11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
Masters Theses Graduate School

8-2000

The design and implementation of a dual hybrid electric vehicle
control system

Matthew D. Smith

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Smith, Matthew D., "The design and implementation of a dual hybrid electric vehicle control system. "
Master's Thesis, University of Tennessee, 2000.

https://trace.tennessee.edu/utk_gradthes/9501

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Matthew D. Smith entitled "The design and
implementation of a dual hybrid electric vehicle control system." | have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical
Engineering.

William R. Hamel, Major Professor
We have read this thesis and recommend its acceptance:
Jeffrey W. Hodgson, J. A. M. Boulet

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council

I am submitting herewith a thesis written by Matthew D Smith entitled “The Design
and Implementation of a Dual Hybrid Electric Vehicle Control System ” I have examined
the final copy of this thesis for form and content and recommend that 1t be accepted 1n
partial fulfillment of the requirements for the degiee of Master of Science, with a major n

Mechanical Engmeering

William R Han{el, Major Professor

We have 1ead this thesis
and recommend 1ts acceptance

J A M Boulet

Accepted for the Council

Associate Vice Chancellor and
Dean of The Graduate School

THE DESIGN AND IMPLEMENTATION OF A DUAL HYBRID
ELECTRIC VEHICLE CONTROL SYSTEM

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Matthew D Smith
August 2000

Copyright (©, 2000 by Matthew D. Smith
All rights reserved

1

Thas thesis 1s dedicated to my parents
Eugene and Marianne Smath
Without thewr love and encouragement this would not be possible

111

Acknowledgements

I would like to thank Dr Wilham R. Hamel and Dr Jeffrey W Hodgson for giving me
the chance to do what I enjoy the most The advice and guidance they have given me over
the last few years has been immeasurable I also owe Dr. J A M Boulet a great deal of
gratitude for the help he has provided in editing this thesis. Special thanks goes to Stephen
Jesse and Craig Rutherford for the control algorithm development and the transmission
construction Without these two, this would be nothing but theoretical conjecture I
would also hike to thank the FutureCar Team members, specifically Claudell Hatmaker,
Veronika Gospodareva, Fred Mottley, Paul McCown, and Doug Ferguson Without whom,
the FutureCar project could not have happened Also while at the University of Tennessee,
I had the pleasure of working with those who call the Robotics and Electromechanical
Laboratory home Help from Dr Steven E Everett, Surya Singh, Mohammad Khalid,
Sewoong Kim, Ge Zhang, Sam Richardson, and Yasunobu Isoda on general software 1ssues

and ITEX typesetting 1s greatly appreciated.

v

Abstract

Thus research describes the development of a control system for a hybrid electric vehicle that
uses the relatively novel configuration called the dual hybrid The system 1s implemented
in the UTK 1999 FutureCar Challenge entry, a Dodge Intrepid converted to dual hybrid
operation with a student designed and constructed planetary based transmission The
control system includes models for the custom epicyclic transmission and battery pack
state-of-charge Control system implementation 1s done with the QNX real time operating
system on a PC based microcomputer Extensive discussion of the details of the software
development 1s done with an emphasis on the reusability of the code The control software
includes modes for electric-only, hybrid electric, park, neutral, and reverse operation. While
extensive testing has yet to be done, preliminary tests indicate that the control system

provides a working code base that can be easily updated, modified, and reused.

Contents

1 Introduction

11

12

HEV Types

111 Series HEV
112 Parallel HEV
113 Dual Hybnd
FutureCar Competition

2 Design Phase

21

2.2

23

2.4

25

Hardware Interface

21.1 Drive Tramm Controllers
212 Battery Pack

213 Drwver User Interface
System Controller

221 I/0 requirements

222 Computational requirements
223 System Controller Hardware
Transmission Model

231 Dnve Tramm Components
232 Torque and Speed Relations
Battery State of Charge Model .
241 Imtial Approach

242 Common Sense Approach
Software Concepts . .
251 POSIX and QNX

252 Multiple Tasks

253 Interprocess Communication
254 Real Tume Features

3 Control Algorithms

31
32

ZEV Mode
Hybrid Mode Fundamentals
321 Throttle Position .

V1

=~ Ut W W W =

10
11
11
11
15
15
22
22
24
27
27
29
39
39
42
45
47

49
49
51
51

33

3.22 'Throttle-Up Procedure

323 The Generator

3.2.4 Electric Take-off

Hybrid Mode .

331 Hybrid Regime Transition .
3.32 'Transition from ZEV to HEV Mode

4 Software Details

4.1
42

43

44

45

46

Overview

IPC Library libfchent

421 Shared Memory contents
422 libfchent functions

Task Primitives Library hbftask
431 Time functions .

432 Task management functions
Hardware Interface fcard

441 Features

442 Operation

Control Program fcar

451 Overview

452 Task details

Monitoring and Diagnostics

461 Shared Memory Monitor. mon
462 Data Trends Viewer trends
463 Data Logging flogger

5 Conclusions

5.1
52

Improvements
Future Work

Bibliography

Appendices

A Basic Control Code Modification

B Real time Trend Graph Viewing

C Retrieving Logged Data

D Control Code Listing
D1 fcard Hardware Control Damon

D11 Makefile
D12 fcardh

vil

52
55
96
56
60
61

64
64
64
65
66
68
69
70
75
76
7
81
81
82
92
92
93
93

96
96
99

100
103
104
108
110

112
112
112
113

D2

E Support Libraries Code Listing

E1l

E 2

D13 octagon-ioh
D14 octagon-i10.map h
D15 fecardc

D 1.6 parse_cmdline.c
D17 daemonc
D18 mtshme

D19 fcard conf

D 110 read_conf.c

D 111 kwh_meter ¢

D 112 hardware_io ¢
D 113 octagon.imt ¢
D 114 octagonaoc
fcar Main Control Program
D21 Makefile

D22 fcarh

D23 fecarc

D24 modeselectc .
D25 modesc

D26 motoregnc
D27 mscc

D28 icectrlc

D29 socc

D 2 10 throttle_ctrl ¢

libfclient IPC Library
E11 Makefile

E12 fclienth

E13 fcar_commonh

E 14 f{fchent_create_shm c
E 15 f{fchent.delete shm.c
E16 fclient_open shm ¢
E17 s.diec

hbftask Task Primitives Laibrary

E21 Makefile

E.22 ftaskh ;

E 23 ftask.privateh
E.24 timer_gnx_private h
E 25 trigger_private h
E26 ftaskc

E27 ftask-timec

E28 tumergnxc

E29 tngger_pipec

114
116
118
121
122
124
125
127
129
131
132
133
140
140
140
142
144
146
151
157
159
161
164

166
166
166
166
167
170
171
172
173
174
174
175
176
176
177
177
181
182
183

E 2.10 tngger_gnx.c
E 211 triggersigc

F User Interface Code Listing

F1

vid Vacuum Flourescent Display program
F11 Makefile

F12 vfdh

F.13 vidc

G Diagnostic Program Code Listings

G.1

G2

G.3

G4

Vita

mon Shared Memory Display Utility
G 11 Makefile .

G12 monh

G13 calc

G 14 wmputsc

G15 modec

G16 monc

G 17 outputsc

flogger- Data Logging Utility

G 21 Makefile

G 22 floggerc

trends cg1- CGI Interface to Shared Memory History
G 31 Makefile }

G 32 trends.h .. ~

G 33 trends.c . -

G 34 trend helperc

libcgt C Language CGI Library

G 41 Makefile .

G42 cgih

G43 getcgic

1X

185
186

188
188
188
189
191

195
195
195
195
196
197
199
200
205
206
206
206
211
211
211
212
214
217
217
217
217

221

List of Tables

21
22
23
24
25

41
42

B.1

Basic Input/Output requirements

System Controller hardware

Unique Mobility SR180 Motor Specifications
Unique Mobility SR218 Motor Specifications
Effect of Window size on err

Partial listing of fclient shared memory contents
die(), warn(), and notice() output format

TCP/IP configuration parameters

13
16
25
25
38

67
69

109

List of Figures

11
12
13
14

21
22
23
24
25
26
27
28
29
210
211
212
213
214
215
216
217
218
219
220
221
222
-~ 223
224
225

31
3.2

Series HEV configuration

Parallel HEV configuration

Split Dual HEV configuration

UTK 1999 FutureCar team and entry vehlcle

Matrix Orbital Vacuum Fluorescent Display Module
System Controller Input/Output interface diagram
System Controller Input/Output list

Vehicle Control System Wiring Diagram, Top
Vehicle Control System Wiring Diagram, Bottom
UTK FutureCar Drive Train Schematic
Transmission Planetary Gear Connections

Unique Mobility SR180 Efficiency Map

Unique Mobility SR218 Efficiency Map

Open Circuit Voltage vs SOC for a single 12V lead acid battery
Discharge Schedule for Hawker 13Ah Genesis battery
EPA Standard Driving Cycles

A UTK FutureCar Driving Cycle

Fitting Experimental Data to Polynomials

A State of Charge Prediction Model

Measured and Predicted SOC, window size 1
Measured and Predicted SOC, window size 5
Measured and Predicted SOC, window size 10
Measured and Predicted SOC, window size 30
Measured and Predicted SOC, window size 14

Partial Test Case of Measured and Predicted SOC, window size 14 ;

QNX microkernel architecture

UNIX Process Creation

UNIX Process Tree Relationship

QNX Send-Receive-Reply IPC Mechanism

ZEV generator algorithm
Throttle Position Torque Correction Factor

X1

- O O

13
14
20
21
23
23
25
26
28
29
32
32
33
34
35
35
37
37
38
39
42
44
45
46

51
53

33
3.4
35
36
37
3.8

41
42
43
44
45
4.6
47
48
4.9
4.10
4.11
412
413
4.14
4.15
416
417

Estimated Engine Map
Throttle Up Procedure
Generator Speed Request and Torque Relation

Generator speed as a function of vehicle speed and engine speed

Maximmum allowable throttle for given vehicle speed
Hybrid mode drive train component speeds

Shared memory connection

Fcard Process Tree

Fcard Octagon Hardware I/O Task Flowchart

Fcard kWh Meter Reader Task Flowchart

Fcard Config File Reader Task Flowchart

Fcard Task Manager Flowchart

Fcar Process Tree

Fcar SOC Calculator Task Flowchart

Fcar Throttle Controller Task Flowchart

Fcar ICE Controller Task Flowchart

Fcar Mode Selector Task Entry Point Flowchart

Fcar Mode Selector Task, ZEV Function Flowchart
Fcar Mode Selector Task, Reverse Function Flowchart
Fcar Mode Selector Task, Neutral Function Flowchart
Fcar Mode Selector Task, DriveEcon Function Flowchart
Mon shared memory viewer tool

Trends shared memory history viewer tool

X11

53
55
57
57
58
58

76
78
78
79
79
80
82
83
83
85
86
87
89
90
91
93
94

List of Symbols and Abbreviations

Ah Ampere hour capacity

APU Auxiliary Power Unit

CNG Compressed Natural Gas

DOHC Dual Overhead Camshaft

EPA United States Environmental Protection Agency
ESS Energy Storage System

HEV Hybrid Electric Vehicle

ICFE Internal Combustion Engine

kWh kilowatt hour capacity

POSIX Portable Operating System Interface
SOC State of Charge

T Torque (N m)

ZEV Zero Emissions Vehicle

N number of gear teeth

Ngen generator gear teeth

Nring ring gear teeth

w angular speed

Weng engine speed

Wyen generator speed

Wring ring gear speed

T gear ratio

X1

Chapter 1

Introduction

Freedom has always been the appeal of the automobile From the very beginning of the
development of the “horseless carriage” when automobiles quickly evolved from noisy and
harsh curiosities to a form of personal transportation that far exceeded the capabilities of
the horse and buggy, the automobile has symbolized personal freedom. The freedom to go
anywhere, anytime has made the automobaile one of the most popular forms of transporta-
tion

To accommodate the popularity of the automobile, vast infrastructures have been put in
place The United States Federal Interstate Highway system allows a person to drive from
coast to coast without ever leaving pavement All along this coast to coast route are fueling
stations to feed the energy requirements of automobiles. Something strange happened along
the road to personal freedom the loss of freedom

In the U S the explosive growth of the automobile required oil to be imported. Dramatic
events 1n the 1970s, recorded in history as the “Energy Crisis,” demonstrated the reliance
on 1mported o1l when foreign o1l supplies were artificially restricted Since the automobile
1s the single largest consumer of petroleum products, the US federal government made
mandates to improve the efficiency, hence reducing fuel consumption and the reliance on

foreign o1l, of automobiles used on public roads Research into automobile fuel efficiency

CHAPTER 1 INTRODUCTION 2

revealed that tail pipe emissions could also be lessened with a more fuel efficient automobile.
In the time since the 1970s, great strides have been made to reduce fuel consumption and
emussions, but for some states, like California, this has not been enough

The ultimate solution, claimed by some, 1s the electric vehicle, or EV An EV burns no
fuel and has no exhaust enussion Energy 1s taken from the electric “grid” mfrastructure
where power can be collected 1n a manner more efficient than the automobile’s internal
combustion engine The maimn drawback to a purely electric vehicle 1s range. Current
energy storage systems allow an EV to drive only about 100 km before needing to be
recharged. Also the performance of most EVs leaves a lot to be desired by the general
buying public These disadvantages, limited driving range and poor performance, appear
as a loss of freedom to the car buying public While energy storage systems improve, there
1s a sort of “stepping stone” to the EV, the hybrd electric vehicle or HEV

An HEV 15 a vehicle that has both an electric motor and an fuel burning engine of some
kind The HEV design 1s a combination of a conventional vehicle and an all electric vehicle.
The combination of the two allows for a greater driving range than an EV While an EV
has to plug into the grid to recharge, an HEV can carry 1ts own power plant. When electric
storage is low, the onboard power plant can recharge the electrical system Performance can
be as good or better than a conventional vehicle when the electric motor and engine work
together The engine 1n an HEV can be smaller and more fuel efficient than a conventional
vehicle because 1t has an electric power source to assist in driving demands Since the HEV
addresses the weaknesses of both the conventional petroleum burning vehicle and the purely
electric vehicle, 1t actually represents an increase in personal freedom In addition to the
freedom to drive anywhere at any time, HEVs can give cleaner air and less reliance on fossil

fuels.

CHAPTER 1 INTRODUCTION 3

1.1 HEYV Types

An EV’s drive train, almost by definition, 1s powered by an electric motor Since a hybrid
electric vehicle requires at least one electric motor and some other auxiliary power umt,
APU, there 1s great flexibility in what an HEV actually 1s. The APU can take many
forms For the sake of simplicity, the following discussion will assume that the APU 1s a
conventional internal combustion engine, or ICE While the goal of all hybrid vehicles 1s to
improve the overall vehicle efficiency, there are some advantages and disadvantages specific

to each configuration

1.1.1 Series HEV

The series HEV configuration, shown mn Figure 1 1, 1s the simplest hybrid configuration.
It is basically an EV with an onboard recharging engine/generator combimation. Prima-

ry tractive power 1s provided by an electric motor The drive train transmission can be

simpler than one based on a conventional engine The flat torque curve of an electric
motor can simplify gearing because multiple gears' are not needed to compensate for the
narrow torque band of an ICE Advantages to the series configuration are that because
the engine/generator combination operates independently from the vehicle speed, the small
engine can be run 1n 1ts most efficient operating range and only when the electric storage
needs recharging A disadvantage to the design 1s the relatively large traction motor. This
large motor, because 1t has to provide all motive force, needs to be over-specified because

1t has to power the vehicle not only during level stop-and-go traffic but also during a long,

steep grade, highway drive

1.1.2 Parallel HEV

The parallel HEV configuration 1s another basic HEV type. While the series configuration 1s

basically an EV with an onboard power plant to extend driving range, the parallel hybrid is a

CHAPTER 1 INTRODUCTION 4

Energy Storage System

(Battery Pack)
Auxtliary Power Unit
(Internal Combustion Engine)
Electne Electnc
Generator Motor

[C——— Electrical Connection
I Mechanical Connection

Figure 11 Series HEV configuration

conventional vehicle with a smaller engine and an electric motor to assist 1n providing torque.
For this reason, the series and parallel types are sometimes called ‘range extending’ and
‘power assisting’ configurations respectively. While the series design requires two electric
myhachines, a tractive motor and a generator, the parallel design, shown in Figure 1 2,
requires only a single electric motor The parallel configuration 1s so named because a small
engine and small electric motor work in parallel to drive the wheels The advantage to a
parallel hybrid relative to a conventional vehicle 1s that a smaller, more efficient engine can
be used The smaller engine can fulfill most driver requests, and the electric motor can
be used to provide additional power when needed A disadvantage comes from the fact
that both the engine and the electric motor have to operate at speeds dependent on vehicle 7
speed. Also, a parallel hybrid requires a conventional multi-speed transmission because
the engine is the prime mover This means that the engine has to operate outside of 1ts
most efficient range Additionally, because the electric motor is coupled to the engine, 1t
must transfer power through the transmission which results 1n power lost Recharging the
battery pack in a parallel hybrid 1s imited because recharging can only be done while the

vehicle 1s m motion The already under-powered engine 1s burdened even more with the

CHAPTER 1 INTRODUCTION 5

Energy Storage System
(Battery Pack)

Auxiiary Power Unit

OO00O

(Internal Combustion EngmeU \

Transmission Electnc
Motor/Generator \

7 Electrical Connection
W Mechanical Connection AN N

Figure 12 Parallel HEV coﬁﬁguratmn(’

task of recharging Because of this, some parallel hybrids are “charge depleting” designs
That is, electric power 1s only used when the vehicle’s torque request 1s greater than can
be provided by the engine and no attempt 1s made to recharge except during regenerative
braking These designs require the HEV to be recharged from the grid, but allow a greater

driving range than an EV

1.1.3 Dual Hybrid

While the series and parallel configurations have been long established, a relatively new
design has been introduced As described by Yamaguchi [20] the new configuration, the
dual hybrid, 1s a combination of both series and parallel systems A dual hybrid, ke a
series hybrid, requires two electrical motors and an engine The dual hybrid description
can be applied to two different configurations, switching and split The split configuration
1s1llustrated in Figure 1 3

The switching configuration 1s very similar to a series hybrid except that a clutch can
optionally allow the engine/generator combination to drive the wheels A switching system

can allow the vehicle to operate as a strict series when stop-and-go traffic makes a serles

CHAPTER 1 INTRODUCTION 6

Generator

Power
Spit
Auxihary Power Unit Device

0000

(Internal Combustion Engine)

Energy Storage System
(Battery Pack)

Motor

/] Electncal Connection
IR Mechanical Connection

Figure 13 Sphit Dual HEV configuration

connection the most efficient choice During conditions where a parallel connection is most
efficient, high speed cruising for example, the switching system’s clutch can be engaged to
allow the engine to provide additional drive wheel torque

A split dual hybrid operates as both a series and parallel at all times Instead of an on/off
device like a clutch, a power sphitting device like a planetary gear set 1s used to connect
the engine/generator and traction motor A planetary gear connection allows engine power
to be split along the parallel path, engine to driving wheels, and the series path, engine
to generator The use of two electric motors allows the split dual hybrid to operate in
two modes, split positive and split negative During split positive operation the generator
motor acts as a generator and the traction motor acts as a motor While in split negative
operation, usually during times when battery state-of-charge (SOC) 1s high, the generator
acts as a motor along with the main traction motor allowing increased torque availability
to the drive wheels Clearly, the multiple operating modes of the split dual hybrid allow for

great flexibility 1n control schemes employed

Chapter 2

Design Phase

In the design phase many aspects of the vehicle as a system need to be considered. Specifi-
cally, the available hardware interface to the various components needs to be specified With
this information, a decision on hardware for the system controller can be made. Knowing
how everything 1s wired together only shows part of the system The interactions of the
drive tramn components through the transmission need to be mvestigated in addition to how
state-of-charge 1s determined for the battery pack With the known requirements of the

system, the software environment can be specified

2.1 Hardware Interface

The UTK FutureCar has many subsystems that must be monitored or controlled by the
system controller The major drive train subsystems include the ICE, traction motor, gen-

erator, battery pack, and driver interface Each of these has separate and unique interfaces

CHAPTER 2 DESIGN PHASE 9

2.1.1 Drive Train Controllers
Engine Control

The Engine Control Unit, ECU, chosen by the FutureCar team was a TEC-2 made by
Electromotive Inc [3] The TEC-2 determines fuel mjection pulse widths and spark ignition
timing, and 1t controls the on board engine emission control equipment Sensors are stan-
dard GM parts The TEC-2 controller was chosen because of past UTK experience[16] and
the ability to specify various operating parameters The user interface 1s provided by a
DOS program that commumcates over a standard RS-232 serial port Since the TEC-2 was
designed to control a wide variety of engines, the control interfaces are simple Engine speed
feedback 1s provided by a tachometer signal, a 0-12V square wave Starting the engine 1s
performed by powering the TEC-2 controller and then shorting the starter control wires
Stopping 1s just as simple by just removing power from the TEC-2 which then halts 1gnition
and fuel delivery

While most conventional vehicles control engine speed through a linkage connecting the
accelerator pedal to the engine throttle body, the UTK FutureCar uses a remote powered
throttle body manufactured by Mikumi Inc The remote throttle body encompasses a servo
motor whose control signal 1s 0-5VDC and provides throttle position feedback with a signal
1n the same range as the control This feature 1s a requirement to the vehicle design since,
unlike a conventional vehicle, the engine must be controlled independently from the driver

request through the accelerator pedal.

Traction Motor Controller

The traction motor controller interface 1s an EVPH332 Digital Controller that 1s part of the
Unique Mobility[19] “Caliber EV 53” motor package The controller 1s a sophisticated piece
of hardware that provides a multitude of performance and status indicators The controller

mputs for brake and accelerator request are two 0-5VDC pins on the controller housing.

CHAPTER 2 DESIGN PHASE 10

Digital hines are also provided for direction and system enabling A less complex hybrid

design could use the EVPH332 directly without a system controller

Generator Controller

The generator control interface 1s the CR20-300A 1nverter/controller that comes packaged
with a Unique Mobility, UQM, SR180 motor The UQM SR180 package 1s an older style
compared to the SR218 While the SR218 interface 1s a small microprocessor, the SR180
requires that control connections are made directly on the same hardware that acts as a
high voltage inverter Many digital signals exist for gathering status information, and the
main control input 1s a £10VDC signal that represents both requested speed and direction.
A 0 to -10VDC signal 1s used indicate the requested regeneration level. A +10VDC signal

1s provided for motor speed feedback

2.1.2 Battery Pack

The UTK FutureCar uses Lead Acid battery technology for 1ts Energy Storage System,
ESS Lead Acid was chosen because of its low cost, relative robustness, and availability.
Specifically, 27 Hawker Energy 13Ah Genesis model batteries compose the battery pack.
Using 27 batteries 1n series allows for a nominal pack voltage of about 345V While most
previous UTK HEV projects used a battery pack with a much lower nominal voltage, using
a higher pack voltage was specified 1n an attempt to lower I2R losses and, hence, operate
more efficiently Originally, 28 batteries where specified, but this introduced problems
during aggressive charging with the generator Occasionally the pack voltage would exceed
400V, beyond the capabilities of the generator system

To momitor the battery pack, a Cruising Equipment Kilowatt-Hour+2 meter was 1n-
stalled The meter provides an RS-232 serial interface that represents electrical energy
consumed, pack current, and voltage all as ASCII text data The traction motor micro-

controller, the EVPH332 umit, also provides pack voltage as an analog 0-10VDC output

CHAPTER 2 DESIGN PHASE 11

signal Both motor controllers also provide feedback on motor current consumption.

2.1.3 Driver User Interface

The stock vehicle driver interface included analog gauges for vehicle speed, engine speed,
engine coolant temperature, and fuel level and a few indicator lights Ideally, a hybrid
version of a Dodge Intrepid would leave as many of the original driver controls as possible.
The mitial 1dea was to leave the original speedometer gauge and add a Matrix Orbital
vacuum fluorescent display, VFD, Figure 2 1, for hybrid specific driver display The VFD
displays characters written to 1ts RS-232 serial port and has a few special features such as
the ability to display bar graphs and large characters Eventually the stock speedometer
gauge was removed because 1t proved to be too difficult to control without manufacturer
documentation with the I/O hardware available The stock vehicle used a center console
mounted shift lever for controlling the automatic transmission This was replaced with an
eight position switch mounted on the dashboard in front of a blocked-off heating vent The
original shifter position had a mounting plate installed for a small laptop computer that

might provide additional feedback for the driver

2.2 System Controller

The previously mentioned hardware 1s self-contained, that 1s, each component can work
independently of the others In a simpler vehicle, perhaps only one of the subsystems might
be used This dual hybrid vehicle has to have a central authority that monitors and controls

each mdividual subsystem The system controller must perform this task

2.2.1 I/0 requirements

One of the man responsibilities of the system controller 1s to manage all of the input/output

(I/0O) lines for each piece of hardware Some systems, like the motor controllers, interface

CHAPTER 2 DESIGN PHASE

TEC-H
Engine Controlletr/
Starter

uam
Motor Controller

uam
Generator
Controller

-

Octagon
System Controller

VFD
Battery User Display
kWh Meter
Digital

_____ Analog Voltage

= = = = Analog Frequency
.......... RS-232 Serlal
Ethernet

Diagnostic/
Programming
Laptop Comp

Figure 2.2 System Controller Input/Output interface diagram

Table 21 Basic Input/Output requirements

| I/O type | subtype | Number |

Digital Input 16
Output | 8
Analog Input 13
Output | 9
Frequency | Input 1
Ser:al RS-232 2

13

CHAPTER 2 DESIGN PHASE

Digital input - all from one card, one 1x16 G4 rack

8 card port bt _connector Descriptron Range Sampling Freq __ Sensor/Actuator notes
1 57100 PCO J1-0 (DIGO) shifter button Oto 12vde medium blender digial switch
2 57100 PC-t shdter button Oto 12vde medium blender digrtal switch
3 57100 PC2 shdter button Oto 12vde medium blender digital switch
4 57100 PC3 shifter button Oto 12vde medium blander digital switch
5 57100 PC4 shifter butten Oto {2vde medium blender digrtal switch
6 57100 PCS shiter button Oto 12vde medium blender digital switch
7 5700 PCé HVAC enable/disable 010 12vde low existing switch
8 57100 PC7 EM Temperature waming Oto 12vde low EM mucroprocesser
8 57100 PAQ EM Controller Ready Oto 12vde low EM microprocesser
10 57100 PA- EM Fault indicater 010 12vde low EM mrcroprocesser
11 57100 PA2 EM OverTemp Indicator Oto 12vde low EM microprocaesser
12 57100 PAS3 GEN Temperature waming ? low GEN controller
13 57100 PA4 GEN Controller Ready ? low GEN controlier
14 57100 PAS GEN Fault Indicator ? low GEN controller
15 57100 PA$ GEN Dwection Indicator ? low GEN controller
16 57100 PA7 ICE Fauit Indicator 0Oto 12vde low TEC-H
Digital Output all from one card, one 1x16 G4 rack
_card ort bit __connector Description Range Sampling Fre Sansor/Actuator notes
1 57101 PCO J1-1(DIG1) ICE Starter Solenoid Oto 12vde medium short starter wires
2 57101 PC1 ICE TEC !l enable 0Ot 12vde low TECHI
3 5710-1 PC2 EM enable 0to Svdc low EM P gnd=off
4 571041 PC3 EM directron 010 Svde low EM wd, gnd=rav
§ 57101 PC4 GEN enable 0to 12vde low GEN controller
6 57101 PCS Power Steenng enable 010 12vdc low Ps motor pump rly
7 57101 PCé Mikuni Throttle Pwr Cycle 010 12vde low relay
1 Analog Input - most straight thru excopt 3 5B modutes on a 1x6 58 rack (ditferontial mode)
card channel _card pn{+-) Description Range Samplng Freq _Sensor/Actuator notes
1 5710-0 1 J2-013 EM Motos Speed Oto t0Ovde high EM microprocesser > vdiv 1
2 571041 1 J2-113 GEN Motor Speed -10vdcto +10vde high GEN controller > vdiv 1
3 5701 3 J2-157 ICE Engmne Speed 0to Svdc high TEC-Il > 58 2
4 571041 5 J219 11 Accelerator pedal position 0to Svde medum Mikuni slec. throftle
5 5101 7 J2-113 15 Brake pedal level OtoSvde medium “pressure gauge?
6 5710-1 9 J3118 Actual EM Torque 010 10vde medium EM microprocessar > vdv 1
7 57101 1" J3157 Fuel Pressure Otoévdc low press transducer
8 57101 13 J31s 13 EM Current Oto 10vde low EM microprocasser > vdiv 1
8 571041 15 J3113 15 GEN Current 01to 10vde low GEN controller > vdiv 1
10 57100 3 J2057 Battery Pack Temperature 0to Svdc low themstor?
1 57100 S J209 11 Battery Temunal Voltage Oto 10vde Tow EM microprocasser «> vdiv 1
12 57100 7 J2-013 15 Battery Curmrent 0to Svde fow shunt -»amp > 58
13 57100 ¢ J3013 EM Rotor Tempaerature 0to 10vde Tow EM microprocasser > vdiv 1
14 57100 10 J3-057 EM Invertar Temperature Oto 10vde low EM microprocesser -» vdv 1
Analog Qutput - all ight thru, no lon, nevar chassis ground (differential moda)
card channe! _card pm(+ Description Range Sampling Freq __Sensot/Actuator notes
1 5710-1 1] J211716 GEN Speed Requast -10vde to+10vde high GEN controlier 3
2 57101 1 J2118 16 GEN Regen Limnt Oto -10vde high GEN controller 3
3 55040 0 Ji21 3 EM Accel Req 0Svdcto 4 5vde high EM microprocesser
4 57500 1 Ji24 6 EM Brake Req 05vdcto 4.5vdc high EM microprocesser
5 57500 2 1279 ICE Throttie Posttion 0to Svde??? high Mikuni elec throttle
6 57500 4 J1213 15 Display Speedometer 0 Svdcto+Svdc low amp -> existng gauge
7 57500 5 J1216 18 Display Speadometer 1 <Svdcto+Svdc low amp -> existing gauge
8 57500 6 J1z219 21 Display FueVEnargy Level <Svdclo+5vdc low amp -> axisting gauge
9 57500 7 J1222 24 Power on Digntal racks Svdcto+5vdc low relay 4
Whats Left
57100 57101 57500
Digital o 9 (1 out 8LO) .
Analog Input 2 dfferential 0 dterentat -
Analog Output 2 [} 1 (ch 3 0-5vdc)
Notes 1 +/-10vde > 0 Svdc 58 analog signal condiioner is available
1 5710 analog mput only capable of +/ Svdc (voltage divider needed)
2 Tach signat needs to go through a 5B to de voltage
3 5750 not able to output +/ 10vde have to use a 5710
4 ralay needad to suppress startup)itters of the digrtal output Ines
1+ Analeg Inputs all set to operate in ditferential mode {only all diif or ali single possible)

Figure 23 System Controller Input/Output list

14

CHAPTER 2 DESIGN PHASE 15

2.2.2 Computational requirements

Since the system controller must be more than a data logger, some computational ability
1s needed The primary task of the system controller 1s to make decisions based on input
data and relay these choices with output signals According to Laplante [10], a system that
1s over loaded or very highly loaded, 98%, 1s undesirable because of the lost flexibility. A
system without enough computational power restricts changes that could be made to the
control system code, while a system that 1s continuously underloaded, < 10% or so, 1s also
undesirable for a production system Because underloading represents wasted resources, a
production system’s CPU hardware could be lessened along with a decrease 1 cost Since
the UTK FutureCar 1s not a production system but a research platform, too much CPU
power 1s not possible By using a very overpowered CPU, restrictions on later unforeseen
control code changes can be lessened While more CPU power than mmtially needed 1s
desired, there are potential drawbacks to using a high powered CPU, namely high electrical

power consumption and/or high operating temperature, neither of which are desirable

2.2.3 System Controller Hardware

Much of the system controller hardware was inherited from the UTK HEV NEON [18]
project, mcluding components manufactured by Octagon Systems Corporation Octagon
manufactures ruggedized IBM PC compatible computer equipment switable for embedded
operation. A PC compatible system was chosen because of the wide varety of software and
hardware available for the platform The Octagon cards are connected with an 8-bit wide
PC ISA bus in a passive backplane Table 2.2 summarizes the chosen hardware All of the

controller hardware operates at 5VDC Any higher voltage levels are produced on-board.

