give a mathematicalanalysisforthe mathematical modelforindividual-

based fish populations proposed in the previous sections, we first consider three 

auxiliary agestructured populationdynamicmodelsas preparationsto understand 

more complex models,forinstance,our model. In particular,we are going toshow 

some results about the existence, uniqueness and properties for the solutions. 

We now discuss the first auxiliary age structured population dynamic model 

defined as follows, which has been discussed in [38, 89,93, 115, 114]. 

Age Structured Population Problem (I) 

du du 

u(0,a)= uo(a) (2.5) 
An 

u{t,0)= / Pu{t,a)da 
Jo0 

where p=p(t,a,P),/3=/3{t,a,P),and 

P=P{t)= / u{t,a)da, 
Jo 
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and where is the maximum age; this means we assume that 

u{t,Arr,)=Q, Vte(0,T] 

By the method ofcharacteristics, we have (cf. [89, 114]) 

Lemma 1 Assume thatn is a nonnegative continuousfunction over[0,Tjx[0,Am) 

and P is a nonnegative bounded continuousfunction over[Q,T]x\Q^Am\. There 

then exists a unique classic solution of(2.5) satisfying 

0<u(t,a)<C, Vte(0,r], aG[0,^„,] 

where C is a constant, only dependent on the given initial data. 

The second auxiliary age structured population dynamic modelis an age struc 

tured model with diffusion and defined as follows, which has been studied in 

[7, 29,38,41, 42, 77,78, 79, 115]. 

Age Structured Population Problem (II) 

du du , , 
_+ = (2.6) 
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du 
k—=0 or u=0, on dQ 
01/ 

w(0,a,x)=uo{a,x) (2.7) 

u{t,0,x)=B{t,x) 

where k=k{t,x,P), 11= a,x,P),and 

fAm 
P=P(t,x)= u{t,a,x)da 

Jo 

We first consider that B{t,x)is a given function and then B{t,x)is defined by the 

renewal equation. Clearly, the weak formulation of problem (2.6)-(2.7) is: Find 

u:(0,T]X —> V such that 

{dr u,w)+Q!(A:,u,w)= —(j^u,w), forV w eV 

u(0,a,x)=uo(a,x) (2.8) 

u(t,0,x)=B(t,x) 

where (•, •) is the inner product of and 

^ du du 

a(k,v,w)=(kVUjVw)= fkVuVwdx (2.10) 
J 
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/9?y
when A:-^ = 0 

v=l (2.11) 
Hq{Q,), when it = 0. 

Here and later on, (H^{Q))and )are the standard 

Sobolev spaces(of. [1,34,63]),whosestandard norms(semi-norms)are denoted as 

II •lU (I • jm)and II •||„j,g (I •|„j^g), respectively. By semigroup theory,linearization 

and delay techniques (cf. [89, 78, 115, 114, 117]), we then have the following 

lemmas (cf. [77, 78, 79, 115]). 

Lemma 2 Assume that /t is a nonnegative continuousfunction and has hounded 

first derivatives with respect to all ofits variables. Also assume that k is a positive 

continuousfunction and has a boundedfirst derivative more precisely, 

dk
k2>k>k^>% I —I< Ck 

where ki, k^ and Ck are constants. Let B{t,x) e L^((0,r], V) UQ{a,x) € 

L^([0,.Am], V) be given. Then there exists a nonnegative solution of{2.%). More 

over, we have that 

(i) if both k and n are independent ofP,the solution of(2.8) is unique, 

(a)ifk is independent ofP, B{t,x) € L^({0,T], 17nL°®(fi)), and uo{a,x) € 

L^([0,.4„i], V nL°°(fi)), there exists a unique solution of(2.8) u G L^((0,r] x 

0,^,„], ynL«'(fi)). 

(Hi) if B(t,x) G L2((0,r], V nl^^'°°(fi)), and Uo{a,x) G L'^([0,Am], V n 
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), there exists a unique solution of(2.8) u e L^((0,T]x [0,^4^], V fl 

). 

We are ready to consider the other case for which B{t,x) is replaced by the 

renewal equation, i.e., 

r^m 
B{t,x)= / Pu{t,a,x)da 

Jo 

where j3 — /3{t,a,x,P) is the birth rate. Therefore, we can rewrite the problem 

as follows 

du du _ ,^ ̂ -V •(kVu)=-fj,u (2.12) 

du 
k—=0 or u — 0, on dO, 
dv 

u(0,o,x)=Wo(a,x) (2-13) 
rAm 

u{t,0,x)= / fiu{t,a,x)da. 
Jo 

Its weak formulation is: Find u :(0,T]x [0, —y V such that 

{dr u, w)+a{k,u,w)=-(//u,w), for V ly G F 

u(0,o,x)=Uo{a,x) (2-14) 
r^m 

u{t,0,x)= / I3u{t,a,x)da. 
Jo 

We also can have a similar lemma as Lemma2(cf. [73, 77,78,79, 114]). 

Lemma 3 Assume that fj, is a nonnegative continuousfunction and has hounded 

54 



first derivatives with respect to all ofits variables. Also assume that k and are 

nonnegative continuousfunctions and have a boundedfirst derivative with respect 

to P,that is, 

k2>k>h>0, 1^1 <a 

;S>/3>0, \^\<C, 

where ki, k2, Ck and Cp are constants. Let wo(a,a:)^ V) be 

given. Then there exists a nonnegative solution o/(2.14). Moreover, 

(i) if both k, p, and are independent ofP,the solution o/(2.14) is unique, 

(a)ifk is independent ofP and wo(o,a;) € ̂ ^([0,^^], V nL°°{n)), there 

exists a unique solution of(2.14) u e L^((0,r] x Q,Arri\, V D L°°(Q)). 

(Hi)if UQ{a,x)G L^([0,>lm], V ,there exists a unique solution of 

(2.14) u G L2((0,T] X 0,^^], y^^^'^(n)). 

Furthermore, from the analyses and proofs for Lemma 2 and Lemma 3 in 

[89, 78, 115, 114], it is not hard to see that Lemma 2 and Lemma 3 can be 

extended to the model with both diffusion and advection (see Remark 2.3.1). 

Finally, we consider the third auxiliary age structured population dynamic 

model, which is a mixed type model that combines the above two auxiliary age 

structured population dynamic models. In the model,we assume that fish do not 

move in the embryonic stage and may move only during the older life stage (after 
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the embryonic stage). This is a reasonable assumption in biology. However,from 

a mathematical perspective, this brings some new difficulties since the partial 

differential equation now is a mixed type equation with discontinuous coefficients. 

Mixed Age Structured Population Problem (III) 

du du 
= -/ 

(2.16) 
for t e(0,T],o e(0,J],a; € 

du du _ , 
_+_+V.(i;V«)= -^u 

(2.16) 
for t G (0,T],a G(J,^4],x G 

du 
k-;:^=0 or u=0, on 
dv 

u{Q,a,x)= UQ(a,x) (2-17) 

u(t,0,x)= B{t, x) 

where fj,, k, B and P have the same definitions and assumptions as those in the 

above auxiliary age structured problem (II). If we extend A: to ifc as in (1.20), we 

can combine (3.82) and (3.83) as the unified form: 

du du 
+V A:Vu = -t,udt da (2.18) 

for V t G [0,T],a G [Q,Am\,x G fi. 
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Its corresponding weak form is: Find u:(0,T]x [0, —> V,such that 

(dr u, w)+a(k, u, w)=-(/xu, w), for V to G V 

u(0,a,x)=uo(a, x) (2.19) 

u(t,0,a:)= B{t, x). 

Lemma 4 Assume that ji is a nonnegative continuousfunction and has bounded 

first derivatives with respect to all ofits variables. Also assume that k is a positive 

continuousfunction and has a bounded first derivative more precisely, 

8k 
k2> k> ki > 0, I—I < Ck 

where ki, k2 and Ck are constants. Let B{t,x)e L2((0,T], V) and UQ{a,x) G 

L^{[0,Am], V) be given. Then 

(i)if both k and p are independent ofP,there exists at most one weak solution 

0/(2.19). 

(a)ifk is independent ofP, B{t,x) G L^((0,r], ynL°°(fi)), and Uo{a,x) G 

L^([0,Am], VnL°°(fi)), there exists at most one solution o/(2.19) u G L^((0,T]x 

[0,Am], FnL«'(n)). 

(iii) if B{t,x) G L2((0,T], yni^^'°°(n)) and uo{a,x) G ̂ ^([o,^^], Vn 

W^'°®(fi)), there exists at most one solution o/(2.19) u G L^((0,T]x[0,Am], Vn 

IVi'°°(fi)). 
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Proof. We here only discuss (in)since a small modification and simplification 

of this proof implies immediately (i) and (zi). Let Ui, U2 G V r\ 

) be two weak solutions of (2.19). Then, there is a constant M > 0, 

such that 

fT rAm 

Jo Jo \Mhoodtda < M^, (z=1, 2). (2.20) 

Moreover,denote by 

Ar, 
Vi = exp(-A t)Ui, Pi= 

r-^m

Ui da, (z=1, 2) 
JO0 

k*{P)=k{t,a,x,P), iP{P)= n{t,a,x,P) (2.21) 

W = Vi — V2 

where A is a positive constant, which will be determined later. Hence, it follows 

from (2.19) that,for w and Vi (z=1,2), 

w(0,a,a;) = zi;(t,0,a;) = 0, for a; € 

{dr Vi, w)+a{k*{Pi), u, w)+(ifPipi)+A)Vi, w)=0. (2.22) 

By elementary computations, we have that 

it Vi, w)— a{k*{P'f), V2, w)]dtda 
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^ lo Ij ~ Q:(fe*(P2), V2, w)]dtda 

nAm p _ 
, [(r(Pi)Vui, Vra)+{(k'(Pi)-k'iP^))VV2, Vffi)] dtda 

n-^m Q /*r rAmT rAr,
lw|?dtda-C |((Pi-Pa)Vi;2, Vw)|dtda 

\w\idtda 

T rAr, 

(^1 — '^2)da)V«2• Vwdx dtdaL n \Jo 

nAm „
\'w\-^^dtda 

2 lV2cArfi 

w da |Vii;|rfx))dtda-CM i:c{i 

nAm „
\w\.j^dtda 

-CM rru |w| dx da[|V«;p dx I dt dcL 
1/2 

Jfl 

rT rA, ,0 /*^ r fA-m Ir.> k,j^ \w\Utda-l ^ CmI Mlda+f\w\l dtda 

nAm -
||to|Io dtda (2.23) 

_ 
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and we have that 

nAm 
[(^*(A)Vu w)-(//*(P2)Vi, lu)]dtda 

[(a^*(-Pi) w, w)+ -fJ'*{P2)) V2, w)]dtda 

> -c[ u,)| dtda 

T rAr, = -cI f {vi — V2)da j U2wdx dtda 
Jo Jo n \Jo 

2 -jVa 
> -CM wda liyl dx I dtdarrii/Jo Jo \Jn Jo 

> -CM[rnr/jw\^dx daJ\wf dtdaj1/2 

n>4m r r-A.m -
U lhligrfa+||«;| dtda 

n-^m 
\\w\\ldtda. (2.24) 

Therefore,integrating(2.22)over [0, T]x [0, and taking the difference ofthe 
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two equalities (z=1,2), we have that 

fT rAm 

0 = Jq [{drw,'^)+Kw,w)+(a{k*{Pi), vi, w)-a{k*{P2), V2, w)) 

+({(J>*{Pi)Vi, w)- {fJ.*{P2) Vi, w))]dt da 

> 1 r ['■ diMl) ^ d{\\w\\l)^ di da2 Jq Jo dt ' da 
■T rA+A / / ^w\\q dt da — CM I / ||w||odtrfa

Jo Jo Jo Jo 

fT fAm 
\\w{t,Am,-)\\Qdt + \\w{T,a,r)\\lda 

fT fAm „ fT fAr,
+X / \\w\\ldtda — CM |w||o dt da 

Jo Jo Jo Jo 

> (X — CM) f f ||zi;||o dt da. 
Jo Jo 

Thus, by taking A large enough, this implies that 

fT fAm 
/ / ||z/;||o dt da < 0. 

Jo Jo 

Clearly, that means that w = vi — V2 = 0. Hence, ui = U2- So we have proved 

this Lemma. 

Theorem 1 With the same assumptions as Lemma 4, then we have that 
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(i) if both k and jj, are independent ofP, there exists a unique weak solution 

0/(2.19). 

(a)ifk is independent ofP, B{t,x) G L^((0,r], V'nL°°(f2)), and Uo{a,x)e 

L^([0,Am], V nL°°{Q,)), there exists a unique solution o/(2.19) u G L^{{0,T]x 

[0,Am], vnL°°{a)). 

(in) if B{t,x) G L2((0,T], and Uo{a,x) G Vn 

),there exists a unique solution o/(2.19) u G I-^((0,T] x [0,Am], V D 

Proof. We only need show the existence since Lemma4 has already given the 

uniqueness. Like Lemma 4, we in fact only need show (in)since (z) and (ii) can 

be obtained from this proof easily. Without loss of generality, we assume that 

/X > A> 1, otherwise, we only need consider the problem about v =exp(—At)u 

instead of u. We use a method involving the technique of delay h > 0. Let 

P{t — h,x), if t>h 
P^{t,x)= < (2.25) 

P(0,a;), if t<h 

where P{t,x) is defined in the auxiliary population problem (III), i.e., (2.18). 

Also, assume that k^, k'^ and /x'' are obtained from k, k and fj, by using P^ 

replacing F in k , k and /x, respectively. We now consider the following delay 
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problem, 

du^ dv!^ „ r7h^ hs h h 
_+__V.(4 Vu)= V' 

(2.26) 
for V t e[0,T],a e [0,Am],x^Q. 

=0 or =0, on 9^^ 
ou 

u^{0,a,x)= uo{a,x) (2.27) 

u'^{t,0,x)= B{t, x). 

Its weak formulation is: Find u'':(0,T]x [0,Am\ —> V,such that 

{dr u^, w)+a(k'^, w)= w), for V w e V 

u''(0,o,x)=tto(aj a:) (2.28) 

u''(t,0,x)= B{t, x). 

It is not hard to see that the delay problem (2.26)(2.27) is linear over a h-

size time interval. Hence,from partial differential equation theory and Lemma 2, 

we have that the problem (2.26)-(2.27) has a unique nonnegative weak solution 

G L^((0,T]X[0,Am\, Vn W^'°°(f2)),that is, the problem (2.28) has a unique 

nonnegative solution. So,taking w=u^ m (2.28), we obtain 

q:(P, v!^, u'')+(//V, v!") = -{drU^, u^) 
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^ 1(dim , 
2[ dt da 

Hence, by integrating over [0,T] x [0,Am],it implies that 

nAm ^ 
[a!(A:'', u'', u^)+{ij!'u'', u'')]dtda 

1 fT fd{\\u%) ̂ di\\u%)\ 
= -- / f2 Jo Jo dt da 

1 

= (ll'<oll2-||<i''(T,o,0|lS)<fa 

+y^(ml-\\At:An,-)\\l)dt 

1 rAm 1 rT 

-2Jo 

< C{uo,B). 

Therefore, noting that (1.20) and > 1,etc, we have 

nAm , - rT rAm\\u''\\l dtda+ki J WVu'^Wldtda 

nAm ^ 
[a{k'', u'^, u'')+ m'')] dt da 
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< C(wo,B) (2.29) 

On the other hand, notice that,for a G [0,J], 

du^ du^ f, fc 
"ST+ ^dt da (2.30) 

for V t € (0,T],a G [0,J],a; G n. 

In fact, X in (2.30)can be regarded just as a parameter. So,from Lemma 1, 

0< u''{t,a,x)< C{uo,B), V t G (0,r],a G [0,J],a; G fi. 

Differentiating (2.30) with respect to a component of x,then we can have that 

du!t du!t r h h 
= —u U~ — du, U 

dt da ^ ® ^ 

where represents the first partial derivative of and 

_ h du,^ du,''' 

Therefore, we can have that 

(/«5, ut)=-{^,4)-(^.4)-(V -4) 
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.du^ fc. du^ 
dtda-ff 

Jo Jo 

•g(lkSllg) I d{\\u%) 
dtda= -irt2Jo Jo dt da 

1 Z-^.„9B,I-ll»S(r,o.OIIS)da+-I (\\~\\l-\K(t,J,OIIS)dt 

< C{uo,B) 

and we can have that 

[
T

f
3 

u^, u^)\dtda
Jo Jo 

< Cjf
T

I
J

jy\Kl(l+\Ii\)dxdtda 

<C{uo,B)f[f|u^|(H- f \u^\da)dx dtda 
Jo Jo Jci Jo 

< C{uo,B)(^J^ \\u^\\ldt da+ |u^|odtda 
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<C{uo,B)J^T J\\u^\\ldtda+C{uo,B). 

Hence,combining the above three estimates, we have that 

^lo lo ^'^xlodtda ^ u^)dtda 

< C{uo,B)+C{uo,B)f f \u^\ldtda. 
JO Jo 

This, together with the choice oflarge enough A,implies 

^ \u''\ldtda<C{uo,B). (2.31) 

Thus,(2.29) and (2.31)imply that 

Jo Jo — ^(^OjB). 

That means is uniformly bounded in the Hilbertspaces^^((O,T]x[0.Am], V). 

Hence,there exists a nonnegative u € I'2([0,T] x [0,^1^], V)and a subsequence, 

for simplicity, still say such that the subsequence {u^}h weakly converges 

to u as h 0,i.e., 

—> u, weakly in L2([0,T]x [0,Am], V) as h -> 0. 
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We also can have that 

ph —^ weakly in L2([0,T], V) as h -)•0 

vJ", lu) ^ oi{k.) Uj w), as h —y 0, ^ w s. V 

(fj,^ u^, w) —y {fjiu, w), &s h-yO, \/ w eV. 

For (2.32) with the subsequence {u^}h,letting h 0,we then get 

(dr u, w)+a(k, u, w).= w), for V ly € V 

u(0,a,x)=uo{a, x) (2.32) 

u(t,0,x)= B{t, x). 

This meansthat u6 T]x[0,A^], V)is asolution of(2.32). Moreover,from 

the regularity theory of partial diffefehtial problem and Lemma 1 and Lemma 2 

ofthis section, we have that u e L2([0,T]x[0,ylm],nW^'°°(n)). Therefore,such 

a solution u is unique from Lemma2and 3of this section. Finally, we would like 

to mention that, by a standard argument offunctional analysis (cf. [34,75, 117]), 

we can show that the whole sequence is strongly convergent to u in the 

sense of L^([0,T]x [0,.4^], V). This has finished the proof. 

Consider the case for which B(t,x)is replaced by renewal equation,i.e., 

du du _ . 

for V t G[0,T],ae [0,4^],a; G f2 
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rdu 
k~=0 or «=0, a: e 
ov 

u{0,a,x)= uo(a,x) (2.34) 

u{t,0,x)= / 
roo

Pu{t,a,x)da 
J0 

where /? = P{t,a,x,P) is the birth rate. Its corresponding weaJc form is: Find 

u:(0,T]X [0,Am]—y V,such that 

{dr u, w)+aijk, u, w)=-{nu, w), for V to € V 

u(0,a,a:)=uo(a, x) (2.35) 
r^m 

u{t,0,x)= /3u{t,a,x)da. 
J0 

Theorem 2 Assume that^is a nonnegative continuousfunction and has hounded 

first derivatives with respect to all ofits variables. Also assume that k and /3 are 

nonnegative continuousfunction and has a boundedfirst derivative with respect to 

P,that is, 

k2> k> k,> 0, l^i<Ct 

P>/3>0, \^\<Ce 
where kx, k^, /3, Ck and Cp are constants. Let uo{a,x) GX^([0,Am], V) be 

given. Then 

(i) if both k, jx and ̂ are independent ofP, there exists at most one weak 

solution of(2.35). 

(ii) ifk is independent ofP, uo(a,x) € L'^{[0,Ajn], V D L°°{Q)), there exists 
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at most one solution of(2.35) u e X^((0,T] x %Am], FnL°°{fi)). 

(Hi)if UQ{a,x) €. L^{[0,Am], VnlF^'°°(f2)), there exists at most one solution 

0/(2.35) u e L2((0,r] X [0,A^], Fn ). 

Proof. Like the previous lemma and Theorem, we only show (Hi). Similar to 

the argument in the proofofLemma4,let ui, U2 e ̂ ^([0,Am], V n PF^'°°(n)) 

be two weak solutions of(2.35). Also, we introduce a parameter A 1 and adopt 

(2.20)-(2.21),in particular, 

w= vi - V2=exp(-A t)(ui - U2). 

Then, we can have from (2.35) that 

u;(0,o,a:) = 0, for o6[0,An], a: € (2.36) 

w(t,0,x) = / (P*{Pi)vi-p*(P2)v2)da (2.37)
J0 

where /?* is understood same as in the proof ofLemma 4. Also,for Vi (i= 1,2), 

we can have that 

(dr Vi, W)+Q!(^*(Pi), U, w)+((f/,*(pi)+A)Vi, w)=0. 
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Hence, 

{drW, w)+(a{k*{Pi), vi, w)-a{k*{P2), V2, w)) 
(2.38) 

+((/^*(A)vi, w)-in*{P2)vi, w))+X{w, w)=0. 

By a direct computation, we obtain that from (2.20)-(2.21), etc. 

{drW, w)dtda 

1 Wl?)̂ d{\\w\\l) 
dtda2 JQ Jo dt da 

^
T

(lk(«>A»,-)ll§-||TO(«,o,-)ll2) 
A

"'||ii'(r,o,,Ollo''o 

> {P*{Pi)Vi-(3*{P2)V2)da dxdt-/7ifJo Jsi \Jo 

> -Ar„j^ lj^(Pi)vi-IS-{P^)nfdxdtda 
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~ ~^Iq Iq ~ dtda 

_ rT /•Ajn 

> -C{Am,P,C0,M)J^ J^ \\w\\ldtda. (2.39) 

Therefore, it follows from (2.23)(2.24) and (2.38) (2.39) that 

rT rAm 

^ ^ Jo Jo ^ ^1''^)-«(^*(^2), V2, W)) 
+((a^*(-Pi)^1) ̂ )— (^^*(-^2) vi, n;))+X{w,'w)]dtda 

fl" r^m 
> (X - C))I I \\w\\ldtda. 

JO J0 

Thus, by taking A large enough, this implies that 

rT rAm 

Jo Jo ll^llo ^ 0-

Hence, we have proved this uniqueness theorem. 

