
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

8-2000 

The design and implementation of a dual hybrid electric vehicle The design and implementation of a dual hybrid electric vehicle 

control system control system 

Matthew D. Smith 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

Recommended Citation Recommended Citation 
Smith, Matthew D., "The design and implementation of a dual hybrid electric vehicle control system. " 
Master's Thesis, University of Tennessee, 2000. 
https://trace.tennessee.edu/utk_gradthes/9501 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Matthew D. Smith entitled "The design and 

implementation of a dual hybrid electric vehicle control system." I have examined the final 

electronic copy of this thesis for form and content and recommend that it be accepted in partial 

fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical 

Engineering. 

William R. Hamel, Major Professor 

We have read this thesis and recommend its acceptance: 

Jeffrey W. Hodgson, J. A. M. Boulet 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council 

I am submitting herewith a thesis written by Matthew D Smith entitled "The Design 
and Implementation of a Dual Hybrid Electric Vehicle Control System" I have examined 
the final copy of this thesis for form and content and recommend that it be accepted m 
partial fulfillment of the requirements for the degree of Master of Science, with a major m 
Mechanical Engmeeimg 

William R Hamel, Major Professor 

We have read this thesis 

and recommend its acceptance 

Jeffrey W Hodgso 

JAM Boulet 

Accepted for the Council 

Associate Vice Chancellor and 

Dean of The Graduate School 



THE DESIGN AND IMPLEMENTATION OF A DUAL HYBRID 

ELECTRIC VEHICLE CONTROL SYSTEM 

A Thesis 

Presented for the 

Master of Science 

Degree 
The University of Tennessee, Knoxville 

Matthew D Smith 

August 2000 



Copyright ©,2000 by Matthew D.Smith 
All rights reserved 



This thesis is dedicated to my parents 
Eugene and Marianne Smith 

Without their love and encouragement this would not be possible 

111 



Acknowledgements 

I would like to thank Dr Wilham R. Hamel and Dr Jeffrey W Hodgson for giving me 

the chance to do what I enjoy the most The advice and guidance they have given me over 

the last few years has been immeasurable I also owe Dr. JAM Boulet a great deal of 

gratitude for the help he has provided m editing this thesis. Special thanks goes to Stephen 

Jesse and Craig Rutherford for the control algorithm development and the transmission 

construction Without these two, this would be nothing but theoretical conjecture 

would also like to thank the FutureCar Team members, specifically Claudell Hatmaker, 

Veronika Gospodareva, Fred Mottley, Paul McCown,and Doug Ferguson Without whom, 

the FutureCax project could not have happened Also while at the University ofTennessee, 

I had the pleasure of working with those who call the Robotics and Electromechamcal 

Laboratory home Help from Dr Steven E Everett, Surya Singh, Mohammad Khahd, 

Sewoong Kim,Ge Zhang,Sam Richardson, and Yasunobu Isoda on general software issues 

and D-IJeX typesetting is greatly appreciated. 

IV 

I 



Abstract 

Thisresearch describes the development ofa controlsystem for a hybrid electric vehicle that 

uses the relatively novel configuration called the dual hybrid The system is implemented 

in the UTK 1999 PutureCaj Challenge entry, a Dodge Intrepid converted to dual hybrid 

operation with a student designed and constructed planetary based transmission The 

control system includes models for the custom epicyclic transmission and battery pack 

state-of-charge Control system implementation is done with the QNX real time operating 

system on a PC based microcomputer Extensive discussion of the details of the software 

development is done with an emphasis on the reusability ofthe code The control software 

includes modesfor electric-only, hybrid electric, park,neutral,and reverse operation. While 

extensive testing has yet to be done, prehmmary tests indicate that the control system 

provides a working code base that can be easily updated, modified,and reused. 



Contents 

Introduction 1 

1 1 HEV Types . . . . . 3 
111 Series HEV .. . 3 

1 12 Parallel HEV . . . 3 

113 Dual Hybrid . .. . . 5 
12 FutureCar Competition . . . 7 

Design Phase 8 
21 Hardware Interface . . . .. 8 

21.1 Drive Tram Controllers . . . . . 9 

212 Battery Pack . . 10 
213 Driver User Interface . .. 11 

2.2 System Controller . . .. .. 11 
2 2 1 I/O requirements . . 11 
22.2 Computational requirements . . 15 
223 System Controller Hardware . 15 

23 Transmission Model 22 

231 Drive Tram Components 22 
232 Torque and Speed Relations . 24 

2.4 Battery State of Charge Model . . . 27 
241 Initial Approach . . 27 
242 Common Sense Approach . 29 

25 Software Concepts . . . 39 
251 POSIX and QNX . . 39 
252 Multiple Tasks . . . . 42 
253 Interprocess Communication . .. 45 
254 Real Time Features . . .. .. 47 

Control Algorithms 49 
31 ZEV Mode . . 49 

32 Hybrid Mode Fundamentals .. . 51 
321 Throttle Position . . . . 51 

VI 



3.22 Throttle-Up Procedure . . . . . .. 52 
323 The Generator . . 55 

3.2.4 Electric Take-off . . . . 56 

33 Hybrid Mode . . ... 56 
331 Hybrid Regime Transition . . . 60 
3.32 Transition from ZEV to HEV Mode . .. 61 

4 Software Details 64 

4.1 Overview . . 64 

42 IPG Library libfclient . 64 
421 Shared Memory contents . . 65 
42 2 libfclient functions . . 66 

43 Task Primitives Library libftask . . 68 
431 Time functions . . .. 69 

432 Task management functions . . . 70 
44 Hardware Interface fcard . . . .... 75 

4 4 1 Features . . . . 76 

4 4 2 Operation . . . . 77 
45 Control Program fear . . . 81 

45 1 Overview . . . 81 

452 Task details . . . . 82 

46 Monitoring and Diagnostics 92 
46 1 Shared Memory Monitor, mon .. . . 92 
462 Data Trends Viewer trends . . 93 

463 Data Logging flogger 93 

5 Conclusions 96 

5.1 Improvements .. 96 
52 Future Work . . . 99 

Bibliography 100 

Appendices 103 

A Basic Control Code Modification 104 

B Real time Trend Graph Viewing 108 

C Retrieving Logged Data 110 

D Control Code Listing 112 
D 1 fcard Hardware Control Daemon . . 112 

D 1 1 Makefile . . 112 

D 1 2 fcard h . . 113 

Vll 



 

 

 

 

 

 

D 1 3 oetagon_io h .. .. 114 

D 14 oetagon_iojnap h . 116 

D 1 5 feard e . .. 118 

D 1.6 parse_emdlme.c . . 121 

D 1 7 daemon e . . 122 

D 18 initshm e 124 

D 19 feard eonf 125 

D 1 10 read_eonf.e . . .. 127 

Dill kwhjneter c 129 

D 1 12 hardwareJO c 131 

D 1 13 octagon_mit c 132 

D 114 octagon-io c .. .. 133 

D2 fear Mam Control Program .. .. 140 

D 21 Makefile 140 

D22 fear h 140 

D23 fear e . . 142 

D24 mode.seleet e . . 144 

D 25 modes e . 146 

D 26 motor.eqn e 151 

D27 mise e . . . .. . 157 

D28 iee_etrle 159 

D29 soe e . 161 

D 210 throttle_etrl e 164 

E Support Librsu-ies Code Listing 166 
E1 libfclient IPG Library . . .. 166 

E1 1 Makefile . . 166 

E12 fchent h . . . . .. . 166 

E 1 3 fear.common h . 167 

E 14 fclient_create.slim c .. . 170 

E15 fclient_delete.shm.c .. .. 171 

E 1 6 fclient_open.shm c .. 172 
E17 s_die c .. 173 

E 2 hbftask Task Primitives Library . 174 
E21 Makefile 174 

E.22 ftask h 175 

E23 ftask.private h . 176 

E.24 timer_qnx_private h 176 

E25 tngger-private h 177 

E.26 ftask e 177 

E27 ftask.time e .. . 181 

E28 timer_qnx e 182 

E29 tngger.pipe e 183 

vm 



E 2.10 trigger_qnx.c . . 
E211 trigger_sig c 

F User Interface Code Listing 
F 1 vfd Vacuum Flourescent Display program 

F 1 1 Makefile 

F 1 2 vfd h 

F.l 3 vfd 0 

G Diagnostic Program Code Listings 
G.l men Shared Memory Display Utility 

Gil Makefile 

G 1 2 mon h 

G 1 3 cal c 

G 14 inputs c 
G 1 5 mode c 

G 1 6 mon c 

G 1 7 outputs c 
G 2 fiogger- Data Logging Utility 

G 21 Makefile 

G 2 2 fiogger c 
G.3 trends cgr CGI Interface to Shared Memory History 

G 31 Makefile 

G 32 trends.h . . 

G 3 3 trends.c . . — 

G 34 trend-helper c 
G 4 libcgi C Language CGI Library 

G 41 Makefile 

G 42 cgi h 
G 43 get-cgi c 

Vita 

185 

186 

188 

188 

188 

189 

191 

195 

195 

195 

195 

196 

197 

199 

200 

205 

206 

206 

206 

211 

211 

211 

212 

214 

217 

217 

217 

217 

221 

IX 



List of Tables 

21 Basic Input/Output requirements . 
2 2 System Controller hardware . 
23 Unique Mobility SRI80 Motor Specifications 
24 Unique Mobility SR218 Motor Specifications 
25 Effect of Window size on err . 

. 

. 
. 

. 

. 

. 
.. . 

. 
. . 

13 
16 
25 
25 
38 

41 Partial listing offclient shared memory contents 
42 die(), warn(), and notice() output format . 

. 

. 
. 
. . 

67 
69 

B.l TCP/IP configuration parameters . .. . . . 109 



List of Figures 

1 1 Series HEV configuration 4 

1 2 Parallel HEV configuration 5 

1 3 Split Dual HEV configuration 6 

14 UTK 1999 FutureCax team and entry vehicle 7 

21 Matrix Orbital Vacuum Fluorescent Display Module 12 

22 System Controller Input/Output interface diagram 13 

23 System Controller Input/Output list 14 

24 Vehicle Control System Wiring Diagram,Top 20 

25 Vehicle Control System Wiring Diagram,Bottom 21 

26 UTK FutureCar Drive Tram Schematic 23 

27 Transmission Planetary Gear Connections 23 

28 Unique Mobility SR180 Efficiency Map 25 

29 Unique Mobility SR218 Efficiency Map 26 

210 Open Circuit Voltage vs SOC for a single 12V lead acid battery 28 

211 Discharge Schedule for Hawker 13Ah Genesis battery 29 

212 EPA Standard Driving Cycles 32 

213 A UTK FutureCar Driving Cycle 32 

214 Fitting Experimental Data to Polynomials 33 

215 A State of Charge Prediction Model 34 

216 Measured and Predicted SOC,window size 1 35 

217 Measured and Predicted SOC,window size 5 35 

218 Measured and Predicted SOC,window size 10 37 

219 Measured and Predicted SOC,window size 30 37 

220 Measured and Predicted SOC,window size 14 38 

221 Partial Test Case of Measured and Predicted SOC,window size 14 39 

222 QNX microkernel architecture 42 

223 Unix Process Creation 44 

224 Unix Process Tree Relationship 45 

225 QNX Send-Receive-Reply IPC Mechanism 46 

31 ZEV generator algorithm 51 

3.2 Throttle Position Torque Correction Factor 53 

XI 



33 Estimated Engine Map . . . . .. . . 53 
3.4 Throttle Up Procedure . . 55 
35 Generator Speed Request and Torque Relation . 57 
36 Generator speed as a function of vehicle speed and engine speed . 57 
37 Mciximum allowable throttle for given vehicle speed 58 
3.8 Hybrid mode drive tram component speeds 58 

41 Shared memory connection . . . 76 
42 Fcard Process Tree . .. . 78 

43 Fcard Octagon Hardware I/O Task Flowchart . . . . 78 
4 4 Fcard kWh Meter Reader Task Flowchart 79 

45 Fcard Config File Reader Task Flowchart . . 79 
4.6 Fcard Task Manager Flowchart . . . 80 
47 Fear Process Tree . 82 

48 Fear SOC Calculator Task Flowchart . 83 

4.9 Fcax Throttle Controller Task Flowchart . ... 83 

4.10 Fear ICE Controller Task Flowchart . 85 

4.11 Fear Mode Selector Task Entry Point Flowchart . . . . 86 
412 Fcax Mode Selector Task,ZEV Function Flowchart ... . 87 
413 Fear Mode Selector Task, Reverse Function Flowchart 89 
4.14 Fear Mode Selector Task, Neutral Function Flowchart .. . 90 
4.15 Fear Mode Selector Task,DnveEcon Function Flowchart .. 91 
416 Mon shared memory viewer tool . . . . 93 
417 Trends shared memory history viewer tool . . 94 

Xll 



List of Symbols and Abbreviations 

Ah 

APU 

CNG 

DOHC 

EPA 

ESS 

HEV 

ICE 

kWh 

POSIX 

SCO 

T 

ZEV 

N 

N,gen 
N,Ting 
U 

eng 

'gen 

'ring 

Ampere hour capacity 
Auxiliary Power Unit 
Compressed Natural Gas 
Dual Overhead Camshaft 

United States Environmental Protection Agency 
Energy Storage System 
Hybrid Electric Vehicle 
Internal Combustion Engine 
kilowatt hour capacity 

Portable Operating System Interface 
State of Charge 
Torque(N m) 
Zero Emissions Vehicle 

number of gear teeth 
generator gear teeth 
ring gear teeth 
angular speed 
engine speed 
generator speed 
ring gear speed 
gear ratio 

Xlll 



Chapter 1 

Introduction 

Freedom has always been the appeal of the automobile Prom the very beginning of the 

development of the "horseless carriage" when automobiles quickly evolved from noisy and 

harsh curiosities to a form of personal transportation that far exceeded the capabihties of 

the horse and buggy,the automobile has symbolized personal freedom. The freedom to go 

anywhere, anytime has made the automobile one of the most popular forms of transporta 

tion 

To accommodate the popularity ofthe automobile,vast infrastructures have been putin 

place The United States Federal Interstate Highway system allows a person to drive from 

coeist to coast without ever leaving pavement All along this coast to coast route are fueling 

stations to feed the energy requirements ofautomobiles. Something strange happened along 

the road to personal freedom the loss offreedom 

In the U S the explosive growth ofthe automobile required oilto beimported. Dramatic 

events m the 1970s, recorded m history as the "Energy Crisis," demonstrated the reliance 

on imported oil when foreign oil supplies were artificially restricted Since the automobile 

IS the single largest consumer of petroleum products, the U S federal government made 

mandates to improve the efficiency, hence reducing fuel consumption and the rehance on 

foreign oil, of automobiles used on public roads Research into automobile fuel efficiency 



CHAPTER 1 INTRODUCTION 2 

revealed that tail pipe emissions could also be lessened with a morefuel efficient automobile. 

In the time since the 1970s, great strides have been made to reduce fuel consumption and 

emissions, but for some states, like California, this has not been enough 

The ultimate solution, claimed by some,is the electric vehicle, or EV An EV burns no 

fuel and has no exhaust emission Energy is taken from the electric "grid" infrastructure 

where power can be collected m a manner more efficient than the automobile's internal 

combustion engine The mam drawback to a purely electric vehicle is range. Current 

energy storage systems allow an EV to drive only about 100 km before needing to be 

recharged. Also the performance of most EVs leaves a lot to be desired by the general 

buying public These disadvantages, limited driving range and poor performance, appear 

as a loss offreedom to the car buying public While energy storage systems improve, there 

IS a sort of "stepping stone" to the EV,the hybrid electric vehicle or HEV 

An HEV IS a vehicle that has both an electric motor and an fuel burning engine ofsome 

kind The HEV design is a combination ofa conventional vehicle and an all electric vehicle. 

The combination of the two allows for a greater driving range than an EV While an EV 

has to plug into the grid to recharge, an HEV can carry its own power plant. When electric 

storage is low,the onboard power plant can recharge the electrical system Performance can 

be as good or better than a conventional vehicle when the electric motor and engine work 

together The engine m an HEV can be smaller and more fuel efficient than a conventional 

vehicle because it has an electric power source to assist m driving demands Since the HEV 

addresses the weaknesses ofboth the conventional petroleum burning vehicle and the purely 

electric vehicle, it actually represents an increase m personal freedom In addition to the 

freedom to drive anywhere at any time,HEVs can give cleaner air and less reliance on fossil 

fuels. 



CHAPTER 1 INTRODUCTION 3 

1.1 HEV Types 

An EV's drive train, almost by definition, is powered by an electric motor Since a hybrid 

electric vehicle requires at least one electric motor and some other auxiliary power unit, 

APU, there is great fiexibility m what an HEV actually is. The APU can take many 

forms For the sake of simplicity, the following discussion will assume that the APU is a 

conventional internal combustion engine, or ICE While the goal of all hybrid vehicles is to 

improve the overall vehicle efficiency, there are some advantages and disadvantages specific 

to each configuration 

1.1.1 Series HEV 

The series HEV configuration, shown in Figure 1 1, is the simplest hybrid configuration. 

It is basically an EV with an onboard recharging engine/generator combination. Prima-

ry tractive power is provided by an electric motor The drive tram transmission can be 

simpler than one based on a conventional engine The fiat torque curve of an electric 

motor can simplify gearing becaus^multiple gears are not needed to compensate for the 

narrow torque band of an ICE Advantages to the series configuration are that because 

the engine/generator combination operates independentlyfrom the vehicle speed,the small 

engine can be run in its most efficient operating range and only when the electric storage 

needs recharging A disadvantage to the design is the relatively large traction motor. This 

large motor, because it has to provide all motive force, needs to be over-specified because 

it has to power the vehicle not only during level stop-and-go traffic but also during a long, 

steep grade, highway drive 

1.1.2 Parallel HEV 

The parallelHEV configuration is another basic HEV type. While the series configuration is 

basically anEV with an onboard power plant to extend drivingrange,the parallel hybrid is a 



CHAPTER 1 INTRODUCTION 

Energy Storage System 

(Battery Pack) 

Auxrliary Power Unit 

oooo 
(Internal Combustion Engine) 

Electnc Electnc 
Generator Motor 

□ Electrical Connection 

■ Mectianioal Connection 

Figure 1 1 Series HEV configuration 

conventional vehicle with a smaller engine and an electric motor to assist m providing torque. 

For this reason, the series and parallel types are sometimes called 'range extending' and 

'power assisting' configurations respectively. While the series design requires two electric 

irqfiachmes, a tractive motor and a generator, the parallel design, shown in Figure 1 2, 

requires only a single electric motor The parallel configuration is so named because a small 

engine and small electric motor work m parallel to drive the wheels The advantage to a 

parallel hybrid relative to a conventional vehicle is that a smaller, more efiicient engine can 

be used The smaller engine can fulfill most driver requests, and the electric motor can 

be used to provide additional power when needed A disadvantage comes from the fact 

that both the engine and the electric motor have to operate at speeds dependent on vehicle 

speed. Also, a parallel hybrid requires a conventional multi-speed transmission because 

the engine is the prime mover This means that the engine has to operate outside of its 

most efiicient range Additionally, because the electric motor is coupled to the engine, it 

must transfer power through the transmission which results m power losi Recharging the 
battery pack m a parallel hybrid is limited because recharging can only be done while the 

vehicle is m motion The already under-powered engine is burdened even more with the 



CHAPTER 1 INTRODUCTION 

Energy Storage System 

(Battery Pack) 

Auxiliary Power Unit 

oooo 
(Internal Combustion Engine) 

Transmission Electnc 

Motor/Generator 

Electrical Connection 

Mechanical Connection 

Figure 1 2 Parallel HEV configuratio: 

task of recharging Because of this, some parallel hybrids axe "charge depleting" designs 

That is, electric power is only used when the vehicle's torque request is greater than can 

be provided by the engine and no attempt is made to recharge except during regenerative 

braking These designs require the HEV to be recharged from the grid, but allow a greater 

driving range than an EV 

1.1.3 Dual Hybrid 

While the series and parallel configurations have been long established, a relatively new 

design has been introduced As described by Yamaguchi [20] the new configuration, the 

dual hybrid, is a combination of both series and parallel systems A dual hybrid, like a 

series hybrid, requires two electrical motors and an engine The dual hybrid description 

can be applied to two different configurations, switching and split The split configuration 

is'illustrated in Figure 1 3 

The switching configuration is very similar to a series hybrid except that a clutch can 

optionally allow the engine/generator combination to drive the wheels A switching system 

can allow the vehicle to operate as a strict series when stop-and-go traffic makes a series 



CHAPTER 1 INTRODUCTION 

Generator 

Power 

Split 
Auxiliary Power Unit Device 

o £• ooooa 0) 
CO s 
5k|5 m,« 
u (Internal Combustion Engine) 
c 
lU 

Motor 

Electnoal Connection 

Mechanical Connection 

Figure 1 3 Split Dual HEV configuration 

connection the most efficient choice During conditions where a parallel connection is most 

efficient, high speed cruising for example,the switching system's clutch can be engaged to 

allow the engine to provide additional drive wheel torque 

A split dualhybrid operates as both aseries and parallelat alltimes Instead ofan on/off 

device like a clutch, a power splitting device like a planetary gear set is used to connect 

the engine/generator and traction motor A planetary gear connection allows engine power 

to be split along the parallel path, engine to driving wheels, and the series path, engine 

to generator The use of two electric motors allows the split dual hybrid to operate in 

two modes,split positive and split negative During split positive operation the generator 

motor acts as a generator and the traction motor acts as a motor While in split negative 

operation, usually during times when battery state-of-charge (SOC)is high, the generator 

acts as a motor along with the mam traction motor allowing increased torque availability 

to the drive wheels Clearly,the multiple operating modes ofthe split dual hybrid allow for 

great fiexibihty in control schemes employed 



 

CHAPTER 1. INTRODUCTION 7

1.2 FutureCar Competition

The FutureCcir competition is an event organized by the U.S. Department of Energy's

Argonne National Laboratory in which vehicles converted to hybrid electric operation by

university students compete in a series of events. As the three major U.S. automobile

manufacturers, Ford Motor Company, General Motors, and Daimler Chrysler, are major

sponsors of the event, schools were given a choice of stock vehicles to modify. A 1998 model

year Dodge Intrepid, shown in Figure 1.4, was chosen as the base vehicle by the University

of Tennessee, Knoxville.

The 1999 UTK FutureCar team included both undergraduate and graduate students.

The major responsibility of the graduate section of the team was to provide a control system

for the team's dual hybrid electric conversion vehicle. What follows is a description of the

control system developed by the graduate team.

- X ' t

m

Figure 1.4: UTK 1999 FutureCar team and entry vehicle



Chapter 2 

Design Phase 

In the design phase many aspects ofthe vehicle as a system need to be considered. Specifi 

cally,the available hardware interface to the various components needsto be specified With 

this information, a decision on hardware for the system controller can be made. Knowing 

how everything is wired together only shows part of the system The interactions of the 

drive tram components through the transmission need to be investigated m addition to how 

state-of-charge is determined for the battery pack With the known requirements of the 

system,the software environment can be specified 

2.1 Hardware Interface 

The UTK FutureCar has many subsystems that must be momtored or controlled by the 

system controller The major drive tram subsystems include the ICE,traction motor,gen 

erator, battery pack,and driver interface Each ofthese has separate and unique interfaces 



9 CHAPTER 2 DESIGNPHASE 

2.1.1 Drive Train Controllers 

Engine Control 

The Engine Control Unit, ECU, chosen by the PutureCar team was a TEC-2 made by 

Electromotive Inc[3] The TEC-2 determines fuel injection pulse widths and spark ignition 

timing, and it controls the on board engine emission control equipment Sensors are stan 

dard GM parts The TEC-2 controller was chosen because of past UTK experience[16] and 

the ability to specify various operating parameters The user interface is provided by a 

DOS program that commumcates over a standard RS-232 serial port Since the TEC-2 was 

designed to control a wide variety ofengines,the control interfaces are simple Engine speed 

feedback is provided by a tachometer signal, a 0-12V square wave Starting the engine is 

performed by powering the TEC-2 controller and then shorting the starter control wires 

Stopping ISjust as simple byjust removing power from the TEC-2 which then halts ignition 

and fuel delivery 

While most conventional vehicles control engine speed through a linkage connecting the 

accelerator pedal to the engine throttle body,the UTK PutureCar uses a remote powered 

throttle body manufactured by MikuniInc The remote throttle body encompasses a servo 

motor whose control signal is 0-5VDC and provides throttle position feedback with a signal 

m the same range as the control This feature is a requirement to the vehicle design since, 

unlike a conventional vehicle, the engine must be controlled independently from the driver 

request through the accelerator pedal. 

Traction Motor Controller 

The traction motor controller interface is an EVPH332Digital Controller that is part ofthe 

Unique Mobility[19] "CaliberEV 53" motor package The controller is a sophisticated piece 

of hardware that provides a multitude ofperformance and status indicators The controller 

inputs for brake and accelerator request are two 0-5VDC pins on the controller housing. 



10 CHAPTER 2 DESIGNPHASE 

Digital lines are also provided for direction and system enabling A less complex hybrid 

design could use the EVPH332 directly without a system controller 

Generator Controller 

The generator control interface is the CR20-300A inverter/controller that comes packaged 

with a Unique Mobility, UQM,SR180 motor The UQM SR180 package is an older style 

compared to the SR218 While the SR218 interface is a small microprocessor, the SR180 

requires that control connections are made directly on the same hardware that acts as a 

high voltage inverter Many digital signals exist for gathering status information, and the 

mam control input is ailOVDC signal that represents both requested speed and direction. 

A 0 to -lOVDC signal is used indicate the requested regeneration level. A ±10VDC signal 

is provided for motor speed feedback 

2.1.2 Battery Pack 

The UTK FutureCar uses Lead Acid battery technology for its Energy Storage System, 

ESS Lead Acid was chosen because of its low cost, relative robustness, and availability. 

Specifically, 27 Hawker Energy 13Ah Genesis model batteries compose the battery pack. 

Using 27 batteries m series allows for a nominal pack voltage of about 345V While most 

previous UTK HEY projects used a battery pack with a much lower nominal voltage, using 

a higher pack voltage was specified in an attempt to lower I^R losses and, hence, operate 

more efficiently Originally, 28 batteries where specified, but this introduced problems 

during aggressive charging with the generator Occasionally the pack voltage would exceed 

400V, beyond the capabilities ofthe generator system 

To monitor the battery pack, a Cruising Equipment Kilowatt-Hour+2 meter was in 

stalled The meter provides an RS-232 serial interface that represents electrical energy 

consumed, pack current, and voltage all as ASCII text data The traction motor micro 

controller, the EVPH332 unit, also provides pack voltage as an analog O-IOVDC output 



11 CHAPTER 2 DESIGNPHASE 

signal Both motor controllers also provide feedback on motor current consumption. 

2.1.3 Driver User Interface 

The stock vehicle driver interface included analog gauges for vehicle speed, engine speed, 

engine coolant temperature, and fuel level and a few indicator lights Ideally, a hybrid 

version ofa Dodge Intrepid would leave as many of the original driver controls as possible. 

The initial idea was to leave the original speedometer gauge and add a Matrix Orbital 

vacuum fluorescent display, VFD,Figure 21, for hybrid speciflc driver display The VFD 

displays characters written to its RS-232 serial port and has a few special features such as 

the ability to display bar graphs and large characters Eventually the stock speedometer 

gauge was removed because it proved to be too diflficult to control without manufacturer 

documentation with the I/O hardware available The stock vehicle used a center console 

mounted shift lever for controlling the automatic transmission This was replaced with an 

eight position switch mounted on the dashboard in front ofa blocked-off heating vent The 

original shifter position had a mounting plate installed for a small laptop computer that 

might provide additional feedback for the driver 

2.2 System Controller 

The previously mentioned hardware is self-contained, that is, each component can work 

independently ofthe others In a simpler vehicle, perhaps only one ofthe subsystems might 

be used This dual hybrid vehicle has to have a central authority that monitors and controls 

each individual subsystem The system controller must perform this task 

2.2.1 I/O requirements 

One ofthe mam responsibilitiesofthe system controller is to manage all ofthe input/output 

(I/O) lines for each piece of hardware Some systems, like the motor controllers, interface 



CHAPTER 2. DESIGN PHASE

Matrix Orbital BIOS
with Bar Graphs
and Large Digits
Uersion 1.51

Figure 2.1: Matrix Orbital Vacuum Fluorescent Display Module

with multiple analog DC voltages and digital TTL level voltages. Others, like the TEC-2

engine controller, convey information with time dependent waveforms. Still others interface

with an RS-232 serial link. Figure 2.2 shows how the system controller must manage

multiple subsystems with differing I/O interfaces. In addition to the main drive train

subsystems, other smaller signals have to be monitored. These include brake line pressure,

fuel tank pressure, accelerator pedal position, and more. Figmre 2.3 shows the working list

of I/O parameters that need to be managed by the system controller hardware. Table 2.1

summarizes the basic I/O requirements.

Isolation

Another requirement of the system controller is that it must be electrically isolated from

potentially dangerous systems. Electrical isolation is usually achieved with an optical trans

mitter and receiver pair. This allows the input and output to not share any common elec

trical signals. Because the conversion from electrical to optical and back to electrical is a

highly non-linear process, analog optoisolation modules are more complex and expensive

than digital modules where the non-linearity has no effect. Dangerous systems include the

high voltage battery system and the internal combustion engine. These two systems have

operating voltages that axe potentially harmful to computer equipment, especially if an un

intentional ground loop introduces currents that could be dangerous to both computers and

people. Ideally, all I/O would be electrically isolated, but a few critical systems demand it.



 

 

13 CHAPTER 2 DESIGNPHASE 

' TEC-II 

UQM Engine Controller/ 
V Starter >Motor Controller 

MIkunI 

Throttle Body 

UQM 

Generator Octagon 

Controller Diagnostc/System Controller 
Programming 
Laptop Comp 

Battery 

kWh Meter 

Digital 
Analog Voltage 
Analog Frequency 

RS-232Serial 

Ethernet 

Figure 2.2 System Controller Input/Output interface diagram 

Table 21 Basic Input/Output requirements 

I/O type subtype Number 

Digital Input 16 

Output 8 

Analog Input 13 

Output 9 

Frequency Input 1 

Serial RS-232 2 



 

 

 

 
 
 
 

 

14 CHAPTER 2 DESIGNPHASE 

DigitalInput•altfrom one card,one 1x16G4rack 
0 card port bit connector Descriotton Range Sampling Freg Sensor/Actualor 

1 5710-0 PCO J1-0(DIGO) Shifter button Oto 12vde medium blender digital switch 
2 5710-0 PC-1 shifter button Oto 12vdc medium blender digital switch 
3 5710-0 PC2 shifter button Oto 12vde medium blender digital switch 
4 5710-0 PC3 shifter button Oto 12vde medium blenderdigital switch 
5 5710-0 PC-4 shifter button 0to 12vdc medium blender digital switch 
6 5710-0 PCS shifter button Oto12vdc medium blender digitalswitch 
7 5710-0 PC6 HVACenable/cSsable Oto 12vdc low existmg switch 
8 5710-0 PC7 EM Temperature waming Oto 12vdc low EM microprocesser 
9 5710-0 PA-0 EM Controller Ready Oto 12vdc low EM microprocesser 
10 5710-0 PA-1 EM FauK IrKtieator Oto 12vdc low EM microprocesser 
11 5710-0 PA 2 EM OverTemp Indicator Oto 12vdc low EM microprocesser 
12 5710-0 PA-3 GEN Temperature waming 7 low GEN controller 
13 5710-0 PA-4 GEN Controller Ready 7 low GEN controller 

14 5710-0 PAS GEN Fault Indicator 7 low GEN controller 

15 5710-0 PA-6 GEN Direction Indicator 7 low GEN controller 

16 5710-0 PA7 ICE Fault Indicator Oto 12vdc low TEC-H 

Digital Output allfrom onecard,one 1x16G4rack 
« card port bit connector Descnption Range Samolino Freo Sertsor/Actuator notes 

1 5710 1 PCO J1-1(DIG1) ICE Starter Solenoid Oto 12vdc medium short starter wires 

2 5710-1 PC 1 ICETEC II enable 0to 12vde low TEC-II 
3 5710-1 PC2 EM enable 0to Svdc low EM microprocesser openson gndsoft 
4 5710-1 PC3 EM direction OtoSvdc low EM microprocesser openzfwd,grrdsrenr 
5 5710-1 PC-4 GEN enable Oto 12vdc low GEN controller 
6 5710-1 PCS PowerSteeringenable Oto 12vdc low ps motorpump riy 
7 5710-1 PC6 MikuniThrottle Pwr Cycle 0to 12vdc low relay 

tAnalogInput- moststraightthruexcept3SBmodulesona 1x6SBrack(differontlalmode) 
a card channel card Dinf-f.-) Descriotion Rarrae Samolmg Frea Sensor/Actuator rMtes 

1 5710-0 1 J2-0 1 3 EM MotorSpeed 0to lOvdc high EM microprocesser > vdiv 1 

2 5710-1 1 J2-1 1 3 GEN MotorSpeed -lOvdelo-flOvdc high GEN controller > vdiv 1 

3 57101 3 J2-1 5 7 ICE Engine Speed 0to Svdc high TEC-II >58 2 
4 5710-1 5 J2 1 9 11 Accelerator pedal position 0to Svdc medium Mikunlelec,throttle 
5 57101 7 J2-1 13 15 Brake pedallevel OtoSvdc medium 7pressure gauge7 
6 5710-1 9 J31 1 3 ActualEM Torque Oto 10vdc medium EM microprocesser >vd]v 1 
7 5710-1 11 J31 5 7 Fuel Pressure Oto6vdc low press transducer 
8 5710 1 13 J319 11 EMCurrent Oto lOvdc bw EM microprocesser >vdiv 1 
9 5710-1 15 J3 1 13 15 GEN Current OlolOvdc low GEN controller > vdiv 1 

10 5710-0 3 J2.05 7 BatteryPackTemperature OtoSvdc low 7lhermistor7 

11 5710-0 5 J2-09 11 Battery Terminal Voltage Oto lOvdc low EM microprocesser•> vdiv 1 

12 5710-0 7 J2-0 13 15 Battery Current 0to Svdc low shunt->amp > SB 
13 5710-0 9 J3-0 1 3 EM RotorTemperature 0to lOvdc low EM microprocesser >vdiv 1 
14 5710-0 10 J3-05 7 EM InverterTemperature 0to lOvdc low EM microprocesser-> vdiv 1 

Analog Output-allstraightthru,noIsolation,neverreference chassisground(differentialmode) 
a card channel card Din(+ ) Desenotion Range Samolmg Frea Sensor/Actuator rwtes 

1 5710-1 0 J2 1 1716 GEN Speed Request -lOvdc to-flQvdc high GEN controller 3 

2 5710 1 1 J2 1 19 16 GEN Regen Limit Oto-lOvdc high GEN controller 3 
3 5750-0 0 J1-21 3 EM AccelReq 0Svdcto4Svdc high EM microprocesser 
4 5750-0 1 J1 246 EM Brake Req 0Svdcto4^vdc high EM microprocesser 
5 5750-0 2 J1-27 9 ICE Throttle Position 0to Svdc??7 high Mikuni elec throttle 

6 5750-0 4 J1 213 15 DisplaySpeedometer0 -Svdcto45vdc low amp-> existing gauge 
7 5750-0 5 J1 216 18 Display Speedometer 1 -Svdcto-^Svdc low amp-> existing gauge 
8 5750-0 6 J1 219 21 DisplayFuel/Energy Level -Svdcto-fSvdc low amp-> existing gauge 
9 5750-0 7 J1 222 24 Poweron Digital racks Svdcto-i-Svdc low relay 4 

Digital 0 9(1 out 8I/O) 
Analog Input 2ditferential 0differential 

Analog Output 2 0 1(ch3O^vdc) 

Notes 1 +/-10vdc >0Svdc5Banalogsignal conditioner is available 
1 5710analog input onlycapable of +/ 5vdc(i 
2 Tadi signal needsto go through aSBfrequency to dc voltage conditioner 
3 5750not able to output+/ 10vdc have to usea5710 
4 relay needed to suppressstartup jitters ofthe digital output lines 

t Analog Inputs all set to operate in ditferential mode(only all diff or all single possible) 

Figure 23 System Controller Input/Output list 



15 CHAPTER2 DESIGNPHASE 

2.2.2 Computational requirements 

Since the system controller must be more than a data logger, some computational ability 

IS needed The primary task of the system controller is to make decisions based on input 

data and relay these choices with output signals According to Laplante [10], a system that 

IS over loaded or very highly loaded, 98%, is undesirable because of the lost flexibility. A 

system without enough computational power restricts changes that could be made to the 

control system code, while a system that is continuously underloaded, < 10% or so, is also 

undesirable for a production system Because underloading represents wasted resources, a 

production system's CPU hardware could be lessened along with a decrease m cost Since 

the UTK PutureCar is not a production system but a research platform, too much CPU 

power IS not possible By using a very overpowered CPU,restrictions on later unforeseen 

control code changes can be lessened While more CPU power than initially needed is 

desired,there are potential drawbacks to using a high powered CPU,namely high electrical 

power consumption and/or high operating temperature, neither of which are desirable 

2.2.3 System Controller Hardware 

Much of the system controller hardware was inherited from the UTK HEV NEON [18] 

project, including components manufactured by Octagon Systems Corporation Octagon 

manufactures ruggedized IBM PC compatible computer equipment suitable for embedded 

operation. A PC compatible system was chosen because ofthe wide variety ofsoftware and 

hardware available for the platform The Octagon cards are connected with an 8-bit wide 

PC ISA bus in a passive backplane Table 2.2 summarizes the chosen hardware All of the 

controller hardware operates at 5VDC Any higher voltage levels are produced on-board. 

CPU 

An Octagon 5066 "Micro PC" form factor CPU card houses the main CPU and other 

components found in a regular PC with the exception of a video card The 5066 is an 



16 CHAPTER2 DESIGNPHASE 

Table 2 2 System Controller hardware 

CPU 1 Octagon 5066 card 
133 MHz AMD 80486 CPU w/ integrated FPU 
33 MB RAM(1MB soldered,32MB socketed) 
2 RS-232 capable serial ports 
programmable watchdog timer 
persistent real time clock (with optional battery) 
flexible sohd state storage options 
PS2 keyboard interface 

Persistent Storage 1 M-Systems DiskOnChip 2000 
72 MB storage capacity 
able to emulate standard IDE disk 

Communication 1 Octagon 5500 Ethernet Card 
IEEE 8023 ethernet capabihty (10 Mbit/sec) 
10-base-T, lO-base-2, lO-base-5 interfaces 

based on Western Digital 8003 ethernet controller 
Multifunction I/O 2 Octagon 5710 cards 

16 single-ended or 8 difierential analog inputs,each 
2 analog outputs,each 
16 digital I/O lines, each 

Analog Output 1 Octagon 5750 card 
8 analog outputs 

Digital Isolation Opto-22 G4 modules 
1500 VAC isolation 

mounted in two Octagon MPB-16 racks 
Anedog Isolation 2 Dataforth 5B analog signal conditioners 

1500 VAC isolation 

mounted m Computer Boards Inc ISO-DA08 rack 
Frequency-Voltage Converter 1 Dataforth 5B module 

1500 VAC isolation 

mounted with other 5B modules 

0-500 Hz to 0-5 VDC conversion 

RS-232 Serial Isolation Computer Boards Model 268 
1500 VAC Isolation 

up to 192 Kbps operation 
passive, operates on serial line power 



17 CHAPTER2 DESIGNPHASE 

updated version of the 5025A card used m the UTK HEV NEON.The card is fitted with 

an Advanced Micro Devices Inc (AMD)133 MHz80486 processor with an integrated 80487 

fioatmg point coprocessor and 1 MB of memory An onboard SO-DIMM (Small Outline, 

DualInline Memory Module)socket allows system memory to be increased to the mayTrmn-n 

of33MBRAM Someofthefeatures ofthe 5066 that are unlike aregular desktopPCinclude 

a programmable watchdog timer, extended temperature operation, and SSD (Solid State 

Disk) support It also features a BIOS (Basic Input Output Services) with settings stored 

in non-volatileEEPROM (Electronically Erasable Programmable Read Only Memory)that 

allows for battery-less operation If an external 45VDC battery is used, the onboard real 

time clock can retain date and time information when powered off Two serial ports axe 

also available 

Persistent Storage 

The Octagon 5066 card has a socket in which an M-Systems DiskOnChip(DOC)2000 is 

moimted The DOC is a solid state fiash memory device that emulates a standard PCIDE 

disk m a compact package The relatively large 72 MB capacity was chosen to allow for 

onboard data logging While the solid state device might be somewhat slower than an IDE 

disk, the benefit of compact size and no moving parts mfiuenced its choice. 

Communication 

An Octagon 5500 ethernet card was chosen for high speed commumcation Since the card is 

based on a fairly common ethernet controller,software drivers for a multitude of operating 

systems axe available Additionally, having many standardized physical interfaces, 10-base-

T (twisted pair), lO-base-2(thmnet coax), and lO-base-5 (thicknet coax) allows the card to 

easily integrate into almost any ethernet topology 



18 CHAPTER2 DESIGNPHASE 

Multifunction I/O 

Two Octagon 5710 cards provide the majority of the system controller's I/O capabihties. 

In total, this amounts to 16 differential analog inputs,4 analog outputs, and 32 digitalI/O 

lines that can be addressed m groups ofeight All5710 analog signals are 12 bit,that is, the 

precision available is 1 count in 4096 (2^^) The analog input ranges are fixed at ±5VDC 

while the analog output ranges can individually be set to O-IOVDC,±10VDC,or ±5VDC. 

The digital 1/O lines are designed to interface to Opto-22 G4 style optoisolator modules 

Analog Output 

A single Octagon 5750 card provides 8 12-bit analog output channels. Since the 5710 cards 

only provide a total offour analog output signals,a 5750 card fulfills the remaining required 

capabihty. The output ranges for each channel can be set independently to ±5VDC,0-

5VDC,or O-IOVDC 

Digital Isolation 

To protect the system controller, all of the digital I/O lines on the 5710 cards are connect 

ed to optical isolation modules Opto-22 G4IDC5D modules protect the input lines and 

G40DC5 modules allow the output lines to switch loads up to 3A The digital isolation 

modules are mounted m two Octagon MPB-16 racks with input lines on one rack and out 

put on the other The MPB-16 rack allows a direct connection to a 5710 card with a 26-pin 

ribbon cable 

Analog Isolation 

While ideally all analog signals would be electrically isolated from other systems, only two 

input channels can be, cost being the linuting factor Mounted in a Gomputer Boards Inc. 

ISO-DA08 rack are two Dataforth SCM5B41 modules that isolate a ±10VDC input signal 

and convert it to a 0-5VDC output signal 



19 CHAPTER 2 DESIGNPHASE 

Frequency to Voltage Conversion 

Also mounted in the ISO-DA08 rack is a single Dataforth SCM5B45 module that isolates 

a 0-500HZ input signal and converts to a 0-5VDC analog signal. The main purpose of this 

module is to interface with the TEC-2 tachometer signal 

RS-232 Serial Isolation 

One of the serial connections on the 5066 CPU card connects directly to the VFD display 

module The other must interface with the kWh meter Since the serial line from the meter 

references ground from the mam battery pack, a Computer Boards Model 268 RS-232 

isolation module is used to protect the system controller 

The system controller is housed in an aluminum box constructed by team members. 

This box IS mounted m the trunk m the spare tire well All signals that are not otherwise 

protected with isolation equipment are protected with ̂ ^A fuses and connect to the I/O 

cards with terminal blocks Switching loads greater that the 3A capacity of the digital 

optoisolators is accomplished with 30A automotive lighting relays The complexity of the 

customized vehicle wiring to the system controller is illustrated with the top ofthe diagram 

in Figure 24 and the bottom m Figure 25 This diagram shows how each component is 

wired to the system controller 



CHAPTER 2. DESIGN PHASE



  

 

i i ?3 to
 

l
>
0
«
_
W
t
/
W
K
T
_
.
J
>
l
 A
6
e
H
i
r
«
t
w
_
_
 n
 

[
K
l
M
_
M
V
m
i
C
„
e
D
I
B
t
t
M
 «
M
M
 

F
X
 

M
W
_
n
«
n
£
/
B
J
(
„
C
D
I
 

D
<
M
e
_
I
U
C
X
/
I
U
C
_
T
h
r
«
l
«
r
 «
e
t
w
t
a
p
_
.
r
4
l
 

t)
Dm
ik
il
Sj
tt
TJ
Lu
Cr
^^
SS
?»

 
ra
 

Ba
HJ
^a
tA
Yt
HL
UC
.f
ei
^ 
C
m
*
1
 

r«
 

B
a
»
t
_
a
i
J
C
/
V
H
r
_
^
*
d
C
u
*
i
 

n
 

s
s
m

BH
M_
JU
«F
lt
__
fe
*w
 v
!l
l9
*»
0<
a*
.
Fi
e 

B
*
«
u
»
 
m
t
r
M
M
t
 

-
e
n
 i
b
J
U
c
f
c
s
-

Q
i

gi
 m
 

S
?
'
 

H
 

.
.
.
 

g 
I 
"
>
 

K
f
X
t
/
K
B
U
O
i
B
e
t
T
*
*
p
.
r
4
«
 

B
S
 

=
=
H
K
*
S
i
J
t
V
N
/
V
M
T
_
E
M
 f

cw
T
t
M
.
r
3
}
 

o
 

^
1
—
O
C
A
M
O
i
O
f
r
I
V
K
X
H
 

m
 

B
D

=
^
4
-
<
M
A
M
.
C
I
W
H
A
M
T
.
C
M
 C
ka

T4
Tr

t_
 r
aj

 
r
n
t
»
<
.
 

r
 

r
M
 T
e
r
a
j
*
.
^
 r
S
S
 

il
i 

o«
*i

« 
WM
T 

e
m
 

r9
4 

I 
Qf

AM
.Y

tu
iT

vJ
lL

cr
a
6
r
a
4
_
 r
aa
 

S
I

I 
P
W
.
0
K
W
4
X
 

D
i
 »
>a

 V
ol
t,
 n
e
 

B
f
i
 

Ijl
ilL

ili
d 

3
W
 

P
l
U
»
.
y
«
t
/
r
«
4
_
i
K
n
«
M
-
t
U
t
 

s
U
f
 r
t
 

□
3
—

1
 

s
n
s
s
 

r
E

 
F

u
n

 I
]r

n
«

n
 

is
i 

C
D

 
F

S
!A

I_
P

H
C

_
P

r*
«

«
r«

 
r4

 
iM

ii
a

ii
t 

F
tU

I_
m

y
iU

C
_
A

c
e
M

M
U

 f
e
iH

ta
u
 F

49
 

tim
tT

tr 
F

n
U

_
O

te
/a

J
L

J
rt

lt
* 

rt
d
U

 P
et

ftl
gn

. 
r4

«
 

D
n«

M
 t

ny
ig

Lm
^B

Ji
 T

«n
i 

, 
n
 

z
^
S

S
i 

c
^ 

F
s
M

r 
S

tM
p
rQ

 
F

u
n
 "s

ia
 

S
-1

8-
99

 
S

te
ph

en
 J

es
ce

 

Fi
gu

re
 2

.5
. 