CPU

An Octagon 5066 “Micro PC” form factor CPU card houses the main CPU and other

components found 1 a regular PC with the exception of a video card The 5066 1s an

CHAPTER 2 DESIGN PHASE

16

Table 2 2 System Controller hardware

CPU

1 Octagon 5066 card

133 MHz AMD 80486 CPU w/ integrated FPU
33 MB RAM (1MB soldered, 32MB socketed)

2 RS-232 capable serial ports

programmable watchdog timer

persistent real time clock (with optional battery)
flexible sohd state storage options

PS2 keyboard interface

Persistent Storage

1 M-Systems DiskOnChip 2000
72 MB storage capacity
able to emulate standard IDE disk

Communication

1 Octagon 5500 Ethernet Card

IEEE 802 3 ethernet capability (10 Mbit/sec)
10-base-T, 10-base-2, 10-base-5 interfaces

based on Western Digital 8003 ethernet controller

Multifunction I/O

2 Octagon 5710 cards
16 single-ended or 8 differential analog inputs, each

2 analog outputs, each
16 digital I/O lines, each

Analog Output

1 Octagon 5750 card
8 analog outputs

Digital Isolation

Opto-22 G4 modules
1500 VAC 1solation
mounted 1n two Octagon MPB-16 racks

Analog Isolation

2 Dataforth 5B analog signal conditioners
1500 VAC 1solation
mounted 1n Computer Boards Inc ISO-DAO08 rack

Frequency-Voltage Converter

1 Dataforth 5B module

1500 VAC 1solation

mounted with other 5B modules
0-500 Hz to 0-5 VDC conversion

RS-232 Serial Isolation

Computer Boards Model 268

1500 VAC Isolation

up to 19 2 Kbps operation

passive, operates on serial line power

CHAPTER 2 DESIGN PHASE 17

updated version of the 5025A card used in the UTK HEV NEON. The card 1s fitted with
an Advanced Micro Devices Inc (AMD) 133 MHz 80486 processor with an integrated 80487
floating point coprocessor and 1 MB of memory An onboard SO-DIMM (Small Outhne,
Dual Inline Memory Module) socket allows system memory to be increased to the maximum
of 33 MB RAM Some of the features of the 5066 that are unlike a regular desktop PC 1nclude
a programmable watchdog timer, extended temperature operation, and SSD (Solid State
Disk) support It also features a BIOS (Basic Input Output Services) with settings stored
1n non-volatile EEPROM (Electronically Erasable Programmable Read Only Memory) that
allows for battery-less operation If an external 4 5VDC battery 1s used, the onboard real
time clock can retain date and time information when powered off Two serial ports are

also available

Persistent Storage

The Octagon 5066 card has a socket 1n which an M-Systems DiskOnChip (DOC) 2000 is
mounted The DOC 1s a sohd state flash memory device that emulates a standard PC IDE
disk 1 a compact package The relatively large 72 MB capacity was chosen to allow for
onboard data logging While the sohd state device might be somewhat slower than an IDE

disk, the benefit of compact size and no moving parts influenced 1ts choice.

Communication

An Octagon 5500 ethernet card was chosen for high speed communication Since the card 1s
based on a fairly common ethernet controller, software drivers for a multitude of operating
systems are available Additionally, having many standardized physical interfaces, 10-base-
T (twisted pair), 10-base-2 (thinnet coax), and 10-base-5 (thicknet coax) allows the card to

easlly integrate 1nto almost any ethernet topology

CHAPTER 2 DESIGN PHASE 18

Multifunction I/0

Two Octagon 5710 cards provide the majority of the system controller’s I/O capabilities.
In total, this amounts to 16 differential analog mnputs, 4 analog outputs, and 32 digital I/O
lines that can be addressed in groups of eight All 5710 analog signals are 12 bit, that 1s, the
precision available 1s 1 count 1n 4096 (2!2) The analog input ranges are fixed at +5VDC
while the analog output ranges can individually be set to 0-10VDC, £10VDC, or £5VDC.

The digital I/O lines are designed to interface to Opto-22 G4 style optoisolator modules

Analog Output

A single Octagon 5750 card provides 8 12-bit analog output channels. Since the 5710 cards
only provide a total of four analog output signals, a 5750 card fulfills the remaining required
capability. The output ranges for each channel can be set independently to £5VDC, 0-
5VDC, or 0-10VDC

Digital Isolation

To protect the system controller, all of the digital I/O lines on the 5710 cards are connect-
ed to optical 1solation modules Opto-22 G4IDC5D modules protect the mmput lines and
G40DC5 modules allow the output lines to switch loads up to 3A The digital isolation
modules are mounted 1 two Octagon MPB-16 racks with mput lines on one rack and out-
put on the other The MPB-16 rack allows a direct connection to a 5710 card with a 26-pin

ribbon cable

Analog Isolation

While 1deally all analog signals would be electrically 1solated from other systems, only two
input channels can be, cost being the limiting factor Mounted 1n a Computer Boards Inc.
ISO-DAO8 rack are two Dataforth SCM5B41 modules that 1solate a +10VDC nput signal

and convert 1t to a 0-5VDC output signal

CHAPTER 2 DESIGN PHASE 19

Frequency to Voltage Conversion

Also mounted 1n the ISO-DAOS8 rack 1s a single Dataforth SCM5B45 module that 1solates
a 0-500HZ nput signal and converts to a 0-5VDC analog signal. The main purpose of this

module 1s to mterface with the TEC-2 tachometer signal

RS-232 Serial Isolation

One of the serial connections on the 5066 CPU card connects directly to the VFD display
module The other must mterface with the kWh meter Since the serial line from the meter
references ground from the main battery pack, a Computer Boards Model 268 RS-232
1solation module 1s used to protect the system controller

The system controller 1s housed 1n an alumimmum box constructed by team members.
This box 1s mounted 1n the trunk in the spare tire well All signals that are not otherwise
protected with 1solation equipment are protected with %A fuses and connect to the I/O
cards with terminal blocks Switching loads greater that the 3A capacity of the digital
optoisolators 1s accomplished with 30A automotive lighting relays The complexity of the
customized vehicle wiring to the system controller 1s 1llustrated with the top of the diagram
1n Figure 2 4 and the bottom i Figure 25 This diagram shows how each component 1s

wired to the system controller

21

CHAPTER 2. DESIGN PHASE

wojjoq ‘urerder(] SulImpy WaysAS [0I1U0)) J[OIYDA ‘G g 9IS,

CHAPTER 2 DESIGN PHASE 22

2.3 Transmission Model

The planetary, or epicyclic, gear train design of the UTK FutureCar allows for enormous
flexibility 1n control strategy The' control scheme employed will follow the description of
the positive split mode as described by Yamaguchi[20] A schematic of the drive train with

all of the relevant gear ratios 1s shown i Figure 2 6

2.3.1 Drive Train Components

The drive train mcludes an engine, a generator motor, a traction motor, a planetary gear
set, an over running clutch on the engine, and reduction and differential gears. As shown in
Figure 2.7, the engine 1s connected to the planet carrier, the generator 1s connected to the
central sun gear, and the main traction motor 1s connected to the output ring gear This
configuration acts as a sort of Continuously Variable Transmission, CVT, because there
are no gears to shift There 1s only a single forward gear There 1s no gearing for reverse

Reverse ‘gear’ 1s accomplished by just reversing the direction of the traction motor.

Engine

Since the hybrid vehicle design allows for a smaller-sized engine, the stock 1998 Dodge
3 6 liter 6 cylinder gasoline engine was replaced with a 1998 model year Saturn 19 liter
DOHC engine converted to run on compressed natural gas While a smaller displacement
engme would be adequate, previous UTK experience with the Saturn 4 cylinder engine
design dictated 1ts selection The engine 1s coupled through an over running clutch to the

planetary carrier to prevent the generator from madvertently spmning the engine backwards.

Transmission Housing

The transmission housing comes from a 1982 Audi Quattro It was chosen because 1ts longi-

tudinal four-wheel-drive design features drive outputs like a front wheel drive transmission

CHAPTER 2 DESIGN PHASE 23

Generator

Over running —
Clutch

N

T s

Planetary Gear Set

24

Numbers indicate
the number of gear teeth

49 62

belt

]

Motor

37

Ditferential

0000

Figure 2 6- UTK FutureCar Drive Train Schematic

Planetary Gear Set

Sun Gear, Generator,

Planet Carnier, ICE engine

Ring Gear, Traction Motor, Output shaft

Figure 27 Transmission Planetary Gear Connections

CHAPTER 2 DESIGN PHASE 24

and access from the rear of the housing for mounting the generator While custom designing
and manufacturing the housing 1n-house was considered, the availability of a commercial
cast aluminum housing that could be modified for hybrid operation made the Audi housing

a better choice

Generator Motor

A custom Unmique Mobility SR180 motor 1s mounted at the rear of the transmission housing
to act as a generator This model was chosen because 1t 1s physically small, hghtweight,
and speed controlled Previous UTK experience with the SR180 came from the NEON
HEV project where the nominal high voltage system bus voltage was 180V A custom
motor had to be ordered to work with the UTK FutureCar’s 345V nominal high voltage
bus Figure 2 8 shows the manufacturer’s efficiency map and Table 2 3 shows some of the

motor’s specifications

Traction Motor

A Umque Mobility SR218 motor serves as the primary traction motor This motor was
chosen because of 1ts physically small size, ightweight design, and torque based control
Because this motor acts as the prime mover 1n the drive train, torque control makes it
more closely mimic the torque based feedback of a conventional vehicle’s accelerator pedal
coupled to an engine throttle Figure 2 9 shows the manufacturer’s efficiency map and Table

2 4 shows some of the motor’s specifications

2.3.2 Torque and Speed Relations

From Muller[12], the governing equation for speed of the planetary gear for this specific

transmission 1s

1 —
Wring = (ha T) w:’ng wge’n’ (2 1)

CHAPTER 2 DESIGN PHASE 26

where

thus,

Motor Speed {rpm)

Figure 29 TUnique Mobility SR218 Efficiency Map

erng 57
= =—=211 2.2
T Ngen 27 ? ()

Ween = (3 ll)weng - (2 ll)wrmg (23)

As 1s evident from these equations, setting one component speed to a specific value does

not determine the speeds of the other components This allows the speed of the engine and

generator to vary over a range independent of wheel speed

The governing steady state torque balance equations for this specific transmission are

where

and

Trmg = Teng = Tgen 2, (2-4)

erng 57
M= 20 5 0.68 25
YT Nyon + Nemg 84 (25)

— =211 (26)

CHAPTER 2 DESIGN PHASE 27

As can be seen from these equations, component torques do not share the same degrees of
freedom that speeds do Under steady state conditions, generator torque and engine torque
always have the same ratio regardless of the magnitudes of the speeds and torques of all
components

The transmission will not always be operating in steady state or even quasi-steady state
conditions That 1s, at some times, the rate of change of the component speeds 1s on the
same order of magnitude as the speeds of the components The assumption 1s made that, 1f
the transmission 1s not 1n steady or quasi-steady state conditions, then i1t will be accelerating
to such conditions The transmission will not diverge from steady state conditions by virtue
of the fact that the generator 1s speed controlled, and 1its torque 1s significant enough to force
the engine to any operating speed regardless of engine power output If this assumption
1s 1ncorrect and the generator 1s unable to maintain a constant speed while under load,
safety precautions are taken to trim the engine throttle before the generator exceeds safe

operation speeds

2.4 Battery State of Charge Model

One critical run-time parameter of any HEV 1s battery pack State of Charge, or SOC A
charge sustaming system must monitor the SOC and take appropriate action when the SOC

1s low Additionally 1t must prevent battery over charging when the SOC 1s high

2.4.1 Initial Approach

The mitial approach to estimating SOC utilized a rather traditional method When current
draw on the high voltage system 1s low, a simple linear model can be used[6] A graph
of open circuit voltage for a single cell, shown 1in Figure 2 10, shows that SOC 1s linearly
proportional to battery terminal voltage when current draw 1s neghgible. While this might

be all the information needed for a low power application, an HEV operates much of the

CHAPTER 2 DESIGN PHASE 28

Hawker Energy Data for SOC of Genesis Battenes

126 - - - - ,},/’ E

122 b o . i

Open Circuit Voltage, (volts)
LY
Y

sl - - .. - - - -

11 s 1 1 L 1 A L 1 1
01 02 03 04 05 06 07 o8 09 1
State of Charge, Normalized

Figure 2 10 Open Circuit Voltage vs SOC for a single 12V lead acid battery

time when the current draw can be hundreds of amperes For load conditions the battery
manufacturer[5] provides data for capacity over varying current loads, shown in Figure 2.11.
This figure shows capacity 1n ampere-hours (AhL) over constant discharge rates to 1 67 Volts
per Cell, VPC The 12V batteries used have six cells each, so total discharge 1s taken to
be about 10V across the terminals under load The mitial algorithm for determining SOC
operated 1n two modes based on the current draw If the current draw was approximately
zero, the data from Figure 2 10 would be used Otherwise, the number of Ah consumed
would be calculated by discretely integrating over time which then would be subtracted from
the total capacity calculated from the data in Figure 2.11. This method seems reasonable,

but there are several disadvantages

e The manufacturer’s data 1s given for a single 12V battery, while the UTK FutureCar’s
pack consists of 27 batteries 1n series While each battery 1s manufactured to a certain
specification, there are differences from battery to battery This model does not take

battery-to-battery interactions into account

e While there are ‘rules of thumb’, or heuristics, for temperature changes, e g “battery

CHAPTER 2. DESIGN PHASE 29

Genesis 13Ah Mode! Discharge Schedule at 25°C
10000 T T

£ Watls =]
& 00| R Amps & 1
r e
& et
& gyl Boene o e 4
c [x] = oA
g Ca g, TR g,
3 10F L= u N, .
- o
S 9o g
5 b I h
g
o
£ o) .)

001 01 1 10 100

1000 T T T
Enorgy (WhH) ==
Capacity (Ah) B
]
S P e el
Zp 1of P Ry e e K - -
—X

5% -
Z,m
§3 10 b —— owpfs B @03 00 o -
@ o~ 3
[<3 i

1 1 1 1

001 01 1 10 100

Run Time to 1 67 VPC (hours}

Figure 2 11 Discharge Schedule for Hawker 13Ah Genesis battery

hfe 1s reduced by 50% for every 30°C drop with a 30°C nominal temperature” and
“battery life 1s increased by 50% for every 30°C increase but capacity 1s decreased,”
battery performance characteristics due to temperature changes are not provided by

the manufacturer

e The manufacturer provides no information on how a battery will react to charging
Considering that a charge-sustaining hybrid spends a great deal of time recharging

the batteries, lack of this data 1s a severe problem

2.4.2 Common Sense Approach

While the 1mitial approach proposed above seems sound, 1t was never 1mplemented because
of concerns about 1ts mability to track SOC durmng charging Also, hardware that could

accurately measure battery pack current was not functional at the time of the competition

After functional battery pack monitoring equipment was installed, the whole concept of

State of Charge was reexamined All previous methods required summing current readings

CHAPTER 2 DESIGN PHASE 30

over time and dividing that by a hypothetical capacity While measuring a pack current
value could be accurate enough, all models for estimating total pack capacity seemed lacking.

Conventional wisdom says

A lead-acid battery will react by way of 1ts terminal voltage in response to a
given current demand uniquely based on 1ts state of charge

Since the battery current measuring device was not functional during most of the vehicle
testing but pack voltage measurements were readily available, a periodically updated voltage
value was displayed for the driver to use During the first drive after hybrid mode was
functional, the pack failed after about 15 km, probably due to over-charging This required
disassembling the pack, locating damaged batteries, and replacing them with known good
batteries After this imtial failure, the driver learned to closely monitor the battery pack
voltage to assess the condition of the pack With only the knowledge of how the pack
voltage reacts to an estimated load (iitial startup, acceleration, grade, etc.), the human
driver could make an educated guess to the pack SOC after some experience behind the
wheel

The goal for this approach 1s to encompass the human knowledge and express it as an
algorithm so that a computer could make the same decisions as an expert test driver To

quote from Tsoukalas[17]

Artificial intelligence 1s a branch of computer science that attempts to emu-
late certain mental processes of humans by using computer models In expert
systems, perhaps the first field of artificial intelligence to be commercially recog-
nized 1n 1ts own right, one of the primary objectives 1s to mimic human expertise
and judgment using a computer program by applying knowledge of specific areas
of expertise to solve finite, well-defined problems

One of the primary characteristics[7] of an expert system 1s the reliance on human
knowledge instead of formal reasoning methods This comes from the fact that, for most
problems where expert systems techniques are applied, there exist no definitive algorithmec
solutions This 1s so because these problems involve complex social or physical situations

which resist precise description and rigorous analysis A battery SOC calculation 1s one of

CHAPTER 2 DESIGN PHASE 31

these problems where there are many complex physical, chemical, and electrical reactions

within a single battery, and everi more 1n a pack of multiple individual batteries.

Derivation

To collect data for this experiment, the UTK FutureCar was driven around the University
of Tennessee, Knoxville, campus 1n early August of 1999 when the temperature was approx-
imately 35°C and the relative humidity was about 85% While most vehicle experiments
are performed on a chassis dynamometer following a standard velocity profile, such as the
Federal Urban Driving Schedule (FUDS) or the Federal Highway Driving Schedule (FHDS),
shown 1 Figure 2 12, this test was performed on the road During the test many vehicle
subsystem parameters were recorded, but only battery pack voltage and current and a few
notes of the driving conditions were used This driving schedule 1s shown 1n Figure 2 13.
Battery pack current and voltage and total Ampere-hours consumed were sampled at a rate
of 1 Hz from a Cruising Equipment Kilowatt-Hour+2 meter[2] Other parameters such as
vehicle speed were recorded at a rate of 1 Hz using the control system’s flogger (Section
4 63) data logger Because the two systems recorded data to separate files, a duplicated
signal, battery pack voltage, was used to synchronize the two data sets

From the total Ahs consumed an estimate for SOC was made by making the guess
that the average total capacity was 2 0kWh This number was chosen because it placed
the SOC at approximately 25% at a pomnt, about 2000 seconds into the test, where the
vehicle was noted as seeming to be at a low SOC With an SOC estimate to correspond to
a pack current and voltage reading, each data pair, current and voltage, was assigned an
SOC attribute. From this data, polynomial curves were fitted to the “high” and “medium”
SOC data sets, see Figure 2 14 Cubic equations seemed adequate to generalize these data
sets The “low” SOC data set resisted a third order polynomial curve that looked like 1t
fit the data This can be attributed to the relatively few pomnts available for this set To

compensate the “medium” curve was modified to fit the “low” data set Because of the lack

CHAPTER 2 DESIGN PHASE 32

vehicle speed (mph)

vehicte speed (mph)

Pack Voltage Speed (mph)

Current out (amperes)

EPA Federal Dniving Cycles

60 ¥ T 1 t T)
utban FUDS cycle
50 . . s . -
40 - - : - i -
0 - - 4
20 F 5 .
;
10 - - - ~
o 1 L
0 200 400 600 800 1000 1200 1400 *
70
i ' ' T ' highway FHDS cycle
60 - - - T
s0 F . ‘ 4
a0t . : . . - . 4
30 - - « ’ . . i -
20 . - . . B ~
10 B -
o 1 1 L] 1 1 1
0 100 200 300 400 500 600 700 800
tme (s)

Figure 2 12 EPA Standard Driving Cycles

Test Dnve Record

2000 2500 3000 3500 4000
. r r —
‘ E
\ . . \
2000 2500 3000 3500 4000
Br {E—— T T ' T T .
}40 E -]
12% E ‘ :
a0 F ' 3
BE m]
28 y . 41511 .
[} 500 1000 1500 2000 2500 3000 3500 4000

time (s)

Figure 2 13 A UTK FutureCar Driving Cycle

CHAPTER 2 DESIGN PHASE

State of Charge (normalized)

SOC enror

Measured and Predicied SOC, window size 1

o
w
T T T T T T

Ho3L
Y

7 D

Y

oy 4

5]

7 L T T T
S

Measured SO"

PVEPTIN

s

et

35 w2 v

VAN
:

-
o
aa

:
T
%
>
h:
e
%
x»éx‘:?
.
s
:
-
A
.
B
=
V.
H

T
aw -

POX TR €

s
=
¥
o

-

500 1000 1500 2000 2500 3000 3500

mean=0010 absmax=0364 sumferror)’=21476

4000

04

03 irs

02
01

i
01

02
03

T T T T T T T

:
L ! Il H] 2 L

by Mﬁm?lmww% 4zmp¢

04

500 1000 1500 2000 2500 3000 3500
time (s)

4000

Figure 2 16 Measured and Predicted SOC, window size 1

State of Charge (normalized)

SOC error

Measured and Predicted SOC, window size 5

T T
Measured SOC
[BRES Ad

T
s - -

T
.
3
‘
*
4
v
SRR U

T T I S S N B |

005
-005
015

02
028

500 1000 1500 2000 2500 3000 3500

mean = 0007 abs maxs= 0249 sum(en'c;r)2 =10359

Y
o
=]
=1

e

P

et
- ks S
fo0e L

LI B B R =)

T T T T T T
' .

'
> -
'
'

A

3

X !

o -

. b
!j? 1”“"‘1' ﬂ’*y’iﬁ?(' N\ ,:W s,*i“l;\f‘"\ ‘:'5' 7‘! U‘ ’/ hd

(=]

500 1000 1500 2000 2500 3000 3500

tme (s)

4000

Figure 2 17 Measured and Predicted SOC, window size 5

35

CHAPTER 2 DESIGN PHASE 36

points, the value of err can be halved Figure 2 18 shows that err can be reduced even
more with a window size of 10, but Figure 2 19 indicates that a window size of 30 makes
the model slow to respond to changes The optimal window size, the one that mimimizes
err for this data set 1s 14, shown 1n Figure 220 A summary of the effects of different sized
windows 1s shown in Table 2 5

Because training and testing on'the same data set might lead a generalized model to
reproducing the non-general variance 1n a certain data set, a portion of the training set was
used to test the predictor Figure 2.21 shows how the model predicts only the second half
of the tramning set It seems to be over damped a bit, taking 200 seconds to catch up to

actual value, but otherwise acceptable

Conclusions

This model of battery SOC works fairly well in simulation Its strengths include.

e It 1s conceptually simple and based on actual experimental data and human experi-

ence

e Only two variables are required, pack current and voltage, to estimate SOC Persistent

storage of any data 1s not required, but averaging over a few past data points is helpful.

e It 1s simple to modify or adapt to a new environment For example, when adapting
to a different pack, a good first step would be to move the y-ntercept of the three

equations to correspond to the different nominal pack voltage

Even with these strengths there are a few weaknesses that follow the weaknesses of
expert systems 1n general{17] The model does not handle the dynamics of SOC calculation
well, the three equations, shown graphically in Figure 2 15, work best under steady state
conditions, but can be adapted to a dynamic situation with a moving average scheme The

results are very dependent on the adequacy of the knowledge imncorporated into the system

CHAPTER 2 DESIGN PHASE

Measured and Predicted SOC, window size 10

0512 - : - l Measurod SOC -
o8|

07 [
06 |
05 |
04+ g PN PO
03 | ' ‘ ‘ & m

02 1 L _ . L L '

500 1000 1500 2000 2500 3000 3500 4000

-
-

State of Charge (normalized)

mean= 0002 abs max=0102 sum(error)2 =4292
012 T Y T T T T

(T4 VR U
TR A

e 4 o

SOC error
o

co
oo
Hnd

T 1 rr I—FL—.J‘ T 1
o
"fonke
-~

s . [Il

2500 3000 3500

gllllllllll

o
@
8
-
(=]
=]
=]
-
@
8
[N
=1
=]
©

Figure 2 18 Measured and Predicted SOC, window size 10

Measured and Predicted SOC, window size 30

T T T

= T T
g o9 Meastred SQ8 -
g os . 4
g o7 : - -
% o6 . R d
2 os - . H . 4
G
5 04 - 3 - B
2 o3t} 3 .
® oo s L L) L L L
0 500 1000 1500 2000 2500 3000 3500 4000
mean =-0059 absmax=0217 sum(ermr)2 =26 701
02 T T T T T T T
015 - - . - f , -
o1 - ' f - -
5 005| . - " .//.._ 4
5 ok - - Faz P - -
g oo\ - ’,/*4'\/"*\ I P ey _
@ 01F 3 */ .,.w»"!/., '\' 4
015 - ,;., \, I'd .o ‘ s .- .
e WY ; :]
025 . L . 1 1]]
0 500 1000 1500 2000 2500 3000 3500 4000
tme (s)

Figure 2 19 Measured and Predicted SOC, window size 30

37

CHAPTER 2 DESIGN PHASE

Measured and Predicted SOC, window size 14

-

08
07
06
05
04
03

State of Charge (normalized)

Me\ urui soc, —ee |

02
0

01
008
006
004
002

(=]

-0 02
-004
-006
-008

01
-012

SOC error

Figure 2 20 Measured and Predicted SOC, window size 14

s L :
1000 1500 2000

N
2500

:
H
3000

H
3500

Table 2 5- Effect of Window size on err

| Window Size |

1 21 476
5 10 359
10 4292
14 2 860
30 26 701

500 4000
mean=-0 006 absmax =0 103 sum(enor)2=2380
[i ' !]
4 :
* M) f L““/MW*. w‘**“v"" <]
;’!” Y ,« e M&’“}\ 'W‘ :
[} 5:)0 1;00 15‘oo 2000 25;0 aoloo 35‘00 4000
time (s)

38

CHAPTER 2 DESIGN PHASE 39

Partial Test Case of Measured and Predicted SOC, window size 14

o
(L]
-

g os ' Moasized 05— |
g 04 -
& 035 -
5 03 4
g 025 |- e
5 o02f 1
2 o15f 7 . e 4
w 01 1 1 1 A 1 1 i L A
200 400 600 800 1000 1200 1400 1600 1800 2000
mean=0004 absmax=0210 sumerrer)? = 2839
025 ’ . y ,
02 f H i
5 015 -'\\ ' - 4= -
5 01k wh T .- .- - t e e ee T -
g oot N - .- - e . e ame g N -
@ ot N e - . e e A .‘,..\W‘/.NMM“ [
00s | ,Wﬁrﬁﬁﬁf‘w’w AU
01 il il 1 1 1 L 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ume (s)

Figure 2 21 Partial Test Case of Measured and Predicted SOC, window size 14

Overall, the method appears to be sound The implementation of the algorithm 1s

discussed 1n Section 4 5, and code 1s 1n Section D 2 9

2.5 Software Concepts

To control all of the system controller hardware, software 1s used Previous UTK hybrid
vehicle projects have used bare Motorola assembly [1] language 1n the “Ground Up” project
and a C language system for DOS [18] 1n the HEV NEON project As the UTK projects
have grown more complex, more software support 1s needed to make the most of the com-
puting hardware available While the attempt was made to use a combination of the QNX
operating system and C programming language(9] 1n the later phases of the NEON project,

the FutureCar project 1s the first to have a system based on 1t

2.5.1 POSIX and QNX

QNX 1s a computer operating system written and distributed by QNX Software Systems
Ltd , (QSSL), in Ontario, Canada It is designed as a real time embedded OS. Real time

CHAPTER 2 DESIGN PHASE 40

features allow for time critical operations to happen deterministically, and embedded fea-
tures allow the system to be used 1n a resource constrained environment where 1t is not
readily apparent that a computer 1s even 1n use during normal operation. QNX, or more
specifically, QNX4, runs on Inte] and compatible processors in an environment similar to
a regular desktop PC While newer OSs from QSSL run on a wider variety of hardware
platforms, the UTK FutureCar control system 1s implemented on QNX4 with PC style
hardware

Some of QNX features include multitasking, memory protection, priority driven preemp-
tive scheduling, and fast context sw1tcih1ng [15] Most of these features come from QNX'’s
microkernel architecture Multitasking means that 1t supports the execution of multiple
processes or tasks 1n what appears as :51multa.neous action. While only one process might
actually be using the processor at a given instant, the speed of modern computing hard-
ware makes 1t appear to a human observer that more than one process 1s running The
term “program” refers to an executable file or 1mage on disk or some other storage The
term “process” or “task” usually refers to the in-memory and runnable image of a program.
Memory protection, a feature usually 1mplemented in hardware, 1s the ability to prevent
an unauthorized process from reading,or writing memory that has not been allocated for
1t. Memory protection greatly increases the stability of a system because a single misbe-
having user process cannot cause a system crash Prioritized preemptive scheduling allows
processes to be given a priority level In this scheme a higher priority task may preempt,
or temporarily prevent from running, a lower priority task Context switching refers to
the process of the kernel suspending one running task, saving its state, loading another
previously suspended task’s state, and:runmng this other task
-— The microkernel concept 1s a direct reaction to the traditional UNIX monolithic kernel
In a monolithic system, there are twc:) types of processes, the single kernel process and
multiple “user” processes The monolithic kernel 1s the operating system core. It manages

all the hardware, all device drivers are included n 1ts core If a user process wants to do

CHAPTER 2 DESIGN PHASE 41

I/0 1t has to ask the monolithic kernel to do so on 1ts behalf. Also monolithic kernels are
usually not preemptible, that 1s, no task can run at a higher priority than the kernel Most
of these characteristics of a monolithic kernel are a detriment to real time determinism.

The QNX microkernel approach, 1llustrated in Figure 2 22, moves every service out of the
kernel that can be done from “user” space What remains in the kernel are only the lowest
level services An advantage to the microkernel design is that procedures that in a monolithic
kernel would have no memory protection are now 1n separate memory spaces. This reduces
the possibility of a crash due to a single faulty service The disadvantage 1s the same as the
advantage, memory protection. In the monolithic design, kernel internal communication can
be as simple as passing variables. When services are moved to separate processes 1n separate
memory spaces, speclal constructs must be made so that the independent processes may
communicate QNX uses message passing as 1ts native form of interprocess communication,
IPC One of the primary responsibilities of the microkernel 1s to handle the routing of all
messages

QNX 1s a POSIX conforming operating system POSIX, the IEEE Portable Operating
System Interface Computing Enwvironments [11], 1s both an American, ANSI, and Interna-
tional, ISO, Standard POSIX defines a standard way for computer applications to obtain
information and services from the underlying operating system. An application that follows
these standardized interfaces 1s considered portable, that 1s, 1t can easily be reconfigured or
ported to run on a different operating system easily The basis of POSIX 1s a combination
of the behavior and interfaces of AT&T UNIX System V and Berkeley Standard Distribu-
tion UNIXx POSIX 1s not an operating system 1tself, but 1t does define a set of standards.
Because the standards only define the external characteristics, a system like QNX which is
very dissimilar to traditional UNIX internally, may still follow these guidelines. Some of the

POSIX standards that QNX conforms to are.

P1003.1 defines the interface between portable application programs and the operating

system, based on historical UNIX system models This consists of a library of functions

CHAPTER 2 DESIGN PHASE 42

Message | Process
Passing | Scheduling
Low Level | Hardware
Networking | Interrupts

Device Microkernel

Process
Manager

Filesystem
Manager

Network
Manager

Manager

Figure 2 22 QNX microkernel architecture

that are frequently implemented as system calls Approved as IEEE Std 1003.1-1990.

P1003.1b real time extensions including binary semaphores, process memory locking,
memory mapped files and shared memory, and priority scheduling. Approved as

IEEE Std 1003 1b-1993

P1003.2 specifies a shell command language based on the traditional UNIX Bourne shell
with features from the C and Korn shells Additionally specifies over 70 utilities that
can be used 1n shell scripts or interactively Approved as ISO/IEC 9945-2:1993 and
IEEE Std 1003 2-1992.

2.5.2 Multiple Tasks

Most real time applications are defined by the requirement to handle multiple jobs at once 1n
a timely manner The ability of an operating system to handle multiple tasks, each running
at a different loop frequency, concurrently 1s a definite advantage These advantages[4]

mnclude

Scalability Multiple tasks can run on multiple processors If a control application’s re-
quirements are best served with more than one CPU, multiple tasks take advantage

of the computing hardware

https://PlOOS.lb

CHAPTER 2 DESIGN PHASE 43

Modularity Processes can easily be added and removed to adjust to new requirements.