We now consider the existence for problem (2.35)(or (2.33)(2.34)). We first 

consider a simple case in which we assume that k, /j, and /3 are all independent 

ofP. We use a fixed point technique to show the following theorem. 

Theorem 3 Assume that the assumptions of Theorem 2(i) hold and let 

/? = 0, for V< G [o;T], a6[0,J], xeQ. 
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Then there exists a unique nonnegative weak solution satisfying (2.35). 

Proof. Notice that the problem of this case is just a special situation of the 

problem in Theorem 2, so, we can directly have the uniqueness jfrom Theorem 

2. However, observing the proof of Theorem 2, we in fact obtain a stronger 

result, a uniqueness in L^((0,r] x [0,A„i], V"), only requiring a weaker condition, 

uo e L^i[0,Am], V). 

We now consider the existence. Like in the proof of Theorem 1, without loss 

of generality, we assume that > A » 1. Let 

W=({a>0})ni^({0,21x[0,.l.„I, Z,2(n))ni^((0,T]x[/,.4„], V). (2.40) 

Clearly, is a closed convex set ofa Hilbert space. For v e 7{, we consider the 

the following auxiliary problem: Find u:(0,T]x [0, —> V,such that 

{dr u, w)+a(k, u, w)= —(//u, w), for V w G V 

u(0,a,x)=uo(oj x) (2-41) 
pAm 

u{t,0,x)= B(t,x)= I Pvda. 
Jo 

Notice that, while v eH is given, B{t,x) is known and k, // and P are all 

independent of P. Therefore, (2.41) is clearly a linear problem. It then is easy 

to see that B G L^((0,T], V ). Then, it follows from Lemma 4 and Theorem 

1 that the problem (2.41) has a unique solution u G L'^{(0,r] x [0,AtiIj V). 
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Therefore, we can define a mapping: T: %—>%,such that Tv = u, where 

u is the above unique solution of(2.41). We are now left with showing that T is 

strictly contracting. 

Let Vi, V2 € be two elements of Ti and let m = Tvi, (?=1, 2). Then we 

have that from (2.41) 

(Ul - 1i2)|t=o = 0 

r^Tti 

( - U2)|o=o = / -V2)da 
Jo 

{driui-U2), w)+a{k,Ui-U2,w)+(//(ui-^2), to)=0 

Vw e y, t e (o,T], a e [o,^J. 

Taking w=Ui— U2 in the above formulation and then integrating it over [0,T]x 

we can obtain 

ki / \ui — U2\i dt da+X / llui — U2II0 do 
Jo Jj Jo Jo 

<rr ^a{k,ui-U2, ui — U2)+(/i{ui-U2), ui — U2)]dtda 

P^ P-^m 
< — / (driui-U2), Ui-U2)dtda. (2.42)

JO Jo 
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By a direct computation, we obtain that 

nAm 
(dr{ui — U2), U1—U2)dtda 

_ 1 'g(IK-^2||§) ^(11^1-U2||o) 
di dOf2Jo Jo dt da 

> dt 

1 fl' r fAm 
dx dt 

1 , -o r 
> --AmP |ui -V2\da dx dt 

n^m 
> \\vi-V2\\o dtda. 

_ 

Thus,this, together with (2.42),implies that 

nAm rT rAm
\Tvi-Tv2\ldtda+XJ^ ||Tui-Tu2||g dt da 

T rAr,nAm fT rAm 
\ui-U2\idtda+Xl / llui-^2110 dtda 

JO Jo 

nAm 
ll^^i -U2||oC^tda. 
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Therefore, we can deduce that T is a strict contraction when A is large enough. 

Thus,there exists a u G a fixed point ofT. This and Theorem 1 indicate that 

u €^is the solution of(2.35). We then have completed the proof. 

Finally, we have one of the main results in this section obtained by the delay 

technique as for Theorem 1. 

Theorem 4 Assume thatji is a nonnegative continuousfunction and has bounded 

first derivatives with respect to all ofits variables. Also assume that k and are 

nonnegative continuousfunctions and have a boundedfirst derivative with respect 

to P,that is, 

h2>k>h>0, Igpl < Ci 

P>0>O, \^\<C, 
= 0, for vt e[o,r], a e [0,J], xeQ 

where ki, k^, P, Ck and Cp are constants. Let Uo{a,x) €T^([0,A,„], V) be 

given. Then we have 

(i)if both k, p, and are independent ofP,there exists a unique weak solution 

0/(2.35). 

(ii) ifk is independent ofP, Uo{a,x)e ^^([O,^!^], VnL°°{Q,)), there exists 

a unique solution of(2.35) u e T2((0,T] x [0,^1^], V n T°°(fi)). 

(Hi)if uo{a,x)G L^([0,.4„i], Vn W^'°°(f^)), there exists a unique solution of 
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(2.35) U 6i:2((0,r] X [0, yn ). 

Proof. Like the previous Lemmas and Theorems of this section, we only need 

discuss (iii). Similar to the proof of Theorem 1, without loss of generality, we 

assume that /z > A >• 1. For h > 0, a delay, we introduce as in (2.25) in 

the proof of Theorem 1 and adopt some related notations, for instance, 

and , etc. Also, we similarly introduce = ^{t,a,x,P^). We now consider 

the delay problem as follows. 

dvf' du^ ,~t. h t j. 
_+__V.(i'Vn')= 

(2.43) 
for V t G (0,T],a G [0,Am],x G 

k^ =0 or =0, oh 
ou 

u^{Q,a,x)= UQ{a,x), (2.44) 

vf'it,0,x)= / 
too 

u^{t,a,x)da. 
JQ 

Its weak formulation is: Find :(0,T]x [0,Ar„\ —> V,such that 

{drU^, w)+a(k^, vf, w)=-{fjfvP', w), for V u; G y 

u'^(0,a,a:)= uo{a, x) (2.45) 

u'^{t,0,x)= f vf{t,a,x)da. 
«/o 

Clearly,the delay problem(2.45)is linear over a h-size timeinterval. It follows 

from Theorem 3that the delay problem (2.45) has a unique nonegative solution 

77 



 

 

 

 

û G Z/2([0,r] X [0,^^], V). Taking w=u^ in (2.45), we obtain 

u'^, u^) {pi}^u^, u^) = -[d^yh^ yh-^ 

(2.46) 

_ 1 fdjmi)
+
, d{\\u^^^ 

2 \ dt da 

By elementary computations, we obtain 

1 fT fAr. r^dk^llg) , g(|Kl|g)1
--/ r dtda2Jo Jo dt da 

1 P-^m 1 pT

< 2/0 IKIIorfo+2/ ||A«,0,x)l|grft 

. rT r rAm < C{uo)+~2^J^ iP 

< C{uo)+An ||u||o dt da. 

This, together with (2.46) and /.t > A> 1,indicates that 

, _ rCT pAjn
llu'^llo dt da+ A:i ||Vu''||^ dt da 

nAm . „ rT rAm 
\\u''\\ldtda+ki II Vu''||g dt da 
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r ~[aik'', u^, v!^)+{iJ'v!', w'')] dtda 

_ 1 /"^ +W!i)l dtda2 Jo Jo dt da 

< C(tto)+An /.''"Ml*da 

^C(uo,Affij (2.47) 

On the other hand, by a completely similar argument as that between (2.30) 

and (2.31), we have that (using the same notations) 

^(ii<iig) , dimi)]
+ -{dfj!" v!", v!l) (2.48)

dt da 

dilKWl) , d{H\\l)]--r r dtda
2 Jo Jo dt da 

< yj da+ (||M!;(t,0,i)||§-llujft dt 
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dx dt 

nr-^m
/ (/?u^fda dx dt 

K •/«/ 

< C(uq)+Am, f f \u^\ldtda 
Jo Jj 

^C{Uq,Am.,0) 

and 

/[l(9/w^ I dtdc 
Jo Jo 

<Ciuo,Am,P)j^ \\u^\\ldtda+C{uo,Am,P). 
Combining the above three estimates and noting that > A;» 1, we obtain 

rT rJ 

[ f hxWldtda < x[ f \u^\^dtda 
Jo Jo Jo Jo 

< f j{tJ0 ul, ul)dt da 
Jo Jo 

< C{uo,Am,P)J^ \\u^\\ldtda+C{uo,Am,0) 
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< C{uQ,Arn,p). 

This, together with (2.47),implies 

Jo f^"h''\\idtda<C(uo,Am,/3). (2.49) 

Hence,there exists a nonnegative u € ^^((OjT]x [0,An], V)and a subsequence, 

for simplicity, still say such that the subsequence weakly converges 

to u as h-^0,i.e., 

u'' —> u, weakly in L^({0,T] x [0,A^j, V) as h 0. 

We can have that by a direct computation 

ph—y weakly in L^((0,r], y) as h-^0 

a(k^, u^, w)—> a(k, u, w), as /i -> 0, W w eV 

(//''u^, w) —> (fMU, w), as h 0, w eV. 

Also, we have that, as /i —^ 0, 

/"■^m t, ' . pAm
/ (5 u (t, a, x)da—> / p u{t,a,x) da. 

JO Jo 

For the delay problem (2.45) with the subsequence by letting /i 0 , we 

81 



then have that 

{drU, w)+a{k, u, w)= —{jxu, w), for V ty e V 

«(0,OjO;)=Uo{a, x) 

r^m 
u{t,0,x)= /3u(t,a,x)da. 

Jo 

This means that u G T^((0,T] x [0, V)is a nonnegative weak solution of 

(2.35). Thus, we have proved the Theorem 4. 

Remark 2.3.1: Ifwe replace kVu by kVu—qu in the auxiliary agestructured 

population problem (II), that is, we consider the model with both diffusion and 

advection, then the corresponding bilinear form becomes as 

a{k,u,v)-(qu, v)+{fiu, v). (2.50) 

Clearly, the bilinear form (2.50)is not symmetric. However, as we have indicated 

in Lemma4and Theorem 1-4,we can assume that, without loss ofthe generality, 

fji > X(constant) is large enough. This means, we may always assume that the 

bilinear form (2.50) is coercive. Otherwise, we can apply a simple transformation 

as in the proofs ofLemma4and Theorem 1-4,then we obtain a similar problem 

but with a coercive bilinearform like (2.50). Therefore,from the related analyses 

and proofs about Lemma 2and Lemma 3in [89, 78, 115, 114], it is not hard to 

show that Lemma2and Lemma3are still true for the model with both diffusion 
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and advection. 

Remark 2.3.2: Prom Remark 2.3.1 and the proofs of Lemma4 and The 

orem 1- 4, it is not very hard to show that Lemma 4 and Theorem 1-4can be 

extended to the model like Mixed Age Structured Population Problem (III) but 

with both dijBFusion and advection in the older life stage. More precisely, If the 

term kVu in (2.18) and (2.33) is replaced by the term Vu — q u , we then 

can show that Lemma 4 and Theorem 1- 4 are still true for the model like 

Mixed Age Structured Population Problem (III) but with both diffusion and ad 

vection in the older life stage. 

2.3 Mathematical Treatments 

In this section, we present a primary mathematical analysis for the mathematical 

model for individual-based, physiological structured fish populations in a spa 

tially heterogenous environment, which is proposed in the previous sections and 

Chapter 1. This mathematical model consists of two parts: individual model 

and individual-based population dynamic model. In biology, this is a structured 

model. This is a very complicated and difficult problem,which is a mixed problem 

ofa initial value problem ofordinary differential system,ah individual fish model, 

and a nonlocal initial-boundary value partial differential equation problem,a pop 

ulation dynamic model. In particular,the partial differential problem is indeed a 
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differential-integral problem with a discontinuous coefficient. The discontinuous 

coefficient is coupled with a quasi-linear hyperbolic equation and a degenerate 

parabolic equation. The study methodology is to apply a localization technique, 

an unstructuralization technique for physiological structures, and a linearization 

technique to change the original complicated mathematical problem into a se 

quence of age structured and linear (approximation) problem over a set ofsmall 

time (age)intervals. Thus, we may use the methods and results of the previous 

sections to analyze them. Moreover, notice that the analysis is constructive, so 

it may be applied to construct the approximation scheme. In fact, this is just 

the basic idea to construct the computational model for an individual-based fish 

population model in a heterogenous(chemical toxicant)environment discussed in 

the next chapter. 

We first consider the individual model which is an initial value problem for 

an ordinary differential system with two equations if without chemical toxicant 

effects, or three equations if with chemical toxicant effects: 

Individual Model: 

(2.51) 

^ mgs=Gs-Fs 
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1TlL\a=ao — ^io 
(2.52) 

"^510=00 — ^So 

Individual Model with Toxicant Eflfects: 

= 9l== xGl - Fl 

(2.53) 

_ n T? 
= 9s= xGs- Fs 

'^L|o=ao — "^Lo 
(2.54) 

TThS Ia=ao '^5o 

— = g,=sk^C^,+CfF- +Eks) 

■Sr|a=oo = Eto 

Therefore, we can have the following existence results (cf. [76, 90]). 

Proposition 1 There is a t > 0, such that both problem (2.51) - (2.52) and 

problem (2.53)-(2.55) have a unique solution in [oo, Oq + rj. 

We have shown that, except for the above individual model, the mathematical 

model for individual-based population model includes the following population 

dynamic model, which is proposed in Section 1 of this chapter. 
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Population Dynamics Model: 

dp dp d{p gi) d{p gs) _ 
dt da drriL dms (2.56) 

for t € (0,T],o6(0,J],a: G 

dp ^ dp ^ dipgi) , d{pgs) „ ^ 

at+s^+-asr+"tor"^''*^^'''= """ (2.57) 
for t G (0,T],a G(J,Am],x eO, 

dp
k-^=0 or p=0, on 
du 

P |t=o = po{a,mL,ms,x) 
Mm roo roo 

p{t,0,mLo,mso,x)= / / / 0p{t,a,mL,ms,x)dadrriLdms 
Jo Jq Jq 

Moreover,extending k to k defined in (1.20), we can rewrite the above population 

dynamic model as follows. 

dp dp dipgj) d{pgs) ^ ,7 vr n 
-57+-^+ 1- -X V •(A:Vp)= -ppot Oa OTTli, uTTls ^2 53^ 

for t G (0,T],o G [0,.A;,i],a: G Q, 

k^=0 OT p=0, on dCl,
du 

P |t=o = po{a',mL,ms,x) (2.59) 
rAm roo roo 

p{t,0,mLo,mso,x)= /3p{t,a,mL,'ms,x)dadmi,dms 

Notice that we suppose that, for fish, n tasks (feeding, reproduction, move 

ment,etc.) are accomplished sequentially. Thus,from biological point of view,it 
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is reasonable to solve the individual model (that is, calculate the growth of fish) 

first and then consider the change in population distribution (that is, reproduc 

tion, movement, etc) in a small time (age) interval. In mathematics, while the 

individual model is solved first in a small time (age) interval, we can plug the 

solution ofthe individual model into the population dynamics model ofthe small 

time(age)intervalsince the coupled relation between the ordinary differentialsys 

tem, which describes the individual model,and the partial differential problems, 

which describes the population dynamics models, is a weak association. Hence, 

after plugging inj^e solution of the individual model, the population dynamics 

in the small time(age)interval becomes physiological structure free. That means 

we locally unstructuralize the physiological structures in the population dynam 

ics model. Therefore, we may apply the results and methods,for example,local 

linearization technique and the method involving a h-delay {h > 0), for the age 

structured population model to analyze it. So,clearly we have to discuss the local 

solution problem for our model first in order to discuss the global problem by 

using the above strategy. Ifthere is a local solution on small time(age)intervals, 

then we may use these local solutions to construct a global(at least approximate) 

solution. 

Let Jo be a small time interval. For some initial condition, we solve the indi 

vidual model(2.51)or(2.53)over Jq and obtain the solution(mi, m^). Plugging 
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this {rriL, ms)into the population dynamics model(2.56)- (2.59), we have that 

p{t,a,x)=p{t,a,mi, ms,x). (2.60) 

By elementary computation, we obtain that 

dp _ dp 
dt dt 

dp _ dp dp dp 
da da dmi dms 

so. 

\ d{pgs) 
dt da dt da dm^ dmg 

if we do not change the notations for p, k, k, and after replacing and ms 

by mL and ms,then the population dynamics model (2.58)-(2.59) becomes a 

partial differential problem for p as follows. 

t6 Jo, a6[0,A„i], a: £ f2 
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=0 or p=0, on 
ov 

P |t=to {given) (2-63) 
_ Mm foo poo _ 
P a=o = / Ppda.

Jo Jo Jo 

Clearly, (2.62)-(2.63) is unstructured. This means we have locally unstruc-

turized (2.58)-(2.59) over the small time interval Jo- Therefore, we can use the 

techniques oflinearization and delay, etc. oflast section or directly use the results 

ofTheorem 4oflast section to show that(2.62)-(2.63)has a weaJc solution. That 

is, there exists a p £ L^{Jo x [0,^^], V) which satisfies the initial-boundary 

condition (2.63) and 

fdp dp (7 ~ N // , dgi N ~ X 

Vit; e y, t G Jo, a e[0,T]. 

Then we have 

Proposition 2 Assume that k, p and /? satisfy the conditions in Theorem 4. 

For to > 0, ifp\t=to € L^([0,Ajrt],y), then the mathematical modelfor individual-

based fish populations has a local weak solution.. 

We here only give a outline about constructing global solution since it is useful 

for us to construct the numerical schemes next chapter. However, we don't give 

any details and we plan toshow it elsewhere since it is very complicated. The basic 

procedureofthis method can be described asfollows. For h > 0,wedividethetime 
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� domain into a set of h-size small interval =i*/i, i=0,1,• Then, 

from the above proposition,we could at least obtain an approximate localsolution 

on each small time interval in order i = 0,1,2,•••. Combining these 

local solutions over [tj,tj+i] together, we could get a global approximate solution. 

Moreover, we can try to show this global approximate solution is bounded under 

some norm and its bound is independent of h. Finally, there is a subsequence of 

the global approximate solution converges to a global solution. 

Remark 2.4.1: Prom Remark 2.3.1,Remark 2.3.2 and Theorem 1-4,it 

is not very difficult to see that the analyses and discussions ofthis section can be 

extended to the model with both diffusion and advection,such as (1.24). 
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Chapter 3 

Computational Techniques for an 

Individual-Based Population 

Model 

In this chapter, we will develop and analyze numerical schemes and computa 

tional strategy for the model ofan individual-based fish population in a spatially 

heterogeneous chemical toxicant environment proposed in the previous chapters, 

which mainly consists of a mixed problem of an ordinary differential system and 

a partial differential problem. The ordinary differential system describes the 

individual model and the partial differential problem describes the individual-

based population dynamics model. The general idea for the numerical scheme for 

the individual-based population model is to follow the three basic procedures of 
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our mathematical analysis for the individual-based fish population mathematical 

model in last chapter, which are localization, unstructuralization of physiological 

variables and linearization. For the ordinary differential system of the individ 

ual model, we simply use the implicit Runge-Kutta method because of stiffness. 

However, it is much more complicated for the partial differential problem of the 

individual-based population dynamics since it is a nonlocal initial-boundary non 

linear partial differential problem with a discontinuous coefl&cient. In particular, 

it includes an integral equation (i.e., renewal equation) as a part of the initial-

boundary conditions and its partial differential equation is indeed two equations 

unified by a discontinuous coefficient, one is quasi-linear hyperbolic and the other 

is nonlinear degenerate parabolic. To discretize the population dynamic model,^ 

we use a characteristic finite differencie in the age-time domain and a finite ele 

ment method with numerical integration in the spatial domain. As a preparation 

and basis to construct and analyze our numerical method for the individual-based 

population dynamics model, we construct and analyze the numerical schemes for 

the auxiliary age structured population dynamics models. Then, we discuss the 

computational modelfor the individual-based fish population modelin a spatially 

heterogeneous chemical toxicant environment. The^umerical schemes not only 

have optimal error estimates in the view point of numerical analysis but also al-

ways produce biologically reasonable approximatesolutions.Finally,we discuss the 

computing and coding methodology for implementing the numerical scheme. As 
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a very important related problem, we give a parallel procedure for solving large 

linear systems such as one obtained from our computational model, which is the 

core ofthe numerical implementation ofthe computational model. 

3.1 Numerical Methods for Ordinary DiflFerential Prob 

lems 

As we have seen, there are ordinary differential system problemsin the individual-

based population models. Thus,toconstructcomputationalmodelsfortheindividual-

based population models,we first have to discuss numerical methods for ordinary 

differential problems. Because of stiffness (cf. [86, 90]), we need to apply an 

implicit Runge-Kutta method (cf. [76, 88]) to discretize the ordinary differential 

system problems. 

Consider the following initial value problem of ordinary differential system: 

^ te{to,T], 
(3.1) 

y{to) = yo-

We divide the interval [tQ,T] into N small intervals [ti,tj+i], where 

T^tT= ^ ti=tQ+i-r, i=0,l,...,iV. 
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The 1-stage implicit Runge-Kutta method for (3.1): 

Vi+l Vi "f" /(^i "1" 2''") 2 Vi+l))} ^ — 0,1,. . ., 
(3.2) 

yo = y{to). 

We have that from [76] 

Lemma 5 The 1-stage implicit Runge-Kutta method(3.2) has thefollowing error 

estimate: 

\yi-y{ti)\=o{T''), i=i,2,...,iv 

where y{t) is the solution of(3.1) and yi is defined in (3.2). 

In fact,the local truncation error can reach O(r^). Furthermore,when a higher 

error accuracy approximation is needed, we use the 2-stage implicit Runge-Kutta 

method as 

yi+i = »+2
1 

f(ti+ Ki)+/((;+ Kz)
6 

i=0,l,...,Ar-l (3.3) 

yo = y{to) 

where 

, 3+a/3 , 3+V3>1 = yi+ —g—rf{ti+——t,Yi), 
(3.4)

Y2 = y/3yi -I-(\/3-l)yi -f ̂ '^^Tf{ti+ Y2).
6 

Similarly, we have that (cf. [76]) 
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Lemma6 The 2-stage implicit Runge-Kutta method (3.3) (3.4) has thefollowing 

error estimate: 

\yi-y{ti)\ =0{T% 2=i,2,...,iv 

where y{t) is the solution o/(3.1) and yi is defined in (3.3)(3.4). 

It is easy tosee that we have to solve some nonlinearsystems at each step when 

the function / in (3.1) is nonlinear. We usually use Newton's method to solve 

nonlinear systems. To describe Newton's method, we rewrite nonlinear systems 

as following general form: find x e TV such that 

F(x)=0, (3.5) 

where F : TV —> TV, a continuously differential mapping. Then, Newton's 

method for solving (3.5) is (cf. [57]). 