Ve
hi

cle
 C

on
tro

l S
ys

te
m

 W
iri

ng
 D

ia
gr

am
, 

B
ot

to
m

 

rs
3 



22 CHAPTER2 DESIGNPHASE 

2.3 Transmission Model 

The planetaiy, or epicyclic, gear tram design of the UTK FutureCar allows for enormous 

flexibility m control strategy The'control scheme employed will follow the description of 

the positive split mode as described by Yamaguchi[20] A schematic ofthe drive tram with 

all ofthe relevant gear ratios is shown m Figure 26 

2.3.1 Drive Train Components 

The drive tram includes an engine, a generator motor, a traction motor, a planetary gear 

set, an over running clutch on the engine,and reduction and difierential gears. Asshown m 

Figure 2.7, the engine is connected to the planet carrier, the generator is connected to the 

central sun gear, and the mam traction motor is connected to the output ring gear This 

configuration acts as a sort of Continuously Variable Transmission, CVT, because there 

are no gears to shift There is only a single forward gear There is no gearing for reverse 

Reverse 'gear' is accomphshed by just reversing the direction ofthe traction motor. 

Engine 

Since the hybrid vehicle design allows for a smaller-sized engine, the stock 1998 Dodge 

36 liter 6 cylinder gasoline engine was replaced with a 1998 model year Saturn 1 9 liter 

DOHC engine converted to run on compressed natural gas While a smaller displacement 

engine would be adequate, previous UTK experience with the Saturn 4 cyhnder engme 

design dictated its selection The engine is coupled through an over running clutch to the 

planetary carrier to prevent the generatorfrom inadvertentlyspinningthe engine backwards. 

Transmission Housing 

The transmission housing comesfrom a 1982 Audi Quattro It was chosen because its longi 

tudinal four-wheel-drive design features drive outputs like a front wheel drive transmission 



23 CHAPTER 2 DESIGNPHASE 

Over running 
Cutch 

Planetary GearSet 

Numbers indicate 
the numberof gearteeth 

=rT= 

o 
o 
o Differential 

Motor 

O 

Figure 26* UTK FutureCar Drive Tram Schematic 

Planetary Gear Set 

Sun Gear, Generator, Planet Carrier, ICE engine 

O 

o o o 

o 

Ring Gear,Traction Motor,Outputshaft 

Figure 2 7 Transmission Planetary Gear Connections 



24 CHAPTER 2 DESIGNPHASE 

and accessfrom the rear ofthe housing for mounting the generator While custom designing 

and manufacturing the housing m-house was considered, the availability of a commercial 

cast aluminum housing that could be modified for hybrid operation made the Audi housing 

a better choice 

Generator Motor 

A custom Unique Mobility SRI80 motor is mounted at the rear ofthe transmission housing 

to act as a generator This model was chosen because it is physically small, lightweight, 

and speed controlled Previous UTK experience with the SR180 came from the NEON 

HEV project where the nominal high voltage system bus voltage was 180V A custom 

motor had to be ordered to work with the UTK FutureCar's 345V nominal high voltage 

bus Figure 28 shows the manufacturer's efficiency map and Table 23 shows some of the 

motor's specifications 

Traction Motor 

A Unique Mobility SR218 motor serves as the primary traction motor This motor was 

chosen because of its physically small size, lightweight design, and torque based control 

Because this motor acts as the prime mover m the drive train, torque control makes it 

more closely mimic the torque based feedback of a conventional vehicle's accelerator pedal 

coupled to an engine throttle Figure 29shows the manufacturer's efiiciency mapand Table 

24shows some ofthe motor's specifications 

2.3.2 Torque and Speed Relations 

From Muller[12], the govermng equation for speed of the planetary gear for this specific 

transmission is 

_ (1+r) (^eng — ^gen /c, i\ 
^rtng — 5 



CHAPTER 2. DESIGN PHASE

•O M

MOO 3000 3300 3000 3300 4000 <300 3000 3300 00m 03M 1m 730

Speed (rpm)

Figure 2.8: Unique Mobility SR180 Efficiency Map

Table 2.3: Unique Mobility SR180 Motor Specifications

Peak Power Rating
Continuous Torque @ 6600 rpm
Peak Torque in continuous stall

Peak Torque in intermittent stall
Maximum no-load speed @ 195V

Weight
Control Method

32 kW (42.9 hp)
46.3 N-m (410 Ibf-in)
57.6 N-m (510 Ibf-in)
90.4 N-m (800 Ibf-in)

7000 rpm

23.6 kg (52.0 lb)
Speed Based

Table 2.4: Unique Mobility SR218 Motor Specifications

Peak Power Rating 53 kW (71 hp)
Continuous Power Rating 32 kW (43 hp)

Maximum Speed

Weight

Control Method

8000 rpm

40 kg (89 Ibr
Torque Based



 

 

 

26 CHAPTER 2 DESIGNPHASE 

225 S3kW - Intftrmttentoperation 

32kW * eentinuouioperation 
^ 200 

5, 175 

150 

125 

100 

9d0 

50-

25-.64 

-S 

1 r 1 I " I I 1 '' I I I I' 
1500 2000 2500 3000 3500 4000 4600 5000 5500 6000 6500 7000 7500 

MotorSpeed(rpm) 

Figure 29 Unique Mobility SR218 Efl&ciency Map 

where 

r=^^=^«211, (2.2) 
Ngen 27 

thus, 

^gen^(3ll)Weng (2 H)^rmg (2.3) 

As IS evident from these equations, setting one component speed to a specific value does 

not determine the speeds ofthe other components This allows the speed ofthe engine and 

generator to vary over a range independent of wheel speed 

The governing steady state torque balance equations for this specific transmission are 

Tring — Tgng Ti — Tgen l'2-i (2.4) 

where 

ri= ^~0.68 (25)
^gen "f~ ̂ ring 

and 

= =— «211 (26)
' Ngen 27 



27 CHAPTER 2 DESIGNPHASE 

As can be seen from these equations, component torques do not share the same degrees of 

freedom that speeds do Under steady state conditions, generator torque and engine torque 

always have the same ratio regardless of the magnitudes of the speeds and torques of all 

components 

The transmission will not always be operating m steady state or even quasi-steady state 

conditions That is, at some times, the rate of change of the component speeds is on the 

same order of magnitude as the speeds ofthe components The assumption is made that, if 

the transmission is not in steady or quasi-steady state conditions,then it will be accelerating 

to such conditions The transmission will not diverge from steady state conditions by virtue 

ofthe fact that the generator is speed controlled,and its torque is significant enough to force 

the engine to any operating speed regardless of engine power output If this assumption 

is incorrect and the generator is unable to maintain a constant speed while under load, 

safety precautions are taJken to trim the engine throttle before the generator exceeds safe 

operation speeds 

2.4 Battery State of Charge Model 

One critical run-time parameter of any HEV is battery pack State of Charge, or SCO A 

charge sustaining system must monitor the SOC and take appropriate action when the SOC 

IS low Additionally it must prevent battery over charging when the SOC is high 

2.4.1 Initial Approach 

The initial approach to estimating SOC utilized a rather traditional method When current 

draw on the high voltage system is low, a simple linear model can be used[6] A graph 

of open circuit voltage for a single cell, shown m Figure 2 10, shows that SOC is linearly 

proportional to battery terminal voltage when current draw is negligible. While this might 

be all the information needed for a low power application, an HEV operates much of the 



  

 

- -

28 CHAPTER 2 DESIGNPHASE 

Hawker Energy Data forSOC of Genesis Battenes 
1 1 r ' ' 

^126 

" 

" 

-. -

' J --J . .1 

01 02 03 04 05 06 07 

State of Charge,Normalized 

Figure 210 Open Circuit Voltage vs SOC for a single 12V lead acid battery-

time when the current draw can be hundreds of amperes For load conditions the battery 

manufacturer[5] provides datafor capacity over varying current loads,shown in Figure 2.11. 

This figure shows capacity m ampere-hours(Ah)over constant discharge rates to 167 Volts 

per Cell, VPC The 12V batteries used have Six cells each, so total discharge is taken to 

be about lOV across the terminals under load The initial algorithm for determining SOC 

operated in two modes based on the current draw If the current draw was approximately 

zero, the data from Figure 210 would be used Otherwise, the number of Ah consumed 

would be calculated by discretely integrating over time which then would besubtractedfrom 

the total capacity calculated from the data in Figure 2.11. This method seems reasonable, 

but there are several disadvantages 

• The manufacturer's data is given for a single 12V battery, while the UTK FutureCar's 

pack consists of27 batteries m series While each battery is manufactured to a certain 

specification, there are differences from battery to battery This model does not take 

battery-to-battery interactions into account 

• While there are 'rules ofthumb',or heuristics,for temperature changes,e g "battery 



 

 

 
 

 

29 CHAPTER 2. DESIGNPHASE 

Genesis 13Ah Model Discharge Schedule at25°C 
^ 10000 

' WatLs --y-"" • a 

I 1000 K Amps Q j 

03 

5 100 i:i ̂  1. 

0 

1 10 
O 

o 1 °D 
•a 

0 1 
001 

Snofgy{VVh) —h-
Capacity(Ah) q 

& 
ifc. 100 

„ „„ o-n-i.- ° oc ^ 

01 1 10 

Run Time to 1 67VPC(hours) 

Figure 211 Dischaxge Schedule for Hawker 13Ah Genesis battery-

life IS reduced by 50% for every 30°C drop with a 30°C nominal temperature" and 

"battery life is increased by 50% for every 30°C increase but capacity is decreased," 

battery performance characteristics due to temperature changes are not provided by 

the manufacturer 

• The manufacturer provides no information on how a battery will react to charging 

Considering that a chaxge-sustammg hybrid spends a great deal of time recharging 

the batteries, lack of this data is a severe problem 

2.4.2 Common Sense Approach 

While the initial approach proposed above seems sound,it was never implemented because 

of concerns about its inability to track SOC during charging Also, hardware that could 

accurately measure battery pack current was not functional at the time ofthe competition 

After functional battery pack monitoring equipment was installed,the whole concept of 

State of Charge was reexammed All previous methods required summing current readings 



30 CHAPTER 2 DESIGNPHASE 

over time and dividing that by a hypothetical capacity While measuring a pack current 

value could be accurate enough,all modelsfor estimating total pack capacity seemed lacking. 

Conventional wisdom says 

A lead-acid battery will react by way of its terminal voltage m response to a 
given current demand uniquely based on its state of charge 

Since the battery current measuring device was notfunctional during most ofthe vehicle 

testing but pack voltage measurements were readily available,a periodically updated voltage 

value was displayed for the driver to use During the first drive after hybrid mode was 

functional,the pack failed after about 15 km,probably due to over-charging This required 

disassembling the pack, locating damaged batteries, and replacing them with known good 

batteries After this initial failure, the driver learned to closely monitor the battery pack 

voltage to assess the condition of the pack With only the knowledge of how the pack 

voltage reacts to an estimated load (initial startup, acceleration, grade, etc.), the human 

driver could make an educated guess to the pack SOC after some experience behind the 

wheel 

The goal for this approach is to encompass the human knowledge and express it as an 

algorithm so that a computer could make the same decisions as an expert test driver To 

quote from Tsoukalas[17] 

Artificial intelligence is a branch of computer science that attempts to emu 
late certain mental processes of humans by using computer models In expert 
systems,perhaps the first field of artificial intelligence to be commercially recog 
nized in its own right,one ofthe primary objectives is to mimic human expertise 
andjudgment using acomputer program by applying knowledge ofspecific areas 
of expertise to solve finite, well-defined problems 

One of the primary characteristics[7] of an expert system is the reliance on human 

knowledge instead of formal reasoning methods This comes from the fact that, for most 

problems where expert systems techniques axe applied,there exist no definitive algorithmic 

solutions This is so because these problems involve complex social or physical situations 

which resist precise description and rigorous analysis A battery SOC calculation is one of 



31 CHAPTER 2 DESIGNPHASE 

these problems where there axe many complex physical, chemical, and electrical reactions 

withm a single battery, and even more m a pack of multiple individual batteries. 

Derivation 

To collect data for this experiment,the UTK PutureCar was driven around the University 

ofTennessee, Knoxville,campus m early August of1999 when the temperature was approx 

imately 35°C and the relative humidity was about 85% While most vehicle experiments 

are performed on a chassis dynamometer following a standard velocity profile, such as the 

Federal Urban Driving Schedule(FUDS)or the Federal Highway Driving Schedule(FEDS), 

shown m Figure 2 12, this test was performed on the road During the test many vehicle 

subsystem parameters were recorded, but only battery pack voltage and current and a few 

notes of the driving conditions were used This driving schedule is shown m Figure 213. 

Battery pack current and voltage and total Ampere-hours consumed were sampled at a rate 

of 1 Hz from a Cruising Equipment Kilowatt-Hour-f2 meter[2] Other parameters such as 

vehicle speed were recorded at a rate of 1 Hz using the control system's flogger (Section 

463) data logger Because the two systems recorded data to separate files, a duplicated 

signal, battery pack voltage, was used to synchronize the two data sets 

From the total Ahs consumed an estimate for SOC was made by making the guess 

that the average total capacity was 2OkWh This number was chosen because it placed 

the SOC at approximately 25% at a point, about 2000 seconds into the test, where the 

vehicle was noted as seeming to be at a low SOC With an SOC estimate to correspond to 

a pack current and voltage reading, each data pair, current and voltage, was assigned an 

SOC attribute. Prom this data, polynomial curves were fitted to the "high" and "medium" 

SOC data sets, see Figure 214 Cubic equations seemed adequate to generalize these data 

sets The "low" SOC data set resisted a third order polynomial curve that looked like it 

fit the data This can be attributed to the relatively few points available for this set To 

compensate the "medium" curve was modified to fit the "low" data set Because ofthe lack 



�

 

 
 

� 

32 CHAPTER 2 DESIGNPHASE 

EPA Federal Driving Cycles 

uttan FUDScycle 

•5 20 

200 400 BOO 1000 1200 1400 

highway FHDScycle 

§• 50 

"S 40 

« 30 

^ 20 

100 200 300 400 500 600 700 800 

time(s) 

Figure 212 EPA Standard Driving Cycles 

Test Dnve Record 

E 30 

500 1000 1500 2000 2500 3000 3500 

360 

340 

3 320 

> 300 

o 280 

260 

240 
500 1000 500 

Z. 40 

i 20 L 
I io 

Litrlljvl;, 1]r .1^-
= 20 

1500 2000 

time(s) 

Figure 213 A UTK FutureCar Driving Cycle 



CHAPTER 2. DESIGN PHASE

Fitting Experimental Data to Polynomials

OJSOC D
hi poly fit -

Current out of battery (amperes)

Figure 2.14: Fitting Experimental Data to Polynomials

of data, this curve could be considered a guess at how the pack terminal voltage reacts to

cmrrent demand while in a low SOC. The values for high, medium, and low are 0.90, 0.50,

and 0.25 respectively where a value of 1.0 is 100% SOC and 0.0 is 0% SOC. These three

curves then uniquely describe SOC for given current and voltage values if the input values

axe linearly interpolated between the curve boundaries, see Figmre 2.15. It should be noted

that the converse to the previous statement is not true; axi SOC value does not imply a

unique current-voltage pair.

This method of reducing SOC estimation to curves of voltage reaction to current draw

is not original. Previous UTK hybrid vehicle research[8], namely Xiaoling He's thesis on

hybrid vehicle simulations, used this method to reduce SOC to first order polynomials for

a less dynamic battery pack. He's purpose was different, though. The previous research

involved simulating hybrid vehicle dynamics, while this study focuses on a hybrid control

system. This SOC estimation method extends on the previous model because the battery

being modeled undergoes greater discharge currents and at least considers pack charging.

These extensions justify the change from a first order, linear model to a third order, cubic

model.



CHAPTER 2. DESIGN PHASE

Predicted State of Charge
at steady state

y^lOO
•^0 Current out (amperes)

35^--
300

Battery Pack twminal vottage

Figure 2.15: A State of Charge Prediction Model

Simulation Results

To test the SOC predictor the original data used to create it was used. While this is not the

ideal testing method, lack of a second test set required it. For testing, a single value, err,

was calculated to determine the correctness of the model. The values of err axe calculated

in a least squares sense according to

err = ̂̂ {SOCmeasured ~ SOCpredicted)'^-! (2-7)

where the units of err are unimportant and the values of err axe only meaningful when

comparing data sets of the same number of samples.

Using the equation graphed in Figure 2.15 to predict SOC and plotting against the

measured SOC results in Figure 2.16. This figure shows that there is a significant amount

of error in the prediction. The prediction seems to follow the trend of the measured value,

but there is an oscillatory element that suggests that the model is under damped. On

average it seems to overshoot the desired value as much as it undershoots. Figure 2.17

shows that if the prediction model uses a moving average with a window size of 5 data



 

35 CHAPTER 2 DESIGNPHASE 

Measured and Predicted SOC,window size 1 

Measured SOC —p 

500 1000 1500 2000 2500 3000 3500 

means0010 absmaxs0364 sum(error)^821 476 

1000 1500 2000 2500 3000 3500 

time(s) 

Figure 216 Measured and Predicted SOC,window size 1 

Measured and Predicted SOC,window size5 

500 1000 1500 2000 2500 3000 350O 4000 

mean=0007 abs max=0249 sum(error)^=10359 

- i!j f|; k r\ 

500 1000 1500 2000 2500 3000 3500 4000 

time(s) 

Figure 217 Measured and Predicted SOC,window size 5 



36 CHAPTER2 DESIGNPHASE 

points, the value of err can be halved Figure 218 shows that err can be reduced even 

more with a window size of 10, but Figure 219 indicates that a window size of 30 makes 

the model slow to respond to changes The optimal window size, the one that minimizes 

err for this data set is 14,shown m Figure 220 A summary ofthe effects of different sized 

windows IS shown in Table 25 

Because training and testing on'the same data set might lead a generalized model to 

reproducing the non-general variance in a certain data set, a portion ofthe training set was 

used to test the predictor Figure 2.21 shows how the model predicts only the second half 

of the training set It seems to be over damped a bit, taking 200 seconds to catch up to 

actual value, but otherwise acceptable 

Conclusions 

This model of battery SOC works fairly well in simulation Its strengths include. 

• It IS conceptually simple and based on actual experimental data and human experi 

ence 

• Onlytwo variables are required,pack current and voltage,to estimateSOC Persistent 

storage ofany data is not required,but averaging over afew past data points is helpful. 

• It IS simple to modify or adapt to a new environment For example, when adapting 

to a different pack, a good first step would be to move the y-mtercept of the three 

equations to correspond to the different nominal pack voltage 

Even with these strengths there are a few weaknesses that follow the weaknesses of 

expert systems m general[17] The model does not handle the dynamics ofSOC calculation 

well, the three equations, shown graphically m Figure 2 15, work best under steady state 

conditions, but can be adapted to a dynamic situation with a moving average scheme The 

results are very dependent on the adequacy of the knowledge incorporated into the system 



37 CHAPTER 2 DESIGNPHASE 

Measured and Predicted SOC,window size 10 

Measured SOC 

500 1000 1500 2000 2500 3000 3500 

mean&0002 abs max=0102 sum(error)^=4292 

500 1000 1500 2000 2500 3000 3500 

time(s) 

Figure 218 Measured and Predicted SOC,window size 10 

Measured and Predicted SOC,window size 30 

500 1000 1600 2000 2500 3000 3500 4000 

mean=-0059 abs max=0217 sum(erT'or)^=26701 
02 

015 

01 

o 005 

a> 0 
O 005 
n 
<n -01 

-0 15 \f 
•02 

•025 
500 1000 1500 2000 2500 3000 3500 4000 

time(s) 

Figure 219 Measured and Predicted SOC,window size 30 



 
 

 

 

 

38 CHAPTER 2 DESIGNPHASE 

Measured and Predicted SOC,window size 14 

MeasaiircM SOC 

05 -

500 1000 1500 2000 2500 3000 3500 

mean=-0006 abs max ^0103 sum(error)^s2860 
01 n— 
008 
006 

004 

2 002 
5 0 
O .002 

g -004 
-006 

'008 

01 
-012 

0 500 1000 1500 2000 2500 3000 3500 4000 

time(s) 

Figure 220* Measured and Predicted SOC,window size 14 

Table 25* Effect of Window size on err 

Window Size err 

1 21 476 

5 10 359 

10 4292 

14 2860 

30 26 701 



 

 

39 CHAPTER 2 DESIGNPHASE 

Partial Test Case of Measured and Predicted SOC,window size 14 

MoatiLred SC 
045 

035 

025 

015 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

means0004 abs maxso21o sum(error}^=2839 

015 

005 X 

J.'^V005 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

time(s) 

Figure 221 Partial Test Case of Measured and Predicted SOC,window size 14 

Overall, the method appears to be sound The implementation of the algorithm is 

discussed m Section 45, and code is m Section D 29 

2.5 Software Concepts 

To control all of the system controller hardware, software is used Previous UTK hybrid 

vehicle projects have used bare Motorola assembly [1]language in the "Ground Up" project 

and a C language system for DOS [18] m the HEV NEON project As the UTK projects 

have grown more complex, more software support is needed to mahe the most of the com 

puting hardware available While the attempt was made to use a combination ofthe QNX 

operating system and C programming language[9] m the later phases ofthe NEON project, 

the FutureCar project is the first to have a system based on it 

2.5.1 POSIX and QNX 

QNX IS a computer operating system written and distributed by QNX Software Systems 

Ltd ,(QSSL),in Ontario, Canada It is designed as a real time embedded OS. Real time 



40 CHAPTER 2 DESIGNPHASE 

features allow for tune critical operations to happen deterministically, and embedded fea 

tures allow the system to be used in a resource constrained environment where it is not 

readily apparent that a computer is even in use during normal operation. QNX,or more 

specifically, QNX4,runs on Intel and compatible processors m an environment similar to 

a regular desktop PC While newer OSs from QSSL run on a wider variety of hardware 

platforms, the UTK PutureCar control system is implemented on QNX4 with PC style 

hardware 

Some ofQNXfeatures include multitasking,memory protection, priority driven preemp 

tive scheduling, and fast context switching [15] Most of these features come firom QNX's 

microkernel architecture Multitasking means that it supports the execution of multiple 
I 

processes or tasks in what appears as Simultaneous action. While only one process might 

actually be using the processor at a given instant, the speed of modern computing hard 

ware makes it appear to a human observer that more than one process is running The 

term "program" refers to an executable file or image on disk or some other storage The 

term "process" or "task" usually refers,to the in-memory and runnableimage ofa program. 

Memory protection, a feature usually'implemented in hardware, is the ability to prevent 

an unauthorized process from reading,or writing memory that has not been allocated for 

it. Memory protection greatly increases the stability of a system because a single misbe 

having user process cannot cause a system crash Prioritized preemptive scheduling allows 

processes to be given a priority level In this scheme a higher priority task may preempt, 

or temporarily prevent from running, a lower priority task Context switching refers to 

the process of the kernel suspending one running task, saving its state, loading another 

previously suspended task's state, and runmng this other task 

The microkernel concept is a direct reaction to the traditional Unix monolithic kernel 

In a monolithic system, there are two types of processes, the single kernel process and 

multiple "user" processes The monolithic kernel is the operating system core. It manages 

all the haxdware, all device drivers are included m its core If a user process wants to do 



41 CHAPTER2 DESIGNPHASE 

I/O it has to ask the monolithic kernel to do so on its behalf. Also monolithic kernels are 

usually not preemptible,that is, no task can run at a higher priority than the kernel Most 

of these characteristics of a monolithic kernel axe a detriment to real time determinism. 

TheQNX microkernelapproach,illustrated m Figure222,movesevery service out ofthe 

kernel that can be done from "user" space What remains in the kernel are only the lowest 

levelservices An advantage to the microkerneldesign isthat proceduresthat ma monolithic 

kernel would have no memory protection axe now m separate memory spaces. This reduces 

the possibility ofa crash due to a single faulty service The disadvantage is the same as the 

advantage, memory protection. In the monohthicdesign,kernelinternalcommunicationcan 

be as simple as passing variables. When services are moved to separate processes in separate 

memory spaces, special constructs must be made so that the independent processes may 

communicate QNX uses message passing as its native form ofinterprocess commumcation, 

IPG One of the primary responsibilities of the microkernel is to handle the routing of all 

messages 

QNX IS a POSIX conforming operating system POSIX,the IEEE Portable Operating 

System Interface Computing Environments [11], is both an American, ANSI,and Interna 

tional, ISO, Standard POSIX defines a standard way for computer applications to obtain 

information and services from the underlying operating system. An application that follows 

these standardized interfaces is considered portable,that is, it can easily be reconfigured or 

ported to run on a different operating system easily The basis ofPOSIX is a combination 

of the behavior and interfaces of AT&T Unix System V and Berkeley Standard Distribu 

tion Unix POSIX is not an operating system itself, but it does define a set of standards. 

Because the standards only define the external characteristics, a system like QNX which is 

very dissimilar to traditional UNIX internally, may still follow these guidelines. Some ofthe 

POSIX standards that QNX conforms to are. 

P1003.1 defines the interface between portable application programs and the operating 

system,based on historical Unixsystem models This consists ofalibrary offunctions 



 
 

42 CHAPTER 2 DESIGNPHASE 

Process Filesystem 
Manager Manager 

Message Process 

/ Passing Scheduling \ 
V Low Level Hardware j
X^Networking Interrupts 

Microkernel NetworkDevice 

Manager Manager 

Figure 222 QNX microkernel architecture 

that are frequently implemented as system calls Approved asIEEE Std 1003.1-1990. 

PlOOS.lb real time extensions including binary semaphores, process memory locking, 

memory mapped files and shared memory, and priority scheduling. Approved as 

IEEE Std 1003 lb-1993 

P1003.2 specifies a shell command language based on the traditional Unix Bourne shell 

with features from the C and Korn shells Additionally specifies over 70 utilities that 

can be used m shell scripts or interactively Approved as ISO/IEC 9945-2:1993 and 

IEEE Std 1003 2-1992. 

2.5.2 Multiple Tasks 

Most real time applications are defined by the requirement to handle multiplejobs at once m 

a timely manner The ability ofan operating system to handle multiple tasks,each running 

at a different loop frequency, concurrently is a definite advantage These advantages[4] 

include 

Scalability Multiple tasks can run on multiple processors If a control application's re 

quirements are best served with more than one CPU, multiple tasks take advantage 

of the computing hardware 

https://PlOOS.lb


43 CHAPTER 2 DESIGNPHASE 

Modularity Processes can easily be added and removed to adjust to new requirements. 

Protection In QNX,processes are in separate memory spaces. This means that a single 

errant task cannot corrupt the memory of another A single bad instruction has a 

much smaller chance of taking the whole system down with memory protection 

QNX follows the traditional UNIX semantics for task creation 

Fork and Exec 

Task creation in QNX is performed with the C language function forkO as specified by 

POSIX The historical Unix method of starting a program is done in two steps For 

example, as shown m Figure 223, if one process. A, wants to start another program, B, 

whose executable image is stored on disk, it first calls the forkO function which makes 

a copy of process A In the aptly named forkO function, a single process enters and two 

return The return value uniquely identifies which process is which The two copies of 

process A exist in separate memory spaces The newly created copy of process A then 

calls another function, execO,to load the executable image ofB The sole purpose of the 

execO function is to replace the calling process with a process that results from executing 

the B program After the execO function call, what was two copies of process A becomes 

a single A process and a single B process Since the traditional procedure for starting a 

new executable includes making an unnecessary copy of a process, QNX provides a more 

efficient set of spawn()functions for loading executables from disk The advantage to the 

traditional method is that the execO step does not have to be done A single executable 

program may "expand" to multiple copies of itself, each performing a different task This 

method is generally termed the fork threading model,but it is a misnomer since a "thread" 

usually refers to an independent part of a process that operates in the same memory space 

as its creator All process created with forkO are m separate protected memory spaces 



44 CHAPTER 2 DESIGNPHASE 

Process A Process B 

main()of 
program A 

forkO exec() 

main()of 
waitO 

program B 

exit() exitO 

Figure 2.23 UNIX Process Creation 

The Tree Process Model 

The POSIX process model is arranged like a tree That is, every process except the first 

one, has a parent Any process can be a parent, all that is required is that it have at least 

one child process A process can be both a parent and a child. A child process can have 

a sibling process if they share a common parent The lineage of a system's processes fan 

out like the branches of tree,shown in Figure 224. There is a special relationship between 

parent and child processes When a child process finishes, either normally or abnormally, 

the parent process is notified The parent may find out how a child process exited by calling 

one of the uaitO functions If a child process dies and the parent does not call waitO 

the child process remains m an altered state A process in this state is called a "zombie" 

because it is neither running nor completely finished Another situation is when a parent 

process dies before its children In most cases where certain provisions have been made,any 

child processes will be terminated along with the parent In other cases, the child processes 

are reparented or "adopted" by the special first process This technique is used by long 



45 CHAPTER 2 DESIGNPHASE 

Parent 

O 
Child,Parent 

Siblings 

Child 

Siblings Child, Parent 

Child 

Child 

Figure 224- UNIX Process Tree Relationship 

running processes,termed "daemons",to break out ofthe process tree When referring to a 

special Unix process,daemon is usually spelled the old fashioned way to relate to the term's 

original meaning, a guardian spirit, rather than the current definition of an evil entity or 

devil 

2.5.3 Interprocess Communication 

Since all processes operate m separate memory spaces there needs to be some provision for 

transferring or sharing information QNX supports many forms ofIPG,the primary being 

message passing WithQNX message passing,processes communicate with functions named 

Send,Receive,and Reply(S/R/R),see Figure 2.25 Thisform ofIPG is synchronous because 

the two communicating processes wait for responses firom each other QNX also offers 

an asynchronous version of message passing where confirmation is not required POSDC 

standardized forms ofIPG such as shared memory,signals, and pipes are also supported by 

QNX 

Shared memory is a descriptive term for a form ofIPG in which a section of memory 

IS shared between multiple processes A protected memory based operating system such as 



46 CHAPTER 2 DESIGNPHASE 

Process A Process B 

t 

Send() 

send dataitransmitted 

ReceiveO 

i 
reply data'transmiRed 

ReplyO 

Figure 2.25 QNX Send-Receive-Reply IPG Mechanism 

QNX isolates the memory spaces of each process The shared memory mechanism puts a 

window in the wall that separates processes Shared memory looks to a running process 

just like non-shared memory. Since shared memory is basically regular memory,there is no 

inherent synchronization for accesses to shared memory Otherforms ofsynchronization like 

semaphores or mutexes can be used m conjunction with shared memory Shared memory 

IS a very fast form ofIPG mostly because it is so primitive. 

Signals are a traditional Unix form ofIPG Signals are used extensively internally m a 

POSIX system process termination is induced by SIGTERM,invalid memory references 

cause the delivery of SIGSEGV,a child termination notice is indicated by SIGGHLD,and 

SIGFPEIS sent as anindication ofa math error(division byzero,overflow) Onlytwo signals 

are reserved for application speciflc uses Signals are also not queued These limitations 

generally makesignals a poor choicefor a user deflnedIPG scheme A specification inPOSIX 

1003 lb, real time signals,removes these two limitations, but QNX4 does not support this 

feature 

PipeIPG IS one ofthe characteristic features of Unix Pipes are so named because they 



47 CHAPTER 2 DESIGNPHASE 

open a one-way communication channel between two separate processes A single pipe can 

only be used with two processes One process writes to its end while the other only reads 

from it. Multiple pipes can be used to connect more than two processes. While pipe data 

travels through the monolithic kernel m a traditional Unix system,QNX implements pipes 

with a Pipe I/O manager This manager translates pipe function calls to QNX S/R/R 

messages 

2.5.4 Real Time Features 

The definition of a real time system can be quite broad [10] At the most basic level,a real 

time system is one that meets a specified temporal deadline on time That definition would 

hold for both a realtime stock ticker system and a real time anti-lock braking system(ABS) 

for an automobile While the time deadline for a stock ticker may be anywhere from a few 

seconds to a few minutes,the deadline for an ABS might be m the microsecond range To 

distmgmsh between the two extremes,the terms "hard" and "soft" are used to qualify the 

term "real time", but even these terms are really only relative It might be possible that 

an assembly line robot must synchronize with the rest of the assembly line at a hard real 

time rate of 10 Hz and a video game might need to synchronize sound and video at a soft 

real time rate of60 Hz Since the speed ofoperation might not best determine if a system 

IS hard or soft, another qualification is added to hard real time systems A hard real time 

system is one that must meet its deadline on time or there is a high risk of loss of life or 

property 

QNX was designed with hard real time in mind. To that end it supports many features 

necessary to reach temporal goals First, the small microkernel features very fast task 

switching and interrupt handling Thesefunctions are the mam responsibilities ofthe QNX 

kernel since most other services have been moved to user space tasks Also,since the kernel 

itself IS never scheduled to run, it can "get out of the way" of demanding hard real time 

tasks 



48 CHAPTER 2 DESIGNPHASE 

Another feature ofQNXfrom thePOSIX 1003 lb specification is process priority levels. 

Prioritizing allows more important tasks to preempt less important tasks In QNX a lower 

priority task will not run if there is a runnable higher priority task as long as some sort 

of shared resource doesn't cause a priority inversion A priority inversion happens when 

a low priority task is able to prevent a higher priority task from running For example, 

tasks of different priorities might both use a semaphore If the low priority task obtains 

the semaphore, it can prevent the higher priority task from running Priority inversion is 

usually undesirable 

In addition to a priority parameter, processes can also have a scheduling method speci 

fied 

• FIFO scheduling Under FIFO,First In First Out,scheduling a process will continue 

to run until it either voluntarily relinquishes control or is preempted by a higher 

priority task Real time tasks that cannot afford to be interrupted are best run with 

FIFO scheduling 

• Round-Robin scheduling Round-robin scheduling is the same as FIFO scheduling 

except that a process may also be preempted if it consumes more than a single time 

slice of CPU time In QNX a time slice is defined as 100 milhseconds 

• other scheduling While there are well defined POSIX specifications for FIFO and 

round-robin scheduling,the "other" scheduling method is intentionally vendor specif 

ic QNX defaults to an adaptive scheduling method where priorities are adjusted in 

response to CPU use While adaptive scheduling is ideal for an interactive multi-user 

system, it cannot guarantee response times necessary for hard real time applications 

The combination ofa responsive microkernel, priority levels, and scheduling allows QNX 

to be used reliably m hard real time situations with properly written software 



Chapter 3 

Control Algorithms 

TheUTKFutureCar hastwo mamoperating modes,ZEV andHEV InZEV,Zero Emissions 

Vehicle, mode the vehicle acts like a purely electric vehicle The on-board battery pack is 

not recharged, hence, the control algorithm is considered to be "charge depleting." The 

Unique Mobility SR218 traction motor is the only torque providing drive tram component 

In HEV, Hybrid Electric Vehicle, mode all drive tram components optionally come into 

play. If the SOC is high,HEV mode acts similarly to ZEV mode m that the engine is not 

operational and the traction motor provides all of the required driving power. If SOC is 

low or the driver torque request is significantly high, the engine is operational along with 

the generator Because the engine/generator combination is used to restore the battery-

pack, HEV mode is a "charge sustaining" mode The mam efficiency improvement over a 

conventional vehicle comes from operating the engine only when needed. 

3.1 ZEV Mode 

In ZEV mode, the requested torque is directly proportional to the position of the driver's 

accelerator pedal The traction motor, as shown m Figure 29, acts as a constant torque 

device at low rotational speeds and as an constant power device at higher speeds. To 

49 



 

50 CHAPTER 3 CONTROL ALGORITHMS 

linearize the traction motor torque the maximum torque available must be found. If the 

motor speed is less than the transition speed, « 2100 rpm,the maximum motor torque in 

units of N m IS 

Tmax =240 (3 1) 

Otherwise the maximum motor torque is given by 

p 
rp TTldX (ey■^max — /j^\ ? 

^motor IsoJ 

where Pmax = 53,000 Watts and tOmotor is measured m rpm With the maximum available 

torque known the torque request m N-m for the motor is 

T„, = mm ( T^\ , (3.3)
\ "^wheel J 

where accelpedal is interpreted in units of N m and 

r^heei = « 7 59 (3 4) 
motor 

Ideally the generator should not operate m ZEV mode, but due to speed limitations 

of the the over-running clutch, the generator must be operated when the vehicle travels 

at speeds higher than 55 mph The desired speed of the generator is -3000 rpm while the 

vehicle is traveling at or over 55 mph where the negative sign indicates a reverse rotational 

direction There will be a hysteresis with a width of 10 mph which is used to determine 

when the generator should be turned off That is, when the vehicle speed drops below 55 

mph, the generator will not be turned off until vehicle speed has dropped below 45 mph 

In pseudo-code the algorithm for controlling the generator while m ZEV mode is given m 

Figure 3 1 

Traction motor braking should be directly proportional to brake line pressure This 

should allow some of the energy lost during vehicle braking to be recovered and stored in 



51 CHAPTER 3 CONTROL ALGORITHMS 

if (vehicle speed > 55 mph) and (generator is not spinning) 
enable generator 

set generator desired speed to -3000 rpm 
set generator regenerating level to zero 

end 

if (vehicle speed is < 45 mph) and (generator is spinning) 
disable generator 

end 

if vehicle speed is betveen 45 mph em.d 55 mph 
maintain the current state of the generator 

end 

Figure 31 ZEV generator algorithm 

the battery pack 

Proportioning the traction motor while m reverse follows the same rules as ZEV with 

the exception that the motor direction is reversed Precautions should be made to prevent 

any drive tram damage due to switching traction motor direction at speed 

3.2 Hybrid Mode Fundamentals 

3.2.1 Throttle Position 

During the course of drive tram component testing, very little data on the CNG converted 

engine was collected To compensate, the influence of throttle position on engine torque 

IS estimated using a torque correction factor This factor is multiplied by the maximum 

possible torque for a given engine speed The equation 

Ctorgue{'throttlepOS,UJeng)=1-e~ ( sSS (3.5) 

where ojeng is measured m rpm,throttlepos is a percent value and the values 

ki = 10, A;2 =005 (36) 



52 CHAPTER 3 CONTROL ALGORITHMS 

describe this torque correction factor The constant ki modifies the sharpness ofthe curve 

and k2 adjusts the mfiuence of varying engine speed on the torque correction factor This 

equation is illustrated in Figure 32 for four engine speeds,800, 1200, 2000, and 4000 rpm. 

Torque correction factors are bounded by 1 and zero With this correction factor, the ex 

perimental data for the CNG converted engine with wide open throttle can be manipulated 

into an estimated engine torque map,shown m Figure 3 3 This map is used to estimate 

engine torque output from engine speed and throttle position The engine map shows that 

there is a local maximum torque output for a given speed and throttle position. It will be 

assumed that the point of maximum torque output corresponds to the point of maximum 

operating efficiency for a given speed The speed at which torque is a maximum depends 

upon throttle position For a given engine speed there exists a specific throttle position 

which will optimize engine efiiciency The relationship between engine speed and throttle 

position can be found by optimizing engine torque with respect to speed and solving for 

throttle position 

3.2.2 Throttle-Up Procedure 

The throttle-up procedure is used during re-engagement ofthe enginefrom idle to a working 

throttle position Proper re-engagement of the engine is critical Improper re-engagement 

ofthe engine can result m shock loading and possible breakage oftransmission components, 

primarily the over-running clutch The over-running clutch connects the engine crank shaft 

to the transmission The inner part of the clutch is attached to the engine, and the outer 

part IS connected to the transmission This arrangement allows the outer portion of the 

clutch to spin faster than the engine crankshaft This,m turn, prevents the generator from 

driving the engine faster than it would normally rotate This setup may present a problem 

if, during the throttle-up, the engagement of the engine occurs too quickly. If the engine 

IS brought from idle to operating speed too quickly, the over-running clutch may be shock 

loaded beyond its capacity In order to avoid this, throttle position will be increased as a 



 

53 CHAPTER 3 CONTROL ALGORITHMS 

Throttle Position Torque Correction Factor 

dOO rpit 

2000 rpm « 
'ICOO rprn ' 

■I 

04 06 

throttle position (normalized) 

Figure 3 2 Throttle Position Torque Correction Factor 

Estimated Engine Map 
tps » 0 / > 

tps = 0 65 « 

* * 

r/ 

500 1000 1500 2000 2500 3000 3500 4000 
engine speed (rpm) 

Figure 3 3 Estimated Engine Map 



54 CHAPTER 3 CONTROL ALGORITHMS 

function of time during engine engagement The equation governing the rate of increasing 

throttle 18 

a*f -1 
throttlelt)=throttlefmai —a—:r^ (37)

aP — 1 

where 

thvottlSmax d"1 /o o\ 
a= — ; (3.8)

tnT*OttlCmax 

and throttlefinal is the final working throttle position, is the time duration ofthe throttle-

up procedure m seconds, and the two factors, a and affect the shape of the curve The 

factor /5 changes the sharpness ofthe bend A small 13 makes the function more linear, and 

a large j3 increases the bend m the function Figure 34 shows throttle position for three 

values of beta, 1, 7, and 14 During throttle-up the following will take place 

• The generator will be spinning with the desired speed equal to the actual speed with 

zero torque on the shaft The engine will be operating at idle, throttle position = 

0 The outer portion of the over-running clutch is spinning faster than the engine 

crankshaft 

• The engine throttle will be increased as a function of time, following Equation 37 

During this time,engine speed will be increased while there is no load on the engine. 

• At some time,the engine speed will match the speed ofthe outer portion ofthe over 

running clutch This represents the engagement of the engine into the drive tram 

• With the engine now engaged, torque is produced by both the engine and the gen 

erator Engine speed will increase, and the absolute value of the generator speed 

will decrease and deviate from the desired speed Engine torques will increase as the 

throttle IS opened,and generator torque willincrease as deviation ofactualspeedfrom 

desired speed increases This transient behavior will continue until the torque of the 

engine and generator are balanced and throttle position has reached the maximum 

working position 



 

55 CHAPTER 3 CONTROL ALGORITHMS 

Throttle Up Procedure 

[wta= 1 

betas 14 « 

« *■fc l ■ f. 

time (seconds) 

Figure 3 4 Throttle Up Procedure 

The throttle-up procedure will be complete when the actual throttle position is equal 

to the maximum working position 

3.2.3 The Generator 

In order to maintain quasi-static equilibrium and control within the gear train while the 

engine is running, the generator torque and engine torque must be linearly related by the 

gear ratio below 
T 97 a- K7 

(3.9) 
•■gen 27 

From the manufacturer's data, Figure 2 8, a torque-speed map for the generator can be 

estimated by a simple linear relationship Above 6000 rpm the available torque from the 

generator quickly drops off Because of this, the speed operation of generator must be limited 

to values between -6000 rpm and 6000 rpm If the generator is operating outside of ±6000 

rpm, its torque will be considered zero Speed dependent efficiency can be approximated as 

changing linearly from 1000 rpm to 6000 rpm At 6000 rpm the efficiency is approximately 

90% and at 1000 rpm, approximately 60% 



56 CHAPTER 3 CONTROL ALGORITHMS 

Since the generator is speed controlled, torque is produced by the generator when the 

actual speed of the generator is different from the requested speed. If the generator is 

converting mechanical power to electrical power, then a difference of 800 rpm or greater 

between the desired speed and the actual speed will cause the generator to produce full 

negative torque as shown m Figure 35 

3.2.4 Electric Take-off 

At slow speeds, less than 5 mph, the ratio between generator speed and engine speed is 

high, «311 The engine speed must therefore be kept low to protect the generator from 

spmmng too fast This will be accomplished by trimming engine throttle to idle when the 

vehicle is not moving,and increasing throttle as vehicle speed increases This requires that 

the mam traction motor provide aU ofthe torque required during low vehicle speed. Figure 

36 shows generator speed given vehicle speed for four different engine speeds Clearly, if 

the generator is to be maintained within a safe operating region,engine speed must belower 

than 2000 rpm when the vehicle is nearly stationary 

To enforce this limitation on engine speed,throttle must be trimmed during low vehicle 

speeds as shown in Figure 37 

3.3 Hybrid Mode 

The equations graphed m Figure 38 are used during hybrid mode to control drive tram 

component speeds based on vehicle speed The generator slows down during increasing 

vehicle speed Since the generator speed drops to an meflScient operating region after 60 

mph,its regeneration capabilities are greatly compromised To compensate the vehicle has 

two "regimes" of operation In the transition from the "low speed" regime to the "high 

speed" regime the generator has to switch its direction of rotation After the switch, the 

generator speed increases with an increase m vehicle speed The generator presumably has 



 

 � � � � � 

� 

 

 
 

57 CHAPTER 3 CONTROL ALGORITHMS 

GeneratorSpeed Request 

^ 2 

= 0 

a -2 

cjon spaed at0Nni 

8000 6000 -4000 2000 0 2000 4000 6000 8000 

generatorspeed(rpm) 
/ 

/ 
/ 

Figure 35 Generator Speed Request and Torque Relation 

1 

Generator Speeds 
1 ^ 1' 1 - 1 1 

M 

X ' 

* 

/ 
% 

\ X 

\
X\ 

■* -

*• 

X 

X
« 

s 

- icr 1000 rpm 

ICE 3000 rpm « 
iCC'toOO pm I. 