Protection In QNX, processes are in separate memory spaces. This means that a single
errant task cannot corrupt the memory of another A single bad instruction has a

much smaller chance of taking the whole system down with memory protection

QNX follows the traditional UNIX semantics for task creation

Fork and Exec

Task creation in QNX 1s performed with the C language function fork() as specified by
POSIX The historical UNIX method of starting a program 1s done n two steps For
example, as shown mn Figure 2 23, 1if one process, A, wants to start another program, B,
whose executable 1mage 1s stored on disk, 1t first calls the fork() function which makes
a copy of process A In the aptly named fork() function, a single process enters and two
return The return value uniquely identifies which process 1s which The two copies of
process A exist in separate memory spaces The newly created copy of process A then
calls another function, exec(), to load the executable 1image of B The sole purpose of the
exec () function 1s to replace the calling process with a process that results from executing
the B program After the exec() function call, what was two copies of process A becomes
a single A process and a single B process Since the traditional procedure for starting a
new executable mcludes making an unnecessary copy of a process, QNX provides a more
efficient set of spawn() functions for loading executables from disk The advantage to the
traditional method 1s that the exec() step does not have to be done A single executable
program may “expand” to multiple copies of 1itself, each performing a different task This
method 1s generally termed the fork threading model, but 1t 1s a misnomer since a “thread”
usually refers to an independent part of a process that operates in the same memory space

as 1ts creator All process created with fork() are in separate protected memory spaces

CHAPTER 2 DESIGN PHASE 44

Process A i Process B

main() of '
program A !
—]

main() of
program B

Figure 2.23 UNIX Process Creation

The Tree Process Model

The POSIX process model 1s arranged like a tree That 1s, every process except the first
one, has a parent Any process can be a parent, all that 1s required 1s that 1t have at least
one child process A process can be both a parent and a child. A child process can have
a sibling process 1if they share a common parent The lineage of a system’s processes fan
out like the branches of tree, shown in Figure 2 24. There 1s a special relationship between
parent and child processes When a child process finishes, either normally or abnormally,
the parent process 1s notified The parent may find out how a child process exited by calling
one of the wait() functions If a child process dies and the parent does not call wait ()
the child process remains 1n an altered state A process i this state 1s called a “zombie”
because 1t 1s neither running nor completely finished Another situation 1s when a parent
process dies before 1ts children In most cases where certain provisions have been made, any
child processes will be terminated along with the parent In other cases, the child processes

are reparented or “adopted” by the special first process This technique 1s used by long

CHAPTER 2 DESIGN PHASE 45

Parent

Child, Parent

_,f”\beImgs

Child=" v fleeT

Siblings ———-—“(\ Child, Parent

Child

Child

Figure 2 24- UNIX Process Tree Relationship

running processes, termed “daemons”, to break out of the process tree When referring to a
special UNIX process, deemon 1s usually spelled the old fashioned way to relate to the term’s
original meaning, a guardian spirt, rather than the current defimition of an evil entity or

devil

2.5.3 Interprocess Communication

Since all processes operate 1 separate memory spaces there needs to be some provision for
transferring or sharing information QNX supports many forms of IPC, the primary being
message passing With QNX message passing, processes communicate with functions named
Send,Recerve, and Reply (S/R/R), see Figure 2.25 This form of IPC is synchronous because
the two communicating processes wait for responses from each other QNX also offers
an asynchronous version of message passing where confirmation 1s not required POSIX
standardized forms of IPC such as shared memory, signals, and pipes are also supported by
QNX

Shared memory 1s a descriptive term for a form of IPC 1n which a section of memory

1s shared between multiple processes A protected memory based operating system such as

CHAPTER 2 DESIGN PHASE 46

Process A i Process B

! 1
Sendy() ;

send datatransmitted

: » Receive()

o E
E :

reply dataitransmmed

- ; Reply()
Y

T
1
1
1
'
]
'
]
]
)
v
]
¢
1
'

Figure 2.25 QNX Send-Receive-Reply IPC Mechanism

QNX 1solates the memory spaces of each process The shared memory mechanism puts a
window 1n the wall that separates processes Shared memory looks to a running process
just like non-shared memory. Since shared memory 1s basically regular memory, there 1s no
inherent synchronization for accesses to shared memory Other forms of synchronization hke
semaphores or mutexes can be used in conjunction with shared memory Shared memory
18 a very fast form of IPC mostly because 1t 1s so primitive.

Signals are a traditional UNIX form of IPC Signals are used extensively internally mn a
POSIX system process termination 1s induced by SIGTERM, invalid memory references
cause the delivery of SIGSEGV, a child termination notice 1s indicated by SIGCHLD, and
SIGFPE 1s sent as an indication of a math error (division by zero, overflow) Only two signals
are reserved for application specific uses Signals are also not queued These limitations
generally make signals a poor choice for a user defined IPC scheme A specification in POSIX
1003 1b, real time signals, removes these two limitations, but QNX4 does not support this
feature

Pipe IPC 1s one of the characteristic features of UNIX Pipes are so named because they

CHAPTER 2 DESIGN PHASE 47

open a one-way communication channel between two separate processes A single pipe can
only be used with two processes One process writes to 1ts end while the other only reads
from it. Multiple pipes can be used to connect more than two processes. While pipe data
travels through the monolithic kernel 1n a traditional UNIX system, QNX implements pipes
with a Pipe I/O manager This manager translates pipe function calls to QNX S/R/R

messages

2.5.4 Real Time Features

The definition of a real time system can be quite broad [10] At the most basic level, a real
time system 1s one that meets a specified temporal deadline on time That definition would
hold for both a real time stock ticker system and a real time anti-lock braking system (ABS)
for an automobile While the time deadline for a stock ticker may be anywhere from a few
seconds to a few minutes, the deadline for an ABS might be 1n the microsecond range To
distinguish between the two extremes, the terms “hard” and “soft” are used to qualify the
term “real time”, but even these terms are really only relative It might be possible that
an assembly line robot must synchronize with the rest of the assembly line at a hard real
time rate of 10 Hz and a video game might need to synchronize sound and video at a soft
real time rate of 60 Hz Since the speed of operation might not best determine if a system
1s hard or soft, another qualification 1s added to hard real time systems A hard real time
system is one that must meet 1ts deadline on time or there 1s a high risk of loss of life or
property

QNX was designed with hard real time in mind. To that end 1t supports many features
necessary to reach temporal goals First, the small microkernel features very fast task
switching and mnterrupt handling These functions are the main responsibilities of the QNX
kernel since most other services have been moved to user space tasks Also, since the kernel
itself 1s never scheduled to run, 1t can “get out of the way” of demanding hard real time

tasks

CHAPTER 2 DESIGN PHASE 48

Another feature of QNX from the POSIX 1003 1b specification 1s process priority levels.
Priontizing allows more important tasks to preempt less important tasks In QNX a lower
priority task will not run if there 1s a runnable higher priority task as long as some sort
of shared resource doesn’t cause a priority mnversion A priority inversion happens when
a low priority task 1s able to prevent a higher prionity task from running For example,
tasks of different priorities might both use a semaphore If the low priority task obtains
the semaphore, 1t can prevent the higher priority task from running Priority inversion 1s
usually undesirable

In addition to a priority parameter, processes can also have a scheduling method speci-

fied

e FIFO scheduling Under FIFO, First In First Out, scheduling a process will continue
to run until 1t either voluntarily relinquishes control or 1s preempted by a higher

priority task Real time tasks that cannot afford to be interrupted are best run with

FIF'O scheduling

e Round-Robin scheduling Round-robin scheduling 1s the same as FIFO scheduling
except that a process may also be preempted 1if 1t consumes more than a single time

slice of CPU time In QNX a time slice 1s defined as 100 milliseconds

e other scheduling While there are well defined POSIX specifications for FIFO and
round-robin scheduling, the “other” scheduling method 1s itentionally vendor specif-
1c QNX defaults to an adaptive schéduhng method where priorities are adjusted 1n
response to CPU use While adaptive scheduling 1s 1deal for an interactive multi-user

system, 1t cannot guarantee response tumes necessary for hard real time applications

The combination of a responsive microkernel, priority levels, and scheduling allows QNX

to be used reliably in hard real time situations with properly written software

Chapter 3

Control Algorithms

The UTK FutureCar has two main operating modes, ZEV and HEV In ZEV, Zero Emissions
Vehicle, mode the vehicle acts like a purely electric vehicle The on-board battery pack 1s
not recharged, hence, the control algorithm 1s considered to be “charge depleting.” The
Unique Mobility SR218 traction motor 1s the only torque providing drive tram component
In HEV, Hybrnid Electric Vehicle, mode all drive tram components optionally come imto
play. If the SOC 1s high, HEV mode acts similarly to ZEV mode 1n that the engine is not
operational and the traction motor provides all of the required driving power. If SOC is
low or the driver torque request 1s significantly high, the engine 1s operational along with
the generator Because the engine/generator combination 1s used to restore the battery
pack, HEV mode 1s a “charge sustamning” mode The mamn efficiency improvement over a

conventional vehicle comes from operating the engine only when needed.

3.1 ZEV Mode

In ZEV mode, the requested torque 1s directly proportional to the position of the driver’s
accelerator pedal The traction motor, as shown 1n Figure 2 9, acts as a constant torque

device at low rotational speeds and as an constant power device at higher speeds. To

49

CHAPTER 3 CONTROL ALGORITHMS 50

linearize the traction motor torque the maximum torque available must be found. If the
motor speed 1s less than the transition speed, ~ 2100 rpm, the maximum motor torque in

units of N m 1s

Trnaz = 240 (31)
Otherwise the maximum motor torque 1s given by

Pma
Tonaw = ——22%__ (3.2)

Wmeotor (3_75') ’

where Ppae = 53,000 Watts and wmetor 18 measured 1 rpm With the maximum available

torque known the torque request in N-m for the motor is

accelpedal
Treq = mZ’n (L, Tmam) 9 (3-3)

Twheel
where accelpedal 1s interpreted 1 unmits of N m and

T
Twheel = JM ~ 759 (3 4)

motor

Ideally the generator should not operate in ZEV mode, but due to speed limitations
of the the over-running clutch, the generator must be operated when the vehicle travels
at speeds higher than 55 mph The desired speed of the generator 1s -3000 rpm while the
vehicle 1s traveling at or over 55 mph where the negative sign indicates a reverse rotational
direction There will be a hysteresis with a width of 10 mph which 1s used to determine
when the generator should be turned off That 1s, when the vehicle speed drops below 55
mph, the generator will not be turned off until vehicle speed has dropped below 45 mph
In pseudo-code the algorithm for controlling the generator while in ZEV mode is given 1n
Figure 31

Traction motor braking should be directly proportional to brake line pressure This

should allow some of the energy lost during vehicle braking to be recovered and stored in

CHAPTER 3 CONTROL ALGORITHMS 51

1f (vehicle speed > 55 mph) and (generator 1s not spinning)
enable generator
set generator desired speed to -3000 rpm
set generator regenerating level to zero

end

1f (vehicle speed 1s < 45 mph) and (generator 1s spinning)
disable generator

end

1f vehicle speed 1s between 45 mph and 55 mph

maintain the current state of the generator
end

Figure 31 ZEV generator algorithm

the battery pack
Proportioning the traction motor while in reverse follows the same rules as ZEV with
the exception that the motor direction 1s reversed Precautions should be made to prevent

any drive train damage due to switching traction motor direction at speed

3.2 Hybrid Mode Fundamentals

3.2.1 Throttle Position

During the course of drive train component testing, very little data on the CNG converted
engine was collected To compensate, the influence of throttle position on engine torque
1s estimated using a torque correction factor This factor 1s multiphed by the maximum

possible torque for a given engine speed The equation

800

weng—BUU
Crorque(throttlepos, weng) =1 — €~ [throttlepos—ks ()]kl, (3.5)

where wen, 1s measured 1 rpm, throttlepos 1s a percent value and the values

ky =10, ky = 005 (3 6)

CHAPTER 3 CONTROL ALGORITHMS 52

describe this torque correction factor The constant k; modifies the sharpness of the curve
and ko adjusts the influence of varying engine speed on the torque correction factor This
equation is 1llustrated m Figure 3 2 for four engine speeds, 800, 1200, 2000, and 4000 rpm.
Torque correction factors are bounded by 1 and zero With this correction factor, the ex-
perimental data for the CNG converted engine with wide open throttle can be manipulated
mto an estimated engine torque map, shown m Figure 33 This map 1s used to estimate
engine torque output from engine speed and throttle position The engine map shows that
there 1s a local maximum torque output for a given speed and throttle position. It will be
assumed that the point of maximum torque output corresponds to the poimnt of maximum
operating efficiency for a given speed The speed at which torque 1s a maximum depends
upon throttle position For a given engine speed there exists a specific throttle position
which will optimize engine efficiency The relationship between engine speed and throttle
position can be found by optimizing engine torque with respect to speed and solving for

throttle position

3.2.2 Throttle-Up Procedure

The throttle-up procedure 1s used during re-engagement of the engine from idle to a working
throttle position Proper re-engagement of the engine 1s critical Improper re-engagement
of the engine can result i shock loading and possible breakage of transmission components,
primarily the over-runnng clutch The over-runming clutch connects the engine crank shaft
to the transmission The inner part of the clutch 1s attached to the engine, a.ng the outer
part 1s connected to the transmission This arrangement allows the outer portion of the
clutch to spin faster than the engine crankshaft This, in turn, prevents the generator from
driving the engine faster than it would normally rotate This setup may present a problem
if, during the throttle-up, the engagement of the engine occurs too quickly. If the engine
1s brought from 1idle to operating speed too quickly, the over-running clutch may be shock

loaded beyond 1its capacity In order to avoid this, throttle position will be increased as a

CHAPTER 3 CONTROL ALGORITHMS

Throttle Position Torque Correction Factor

1 T £ Loy)
j ﬁ,;i;wpxii:*r?r"""ﬂ v Tahmm -
AT St
/’ N - 2000pm =
- x ¥ 4000 pm s
o "
o8 f A o 4
!/ » ”
,/ A !
- /
L » .
S o6l "o 4
c X
] ¢
g ;-
£ =
3 ;
% 04 | <
g foo .
¥ b
/
/
/" x
o2t : .
{x
i
!]
° ! L 1 1
0 02 04 (X 08 1

throttle position (normalized)

Figure 3 2 Throttle Position Torque Correction Factor

Estimated Engine Map

160 T T T T T T
We=0r3
' st
tps=065 =
RA TR '
140 + - 4
@ T % s
I Ed
= * ~ <
~
£ 0t P p . .
o -
E
o ~
s S
2 T o~
2 100 [- - e - -
]
80 [- - e
:
60 1 L L 1 L 1
500 1000 1500 2000 2500 3000 3500 4000
engine spaed (rpm)

Figure 33 Estimated Engine Map

53

CHAPTER 3 CONTROL ALGORITHMS 54

function of time during engine engagement The equation governing the rate of increasing

throttle 1s

£
af -1
throttle(t) = throttlefma —z— (37)
where
_ throttlemay + 1 (3.8)

throttlemas

and throttles,nq 15 the final working throttle position, ¢5 1s the time duration of the throttle-
up procedure 1n seconds, and the two factors, a and S, affect the shape of the curve The
factor S changes the sharpness of the bend A small § makes the function more linear, and
a large B increases the bend 1n the function Figure 3 4 shows throttle position for three

values of beta, 1, 7, and 14 During throttle-up the following will take place

e The generator will be spinning with the desired speed equal to the actual speed with
zero torque on the shaft The engine will be operating at 1dle, throttle position =
0 The outer portion of the over-running clutch is spinning faster than the engine

crankshaft

e The engine throttle will be increased as a function of time, following Equation 3 7

During this time, engine speed will be increased while there 1s no load on the engne.

e At some time, the engine speed will match the speed of the outer portion of the over-

runnng clutch This represents the engagement of the engine into the drive train

e With the engine now engaged, torque 1s produced by both the engine and the gen-
erator Engine speed will increase, and the absolute value of the generator speed
will decrease and deviate from the desired speed Engine torques will increase as the
throttle 1s opened, and generator torque will increase as deviation of actual speed from
desired speed increases This transient behavior will continue until the torque of the
engine and generator are balanced and throttle position has reached the maximum

working position

CHAPTER 3 CONTROL ALGORITHMS 55

Throttle Up Procedure

TP ——
e 2o
i beta = 14 -l/
08 | - - M . //,_
T
2 /
= - o
E o6 / -
=3
£
s ~
§ ,/ %
& 04 Sl
o -
= .
5 Pt
S ~ ~ "
et : ,
b ! .
02} - / : - .
- x w
e x'/ x
/,f Loe 7 ‘ar
N
0 ’//- & RN i- »ox X = !
0 05 1 15 2 25 3

time (seconds)

Figure 34 Throttle Up Procedure

e The throttle-up procedure will be complete when the actual throttle position 1s equal

to the maximum working position

3.2.3 The Generator

In order to mamntain quasi-static equilibrium and control within the gear train while the
engine 1s running, the generator torque and engmne torque must be linearly related by the

gear ratio below
Teng 27+ 57
Tyen 27

~ 3.111 (3.9)

From the manufacturer’s data, Figure 2 8, a torque-speed map for the generator can be
estimated by a sumple linear relationship Above 6000 rpm the available torque from the
generator quickly drops off Because of this, the speed operation of generator must be limited
to values between -6000 rpm and 6000 rpm If the generator 1s operating outside of £6000
rpm, 1ts torque will be considered zero Speed dependent efficiency can be approximated as
changing linearly from 1000 rpm to 6000 rpm At 6000 rpm the efficiency 1s approximately
90% and at 1000 rpm, approximately 60%

CHAPTER 3 CONTROL ALGORITHMS 56

Since the generator 1s speed controlled, torque 1s produced by the generator when the
actual speed of the generator 1s different from the requested speed. If the generator is
converting mechanical power to electrical power, then a difference of 800 rpm or greater
between the desired speed and the actual speed will cause the generator to produce full

negative torque as shown 1n Figure 3 5

3.2.4 Electric Take-off

At slow speeds, less than 5 mph, the ratio between generator speed and engine speed is
high, =3 11 The engine speed must therefore be kept low to protect the generator from
spinnng too fast This will be accomplished by trimming engine throttle to idle when the
vehicle 1s not moving, and increasing throttle as vehicle speed increases This requires that
the main traction motor provide all of the torque required during low vehicle speed. Figure
3 6 shows generator speed given vehicle speed for four different engine speeds Clearly, if
the generator 1s to be maintained within a safe operating region, engine speed must be lower
than 2000 rpm when the vehicle 1s nearly stationary

To enforce this limitation on engine speed, throttle must be trimmed during low vehicle

speeds as shown i Figure 3 7

3.3 Hybrid Mode

The equations graphed 1n Figure 3 8 are used during hybrid mode to control drive train
component speeds based on vehicle speed The generator slows down during increasing
vehicle speed Since the generator speed drops to an inefficient operating region after 60
mph, 1ts regeneration capabilities are greatly compromised To compensate the vehicle has
two “regimes” of operation In the transition from the “low speed” regime to the “high
speed” regime the generator has to switch its direction of rotation After the switch, the

generator speed increases with an increase 1 vehicle speed The generator presumably has

CHAPTER 3 CONTROL ALGORITHMS

Generator Speed Request

speed request (volls)
o
T
i

-6 | . ™ - - - . -
4 // qon spead at 0 Nm ——e—-
MGt

PP

s
2 L : : L t NS

-8
6000 6000 -4000 2000 0 2000 4000 6000 8000
generalgr speed (rpm)

Figure 35 Generator Speed Request and Torque Relation

Generator Speeds
6000 T » r - T T T
’ x v .
~
x
4000 | - - . ' “) B E
7/
x
N,
o » » N N
u
z 2000 [- . v S \ . . . -
g . T
£ N N
g or - ™~ . b W
£ AN - %
2 N '
% n
.2000 | - P \\ .y . R
. x
\\ R x
4000 - IGF 1000 pm - N s - e
-’ P K ~ hY
- ICE3000pm \ “
I 4000 pm G
o0 : . . . N :
0 10 20 30 40 50 60 70 80
vehicle speed {(mph)

Figure 3.6 Generator speed as a function of vehicle speed and engine speed

CHAPTER 3 CONTROL ALGORITHMS

Maximum Allowable Throttle

08 T

07 |

/
i

thottle positton (normalized)
o
e
T

o
w
T
e

H
i
H
i
:
02 R ! - - - R -
, .
'
01| ‘ f - - ¢ [, -
;o %
h B
° 1 1 L 1 1 L 1
[+ 5 10 15 20 25 30 35 40
vehicle spesd (mph)

Figure 3 7 Maximum allowable throttle for given vehicle speed

Hybnd Mode Operation
6000 T T T T Y T T
Seabede] frrtstelnfobbibd e gt
N N‘.HMM
4000 T44 IOIINNINDNEXL b s o R .- - B
V~<xw,\ oy o, e, AR
: - n'ﬁ%q
Ll % £ Ntoh
i X A o AL DL
2000 - “-‘M“' - f - ar A_ﬁ.—.\u\ﬁ.‘“ A4 - .
Py _— :
E
E
'g O b bplad ey R ETT Y Sxa 22 h¥ ¥ S Y ¥ T Y 300 ki o s gt BX] - -
g
&
E i
£ 2000 | Sh e - cewgp,” =
g e,
E ~ e e N
=3 ! .'.".
~4000 - tow desired gen " oo, 7]
PR . Yeu,
, lowengine x . oy,
3 -
-6000 - 6 ¥ 7€ Qen R . L .]
high actualgen =
hiriengne A !
8000 h L) n L L :
0 10 20 30 40 50 60 70 80
vehicle speed (mph)

Figure 3 8 Hybrid mode drive tramn component speeds

CHAPTER 3 CONTROL ALGORITHMS 59

enough torque capability to force the engine to a certain speed regardless of engine throttle

position and speed The gear ratio relating the two is

ol 3111 (3 10)

The generator can produce at at least 48 N m of torque throughout 1ts operating range, and
the engine can produce about 140 N m at 1ts peak Because of the gearing, the effective
generator torque that the engine could “feel” 1s about 150 N m, (48*3 111)

The generator desired speed command will be the primary method of drive train control.

The following steps will be used
e Measure vehicle speed
e Calculate desired generator speed based on vehicle speed
e Request this speed from generator while also requesting full regeneration.

e Momnitor the engine speed to insure that 1t 1s"operating within the desired range

e Determine torque on the generator based on generator current readings.
e Measure driver request for torque from accelerator pedal.

e Calculate and request torque from the traction motor that will cause the traction

motor to transmit or absorb power to or from the wheels

The accelerator pedal responsiveness 1s 1deally constant whether the operational mode
1s HEV or ZEV Since there 1s a greater amount of torque available to the drive wheels when
m HEV mode, the accelerator pedal needs to be desensitized One way of doing this 1s to
infer the additional torque available from the generator current signal The torque request

for the traction motor would then be

Tmotreq(Nm) = Tmazreq Tdrwerreq - Igen kt ° kg (3 11)

CHAPTER 3 CONTROL ALGORITHMS 60

where all torque units are N m and Igen 1s 1n umts of amperes The constant k; mn unmits
of % 1s an estimation of generator torque for a corresponding generator current. The

constant k, 15 dimensionless and represents the generator to wheel gear ratio

3.3.1 Hybrid Regime Transition

Different control equations are used for the two different regimes of vehicle speed The
greatest difference between the two 1s the change i direction of rotation of the generator.
There 1s also a change of about 2000 rpm 1n the speed of the engine when crossing from

one regime to the other There 1s one set of equations for low vehicle speed (0-55 mph)

Wyen desired low = a2(Vspd)2 +a (Vspd) +ag (3'12)

where Vg 15 the vehicle speed m mph, wgen desired low 1 1n units of rpm, and the constants

are

az = —0933, a1 =17 82, ap = 4044 4+ 800, (313)

and

Weng destred low = C2(Vspd)2 +c (Vspd) +co (314)

where V4 15 the vehicle speed 1n mph, Weng desired tow 15 In units of rpm, and the constants

are

c2=—03, ¢; =60, co = 1300 (3 15)

The set of equations for high vehicle speed (45-80 mph) 1s

Ween desired high = b2 (Vspd)2 + bl (Vspd) + bO (316)

CHAPTER 3 CONTROL ALGORITHMS 61

where Vj,q 18 the vehicle speed 1n mph, Ween desired hagh 18 in umts of rpm, and the constants

are

b = —-0 777, by = 2 264, by = —650 — 800, (317)

and

Weng desired hagh = dy (Vspd)2 + dl(Vspd) + do (3°18)

where Vjpq 15 the vehicle speed 1n mph, weng desred hagh 15 10 units of rpm, and the constants

are

dy = —025, dj = 55, do = —180 (3.19)

There 1s a 10 mph overlap between the two regimes to prevent the generator from cycling

directions quickly The algorithm for switching from the low regime to the high regime is

e Set engine throttle to 1dle

Wait for throttle to come to 1dle position.

Set the generator desired speed to zero

Waut for generator to spin down

Set generator request to operate in high regime (Equation 3.16)
e After generator speeds up again, begin the throttle-up procedure

The algorithm for switching from the high regime to low 1s basically the same except that

the desired generator equation 1s Equation 3 12.

3.3.2 Transition from ZEV to HEV Mode

There are both high and low operating regimes for ZEV and HEV operating modes The low
end regime for ZEV 1s defined by having the generator disabled, and the high end is defined

by having the generator enabled and spinning at -3000 rpm The range and overlap of the

CHAPTER 3 CONTROL ALGORITHMS 62

high and low regimes of ZEV and HEV modes are identical This fact greatly simplifies
transition between the two modes If the vehicle 1s traveling at a speed less than 45 mph

and there needs to be a mode switch from ZEV to HEV, the procedure to follow 1s

e Set the generator speed to the low regime desired speed.

Set the generator regen level to full

e Insure that the generator has reached the desired speed

Start the engine

Begin the throttle-up procedure

This makes the assumption that the driver will continue at a speed less than 55 mph. If
this assumption 1s incorrect, a transition from low regime HEV to high regime HEV will
need to be made soon after the ZEV to HEV transition

If the vehicle speed 1s 1 the transition region, between 45 and 55 mph, and operating

in high end regime ZEV, the procedure for switching to HEV 1s
o Set the generator desired speed to the high regime speed
e Set the generator regen level to full.

o Insure that the generator has reached the desired speed.

Start the engine

Begin the throttle-up procedure

This anticipates that if the vehicle 1s operating at high speed in ZEV mode, the driver
will most likely continue to travel at high speed in HEV mode If the generator direction
1s already 1n the correct direction for high speed operation, another transition, from low

regime HEV to high regime HEV, 1s not required Similarly, if the vehicle speed 1s between

CHAPTER 3 CONTROL ALGORITHMS 63

45 and 55 mph and the operational switch 1s from low regime ZEV to HEV, the generator

should be set to follow the low regime path

Chapter 4

Software Details

4.1 Overview

The code to implement the FutureCar dual hybrid electric vehicle system controller 1s all
written in the C programming language with the QNX supplied Watcom compiler. The
code 1s broken down 1nto two function libraries, two control programs, and a few monitoring
and diagnostic programs To manage the complcated build process of all of the code the
make [14] utility 1s used As such, there 1s a special file, a Makefile, for each program, library,
and subdirectory Each software component 1s designed to be able to be built independently
of all other components save for library dependencies, but there is also a top level Makefile

that allows for building the complete system

4.2 IPC Library: libfclient

A library of functions, named libfclient, provides interprocess communication services for all
control and monitoring applications Libfclient provides wrapper functions for accessing a
single shared memory segment The shared memory segment has provisions for saving 3600

snapshots of all the time varying variables If the data 1s saved every second, this amounts

64

CHAPTER 4 SOFTWARE DETAILS 65

to the previous hour’s information The shared memory segment amounts to approximately
800 kilobytes

Shared memory was chosen because 1t 1s the fastest and most efficient method of sharing
a large data set among multiple processes Accesses to shared memory are inherently
asynchronous so processes that need to synchronize need to do so manually. Also, the
asynchronous nature of shared memory means that 1t might be corrupted if two processes
try to write to the same shared memory More specifically, memory may become corrupted
if a shared variable 1s only partially written when the writer process 1s preempted One
way to prevent corruption would be to use one or more semaphores to guarantee mutual
exclusion, but this can make things more complicated and may slow performance if the
number of semaphores 1s not sufficient To prevent corruption of shared memory, the fchent
Library uses only native sized variables Under QNX on 1386 Intel-like hardware the native
s1ze 15 32 bits or 4 bytes, the size on an integer or single precision floating point number By
using 32-bit sized variables only, all writes are guaranteed to be atomic operations. Also all
fclient applications use FIFO scheduling to prevent unnecessary preemption It 1s possible
that a certam write operation may be preempted so that a write of multiple values may not
be an atomic operation This would not corrupt single values, but the time from which a
certain value was last updated might not be the same as the rest At a high enough refresh

rate, this difference becomes neghgible

4.2.1 Shared Memory contents

The contents of the shared memory segment are defined in a header file, fcar_.common.h,
listed in Appendix E 13 There are many sections to this data structure The naming
convention for structure members that represent values read from the hardware 1s a single
character prefix, erther an ‘1’ or an ‘o’ which distinguishes between mnput and output values
relative to the system controller and a mixed case description The naming convention for

structure members that are used to convert or calibrate voltage readings to engineering

CHAPTER 4 SOFTWARE DETAILS 66

units follows that of the hardware values with the addition of a suffix, either ‘Sen’ or ‘Off’,
that 1s used to distinguish whether the value 1s a linear slope sensitivity value or a linear
y-intercept offset Digital hardware values follow the same naming convention as the analog
hardware values Table 4 1 lists the contents of the shared memory values 1n detail

The shared memory segment 1s arranged to work as a circular buffer. Periodically the
active section of the structure 1s advanced and the calculated values, digital hardware values,

and analog hardware values are stored 1n a history

4.2.2 libfclient functions

For an application to use the fclient library 1t has to include the file fclient.h, shown 1n

Appendix E 12 This header file gives prototypes for the functions available 1n the library.

fclient_create_shmy()

The function fclient_create_shm() takes no arguments and returns a pointer to the newly
created shared memory segment This function should only be used in a single application
designated as the manager of the shared memory segment The function removes any
previously present segment, creates a new one, and 1tializes 1t to contain all zeros If the

function fails 1t returns a value of NULL

fclient_delete_shm()

The function fclient_delete_shm() takes no arguments and returns an integer to indicate
whether the operation was successful Because a shared memory segment may exist after
the process that created exits, this function allows for the orderly removal of the shared
memory used A value of 1 indicates that the function failed while a value of zero indicates

Success.

CHAPTER 4 SOFTWARE DETAILS

Table 4 1 Partial listing of fclient shared memory contents

[Member Name | Data Type | Description Units
SOC float battery state of charge value normal
SOCcat integer battery state of charge category enumeration -
mode integer vehicle operation mode enumeration value -
vehicle.speed float vehicle speed mph
vehicle_distance float vehicle distance traveled since power-on miles
kwh_volts float battery pack voltage measured from kWh meter volts
kwh.amps float battery pack current measured from kWh meter amps
IceReqState integer requested state of engine enumeration value -
IceState mteger actual state of engine enumeration value -
running mteger control program active indicator -
hybrnid_regime integer hybrid mode indicator -
hybnd_transition integer hybrid sub-mode indicator -
1EmMotorSpeed float traction motor speed feedback rpm
1GenMotorSpeed float generator motor speed feedback rpm
1lceEngineSpeed float engine speed feedback rpm
1AccelPedalLevel float driver accelerator pedal position normal
1BrakePedalLevel float brake line pressure normal
1ActualEmTorque float traction motor inverter torque feedback N m
1FuelPressure float CNG fuel tank pressure/level ps1
1EmCurrent float traction motor current draw amps
1GenCurrent float generator motor current draw amps
1BattPackVoltage float high voltage bus potential from EM inverter volts
1EmRotorTemp float traction motor rotor temperature Celsius
1EmInvTemp float traction motor inverter temperature Celsius
1TpsFeedback float engine throttle position feedback normal
oGenSpeedReq float generator motor speed request rpm
oGenRegenLimit float generator motor regeneration request normal
oEmAccelReq float traction motor torque request normal
oEmBrakeReq float traction motor regeneration request normal
olceThrottlePos float engine throttle position request normal
1Park integer park shifter position indicator -
1Reverse mteger reverse shifter position indicator -
1Neutral integer neutral shifter position 1ndicator -
1DriveSport mteger dnive “sport mode” shifter position indicator -
1DniveEcon integer drive shifter position indicator -
1ZEV mteger dnive “ZEV mode” shafter position indicator -
1Hvac mteger A/C on/off switch indicator -
1EmTempWarn mteger traction motor high temperature warning indicator -
1IEmControllerReady mteger traction motor ready indicator -
1EmFaultIndicator 1nteger traction motor general fault indicator -
1EmOvertemplndicator | integer traction motor over temperature indicator -
1GenTempWarn nteger generator motor high temperature warning indicator | -
1GenControllerReady mteger generator motor ready indicator -
1GenFaultIndicator nteger generator general fault indicator -
1GenDirectionIndicator | integer generator direction indicator -
1IceFaultIndicator mteger engme “check engine hight” indicator -
olceStarter integer engne starter motor switch -
oTecEnable integer engine controller enable switch -
oEmEnable mnteger traction motor system enable switch -
oEmDirection integer traction motor direction switch -
oGenEnable integer generator motor system enable switch -
oThrottlePwrCycle integer remote throttle body power switch -

67

CHAPTER 4 SOFTWARE DETAILS 68

fclient_open_shmy()

The function fclient_open_shm() takes a single argument and returns a pomter to the
shared memory segment upon success The single argument, mode, 1s used to indicate what
sort of permissions are requested when dealing with the shared memory segment Mode
can be one of two symbolic constants 0_RDONLY or 0_.RDWR A value of 0.RDONLY indicates
that the chient only wants read access to the shared memory A clent that opens the shared
memory segment with the flag 0_RDONLY cannot modify the contents, either on purpose or
immadvertently This 1s 1deal for monitoring or logging applications that only need to view
the contents of the shared memory but make no changes. If mode is 0_RDWR, the apphication
is requesting full read and write access to the shared memory segment If the function fails,

1t returns a value of NULL.

die(), warn(), notice()

The macros die(), warn(), and notice() are used to either print or log a message. These
macros take a single argument, a pointer to a character string The macros construct a
message line of the format given in Table 4 2 This format 1s helpful in diagnosing problems
because 1s gives the time the function was called, the file name and line number where the
function was called, and the unique process 1dentifier of the task that used i1t The dze()
macro will also cause the calling process to quit The message 1s written to the STDERR
file stream which defaults to displaying on a terminal but can be redirected to a log file on
disk or a network socket It 1s the responsibility of the calling application to set up any

redirections before calling any of these macros

4.3 Task Primitives Library: libftask

To simplify dealing with multiple tasks the hibftask hibrary provides a few task related

functions and some time functions

CHAPTER 4 SOFTWARE DETAILS 69

Table 4 2 die(), warn(), and notice() output format

| time stamp | process ID | file name | line number | user message |

4.3.1 Time functions

Two functions exist i the hibrary to simplify dealing with time 1ssues Specifically, two

functions are available, ftask_delay() and ftask.gettime().

ftask_delay()

This function 1s a wrapper for the POSIX 1003 1b nanosleep() function A single parame-
ter is required, a double precision floating point value that represents the number of seconds
the calling process wishes to be suspended The function returns a single integer that can
be either a zero or -1 If the return value 1s a zero then at least the time specified has
elapsed. The actual time 1n suspension might be greater than the time requested because
of the granulanty of the system timer The default system timer updates at a rate of 100
Hz and the kernel cannot make scheduling adjustments faster than that This means that
the delay value may be rounded up by up to the inverse of the system timer frequency. By
default this 1s ﬁth of a second or 10 millseconds If the return value 1s -1, the function

has either been interrupted by a signal or all system timers are 1n use The value of the

global variable errno determines which exception has occurred

ftask_gettime()

The ftask_gettime() function takes no arguments and returns a double precision floating
pomnt number that represents the number of seconds since January 1, 1970 It 1s a wrapper
for the POSIX 1003 1b clock.gettime() function Like the ftask.delay() function the
precision of the return value cannot be greater than that of the system timer tick, by default

10 milliseconds A double precision float return value 1s required if any meaning 1s to be

CHAPTER 4 SOFTWARE DETAILS 70

had from calling ftask_gettaime() twice within the range of the timer tick.