J(xi^Si = F(xi), 

Xi+i = Xi+Si, (3.6) 

i=l,2,.-. 

where Xq e 71" is a given initial guess, J is the Jacobi matrix. It is well-known 

that Newton's method (3.6) has a quadratic convergence if xq is chosen properly. 

However, if F is not continuously differentiable or the Jacobian J is not easily 
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computed, we will use the following Broyden's method (of. [57]). 

AiSi = -F(xi), 

^i+l ~ 37j Sj, 

Vi = F{xi+{)-F{xi), (3.7) 

. i {Vi — AiSt)sJ 
Si Si 

where xq G 77" and € 77"^" are given initial values. Broyden's method has a 

super-linear convergence if xq and Aq is chosen properly. 

3.2 Numerical Schemes for Population Models 

To build computational models for the individual-based fish population models 

proposed in the previous chapters, we first need to design and analyze numeri 

cal schemes for three auxiliary age structured population mathematical models 

of Chapter 2. We consider the time domain (interval)(0,T]and age domain (in 

terval) [0,Am], where Am is the maximum age of the fish. In order to construct 

characteristic time-age finite difference schemes (cf. [14, 65, 86,88,98,98, 108]), 

we have to choose the same step size,say r,to partition both (0,T] and [0,A^] 
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as follows: 

0 = to <ti<t2<...<tNt=T, 
(3.8) 

0 =ao<ai<a2<...< ojVo =Atd 

where 

ii — to+z-T=to+t- ———, z=1,2,• •,ATt 
(3.9)

A 
di = cio +i-T=ao+i- i=1,2,-'•,Na. 

■^a 

We also consider the spatial domain Q C 7^" (n = 1, 2, 3), a bounded open set 

with a suitably smooth boundary To construct finite element approximations 

on the spatial domain Q, (cf. [15, 25, 63, 64, 107]), we introduce a finite element 

triangulation jT/i for Q,. We assume that is a regular and quasi-uniform simplex 

partition of Q, with mesh size h. Roughly speaking, we partition Q, into simplexes 

with edge length 0(h). For simplicity, we also assume that = (J e, where e 

is an element (small simplex) of Jh ■ 

These same notations are applied in the remainder of this Chapter. Also, we 

assume that C is a generic constant in the remainder of the thesis, which may 

be a different value while appearing in different locations, however, it is always 

independent of r and h and only dependent of the related given data. 
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3.2.1 Numerical Scheme for Age structured Population Problem(I) 

This subsection is to consider the age structured population problem (I) defined 

by (2.5) in last chapter. We have developed and analyzed a numerical scheme to 

discretize this problem. For convenience, we rewrite the problem here. 

du du 

u(0,a) = uo(c) (3.10) 

u{t,0) = / pu{t,a)da 
J0 

where n=//(t,a,P),P=I3{t,a,P),and 

P=P{t)=j u{t,a)da. 
J0 

The finite difierence approximations for (3.10) have been discussed by several 

researchers (cf. [14,61,65,74]). Moreover,our numericalscheme can be regarded 

as modifications of their schemes since we always assume that fish have a finite 

maximum age. It is clearly natural to apply a characteristic finite difference 

method to discretize (3.10) because of the natural relationship between age and 

time. Notice that 

^ ~ ^(^io) _ 
7" dt da ~ 
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we then can apply the following characteristic finite difference approximation in 

the numerical scheme 

= R,(_+ (3.11) 

where stands for an approximation of u{tn,aj). Thus,we can construct the 

following time-age characteristic finite difference method for (3.10): 

yP'j _ . 
= 

j=l,2,...,Na, n=l,2,...,iVt 

= Wo(%) (3j^2) 
1 j=Na3n-l,0^n,0^^ 

i=l 
1 i=JVa

pTl^ 71,0^^ ^71, 

2 j=0 

where and are approximate valuesfor(/.{tn,aj,P{tn))and /3{tn,aj,P(t„)), 

respectively, which are defined by the technique ofinvolving a delay r as follows. 

= //(i„,Cj,P"-i) 

In addition, the solution of (3.10) always satisfies u{t,Am)=0 since Am is the 
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maximum age; we then assume explicitly here that 

= n=l,2,-",Nt. (3.13) 

It is not hard to see that the numerical scheme (3.12) is linear. Furthermore, we 

have the followingtwolemmasfor the bound and error estimatesfor the numerical 

scheme (3.12)-(3.13). 

Lemma 7 Assume that uq, ii and /? are all nonnegative continuousfunctions over 

their own variable domain andP satisfies 

0<P <P< oo. 

Then, ifr is sufficiently small, there exists a generic constant C,independent of 

T, such that,forj= 0,1,-■■,Na, n = l,2,-",Nt, 

0 < < C 

0 < P" < a 

where and P" are defined in (3.12). 

Proof. Notice that ju > 0 and (3.12), it is easy to see that, for j = 0,1, • • •, iVo, 
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ti 

^nd > pn > 0. (3.14) 

Multiplying the first equality of(3.12) with and summing it over 1 <j< Na, 

then,from (3.12)-(3.13), we have that 

pn^ pn-i^ 1 ^71,0 _ 1 
2 2 j=o 

ynfl < 1pyn'°T+13 (3.15) 
^ i=i 

Therefore, 

pn < pn-l^ 
2 

1 /l-< pn-l^ I ^71-1,0^71,0.^. pn-ldyTid^ 

< P"-^+i/?rP". 
Zt 

Thus,ifr is sufficiently small such that 

1 — /?r > 0, 
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then we have 

pn^ < (l+r^)P'»-i. 

So, 

P"<(1+TpYP\ 

which implies that,for n=1,2,•••,Nt, 

P""<P° exp(^r)< C. (3.16) 

By the first equality of(3.12),(3.14) and (3.15), 

yQ,i-n _ ug(^aj-.n) <C, a j>n 

yn-jfi < ppn-i <c, if j< n. 

Hence, which,together with (3.14)and (3.16), clearly imply the results ofLemma 

7. Thus, we have completed the proof. 

Lemma 8 Assume that all the assumptions ofLemma7 hold and p. has bounded 

first derivatives with respectto all ofits own variables over[0,t]x[0,Am)x(0,+oo). 

Then we have thefollowing error estimates,for y =0,1,• • •,A^o,n=1,2,• • •,Nt, 

\u{tn,aj) — < Ct 

\P{tn)-P^\ < Ct 
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where C is a generic constant, independent ofr. 

Proof. For convenience, we denote by 

= u{tn,aj)-u^'i, j= n=0,l,--',Nt 

C = P{tn)-P^, n=0,l,--',Nt 

lieik'= EI I, n=o,i,- -.,iv,. 
i=o 

Therefore,from (3.10) and (3.12), 

T 

_ u{tn,aj)-u{tn-\,aj-i) _ 
T r 

=-p{tn,Cj,P{tn))u{tn,Oj)+ +0{t) 

= +(/2"-^J-p{tn,aj,P{tn)))U{tn,ttj)+0{t). 

By the mean value theorem for p,, there exists a p,whose value is between P{tn) 

and such that 

JjP' — p{t.^^(ij,P{tjf) = p{tn,aj,P"' — p(tn,aj,P(tn) 

~ 9P ^ ~ -^(^71)) 
= CC-'+Oir). 

103 



 

 

Then,from Lemma 7, we have that 

tnj _ cn-lj-l
5 5 = +dC'^-l+0(r), 

that is, 

(1+ +CrlC"-'|+C»(r2). (3.17) 

Furthermore,it follows from the trapezoidal rule. 

Na 

ici = u{tn,a)da-L ^ j=i 
(3.18) 

<irii^«+o(T). 

Therefore, which, together with (3.17),implies 

|^nj| < ^CT\\e~%^+Cr^. (3.19) 

Multiplying (3.19) by r and summing it formj=1 toj= Na, we then obtain 

that 

riki-rr'°i <(1+cr)r-Nk^+ 
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It follows from Lemma7and the trapezoidal rule that 

r^m 1 « ^ 
|f°| = / Pitna,P{tn))u(tn,o)da-

•'O Z -
J=1 

Na 

< +C\C~'\+0{t) 
3=1 

</^iieii^i+cir-^iki+o(r). 

Then we have 

(1- <(1+CT)r-'iir.+ct= 

Noting that 

f«=0, j=0,l, (3.20) 

and using Gronwall's inequality we have that, ifr is sufficiently small,then 

iril£i <Cr n=l,2r--,Nt. (3.21) 

Hence,combining all formulations from (3.18) to (3.21) together, we have that 

Id =|p(g-p^\ < ct, 
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and 

le^'l <Cr, 
(3.22) 

< ie~^'^'"^i+cr2. 

Thus, we finally have that from (3.20) and (3.22) 

le-^l = Kt„a,-)-u"'^"| 

I^Oj-ni+C-r^Cr, if j>n 
< 

|e-^''°|+Cr<Cr, if j<n. 

Clearly, we have completed the proof. 

Remark 3.2.1.1: Prom the definition oflocal truncation error, we have from 

the second inequality of (3.22) that the numerical scheme (3.12) has an 0(t^) 

local truncation error estimate. 

Remark 3.2.1.2: If we choose an approximate value of u°'^ instead of the 

exact initial value such that satisfies: =|u(0,Uj)- =0{t^), 

we then have from the proofs that Lemma 7,Lemma8 and Remark 3.2.1.1 are 

still true. 

3.2.2 Numerical Scheme for Age structured Population Problem (II) 

This subsection considers the second auxiliary age structured population prob 

lem (II) defined in Section 2.3 of Chapter 2, which is a nonlocal initial-boundary 
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nonlinear degenerate parabolic partial differential problem. We have developed 

and analyzed a numerical scheme to discretize this problem. The basic idea to 

construct the numericalschemeis to use acharacteristicfinite difierence discretiza 

tion for the time-age domain and a finite element discretization with numerical 

integral modification for the spatial domain. We have shown that the numerical 

scheme not only has the optimal convergence error estimate but also ensures that 

a biologically valid approximate solution is obtained. 

For convenience, we rewrite the problem the auxiliary age structured popula 

tion problem (II) as follows. 

du du _ , 

tG (0,r], a€ [0,A„i], 

(3.23) 
A:"7^ =0 or u=0, on dQ 
du 

u{0,a,x)=Uo{a,x) 

u(t,0,x)= / /3u{t,a,x)da 
/oJo 

where k=k{t,x,P), ix =ii[t,a,x,P), /?= and 

f-^TR 
P=P(t,x)= u{t,a,x)da. 

Jo 
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We also recall its weak formulation: find u:(0,T]x [0, —> V,such that 

{drU, w)+a{k, u, w)=-{n u, w), V to G y 

u(0,a,x)=Mo(a,x) (3.24) 
r-Am 

u{t,0,x)= / Pu{t,a,x)da 
JQ 

where the notations are previously defined,in particular, 

» du du 
(3.25) 

a(k, V, w)=(k Vti, Vw)=jfcVu Vwdx. (3.26) 

We have discussed some mathematical analyses for (3.24) in Chapter 2. We 

now develop a numerical discretization for (3.24). The finite element and finite 

difference numerical approximations for (3.24) and some of its similar related 

problems in 1-dimensional and 2-dimensional domains have been considered (cf. 

[64, 86, 91]). Our numerical scheme is close to that in [64], however, since the 

special numericalquadratures and other numerical techniques,such as the upwind 

finite element technique and upwind finite difference technique, have been applied 

in the scheme,the numericalschemes not only have optimal error estimates in the 

view point of numerical analysis but also always produce biologically reasonable 

approximate solutions. Furthermore,our numerical analysis method also hassome 

difference from that in [64] because of the difference of the schemes. We use the 
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partition defined in (3.8) (3.9) to discretize the time-age domain [0,i] x [0,.4.^], 

whose step(mesh)size is r,and the finite element triangulation defined at the 

beginning ofthis section to partition the spatial domain Q,whose mesh size is h. 

Let VfiC(C°(n)ny)be the linear conformingtriangle finite element approxima 

tion space to V over the triangulation Jh. For detailed definition of Vh, we refer 

to [15, 22, 63, 107]. Thus, we can introduce the characteristic finite difference 

- finite element numerical approximation scheme with numerical integration for 

(3.24) as follows: find € Vh , such that 

w)h+ah{kr\ w)=-{pTh-'^ ul', w)h, 

VweVft,j=l,...,iVo, n=l,2,--.,iVt 

= T^hi uittj,x)), Vi=0,1,.••, 

= (3-27) 
^ j=i
1 Na-l 

2 
i\a-L1 Na-l

Ph = + E V 1 <n < ATt 
3=1 

where q:/i(-,-,•) is an approximation of q;(-,•,•) defined in (3.26) by nsing a 

technique of numerical integration, (•,•)ft is an approximation of the L^-inner 

product (•,•) over by a technique of numerical integration,too, is a linear 

109 



operator for V to ,and 

d.ul'' = 
T 

KT' 

P'h 

= 

~ 

k{tn,X,Pr') 

Ojj -Pft 
(3.28) 

= P{tn,aj,x,P^-'^). 

Clearly, while choosing the approximate values k^~'^, and > we have 

used the technique involving a delay r. In addition,since the solution u{t,a,x) 

of (3.24) satisfies u{t,Am,x)=0, we explicitly assume that 

<'^"=0, on f2, n=l,2,- --,Nt. (3.29) 

Denote by a vertex ofe G We now give the definition of (•,•)h, q;/i(*,•,•) 

and TTh. Noting that Q C a n-dimensional domain,we then define 

(7pv,w)h = ̂ -^'rneas{e)'22{'^ v w){bej) 
6e,7 

ah{k,v,w) = {kVv, Vw)h 

= E;r^"ieas(e)E)A:((6ej)Vule • Vu;|e 

where meas{-) stands for a n-dimensional measurement. The linear operator 

TTft : V —^ Vh is either the standard linear conforming triangle finite element 
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interpolation operator (cf. [15, 63]) 

'^hv{he,j)=v{b^j), for Ve e Jh 

or the standard if^-project operator as follows (cf. [15, 63]) 

(V(v-TThV),Vio)+(u-TT/iV,w)=0, fOT V W G Vh-

Moreover,for both definitions of tt/i, we have the following properties. 

11^^ -TTftvllo+/i||V(i;-7rftt;)||o < Ch^\\v\\2 
(3.30) 

||7rAw||o,oo+|7rA?;|i,oo < Cmin(||z;||ci,||u||2,oo) 

as in last chapter, where ||•|U(|• U)and ||• \\m,p(|• \m,p) are the standard norm 

(semi-norm)ofSobolev spaces and respectively (cf. [1,34,63]). 

Furthermore, let Nh be the true unknown node point set of Vh and let 

the standard finite element basis functions of 14 (cf. [15, 60, 63]). 

Then in (3.27) may be expressed as 

= uf^en. (3.31) 
i6A/fc 

Therefore,plugging(3.31)into the approximate problem (3.27),the first equality, 

which is the core portion of the approximate problem (3.27), can be rewritten 
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as the following linear system, which includes the cardinal number of Afh, 

unknowns 

(^^M+A+D^ 17^'^ = CT-bi-i ^3 32) 

where 

M ('^rs)lATftI Ij IT^ra ~ {V^r}V^s)h 

^ =(<^rs)|A4|x|;yrfth <^rs =0!h{k^~^,(pr,(Ps) (3-33) 

D =(rfrs)K|x|M,|> dra = i}ll~^'^(Pr,(Pa)h-

It is easy to see that solving the linear system (3.32) is a very large part of 

problem (3.27) at each step. In particular, for high dimension problems, it is a 

veryimportantissue how tosolve thelinearsystem(3.32)sinceit isill-conditioned. 

We will give a parallel method to solve (3.32) sufficiently later. 

To ensure obtain a good biologically approximate solution, we assume that 

Jh is weakly acute (cf. [16, 59, 100] ), that is, for the standard basis functions 

{V'i}ie.A4 

f Vcpi • Vipjdx < 0, for z^j, z,J =1,2,• • •,|A/k|. (3.34) 

Clearly,TTh is always weakly acuteforal-dimension domain Cl. Fora2-dimensicm 

domain Q,, that every triangle in Jh is not obtuse is a sufficient condition to 

show that Jh is weakly acute (cf. [16, 100]). But it is very complicated for a 

3-dimension domain. We now have several mesh generator software packages to 

partition a weakly acute mesh automatically(cf. [97]). Wealso assumer=0(/z^), 

112 

https://V'i}ie.A4


in particulaXj 0{h^)<t<0{h) such that we can get a good convergence error 

estimate for the approximation solutions (cf. [88, 107, 108]). 

Theorem 5 Let k be a continuousfunction satisfying 

k2>k=k{t,a,X,P)>ki> 0, on [0,T]x [0, x x (0,+oo), (3.35) 

II be a continuousfunction satisfying 

O^fj,=fi{t,o,X,P)> Jl, on [0,r]X [0,An)X X (0,+oo), (3.36) 

and P be a continuousfunction satisfying 

P>P=pit,a,X,P)> 0, on [0,T]x [0, x x (0,+oo), (3.37) 

where ki, k2, p, andp are constants. Also,letuo e VTlC7(fi) be nonnegative. Then, 

the numerical approximate problem (3.27) has a unique nonnegative solution. 

Proof. Notice that from (3.27) and (3.32),it is sufficient to show that,for any 

j= 1,2,•••,iVo-1 and n= 1,2,- ,Nt,the linear system (3.32) has a unique 

solution satisfying 

C/"'J > 0, if >0 (3.38) 
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where C/^'® > 0 means each of its component is nonnegative (r = w,n — 1, s= 

- !)■ 

It is easy to show that 

B =-M + A + D 
T 

is a IjVftI X |jV/i| symmetric positive matrix. This clearly implies that (3.32) has a 

unique solution IP^'K 

On the other hand, from [3, 16, 30, 36, 110], both M and D are positive 

definite diagonal matrices. Also, since Jh is weakly acute, (3.34) implies that A 

has positive diagonal elements and non positive off-diagonal elements. So, the 

coefficient matrix of (3.32), B = + A -t- T), is a M-Matrix (cf. [3, 30, 110]). 

Therefore, in view of [3, 36, 110], this implies (3.38). We thus complete the proof. 

Denote by 

IklU = forV veVh. (3.39) 

It is easy to check that || • ||/i is uniformly equivalent to the standard - norm 

II • llo, in fact, we have that (cf. [35, 63, 106]) 

i|kllo<lklk<2||u||o, forV veVh. (3.40) 

We then have that 
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Theorem 6 Assume that all assumptions of Theorem5 hold. Let and be 

defined by the numerical approximate problem (3.27). Then, there exist a constant 

C,independent ofh and t, such that 

K'^llo < C, j= n=l,2,---,Nt 

ll-P^llo < C, n=l,2,---,Nt. 

Proof. Taking w= in the first equality of(3.27), we have 

Hence, 

(3.41) 

By Schwartz inequality. 

Therefore, 

''IU, if j>n
K'h < (3.42) 

\u if j< n. 
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Ifj> n,it follows from (3.27) and (3.30)that 

''lU = IkftWolk < c. (3.43) 

On the other hand,ifj< n,from (3.27) and (3.28) 

IK"''"!!/. = 
^ m=l (3.44) 

< MK'%-

Multiplying (3.41) by r and summing overj=0to Na, we get 

Again, multiplying by r,summingover j=0 to Na and by Schwartz inequality, 

we have that 

Notice that the results of Theorem 5 and the assumptions of this Theorem, we 

have that from (3.27) 

< K- +E 
m=l 
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< IK-

< (l+lrmn-X, 

which implies that 

/ 1 -\" 
1+5'"/' f 

KIk < —f—IWlk < ll^k°IU-
l-jr^ 

This, together with (3.42) - (3.44), implies that, for j = 0,l,---,7Va, n = 

t, 

l|.P;riU < C, \\ul'% <a 

Finally, this together with (3.40) has completed the proof. 

We now consider the convergence error estimates for the numerical approxi 

mate scheme defined in (3.27). Before estimating the error, we need to introduce 

some auxiliarylemmasand results aboutthe corresponding auxiliary elliptic prob-. 

lem of(3.23).We consider the following auxiliary elliptic problem: 

—V(A:V$)+ =g on 

(3.45) 

k—=0 or $=0 on 
ov 
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its variational formulation is: find uEV such that 

a{k, w,#)+(/i w,$)={w,g) V w e V. (3.46) 

By the fundamental theory of partial differential problems (of. [34, 63, 84]), ifQ 

is smooth enough, there then exists a unique solution $ G y to satisfy (3.46). 

Moreover, we have that$6if^(n)D y and the following prior estimate 

ll^lb < Cll^llo. (3.47) 

We are not going to discuss the existence and prior estimates of(3.45). We refer 

readers to find them from [34,66,84]. However, here and hereafter we will assume 

that (3.46) has a unique solution satisfying (3.47). We also introduce two elliptic 

projection operators: : veV —> A^v € Vh, determined by 

a{k,V-AhV, w)+{}ji{v- Ahv), w)=0, V w G y (3.48) 

and Aft ; v eV —> A^v € Vh determined by 

ah{k,AhV, w)+(// AhV,w)h=a{k, v, w)+(^v,w), Vlu G V. (3.49) 

It is not hard to confirm that Aft and Aft are well-defined. Moreover, we have 
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Lemma 9 Assume that all assumptions of Theorem 5 hold and k has hounded 

first derivatives with respect to all ofits variables. Then we have 

+ <Ch^\\v\\2 yveH^{n)nV 

||u-Ahv||o+/i||u-AAt;||i <Chi^\\v\\2, VuGH^(fi)ny 

where the constantC is dependent ofk and fi but independent ofh. 

Proof. Clearly, the first estimate directly follows from the standard error es 

timate technique and Nitsche's duality trick (cf. [15, 63]). We now consider the 

second estimate. For any weVh,itfollows from (3.49)that 

ah{k,TThV-AhV,W)+(//(TTftU-AhV),w)h 

=oshik,TTftU,w)-t- {fj. TTftU,w)-ah{k,AfiV,w)-{/j, AhV,w)h 

=ah{k,TThV,w)-f- (// TTftU,w)h — Oi{kjV,w)— (fJ, V,w) 

= [cxh{k,7ChV,w) — a{k,'7rhV,w)]-f- [{fJ''KhV,w)h — (iJ,'KhV,w)] 

- a{k,V-TThV,w)-{fj,{v- TTkV),w). 