' • 
, > 

10 20 20 40 SO 60 70 80 

vehicle speed (mph) 

Figure 3.6 Generator speed as a function of vehicle speed and engine speed 



 

 

58 CHAPTER 3 CONTROL ALGORITHMS 

Maximum Allowable Throttle 

re 05 

C 04 

S 03 

IS 20 25 

vehiclespeed(mph) 

Figure 37 Maximum allowable throttle for given vehicle speed 

Hybrid Mode Operation 

"•NN, 

low desired gen 

tow engine 
l6 V 7CV qen 

•-•v 

high actual gen 
ht"'i CG 'irf 

••■ 

30 40 50 

vehicle speed (mph) 
70 80 

Figure 3 8 Hybrid mode drive tram component speeds 



 

59 CHAPTER 3 CONTROL ALGORITHMS 

enough torque capability to force the engine to a certain speed regardless ofengine throttle 

position and speed The gear ratio relating the two is 

^ ̂ 3111 (310)
•^gen 

The generator can produce at at least 48 N m oftorque throughout its operating range,and 

the engine can produce about 140 N m at its peak Because of the gearing, the effective 

generator torque that the engine could "feel" is about 150 N m,(48*3 111) 

The generator desired speed command willbe the primary method ofdrive tram control. 

The following steps will be used 

• Measure vehicle speed 

• Calculate desired generator speed based on vehicle speed 

• Request this speed from generator while also requesting full regeneration. 

• Monitor the engine speed to insure that it is'operatmg within the desired range 

• Determine torque on the generator based on generator current readings. 

• Measure driver request for torque from accelerator pedal. 

• Calculate and request torque from the traction motor that will cause the traction 

motor to transmit or absorb power to or from the wheels 

The accelerator pedal responsiveness is ideally constant whether the operational mode 

IS HEV or ZEV Since there is a greater amount oftorque available to the drive wheels when 

in HEV mode,the accelerator pedal needs to be desensitized One way of doing this is to 

infer the additional torque available from the generator current signal The torque request 

for the traction motor would then be 

Tmotreq{Nm)— Tmaxreq "Ldriverreq Igen 'kg (311) 



60 CHAPTER 3 CONTROL ALGORITHMS 

where all torque units are N m and Igen is m units of amperes The constant kt in units 

of is an estimation of generator torque for a corresponding generator current. The 

constant kg is dimensionless and represents the generator to wheel gear ratio 

3.3.1 Hybrid Regime Transition 

Different control equations are used for the two different regimes of vehicle speed The 

greatest difference between the two is the change in direction of rotation of the generator. 

There is also a change of about 2000 rpm m the speed of the engine when crossing from 

one regime to the other There is one set of equations for low vehicle speed (0-55 mph) 

gen desired low ~ "b Ol(lspd)"b ̂ 0 (3.12) 

where Vspd is the vehicle speed in mph,ujg^n desired low is m units ofrpm,and the constants 

are 

£12 =-0933, ai =1782, oq =4044 -t- 800, (3 13) 

and 

l*^eng desired low ~ C2(l^pd) "b C\{Vspd)"b Cq (3.14) 

where Vsgd is the vehicle speed m mph,uj^ng desired low is m units ofrpm,and the constants 

are 

C2=-03, ci =60, Co =1300 (315) 

The set of equations for high vehicle speed (45-80 mph)is 

^gen desired high ~ ^2(^pci) "b ̂ 'l(l'spd)+bo (3.16) 



61 CHAPTER 3 CONTROL ALGORITHMS 

where Vgpd is the vehicle speed in mph, desired high is in units ofrpm,and the constants 

are 

62=-0777, hi =2264, 60=-650-800, (3 17) 

and 

^eng desired high ~ d2{Yspd) ^liYspd)d" dg (3.18) 

where Vgpd is the vehicle speed in mph, desired high is m umts ofrpm,and the constants 

are 

d2=-025, di =55, do =-180 (3.19) 

There is a 10 mph overlap between the two regimes to prevent the generator from cychng 

directions quickly The algorithm for switching from the low regime to the high regime is 

• Set engine throttle to idle 

• Wait for throttle to come to idle position. 

• Set the generator desired speed to zero 

• Wait for generator to spin down 

• Set generator request to operate m high regime (Equation 3.16) 

• After generator speeds up again, begin the throttle-up procedure 

The algorithm for switching from the high regime to low is basically the same except that 

the desired generator equation is Equation 312. 

373.2 Transition from ZEV to HEV Mode 

There are both high and low operating regimes for ZEV and HEV operating modes Thelow 

end regime for ZEV is defined by having the generator disabled,and the high end is defined 

by having the generator enabled and spinning at -3000 rpm The range and overlap ofthe 



62 CHAPTER 3 CONTROL ALGORITHMS 

high and low regimes of ZEV and HEV modes are identical This fact greatly simplifies 

transition between the two modes If the vehicle is traveling at a speed less than 45 mph 

and there needs to be a mode switch from ZEV to HEV,the procedure to follow is 

• Set the generator speed to the low regime desired speed. 

• Set the generator regen level to full 

• Insure that the generator has reached the desired speed 

• Start the engine 

• Begin the throttle-up procedure 

This makes the assumption that the driver will continue at a speed less thaji 55 mph. If 

this assumption is incorrect, a transition from low regime HEV to high regime HEV will 

need to be made soon after the ZEV to HEV transition 

If the vehicle speed is in the transition region, between 45 and 55 mph,and operating 

m high end regime ZEV,the procedure for switching to HEV is 

• Set the generator desired speed to the high regime speed 

• Set the generator regen level to full. 

• Insure that the generator has reached the desired speed. 

• Start the engine 

• Begin the throttle-up procedure 

This anticipates that if the vehicle is operating at high speed m ZEV mode, the driver 

will most likely continue to travel at high speed m HEV mode If the generator direction 

IS already in the correct direction for high speed operation, another transition, from low 

regime HEV to high regime HEV,is not required Similarly,if the vehicle speed is between 



63 CHAPTER 3 CONTROL ALGORITHMS 

45 and 55 mph and the operational switch is from low regime ZEV to HEV,the generator 

should be set to follow the low regime path 



Chapter 4 

Software Details 

4.1 Overview 

The code to implement the FutureCar dual hybrid electric vehicle system controller is all 

written in the C programming language with the QNX supplied Watcom compiler. The 

code IS broken down into two function libraries,two control programs,and afew monitoring 

and diagnostic programs To manage the comphcated build process of all of the code the 

make[14] utility is used Assuch,there is a specialfile,a Makefile,for each program,library, 

and subdirectory Each software component is designed to be able to be built independently 

of all other components save for library dependencies,but there is also a top level Makefile 

that allows for building the complete system 

4.2 IPG Library: libfclient 

A library offunctions,named libfclient, provides interprocess commumcation servicesfor all 

control and monitoring applications Libfclient provides wrapper functions for accessing a 

single shared memory segment The shared memory segment has provisions for saving 3600 

snapshots of all the time varying variables If the data is saved every second,this amounts 

64 



65 CHAPTER 4 SOFTWAREDETAILS 

to the previous hour's information The shared memory segment amounts to approximately 

800 kilobytes 

Shared memory was chosen because it is the fastest and most efficient method ofsharing 

a large data set among multiple processes Accesses to shared memory are inherently 

asynchronous so processes that need to synchronize need to do so manually. Also, the 

asynchronous nature of shared memory means that it might be corrupted if two processes 

try to write to the same shared memory More specifically, memory may become corrupted 

if a shared variable is only partially written when the writer process is preempted One 

way to prevent corruption would be to use one or more semaphores to guarantee mutual 

exclusion, but this can make things more complicated and may slow performance if the 

number ofsemaphores is not sufficient To prevent corruption ofshared memory,the fchent 

library uses only native sized variables Under QNX on i386 Intel-like hardware the native 

size IS 32 bits or4 bytes,the size on an integer or single precision fioatmg point number By 

using 32-bit sized variables only, all writes are guaranteed to be atomic operations. Also aU 

fchent applications use FIFO scheduling to prevent unnecessary preemption It is possible 

that a certain write operation may be preempted so that a write of multiple values may not 

be an atomic operation This would not corrupt single values, but the time from which a 

certain value was last updated might not be the same as the rest At a high enough refresh 

rate, this difference becomes negligible 

4.2.1 Shared Memory contents 

The contents of the shared memory segment are defined m a header file, fcar.common.h, 

listed m Appendix E 1 3 There are many sections to this data structure The naming 

convention for structure members that represent values read from the hardware is a single 

character prefix, either an 'i' or an 'o' which distinguishes between input and output values 

relative to the system controller and a mixed case description The naming convention for 

structure members that are used to convert or calibrate voltage readings to engineering 



66 CHAPTER 4 SOFTWAREDETAILS 

units follows that of the hardware values with the addition of a suffix, either 'Sen'or 'Off', 

that IS used to distinguish whether the value is a linear slope sensitivity value or a linear 

y-intercept offset Digital hardware valuesfollow the same naming convention as the analog 

hardware values Table 41 lists the contents ofthe shared memory values m detail 

The shared memory segment is arranged to work as a circular buffer. Periodically the 

active section ofthe structure is advanced and the calculated values,digital hardware values, 

and analog hardware values are stored in a history 

4.2.2 libfclient functions 

For an application to use the fchent library it has to include the file fclient.h,shown in 

AppendixE 1 2 This header file gives prototypes for the functions available m the library. 

fclient-create_shm() 

Thefunctionfclient_create_shm()takes no arguments and returns a pointer to the newly 

created shared memory segment This function should only be used in a single application 

designated as the manager of the shared memory segment The function removes any 

previously present segment, creates a new one, and initializes it to contain all zeros If the 

function fails it returns a value of NULL 

fclient-delete_shm() 

Thefunctionfclient_delete_shni() takes no arguments and returns an integer to indicate 

whether the operation was successful Because a shared memory segment may exist after 

the process that created exits, this function allows for the orderly removal of the shared 

memory used A value of 1 indicates that the function failed while a value ofzero indicates 

success. 



67 CHAPTER 4 SOFTWAREDETAILS 

Table 41 Partial listing offclient shared memory contents 

Member Name 

SOC 

SOCcat 

mode 

vehicle^peed 
vehicle.distance 

kwh.volts 

kwh.amps 
IceReqState 
IceState 

running 

hybnd-regime 

hybnd.transition 

lEmMotorSpeed 
iGenMotorSpeed 
iIceEngineSpeed 
lAccelPedalLevel 

iBrakePedalLevel 

lActualEmTorque 
iPuelPressure 

lEmCurrent 

iGenCurrent 

iBattPackVoltage 
lEmRotorTemp 
lEmlnvTemp 
iTpsFeedback 
oGenSpeedReq 
oGenRegenLimit 
oEmAccelReq 
oEmBrakeReq 
oIceThrottlePos 

iPark 

iReverse 

iNeutral 

iDnveSport 
iDnveEcon 

iZEV 

iHvac 

lEmTempWarn 

lEmControIlerReady 
lEmFaultlndicator 

lEmOvertempIndicator 

iGenTempWarn 
iGenControlIerReady 
iGenFaultlndicator 

iGenDirectionlndicator 

iIceFauItlndicator 

olceStarter 

oTecEnable 

oEmEnable 

oEmDirection 

oGenEnable 

oThrottlePwrCycle 

Data Type 

float 

integer 
integer 

float 

float 

float 

float 

integer 

integer 

integer 
integer 

integer 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

integer 

integer 

integer 

integer 

integer 

integer 

integer 

integer 
integer 

integer 

integer 

integer 

integer 
integer 
integer 

integer 

integer 

integer 

integer 

integer 

integer 

integer 

Description Units 

battery state of charge value normal 

battery state of charge category enumeration -

vehicle operation mode enumeration value -

vehicle speed mph 
vehicle distance traveled since power-on miles 

battery pack voltage measured from kWh meter volts 

battery pack current measured from kWh meter amps 

requested state of engine enumeration value -

actual state of engine enumeration value -

control program active indicator -

hybrid mode indicator -

hybrid sub-mode indicator -

traction motor speed feedback rpm 

generator motor speed feedback rpm 

engine speed feedback rpm 

driver accelerator pedal position normal 

brake line pressure normal 

traction motor inverter torque feedback N m 

CNG fuel teuik pressure/level psi 

traction motor current draw amps 

generator motor current draw amps 

high voltage bus potentisil from EM inverter volts 

traction motor rotor temperature Celsius 

traction motor inverter temperature Celsius 

engine throttle position feedback normal 

generator motor speed request rpm 

generator motor regeneration request normal 

traction motor torque request normal 

traction motor regeneration request normal 

engine throttle position request normal 

park shifter position indicator -

reverse shifter position indicator -

neutral shifter position indicator -

drive "sport mode" shifter position indicator -

drive shifter position indicator -

drive "ZEV mode" shifter position indicator -

A/C on/off switch indicator -

traction motor high temperature warning indicator -

traction motor ready indicator -

traction motor general fault indicator -

traction motor over temperature indicator -

generator motor high temperature warning indicator -

generator motor ready indicator -

generator general fault indicator -

generator direction indicator -

engine "check engine light" indicator -

engine starter motor switch -

engine controller enable switch -

traction motor system enable switch -

traction motor direction switch -

generator motor system enable switch -

remote throttle body power switch -



68 CHAPTER 4 SOFTWAREDETAILS 

fclient_open_shm() 

The function fclient_open_shin() takes a single argument and returns a pointer to the 

shared memory segment upon success The single argument,mode,is used to indicate what 

sort of permissions are requested when dealing with the shared memory segment Mode 

can be one of two symbolic constants 0_RD0NLY or 0_RDWR A value of OJIDONLY indicates 

that the client only wants read access to the shared memory A client that opens the shared 

memory segment with the flag 0_RD0WLY cannot modify the contents, either on purpose or 

inadvertently This is ideal for monitoring or logging applications that only need to view 

the contents ofthe shared memory but make no changes. If mode is0JFIDWR,, the application 

is requesting full read and write access to the shared memory segment Ifthe function fails, 

it returns a value of NULL. 

die(), warn(), notice() 

The macros die(),warnO,and notice() are used to either print or log a message. These 

macros take a single argument, a pointer to a character string The macros construct a 

message hue ofthe format given m Table42 Thisformat is helpful m diagnosing problems 

because is gives the time the function was called, the file name and line number where the 

function was called, and the unique process identifier of the task that used it The die() 

macro will also cause the calling process to quit The message is written to the STDERR 

file stream which defaults to displaying on a terminal but can be redirected to a log file on 

disk or a network socket It is the responsibility of the calling application to set up any 

redirections before calling any of these macros 

4.3 Task Primitives Library: libftask 

To simplify dealing with multiple tasks the libftask library provides a few task related 

functions and some time functions 



69 CHAPTER 4 SOFTWAREDETAILS 

Table 42 die(), warnO,and notice() output format 

time stamp process ID file name line number user message 

4.3.1 Time functions 

Two functions exist in the library to simplify dealing with time issues Specifically, two 

functions are available,ftask-delay() and ftask_gettime(). 

ftask_delay() 

This function is a wrapper for the POSIX 1003 lb nanosleepO function A single parame 

ter is required,a double precision floating point value that represents the number ofseconds 

the calling process wishes to be suspended The function returns a single integer that can 

be either a zero or -1 If the return value is a zero then at least the time specified has 

elapsed. The actual time m suspension might be greater than the time requested because 

of the granularity of the system timer The default system timer updates at a rate of 100 

Hz and the kernel cannot make scheduling adjustments faster than that This means that 

the delay value may be rounded up by up to the inverse ofthe system timer frequency. By 

default this is of a second or 10 milliseconds If the return value is -1, the function 

has either been interrupted by a signal or all system timers are m use The value of the 

global variable errno determines which exception has occurred 

ftask_gettime() 

The ftask-gettimeO function takes no arguments and returns a double precision floating 

point number that represents the number ofseconds since January 1, 1970 It is a wrapper 

for the POSIX 1003 lb clock_gettime() function Like the ftask_delay() function the 

precision ofthe return value cannot be greater than that ofthe system timer tick, by default 

10 milliseconds A double precision float return value is required if any meaning is to be 



70 CHAPTER 4 SOFTWAREDETAILS 

had from calling ftask_gettime() twice within the range of the timer tick. 

4,3.2 Task management functions 

To simplify task management,libftask provides a multitude offunctions. The semantics of 

theftaskfunctions are intentionally based on thePOSIXPlOOS.lc Pthreads[13]specification. 

Since QNX4 does not support POSIX hght-weight processes, pthreads, the combination of 

the shared memory routines m hbfchent and the task management functions in libftask can 

provide similar functionality. 

Most ftask functions' first argument is a pointer to a data type ftask This parameter 

is a sort of "handle" to a unique process created by libftask functions While the internal 

structure ofan ftask is visible, it is not meant to be manipulated directly One ofthe more 

curious parameters to some libftask functions end in _func These function parameters are 

actually names of other functions 

Libftask has two features that are unique Tasks may be "triggered" Triggering is a 

simple form ofIPG based on the QNX native function Trigger A task may voluntarily 

suspend, or block, itself by calling the ftask_trigger_block() function. Another process 

that has access to the ftask handle that identifies the trigger blocked task may use the 

ftask_trigger() function to unblock the voluntarily blocked task No data is transfered 

with a trigger, only the triggered task's runnable state is modified The ftask_trigger() 

function does not cause the calling process to block This makes triggering an asynchronous 

form ofIPG 

The other unique feature oflibftask is that a created task may be attached to a periodic 

timer This is actually a wrapper for the rather complicated method of attaching a process 

to the mam timer interrupt A task created with the ability to attach to the timer inter 

rupt calls ftask_periodic_timer_block() to voluntarily suspend itself On the next timer 

interrupt the operating system will allow the ftask_periodic_tiiner_block() function to 

return, allowing the task to run A loop that uses the ftask_delay()function will execute 

https://PlOOS.lc


71 CHAPTER 4 SOFTWAREDETAILS 

with a period that includes the time for the loop to run in addition to the time specified 

A loop that uses ftask_peridic_tiiner_block() will run at a rate independent ofthe time 

required to execute the contents of the'loop as long as executing the contents of the loop 

do not exceed the specified timer frequency 

ftaskJnit() 

The parameter list toftask_init()is quite extensive so it will be listed m its entirety here. 

int ftask_init(ftask *ft, 

int policy, 

int priority, 

void (*start_fvinc)(void *) 

void *stEirt_func_aG:g, 
void (*cleaiiup_fun,c)(int), 
int allow_trigger, 
int allow_periodic_timer, 

int periodic_timer_h2), 

The purpose of the ftask_init() function is to initialize the ftask passed as the first 

parameter 

ftask *ft This parameter is a pointer to an ftask data type It is used as the "handle" to 

uniquely identify the task that will eventually be created. 

int policy The policy parameter is one ofthe symbolic constants, SCHED_FIFQ, SCHEDJIR, 

or SCHED_OTHER that represent FIFO,round-robin,or adaptive scheduling 

int priority The priority parameter is an integer value that represents a valid scheduhng 

priority number It should be noted that under QNX the highest priority for a non 

super-user task is 19 A value higher than this requires additional privilege 

void (*start_func)(void *) The startJune parameter is the name of a function that will 

be the entry point for the newly created task This is analogous to the main()function 

entry point of all C language programs. 

void *startJunc-surg This parameter will be passed cis the only argument to the created 

task's entry function The void pointer type can be typecast to a variable ofany type. 



72 CHAPTER 4 SOFTWAREDETAILS 

Ifthe entry function requires no argument this parameter may be set to the symbolic 

constant NULL. 

void (*cleanup_func)(int) the cleanupJune argument is, like the startJune argument,a 

name of a function to call when the task is stopped If no cleanup function is needed 

for a particular task, this parameter may be specified as NULL 

int allowJrigger This is really a boolean value that specifies whether the ftask triggering 

functionality is reqmred for this task. A value of zero means no triggering abihty is 

requested and any non-zero value means that triggering is required for this task 

int allow_periodic_timer Another boolean value, this parameter specifies if the ability 

to attach to a periodic timer is required It should be noted that in QNX this func 

tionality requires super-user privileges 

int periodic-timerJiz The periodicJimerJiz argument is only valid for a task that has a 

non-zero allow.periodicJimer value The value is a specification of the frequency, in 

Hz,that a task can be scheduled to run If periodic behavior is not needed it is safe 

to set this value to zero 

The return value offtask_init() will be zero to indicate success while a value of-1 will 

be returned to indicate that there is some sort ofinconsistency in specified arguments 

ftask_create() 

The ftask_create() function takes a single argument, a pointer to an ftask type that 

has been previously initialized with the ftask_anit() function Ifftask_anit() had not 

previously been used to initialize the ftask the results axe undefined This is where a new 

task IS actually created, internally it calls the forkO function to create the new task 



73 CHAPTER 4 SOFTWAREDETAILS 

ftask_delete() 

This function is used to stop a previously created task. It causes the named task tojump to 

the function named as the cleanupJune argument to ftask_init and exit. A return value 

of zero means that the task was successfully requested to quit. Even if this function does 

return zero, that does not mean that the requested task has quit It only means that the 

task has received the instruction to quit A non-zero return value means that the command 

failed 

ftask_destroy() 

This function is similar to ftask_delete function except that the specified ftask is forcibly 

stopped No internal cleanup will be done for a task that is destroyed A return value of 

zero means that the task was successfully destroyed while a non-zero return value indicates 

that the function failed 

ffcask_trigger() 

Calling this function will allow a task that is voluntarily in a blocked state to become 

unblocked and continue. 

ftask_trigger_block() 

The ftask_trigger_block() function causes the calling process to be put m a suspended, 

or blocked,state The calling process may become unblocked if either another process uses 

ftask-triggerO to unblock it or a signal is delivered 

ftask_Tvait_on_tasks() 

This function puts the calling process m a suspended state in which it will be restored if 

one ofthe processes it created with ftask_create() exit The single parameter which is a 



74 CHAPTER 4 SOFTWAREDETAILS 

pointer to type ftask will contain information for the task that ended This function may 

be interrupted by the delivery ofa signal 

ftask_same() 

The ftask-sameO function is used to compare known ftasks to the ftask returned by 

ftask_wait_on_tasks() The return value is 1 if the two tasks refer to the same pro 

cess and zero if they are different 

In addition to the task management functions described previously, libftask also has a few 

convenience functions that are used internally but can be useful for other purposes 

ft£isk_sched_adjust_self() 

This function takes two arguments, an integer specifying scheduhng policy and an integer 

specifyingscheduhng priority It is used internally byftask_create to adjust the scheduhng 

parameters of newly created tasks This function is a wrapper around the POSIX 1003.1b 

sched_setscheduler()function 

ft£isk_register_cleanup_self() 

The ftask-register_cleanup_self0 function is used internally by ftask_create() to 

register a signal handler for SIGTERM The only parameter is the name ofthe function to 

call on reception of the SIGTERM signal 

ftask_register_reread_self() 

This function is identical to ftask_register_cleanup_self() except that a handler for 

the SIGHUP signal is specified SIGHUP is traditionally used to indicate the controlhng 

terminal connection has "hung up" Daemon processes, since they do not have controlhng 



75 CHAPTER 4 SOFTWAREDETAILS 

terminals,traditionally redefine this signal to indicate that a rereading ofconfiguration files 

has been requested. 

4.4 Hardware Interface: fcard 

The program that handles all hardware I/O is called fcard, the fear daemon. A daemon,m 

traditional UNIX terminology, is a process that is designed to run for long periods of time 

and perform a very specific service Daemons break away from their parent processes and 

usually redirect any diagnostic messages to a log file The mam reason for using a daemon 

to do all hardware I/O is one of mostly one ofsimphcity. Fcard's mam purpose is to read 

shared memory, write the specified values from shared memory to the hardware, read m 

values from the hardware, and put the read in data into shared memory Fcard acts as 

the manager ofthe common shared memory segment,see Figure 4 1. Fcard is not a device 

driver m the traditional sense 

Device drivers under QNX can take on many forms There are basically three ways to 

access hardware under QNX Thefirst involves interfacing with the QNXDev manager. This 

IS the most complicated way because Dev drivers have to keep track ofmany data structures 

just to communicate with Dev in addition to controlling dedicated hardware The second 

method is what QNX calls an lomanager This method is simplified because registering 

with the Dev manager is not needed This leaves the driver to concentrate on controlhng its 

own hardware Both of the previous device driver methods are termed'POSIX'drivers in 

QNX documentation because they involve making a special'node file'm the /dev directory 

This /dev node is supposed to act similarly to a regular disk file One of the strengths 

of traditional Unix systems is that almost everything can be considered a 'file' That is, 

POSIX 1003 1 functions like openO, readO, writeO, and closeO operate the same 

on a file on disk, an interprocess communication pipe, a serial port, and even a network 

connected socket While this sort of abstraction is very useful for complicated hardware, it 



76 CHAPTER 4 SOFTWAREDETAILS 

Control 

Process 

Monitor 

Process 
Shared 

Memory 
Hardware 

Daemon 

User Interface 

Process 

I/O Hardware 

Figure 41 Shared memory connection 

IS overkill for the relatively simple I/O hardware used m the UTK FutureCar. The third 

type of device driver for QNX is no device driver Because all device drivers under QNX 

are designed to be run outside ofthe microkernel, all ofthe facilities for accessing hardware 

directly are readily available to regular user processes All that is required to do privileged 

hardware access is to link the program with privilege level 1 and run as the super-user. 

4.4.1 Features 

The fcard program has many features that make it very capable 

• It has the ability to read calibration and configuration values from a text file on disk 

Because configuration file reading is handled by a dedicated task, changes can be 

made while the program is running without interrupting regular operation. 

• A command line option can be specified to disable hardwareI/O but otherwise operate 

normally This feature allows for easy debugging of the non-hardware I/O parts of 

the program on a machine that does not have the Octagon hardware installed. 



77 CHAPTER 4 SOFTWAREDETAILS 

• It features a sort of 'task manager' that can restart hardware I/O tasks if one fails 

due to a math error or other exception The task manager also can tell if a task is 

being restarted too often and halt the system 

• A command line option can be specified to restrict accesses to the QNX filesystem. 

This option IS most useful iffcard is used in an embedded environment where either 

the filesystem is not available when it starts, or there is no filesystem 

4.4.2 Operation 

During normal operation, fcard operates as four separate, cooperating tasks as shown in 

Figure42 It uses the fchent library, discussed in Section42,for IPG and the ftask hbrary, 

discussed in Section 43, extensively for task management 

Thereasoning behind usingfour separate tasks is based on time First,the task handling 

the Octagon hardware,shown m Figure 43, has to interface reliably and quickly with the 

hardware This hardware task attaches to the system timer and loops at a rate of 100 Hz 

Since tests show that the time to do one loop is only about 1 millisecond,the hardware task 

IS idle most of the time 

The task that handles reading the kWh meter, shown m Figure 44, only operates 

at 1 Hz because that is the speed at which the meter reports data to the serial line The 

configuration file reader,shown m Figure45,is idle most ofthe time It only has to respond 

to requests to reread the file. While it might be possible tojoin the kWh meter reading and 

configuration file readers to reduce resource requirements, having them as separate tasks 

makes them simpler to manage and understand 

The manager task,shown m Figure46,ideally does nothing and is idle all the time after 

starting all the other tasks It only handles exceptions such as premature process death, 

configuration file relaying, and the orderly shutdown of the fcard tasks In a resource 

constrained environment the task manager could also join with the kWh meter task and 

the configuration file reader at the detriment to simplicity 



78 CHAPTER 4 SOFTWAREDETAILS 

Task Manager 

Configuration RIe Reader kWh Hardware Task 

Octagon Hardware i/0 

Figure 42 Fcard Process Tree 

octagon I/O 

getanaleg output 
from shered merr 

initiaize 

hardware 

write to 

hardware 

reset watchdog 
timer 

read in digital 
inputs 

advance circular one second 
buffer pointer elapsed'^ copy to shared 

memory 

get digital outputs 
inputs from shared merr 

read in analog 

write outputs tocopy to shared 
memory hardware 

waitfor 

perioc ctimer 

Figure 43 Fcard Octagon Hardware I/O Task Flowchart 



 

79 CHAPTER 4 SOFTWAREDETAILS 

reader 

open serial 
port 

read line 

separate V,A 

Are values copy to shared 
. sane' memory 

Figure 44- Fcard kWh Meter Reader Task Flowchart 

config reader 

wait until 

triggered 

1 
open config file 

copy to shared 
memory 

close config file 

Figure 45 Fcard Config File Reader Task Flowchart 



 

80 CHAPTER 4 SOFTWAREDETAILS 

ttask manager 
wait 

parse command 
line trigger config

gotSIGHUP? 
reader 

become daemon 

initialize shared 
task died' restarting too 

V fast' 
restart dead task 

memory 

start other tasks 
got exit 

request? 

stop all tasks 

delete shared 
memory 

exit 

Figure 46 Fcard Task Manager Flowchart 

Fcard's most difficult task is managing I/O to the Octagon cards. Since there is no 

real QNX device driver for the cards a custom solution was written Access to the cards 

IS accomplished with IN and OUT assembly instructions. The 5710 Multifunction I/O card 

has the ability to assert an interrupt line on the bus, but this feature is not used The 5710 

card's lengthiest operation is performing an analog-to-digital (A/D) conversion, but this 

only takes a few microseconds Instead ofintroducing the complexity of using an interrupt 

to indicate that the A/D conversion is finished,the card is simply polled,that is, it is read 

in a hard loop to check for completion This might seem to be an unnecessary waste of 

CPU time, but, m practice, it has little effect on the overall operation ofthe system Even 

polling every A/D channel the two 5710 cards m succession uses very little CPU time. 



81 CHAPTER 4 SOFTWAREDETAILS 

4.5 Control Program: fear 

Fcaj IS the name of the mam control program The listing for fear is given in Appendix 

D 2 One of the mam features of this overall control system is the fact that hardware 

I/O is done independently from any control decisions This has the benefit of maVing the 

working control code syntactically simpler,since,instead ofbreaking away from the control 

algorithm to fetch data from the hardware and then returning, the control algorithm just 

assumesthat the variables in shared memory are automatically updated in a timely manner. 

4.5.1 Overview 

The fear control program, like fcard, is a multithreaded application Upon execution it 

creates four additional tasks,shown m Figure47,to handle different control requirements 

Fear IS similar in structure to the fcard program It also uses the fchent IPG library and 

the ftask library for process primitives Multiple tasks are used because oftemporal issues. 

Each fear task makes control decisions with differing time requirements TheICE controller 

task, responsible for starting and stopping the engine, uses simple delays to sample engine 

speed to determine whether ignition has occurred at a rate on the order of4 Hz TheICE 

controller task must be able to operate independentlyfrom the mam controlloop The main 

control loop has to remain responsive to driver requests even while m the transition time 

required to physically start or stop the engine The throttle controller task is responsiblefor 

ensuringasmooth engine engagement byrampingthe engine throttle m acontrolled manner. 

It operates using simple delays at a rate on the order of 10 Hz. Since the service provided 

by the throttle controller task only happens after theICE controller has successfully started 

the engine, it is possible that these two tasks could be merged The SOC calculator task 

operates at approximately 1 Hz,and the mam control task, the mode selector task,runs at 

100 Hz by hooking into the system timer interrupt 



82 CHAPTER 4 SOFTWAREDETAILS 

TasK Manager 

Throttle Contro er SOC Calculator 

ICE Controller Mode Selector 

Figure47 Fear Process Tree 

4.5.2 Task details 

SOC calculator 

The SOC calculator task whose flow chart is shown in Figure 48 implements the SOC 

estimation method discussed m Section 24 As the flow chart shows the procedure is 

simple All that the task has to do is go into a loop with a delay that makes it recalculate 

approximately every second Looping any faster would probably not result in a better 

estimation because the underlying kWh meter hardware only reports the information used 

by the SOC calculator at approximately 1 Hz The listing for the SOC calculator task is in 

Appendix D 29 

Throttle controller 

The throttle controller task has the responsibility of ensuring a smooth engagement of the 

engine The flowchart for the task, shown m Figure 49, shows that this task is a very 

simplistic one The remote throttle body unit is controlled by writing a normalized floating 

point value to shared memory While there is a throttle position feedback value available, 

the task does not use it The Mikuni unit proved to be very responsive to position requests 

in preliminary tests, so in the interest of simplicity, no feedback control algorithm is used 



83 CHAPTER 4 SOFTWAREDETAILS 

soc 
calculator 

calculate SCO 

1 
categonzeSOC 

delay 

Figure 48 Fcax SOC Calculator Task Flowchart 

throttle 
controller 

waittortngger 

getstart time 

throttle in\ Y 
position'^ 

position 
throttle 

Figure 49 Fcax Throttle Controller Task Flowchart 



84 CHAPTER 4 SOFTWAREDETAILS 

ICE controller 

TheICE controller task,shown in Figure 4.10, is responsible for starting and stopping the 

engine The mode selector task actually makes the decision when to start and stop the 

engine To start the engine,the TEC-2ECU is turned on which then also enables the CNG 

fuel tank solenoids, the remote throttle body is powered and the throttle position is set 

to idle, and finally the starter motor is engaged To determine if the engine has started, 

the engine speed is monitored If the engine speed is greater than the speed induced by 

the starter, the engine is considered successfully started. The CNG fuel lines on the UTK 

PutureCar are controlled with a master quarter-turn valve If this valve is inadvertently 

left closed and the engine is unable to start, the ICE controller task will give up after a few 

tries and keep a record that the engine is unable to be started Since it might be possible 

for a driver to fix a minor fuel problem, the record of a "dead engine" is cleared by the 

mode selector task if the shifter is moved to the neutral position 

To stop a running engine the remote throttle body is put m the idle position and turned 

oflF and ECU power is removed. When the TEC-2 ECU power is removed, ignition and 

fuel delivery are stopped. While this method of stopping an engine is fairly traditional, 

unburned fuel emissions could be reduced by only removing the fuel supply and letting 

Ignition continue until the engine starves. Preliminary tests show that for the engine used, 

fuel m the lines runs out after about 15 seconds This was considered to be too long so the 

method ofremoving the ignition was chosen 

Mode selector 

The fear mode selector task is the core ofthe control system It is the mam implementation 

of the dual hybrid planetary drive tram algorithm As such, it is fairly complicated The 

flowchartsfor this task have been broken up based on mode The modeselector task operates 

by looping at a rate determined by the main system timer interrupt The entry point ofthe 

task begins by reading the driver's mode request with the shifter position After reading the 



85 CHAPTER 4 SOFTWAREDETAILS 

ICE 

controller 

mark engine engine 
asdead dead^ 

waitfortngger 

tnggerthrottle 
start engine' enable engine crank engine engine started? controller 

engine
stop engine' disable engine 

stopped' 

Figure 410 Fear ICE Controller Task Flowchart 

shifter, the variable mode m shared memory,or more specifically s->cv[s->active].mode, 

IS assigned The current mode of operation is stored because functions for proportioning 

drive tram components are used for multiple modes This can be seen when the mode 

selected is ZEV,zero emissions vehicle, electric power only. The entry point of the mode 

selector task is shown m Figure 411 

In ZEV mode, Figure 4.12, the first thing done is the enabling of the two motor con 

trollers. If the controllers do not report back that they are ready, nothing else happens. 

In order to protect the drive tram from any shocks resulting from "shifting" from forward 

to reverse, vehicle speed is checked to make sure that a direction change doesn't happen 

at speed If the driver chooses a forward "gear" when traveling m reverse at speed, the 

control system will override this choice and maintain the current direction until the vehicle 

speed has decreased After this safety check is done,the mam traction motor is confirmed 

to be operating in the forward direction As previously mentioned, the mode variable is 

checked to see if the function is being called while really m ZEV mode. To comply with 

zero emissions,a request is sent to theICE controller task to shut down the engine Finally 

the control requests for the traction and generator motors based on the driver requests and 



86 CHAPTER 4 SOFTWAREDETAILS 

mode selector 

read shifter 

shifter in \Y assign mode doZEV 
ZEV? toZEV 

shifter in 

DriveEcon?/~ 
assign mode 
to DnveEcon 

do DnveEcon 

shifter in \Y 
DnveSportV^ 

assign mode 
to DriveSport 

do DriveSport 

shifter in assign mode do Reverse 
Reverse"^ to Reverse 

shifter in 

Park^ 
assign mode 
to Park 

do Park 

do Neutral 

calculate 

vehicle speed 

calculate 

vehicle distance 

block on 
periodic timer 

Figure 4 11 Fear Mode Selector Task Entry Point Flowchart 



87 CHAPTER 4 SOFTWAREDETAILS 

doZEV 

enable traction 

motor 

enable generator 
motor 

motor ivi 
controllers — 

ready'_x 

can safelyV „ 
goforward''/ K Reverse 

setEM to EM in 
forward reverse'' 

Is mode \ Y requestengine 
ZEV shutdown 

read dnver 
pedals 

proportion EM 

proportion GEN 

return 

Figure 412 Fear Mode Selector Task,ZEV Function Flo'wchart 



88 CHAPTER 4 SOFTWAREDETAILS 

current vehicle conditions are calculated and written to shared memory 

Reverse mode,Figure 413, is very similar to ZEV mode save for the direction setting 

on the mam traction motor The mam difference between ZEV and Reverse modes is that 

in reverse, the generator is disabled This implies that the engine is not functioning also 

Reverse for the UTK FutureCar can only be done with electric power because there is no 

normal reversing gear in the transmission that allows the engine to spin m the normal 

direction while going backwards. 

Park mode m the first iteration ofthe control code would request full regeneration from 

the traction motor in an attempt to prevent motion The physical transmission does not 

have a mechanical gear lock for parking and the traction motor used in the FutureCar does 

not have very good low speed regeneration characteristics This results m having to use the 

emergency parking brake to maintain the vehicle on a grade Since park mode is ineffective, 

neutral mode. Figure 4 14, is used for both park and neutral shifter settings. The mam 

function of neutral mode is to disable all drive tram components While in neutral, the 

system also resets the "dead engine" condition mentioned m the previous ICE controller 

section 

The two "Drive" positions available on the shifter, DriveEcon and DriveSport, were 

originally designated as such for two different hybrid operation modes The DriveEcon 

position IS used for normal hybrid electric vehicle, HEY,operation while the DriveSport 

position IS only used for testing purposes HEY,or DriveEcon,mode,shown m Figure 4.15, 

is the normal vehicle operating mode This mode is similar to the previously mentioned 

modes in that it sets the direction of the traction motor It also makes requests from the 

ICE based on SOC If SOC is high, the engine is not required and the ZEY function is 

used to proportion the two drive tram motors IfSOC is low,the engine is used to provide 

additional drive torque to the wheels and recharge the battery pack at the same time Code 

exists that attempts to do hybrid regime transitions, discussed in Section 3 3 1, but it is 

untested 



 

89 CHAPTER 4 SOFTWAREDETAILS 

do Reverse 

enable traction 

motor 

EM controller 

V ready*?/ 

request engine 
shutdown 

can safely go doZEV 
backwards*? 

EM in \ N 
reverse EMreverse*? 

engine off*? disable generator 

read driver 
pedals 

proportion EM 

return 

Figure 413 Fear Mode Selector Task, Reverse Function Flowchart 



 

90 CHAPTER 4 SOFTWAREDETAILS 

do Neutral 

IS ICE reset dead 
statusdead' 

request ICE 
shutdown 

engine disable 
generatorstopped' 

disable 
traction motor 

I return 

Figure 414 Fear Mode Selector Task, Neutral Function Flowchart 



 

91 CHAPTER 4 SOFTWAREDETAILS 

do unveEcon 

enable motor 

controllers 

controllers\ N 

ready? 

can safely go 
. forward? 

setEM direction EM in 
to forward reverse? 

ISSOC\j_ request engine 
doZEVtum offhigh'? 

IsSOC request engine IS engine doZEV 
low*? turn on 

on? 

read dnver 
pedals 

proportion EM 

proportion GEN 

proportion ICE 

return 

Figure 415 Fear Mode Selector Task, DriveEcon Function Flowchart 



92 CHAPTER 4 SOFTWAREDETAILS 

4.6 Monitoring and Diagnostics 

Debugging a real time control system is a dijBficult task Since many operations are time 

dependent, using a traditional source code debugger is difficult at best What is needed 

IS a way to examine the running system in normal operation The control programs do 

produce some diagnostic messages, but these are usually just simple notices or fatal errors 

The overhead of printing, either to a connected terminal or a file, is prohibitive while 

maintaining the high frequency loop rates needed by the critical control tasks The choice 

of using a large shared memory segment to hold current and past data makes it simpler to 

diagnose problems To this end a few custom diagnostic tools were written to examine the 

running system 

4.6.1 Shared Memory Monitor: mon 

A simple curses based tool, mon, displays the entire contents of the active portion of the 

shared memory segment used by all controller tasks The interface is text based and can 

run on any terminal with an addressable cursor There are four screens of information 

available. The first is a listing of all the calibration values used by fcard to convert voltages 

to engineering units The next screen shows all ofthe digital and analog inputs read firom 

the Octagon hardware After that is a screen that shows all ofthe output values The final 

screen, shown in Figure 416, displays all other values including many state variables used 

by the fear control program and the battery pack information read from the kWh meter 

over a serial connection. Values are updated on screen every halfsecond. 

Switching between screens is done either with the arrow keys or with the 'c', 'i', 'o', 

or'm'keys that represent the calibration, inputs, outputs, and mode screens respectively 

Exiting the application is done by pressing the'q'key The control computer on the car has 

mon installed and it can be run by using the username "mon" at the QNX login prompt. 



� 

93 CHAPTER 4 SOFTWAREDETAILS 

soc 0.835 timer_hert2 2 

SOCcat VVH managcr_prio 27 
node ECON hardyare„task_prio 26 

vehicle^peed 11 864 kuh.task^rlo 22 
vehicle.distance 0 555 config.task_prio 16 
energy_level 0 000 active pointer 278 

(uh.volts 336 000 total seconds 278 
cuh.anps -4 300 

[ceReqStata OFF 

[ceState OFF 
tybrid.regine LO 

- calibration 1"Inputs o ~ outputs - soda q - qult| 

Figure 416 Mon shared memory viewer tool 

4.6.2 Data Trends Viewer: trends 

While the mon tool displays only the active values m shared memory,another tool, trends, 

IS used to view a graph of the time history of selected variables m shared memory This 

program is a CGI,Common Gateway Interface, program that is meant to be run by a web 

server The freely available Apache web server was compiled for QNX and runs at boot up 

on the Octagon control computer This allows any graphics capable web browser to be used 

to view time histories. The program is not much more than a wrapper application that uses 

the fclient library to access the shared memory segment and then use the freely available 

Gnuplot program to make the actual images that are sent to a connected web browser An 

example session is shown m Figure 417 

4.6.3 Data Logging: fiogger 

One disadvantage to using trends is that the shared memory contents are not saved when 

the control computer is turned off To remedy this problem, the fiogger, or fear logger, 

application was written This data logger samples the contents of shared memory and 

periodically writes the data to the onboard M-Systems DiskOnChip 2000 non-volatile flash 



 

CHAPTER 4. SOFTWARE DETAILS

I □ i Netscape: Trend graphs
Rte Edit Vmw Go- Communicator

You maty have to holdvdownlheshlft Key when reloading to get updaied.lnfo;

Trend results

SuOmitI Reset
■ t i

default - iEmCurrent.

I' default - iGenCurrent

Figure 4.17: Trends shared memory history viewer tool



95 CHAPTER 4 SOFTWAREDETAILS 

memory device Data is cached in memory,10 seconds worth by default, and then flushed 

to "disk" Since disk write operations are done only when the cache is full, data corruption 

IS minimized that could occur due to the removal of power during a write The application 

saves a log file in text format with commasseparating the individualfields. At asample rate 

of1 Hz,the text file generated is approximately one megabyte for every hour m operation. 



Chapter 5 

Conclusions 

The UTK FutureCar control system is functional The vehicle can operate in both ZEV 

mode and a charge sustaining HEV mode. Unofficial preliminary tests indicate that HEV 

mode results m a fuel efficiency ofapproximately 30 miles per gallon ofgasoline equivalence 

with an untuned system There is room for improvement 

5.1 Improvements 

The UTK FutureCar vehicle as a whole is largely untested The most extensive use ofthe 

vehicle happened during the test drives used to collect data for state of charge calcula 

tions Since most of the vehicle control code was developed specifically for the FutureCar 

competition m a hurried manner,many aspects ofthe original design were not implemented. 

In HEV mode,switching regimes has not been tested While there issome code available 

that would do the necessary transition, it has not been tested The mam reason behind 

this IS the good chance of breaking some transmission component During initial HEV 

testing the planetary gear set did get spun fast enough to seize one of the planet gears. 