4.3.2 Task management functions

To simplify task management, libftask provides a multitude of functions. The semantics of
the ftask functions are intentionally based on the POSIX P1003.1c Pthreads[13] specification.
Since QNX4 does not support POSIX light-weight processes, pthreads, the combination of
the shared memory routines in libfclient and the task management functions in hibftask can
provide simular functionality.

Most ftask functions’ first argument 1s a pointer to a data type ftask This parameter
1s a sort of “handle” to a unique process created by hibftask functions While the internal
structure of an ftask 1s visible, 1t is not meant to be manipulated directly One of the more
curious parameters to some hibftask functions end 1n _func These function parameters are
actually names of other functions

Libftask has two features that are umque Tasks may be “triggered” Triggering 1s a
simple form of IPC based on the QNX native function Trigger A task may voluntarily
suspend, or block, 1tself by calling the ftask trigger block() function. Another process
that has access to the ftask handle that identifies the trigger blocked task may use the
ftask trigger () function to unblock the voluntarily blocked task No data 1s transfered
with a trigger, only the triggered task’s runnable state 1s modified The ftask_ trigger()
function does not cause the calling process to block This makes triggering an asynchronous
form of IPC

The other unique feature of libftask 1s that a created task may be attached to a periodic
timer This 1s actually a wrapper for the rather complicated method of attaching a process
to the main timer interrupt A task created with the ability to attach to the timer inter-
rupt calls ftask.periodic_timer. block() to voluntarly suspend itself On the next timer
interrupt the operating system will allow the ftask_periodic_timer_block() function to

return, allowing the task to run A loop that uses the ftask_delay() function will execute

https://PlOOS.lc

CHAPTER 4 SOFTWARE DETAILS 71

with a period that includes the time for the loop to run m addition to the time specified
A loop that uses ftask_peridic_timer_block() will run at a rate independent of the time
required to execute the contents of the loop as long as executing the contents of the loop

do not exceed the specified timer frequency

ftask_init()

The parameter list to ftask_1nit () 1s quite extensive so 1t will be listed 1n 1ts entirety here.

int ftask_inat(ftask =*ft,
int polacy,
int praority,
void (*start_func) (void =*)
void *start_func_arg,
void (*cleanup_func) (1nt),
int allow_trigger,
int allow_periodic_timer,
int periodic_timer_hz),

The purpose of the ftask_ init() function 1s to initialize the ftask passed as the first

parameter

ftask *ft This parameter 1s a pomnter to an ftask data type It 1s used as the “handle” to

uniquely 1dentify the task that will eventually be created.

int policy The policy parameter 1s one of the symbolic constants, SCHED_FIF0, SCHED RR,

or SCHED_OTHER that represent FIFO, round-robin, or adaptive scheduling

int priority The priority parameter 1s an integer value that represents a vald scheduling
priority number It should be noted that under QNX the highest priority for a non

super-user task 1s 19 A value higher than this requires additional privilege

void (*start_func)(void *) The start_func parameter 1s the name of a function that will
be the entry point for the newly created task This 1s analogous to the main() function

entry point of all C language programs.

void *start_func_arg This parameter will be passed as the only argument to the created

task’s entry function The void pomter type can be typecast to a variable of any type.

CHAPTER 4 SOFTWARE DETAILS 72

If the entry function requires no argument this parameter may be set to the symbolic

constant NULL.

void (*cleanup_func)(int) the cleanup_func argument 1s, like the start_func argument, a
name of a function to call when the task 1s stopped If no cleanup function 1s needed

for a particular task, this parameter may be specified as NULL

int allow_trigger This 1s really a boolean value that specifies whether the ftask triggering
functionality 1s required for this task. A value of zero means no triggering ability is

requested and any non-zero value means that triggering 1s required for this task

int allow_periodic_timer Another boolean value, this parameter specifies if the ability
to attach to a periodic timer 1s required It should be noted that in QNX this func-

tionality requires super-user privileges

int periodic_timer_hz The periodic_timer_hz argument 1s only valid for a task that has a
non-zero allow_periodic_timer value The value 1s a specification of the frequency, i
Hz, that a task can be scheduled to run If periodic behavior 1s not needed 1t 1s safe

to set this value to zero

The return value of ftask.init() will be zero to indicate success while a value of -1 will

be returned to mndicate that there 1s some sort of inconsistency in specified arguments

ftask_create()

The ftask_create() function takes a single argument, a pomnter to an ftask type that
has been previously mmitialized with the ftask 1nit() function If ftask init() had not
previously been used to imnitialize the ftask the results are undefined This 1s where a new

task 1s actually created, internally 1t calls the fork() function to create the new task

CHAPTER 4 SOFTWARE DETAILS 73

ftask _delete()

This function 1s used to stop a previously created task. It causes the named task to jump to
the function named as the cleanup_func argument to ftask_init and exit. A return value
of zero means that the task was successfully requested to quit. Even if this function does
return zero, that does not mean that the requested task has quit It only means that the
task has received the mstruction to quit A non-zero return value means that the command

failed

ftask_destroy()

This function 1s similar to ftask.delete function except that the specified ftask is forcibly
stopped No internal cleanup will be done for a task that is destroyed A return value of
zero means that the task was successfully destroyed while a non-zero return value indicates

that the function failed

ftask trigger() -

Calling this function will allow a task that is voluntarily in a blocked state to become

unblocked and continue.

ftask_trigger_block()

The ftask_trigger.-block() function causes the calling process to be put 1n a suspended,
or blocked, state The calling process may become unblocked if either another process uses

ftask_trigger() to unblock 1t or a signal 1s delivered

ftask_wait_on_tasks()

This function puts the calling process 1n a suspended state in which 1t will be restored 1f

one of the processes 1t created with ftask_create() exit The single parameter which 1s a

CHAPTER 4 SOFTWARE DETAILS 74

pointer to type ftask will contain information for the task that ended This function may

be interrupted by the delivery of a signal

ftask_same()

The ftask_same() function 1s used to compare known ftasks to the ftask returned by
ftask.wait_on_tasks() The return value 1s 1 if the two tasks refer to the same pro-

cess and zero if they are different

In addition to the task management functions described previously, libftask also has a few

convenience functions that are used internally but can be useful for other purposes

ftask_sched_adjust_self()

This function takes two arguments, an integer specifymg scheduling policy and an integer
specifying scheduling priority It 1s used mternally by ftask_create to adjust the scheduling
parameters of newly created tasks This function 1s a wrapper around the POSIX 1003.1b

sched_setscheduler () function

ftask_register_cleanup_self()

The ftask.register_cleanup_self () function is used internally by ftask_create() to
register a signal handler for SIGTERM The only parameter 1s the name of the function to
call on reception of the SIGTERM signal

ftask_register_reread_self()

This function 1s 1dentical to ftask register_cleanup.self () except that a handler for
the SIGHUP signal 1s specified SIGHUP is traditionally used to indicate the controlling

terminal connection has “hung up” Damon processes, since they do not have controlling

CHAPTER 4 SOFTWARE DETAILS 75

terminals, traditionally redefine this signal to indicate that a rereading of configuration files

has been requested.

4.4 Hardware Interface: fcard

The program that handles all hardware I/0 1s called fcard, the fcar deemon. A dzemon, 1n
traditional UNIX terminology, 1s a process that 1s designed to run for long periods of time
and perform a very specific service Dzmons break away from their parent processes and
usually redirect any diagnostic messages to a log file The main reason for using a deemon
to do all hardware I/O 1s one of mostly one of simphcity. Fcard’s main purpose 1s to read
shared memory, write the specified values from shared memory to the hardware, read 1n
values from the hardware, and put the read in data into shared memory Fcard acts as
the manager of the common shared memory segment, see Figure 4 1. Fcard is not a device
driver 1 the traditional sense

Device drivers under QNX can take on many forms There are basically three ways to
access hardware under QNX The first involves interfacing with the QNX Dev manager. This
1s the most complicated way because Dev drivers have to keep track of many data structures
just to communicate with Dev 1n addition to controlling dedicated hardware The second
method 1s what QNX calls an 1omanager This method 1s simplfied because registering
with the Dev manager 1s not needed This leaves the driver to concentrate on controlling its
own hardware Both of the previous device driver methods are termed ‘POSIX’ drivers in
QNX documentation because they involve making a special ‘node file’ in the /dev directory
This /dev node 1s supposed to act similarly to a regular disk file One of the strengths
of traditional UNIX systems 1s that almost everything can be considered a ‘file’ That is,
POSIX 1003 1 functions like open(), read(), write(), and close() operate the same
on a file on disk, an interprocess communication pipe, a serial port, and even a network

connected socket While this sort of abstraction 1s very useful for complicated hardware, 1t

CHAPTER 4 SOFTWARE DETAILS 76
Process
Shared Monitor
=y
Hardware
Daemon

.

User Interface
‘ ” H I] Process

1/O Hardware

Figure 41 Shared memory connection

1s overkill for the relatively simple I/O hardware used in the UTK FutureCar. The third
type of device driver for QNX 1s no device driver Because all device drivers under QNX
are designed to be run outside of the microkernel, all of the facilities for accessing hardware
directly are readily available to regular user processes All that 1s required to do privileged

hardware access 1s to link the program with privilege level 1 and run as the super-user.

4.4.1 Features

The fcard program has many features that make 1t very capable

e It has the ability to read cahbration and configuration values from a text file on disk
Because configuration file reading 1s handled by a dedicated task, changes can be

made while the program 1s running without interrupting regular operation.

e A command line option can be specified to disable hardware I/O but otherwise operate
normally This feature allows for easy debugging of the non-hardware I/O parts of

the program on a machine that does not have the Octagon hardware installed.

CHAPTER 4 SOFTWARE DETAILS 7

e It features a sort of ‘task manager’ that can restart hardware I/O tasks if one fails
due to a math error or other exception The task manager also can tell if a task is

being restarted too often and halt the system

e A command line option can be specified to restrict accesses to the QNX filesystem.
This option 1s most useful if fcard 1s used 1n an embedded environment where either

the filesystem 1s not available when 1t starts, or there 1s no filesystem

4.4.2 Operation

During normal operation, fcard operates as four separate, cooperating tasks as shown in
Figure 4 2 It uses the fclient hibrary, discussed in Section 4 2, for IPC and the ftask hibrary,
discussed 1n Section 4 3, extensively for task management

The reasoning behind using four separate tasks 1s based on time First, the task handling
the Octagon hardware, shown 1n Figure 4 3, has to interface reliably and quickly with the
hardware This hardware task attaches to the system timer and loops at a rate of 100 Hz
Since tests show that the time to do one loop 1s only about 1 millisecond, the hardware task
1s 1dle most of the time

The task that handles reading the kWh meter, shown i Figure 4 4, only operates
at 1 Hz because that 1s the speed at which the meter reports data to the serial line The
configuration file reader, shown in Figure 4 5, 1s 1dle most of the time It only has to respond
to requests to reread the file. While 1t might be possible to join the kWh meter reading and
configuration file readers to reduce resource requirements, having them as separate tasks
makes them simpler to manage and understand

The manager task, shown i Figure 4 6, 1deally does nothing and 1s 1dle all the time after
starting all the other tasks It only handles exceptions such as premature process death,
configuration file relaying, and the orderly shutdown of the fcard tasks In a resource
constrained environment the task manager could also jomn with the kWh meter task and

the configuration file reader at the detriment to simplicity

CHAPTER 4 SOFTWARE DETAILS

Task Manager

KWh Hardware Task

Ceonfiguration File Reader

Octagon Hardware /O

Figure 4 2 Fcard Process Tree

octagon 1/O

get analog output|
from shared me

initialize
hardware
write to
hardware
reset watchdog
timer
read in digital
inputs
advance circular| one second l
buffer pointer elapsed? copy to shared
memory

N
1
read in analog get digital output:
nputs from shared me
copy to shared wirite outputs to
memory hardware

|

wait for
periodic timer

Figure 4 3 Fcard Octagon Hardware I/O Task Flowchart

CHAPTER 4 SOFTWARE DETAILS

kWh reader

open sernal
port

read line

separate V, A

Are values
sane?

| copy to shared
memory

Figure 4 4* Fcard kWh Meter Reader Task Flowchart

wait until
tnggered

open config file

copy to shared
memory

close config file

Figure 4 5 Fcard Config File Reader Task Flowchart

79

CHAPTER 4 SOFTWARE DETAILS 80

flask manager
parse command
line

nitiahze shared
memory

start other tasks

restart dead task

delete shared
memory

Figure 4 6 Fcard Task Manager Flowchart

Fcard’s most difficult task 1s managing I/O to the Octagon cards. Since there 1s no
real QNX device driver for the cards a custom solution was written Access to the cards
1s accomplished with IN and QUT agsembly instructions. The 5710 Multifunction I/O card
has the ability to assert an interrupt line on the bus, but this feature 1s not used The 5710
card’s lengthiest operation 1s performing an analog-to-digital (A/D) conversion, but this
only takes a few microseconds Instead of introducing the complexity of using an mterrupt
to mdicate that the A/D conversion 1s finished, the card 1s simply polled, that 1s, it is read
1 a hard loop to check for completion This might seem to be an unnecessary waste of
CPU time, but, 1n practice, 1t has little effect on the overall operation of the system Even

polling every A/D channel the two 5710 cards in succession uses very little CPU time.

CHAPTER 4 SOFTWARE DETAILS 81
4.5 Control Program: fcar

Fcar 1s the name of the main control program The listing for fcar 1s given 1 Appendix
D2 One of the main features of this overall control system 1s the fact that hardware
I/O 1s done independently from any control decisions This has the benefit of making the
working control code syntactically simpler, since, instead of breaking away from the control
algorithm to fetch data from the hardware and then returning, the control algorithm just

assumes that the variables in shared memory are automatically updated in a timely manner.

4.5.1 Overview

The fcar control program, like fcard, 1s a multithreaded application Upon execution it
creates four additional tasks, shown 1n Figure 4 7, to handle different control requirements

Fcar 1s similar in structure to the fcard program It also uses the fchient IPC library and
the ftask library for process primitives Multiple tasks are used because of temporal issues.
Each fcar task makes control decisions with differing time requirements The ICE controller
task, responsible for starting and stopping the engine, uses simple delays to sample engine
speed to determine whether igmition has occurred at a rate on the order of 4 Hz The ICE
controller task must be able to operate independently from the main control loop The main
control loop has to remain responsive to driver requests even while 1n the transition time
required to physically start or stop the engme The throttle controller task 1s responsible for
ensuring a smooth engine engagement by ramping the engine throttle 1n a controlled manner.
It operates using sumple delays at a rate on the order of 10 Hz. Since the service provided
by the throttle controller task only happens after the ICE controller has successfully started
the engine, 1t 1s possible that these two tasks could be merged The SOC calculator task
operates at approximately 1 Hz, and the main control task, the mode selector task, runs at

100 Hz by hooking into the system timer interrupt

CHAPTER 4 SOFTWARE DETAILS 82

Task Manager

Throttle Controller S$OC Calculator
ICE Controller Mode Selector

Figure 4 7 Fcar Process Tree

4.5.2 Task details
SOC calculator

The SOC calculator task whose flow chart 1s shown in Figure 4 8 implements the SOC
estimation method discussed in Section 24 As the flow chart shows the procedure is
simple All that the task has to do 1s go nto a loop with a delay that makes 1t recalculate
approximately every second Looping any faster would probably not result in a better
estimation because the underlying kWh meter hardware only reports the information used
by the SOC calculator at approximately 1 Hz The listing for the SOC calculator task is in
Appendix D29

Throttle controller

The throttle controller task has the responsibility of ensuring a smooth engagement of the
engine The flowchart for the task, shown in Figure 4 9, shows that this task 1s a very
simphstic one The remote throttle body umt 1s controlled by writing a normalized floating
point value to shared memory While there 1s a throttle position feedback value available,
the task does not use 1t The Mikum umt proved to be very responsive to position requests

in preliminary tests, so 1n the interest of simplicity, no feedback control algorithm is used

CHAPTER 4

SOFTWARE DETAILS

SOC
calculator

calculate SOC

categonze SOC

delay

Figure 48 Fcar SOC Calculator Task Flowchart

throttle
controlier

wait for tngger

l

get start time

throttle in
position?

position
throttle

]

Figure 49 Fcar Throttle Controller Task Flowchart

83

CHAPTER 4 SOFTWARE DETAILS 84

ICE controller

The ICE controller task, shown in Figure 4.10, 1s responsible for starting and stopping the
engine The mode selector task actually makes the decision when to start and stop the
engine To start the engine, the TEC-2 ECU 1s turned on which then also enables the CNG
fuel tank solenoids, the remote throttle body 1s powered and the throttle position is set
to 1dle, and finally the starter motor 1s engaged To determine if the engine has started,
the engine speed 1s momtored If the engine speed 1s greater than the speed induced by
the starter, the engine 1s considered successfully started. The CNG fuel lines on the UTK
FutureCar are controlled with a master quarter-turn valve If this valve 1s inadvertently
left closed and the engine 1s unable to start, the ICE controller task will give up after a few
tries and keep a record that the engine 1s unable to be started Since 1t might be possible
for a driver to fix a minor fuel problem, the record of a “dead engine” 1s cleared by the
mode selector task if the shifter is moved to the neutral position

To stop a running engine the remote throttle body 1s put in the 1dle position and turned
off and ECU power 1s removed. When the TEC-2 ECU power 1s removed, ignition and
fuel delivery are stopped. While this method of stopping an engme 1s fairly traditional,
unburned fuel emissions could be reduced by only removing the fuel supply and letting
1gnition continue until the engine starves. Preliminary tests show that for the engine used,
fuel 1n the lines runs out after about 15 seconds This was considered to be too long so the

method of removing the 1gnition was chosen

Mode selector

The fcar mode selector task 1s the core of the control system It i1s the main implementation
of the dual hybrid planetary drive tramn algorithm As such, 1t 1s fairly complicated The
flowcharts for this task have been broken up based on mode The mode selector task operates
by looping at a rate determined by the main system timer interrupt The entry point of the

task begins by reading the driver’s mode request with the shifter position After reading the

CHAPTER 4 SOFTWARE DETAILS 85

ICE
controller

mark engine
as dead

engine
dead?

wait for tngger

tngger throttle
controlier

engme
stopped?

Figure 4 10 Fcar ICE Controller Task Flowchart

shifter, the variable mode 1n shared memory, or more specifically s->cv[s->active] .mode,
1s assigned The current mode of operation 1s stored because functions for proportioning
drive train components are used for multiple modes This can be seen when the mode
selected is ZEV, zero emissions vehicle, electric power only. The entry point of the mode
selector task 1s shown in Figure 4 11

In ZEV mode, Figure 4.12, the first thing done 1s the enabling of the two motor con-
trollers. If the controllers do not report back that they are ready, nothing else happens.
In order to protect the drive tramn from any shocks resulting from “shifting” from forward
to reverse, vehicle speed 1s checked to make sure that a direction change doesn’t happen
at speed If the driver chooses a forward “gear” when traveling in reverse at speed, the
control system will override this choice and maintain the current direction until the vehicle
speed has decreased After this safety check 1s done, the main traction motor 1s confirmed
to be operating in the forward direction As previously mentioned, the mode variable is
checked to see if the function 1s being called while really in ZEV mode. To comply with
zero emissions, a request 1s sent to the ICE controller task to shut down the engine Finally

the control requests for the traction and generator motors based on the driver requests and

CHAPTER 4 SOFTWARE DETAILS

mode selector

86

do PriveSport

do Park

=

read shifter
shifterin ™Y | assign mode
ZEV? to ZEV
N
shifter in Y | assign mode
DriveEcon? to DnveEcon
N
shifterin Y | assign mode
DriveSport? to DriveSport
N
shiftern ™Y | assign mode
Reverse? to Reverse
N
shifter n Y | assign mode
Park? to Park
N
do Neutral
calculate
vehicle speed
calculate
vehicle distance
block on
periodic timer

Figure 4 11 Fcar Mode Selector Task Entry Point Flowchart

CHAPTER 4 SOFTWARE DETAILS

set EM to
forward

enable traction
motor

l

enable generator
motor

motor

controllers
ready?

can safely
go forward?

Figure 4 12 Fcar Mode Selector Task, ZEV Function Flowchart

do Reverse

N .
iy Y | request engine
shutdown
!
read dnver
pedals
proportion EM
proportion GEN

CHAPTER 4 SOFTWARE DETAILS 88

current vehicle conditions are calculated and written to shared memory

Reverse mode, Figure 4 13, 1s very similar to ZEV mode save for the direction setting
on the main traction motor The main difference between ZEV and Reverse modes 1s that
mn reverse, the generator 1s disabled This implies that the engine 1s not functioning also
Reverse for the UTK FutureCar can only be done with electric power because there 1s no
normal reversing gear 1n the transmission that allows the engine to spin 1n the normal
direction while going backwards.

Park mode 1n the first iteration of the control code would request full regeneration from
the traction motor in an attempt to prevent motion The physical transmission does not
have a mechanical gear lock for parking and the traction motor used in the FutureCar does
not have very good low speed regeneration characteristics This results 1n having to use the
emergency parking brake to mamtain the vehicle on a grade Since park mode 1s ineffective,
neutral mode, Figure 4 14, 1s used for both park and neutral shifter settings. The main
function of neutral mode 1s to disable all drive train components While in neutral, the
system also resets the “dead engine” condition mentioned 1n the previous ICE controller
section

The two “Drive” positions available on the shifter, DriveEcon and DriveSport, were
originally designated as such for two different hybrid operation modes The DriveEcon
position 1s used for normal hybrid electric vehicle, HEV, operation while the DriveSport
position 1s only used for testing purposes HEV, or DriveEcon, mode, shown 1n Figure 4.15,
is the normal vehicle operating mode This mode 1s similar to the previously mentioned
modes 1 that 1t sets the direction of the traction motor It also makes requests from the
ICE based on SOC If SOC 1s high, the engine 1s not required and the ZEV function 1s
used to proportion the two drive tram motors If SOC 1s low, the engine 1s used to provide
additional drive torque to the wheels and recharge the battery pack at the same time Code
exists that attempts to do hybrid regime transitions, discussed in Section 3 3 1, but it 1s

untested

CHAPTER 4 SOFTWARE DETAILS

do Reverse

enable traction
motor

request engine
shutdow%

can safely go
backwards?

reverse EM

Y
engine off? disable generator,

I
read driver
pedals

1

proportion EM
I

Figure 4 13 Fcar Mode Selector Task, Reverse Function Flowchart

CHAPTER 4 SOFTWARE DETAILS 90

do Neutral

reset dead
status
N
request ICE
shutdown
engine disable
stopped? generator

N

r
disable

traction motor

Figure 4 14 Fcar Mode Selector Task, Neutral Function Flowchart

CHAPTER 4 SOFTWARE DETAILS

enable motor
controllers

controllers N
ready?

Y

can safely go
forward?

Y

set EM direction | Y EMin

r to forward reverse?
N

Y
reqyest engine do ZEV

Y reciuest engimne
um on

IS engine
on?

read dnver
pedals

I

t

proportion EM

|

proportion GEN

|

proportion ICE
I

Figure 4 15 Fcar Mode Selector Task, DriveEcon Function Flowchart

CHAPTER 4 SOFTWARE DETAILS 92
4.6 Monitoring and Diagnostics

Debugging a real time control system 1s a difficult task Since many operations are time
dependent, using a traditional source code debugger 1s difficult at best What 1s needed
1s a way to examine the running system in normal operation The control programs do
produce some diagnostic messages, but these are usually just simple notices or fatal errors
The overhead of printing, either to a connected terminal or a file, 1s prohibitive while
maintaining the high frequency loop rates needed by the critical control tasks The choice
of using a large shared memory segment to hold current and past data makes 1t simpler to
diagnose problems To this end a few custom diagnostic tools were written to examine the

running system

4.6.1 Shared Memory Monitor: mon

A smmple curses based tool, mon, displays the entire contents of the active portion of the
shared memory segment used by all controller tasks The interface 1s text based and can
run on any terminal with an addressable cursor There are four screens of information
available. The first 1s a listing of all the calibration values used by fcard to convert voltages
to engineering unmits The next screen shows all of the digital and analog inputs read from
the Octagon hardware After that 1s a screen that shows all of the output values The final
screen, shown 1n Figure 4 16, displays all other values including many state variables used
by the fcar control program and the battery pack information read from the kWh meter

over a serial connection. Values are updated on screen every half second.

Switching between screens 1s done either with the arrow keys or with the ‘c’, %@, ‘0,
or ‘m’ keys that represent the calibration, inputs, outputs, and mode screens respectively
Exiting the application 1s done by pressing the ‘q’ key The control computer on the car has

mon 1stalled and 1t can be run by using the username “mon” at the QNX login prompt.

CHAPTER 4 SOFTWARE DETAILS 93

O pmeniter

$21S0C 0.835 timer_hertz 2
#{S0Ccat YVH manager_prio 27
ffé node ECON hardusre_task_prio 26
Mivehicle_speed 11 864 kwh_task_prio 22
tijvehicle_distance 0 555 config_task_prio 16
welenergy_level 0 000 active pointer 278
£2lkuh_volts 336 000 total seconds 278
%|kwh_amps -4 300

#|IceReqState OFF
IceState OFF

#ilhybrad_regime Lo

Af

Jjc — calibration 1 - inputs o - outputs m — mode q - quitl]
AR, P S oy,

S o s e

Figure 4 16 Mon shared memory viewer tool

4.6.2 Data Trends Viewer: trends

While the mon tool displays only the active values in shared memory, another tool, trends,
1s used to view a graph of the time history of selected variables in shared memory This
program is a CGI, Common Gateway Interface, program that 1s meant to be run by a web
server The freely available Apache web server was compiled for QNX and runs at boot up
on the Octagon control computer This allows any graphics capable web browser to be used
to view time histories. The program 1s not much more than a wrapper application that uses
the fclient library to access the shared memory segment and then use the freely available
Gnuplot program to make the actual 1mages that are sent to a connected web browser An

example session 1s shown 1n Figure 4 17

4.6.3 Data Logging: flogger

One disadvantage to using trends 1s that the shared memory contents are not saved when
the control computer 1s turned of To remedy this problem, the flogger, or fcar logger,
application was written This data logger samples the contents of shared memory and

periodically writes the data to the onboard M-Systems DiskOnChip 2000 non-volatile flash

CHAPTER 4 SOFTWARE DETAILS 95

memory device Data 1s cached in memory, 10 seconds worth by default, and then flushed
to “disk ” Since disk write operations are done only when the cache 1s full, data corruption
1s mmimized that could occur due to the remcval of power during a write The application
saves a log file 1n text format with commas separating the individual fields. At a sample rate

of 1 Hz, the text file generated 1s approximately one megabyte for every hour 1n operation.

Chapter 5

Conclusions

The UTK FutureCar control system 1s functional The vehicle can operate in both ZEV
mode and a charge sustarning HEV mode. Unofficial preliminary tests indicate that HEV
mode results 1n a fuel efficiency of approximately 30 miles per gallon of gasoline equivalence

with an untuned system There 1s room for improvement

5.1 Improvements

The UTK FutureCar vehicle as a whole 1s largely untested The most extensive use of the
vehicle happened during the test drives used to collect data for state of charge calcula-
tions Since most of the vehicle control code was developed specifically for the FutureCar
competition 11 a hurried manner, many aspects of the original design were not implemented.

In HEV mode, switching regimes has not been tested While there is some code available
that would do the necessary transition, 1t has not been tested The main reason behind
this 1s the good chance of breaking some transmission component During initial HEV
testing the planetary gear set did get spun fast enough to seize one of the planet gears.
This was mainly due to an overly aggressive engine throttle setting that, even though

the manufacturer’s specifications indicate otherwise, allowed the engine to overpower the

96

CHAPTER 5 CONCLUSIONS 97

generator Other contributing factors to this transmission failure were lack of sufficient
lubrication and operator error Since HEV regime transitions take place at a relatively
high vehicle speed, 45-55 mph, any testing of regime switching would best be done on
a chassis dynamometer where, if any problems arise, damage could be mimimized. Since
the transmission components are largely custom made, replacement parts might have a
significant lead time

“Sport Mode”, an HEV mode that, in addition to low SOC conditions, uses the en-
gine/generator to increase available torque in response to aggressive driver requests has not
been implemented In this mode the engine will be turned on even at a high SOC Thus is
unimplemented mainly because of time constraints

The drivability of the vehicle does not follow the stock vehicle While compensations
are made to make ZEV and HEV modes feel the same to the driver, there 1s a significant
“boost” during HEV operation The main factor to equalizing the driver feel comes from
the generator current feedback signal After some SOC testing the generator current signal
provided by the generator inverter was suspect The generator current signal does not follow
the pack current measured from the kWh meter when 1t should

The state of charge algorithm, discussed in Section 2 4, has performed well in simu-
lations, but has not actually been integrated as a controlling factor into the rest of the
control system The current system, as of this writing, only displays the estimated SOC of
the battery pack, but leaves the responsibility of starting and stopping the engine to the
driver For a fully automatic system that starts and stops the engme based on SOC, the
decision needs to be made by the computer

The rather small battery pack capacity, 13 A h, seems to be insufficient for long periods
of electric-only operation While this capacity was deemed to be adequate in the original
design, the high current environment to which the pack 1s subjected severely decreases
the amount of available energy It 1s possible, probably without much modification, to

replace the Hawker Genesis 13 A h cells with 16 A h cells because they are almost physically

CHAPTER 5 CONCLUSIONS 98

identical While the added capacity might not add much to the overall energy storage
capacity, it would be an 1mprovement

The driver interface 1s sub-optimal While the vacuum fluorescent display module does
provide useful information 1n a unique manner, the original design specified using the stock
analog speedometer in addition to the the VFD for driver feedback There 1s code available
that would operate the large analog gauge, but 1t 1s also untested The main reason for this
1s the high current, 25 mA, required to drive the gauge coils The Octagon analog output
cards are only specified to source 5 mA of current and 1mitial attempts at amplifying the
signal falled Since the choice was made not to risk controller hardware damage with a
direct connection, this feature was left undone The original interface specification called
for a small LCD screen mounted 1n the dashboard Since QNX does feature a very small and
capable graphics system, Photon, a graphical driver interface could be added to the current
system Since a source for LCD panels small enough to fit 1n an automobile dashboard and
a good place to put a video screen 1n the dash were never found, this 1dea stagnated

The system controller has a long power-up sequence While the code written for con-
trolling the vehicle has neghgible start up time, the time from the key switch being moved
to the “on” position to a responsive vehicle 1s about 30 seconds long. This 1s due mostly to
the Octagon CPU card’s PC compatible BIOS While a PC compatible platform was chosen
to speed development and make control code changes quick, the regular boot-up sequence
takes far longer than the time to start the engine of a conventional vehicle There are
remedies for this from the QNX manufacturer in the form of eliminating the PC compatible
BIOS start-up code, but this has not been rigorously mvestigated Since the control code 1s
largely portable, 1t could be moved to a different computing hardware and software environ-
ment, one more suited to embedded work, without much trouble Completely abandoning

the PC hardware might be the best remedy to the slow boot problem

CHAPTER 5 CONCLUSIONS 99

5.2 Future Work

Future work would primarily involve more testing and performance evaluation of the vehicle
as a whole The control system code, while not complete to the original specification, 1s
very functional for the majority of the tasks required of a hybrnd electric vehicle What 1s
needed 1s more fine tuning of the existing code to coax more efficiency out of the system.
Some tasks to be done 1n the future would be more sensible to try than others Probably
the easiest improvement to make would be changing the responsibility of the hybrid mode
engine operation from the driver to the SOC algorithm included in the code. While the
algorithm might need some small changes to simulate a person’s decisions, this 1s easily
done The next important step would be the completion of the HEV regime switching code.
Since the “high” regime code 1s untested, the vehicle speed has been imited to about 55
mph To reach highway cruising speeds, the switch to the “high” regime must be made.
In the process of developing a control system for a dual hybrid electric vehicle, perhaps
something greater has come of 1t The control code was designed 1n a framework so that
1t could be used outside of 1ts current implementation, independent of both the Octagon
hardware used and the QNX operating system A possible next step for this research would
be to adapt the control system code to an entirely different computational environment on

a different vehicle

Bibliography

100

Bibliography

[1] K L Barfield A microprocessor control system for a hybrid electric vehicle Master’s
thesis, University of Tennessee, Knoxville, 1994

[2] Cruising Equipment Co , Seattle, Washington USA Installation Manual, Kilowatt-
Hour+2 Meter, March 1995

[3] Electromotive Inc , Manassas, Virgima USA, http.//www electromotive-inc.com. Total
Engwne Control (TEC) engine management unit

[4] B O Gallmewster POSIX 4 Programmang for the Real World O’Reilly and Associates,
Inc, 1995

[5] Hawker Energy Products Inc , Warrensburg Missour1 USA Genes:s Application Man-
wal, third edition, December 1997

(6] Hawker Energy Products Inc ,_Wa.rrensburg Mlssourl USA Genesis Selection Guade,
second edition, February 1998

[7] F Hayes-Roth, D A. Waterman, and D B Lenat Buwilding Ezpert Systems Addison-
Wesley Publishing Company, Inc, 1983

[8] X He Hybrid electric vehicle simulations and evaluation Master’s thesis, University
of Tennessee, Knoxville, 1997

[9] B W Kernighan and D M Ritchie The C Programmang Language, Second Edition.
Prentice Hall, Inc, 1988

[10} P. Laplante Real-Time Systems Design and Analysis IEEE Press, 1992.
[11] D Lewme POSIX Programmer’s Guide O’Reilly and Associates, Inc , 1991.