Let k^ be the linear interpolation of k (similar notations will be used later). By 

(3.30), and the definitions of a^i-,•,•) and Q!(-,•,•), we have that 

Oih{k,TthV,w)-a{k,TTftU,w) 

={kV{'Khv),Vw)h-{kV{'Khv),Vw) 
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= • Vwdx-JjzV{7rhv)• Vwdx 
< C/i||V(7rAt;)||o||V«;||o 

< Ch\\v\\^ |z.|i 

where Cis dependent in the C^-norm or ff^-norm ofk. Similarly,defining tx^, we 

have by (3.30) and Bramble-Hilbert Lemma (cf. [15, 63]), 

[ix {-KhV,w)h-[iM-KhV,w) 

= T^hV,w)h — (/X^"KhV,w)+{{^X^ — fx)'KhV,w) 

< Ch^ Yh \W''^hVw\\H\e)+C/i||7rAw||o ||ty||o 

< C7h2(||7rftt;||ol|n;||i +||7rftu||i|w|o+|7rftt;|i|w|i)+C/i||7rftt;||o||n;l|o 

<Ch2|H|2 H|i+C%||i ||«;||o 

where the constant C is dependent in the C^'-norm of fx. Moreover, from (3.30) 

and the definition of a{-,•,•) (3.26), 

|q;(A:, V-KhV,w)+{fx{v- Khv), t/;)| < Ch|t;|2||Vty||o+C/i2|^;|2||n;||o, (3.50) 

where the constantCis dependent in the C^'-norm ofk and[x. Therefore, we have 

obtained that 

\oCh{k,KhV-AhV,w)+{fX {KhV-AhV),w)h 

120 



 

<(7/2,11^112 l^^li+C}ii^\\v^2 ||w||i+Ch\v\i ||tf;||o. 

In paxticular, taking w=nhV — AhV in (3.51), we have that 

iTTftU — Aftwli < C{oih{k,'KhU — AhV,w)+{jjl(nhV — Ahv),w)h) 

<Ch^v\\l+C[h'+l)\\T:j,v-Ahv\\l 

that is, 

[khv-Ahv\i < Ch\\v\\2+C{h^+l)||7rftU-A;it;||o. (3.51) 

On the other hand, noting the auxiliary problem (3.46), we have that 

{g,T^hV-AhV) =Oii^hV-AhV,$)+(jj,(iThV-AhV),$) 

=a{7rhV-AhV,$-Aa$)+(^(nhV-Ahv),$-Aa$) 

< CWVi-KhV-AAt;)l|o||V($-Aft$)||o+CWiThV-Aftu||o||$-Aa$||o 

< ChlTThV-Aau|i||$||2+Ch^llTThV-AftU||o||$||2 

< Ch(\7rhU-Aftu|i+hW-KhU-Ah||o)||p||o. 

This together with (3.51) implies 

= sup 

< ChdiThV-Ahv\i+h\\7rhv-Ahv\\o) 

< Ch^\\v\\2+Ch{h-\-l)\\KhV-AhV^Q. 
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Hence, which, together with (3.51),implies that, if h is sufficient small, 

||t;-Aftullo+hjKu-Ahu)||i < C7h^||i;||2, 

Thus, we have proved Lemma 9. 

Let u be the exact solution ofthe problem (3.24) and 

T]=u-u=u-AhU, (3.52) 

where A^ is defined in (3.49). We then have 

Lemma 10 Assume that all assumptions of Lemma 9 and p has bounded first 

derivatives with respect to all of its variables over[0,T]x [0,A^)x x (0,+c!o). 

Then there is a constant C, independent ofh, such that, if h is sufficiently small, 

WvWo+h\rj\i < Ch^u\\2 (3.53) 

I|577||o +h\dri\i < Ch^{\\u\\2+ H^uHz) (3.54) 

where ri is defined by(3.52) and d standsfor dt or da or dr=dt+da-

Proof Indeed, we only need show (3.54)since (3.53)can be obtained directly 

from Lemma 9. By differentiation of(3.24), we obtain that for any w € 14, 

ah{k,du,w)+{pdu,w)h 
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=a{k,du,w)+(//du,w)+a{dk Vu,Vw) 

+{dk u,w)— ah{dk Vu,Vw)h — {d/j,u,w)h 

that is, 

ah{k,d{'KhU-u),w)+{ii[d{'KhU-u),w)h 

— d{nhu),w)+{/j,d{'jrhu),w)h — a{k,du,w)— (//du, 

[—{dfxu,w)+{d^m,w)ii]+[— a(dk Vu,Vw)+ah{dk Vu,Vu;)/i]. 

It is not hard to see that we have that by a similar argument used to show (3.51), 

Icxhi^i d{'Kiiu),w)+(//d{'Khu),w)h — a{k,du,w)— {fj,du,w)| 

< Ch\\duUVw\\o+Ch\\du\\2\\w\\o 

and by a similar arguments as that for (3.50), 

[-{dfiu,w)+{dfiu,w)h] 

= {d/x(u-u),w)-(du u,w)+{[dnY u,w)h 

< Ch^\\u\\2\\w\\Q+(([djiY-dii)u,w) 

+([dixYu,w)h-{[dfJiYu,w) 

< Ch{h+l)||u||2||tz;||o +Ch^'WuUMr+||u;||o) 
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< Ch^uUwU+ChWuUwWo. 

Also,from Lemma 9 and (3.30), 

[-a{dk, Vu,'Vw)+ah(dk, Vm,Vi(;)] 

= -(9A:Vt£,Vio)+([9/:]'''V(«Vw)/i 

= (dkV(u — u),Vw)+(([5A:]^ — dk)Vm,Vw) 

< C\u — u\i\w\i+Ch\u\i\w\i 

< C/i||u||2|w|i. 

Therefore, we have obtained that 

I ah{k,di-KhU-u),w)+{ii {d{'KhU-u),w)h| 

< C/^||u||2|^t;|l+Ch||^^||2||^^;||o, 

in particular, taking w = — it), which implies, 

{di-KhU-it)|i < Ch\\u\\2+C\\d{TrhU-it)||o. (3.55) 

Moreover, by the standard duality argument (cf. [15, 63]), (indeed, by a com-
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pletely similar argument used in the proof ofLemma 9), 

||5(7r/iU-it)||o < Ch\d{nhU-€)\i+Ch^\\d{T^hU-u)\\Q 

< Ch^uh+Ch\\d{'KhU-u)\\,. 

Hence, which together with (3.55)implies that,if h is suJfficient small, 

\\d{'KhU-m)||o+h\d{T^hU-«)|i < Ch^{\\u\\2+ (3.56) 

Notice that drj=d{u—7rhu)+d{7rhU—u), then,by the interpolation approximate 

property,(3.56)and the triangle inequality, we can get (3.54). This completes the 

proof. 

We now ready to consider the convergence error estimate for numerical ap 

proximate problem (3.27). Let (m,P) satisfy the problem (3.24) and «'^,P^) 

satisfy the numerical approximate problem (3.27). We denote by 

u"'-'(a:)= u{tn,aj,x) 

Phi^)=Pitn,x) 

(3.57) 

=^n,o _ n̂j 
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moreover,for 

we introduce the following norms: 

3 

lie"ll«.(ff') = (YJc-^WR'-rf (3.58) 
3 

3 

where, if g= oo, the sum is replaced by the maximum. Then, we can have the 

error estimate concerning the numerical problem(3.27). 

Theorem 7 Assumethat allthe assumptions ofLemma10 hold andu G T]x 

j ^ Then,for sufficiently smallr and h, we have thefollow 

ing error estimates: 

Ik~ <^7(7"+h^) 

||V(u — Uft)|k,2(L2) < C(r+h) 

\\P-Ph\\eiL^)<C{r+h:') 
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where we understand that, as in (3.57), 

u=(m°, •••,it^') 

m"=(w"'",u^'^,• • •, 

P= 

cnrf C «s a generic constant, independent ofr and /i. 

Proof. Notice that 

yn^- (3.59) 

and it follows from Lemma 10 that 

lll'-^lio+ (3.60) 

Wdv'^'^Wo+h\dri--^,< Ch^'iWu-^+ < Ch^ (3.61) 

where d is defined in Lemma 10. So, it only remains to estimate It follows 

from (3.24) (3.49) and (3.57) that,for any w EVh, 

{dre'', w)h+ s w)+ w)^ 

= (M"'", w)h+ahiK~\u'''', w)h+ w)h 

= (^rw"'^, w)h+a/i(A:", w)h+(//"'^ u^'^, w)h 
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+ w)+ -/i"^)u"'', w\ 

= (drU^'^, w)h+a{k'^,u^'^, w)+{fj,^'^ u^'^, w) 

+ -k'lS'J, w)+ («-'■* - U,"'^) !0)j 

= 1 {drV'', w)k - {dru"'', w) ] + - A:"), u"'', to) 

+ ((nr'^ -1^) fl"'''. to)» . 

We now estimate three terms in the above right hand side. First, noting that 

(drU''-^', w)h - {drU'"'^, w) = [ {drU^'^, w)h - [drVP''^, w) ] 

+ (5r(w"'^ — vP''^), w) + {drVP'^ — drU^'^, w), 

we have that, from (3.24) (3.25) (3.26) (3.49) (3.57), Bramble-Hilbert Lemma 

(cf. [15, 63]) and by a direct computation, 

I (M"'^', w)h - (9^«"'^', w) I 

< Ch^ldrU'"'^ w\2 

< Ch2l|V(a,u"'^-)|lo||Vu;||o 

< Ch2(||V(a.(u">^'-u"^-))||o + +||V(4u'^'0||o) ||Vu;||o 

< Ch\h + l){\\u'l% + \\ue,-''-% + lk?ili)l|Vu;||o 

< C/i^(h + l)||V tt;||o , 
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 I ffl)I < ||S,(6»''-k"'^)||„||w||o 

< Cft'lkllo 

and 

\{drU^'^-drU'''^,w)\ < \\drU^^-drU^%\\w\\^ 

< CrdjUttllo+||Mto||o +||Mao||o)||iy||o 

< Ct\\w\\o. 

Hence, 

I {dru'"'^, w)h.- w)I 

< Ch\h+l)\\Vw\\o+Cih''+T)\\w\\o. (3.62) 

Second, we have that,from the linear interpolation error estimate (cf. [15, 63]), 

Mkr'-k^,u^'',w)\ = -k^Y Vii"^ V«;),,| 

< C(h+ ll^r^-P||o)||Vfi"'^"||o.oo||Vt/;||o 

< C(/i2+|ft-'-^"llo)||Vzz;||o. (3.63) 
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Third, by an elementary computation, 

< [(K"'-''- w)„- »)] 

+ ([«"'■'■ - f'"-'!' »)• 

Therefore, from Bramble-Hilbert Lemma and the linear interpolation error esti 

mate (of. [15, 63]), we have that 

( - n"']' u"'»)/. - ([«-'"■ - /'"■'T fi""'») 

< -ii'''Yu"''w)y 

< CA2||S".'|K (ll»||o + IIVwIlo). 

Hence, 

i(«-" -

< Cft=(lk|io + |iV»||„) + C||/ir''' -M"''||oll»llo. (3.84) 
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On the other hand, notice that 

||pn._pn i|j^ _ f'An (ti(t„,a,a;) - u(tre_i,a,x))do||o 
/o 

< C{Am,Ut)T=0{T) (3.65) 

and 

P"-Pk = +0(r) 
i=i 

= + E(r'^+77"'')r +0(r) 
i=i 

< E(r'^+»7"'^> +0(r) 
j=o 

which,together with (3.60)(3.61)j implies, 

ll^""-PSh< lle"ll«.(y)+0(h?+t). (3.66) 

Then,by a direct computation using the mean value theorem, we can obtain 

< CIIP;-'-P»||„ 

< ciie-'IkPi+oCi'+T) 
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and 

< CWPJ^-'^-P'' 0 

71—1 I< c\\c-%iL^)+cih:'+T). 

Then,(3.63) and (3.64) can be rewritten as: 

-A-.a""',!®)! < C(||e-'l|((i»)+/i^+T)||Vw||o 

»)»l < Cdlr-'II^W)+A'+r)||w||„. 

Therefore, combining the above two estimates and (3.62), we have that 

(4^""^,'w)h+a!/i(^"'J, w)+ w)h 

< C(||^""^||£i(i2)+h^+r)(||w||o+||Vty||o) 

^ C'(||^"~^||£i(i2)+h+r)(||w||/i+IIVw|lo). (3.67) 

In particular,taking w= and observing that 
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we then have that 

-iir-'iiD+ fcoiivr-'iis 

< +A'+r)(||f^||»+llVf^llo) 

< jllvr-'ll?+jr^llS+cih'+T=); (3.68) 

that is, 

2 (3.69) 
< CrU'^'Wl+Cr\\^-'\\l^L^)+C{h'+r')T. 

Summing it over I <j< Na and using Schwarz's inequality, we obtain 

7(iriii(.,- -weX)+ 

Hence, 

"l&w-r-'ll|(a)+^rllVf 
(3.70) 

< rWC-X+CT(ni!=(j,+lle-'l&(ft))+c{h*+T'lr. 

It now remains to estimate By (3.24) and (3.27), we have 

unfi_f^n,o ^ -^'^.V'V+ J]/?"%"'^r+0(r) 
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J=1 

= -<'°)t+ -ul'^)r 
j=l 

+ -S"''")'-+ +0(t) 
J=1 

which implies 

i=o j=o 

By some direct computations, we have 

-Ul'^ \ < ySOr-^l+ h"''!). 

I (/?»•'■-4"-WK'^ I < C\^(t^,ai,x,n-Kt„,ai,x,Pi-'^)\ 

< C\P''-P^-^\ . 

Combining the above three inequalities and (3.65) (3.66), we have 

lk"'° -

< ^^(llrlU(L^) + U^HL-) + IIP" - Pr'llo) + C{h^ + t) 

< c(rii(.(i»)+r-'ik'(i'))+ +t) . (3.71) 
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Hence, we have from (3.57)(3.58)that 

^ C'dl^"11^1(1,2)+||^"~^||£1(L2))+C{h^+t) 

< Ciwaimk)+lir-'ll^iw)+Cih'+r). (3.72) 

Plugging this into (3.70), we have 

(1-Cr)||el&w+f^r||vr|||.(^, 
(3.73) 

< (l+Cr))r-i||J,j,+C(A^+r»)r. 

Therefore,summing over 1 < n < ii: < ATj and using the Gronwall inequality (of. 

[34, 90]), we have that, ifr and h is sufficiently small. 

llf'lll'w +^liv«||.(i=,< +C(h'+ 

which implies that 

II^^II|2(I,2)+^o||V^||2(£,2) < C||^°|||2(i2)+C||^°|||(i2)+c(/i^ +r^). (3.74) 

Noting that the choice of in the approximate problem (3.27), we have 

||^°||£2(i2) = ||uo-uJ'^ -77°'^||£2(i2) 

135 



 < ||«0-'"A^||i2(Z,2)+||77°'^||i2(i2) 

which, together with (3.74), implies that 

+||V^||£2,2(x,2) < C{t+h^). (3.76) 

Hence, the third estimate ofTheorem 7can be obtained immediately j&rom (3.66) 

and (3.76). Also,from (3.59)(3.60) (3.61) and (3.76), and by triangle inequality, 

we can obtain the first two estimates ofTheorem 7. Thus, we have completed the 

proof. 

Furthermore,it followsfrom Theorem 7and its proofthat we can haveimme 

diately the following Corollary. 

Corollary 1 Under the same assumptions as Theorem 7, we have that 

< C{T+h% 

||V(u"'^"-<'^')||o < c(r-h/i), 

WP^'-Pa^ < {r+h^ 

Theorem 7and Corollary 1 shows the error estimates ofthe numerical approx 

imate solutions are optimal in the numerical analysis view point. 
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Remark 3.2.2.1: Prom the above proofs and the definition oflocal truncation 

error (cf. [76, 88]), it is not difficult to see by a standard analysis as in [76, 88] 

that the local truncation error ofthe numericalscheme (3.27)has the accuracy of 

0(t^+/i^), that is, 

-<'io+IIP"-P,"||o=0(t'+h'). 

Remark 3.2.2.2: Consider a new problem which is modified from the prob 

lem (3.23) by using the following simple initial condition (3.77) to replace the 

fourth equality of(3.23)or the third equality of(3.24). 

u(t,0,x)=B(t,x) {given). (3.77) 

Then, we can construct a numerical approximate problem of this new problem 

which is modified from the numerical approximation problem (3.27)by using the 

following equation (3.79) to replace the fourth equation of(3.27). 

=i^h{B{tn,x)). (3.78) 

It is not hard to see that (3.69) is still true for the above new problem and its 

numerical approximate problem. However, the estimate of ||^"'°||h is obtained as 
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follows. 

<C(/i2+r). 

Plugging this into (3.69), we can get the same results ofTheorem 7and Corollary 

1. This means Theorem 7and Corollary 1 are still true for the new problem and 

its numerical approximate problem as above. 

Remark 3.2.2.3: Theorem 7and Corollary 1 can be extended to the case of 

the flux V explicitly including an advection term as in (1.11), that is, 

X>= A: Vm — q M. (3.79) 

Then, the related bilinear form in the numerical approximate problem is as 

ah{k,u,v)-(q u, Vv)h+ u, v)h+^(w, v)h. (3.80) 

Clearly, the corresponding liner system in (3.32) is not symmetric. The bilinear 

form (3.80)still could be coercive ifq is not large or is large enough. Otherwise, 

we have to choose r small enough to make the bilinearform (3.80)to be coercive. 

Therefore,from the proofofTheorem 7,Theorem 7and Corollary 1 are still true 

for the model with both diffusion and advection theoretically if the bilinear form 

(3.80) is coercive, especially, if r is very small. On the other hand, theoretically, 
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we may assume that (3.80) is always coercive since we can use the transferring 

techniques ofRemark 2.3.1 and Remark 2.3.2 to transfer the original problem 

into a similar one but by using /i+C to replace //, where C,a constant, which 

could be chosen large enough. However, for a general auxiliary age structured 

population problem (II)(3.23) plus with advection term, which may be large,it is 

not easy to construct a practical numerical numerical scheme by using the above 

techniques. Thus, in real computations, the above technique cannot be applied 

usually. The computational work would be increased dramatically if a smallr is 

taken. Also, it is difficult to choose a C of the transformation since q and // are 

usually dependent on u. A common technique to overcome this difficulty is to 

apply an upwind scheme to discretize the advection term (see Remeirk 3.2.2.4). 

Remark 3.2.2.4: As we have rhentioned in Remark 3.2.2.3, for many 

problems with both diffusion and advection in the real world, p is usually pmall 

and q may be very large. Therefore, in order to apply the methods and results 

ofthis section into these real problems,we have to either choose a small time-age 

step r or use the transferring techniques ofRemark 2.3.1 and Remark 2.3.2. 

However,it is well-known that a smallr will increase a lot the computation work 

and the constant C of the transformation is difficult to determine. This at least 

means that we cannot apply the above scheme to such real problems directly. 

In fact, we usually need to use a technique of upwind scheme for the advection 

term to modify the scheme defined in this subsection. In precisely, we choose 
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a upwind scheme, Rh{q.u, Vv), to replace (q u, Vv)h of (3.80), that is, the 

approximate bilinear form (3.80) is modified into the following upwind scheme 

ah{k,u,v)-Rh{q u, Vv)+{p u, v)h+^{u, v)h. (3.81) 

The detailed definition of upwind scheme Rh{qu, ^v), which has several dif 

ferent formats, can be found in the book [56, 60]. For the 1-dimension case, a 

upwind scheme will be given in Chapter 4 and Chapter 5. The upwind scheme 

guarantees that not only the bilinear form (3.81) is coercive but also its matrix 

is an M-Matrix even if we don't choose a small r for the problems with a large 

q. However,it is not trivial to extend Theorem 7and Corollary 1 into the above 

upwind scheme-, we need some special techniques. The numerical analysis for the 

upwind scheme will be discussed later. 

3.2.3 NumericalSchemefor Age structured Population Problem(III) 

This subsection considers the auxiliary age structured population problem (III) 

defined in the Section 2.3 ofChapter 2. The problem is a mixed type ofnonlinear 

partial differential problem. In fact,it is akind ofcombination ofthe auxiliary age 

structured population problem (I), i.e., (3.10) and the auxiliary age structured 

population problem (II), i.e., (3.23), which describes that the model organisms do 

not move in the embryonic stage, i.e., age interval [0,J], but have diffusive and 
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advective movement in the older life stage, i.e. age interval {J,A^]. The basic 

technique to construct its numerical approximate scheme is to apply the numeri 

cal approximate schemes ofthe auxiliary age structured population problem (I), 

i.e., (3.10) and auxiliary age structured population problem (II), i.e., (3.23), to 

the corresponding parts ofthe unstructured population problem (III), which have 

applied the characteristic finite difference discretization for time-age domain and 

the linear finite element approximation for the spatial domain. Thus, based on 

the numerical schemes and analyses for the problem (3.10) and (3.23), we have 

constructed a numerical approximatescheme for the auxiliary age structured pop 

ulation problem(III)and we also have given a numerical analysisfor the numerical 

scheme. The analyses have shown that the numerical approximate scheme has a 

unique biological approximate solution,that meansthat the approximate solution 

is always nonnegative,and an optimalconvergence error estimate is obtained from 

the numerical analysis view point. 

Forconvenience,werestate the auxiliary agestructured problem (III)asfollows 

du du 
f=~"a7 ■'" a—I" ^dt da ^3g2^ 

for t e(0,T], a e (0,J], a; e 

du du , ^ .5- + 5--V- AVu = -,iu 

for t e (0,T], a e xeQ. 
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du 
k-^=0 or w=0, X edQ 
01/ 

u(0,a,x)= uo(a,x) 

u{t,0,x)= / Pu{t,a,x)da, 
Jo 

where jj,, k , P and P are defined the last subsection. Moreover, if extending 

k to k as previous,we rewrite (3.82) and (3.83) as a unified form. 

du du 
_+__V.(iV.)= 

for t e (0,T], o e [0,An], a; G n 

r du
k =0 or u=0, on (3.85)
dv 

u(0,a,x)= uo(a,x) 

pAm
u[t,0,x)= / Pu{t,a,x)da. 

Jo 

Therefore,the problem (3.85) is a nonlocal initial-boundary nonlinear partial dif 

ferential equation with discontinuous coefficient k. We also need to recall its the 

weak formulation: find uG L^{(0,r]x [0,^1^], V),such that 

{drU, w)+a{k,u,w)=—{fj,u, w), \/w eV. (3.86) 

We now construct a numerical discretization approximate scheme for (3.86). 

We use the same the finite difference partition and finite element partition Jh for 
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(0,r]X [0,-A^] and and same finite element space Vh previous; moreover 

assume that there is an integer Nj such that J= Nj• r and Jh is weak acute. 