This was mainly due to an overly aggressive engine throttle setting that, even though 

the manufacturer's specifications indicate otherwise, allowed the engine to overpower the 

96 



97 CHAPTER 5 CONCLUSIONS 

generator Other contributing factors to this transmission failure were lack of sufficient 

lubrication and operator error Since HEV regime transitions take place at a relatively 

high vehicle speed, 45-55 mph, any testing of regime switching would best be done on 

a chassis dynamometer where, if any problems arise, damage could be mimmized. Since 

the transmission components axe largely custom made, replacement parts might have a 

significant lead time 

"Sport Mode", an HEV mode that, m addition to low SOC conditions, uses the en 

gine/generator to increase available torque m response to aggressive driver requests has not 

been implemented In this mode the engine will be turned on even at a high SOC This is 

unimplemented mainly because oftime constraints 

The drivability of the vehicle does not follow the stock vehicle While compensations 

are made to make ZEV and HEV modes feel the same to the driver, there is a significant 

"boost" during HEV operation The mam factor to equalizing the driver feel comes from 

the generator current feedback signal After some SOC testing the generator current signal 

provided by the generator inverter was suspect The generator current signal does notfollow 

the pack current measured from the kWh meter when it should 

The state of charge algorithm, discussed in Section 24, has performed well in simu 

lations, but has not actually been integrated as a controlling factor into the rest of the 

control system The current system, as ofthis writing, only displays the estimated SOC of 

the battery pack, but leaves the responsibility of starting and stopping the engine to the 

driver For a fully automatic system that starts and stops the engine based on SOC,the 

decision needs to be made by the computer 

The rather small battery pack capacity, 13 A h,seems to be insufficient for long periods 

of electric-only operation While this capacity was deemed to be adequate in the original 

design, the high current environment to which the pack is subjected severely decreases 

the amount of available energy It is possible, probably without much modification, to 

replace the Hawker Genesis 13A h cells with 16 A h cells because they are almost physically 



98 CHAPTER 5 CONCLUSIONS 

identical While the added capacity might not add much to the overall energy storage 

capacity, it would be an improvement 

The driver interface is sub-optimal While the vacuum fluorescent display module does 

provide useful information m a unique manner,the original design specifled using the stock 

analog speedometer in addition to the the VFD for driver feedback There is code available 

that would operate the large analog gauge, but it is also untested The mam reason for this 

IS the high current, 25 mA,required to drive the gauge coils The Octagon analog output 

cards are only specifled to source 5 mA of current and imtial attempts at amplifying the 

signal failed Since the choice was made not to risk controller hardware damage with a 

direct connection, this feature was left undone The original interface specification called 

for a smallLCD screen mounted in the dashboard Since QNX doesfeature a very smalland 

capable graphics system.Photon,a graphical driver interface could be added to the current 

system Since a source for LCD panels small enough to fit in an automobile dashboard and 

a good place to put a video screen m the dash were never found,this idea stagnated 

The system controller has a long power-up sequence While the code written for con-

trolhng the vehicle has negligible start up time, the time from the key switch being moved 

to the "on" position to a responsive vehicle is about 30 seconds long. This is due mostly to 

the Octagon CPU card'sPC compatible BIOS While aPC compatible platform was chosen 

to speed development and make control code changes quick, the regular boot-up sequence 

takes far longer than the time to start the engine of a conventional vehicle There are 

remedies for this from the QNX manufacturer in theform ofeliminating thePC compatible 

BIOS start-up code, but this has not been rigorously investigated Since the control code is 

largely portable,it could be moved to a different computing hardware and software environ 

ment, one more suited to embedded work, without much trouble Completely abandoning 

the PC hardware might be the best remedy to the slow boot problem 



99 CHAPTER 5 CONCLUSIONS 

5.2 Future Work 

Future work would primarily involve more testing and performance evaluation ofthe vehicle 

as a whole The control system code, while not complete to the original specification, is 

very functional for the majority of the tasks required of a hybrid electric vehicle What is 

needed is more fine tuning ofthe existing code to coax more efiiciency out ofthe system. 

Some tasks to be done in the future would be more sensible to try than others Probably 

the easiest improvement to make would be changing the responsibility of the hybrid mode 

engine operation from the driver to the SOC algorithm included in the code. While the 

algorithm might need some small changes to simulate a person's decisions, this is easily 

done The next important step would be the completion ofthe HEV regime switching code. 

Since the "high" regime code is untested, the vehicle speed has been limited to about 55 

mph To reach highway cruising speeds,the switch to the "high" regime must be made. 

In the process of developing a control system for a dual hybrid electric vehicle, perhaps 

something greater has come of it The control code was designed in a framework so that 

it could be used outside of its current implementation, independent of both the Octagon 

hardware used and the QNX operating system A possible next step for this research would 

be to adapt the control system code to an entirely different computational environment on 

a different vehicle 



Bibliography 

100 



Bibliography 

[1] K L Barfield A microprocessor control system for a hybrid electric vehicle Master's 
thesis, University of Tennessee, Knoxville, 1994 

[2] Cruising Equipment Co, Seattle, Washington USA Installation Manual, Kilowatt-
Hour+2 Meter, March 1995 

[3] Electromotive Inc , Manassas,Virginia USA,http.//www electromotive-mc.com. Total 
Engine Control(TEC)engine management unit 

[4] B 0 Gallmeister POSIX4Programmingfor the Real World O'Reilly and Associates, 
Inc,1995 

[5] Hawker Energy Products Inc, Warrensburg Missouri USA Genesis Application Man 
ual, third edition, December 1997 

[6] Hawker Energy Products Inc, Warrensburg Missouri USA Genesis Selection Guide, 
second edition, February 1998 

[7] F Hayes-Roth,D A.Waterman,and D B Lenat Building Expert Systems Addison-
Wesley Publishing Company,Inc,1983 

[8] X He Hybrid electric vehicle simulations and evaluation Master's thesis. University 
of Tennessee, Knoxville, 1997 

[9] B W Kernighan and D M Ritchie The CProgramming Language, Second Edition. 
Prentice Hall,Inc, 1988 

[10] P. Laplante Real-Time Systems Design and Analysis IEEE Press, 1992. 

[11] D Lewine POSIX Programmer's Guide O'Reilly and Associates, Inc,1991. 

[12] H W Muller Epicyclic Drive Trains • Analysis, Synthesis, and Applications Wayne 
State University Press, 1982 

[13] B Nichols, D Buttlar, and J P Faxrell Pthreads Programming. O'Reilly and Asso 
ciates, Inc,1996 

101 

https://electromotive-mc.com


102 BIBLIOGRAPHY 

[14] A Oram and S Talbott Managing Projects with make O'Reilly and Associates, Inc., 
1991 

[15] QNX Software Systems Ltd ,Kanata, Ontario Canada QNX OSSystem Architecture, 
1993 

[16] J D Taylor An evaluation of the effects of increased exhaust gas recirculation on 
a dedicated natural gas vehicle conversion Master's thesis. University of Tennessee, 
Knoxville, 1997 

[17] L H Tsoukalas and R E Uhrig Fuzzy and Neural Approaches in Engineering. John 
Wiley and Sons,Inc,1997 

[18] B E Tucker The development and implementation of a control system for a hybrid 
electric vehicle Master's thesis, University of Tennessee, Knoxville, 1997 

[19] Unique Mobility Inc, Golden, Colorado USA,http//www uqm com. Electric motors 
for alternative fuel vehicles 

[20] K Yamaguchi,S Moroto,K Kobayashi,M Kawamoto,andY Miyaishi Development 
ofa new hybrid system - dual system Society of Automotive Engineers paper 960231, 
1996 



Appendices 

103 



Appendix A 

Basic Control Code Modification 

QNX IS a self-hosted operating system That is,the development tools,compiler,assembler, 

debugger,etc.,run pn QNX This differsfrom most real time operating systems that require 

a cross-compiler that runs on a host computer to generate an executable that is loaded on 

the target computer While QNX can be self-hosted, the FutureCar control system code is 

actually compiled on a small laptop computer and then copied to the Octagon computer 

installed in the vehicle 

The QNX native networking protocol,FLEET networking, makes it simple to share the 

resources of two computers The development laptop computer, node #3,connects to the 

Octagon computer,node #1,over thinnet coax ethernet, also known as lO-bcise-2 ethernet. 

A thinnet ethernet topology was chosen because it is physically smaller than thicknet, 10-

base-5, and doesn't require extra hub hardware that a 10-base-T network might require To 

make any changes to the control code the following steps have to be made 

• Plug the laptop AC adaptor into the power strip m the center console and power 

up the laptop The laptop can boot multiple operating systems so choose the QNX 

operating system when prompted 

• Switch the vehicle key switch to the accessory position In the accessory position the 

104 



APPENDIX A BASIC CONTROL CODE MODIFICATION 105 

control computer in the trunk will be powered up in about 30 seconds The VFD 

display will change to indicate that the control computer has successfully booted. 

• Attach the ethernet cable that comes out ofthe center console to the laptop computer. 

• Login to the laptop with the username matt There is no password required 

• For new code to be installed on the control computer,the network connection between 

the two has to be working This can be checked with either the command alive or 

sin net 

• There are multiple versions ofthe control code on the laptop The directories holding 

the control code are labeled with a date format of the form yyyymmdd where yyyy 

indicates the year, mm the month,and dd the day There is one subdirectory under 

this date coded directory, 99 Inside this 99 subdirectory is the actual control code, 

which will be referred to as the "cc" directory 

• After changes are made to code m the cc directory,the executables need to be remade 

This IS done by issuing the command make allfrom the cc directory Optionally,the 

command make clean can be issued to remove any stale object files or executables 

before running make all 

• Running make all only rebuilds the executables The command make install has 

to be run to actually copy the required executables to the control computer. Since the 

make install command requires copying files to a "privileged" area of the control 

computer,the command su has to be run first The correct sequence ofcommands to 

install a new version of the code is make all ; su ; make install ; exit 

• After running make install,rebooting the control computer will make the new code 

run automatically on boot. 



APPENDIX A BASIC CONTROL CODE MODIFICATION 106 

Thesource code in the cc directory is split further into more subdirectories descriptively 

named for their intended purpose These subdirectories are 

cgi This directory holds further subdirectories for Common Gateway Interface programs 

that are meant to be run by the web server that starts automatically at boot The 

most useful of these small programs,trends.cgi,is described later m more detail 

fear The fear subdirectory holds the mam control code If changing the behavior of the 

vehicle is required, this is the place to look. 

fcard This directory holds the code for the fear daemon This is where changes have to be 

made if hardware I/O requirements change 

fiogger The code for the fear data logger is here More information on retrieving data 

collected by the data logger is given later 

libfclient This directory holds the code for the library of functions used to share data 

among the many small programs that use the common shared memory segment 

libffcaisk Functions for simplifying task management are here 

monitor The code for the men shared memory monitoring program is here 

test The test directory holds code for many small test programs that can be used to check 

basic functionally ofthe system 

vfd This directory holds the code for the program that takes values from shared memory 

and displays it on the VFD connected to a serial port 

The process of adding or subtracting variables that will be stored m shared memory is 

not as simple as it should be For this reason,there are some "dead" variables m the shared 

memory definition that were either never used or no longer used Since changes have to 

be made m multiple places, it is easier to just leave some unused variables m the shared 

memory segment if memory is available 



107 APPENDIX A BASIC CONTROL CODE MODIFICATION 

The process of changing the contents of the shared memory used by all of the fear 

programs has afew steps First the contents ofthe file libfclient/fcar_conimon.h relative 

to the cc directory has to be changed This file is the real definition of the contents of 

the shared memory If the added variable represents a value that needs to be calibrated 

from a voltage signal to engineering units, additional entries for calibrating the new signal 

have to also be added to libfclient/fcar_conimon h All calibration is done in the file 

fcard/octagon_io.c so changes need to be made there ifthe added value needs calibration. 

Default calibration values should be added to the file fcard/fcard conf and the code m 

fc£ird/read_conf.c should be updated to allow parsing the new calibration values The 

running control system also has the ability to change calibration values with a web browser 

interface If this ability is required, changes have to be made to the calibrate.c source 

code m the cgi/calibrate directory There is also an ability to log data with a web browser 

interface. If this feature is needed,changes have to be made to the code m the cgi/dumper 

directory Similarly, if the variable needs to be logged to disk with the automatic flogger 

data logger, changes have to be made m the flogger directory Finally, ifthe new variable 

is to show up m the shared memory monitor program,changes have to be made m the mon 

subdirectory 

The programs fcard, fear, and vfd axe started m a shell script, fcarstart, that is 

called on boot from the file /etc/config/sysinit.1 on the control computer The process 

ofexecuting make install puts all ofthe required control programs and configuration files 

m the correct places Executables are placed m /opt/fcar/bin, configuration files are 

placed m /opt/fcar/etc,CGI programs are copied to /usr/local/apache/cgi-bin,and 

other web server files are placed m subdirectories of /usr/local/apache on the Octagon 

control computer 



Appendix B 

Real time Trend Graph Viewing 

While the control code can be updated using the native QNX networking protocols, the 

procedure for viewing CGI generated history graphs of shared memory variables requires 

the use of the TCP/IP (Transmission Control Protocol / Internet Protocol) capabilities 

of QNX For TCP/IP networking to work, both the server and the client machines have 

to be configured Both the control computer and the development laptop computer were 

registered to run on the UTK ethernet network As such, the two computers have some 

fixed TCP/IP configuration parameters, given m Table B 1 This configuration allows 

both computers to be used on the UTK campus network, but, during normal use, the two 

computers will only communicate with each other on the two node "car network." Since 

the regular campus nameserver, the network host that converts name queries to numerical 

addresses(octagon engr utk edu—>128 169 100 192), is not availablefrom the "car network," 

and neither host acts as a nameserver,each host must be referred to by their numericalIP 

address 

TCP/IP connectivity can be tested by using the ping command to see if the other 

host IS reachable Once this is done, a web browser can be started on the laptop com 

puter If the laptop wa;S booted to QNX,the Voyager browser can be used Since the 

108 



109 APPENDIXB REAL TIME TREND GRAPH VIEWING 

Table B 1 TCP/IP configuration parameters 

Octagon computer Laptop computer 
host IP address 128 169 100 192 128 169 100 180 

host IP name octagon pip 

domain engr utk edu engr utk edu 
subnet mask 255 255 2520 255 255 2520 

gateway host IP 128 169 100 1 128 169 100.1 

nameserver host IP 128 169 50 100 128 169 50 100 

QNX browser requires a graphical user interface, the QNX GUI,Photon, has to be start 

ed with the command ph before the browser can be started After the GUI has started, 

the web browser can be started with the command voyager If the laptop computer was 

booted into another operating system, the standard procedure for starting a web browser 

on that OS should be used Once the web browser is up, it should be pointed to the ad 

dress http //128.169 100.192/cgi-bin/trends.cgi. Usage ofthe trends CGI program 

IS fairly self-explanatory Three possible drop-down lists are provided to choose the shared 

memory variables' history to graph 

The web server. Apache httpd, is automatically started at boot on the octagon control 

computer from the /etc/config/sysinit 1 shell script In addition to the web server, 

telnet and ftp services are also enabled at boot on the control computer One notable use 

of the telnet service is that the special login name'mon'can be used without a password 

to automatically start the shared memory monitor program, discussed m Section 461 

Additionally, files can be transfered to and from the octagon control computer without 

using QNX native networking by using the ftp service 



Appendix C 

Retrieving Logged Data 

The fear logger program, flogger, is automatically started at boot from the shell script, 

/opt/fcar/bin/fcarstart The logging output of the program is by default stored in a 

file /opt/fcar/var/flogger.log on the control computer Since this file can grow rather 

large, quickly, it should be moved from the control computer regularly The data logger 

by default samples the contents of the shared memory every second, but this rate can be 

increased or decreased with acommand line parameter Theformat ofthe log file is comma 

separated text with a UNIX end-of-hne marker (single line feed character) Thisformat can 

easily be converted to other formats for data analysis The data logger program prints a 

text header describing each field of the log file each time the program is started 

Moving the log file to the laptop computer running QNX is probably the simplest 

method of retrieving logged data The command mv //1/opt/fcar/var/flogger.log 

flogger.log would move the log file to the current directory on the laptop computer 

It is generally safe to move the log file while the data logger program is runmng Ifit is run-

nmg it will create a new log file ifthe file is moved or deleted Once on the laptop computer, 

the log file can be copied to a DOS FAT formatted floppy disk The command sequence 

for this would be su , Dosfsys & , cp flogger.log /dos/a/ , slay Dosfsys ; exit 

if the log file is to be copied to the first floppy disk drive Another more cross-platform 

110 



111 APPENDIX C RETRIEVING LOGGED DATA 

method of retrieving the log file would be to ftp the data from the control computer to 

another host The ftp command "DEL" could be used to delete the log file after copying it 

with a "GET" command 



Appendix D 

Control Code Listing 

D.l fcard: Hardware Control Daemon 

D.l.l Makefile 

# requires gnu make 

CC CC 

DEFINES = -DDEBUG 

INCLUDES = -I /libfclient -I /libftask 

QUIET = -Q -wx 

OPTS = -Orailnextm -4r -fp3 -fpi87 
#DEBUG = -g 

CFLAGS = $(QiriET) $(DEBUG) $(OPTS) $(DEFIMES) $(IWCLUDES) 
LIBS = -L /libfclient -Ifclient -L /libftask -Iftask 

LDFLAGS = $(QUIET) $(DEBUG) $(LIBS) -T 1 
FILES = fcard c daemon c read.conf c 

FILES += hardvare.io c initshm c 

FILES += parse.cmdline.c octagon.io c 
FILES += octagon^init c kwh_ineter c 
OBJS = $(FILES c= o) 

OUT fcard= 

DEPEND = makedepend 
BINDIR = /opt/fcar/bin/ 
ETCDIR = /opt/fcar/etc/ 

all $(OUT) 

$(OUT) $COBJS) 

dep 
$(DEPEHD) — $(CFLAGS) -D__QKX__ ~ $(FILES) 

install $(OUT) 

cp -f $(OUT) $(BIHDIR) 
cp -f fcard conf $(ETCDIR) 

pre $(FILES) 

$(RM) pre c 
$(CC) -E $(CFLAGS) $< » pre 

112 

https://octagon.io
https://hardvare.io


113 APPENDIXD CONTROL CODE LISTING 

ass- $(FILES) 

$(CC) -3 $(CFLAGS) $< 

clean 

rin -f $(OBJS) $(OUT) core fcard log fcard pid * err 

D.1.2 fcard.h 

/* fcard h */ 

#ifndef FCARD_H 

#define FCARD.H 

/* std includes ♦/
#include <fclient h> 

#include <ftask h> 

/* defines */ 

#define .POSIX.C.SOURCE 199309L 

#define KWH.DEVICE ■7/l/dev/ser2" 

/+ vhere to put stuff */ 
#ifdef DEBUG 
/* put and look for files in the current directory ♦/ 
♦define LOGFILE "fcard log" 
♦define PIDFILE "fcard pid" 
♦define DEFAULT.CONFIG.FILENAME "fcard conf" 
♦else /* DEBUG */ 
♦define LOGFILE "/opt/fcar/var/fcard log" 
♦define PIDFILE "/opt/fcar/var/fcard pid" 
♦define DEFAULT.CONFIG.FILEHAME "/opt/fcar/etc/fcard conf" 
♦endif /♦ DEBUG */ 

/* mm seconds between restarts */ 
♦define RESTART.THRESHOLD 2 

/* scheduling and priority default defines */ 
♦define FCARD_SCHED_POLICY SCHED.FIFO 
/* parent needs higher priority so we can send signals, etc */ 
♦define FCARD_MANAGER_PRIO 27 /* note qnx non-root max = 19 */ 
♦define FCARD.HARDWARE.PRIO 26 
♦define FCARD.KWHREADER.PRIO 22 
♦define FCARD_COHFIG_PRIO 16 

♦define FCARD.HARDWARE.HZ 100 

/* structures */ 
/* see fcar.common h in libfclient ♦/ 

/* global varibles ♦/ 
extern char *config_filename, 
extern volatile struct shared.hu.data *hd, /* big chunk of shared mem */ 
extern int embedded, /* if files and such are available */ 
extern int do_hardware_io, /♦ set to 0 for debugging non-hmdware stuff ♦/ 

/* function prototypes */ 
void daemonize(void), 
void urite_pid(void), 
void exit_cleanly(int ignored). 

https://FCARD.HARDWARE.HZ


114 APPENDIXD CONTROL CODELISTING 

void hardware_io_stop(int ignored), 
void hard»«ire_io(void *ignored), 
void initshm(void), 

void octagon.init(void), 
void octagon_io(void), 
void usage(void), 
void parse_cmdline(int argc, char ♦argvD), 
void read.conf(void *stay), 
void do_read_conf(void), 
void do_reread(int ignored), 

void read_l:wh_nieter_stop(int ignored), 
void read_kwh_meter(void ♦unused), 

#endif 

D.1.3 octagonJo.h 
/♦ octagon.io h ♦/ 

Sifndef OCTAGDN.IO.H 
#define OCTAGDN.IO.H 
/♦ information specific to octagon I/O hardware ♦/ 

#ifdef ..QNX._ 
#include <sys/inline h> /♦ qnx inline asm ♦/ 
/♦ try to make IN and OUT a little more portable' ♦/ 
•define in.8 inb 
•define in.16 inv 
•define in.32 ml 
•define out.8(port,value) outb(port,value) 
•define out.16(port,value) outu(port,value) 
•define out.32(port,value) out1(port,value) 
•endif 

/♦ used for octagon 5066 cpu card hardware watchdog timer ♦/ 
•define ENABLE.WATCHDOGO out.8(0x20c, in.8(0x20c) I 0x40) 
•define PET.WATCHDOGO in.8(0x20c) 
•define DISABLE.WATCHDOGO out.8(0x20c, in.8(0x20c) St "0x40) 

/♦ used in 5710 card initialization ♦/ 
•define CR.OFFSET OxOB /♦ 82055 control register offset ♦/ 

/♦ used in 5710 analog input ♦/ 
•define CONVERT OxFF /♦ MUX convert command ♦/ 
•define CH.SELECT 0x09 /♦ analog input channel select offset ♦/ 
•define HIGH8 0x02 /♦ bits 4 to 11 of read analog voltage (offset) ♦/ 
•define L0W4 0x03 /♦ bits 0 to 3 of read analog voltage (offset) ♦/ 

/♦+♦♦♦♦♦♦♦♦♦+♦♦ analog input macros ♦♦+♦♦♦♦♦♦♦♦♦♦++♦♦/ 
/♦ swap - exchange the high and low 8 bit registers, divide by 16 ♦/ 
unsigned swap(unsigned val), 
•pragma aux swap = "xchg ah,al" \ 

"shr eax,4" \ 
parm nomemory [eax] value [eax] \ 
modify exact nomemory [eax], 

•define DELAY.PORT 0x80 
•define DELAY.VALUE 0 
•define delay.four.us() out.8(DELAY.P0RT,DELAY.VALUE), \ 

https://delay.four.us
https://octagon.io


115 APPENDIXD CONTROL CODELISTING 

out_8(DELAY.PORT,DELAY.VALUE), \ 
out_8(DELAY.P0RT,DELAY_VALUE), \ 
out_8(DELAY.PORT.DELAY.VALUE) 

#define init.convertCport, ch) out.8(port+CH_SELECT, ch), \ 
delay.four.usO, \ 
out_8(port, COIfVERT), \ 
while((in_8(port) & 1) == 0) 

Sdefine get_conv(port) in_16(port+HIGH8) 

#defiiie getAnalogCa) swap(get.conv(a)) 

#define delay.five.usO oiit_8(DELAY_P0RT,DELAY_VALUE), \ 
out.8(DELAY.PDRT,DELAY.VALUE). \ 
out.8(DELAY_P0RT,DELAY.VALUE), \ 
out_8(DELAY.PORT,DELAY.VALUE), \ 
out.8(DELAY.PORT,DELAY.VALUE) 

cLZialOg inpUt maCrOS ♦****♦***♦**♦♦♦**/ 

/♦ used in 5710 analog output (offsets) */ 
#define DAC.CH.ZERO OxOC 
#define DAC.CH.ONE OxOE 

/* 5710 digital 10 modes »/ 
/* port A port C ♦/ 
!* */ 

fdefine DMGDE.BOTH.GUT 0x80 /♦ out out */ 
#define DMGDE.AGUT.CIN 0x89 /* out in *! 
#define DMGDE.AIN.COUT 0x90 /• in out *! 
#define DMGDE.BGTH.IN 0x99 /* in in */ 

#define DPORTA 0x08 
#define DPORTB 0x09 /* thi^still exists */ 
#define DPGRTC OxOA 

/* used in 5750 analog output (offsets) */ 
#define ZERO.LEAST 0x0 
#define ZERO.MOST 0x1 
#define ONE.LEAST 0x2 
tdefine ONE.MOST 0x3 
#define TWG.LEAST 0x4 
#define TWG.MOST 0x5 
#define THREE.LEAST 0x6 
#define THREE.MGST 0x7 
#define FOUR.LEAST 0x8 
#define FGUR.MGST 0x9 
#define FIVE.LEAST OxA 
#define FIVE.MGST OxB 
#define SIX.LEAST OxC 
#define SIX.MGST OxD 
#define SEVEN.LEAST OxE 
Sdefine SEVEN.MGST OxF 

/♦ base port addresses */ 
#define CARDO 0x100 /♦ slower 5710 card ♦/ 
#define CARDl 0x110 /* faster 5710 card ♦/ 
#define CARD2 0x120 /♦ 5750 card */ 

https://DMGDE.BGTH.IN


116 APPENDIXD CONTROL CODE LISTING 

/* 5710 conversion macros */ 

#define INT2V0LTS(d) \ 

((10 OF ♦ (float)(d) / 4095 OF) - 5 OF) /♦ gain 1 ♦/
Sdefine V0LTS2IHT(f) \ 

(unsigned)(((f) + 10 OF) / (20 OF / 4096 OF)) /♦ -10 to +10 vdc */ 

/* 5750 conversion macros (outputs only) ♦/
#define FULLV0LTS2INT(f) \ 

(unsigned)(((f) + 5 OF) / (10 OF / 4096 OF)) /* -5 to +5 vdc */ 

#define HALFV0LTS2IHT(f) \ 

(unsigned)( (f) / (5 OF / 4096 OF)) /* 0 to +5 vdc */ 

/• analog output macros */ 
#define GUTPOT5710(card, ch, value) \ 

out_16((card)+(ch), ((value) > 4095U)'4095U (value)) 

/»*»»*♦«** private structures for octagon_io c ♦»*»♦♦»»♦*»♦♦♦♦/ 

struct io5710Integer 
{ 

unsigned Analogln[16], 
unsigned AnalogOut[2], 
unsigned DigitalInC[8], 
unsigned DigitalInA[8], 
unsigned DigitalQutC[8] , 
unsigned Digital0utAC8], 

struct o5750Integer 

unsigned AnalogOut[8] , /* octal-dac */ 
}, 

struct io5710Volts 

{ 
float AnalogIn[16] , 
float AnalogOut[2] , 

>, 

struct o5750Volts 

float AnalogOut[8] , 

#endif 

D.1.4 octagonJo_map.h 
/* octagon_io_map h »/ 

#ifndef OCTAGON.IO.MAP 
#define OCTAGOM.IO.MAP 

/* how things are connected */ 
/* analog */ 
#define lEmMotorSpeedChannel vcardO AnalogIn[l] 
#define iGenMotorSpeedChannel vcardl AnaloglnCl] 



117 APPENDIXD CONTROL CODELISTING 

#define iIceEngineSpeedChannel 
#define lAccelPedalLevelChannel 

#define iBrakePedalLevelChannel 

#define lActualEmTorqueChcomel 
#define iFuelPressureChannel 

tdefine lEnCurrentChannel 

tdefine iGenCurrentChannel 

/* #define iBattPackTempChanael 
#defizie iBattPackVoltageChannel 
#define iBattPackCurrentChannel 

tdefine lEmRotorTempChannel 
tdefine lEmlnvTempChannel 
tdefine iTpsFeedbackChannel 

tdefine oGenSpeedReqChannel 
tdefine oGenRegenLimitChannel 
tdefine oEmAccelReqChannel 
tdefine oEmBrakeReqChannel 
tdefine oIceThrottlePosChannel 

tdefine oDisSpeedoOChannel 
tdefine oDisSpeedolChannel 
tdefine oPwrToDigRacksChannel 

/* digital »/ 
/* shifter info 

* pins 0 SHIDl PC-7 

* 1 SHID2 PC-6 

lit 2 SHID3 PC-5 

* 3 SHID4 PC-4 

conn pins 

* select pos 0 1 2 3 

* Park A 0 0 0 0 

94c Reverse B 0 1 0 0 

94c Neutral C 0 0 1 0 

94c DriveEcon D 0 0 0 1 

94c DriveSport E 1 1 0 0 

94c ZEV F 1 0 1 0 

94c (not used) G 1 0 0 1 

94c (not used) H 1 0 0 0 

* 

*/ 
tdefine iParkBitPattem 

tdefine iReverseBitPattem 

tdefine iNeutralBitPattem 

tdefine iDriveEconBitPattem 

tdefine iDriveSportBitPattern 
tdefine iZEVBitPattern 

tdefine iDynoBitPattern 

tdefine iHvacBit 

t^fine lEmTempHarnBit 
tdefine lEmControllerReadyBit 
tdefine lEmFaultlndicatorBit 

tdefine lEmOvertempIndicatorBit 
tdefine iGenTempWarnBit 
tdefine iGenControllerReadyBit 

tdefine iGenFaultlndicatorBit 

tdefine iGenDirectionlndicatorBit 

tdefine iIceFaultlndicatorBit 

vcardl 

vcardl 

vcardl 

vcardl 

vcardl 

vcardl 

vceirdl 

vcardO 

vcardO 

vcardO 

vcardO 

vcardO 

vceirdO 

vcardl 

vcardl 

vcard2 

vcard2 

vcard2 

vcard2 

-vcard2 

vcard2 

Analogin[3] 
.AnalogIn[5] 
Analogin[7] 
Analogin[9] 
Analogin[11] 
Analogin[13] 
Analogin[15] 
Analogin[3] */ 
Analogin[5] 
Analogin[7] 
Analogin[9] 
Analogin[11] 
Analogin[13] 

AnalogOut[0] 
AnalogOut[1] 
AnalogOut[0] 
AnalogOut[1] 
AnalogOut[2] 
AnalogOut[4] 
AnalogOut[5] 
AnalogOut[7] 

decimal hex hex « 

0 

4 

2 

1 

12 

10 

9 

8 

0x00 

0x40 

0x20 

0x10 

OxcO 

OxaO 

0x90 

icardO 

icardO 

icardO 

icardO 

1cardo 

1cardo 

icardO 

icardO 

icardO 

icardO 

0x0 0x00 

0x4 0x40 

0x2 0x20 

0x1 0x10 

Oxc OxcO 

Oxa OxaO 

0x9 0x90 

0x8 0x80 

DigitalInC[l] 
DigltalInC[0] 
DigitallnA[6] 
DigitalInA[7] 
DigitallnA[5] 
DigitallnA[4] 
DigitallnA[3] 
DigitallnA[1] 
DigitallnA[2] 
DigitallnA[0] 



118 APPENDIXD CONTROL CODELISTING 

#defiiie oIceStarterBit icaxdl Digital0utA[3] 
#define oTecEnableBit icardl DigitalOutA[4] 
#define oEmEnableBit icardl Digital0utA[7] 
#define oEmDirectionBit icardl DigitalOutA[6] 
#define oGenEnableBit icardl DigitalOutA[5] 
tdefine oPwrSteeringEnableBit icardl Digital0utA[2] 
#define oThrcttlePwrCycleBit icardl DigitalOutA[l] 
#define oSmartChargerEnableBit icardl Digital0utA[0] 

#endif 

D.1.5 fcard.c 

/* fcard c */ 

tinclude <stdio h> 

♦include <unistd h> /* unlink */ 
♦include <stdlib h> /* exit */ 
♦include <time h> /* time */ 
♦include "fcard h" 

/* these can be static because they don't have to talk to each other »/ 
static ftask *config.task, *hardHare_task, *kwh_task, ♦ret, 

int mainCint argc, char ♦argvG) 
{ 

time.t t = 0, told = 0, tdelta, 
int priority, hz, rv, 

/♦ parse command line ♦/ 
parse.cmdline(argc, argv), 

/♦ need to alloc some for tasks ♦/ 
config_task = (ftask+)calloc(l, sizeof(ftask)), 
hardware_task = (ftask+)calloc(l, sizeof(ftask)), 
kuh.task = (ftask+)calloc(l, sizeof(ftask)), 
ret = (ftask+)calloc(l, sizeof(ftask)), 

if (' conf ig.task I I 'hairdware_task I I 'kuh.task I I 'ret ) 

dieC'calloc failed for task structs"), 
> 

/♦ detach etc ♦/ 
daemonize() , 

noticeC'log started"), 

if ('embedded) 

/♦ record our pid ♦/ 
write.pidO, 

} 

/♦ setup shared memory ♦/ 
initshmO, 

/♦ try reading config file ♦/ 
read.conf(NULL), 



119 APPENDIXD CONTROL CODELISTING 

/* setup scheduler parameters */ 
ftask_sched_adjust_self(FCARD.SCHED.POLICY, 

hd->fcard.rv fcard_manager_prio), 

/♦ startup config child task »/ 
priority = hd->fcard_rv fcard_coiifig_task_prio, 
rv = ftask_init(config.task, 

FCARD_SCHED_POLICY, /* policy ♦/
priority, /* priority »/ 
read.conf, /* start.routine */ 

(void ♦)1, /* start_routine_arg */ 
NULL, /* cleaiiup_routine */ 
1, /* allow.trigger »/ 
0, /* allow_periodic_timer */ 
0), /* periodic_tiiiier_h2 ♦/

if (rv) die("ftask_init config_task")■ 

if (ftask_create(config_task) == -1) 
die("ftask.create(config.task)"), 

/* start a new task to gather stats from kwh meter ♦/ 
priority = hd->fcaxd_rv fcard_kuh_task_prio, 
rv = ftask_init(kwh_task, 

FCARD_SCHED_POLICY, /* policy */ 
priority, /* priority */ 
read_kwh_meter, /* start.routine */ 
NULL, /* start_routine_arg ♦/ 
read_kwh_meter_stop, /* cleanup.routine */ 
0, /* allou.trigger */ 
0, /♦ allou_periodic_timer */ 
0), /* periodic_timer_hz »/ 

if (rv) die("ftask_init kwh.task"), 

if (ftask_create(kwh_task) == -1) 
die("ftask.create(kwh.task)"), 

/* start a new task to talk to hardware */ 
priority = hd->fcard.rv fcard.hardware.task.prio, 
hz = hd->fcard.rv fcard.hardware.timer.hz, 

rv = ftask.init(hardware.task. 
FCARD.SCHED.POLICY, /* policy ♦/ 
priority. /* priority */ 
hardware.10, /* start.routine */ 
NULL, /* start.routine.arg */ 
hardware.10.stop. /* cleanup.routine */ 
0, /* allow.trigger */ 
1, /* allow.periodic.timer */ 
hz) , /♦ periodic.timer.hz */ 

if (rv) die ("ftask.init hcirdware.task"), 

if (ftask.create(hardware_task) == -1) 
die("ftask.create(hardware.task)"), 

/* allow rereading config file ♦/ 
ftask.register.reread.self(do.reread), 

https://periodic.timer.hz
https://hardware.10
https://fcard.hardware.timer.hz
https://hd->fcard.rv
https://hd->fcard.rv
https://hd->fcard.rv


120 APPENDIXD CONTROL CODE LISTING 

/* allow for exiting in an orderly manner »/ 
ftaslc_register_cleanup_self(exit.cleanly), 

while(hd) /* shared mem still mapped */ 
■C 

ftask_wait_on_tasks(ret), 

t = time(NULL), 
tdelta = t - told, 

if (tdelta < RESTART.THRESHOLD) 
{ 

warnC'respawning too fast must be a problem"), 
exit_cleanly(0), 

} 

if (ftask_same(ret, hardware.task)) 
■C 

warn("hardware I/O task died', trying restart"), 
ftask.create(hardware_task), 
told = time(NULL), 

} 

if (ftask_same(ret, kwh.task)) 
■[ 

warnC'kwh task died', trying restcirt"), 
ftask.create(kwh.task), 
told = time(NOLL), 

} 

if (ftask.same(ret, config.task)) 
< 

wamC'config task died' trying restart"), 
ftask_create(config.task), 
told = time(NULL), 

> 

/* won't get here */ 
return EXIT.FAILURE, 

void exit.cleanly(int ignored) 

/* do cleanup stuff here */ 
noticeC'fcard exiting reaping children"), 

/♦ first kill off known children */ 
if (ftask.delete(harduare_task) '= 0) 

warnC'can't kill hcirdware.task"), 

if (ftask.delete(kuh.task) '= 0) 
warnC'can't kill kwh.task"), 

if (ftask.delete(confIg.task) '= 0) 
warnC'failed to kill config task"), 

/* get rid of shared memory segment */ 
if (fclient.delete.shmO '= 0) 

warnC'fclient.delete.shm"), 



121 APPENDIXD CONTROL CODE LISTING 

/* delete pid file */ 
if (('embedded) && (unliiilc(PIDFILE) '=0)) 

warii("unlink(PIDFILE)"), 

/♦ just to be complete ♦/
free(ret), 

free(hardware_task), 
free(config.task), 
free(kwh_task), 
noticeC'all done"), 

exit(EXIT_SUCCESS), 

void do_reread(int ignored) 

/* relay to config task */ 
ftask_trigger(config.task), 

} 

D.1.6 parse_cmdline.c 
/* parse_cmdline c */ 
#include <stdio h> 

#include <stdlib h> 

#include <string h> /* strdup */ 
•include <sys/stat h> 
•include <unistd h> /* stat, getopt */ 
•include "fcard h" 

/* real definition of config_filename ♦/
char ♦config_filename, 

/♦ real definition of embedded ♦/ 
int embedded, 

/♦ real definiton of do_hardware_io ♦/ 
int do_hardware_io, 

void usage(void) 

printf("Usage fcard [-e] [-f config_file] [-d] [-h]\n"), 
printfC -e enables embedded operation\n"), 
printf(" -f specifies the path to a config file\n"), 
printf(" -d disable actual hardware I/O (for testing)\n"), 
printf(" -h shows this usage message\n"), 
exit(EXIT_FAILURE), 

/♦ look for various options ♦/ 
void parse_cmdline(int argc, char ♦argvG) 

struct stat s, 
int c, 
int errflag = 0, 
config_fIlename = DEFAULT.COMFIG.FILEWAME, 
embedded = 0, 
do_hardware_io = 1, 

while( (c=getopt(argc,argv, "ef hd")) '= -1) 



122 APPENDIXD CONTROL CODE LISTING 

swatch (c) 

i 
case 'e' 

embedded = 1, 

break, 

case 'f 

config.filename = strdup(optarg), 
if (config_filename == NULL) 

dieC'strdup"), 
break, 

case 'd' 

do_hardware_io = 0, 

break, 

case 'h' 

usageO, 
break, 

case 

++errflag, 
break, 

} 
if (errflag) usageO, 

/* if not in "embedded" mode, config file should exist »/ 
if ('embedded) 

if (stat(config_filename, &s) '= 0) 
dieC'can't find specified config file"), 

> 
/* don't check for file otherwise, because regular filesystem's 
* not up yet ♦/

return, 

D.1.7 daemon.c 

/♦ daemon c */ 

#include <stdio h> /* freopen, fopen, fgets, sprintf */ 
#include <stdlib h> /* exit, atoi */ 
Sinclude <unistd h> /♦ fork, setsid, chdir */ 
tinclude <sys/types h> /* fork, chdir, umask */ 
Sinclude <sys/stat h> /* umask, stat »/ 
#include <string h> /* memset */ 
#include <sys/types h> /* kill */ 
tinclude <signal h> /* kill */ 
Sinclude "fcard h" 

/* 
* daemonizeO run new process in background and 
* detach from controlling terminal 

*/ 

void daemonizeO 

{ 
/♦ immediately go to the background */ 
switch (forkO) 



�

123 APPENDIXD CONTROL CODE LISTING 

case 0 break, /♦ child exits switch */ 

case -1 dieC'fork"), /♦ problem with fork */ 
default exit(EXIT_SUCCESS), /♦ exit original process */ 

/* become new process group leader */ 
if (setsidO < 0) /* would fail if invoked from a session leader */ 

dieC'setsid"), 

#ifndef DEBUG 

if ('embedded) 

/♦ change to root dir to avoid problems 
* with mounted filesystems */ 
if( Cchdir("/")) < 0) dieC'chdir") 

} 
#endif 

/* reset umask so that we have total contol over file creation */ 

umask(O), umask(022), 

Sifndef DEBUG 

if ('embedded) 

•{ 
/* reestablish standard file descriptors */ 
if (freopen("/dev/null", "r", stdin) == HULL) 

die("reopen stdin"), 

if (freopen("/dev/null", "w", stdout) == NULL) 
die("reopen stdout"), 

//Sifndef DEBUG 

/* redirect stderr to our logfile */ 
if (freopen(LOGFILE, "a", stderr) == NULL) 

dieC'reopen stderr"), 
//#endif 

> 
#endif 

return. 

/♦ dump our pid for easy killing */ 
void write.pidO 
{ 

FILE *pid_file, 
char buf[32], 
pid_t p, 
struct stat s, 

memset(!cs, 0, sizeof(struct stat)), 

if( (stat(PIDFILE, &s) == 0) && (s st.size > 0)) 

/* oops, file IS already there */ 
/* try to open it to see if that process is still running ♦/
If ((pid_file = fopen(PIDFILE, "r")) == NULL) 

die("can't open old pid file"), 

if(fgets(buf, sizeof(buf), pid.file) == NULL) 
dieC'fgets"), 



APPENDIX D CONTROL CODE LISTING 124 

p = atoi(buf). 
If ((p 1= getpidO) Sc& (kill (p, 0) == 0)) 

/* another daemon is running, exit NOW, not cleanly */ 
sprintfCbuf, "another pid (Zd) is running", p), 
dieCbuf), 

} 
/* if we get here, the old process isn't running */ 
/* just continue */ 
fcloseCpid.flie), 

if ((pid_file = fopen(PIDFILE, "w")) == NULL) 
dieC'can't write pid file"), 

fprintf(pid_file,"'/,d\n", getpidO), 

fclose(pid_flie), 

return, 

} 

D.1.8 initshm.c 

/* initshm c */ 

tinclude "fcard h" 

/» real definition of shared memory pointer */ 
volatile struct shared_hw_data *hd, 

void initshm(void) 

{ 

if ((hd = fclient.create.shmO) == NULL) dieC'fclient_create_shm"), 

/* fill in fccird's shm with sensible default values */ 

/* should be the same as fcard conf file ♦/
hd->fcard_rv fcard_hardware_timer_hz 

hd->fcard_rv fcard_manager_prio 
hd->fcard_rv fcard_hardWEire_task_prio 
hd->fcard_rv fcard.kwh.task.prio 
hd->fcard_rv fcard_config_task_prio 

hd->cal lEmMotorSpeedSen 
hd->cal lEmMotorSpeedGff 

hd->cal iGenMotorSpeedSen 
hd->cal iGenMotorSpeedGff 

hd->cal iIceEngineSpeedSen 
hd->cal iIceEngineSpeedOff 

hd->cal lAccelPedalLevelSen 

hd->cal lAccelPedalLevelGff 

hd->cal iBrakePedalLevelSen 

hd->cal iBrakePedalLevelGff 

hd->cal lActualEmTorqueSen 
hd->cal lActualEmTorqueOff 

= FCARD_HARDWARE_HZ, 

= FCARD_MANAGER_PRIO, 
- FCARD_HARDWARE_PRIG, 
= FCARD.KWHREADER.PRIO, 
= FCARD.CGNFIG_PRIG, 

= 2000 OF, 
= 0 OF, 

= -1450 OF, 
= 100 OF, 

= 3000 OF, 
= 0 OF, 

= 0 2326F, 

= -0 1628F, 

= 0 3333F, 

= 0 OF, 

= 100 OF, 
= -250 OF, 



125 APPENDIXD CONTROL CODE LISTING 

lid->cal iFuelPressureSen 

hd->cal iFuelPressureOff 

hd->cal lEmCurrentNegSen 
lid->cal lEmCurrentNegOff 

hd->cal lEmCurrentPosSen 

hd->cal lEmCurrentPosGff 

hd->cal iGenCurrentSen 

hd->cal iGenCurrentOff 

hd->cal iBattPackTempSen 
hd->cal iBattPackTempOff 

hd->cal iBattPackVoltageSen 
hd->cal iBattPackVoltageOff 

lid->cal iBattPackCurrentSen 

hd->cal iBattPackCurrentOff 

hd->cal lEmRotorTempSen 
hd->cal lEmRotorTempOff 

hd->cal lEmlnvTempSen 
hd->cal lEmlnvTempOff 

hd->cal iTpsFeedbackSen 
hd->cal iTpsFeedbackOff 

hd->cal oGenSpeedReqSen 
hd->cal oGenSpeedReqOff 

hd->cal oGenRegenLimitSen 
hd->cal oGenRegenLimitOff 

hd->cal oEmAccelReqSen 
hd->cal oEmAccelReqOff 

hd->cal oEmBrakeReqSen 
hd->cal oEmBrakeReqOff 

hd->cal oIceThrottlePosSen. 

hd->cal oIceThrottlePosOff 

hd->cal oDisSpeedoOAmplitude 
hd->cal oDisSpeedoOPhaseAngle 

hd->cal oDisSpeedolAmplitude 
bd->cal oDisSpeedolPhaseAagle 

hd->cal oPwrToDigRacksSen 
hd->cal oPwrToDigRacksOff 

D.1.9 fcard.conf 

# fcard configuration file 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

1000 OF, 

-1000 OF. 