[12] H W Muller Epicyclic Drwe Trawns - Analysis, Synthesis, and Applications Wayne
State University Press, 1982

[13] B Nichols, D Buttlar, and J P Farrell Pthreads Programmang. O’Reilly and Asso-
clates, Inc , 1996

101

https://electromotive-mc.com

BIBLIOGRAPHY 102

[14] A Oram and S Talbott Managing Progects wnth make O’Reilly and Associates, Inc.,
1991

[15] QNX Software Systems Ltd , Kanata, Ontario Canada QNX 0 System Architecture,
1993

[16] J D Taylor An evaluation of the effects of increased exhaust gas recirculation on
a dedicated natural gas vehicle conversion Master’s thesis, University of Tennessee,
Knoxville, 1997

[17) L H Tsoukalas and R E Uhrig Fuzzy and Neural Approaches in Engineering. John
Wiley and Sons, Inc, 1997

[18] B E Tucker The development and implementation of a control system for a hybrid
electric vehicle Master’s thesis, University of Tennessee, Knoxville, 1997

[19] Unique Mobility Inc, Golden, Colorado USA, http //www ugm com. Electric motors
for alternative fuel vehicles

[20] K Yamaguchi, S Moroto, K Kobayashi, M Kawamoto, and Y Miyaish1 Development
of a new hybrid system - dual system Society of Automotive Engineers paper 960251,
1996

Appendices

103

Appendix A

Basic Control Code Modification

QNZX 1s a self-hosted operating system That 1s, the development tools, compiler, assembler,
debugger, etc., run on QNX Ths differs from most real time operating systems that require
a cross-compiler that runs on a host computer to generate an executable that is loaded on
the target computer While QNX can be self-hosted, the FutureCar control system code is
actually compiled on a small laptop computer and then copied to the Octagon computer
installed 1n the vehicle

The QNX native networking protocol, FLEET networking, makes 1t simple to share the
resources of two computers The development laptop computer, node #3, connects to the
Octagon computer, node #1, over thinnet coax ethernet, also known as 10-base-2 ethernet.
A thinnet ethernet topology was chosen because 1t 1s physically smaller than thicknet, 10-
base-5, and doesn’t require extra hub hardware that a 10-base-T network might require To

make any changes to the control code the following steps have to be made

e Plug the laptop AC adaptor into the power strip in the center console and power
up the laptop The laptop can boot multiple operating systems so choose the QNX

operating system when prompted

e Switch the vehicle key switch to the accessory position In the accessory position the

104

APPENDIX A BASIC CONTROL CODE MODIFICATION 105

n’

control computer in the trunk will be powered up i about 30 seconds The VFD

display will change to indicate that the control computer has successfully booted.
Attach the ethernet cable that comes out of the center console to the laptop computer.
Login to the laptop with the username matt There 1s no password required

For new code to be installed on the control computer, the network connection between
the two has to be working This can be checked with either the command alive or

s1in net

There are multiple versions of the control code on the laptop The directories holding
the control code are labeled with a date format of the form yyyymmdd where yyyy
mdicates the year, mm the month, and dd the day There 1s one subdirectory under
this date coded directory, 99 Inside this 99 subdirectory 1s the actual control code,

which will be referred to as the “cc” diwrectory

After changes are made to code 1n the cc directory, the executables need to be remade
This 15 done by 1ssuing the command make all from the cc directory Optionally, the
command make clean can be 1ssued to remove any stale object files or executables

before running make all

Running make all only rebuilds the executables The command make install has
to be run to actually copy the required executables to the control computer. Since the
make install command requires copying files to a “privileged” area of the control
computer, the command su has to be run first The correct sequence of commands to

install a new version of the code 1s make all ; su ; make install ; exit

After running make install, rebooting the control computer will make the new code

run automatically on boot.

APPENDIX A BASIC CONTROL CODE MODIFICATION 106

The source code 1n the cc directory 1s split further into more subdirectories descriptively

named for their intended purpose These subdirectories are

cgi This directory holds further subdirectories for Common Gateway Interface programs
that are meant to be run by the web server that starts automatically at boot The

most useful of these small programs, trends.cga, 1s described later 1n more detail

fcar The fcar subdirectory holds the main control code If changing the behavior of the

vehicle 1s required, this 1s the place to look.

fecard This directory holds the code for the fcar deemon This 1s where changes have to be

made 1f hardware I/O requirements change

flogger The code for the fcar data logger 1s here More mmformation on retrieving data

collected by the data logger 1s given later

libfclient This directory holds the code for the library of functions used to share data

among the many small programs that use the common shared memory segment
libftask Functions for simplifying task management are here
monitor The code for the mon shared memory monitoring program 1s here

test The test directory holds code for many small test programs that can be used to check

basic functionally of the system

vfd This directory holds the code for the program that takes values from shared memory

and displays 1t on the VFD connected to a serial port

The process of adding or subtracting variables that will be stored in shared memory 1s
not as sumple as 1t should be For this reason, there are some “dead” variables i the shared
memory defimtion that were either never used or no longer used Since changes have to
be made 1n multiple places, 1t 1s easier to just leave some unused variables 1n the shared

memory segment 1if memory 1s available

APPENDIX A BASIC CONTROL CODE MODIFICATION 107

The process of changing the contents of the shared memory used by all of the fcar
programs has a few steps First the contents of the file 1ibfclient/fcar_common.h relative
to the cc directory has to be changed This file 1s the real defimition of the contents of
the shared memory If the added variable represents a value that needs to be calibrated
from a voltage signal to engineering units, additional entries for calibrating the new signal
have to also be added to libfclient/fcar_common h All calibration 1s done 1n the file
fcard/octagon.10.c so changes need to be made there if the added value needs calibration.
Default calibration values should be added to the file fcard/fcard conf and the code n
fcard/read_conf.c should be updated to allow parsing the new calibration values The
running control system also has the ability to change calibration values with a web browser
mterface If this ability 1s required, changes have to be made to the calibrate.c source
code 1n the cga/calibrate directory There 1s also an ability to log data with a web browser
mterface. If this feature 1s needed, changes have to be made to the code i the cga/dumper
directory Similarly, if the variable needs to be logged to disk with the automatic flogger
data logger, changes have to be made in the flogger directory Finally, if the new variable
1s to show up 1n the shared memory monitor program, changes have to be made 1n the mon
subdirectory

The programs fcard, fcar, and vfd are started in a shell script, fcarstart, that 1s
called on boot from the file /etc/config/sysinit.1 on the control computer The process
of executing make install puts all of the required control programs and configuration files
in the correct places Executables are placed in /opt/fcar/bin, configuration files are
placed i /opt/fcar/etc, CGI programs are copied to /usr/local/apache/cgi-ban, and
other web server files are placed n subdirectories of /usr/local/apache on the Octagon

control computer

Appendix B

Real time Trend Graph Viewing

While the control code can be updated using the native QNX networking protocols, the
procedure for viewing CGI generated history graphs of shared memory variables requires
the use of the TCP/IP (Transmission Control Protocol / Internet Protocol) capabilities
of QNX For TCP/IP networking to work, both the server and the client machines have
to be configured Both the control computer and the development laptop computer were
registered to run on the UTK ethernet network As such, the two computers have some
fixed TCP/IP configuration parameters, given mn Table B1 This configuration allows
both computers to be used on the UTK campus network, but, during normal use, the two
computers will only communicate with each other on the two node “car network.” Since
the regular campus nameserver, the network host that converts name queries to numerical
addresses (octagon engr utk edu—128 169 100 192), 1s not available from the “car network,”
and neither host acts as a nameserver, each host must be referred to by their numerical IP
address

TCP/IP connectivity can be tested by using the ping command to see if the other
host 1s reachable Once this 1s done, a web browser can be started on the laptop com-

puter If the laptop was booted to QNX, the Voyager browser can be used Since the

108

APPENDIX B REAL TIME TREND GRAPH VIEWING

Table B1 TCP/IP configuration parameters

Octagon computer

Laptop computer

host IP address

128 169 100 192

128 169 100 180

host IP name octagon pIp
domain engr utk edu engr utk edu
subnet mask 255 255 2520 255255 2520

gateway host IP

128 169 100 1

128 169 100.1

nameserver host IP

128 169 50 100

128 169 50 100

109

QNX browser requires a graphical user interface, the QNX GUI, Photon, has to be start-
ed with the command ph before the browser can be started After the GUI has started,
the web browser can be started with the command voyager If the laptop computer was
booted 1into another operating system, the standard procedure for starting a web browser
on that OS should be used Once the web browser 1s up, 1t should be pointed to the ad-
dress http //128.169 100.192/cgi-bin/trends.cgi. Usage of the trends CGI program
1s fairly self-explanatory Three possible drop-down lists are provided to choose the shared
memory variables’ history to graph

The web server, Apache httpd, 1s automatically started at boot on the octagon control
computer from the /etc/config/sysinit 1 shell script In addition to the web server,
telnet and ftp services are also enabled at boot on the control computer One notable use
of the telnet service 1s that the special login name ‘mon’ can be used without a password
to automatically start the shared memory momitor program, discussed in Section 4 6 1
Additionally, files can be transfered to and from the octagon control computer without

using QNX native networking by using the ftp service

Appendix C

Retrieving Logged Data

The fcar logger program, flogger, 1s automatically started at boot from the shell script,
/opt/fcar/bin/fcarstart The logging output of the program 1s by default stored in a
file /opt/fcar/var/flogger.log on the control computer Since this file can grow rather
large, quickly, 1t should be moved from the control computer regularly The data logger
by default samples the contents of the shared memory every second, but this rate can be
increased or decreased with a command line parameter The format of the log file is comma
separated text with a UNIX end-of-line marker (single line feed character) This format can
easily be converted to other formats for data analysis The data logger program prints a
text header describing each field of the log file each time the program 1s started

Moving the log file to the laptop computer running QNX 1s probably the simplest
method of retrieving logged data The command mv //1/opt/fcar/var/flogger.log
flogger.log would move the log file to the current directory on the laptop computer
It 1s generally safe to move the log file while the data logger program 1s running If it 1s run-
‘ning 1t will create a new log file if the file 1s moved or deleted Once on the laptop computer,
the log file can be copied to a DOS FAT formatted floppy disk The command sequence
for this would be su , Dosfsys & , cp flogger.log /dos/a/ , slay Dosfsys ; exit

if the log file 1s to be copied to the first floppy disk drive Another more cross-platform

110

APPENDIX C RETRIEVING LOGGED DATA 111

method of retrieving the log file would be to ftp the data from the control computer to
another host The ftp command “DEL” could be used to delete the log file after copying it

with a “GET” command

Appendix D

Control Code Listing

D.1 fcard: Hardware Control Daemon

D.1.1 Makefile

requires gnu make

cC
DEFINES
INCLUDES
QUIET
OPTS
#DEBUG
CFLAGS
LIBS
LDFLAGS
FILES
FILES
FILES
FILES
0BJS
ouT
DEPEND
BINDIR
ETCDIR

all
$(0UT)

dep

install

pre

cc
~DDEBUG

-I /labfclient -I /labftask

_Q -WX

~Orailnextm -4r -£fp3 -£fpi87

$(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
~L /labfclient -lfclient ~L /libftask -lftask
$(QUIET) $(DEBUG) $(LIBS) -T 1

fcard ¢ daemon ¢ read_conf ¢

hardware_10 c¢ initshm c

parse_cmdline.c octagon_io ¢

octagon_init ¢ kwh_meter c

$(FILES c= o)

fcard

makedepend

/opt/fcar/bin/

/opt/fcar/etc/

W wnn

$(0UT)

$(0BJS)

$(DEPEND) -~ $(CFLAGS) -D_.QNX__ -- $(FILES)

$(0UT)
cp -f $(0UT) $(BINDIR)
cp -f fcard conf $(ETCDIR)

$(FILES)
$(RM) pre ¢
$(cC) -E $(CFLAGS) $< >> pre ¢

112

]

https://octagon.io
https://hardvare.io

APPENDIX D CONTROL CODE LISTING

ass- $(FILES)
$(CC) -S $(CFLAGS) $<

clean
rm -f $(0BJS) $(0UT) core fcard log fcard pid * err

D.1.2 fcard.h

/* fcard h */

#1fndef FCARD_H
#defane FCARD_H

/* std includes */
#1nclude <fclient h>
#1include <ftask h>

/* defines */
#define _POSIX_C_SOURCE 199309L
#defane KWH_DEVICE “//1/dev/ser2"

/* where to put stuff */
#1fdef DEBUG
/* put and look for files in the current directory */

#defane LOGFILE "fcard log"

#defaine PIDFILE “fcard pad"

#defane DEFAULT_CONFIG_FILENAME “fcard conf"

#else /* DEBUG */

#define LOGFILE "/opt/fcar/var/fcard log"
#define PIDFILE "/opt/fcar/var/fcard pad"
#define DEFAULT_CONFIG_FILENAME "/opt/fcar/etc/fcard conf"

#endaf /* DEBUG */

/* min seconds between restarts */
#define RESTART_THRESHOLD 2

/* scheduling and praioraty default defines */
#define FCARD_SCHED_POLICY SCHED_FIFO
/* parent needs higher priority so we can send signals, etc */

#define FCARD_MANAGER_PRIO 27 /* note gnx non-root max = 19 */
#define FCARD_HARDWARE_PRIO 26
#define FCARD_KWHREADER_PRIO 22
#define FCARD_CONFIG_PRIO 16
#define FCARD_HARDWARE_HZ 100

/* structures */
/* see fcar_common h in libfclient */

/* global varibles */
extern char *config_filename,

extern volatile struct shared_hw_data *hd, /* big chunk of shared mem */
extern int embedded, /* 1f files and such are available */
extern int do_hardware_io, /* set to 0 for debugging non-hardware stuff */

/* function prototypes */

void daemonize(void),

void wraite_pid(voxd),

void exit_cleanly(int ignored),

113

https://FCARD.HARDWARE.HZ

APPENDIX D CONTROL CODE LISTING

void hardware_io_stop(int ignorxed),

void hardware_io(void *ignored),

voad initshm(voad),

void octagon_init(void),

void octagon_10(void),

voad usage(voad),

void parse_cmdline(int argec, char *argv[]),
void read_conf(void *stay),

void do_read_conf(void),

void do_reread(int 1gnored),

void read_kwh_meter_stop(int ignoxed),
void read_kwh_meter(void *unused),

#endaf

D.1.3 octagon_io.h
/* octagon_10 h */
#1fndef OCTAGON_IO_H

#define OCTAGON_IO_H
/* information specific to octagon I/0 hardware */

#1fdef __QNX__

#1include <sys/inline h> /* qnx inline asm */
/* try to make IN and OUT a little more portable? */
#define 1n_8 inb

#define 1n_16 1nw

#define 1n_32 inl

#define out_8(port,value) outb(port,value)
#define out_16(port,value) outw(port,value)
#define out_32(port,value) outl{port,value)
#endaf

/* used for octagon 5066 cpu card hardware watchdog timer */

#define ENABLE_WATCHDOG() out_8(0x20c, 1n_8(0x20c) | 0x40)
#define PET_WATCHDOG() in_8{0x20¢)
#define DISABLE_WATCHDOG() out_8(0x20c, 1n_8(0x20c) & ~0x40)

/* used 1n 5710 card anitialization */

#define CR_OFFSET 0x0B /* 82C55 control register offset */

/* used 1n 5710 analog input */

#define CONVERT OxFF /* MUX convert command */

#define CH_SELECT 0x09 /% analog input channel select offset */

#define HIGH8 0x02 /* bits 4 to 11 of read analog voltage (offset) */
#define LOW4 0x03 /* baits 0 to 3 of read analog voltage (offset) */

[Hxskikioniokkk analog 1nput macros Fdkkskdokkkkokikkokkik /

/* swap - exchange the high and low 8 bat registers, divide by 16 */

unsigned swap(unsigned val),

#pragma aux swap = "xchg ah,al" \
"shr eax,4" \
_.parm __nomemoxry [eax] __value [eax] \
__mod1ify __exact __nomemory [eax],

#define DELAY_PORT 0x80
#define DELAY_VALUE 0
#define delay_four_us() out_8(DELAY_PORT,DELAY_VALUE), \

114

https://delay.four.us
https://octagon.io

APPENDIX D CONTROL CODE LISTING

#define init_convert(port, ch)

#define get_conv(port)
#define getAnalog(a)

#define delay_fave_us()

out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE)

out_8(port+CH_SELECT, ch),
delay_four_us(),

out_8(port, CONVERT),
while((an_8(port) & 1) == 0)

1n_16(port+HIGHS)
swap(get_conv(a))

out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE),
out_8(DELAY_PORT,DELAY_VALUE)

[*Rxkkckkkkkkkk analog 1DPUt MACTOS kkkkkkikikkkkkkkx/

/* used 1n 5710 analog output (offsets) */

#defane DAC_CH_ZERO 0x0C
#define DAC_CH_ONE 0x0E

/* 5710 digital 10 modes */

#define DMODE_BOTH_OUT
#define DMODE_AOUT_CIN
#define DMODE_AIN_COUT
#define DMODE_BOTH_IN

#define DPORTA 0x08
#define DPORTB 0x09
#define DPORTC 0x0A

/* port A port C

[* =———mm cmmemee
0x80 /* out out
0x89 /* out in
0x90 /* in out
0x99 /* in in

/* this still exists */

/* used in 5750 analog output (offsets) */

#define ZERO_LEAST 0x0
#define ZERO_MOST Ox1
#define ONE_LEAST 0x2
#define ONE_MOST 0x3
#define TWO_LEAST 0x4
#define TWO_MOST 0x5
#define THREE_LEAST 0x6
#define THREE_MOST 0x7
#define FOUR_LEAST 0x8
#define FOUR_MOST 0x9
#define FIVE_LEAST 0xA
#define FIVE_MOST 0xB
#define SIX_LEAST 0xC
#define SIX_MOST 0xD
#define SEVEN_LEAST 0xE
#define SEVEN_MOST OxF

/* base port addresses */

#define CARDO 0x100
#define CARD1 0x110
#define CARD2 0x120

/* slower 5710 card */
/* faster 5710 card */
/* 5750 card */

P

PP

*/
*/
*/
*/
*/
*/

115

https://DMGDE.BGTH.IN

APPENDIX D CONTROL CODE LISTING

/* 5710 conversion macros */
#define INT2VOLTS(d) \

((10 OF * (float)(d) / 4095 OF) - 5 OF) /* gain 1 */

#define VOLTS2INT(f) \

(unsigned) (((£) + 10 OF) / (20 OF / 4096 OF)) /* -10 to +10 vdc */

/* 5750 conversion macros (outputs only) */

#define FULLVOLTS2INT(f) \

(unsigned) (((£) + 5 OF) / (10 OF / 4096 OF)) /* -5 to +5 vdc */

#define HALFVOLTS2INT(f) \

(unsigned) ((£) / (5 OF / 4096 OF)) /* 0 to +5 vdc */

/* analog output macros */
#define OUTPUTS5710(card, ch, value)
out_16((card)+(ch),

\

((value) > 4095U) 7 4095U (value))

/**xxkkkx private structures for octagon_i10 c kkkkikkkkkskikskk/

struct 105710Integer

{
unsigned AnalogIn{16],
unsigned AnalogOut[2],
unsagned DigitalInC[8],
unsagned DigatallnA[8],
unsigned DigirtalOutC[8],
unsigned DigatalOutA[8],

3,

struct o5750Integer

{
unsaigned AnalogOut[8],

}l

struct 105710Volts

{
float AnalogIn[16],
float AnalogOut[2],

}7

struct o5750Volts

{
float AnalogOut(8],

}l

#endaf

D.1.4 octagon_io_map.h

/* octagon_io_map h */

#1fndef OCTAGON_IO_MAP
#define OCTAGON_IO_MAP

/* how things are comnected */
/* analog */

#define 1EmMotorSpeedChannel
#define 1GenMotorSpeedChannel

/* octal-dac */

vcard0 AnalogIn[1]
vcardl AnalogIn[1]

116

APPENDIX D CONTROL CODE LISTING

#define
#defaine
#defane
#defane
#define
#define
#define

1IceEngineSpeedChannel
1AccelPedallevelChannel
1BrakePedallLevelChannel
1ActualEmTorqueChannel
1FuelPressureChannel
1EmCurrentChannel
1GenCurrentChannel

/* #define i1BattPackTempChannel

#define
#define
#define
#define
#define

#define
#define
#define
#define
#defaine
#define
#define
#define

1BattPackVoltageChannel
1BattPackCurrentChannel
1EmRotorTempChannel
1ErInvTempChannel
1TpsFeedbackChannel

oGenSpeedReqChannel
oGenRegenlimitChannel
oEmAccelReqChannel
oEmBrakeReqChannel
oIceThrottlePosChannel
oD1sSpeedoOChannel
oDisSpeedoliChannel
oPwrToDigRacksChannel

/* digatal */
/* shifter info

pins

0 SHID1 PC-7
1 SHID2 PC-6
2 SHID3 PC-5
3 SHID4 PC-4
conn pins

vecardl

vcardl.

vcardl
vcardl
vcardl
vcardl
veardl
vecard0
vcardO
vcard0
vcard0
vcard0
vcardQ

veardl
vecardl
vecard2
vcard2
vcard2
vcard2
~vcard2
vcard2

AnalogIn[3]
AnalogIn[5]
AnalogIn[7]
AnalogIn[9]
AnalogIn[11]
AnalogIn[13]
AnalogIn[15]
AnalogIn[3]
AnalogIn[5]
AnalogIn[7]
AnalogIn[9]
AnalogIn[i1]
AnalogIn[13]

AnalogOut [0]
AnalogOut [1]
AnalogQOut [0]
AnalogOut[1]
AnalogQut[2]
AnalogOut [4]
AnalogQut [5]
AnalogQut [7]

* % * % % W

select

*

P

oS

decimal hex

Park

*

* Reverse

* Neutral

* DraiveEcon
* DriveSport
%
%
%
%

ZEV
(not

(not used)

*/
#define
#define
#def1ine
#define
#define
#define
#def1ine

#define
#define
#define
#define
#define
#define
#define
#def1ine
#define
#define

used)

mOmMmO QW e
=R HOOOOo
coomroOORO
ocorooroo
oroOmOOO

1ParkBitPattern
1ReverseBitPattern
1NeutralBitPattern
1DriveEconBitPattern
1DriveSportBitPattern
1ZEVBatPattern
1DynoBatPattern

1HvacBat

1EmTempWarnBit
1EmControllerReadyBit
1EmFaultIndicatorBat
1EmOvertempIndicatorBit
1GenTempWarnBit
1GenControllerReadyBit
1GenFaultIndicatorBit
1GenDirectionIndicatorBit
1IceFaultIndicatorBit

N

LN el

0x00
0x40
0x20
0x10
0xcO
0xal
0x90

1card0
1card0
1card0
1card0
1card0
1card0
1card0
1cardQ
1card0
1card0

Oxc 0xcO
Oxa 0xal
0x9 0x90
0x8 0x80

DigitalInC[1]
DagatallnC[0]
DigitalInA[6]
DigitalInA[7]
DigatalInA[5]
DigitallnA[4]
DigitalIni[3]
DigitalInA[1]
DagatallnA[2]
DigatallnA[0]

*/

117

APPENDIX D CONTROL CODE LISTING 118

#define olceStarterBat 1cardl DigitalOutA[3]
#define oTecEnableBit 1cardl DagitalOutA[4]
#define oEmEnableBit 1cardl DagitalOutA[7]
#define oEmDirectionBit 1cardl DigitalOutA[6]
#define oGenEnableBat 1cardl DigitalOutA[5]
#define oPwrSteeringEnableBit 1cardl DigitalOutA[2]
#define oThrottlePwrCycleBit 1cardl DigatalOutAf[1]
#define oSmartChargerEnableBit 1cardl DigatalOutA[0]
#endaf

D.1.5 fcard.c

/* fcard c */
#include <stdio h>

#include <unistd h> /* unlink */
#anclude <stdlab h> /* exat */
#include <time h> /* time */

#include "fcard h"

/* these can be static because they don’t have to talk to each other */
static ftask *config_task, *hardware_task, *kwh_task, *ret,

int main(int argc, char *argv[])

{

time_.t t = 0, told = 0, tdelta,
int prioraty, hz, rv,

/* parse command line */
parse_cmdline(arge, argv),

/* need to alloc some for tasks */

config_task = (ftaskx)calloc(l, sizeof(ftask)),
hardware_task = (ftask#*)calloc(l, sizeof(ftask)),
kvh_task = (ftask*)calloc(1l, sizeof(ftask)),

ret = (ftaskx)calloc(l, sizeof(ftask)),

1f ('config_task || 'hardware_task || 'kvh_task || 'ret)
{

die(“calloc failed for task structs"),

}

/* detach etc */
daemonize(),

notice("log started"),

1f ('embedded)

{
/* record our pad */
wrate_pad(),

}

/* setup shared memory */
wnatshm(),

/* try reading config file */
read_conf (NULL),

.

APPENDIX D CONTROL CODE LISTING

/* setup scheduler parameters */
ftask_sched_adjust_self(FCARD_SCHED_POLICY,
hd->fcard_rv fcard_manager_pr1o),

/* startup config child task */

prioraity = hd->fcard_rv fcard_config_task_prio,

rv = ftask_init(config_task,

FCARD_SCHED_POLICY,
priority,
read_conf,

(void *)1,

NULL,

1:

o;

o)’

/[*
/*
/*
/*
/[*
/%
/[*
/[*

policy */

priority */
start_routine */
start_routine_arg */
cleanup_routine */
allow_trigger */
allow_periodic_tamer */
periodic_timer_hz */

1f (zv) die("ftask_init config _task"),

1f (ftask_create(config_task) == -1)
die("ftask_create(config_task)"),

/* start a new task to gather stats from kwh meter */
priority = hd->fcard_rv fcard_kwh_task_prio,

rv = ftask_init(kwh_task,

FCARD_SCHED_POLICY,
prioraty,
read_kvh_meter,
NULL,
read_kwh_meter_stop,
0,

ol

0),

1f (rv) die("ftask_ainit kwh_task"),

/[*
/[*
/[*
/[*
/*
/*
/*
/[*

1f (ftask_create(kwh_task) == -1)
die("ftask_create(kwh_task)"),

policy */

prioraty */
start_routine */
start_routine_arg */
cleanup_routine */
allow_trigger */
allow_periodic_timer */
periodic_timer_hz */

/* start a new task to talk to hardware */
priority = hd->fcard_rv fcard_hardware_task_prio,
hz = hd->fcard_rv fcard_hardware_timer_hz,

rv = ftask_init(hardvare_task,
FCARD_SCHED_POLICY,
priority,
hardware_io0,
NULL,
hardware_io_stop,
0:
1,
hz),

/[*
/%
/*
/%
/[*
/*
/*
/*

policy */

praoraty */
start_routine */
start_routine_arg */
cleanup_routine */
allow_trigger */
allow_periodic_timer */
periodic_timer_hz */

1f (rv) die("ftask_init hardware_task"),

1f (ftask_create(hardware_task) == -1)
die ("ftask_create(hardware_task)"),

/* allow rereading config file */
ftask_register_reread_self(do_reread),

119

https://periodic.timer.hz
https://hardware.10
https://fcard.hardware.timer.hz
https://hd->fcard.rv
https://hd->fcard.rv
https://hd->fcard.rv

APPENDIX D CONTROL CODE LISTING

/* allow for exiting in an orderly manner */
ftask_register_cleanup_self(exat_cleanly),

while(hd) /* shared mem still mapped */
{

ftask_wait_on_tasks(ret),

t = tame(NULL),
tdelta = t - told,

1f (tdelta < RESTART_THRESHOLD)

{
warn("respawning too fast must be a problem"),
ex1t_cleanly(0),

}

1f (ftask_same(ret, hardware_task))

{
warn("hardvare I/0 task died?, trying restart'),
ftask_create(hardware_task),
told = tame(NULL),

}

1f (ftask_same(ret, kwh_task))

{
varn("kvh task died?, trying restart"),
ftask_create(kwh_task),
told = time(NULL),

}

1f (ftask_same(ret, config_task))

{
warn("config task died? trying restart"),
ftask_create(config_task),
told = tame(NULL),

}

}

/* won’t get here x/
return EXIT_FAILURE,
3

voild exit_cleanly(int ignored)

1
/* do cleanup stuff here */
notace("fcard exiting reaping children"),

/* first kill off known children */
1f (ftask_delete(hardware_task) '= 0)
warn("can’t kill hardware_task"),

1f (ftask_delete(kwh_task) !'= 0)
warn(“can’t kill kwh_task"),

1f (ftask_delete(config_task) '= 0)
warn("failed to kill config task"),

/* get rid of shared memory segment */
1f (fclient_delete_shm() '= 0)
warn("fclient_delete_shm"),

120

APPENDIX D CONTROL CODE LISTING

/* delete pid file */
1f (('embedded) && (unlink(PIDFILE) != 0))
warn("unlink(PIDFILE)"),

/* just to be complete */
free(ret),

free (hardware_task),
free(config_task),
free(kwh_task),
notice("all done"),

ex1t (EXIT_SUCCESS),

}
void do_reread(int ignored)
{
/* relay to config task */
ftask_tragger(config_task),
}

D.1.6 parse_cmdline.c

/* parse_cmdline ¢ */
#1include <stdio h>
#1include <stdlab h>

#1include <string h> /* strdup */
#include <sys/stat h>
#1include <unmistd h> /* stat, getopt */

#include "fcard h"

/* real definition of config_filename */
char *config_filename,

/* real definition of embedded */
int embedded,

/* real definiton of do_hardware_io */
int do_hardware_zio0,

void usage(void)

{
printf(“"Usage fcard [-e] [-f config file]l [-d] [-h]l\n"),
printf(" -e enables embedded operation\n"),
prantf (" ~f specifies the path to a config file\n"),
printf (" -d disable actual hardware I/0 (for testing)\n"),
prantf (" ~-h shows this usage message\n"),
ex1t (EXIT_FAILURE),