Then we can define a numerical approximate scheme for the problem (3.85), i.e., 

(3.86), as follows. For 1 <j< Na and I <n<Nt, seeking 

=E e Vh (3.87) 
bSATh 

such that 

<■'(&) < \b) 
(3.88) 

V 6 € jVft, l<j<Nj, l<n<Nt 

(drUh'^,w)h +ah{k]i \ul'^,w) = - (ju^ ,w)h, 
(3.89) 

"i we Vh, Nj <j<Na, l<n<Nt 

= TThU^ttj, x), V 1 < j < Na 

n° = k'V+ 
i=i 

" 1. , „ „ Na-I (3.90)
+ E T 

Ph = + 
N

£ ul'^T, V 1 < n < ATt 
^ 3=1 

where and are defined in the last subsection, and 

Ph ^'^(&) = ^), for y beJVh 
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In addition, since we already know the exact solution u{t,a,x) of(3.85) satisfies 

u{t,Am,x)=0, we then assume explicitly that 

= n=l,2r'-,Nt. (3.91) 

Clearly, the first two equalities (3.88) (3.89) consist of the core portion ofthe 

numerical scheme (3.88)-(3.90). In fact, for any fixed n and j, 1 <j< Njand 

1 ̂ ^^ the first equality of(3.88) is just a linear system of|A/a| unknowns 

with a diagonal coefficient matrix, which possesses a unique solution as 

Moreover, if let then the second equality of(3.89) can be 

rewritten as a linear system of |A/ft| unknowns as follows. 

B =-M Nj<j<Na,l<n<Nt (3.93) 

whereB and M are defined in last subsection. It isshown in the proofofTheorem 

5that5is a M-Matrix since Jh is weakly acute. Hence,the linearsystem (3.93) 

has a unique solution, which satisfies (3.38), that is, 

> 0, if >0. 
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Thus, we in fact have shown the the following existence theorem. 

Theorem 8 With the same assumptions as Theorem 5, the numerical approxi 

mate scheme (3.88)-(3.90) has a unique nonnegative solution. 

Moreover, we also have the following bound theorem. 

Theorem 9 Assume that all assumptions of Theorem 8 hold. Let FJ^) he 

defined by the numericalscheme (3.88)-(3.90). There then exists a constant C, 

independent ofh and r, such that 

Ik^lio < c, 

IWIIo < C, n=l,2,---,N,. 

Proof. Prom (3.92) and Theorem 8, we have that, for I <j< Nj and 1 < 

n < Nt, 

0< < <-'■'■-'(6), for VteATft; 

this, implies that, by a direct computation, 

Vl<j<iV,-, l<n<Nt. (3.94) 

By taking w = u^'^ in (3.89), we have that, for Nj < j < Na and 1 < n < A'itj 

T 
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This implies 

W. ^Nj<j<Nj, l<n<Nf (3.95) 

Thus, combining (3.94) and (3.95), 

ul%. (3.96) 

Therefore, by an argument almostsame as the proofofTheorem 5,we can obtain 

immediately Theorem 9. 

We now consider the convergence error estimates for the numerical scheme 

(3.88)- (3.90). Let {u,P) solve the problem (3.85) and (n^"^, P]!;) solve the 

numericalapproximate problem(3.88)-(3.90),respectively. Forsimplicity,except 

for using (3.57), we also introduce the following notations. 

^71 _ pn _ pm (3.97) 

fjn,j _ yuj_ ynj 

where is the standard linear interpolation operator defined in last subsection. 

Theorem 10 With the same assumptions as Theorem 7, we then have the fol-
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lowing error estimatesfor the numerical approximate problem (3.88)-(3.90) 

IIw- < C(r+h^) 

ll-P-Ph\\p(L'^) < C{t+h^), 

where the constant C is independent ofr and h but is dependent on u and the 

given data. 

Proof. By (3.88) and Taylor's expansion, we have that, for 1 < ^ < Nj, 

1 <n< Nt and b e Nh, 

-J^-i.J-i(6) 

T 

^ u(^n,aj,h)-u(tn-i,Oj-i,6) ^^■^'(6) - u^~^'^-^(b) 
r T 

= -fx(tn, aj, b, P'^(6) )u{tn, aj) + + 0{t) 

= - K«n, a,, b, P»(6) }u(t^, aj, b) + 0(r) . 

= -fiVHi) S"'^{b) + C|C-'WI + 0(t), 

which implies that 

< (l + rfir''^(6))|<!"''(6)| 

< ^-'■'■-'(6)| + Ct|C"-'(6)| + 0(7^). 
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Furthermore, it follows from trapezoidal rule that 

< r(6)||,.+0(T^), 

where || • H^i is defined in the proofofLemma 8. Therefore, 

< \5^-''^-\b)\+CT\\6''-\b)\\ei +Cr\ 

Prom the definition of the linear interpolation (cf. [15]) and (3.97) 

= cr"'^(6), for W beAfh 

and by a direct computation, we have that 

< CT\\<f\\l^„^+ct' 

Prom (3.97), 
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Sn,j^ 

Hence, combining the above three inequalities together and using the triangle 

inequality, we obtain that 

Ml- +dh'+T% 
(3.98) 

for l<j<Nj,l<n<Nf 

On the other hand,from (3.57) and (3.97), 

sn,i=ynj_ ^^n,j^ ^ 

and it follows from Lemma 10 that 

||r7"'^"||o + (3.100) 

||977"'^||o+h\dr}'''i\i < Ch^{\M2+\\dvr'%), (3.101) 

where d in (3.101) is defined in Lemma 10. Thus,it follows from (3.98),(3.99), 

(3.100) and the triangle inequality that 

||^n,i||2 _ ||^-1J-1||2 < Cr||e|l|i(,)+C{h'+T% 
(3.102) 

for l<j<Nj, 1 < n < Nt. 

We now consider the case: Nj<j< iVa and 1 < n < Nf By a similar argument 
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as the corresponding part ofthe prooffor Theorem 7, we have that 

-mio < WCWiHL^)+Ch^u-'%+0(r) (3.103) 

and 

< C'r||e''||I+(7r|||"-'|||.,y)+C(ft^+T>. 

Hence, 

< Crr-'lii+Crr-'||?.(2,=,+C(h'+7^)t 

for Nj<j<Na,l<n<Nf 

So,this together with (3.102)implies that 

||^nj||2 _ ||e-^.^--i||2 < Cr(||e.^-||2+ +C(/i^+r^) 

for l<j<Na,l<n< Nf 

Summing it over 1 <j< ATo and using Schwarz's inequality (cf. [1, 34, 35, 106]), 

we then obtain that 

(3.104) 
< + lie-^||,^.(.))+C{h'+r^)r. 

Observing the numerical scheme (3.27) and (3.89) - (3.90), and using a similar 
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axgument as in the proofofTheorem 7, we can also have the estimates like (3.72) 

and (3.75), that is, 

lir°IU < C(||r +C{h'+r) (3.105) 

< Ch?. (3.106) 

Then, plugging(3.105)into (3.104), we have 

(1-C'r)||^"||^2(ft) <(1+ +c{h'^+r^)r. 

Therefore,summing over 1 < n <K < Nt and using the Gronwall inequality (of. 

[63, 90, 107, 108]), we have that, ifr and h is sufficiently small, 

^ C! +C{h^+T^) 

this means, 

Il^^llr2(z,2) < C +C[h^+7^) 

which, together with (3.105),implies 

||^||£oo.2(i2) < C(r+h^). (3.107) 
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Finally, using the triangle inequality,(3.107),(3.99) and (3d00), we have 

||u- ■U/i||£oo,2(£,2) = ||(J||£oo,2(i2) < C(r + h^), 

and plugging (3.107) into (3.103), we obtain 

11^ - ■P/i||£2(L2) = ||C||£2(i2) < C{t + h^). 

This completes the proof. 

Corollary 2 Under the same assumptions as Theorem 10, we then have that, 

for any j = 0,1,- ■ ■ ,Na, n = 1,2,• • •,Nt, 

Wu-'^-ul^Wo < C{T + h^) 

l|P"-iTllo < Cir + h^) 

where the constant C is independent of t and h. 

Remark 3.2.3.1: Like Remark 3.2.2.1, it is not difficult to show from the 

proof for Theorem 10 that the local truncation error of numerical approximate 

scheme (3.88) - (3.90) has the accuracy of 0(r^ + h"^). That is, 

Ik"''" - <ilo + IIP" - P^llo = Oir' + h'). 

Remarks 3.2.3.2: Consider the model with both diffusion and advection, 
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that is, the fluxP in the model is deflned in the following 

V=k Vm+qw. 

Byasimilarargument asRemark 3.2.2.3,wecanshow thatTheorem 8,Theorem 

9,Theorem 10 and Corollary 2are still true for the model with both diffusion and 

advection theoretically ifthe time-age step r, advection term q and the mortality 

H are "pood" enough to make the approximate bilinear form (1.14) coercive of we 

apply the special treatment to the model,for example,taking a very small time-

age step size r or taking the transformation as in Remark 2.3.1 and Remark 

2.3.2 to change the original modelto a new one whose approximate bilinearform 

(1.14) is coercive. However, as the arguments in Remark 3.2.2.4, we usually 

apply a upwind scheme, Rfi{qu, Vu), to replace (qw, Vu)^ of the numerical 

approximate scheme (3.88)- (3.90). We will analyze this upwind scheme later. 

3.3 NumericalSchemefor Mathematical ModelsofIndividual-

Based Populations 

Thissection develops and analyzes a numerical approximate scheme for the math 

ematical modelsforindividual-based populationsin a heterogeneous spatialchem 

ical toxicant environment as proposed in the previous chapters. The mathematical 

models include an initial value ordinary differential system problem for the indi-
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vidual model and a nonlocal initial-boundary value nonlinear partial differential 

problem with discontinuous coefficients for individual-based population dynamics 

including diffusion and advection. The numerical approximation scheme is based 

on the three basic techniques of the mathematical analyses in Chapter 2, which 

are localization,unstructuralization for physiological structures and linearization. 

In order to develop and analyze the numerical scheme, we apply the related nu 

mericalschemes and their analysesfor the initial value ordinary differentialsystem 

and the auxiliary age structured population problems discussed in the last two 

sections. For the ordinary differential system problem of the individual model, 

we simply apply the implicit Runge-Kutta method ofSection 2 of this Chapter. 

However, the numerical scheme is much more complicated for the partial differ 

ential problem of the population dynarhics model. The basic idea is to apply a 

characteristic finite difference discretization for time-age domain (0,r] x [0,.4m] 

and a finite element discretization for spatial domain fi. The discussions have 

shown that the numerical scheme guarantees a biological approximate solution 

and has a good approximate error accuracy. We will use the same partitions for 

(0,T]X [0,Am]and as in the last section. Also, we will use the other notations 

defined in the last subsection. 

For convenience, we would like rewrite the mathematical modelfor individual-

based fish population dynamics as follows. 
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Individual Model: 

drriL 
=9l = Gl — Fl,

da 

(3.108) 

"ST =Ss -Gs-Fs 

'7lZ,|o=0 — ^Lo 
(3.109) 

"^5|o=0 = TTT-Sq 

Population Dynamic Model: 

dp dp d{p gi) , d(p gs) _ _ 
dt da dmi dms (3.110) 

for t G (0,r],a G (0,J],a; G 

9p , dp d{p pl)^ d{p gs) 
""" {3,ui) 

for 4 G (0,Tj,a G (J,.4],a: G 

dp
k—=0 or p=0, X e dQ 
du 

p{0,a,mL,ms,x)= pQ{a,mL,ms,x) (3.112) 
/•Am roo roo 

p{t,0,mQL',mQs,x)= / / / /3p(t,a,m,L,ms,x)dadmLdms 
Jo Jo Jo 
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For the case with chemical toxic ant effects, (3.108)should be replaced by 

Individual Model with Toxicant Effects: 

^ TT 

~d^ =Pi=xGl — Fl 
(3.113) 

dms 
=9s=xGs-Fs 

da 

^l|o=o ^IT^Lo 
(3.114) 

"^s|o=0 ="^>30 

dBj' Bt 
— =gc=sk^C^+CpF- (skr,+EkE) 

(3.115) 
BT\a=Q =Bto 

To apply the finite element method for (3.111), we first have to introduce its 

weak formulation as follows. 

,dp dp dp dp N /, s 

(3.116) 

Before constructing a numerical approximate scheme for the above mathemati 

cal model problems, we need to rewrite the local problems mathematically. As 

in their mathematical analyses and discussions in Chapter 2, we suppose that. 
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for fish,n tasks (feeding, reproduction, movement,etc) are accomplished sequen 

tially (cf. [54]). Thus, based on the above biological assumption, we can localize, 

unstructuralize and linearize the mathematical model problems in a small time 

interval. In particular, we may separately solve the individual model and popula 

tion dynamic model in a local level (i.e. in a small time interval). Therefore, the 

numerical scheme allows us to solve the individual model and population model 

sequentially and split them at every single time step. More precisely, at every 

single time step, we first solve the individual model independently, plug the so 

lution ofthe individual model at this time step, which is just obtained, into the 

population model and then solve the population model at this time step. 

For every time step we suppose that 

ms = ms{a,ti,-- -) 

is the solution of the individual model in the time step and let 

pit,a,x)=pit,a,mLia,ti,- ••),ms{a,ti,-• ■),x) . (3.117) 

Therefore, the population model (3.110) (3.111) in can be modified as 

+ i = + ^ + (3.118) 
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|+|+V{iVp-)=-(^+^+^)p, (3.119) 
moreover,the weak formulation (3.116)can be modified as 

{drp,w)+a{k,p,w) =-((//+ + 
omt oms (3.120) 
V u;eF, 

Thus, using the related algorithms and notations oflast two section ofthis Chap 

ter, we are now ready to construct anumericalscheme for the individual-based fish 

population models (3.113)- (3.116). Like the mathematical model problem for 

individual-based fish populations, the numerical scheme also consists two parts. 

The numerical discretization for the individual model, either a single individual 

model if without chemical toxicant effects or an individual model together with 

a uptake toxicant equation if with chemical toxicant effects is combined with the 

numerical discretization for the population dynamic model. 

Numerical Discretization for Individual Model: 

^+Qhiaj+ +m{), +mi's),h) 

+ql{aj-|-|r,\(m^"^ -f ml),|(m^~^+ml),h), 

for V heMh, i=l,2,---,Na (3-121) 

^L='^Lo{b), (given) for V beMh 

"^s=^5o(^)» (given) for \/ be J^h 
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Numerical Discretization for Population Model: 

For 1 < and 1 < n < Nt,seeking ^Pk'^(b)(pb e Vh, such that 

orw-pr'-'-'w 
T 

(3.122) 
1 <i< ATj-, l<n<Nt 

0TPh\w)h+ah{kl \pI'^w) =-{(xl ^'^pI'^,w)h, "iweVh 
(3.123) 

Nj<j<Na,l<n<Nt 

Ph^='^hP{aj,mLo,mso,x), V 1 <j< 
1 Na—l 

^=kV+ EpI't 
J=1 

1 - Na—l (3.124)/'r=2/?r^Vr+ 
3=1 

1 Na—l 

Ph =-^Plfr+ E V 1 <n < iVt 

where kl is defined in (3.28)oflast Section and 

Ph = Pitn,aj,mi,m^s>b,P^ ^) 
9l 

rriL [tn,aj,m'^,m'g,b) "f" 
9S 

(tn,o,j,»7i^,m4)6) (3.125) 
ms 

A ̂'^(&) = P(tn,aj,mi,m^s>b,Ph ^). 

In addition,since we already know the exact solution p of(3.82)-(3.84)satisfies 
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p(^)-^mj ^5,ic) — Oj we then assume explicitly that 

pn,N^ =0, for 1 < n < iVi (3.126) 

Ifthe problem also includes advection, we need apply a upwind scheme to modify 

the approximate bilinear form ah{-••) as in Remark3.2.2.4. On the other hand, 

if there are chemical effects for fish, the numerical scheme for individual model 

(3.121) needs to be replaced by the following numerical discretization for Individ 

ual Model with Toxicant Effects (3.113)- (3.115), that is, a modified individual 

growth model together with a chemical toxicant uptake equation. 

Numerical biscretization for Individual Model with Toxicant Effects: 

/ 

^+^(oj+Ir, +m^),5(771^"^+m^),h) 

m^s = m^s^+g^g(aj+^r,|(m^~^+m^g),5(777^"^+m^),6), 

for V 6 € Mh, i=l,2,- --,Na (3.127) 

(b), for V 6e J\fh 

=i^Soib), for y beJ^h 

Bt =^r^+5c(aj+|r,i(Rf-^+R^)), 

for VftejVk, i=l,2,...,iV„ (3.128) 

=BTo{b), for y beMh 
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where 

9s = X' ~ ■'^s)l(«,+jT,J(mi7'+mi),J(rai-'+„i),») 
= x(-4"') 

and Qc stands for the right hand side term of the chemical uptake equation (3.115). 
Furthermore, we would like to mention that, in numerical computation experi 
ments, we may plug back to replace the old into and then solve 

(3.127) - (3.128) one or more times as in a Predictor-Corrector Method in order 
to increase the accuracy (cf. [76, 88]). 

Clearly, (3.122) (3.123) is the key portion. In particular, (3.123) is indeed an 
ill-conditioned linear system as in (3.93), i.e., 

M + A + D) = -M 
' (3.129)

for Nj <j<Na, l<n<Nt 

where B = -M + A + D is defined as in (3.93). The linear system (3.129) is not 
easily solved. We will give a parallel method to solve this kind of linear system in 
the last section of this chapter. 

Notice that the definition of in (3.122) and (3.123) is different from 
that in (3.88) and (3.89). However, if r is sufficiently small, we still have that 

the properties: 1 -f r /ir^''(6) > 0 and H is a M-Matrix. So, combining with 
the unique existence of numerical scheme of Individual Model (3.108) - (3.109) 
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or Individual Model with Toxicant Effects (3.113)- (3.115), we have the follow 

ing proposition by similar arguments as the proof of Theorem 3 in Chapter 2. 

This proposition guarantees the numerical scheme always produces a biologically 

reasonable approximate solution. 

Proposition 3 If t>0 is sufficiently small, then the numericalscheme(3.121) 

(or (3.127) - (3.128) if there are toxicant effects) and (3.122) - (3.124) has a 

unique solution. In particular, the solution ofthe numerical discretizationfor the 

population model is always nonnegative. 

We are now discuss the convergence error estimatesfor the numericalschemes. 

Considering the numerical discretization for individual model(3.121) and (3.127) 

(3.128), we have from Lemma 4 that both and have at least the local 

truncation error accuracy estimate with order of ©(r^). Thus, by a direct com-

putation about Ql, 9s, obtain from (3.125) that 

and have error estimate 0{t^+ -Pft~^||o); that is, 

||A:(t„,x,P")-A:rHa;)||o < C\\P''- + 

MU,a,, x,P»)+ ||c 
I'vL 

< C||P"-pr'll,+0{r\ 

< C||P"-Pr'||o+0(T^), 
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where we have used the local truncation error estimate ofthe numerical approxi 

mate solutions ofthe fish individual model 

Wl- •••)!+ Ws- •••)!=0{t^). 

Then, observing the related discussions of last section of this chapter, we could 

find the similar arguments may apply to the numerical discretization (3.122)-

(3.124). So, we may have that 

Proposition 4 The computational model for individual-based fish populations 

(3.121)(or(3.127)(3.128)) and (3.122)-(3.124) have the local truncation error 

estimate with order of0{t^ -f- h^). 

Finally, we give some examples for k, p, and /? and their approximations 

> f^h Ph j which will be applied in the computational ejqjeriments 

ofChapter4and Chapter 5. We only consider two simple diffusions (cf. [29],[93], 

[96]). One is the purely random walk dispersal, that is A: = constant. Clearly, 

we then take = constant. The other is the random plus density-dependent 

dispersal, for instance, 

k = 1 KpP. 

163 



where Kp is a constant andP stands for total number of all adult fish, that is, 

-P= / pda. 
JJ 

For this case, we can take that 

= 1 + pji-'• 

Therefore,it is easy to see that the above satisfy the approximate estimates 

we need. We now consider the mortality function p. For the fish at a location a; 

and time t, we assume that (cf. [47, 82]) 

/^= +A'te + +Pdj 

where //a,Pw,P-y and pd will be defined next. The age-dependent mortality, p„^, is 

assessed uniformly along fish born at the same time, which is defined as follows. 

Ka , if 0 < a < 
Pa= < (3.130) 

00 , if 0>^max 

where /c® is the mortality rate of individuals of age a. The weight-dependent 

mortality, viewed as possibly caused by predation and determined by the 

weight ofthe individual,is defined as =7«,•p^^=7^.p^^{W), where 7«, is 
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a constant parameter, W is the weight ofthe individual and 

Vo, if W = 0 

Vc, if Wi<W<W2 
fj'lw (3.131) 

Vf, if W = Ws 

continuous and linear, elsewhere. 

The mortality to the young ofthe year, iXy, is assessed uniformly across the pop 

ulation with age in the embryonic stage [0, J]. The mortality might be caused 

by predation or overcrowding. The specific forms of density-dependent mortality 

are defined as 

PjHj— , if 0 <Pj<Pc and a € [0, J] 
C (3.132) 

^lJ , if Pj> Pc and a G [0, J] 

where Pj is total population with age in the interval [0, J], hj is a constant 

rate of mortality and Pc is the largest number ofjuveniles the environment can 

support. The density-dependent mortality, pia, is defined as 

Dm, if 0<Pb<Pt 

Dq, if Pb = Po 
f^d =' (3.133) 

Dc, if Pb > Pc 

continuous and linear, elsewhere 
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where Pb is the total population biomass and all the others are constant pfl.rfl.Tn-

eters that can be found in [47, 82, 87]. Notice that the weight, W,is a linear 

function of{mi+ms). Thus, /i can be rewritten as 

= fiit,a,mL,ms,x,P). 

In particular, // has a piecewise linear relationship for a, mi,ms andPover age 

interval [0,.4„i], respectively. Therefore,if we choose as in (3.125), we can 

show easily that the satisfy the approximate estimates we need. From the 

descriptions ofthe reproduction processes in Section 1.2 ofChapter 1, we can 
see 

that can be expressed as the following form 

P = PaPtPo 

where 

0, if 0 < a < J 
Pa= < 

>0, if o> J 

>0, if t in the reproduction window 
Pt= 

0, elsewhere 

and 

A = pQ{'mL,ms,x,P), 
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in paxticulax, /?o is lineax with respect to P and continuous with respect to 

and ms. Hence,if we choose as in (3.125),then we can have proved that 

satisfy the approximate estimates we need. 