80 OF, 

-200 OF, 

120 OF, 

-300 OF, 

50 OF, 

0 OF, 

0 OF, 

0 OF, 

100 OF, 

0 OF, 

200 OF, 

-500 OF, 

40 OF, 

0 OF, 

40 OF, 

0 OF, 

0 3401F, 

-0 2041F, 

1450.OF, 

-100 OF, 

-0 lOF, 

0 OF, 

0 25F, 

-0 125F, 

0 25F, 

-0 125F, 

0 339F, 

-0 220F, 

-5 OF, 

1 57079632679489661923F, 

5 OF, 

0 OF, 

5 OF, 

= 0 OF, 



 

 

 

126 APPENDIXD CONTROL CODELISTING 

# fcard runtime configuration values 

fcard_hardware_timer_hz 

#fcard_liardware_timer_hz 

#fcard_hardware_timer_h2 

fccird_manager_prio 
fcard_hardware_task_prio 
fcard_kuh_task_prio 
fcard_config_task_prio 

# calibration values 

#«####««# inputs #######«###«# 

lEmHotorSpeedSen 
lEmMotorSpeedOff 

iGenHotorSpeedSen 
iGenMotorSpeedOff 

iIceEngineSpeedSen 
iIceEngineSpeedOff 

lAccelPedalLevelSen 

lAccelPedalLevelOff 

iBrakePedalLevelSen 

iBrakePedalLevelOff 

lActualEmTorqueSen 
lActualEmTorqueOff 

iFuelPressureSen 

iFuelPressureOff 

lEmCurrentNegSen 
lEmCurrentNegOff 

lEmCurrentPosSen 

lEmCurrentPosOff 

iGenCurrentSen 

iGenCurrentGff 

iBattPackTempSen 
iBattPackTempOff 

iBattPackVoltageSen 
iBattPackVoltageOff 

iBattPackCurrentSen 

iBattPackCurrentOff 

lEmRotorTempSen 
lEmRotorTempOff 

lEmlnvTempSen 
lEmlnvTempGff 

iTpsFeedbackSen 
iTpsFeedbackOff 

100 

20 

1 

27 
26 
22 
16 

2000 

0 

-1450 

100 

3000 

0 

0 2326 
-0 1628 

0 3333 
0 

100 

-250 

1000 

-1000 

80 

-200 

120 

-300 

50 

0 

100 

0 

200 

-500 

40 

0 

40 
0 

0 3401 
-0 2041 

# irq 0 toggles at rate of 100 Hz 
# split 100 Hz by 5 20 Hz 
# 1 Hz 

# rpm per volt after vdiv 
# rpm fi 0 volts 

# rpm per volt after vdiv 
# rpm 0 zero volts 

# rpm per volt 
# rpm 8 zero volts 

# percent per volt 
# percent 8 zero volts 

# percent per volt 
t percent 8 zero volts 

# II m per volt after vdiv 
# n m 8 0 volts after vdiv 

# psi per volt 
# psi 8 zero volts 

# amps per volt when neg 
# amps 8 0 volts when neg 

# amps per volt when pos 
# amps 8 0 volts when pos 

after vdiv 
after vdiv 

after vdiv 
after vdiv 

# amps per volt after vdiv 
# amps 8 zero volts 

# degrees C per volt 
# degrees C 8 zero volts 

# termined voltage per volt 
# terminal voltage 8 zero volts 

# amps per volt 
# amps 8 zero volts 

# degrees C per volt 
# degrees C 8 zero volts 

# degrees C per volt 
# degrees C 8 zero volts 

# percent open per volt 
# percent open 3 zero volts 



 

 

127 APPENDIXD CONTROL CODELISTING 

#####«###« outputs ####«##«### 

oGenSpeedReqSen 1450 # rpm per volt 
oGenSpeedReqOff -100 # rpm a zero volts 

oGenRegenLimitSen -0 10 percent regen per volt 
oGenRegenLimitGff 0 # percent regen a zero volts 

oEmAccelReqSen 0 25 # '/, per volt 
oEmAccelReqGff -0 125 # % a 0 volts 

oEmBrakeReqSen 0 25 # percent per volt 
oEmBrakeReqGff -0 125 « percent a zero volts 

oIceThrottlePosSen 0 339 « percent open per volt 
oIceThrottlePosGff -0 220 # percent open a zero volts 

## for speedo eqn 
## output voltage = Amplitude * sin( VehicleSpeedlnHph * pi/92 S + PhaseAngle) 
## sin phase = 0 cos phase = pi/2 

oDisSpeedoOAmplitude -5 

oDisSpeedoOPhaseAngle 1 57079632679489661923 # pi/2 

oDisSpeedolAmplitude 
oDisSpeedolPhaseAngle 

oPurToDigRacksSen # 1 == 5v out, 0 == Ov out 

oPwrToDigRacksOff # Ov out a 0 

D.1.10 read_conf.c 

/♦ read.conf c */ 

#include <stdio h> /* fopen, rewind, fgets */ 
tinclude <stdlib h> /* exit, atof, atoi ♦/
#include <string h> /♦ strtok, strstr, */ 

#include "fcard h" 

/* note #key "stringifies" key,( #key becomes "key")*/ 
#define FINDFLGAT(key) if(strstr(s, #key) '= MULL) \ 

{ \ 
s = strtok(NULL,sep), \ 
hd->cal key = atof(s), \ 

} 

#define FINDINT(key) if(strstr(s, #key) '= MULL) \ 

{ \ 
s = strtok(NULL,sep), \ 
hd->fcard_rv key = atoi(s), \ 

> 

void read.conf(void *stay) 
■C 

if (stay) 
{ 

/* config task sticks around waiting 
* for reread requests */ 

noticeC'config reader ready"), 
while (hd) 
{ 



128 APPENDIXD CONTROL CODELISTING 

ftask.trigger.block0, 
do_read_conf(), 

} 

} 
else 

/* read configuration first time eiround */ 
do_read_conf(), 

void do_read_conf(void) 

FILE *file, 

const char sep[] = " \t=", /♦ field delimiters */ 
const char comment[] = , /* signifies comment ♦/
char *s, /» current key */ 
char buf[256], /* line buffer */ 
char msg[256], /* error message buffer */ 

noticeC'reading config file"), 

/» open the config file */ 
if((file = fopen(config_filename, "r")) '= NULL) 

/* make sure that we are at the beginning */ 
reuind(flie), 

/* read lines one at a time and process them */ 
while(fgets(buf, si2eof(buf), file) '= NULL) 
{ 

s = strtok(buf, sep), 
/* if a beginning comment, skip line */ 
if (strstr(s, comment) '= NULL) continue, 

/* don't need no stinking semicolons ♦/
/* inputs */ 
FINDFLOAT(iEmMotorSpeedSen) else 
FINDFLOAKiEmMotorSpeedOff) else 
FINDFLOAT(iGenMotorSpeedSen) else 
FINDFLOAT(iGenMotorSpeedOff) else 
FINDFLOAT(iIceEngineSpeedSen) else 
FINDFLOAT(ilceEngineSpeedOff) else 
FINDFLGAT(lAccelPedalLevelSen) else 

FINDFLGAT(lAccelPedalLevelGff) else 

FINDFLGAT(iBrakePedalLevelSen) else 
FINDFLGAT(iBrakePedalLevelOff) else 

FINDFLGAT(lActualEmTorqueSen) else 
FINDFLGAT(lActualEmTorqueGff) else 
FINDFLGAT(iFuelPressureSen) else 

FINDFLOAT(iFuelPressureOff) else 

FINDFLGAT(iEmCurrentNegSen) else 
FINDFLGAT(lEmCurrentNegOff) else 
FINDFLGAT(lEmCurrentPosSen) else 

FINDFLGAT(iEmCurrentPosOff) else 

FINDFLGAT(iGenCurrentSen) else 

FINDFLGAT(iGenCurrentGff) else 

FINDFLGAT(iBattPackTempSen) else 
FINDFLGAT(iBattPackTempOff) else 
FINDFLGAT(iBattPackVoltageSen) else 



129 APPENDIXD CONTROL CODELISTING 

FINDFLOAKiBattPacWoltageOff) 
FinDFLOAT(iBattPackCurrentSen) 

FINDFLOAKiBattPackCurrentOff) 

FinDFLOAT(iEmRotorTempSen) 
FIHDFLOAT(iEiiiRotorTempOff) 
FINDFLOAt(iEmlnvTempSen) 
FIHDFLOATCiEmlnvTempOff) 
FINDFLOAT(iTpsFeedbackSen) 
FINDFLQAT(iTpsFeedbackOff) 
/* outputs */ 
FinDFLOAT(oGenSpeedReqSen) 
FINDFLOAT(oGenSpeedReqOff) 
FIIIDFLGATCoGenRegenLimitSeii) 
FIUDFLGATCoGenRegeuLimitOff) 
FINDFLGAKoEinAccelReqSen) 
FINDFLGAT(oEmAccelReqGff) 
FINDFLGAT(oEmBrakeReqSen) 
FinDFLOATCoEmBrakeReqGff) 
FINDFLGAT(oIceThrottlePosSen) 

FINDFLGAT(oIceThrottlePosGff) 

else 
else 

else 

else 
else 
else 
else 
else 
else 

else 
else 
else 
else 
else 
else 
else 
else 
else 

else 

FIMDFLGATCoDisSpeedoOAmplitude) else 
FINDFLGAT(oDisSpeedoOPhaseAngle)else 
FINDFLGAT(oDisSpeedo1Amplitude) else 
FINDFLGAT(oDisSpeedoIPhaseAngle)else 
FINDFLGAT(oPurToDigRacksSen) else 
FINDFLGAT(oPurToDigRacksGff) else 

FINDINT(fcard_hardware_tiiiier_hz) else 

FIMDINT(fcard_manager_prio) else 
FINDIKT(fcard_hardware_task_prio) else 
FIHDINT(fcaxd_kwh_task_prio) else 
FINDINT(fcard_config.task.prio) else 
if (strlen(s) == 1) 

continue, /♦ blank line */ 
else 

sprintf(msg, 
"unknown key 'As in config",s), 

warn(msg), 
} 
continue, 

fcloseCflie), 
noticeC'done reading config file"), 

} 
else 

warnC'can't read config file, using defaults"), 

return, 

D.1.11 kwh_meter.c 

/* kwh.meter c */ 

#include <stdio h> 
#include <stdlib h> 

#include <string h> 
Sinclude <unistd h> 

#include <sys/types h> 

/* fdopen ♦/
/♦ atof, exit »/ 

/* strtok */ 
/* close */ 

/♦ open ♦/



130 APPENDIXD CONTROL CODELISTING 

Sinclude <sys/stat h> /» open »/ 
#include <fcntl h> /* open */ 
Sinclnde "fcard h" 

#define MAX.SANE.AMPS 300 OF 

#define MAX.SANE.VOLTS 500 OF 

/* sample Icwh-meter line 
* time(sec), batt_kwlirs, batt.amps, batt_volts, batt_ahrs, apu.kwhrs, \ 
♦ apu.amps, apu.ahrs, apu, cng_press, cng.temp 
*/ 

static int kuh_fd, 

void read_kwh_meter_stop(int ignored) 

■C 
if (kwh.fd) close(kwh.fd), 
notice("kwh reader stopped"), 
exit(EXIT_SUCCESS), 

> 

void read_kwh_meter(void *unused) 

FILE ♦kwh_in, /* kwh meter file */ 
const char sep[] = /* fields separated by commas */ 
char *s, 
char buf[256], 
float amps, volts, 

/♦ if no hardware lo is requested, just do nothing */ 
if ('do.hardware.io) 
{ 

notice("kwh_reader doing nothing"), 
while(l) ftask_delay(l OF), 

} 

/♦ open the serial port to which the kwh meter is attached */ 
if ((kwh.fd = open(KWH_DEVICE, O.RDOHLY I O.HOCTTY)) == -1) 

die("open"), 
if ((kwh.in = fdopen(kwh_fd, "r")) == NOLL) 

dieC'fdopen"), 

/* going to assume that the serial port 
* has already been setup correctly */ 

notice("kwh.reader started"), 

/* this fgets blocks until a \n terminated line comes 
♦ in though the serial port (about 1 Hz ) »/ 

while ( (fgets(buf, si2eof(buf), kwh in)) '= NULL) 

s = strtok(buf, sep), 
/* skip first two fields */ 
s = strtok(NULL, sep), 
s = strtok(NULL, sep), 
amps = atof(s), /* third = amps */ 
s = strtok(NULL, sep), 
volts = atof(s), /* fourth = volts »/ 

/♦ do a sanity check on the read values */ 
If ((amps < -MAX_SANE_AHPS) I I (amps > MAX.SANE.AMPS)) 

https://do.hardware.io
https://close(kwh.fd


131 APPENDIXD CONTROL CODELISTING 

sprintfCbuf, "read unsane value for amps W,amps), 
warnCbuf), 

Jelse 

/* shared mem gets current value »/ 
hd->cv[hd->active] kuh.amps = amps, 

if ((volts < -MAX_SANE_VOLTS) I I (volts > MAX SANE VOLTS)) 
{ 

sprintf(buf, "read unsane value for volts "/.f", volts), 
uarn(buf), 

Jelse 

/♦ shared mem gets current value */ 
hd->cv[hd->active] kwh.volts = volts. 

close(kwh_fd), 

dieC'fgets failed"). 

D.1.12 hardware_io.c 

/* heirdware_io c */ 

tinclude <string h> /* memcpy ♦/
^include <stdlib h> /* exit */ 

Sinclude <ftask h> /* ftask_periodic_timer_block */ 
tinclude "fcard h" 

tinclude "octagon.io h" /» DISABLE.WATCHDDG */ 

static unsigned loop.counter, 

void hardware_io_stop(int ignored) 

if (do_hardware_io) 

■C 
DISABLE.WATCHDOGO, 
notice("watchdog timer disabled"), 

> 
notice("hardware lo stopped"), 
exit(EXIT_SUCCESS), 

void hardware_io(void ♦ignored) 

notice("h£irdware_io started"), 

if(do_hardware_io) 

octagon.initO, 
ENABLE_WATCHDOG(); 
noticeC'watchdog timer enabled"), 

> 

while(1) 
■C 

if (do_hardware_io) 

https://octagon.io


132 APPENDIX D CONTROL CODELISTING 

PET_WATCHDOG0, /* fixed timeout is " 1 5 sec */ 
octagon_io(), 

} 
else 

if ('(++loop_counter '/, 
hd->fcaxd_rv fcard_hardyare_timer_h2)) 
/♦do this every 1 second ♦/ 

{ 
int oldpointer = hd->active, 
/♦ if at bottom, loop back to the top ♦/ 
if(hd->active == (SEC0NDS_T0_ST0RE-1)) 

hd->active = 0, 
else 

hd->active++, 

/♦ ok. we moved the pointer to active data, 
♦ copy the old pointer's data to prevent 
♦ data loss (I hope this works) 
♦/ 

memcpy(!!hd->cv[hd->active] , 
&hd->cv[oldpointer], 
sizeof(struct calculated_values)), 

memcpy(faid->digital[hd->active] , 
&hd->digital[oldpointer], 
sizeof(struct digital_hardware)), 

memcpy(flEhd->analog[hd->active] , 
&hd->analog[oldpointer], 
sizeof(struct analog.hardware)), 

hd->seconds++, /♦ increment total seconds ♦/ 
} 

} 

/♦ noticeC'loop") , ♦/ 

ftask_periodic_timer_block(), /♦ wait for the timer ♦/ 

/♦ shouldn't get here ♦/ 

D.1.13 octagonJnit.c 
/♦ octagon.init c ♦/ 

tinclude "fcard h" 
#include "octagon_io h" 

/♦ setup octagon lo cards ♦/ 
void octagon_init() 

/♦ ceirdO set port B to all outputs ♦/ /♦ 5710 ♦/ 
/♦ out_8(CARD0+CR_DFFSET, 0x80), ♦/ 

/♦ cardO do a dummy read ♦/ 
(void)in_8(CARD0+HIGH8), 
(void)in_8(CARD0+L0W4), 



133 APPENDIXD CONTROL CODELISTING 

/* CeirdO setup digital lo mode ♦/
out_8(CARD0+CR_0FFSET, DMODE.BOTH.IM), 

/♦ cardl set port B to all outputs */ /* 5710-1 »/ 
/* out_8(CARDl+CR_OFFSET, 0x80), */ 

/* cardl do a dummy read ♦/
(void)in_8(CARDl+HIGH8), 
(void)in_8(CARDl+L0W4), 

/* cardl setup digital lo mode */ 
out_8(CARDl+CR_0FFSET, DMGDE.BGTH.OUT), 

/♦ turn off the digital ouputs */ 
out_8(CARDl+DPGRTA, '0), 
out_8(CARDl+DPGRTC, "0), 

/* card2 no initialization necesseury */ /* 5750 */ 

D.1.14 octagonJo.c 
/* octagon.io c */ 

#define __IHLIHE_FUKCTIGNS.. 1 

#include <stdio h> 

/* note void *memcpy(void ♦dest, const void *src, size.t n) */ 

Sinclude <string h> /* memcpy */ 
#include <math h> /* sin */ 
♦include "fcard h" /♦ shared mem pointer definition */ 
♦include "octagon_io h" /* octagon hardware defines */ 
♦include "octagon_io_map h" /* map channels/bits to named measurements */ 

♦ifndef PI 
♦define PI 3 14159265358979323846 
♦endif 

/» calibration macros - requires ansi cpp */ 
♦define CALIBRATE(what) private.analog in what = \ 

private_cal what^^Sen ♦ what^^Channel + private_cal what^^Off 

♦define DECALIBRATE(uhat) what^^Channel = \ 
(private_analog out what - private_cal what^^Gff) / \ 

private.cal what^^Sen 

♦define DECALIBRATESPEEDG(uhat) what^^Channel = \ 
private.cal what^^Amplitude * sin (private.analog out what * PI/92 5 \ 

+ private.cal what^^PhaseAngle) 

static unsigned loop_counter, 

/♦ there are a few distinct steps to octagon.io 

https://octagon.io
https://octagon.io
https://DMODE.BOTH.IM


134 APPENDIXD CONTROL CODELISTING 

* 1 get integer input data from hardware 
* 2 convert input to floating point voltage 
* 3 convert float voltage to calibrated values 
* 4 share the calibrated inputs 
* 

* 5 get requested calibrated output values from shared mem 
* 6 convert float calibrated values to voltages 
* 7 convert voltages to integer values 
* 8 output integer values 
* 

♦ 9 monkey with digital stuff 

♦/

void octagon_io() 

struct io5710Integer icardO, 

struct io5710Integer icardl. 

struct o5750Integer icard2. 

struct io5710Volts vcardO, 

struct io5710Volts vcardl, 

struct o5750Volts vcard2, 

struct digital.hcirdware private.digital. /* named values ♦/
struct anal0g.hardware private.analog. /* named values */ 
struct calibration.values private.cal. /* named values */ 

unsigned d, dl, d2, /♦ temp vars */ 
int oldpointer, 

/* circulate active pointer every 1 seconds */ 
d = hd->fcard_rv fcard_hardware_timer_hz, 

if('(++loop_counter "/, d)) 
{ 

oldpointer = hd->active, 
/* if at bottom, loop back to the top ♦/
if(hd->active == (SEC0NDS_T0_ST0RE-1)) 

hd->active = 0, 

else 

hd->active++, 

/* ok, we moved the pointer to active data, 
♦ copy the old pointer's data to prevent 
* data loss (I hope this works) 
*/ 
memcpy(&hd->cv[hd->active], S!hd->cv[oldpointer], 

sizeof(struct calculated.values)), 

memcpy(&hd->digital[hd->active], &hd->digital[oldpointer], 
sizeof(struct digital.hardware)), 

memcpy(&hd->analog[hd->active], !!hd->analog[oldpointer], 
sizeof(struct analog.hardware)), 

/* noticeC'moved pointer"), */ 
hd->seconds++, /* increment total seconds in operation ♦/



init_convert(CARDO, 

135 APPENDIXD CONTROL CODE LISTING 

/♦ 

/* 

/♦ 

/* 

/» get a private copy of the calibration values */ 
memcpy(ikprivate_cal, &hd->cal, sizeof(struct calibration.values)), 

1 us *******/ 

/»♦♦♦**»»»♦♦♦♦ begin analog input ********************/ 

I* 1 do the analog inputs - differential mode ♦/ 
init_convert(CARDO, 1), icardO AnalogIn[l] = getAnalog(CARDO) 
init_convert(CARDO, 3). icardO AnalogIn[3] ♦/init.convert(CARDO, = getAnalog(CARDO) 
init.convertCCARDO, 5), icardO AnalogIn[5] = getAnalog(CARDO) 
init_convert(CARDO, 7), icardO AnalogIn[7] = getAnalog(CARDO) 
init.convert(CARDO, 9), icardO AnalogIn[9] = getAnalog(CARDO) 
init.convert(CARDO, 11), icardO AnaloglnCll] = getAnalog(CARDO) 
init.convert(CARDO, 13), icardO AnalogIn[13] = getAnalog(CARDO) 
init_convert(CARDO, 15), icardO AnalogIn[15] = getAnalog(CARDO) ♦/ 

init_convert(CARDl, 1), icardl.AnalogIn[l] = getAnalog(CARDl) 
init_convert(CARDl, 3), icardl.AnalogIn[3] = getAnalog(CARDl) 
init_convert(CARDl, 5), icardl.AnalogIn[5] = getAnalog(CARDl) 
init_convert(CARDl, 7), icardl.AnalogIn[7] = getAnalog(CARDl) 
init_convert(CARDl, 9), icardl AnalogIn[9] = getAnalog(CARDl) 
init_convert(CARDl, 11), icardl AnalogIn[ll] = getAnalog(CARDl) 
init_convert(CARDl, 13), icardl AnalogIn[13] = getAnalog(CARDl) 
init_convert(CARDl, 15), icardl AnalogIn[15] = getAnalog(CARDl) 

/♦♦»♦♦♦ 16*30us, total = 481 us ♦**♦*♦*/ 

/♦ 2 convert input integers to voltages */ 
vcardO AnaloglnCl] = INT2V0LTS(icard0 AnaloglnCl] ) 
vcardO AnalogIn[3] = IHT2V0LTS(icard0 AnalogInC3] ) */ 
vcardO AnalogIn[5] = IHT2VOLTS(icardO AnalogInC5] ) 
vcardO AnalogIn[7] = INT2V0LTS(icard0 AnalogInC7] ) 
vcardO AnalogInC9] = INT2V0LTS(icard0 AnalogInC9] ) 
vcardO AnalogIn[ll] = IHT2VOLTS(icardO AnaloglnCll]) 
vcardO AnalogXn[13] = INT2VOLTS(icardO AnaloginCl3]) 
vcardO AnalogIn[15] = INT2V0LTS(icard0 AualogInCl5]) */ 

vcardl AnaloglnCl] = IMT2V0LTS(icardl AnaloglnCl] ) 
vcardl AnalogIn[3] = INT2VQLTS(icardl AnalogInC3] ) 
vcardl AnalogIn[5] = IIJT2VDLTS( icardl Analogin C5] ) 
vcardl AnalogIn[7] = IMT2V0LTS(icardl AnaloginC7] ) 
vcardl AnalogIn[9] = IMT2V0LTS(icardl AnaloginC9] ) 
vcardl AnaloglnCll] = INT2VQLTS(icardl AnaloglnCll]) 
vcardl AnalogIn[13] = INT2V0LTS(icardl AnalogInCl3]) 
vcardl AnalogIn[15] = INT2V0LTS(icardl AnalogInCl5]) 

/»♦♦♦♦♦* lus, total = 482us »*♦*****♦»/ 

I* 3 convert voltages to engineering units */ 
/* this IS where the lo mapping happens y = mx + b*/ 

CALIBRATE(iEiiiMotorSpeed) , 
CALIBRATE(iGenMotorSpeed), 
CALIBRATE(iIceEngineSpeed), 
CALIBRATE(iAccelPedalLevel), 
CALIBRATE(iBrakePedalLevel), 
CALIBRATE(iActualEmTorque), 
CALIBRATE(iFuelPressure), 



136 APPENDIXD CONTROL CODELISTING 

/* special piecewise »/ 
private.analog in.lEmCurrent -

(lEmCurrentChannel < 2 5F)' /» 2 5v == zero amps »/ 
Cprivate.cal lEmCurrentNegSen * lEmCurrentChannel 

+ private_cal lEmCurrentMegOff) 
Cprivate.cal lEmCurrentPosSen * lEmCurrentChannel 

+ private.cal lEmCurrentPosOff), 

CALIBRATE(iGenCurrent), 

/* CALIBRATE(iBattPackTemp), */ 
CALIBRATE(iBattPackVoltage), 
CALIBRATECiBattPackCurrent), 
CALIBRATECiEmRotorTemp), 
CALIBRATECiEmlnvTemp), 
CALIBRATE(iTpsFeedback), 

/♦»»»»»» lus, total = 483us **********/ 

/* 4 sheire input data */ 
memcpy(&hd->analog[hd->active] in, ![private_analog in, 

sizeof (struct input.analog.hardweire)) , 

/******* lus, total = 484us **********/ 

/♦*♦***♦*♦♦**♦ end of analog input ********************/ 

/*♦**♦♦**+*♦+* begin analog output **♦+*♦**+*♦♦********/ 

/* 5 get calibrated requested output values */ 
memcpyC&private.analog out, Skhd->analog[hd->active] out, 

sizeof(struct output.analog.hardware)), 

/♦♦♦♦»»♦ lus, total = 485us »*♦*****/ 

/* 6 convert float calibrated values to voltages ♦/ 
/* note 10 mapping used here x = (y-b)/m */ 
DECALIBRATE(oGenSpeedReq), 
DECALIBRATE(oGenRegenLimit), 
DECALIBRATE(oEmAccelReq), 
DECALIBRATE(oEmBrakeReq), 
DECALIBRATE(oIceThrottlePos), 

DECALIBRATESPEEDD(oDisSpeedoO), 
DECALIBRATESPEEDO(oDisSpeedol), 

DECALIBRATE(oPHrToDigRacks), /* really just on/off ♦/ 

/**♦♦*♦ lus, total = 486us ♦♦»**♦*♦/ 

/♦ 7 convert voltages to integer values */ 
/* icardO Analog0ut[0] = VOLTS2INT(vcardO.AnalogOut[0]), ♦/ 
/* icardO AnalogOutCl] = VOLTS2IKT(vcardO AnalogOut[1]), */ 

icaxdl AnalogOut[0] = V0LTS2INT(vcardl AnalogOut[0]), 
icardl AnalogOutCl] = V0LTS2INT(vcardl AnalogOutCl]), 

icard2 AnalogOutCO] = HALFV0LTS2INT(vcard2 AnalogOutCO]), 
icard2 AnalogOutCl] = HALFV0LTS2INT(vcard2 AnalogOutCl]), 
icard2 AnalogOutC2] = HALFVDLTS2IMT(vcard2 AnalogOutC2]), 

/* iCcird2 AnalogOut C3] = HALFV0LTS2IMT(vcard2 AnalogOut C3]), */ 

icard2 AnalogOutC4] = FULLV0LTS2IKT(vcard2 AnalogOutC4]), 



137 APPENDIXD CONTROL CODELISTING 

/♦
icard2 AnalogDut[5] = FULLV0LTS2INT(vcard2 AnalogOut[5]). 
icard2 AnalogOut[6] = F0LLVGI.TS2INT(vcard2 AnalogOut[6]), 
icard2 AnalogOut[7] = FULLV0LTS2INT(vcard2 AnalogOut[7]), 

*/ 

/it****** lus, total = 487us »♦♦»♦•♦♦/ 

/* 
/* 

/* 8 output integer values */ 
/* 5710 stuff - one channel at 
0UTPUT5710(CARD0, DAC.CH.ZERO, 
DUTPUT5710(CARD0, DAC.CH.QNE , 
QUTPUT5710(CARD1, DAC.CH.ZERO, 
0UTPUT5710(CARD1, DAC.CH.OHE , 

a time ♦/ 
icardO AnalogOut[0]), */ 
icardO AnalogOut[1]), */ 
icardl AnalogOut[0]). 
icardl AnalogOut[1]), 

/» 5750 stuff 
/* channels 0 
d = 0, 

*/ 
and 1 output in one out call */ 

/* unsigned "negative" numbers will wrap around 
* to somewhere between 2~31 and (2"32)-l 
♦/ 

dl = (icard2 Analog0ut[0] > (1U«31)) ' 0 
(icard2 AnalogOut[0] > 4095U) ' 409SU 
icard2 AnalogOut[0], 

d2 = (icard2 AnalogOut [1] 
(icard2 AnalogOut[1] 
icard2 AnalogOut[1], 

> 
> 

(1U«31)) ' 0 
4095U) ' 4095U 

d = dl I (d2 « 16), 
/♦ now bits should be aligned correctly */ 
out.32(CARD2+ZER0.LEAST, d), 

/* channel 2 output as a single because 3 not used */ 
d = (icard2 AnalogOut[2] > (1U«31)) ' 0 

(icard2 AnalogOut[2] > 4095U) ' 4095U 
icard2 AnalogOut[2], 

out.l6(CARD2+TW0.LEAST, d), 

/* channels 4 and 5 
d = 0, 

output in one out call ♦/ 

dl = (icard2 AnalogOut[4] 
(icard2 AnalogOut[4] 
icard2 AnalogOut[4], 

> 
> 

(1U«31)) ' 0 
4095U) ' 4095U 

d2 = (icard2 AnalogQut[5] 
(icard2 AnalogOut[5] 
icard2 AnalogOut[5] , 

> 
> 

(1U«31)) ' 0 
4095U) ' 4095U 

d = dl I (d2 « 16), 
out.32(CARD2+F0UR.LEAST, d), 

/* channel 7 output as a single because 6 not used */ 
d = (icard2 AnalogOut[7] > (1U«31)) ' 0 

(icard2 AnalogOut[7] > 4095U) ' 4095U 
icard2 AnalogOut[7], 

out.l6(CARD2+SEVEN.LEAST, d), 

/♦*******♦*♦ end analog outputs *♦♦**»♦*♦*♦*♦♦**♦♦♦*****♦♦»/ 
/»»♦♦♦« conservative 10#30us = 300us, total = 787us ♦*♦♦*♦/ 



138 APPENDIXD CONTROL CODE LISTING 

/* do digital inputs */ 
/***♦♦+***♦♦♦♦♦♦*** port C inputs ****♦*♦»♦♦»/ 
dl = in.8(CARD0+DP0RTC), 
dl = "dl, /* bit "not" for reverse logic optoisolators ♦/ 

7icardO DigitalInC[0] = (dl Sc 0x01) 1 0, 
icardO DigitallnCCl] = (dl 6 0x02) 7 1 0, 
icardO DigitalInC[2] = (dl Sc 0x04) 1 0,7 

7icardO DigitalInC[3] = (dl Sc 0x08) 1 0, 
icardO DigitalInC[4] = (dl 8k 0x10) 7 1 0, 

7 =icardO DigitalInC[5] (dl & 0x20) 1 0, 
7icardO DigitalInCC6] = (dl & 0x40) 1 0, 

icardO DigitalInC[7] (dl 8k 0x80) 1 0,7 

o 
d2 = in.8(CARD0+DPDRTA), X

00 
d2 = -d2. o 

icardO DigitalInA[0] = (d2 8k 0x01) 1 0,7 

7icardO DigitalInA[l] = (d2 Sc 0x02) 1 0, 
7icardO DigitalInA[2] = (d2 & 0x04) 1 0, 
7icardO DigitalInA[3] = (d2 Sc 0x08) 1 0, 

icardO DigitalInA[4] = (d2 Sc 0x10) 7 1 0, 
icardO DigitalInA[5] = (d2 Sc 0x20) 1 0,7 

7icardO DigitalInA[6] = (d2 1 0, 
7icardO DigitalInA[7] = (d2 O 1 0, 

o 
/* map the inputs */ 
d = 0, 
d = dl St OxFO, /♦ put last four bits of port C into d */ 

private.digital in iPeirk = (d == iParkBitPattern) '1 0, 
private.digital in iReverse = (d == iReverseBitPattern) '1 0, 
private.digital in iNeutral = (d == iNeutralBitPattem) '1 0, 
private.digital in iDriveEcon = (d == iDriveEconBitPattem) '1 0, 
private.digital in iDriveSport = (d == iDriveSportBitPattem) '1 0, 
private.digital in iZEV = (d == iZEVBitPattern) '1 0, 

private.digital in iHvac = iHvacBit, 
private.digital in lEmTempWcirn = lEmTempWarnBit, 
private.digital in lEmControllerReady = lEmControllerReadyBit, 
private.digital in lEmFaultlndicator = lEmFaultlndicatorBit, 
private.digital in lEmOvertempIndicator = lEmOvertempIndicatorBit, 
private.digital in iGenTempWarn = iGenTempWarnBit, 
private.digital in iGenControllerReady = iGenControllerReadyBit, 
private.digital in iGenFaultlndicator = iGenFaultlndicatorBit, 
private.digital in iGenDirectionlndicator = iGenDirectionlndicatorBit, 
private.digital in iIceFaultlndicator = iIceFaultlndicatorBit, 

/* share the inputs */ 
memcpy(Schd->digital[hd->active] in, Scprivate.digital in, 

sizeof(struct input.digital.hardware)), 

/♦ get the requested outputs */ 
memcpy(Scprivate.digital out, Said->digital[hd->active] out, 

sizeof(struct output.digital.hardware)), 

/* map the outputs »/ 
oIceStEirterBit = private.digital out olceStarter, 
oTecEnableBit = private.digital out oTecEnable, 
oEmEnableBit = private.digital out oEmEnable, 
oEmDirectionBit = private.digital out oEmDirection, 
oGenEnableBit = private.digital out oGenEnable, 



139 APPENDIXD CONTROL CODELISTING 

oPurSteeringEnableBit = private.digital out oPwrSteeringEnable, 
oThrottlePurCycleBit = private_digital out oThrottlePwrCycle, 
oSmcirtChargerEnableBit = private.digital out oSmartChargerEnable, 

/* write the outputs */ 
d = 0. 

if (icardl DigitalOutA[0]) d 1=0x01, 
if (icardl DigitalOutA[l]) d 1=0x02, 
if (icardl DigitalOutA[2]) d 1=0x04, 
if (icardl Digital0utA[3]) d 1=0x08, 
if (icardl DigitalOutA[4]) d 1=0x10, 
if (icardl DigitalOutACS]) d 1=0x20, 
if (icardl Digital0utA[6]) d 1=0x40, 
if (icardl Digital0utA[7]) d 1=0x80, 

d = "d, /* bit not for rev logic optoisolators */ 
out_8(CARDl+DP0RTA, d), 

/*♦♦»*♦ digital in/out 3*5us, total = 802us ********/ 
/* conservativly guess that loop completes in 1ms */ 

return, 



140 APPENDIXD CONTROL CODE LISTING 

D.2 fear: Main Control Program 

D.2.1 Makefile 

cc 

DEFIHES 

INCLUDES -I /libfclient -I /libftask 

QUIET -Q -HX 

OPTS -Orailnextm -4r -fp3 -fpi87 
DEBUG #-g 
CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 
LIBS -L /libfclient -L /libftask 

LIBS -Ifclient -Iftask 

LDFLAGS $(QUIET) $(LIBS) 

FILES fear c ice_ctrl c mode.seleet c modes c motor.eqn c 
FILES += soc c misc c 

FILES += throttle_ctrl c 

OBJS $(FILES c= o) 

GUT fccir 

DEPEND makedepend 
BINDIR /opt/fcar/bin/ 

all $(OUT) 

$(GUT) $(OBJS) 

$(CC) $(LDFLAGS) $" -o 

dep 
$(DEPEND) ~ $(CFLAGS) -D__QNX_. — $(FILES) 

install $(OUT) 

cp -f $(OUT) $(BINDIR) 

clean 

$(RM) $(GUT) $(DBJS) » err 

D.2.2 fcEir.h 

/* fear h */ 

#ifndef FCAR_H 

#define FCAR_H 

#include <fclient h> /* shared memory structure definition */ 
tinclude <ftask h> /* process control ♦/

/* defines */ 
#define _PGSIX_C_SGURCE 199309L 

/* this IS put here because it's a little counterintuitive and needs 
* to be consistent across different source files 

*/ 
#define EMENABLE /» em controller on ♦/
#define EMDISABLE /» em controller off */ 

#define GENENABLE 

#define GENDISABLE 

/» critical hybrid parameters */ 
//#define FULLGENREGEN 0 85F /♦ normal */ 

#define FULLGENREGEN 0 65F 



141 APPENDIXD CONTROL CODELISTING 

//#define THROTTLE.MAX 0 28F /* normal */ 

/* main loop execution speed */ 
#define FCAR.TIMER.HZ 100 /* split 100 Hz clock ♦/

/♦ process scheduling */ 
#define FCAR.SCHED.POLXCY SCHED.FIFG 

#define FCAR_MAWAGER_PRIO 24 

ftdefine FCAR.MODE.SEL.PRIO 23 

#define FCAR_ICE_CTRL_PRIO 21 

#define FCAR_THROTTLE_CTRL_PRIO 19 

#defiue FCAR_SOC_CALC_PRID 18 

/* for signals */ 
#define TriggerlCEO if (IceState i= DEAD) \ 

ftask.trigger(ice.task) 

tdefine TriggerThrottleUpO ftask_trigger(throttle_task) 

/* global variables */ 
extern volatile struct shared_hw_data *s, /* points to fcard shared mem */ 
extern ftask »ice_task, /* ice control pid */ 
extern ftask *throttle_task, /* throttle ramper upper */ 
extern ftask ♦mode_sel_task, /♦ real worker ♦/ 
extern ftask *soc_calc_task, /* slowly calculates SOC */ 

I* function prototypes */ 
void exit_cleanly(int ignored), 
void ice_control(void *ignored), 
void mode_selector(void *ignored), 
void mode_selector_quit(int ignored), 
void soc_calculator(void ♦unused), 
void read_shifter(void), 
void do_zev(void), 
void do_econ(void), 
void do_sport(void), 
void do_reverse(void), 
void do_pcirk(void), 
void do_neutral(void), 

void zev_motor(void), 
void reverse_motor(void), 
void hybrid_motor(void), 

void do_misc(void), 

void throttle_control(void ♦ignored), 

float hybrid_em_accel(void), 
float zev_em_accel(), 
float hybrid_gen_speed(void), 
float hi_regime_gen_speed_req(void), 
float lo_regime_gen_speed_req(void), 

float hybrid.throttle(void), 
float em_brake(void), 

#endif /♦ FCAR_H ♦/ 

https://FCAR.TIMER.HZ


142 APPENDIXD CONTROL CODE LISTING 

D.2.3 fcar.c 

/* fear c */ 

#include <stdlib h> /* exit, calloc »/ 
#include "fear h" 

/♦ real definition of shared mem pointer */ 
volatile struet shared_hw_data *s, 

/* real definition of global tasks */ 
ftask *ice_task, ♦throttle_task, *mode_sel_task, *soe_eale_task, ♦ret, 

int mainCint argc, char ♦argv[]) 
{ 

notieeC'fear started"), 

/♦ open shared memory ♦/ 
if ((s = felient_open_shm(0_IlDWR)) == NULL) 

dieC'f elient_open_shm(0_RDWR)"), 

/♦ allocate memory for task stmets ♦/ 
ret = (ftask ♦)calloc(l, sizeof(ftask)), 
ice.task = (ftask ♦)ealloe(l, sizeof(ftask)), 
throttle_task = (ftask ♦)calloc(l, sizeof(ftask)), 
mode_sel_task = (ftask ♦)calloc(l, sizeof(ftask)), 
soe_ealc_task = (ftask ♦)calloc(l, sizeof(ftask)), 

if('iee_task I I 'throttle_task I I 'mode_sel_task | | 
'soe_calc_task j j 'ret) 

dieCalloe for task structs failed"), 

/♦ indicate that the control program is running ♦/ 
s->cv[s->aetive] running = 1, 

/♦ setup our priority/scheduling scheme ♦/ 
ftask.sched_adjust_self(FCAR.SCHED.POLICY, FCAR.HANAGER.PRIO), 

/♦ setup for graceful exit ♦/ 
ftask_register_cleanup_self(exit.cleanly), 

/♦ the order of the following task creation is important, 
♦ a task will not be able to trigger another task that 
♦ was created after it ♦/ 

/♦ start task to handle throttle up ♦/ 
ftask.init(throttle.task. 

FCAR.SCHED_POLICY, /♦ scheduling policy ♦/ 
FCAR_THROTTLE_CTRL.PRIO,/♦ scheduling priority ♦/ 
throttle.control, /♦ start func ♦/ 
NULL, /♦ stctrt func arg ♦/ 
NULL, /♦ cleanup func ♦/ 
1, /♦ allow trigger ♦/ 
0, /♦ allow per timer ♦/ 
0), /♦ per timer hz ♦/ 

ftask_create(throttle_task), 

/♦ start a task to handle asynchronous 
♦ engine starting/stopping ♦/ 

ftask.init(ice.task, 
FCAR.SCHED.POLICY, /♦ scheduling policy ♦/ 



143 APPENDIXD CONTROL CODELISTING 

FCAR.ICE.CTRL.PRIO, /* priority ♦/
ice.control. /* start func »/ 
NULL, /* start func arg ♦/
NULL, /* cleanup func */ 
1, /* allow trigger */ 
0, /* allow per timer */ 
0). !* per timer hz */ 

ftask_create(ice_task), 

/* start a task to do real work based on mode */ 

ftask.init(mode_sel_task, 
FCAR_SCHED_POLICY. /♦ scheduling policy */ 
FCAR.MODE_SEL_PRIO, /* priority ♦/
mode_selector, /* start func */ 
NULL, /* start func arg »/ 
mode_selector_quit, /* cleanup func */ 
0, /» allow trigger */ 
1, /* allow per timer */ 
FCAR_TIMER_HZ), /* per timer hz */ 

ftask.create(mode_sel_task), 

/* finally create a task to calculate state of charge ♦/
ftask.init(soc_calc_task, 

FCAR.SCHED.POLICy, /* scheduling policy */ 
FCAR.SQC.CALC.PRIO, /* priority ♦/
soc.calculator. /* start func */ 

NULL, /» start func arg */ 
NULL, /* cleanup func */ 
0, /* allow trigger */ 
0, /* allow per timer */ 
0), /* per timer hz */ 

ftask.create(soc.calc.task), 

/» just wait */ 
while (s) 

{ 
ftask.wait.on.tasks(ret), 

if (ftask.same(ret, ice.task)) 
noticeC'ice controller died'"), 

if (ftask.sameCret, mode.sel.task)) 
noticeC'mode selector died'"), 

if (ftask.sameCret, throttle.task)) 
noticeC'throttle controller died'"), 

if (ftask.sameCret, soc.calc.task)) 
noticeC'SOC calculator died'"). 

/» shouldn't get here */ 
exit.cleanlyCO), 

return 0, 

void exit.cleanlyCint ignored) 



144 APPENDIXD CONTROL CODE LISTING 

/* indicate that we've stopped */ 
s->cv[s->active] running = 0, 

/* stop all know tasks ♦/
if (ftask_delete(ice_task) '= 0) 

warnC'can't delete ice controller task"), 

if (ftask.delete(mode_sel_task) '= 0) 

warnC'can't delete mode selector task"), 

if (ftask.delete(throttle.task) '= 0) 

warnC'can't delete throttle controller task"), 

if (ftask_delete(soc.calc.task) '= 0) 
warnC'can't delete SOC calculator task"), 

/* not needed, */ 
free(ice.task), 
free(mode.sel.task), 
free(throttle_task), 
free(soc.calc.task), 
free(ret), 

/* done */ 

exit(EXIT_SUCCESS), 

D.2.4 mode_select.c 

/* mode.select c */ 

#include <stdlib h> /* exit */ 

#include "fear h" 

/♦ 10 macros used in this file */ 

#define ZEV s->digital[s->active] in iZEV 
tdefine DriveEcon s->digital[s->active] in iDriveEcon 
#define DriveSport s->digital[s->active] in iDriveSport 
#define Reverse s->digital[s->active] in iReverse 
Sdefine Park s->digital[s->active] in iPark 
Sdefine Heutral s->digital[s->active] in iNeutral 
#define mode s->cv[s->active] mode 

#define PwrToDigRacks s->analog[s->active] out oPwrToDigRacks 
#define hybrid.regime s->cv[s->active] hybrid.regime 

void mode.selector.quit(int ignored) 
{ 

noticeC'mode selector quiting"), 
exit(EXIT.SUCCESS), 

} 

void mode.selector(void *unused) 

noticeC'mode selector started"), 

/♦ turn on power to digital racks ♦/
PwrToDigRacks = ON, 



145 APPENDIXD CONTROL CODELISTING 

/* set initial regime ♦/
hybrid.regime = LO.REGIME, 

/* wait for periodic timer */ 
while(s) 

{ 
/» read shifter */ 

read.shifterO, 

/» do misc stuff ♦/
do.miscO, 

ftask_periodic_timer_block(), 
} 
/* shouldn't get here */ 
exit(EXIT_FAILURE), 

void read_shifter() 

If (ZEV) 

{ 
mode = ZEV_HODE, 

do.zevO, 

else if (DriveEcon) 

{ 
mode = ECON.MODE, 

do_econ(), 

} 
else if (DriveSport) 
{ 

mode = SPORT_MDDE, 

do_sport(), 
} 
else if (Reverse) 

mode = REVERSE.MODE, 

do.reverse(), 

> 
else if (Park) 

mode = PARK_MQDE, 

do.parkO, 
} 
else if (Neutral) 

■C 
mode = NEUTRAL_MODE, 
do.neutralO , 

} 
else /♦ default */ 
{ 

/» this really doesn't work as intended, the 
* shifter switch pattern for park is the same 
* as if It were completely disconnected */ 

mode = NEUTRAL_MDDE, 
/* notice("can't read shifter"), */ 
do.neutral(), 



/*

146 APPENDIXD CONTROL CODELISTING 

return, 

> 

D.2.5 modes.c 

/* modes c */ 

finclude "fear h" 

/* 10 macros used in this file */ 

#define EmAccelReq s- >analog[s->active] out oEmAccelReq 
#define EmEnable s- >digital[s->active] out oEmEnable 
#define EmSpeed s- >analog[s->active] in lEmMotorSpeed 
#define EmOirection s- >digital[s->active] out oEmDirection 
#define mode s- >cv[s->active] mode 
tdefine IceReqState s->cv[s->active] IceReqState 
Sdefine IceState s->cv[s->active] IceState 

#define GenEnable s-:>digital[s->active] out oGenEnable 
#define GenRegen s->analog[s->active] out oGenRegenLimit 
#define GenSpeedReq s-:>analog[s->active] out oGenSpeedReq 
#define EmBrakeReq >analog[s->active] out oEmBrakeReq 
#define Hvac >digital[s->active] in iHvac 
#define SOCcat s->cv[s->active] SOCcat 
#define SOC s-:>cv[s->active] SOC 
#define throttle s >analog[s->active] out oXceThrottlePos 
Sdefine AccelPedal s->analog[s->active] in lAccelPedalLevel 
#define BrakePedaZ s >analog[s->active] in iBrakePedalLevel 
#define EmControllerReady s->digital[s->active] in lEmControllerReady 
#define GenControllerReady s->digital[s->active] in iGenControllerReady 
#define vehicle.speed s-:>cv[s->active] vehicle.speed 
#define hybrid.regime s->cv[s->active] hybrid.regime 

#define MAX_BACK_TO_FORWARD_SWITCH_SPEED 5 OF /* 
#define MAX_FORWARD_TO_BACK_SWITCH_SPEED 5 OF /* 

#define FORWARD 0 /* em direction ♦/
#define REVERSE 1 

#define EMREADY 1 

#define GENREADY 1 

#define MAX_PARK.EMBRAKE 1 OF //** normal */ 

void do.zevO ZEV *♦**********♦*****/ 
{ 

/» make sure that traction motor and generator are enabled */ 
EmEnable = EMENABLE, 
// GenEnable = GENENABLE, 
GenEnable = GENDISABLE, 

if (EmControllerReady '= ON) return, /» note need feedback to work */ 
II if (GenControllerReady '= ON) return, 

/* insure that the vehicle is nearly 
* standing still or moving forward */ 

if ((vehicle.speed < MAX_BACK_TO_FORWARD_SWITCH_SPEED) I I 
(EmDirection == FORWARD) ) 

if (EmDirection == REVERSE ) 



147 APPENDIX D. CONTROL CODELISTING 

EmDirection = FORWARD, 

/* check if this is the real ZEV mode */ 
if (mode == ZEV MODE) 
■[ 

/* make sure that engine is off */ 
IceReqState = OFF, 
if (IceState == OM) TriggerlCEC), 

> 
/« don't mess with engine/generator if being 

♦ called from a hybrid mode in transition ♦/ 

/* don't care about state of charge here */ 

/* proportion traction motor and generator */ 
2ev_motor(), 

} 
else 

do_reverse(), 
return, 

void do_reverse() /»»♦»»»♦»♦♦*»»♦♦♦ REVERSE ******************/ 
i 

/* insure that traction motor is enabled ♦/ 
EmEnable = EMENABLE, 

if (EmControllerReady '= ON) return, /* need feedback to work */ 

/* make sure that engine is off */ 
IceReqState = OFF, 
if (IceState == ON) TriggerlCEO, 

/* don't care about state of charge */ 

if ( (vehicle.speed < HAX.FORWARD.TO.BACK.SWITCH.SPEED) 1 1 
(EmDirection == REVERSE) ) 

{ 
if (EmDirection == FORWARD) 

EmDirection = REVERSE, 

/* set generator torque to zero */ 
If (IceState == OFF) GenEnable = GENDISABLE, 

/* proportion traction motor ♦/ 
reverse_motor(), 

} 
else 

do_zev(), 

void do_econ() /*♦*♦♦*♦♦♦♦♦♦»♦»*♦♦ ECON *******************/ 

EmEnable = EMENABLE, 
GenEnable = GENENABLE, 

if (EmControllerReady '= ON) return, /* need feedback to work */ 
if (GenControllerReady '= ON) return. 