¥

/* look for various options */
void parse_cmdline(ant argc, char *argv[])
{
struct stat s,
ant c,
int errflag = 0,
config_filename = DEFAULT_CONFIG_FILENAME,
embedded = 0,
do_hardware_i0 =1,

while((c=getopt(argc,argv, "ef hd")) '= -1)

121

APPENDIX D CONTROL CODE LISTING

{
swatch (c)
{
case
case
case
case
case
}
1f (errflag)
}

le)
embedded = 1,
break,
!f)
config_filename = strdup(optarg),
1f (config_filename == NULL)
die("strdup"),
break,
)d)
do_hardware_io = 0,
break,
Jh!
usage(),
break,
19
++errflag,
break,

usage(),

/* 1f not in "embedded" mode, config file should exist */

1f ('embedded)
{

1f (stat(config_filename, &s) != 0)
die("can’t find specified config file"),

3

/* don’t check for file otherwise, because regular filesystem’s

* not up yet */

return,

D.1.7 daemon.c

/* daemon ¢ */

#include <stdio h>
#include <stdlib h>
#include <unistd h>
#include <sys/types h>
#1nclude <sys/stat h>
#include <straing h>
#include <sys/types h>
#include <signal h>
#include "fcard h"

/[*

/* freopen, fopen, fgets, sprantf */

/* exat, atoi */

/* fork, setsid, chdir */
/* fork, chdir, umask */
/* umask, stat */

/* memset */

/* kall */

/* kill */

* daemonize() zrun new process in background and
* detach from controlling terminal

*/

void daemonize()

{
/* immediately go to
switch (fork())
{

the background */

122

APPENDIX D CONTROL CODE LISTING

case 0 break, /* child exits switch */
case -1 die("fork"), /* problem with fork */
default exi1t(EXIT_SUCCESS), /* exat original process */

}

/* become new process group leader */
1f (setsad() < 0) /* would fail 1f invoked from a session leader */
die("setsad"),

#1fndef DEBUG
1f (!embedded)

{
/* change to root dir to avoid problems
* yith mounted filesystems */
1f ((chdax("/")) < 0) die("chdar"),

}

#endaf

/* reset umask so that we have total contol over file creation */
umask(0), umask(022),

#1fndef DEBUG
1f ('embedded)
{
/* reestablash standard file descriptors */
1f (freopen("/dev/null", "r", stdin) == NULL)
die("reopen stdin"),

1f (freopen("/dev/null", "w", stdout) == NULL)
die("reopen stdout"),
//#1fndef DEBUG
/* redirect stderr to our logfile */
1f (freopen(LOGFILE, "a", stderr) == NULL)
die("reopen stderr"),

//#endaf

}
#endaf

return,
}

/* dump our pad for easy killing */
void wraite_pad()
{

FILE *pid_file,

char buf(32],

pid_t p,

struct stat s,

memset(&s, 0, sizeof(struct stat)),

1f ((stat(PIDFILE, &s) == 0) && (s st_size > 0))
{
/* oops, file 1s already there */
/* try to open 1t to see 1f that process 1s still running */
1f ((pad_file = fopen(PIDFILE, "r")) == NULL)
die("can’t open old pid file"),

1f (fgets(buf, sizeof(buf), pad_file) == NULL)
die("fgets™),

123

APPENDIX D CONTROL CODE LISTING

}

p = atoi(buf),

1f ((p '= getpad()) && (k111 (p, 0) == 0))
{

/* another daemon 1s rumning, exit NOW, not cleanly */
sprintf(buf, "another pad (%d) 2s running", p),

die(buf),
}

/* 1f we get here, the old process isn’t running */

/* just continue */
fclose(pid_file),

1f ((pad_file = fopen(PIDFILE, “"w")) == NULL)

die("can’t write pid file"),

fprantf(pad_file,"%d\n", getpid()),

fclose(pid_file),

return,

D.1.8

/* 1nitshm c */

initshm.c

#include "fcard h"

/* real definition of shared memory pointer */

volatile struct

shared_hw_data *hd,

void initshm(void)

{

1f ((hd = fclient_create_shm()) == NULL) die("fclient_create_shm"),

/* £111 1n fcard’s shm with sensible default values */
/* should be the same as fcard conf file */
hd->fcard_rv fcard_hardware_timer_hz
hd->fcard_rv fcard_manager_prio
hd->fcard_rv fcard_bardware_task_prio
hd->fcard_rv fcard_kwh_task_prio
hd->fcard_rv fcard_config_task_prio

hd->cal
hd->cal

hd->cal
hd~->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd~>cal
hd->cal

1EmMotorSpeedSen
1EmMotorSpeed0ff

1GenMotorSpeedSen
1GenMotorSpeed0ff

1IceEngineSpeedSen
1IceEngineSpeed0ff

1AccelPedallevelSen
1AccelPedallevelOff

1BrakePedalLevelSen
1BrakePedallevelOff

1ActualEmTorqueSen
1ActualEmTorqueOff

FCARD_HARDWARE_HZ,
FCARD_MANAGER_PRIO,
FCARD_HARDWARE_PRIO,
FCARD_KWHREADER_PRIO,
FCARD_CONFIG_PRIO,

2000 OF,
0 OF,

-1450 OF,
100 OF,

3000 OF,

= 0 OF,

0 2326F,
-0 1628F,

0 3333F,
0 OF,

100 OF,

= -250 OF,

124

APPENDIX D CONTROL CODE LISTING

hd->cal
hd->cal

hd->cal
hd~>cal

hd->cal
hd->cal

hd->cal
hd->cal

hd~>cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd~->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd->cal

hd->cal
hd~>cal

hd->cal
hd->cal

1FuelPressureSen
1FuelPressure0ff

1EmCurrentNegSen
1EmCurrentNegO£ff

1EmCurrentPosSen
1EmCurrentPos0ff

1GenCurrentSen
1GenCurrent0ff

1BattPackTempSen
1BattPackTempOff

1BattPackVoltageSen
1BattPackVoltageQff

1BattPackCurrentSen
1BattPackCurrent0ff

1EmRotorTempSen
1EmRotorTempOff

1EmInvTempSen
1EmInvTempOff

1TpsFeedbackSen
1TpsFeedbackOff

oGenSpeedReqSen
oGenSpeedReqOff

oGenRegenLimitSen
oGenRegenLimit0ff

oEmAccelReqSen
oEmAccelReqOff

oEmBrakeReqSen
oEmBrakeReqOff

oIceThrottlePosSen
oIceThrottlePos0ff

oD1sSpeedo0Amplitude
oDisSpeedoOPhaseAngle

oD1sSpeedolAmplitude
oDisSpeedolPhaseAngle

oPwrToDigRacksSen
oPwrToDigRacksQff

D.1.9 fcard.conf

fcard configuration file

= 1000 OF,

~-1000 OF,

80 OF,
-200 OF,

= 120 OF,

-300 OF,

= B0 OF,
= 0 OF,

= 100 OF,

0 OF,

200 OF,
-500 OF,

40 OF,
0 OF,

40 OF,

= 0 OF,

0 3401F,
=0 2041F,

1450.0F,
-100 OF,

-0 10F,
0 OF,

0 25F,
-0 125F,

0 25F,
-0 125F,

= 0 339F,

-0 220F,

-5 OF,
1 57079632679489661923F,

125

APPENDIX D CONTROL CODE LISTING

fcard runtime configuration values

fcard_hardware_timer_hz 100 # 1rq O toggles at rate of 100 Hz
#fcard_hardware_timer_hz 20 # split 100 Hz by 5 20 Hz
#fcard_hardware_timer_hz 1 # 1 Hz

fcard_manager_prio 27

fcard_hardware_task_prio 26

fcard_kwh_task_prio 22

fcard_confag_task_prio 16

calibration values

#RR$RF/ES Anputs FESAFRPRBRRSSE

1EmMotorSpeedSen 2000 rpm per volt after vdiv
1EmMotorSpeed0ff 0 rpm @ 0 volts
1GenMotorSpeedSen -1450 rpm per volt after vdiv
1GenMotorSpeed0ff 100 rpm @ zero volts
1IceEngineSpeedSen 3000 rpm per volt
1IceEngineSpeed0ff 0 rpm @ zero volts
1AccelPedallevelSen 0 2326 percent per volt
1AccelPedallevelODff -0 1628 percent @ zero volts
1BrakePedalLlevelSen 0 3333 percent per volt
1BrakePedallevelOff 0 percent @ zero volts
1ActualEmTorqueSen 100 N m per volt after vdav
1ActualEmTorqueOff -250 Nm @ 0 volts after vdav
1FuelPressureSen 1000 ps1 per volt

1FuelPressure0ff =-1000 ps1 @ zero volts
1EmCurrentNegSen 80 amps per volt when neg after vdav
1EmCurrentNegOff =200 amps @ O volts vhen neg after vdiv
1EmCurrentPosSen 120 amps per volt when pos after vdiv
1EmCurrentPos0ff -300 amps @ 0 volts when pos after vdav
1GenCurrentSen 80 amps per volt after vdiv
1GenCurrent0ff [amps @ zero volts
1BattPackTempSen 0 degrees C per volt
1BattPackTemp0ff 0 degrees C Q@ zero volts
1BattPackVoltageSen 100 terminal voltage per volt
1BattPackVoltageOff 0 terminal voltage @ zero volts
1BattPackCurrentSen 200 amps per volt
1BattPackCurrent0ff -500 amps @ zero volts
1EmRotorTempSen 40 degrees C per volt
1EmRotorTempOff 0 degrees C @ zero volts
1EminvTempSen 40 degrees C per volt
1EmInvTempOf£ 0 degrees C @ zero volts
1TpsFeedbackSen 0 3401 percent open per volt
1TpsFeedback0ff -0 2041 percent open @ zero volts

126

APPENDIX D CONTROL CODE LISTING

$RL#BRBREE outputs HEVBBERIBRR

oGenSpeedReqgSen 1450
oGenSpeedReq0ff -100
oGenRegenLimitSen -0 10
oGenRegenLim1t0ff 0
oEmAccelReqSen 0 25
oEmAccelReqQff -0 125
oEmBrakeRegSen 0 25
oEmBrakeReqOff -0 125
oIceThrottlePosSen 0 339
oIceThrottlePosOff -0 220

for speedo eqn

127

rpm per volt
rpm @ zero volts

percent regen per volt
percent regen Q@ zero volts

J per volt
9 @ 0 volts

percent per volt
percent @ zero volts

percent open per volt
percent open @ zero volts

2]

* p1/92 5 + Phaseldngle)

p1/2

== 5v out, 0 == Ov out

#1
Ov out @ O

output voltage = Amplitude * sin(VehicleSpeedInMph
sin phase = 0 cos phase = p1/2
oD1sSpeedoOAmplitude -5
oD1sSpeedoOPhasefngle 1 57079632679489661923
oDisSpeedolAmplitude 5
oDisSpeedolPhasedngle 0

oPwrToDigRacksSen 5

oPwrToDigRacksOff 0

D.1.10 read-conf.c

/* read_conf c */

#include <stdio h> /* fopen, rewind, fgets */
#include <stdlib h> /* exit, atof, atoi */
#include <string h> /* strtok, strstr, */
#include “fcard h"

/* note #key "straingifies" key, (#key becomes “"key") */

#define FINDFLOAT(key)
{

s =

1f(strstr(s, #key) '= NULL) \

\

strtok(NULL,sep), \

hd->cal key = atof(s), \

}
#define FINDINT(key)

s =

}
void read_conf(void *stay)
{

1f (stay)
{

1f(strstr(s, #key) ‘= NULL)

strtok(NULL,sep),
hd->fcard_rv key

o

= atoi(s),

/* config task sticks around waiting

* for reread requests */
notice("config reader ready"),
while (hd)

{

APPENDIX D CONTROL CODE LISTING

voad do_

ftask_trigger_block(),
do_read_conf(),

}

}

else
/* read configuration first time around */
do_read_conf(),

return,

read_conf(void)

FILE *faile,

const char sep[] = "o \t=", /%
const char comment[] = “#", /*
char *s, /*
char buf[256], /*
char msg[256], /*

notice("reading config file"),

/* open the config file */

field delimiters */
signifies comment */
current key */

line buffer */

error message buffer */

1f ((file = fopen(config_filename, “r")) = NULL)

{

/* make sure that we are at the beginning */

rewind(file),

/* read lines one at a time and process them */
while (fgets(buf, sizeof(buf), file) '= NULL)

{
s = strtok(buf, sep),
/* 1f a beginning comment,

skip line */

1f (strstr(s, comment) != NULL) continue,

/* don’t need no stinking semicolons */

/* 1nputs */
FINDFLOAT (1EmMotorSpeedSen)
FINDFLOAT (1EmMotorSpeed0£f)

else
else

FINDFLOAT(1GenMotorSpeedSen) else
FINDFLOAT(1GenMotorSpeed0ff) else
FINDFLOAT(1IceEngineSpeedSen) else
FINDFLOAT(1IceEngineSpeed0ff) else
FINDFLOAT(1AccelPedallevelSen) else
FINDFLOAT(1AccelPedallevelOff) else
FINDFLOAT(1BrakePedalLevelSen) else
FINDFLOAT(1BrakePedalLevelOff) else
FINDFLOAT (1ActualEmTorqueSen) else
FINDFLOAT(1ActualEmTorque0ff) else

FINDFLOAT(1FuelPressureSen)
FINDFLOAT(1FuelPressure0ff)
FINDFLOAT (1EmCurrentNegSen)
FINDFLOAT (1EmCurrentNegOff)
FINDFLOAT (1EmCurrentPosSen)
FINDFLOAT (1EmCurrentPos0ff)
FINDFLOAT(1GenCurrentSen)

FINDFLOAT (1GenCurrent0ff)

FINDFLOAT (1BattPackTempSen)
FINDFLOAT (1BattPackTempOff)

else
else
else
else
else
else
else
else
else
else

FINDFLOAT(1BattPackVoltageSen) else

128

APPENDIX D CONTROL CODE LISTING
FINDFLOAT(1BattPackVoltageOff) else
FINDFLOAT(1BattPackCurrentSen) else
FINDFLOAT(1BattPackCurrentOff) else
FINDFLOAT(1EmRotorTempSen) else
FINDFLOAT (2EmRotorTempOff) else
FINDFLOAT (2EmInvTempSen) else
FINDFLOAT (2EmInvTempO£f£) else
FINDFLOAT (2TpsFeedbackSen) else
FINDFLOAT (1 TpsFeedbackOff) else
/* outputs */
FINDFLOAT(oGenSpeedRegSen) else
FINDFLOAT (oGenSpeedReqO0ff) else
FINDFLOAT (oGenRegenLimitSen) else
FINDFLOAT (oGenRegenLimitOff) else
FINDFLOAT (oEmAccelRegSen) else
FINDFLOAT (oEmAccelReqOff) else
FINDFLOAT(oEmBrakeRegSen) else
FINDFLOAT(oEmBrakeReqOff) else
FINDFLOAT(oIceThrottlePosSen) else
FINDFLOAT(oIceThrottlePosOff) else
FINDFLOAT (oD1sSpeedoOAmplitude) else
FINDFLOAT (oD1sSpeedoOPhasedngle)else
FINDFLOAT(oD1sSpeedolAmplitude) else
FINDFLOAT (oDisSpeedolPhaseAngle)else
FINDFLOAT (oPwrToDigRacksSen) else
FINDFLOAT (oPwrToDigRacks0ff) else
FINDINT(fcard_hardware_timer_hz)
FINDINT(fcard_manager_prio)
FINDINT(fcard_hardware_task_prio)
FINDINT(fcard_kwh_task_prio)
FINDINT(fcard_config_task_prio)
1f (strlen(s) == 1) -

continue, /* blank line */
else -
{
sprantf (msg,
"unknown key %s in config',s),
warn(msg),
}
continue,
}
fclose(file),
notice("done reading config file"),
}
else
warn(“"can’t read config file, using defaults"),
return,

D.1.11 kwh_meter.c

/* kwh_meter ¢ */

#1include
#include
#include
#include
#include

<stdio h>
<stdlib h>
<string h>
<unistd h>
<sys/types h>

/* fdopen */

/* atof, exat */
/* strtok */

/* close */

/* open */

else
else
else
else
else

129

APPENDIX D CONTROL CODE LISTING 130

#include <sys/stat h> /* open */
#include <fcntl h> /* open */
#include "fcard h"

#define MAX_SANE_AMPS 300 OF
#define MAX_SANE_VOLTS 500 OF

/* sample kwh-meter line

* time(sec), batt_kwhrs, batt_amps, batt_volts, batt_ahrs, apu_kwhrs, \
* apu_amps, apu_ahrs, apu, cng_press, cng.temp

*/

N

static int kwh_£d,

void read_kwh_meter_stop(ant ignored)

{
1f (kwh_fd) close(kwh_£d),
notice("kwh reader stopped"),
ex1t (EXIT_SUCCESS),
}
void read_kwh_meter(void *unused)
{
FILE *kwh_in, /* kwh meter file */
const char sep{] = ",", /* fields separated by commas */
char *s,

char buf[256],
float amps, volts,

/* 1f no hardware 1o 1s requested, just do nothing */
1f ('do_hardware_i0)

{
notice("kwh_reader doing nothing"),
while(l) ftask_delay(1l OF),
}
/¥ open the serial port to which the kwh meter 1s attached */
1f ((kwh_fd = open(KWH_DEVICE, O_RDONLY | Q_NOCITY)) == -1)
dae("open"),

1f ((kwh_in = fdopen(kwh_fd, "r")) == NULL)
die("fdopen"),

/¥ going to assume that the serial port
* has already been setup correctly */

notice ("kwh_reader started"),

/* this fgets blocks until a \n terminated line comes
* 1n though the serial port (about 1 Hz) */
while ((fgets(buf, sizeof(buf), kwh_in)) != NULL)
{
s = strtok(buf, sep),
/* skip first two fields */
s = strtok(NULL, sep),
s = strtok(NULL, sep),

amps = atof(s), /* third = amps */
s = strtok(NULL, sep),
volts = atof(s), /* fourth = volts */

/* do a sanity check on the read values */
1f ((amps < -MAX_SANE_AMPS) || (amps > MAX_SANE_AMPS))

https://do.hardware.io
https://close(kwh.fd

APPENDIX D CONTROL CODE LISTING

sprantf(buf, "read unsane value for amps /f", amps),
warn(buf),

Yelse
/* shared mem gets current value */
hd->cv[hd->active] kvh_amps = amps,

2f ((volts < ~MAX_SANE_VOLTS) || (volts > MAX_SANE_VOLTS))
{
sprantf(buf, "read unsane value for volts %f", volts),
warn(buf),
}else
/* shared mem gets current value */
hd->cv[hd->active] kwh_volts = volts,

}

close(kwh_£d),
die("fgets failed"),

D.1.12 hardware_io.c

/* hardvare_io ¢ */

#include <string h> /* memepy */

#include <stdlib h> /* exat */

#include <ftask h> /* ftask_periodic_timer_block */
#include "fcard h"

#include "octagon_io h" /* DISABLE_WATCHDOG */

static unsigned loop_counter,

void hardware_io_stop(ant ignored)

{
1f (do_hardware_io0)
{
DISABLE_WATCHDOG(),
notice("watchdog timer disabled"),
}
notice("hardware 10 stopped"),
ex1t (EXIT_SUCCESS),
}

void hardware_io(void *1gnored)
{

notice("hardware_io started"),

1f (do_hardware_10)

{
.- octagon_init(),
ENABLE_WATCHDOG() ;
notice("watchdog timer enabled"),
}
while(1)
{

1f (do_hardware_io0)

{

131

https://octagon.io

APPENDIX D CONTROL CODE LISTING 132

PET_WATCHDOG(), /* fixed timeout 12s ~ 1 5 sec */
octagon_20(),

}
else
{
1f (! (++loop_counter %
hd->fcard_rv fcard_hardware_timer_hz))
/* do this every 1 second */
{
int oldpointer = hd->active,
/* 1f at bottom, loop back to the top */
1f (hd->active == (SECONDS_TO_STORE-1))
hd->active = 0,
else
hd->active++,
/* ok, we moved the pointer to active data,
* copy the old pointer’s data to prevent
* data loss (I hope this works)
x/
memcpy (#hd->cv[hd->activel,
&hd->cvloldpointer],
sizeof (struct calculated_values)),
memcpy (¥hd->digital [hd->actave],
&hd->digatalloldpointer],
sizeof(struct digital_hardware)),
memcpy (ghd->analog[hd->actave],
&hd->analogl[oldpointer],
sizeof (struct analog_hardware)),
hd->seconds++, /* increment total seconds */
}
}

/* notice("loop"), */
ftask_periodic_timer_block(), /* wait for the timer */

}
/* shouldn’t get here */

D.1.13 octagon._init.c

/* octagon_imit ¢ */

#include "fcard h"
#include "octagon_io h"

/* setup octagon 10 cards */

void octagon_imit()

{
/* card0 set port B to all outputs */ /* 5710 */
/* out_8(CARDO+CR_OFFSET, 0x80), */

/* card0 do a dummy read */
(void)in_8(CARDO+HIGHS),
(void)in_8(CARDO+LOW4),

APPENDIX D CONTROL CODE LISTING

/* card0 setup digital 10 mode */
out_8(CARDO+CR_OFFSET, DMODE_BOTH_IN),

/* cardl set port B to all outputs */ /* 5710-1 */
/* out_8(CARD1+CR_OFFSET, 0x80), */

/* cardl do a dummy read */
(voad)n_8(CARD1+HIGHS),
(void)in_8(CARD1+L0OW4),

/* cardl setup digaital 1o mode */
out_8(CARD1+CR_OFFSET, DMODE_BOTH_OUT),

/* turn off the digital ouputs */

out_8 (CARD1+DPORTA, ~0),
out_8(CARD1+DPORTC, ~0),

/* card2 no initialization necessary */ /* 5750 x/

D.1.14 octagon.io.c

/* octagon_i10 ¢ */

#define __INLINE_FUNCTIONS__ 1
#include <stdio h>

/* note void *memcpy(void *dest, const void *src, size_t n) */

#include <straing h> /* memcpy */

#include <math h> /* sin *x/

#include “"fcard h" /* shared mem pointer definition */

#include "octagon_io h" /* octagon hardware defines */

#include "octagon_io_map h" /* map channels/bits to named measurements */
#1fndef PI

#define PI 3 14159265358979323846

#endaf

/* calibration macros - requires ansi cpp */
#define CALIBRATE(what) private_analog in what = \
private_cal what##Sen * what##Channel + private_cal what##Dff

#define DECALIBRATE(what) what##Channel = \
(private_analog out what - pravate_cal what##0ff) / \
private_cal what##Sen
#define DECALIBRATESPEEDO(what) what##Channel = \
private_cal what##Amplitude * sin (private_analog out what * PI/92 5 \
+ private_cal what##PhaselAngle)

static unsigned loop_counter,

/* there are a few distinct steps to octagon_io

133

https://octagon.io
https://octagon.io
https://DMODE.BOTH.IM

APPENDIX D CONTROL CODE LISTING

LN I R R I R IR R R

*
~
©

B W=

0~ o m

get integer input data from hardware
convert input to floating point voltage
convert float voltage to calibrated values
share the calibrated inputs

get requested calibrated output values from shared mem
convert float calibrated values to voltages

convert voltages to integer values

output integer values

monkey with digital stuff

void octagon_io0()

{

struct 105710Integer 1card0,
struct 105710Integer 1cardi,

struct o5750Integer 1card?,
struct 105710Volts vcardO,
struct 105710Volts vcardl,
struct o5750Volts vcard2,

struct digital_hardware private_digatal,
struct analog_hardware pravate_analog,
struct calibration_values pravate_cal,

unsigned d, di, d2, /* temp vars */
int oldpointer,

/* circulate active pointer every 1 seconds */
d = hd->fcard_rv fcard_hardware_timer_hz,
1f (! (++loop_counter % d))
{
oldpointer = hd->active,
/* 1f at bottom, loop back to the top */
1f (hd->active == (SECONDS_TO_STORE-1))
hd->actave = 0,
else
hd->active++,

/* ok, we moved the pointer to active data,
* copy the old pointer’s data to prevent
* data loss (I hope this works)

*/

memcpy (¢hd->cv[hd->active], &hd->cv[oldpointer],

sizeof (struct calculated_values)),

memcpy(&%hd->dagital [hd->actave], &hd->digitall[oldpointer],

s1zeof (struct digital_hardware)),

memcpy (¥hd->analoglhd~->active], &hd->analog{oldpointer],

sizeof(struct analog_hardware)),

/* notice("moved pointer"), */

hd->seconds++, /* increment total seconds in operation */

/* named values */
/* named values */
/* named values */

134

APPENDIX D CONTROL CODE LISTING

/*

/*

/*

/%

/* get a praivate copy of the calibration values */
memcpy(&private_cal, &hd->cal, sizeof(struct calibration_values)),

/ 1 us /

[*xxkionkxkkkkk begin analog input *k

/* 1 do the analog inputs - differential mode */

1nit_convert (CARDO,
anit_convert (CARDO,
1n1t_convert(CARDO,
1nit_convert(CARDO,
1n1t_convert(CARDO,
1nat_convert (CARDO,
1nit_convert (CARDO,
1nit_convert (CARDO,

1nit_convert(CARD1,
1n1t_convert (CARD1L,
1nat_convert(CARD1,
1nit_convert(CARD1,
1nit_convert(CARD1,
1nit_convert(CARD1,
1nit_convert (CARD1,
1n1t_convert (CARD1,

1
1
1

1
1
1

1), 1card0 AnalogIn[1]
3), 1card0 AnalogIn[(3]
5), 1card0 AnalogIn[5]
7), 1card0 AnalogIn[7]
9), 1card0 AnalogIn[9]
1), 1card0 AnalogIn[11]
3), 1card0 AnalogIn[13]
5), 1card0 AnalogIn[15]

1), 1cardi.AnalogIn[1]
3), 1cardi.AnalogIn[3]
5), 1cardl.Analogin[5]
7), 1cardl.AnalogIn(7]
9), 1cardl AnalogIn[9]
1), 1cardl AnalogIn[11]
3), 1cardl AnalogIn[13]
5), 1cardl AnalogIn[15]

[H¥kkkk 16%30us, total = 481 us Frkkkkk/

/* 2 convert input
veard0 AnalogIn[1]
vecard0 AnalogIn[3]
vcard0 AnalogIn{5]
vcard0 AnalogIn[7]
vcard0 AnalogIn{9]
vcard0 AnalogIn{11]
vcard0 AnalogIn[13]
vcard0 AnalogIn[15]

vcardl AnalogIn[1]
vcardl AnalogIn[3]
vcardl AnalogIn[5]
vcardl AnalogIn[7]
vcardl AnalogIn[9]
vcardl AnalogIn{ii]
vcardl AnalogIn([13]
vecardl AnalogIn[15]

/Hxkkdxx lus, total

1

ntegers to voltages %/

getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),
getAnalog(CARDO),

getAnalog(CARD1),
getAnalog(CARD1),
getAnalog(CARD1),

= getiAnalog(CARD1),

n

getAnalog(CARD1),
getAnalog(CARD1),
getAnalog(CARD1),
getAnalog(CARD1),

INT2VOLTS (1card0 AnalogIn(1]),
INT2VOLTS(1card0 AnalogIn[3]), */
INT2VOLTS(1caxd0 AnalogIn([S]),
INT2VOLTS(1card0 AnalogIn(7]),
INT2VOLTS(1card0 AnalogIn[9]),
INT2VOLTS(1card0 AnalogIn[11]),
INT2VOLTS(1card0 AnalogIn[13]),
INT2VOLTS(1card0 AnalogIn[15]), =*/

= INT2VOLTS(1cardl Analogin[1]),
INT2VOLTS(1cardl AnalogIn[3]),
INT2VOLTS(1cardl AnalogIn[5]),
= INT2VOLTS(1cardl AnalogInl[7]),
INT2VOLTS(1cardl AnalogIn[9]),
INT2VOLTS(1cardl AnalogIn[11]),
INT2VOLTS(1cardl AnalogIn[13]),
INT2VOLTS(1cardl AnalogIn[15]),

482us *wkckkkkkkk/

/* 3 convert voltages to engineering umits */
/* this 1s where the 10 mapping happens y = mx + b*/

CALIBRATE(1EmMotorSpeed),
CALIBRATE(1GenMotorSpeed),
CALIBRATE(1IceEnganeSpeed),
CALIBRATE(1AccelPedallevel),
CALIBRATE(1BrakePedallevel),
CALIBRATE(1ActualEmTorque),
CALIBRATE(1FuelPressure),

*/

*/

135

APPENDIX D CONTROL CODE LISTING

/%

/%
/%

/%

/* special piecewise */

private_analog in.iEmCurrent =

(1EmCurrentChannel < 2 5F) ? /* 2 5v == zero amps */
(private_cal i1EmCurrentNegSen * 1EmCurrentChannel

+ pravate_cal 1EmCurrentNegOff)

(private_cal 1EmCurrentPosSen * 1EmCurrentChannel

+ praivate_cal 1EmCurrentPosOff),

CALIBRATE(1GenCurrent),
CALIBRATE(1BattPackTemp), */
CALIBRATE(1BattPackVoltage),
CALIBRATE(1BattPackCurxent),
CALIBRATE(1EmRotorTemp),

CALIBRATE (1EmInvTemp),

CALIBRATE(1TpsFeedback),

/xxkxxkkx lus, total = 483us kkkkkkkxkk/

/* &

share input data */
memcpy (khd->analog[hd->active] in, &private_analog in,
sizeof (struct input_analog_hardware)),

[Hxxkkxx 1us, total = 484us xkkxkkkkxx/

[xxdrrrkrkexx end of analog 1nput *kdkkiikkkdkkkkikkkk/

[*xxkkrkrkexdk begln analog output kkxaskskkskssokkkiikk [

/* 5 get calibrated requested output values */
memcpy (&private_analog out, &hd->analogl[hd->active] out,
si1zeof (struct output_analog_hardware)),

[Hkxdkkx 1us, total = 485us Hkkkskkkk/

/% 6

/* note

convert float calibrated values to voltages */

10 mapping used here x = (y-b)/m */

DECALIBRATE (oGenSpeedReq),
DECALIBRATE(oGenRegenLimit),
DECALIBRATE(oEmAccelReq),
DECALIBRATE(oEmBrakeReq),
DECALIBRATE(oIceThrottlePos),

DECALIBRATESPEEDO(oD1sSpeedo0),
DECALIBRATESPEEDO(oD1sSpeedol),

DECALIBRATE(oPwrToDagRacks),

/* really just on/off */

[xxkkxk lus, total = 486us dkxikkik/

/7

1card0
1caxrd0
1cardi
1cardl

1card2
1card2
1card2
1card2

1card2

convert voltages to integer values */

AnalogOut [0]
AnalogQOut{1]
AnalogOut 0]
AnalogOut[1]

AnalogOut [0]
AnalogOut[1]
AnalogOut [2]
AnalogOut [3]

AnalogQut [4]

VOLTS2INT(vcard0.AnalogOut[0]),
VOLTS2INT(vcard0 AnalogOut[1]),
VOLTS2INT(vcardl AnalogOut[0]),
VOLTS2INT(vcardi AnalogQut[1]),

HALFVOLTS2INT(vcard2 AnalogOut[0]),

= HALFVOLTS2INT(vcard2 AnalogOut([1]),

HALFVOLTS2INT(vcard2 AnalogOut[2]),
HALFVOLTS2INT (vcard2 AnalogOut[31),

FULLVOLTS2INT(vcard2 AnalogOut[4]),

*/
*/

*/

136

APPENDIX D CONTROL CODE LISTING 137

/*

/*
/*

FULLVOLTS2INT(vcard2 AnalogOut[5]),
FULLVOLTS2INT(vcard2 AnalogOut[6]), */
FULLVOLTS2INT(vcard2 AnalogOutl[7]),

1card2 AnalogOut[S]
1card2 AnalogQOut[6]
1card2 AnalogOut[7]

[xkxxxxx lus, total = 487us *¥kkkxex/

/* 8 output integer values */

/* 5710 stuff - one channel at a time */
OUTPUTS5710(CARDO, DAC_CH_ZERO, 1card0 AnalogOut[0]), =*/
DUTPUTS710(CARDO, DAC_CH_ONE , 1card0 AmalogOut[1]), */
OUTPUTS710(CARD1, DAC_CH_2ERD0, icardl AmalogOut[0]),
OUTPUTS710(CARD1, DAC_CH_ONE , 1cardl AnalogOut[i]),

/* 5750 stuff */
/* channels 0 and 1 output 1n one out call */
d =0,

/* unsigned "negative" numbers will wrap around
* to somewhere between 2731 and (2732)-1

*/
d1 = (1card2 AnalogOut[0] > (1U<<31)) ? 0
(1card2 AnalogOut[0] > 4095U) ? 4095U
1card2 AnalogOut[0],
42 = (1card2 AnalogOutf1] > (1U<<31)) ? 0