Remark 3.3.1: Like Remark 3.2.2.3, Remark 3.2.2.4 and Remark 

3.2.3.2, we could extend the analyses and discussions ofthis section to the popu 

lation dynamic model with both diffusion and advection, that is, kVu is replaced 

by A:Vu — qu. The approximation of q is defined as 

In our numerical experiments, we have considered the advection movements be 

cause of the heterogenity ofresource (food) or/and chemical toxicant by using a 

upwind numericalscheme. For example, q is defined in (4.5)ofChapter4or/and 

(5.10). It will shown that we can define q^ with a good approximate error 

such that the error estimates of whole approximation solutions aren't decreased. 

3.4 Computational Model and Algorithm Aspects 

This section discusses a computational model and its related algorithm aspects 

for numerically simulating the individual-based fish population in a spatially het 

erogeneous chemical toxicant environment. The computational model is based on 

the mathematical model ofindividual-based fish population developed in Chapter 
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2and the numerical approximation schemes developed in the previous sections of 

this chapter. The mathematical model mainly consists of a ordinary differential 

system ofinidividual model and a nonlocal nonlinear degenerate parabolic partial 

differential problem of population dynamic model. We construct the numerical 

simulation for individual growth by using the implicit Runge-Kutta numerical 

scheme for the initial value ordinary differential system problem of individual 

model. We construct the numericalsimulation for the variation offish population 

distribution based on the numerical scheme for individual-based population dy 

namics, which is a combination ofa characteristics finite difference discretization 

and a linear finite element discretization with numerical integration and upwind 

scheme modifications. 

As we all know, the advantage ofindividual-based mathematical and compu 

tational population models is to track individuals and their effects on population 

or higher levels. However, most of time, there are too many individuals in a 

population, so it is impossible to track every individual of the population in a 

practical computation. In view of a common sense in biology, the individuals 

with the same age and same/similar physiological characteristics are assumed to 

have same/similar responses on the same environment. Therefore, for a non-

spatial individual-based population model,we,indeed,track each cohort,a group 

of individuals wdth same age and physiological characteristics, in the computa 

tional model (cf. [43, 44, 45, 49]). Moreover, this strategy can even work to a 
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individual-based population model with a pure advection (cf. [50, 82, 83]). Un 

fortunately,thisjdn^fcohort might be broken and split^dueJo^iFusion. Thus, 

the technique based on cohorts cannot be extended to the computational model 

for individual-based population model with movements including diffusion. Not 

ing the fact that the individuals with same age always have the same age, we try 

to track Age-Group^ group of individuals with same age,instead ofthe cohoH. 
We also introduce growth-pattern (or called g-cohort) into Age-Group. We divide 

an Age-Group into several different q-cohorts(but not too many q-cohorts). the 

physiological characteristics ofindividuals in the same q-cohort might not be the 

same but must be close such that these individuals can have similar responses to 

the same environment. In a single age-time step ofthe computation,the q-cohort 

works similarily to the cohort in a nonspatial model, that means, we calculate 

the final values of this step by the numerical schemes of individual model and 

individual-based population dynamics developed in the last section.^^But^jwhen we 
make the transition for the current step to the next step, we must reconstruct the 

new q-cohorts and initial values for the next step because the old q-cohorts have 

already split. Thus, We can develop a computational model for individual-based 

population model with diffusion and advection by using the technique oftracking 

Age-Group and constructing/reconstructing q-cohorts.. Therefore, incorporating 

the environmental variable effects and birth process, we then develop a compu 

tational model for simulating individual-based populations with environmental 
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effects in a spatially heterogeneous chemical toxicant environment as described in 

a flow chart Figure 5. 

Just like a cohort in a non-spatial model,we simply use an array structure for 

a q-cohort,each ofwhose array elements stores a physiological characteristic value 

or age. Also,we use a double linked list ofq-cohort to describe the heterogeneities 

of individuals of the same Age-Group in a small spatial area (representing by a 

nodal point) at a special time (see Figure 6). We define a structure for an Age-

Group. The data field ofthe Age-Group structure is an array of pointers. Each of 

those pointers points to the head ofa double linked list ofq-cohort(see Figure 7). 

Therefore,an Age-Group structure gives the distribution ofthe population ofthis 

Age-Group(msp^h^ age, and other physiological variables. Finally, we apply a 
DequeueofAge-Groupnodesto describe the distributionsofthe whole population, 

its age and its other physiological characteristics, such as lipid, protein. This 

Dequeue is described in Figure 7. 

The programmingcodeis based on the above datastructures and the flow chart 

ofcomputational model(see Figure 5). We give the pseudo-codes as follows. 

Pseudo-code Algorithm 

•Main loops 

1. Time loop 

2. Traverse the Dequeue ofAge-Groupfrom the top to base 
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— if age < J,i.e. embryonic stage 

— if age > J,i.e. older life stage 

3. Traverse the pointer arrayin the Age-Groupnode(loopforspatial nodal 

points) 

4. Traverse the double linked list of q-cohort 

•Embryonic stage 

- Traverse the spatial nodal points 

- Traverse the double linked list of q-cohort 

- solve the individual model(environmental k toxicant effects) 

- solve the population model(without movements) 

•The older life stage 

- Traverse the spatial nodal points 
r 

- Traverse the double linked list of q-cohort 

- Solve the individual model(environmental &: toxicant effects) 

- Solve the population model with movements 

- Check birth (environmental effects) 

Solve the population model with diffusion and advection 
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•For every q-cohort 

— Determine its maximum moving domain(pursuit and advection speed). 

— Build the linear system ofapproximate problem over maximum moving 

domain. 

— Solve the linear system 

— Store the solution value in a temporal buff. 

•Construct a new double-linked list of q-cohort by data ofthe temporal buff. 

•Beplace the old double linked list of q-cohort by new one 

•Update the Age-Group 

•Release the memory ofthe old double-linked list of q-cohort. 

3.5 A Parallel Procedure for the Linear Systems 

It is easy to see that, at each time-age step, the most important key portion for 

our numerical schemes of the population models,for example,(3.122)-(3.124), 

is a linear system, which is defined as follows. 

{\m +^ D)U = F (3.134) 
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where M, A,D is defined in (3.33) at previous sections and Fis a vector. From 

[3, 23, 30, 36, 106], the linear system (3.134) usually is a ill-conditioned linear 

system,that is, the condition number ofB is large. In fact,it is not hard to show 

that the condition number estimate ofthe coefficient matrixB = —M+A D 
T 

is 0(1+r h-2) for ̂ dimensional domain. Thus, the linear system (3.134) is 

not easy to be solved by either a direct method or an iterative method since it is 

usually large scale, especially for higher dimension domain Q. Therefore,it is also 

an interesting project to develop a good procedure for the linear system (3.134). 

In this section, we have developed a parallel procedure, which is a combination of 

the iterative method and the direct method,to solve such a linear system based 

on the technique ofdomain decomposition (cf. [23,24,25,85, 106]). In fact, this 

parallel procedure can be regarded as a bridge connecting a direct method and an 

iterative method based on the parallel algorithm view point (cf. [23, 24]). There 

are two motivations that led us to propose this parallel procedure here. One is 

that we hope this parallel procedure can help to implement our numerical scheme 

for those population djmamic problems which cannot be implemented because its 

core portion, a large scale linear system,cannot be solved by the usual numerical 

solver. The other is that this parallel procedure is very efficient for the discrete 

problems of parabolic type partial different problems,like (3.134). 

It is not hard to check that the linearsystem (3.134)isindeed the finite element 
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equation ofthe following elliptic partial differential problem. 

—V •(A:Vu)+//uH—u=f in 
(3.136) 

=0 or u=0 on dQ 

Moreover,it is easy to see that the elliptic partial differential problem(3.135)can 

be obtainedfrom the individual-based population model(3.111)after localization, 

unstructuralization ofphysiologicalstructures and a characteristic finite difference 

discretization in the time-age domain. It also can be obtained from auxiliary age 

structured population problem (II)(or (III)) by using a characteristic finite dif 

ference discretization ofthe time-age domain. Its weak formulation is formulated 

by seeking ueV,such that 

aa{u, w)= (/, it;)n, for V w € y (3.136) 

where (•, is the inner product of I/^(f^), i.e., the previous (•, •) and 

0!n(v, w) = a(k, v, w)+(/2v, w)n+(^v, w)n 
(3.137) 

=f{kWv-^w + fj,vw-\—vw)dx
Jfl T 

Furthermore,its finite element approximate problem is to seek U}i G such that 

w) = if, w)n for V w G Vh (3.138) 
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where 

a^{v, w)={kVv, Vw)h+{nv, w)h+^{v, w)h. (3.139) 

Therefore,let M,D and A be defined in (3.33), and 

=E «/^(6) <Pl„ U=(Zi^(&) F={{f, 

then, the finite element problem (3.138) can be exactly rewritten as the linear 

system (3.134). 

To develop our parallel procedure for the finite element problem (3.138), we 

first need to introduce a non-overlapping decomposition for the domain fi,which 

has to be aligned with the triangulation that means,each subdomain has to 

be a block of elements of J^. We consider a non-overlapping decomposition of 

the domain into arbitrary number m disjoint subdomains Q,i {i= 1,2,• • •,m), 

where is a block ofelements of Jh', that is, we assume that (i=i^2,•••,m) 

is a block ofofelements of Jj^ and satisfies 

n = HiurTau-'-un^ 

= u^2u • • • U USU r, (3.140) 

^ = U Tij, lij = (3.141) 
371 

r = (jTi = afi Ti = dQinda. (3.142) 
i=l 
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We now define our parallel algorithm as follows. 

Algorithm 

(i) Given E 14[7^, {i 7^ j,i,j=1^2,- ••,m), arbitrarily; 

(u) recuisivdy compute uf e (j = fcy solving the foUowing 

subproblems in parallel: find uf € y^ln.,such that 

•«) + 53 ^ij[UiVds={f,v)n, 

+ E / 9ijVds, VueI4k, (3.143) 

(iii) update data ofthe transmission condition on the interfaces 

9ij^ (^)=2AijUj(b)— gji(b), V6e A4H7^-, 1 < « 7^j< m, (3.144) 

where the constant parameters = Aj£ > 0, «„.(•, •) and (•, ■)q. are 
understood as in (3.136) and (3.137). Also, 

L"-• SJ,"-• S.,"-"' 
where n is the dimension number of ej is a face of an element e of 

Jft, bef is a nodal point (vertex for conforming linear finite element) on the 
face e/ and meas{ef) is the {n-iydimension measure of e/, moreover, we 
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assume that the above integral is always 0 if meas(7y-) = 0. 

Clearly, the Algorithm is a parallel algorithm, which can be implemented on 

massive parallel machines naturally and easily while assigning each subdomain 

to Its own processor. Moreover, if we suppose that each subproblem in (ii) of 

the Algorithm is solved exactly by a direct method,then,the Algorithm is just a 

direct method if there is only one subdomain (i.e., we have not decomposed the 

original domain), while the Algorithm may be regarded as an iterative method in 

the usual sense if each individual element is chosen as a subdomain. Therefore, 

the Algorithm might be thought as a bridge connecting between the direct method 

and iterative method from the view point of a parallel algorithm (cf. [23, 24, 30, 

110,118]). This also means that, while using this method to solve a linear system, 

we might take advantage ofboth the direct and iterative method by choosing the 

subdomains properly. 

We axe going to use an energy estimate technique to prove the convergence of 

the parallel Algorithm (cf. [15, 22, 35]). In the proof, we follow the basic idea of 

[23, 85], which has been applied to discuss the corresponding parallel procedure 

for a partial differential equation continuous problem. Like [24] which considers 

the nonconforming linear finite element problem (cf. [21, 18]), we first need to 

give a splitting subproblem form for the conforming linear finite element problem 

(3.138) based on the nonoverlapping domain decomposition (3.140)-(3.142). 
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Lemma 11 LetueVh be the solution ofthe problem (3.138). Then there exist 

9ij ^ 3 J =1,2,• • •,m, 

such that, Ui := M|n,. 6 Vh\Q. {i = 1,2,• • •,m) satisfy the following splitting 

subproblemform: 

Wu «') + X! f vds=(/, v)n. 

+ E / 9ijvds, Vueyftln,. (3.146) 

Proof Notice that {<Pb}b^/fh, is the node basis of the finite element space V^. 

Then,it is easy to see that the finite element problem (3.138)is equivalent to the 

following system (3.147): 

an(w3 Tb)= if, <Pb)n, ybeAfh- (3.147) 

Notice that cpbix) only has a smallsupport set, we then have firom (3.147)that 

o^n,iu, <Pb) = if, (Pb)n„ V6 € (jVft n ni)\E (3.148). 

<(u, - if, Vbh,=- Kc(u,(f,)-if, ], 

y bef/hCijij, j^i 

178 



 

 

where — Q\^li, i.e.,the complementset of in Wethen define o*- g Vh\ 
oij fi 1 

U#0satisfying that 

G^ij=-j[Q;nc(«,<;06)-if,(pbhc] 

9ij{b)= Xiju{b)+ V6 G jVft n jijj 

where nis the dimensionalnumber offi C and sis thesummation ofmeas(e/) 

for every face e/ of element, which is on the 7;^ and includes 6 as a nodal point 

(vertex). Thus,a direct computation implies that we have 

hOiQii'fih fb) + '^i¥>bds= {f, (Pb)n. 

+ / 9ij(Pb ds, V & e TVft n Jij, j^i. (3.149)
l<jj^i<m '''y 

Hence, by the small support property of(pbix), it is not hard to see that(3.146) 

can be obtained from (3.148)(3.149). This finishes the proof. 

Wenow discuss the convergence ofAlgorithm. Let u bethe solution of(3.138) 

and uf (1 < 2 < m) be the solutions of(3.143) at iterative step n,i.e., the n-th 

iterative approximations. Denote by 

e"" ;= «-Ui), Ui:=u|n,. (3.150) 

where e"is the error at iterative step n. Therefore, by the Algorithm and Lemma 
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11, we obtain the error equations of the Algorithm: the errors ef € T^|n., i= 

1,2,• • •,m,satisfy 

Xijf efvds= Y f Qvds, Vz;e Vhln,. (3.151)an, 

Cij^ (^) — 2Aijej(b) — C^(6), V 6 € jV/jHjij, 1 <j <m (3.152) 

where 

Cij — 9ij~9ijj k=1,2,3, . (3.153) 

Theorem 11 Let u e Vh be the solution of the finite element linear system 

(3.138). Let uf G T^lnf (z=1,2,• ••,m) be the solutions of(3.143) ofthe Algo-

ritm at iterative step n. Then,for any initial p?- G (»'^j,j=1,2,- • • ,m), 

we have that 

(m \ 1/2 

l l^r ~'"llffi(n,) 1 —^ Oj o,s n—^co. 

Proof. First of all, we need to introduce a special norm for C=(Cij)i<i#j<m 

as follows. 

^ 1 f 

T / ICijI C~ {Cij)l<i^j<m
"'Ty 
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Taking v =ef e Vi in (3.151), we have that, 

(ef, e2)= f iCij-kje"})e^ds i=1,2,•••,m. (3.154) 

Hence,from (3.152) and(3.154), 

■71+11 I |2
I l ie = E E, . 

"2 1 

= E E T-/ \2Xiii^-g,\'ds 
1 /•» 

= E E r/i=l l<i#i<7n •'Tv 
771 

-4E E iQ-Xii^)e]d6
i=l T'J 

E E f/' iap<to 
771 r* 

- 4 E E 
J=1 l<t^j<m 

771m
■711 I |2 -4 E<4(eJ.eJ), 

where — Ajj > 0 and 7ij — 7jj have been used. Then, we have that, for any 

positive integer M, 

M / m 'S •]E(E<(®f.«n j = j(lll9''IIP-|||9"-^'||P) >0. 
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This clearly implies that 

Eani(ez",ef) —>0, as n^oo, (3.155) 
i=l 

Hence,this together with (3.150) and (3.139)implies the theorem. 

Furthermore,[24] has shown that, iftaking 

Xij = Xji = A = 0{h ), V 1 < i^j< m, 

the contractor ofthe parallel iterative procedure algorithm for the nonconforming 

linear finite element approximations is 0(1- C'(-)^/^). This means that the 

algorithm can have a contractor independent of h and r if as usual choosing r= 

0{h). Wethink that this result is still truefor the conforming linear finite element 

approximations, which will be discussed in somewhere else later. Therefore, for 

higher dimension spatial domain cases, this method may be expected to be a 

good choice to solve the key linear systems in the numerical schemes defined in 

last sections. 

Remarks 3.4.1: If we consider the model with both diffusion and advection, 

then the related elliptic partial differential problem has the following bilinearform 

in its weak formulation 

aniv, w)-{qv,w)a. (3.156) 
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It is not difficult to check that the analyses and results ofthis section are still true 

if the bilinear form (3.156) is coercive. In fact, from Remark 2.3.1, Remark 

2.3.2,Remark 3.2.2.3,Remark 3.2.3.2 and Remark 3.3.1,the bilinearform 

(3.156)is coercive ifeither q is not large or // is large enough orr is smallenough. 

We think this parallel procedure can also be extended to the situation for the 

upwind scheme discretization of the model with both diffusion and advection. 
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Chapter 4 

Modeling a Fish Population in a 

Spatial Environment 

This chapter is to model a fish population in a spatially heterogeneous environ 

ment by using the mathematical models and analyses developed in Chapter 2 

and the numerical simulation techniques developed and analyzed in Chapter 3. 

Fish are assumed to live and move in a closed bounded environment where spa 

tial variation occurs in the temporal-spatial variations ofthe usual environmental 

variables, temperature and dissolved oxygen concentration, and resource density. 

The development and discussion will focus on the spatial aspects of population 

dynamics. 
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4.1 Introduction 

It is known from biology that, for the most part, environmental variables, such 

as organic chemical toxicant, resource density, temperature and dissolved oxygen, 

affect the physiological processes ofindividuals,such as the feeding rate, assimila 

tion rate, maintenance,growth and reproduction or death,but notthe population 

level directly. It is after the effects on the physiological processes at the individual 

level have been assessed, and the individuals combined to form a population,that 

a study of the djmamics of the population is viable. Moreover, higher ecological 

organizationallevels such as populations and communities are generally data defi 

cient, while the ecology ofindividuals is better documented. This is because most 

of biological and ecological data are obtained from short term observations and 

experiments on individuals. Therefore, in general, population and higher level 

models are best represented by employing an individual-based approach. 

Individual-based, physiologically structured population models have been de 

veloped by several research groups (cf. [47, 50, 71, 72, 81, 83, 92, 95]). Their 

approach to modelindividual dynamics is based on energy budget techniques (cf. 

[71]). However, to the best of our knowledge, almost all the work,except Hallam 

et al [50] and [83], haven't considered the effects of spatial heterogeneity. Since 

the natural environment is usually spatially heterogeneous, the spatial compo 

nent is very important for natural populations and communities, but, generally, 
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difficult to analyze in models. In particular, it is more difficult to analyze spa 

tial heterogeneity in the models which include diffusion. Hallam et al [50] and 

[83] have considered the spatial heterogeneity ofthe population models including 

only advective movement by using the method ofcharacteristics. The discussions 

of Hallam et al [50] and [83] are based on the fact that the partial differential 

equations of the population models are quasi-linear hyperbolic while the spatial 

variable is just simply regarded as a dimension in physiologically-structured fish 

models. Unfortunately, this fact is no longer true for the population models in 

cluding diffusive movements. 

This chapter is to considera fish population model with diffusion and advection 

in a spatially heterogeneous environment. For simplicity, spatial aspects of the 

model are mainly limited to spatial v^iability of the resource, and in the next 

chapter, chemical toxicant concentration as well. Fish are assumed to live and 

move in a closed bounded environment where variation occurs in the temporal-

spatial variations ofthe usual environmental variables,temperature and dissolved 

oxygen concentration,and the resource density, etc. The effects ofthese variables 

occur through environmental and food chain pathways. The development and 

discussion willfocus on the spatial aspects ofpopulation dynamics. The numerical 

simulation schemes we will use are defined and analyzed in Chapter 3. 

We first give a summary of the individual growth model and population dy 

namic model below. 
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4.2 A Physiologically-Based Fish Individugd Model 

A model that is individually-based is essential to study effects at the population 

or higher level because most of environmental variables affect the physiological 

processors ofindividuals and subsequently impact the behavior ofthe population 

as a whole. The model that we use for the dynamic behavior of an individual 

female fish is originally introduced by Hallam et al [47, 54]. Moreover, in our 

computational model,we also employed the modification to include the effects of 

changes in temperature and dissolved oxygen concentration (cf. [2,9,20, 27, 87]). 

The model has been parameterized for rainbow trout, Oncorhynchus mykiss, 

however, because of the generality of the energetics approach, it can be used 

for other species of fish with some necessary modifications. The details of the 

individual fish model are found in Chapter 1 or the references. We now give a 

very brief description. 

The model assumes that the only input to the lipid and structure compart 

ments is obtained from the assimilated lipid and structure ofthe food;that is, no 

S3mthesis oflipid occurs from proteins and carbohydrates. This is not,in general, 

a valid hypothesis but because of the small amount of carbohydrates in the fish 

and its diet,lipogenesis may beignored. The density ofthe resource is denoted by 

X {g/w?)and we assume that X=X^+Xs where X^ and Xs are the lipid and 

structural portions ofthe resource. The amount ofresource that can be converted 
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to viable energy is based on the assimilation efficiencies of the lipid and struc 

ture, represented by Aql[nondim]and Aqs {nondim)in the model. The mass of 

lipid, rriL (g), and the mass ofstructure, ms {g), in an organism are assumed to 

have both labile and nonlabile portions. The nonlabile structure, mps,represents 

protein and carbohydrates bound in somatic tissues and is assumed to be nonde-

creasing with age; the nonlabile lipid,emps,is the portion of the lipid associated 

with protein in cell membranes. The labile portion oflipid,(m^— emps),and the 

labile portion ofstructure,(ms— mps),are utilized as energy sources to support 

the energy demands of the individual. Energetic demands, D,of the organism 

include maintenance, energy cost associated with ingested food, activity and re 

production. Reproduction, which occurs once a year in a special time interval, 

consists of the transferring of mass from the individual for egg production and 

the associated energetic cost. The losses of energy due to maintenance, SDA, 

and activity are assumed to occur on a continuous time scale and those due to 

reproduction occur on a discrete time scale. Hence,on intervals where there is no 

reproductive loss the dynamics oflipid and structural mass of an individual can 

be modeled with two coupled differential equations as follows 

drriL . 
— pL(t)0j7nL,ms,a:,•••] 

(4.1) 

dms . 
=9s\t,a,rriL,ms,x,- --) 
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where "• • • "in §^{1,a,ttil,ms,x,-- •) and gs{t,a,rriL,ms,x,---) means that the 

rightside termsql and gs may be modified when the effects ofsomeenvironmental 

variables,such as temperature and dissolved oxygen concentration,are considered. 