148 APPENDIXD CONTROL CODELISTING 

/* insure that the vehicle is nearly 
* steinding still or moving forward */ 
If ((vehicle.speed < MAX_BACK_TO.FORWARD_SWITCH_SPEED) I I 

(EmDirection == FORWARD) ) 
< 

if (EmDirection == REVERSE )EmDirection = FORWARD, 
} 
else 

return, /* do nothing */ 

/♦ if SOC IS high or the A/C switch is off */ 
If (CHvac == OFF)) 

{ 

/* try to stop engine */ 
IceReqState = OFF, 
if (IceState == ON) 

{ 
TriggerlCEO, 
do.zevC), 

return, 

} 

if (IceState == WORKING) 

do_zev(), 

return, 

} 

/* if we can get here, engine should be off */ 

/* check to see if transition from HEV 

* to ZEV IS needed ♦/

do_zev(), 

} 
else 

/* if SOC IS low or A/C switch is on */ 

if ((Hvac == ON)) 

/* try to start engine */ 
IceReqState = ON, 
if (IceState == OFF) 

TriggerlCEO, 
do_zev(), /* fulfill regular driving requests */ 
return, 

} 
else if (IceState == WORKING) 

do.zevO, 

return, 

} 

/* engine should be on if we can get here */ 

II TriggerThrottleUpO, 



149 APPENDIXD CONTROL CODE LISTING 

/♦ check to see if transition from ZEV 

* to HEV is needed */ 

/* do regular proportioning of motor and generator */ 
hybrid_motor(), 

> 
return, 

> 

void do.sportO /*♦»»♦*♦♦♦**♦♦♦»♦♦♦ SPORT **♦♦**♦*♦♦♦♦♦♦♦*♦♦/ 
{ 

/* warning stub function to do stationary testing by 
* proportioning gen and ice */ 

if (Hvac) /* try to start engine »/ 
{ 

IceReqState = ON, 
if (IceState == OFF) 
{ 

TriggerlCEO, 
work.throttleO, 
return, 

} 
else if (IceState == WORKING) 
{ 

work_throttle(), 
return, 

} 
> 
else /* try to stop engine »/ 

IceReqState = OFF, 
if (IceState == ON) 
{ 

TriggerlCEO, 
uork.throttleO, 
return, 

} 

if (IceState == WORKING) 

work_throttle(), 
return, 

} 
} 

work.throttleO, 

return, 

void do_neutral() /*♦*»♦♦♦♦»»♦»»*»* NEUTRAL ***«*»*♦***»♦♦/ 
{ 

/* give the engine another chance at starting if it failed 
♦ to start (multiple times) before */ 

if (IceState == DEAD) 
{ 

noticeC'reseting dead engine"), 
IceState = OFF, /* reset */ 

} 



150 APPENDIXD CONTROL CODE LISTING 

/♦ make sure that engine is off */ 
IceReqState = OFF, 
if (IceState == OK) TnggerlCEO, 

/* set generator torque to zero after the engine stops */ 
if (IceState == OFF) 

GenEnable = GEKDISABLE, 

GenRegen = 0 OF, 
GenSpeedReq = 0 OF, 

} 

/* set traction motor torque to zero */ 
EmEnable = EMDISABLE, 

EmAccelReq = 0 OF, 
EmBrakeReq = 0 OF, 

return, 

void do_park() /♦*♦♦»♦*»♦♦»♦♦»»»»» PARK *******************/ 
< 
#if 0 

EmEnable = EMENABLE, 

/♦ make sure that engine is off */ 
IceReqState = OFF, 
if (IceState == ON) TnggerlCEO, 

/* set generator torque to zero after the engine stops */ 
if (IceState == OFF) GenEnable - GENDISABLE, 

/* set traction motor torque to full »/ 
EmBrakeReq = MAX.PARK.EMBRAKE, 

#else 
do_neutral(), 

#endif 

return, 

> 

void Hork_throttle() 
{ 

GenEnable = GENENABLE, 
/* GenEnable = GENDISABLE, */ 
EmEnable = EMDISABLE, 
/♦ EmEnable = EMENABLE, ♦/ 

/* 
EmDirection = FORWARD, 
EmAccelReq = 0 10, 
*/ 

/* 1 1 map of accel pedal to engine throttle */ 
throttle = AccelPedal, 

/♦II map of brake to gen regen ♦/ 
GenRegen = BrakePedal, 

return, 



151 APPENDIXD CONTROL CODELISTING 

D.2.6 motor_eqn.c 
/* motor.eqn c »/ 

#include "fear h" 

#include <math h> /* exp ♦/
tinclude <signal h> 

Sifndef PI 

#define PI 3 14159265358979323846 

tendif 

#define Min(a,b) 

#define MAX(a,b) 
#define RPM2RAD(a) 

/* 10 macros */ 

#defiiie EmSpeed 
#define EmAccelReq 
#define AccelPedal 

tdefine EmBrakeReq 
#define BrakePedal 

#define EngineSpeed 
#define Tps 
tdefine GenCurrent 

tdefine GenRegen 
#define GenSpeedReq 
#define GenSpeed 
#defiiie Hvac 

#define vehicle_speed 
#define hybrid.regime 

(((a) < (b))'(a) (b)) 
(((a) > (b))'(a) (b)) 
((a) * PI/30 0) 

s->analog[s->active] in lEmMotorSpeed 
s->analog[s->active] out oEmAccelReq 
s->analog[s->active] in lAccelPedalLevel 
s->analog[s->active] out oEmBrakeReq 
s->analog[s->active] in iBrakePedalLevel 
s->analog[s->active] in iIceEngineSpeed 
s->analog[s->active] in iTpsFeedback 
s->analog[s->active] in iGenCurrent 
s->analog[s->active] out oGenRegenLimit 
s->analog[s->active] out oGenSpeedReq 
s->analog[s->active] in iGenMotorSpeed 
s->digital[s->active] in iHvac 
s->cv[s->active] vehicle.speed 
s->cv[s->active] hybrid.regime 

#define hybrid.transition s->cv[s->active] hybrid.transition 
Sdefine Throttle s->analog[s->active] out oIceThrottlePos 

/* constants */ 

#define MOTOR.CTORQUE.CPOWER.COTOFF 

#define MOTOR.TORQUE.MAX 

#define KT 

#define LG.REGIME.SPEED.THRESHOLD 

#define HI.REGIME.SPEED.THRESHGLD 

/* N m max combined torque at wheel */ 
#define VEHICLE.TGRQUE.MAX 

#define MGTGR.PGWER.MAX 

Sdefine MOTGR.TG.WHEEL.RATIG 

Sdefine REV.ACCEL.FACTGR 

2108 OF 

240 OF 

0 429F 

60 OF 

45 OF 

2400 OF 

53000 OF 

7 588F 

1 OF 

/♦ generator speed curve fit constants */ 
Sdefine A2 

Sdefine A1 

tdefine AO 

#define B2 

tdefine B1 

#define BO 

/♦ engine speed curve fit constants */ 
#define C2 

-0 933F 

17 82F 

C4044 OF + 

-0 778F 

2 264F 

(-560 OF + 

-0 3F 

/* rpm */ 
/* M m */ 

/* H m/amp */ 
/» mph */ 
/* mph */ 

/* Watts */ 

/* ratio */ 

/* desensitize »/ 

/» low end curve */ 

800 OF) 

/* high end »/ 

800 OF) 

/* low end curve */ 



152 APPENDIXD CONTROL CODE LISTING 

#define C1 60 OF 

#define CO 1300 OF 

#define D2 -0 25F /* high end ♦/
#define D1 55 OF 

#defme DO -180 OF 

tdefine WHEEL_TO_MOTOR_RATIO 0 131787032156F /* 1/7 588 */ 

tdefine GEN.TO.WHEEL.RATIO 1 66845878F /* (49*57)/(27*62) 

tdefine ZERO 0 OF 

tdefine HI.REGIME_ZEV.GEM_SPEED -3000 OF /* rpm */ 

tdefine IDLE.THRDTTLE 0 OF /* normal */ 

tdefine IDLE.THRGTTLE.THRESHOLD 0 05F /* normal " 57. */ 

tdefine IDLE.EMGINE.THRESHOLD 1000 OF /* rpm */ 

tdefine ZERO_GEN_SPEED_REQ 0 OF /* rpm */ 
tdefine ZERO_GEN_SPEED_THRESHOLD 300 OF /* rpm */ 

tdefine EM_BRAKE_THRESHOLD 0 5F /* normal */ 

tdefine THROTTLE_HAX (0 6F) /* normal */ 

tdefine INIT.THROTTLE (0 2F) /* normal */ 

Sdefine HI_SPD_ADD_THROTTLE (THROTTLE.MAX-INIT_THROTTLE) 

tdefine THROTTLE.COMST.Kl (0 IF) 

float hybrid_throttle0 

#if 0 

return (HI_SPD_ADD_THROTTLE * 

(l-exp(-vehicle_speed ♦ THROTTLE.CONST.KD) 
+ INIT.THROTTLE), 

#else 

if (vehicle.speed >30) 
return (0 28F). 

else 

return (0 OF), 

#endif 

} 

/♦ only do regen braking when request is significantly high »/ 
float em.brakeC) 

■C 
if (BrakePedal > EM.BRAKE.THRESHOLD) 

return BreikePedal, 
> 
else 

return ZERO, 
} 

void zev.motorO 

/* fulfill accel request ♦/ 
EmAccelReq = zev_em_accel(), /* normal ♦/ 

https://THROTTLE.CONST.KD


153 APPENDIXD CONTROL CODELISTING 

/* fulfill brake request »/ 
EmBrakeReq = em.brakeO, /* normal */ 

if( (vehicle.speed > LO.REGIME.SPEED.THRESHDLD) 
(hybrid.regime == LO_REGIME)) 

hybrid.regime = HI.REGIME, 

if ( (vehicle.speed < HI.REGIME.SPEED.THHESHQLD) 
(hybrid.regime == HI.REGIME)) 

{ 
hybrid.regime = LO.REGIME, 

} 

if (hybrid.regime == LO.REGIME) 
{ 

GenSpeedReq = ZERO, 
GeuRegen = ZERO, 

} 

if (hybrid.regime == HI REGIME) 
•{ 

// GenSpeedReq = HI.REGIME.ZEV.GEH.SPEED, 
// GenRegen = ZERO, 
GenSpeedReq = ZERO, 
GenRegen = ZERO, 

void reverse.motorO /♦ note that em direction has already been handled */ 

/* since It IS not possible to go very fast in reverse, 
♦ no checks like in zev are made •/ 

/* fulfill accel request */ 
EmAccelReq = AccelPedal * REV.ACCEL.FACTOR, /♦ normal */ 

/♦ fufill brake request ♦/
EmBrakeReq = BrakePedal, /* normal */ 

void hybrid.motorO 

float genspeed, 

/* proportion traction motor ♦/
EmAccelReq = hybrid.em.accelO, /* normal */ 
/* fufill brake request */ 
EmBrakeReq = em.brakeO, /♦ normal */ 

/* check for transition from low to high regime »/ 
if( (vehicle.speed > LO.REGIME.SPEED.THHESHOLD) 

(hybrid.regime == LO.REGIME)) 
•c 

if (hybrid.transition == UNDEFINED) 



154 APPENDIXD CONTROL CODELISTING 

hybrid.transition = SLOWING.DOWN, 

if (hybrid.transition == SLOWING DOWN) 

•C 
/* set engine throttle to idle */ 
Throttle = IDLE.THROTTLE, 
If (Tps > IDLE_THROmE.THRESHOLD) 

/♦ throttle still in transition ♦/
return, 

/* throttle IS in idle position if we can get here »/ 
if (EngineSpeed > IDLE.ENGINE.THRESHDLD) 

return, /* wait for engine to slow down */ 

/♦ NOTE. **♦♦»»♦* gen speed req needs to 
* happen before engine slow down ♦/ 

/* set gen desired speed to zero */ 
GenSpeedReq = ZERO_GEN_SPEED_REQ, 

/* find abs(GenSpeed) */ 
genspeed = (GenSpeed < 0) ' -GenSpeed GenSpeed, 

If (genspeed > ZERD_GEN.SPEED_THRESHOLD) 
/* not slowed down yet */ 
return, 

/* gen at zero speed and engine at idle at this point */ 
hybrid.transition = SPEEDING.UP, 

} 

if (hybrid.transition == SPEEDING.UP) 
{ 

/* turn generator around */ 
GenSpeedReq = hirregime_gen_speed_req(), 

/* begin rajnp up of engine ♦/ 
TriggerThrottleUp(), 

} 

/* transition done ♦/ 
hybrid.regime = HI.REGIME, 
hybrid.transition = UNDEFINED, 

} 
else 
/* check for transition from high to low regime */ 
If ( (vehicle.speed < HI.REGIME.SPEED.THRESHOLD) && 

(hybrid.regime == HI.REGIME)) 
{ 

if (hybrid.transition == UNDEFINED) 
hybrid.transition = SLOWING.DDWN, 

if (hybrid.transition == SLOWING.DOWN) 

/♦ set engine throttle to idle ♦/ 
Throttle = IDLE.THROTTLE, 
if (Tps > IDLE.THROTTLE.THRESHOLD) 

/* throttle still in transition ♦/ 
return, 

/* throttle IS in idle position if we can get here */ 

https://SPEEDING.UP
https://SPEEDING.UP


155 APPENDIXD CONTROL CODELISTING 

if (EngineSpeed > IDLE.ENGINE.THRESHQLD) 
return, /* wait for engine to slow down */ 

/* set gen desired speed to zero */ 
GenSpeedReq = ZERO.GEN.SPEED.REQ, 

/* find abs(GenSpeed) */ 
genspeed = (GenSpeed < 0)'-GenSpeed GenSpeed, 

If (genspeed > ZERG_GEN_SPEED_THRESHGLD) 
/* not slowed down yet */ 
return, 

/* gen at zero speed and engine at idle at this point ♦/
hybrid.transition = SPEEDIHG UP, 

} 

if (hybrid.transition == SPEEDING UP) 
{ 

/* turn generator around */ 
GenSpeedReq = lo_regime_gen_speed_req(), 

/* begin ramp up of engine */ 
TriggerThrottleUpO, 

} 

/* transition done */ 
hybrid.regime = LG.REGIME, 
hybrid_transition = UNDEFINED, 

} 
else 

/* dictate regular hybrid gen speed & regen */ 
GenSpeedReq = hybrid_gen_speed(), /♦ rpm, with direction ♦/
GenRegen = FULLGENREGEN, 
Throttle = hybrid_throttle(), /* hack ♦/

return, 

float hybrid_em_accel() 
■C 

float max_em_torque, /* N m */ 
float wheel_torque_req, /» N m */ 
float torque_fron_gen, /* N m */ 

/* find maximum possible torque of motor at current speed »/ 
If (EmSpeed < MGTOR_CTQRQUE_CPGWER_CUTDFF) 

max.em.torque = MGTGR_TGRQUE_MAX, 
else 

max.em.torque = MGTGR.PGWER.MAX / RPM2RAD(EmSpeed), 

/* find the drivers requested torque */ 
wheel.torque.req = AccelPedal * VEHICLE.TGRQUE.MAX, 

/* find out what the generator/engine is providing */ 
torque.from.gen = GenCurrent ♦ KT ♦ GEN.TG.WHEEL.RATIG, 



156 APPENDIXD CONTROL CODELISTING 

/* proportion traction motor */ 
return ((MIH(uheel.torque_req/MOTOR.TQ_WHEEL_RATIO, 

MOTOR_TORQUE_MAX) - torque_from_gen) 
/ MOTOR_TORqUE.MAX), /* normalized */ 

float zev_em_accel() 

■C 
float max_em_torque, /» N m ♦/ 
float wheel_torque_req, /* N m ♦/ 

/* find maximum possible torque of motor at current speed */ 
if (EmSpeed < MOTQR.CTORQUE.CPOWER.CUTOFF) 

max_em_torque = MOTOR_TORQUE_MAX, 
else 

max.em.torque = MOTOR.POWER.MAX / RPM2RAD(EmSpeed). 

/* fulfill accel request ♦/ 
uheel_torque_req = AccelPedal * VEHICLE.TORQUE.MAX, 

return (MIN(wheel_torque_req/MDTOR_TO_WHEEL_RATID, 
MQTOR_TORQUE_MAX) / HOTOR.TORQUE.MAX), /* normalized */ 

float hybrid_gen_speed() 

float gen_speed_req, /* rpm */ 
float ice.speed, /» rpm */ 

/* do normal operation */ 
if (hybrid_regime == LO.REGIME) 

/♦ calulate gen speed request */ 
gen_speed_req = A2*vehicle_speed*vehicle_speed + 

Al*vehicle_speed + 
AO, 

/* calculate vhat ue think the engine should be doing */ 
ice_speed = C2*vehicle_speed*vehicle_speed + 

Cl*vehicle_speed + 
CO, 

if (hybrid_regime == HI.REGIME) 

/* calulate gen speed request */ 
gen_speed_req = B2*vehicle_speed*vehicle_speed + 

Bl*vehicle_speed + 
BO, 

/* calculate vhat ue think the engine should be doing */ 
ice_speed = D2*vehicle_speed*vehicle_speed + 

Dl*vehicle_speed + 
DO, 

/♦ proportion generator */ 
return gen_speed_req, /* rpm, with direction */ 



157 APPENDIXD CONTROL CODELISTING 

float hi_regime_gen_speed reqO 

float vspeed, gen_speed_req, 

vspeed = vehicle.speed, 

/* calculate gen speed request */ 
gen_speed_req = B2*vspeed*vspeed + 

Bl*vspeed + 
BO, 

return gen_speed_req. 

float lo.regime gen speed req() 

float vspeed, gen_speed_req, 

vspeed = vehicle.speed; 

/♦ calculate gen speed request */ 
gen_speed_req = A2*vspeed»vspeed + 

Al*vspeed + 
AO, 

return gen_speed_req. 

D.2.7 misc.c 

/* misc c */ 

#include "fceir h" 

#defiiie vehicle_speed s->cvCs->active] vehicle_speed 
#define vehicle.distance s->cvCs->active] vehicle.distance 
#define EmSpeed s->euialogCs->active] in lEmMotorSpeed 
#define GenSpeed s->analog[s->active] in iGenMotorSpeed 
#define Tec s->digitalCs->active] out oTecEnable 
#define PwrSteeringEnable s->digital[s->active] out oPwrSteeringEnable 
#define DisSpeedoO s->cinalog[s->active3 out oDisSpeedoO 
#define DisSpeedol s->£inalogCs->active3 out oDisSpeedol 
#define EmBrakeReq s->analog[s->active] out oEmBrakeReq 
#define BattPackVoltage s->analog[s->active] in iBattPackVoltage 
#define IceState s->cvCs->active] IceState 
#define ThrottleUp s->cvCs->active] ThrottleUp 
#define throttle s->analogCs->active] out oIceThrottlePos 

#define EM_SPEED_TO_VEHICLE_SPEED 96 5333 /* rpm per mph */ 
#define PWR_STR_OFF_SPEED 30 OF /* in vehicle mph */ 
#define PWR_STR_ON_SPEED 25 OF /* in vehicle mph */ 
#define SECONDS.IW.HOUR 3600 OF /* duh */ 
#define WAY.TDQ.FAST.GEN.SPEED 6400 OF /* rpm */ 
#define IDLE.SAFETY.THRGTTLE 0 OF /* normalized, closed ♦/

/* smart charger turn off peirameters */ 
#define SMART.CHARGE.OFF.VDLTAGE 340 OF /* pack voltage */ 
#define SHART.CHANGE.OFF.EM.BRAKE 0 20F /* em brake request */ 



158 APPENDIXD CONTROL CODE LISTING 

#define MIM(a,b) (((a) < (b))'(a) (b)) 
#define MAX(a,b) (((a) > (b))'(a) (b)) 

static double t.old, 

void do_misc() 

{ 
double delta.t, 

double t, 

t = ftask_gettime(), 

/♦ figure delta.t */ 
if (t.old <10) /* first loop or it's January 1, 1970 )*/ 

delta.t =00, 

else 

delta.t = t - t.old, 

t.old - t, 

/* get vechile speed in miles per hour ♦/
vehicle.speed = EmSpeed / EM.SPEED.TO.VEHICLE.SPEED, 

/* calculate distance travelled since boot */ 
/♦ vith Euler method discrete integration */ 
vehicle.distance += vehicle.speed / SECOHDS.IN.HOUR ♦ delta.t, 
/♦ vehicle.distance = 0 OF, */ 

/♦ control power steering pump */ 
if ((PwrSteeringEnable == ON) && (vehicle.speed > PWR.STR.OFF.SPEED)) 

PwrSteeringEnable = OFF, 

if ((PwrSteeringEnable == OFF) (vehicle.speed < PWR.STR.ON.SPEED)) 
PwrSteeringEnable = ON, 

I* control big analog speedometer 
♦ gauge in dash »/ 
DisSpeedoO = DisSpeedol = vehicle.speed, 

#if 0 

/♦ see if smart charger needs to be on */ 
if( (BattPackVoltage > SMART.CHARGE.OFF.VOLTAGE) I I 

(EmBrakeReq > SMART.CHANGE.OFF.EM.BRAKE) I I 
(IceState == ON)) 

SmartChargerEnable = OFF, /♦ run accessories on aux-bat */ 
else 

SmartChargerEnable = ON, /* run dc/dc in parallel to aux-bat ♦/

#endif 

#if 0 

/♦ fix ThrottleUp ♦/
if (IceState == OFF) 

ThrottleUp = OFF, 
#endif 

#if 1 

/* cut engine if generator is speeding too fast */ 



159 APPENDIXD CONTROL CODELISTING 

if (GenSpeed > WAY_T00_FAST_GE1I SPEED) 

/* cut the Ignition, stop engine */ 
Tec = OFF, 

throttle = IDLE.SAFETY.THRDTTLE, 
noticeC'Gen spinning too fast, slowing engine"), 
/* TriggerThrottleUpO, ♦/

#endif 

return. 

> 

D.2.8 ice.ctrl.c 

/* ice_ctrl c */ 

#include <stdlib h> /* exit */ 

♦include "fear h" 

/» macros used in this file */ 
Adefine mode s->cv[s-->active] mode 
♦define IceEngineSpeed s->analog[s->active] in iIceEngineSpeed 
♦define starter s->digital[s->active] out olceStarter 
♦define IceReqState s->cv [s-->active] IceReqState 
♦define IceState s->cv [s-■>active] IceState 
♦define throttle s->analog[s->active] out oIceThrottlePos 
♦define TEC s->digital[s->active] out oTecEnable 
♦define ThrottlePwrCycle s->digital[s->active] out oThrottlePwrCycle 
♦def ine CRANKSEC 0 25F /♦ 25 seconds ♦/ 
♦define STARTTHROTTLE 0 OF /♦ normal ♦/ 
♦define MAXCRAKKS 8 /♦ total 2 crank sec ♦/ 
♦define MIHSTARTRPH 500 OF /♦ rpm ♦/ 
♦define FUELSTARVESEC 2 OF /♦ 2 seconds ♦/ 
♦define STOPTHROTTLE 0 OF /♦ normal ♦/ 
♦define MIHSTOPRPM 500 OF /♦ rpm ♦/ 
♦define MAXFAILEDSTARTS 3 

/* control engine state asynchronously from rest of control loop ♦/ 
void ice_control(void ♦ignored) 
{ 

int failed.starts = 0, 
int internal.state = IceState, 

noticeC'ice controller ready"), 

while(s) /♦ while shm is valid ♦/ 
{ 

int 1=1, 

/♦ wait around util the engine needs to change state ♦/ 
ftask_trigger_block(), 

if (internal.state == DEAD) 
{ 

/♦ been reset externally ♦/ 
internal_state = IceState, 
failed.starts = 0, 

} 

/♦ request to turn on the engine ♦/ 



160 APPENDIXD CONTROL CODE LISTING 

if (CIceReqState == ON) && (IceState == OFF)) 

noticeC'got engine start req"), 

/* stcirt engine */ 
IceState = WORKING, 

ThrottlePwrCycle = ON, 
throttle = STARTTHROTTLE, 

TEC = ON, 

/* try cranking the engine */ 
while((i <= HAXCRANKS) && 

(IceEngineSpeed <= MINSTARTRPM) 
(IceReqState -- ON) ) 

/* crank for a while */ 

starter = ON, 

ftask.delay(CRANKSEC), 
1++I 

} 

//if (1) 
If (IceEngineSpeed >= MINSTARTRPM) /* success */ 
{ 

starter = OFF, 

noticeC'engine started ok"), 

failed.starts = 0, 

/* throttle up in completely 
* automatic fashion in HEV mode 

*/ 

If (mode == ECON_MODE) 

/* wait a bit to let engine 
* stabilize */ 

ftask_delay(0 5F), 
//TriggerThrottleUpO, 
//throttle = THROTTLE MAX, 

} 
IceState = ON, 

} 
else 

{ 
/* failed to start engine */ 
starter = OFF, 

TEC = OFF, 

ThrottlePwrCycle = OFF, 
IceState = OFF, 

noticeC'failed to start engine"), 
/* note should probably keep a count of 
* failed engine start attempts and not 
* even try if not successful after 
* X attempts, update here it is */ 

failed.startS++, 

if (failed_starts == MAXFAILEDSTARTS) 

IceState = DEAD, 



161 APPENDIXD CONTROL CODELISTING 

intenial_state = DEAD, 

} 

} 

} 
else 

/* request to turn off engine ♦/
if ((IceReqState == OFF) && (IceState == ON)) 

noticeC'got engine stop req"), 

/♦ stop engine */ 
IceState = WORKING, 

throttle = STOPTHROTTLE, 

TEC = OFF, /* starve the fuel */ 

ThrottlePwrCycle = OFF, 

/* wait a bit to let things settle */ 
ftask_delay(FUELSTARVESEC), 

if (IceEngineSpeed <= KINSTOPRPM) 

/* It worked */ 

IceState = OFF, 

noticeC'engine stopped ok"), 
} 
else 

/* can't stop the engine */ 
IceState = OH, 

noticeC'can't stop runaway engine"), 
} 

} 
else 

/* if reqstate == actual state, do nothing */ 
if( ((IceReqState == ONT Sc& (IceState == ON)) I I 

((IceReqState == OFF) && (IceState == OFF))) 
{ 

noticeC'ouch, race condition' req==actual"), 
} 

} 
/* should never get here ♦/
noticeC'this should never get here"), 
exit(EXIT_FAILURE), 

D.2.9 soc.c 

/* soc c */ 

#include <string h> /* memset */ 
Sinclude "fear h" 

/* macros used in this file »/ 

#define WHval 0 80 

Sdefine VHval 0 75 

#define Hval 0 65 /* normalized */ 

#define Lval 0 35 

#define VLval 0 25 

#define WLval 0 20 

#define amps (-(s->cv[s->active] kwh.amps)) /♦ reverse sign */ 



162 APPENDIXD CONTROL CODELISTING 

#de±ine volts s->cv[s->active] kwh_volts 
#define SOC s->cv[s->active] SOC 
#define SOCcat s->cv[s->active] SOCcat 

void soc_calculator(void *uimsed) 

< 
int 1, n, loops = 0, 
int SOCcat_old = -1, /♦ for first time ♦/
double SOC.old = -1 OF. 

double vhi, vmed, vlo, 

double blend[14], sum, soc, 

/♦ threshhdd values used in "linear" 

const double hi_thresh = 0 85. 
const double medl_thresh = 0 40. 

const double med2_thresh = 0 50. 
const double loul_thresh = 0 25. 

const double low2_thresh = 0 15. 

/* these are cubic equations ♦/
const double chi[] ={ -5 8633e-05. /* aka coeflOO */ 

1 2505e-02. 

-9 8923e-01. 

3 4203e+02}. 

const double cmed[] =■[ -4 7965e-05. /* aka coefSO ♦/ 
1 1156e-02. 

-9 8899e-01. 
3 3197e+02}. 

const double cloC] = •{ -3 5965e-05. /* completly made up */ 
0 8156e-02. 

-9 8899e-01. 
3 1532e+02}. 

memset((void *)blend, 0, sizeof(blend)), 
n = (sizeof(blend) / sizeof(blend[0])), /» number of elements of blend ♦/ 

noticeC'soc calculator running"). 

while(s) 
{ 

/* find hi. med. lo curves »/ 
vhi = chi [0]»amps*amps»amps + 

chi [1]*amps*amps + 
chi[2]*amps + 
chi [3] . 

vmed = cmed[0]*amps*amps*amps + 
cmed[l]*amps*amps + 
cmed[2]*amps + 
cmed[3] . 

vlo = do [0] *amps»amps*amps + 
do [1] ♦amps*amps + 
clo[2]»amps + 
do [3] . 

if (volts > vhi) 
soc =10. 

else if ((volts <= vhi) (volts > vmed)) 



163 APPENDIXD CONTROL CODELISTING 

/* interpolate betBcen hi and med */ 
soc = ((volts-vmed)/(vhi-vmed)) * 

(hi_thresh -medl.thresh) + 
medl.thresh, 

else if ((volts <=vmed) && (volts > vlo)) 
/* interpolate between med and lo »/ 
soc = ((volts-vlo)/(vmed-vlo)) * 

(med2_thresh - loul.thresh) + 
lowl.thresh, 

else 

/* assign to low */ 
soc = low2_thresh, 

/* could just let SOC=soc here, but averaging over 
* a few points seems to help */ 
sum =00, 

for (i=0,i<=(n-2),1++) 

{ 
blend[i] = blend[i+l], /* shift past values down */ 
sum += blend[i], /* keep a running total */ 

} 
/♦ put current at end */ 
blend[n-l] = soc, 
sum += soc, 

if (loops >= n) 
/* use averaged */ 
SOC = sum / (double)n, 

else 

/* use immediate */ 

SOC = soc, 

/* categorize SOC */ 
/♦ if previous values are unknown, then assume SOC is 
* categorized to the next highest bin */ 
if ((SOCcat.old == -1) I I (SOC.old == -1 0)) 

SOCcat = WL, 

If (SOC > WLval) SOCcat = VL, 
if (SOC > VLval) SOCcat = L, 
if (SOC > Lval) SOCcat = H, 
if (SOC > Hval) SOCcat = VH, 
if (SOC > VHval) SOCcat = WH, 
SOC.old = SOC, 

SOCcat.old = SOCcat, 

/* now that the prevoius value is known, categorize the SOC */ 
if ( ((SOC.old > WLval) kk (SOC < WLval)) I I 

((SOC.old < WLval) kk (SOC > WLval)) ) 
SOCcat = WL, 

if( ((SOC.old > VLval) kk (SOC < VLval)) I I 

((SOC.old < VLval) kk (SOC > VLval)) ) 
SOCcat = VL, 

if( ((SOC.old > Lval) kk (SOC < Lval)) I I 

((SOC.old < Lval) kk (SOC > Lval)) ) 
SOCcat = L, 

If( ((SOC.old > Hval) kk (SOC < Hval)) I I 
((SOC.old < Hval) kk (SOC > Hval)) ) 
SOCcat = H, 

if( ((SOC.old > VHval) kk (SOC < VHval)) I I 



164 APPENDIXD CONTROL CODELISTING 

(CSOC.old < VHval) && (SOC > VHval)) ) 
SOCcat = VH, 

If( ((SOC.old > WHval) 8c& (SOC < VVHval)) I I 
((SGC.old < VVHval) (SOC > WHval)) ) 
SOCcat = VVH, 

SOC.old = SOC, 

SOCcat.old = SOCcat, 

loops++, 

/* SOC isn't very dynamic, kwh meter only runs at IHz ♦/
ftask.delayd 0), 

D.2.10 throttle-Ctrl,c 

/» throttle.ctrl c */ 

tinclude <math h> /* pow */ 
#include "fear h" 

/* macros used in this file */ 

#define throttle s->analog[s->active] out oIceThrottlePos 
//#define ThrottleUp s->cv[s->active] ThrottleUp 

/* constants */ 

#defiue THROTTLE.RAMP.TIME (3 1) /* seconds */ 

//♦define THROTTLE.MAX (0 30) /* normal */ 
♦define THROTTLE.MAX 0 28 
♦define ALPHA ((THROTTLE.MAX +10)/ THROTTLE.MAX) 
♦define BETA.BEND (7 0) 
♦define THROTTLE.HERTZ (10 0) 

/♦ control Mikuni remote throttle asynchronously ♦/ 
void throttle.control(void *unused) 

double t.init, t, 

notice("throttle controller ready"), 

while(s) /* while shm is valid */ 

/* wait around till throttle up signal is passed ♦/ 
ftask.trigger.blockO, 

noticeC'got throttle up req"), 

t = 0 0, 
t.init = ftask.gettimeO, 

/* go into ramp up loop */ 
while(t <= THROTTLE.RAMP.TIME) 
{ 

/* set throttle position */ 
throttle = THROTTLE.MAX * 
(pow(ALPHA, BETA.BEHD* t/THROTTLE.RAMP.TIME) - 1 0) 
/ (pow(ALPHA, BETA.BEND) - 1 0), 



165 APPENDIXD CONTROL CODELISTING 

/* delay */ 
ftasl:_delay( 1 0/THR0TTLE_HERTZ), 

t = ftask.gettimeO - t init, 
} 

noticeC'throttle up done"), 

} 
/* shouldn't get here */ 



Appendix E 

Support Libraries Code Listing 

E.l libfclient: IPG Library 

E.l.l Makefile 

# requires gnu make 

=CC CC 

AR ar 

ARFLAGS = qcr 

RANLIB = true 

DEFINES = 

INCLUDES = 

QUIET = -Q -wx 

OPTS = -Orailnextm -4r -fp3 -fpi87 
#DEBUG = -g 
CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) ! 
FILES = fclient_create„shin c fclient_opeii_shm 
FILES += fclieiit_delete_shm c s_die c 
OBJS = $(FILES c= o) 

LIBOUT = libfclient a 

DEPEND = msikedepend 
LIBDIR = /opt/fcar/lib/ 

all $(LIBOUT) 

install $(LIBOUT) 
cp -f $(LIBOUT) $(LIBDIR) 

dep 
$(DEPEND) — $(CFLAGS) -D__qNX_. ~ $(FILES) 

clean 

rm -f $(OBJS) $(LIBOUT) core ♦ err 

$(LIBOUT) $(OBJS) 

$(AR) $(ARFLAGS) $Q $" 

$(RAMLIB) $a 

E.1.2 fclient.h 

/* fclient h */ 

166 



167 APPENDIXE SUPPORTLIBRARIES CODELISTING 

Sifndef FCLIENT_INCLUDED 

Sdefine FCLIENT.INCLUDED 

#include <fcntl h> /* open mode types */ 
#include "fcar.common h" /* shared_hw_data structure definition */ 

Sifndef NULL 

#define NULL 0 

#endif 

/* process control feedback ♦/
enum{ NOTICE, WARN, FATAL }, 
#define die(m) s_die(._FILE__, __LINE__, m, FATAL) 
tdefine warn(m) s_die(._FILE__, __LINE__, m, WARN) 
#define notice(m) s_die(._FILE__, __LINE__, m, NOTICE) 

tifdef cplusplus 
extern "C" i 

#endif 

/* function prototypes */ 
extern struct shcired_hw_data * fclient_create_shm(void), 
extern int fclient_delete_shm(void), 

extern struct shared_liw_data * fclient_open_shm(mode_t mode), 
extern void s_die(char ♦, int, char *, int), 

#ifdef cplusplus 
} 
#endif 

#endif 

E.1.3 fcar_common.h 

/* fcar.common h */ 

/* info shared with other programs ♦/

#ifndef FCAR_COMMON_H 

#define FCAR.COMMON.H 

/* shows up in /dev/shmem */ 
#define FCAR_SHARED_HW_DATA_NAME "fcar_shared_hw_mem" 

/* for data logging */ 
#define SECONDS.TO.STORE 3600 /* 1 hour's worth */ 

/* ice modes */ 

enum ■{ 0FF=O, ON, WORKING, DEAD }, 

/♦ mode types */ 
enum { ZEV.MODE, ECON.MODE, SPORT.MODE, REVERSE.MODE, PARK.MODE, NEUTRAL.MODE }, 

/♦ state of charge category types */ 
enum { VVL, VL, L, H, VH, VVH }, 

/* hybrid mode regime types */ 
enum { LO.REGIME, HI.REGIME }, 

/♦ hybrid transition types */ 



 

168 APPENDIXE SUPPORTLIBRARIES CODE LISTING 

enum{ UHDEFINED=0, SLOWING.DOWN, SPEEDING.UP 

struct calculated.values 

float SOC, /* state of charge */ 
int SOCcat, /* state of charge category */ 
int mode. /» "mode" like ZEV, SPORT, etc ♦/
float vehicle.speed, /* speed in mph */ 
float vehicle.distance, /♦ distance vehicle travelled since boot */ 
float energy.level, /♦ total combined energy */ 
float kwh.volts, /* battery pack voltage */ 
float kwh.amps, /* battery pack current */ 
int IceReqState, /* requested state of the engine */ 
int IceState, /* actual state of the engine */ 
int running, /» fear control program is running */ 
int hybrid.regime, /* different gen/eng proportioning »/ 
int hybrid.transition, /♦ changes during lo-hi, hi-lo */ 

}, 

struct fcard_runtime_values 

unsigned fcard_harduare_timer_h2, 

int fcard_manager_pr10, 
int fcard_hardware_task_prio, 

int fcard_kHh_task_prio, 
int fcard_config_task_prio, 

}, 

/* 
* xxxSen - linear slope sensitivity 
♦ xxxOff - linear y-intercept 

*/ 
struct calibration.values 

■c — 
/* inputs */ 
float lEmMotorSpeedSen, 
float lEmMotorSpeedOff, 
float iGenMotorSpeedSen, 
float iGenMotorSpeedOff, 
float iIceEngineSpeedSen, 
float iIceEngineSpeedOff, 
float lAccelPedalLevelSen, 
float lAccelPedalLevelOff, 
float iBrakePedalLevelSen, 
float iBrakePedalLevelOff, 
float lActualEmTorqueSen, 
float lActualEmlorqueOff, 
float iFuelPressureSen, 
float iFuelPressureDff; 
float lEmCurrentNegSen, 
float lEmCurrentNegOff, 
float lEmCurrentPosSen, 
float lEmCurrentPosOff, 
float iGenCurrentSen, 
float iGenCurrentOff, 
float iBattPacklempSen, 
float iBattPacklempOff, 
float iBattPackVoltageSen, 
float iBattPackVoltageOff, 
float iBattPackCurrentSen, 

https://SPEEDING.UP


169 APPENDIXE SUPPORTLIBRARIES CODELISTING 

float iBattPackCurrentOff, 

float lEmRotorTempSen, 
float lEmRotorTempOff, 
float lEmlnvTempSen, 
float lEmlnvTempOff, 
float iTpsFeedbackSen, 
float iTpsFeedbackOff, 
/* outputs ♦/
float oGeuSpeedReqSen, 
float oGenSpeedReqOff, 
float oGenRegenLimitSen, 
float oGenRegenLimitOff, 
float oEmAccelReqSen, 
float oEmAccelReqOff, 
float oEmBrakeReqSen, 
float oEmBrakeReqOff, 
float oIceThrottlePosSen, 

float oIceThrottlePosGff, 

float oDisSpeedoOAmplitude, /* speedometer based on sine */ 
float oDisSpeedoOPhaseAngle, 
float oDisSpeedolAmplitude, 
float oDisSpeedolPhaseAngle, 
float oPurToDigRacksSen, 
float oPwrToDigRacksGff, 

}. 

struct input_digital_hcirdw£ire 

{ 
unsigned iPark, 
unsigned iReverse, 
unsigned iNeutral, 
unsigned iDriveSport, 
unsigned iDriveEcon, 
unsigned iZEV, 
unsigned iHvac, 
unsigned lEmlempHEirn, 
unsigned lEmControllerReady, 
unsigned lEmFaultlndicator, 
unsigned lEmGvertempIndicator, 
unsigned iGenTempUarn, 
unsigned iGenControllerReady, 
unsigned iGenFaultlndicator, 
Tmsigned iGenDirectionlndicator, 
unsigned iIceFaultlndicator, 

>. 

struct output_digital_hardware 
■c 

unsigned olceStarter, 
unsigned oTecEnable, 
unsigned oEmEnable, 
unsigned oEmDirection, 
unsigned oGenEnable, 
unsigned oPvrSteeringEnable, 
unsigned oThrottlePwrCycle, 
unsigned oSmartChargerEnable, 

}, 

struct digital.hardware 



170 APPENDIXE SUPPORTLIBRARIES CODELISTING 

struct input.digital.harduare in, 
struct output_digital_hardvare out, 

>, 

struct input_analog_hardware 

float lEicMotorSpeed, 
float iGenMotorSpeed, 
float ilceEngineSpeed, 
float lAccelPedalLevel, 

float iBrakePedalLevel, 

float lActualEmTorque, 
float iFuelPressure, 

float lEmCurrent, 

float iGenCurrent, 

float iBattPackTemp, 
float iBattPackVoltage, 
float iBattPackCurrent, 

float lEmRotorTemp, 
float lEmlnvTemp, 
float iTpsFeedback, 

>, 

struct output_analog_hardware 

{ 
float oGenSpeedReq, 
float oGenRegenLimit, 
float oEmAccelReq, 
float oEmBrakeReq, 
float oIceThrottlePos, 

float oDisSpeedoO, 
float oDisSpeedol, 
float oPwrToDigRacks, 

>, 

struct analog_hcirdware 

■C 
struct input_analog_hardware in, 
struct output_analog_hardware out, 

}. 

Struct sliared_hw_data 

•c 
struct calibration.values cal, 
struct fcard.runtime.values fcard.rv, 
struct calculated.values cv[SECQNDS_TO.STORE], 
struct digital.hardware digital[SECONDS.TO.STORE], 
struct analog.hardware analog[SECOHDS.TO.STORE], 
int active, 
unsigned seconds, 

}, 

#endif 

E.1.4 fclient_create_shm.c 
/* fclient.create.shm c */ 

Sinclude <fcntl h> /♦ sliiii.open */ 
#include Csys/nmian h> /» shm.unlink, shm.open, nimap */ 

https://fcard.rv


171 APPENDIXE SUPPORTLIBRARIES CODELISTING 

#include <sys/types h> /* Itninc */ 
#include <unistd h> /* close */ 

tinclude <string h> /* memset */ 
finclude <sys/stat h> /♦ umask »/ 
Sinclude "fclient h" 

struct shared_hw_data ♦fclient_create shm(void) 
i 

int fd, /* temporary ♦/ 
struct shared_hw_data *d, 

/* get rid of any of our old shared memory if it exists »/ 
(void)shm_unlink(FCAR_SHARED_HW_DATA_NAME), 

umask(O), /* total control »/ 

/* create shared memory object */ 
fd = shm_open(FCAR_SHARED_HW_DATA_MME, O.RDWR I O.CREAT, 0644), 

if (fd == -1) return BULL, 

/♦ set the shared memory object size */ 
Sifdef __QMX__ 

/* for some reason QBX likes to use Itnmc while the 
* POSIX 1003 lb spec calls for using ftruncate ♦/ 

if (ltrunc(fd, sizeof(struct shared_hu_data), SEEK.SET) == -1) 
dieC'ltrunc"), 

#else 

if (ftruncate(fd, sizeof(struct shared_hw_data)) == -1) 
dieC'ftruncate"), 

#endif 

/* map memory object to local space ♦/ 
d = mmap(0, sizeof(struct shared_hw_data), 

PROT_READ I PROT.WRITE I PROT.BOCACHE, 
MAP.SHARED, fd, 0), 

if ( d == (void *)-l) return BOLL, 

/* clean up close file descriptor •/ 
(void)close(fd), 

/* initialize struct to zero ♦/ 
memset((void *)d, 0, sizeof(struct shared_hu_data)), 

/♦ done */ 
return d. 

E.1.5 fclient_delete_shin.c 
/* fclient_delete_shm c */ 

#include <sys/mman h> /* shm_unlink ♦/ 
#include "fclient h" 

int fclient_delete_shm(void) 
C 

if (shm.unlink(FCAR_SHARED_HW_DATA.BAME) '= 0) 
return 1, 



172 APPENDIXE SUPPORTLIBRARIES CODELISTING 

return 0, 

E.1.6 fclient_open_shm.c 
/* fclient_open_shm c */ 
#include <stdio h> 

#include <fcntl h> /» shin.open ♦/
#include <sys/iiiman h> /* shm.open, mmap */ 
Sinclude <unistd h> /* close */ 

Sinclude <time h> /* nanosleep */ 
#include "fclient h" 

#define WAITNSEC 1000000000L/4L /* 0 25 seconds */ 
#define KUMTRIES 16 /* try for 4 seconds */ 

/* this might be tricky fcard may not have made the shared 
* memory segment yet Here we'll keep trying for a few seconds 
* and ball out if it's not there after a few tries ♦/

struct shared_hw_data *fclient_open_shm(mode t mode) 

{ 
int fd, 

struct shared_hw_data fd, 

struct timespec ts = {0, WAITNSEC 
int 1 = 0, 

/* open shared memory */ 
while( ((fd=shm_open(FCAR_SHARED_HW.DATA_NAME,0_RDONLY, 0644))==-l) 

&& (i < NUMTRIES)) 

{ 
if ('(i 7. 4)) notice("fclient trying to connect"), 
1++, 

nanosleep(ftts, NULL), 

if (fd == -1) return NULL, 

/* map memory object to local space »/ 
switch (mode) 

case G_RDDNLY 

d = mmap(0, sizeof(struct shared.hw.data), 
PROT_READ I PROT_NOCACHE, 
MAP.SHARED, fd, 0), 

break, 

case O.RDWR 

d = mmap(C, sizeof(struct shared_hw_data), 
PROT.READ 1 PROT_WRITE I PROT.NOCACHE, 
MAP.SHARED, fd, 0), 

break, 

default 

return NULL, 

} 

if (d == (void ♦)-!) return NULL, 

(void)close(fd), 
return d. 