(1card2 AnalogOut[1] > 4095U) ? 4095U
1card2 AnalogOut[i],

d =d1l | (d2 << 16),
/* now bits should be aligned correctly */
out_32(CARD2+ZER0_LEAST, d),

/* channel 2 output as a single because 3 not used */
d = (1card2 AnalogOut[2] > (1U<<31)) 2 0

(1card2 AnalogOut[2] > 4095U) ? 4095U

1card2 AnalogOut[2],
out_16(CARD2+TWO_LEAST, d),

/* channels 4 and 5 output in one out call */

d =0,

dl = (1card2 AnalogOutf4] > (1U<<31)) 7 0O
(1card2 AnalogOut[4] > 4095U) ? 4095U
1card2 AnalogOutl[4],

d2 = (1card2 AnalogOut[5] > (1U<<31)) ? 0

(1card2 AnalogOut[5] > 4095U) 7 4095V
1card2 AnalogOut[5],

d =d1l | (d2 << 16),
out_32(CARD2+FOUR_LEAST, d),

/* channel 7 output as a single because 6 not used */
d = (1card2 AnalogOut[7] > (1U<<31)) 7 0

(1card2 AnalogOut[7] > 4095U) ? 4095V

1card2 AnalogQut[7],

out_16(CARD2+SEVEN_LEAST, d),

/*xxxxxxxkx*x end analog outputs koo ook ok ok ok KR KRR oK oKk Rk Rk [
/****xx conservative 10%30us = 300us, total = T87us *xk*x*/

APPENDIX D CONTROL CODE LISTING 138

/* do digatal ainputs */

/****************** port [1nputs ***********/

d1l = in_8(CARDO+DPORTC),

dl = “di, /= bit "not" for reverse logic optoisolators */

1card0 DigitalInC[0] = (d1 & 0x01) » 1 0,
1card0 DigitalInC[1] = (d1 & 0x02) ? 1 O, -
r1card0 DigitalInC[2] = (d1 & 0x04) ? 1 0,
1card0 DigatalInC[3] = (d1 & 0x08) ? 1 0,
1card0 DigitalInC[4] = (d1 & 0x10) » 1 O,
1card0 DigitalInC[5] = (d1 & 0x20) ? 1 0O,
1card0 DigitalInC[6] = (d1 & 0x40) 2 1 0,
1card0 DigitalInC[7] = (d1 & 0x80) » 1 O,
d2 = an_8(CARDO+DPORTA),

d2 = "d2,

1card0 DigatalInA[0] = (d2 & 0x01) ? 1 O,
1card0 DigatalInAf1] = (d2 & 0x02) » 1 O,
1card0 DigitalInA[2] = (d2 & 0x04) » 1 0,
1card0 DigitallnA[3] = (d2 & 0x08) ? 1 0,
1card0 DigitalInA[4] = (d2 & 0x10) ? 1 0,
1card0 DigitalInA[S] = (d2 & 0x20) » 1 O,
1card0 DigitalInA[6] = (d2 & 0x40) 2 1 0,
1card0 DigitalInA[7]) = (d2 & 0x80) » 1 0,

/% map the inputs */
d =0,
d = dl & OxFO, /* put last four bits of port C into d */

private_digital in i1Park = (d == i1ParkBitPatterm) 7 1 0,
private_digital in 1Reverse = (d == 1ReverseBitPattern) ? 1 O,
private_digital in iNeutral (d == aNeutralBitPattern) 7 1 0,
praivate_digital in 1DriveEcon = (d == 1DriveEconBitPattern) ? 1 0,
pravate_digital in 1DriveSport = (d == 1DriveSportBitPattern) ? 1 0,
private_digital in 1ZEV = (d == 1ZEVBatPattern) ? 1 O,

praivate_digatal in i1Hvac = i1HvacBat,

pravate_digital in i1EmTempWarn = 1EmTempWarnBit,

private_digital in i1EmControllerReady = i1EmControllerReadyBat,
private_digital in iEmFaultIndicator = i1EmFaultIndicatorBit,
pravate_digital in 1EmOvertempIndicator = 1EmOvertempIndicatorBit,
private_digital in i1GenTempWarn = iGenTempWarnBit,

private_digital in iGenControllerReady = iGenControllerReadyBit,
private_digital in iGenFanltIndicator = 1GenFaultlndicatorBat,
praivate_digital in i1GenDirectionIndicator = 1GenDirectionIndicatorBit,
private_digital in 1IceFaultlIndicator = 1IceFaultIndicatorBit,

/* share the inputs */
memcpy (&hd->digital[hd->active] in, &private_digital in,
s1zeof (struct imput_digital_hardware)),

/* get the requested outputs */
memcpy(&private_digital out, &hd->digitallhd->active] out,
sizeof(struct output_digital_hardware)),

/* map the outputs */

oIceStaxterBit = pravate_digital out olceStarter,
oTecEnableBit = private_digital out oTecEnable,
oEmEnableBit = private_digital out oEmEnable,
oEmDarectionBit = private_digital out oEmDirection,
oGenEnableBat = private_digital out oGenEnable,

APPENDIX D CONTROL CODE LISTING 139

oPurSteeringEnableBit = pravate_digital out oPwrSteeringEnable,
oThrottlePwrCycleBit = private_digatal out oThrottlePwrCycle,
oSmartChargerEnableBit = private_digital out oSmartChargerEnable,

/* urite the outputs */
d =0,

1f (1cardl DigatalOutA[0]) d |=0x01,
1f (1cardl DigitalOutA[1]) d j=0x02,
1f (1cardl DigatalOutA[2]) d [=0x04,
1f (1cardl DigatalOutA[3]) d |=0x08,
1f (1cardl DigatalOutA[4]) d [=0x10,
1f (1cardl DigatalOutA[5]) d [=0x20,
1f (1cardl DagatalOutA[6]) d |=0x40,
1f (1cardl DagatalOutA[7]) d [=0x80,

d = °d, /* bat not for rev logic optoisolators */
out_8(CARD1+DPORTA, d),

/**xx%x digital in/out 3*5us, total = 802us ***kkkkk/
/* conservativly guess that loop completes in 1ims */

return,

APPENDIX D CONTROL CODE LISTING 140

D.2 fcar: Main Control Program
D.2.1 Makefile ‘

cC = cc

DEFINES =

INCLUDES = -I /libfclient -I /libftask

QUIET = -Q -wx

OPTS = -Orailnextm -4r -fp3 -£fpi87

DEBUG = #-g

CFLAGS = $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
LIBS = -L /labfclient -L /libftask

LIBS += -lfclient -lftask

LDFLAGS = $(QUIET) $(LIBS)

FILES = fcar ¢ 1ce_ctrl ¢ mode_select ¢ modes ¢ motor_egn ¢

FILES += SOC C miscC ¢

FILES += throttle_ctrl ¢
0BJS = $(FILES c= o)
ouT = fcar
DEPEND = makedepend
BINDIR = /opt/fcar/bin/
all $(0UT)
$(ouT) $(0BJS)
) $(CC) $(LDFLAGS) $~ -o $@

dep

$(DEPEND) -~ $(CFLAGS) -D__QNX__ -- $(FILES)
install $(0UT)

cp -f $(0UT) $(BINDIR)
clean

$(RM) $(OUT) $(0BJS) * err

D.2.2 fcar.h

/* fcar h %/

#1fndef FCAR_H
#define FCAR_H

#include <fclient h> /* shared memory structure definition */
#include <ftask h> /* process control */

/* defines */
#define _POSIX_C_SOURCE 199309L

/* this 1s put here because 1t’s a little counterintuitive and needs
* to be consistant across different source files

*/
#define EMENABLE 0 /* em controller on */
#define EMDISABLE 1 /* em controller off */
#define GENENABLE 1
#define GENDISABLE 0

/* critical hybrid parameters */
//#define FULLGENREGEN 0 85F /* normal */
#define FULLGENREGEN 0 65F

APPENDIX D CONTROL CODE LISTING 141

//#define THROTTLE_MAX 0 28F /% normal */

/* main loop execution speed */

#define FCAR_TIMER_HZ 100 /* splat 100 Hz clock */
/* process scheduling */

#define FCAR_SCHED_POLICY SCHED_FIF0

#define FCAR_MANAGER_PRIO 24

#define FCAR_MODE_SEL_PRIO 23

#define FCAR_ICE_CTRL_PRIO 21

#define FCAR_THROTTLE_CTRL_PRIO 19

#define FCAR_SOC_CALC_PRIOD 18

/* for signals */
#define TraggerICE() 1f (IceState '= DEAD) \
ftask_trigger(ice_task)

#define TraggerThrottleUp() ftask_trigger(throttle_task)

/* global variables */

extern volatile struct shared_hw_data *s, /* points to fcard shared mem */
extern ftask *ice_task, /* 1ce control pid */

extern ftask *throttle_task, /* throttle ramper upper */
extern ftask *mode_sel_task, /* real worker */

extern ftask *soc_calc_task, /* slowly calculates SOC */

/* function prototypes */

void exit_cleanly(ant ignored),
void 1ce_control(void *ignored),
void mode_selector(void *ignored),
void mode_selector_quit(int ignored),
void soc_calculator(void *unused),
void read_shifter(void),

void do_zev(void),

void do_econ(void),

void do_sport(voad),

void do_reverse(void),

void do_park(voad),

void do_neutral(void),

void zev_motor(void),
void reverse_motor(voad),
void hybrad_motor(veid),

void do_misc(void),

void throttle_control(void *ignored),
float hybrid_em_accel(void),

float zev_em_accel(),

float hybrad_gen_speed(voad),

float hi_regime_gen_speed_req(void),

float lo_regime_gen _speed_req(voad),

float hybrid_throttle(voad),
float em_brake(voad),

#endaf /% FCAR_H */

https://FCAR.TIMER.HZ

APPENDIX D CONTROL CODE LISTING

D.2.3 fcar.c

/* fcar c */

#anclude <stdlab h> /* exit, calloc */
#include “fcar h"

/* real definition of shared mem pointer */
volatile struct shared_hw_data *s,

/* Teal definition of global tasks */
ftask *ice_task, *throttle_task, *mode_sel_task, *soc_calc_task, *ret,

int main(ant argc, char *argv(])
{

notice("fcar started"),

/* open shared memory */
1f ((s = fclient_open_shm(0_RDWR)) == NULL)
die("fclient_open_shm(0_RDWR)"),

/* allocate memory for task structs */

ret = (ftask *)calloc(l, sizeof(ftask)),

1ce_task = (ftask *)calloc(l, sizeof(ftask)),
throttle_task = (ftask *)calloc(l, sizeof(ftask)),
mode_sel_task (ftask *)calloc(l, sizeof(ftask)),
soc_calc_task = (ftask *)calloc(l, sizeof(ftask)),

]

1f('1ce_task || !throttle_task || ‘mode_sel_task ||
Isoc_calc_task []| 'ret)
die("alloc for task structs failed"),

/* indicate that the control program is runnang */
s=>cv[s->active] running = 1,

/* setup our priority/scheduling scheme */
ftask_sched_adjust_self (FCAR_SCHED_POLICY, FCAR_MANAGER_PRIO),

/* setup for graceful exat */
ftask_register_cleanup_self (exat_cleanly),

/* the order of the following task creation 1s important,
* a task will not be able to trigger another task that
* was created after it */

/* start task to handle throttle up */
ftask_init(throttle_task,

FCAR_SCHED_POLICY, /* scheduling policy */
FCAR_THROTTLE_CTRL_PRIO,/* scheduling priority */
throttle_control, /* start func */
NULL, /* start func arg */
NULL, /* cleanup func */
1, /* allow trigger */

- o, /* allow per timer */
0), /* per tamer hz */

ftask_create(throttle_task),

/* start a task to handle asynchronous
* engine starting/stopping */
ftask_init(ace_task,
FCAR_SCHED_POLICY, /* schedulang policy */

142

APPENDIX D CONTROL CODE LISTING 143

FCAR_ICE_CTRL_PRIO, /* priority */
1ce_control, /* start func x/

NULL, /* start func arg */
NULL, /* cleanup func */

1, /* allow trigger */

0, /* allow per timer */
0), /* per timer hz */

ftask_create(ice_task),

/* start a task to do real work based on mode */
ftask_init(mode_sel_task,

FCAR_SCHED_POLICY, /* scheduling policy */
FCAR_MODE_SEL_PRIO, /* prioraty */
mode_selector, /* start func */

NULL, /* start func arg */
mode_selector_quat, /* cleanup func */

0, /* allow trigger */

1, /* allow per timer */
FCAR_TIMER_HZ), /* per timer hz */

ftask_create(mode_sel_task),

/* finally create a task to calculate state of charge */
ftask_init(soc_calc_task,

FCAR_SCHED_POLICY, /* scheduling policy */
FCAR_SOC_CALC_PRIO, /* priority */
soc_calculator, /* start func */

NULL, /* start func arg */
NULL, /* cleanup func */

0, /* allow traigger */

0, /* allow per timer */
0), /* per timer hz x/

ftask_create(soc_calc_task),
/* just wait */

while (s)

{

ftask_wait_on_tasks(ret),

1f (ftask_same(ret, ice_task))
notice("1ce controller died?"),

1f (ftask_same(ret, mode_sel_task))
notice("mode selector died?"),

1f (ftask_same(ret, throttle_task))
notice("throttle controller died?"),

1f (ftask_same(ret, soc_calc_task))
notice("SOC calculator died?"),

}

/* shouldn’t get here */
exit_cleanly(0),

return O,

void exit_cleanly(ant 1gnored)

{

APPENDIX D CONTROL CODE LISTING

/* 1ndicate that we’ve stopped */
s=>cv[s->active] running = O,

/* stop all know tasks */
1f (ftask_delete(ace_task) '= Q)
warn("can’t delete 1ce controller task"),

1f (ftask_delete(mode_sel_task) '= 0)
warn("can’t delete mode selector task"),

1f (ftask_delete(throttle_task) '= 0)
warn("can’t delete throttle controller task"),

1f (ftask_delete(soc_calc_task) '= 0)
warn("can’t delete SOC calculator task"),

/* not needed, */
free(ace_task),
free(mode_sel_task),
free(throttle_task),
free(soc_calc_task),
free(ret),

/* done */
exat (EXIT_SUCCESS),

D.2.4 mode_select.c

/* mode_select c */

#include <stdlab h> /* exat */
#include "fcar h"

/* 10 macros used an thas file */

#defaine ZEV s->dagatal[s~->actave] in 1ZEV
#define DraveEcon s~>dagatal[s->active] in 1DriveEcon
#define DraveSport s->digatal[s->active] 1n 1DriveSpoxt
#define Reverse s->dagital[s->active] 1n 1Reverse
#defane Park s->digatals->actave] in 1Park
#define Neutral s->dagital[s->active] in 1Neutral
#define mode s->cv[s->active] mode

#define PwrToDigRacks s->analog[s->active] out oPwrToDigRacks
#define hybrid_regime s->cv[s->active] hybrad_regime

void mode_selector_quit(ant agnored)

{

notice("mode selector quiting"),
ex2t (EXIT_SUCCESS),
}

voad mode_selector(void *unused)

{
notice("mode selector started"),

/* turn on power to digital racks */
PwrToDigRacks = ON,

144

APPENDIX D CONTROL CODE LISTING

/* set initial regime */
hybrid_regime = LO_REGIME,

/* wait for periodic timer */
while(s)

{

}

/* read shafter x/ -
read_shafter(),

/* do misc stuff */
do_masc(),

ftask_periodic_timer_block(},

/* shouldn’t get here */
ex1t (EXIT_FAILURE),

void read_shifter()

{

1t (ZEV)

{

else

1f

af

1f

1f

1f

mode = ZEV_MODE,
do_zev(),

(DraveEcon)

mode = ECON_MODE,
do_econ(),

(DraveSport)

mode = SPORT_MODE,
do_sport(),

(Reverse)

mode = REVERSE_MODE,
do_reverse(),

(Park)

mode = PARK_MODE,
do_park(),

(Neutral)

mode = NEUTRAL_MODE,
do_neutral(),

/* default =*/

/* this really doesn’t work as intended, the
* shifter switch pattern for park is the same
* as 1f 1t were completely disconnected */
mode = NEUTRAL_MODE,
/* notice("can’t read shafter"), =/
do_neutral(),

145

APPENDIX D CONTROL CODE LISTING 146

return,

D.2.5 modes.c

/* modes ¢ */
#include "fcar h"

/* 10 macros used in thas file */

#define EmAccelReq s->analog[s->active] out oEmAccelReq
#define EmEnable s->digital[s->active] out oEmEnable
#define EmSpeed s->analog[s->active] in 1EmMotorSpeed
#define EmDirection s->digital[s->active] out oEmDirection
#define mode s=>cv[s->active] mode

#define IceReqgState s->cv[s->active] IceReqState

#define IceState s->cv([s->active] IceState

#define GenEnable s->digital[s~>active] out oGenEnable
#define GenRegen s->analog[s->active] out oGenRegenLimit
#define GenSpeedReq s->analog[s->active] out oGenSpeedReq
#define EmBrakeReq s->analog[s->active] out oEmBrakeReq
#define Hvac s~>digital[s->active] in 1Hvac

#define SOCcat s->cv([s->active] SOCcat

#define SOC s->cv[s~>active] SOC

#define throttle s—->analog[s->active] out oIceThrottlePos
#define AccelPedal s->analog[s->active] 1n 1AccelPedallevel
#define BrakePedal s->analogl[s->active] in 1BrakePedalLevel

#define EmControllerReady s->digital[s->active] in 1EmControllerReady
#define GenControllerReady s->digitalls->active] 1n 1GenControllerReady
#define vehicle_speed s->cv[s->active] vehicle_speed

#define hybrid_regime s->cv[s->active] hybrid_regime

#define MAX_BACK_TO_FORWARD_SWITCH_SPEED 5 OF /* mph */

#define MAX_FORWARD_TO_BACK_SWITCH_SPEED 5 OF /* mph */

#tdefine FORWARD 0 /* em direction */
#define REVERSE 1

#define EMREADY 1

#define GENREADY 1

#define MAX_PARK_EMBRAKE 1 OF /* normal */

void do_zev() / *kk ZEV *x *x/

{

/* make sure that traction motor and generator are enabled */
EmEnable = EMENABLE,

// GenEnable = GENENABLE,

GenEnable = GENDISABLE,

1f (EmControllerReady '= ON) return, /* note need feedback to work */
// 1f (GenControllerReady '= ON) return,

/* insure that the vehicle 1s nearly

* standing still or moving forward x/

1f ((vehicle_speed < MAX_BACK_TO_FORWARD_SWITCH_SPEED) ||
(EmDirection == FORWARD))

{
1f (EmDirection == REVERSE)

APPENDIX D. CONTROL CODE LISTING

EmDarection = FORWARD,

/* check 1f this 1s the real ZEV mode */
1f (mode == ZEV_MODE)

{
/* make sure that engine 1s off */
IceReqState = OFF,
1f (IceState == ON) TriggerICE(),
>

/* don’t mess with engine/generator 1f being
* called from a hybrid mode in tramnsition */

/* don’t care about state of charge here */

/* proportion traction motor and generator */
zev_motor(),

}
else
do_reverse(),
return,
}
void do_reverse() [Hxskdoionkkkkdokkk REVERSE sk doksonk koo ik /
{
/* 1nsure that traction motor 1s enabled */
EmEnable = EMENABLE,
1f (EmControllerReady '= ON) return, /* need feedback to work */
/* make sure that engine 1s off */
IceReqState = OFF,
1f (IceState == ON) TriggerICE(Q), -
/* don’t care about state of chaTge */
1f ((vehicle_speed < MAX_FORWARD_TO_BACK_SWITCK_SPEED) ||
(EmDirection == REVERSE))
{
1f (EmDirection == FORWARD)
EmDirection = REVERSE,
/* set generator torque to zero */
1f (IceState == OFF) GenEnable = GENDISABLE,
/* proportion traction motor */
reverse_motor(),
}
else
do_zev(),
return,
}
voxd do_econ() [Hmekkiokkookoooion. ECON sokakokackakkiokkok ok ok /
{

EmEnable = EMENABLE,
GenEnable = GENENABLE,

1f (EmControllerReady '= ON) return, /* need feedback to work */
1f (GenControllerReady '= ON) return,

147

APPENDIX D CONTROL CODE LISTING 148

/* insure that the vehicle 1s nearly
* standing still or movang forward */

1f ((vehicle_speed < MAX_BACK_TO_FORWARD_SWITCH_SPEED) ||
(EmDarection == FORWARD))

{
1f (EmDirection == REVERSE) EmDirection = FORWARD,

}

else
return, /x do nothing */

/* 1f SOC 1s high or the A/C switch 1s off */
1f ((Hvac == OFF))
{

/* try to stop engine */

IceReqState = OFF,

1f (IceState == QON)

{
TraggerICE(),
do_zev(),
return,

}

1f (IceState == WORKING)
{
do_zev(),
return,

}

/* 1f we can get here, engine should be off */

/* check to see 1f transition from HEV
* to ZEV 1s needed */

do_zev(),

}
else
/* af SOC 1s low or A/C switch 1s on */
1f ((Hvac == ON))
{
/* try to start engine */
IceReqState = ON,
1f (IceState == QOFF)

{
TriggerICEQ),
do_zev(), /* fulfill regular driving requests */
return,
}
else 1f (IceState == WORKING)
{
do_zev(),
return,
}

/* engine should be on 1f we can get here */

// TraggerThrottleUp(),

APPENDIX D CONTROL CODE LISTING 149

/* check to see 1f tramsition from ZEV
* to HEV 1s needed */

/* do regular proportioning of motor and generator */
hybraid_motor(),

}
return,
}
void do_sport() PELLL EL L SPORT ook /
{
/* warning stub function to do statlonary testing by
* proportioning gen and ice */
1f (Hvac) /* try to start engine */
{
IceReqState = ON,
1f (IceState == OFF)
{
TriggerICEQ),
work_throttle(),
return,
}
else 1f (IceState == WORKING)
{
work_throttle(),
return,
}
}
else /* try to stop engine */
{
IceReqState = OFF,
1f (IceState == ON)
{
TriggerICE(),
work_throttle(),
return,
}
1f (IceState == WORKING)
{
work_throttle(),
return,
}
}
work_throttle(),
return,
}
void do_neutral() [xskokookokkkxokek NEUTRAL o koksokakokokakakakokokok /
{

/* give the engine another chance at starting i1f 1t failed
* to start (multiple times) before */
1f (IceState == DEAD)
{
notice("reseting dead engine"),
IceState = OFF, /* reset */

APPENDIX D CONTROL CODE LISTING

/* make sure that engine 1s off */
IceReqState = (FF,
1f (IceState == ON) TraggerICEQ),

/* set generator torque to zero after the engine stops */
1f (IceState == (FF)

{
GenEnable = GENDISABLE,
GenRegen = 0 OF,
GenSpeedReq = 0 OF,

}

/* set traction motor torque to zero */
EmEnable = EMDISABLE,

EmAccelReq = 0 OF,

EmBrakeReq = 0 OF,

return,
}
void do_park() [k kR dokk kR ok PARK dokokokok ook ok sk ok ok ok ok ok /
{
#1f O
EmEnable = EMENABLE,
/* make sure that engine 1s off */
IceReqState = OFF,
1f (IceState == ON) TriggerICE(),
/* set generator torque to zero after the engine stops */
1f (IceState == OFF) GenEnable = GENDISABLE,
/* set traction motor torque to full */
EmBrakeReq = MAX_PARK_EMBRAKE,
#else
do_neutral(),
#end1f
return,
>

void work_throttle()
{
GenEnable = GENENABLE,
/* GenEnable = GENDISABLE, */
EmEnable = EMDISABLE,
/* EmEnable = EMENABLE, =/

/*

EmDirection = FORWARD,
EmAccelReq = 0 10,

*/

/* 1 1 map of accel pedal to engine throttle =/
throttle = AccelPedal,

/* 1 1 map of brake to gen regen */
GenRegen = BrakePedal,

return,

150

APPENDIX D CONTROL CODE LISTING

D.2.6 motor_eqn.c

/* motor_eqn ¢ */

#include "fcar h"
#include <math h>
#include <signal h>

#1fndef PI

#define PI 3 14159265358
#endaf

#define MIN(a,b)

#define MAX(a,b)

#define RPM2RAD(a)

/* 10 macros */
#define EmSpeed
#define EmAccelReq
#define AccelPedal
#define EmBrakeReq
#define BrakePedal
#define EngineSpeed
#define Tps

#define GenCurrent
#define GenRegen
#define GenSpeedReq
#define GenSpeed

/* exp */

979323846

((@) < (1)) 7 ()
(@) > (1)) 7 (@
((a) * PI/30 0)

s->analog[s->active]
s->analog(s->active]
s->analog[s->active]
s->analog[s->active]
s->analog[s->active]
s->analog[s->actave]
s->analog[s~>active]
s->analog[s->active]
s->analogls->actave]
s->analog[s->active]
s->analog[s->active]

(b))
(b))

in 1EmMotorSpeed
out oEmAccelReq

1n 1AccelPedallevel
out oEmBrakeReq

1n 1BrakePedallevel
1n 1IceEngineSpeed
1n 1TpsFeedback

1n 1GenCurrent

out oGenRegenLimit
out oGenSpeedReq

1n 1GenMotorSpeed

#define Hvac s=>dagital[s->active] in 1Hvac

#define
#define
#define
#define

vehicle_speed s->cv[s->active] vehicle_speed
hybrad_regime s->cv[s->active] hybrid_regime
hybrad_tramsition s->cv[s->active] hybrad_transition
Throttle s—>analog[s->active] out oIceThrottlePos

/* constants */

#define MOTOR_CTORQUE_CPOWER_CUTOFF 2108 OF /* rpm */
#define MOTOR_TORQUE_MAX 240 OF /* Nm */
#define KT 0 429F /* N m/amp */
#define LO_REGIME_SPEED_THRESHOLD 60 OF /* mph */
#define HI_REGIME_SPEED_THRESHOLD 45 OF /* mph */

/* N m max combined torque at wheel */

#define VEHICLE_TORQUE_MAX 2400 OF

#define MOTOR_POWER_MAX 53000 OF /* Hatts */
#define MOTOR_TO_WHEEL_RATIO 7 S88F /* ratio */
#define REV_ACCEL_FACTOR 1 OF /* desensitize */

/* generator speed curve fit constants */

#define A2 -0 933F /* low end curve ¥/
#define Al 17 82F

#defaine AO (4044 OF + 800 OF)

#define B2 ~0 778F /* high end */
#define Bl 2 264F

#define BO (-560 OF + 800 OF)

/* engine speed curve fit constants */

#define

c2 ~0 3F /* low end curve */

151

APPENDIX D CONTROL CODE LISTING 152

#define C1 60 OF

#define CO 1300 OF

#define D2 -0 25F /* high end */
#define D1 55 OF

#define DO -180 OF

#define WHEEL_TO_MOTOR_RATIO 0 131787032156F /% 1/T 588 x/
#define GEN_TO_WHEEL_RATIO 1 66845878F /% (49%57)/(27*62) */
#define ZERD 0 OF

#define HI_REGIME_ZEV_GEN_SPEED -3000 OF /* rpm */

#define IDLE_THROTTLE 0 OF /* normal */
#define IDLE_THROTTLE_THRESHOLD 0 OSF /* normal ~ 5% */
#define IDLE_ENGINE_THRESHOLD 1000 OF /* rpm */

#define ZERO_GEN_SPEED_REQ 0 OF /* rpm */

#define ZERO_GEN_SPEED_THRESHOLD 300 OF /* rpm */

#define EM_BRAKE_THRESHOLD 0 SF /* normal */
#define THROTTLE_MAX (0 6F) /* normal */
#define INIT_THROTTLE (0 2F) /* normal */
#define HI_SPD_ADD_THROTTLE (THROTTLE_MAX-INIT_THROTTLE)
#define THROTTLE_CONST_K1 (0 1F)

float hybrad_throttle()

{
#1f O
return (HI_SPD_ADD_THROTTLE =
(1-exp(-vehicle_speed * THROTTLE_CONST_K1))
+ INIT_THROTTLE),
#else
1f (vehicle_speed > 3 0)
return (0 28F),
else
return (0 OF),
#endaf
}

/* only do regen braking when request 1s significantly high */
float em_brake()

{
1f (BrakePedal > EM_BRAKE_THRESHOLD)
{
return BrakePedal,
¥
else
return ZERO,
¥

void zev_motor()

{
/* fulfill accel request */
EmAccelReq = zev_em_accel(), /* normal */

https://THROTTLE.CONST.KD

APPENDIX D CONTROL CODE LISTING 153

/% fulfill brake request */
EmBrakeReq = em_brake(), /* normal */

af ((vehicle_speed > LO_REGIME_SPEED_THRESHOLD) &&
(hybrad_regime == LO_REGIME))

{
hybrad_regame = HI_REGIME,

}

1f ((vehicle_speed < HI_REGIME_SPEED_THRESHOLD) &&
(hybrad_regime == HI_REGIME))

hybrad_regime = LO_REGIME,

1f (hybrad_regime == LO_REGIME)

{
GenSpeedReq = ZERO,
GenRegen = ZERO,
}
1f (hybrad_regime == HI_REGIME)
{
// GenSpeedReq = HI_REGIME_ZEV_GEN_SPEED,
// GenRegen = ZERD,
GenSpeedReq = ZERQ,
GenRegen = ZERO,
}
}
void reverse_motor() /* note that em direction has already been handled */
{
/* since 1t 1s not possible to go very fast in reverse,
* no checks like in zev are made */
/* fulfill accel request */
EmAccelReq = AccelPedal * REV_ACCEL_FACTOR, /* normal */
/% fufill brake request */
EmBrakeReq = BrakePedal, /* normal =/
}

void hybrad_motor()

{
float genspeed,

/* proportion traction motor */

EmAccelReq = hybrid_em_accel(), /* normal =/
/* fufill brake request */
EmBrakeReq = em_brake(), /* normal */

/* check for tramsition from low to high regime */

1t ((vehicle_speed > LO_REGIME_SPEED_THRESHOLD) &&
(hybrid_regime == LO_REGIME))

{
1f (hybrid_transition == UNDEFINED)

APPENDIX D CONTROL CODE LISTING

hybrad_transition = SLOWING_DOWN,

1f (hybrid_transition == SLOWING_DOWN)
{
/* set engine throttle to idle */
Throttle = IDLE_THROTTLE,
1f (Tps > IDLE_THROTTLE_THRESHOLD)
/* throttle still in transition */
return,

/% throttle 1s in idle position 1f we can get here */
1f (EngineSpeed > IDLE_ENGINE_THRESHOLD)
return, /* wait for engine to slow down */

/% NOTE. sxxkxikk gen speed req needs to
* happen before engine slow down */

/* set gen desired speed to zero */
GenSpeedReq = ZERO_GEN_SPEED_REQ,

/* find abs(GenSpeed) */
genspeed = (GenSpeed < 0) 7 -GenSpeed GenSpeed,

1f (genspeed > ZERO_GEN_SPEED_THRESHOLD)
/* not slowed down yet */
return,

/* gen at zero speed and engine at idle at this point */
hybrad_transition = SPEEDING_UP,
}

1f (hybrad_transition == SPEEDING_UP)
{ -
/* turn generator around */
GenSpeedReq = hi_regime_gen_speed_req(),

/* begin ramp up of engine */
TraiggerThrottleUp(),
}

/* transition done */
hybrad_regime = HI_REGIME,
hybrid_transition = UNDEFINED,
}
else
/* check for tramsition from high to low regime */
af ((vehicle_speed < HI_REGIME_SPEED_THRESHOLD) &%
(hybrad_regime == HI_REGIME))
{
1f (hybrad_transition == UNDEFINED)
hybrid_transition = SLOWING_DOWN,

1f (hybrid_transition == SLOWING_DOWN)
{
/* set engine throttle to 1dle */
Throttle = IDLE_THROTTLE,
1f (Tps > IDLE_THROTTLE_THRESHOLD)
/* throttle still in transition */
return,

/* throttle is in 1dle position 1f we can get here */

154

https://SPEEDING.UP
https://SPEEDING.UP

APPENDIX D CONTROL CODE LISTING 155

1f (EngineSpeed > IDLE_ENGINE_THRESHOLD)
return, /* wait for engine to slow down */

/* set gen desired speed to zero */
GenSpeedReq = ZER0_GEN_SPEED_REQ,

/* find abs(GenSpeed) */
genspeed = (GenSpeed < 0) ? -GenSpeed GenSpeed,

1f (genspeed > ZERO_GEN_SPEED_THRESHOLD)
/* not slowed down yet */
return,

/* gen at zero speed and engine at idle at this point */
hybrid_transition = SPEEDING_UP,

}

1f (hybrid_transition == SPEEDING_UP)

{
/* turn generator around */
GenSpeedReq = lo_regime_gen_speed_req(),
/* begin ramp up of engine */
TriggerThrottleUp(),