The detailed definitions ofgL and gs can be obtained in Chapter 1 of this thesis. 

As usual, we assume that the embryonic stage is 51 days, i.e., J = 51 in 

the numerical experiments, but it has to be modified while the effects of some 

environmental variables are considered. For details on the feeding representation 

as well as the equations used to model maintenance, activity, reproduction, and 

their modifications under the effects of some environmental variables, we refer 

to Chapter 1 and the references which have been cited. The model has been 

parameterized for rainbow trout, Oncorhynchus mykiss (cf. [5, 28, 32, 51, 53, 

104, 109, 112, 113, 116]). The parameter values are also obtained from Table 1 

and Table 2in Appendix. 

4.3 Fish Population Dynamics 

A dynamic population model based on physiological and movement behavior of 

individuals is needed so that the environmental effects can be determined at the 

individual level directly and then the effects at the population level can be ascer 

tained. The population dynamics can be described by partial differential equa 

tions of extended Mckendridc-von Foerster type. Let p = p{t,a,mL,ms,x) 
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� {numbers/d • m"),number per age, per mass oflipid, per mass ofstructure, 

per volume of spatial environment and at time t and location x, be the popula 

tion density function. Since we assume that fish don't move in the embryonic and 

juvenile stage,then the fish dynamic population model is, in the embryonic stage, 

i.e., a e (0,J], 

dp dp djpQL) d{pgs) ^ _ 
dt da dmi ^ dms (4.2) 

for V te[o,r],a e(o,J],x e n, 

and in the older life stage, i.e., a e {J,A], 

dp dp dipgi) d{pgs) . 

(4.3) 
for V i G [0,7'],o G (.7,A],a; G f2. 

where p is the mortality function, k is the diffusive coefficient, q is the advection 

function,and gL=giit,a,mi,ms,x)and gs=gs{i,o,,"mi,ms,x)are the growth 

rates {g/d) of the lipid and structural components of an individual respectively, 

and are given in the individual model. Moreover, for simplicity, we assume that 

individuals live in a linear habitat, i.e., ̂ C R. For instance, a linear habitat 

might be approximated in a coastline or a river environment. 

The mortality function p is assumed to have the form (cf. [47]) 

P — Pa"^Pw A'j/ "I" 
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where Ha represents the mortality in the population due to age, /Xy, represents 

weight-dependent mortality,//j, represents the mortality due to the younger ofthe 

year and fid represents a density dependent mortality. The specific forms ofthese 

mortalities are defined in Section 3.3 of Chapter 3. 

We will consider two kinds of diffusion (cf. [29, 93, 96]). One is the purely 

random walk dispersal,for this case, 

k=constant, usually take A:=1. (4.4) 

The other is the random plus density-dependent dispersal,for this case, 

k = 1 +KpP, 

where /Cp is a constant and P stands for all adult fish which have fed, that is. 

P= / pda. 
JJ 

The function q= q(m£,,m5,x,P,•••) in (4.3) is the advection movement ve 

locity{m/d)and describes how an individualofage o,lipid mass miand structure 

mass ms at location x alters its advection movement in response to environmen 

tal heterogeneity and energetic constraints. We assume that individuals tend to 

move towards neighboring areas with higher food densities. The resource-directed 
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advective movement velocity of an individual will depend on the size ofthe indi 

vidual,the energy gained, and the gradient ofthe resource at the position where 

the individual is located. In numerical simulations, we implement the following 

advection movement behavior 

0, a E>D 
q = ar 

KVa-^, if E<D 
(^-5) 

OX 

where « is a positive constant that measures the tendency offish to pursue food 

and represents the distance covered by the foraging predator per unit change in 

dr
the food resource density. — is the slope of the resource distribution, is 

an average swimming velocity (m/d) of an individual with length Lf(m)and 

is given by Vs = 8.64 • lO^sLf where s denotes the body lengths per second of 

the predator while performing sustained cruising. Advection movement behavior 

(4.5) represents the case in which fish do not change location when the energy 

gained, E, while foraging around location x, exceeds the energy demands, B, 

even if there are local changes in the food resource density, q determines the 

spatial advection movement ofindividuals relative to their location. If there are 

no local changes ofthe food resource density,or if£'> B,then fish do not change 

foraging location and the speed at which fish encounter food is determined only 

from physiological constraints. Therefore, an individual fish oflength Lf foraging 

at location x encounters food resource at a rate given by max{q, 
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Furthermore, if we modify k and q as in (1.20) and (1.21), then the fish pop 

ulation dynamics model can be rewritten in unified form by combining (4.2) and 

(4.3) together. 

dp ^ dp ^ d{pgL) , d{pgs) ^ ,r^ ^ n 
""" (4.6) 

for V ie [0,T],a G (0,A],a:6 fi. 

In addition to the balance law equation (4.6),we adjoin the initial conditions 

p = 0 or (kVp-^)• 1/ = 0 on 

p{0,a,mL,ms,x) = pQ{a,mL,ms,x) (4.7) 
Mm fOO roo 

p{t,0,mLo,mso,x)= / / / Pp{t,a,mi,ms,x)dadrriLdms 
•» 0 V0 •'0 

where the first formula of (4.7) gives the boundary condition, which asserts no 

flux of population across the boundary ofthe habitat or no fish on the boundary 

ofthe habitat; and the last equality of(4.7), i.e., the renewal equation,represents 

the birth process, where P = P{t,a,mLo,mso,mL,ms) represents the expected 

number of eggs with lipid content mio and structure content mso bom to an 

individual of age a with lipid content ttil and structure content ms at time t. 

The details about the birth processor and its modification under the effects of 

temperature and dissolved oxygen concentration are given in Chapter 1 and the 

references which are mentioned in Chapter 1. Furthermore,in order to construct 

the numerical scheme by using finite element methods (cf. [15, 107, 63]), we also 
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need rewrite (4.6) (4.7) as the following weak formulation (cf. [75, 34]): find 

p G V satisfying 

,dp ^ dp ^ dipgi) , d{pgs) ,7 ^ 
+ + »)+ a(fc,ft»)+(qft») 

= -{pp, w), for w w ev,te[o,r], a e (0,44] 
(4.8) 

p{0,a,mL,ms,x) = pQ{a,mL,ms,x) 
rAm fOO roo 

p{t,0,mLo,mso,x) = / / / /3p{t,a,mL,Tns,x)dadmLdms 
Jq Jo Jq 

where V= Hq{CI) or V"= H^(i2) is defined same as previously, and a(-,-,-) 

and (•,•), etc. are also defined previously. 

4.4 Numerical Computation Procedure 

In this section, we develop a numerical computation procedure for the fish model 

defined in the last two sections. The numerical computation procedure is based 

on the basic ideas and analyses for the mathematical and computational models 

developed in Chapter 2 and Chapter 3. We utilize the implicit Runge-Kutta 

method for the ordinary differential system of fish individual model because of 

stiffness (cf. [76, 86]). For the partial differential problem of fish population 

dynamic model, we use a characteristic finite difference in the age-time domain 

and a finite element method with numerical integration and upwind modification 

for advection terms ifnecessary in the spatial domain (cf. [15,63, 61, 64, 107]). 
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To construct the numerical computation procedure, we first partition the time 

domain (interval) (0,r], age domain (interval) [Q,Am] and the spatial domain 

n=(0, L)as follows. 

0 = to <.t\ <.t2 tjVt =T 

0 = uq < ai < a2 <...< UNa =Am (4-9) 

0 = rco < xi < a;2 <... < =L 

where 

T^t 
ti = to+i-T=to+i' — =1)2,•••,A'i 

tti = ao+i-T=aQ+i- i=l,2,---,Na (4-10) 
•^a 

Xi '= Xo+i-h=XQ+i' i=l,2,-- -,Nh. 
■'V/i +1 

Let jV/i be the set of true finite element nodal points.and Vh C V = Hq{Q) be 

the linear finite element approximate space and {(Pbjb^h standard finite 

element basis functions of Vh- Then, the numerical approximate scheme is defined 

as follows. 

+ pL(oi + |r, + mi), 5(771^"^ + m^), b) 

mi = +pi(oj +|r,|(mi~^ + mi),|(TO^~^+mi),6) 

for V beXh, j = l,2,---,Na (4-11) 

ml=mL^{b), for be Mh 

rris = msoib), for V & e 
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And,for 1 <j< Na and 1 <n < Nt, seeking 

Ph^= pViP)^b = e Vh (4.12) 
b^Mh i 

such that 

pr(») Pi'm =-;ij-w(6)pjp(6), v6€jvi 
(4.13) 

l<n<Nt 

idrpl', w),+a,(kr\p:'\w)+{^^pl^,Vw\= p^,w)k, 

W w eVh, Nj<j<Na,l<n<Nt 

(4.14) 

Ph^=TftP(oi,rnLo,mso,x), \/l<j<Na 
1 iVa—1 

J^=iprr+ 
^ 1=1 

ATa-l (4.15)PV=\'K-^fllfr+ 
N 1 

n=\pVr+ ^pVt, V 1 <n< ^■,
j=l 

where 

Q/i'^ — q(^7u Oj) ■ * ■) 
in—IN I ^9L dgsAa = p{tn,aj,-- -,x,P'' 1) + +

dmi drris 

Clearly, the third equation of (4.15) is a numerical simulation of the birth process. 
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Moreover, some parameters and functions should be modified as in Section 1.3 

of Chapter 1 if the effects of temperature and dissolved oxygen concentration 

are considered (cf. [87]). Notice that the finite element partition is 1-dimension 

uniform,so the (4.14)can be rewritten for the explicit linear system,for the case 

of p=0, 

-/-r''''"'W (kVii-1)+kfHO I -1) 
T \ 2h^ 2h ) 

pm-1)+ 
(4.16)(K-'(i)+kr'ii+1) +1)\ „

2p 2A—J"' 
=-/ir'''(0 Ph'ii), yi<i<Nh,Nj<j<Na,l<n<Nt 

where f(i) represents f{xi), and 

p^'^(0) =0, yNj<j<Na,l<n<Nt 

pl'^iNh+l) =0, ̂ Nj<j<N,,l<n<Nt 

For the case of Neumann boundary condition {kVp — -u = 0, except for 

(4.16), we have to add equations on the boundary,for i=0, 

Pi'm-pr'^-'io) . rkr\o)+k-\i) , nj... 

^fer(o)+ferHi) _ ̂ (o)>i
)Pl'i-^)=-pVm pr(0) 
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and,for i=Nh+1, 

=-fir'Hffh+!)• 

As we have mentioned in Chapter 3, we need to modify (4.16) by using the 

upwind scheme ifthere is advection to be considered. The corresponding upwind 

numerical scheme of(4.16) is defined as follows. 

71—Ij—1/-\ 

'̂ ^ pl^(i-1)+ W 
r 

-BSpi'ii+1)= pv(f), (^-17) 

V 1 <•< ATft, «,■ < J 1 < n < Ni 

where and B^^i are obtained from the corresponding coefficients of 

(4.16) by upwind correction, which are defined explicitly in the following 

B^S,dtij = - ^ ^ ~ 1) + ^ max(q^'^(i),0)r,\ 

T^n,j ^ - 1) + 2fer^(^) + + 1)
^ 2/i2 

+ ^ (niax(^'^(i), 0) - min(^'^(i), 0)) 
pnj _ + + I 1 . /-71.77. n>i 

and the equations on the boundary end points do not need to be changed. The 
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approximation and convergence ofabove numericalscheme have been analyzed in 

Chapter 3. Thus, the above numerical scheme (4.11)-(4.15) together with some 

modifications, for instance, the modifications due to the effects of temperature, 

consists ofa computational modelfor a fish population with diffusion and advec-

tion in a spatially heterogeneous environment. 

4.5 Numerical Experiments 

The numerical simulations are conducted by solving the computational model de 

veloped in last section. The model has been parameterized for rainbow trout, 

Oncorhynchus mykiss. The habitat, =(0,L), in which the populations live 

is taken to be 1 Km long and is divided into 10 equal length cells. The re 

source density is assumed to be homogeneous within the cells. These simulations 

were carried out with several cases ofthe resource distributions(homogeneous or 

heterogeneous step function distribution), movement types (different diffusion or 

diffusion-advection) and boundary conditions (Dirichlet or Neumann), etc. We 

mainly focus on investigating the dynamics of the fish population time-space dis 

tribution asthey are viewed through the fish population density,totalfish biomass, 

total fish age,total fish lipid,total fish structure(protein)and total fish protected 

protein. 

We have not found any laboratory or field experimental data or computa-
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tional simulation results for the above individual-based fish population models. 

Moreover, we have barely even found computational simulation samples for the 

age-structured fish population with diffusion and advection, although there axe 

several numerical theoretical analysis studies for some special cases. Therefore,to 

test and apply our models,we design several typical cases from simple to compli 

cated. For the simple cases, we may predict the reasonable computational results 

by applying biological, ecological and mathematical experiences. For the compli 

cated case, we observe and analyze the computational results by comparing those 

of the simple cases as well as by applying biological, ecological and mathemati 

cal experiences. Furthermore, these experimental cases are also used to observe 

and analyze the chemical toxicant effects on fish population with diffusion and 

advection in the next chapter. 

In the numerical simulations,we take the time-age step size t=— days,the 
20 

spatial mesh size h= 0.0025ii£rm,and usually thesimulation timeT> 5400 days. 

For simplicity, we always assume that the initial population only occupies a small 

1% interval at the middle ofthe habitat domain fi. 

Case 4-1- Consider the simple random walk dispersal diffusive movement(4.4), 

i.e. k=1,and Dirichlet boundary condition p=0 in a homogeneous no-toxicant 

spatially environment with resource level 5.00020 x 10'^ gfcrn^ (cf. Figure 8). 

We have observed the dynamics ofthe fish population temporal-spatial distribu 

tion because of the simple random walk dispersal diffusive movement. We have 
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simulated 6000 days. 

As we mentioned,we have chosen this case as a basic case, which will be used 

to compare the computational results of other cases. So, we have shown many-

figures to present the computational results (see Figure 9- Figure 14). From 

these figures,the computational results seem to be reasonable in the viewpoints of 

mathematics,ecology and biology. The figures show that the behavior of popula 

tion dynamics along the time-age characteristic direction in no-birth time period 

is similar as the behavior ofthe solution ofa standard heat equation. After along 

range time,about 3000 days,the distribution offish population is almost uniform 

because ofthe homogeneity ofthe en-vironment. 

Case ^.2. This case is modified from Case 1 by using the Neumann boundary 

condition, ̂ ^=0,to replace the Difichlet boundary condition, p=0. 

The motivation to implement this case is to observe and compare the ejffects 

because ofthe boundary conditions. The results are presented in Figures 15- 19. 

Comparing the results of these two cases, we have found they are similar in the 

middle of the domain. But, near the boundary, the case of Neumann boundary 

condition has more fish than those of Dirichlet case. This phenomenon matches 

our mathematical and biological expectations. 

Case 4-3. This case is another modification of Case 1. We have used the 

random plus density-dependent dispersal, k = 1 +KpP,to replace, the simple 

random dispersal, k = 1. 
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We have observed and compared the effects between the different diffusion 

types. The results are presented in Figures 20- 23. The figures show that the 

behavior of fish population dynamics is very similar as that of case 4.1, except 

that fish spread in case 4.3 faster than that in case 4.1. This observation matches 

our mathematical, biological and ecological experiences and expectations. 

Case 4-4- This is a case with heterogeneous environment, whose resource 

distribution is a step function (cf. Figure 8). Therefore, the model includes the 

diffusion as well as the possible advection movementinduced by the food resource 

where the energy gained of fish is less than the energy demanded. We focus the 

advection movement effects on the dynamics of fish population because of the 

different resource level. The results are presented through Figures 24- 26. The 

results show that in this case fish advection is not a continuous phenomenon, 

which matches our experiences and expectations of biology,since the fish density 

is not completely consistent with the resource density. This means that, the 

usual expectation of having the most fish where there is the most food resource, 

is not true in the whole time-space domain. By monitoring the computing, we 

have observed that fish make advection movement (4.5) mostly in the age period 

between 60 and ICQ days. This matches the phenomenon in Figure 2and 3show 

that fish grow fastest in this age window. 
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4.6 Discussiqii and Future work 

Wehaveindicated a method tointroduceindividual variability dueto environmen 

tal processes by coupling a heterogeneous spatial environment with the physiologi 

cal processes ofa fish population. We have studied the dynamics ofthe population 

with diffusion as well as with possible advection. We have compared two different 

movement behaviors,for example,different diffusion, different advection, etc. 

Our method of this chapter can be extended to some dynamic resource cases, 

for instance, fish-Dap/inic predator-prey model with immobile Daphnia. Wehope 

we can do work in the parallelimplementation ofthe model,test more cases, and 

observe physiological effects because of movements. 
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Chapter 5 

Modeling Toxicant Effects on a 

Fish Population in a Spatially 

Heterogeneous Environment 

This chapter models the chemical toxicant effects on a fish population in a spa 

tially heterogeneous environment. Fish are assumed to live and move in a closed 

bounded environment where spatial variation occurs in the chemical toxicant con 

centration and in the resource density. The discussions of this chapter are based 

on the individual-based models developed in Chapter 4. We will consider both 

lethal and sublethal effects. The development and analysis willfocuson thespatial 

aspects of population dynamics. 
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5.1 Introduction 

Risk assessment is primarily developed for the higher organizational levels ofeco 

logical systems such as populations and communities (cf. [68, 94]). However, 

higher ecological organizational levels such as populations and communities are 

generally data deficient, while the toxicology and biology of individuals is bet 

ter documented. This is because most of toxicological and biological data are 

derived from short term observations and experiments on individuals. Chemi 

cal impact occurs at the level of the individual, not at the population level, by 

affecting, directly or indirectly, individual processes such as the feeding rate, as 

similation rate, maintenance,growth and reproduction or death ofthe individual. 

Even though the target site of a chemical may be specific tissues, the exposed, 

affected individual is the appropriate reference point for extrapolation to the pop 

ulation level. Hence, ecotoxicological models are best represented by using an 

individually-based approach, not an aggregated modeling technique. 

Individual-based models have been effectively used to examine the effects of 

chemicalsin aquaticorganisms and populations(cf. [44,48,70,72,81,83,92,95]), 

but the effects ofspatial heterogeneity on chemically stressed systems almost have 

not been investigated except for Hallam et al [83]. However, since the natural 

environment is usually spatially heterogeneous, the spatial component is very 

important for natural populations,but, generally, very hard to analyze in models. 
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Moreover,it is more difficult to analyze spatial heterogeneity in the models which 

include diffusion. Hallam et al [83] has considered the spatial heterogeneity of 

the population models including only advective movement by using the method 

of characteristics. The discussions of[83] are based on the fact that the partial 

differential equations of the population models are quasi-linear hyperbolic while 

the spatial variable is just simply regarded as a dimension in a physiologically-

structured fish models. Unfortunately, this fact is no longer true for population 

models including diffusion. 

This chapter will model the chemical toxicant effects on a fish population 

in a spatially heterogeneous environment. The spatial aspects of the model are 

limited to spatial variability of the resource and toxicant concentration. Fish 

are assumed to live and move in a closed bounded environment where spatial 

variation occurs in the toxicant concentration and temporal-spatial variation in 

the resource density which is assumed to consist ofidenticalindividualsthat donot 

move. Because ofthe mortality ofthe fish,the spatial variability in the toxicant, 

and the temporal-spatial variability in the resource, the toxicant ejqposure of an 

individual fish, which may occur through the environmental and food pathways, 

varies temporally. 

The protocol used to study the effects of non-polar narcotic toxicant on a fish 

population, which is exposed to a spatially varying toxicant and has a dynamic 

resource, when toxic exposure occurs through the environmental and/or the food 
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pathways, utilizes the following components: 

•individual model 

•toxicant exposure-effect model 

•population model coupling temporal-spatial processes with physiological 

processes ofindividuals and a dynamic resource. 

The basic form ofthe first and third model have been discussed in Chapter 4, 

we here only need dosomesmall modificationsto them. The basic ideas employed 

to assess chemical exposure and effects on individuals are discussed in [81]. A 

summary ofthese models is presented below to set the stage for this study on the 

effects ofchemicals on populationslivingin spatially heterogeneous environments. 

5.2 Exposure-Effect Model 

The uptahe of chemical from the environment and food represents the chemical 

exchange between the aqueous environment and the individual fish across the 

gill membranes and the chemical exchange between the fish and its intestinal 

food across the intestinal wall. The uptake model we use is a modification of 

FGETS,a model developed by Barber et al [4] to handle exposure offish to non-

polar, hydrophobic, reversible chemicals. The model was formulated based on 

the assumption that both environmental and food ejqjosure are gradient-driven 

processes. 
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The mathematical modelthat describes the processes ofchemical uptaie from 

the environment and food and includes dilution of chemical due to organism 

growth is 

dCx ,„ 1 Eks^ 1 dV 
-hOr- (6.1) 

where Ct, Cy,, Cp, and Ca are respectively the concentrations of chemical in 

the whole fish,in the environment,in the food,and in the aqueous portion ofthe 

organism. Fis the weight ofthefood eaten per day andEis the weight ofmaterial 

defecated per day. kp is the partition coefficient of chemical to excrement and is 

given hy kp = where Cp is the concentration of the chemical in the feces. 

ki and k2 are the uptake and depuration rates of the environmental chemical, 

respectively, and are specified by 

kl=Sgky,V-\ h=Sgky,V-\PA+PlKl+ 

kyj measures the conductivity ofthe exposed surface area,Sg,and V is the volume 

of the organism calculated by using the total weight, Wp,and the density of the 

organism. Pa,Pl and Ps are the aqueous, lipid, and structural fractions of the 

organism,respectively; Kp is the partition coefficient ofthe chemical between the 

organic lipid and water; Kp is the partition coefficient of the chemical between 

the organic structure and water. The last term in (5.1)represents the dilution of 

chemical due to organism growth. The parameters used in the uptake model can 
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be found in Table 1,Table 2 and Table*3 in Appendix. 