173 APPENDIXE SUPPORT LIBRARIES CODELISTING 

E.1.7 s_die.c 

/♦ s_die c ♦/
#include <stdio h> /♦ stderr ♦/
#include <stdlib h> /♦ exit ♦/
#include <time h> /♦ timestamp stuff ♦/
#include <unistd h> /♦ getpid ♦/
#include <string h> /♦ strerror. strlen ♦/
#include "fclient h" 

void s_die(char *wherehappen, int line, char ♦message, int seventy) 

char tbuf[64], /♦ where to put time stamp ♦/ 
char Ibuf [256], /♦ output string ♦/ 
time_t t, 

t = time(NULL), 
strftimeCtbuf, sizeof (tbuf), "Xm/%d/'/,y '/.H 7.M "/.S", localtime(&t)) ; 

switch (severity) 
{ 

case NOTICE 

sprintf (Ibuf, "7s [7d] notice (%s '/,d) y.s\n", 
tbuf, getpidO, wherehappen, line, message), 
break, 

case WARN 

sprintf (Ibuf, "'/,s ['/,d] Warn ('/,s 7d) "/.sKn" , 
tbuf, getpidO, wherehappen, line, message), 
break, 

case FATAL 
sprintf (Ibuf, "7.s ['/.d] FATAL (7,s 7.d) 7.s '/.sNn", 
tbuf, getpidO, wherehappen, line, message, 
strerror(errno)), 
break, 

default 
sprintf(Ibuf, "Xs [7d] Huh' (7s 7d) 7s 7s\n", 
tbuf, getpidO, wherehappen, line, message, 
strerror(errno)), 

} 
/♦ 
if (strlendbuf)-l > sizeof (Ibuf)) 

severity = FATAL, ♦/ 

write (STDERR.FILENQ, Ibuf, strlendbuf)), 

if (severity == FATAL) exit(EXIT_FAILORE), 

return, 



174 APPENDIXE SUPPORTLIBRARIES CODE LISTING 

E.2 libftask: Task Primitives Library 

E.2.1 Makefile 

# requires gnu make 

TRIGGER_METHOD = qnx 
#TRIGGER_METHOD = sig 
#TRIGGER_METHOD = pipe 

CC CC 

AR ar 

ARFLAGS qcr 

RANLIB true 

DEFINES -DDEBUG 

INCLUDES 

QUIET -Q -wx 

OPTS -Orailnextm -4r -fp3 -fpi87 
SDEBUG -g 

CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 

LIBFILES ftask c ftask.time c timer_qnx c 

ifeq ($CTRIGGER_METHOD),qnx) 
LIBFILES += trigger.qnx c 
endif 

ifeq ($(TRIGGER.METHOD),pipe) 
LIBFILES += trigger_pipe c 
endif 

ifeq ($(TRIGGER_METHOD),sig) 
LIBFILES trigger.sig c 

endif 

LIBGBJS $(LIBFILES c= o) 

LIBOUT libftask a 

DEPEND makedepend 

THISDIR $(shell basename $$(pud)) 
QNX_HOST greed 
qNX_PARENTDIR -/ 

all $(LIBOUT) #demos 

$(LIBOUT) $(LIBOBJS) 

$(RM) $(LIBOUT) 

$(AR) $(ARFLAGS) $0 $" 

$(RANLIB) $8 

demos 

$(MAKE) -C demos 

ftask.hint o ftask.hint c 

$(CC) $(CFLAGS) -2u -Wc,-s -c $< 

dep 
$(DEPEND) ~ $(CFLAGS) -D__QNX„ ~ $(FILES) 

install all 

clean 

rm -f $(LIBOBJS) $(LIBOUT) * err 



175 APPENDIXE SUPPORTLIBRARIES CODE LISTING 

$(MAKE) -C demos clean 

rsync 

cd !c rsync -avzt $(THISDIR) $(QHX_HOST) $(QMX_PARENTDIR) 

rmake rsync 
rsh $(QNX_HOST)'(cd $(QNX_PAREIITDIR)$(THISDIR) 6& make)' 

rclean 

cd &8i rsync -avzt —delete $(THISDIR) $(QNX_HOST) $(QMX_PAREHTDIR) 

PHONY demos dep clean install rsync rmake rclean 

E.2.2 ftask.h 

/* ftask h */ 

#ifndef FTASK.INCLUDED 

#define FTASK.INCLUDED 

#lfdef __QNX__ 

Sinclude <sys/sched h> /* sched.setscheduler, sched.yield */ 
#else 

tinclude <sched h> 

Sendif 

#include <sys/types h> /* pid.t */ 

struct ftask 

{ 
int policy, 
int priority, 

void (*start_func)(void *), 
void *start_func_arg, 
void (*cleanup_func)(int), 
int allow.trigger, 
int allou.periodic.timer, 
int periodic.timer.hz, 
pid.t fid, /♦ filled in after fork */ 
union 

{ 
pid.t trig.proxy, /* this is only used for qnx triggers */ 
int pipefds[2], /* only used for pipe triggers */ 

y. 
}. 

typedef struct ftask ftask, 

#ifdef cplusplus 
extern "C"{ 

#endif 

/♦ public function prototypes */ 
extern int ftask.init(ftask *ft, /* handle ♦/ 

int policy, /* valid scheduling policy */ 
int priority, /* valid scheduling priority */ 
void (*start.func)(void *), /* task entry function */ 
void *start_func_arg, /* entry function argument */ 
void (♦cleanup.func)(int), /* "destructor" */ 
int allow.trigger. /* triggering ability bool */ 

https://periodic.timer.hz


176 APPENDIXE SUPPORTLIBRARIES CODELISTING 

int allow_periodic_timer, /* use periodic timer bool ♦/
int periodic_timer_hz), /* integer hz (if enabled) »/ 

extern int ftask.delay(double sec), 
extern int ftask.sched.adjust.self(int policy, int priority), 
extern int ftask_register_cleanup_self(void (♦cleanup.func)(int)), 
extern int ftask.register_reread_self(void (*reread_func)(int)), 
extern int ftask_delete(ftask *ft), 
extern int ftask_destroy(ftask *ft), 
extern int ftask_trigger(ftask *ft), 
extern int ftask_trigger_block(void), 
extern int ftask_create(ftask *ft), 
extern int ftask_wait_on_tasks(ftask tret), 
extern int ftask_saine(ftask *first, ftask «second), 

extern int ftask_periodic_timer_block(void), 

extern double ftask_gettime(void), 

#ifdef cplusplus 
} 
#endif 

#endif 

E.2.3 ftask-private.h 
/* ftask.private h - internal stuff for libftask ♦/ 

#ifndef FTASK_PRIVATE_INCLUDED 
#define FTASK.PRIVATE.IKCLUDED 

#define FTASK.DELETE.SIG SIGTERM 
#define FTASK.DESTROY.SIG SIGKILL 
fdefine FTASK_TRIGGER_SIG SIGUSRl 
#define FTASK.REREAD.SIG SIGHOP 

#ifdef DEBUG 
#include <stdio h> 
#define DTRACE(x) printf x 
#else 

#define DTRACE(x) 
#endif 

#endif 

E.2.4 timer_qnx_private.h 
/* ftask_hint_p h - private stuff ♦/ 

#ifndef TIMER.QMX.PRIVATE.INCLUDED 
#define TIMER.QWX.PRIVATE.INCLUDED 

/* private function prototypes */ 
pid_t far timer_inthandler(void), 
int timer_hint_attach(int divisor), 
void timer_hint_detach(void), 
void timer_register_cleanup(void), 
int timer_get_timer_hz(void), 



177 APPENDIXE SUPPORTLIBRARIES CODELISTING 

#endif 

E.2.5 trigger-private.h 
/* ftask-hint.p h - private stuff */ 

#lfndef TRIGGER-PRIVATE.INCLUDED 

#define TRIGGER.PRIVATE.INCLUDED 

/* private function prototypes */ 
int trigger.setupCftask *ft), 
void trigger.register.cleanupCvoid), 
int parent-prefork(ftask *ft), 
int parent-postforkCftask »ft), 

#endif 

E.2.6 ftask.c 

/* ftask c */ 

#include <stdlib h> /* atexit */ 

Sinclude <sys/types h> /* fork, kill, wait */ 
♦include <unistd li> /* fork, getuid */ 
♦include <signal h> /* sigaction, kill */ 
♦include <sys/wait h> /* wait */ 
♦include <errno h> 

♦include "ftask h" 
♦include "ftask.private h" 
♦include "timer.qnx.private h" 
♦include "trigger.private h" 

int ftask.init(ftask *ft, 
int policy, 
int priority, 
void (*start_func)(void *), 
void ♦start.func.cirg, 
void (•cleanup.func)(int), 
int allow.trigger, 
int allou-periodiC-timer, 
int periodic.timer.hz) 

if (ft) 

ft->policy = policy, 
ft->priority = priority, 
ft->start_func = start.func, 
ft->start_func_arg = start.func.arg, 
ft->cleanup_func = cleanup.func, 
ft->allow.trigger = allow.trigger, 

/* this implimentation doesn't allow both a 
* trigger and periodic timer, enforce that 
* here */ 

if (allow.periodic.timer && allow.trigger) 
{ 

DTRACE(("periodic timer and trigger not allowed\n")), 
goto bad.init. 

https://periodic.timer.hz


178 APPENDIXE SUPPORTLIBRARIES CODELISTING 

if (allow_periodic_timer 8c& (periodic.timer.hz <= 0)) 
■c 

DTRACEC("periodic timer cannot be negative\n")), 
goto bad.init, 

> 

ft->allow_periodic_timer = allov_periodic_timer, 
ft->periodic_timer_h2 = periodic_timer_hz, 
/* fid filled in after fork */ 

return 0, 
} 

bad_init 
errno = EINVAL, 
return -1, 

> 

/* scheduling parameters are implicitly inheirited across fork */ 
int ftask_sched_adjust_self(int policy, int priority) 
{ 

struct sched.param sp, 

sp sched_priority = priority, 

return (sched_setscheduler(0, policy, fesp)), 
> 

/* signal handlers are also inheirited */ 

/* handler for SIGTERM */ 
int ftask_register_cleanup_self(void (♦cleanup func)(int)) 
■C 

struct sigaction act, 

act sa_handler = cleanup_func, 
sigemptyset(&act sa_mask), 
act sa_flags = 0, 

return(sigaction(FTASK_DELETE_SIG, &act, NULL)), 

/♦ handler for SIGHUP ♦/ 
int ftask_register_reread_self(void (♦reread func)(int)) 
{ 

struct sigaction act, 

act sa_handler = reread.func, 
sigefflptyset(Aact sa.mask), 
act sa.flags = 0, 

retum(sigaction(FTASK_REREAD_SIG, ftact, NULL)), 

int ftask_delete(ftask ♦ft) 

return (kill(ft->fid, FTASK.DELETE.SIG)), 
} 

https://periodic.timer.hz


179 APPENDIXE SUPPORTLIBRARIES CODE LISTING 

int ftask.destroy(ftask »ft) 

return (kill(ft->fid, FTASK.DESTROY SIG)), 
} 

void ftask_generic_cleanup_func(int sig) 
{ 

exit(EXIT.SUCCESS), 

} 
\ 

int ftask.createCftask »ft) 

/* might need to do some setup */ 
if (parent.prefork(ft) == -1) 

return -1, 

/* first off fork */ 

switch(ft->fid=forkO) 

case 0 /* child ♦/
break, 

case -1 /* err */ 

return -1, 

default /* parent */ 
return (parent.postforkCft)), 

> 

/* set policy, priority */ 
if (ftask.sched.adjust.self(ft->policy, ft->priority) == -1) 
{ 

DTRACE(("ftask_sched_adjust_self failed for '/.d\n", 
getpidO)), 

goto fail, 
} 

/* (re)set all signal handlers possibly 
* messed with to the default */ 

if (ftask.register.cleanup.self(SIG DFL) == -1) 
{ 

DTRACE(("reseting cleanup failed for '/.d\n", getpidO)), 
goto fail, 

> 

if (ftask.register.reread.self(SIG.DFL) == -1) 

DTRACE(("reseting reread failed for '/,d\n", getpidO)), 
goto fail, 

} 

/* even if a cleanup routine isn't requested for a 
* periodic timer task, add one that just calls exitO, 
* this lets the atexitO call later on work */ 

if ((ft->cleanup_func == NULL) && ft->allow_periodic_timer) 
ft->cleanup_func - ftask.generic.cleanup.func, 

/* same for triggers */ 
if ((ft->cleanup_func == HULL) && ft->allou_trigger) 

ft->cleanup_func = ftask.generic.cleanup.func. 



180 APPENDIXE SUPPORTLIBRARIES CODELISTING 

/* register the cleanup function, if applicable */ 
if (ft->cleanup_func) 

if (ftask_register_cleanup_self(ft->cleanup_func) == -1) 
{ 

DTRACE(("ftask_register.cleanup failed for /CdSn", 
getpidO)), 

goto fail, 

} 

/* if triggering ability is requested */ 
if (ft->allow_trigger) 

if (trigger_setup(ft) == -1) 
{ 

DTRACE(("trigger setup failed for '/.d\n", getpidO)), 
goto fail, 

} 

trigger_register_cleanup(), 

if (ft->allow_periodic_timer) 
{ 

int current.hz = timer_get_timer_hz(), 
int div = current_hz / ft->periodic_timer_hz, 

if (div <= 0) 

/» req hz > current hz, or current_hz fail */ 
/» increasing the timer freq not supported (yet) */ 
DTRACECC'bad div for '/,d\n", getpidO)), 
goto fall. 

if (getuidO 1= 0) /♦ don't even attempt if not root ♦/
{

DTRACECC'you must be root to attach to the timerXn")), 
goto fall. 

if (timer_hint_attach(div) == -1) 

DTRACE(("timer_hint_attach failed for '/.dVn", 
getpidO)), 

goto fail, 

} 

timer_register_cleanupO, 

/* call the start routine */ 

if (ft->start_func) 

ft->start_func(ft->start_func_arg), 

/* shouldn't return, but call cleanup if available */ 
if (ft->cleanup_func) 

ft->cleanup_func(0), 

https://current.hz


181 APPENDIXE SUPPORTLIBRARIES CODELISTING 

> 

exit(EXIT_SUCCESS), /* task complete successful */ 

fail 

/* should print some message */ 
DTRACE(("ftask_create reached \"fail\" markVn")), 
exit(EXIT.FAILURE), 

return -1, /* keep compiler happy */ 

int ftask_wait_on_tasks(ftask *ret) 

{ 
int status, 

ret->fid = waitCScstatus), 
return status, 

} 

/» more like similar */ 

int ftask_same(ftask *first, ftask »second) 

if (first->fid == second->fid) 
return 1, 

return 0, 

E.2.7 ftask_time.c 

#ifdef __QNX__ 

#include <sys/time h> /* nanosleep */ 
#else 

tinclude <time h> 

#endif 

#include <time h> /* clock.gettime */ 
tinclude "ftask h" 

double ftask_gettime(void) 

struct timespec ts, 

clock_gettime(CLOCK_REALTIME, &ts), 
return ((double)ts tv_sec + (double)(ts tv nseo)/1000000000 0), 

} 

int ftask_delay(double sec) 

struct timespec ts, 

ts tv.sec = (time_t)sec, /* trunc */ 
ts tv.nsec =(time_t)((sec - (double)ts tv_sec)*1000000000 0), 

return(nanosleep(&ts, NULL)), 



182 APPENDIXE SUPPORTLIBRARIES CODELISTING 

E.2.8 timer_qnx.c 
/* timer_qnx c */ 

#include <stdlib h> /* atexit */ 

Sinclude <sys/irqiiifo h> /* qnx_hint_attach »/ 
Sinclude <sys/proxy h> /♦ qnx_proxy_attach */ 
#include <sys/osinfo h> /* qnx.osinfo */ 
#include <sys/keriiel h> /* FP_SEG, Receive */ 
Sinclude <time h> /* qnx.ticksize */ 

Sinclude "ftask h" 

Sinclude "ftask.private h" 
Sinclude "timer_qnx_private h" 

Sdefine FTASK_TIMER_IRQ 0 /» 386 pc timer interrupt */ 

/* a hardware interrupt handler, must be compiled 
♦ with "-ZU -Wc,-s" in the CFLAGS ♦/

static volatile unsigned irqeounter = 0, 
static volatile unsigned timer.ticks, 
static pid_t timer.proxy, 
static int qnx_interrupt_id. 

Spragma off(check.stack), 

pid_t far timer_inthandler(void) 
{ 

++irqcounter, 

if (irqeounter == timer.ticks) 

irqeounter = 0, 
return timer.proxy, 

> 
return 0, 

} 

Spragma on(check_stack), 

/* APIentry */ 
int ftask_periodic_timer_block(void) 

retum(Receive(timer_proxy, 0, 0)), 

} 

int timer_hint_attach(int divisor) 

{ 
/* get a proxy */ 
if( (timer_proxy=qnx_proxy_attach(0,0,0,-1)) == -1) 

return -1, 

timer.ticks = divisor, 

/* attach handler to hardware interrupt */ 
if( (qnx_interrupt_id=qnx_hint_attach(FTASK_TIMER_IRQ, 

fetimer.inthandler, FP_SEG(&irqcounter))) == -1) 
return -1, 

return 0, 



 

183 APPENDIXE SUPPORTLIBRARIES CODELISTING 

void timer_liint_detach(void) 

{ 

qnx_hint_detach(qnx_interrupt_id), 
qiix_proxy_detach(timer_proxy), 

} 

int tiiiier_get_timer_hz(void) 
{ 

struct .osinfo osi, 

unsigned usec, 

if (qnx_osinfo(0, (struct _osinfo *)&osi) == -1) 
return -1, 

usec = (unsigned)osi tick_size, 

return (int)(lOOOOOOU / usec), 

#if 0 

/♦ this IS a bad function, processes shouldn't 
* arbitrarily mess with the timer tick */ 
int ftask_set_timer hz(int hz) 

■C 
long nsec, 

nsec = lOOOOOOOOOL / (long)hz, 

/♦ standard ticksizes 
* 

5, 1, 2, 5, 10, 25, 50, 
2000,1000,500,200,100, 40, 20, 

55 
18 2 

ms 
Hz */ 

} 
#endif 

If (qnx_ticksize(nsec, _TICKSIZE_STAMDARD) 
return -1, 

return 0, 

== -1) 

void timer_register_cleanup(void) 

/* there should be a better way to do this make 
* sure that the interrupt handler is released 
♦ before the task exits ♦/ 

atexit(timer_hint_detach), 

E.2.9 trigger_pipe.c 

#include <unistd h> 
#incliide <stdlib.h> 
#include <errno h> 
#include "ftask h" 

#include "ftask_private h" 

/* pipe, read, write */ 
/* atexit */ 

static int readfd. 



184 APPENDIXE SUPPORTLIBRARIES CODELISTING 

int pcirent_prefork(ftask *ft) 

/* initialize pipe */ 
return(pipe(ft->pipefds)), 

} 

int parent.postforkCftask *ft) 

/♦ give child a chance to run */ 
sched.yieldO, 

/* parent doesn't use reader side */ 
return (close(ft->pipefds[0])), 

> 

int trigger_setup(ftask *ft) 

readfd = ft->pipefds[0], 

/* child doesn't use writer side */ 

return (close(ft->pipefds[l])), 
} 

/* APIentry */ 
int ftask_trigger(ftask *ft) 
{ 

int msg = 0, 

if (ft->allow_trigger) 

if (write(ft->pipefds[1], &msg, sizeof(msg)) == -1) 
return -1, 

return 0, 

errno = EIMVAL, 

return -1, 

/♦ APIentry */ 
int ftask_trigger_block(void) 

int msg, 

if (read(readfd, tonsg, sizeof(msg)) == -1) 
return -1, 

return 0, 

void trigger_detach(void) 

close(readfd), 

void trigger_register_cleanup(void) 

atexit(trigger_detach), 



185 APPENDIXE SUPPORTLIBRARIES CODELISTING 

E.2.10 trigger_qnx.c 

♦include <sys/proxy h> /* qnx_proxy_attach */ 
♦include <sys/kernel h> /» FP.SEG, Receive, Send */ 
♦include <unistd h> /* getppid ♦/ 
♦include <stdlib h> /♦ atexit */ 
♦include <ermo h> 
♦include "ftask h" 
♦include "ftask_private h" 

static pid_t trig_proxy, 

int parent_prefork(ftask *ft) 
■C 

/* nothing ♦/ 
return 0, 

} 

int parent_postfork(ftask *ft) 
■C 

if (ft->allow_trigger) 

/* wait for the proxy number from child ♦/ 
if (Receive( ft->fid, (void ♦)8:trig_proxy, 

Eizeof(trig.proxy)) == -1) 
return -1, 

ft->trig_proxy = trig.proxy, 

/* send back a null reply (OK) */ 
if (Reply(ft->fid, TOLL. 0) == -1) 

return -1, 
} 
return 0, 

} 

int trigger.setup(ftask *ft) 
C 

/* get a proxy */ 
if ((trig.proxy = qnx_proxy_attach(0,0,0,-1)) == -1) 

return -1, 

/* let the parent know the proxy number, so that it 
* can trigger later */ 

Send(getppid(), (void »)&trig_proxy, TOLL, 
sizeof(trig.proxy), TOLL), 

return 0, 
} 

/♦ APIentry */ 
int ftask_trigger(ftask ♦ft) 

if (ft->allow_trigger) 
{ 

return (Trigger(ft->trig_proxy)), 
} 

errno = EINVAL, 
return -1, 



186 APPENDIXE SUPPORTLIBRARIES CODELISTING 

/* APIentry */ 
int ftask_trigger_block(void) 
■C 

returii(Receive(trig_proxy, 0, 0)), 
} 

void trigger_detach(void) 

qnx.proxy.detachCtrig.proxy), 
} 

void trigger_register_cleanup(void) 

atexit(trigger_detach), 
} 

E.2.11 trigger_sig.c 
#include <signal li> 
tinclude <erriio h> 

♦include "ftask h" 
♦include "ftask.private h" 

int paxent_preforkCftask *unused) 
■C 

/* nothing */ 
return 0, 

} 

int parent_postforkCftask *unsused) 

/* give child a chance to run ♦/ 
sched.yieldC), 
sched.yieldO, 
sched_yield(), 
sched.yieldC), 
return 0, 

} 

void ftask.null.handlerCint ignored) 

/* null handler, just return */ 
y 

int trigger.setupCftask *unused) 
■C 

struct sigaction act, 
sigset.t block.these, 

sigemptysetC&block.these), 
sigaddsetC&block.these, FTASK.TRIGGER.SIG), 
sigprocmaskCSIG.BLQCK, feblock.these, NULL), 

act sa.handler = ftask.null.handler, 
sigemptysetC&act sa.mask), 
act sa.flags = 0, 

returnCsigactionCFTASK.TRIGGER.SIG, feact, NULL)), 



187 APPENDIXE SUPPORTLIBRARIES CODELISTING 

/* APIentry */ 
int ftask_trigger(ftaslc N-ft) 

if (ft->allow_trigger) 
return (kill(ft->fid, FTASK.TRIGGER.SIG)), 

errno = EINVAL, 

return -1, 

> 

/* APIentry */ 
int ftask_trigger_block(void) 

/♦ this complication allows the trigger signal to 
* be blocked, that is it won't interrupt the 
♦ task until it calls ftask_trigger_ blockO */ 
sigset.t s, 

sigemptyset(&s), 
return(sigsuspend(Scs)), 

void trigger_register_cleanup(void) 

/* nothing here ♦/



cc 

Appendix F 

User Interface Code Listing 

F.l vfd: Vacuum Flourescent Display program 

F.l.l Makefile 

DEFINES 

INCLUDES -I /libfclient -I /cgi/libcgi 
QUIET -Q -wx 

OPTS -Orailnextm -4r -fp3 -fpi87 
DEBUG #-g 
CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 

LIBS -L /libfclient 

LIBS -Ifclient 

LDFLAGS $(QUIET) $(LIBS) 
LIBS.CONFIG -L /cgi/libcgi -L /libfclient 
LIBS.CONFIG -Icgi -Ifclient 
LDFLAGS.CONFIG $(QUIET) $(LIBS.CONFIG) 

FILES vfd.c 

FILES.CONFIG vfdconfig c 

OBJS $(FILES c= o) 

OBJS.CONFIG $(FILES.CONFIG c= o) 

OUT vfd 

OUT.CONFIG vfdconfig cgi 
DEPEND makedepend 
BINDIR /opt/fcar/bin/ 
CGI_BINDIR /usr/local/apache/cgi-bin/ 

all $(OUT) $(OUT.CONFIG) 

$(DUT) $(OBJS) 

$(CC) $(LDFLAGS) $" -o 

$(OUT.CONFIG) $(OBJS.CONFIG) 

$(CC) $(LDFLAGS.CONFIG) $* -o 

install $(OUT) $(OUT.CONFIG) 

cp -f $(OUT) $(BINDIR) 
cp -f $(OUT.CONFIG) $(CGI.BINDIR) 

dep 
$(DEPEND) ~ $(CFLAGS) -D..qNX.. ~ $(FILES) $(FILES.CONFIG) 

188 



189 APPENDIXF USERINTERFACE CODELISTING 

clean 

$(RM) $(OUT) $(OUT.CONFIG) $(OBJS) SCOBJS.CONFIG) * err 

F.1.2 vfd.h 

/* vfd h */ 

#ifndef VFD.IHCLUDED 

#define VFD.INCLUDED 

#define VFD.DEVICE "//1/dev/serl" /♦ qnx node 1 == octagon heirduare */ 
#define VFD.SHM.NAME "vfd_shared_mem" 

#define MAX.DESC.LEH 32 /* maximum description label length »/ 

struct vfd.config 
{ 

char bignum[MAX_DESC_LEB]. 
char rowl[MAX_DESC_LEN], 
char row2[MAX_DESC_LEN], 
char rouS[MAX.DESC.LEH], 
char row4[MAX.DESC LEH], 

>, 

#define DEFAULT.BIG "vehicle.speed" 
#define DEFAULT.ROWl "SOC" 

#define DEFAULT.RGW2 "iFuelPressure" 

//#define DEFAULT_R0W2 "vehicle.distance" 
#define DEFAULT.R0W3 "mode" 

#define DEFAULT.R0W4 "iBattPackVoltage" 

struct vfd.screen 

{ 
int bignum.value, 
int rowl.value, 

int row2.value, 

int row3.value, 
int row4.value, 

char *bignum.label, 
char ♦rowl.label, 
char ♦row2.1abel, 
char *row3.1abel, 
char *rou4.1abel, 

}, 

#define SOC.VALUE (int)(100 * s->cv[s->active] SOC) 
#define SDC.LABEL "■/, SOC" 

#define vehicle.speed.VALUE (int)s->cv[s->active] vehicle.speed 
tdefine vehicle.speed.LABEL " mph " 

#define vehicle.distance.VALUE (int)s->cv[s->active] vehicle.distance 
#define vehicle.distance.LABEL " dist" 

Jtdefine energy.level.VALUE (int)(100 * s->cv[s->active] energy.level) 
tdefine energy.level.LABEL "•/, En " 

#define mode.VALUE (int)(s->cv[s->active] mode) 
#define mode.LABEL " mode" 

#define lEmMotorSpeed.VALUE (int)(s->analog[s->active] in lEmMotorSpeed) 



190 APPENDIXF USER INTERFACE CODELISTING 

#define iEniNotorSpeed_LABEL 

#define iGenMotorSpeed.VALUE 
#define iGenMotorSpeed.LABEL 

#define iIceEngineSpeed.VALUE 
#define iIceEngineSpeed.LABEL 

Sdefine lAccelPedalLevel.VALUE 

#define lAccelPedalLevel.LABEL 

tdefine iBrakePedalLevel.VALUE 

#define iBraRePedalLevel.LABEL 

#define lActualEmTorque.VALUE 
#define lActualEmTorque.LABEL 

#define iFuelPressure.VALUE 

#define iFuelPressure.LABEL 

#define lEmCurrent.VALUE 

#define lEmCurrent.LABEL 

#define iGenCurrent.VALUE 

#define iGenCurrent.LABEL 

#define iBattPackTemp.VALUE 
/* ascii es-sett translates to 

#define iBattPackTemp.LABEL 

#define iBattPackVoltage.VALUE 
#de±ine iBattPackVoltage.LABEL 

#define iBattPackCurrent.VALUE 

#define iBattPackCurrent.LABEL 

#define lEmRotorTemp.VALUE 
#define lEmRotorTemp.LABEL 

tdefine lEmlnvTemp.VALUE 
#define lEmlnvTemp.LABEL 

tdefine iTpsFeedback.VALUE 
tdefine iTpsFeedback.LABEL 

tdefine oGenSpeedReq.VALUE 
tdefine oGenSpeedReq.LABEL 

tdefine oGenRegenLimit.VALUE 
tdefine oGenRegenLimit.LABEL 

tdefine oEmAccelReq.VALUE 
tdefine oEmAccelReq.LABEL 

tdefine oEmBrakeReq.VALUE 
tdefine oEmBrakeReq.LABEL 

tdefine oIceThrottlePos.VALUE 

tdefine oleeThrottlePos.LABEL 

"TmRPM" 

(int)(s->analog[s->active] in iGenMotorSpeed) 
"GnRPH" 

(int)(s->analog[s->active] in iIceEngineSpeed) 
"EnRPH" 

(int)(s->analog[s->active] in lAccelPedalLevel) 
"•/, APS" 

(int)(s->analog[s->active] in iBrakePedalLevel) 
"•/. BPS" 

(int)(s->analog[s->active] in lActualEmTorque) 
"TmN-m" 

(int)((s->analog[s->active] in iFuelPressure)\ 
*100 OF/3600 OF) 

"7. CNG" 

(int)(s->analog[s->active] in lEmCurrent) 
"A Em" 

(int)(s->analog[s->active] in iGenCurrent) 
"A Gen" 

(int)(s->analog[s->active] in iBattPackTemp) 
a degree symbol in the vfd */ 
"C Bt" 

(int)(s->analog[s->active] in iBattPackVoltage) 
"V bus" 

(int)(s->analog[s->active] in iBattPackCurrent) 
"A bus" 

(int)(s->analog[s->active] in lEmRotorTemp) 
"C Rt" 

(int)(s->analog[s->active] in lEmlnvTemp) 
"C It" 

(int)(100 * s->analog[s->active] in iTpsFeedback) 
"7. Tps" 

(int)(s->analog[s->active] out oGenSpeedReq) 
"rpm G" 

(int)(100 * s->analog[s->active] out oGenSpeedReq) 
"7. rgn" 

(int)(100 * s->analog[s->active] out oEmAccelReq) 
"7. aTm" 

(int)(100 * s->analog[s->active] out.oEmBrakeReq) 
"7. bTm" 

(int)(100 * s->analog[s->active] out oIceThrottlePos) 
"7. thr" 



191 APPENDIXF USERINTERFACE CODELISTING 

Sdefine oDisSpeedoO.VALUE (int)(s->analog[s->active] out oDisSpeedoO) 
#define oDisSpeedoO.LABEL " SpdO" 

#define oDisSpeedol.VALUE (int)(s->analog[s->active] out oDisSpeedol) 
tdefine oDisSpeedol_LABEL " Spdl" 

#defiiie LOOKFQR(vhat, vhere) 

if (strcinp(v->uhere, #what) == 0) 
{ 

vs where##_value = what##.VALUE, 

vs where##_label = what## LABEL, 

} 

#define LDOKFORBIGO 

LOOKFOR(SOC, bignum) else 
LOQKFOR(vehicle_speed, biguum) else 
LOOKFORCenergy.level, biguum) 

Sdefine LOOKFORROW(row) 

LOQKFOR(SOC,rou) else 
LOOKFOR(mode,row) else 
LQOKFOR(vehicle_speed,row) else 
LOOKFOR(vehicle_distance,row) else 
LOOKFORCenergy.level,row) else 
LOOKFOR(iEmMotorSpeed,rov) else 
LOOKFORCiGenMotorSpeed,row) else 
LOOKFOR(iIceEngineSpeed,row) else 
LOOKFORClAccelPedalLevel,row) else 
LOOKFOR(iBrakePedalLevel,row) else 
LOOKFOR(iActualEmTorque,row) else 
LOOKFORCiFuelPressure,row) else 
LOOKFORClEmCurrent,row) else 
LOOKFORCiGenCurrent,row) else 
LOOKFORCiBattPackTemp,row) else 
LOOKFORCiBattPackVoltage,row) else 
LOOKFORCiBattPackCurrent,row) else 
LOOKFORCiEmRotorTemp,row) else 
LOOKFORCiEmInvTemp,row) else 
LOOKFORCiTpsFeedback,row) else 
LOOKFORCoGenSpeedReq,row) else 
LOOKFORCoGenRegenLimit,row) else 
LOOKFORCoEmAccelReq,row) else 
LOOKFORCoEmBrakeReq,row) else 
LOOKFORCoIceThrottlePos,row) else 
LOOKFORCoDisSpeedoO,row) else 
LOOKFORCoDisSpeedol,row) 

#endif 

F.1.3 vfd.c 

/* vfd c »/ 

/* control Matrix Orbital Vacuum Fluorescent Display on /dev/serl ♦/

#include <stdio h> 

#include <stdlib h> /* exit, a.to* */ 

Sinclude <fcntl h> /* shm.open */ 
#include <sys/mman h> /* shm.unlink, shm.open, mmap */ 



192 APPENDIXF USERINTERFACE CODELISTING 

#include <sys/types h> /* Itrunc */ 
tinclude <sys/stat h> /* umask */ 

#include <string h> !* memset »/ 

tinclude <termios h> f* terminal control functions */ 
#include <unistd h> /* terminal control functions, close 
^include <time h> /♦ nanosleep ♦/
tinclude <fclient h> 

tinclude "vfd h" 

/* fimction prototypes */ 
void setup_vfd_shm(void), 

/* global variables */ 
static volatile struct vfd.config *v, 
static volatile struct sbared_hu_data *s, 

void setup.vfd.shmO 

int fd, /* temp file descriptor »/ 

/» first get rid of any old segment (if it exists) ♦/
(void)shm_unlink(VFD_SHM_NAME), 

umask(O), /* no assumptions on file creat */ 

/* create shared memory object */ 
/* note mode rw-rw-rw (0666) so that the cgi config 
* program can change variable even as a non-privileged user */ 
fd = shm_open(VFD_SHM_NAME, O.RDWR I O.CREAT, 0666), 

if (fd == -1) die("shm_open"), 

/* set the shared memory object size */ 
if (ltrunc(fd, sizeof(struct vfd.config), SEEK.SET) == -1) 

dieC'ltrunc"), 

/* map memory object to local space */ 
V = mmap(0, sizeof(struct vfd.config), 

PROT.READ I PROT.WaiTE I PROT.HOCACHE, 
MAP.SHARED, fd, 0), 

if( V == (void *)-l) dieC'mmap"), 

/* cleanup */ 
if( close(fd) 1= 0) dieC'close"), 

/» this would be nice if it works 

* unlink the shared mem segment, but it doesn't really 
* go away until its reference count is zero, that is, 
* when this program exits */ 

/♦ if (shm.unlink(VFD.SHM.NAME) '=0) dieC'shm.unlink"), */ 
/♦ update doesn't work ♦/

/* initialize the segment to zero */ 
memset((void *)v, 0, sizeof(struct vfd.config)). 

int main(int argc, char *argv[]) 
{. 

FILE ♦vfdout, /• serial port */ 



193 APPENDIXF USERINTERFACE CODE LISTING 

int vfd_fd, /* file descriptor */ 
struct tennios attr, /* serial port terminal attributes */ 
speed.t speed, /* serial port baud rate */ 
struct vfd.screen vs, 

/♦ setup our psuedo-private shared memory segment */ 
setup.vfd.shmO, 

noticeC'vfd shm setup done"), 

/* put default values in the vfd shared mem */ 
strncpy(v->bignum, DEFAULT.BIG, MAX.DESC.LEN), 
strncpy(v->rowl, DEFAULT.ROWl, MAX.DESC.LEN), 
strncpy(v->roH2, DEFAULT.R0W2, MAX.DESC.LEN), 
strncpy(v->roH3, DEFAULT.R0W3, MAX.DESC.LEN), 
strncpy(v->row4, DEFAULT.R0W4, MAX.DESC.LEN), 

/* open the public fear shared memory segment */ 
if ((s = fclient.open.shmCO.RDONLY)) == NULL) 

die("fclient.open.shm(O.RDOHLY)"), 

notice("attached to fear shm ok"), 

/* open the serial port to vhich the vfd is attached */ 
if ((vfdout = fopen(VFD.DEVICE, "w")) == NULL) dieC'fopen"), 
if (Cvfd.fd = fileno(vfdout)) == -1) dieC'fileno"), 

/♦»♦ setup the serial port ♦**/ 
/* get current settings »/ 
if (tcgetattrCvfd.fd, 6attr) == -1) die("tcgetattr"), 

/* change the speed */ 
speed = B19200, 
if ((cfsetispeed(&attr, speed) I I cfsetospeedCfcattr, speed)) '=0) 

dieC'cfsetxspeed"), 

/* terminal changes happen immediately ♦/ 
if (tcsetattr(vfd.fd, TCSANOW, feattr) == -1) dieC'tcsetattr"), 

/*** done vith serial port setup **♦/ 
noticeC'serial setup done"), 

/* clearscreen, large characters on */ 
fprintf(vfdout, "/(c7,c"/,c", '\f', Oxfe, 'n'), 

while(s->cv[s->active] running) /* fear control process is running */ 
■C 

int tens, ones, /* for big numbers */ 
struct timespec t, /* for nanosleep */ 

t tv.sec = 0, 
t tv.nsec = 500000000L, /* half a second refresh rate */ 

/* bignum */ 
LOOKFORBIGO, 

/* fabs */ 
if (vs bignum.value < 0 OF) 

vs bignum.value = -vs bignum.value. 

https://tcsetattr(vfd.fd
https://tcgetattrCvfd.fd


194 APPENDIXF USERINTERFACE CODELISTING 

ones = vs bignuin.value % 10, 
tens = (vs bignum.value - ones) / 10, 

if (tens > 9)tens = 0, 

/* rows */ 

LOOKFORROW(roul), 
LQ0KF0RR0W(rou2), 
L00KF0RRGW(row3), 

L00KF0RH0W(rou4), 

/* actually write out to the vfd */ 
/* big numbers */ 
fprintf(vfdout, "lclcl,c'lc", Oxfe, 1, tens), /♦ 3 ♦/
fprintf(vfdout, , Oxfe, 4, ones), /♦ 6 */ 

/* go to row 4, column 7, bignum label ♦/
fprintf(vfdout, "°/,z'/,z'/,z'/,z'/,s", 

Oxfe, 'G', 7, 4, vs bignum.label), /♦ 5 wide */ 

/* go to row 1, column 12, rowl stuff ♦/
fprintf(vfdout, "'/,z'l,z'/,z'l,z'/,Q 2d°/.s", 

Oxfe, 'G', 12, 1, vs rowl.value, vs rowl_label), 

/* go to row 2, column 12, row2 stuff ♦/
fprintf(vfdout, "'l,z'/,z'/,z'/.z'/,0 2d5(s", 

Oxfe, 'G', 12, 2, vs row2_value, vs row2.1abel), 

/* go to row 3, column 12, row3 stuff */ 
if (strstr(vs row3_label, "mode") '= NULL) 

fprintf(vfdout, '%z'/.z%z'/,z'/,s'/,s", 
Oxfe, 'G', 12, 3, 

(vs row3_value == ZEV.MODE)'"ZEV" 

(vs row3_value == ECON.MODE)'"HEV" 

(vs row3.value == SPORT.MODE)'"SPT" 

(vs row3_value == REVEHSE.MODE)'"REV" 

(vs row3_value == PARK.HODE)'"PRK" 

(vs row3_value == NEUTRAL.MDDE)'"NEU" "7V7"^ 
vs row3_label), 

else 

fprintf(vfdout, "%z%z'/,z'/,z'l,0 2d'/,s", 
Oxfe, 'G', 12, 3, vs row3_value, vs row3_label), 

/* go to row 4, column 12, row4 stuff */ 
fprintf(vfdout, "'hz'/,z'/,z'/,z'J,0 2d'/.s", 

Oxfe, 'G', 12, 4, vs rou4_value, vs row4_label), 

/* done writing */ 
fflush(vfdout), 

nanosleep(&t, NULL), 

noticeC'exiting"), 
if (shm_unlink(VFD_SHH.NAHE) '= 0) 

die("shm_unlink"), 

return 0, 



Appendix G 

Diagnostic Program Code Listings 

G.l mon: Shared Memory Display Utility 

G.l.l Makefile 

CC = cc 

DEFINES 

INCLUDES = -I /libfclient 

QUIET = -Q -wx 

OPTS = -Grailnextm -4r -fp3 -fpi87 
DEBUG = #-g 
CFLAGS = $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 
LIBS = -L /libfclient 

LIBS += -Ifclient -Incnrses 

LDFLAGS = $(QUIET) $(LIBS) 

FILES = mon c inputs c outputs c cal c mode c 
OBJS = $(FILES c= o) 

OUT = mon 

DEPEND = makedepend 
BINDIR = /opt/fcar/bin/ 

all $(OUT) 

$(OUT) $(OBJS) 

$(CC) $(LDFLAGS) $" -o $a 

dep 
$(DEPEND) — $(CFLAGS) -D._QNX__ ~ $(FILES) 

install $(OUT) 
cp -f $(OUT) $(BINDIR) 

clean 

$(RM) $(OUT) $(OBJS) * o » err 

G.1.2 mon.h 

/» mon h »/ 

#ifndef MON_H 

#define MON.H 

195 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 196 

#include <fclient h> 

♦define 
♦define 
♦define 
♦define 

♦define 

IMPUTS.KEY 
OUTPUTS.KEY 
CALIBRATION.KEY 
MODE.KEY 
QUIT.KEY 

'i' 

■o' 

'c' 

•m' 

'q' 

♦define 
♦define 
♦define 

♦define 

♦define 

STATS.LINE 
COLl 
C0L2 
COLS 
C0L4 

LINES-1 
0 
CC0LS/4+S) 
(COLS/2) 
(C0LS*S/4+S) 

/* types WA.HORMAL, WA.STAHDOUT, WA.UKDERLIHE, 
WA_DIM. WA.BOLD, WA.ALTCHARSET 

*1 

WA.REVERSE, WA.BLINK, 

#define STATS.LIHE.ATTR WA.BOLD 

/* globals */ 
extern volatile struct shared.hw.data »s, 

/* function protoypes */ 
void finish(int), 
void show_inputs(void), 
void show_outputs(void), 
void show_calibration(void), 
void show_mode(void), 
void calibration.labeKvoid), 
void inputs.labeKvoid), 
void outputs_label(void), 
void mode.labeKvoid), 

tendif 

G.1.3 cal.c 
/* cal c */ 

#include 
♦include 

<curses 
"mon h" 

h> 

♦define FIRST.COLCwhat) 
sprintfCbuf, ♦what) , 
mvaddstr(row,COLl,buf), 
sprintfCbuf, '"A 0 3f", s->cal what), 
mvaddstr(row,C0L2,buf), 
rou++ 

\ 
\ 
\ 
\ 
\ 

♦define SECOMD.COLCwhat) 
sprintfCbuf, ♦what) , 
mvaddstr Crow,COLS,buf), 
sprintfCbuf, "X 0 3f", s->cal what), 
mvaddstr Crow,C0L4,buf), 
rou++ 

\ 
\ 
\ 
\ 
\ 

void show.calibrationC) 



197 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

int rov, 

char buf[64], 

row = 0, 

/* inputs */ 
FIRST_CQL(iEinHotorSpeedSen), 
FIRST_COL(iEmMotorSpeedOff), 
FIRST_COL(iGenMotorSpeedSen), 
FIRST_COL(iGenMotorSpeedOff), 
FIRST_COL(iIceEngineSpeedSen), 
FIRST_COL(iIceEngineSpeedOff), 
FIRST_COL(iAccelPedalLevelSen), 
FIRST.COLCiAccelPedalLevelDff). 
FIRST.COLCiBrakePedalLevelSen), 
FIRST_COL(iBrakePedalLevelOff), 
FIRST.COLCiActualEmTorqueSen), 
FIRST_COL(iActualEmTorqueOff), 
FIRST_COL(iFuelPressuxeSen), 
FIRST_COL(iFuelPressureOff), 
FIRST_CGL(iEmCurrentNegSen), 
FIRST_COL(iEmCurrentHegOff), 
FIRST_COI.(iEmCurrentPosSen), 
FIRST_COL(iEmCurrentPosOff), 
FIRST_CQL(iGenCurrentSen), 
FIRST_COL(iGenCurrentOff), 

FIRST_COL(iBattPackVoltageSen), 
FIRST.COLCiBattPackVoltageDff), 
FIRST_COL(iBattPackCurrentSen), 
row = 0, 

SECOnD_COL(iBattPackCurrentOff), 
SECOMD_COL(iEmRotorTempSen), 
SECOHD_COL(iEiiiRotorTempOff), 
SECOND_COL(iEmInvTempSen), 
SECOND.COLCiEmlnvTempOff), 
SECOnD_COL(iTpsFeedbackSen], 
SECOND.COLCiTpsFeedbackOff), 
/* outputs »/ 
SECOnD_COL(oGenSpeedReqSen), 
SECOMD.COLCoGenSpeedReqOff), 
SECQND.COL(oGenRegenLimitSen), 
SECGND.COLCoGenRegenLimitOff), 
SECGHD.CGLCoEmAccelReqSen), 
SECGND_CGL(oEmAccelReqGff), 
SECGMD_CGL(oKmBrakeReqSen), 
SECGND.CGL(oEiiiBrakeReqGff), 
SECGND_CGL(oIceThrottlePosSen), 
SECGND_COL(oIceThrottlePosGff), 
SECGND.CGLCoDisSpeedoOAiaplitude), /* speedometer based on sine */ 
SECGND_CGL(oDisSpeedoOPhaseAngle), 
SECGND_CGL(oDisSpeedolAmplitude), 
SECOnD_CGL(oDisSpeedolPhaseAngle), 
SECGND_CGL(oPwrToDigRacksSen), 
SECGND.CGLCoPurToDigRacksGff), 

return, 

G.1.4 inputs.c 
/* inputs c */ 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 198 

#include <curses h> 

#include "mon h" 

#define FIRST_COL(what,where) \ 
sprintfCbuf, #what) , \ 
mvaddstr(row,COLl,buf), \ 
sprintfCbuf, '"/.d", where what), \ 
mvaddstr(row,C0L2,buf), \ 
row++ 

#define SECOND.COLCwhat,where) \ 
sprintfCbuf, #what) , \ 
mvaddstrCrow,COLS,buf), \ 
sprintfCbuf, "% 0 3f", where what), \ 
mvaddstrCrow,CGL4,buf), \ 
row++ 

#define IDIG_FIRST_COLCwhat) FIRST_CGLCwhat,s->digital[s->active] in) 
#define IDIG_SECGND_CGLCwhat) SECOND_CGLCwhat,s->digital[s->active] in) 

#define IANA_FIRST_CGLCwhat) FIRST_CGLCwhat,s->analog[s->active] in) 
#define IANA_SECOND_CGLCwhat) SECOND_COLCwhat,s->analogCs->active] in) 

void show.inputsC) 
{ 

int row, 

char buf[64], 

/* digital */ 
row = 0, 

sprintfCbuf, "Digital"), mvaddstrCrow++,CGLl,buf), 
IDIG_FIRST_CGLCiPark), 
IDIG.FIRST.CGLCiReverse), 
IDIG.FIRST.CGLCiMeutral), 

IDIG_FIRST_CGLCiDriveSport), 
IDIG.FIRST.CGLCiDriveEcon), 
IDIG.FIRST.CGLCiZEV), 
IDIG.FIRST.COLCiHvac), 

IDIG.FIRST.COLCiEmTempWarn), 
IDIG_FIRST_COLClEmControllerReady), 
IDIG_FIRST_CGLCiEmFaultIndicator), 
IDIG_FIRST_CGLCiEmGvertempIndicator), 
IDIG_FIRST_CGLCiGenTempWarn), 
IDIG_FIRST_CDLCiGenControllerReady), 
IDIG_FIRST_CGLCiGenFaultIndicator), 
IDIG_FIRST_CGLCiGenDirectionIndicator), 
IDIG_FIRST_CGLCiIceFaultIndicator), /* 16 */ 

/* analog »/ 
row = 0, 

sprintfCbuf, "Analog"), mvaddstrCrow++,CGL3,buf), 
lANA.SECGND.COLCiEmMotorSpeed), 
lANA.SECOND.CQLCiGenMotorSpeed), 
lAnA.SECGMD.CGLCiIceEngineSpeed), 
lANA.SECOND.CGLCiAccelPedalLevel), 
lAIJA.SECGND.CGLCiBrakePedalLevel), 
IANA_SECOND_CGLCiActualEmTorque), 
lANA.SECGND.CGLCiFuelPressure), 
lAHA.SECGND.CGLCiEmCurrent), 
lANA.SECGND.COLCiGenCurrent), 



199 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

IANA_SECOND_COL(iBattPackTemp), 
IANA_SECOnD_COL(iBattPackVoltage), 
IAHA_SECOND_CQL(iBattPackCurrent), 
IAnA_SECOnD_COL(iEiiiRotorTemp), 
IAWA_SECOND_COL(iEmInvTemp), 
IAMA.SECOND_COL(iTpsFeedback), 

return, 

> 

G.1.5 mode.c 

/* mode c */ 

#include <curses h> 

Sinclude "mon h" 

void show_mode() 

{ 
int rov, 

rov = 0, 

mvprintwCrow, COLl, "SOC"), 
mvprintwCrov, C0L2, "7.0 3f", s->cv[s->active] SQC), row++, 

mvprintwCrow, COLl, "SOCcat"), 
mvprintwCrow, C0L2, "7.s", 

Cs->cv[s->active] SOCcat == WH)' "WH' 

Cs->cv[s->active] SOCcat == VH)' "VH" 

Cs->cv[s->active] SOCcat == H)' "H" 

Cs->cv[s->active] SOCcat == L)' "L" 

Cs->cv[s->active] SOCcat == VL)' "VL" 

Cs->cv[s->active] SOCcat == VVL)' "WL' row++, 

mvprintwCrow,COLl, "mode"), 
mvprintwCrow, C0L2, "7.s", 

Cs->cv[s->active] mode = ZEV.MODE)' "ZEV" 
Cs->cv[s->active] mode == ECGB_MODE)' "ECON" 
Cs->cv[s->active] mode == SPORT.MODE)' "SPORT" 
Cs->cv[s->active] mode == REVERSE.MODE)' "REVERSE" 
Cs->cv[s->active] mode == PARK.MGDE)' "PARK" 
Cs->cv[s->active] mode == NEUTRAL.MODE)' "HEUTRAL" 

"), row++, 

mvprintwCrow,CGLl, "vehicle_speed"), 
mvprintwCrow, C0L2, "7. 0 3f", s->cv[s->active] vehicle.speed), row++, 

mvprintwCrow,CGLl, "vehicle_distance"), 
mvprintwCrow, CGL2, "7. 0 3f", s->cv[s->active] vehicle_distance); row++, 

mvprintwCrow,CGLl, "energy.level"), 
mvprintwCrow, C0L2, 0 3f", s->cv[s->active] energy.level), row++, 

mvprintwCrow,CGLl, "kwh.volts"), 
mvprintwCrow, CGL2, "7. 0 3f", s->cv[s->active] kwh.volts), row++, 

mvprintwCrow,COLl, "kwh.amps"), 
mvprintwCrow, C0L2, "7. 0 3f", s->cv[s->active] kwh.amps), row++. 