Hypotheses imposed in the model development include the following. An in 

dividual organism is assumed to be comprised ofthree chemical phases: aqueous, 

structural, and lipid. The structural component is generally viewed as being com 

posed of(physiologically active) protein and carbohydrates. A second hypothesis 

is that the time scales for the exchange across the exposed surface area, Sg, are 

regarded as being much slower than the distribution of chemical within the or 

ganism. Using this assumption, Ca is expressed in terms ofCt via 

Ct=(Pa+Pl^l+PsKs)Ca-

A third hypothesis wasimposed to deal with difficulties ofthe transient events 

during digestive processes. The simplest assumption that avoids most of these 

difficulties is that of equilibration of chemical between the organism's body and 

the gut contents. This assumption,however,is not necessarily true. Hallam et al. 

[46] have indicated that this is the worst case assumption during increasing body 

concentration when exposed to contaminated food (i.e., no more chemical could 

be taken up under any thermodynamically consistent assumption than would be 

taken up when food and body equilibrate). During depuration, however, this 

assumption leads to predicted minimum depuration times;that is, any other ther 

modynamically consistent assumption would lead to longer predicted depuration 
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times. For toxicity evaluations, this would usually not be considered the worst 

case scenario. 

To calculate the concentration ofthe chemicalin thefood,we assume instanta 

neous chemical equilibration with the water and within the organism. The food, 

like the consumer, consists of the aqueous, lipid and structural phases and the 

chemical is distributed among them according to its affinity for these phases. 

Lethal Effects: To model the effects of chemicals on individuals we need to 

couple the uptake model with models for the mode of action and models for 

concentration-response relations. Effects of chemicals on individuals focus on 

mortality but sublethal effects, such as reduction ofgrowth rate,could be consid 

ered using a similar method (cf. [43,58,67]). The assessment of mortality due to 

chemical action is implemented by utilizing formulations based upon quantitative 

structure-activity relations (QSARs). There are numerous QSARs in the litera 

ture for chemicals with different modes of action. We utilize results of Veith et 

al. [Ill] and Konemann [69] developed for baseline narcotic chemicals and relate 

a chemical property, the octanol/water partition coefficient, Koy,, to mortality of 

individuals (see Figure 1). For a single individual, an effect occurs when concen 

tration ofchemical in the aqueous phase reaches a critical level, denoted by LC50, 

and is calculated from the equation logTCgo = —0.8 — logiiTou,. 

The exposure-effect modelis coupled with the physiologically-based individual 

model which yields expressions for the weight and surface area of the organism. 
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This model of an individual fish includes lipid and structural components nec 

essary for assessing effects of lipophilic chemicals on individuals. The aqueous 

component of an individual needed for the exposure model is assumed to be pro 

portional to the structural mass ofthe individual. 

Sublethal Effects: The chemical toxicant sublethal effects for fish have been 

discussed in [26], in which the same mechanism for the Daphnia is applied (cf. 

[48,43,67]). Whilethe toxicant effect issublethal,areduction in the accumulation 

and growth due to sublethal chemical effects, say %, need to be introduced to 

modify the individual fish model. We choose the reduced rate ofaccumulation of 

lipid and the reduced rate of growth ofstructure for individual fish are the same 

as ones for an individual Daphnia as follows. 

if 

1.37(Ca- . 
X= S if <Ca< (5.2)

0.0395ii:-J -F Ca 

ifCA>io-°-8ii:-i. 

The value 10"^ ®^ is the experimental no effect threshold. There is no effect 

on the growth of a fish, until Ca exceeds the threshold value the no 

growth threshold. While Ca exceeds this threshold,individualfish have a negative 

net growth rate, which only includes the loss functions. 
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Combined Effects: In our numerical simulations of Chapter 5, we consider the 

chemical toxicant effects combining the lethal and sublethal effects together. That 

is, the representation of chemical toxicant sublethal effects results in the growth 

reduction occurring continuously as a response to continuous internal toxicant 

concentration. Death ofthe organism caused by lethal toxicant effects is assumed 

to befall exactly at the time when the concentration in the aqueous phase of the 

fish reaches the value LC50 and, different from the growth, is quantally rather 

than continuously, assessed. 

Finally, for simplicity in numerical treatment, we need rewrite the uptake 

equation as the following form. 

(IBt Bt 
—=sKC^+CfF- ^ 

where Bt=Ct• Wt represents the total toxicant in the organism. 

5.3 Individual-Based Population Modeland Its Numerical 

Scheme 

A dynamic population model based on physiological and movement behavioral 

aspects of individuals is needed so that the effects of chemical toxicants at the 

individual level can be determined directly and then the cumulative effect at the 

population level can be ascertained. The individual model must allow for relevant 
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mteractions between the individual and the chemical and must also be able to 

account for toxicity. Appropriate modelcomponents must be chosen with specific 

chemical and type of exposure in mind. For example, for lipophilic chemicals, 

the principal component ofeffect determination is the individual compartment of 

high affinity, the lipid compartment. The lipid in an individual acts as a buffer 

for lipophilic toxicants, allowing larger body burdens in fatter individuals than in 

less fat organisms. Lipid storage provides protection against stress from an acute 

exposure only ifthe organism doesnot mobilizestored lipid rapidly,such as during 

reproduction. Hence,to discuss the effects oftoxicants,it is necessary to modelthe 

lipid content of an exposured organism. In addition to the lipid component, the 

individual model must consider a structure component to account for size related 

measurements such as weight or length ofthe organism. Structure is regarded as 

consisting primarily of protein and carbohydrates. Therefore, we need to modify 

the inidividual-based population model. 

First, we need to modify the individual fish model defined in last Chapter 4 

by adding the growth reduction rate x f'S follows. 

= 9l=xGl-Fl 

(5.4) 

^= 9s=xGs-Fs 

where x is defined in(5.2)for the sublethal effects and combined effects. However, 
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for the lethal effects, fish die when the reaches the value LC^q. The djmamic 

population model based on physiological and movement behavioral aspects of 

individuals has the same form as in Chapter 4. 

dp dp dipgi) djpgs) 
dt da dmi dms (5.5) 

for V t € [0,r],o e(0,J],a;e Q., 

dp ^ dp ^ d{pgL) , d{pgs) „„^ ^ 

(5.6) 
for V t G [0,T],a € (J,A],xeQ, 

p = 0 or (k'Vp+ •i/ = 0 on 

p{Q,a,mL,ms,x) = pQ{a,mL,ms,x) (5-7) 
Mm roo roo 

p{t,0,mLQ,mso,x) = / / / l3p{t,a,mL,ms,x)dadrriLdms 
Jo Jo Jq 

where the function q will be defined later, and the others are same as in Chapter 

4. For simplicity,we only consider the Dirichlet condition in our numerical exper 

iments. The related parameters and functions in (5.4)-(5.7) may be modified 

due to the effects oftemperature and dissolved oxygen. 

Movement behavior of individuals can be very complicated. For simplicity, 

we here only consider the purely random walk dispersal (4.4) (cf. [29, 93, 96]). 

However, the advective movement is more complicated than that in Chapter 4 

since individuals may alter their movement in response to changes in not only re 

source density but the concentration ofcontaminated media as well. In addition, 
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exposured organismsmay avoid contaminated media,may be attracted tocontam 

inated media (e.g. pesticide-debilitated prey) or may lose their ability to detect 

contamination due to toxicant effects (cf. [82, 83, 105]). If the contamination is 

local and of short duration, avoidance can prevent the occurrence of effects on 

mobile organisms. However, avoidance ofchronically contaminated media orfood 

may result in lack of resource which can seriously affect the population. There 

is no standardized procedure for determining avoidance and preference behaviors 

largely because they depend on the chemical and its concentration as well as the 

species (cf. [39, 52]). Thus, we may asume that 

q= Qr+qc (5.8) 

where Qr represents the advective movement velocity due to changes in food re 

source density and qc represents the advection movement velocity due to changes 

in concentration of contaminated media. In the simulations, the function is 

determined same as in Chapter 4,that is. 

0, iS E>D 
qr = < 

ar 
KUs—, if E <D 

ox 

where /c is a positive constant that measures the tendency of fish to pursue food 

and represents the distance covered by the foraging predator per unit change in 
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dv 
the food resource density. is the slope of the resource distribution, u, is an 

ox 

average swimming velocity(m/d)ofan individual with length Lf(m)and is given 

by Vg =8.64•lO^sLf where s denotes the body lengths per second ofthe predator 

while performing sustained cruising. Similarly, we assume that the function qc 

can be defined as follows. 

, dC^Qc= ± , (5.10) 

where kq is a positive constant that measures the tendency offish to pursue food 

(prey) and represents the distance covered by the foraging fish per unit change 

in the concentration of contaminated media. represents the concentration of 

dC
contaminated media and denotes the derivative of Cy, with respect to the 

variable x and represents the rate ofchange ofthe concentration ofcontaminated 

media at x. In(5.10),"+"means that fish is attracted to contaminated mediaand 

"means that fish want to avoid the toxicants. If fish do not have the ability 

to detect contaminated media, then we assume that qc = 0. This advective 

movement induced by chemical toxicant has similar dynamic behavior as where 

winds blow afume away. 

The toxicant-population model is formulated so that a toxicant may be re 

leased at different locations with different levels and at numerous times for ar 

bitrary exposure length, as a result we may obtain a spatially explicit variation 

in toxicant concentration. We ignore movement and transformation of toxicants 
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in the environment and concentrate on the effects of stress on biota. The nu 

merical procedure follows cohorts of individuals that move continuously in the 

heterogeneous habitat(heterogeneity results from both resource and toxicant dis 

tributions). This numerical procedure allows effects of spatially explicit toxicant 

exposure to be assessed at the individual level, but the overall effects can still be 

determined by an accumulation ofindividual effects. 

We will develop a numerical computation scheme by modifying and extending 

(4.11)-(4.15)ofChapter 4. By usingsame notations, we can write the numerical 

computation scheme in the following. 

= "^r^+5i(oj+|7-,5(mi,"^+m{),|(m^-^+mJ),6) 

[ = mi"^-f-^(oj+|r,i(mi,"^+mi),i(m^~^+mJ),6) 

for V 6e Mh, j=1,2,•••jATo (5.11) 

ml =mLf^{b), {given) for V 6e Afh 

m^=m5o(6), (given) for V JVa 

4 =4"'+Pc(ai+k.5(4~'+4)), 

for y b€Xh,i=1,2,-",Na (5.12) 

Bl =BTo{b), (given) for V 66 J\fh 
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And,for 1 <j< Na and I <n< Nf, seeking 

Ph'= EPl'^{b)(pb =Y.Ph^i^'Pi e Vh (5.13) 
i 

such that 

prw-pr''^-'w 
(5.14) 

1 < J < Aj, 1 < n < ATt 

(drpr, w)h+anikr',Pi',w)+ p^,Vw), 
(5.15) 

=-{pT'-'pI',w)h,V w e n, Nj<j<Na,l<n<Nt 

Ph^=T^hpiaj,mL^,msa,x), V 1 <j< 
Na-l1 

n=yTr+ EpI't 
i=i 

1 Na-l (5.16) 

i=l 

PI=^P°/r+"'EpI'^t, V 1 <n< at. 
j=l 

where 

9c — SgkyjCy,+CpF —^ QQp{^g^w "h Fkp) 

X^-' = x(Bt'). 
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Moreover, we need to modify (5.15) by the upwind technique because of the 

advection. 

^+BKp^a-1)+Bfpi'it) 

-Bf+ipr(i+1)= (S-l'') 

"i w eVh, Nj<j< Na, I < n < Nt 

where and B^^i are obtained from the corresponding coefficients of 

(4.16)by upwind scheme correction, which are defined explicitly in the following 

^ ^r'(i-i)+2fcr'('')+^r^(i+i) 
' 2h2 

+^(max(q^'^(i),0)-min(q^'^'(i),0)) 
on.i _ fcr^(i)+^r^(«+i) 1 m 

where f(i) represents /(a;,), and 

^^>^■(0) =0, yNj<j<Na, l<n<Nt 

pl''{Nh + 1) =0, V iVj- < j < JVa, 1 < n < Nt 

Our numerical simulations are based on the above upwind scheme. 
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5.4 Effects of Toxicant on Population 

The population model is investigated numerically with the nominal, unstressed 

simulations compared to the simulations with toxicant stress to indicate effects. 

Lassiter and Hallam [81] developed an approach to evaluate the effects of the 

lipid distribution in a population on population dynamics in response to an acute 

exposure of a lipophilic narcotic chemical. According to this theory, in an as 

sessment of mortality, an individual with smaller lipid fraction content will die 

before another individual with a larger lipid fraction, given equal exposure. The 

theory of the survival of the fattest considers homogeneous toxic exposures to a 

static population that are necessarily acute. This theory is not valid when these 

assumptions are violated. In a dynamic setting, survival of the population after 

chronic exposure is determined not only by the lipid distribution, but also by the 

growth rate of the individuals in the population (cf. [48]). 

In addition to physiological aspects of the population, the response of a fish 

population to a toxicant exposure depends on the spatial pattern ofthe toxicant 

and resource as related to the distribution of individuals in time and space, the 

duration of the exposure, as well as the strength ofthe toxicant. In many cases, 

the rate and the spatial-temporal pattern of release ofchemicals from a source is 

the major source of uncertainty in an ecological risk assessment (cf. [82,68,94]). 

We consider inhomogeneous spatial distribution of the chemical toxicant, in fact, 
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a step function distribution. We discuss several simple scenarios ofheterogeneous 

chemical toxicant environment. As in Chapter 4,we assume the habitat in which 

the populations live is taken to be 1 Km long and is equally divided into 10 

cells. We incorporate release of the chemical in our model by dividing the habi 

tat into cells that are assumed environmentally homogeneous. For,the following 

simulations, since we do not have any any laboratory or field experimental data 

or computational simulation results for the model,we will compare the computa 

tionalresults to thosefor the population modelobtained by Chapter4. Wemainly 

focus on the spatial-temporal distribution of fish population as they are viewed 

through the fish population density, total fish biomass, total fish age, total fish 

lipid,total fish structure(protein)and total fish protection protein. In particular, 

the dynamics of population variations are due to the advection induced by the 

toxicant. We consider the combined effects oflethal effects and sublethal effects. 

In the numerical simulations, we take the time-age step size t= — days,the 
20 

spatial mesh size h = 0.0025Km,the simulation time T > 5400 days. For 

simplicity, we always assume that the initial population only occupies a small 1% 

interval at the middle ofthe habitat domain Q. 

To demonstrate the effects of chemicals and the importance of chemical het 

erogeneity, we stress the theoretical population employing the same chemical,and 

we investigate the outcomes by varying the spatial distribution of the environ 

mental chemical concentration and the initial time ofexposure. The structure of 
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the population is compared before and after the exposure and the time evolution 

of the stressed population is compared to the nominal, unstressed population. In 

our numerical experiments, we design the following four cases to implement the 

models developed in Chapter 2and Chapter 3. We have considered the combined 

effects of lethal toxicant effects and sublethal toxicant effects. For the toxicant 

induced movements, we have discussed the the scenarios that fish is attracted to 

the contaminated media(chemical toxicant), that is, > 0,and fish try to avoid 

the contaminated media (chemical toxicant), that is, qc < 0. We consider the 

simple random walk dispersal diffusion (4.4), i.e. /:=1,and Dirichlet boundary 

condition p=0. As in Chapter4for the population model,we always assume the 

initial population only occupies a small 1% interval at the middle ofthe habitat 

domain D.. We assume the chemical with ATou,=10® and combined effects. 

Case 5.1. Consider the heterogeneous environment with a step function chem 

ical toxicant distribution (see Figure 27) but uniform resource level 5.00020 x 

10"^ gfcm^ (see Figure 8). The chemical exposure begins at 1400 days and 

is never turned off. Fish try to avoid the chemical, that is, the advection term 

qc < 0. The computational results are shown in Figures 28- 30. The figures 

show that the chemical induced advection, which dominates the diffusion, is a 

continuous movement like winds blowing afume. The population persists to 5400 

days,so the population could recover if the chemical is turned off. 

Case 5.2. This case has the same environment as case 5.1. But,the chemical 
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toxicant advection is opposite,the advection term qc > 0,thatis,fish are attracted 

by the chemicals. The chemical exposure begins at 1400 days and is never turn 

off. The computational results are shown in Figure 31-Figure 33. Like Case 

5.1, the figures show that the chemical induced advection, which dominates the 

diffusion, is a continuous movement.The population goes to extinction at 3500 

days. 

Case 5.3. Consider the heterogeneous environment with a step function chem 

ical toxicant distribution (see Figure 8)and a step function resource distribution 

(see Figure 27). We consider both resource induced advection and chemical in 

duced advection. Fish try to avoid the chemicals. The chemical exposure begins 

at 1400 days and is never turned off. The computational results are shown in 

Figures 34- 36. The figures show that the chemical induced advection, which 

is a continuous movement,dominates both the diffusion and resource induced ad 

vection. The population persists to 5400 days. So, the population could recover 

ifthe chemical is turn off. However,we have also tested the situation by the other 

heterogeneous resource distribution(see Figure 8)to replace resource distribution 

(see Figure 27). The fish population goes to extinction at 4000 days because the 

resource level is too low under the low toxicant level. 

Case 5.4- This case is also the heterogeneous environment with astep function 

chemicaltoxicant distribution and astep function resource distribution(see Figure 

27). But,in this case, fish are attracted by the chemicals. The chemical exposure 
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begins at 1400 days and is never turned off. The computational results are shown 

in Figures 37- 39. The figures show that the advection is a dominated continue 

movement. The population persists to 5400 days,so the population could recover 

if the chemical is turned off. This case simulates the situation where the food 

resource contained a chemical appealing to fish. 

5.5 Discussion and Further Work 

We have indicated a method to study the effects of non-polar narcotic chemicals 

on afish populationexposed to aspatially varyingchemical and a possible varying 

resource. We have demonstrated in the assessment of mortality that the spatial 

pattern of the toxicant and resource, as related to the distribution ofindividuals 

in time and space, can influence the physiological structure ofthe population and 

determine the survival or extinction of the population. An implication of the 

current study is that, in addition to the biological attributes of the population, 

spatial heterogeneity is essential to determine the effects of a toxicant on the 

population. 

Our method ofthis chapter can be extended to some dynamic resource cases, 

for instance,^sh-Daphnia predator-prey model with immobile Daphnia,in which 

the toxicant effects are very complicated (cf. [26]), since the toxicant effects 

may occur on one or both of them. We hope we can do work in the parallel 
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implementation of the model, test more cases, and observe physiological effects 

because of movements. 
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Table 1: Parameter values and units in the individual model(I) 

Symbol Interpretation Value (unit) Source 

-4oi lipid assimilation efficiency 0.85(nondim) [5, 31,32,104] 

JJ■4os structure assimilation efficiency 0.684 (nondim) 

-43 labile lipid 0.013 ( d-i) [109] 

mobilization rate 

»Ai labile structure 0.028 (d-i) 

mobilization rate 

e fraction lipid associated 0.12 (nondim) [104] 

with nonlabile structure 

Mp mass of prey 2.7 X 10-" ig) [70] 

Lp length of prey 0.34 X 10-2 (m) 

as in mpa = Pma 0.71 (nondim) [104] 

P2 proportionality constant 0.4 (nondim) i [116] 

for wetted surface area 

Q swimming efficiency 0.2 (nondim) [33] 

a as in Sd = [aLp -f bjLj1 

75 (m-5) [8]; 

for reaction distance [112, 113] 

b as in Sd = [aLp + bjij1 

0.52 (ms) 

for reaction distance 

Pi isometric constant 17 X 102 (pm-3) [28, 104, 116] 

relating weight to length 
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Table 2: Parameter values and units in the individual model(II) 

Symbol Interpretation Value (unit) Source 

Sp burst swimming velocity 4.0 {length/sec) [6] 

ko as in A:=kom^g 16.5(5°-'^-d-i) [40, 104] 

ki as in fc=kompl 0.7(nondim) [40] 

dp as in Mg=dp Vg 0.052(5•cm~^) [50,82] 

density of prey(dry wt) 

c as in =cmpg 0.864(cm® g~^) [40,104] 

for gut volume 

6771 minimum lipid per egg 3.2 X 10"® {g) [53, 102] 

Cm maximum lipid per egg 1.02 X 10-2(g) 

Cs structure per egg 2.38 X 10-2(g) [51, 102] 

e slope of egg equation 67.2 X 10® (m-i) [12] 

V minimiun length 17.4 X 10-2(m) » 

for reproduction 

P reproductive period 365(d) [99] 

J time length ofembryonic stage 51(d) [99, 103] 

half saturation constant 3.0 X 10"^ {3/^99) created 

modulated by Eg 

<12 energy to mobilize labile 2.0 X 10® {J-9-^) 

structure for eggs 

O3 energy to mobilize labile 2.0x102(J.p-i) 

lipid for eggs 
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Table 3: The variables and parameters in the uptake model 

Symbol Default Interpretation Units 

value 

Variables 

Ct Toxicant concentration in whole fish g/cm^ 

Toxicant concentration in ambient water gfcm^ 

Ca Toxicant concentration in aqueous gfcrr? 

portion ofthe fish 

Cf Toxicant concentration in intestinal contents gjcrv? 

s. Active exposure area cm^ 

F Weight ofingested food per day g/d 

E Weight of material defecated per day g/d 

V Volume ofthe organism cm^ 

Wt Weight ofthe organism 
9 

Pa Fraction offish that is aqueous nondim. 

Pl Fraction offish that is lipid nondim. 

Ps Fraction offish that is structure nondim. 

Parameters 

kw 530 Conductivityrexposure crn^/d 

ks 0.2 Partition coefficient ofchemical to excrement nondim. 

Kl 1 Lipid/water partition coefficient nondim. 

Ks 0.2 Structure/water partition coefficient nondim. 
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Figure 2: Individual Fish Growth(1) 
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Figure 3: Individual Fish Growth(2) 
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NULL 

Array offloats for physiological variables 

NULL 

Double-linked Structure ofGrov^th Patterns 

Figure 6: Double Linked List of q-cohort 
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Head ofdouble-linked list (q-cohort) 

Base 

NULL 

Dequeue Structure ofAge-Groups 

Figure 7: Dequeue Structure of Age-Group 
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Figure 10: Population Dynamics/Distribution at a Location/Time of Case 4-1 
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Figure 17: Total Biomass Distribution of Case 4-8
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Figure 21: Population Dynamics/Distribution at a Location/Time of Case 4-3 
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Figrore 30: Total Age and Protected Protein Distribution of Case 5.1
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Figure 35: Total Lipid and Protein Distribution of Case 5.3
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Figure 37: Total Fish Number and Biomass Distribution of Case 5.4
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Figure 39: Total Age and Protected Protein Distribution of Case 5-4
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