 

APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 200 

iavpriiit«(rov,COLl, "IceReqState"), 
mvprintwCrov, C0L2, "7,s", 
(s->cv[s->active] IceReqState == OH)' "ON" 
(s->cv[s->active] IceReqState == OFF)' "OFF" 

"), row++. 

mvprintw(row,COLl, "IceState"), 
mvprintwCrow, COLS, '7.s", 
(s->cv[s->active] IceState == ON)' "ON" 

(s->cv[s->active] IceState == OFF)' "OFF" 

(s->cv[s->active] IceState == WORKING)' "WORKING" 
(s->cv[s->active] IceState == DEAD)' "DEAD" 

"), row++, 

mvprintHCrow,COLl, "hybrid.regime"), 
mvprintHCrow, C0L2, "7,s", 
(s->cv[s->active] hybrid.regime == LO.REGIME)'"LO" 
(s->cv[s->active] hybrid.regime == HI.REGIME)'"HI" 
" "), row++, 

rov = 0, 

mvprintw(row, COLS, "timer.hertz"), 
mvprintuCrov, C0L4, "7,u", 

s->fcard.rv fcard.hardware.timer.hz), row++, 

mvprmtwCroB, COLS, "manager.prio"), 
mvprintw(row, C0L4, "7.d", 

s->fc2ird.rv fcard.manager.prio), row++, 

mvprintw(row, COLS, "hardware.task.prio"), 
mvprintwCrow, C0L4, "Jid", 

s->fcard.rv fcard.hardware.task.prio), row++, 

mvprintwCrow, COLS, "kwh.task.prio"), 
mvprintwCrow, C0L4, "7.d", 

s->fcard.rv fcard.kwh.task.prio), row++, 

mvprintwCrow, COLS, "config.task.prio"), 
mvprintwCrow, C0L4, "7.d", 

s->fcard.rv fccird.config.task.prio), row++, 

mvprintwCrow, COLS, "active pointer"), 
mvprintwCrow, C0L4, "7id", s->active), row++, 

mvprintwCrow, COLS, "total seconds"), 
mvprintwCrow, C0L4, "7.u", s->seconds), row++. 

G.1.6 mon.c 

/* mon c */ 

#include <stdio h> 

#include <stdlib h> 

♦include <string h> 

https://s->fcard.rv
https://s->fcard.rv
https://s->fcard.rv
https://s->fc2ird.rv
https://fcard.hardware.timer.hz
https://s->fcard.rv


201 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

♦include <curses h> 
♦include <signal h> 
♦include "mon h" 

volatile struct shared_hw_data *s, 

void finishCint sig) 
{ 

curs_set(l), 
endvinO, 
exit(O), 

> 

void reinit(int sig) 

erase(), 
refreshO, 
endvinO, 
initscrO, /* initialize the curses library */ 
keypad(stdscr, TRUE), /* enable keyboard mapping ♦/ 
nonlO, /* tell curses not to do NL->CR/HL on output */ 
cbreakO, /* take input chars one at a time, no wait for \n •/ 
noechoO, /♦ don't echo input */ 
/* leaveokCstdscr, TRUE), ♦/ /* turn off cursor if possible */ 
curs_set(0), /* magic */ 
timeout(500), /♦ getch times out in 500 milliseconds */ 
return, 

int mainCint argc, char fargvC]) 

void (♦last)(void), /♦ pointer to function that displays stuff ♦/ 
void (♦last.label)(void), 

(void)signal(SIGINT, finish), /♦ goto finish on ctrl-c ♦/ 
(void)signal(5IGTERM, finish), /♦ goto finish on terminate ♦/ 
(void)signal(SXGWIUCH, remit), /♦ remit on window size change ♦/ 

if (cirgc == 2) 

/♦ catch the unique part ♦/ 
if (strstr(argv[l], "c") i= NULL) 

last = show_calibration, 
last_label = calibration_label, 

Ise if (strstr(argvCl], "m") '= NULL) 

last = show.mputs, 
last.label = inputs.label, 

Ise if (strstr(argv[l], "out") '= NOLL) 

last = show.outputs, 
last.label = outputs.label, 

Ise if (strstr(argvCl], "m") '= NULL) 

last = show.mode, 
last = mode.label. 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 202 

else 

•C 
printf("Usage /Cs [calibration!inputs I outputs(mode]\ii", 

argv[0]), 
exit(l), 

Ise 

last = show.mode, /* default */ 
last.label = mode.label. 

» open fear shared mem */ 
f ((s = fclient_open_shm(0_RDDHLY)) == NULL) 

perror("fclient_open_shm_ro"), 
exit(l), 

initscrO, /♦ initialize the curses library */ 
keypad(stdscr, TRUE), /* enable keyboard mapping ♦/
nonlO, /* tell curses not to do HL->CR/NL on output */ 
cbreakO, /* take input chars one at a time, no wait for \n */ 
noechoO, /* don't echo input */ 
/* leaveokCstdscr, TRUE), */ /♦ turn off cursor if possible */ 
curs_set(0), /* magic ♦/
timeoutCSOO), /♦ getch times out in 500 milliseconds ♦/

while(s) 

erase0, 

lastO, 

last.labelC), 

refreshO, 
switchCgetchO) 
{ 

case INPUTS_KEY 

last = show.inputs, 
last_label = inputs.label, 
break, 

case OUTPUTS.KEY 

last = show_outputs, 
last.label = outputs.label, 
break, 

case CALIBRATION_KEY 

last = show_calibration, 
last_label = calibration.label; 

break; 

case MODE_KEY 

last = show_mode, 

last_label = mode.label, 

break, 

case KEY.LEFT 

if (last == show.calibration) 

•( 
last = show.mode, 

last.label = mode.label, 

} 
else if (last == show_mode) 



 

APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 203 

last = show.outputs, 
last.label = outputs label, 

} 
else if (last == show_outputs) 
{ 

last = show_inputs, 
last.label = inputs.label, 

} 
else if (last == show_iuputs) 
■C 

last = sbow.calibration, 
last.label = calibration.label, 

} 
break, 

case KEY_RIGHT 
if (last == show.calibration) 
■C 

last = sbou.inputs, 
last.label = inputs.label, 

> 
else if (last == shou_mode) 

last = shou.calibration, 
last.label = calibration.label, 

> 
else if (last == shov.outputs) 
C 

last = shou.mode, 
last.label = mode.label, 

} 
else if (last == show.inputs) 
■C 

last = shov.outputs, 
last.label = outputs.label, 

} -
break, 

case QUIT.KEY 
finish(O), 

default 

break, 
} 

} 
/* doesn't get here »/ 
finish(O), 
return 0, 

void calibration.labelO 

int len, 
char buf [80], 

attron(STATS.LIHE_ATTR), 
len = sprintf (buf,"7.C - calibration", CALIBRATIOM.KEY) , 
mvaddstr(STATS.LINE,0,buf), 
attroff(STATS.LINE.ATTR), 

sprintf (buf, " 7,c - inputs Xc - outputs '/,c - mode Xc - quit", 
IKPUTS.KEY, OUTPUTS.KEY, MODE.KEY, qUIT.KEY), 

mvaddstr(STATS.LIWE,len,buf), 



APPENDIX G. DIAGNOSTICPROGRAM CODELISTINGS 204 

void inputs_label() 

int len, 1, 

char buf[80], 

len = sprintfCbuf."'/.c - calibration CALIBRATIOH_KEY), 
iiivaddstr(STATS_LINE,0,buf), 

attron(STATS_LIME_ATTR), 
1 = sprintfCbuf,"'/.c - inputs", IMPUTS.KEY), 
mvaddstrCSTATS.LINE, len, buf), 
len += 1, 

attroff(STATS.LINE.ATTR), 

sprintfCbuf," y.c - outputs '/,c - mode '/,c - quit", 
OUTPUTS_KEY, MODE.KEY, QUIT.KEY), 

mvaddstrCSTATS_LINE, len, buf). 

void outputs_labelC) 
{ 

int len, 1, 

char buf[80], 

len = sprintfCbuf,"%c - calibration '/.c - inputs 
CALIBRATION_KEY. INPUTS.KEY). 

mvaddstrCSTATS_LinE,0,buf), 

attronCSTATS.LINE.ATTR), 
1 = sprintfCbuf,"'/.c - outputs", OUTPUTS.KEY), 
mvaddstrCSTATS.LINE, len, buf), 
len += 1, 

attroffCSTATS_LIHE.ATTR), 

sprintfCbuf," '/.c - mode /ic - quit", 
MODE_KEY, QUIT.KEY), 

mvaddstrCSTATS.LIME, len, buf). 

void mode.labelC) 

int len, 1, 

char buf[80], 

len = sprintfCbuf,"Xc - calibration 7.c - inputs Xc - outputs 
CALIBRATION.KEY, INPUTS.KEY, OUTPUTS.KEY), 

mvaddstrCSTATS_LINE,0,buf), 

attronCSTATS.LINE_ATTR), 

1 = sprintfCbuf."Xc - mode", MODE.KEY), 
mvaddstrCSTATS.LINE, len, buf), 

len += 1, 

attroffCSTATS.LINE.ATTR), 

sprintfCbuf," Xc - quit", QUIT.KEY), 
mvaddstrCSTATS.LINE, len, buf). 



205 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

G.1.7 outputs.c 
/* inputs c */ 

#include <curses h> 

#include "mon h" 

tdefine FIRST_COL(«hat,where) \ 
sprintfCbuf, #what) , \ 
invaddstr(row,COLl,buf), \ 
sprintf(buf, '"/.d", where what), \ 
mvaddstr(row,C0L2,buf), \ 
row++ 

#define SECOND_COL(what.where) \ 

sprintfCbuf, #what) , \ 
mvaddstr(row,CQL3,buf), \ 
sprintfCbuf, "% 0 3f", where what), 
mvaddstrCrow,C0L4,buf), \ 
row++ 

Sdefine ODIG.FIRST.COLCwhat) FIRST.CQLCwhat,s->digital[s->active] out) 
tdefine ODIG_SECOKD_COLCwhat) SECGND.COLCwhat,s->digital[s->active] out) 

tdefine OANA.FIRST.COLCwhat) FIRST.COLCwhat,s->analog[s->active] out) 
tdefine OANA.SECOND.COLCwhat) SECOHD.COLCwhat,s->analog[s->active] out) 

void show.outputsC) 

int row, 

char buf[64], 

/* digital */ 
row = 0, 

sprintfCbuf, "Digital"), mvaddstrCrow++,COLl,buf), 
GDIG_FIRST_CDLCoIceStarter), 

GDIG_FIRST_CGLCoTecEnable), 
GDIG_FIRST.CGLCoKniKuable), 
GDIG_FIEST_CGLCoEmDirection), 
GDIG.FIRST.CGLCoGenEnable), 
GDIG_FIRST_CGLCoPwrSteeringEnable), 
GDIG_FIRST_CGLCoThrottlePwrCycle), 
GDIG_FIRST_CGLCoSmartChargerEnable), 

/* analog */ 
row = 0, 

sprintfCbuf, "Analog"), mvaddstrCrow++,CGL3,buf), 
OAKA.SECOND.COLCoGenSpeedReq), 
OANA_SECOND_COLCoGenRegenLimit), 
OANA.SECGND.CGLCoEmAccelReq), 
GANA_SECGND_CGLCoEmBrakeReq), 
GANA_SECGND_CGLCoIceThrottlePos), 
GAMA_SECGKD_CGLCoDisSpeedoO), 
OAKA_SECGKD_CGLCoDisSpeedol), 
GANA_SECGKD_CGLCoPwrToDigRacks), 

return, 



206 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

G.2 flogger: Data Logging Utility 

G.2.1 Makefile 

cc 

DEFINES 

INCLUDES -I /libfclient 

quiet -Q -wx 

OPTS -Orailnextm -4r -fp3 -fpi87 
DEBUG #-g 
CFLAGS $(QUIET) $(DEBUG) $(GPTS) $(DEFINES) $(INCLUDES) 

LIBS -L /libfclient 

LIBS -Ifclient 

LDFLAGS $(QUIET) $(LIBS) 

FILES flogger c 
OBJS $(FILES c= o) 

OUT flogger 
DEPEND makedepend 
BINDIR /opt/fear/bin/ 

all $(GUT) 

$(OUT) $(GBJS) 

$(CC) $(LDFLAGS) $" -o 

dep 
$(DEPEND) ~ $(CFLAGS) -D__QNX__ ~ $(FILES) 

install $(GUT) 

cp -f $(GUT) $(BINDIR) 

clean 

$(RM) $(GUT) $(OBJS) ♦ 0 * err 

G.2.2 fiogger.c 
#include <stdio h> /* printf ♦/ 
#include <stdlib h> /* exit */ 
#include <fclient h> /* shared mem */ 
#include <time h> /* timestamp stuff ♦/ 
#include <unistd h> /♦ sleep, getopt */ 
#include <string b> /* strdup, memcpy */ 
#include <time h> /* nanosleep ♦/ 

#define DEFAULT.LOGFILE "flogger log" 
#define DEFAULT.UPDATE 1 OF 

♦define DEFAULT.FLUSHCGUNT 10 

struct logvalues 
•C 

char tbuf[64], 
struct calculated.values cv, 
struct digital.hardware digital, 
struct einalog.hardware analog. 

/* global veiriables */ 
volatile struct shared.hw.data »s. 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 207 

/♦ function prototypes */ 
void usageCchar *), 

void usageCchar *p) 
{ 

printf("Usage '/,s [-1 logfile] [-f flushtime] [-u update]\n",p), 
printfC defaults cire \n"), 
printf(" logfile - '/.sNn", DEFAULT.LOGFILE), 
printf(" flushcount - '/.d updatesNn", DEFAULT.FLUSHCOUNT), 
printfC" update - '/.f seconds\n", DEFAULT.UPDATE), 
exit(l), 

> 

int dump_log(char ♦filename, struct logvalues tl, int count, int headers) 
{ 

int 1, 
FILE ♦f, 
f = fopenCfilename, "a"). 
If (f == NULL) dieC'fopen"), 

if (headers) 
{ 

/♦ print headers ♦/ 
fprintf(f,"time," "SOC," "mode," 

"vehicle_speed," "vehicle_distance," "energy.level," 
"kwh_volts," "kvh.amps," "hybrid.regime,"), 

fprintf(f."shifter," "iHvac," "lEMTempWam," 
"lEMControllerReady," "lEMFaultlndicator," 
"lEmOvertempIndicator," "iGenTempWarn," 
"iGenControllerReady," "iGenFaultlndicator," 
"iGenDirectionlndicator," "iIceFaultlndicator,"), 

fprintf(f,"oIceStarter," "oTecEnable," "oEmEnable," 
"oEmDirection," "oPwrSteeringEnable," 
"oThrottlePwrCycle," "oSmartChargerEnable,"), 

fprintf (f,"iEiiiMotorSpeed, " "iGenMotorSpeed," "iIceEugineSpeed," 
"lAccelPedalLevel," "iBrakePedalLevel," 
"lActualEmTorque," "iFuelPressure," "lEmCurrent," 
"iGenCurrent," "iBattPackTemp," "iBattPackVoltage," 
"iBattPackCurrent," "lEmRotorTemp," "lEmlnvTemp," 
"iTpsFeedback,"), 

fprintf(f,"oGenSpeedReq," "oGenRegenLimit," "oEmAccelReq," 
"oEmBrakeReq," "oIceThrottlePos," "oDisSpeedoO," 
"oDisSpeedol," "oPwrToDigRacksNn"), 

} 

for (i=0,i<count,i++) 
C 

/♦ print out the data ♦/ 
fprintf (f,"y.s, '/,f, '/,s, y.f, 7,f, tf, '/,f, 7.f, 7.s,", 
l[i] tbuf, 
l[i] cv SOC, 

(l[i] cv mode == ZEV.MGDE) ' "ZEV" 
(l[i] cv mode == ECON.MODE) ' "ECON" 
(l[i] cv mode == SPORT.MODE) ' "SPORT" 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 208 

(l[i] cv mode == REVERSE.MODE)'"REVERSE" 
(l[i] cv mode == PARK.MODE)'"PARK" 
(l[i] cv mode == NEUTRAL.MODE)'"HEUTRAL" "unknom", 

l[i] cv vehicle.speed,1—1 
l[i] cv vehicle.distance, 
Ht—l 

l[i] cv energy.level, 
1[i] cv kwh.volts, 
l[i] cv kwh.amps, 
(l[i] cv hybrid.regime == LO.REGIME)'"LO.REGIME" 
dCi] cv hybrid_regime == HI.REGIME)'"HI.REGIME" 
"unknown"), 

fprintf(f,"'/.s, '/.u, "/.u,'/.u,'/.u,'/.u,'/.u,'/.u,'/.u,'/.u,'/.u,", 
(l[i] digital in iPark)'"Park" 
(l[i] digital in iReverse)'"Reverse" 
(l[i] digital in iMeutral)'"Neutral" 
(l[i] digital in iDriveSport)'"DriveSport" 
(l[i] digital in iDriveEcon)'"DriveEcon" 
(l[i] digital in iZEV)'"ZEV" "unknown", 
l[i] digital in iHvac, 
l[i] digital in lEmTempWam, 
l[i] digital in lEmControllerReady, 
l[i] digital in lEmFaultlndicator, 
l[i] digital in lEmOvertempIndicator, 
l[i] digital in iGenTempWam, 
iCi] digital in iGenControllerReady, 
l[i] digital in iGenFaultlndicator, 
l[i] digital in iGenDirectionlndicator, 
l[i] digital in iIceFaultlndicator), 

fprintf(f,'"/.u,7.U,7,u,y.u,"/.u,7.u,'/.u,", 
l[i] digital out olceStarter, 
ICi] digital out oTecEnable, 
ICi] digital out oEmEnable, 
l[i] digital out oEmDirection, 
l[i] digital out oPwrSteeringEnable, 
l[i] digital out oThrottlePwrCycle, 
l[i] digital out oSmartChargerEnable), 

fprintf(f,"'/.f,'/.f,U.li,If.It,If,If, If, U.7.f,7.f,tf,If.If,", 
l[l] analog in lEmMotorSpeed, 
l[l] aneilog in iGenMotorSpeed, 
l[l] analog in iIceEngineSpeed, 
l[l] analog in lAccelPedalLevel, 
l[l] analog in iBrakePedalLevel, 
l[l] analog in..lActualEmTorque, 
l[l] analog in iFuelPressure, 
l[l] analog in lEmCurrent, 

l[l] analog in iGenCurrent, 
l[l] analog in iBattPackTemp, 

l[l] analog in iBattPackVoltage, 
l[l] analog in iBattPackCurrent, 

iCi] analog in lEmRotorTemp, 
l[l] analog in lEmlnvTemp, 

analog in iTpsFeedback), 

fprintf(f,"If,If,tf,tf,tf.tf,tf.7.f\n", 
l[i] analog out oGenSpeedReq, 
l[i] analog out oGenRegenLimit, 
l[i] analog out oEmAccelReq, 



209 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

iCi] analog out oEmBrakeReq, 
l[i] analog out oIceThrottlePos, 
l[i] analog out oDisSpeedoO, 
l[i] analog out oDisSpeedol, 
l[i] analog out oPwrToDigRacks), 

> 

return (fclose(f)), 

int mainCint argc, char ♦argvC]) 

struct logvalues *1, 
int c, 
int errflag = 0, 
char »logfile = DEFAULT.LOGFILE, 
float update = DEFAULT.UPDATE. 
int flushcount = DEFAULT.FLUSHCOUMT, 
size.t size, 
struct timespec t, 
int first.time = 1, 

while ( (c=getopt(argc,argv, "1 f u h")) '= -1) 

switch (c) 

case '1' 

logflie = strdup(optarg), 
if (logf lie == HULL) dieC'strdup"). 
break, 

case 'f 

flushcount = atoi(optEirg), 
break, 

case 'u' 

update = atof(optarg), 
break, 

case 'h' 

usage(argv[0]), 
break, 

case 

++errflag, 
break, 

> 

if (errflag) usage(argv[0]), 

size = (size_t)flushcount, 
1 = (struct logvalues ♦)calloc(size, sizeof(struct logvalues)). 
If (1 == NULL) dieC'calloc"), 

t tv_sec = (int)update, 
t tv.nsec = (long)(((double)update - (double)t tv_sec)*le9), 

/* open fear shared mem */ 
if ((s = fclient_open_shm(0_RDONLY)) == NULL) 

die("fclient_open_shm(0_RDONLY)"), 



APPENDIX G DIAGNOSTICPROGRAM CODE LISTINGS 210 

while(s) 

{ 
int 1, 

time_t tm, 

for(1=0,i<size,i++) 

{ 
tm = time(NULL), 
strftime(l[i] tbuf, sizeof(l[i] tbuf), 

"W/A/ty "/.H '/.M "/.S", IccaltimeCStm)), 

memcpy(fcl[i] cv. &s->cv[s->active], 
sizeof(struct calculated.values)), 

memcpy(61[i].digital, as->digital[s->active], 
sizeof(struct digital.hardware)), 

memcpy(fcl[i] analog, &s->analog[s->active], 
sizeof(struct analog.hardware)), 

nanosleep(&t, NULL), 

if (first.time) 

{ 
dump.logdogflie, 1, size, 1), 
first.time = 0, 

} 
else 

dump.logdogflie, 1, size, 0), 

freed), 

return 0, 



 
 

 

 

 

 

 

 
 
 
 

211 

cc 

APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

G.3 trends.cgi: CGI Interface to Shared Memory History 

G.3.1 Makej&le 

DEFIHES 

INCLUDES = -I / /libfclient -I /libcgi 
QUIET = -Q -«x 

OPTS = -Orailnextm -4r -fp3 -fpi87 
DEBUG #-g 
CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 
LIBS = -L /libcgi 
LIBS += -Icgl 
LDFLAGS $(QUIET) $(LIBS) 
LIBS_HELPER = -L / /libfclient -L /libcgi 
LIBS_HELPER += -Ifclient -Icgi 
LDFLAGS_HELPER $(QUIET) $CLIBS_HELPER) 
FILES = trends c 

FILES_HELPER = trend.helper c 
OBJS $(FILES c= o) 

OBJS.HELPER $(FILES_HELPER c= o) 
OUT = trends cgi 
OUT_HELPER = trend.helper cgi 
DEPEND = malcedepend 
CGI_BINDIR = /usr/local/apache/cgi-bin/ 

all $(OUT) $(OUT_HELPER) 

$(OUT) $(OBJS) 

$(CC) $(LDFLAGS) $" -o $8 

$(OUT_HELPER) $(OBJS_HELPER) 

$(CC) $(LDFLAGS.HELPER) $" -o $8 

install $(OUT) $(OUT_HELPER) 

cp -f $(OUT) $(OUT_HELPER) $(CGI_BINDIR) 

dep 
$(DEPEND) ~ $(CFLAGS) -D._QNX__ — $(FILES) $(FILES_HELPER) 

clean 

$(RM) $(OUT) $(OUT_HELPER) $(QBJS) $(OBJS.HELPER) * err 

G.3.2 trends.h 

/* trends h ♦/

#ifndef TRENDS.INCLUDED 

#define TRENDS.INCLUDED 

#define WIDTH 500 

#define HEIGHT 200 

#ifdef DEBUG 

#define NOTFOUNDPATH \ 

"Location http //mechaeroS engr utk edu/"matt/images/notfoiind gif\n\n" 
#else 

#define NOTFOUNDPATH \ 

"Location http //128 169 100 192/images/notfound gif\n\n" 
#endif 



212 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

#define BGCOLQR "ffffff" 

#define TEXTCOLOR "000000" 

#endif 

G.3.3 trends.c 

/* trends c */ 

#include <stdio h> 

#include <stdlib h> 

#irclude <string h> 
#include <cgi h> 
#include "trends h" 

#define SHOW_OPTION(what) \ 
printf("<option value=\"'/,s\"> y.s 

#define ALL.OPTIQNSO \ 

SHOW.OPTIONCiEmMotorSpeed), 
SHOW_GPTIOII(iGenMotorSpeed), 
SHOW_OPTION(iIceEngineSpeed), 
SHOW_GPTION(iAccelPedalLevel), 

SHGW.GPTIGKCiBrakePedalLevel), 
SHGW_GPTIGM(iActualEmTorque), 
SHGW_GPTIOM(iFuelPressure). 
SHGW.GPTIGHCiEmCurrent), 
SHGW_GPTIGH(iGenCurrent), 
SHGW_GPTIGN(lBattPackTemp), 
SHGW.GPTIGHCiBattPackVoltage), 
SHGW_GPTIOH(iBattPackCurrent), 

SHGW_GPTIGH(iEmRotorTemp), 
SHGW.GPTIGNCiEmlnvTemp), 
SHGW_GPTIGM(iTpsFeedback), 

SHGW_GPTIGN(oGenSpeedReq), 
SHGW.GPTIGMCoGenRegenLimit), 
SHGW.GPTIGHCoEmAccelReq), 
SHGW.GPTIGHCoEmBrakeReq), 
SHGW.OPTIGN(oIceThrottlePos). 

SHGW_OPTIGN(oDisSpeedoO), 
SHGW_OPTIGN(oDisSpeedol), 
SHGW.GPTIGHCoPwrToDigRacks), 

SHGW_OPTION(SOC), 
SHGW_GPTIGN(vehicle_speed), 
SHGW_OPTIGN(vehicle_distsince), 

SHGW_OPTIGN(kwh_volts), 
SHGW_OPTIGN(kwh_ainps), 

void show_choices(void), 

void display_graphs(void), 

int main(int argc, char »argv[]) 

\n", #what, #uhat) 

printf("Content-type text/html\n\n"), 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 213 

if (strcmp(getenv("REQUEST_METHOD"), "POST") == 0) 
display.graphsC), 

else 

shov_choices(), 

return 0, 

void display.graphs() 
{ 

char **cgivars, 

cgivars = getcgivarsO, /* cgivars [name value] pairs */ 

printfC \n\ 
<html> \n\ 

<head> \n\ 

<meta http-content-refresh=\"30\"> \n\ 
<title> Trend graphs </title> \n\ 

</head> \n\ 
<body> \n\ 
You may have to hold doun the shift key when reloading \u\ 
to get updated info \n\ 
<form action=\"trends cgi\" method=post> \n\ 
<h2> Trend results </h2><br> \n\ 
<input type=\"submit\" value=\"Submit\"> \n\ 
<input type=\"reset\" value=\"Reset \"> \n\ 
<hr> \n"), 

/» first row */ 

printfC \n\ 
<select name=\"graphl\"> \n\ 
<option value=\"/',s\" selected>default - '/,s\n", cgivars[1], cgivars[1]), 
ALL.OPTIOHSO, 
printfC \n\ 
</select><br> \n\ 
<img src=\"trend_helper cgi'Xs\" alt=\"y,s\" width=Xd height=Zd>\n\ 
<hr width=\"50'/.'/.\">", 
cgivars[1], cgivars[1], WIDTH, HEIGHT). 

/» second row */ 

printfC \n\ 
<select name=\"graph2\"> \n\ 
<option value=\"'/.s\" selected>default - '/.s\n", cgivars[3], cgivars[3]), 
ALL.OPTIOHSO. 
printfC \n\ 
</select><br> \n\ 
<img src=\"trend.helper cgi'y,s\" alt=\"7,s\" width=7,d, height='/,d>\n\ 
<hr width=\"SOr/A">", 
cgivars[3], cgivars[3], WIDTH, HEIGHT), 

/* third row */ 

printfC \n\ 
<select name=\"graph3\"> \n\ 
<option value=\"7,s\" selected>default - 7,s\n", cgivars[5], cgivars[5]), 
ALL.OPTIOHSO, 

printfC \n\ 
</select><br> \n\ 
<img src=\"trend_helper cgi'ZsN" alt=V"/.s\" width=7.d, height=/id>\n", 
cgivars[5], cgivars[5], WIDTH, HEIGHT), 



214 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

/* ending */ 
printf(" 
<hr> 

<input type=\"submit\" 
<input type=\"reset\" 
</body> 

void show_choices() 

printf(" 
<html> 

<head> 

value=\"Submit\"> 

value=\"Reset \"> 

<title> Choose trends to display </title> 
</head> 

<body> 
<form action=\"trends cgi\" method=post> 
<h2> Choose the trends you want to display </h2><br> 
<input type=\"submit\" value=\"Submit\"> 
<input type=\"reset\" value=\"Reset \"> 
<hr> 

<select name=\"graphl\"> 
<option value=\"none\" selected>none 
ALL.OPTIOKSO, 
printf(" 
</select> 

<br> 

<select name=\"graph2\"> 
<option value=\"none\" selected>none 
ALL.OPTIOKSO, 
printf(" 
</select> 

<br> 

<select name=\"graph3\"> 
<option value=\"none\" selected>none 
ALL.OPTIOKSO, 
printf(" 
</select> 

<br> 

<hr> 

<input type=\"submit\" value=\"Submit\"> 
<input type=\"reset\" value=\"Reset \"> 

</body> 
</html> 

G.3.4 trend-helper.c 
/* trend.helper c */ 

#include <string h> 
tinclude <stdio h> /* printf, popen */ 
finclude <stdlib h> /* exit */ 

Sinclude <fclient h> 

Sinclude <cgi h> 
tinclude "trends h" 

tdefine GKOPLOT.BIN "/usr/local/bin/gnuplot" 

tdefine DO.ANALOG.IH(uhat) 

\n\ 

\n\ 

\n\ 

\n\ 

\n"). 

\n\ 
\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n"), 

\n\ 

\n\ 

\n\ 

\n\ 

\n"), 

\n\ 

\n\ 

\n\ 

\n\ 

\n"), 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n\ 

\n"): 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 215 

if (strcmpCcgivars[0], #what) == 0) 

for(i=0,i<now,i++) \ 

■C 
fprintf(p, "'/Cf\n", s->analog[i] in what), 

} 
fprintfCp, "e\n"). /* end of data ■»/ 
fflush(p), 

#define DO.ANALOG.OUTCwhat) 
if (strcmpCcgivars[0], #what) == 0) 

for(i=0,i<now,i++) \ 

fprintfCp, "Zf\n", s->analog[i] out what), 
} 
fprintfCp, "e\n"), /* end of data ♦/ 
fflushCp), 

#define DO.CALCCwhat) 
if (strcmpCcgivars[0], #uhat) == 0) 
{ 

for C1=0,i<nou,i++) 
{ 

fprintfCp, ""/.fVn", s->cv[i] what), 
> 
fprintfCp, "e\n"), , /* end of data */ 
fflushCp), 

volatile struct shared_hu_data *s, 

/* this opens a pipe with gnuplot and spits out a gif file */ 
int mainCint argc, char *argvC]) 
{ 

char ♦*cgivars, 
FILE ♦p, 
int 1, 
int now, 

/* first open shared mem */ 
If CCs = fclient_open_shmCO_RDONLY)) == NULL) 

dieC'f client_open_shmCO_RDOHLY) ") , 

now = s->active. 

/* get requested plot name */ 
cgivars = getcgivarsC), /* returns name value pairs */ 

if ((now ==0) I I (strcmpCcgivars[0], "none") == 0)) 

printf CNOTFOUNDPATH), 
fflushCstdout), 
exit CO), 

} 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 216 

printf("Content-type image/gif\n\n"), 
fflush(stdout), 

/* then open a pipe to gnuplot */ 
p = popenCGHUPLOT.BIN, "w"), 

if (p == MULL) dieC'popen"), 

/* start talking to gnuplot */ 
fprintfCp, "set term gif interlace transparent small size '/,d,'/,d xbObObO\n", 

WIDTH, HEIGHT), 
fprintfCp, "plot title ''/.s' with lines\n", cgivars[0]), 

DO_ANALOG_IM(iEmMotorSpeed) 
DO_ANALOG_IN(iGenHotorSpeed) 
DO_ANALOG_IN(iIceEngineSpeed) 
DO.ANALOG_IN(iAccelPedalLevel) 
DO_ANALOG_IN(iBrakePedalLevel) 
DQ_ANALOG_IN(iActualEmTorque) 
DO_AHALOG_IN(iFuelPressure) 

DG_ANALDG_IN(iEmCurrent) 
DO_ANALOG_IW(iGenCurrent) 

DO_ANALOG_IN(iBattPackTemp) 
DO_ANALOG_IN(iBattPackVoltage) 
DO_ANALOG_IN(iBattPackCurrent) 

DD_AHALOG_INCiEmRotorTemp) 
DG_ANALOG_IH(iEmInvTemp) 
DG_ANALOG_IN(iTpsFeedback) 

DG_ANALGG_GUT(oGenSpeedReq) 
DG_ANALGG_GUT(oGenRegenLimit) 
DG.AMALGG.GUTCoEmAccelReq) 
DG_ANALGG_GUT(oEmBrakeReq) 
DG_ANALGG.GUT(oIceThrottlePos) 
DG_ANALGG_GUT(oDisSpeedoO) 
DG_ANALGG_GUT(oDisSpeedol) 
DG_ANALGG_GUT(oPwrToDigRacks) 

DG.CALCCSGC) 

DG_CALC(vehicle_speed) 
DG_CALC(vehicle_distance) 
DG_CALC(kwh_volts) 

DG_CALC(kwh_amps) 

printf(MGTFGUHDPATH), 

pclose(p), 

return 0, 

else 
else 
else 
else 
else 
else 
else 

else 
else 

else 
else 
else 

else 
else 
else 

else 
else 
else 
else 
else 
else 
else 
else 

else 

else 
else 
else 

else 



217 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

G.4 libcgi: C Language CGI Library 

G.4.1 Makefile 

# requires gnu make 

CC CC 

AR ar 

ARFLAGS qcr 

RANLIB true 

DEFINES 

INCLUDES 

QUIET -Q -wx 

OPTS -Orailnextm -4r -fp3 -fpi87 
DEBUG #-g 
CFLAGS $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES) 

FILES get.cgi c 

OBJS $(FILES c= o) 

LIBOUT libcgi.a 
DEPEND makedepend 
LIBDIR /opt/fcar/lib/ 

all $(LIBOUT) 

$(LIBDUT) $(GBJS) 

$(AR) $(ARFLAGS) $-

$(RANLIB) $a 

dep 
$(DEPEND) — $(CFLAGS) -D_.QNX__ — $(FILES) 

install $(LIBOUT) 

cp -f $(LIBOUT) $(LIBDIR) 

clean 

rm -f $(OBJS) $(LIBOUT) core ♦ err 

G.4.2 cgi.h 
/♦ cgi h ♦/

#ifndef CGI.INCLUDED 

#define CGI.INCLUDED 

#ifdef cplusplus 
extern "C"{ 

Sendif 

extern char ♦♦getcgivars(void), 

Sifdef cplusplus 
} 
#endif 

#endif 

G.4.3 get_cgi.c 
/* get.cgi c */ 



 
 

 
 
 

 
 

APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 218 

/♦
* getcgivars c— routine to read CGI input variables into an 
* array of strings 
* 

* Written in 1996 by James Marshall, jamesSjmarshall com, except 
* that the x2c() and unescape_url() routines were lifted directly 
* from NCSA's sample program util c, packaged with their HTTPD 
* 

* For the latest, see http //www jmarshall com/easy/cgi/ 
* "CGI Made Really Easy" 
* 

*/ 

#include <stdio h> 

#include <string h> 
Sinclude <stdlib h> 

#include "cgi h" 

/* Convert a two-char hex string into the char it represents ♦/
char x2c(char ♦what) 
{ 

register char digit, 
digit=(what[0] >= 'A' ' ((what[0] k Oxdf) - ■A')+10 (what[0] - '0')), 
digit+=16, 
digit+=(what[1]>= 'A' ' ((what[l] & Oxdf) - 'A')+10 (what[l] - '0')), 
retum(digit), 

> 

/♦ Reduce any '/.xx escape sequences to the characters they represent ♦/ 
void unescape_url(char ♦url) 
{ 

register int i,j, 

for(i=0,j=0, url[j], ++l,++j) 

if((url[i] = url[j]) == "/,') 

url[i] = x2c(!Eurl[j-H]) , 
J+= 2, 

} 
} 
url[i] = '\0', 

/♦ Read the CGI input and place all name/val pairs into list 
♦ Returns list containing namel, valuel, naiiie2, value2, , NULL ♦/ 

char ♦♦getcgivarsO 

register int i, 
char ♦request.method, 
int content.length, 
char ♦cgiinput, 
char ♦♦cgivars, 
char ♦♦pairlist, 
int paircount, 
char ♦nvpair, 
chcir ♦eqpos, 

/♦ Depending on the request method, read all CGI input into cgiinput 



APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 219 

♦ (really should produce HTML error messages, instead of exitOing) »/ 
request_method= getenv("REQUEST_METHOD"), 
if ('strcmp(request.method, "GET") I I 'strcmp(request_method, "HEAD")) 

cgiinput= strdup(getenv("QUER,Y_STRING")), 

else if ('strcmp(request_method, "POST")) 

if( strcmp(getenv("COHTEMT_TYPE"), 
"application/x-«ww-form-urlencoded")) 

printf("getcgivars Unsupported Content-Type \n"), 
exit(l), 

If( I(oontent.length = atoi(getenv("CONTENT_LEHGTH"))) ) 
{ 

printf( 
"getcgivars No Content-Length was sent with the " 
"POST request \n"), 
exit(l), 

} 
if( '(cgiinput= (char *) malloc(conteut_length+l)) ) 
{ 

printf("getcgivars Could not malloc for cgiinput \n"), 
exit(l), 

} 
if ('fread(cgiinput, oontent.length, 1, stdin)) 

printf("getcgivars Couldn't read CGI " 
"input from stdin \n"), 

exit(l) , 

} 
ogiinput[oontent.length]='\0', 

} 
else 

printf("getcgivars unsupported REQUEST.METHODNn"), 
exit(l), 

/» Change all plusses back to spaces */ 
for(i=0, ogiinput[i], i++) if (ogiinput[i] =='+') cgiinput[i] ='', 

/♦ First, split on to extract the name-value pairs into pairlist */ 
pairlist= (char **) malloc(256+sizeof(char »*)), 
paircount= 0, 
nvpair= strtok(cgiinput, "&"), 

while (nvpair) 

pairlist[paircount++]= strdup(nvpair), 
if ('(paircount°/,256)) 

pairlist= (char ♦♦) realloc(pairlist, 
(paircount+256)»si2eof(char **)), 

nvpair= strtok(NULL, "6"), 
} 
pairlist[paircount]= 0 , /* terminate the list with NULL */ 

/♦ Then, from the list of pairs, extract the names and values */ 
cgivars= (char **) malloc((paircount*2+l)*sizeof(char ♦»)), 
for (i= 0, i<paircount, i++) 



220 APPENDIX G DIAGNOSTICPROGRAM CODELISTINGS 

■c 
if (eqpos=strclir(pairlist [i] , ' = ')) 

*eqpos= '\0', 
unescape_url(cgiVcLrs[i*2+l]= strdup(eqpos+l)), 

} 
else 

unescape_url(cgivars[i*2+l]= strdupC'")), 
} 
unescape_url(cgivars[i*2]= strdup(pairlist[i])), 

} 
cgiveirs[paircoimt»2]= 0, /♦ terminate the list with NULL */ 

/» Free anything that needs to be freed ♦/ 
free(cgiinput), 
for (1=0, pairlistCi], 1++) free(pairlist[i]). 

free(pairlist), 

/* Return the list of name-value strings ♦/ 
return cgivars, 



Vita 

Matthew D Smith was born in Dallas, Texas, on April 11, 1975 His family moved early 

in his childhood to Northeast Tennessee where he attended public schools In 1993 he 

graduated from University High School and entered the University of Tennessee, Knoxville 

After four years of undergraduate work and one year of co-op work, he received a Bachelor 

of Science degree m Mechanical Engineering m 1998 Contmmng on m the Mechamcal 

and Aerospace Engineering and Engineering Science department at UTK culminated m a 

Master of Science degree m Mechanical Engineering m 2000 

221 


	The design and implementation of a dual hybrid electric vehicle control system
	Recommended Citation

	tmp.1693585443.pdf.2ckaN