}

/* transition done */
hybrid_regime = LO_REGIME,
hybrad_transition = UNDEFINED,

}
else
{
/* dictate regular hybrid gen speed & regen */
GenSpeedReq = hybrad_gen_speed(), /* rpm, with direction */
GenRegen = FULLGENREGEN,
Throttle = hybrid_throttle(), /* hack */
}
return,

float hybrid_em_accel()

{

float max_em_torque, /* Nm x/
float wheel_torque_req, /* N m */
float torque_from_gen, /* N m %/

/* find maximum possible torque of motor at current speed */
1f (EmSpeed < MOTOR_CTORQUE_CPOWER_CUTOFF)

max_em_torque = MOTOR_TORQUE_MAX,
else

max_em_torque = MOTOR_POWER_MAX / RPM2RAD(EmSpeed),

/* find the dravers requested torque */
wheel _torque_req = AccelPedal * VEHICLE_TORQUE_MAX,

/* find out what the generator/engine 1s providing */
torque_from_gen = GenCurrent * KT * GEN_TO_WHEEL_RATIO,

APPENDIX D CONTROL CODE LISTING 156

/* proportion traction motor */

return ((MIN(wheel_torque_req/MOTOR_TO_WHEEL_RATIO,
MOTOR_TORQUE_MAX) - torque_from_gen)
/ MOTOR_TORQUE_MAX), /#* normalized */

}
float zev_em_accel()
{
float max_em_torque, /¥ Nm %/
float wheel_torque_req, /* N m */
/* find maximum possible torque of motor at current speed */
1f (EmSpeed < MOTOR_CTORQUE_CPOWER_CUTOFF)
max_em_torque = MOTOR_TORQUE_MAX,
else
max_em_torque = MOTOR_POWER_MAX / RPM2RAD(EmSpeed),
/* fulfill accel request */
wheel_torque_req = AccelPedal * VEHICLE_TORQUE_MAX,
return (MIN(wheel_torque_req/MOTOR_TO_WHEEL_RATIO,
MOTOR_TORQUE_MAX) / MOTOR_TORQUE_MAX), /* normalized */
}
float hybrid_gen_speed()
{
float gen_speed_req, /* rpm */
float ice_speed, /* rpm */

/* do normal operation */
1f (hybraid_regime == LO_REGIME)

{
/* calulate gen speed request */
gen_speed_req = A2¥vehicle_speed*vehicle_speed +
Al*vehicle_speed +
Ao,
/* calculate what we think the engine should be doing */
1ce_speed = C2xvehicle_speed*vehicle_speed +
Cl*vehicle_speed +
co,
}
1f (hybrid_regime == HI_REGIME)
{
/* calulate gen speed request */
gen_speed_req = B2*vehicle_speed*vehicle_speed +
Bl*vehicle_speed +
BO,
- /* calculate what we think the engine should be doing */
1ce_speed = D2*vehicle_speed*vehicle_speed +
Di*vehicle_speed +
Do,
}

/* proportion generator */
return gen_speed_req, /* rpm, with direction */

APPENDIX D CONTROL CODE LISTING 157

}
float hi_regime_gen_speed_req()
{

float vspeed, gen_speed_req,

vspeed = vehicle_speed,

/* calculate gen speed request */
gen_speed_req = B2*vspeed*vspeed +

Blxvspeed +
BO,

return gen_speed_req,

}
float lo_regime_gen_speed_req()
{

float vspeed, gen_speed_req,

vspeed = vehicle_speed;

/* calculate gen speed request */
gen_speed_req = A2*vspeed*vspeed +

Al*vspeed +
Ao,

return gen_speed_req,

D.2.7 misc.c

/* misc ¢ */

#include "fcar h"

#define vehicle_speed s->cv[s->active] vehicle_speed

#define vehicle_distance s->cv[s->active] vehicle_distance
#define EmSpeed s->analog[s->active] in 1EmMotorSpeed
#define GenSpeed s~>analog[s->active] 1in 1GenMotorSpeed
#define Tec s->digitals->active] out oTecEnable
#define PwrSteeringEnable s->digital[s->active] out oPurSteeringEnable
#define DisSpeedo0 s~>analog[s->active] out oDisSpeedoQ
#define DisSpeedol s->analog[s->active] out oDisSpeedol
#define EmBrakeReq s->analog[s->active] out oEmBrakeReq
#define BattPackVoltage s->analog[s->active] in 1BattPackVoltage
#define IceState s->cv[s->active] IceState

#define Throttlelp s->cv[s->active] ThrottleUp

#define throttle s->analog[s->active] out oIceThrottlePos

#define EM_SPEED_TO_VEHICLE_SPEED
#define PWR_STR_OFF_SPEED
#define PWR_STR_ON_SPEED

#define SECONDS_IN_HOUR

#define WAY_TOO_FAST_GEN_SPEED
#define IDLE_SAFETY_THROTTLE

/* smart charger turn off parameters #*/
#define SMART_CHARGE_OFF_VOLTAGE
#define SMART_CHANGE_OFF_EM_BRAKE

96 5333 /*
30 OF /=
25 OF /*
3600 OF /*
6400 OF /*
0 OF /*

340 OF /=
0 20F /%

rpm per mph */

in vehicle mph */

in vehicle mph */

duh */

Tpm */

normalized, closed */

pack voltage */
em brake request */

APPENDIX D CONTROL CODE LISTING 158

#define MIN(a,b) ((@ <) 7 (a) (B
#define MAX(a,b) (@ > @®) 7@ ©®

static double t_old,

void do_misc()

{
double delta_t,
double t,
t = ftask_gettime(),
/* figure delta_t */
1f (t_old < 1 0) /* first loop or it’s January 1, 1970) */
delta_t =0 0,
else
delta_t = t - t_old,
t_old = ¢,
/* get vechile speed in miles per hour */
vehicle_speed = EmSpeed / EM_SPEED_TO_VEHICLE_SPEED,
/* calculate distance travelled since boot */
/% with Euler method discrete integration */
vehicle_distance += vehicle_speed / SECONDS_IN_HOUR * delta_t,
/* vehicle_distance = 0 OF, */
/* control power steering pump */
1f ((PwrSteeringEnable == ON) && (vehicle_speed > PWR_STR_OFF_SPEED))
PwrSteeringEnable = OFF,
1f ((PwrSteeringEnable == OFF) && (vehicle_speed < PWR_STR_ON_SPEED))
PurSteeringEnable = ON,
/* control big analog speedometer
* gauge 1n dash */
DisSpeedo0 = DisSpeedol = vehicle_speed,
#1f 0
/* see 1f smart charger needs to be on */
if ((BattPackVoltage > SMART_CHARGE_OFF_VOLTAGE) ||
(EmBrakeReq > SMART_CHANGE_OFF_EM_BRAKE) ||
(IceState == ON))
SmartChargerEnable = OFF, /* run accessories on aux-bat */
else
SmartChargerEnable = ON, /* run dc/dc 1in parallel to aux-bat */
#endaf
#1f 0
/* fix ThrottleUp */
1f (IceState == (FF)
ThrottleUp = OFF,
#endaf
#af 1

/* cut engine 1f generator 1s speeding too fast */

APPENDIX D CONTROL CODE LISTING 159

1f (GenSpeed > WAY_TOO_FAST_GEN_SPEED)

{
/x cut the ignition, stop engine %/
Tec = OFF,
throttle = IDLE_SAFETY_THROTTLE,
notice("Gen spinning too fast, slowing engine"),
/* TriggerThrottleUp(), */ .
}
#endaf
return,
}

D.2.8 ice_ctrl.c

/* 1ce_ctrl c */

#include <stdlab h> /* exit */
#include "fcar h"

/* macros used in this file */

#define mode s~>cv[s->active] mode

#defane IceEngineSpeed s->analog[s->active] in 1IceEngineSpeed
#define starter s->dagatal[s->actave] out oIceStarter
#define IceReqState s->cv[s~>active] IceReqState

#define IceState s->cv[s->active] IceState

#define throttle s->analog[s->active] out oIceThrottlePos
#define TEC s->dagital [s->active] out oTecEnable
#define ThrottlePwrCycle s->dagatal[s->active] out oThrottlePwrCycle
#define CRANKSEC 0 25F /* 25 seconds */
#define STARTTHROTTLE 0 OF /* normal */

#define MAXCRANKS 8 /* total 2 crank sec */
#defane MINSTARTRPM 500 OF /* rpm */

#define FUELSTARVESEC 2 OF /* 2 seconds */

#define STOPTHROTTLE 0 OF /* normal */

#define MINSTOPRPM 500 OF /* rpm */

#defane MAXFAILEDSTARTS 3

/* control engine state asynchronously from rest of control loop */
void ice_control(void *ignored)

{
ant failed_starts = 0,
ant internal_state = IceState,

notaice("1ce controller ready"),
while(s) /* while shm 1s valid */
{

it 1 =1,

/* wait around util the engine needs to change state */
ftask_trigger_block(),

1f (internal_state == DEAD)

{
/* been reset externally */
1nternal_state = IceState,
failed_starts = 0,

}

/* request to turn on the engine */

APPENDIX D CONTROL CODE LISTING

1f ((IceReqState == QON) && (IceState == OFF))
{

notice("got engine start req"),

/* start engine x/
IceState = WORKING,
ThrottlePwrCycle = ON,
throttle = STARTTHROTTLE,
TEC = ON,

/* try cranking the engine */

while ((1 <= MAXCRANKS) &k&
(IceEngineSpeed <= MINSTARTRPM) &%
(IceReqState == ON))

{
‘ /* crank for a while */
starter = ON,
ftask_delay(CRANKSEC),
‘ 14+,
| }
i //1f (1)
| 1f (IceEngineSpeed >= MINSTARTRPM) /* success */
{
starter = OFF,
notice("engine started ok"),
failed_starts = 0,
/* throttle up in completely
* automatic fashion in HEV mode
*/
1f (mode == ECON_MODE)
{
/* wait a bat to let engine
* stabilize */
ftask_delay(0 5F),
//TriggerThrottlelUp(),
//throttle = THROTTLE_MAX,
}
IceState = 0N,
}
else
{

/* failed to start engine */

starter = OFF,

TEC = OFF,

ThrottlePwrCycle = OFF,

IceState = OFF,

notice("failed to start engine"),

/* note should probably keep a count of
* failed engine start attempts and not
* even try i1f not successful after
* X attempts, update here 1t 1s */

failed_starts++,

1f (failed_starts == MAXFAILEDSTARTS)
{
IceState = DEAD,

160

APPENDIX D CONTROL CODE LISTING

internal_state = DEAD,

}

else

/* request to turn off engine */

1f ((IceRegState == OFF) && (IceState == ON))

{
notice("got engine stop req"),
/* stop engine */
IceState = WORKING,
throttle = STOPTHROTTLE,
TEC = OFF, /* starve the fuel */
ThrottlePwrCycle = OFF,
/* wait a bat to let things settle */
ftask_delay(FUELSTARVESEC),
1f (IceEngineSpeed <= MINSTOPRPM)
{
/* 1t worked */
IceState = OFF,
notice("engine stopped ok"),
}
else
{
/* can’t stop the engine */
IceState = ON,
notice("can’t stop runaway engine"),
}
}
else -
/* 1f reqstate == actual state, do nothing */

1f (((IceReqState == ONJ && (IceState == ON)) ||
((IceReqState == OFF) && (IceState == OFF)))
{
notice("ouch, race condition? regq==actual"),

¥
}

/* should never get here x/
notice("this should never get here"),
ex1t (EXIT_FAILURE),

D.2.9 soc.c

/* soc ¢ */
#include <string h> /* memset */
#include "fcar h"

/* macros used in this file */

#define VVHval 0 80
#define VHval 075
#define Hval 0 65 /* normalized */
#define Lval 0 35
#define VLval 0 25
#define VVLval 0 20

#define amps (-(s=->cv[s->active] kwh_amps)) /* reverse sign */

161

APPENDIX D CONTROL CODE LISTING

#defire volts
#define SOC

s->cv[s-dactive] kwh_volts
s->cv[s->actave] SOC

#define SOCcat

void soc_calculator(void *unused)

{

int 1, n, loops = 0,

s->cv[s~>active] SOCcat

int SO0Ccat_old = -1, /* for first time */

double SO0C_old = -1 OF,
double vhi, vmed, vlo,
double blend[14], sum, soc,

/* threshhold values used 1n "linear" interpolation */

const double hi_thresh = 0 85,
const double medl_thresh = 0 40,
const double med2_thresh = 0 50,
const double lowl_thresh = 0 25,
const double low2_thresh = 0 15,

/* these are cubic equations */

const double chi[] = { -5 8633e-05, /*
1 2505e-02,
-9 8923e-01,
3 4203e+02},

const double cmed[] ={ -4 7965e-05, /*
1 1156e-02,
-9 8899e-01,
3 3197e+02},

const double clo[] = { -3 5965e-05, /*
0 8156e-02,
-9 8899e-01,
3 1532e+02},

memset((void *)blend, 0, sizeof(blernd)),
n = (sizeof(blend) / sizeof(blend[0])), /x

notice("soc calculator rumning"),

while(s)
{
/* find hi, med, lo curves */
vhi = chi[0]*amps*amps*amps +
chi[1]*amps*amps +
chi[2]*amps +
cha[3],

vmed = cmed[0] *amps*amps*amps +
cmed[1] *amps*amps +
cmed [2] *amps +
cmed [3],

vlo = clo[0]*amps*amps*amps +
clo[1]*amps*amps +
clo[2]*amps +
clo[3],

1f (volts > vhi)
soc =10,

aka coef100 */

aka coef60 */

completly made up x/

number of elements of blend */

else 1f ((volts <= vhi) && (volts > vmed))

162

APPENDIX D CONTROL CODE LISTING

/* interpolate between hi and med */
soc = ((volts-vmed)/(vhi-vmed)) *
(hi_thresh -medi_thresh) +
medl_thresh,
else 1f ((volts <=vmed) && (volts > vlo))
/* interpolate between med and lo */
soc = ((volts-vlo)/(vmed-vlo)) *
(med2_thresh - lowl_thresh) +
lowl_thresh,
else
/* assign to low */
soc = low2_thresh,

/* could just let SO0C=soc here, but averaging over
* a few points seems to help */

sum = 0 0,

for (1=0,1<=(n-2),1++)

{
blend[1] = blend[1+1], /* shift past values down */
sum += blend[a], /* keep a running total */

}

/* put current at end */

blend[n-~1] = soc,

sum += soc,

1f (loops >= n)
/* use averaged */
SOC = sum / (double)n,
else
/* use immediate */
S0C = soc,

/* categorize SOC */
/* 1f previous values are unknown, then assume SOC 1s
* categorized to the next highest bin */

1f ((S0Ccat_old == -1) }| (S0C_old == -1 0))
{

S0Ccat = VVL,

1f (SOC > VVLval) SOCcat = VL,

1f (SOC > VLval) SOCcat = L,

1f (SOC > Lval) SOCcat = H,

1f (SOC > Hval) SOCcat = VH,

1f (S0C > VHval) SOCcat = VVH,

S0C_old = SOC,
S0Ccat_old = S0Ccat,

/* now that the prevoius value 1s known, categorize the SOC */

1f (((s0C_old > VVLval) && (SOC < VVLval)) 1|
((S0C_old < VVLval) && (SOC > VVLval)))
S0Ccat = VVL,

1f (((S0C_old > VLval) && (SOC < VLval)) I
((S0C_old < VLval) &% (SOC > VLval)))
S0Ccat = VL,

1f (((S0C_old > Lval) && (SOC < Lval)) ||
((S0C_old < Lval) && (SOC > Lval)))
S0Ccat = L,

1f (((S0C_old > Hval) && (SOC < Hval)) ||
((S0C_old < Hval) &k (SOC > Hval)))
S0Ccat = H,

1f (((S0C_old > VHval) && (SOC < VHval)) ||

163

APPENDIX D CONTROL CODE LISTING 164

((S0C_old < VHval) && (SOC > VHval)))
S0Cecat = VH,

1f (((S0C_old > VVHval) && (SOC < VVHval)) ||
((S0C_old < VVHval) && (SOC > VVHval)))
S0Ccat = VVH,

SOC_old = S0OC,
S0Ccat_old = SOCcat,

loops++,

/* SOC 1sn’t very dynamic, kwh meter only rums at 1Hz */
ftask_delay(1 0),

D.2.10 throttle_ctrl.c

/* throttle_ctrl c */

#include <math h> /* pow */
#include "fcar h"

/* macros used in this file */

#define throttle s->analog[s->active] out oIceThrottlePos
//#define Throttlelp s=>cv[s->active] ThrottleUp

/* constants */

#define THROTTLE_RAMP_TIME (3 1) /* seconds */

//#define THROTTLE_MAX (0 30) /* normal */

#define THROTTLE_MAX 0 28

#define ALPHA ((THROTTLE_MAX + 1 0) / THROTTLE_MAX)
#define BETA_BEND (7 0)

#define THROTTLE_HERTZ (10 0)

/* control Mikuni remote throttle asynchromously */
void throttle_control(void *unused)

{

double t_ainit, t,
notice("throttle controller ready"),

while(s) /* while shm is valad */

{
/* wairt around till throttle up signal 1s passed */
ftask_trigger_block(),

notice("got throttle up req"),

t =00,
t_init = ftask_gettime(),

/* go into ramp up loop */
while(t <= THROTTLE_RAMP_TIME)
{
/* set throttle position */
throttle = THROTTLE_MAX =*
(pow(ALPHA, BETA_BEND* t/THROTTLE_RAMP_TIME) - 1 0)
/ (pow(ALPHA, BETA_BEND) - 1 0),

APPENDIX D CONTROL CODE LISTING 165

/* delay x/
ftask_delay(1 O/THROTTLE_HERTZ),

t = ftask_gettime() - t_init,
}

notice("throttle up done"),

}
/* shouldn’t get here */

Appendix E

Support Libraries Code Listing

E.1

libfclient: IPC Library

E.1.1 Makefile

requires gnu make

cC

AR
ARFLAGS
RANLIB
DEFINES
INCLUDES
QUIET
OPTS
#DEBUG
CFLAGS
FILES
FILES
OBJS
LIBOUT
DEPEND
LIBDIR

all

install

dep

clean

$(LIBOUT)

cc
ar
qcr
true

-Q -wx
-Orailnextm -4r -£fp3 -fpa87

$(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
fclient_create_shm ¢ fclient_open_shm ¢
fclient_delete_shm ¢ s_die ¢

$(FILES c= o)

libfclient a

makedepend

/opt/fcar/lib/

+
u

$(LIBOUT)
$(LIBOUT)
cp ~f $(LIBOUT) $(LIBDIR)

$(DEPEND) -- $(CFLAGS) -D__QNX__ -- $(FILES)

rm -f $(0BJS) $(LIBOUT) core * err

$(0BJS)
$(AR) $(ARFLAGS) $@ $~
$(RANLIB) $@

E.1.2 fclient.h

/* fclient h */

166

APPENDIX E SUPPORT LIBRARIES CODE LISTING

#1fndef FCLIENT_INCLUDED
#define FCLIENT_INCLUDED

#include <fentl h> /* open mode types */

#include "fcar_common h" /* shared_hw_data structure definition */
#1fndef NULL

#define NULL O

#endif

/* process control feedback */
enum { NOTICE, WARN, FATAL },

#define die(m) s_die(__FILE__, __LINE__, m, FATAL)
#defaine warn(m) s_die(__FILE__, __LINE__, m, WARN)
#define notice(m) s_die(__FILE__, __LINE__, m, NDTICE)

#1fdef __cplusplus
extern "C" {
#endaf

/* function prototypes */
extern struct shared_hw_data * Zfclient_create_shm(void),

extern int fclient_delete_shm(voad),
extern struct shared_hw_data * fclient_open_shm(mode_t mode),
extern void s_die(char *, int, char *, int),

#1fdef __cplusplus
}
#endaf

#end1f

E.1.3 fcar_.common.h

/* fcar_common h */
/* 1nfo shared with other programs */

#1fndef FCAR_COMMON_H
#define FCAR_COMMON_H

/* shows up in /dev/shmem */
#define FCAR_SHARED_HW_DATA_NAME "fcar_shared_hw_mem"

/* for data logging */
#define SECONDS_.TO_STORE 3600 /* 1 hour’s worth */

/* 1ce modes */
enum { OFF=0, ON, WORKING, DEAD },

/* mode types */
enum { ZEV_MODE, ECON_MODE, SPORT_MODE, REVERSE_MODE, PARK_MODE, NEUTRAL_MODE },

/* state of charge category types */
enum { VVL, VL, L, H, VH, VVH },

/* hybrid mode regime types */
enum { LO_REGIME, HI_REGIME },

/* hybraid transition types */

167

APPENDIX E SUPPORT LIBRARIES CODE LISTING

enum { UNDEFINED=0, SLOWING_DOWN, SPEEDING_UP },

struct calculated_values

{
float S0OC, /* state of charge */
int S0Ccat, /* state of charge category */
int mode, /* “mode" like ZEV, SPORT, etc */
float vehicle_speed, /* speed in mph */
float vehicle_distance, /* distance vehicle travelled since boot */
float energy_level, /* total combined energy */
float kwh_volts, /* battery pack voltage */
float kwh_amps, /* battery pack current */
int IceReqState, /* requested state of the engine */
int IceState, /* actual state of the engine */
int running, /* fcar control program is running */
int hybrid_regaime, /* different gen/eng proportioning */
int hybrid_tramsition, /* changes during lo-hi, hi-lo */
}l
struct fcard_runtime_values
{
unsigned fcard_hardware_timer_hz,
int fcard_manager_prio,
int fcard_hardware_task_prio,
int fcard_kwh_task_prio,
int fcard_config_task_prio,
}l
/*
* xxxSen - linear slope sensitivaty
xxx0ff - linear y-intercept
x/ -
struct calabration_values
{ —
/* 1inputs x/
float 1EmMotorSpeedSen,
float 1EmMotorSpeedOff,
float iGenMotorSpeedSen,
float iGenMotorSpeedOff,
float 1IceEngineSpeedSen,
float 1JceEngineSpeedOff,
float 1AccelPedallevelSen,
float 1AccelPedallevelOff,
float i1BrakePedalLevelSen,
float iBrakePedalLevelOff,
float 1ActualEmTorqueSen,
float 1ActualEmTorqueOff,
float i1FuelPressureSen,
float 1FuelPressure(ff;
float 1EmCurrentNegSen,
float i1EmCurrentNegOff,
float 1EmCurrentPosSen,
float 1EmCurrentPosOff,
float 1GenCurrentSen,
float i1GenCurrentOff,
float iBattPackTempSen,
float iBattPackTempOff,
float 1BattPackVoltageSen,
float iBattPackVoltageOff,

float

1BattPackCurrentSen,

168

https://SPEEDING.UP

APPENDIX E SUPPORT LIBRARIES CODE LISTING

float
float
float
float
float
float
float

1BattPackCurrentOff,
1EmRotorTempSen,
1EmRotorTempO£ff,
1EmInvTempSen,
1EmInvTempO£ff,
1TpsFeedbackSen,
1TpsFeedback0ff,

/* outputs x/

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
}l

oGenSpeedReqSen,
oGenSpeedReqUff,
oGenRegenLimitSen,
oGenRegenLimi1tOff,
oEmAccelReqSen,
oEmAccelReqOff,
oEmBrakeReqSen,
oEmBrakeReqOff,
oIceThrottlePosSen,
oIlceThrottlePosOff,
oDisSpeedoOAmplitude,
oDisSpeedoOPhaseAngle,
oDi1sSpeedolimplatude,
oDisSpeedolPhaselngle,
oPwrToDagRacksSen,
oPwrToDigRacksOff,

struct input_digital_hardware

unsigned 1iPark,

unsigned 1Reverse,

unsigned 1iNeutral,

unsigned iDraveSport,
unsigned 1DraveEcon,
unsigned 1ZEV,

unsigned 1Hvac,

unsigned 1EmTempWarn,
unsigned 1EmControllerReady,
unsigned 1EmFaultIndicator,

unsigned i1GenTempWarn,
unsigned 1GenControllerReady,
unsigned i1GenFaultIndicator,

unsigned 1lceFaultIndicator,

digital_hardware

unsigned olceStarter,
unsigned oTecEnable,
unsigned oEmEnable,

unsigned oEmDirection,
unsigned oGenEnable,
unsigned oPwrSteeringEnable,
unsaigned oThrottlePwrCycle,
unsigned oSmartChargerEnable,

{
unsigned
unsagned
}l
struct output_
1
}l

struct digital_hardware

{

1Em0OvertempIndicator,

1GenDarectioniIndicator,

/* speedometer based on sine */

169

APPENDIX E SUPPORT LIBRARIES CODE LISTING

struct input_digital_hardware 1in,
struct output_digital _hardware out,

}'

struct input_analog_hardware

{
float 1EmMotorSpeed,
float 1GenMotorSpeed,
float 1IceEngineSpeed,
float i1AccelPedallevel,
float 1BrakePedallevel,
float 1ActualEmTorque,
float 1FuelPressure,
float 1EmCurrent,
float 1GenCurrent,
float iBattPackTemp,
float 1BattPackVoltage,
float 1BattPackCurrent,
float 1EmRotorTemp,
float 1EmInvTemp,
float i1TpsFeedback,

}’

struct output_analog_hardware

{
float oGenSpeedReq,
float oGenRegenLimit,
float oEmAccelReq,
float oEmBrakeReq,
float olceThrottlePos,
float oDisSpeedoO,
float oDisSpeedol,
float oPwrToDigRacks,

}l

struct analog_hardware

{
struct input_analog_hardware in,
struct output_analog_hardware out,

}'

struct shared_hw_data

{
struct calibration_values cal,
struct fcard_runtime_values fcard_rv,
struct calculated_values cv[SECONDS_TO_STORE],
struct digital_hardware digital [SECONDS_TO_STORE],
struct analog_hardware analog[SECONDS_TO_STORE],
nt active,
unsigned seconds,

} E
#endif

E.1.4 fclient_create_shm.c

/* fclient_create_shm c */

#include <fcntl h> /* shm_open */
#include <sys/mman h> /* shm_unlank, shm_open, mmap */

170

https://fcard.rv

APPENDIX E SUPPORT LIBRARIES CODE LISTING 171

#include <sys/types h> /* ltrunc */
#include <unistd h> /* close */
#include <string h> /* memset */
#include <sys/stat h> /* umask */

#include "fclient h"

struct shared_hw_data *fclient_create_shm(void)

{
int £d, /* temporary */
struct shared_hw_data *d,

/* get rid of any of our old shared memory if 1t exists */
(voxd) shm_unlink(FCAR_SHARED_HW_DATA_NAME),

umask(0), /* total control */

/* create shared memory object */
fd = shm_open(FCAR_SHARED_HW_DATA_NAME, O_RDWR | O_CREAT, 0644),

1f (fd == -1) return NULL,

/* set the shared memory object size */

#1fdef __QNX__
/* for some reason QNX likes to use ltrunc while the
* POSIX 1003 1b spec calls for using ftruncate */

1f (ltrunc(fd, sizeof(struct shared_hw_data), SEEK_SET) == -1)
die("ltrunc"),
#telse
1f (ftruncate(fd, sizeof(struct shared_hw_data)) == -1)
die("ftruncate"),
#endaf
/* map memory object to local space */
d = mmap(0, sizeof(struct shared_hw_data),
PROT_READ | PROT_WRITE | PROT_NOCACHE,
MAP_SHARED, fd, 0),
1f (d == (void *)-1) return NULL,
/* clean up close file descriptor */
(void)close(£fd),
/* 1nitialize struct to zero */
memset ((void *)d, 0, sizeof(struct shared_hw_data)),
/* done */
return d,
}

E.1.5 fclient_delete_shm.c

/* fclient_delete_shm ¢ */

#include <sys/mman h> /* shm_unlink */
#include "fclient h"

int fclient_delete_shm(void)
{
1f (shm_unlink(FCAR_SHARED_HW_DATA_NAME) '= 0)
return 1,

APPENDIX E SUPPORT LIBRARIES CODE LISTING

return

0,

E.1.6 fclient_open_shm.c

/* fclient_open_shm c */

#1include <stdio h>

#include <fcntl h> /* shm_open */
#include <sys/mman h> /* shm_open, mmap */
#include <unistd h> /* close */

#include <time h> /* nanosleep */
#include "fclient h"

#define WAITNSEC 1000000000L/4L /* 0O 25 seconds */
#define NUMTRIES 16 /* try for 4 seconds */

/* this might be tricky fcard may not have made the shared
* memory segment yet Here we’ll keep trying for a few seconds
* and bail out 1f 1t’s not there after a few tries */

struct shared_hw_data *fclient_open_shm(mode_t mode)

{

ant £d,
struct
struct
int 1 =

/* open
while (

{

}
1t (f4
/* map

switch

{

}

shared_hw_data *d,
timespec ts = { 0, WAITNSEC },
0,

shared memory */
((£d=shm_open (FCAR_SHARED_HW_DATA_NAME,O_RDONLY, 0644))==-1)
&& (1 < NUMTRIES))

1f ('(2 % 4)) notice("fclient trying to commect"),
1o+,
nanosleep(&ts, NULL),

== -1) return NULL,

memory object to local space */
(mode)

case O_RDONLY
d = mmap(0, sizeof(struct shared_hw_data),
PROT_READ | PROT_NOCACHE,
MAP_SHARED, £4, 0),
break,
case O_RDWR
d = mmap(0, sizeof(struct shared_hw_data),
PROT_READ | PROT_WRITE | PROT_NOCACHE,
MAP_SHARED, fd, 0),
break,
default
return NULL,

1f (d == (void *)=-1) return NULL,

(void)close(£d),

return

d,

172

APPENDIX E SUPPORT LIBRARIES CODE LISTING 173

E.1.7 s_die.c

/* s_die ¢ */

#include <stdio h> /* stderr */

#anclude <stdlib h> /* exat */

#1include <time h> /* timestamp stuff */
#include <unistd h> /* getpid */

#include <strang h> /* strerror, strlemn */

#include "fclient h"

void s_die(char *vherehappen, int line, char *message, int severity)

{
char tbuf [64], /* where to put time stamp */
char 1buf [256], /* output string */
time t ¢,

t = tame(NULL),
stritime(tbuf, sizeof(tbuf), "Ym/%d/%y %H /M %S", localtime(&t));

switch (severaty)

{
case NOTICE
spraintf(lbuf, "/s [%d] notice (Vs %d) %s\n",
tbhuf, getpld(), wherehappen, line, message),
break,
case WARN
sprantf(lbuf, "“Ys (%d] Warn (%s %d) %s\a",
tbuf, getpid(), wherchappen, line, message),
break,
case FATAL
sprantf(lbuf, "%s [4d] FATAL (%s %d) %s Y%s\n",
tbuf, getpid(), vherehappen, line, message,
strerror(errno)),
break,
default
sprantf(lbuf, "¥s [%4d] Huh? (%s %d) %s ¥s\n",
tbuf, getpid(), wherchappen, line, message,
strerror(errno)),
}
/*

1f (strlen(lbuf)-1 > sizeof(lbuf))
severity = FATAL, */

write (STDERR_FILEND, 1lbuf, strlen(lbuf)),
1f (severaty == FATAL) exit(EXIT_FAILURE),

return,

APPENDIX E SUPPORT LIBRARIES CODE LISTING

E.2 libftask: Task Primitives Library
E.2.1 Makefile

requires gnu make

TRIGGER_METHOD = gnx

#TRIGGER_METHOD = sag

#TRIGGER_METHOD = pape

cc = cc

AR = ar

ARFLAGS = qcr

RANLIB = true

DEFINES = -DDEBUG

INCLUDES =

QUIET = -Q -wx

OPTS = =Orailnextm -4r ~fp3 -fpi87
#DEBUG = -

CFLAGS = $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
LIBFILES = ftask c ftask_time ¢ timer_gnx ¢

1feq ($(TRIGGER_METHOD),qnx)
LIBFILES += trigger.qnx ¢
endif

1feq ($(TRIGGER.METHOD),pipe)
LIBFILES += trigger_pipe ¢
endif

1feq ($(TRIGGER_METHOD),s1g)

LIBFILES += trigger_sig ¢

end1f

LIBOBJS = $(LIBFILES c¢= o)

LIBOUT = libftask a

DEPEND = makedepend

THISDIR = $(shell basename $$(pwd))
QNX_HOST = greed

QNX_PARENTDIR = -/

all $(LIBOUT) #demos

$(LIBOUT) $(LIBOBJS)

$(RM) $(LIBOUT)
$(AR) $(ARFLAGS) $Q $~
$(RANLIB) $Q

demos
$(MAKE) -C demos

ftask_hint o ftask_hint ¢
$(CC) $(CFLAGS) -zu -W¢,-s -c $<

dep
$(DEPEND) -~ $(CFLAGS) -D__QNX__ -- $(FILES)

install aill

clean
rm -f $(LIBOBJS) $(LIBOUT) * err

174

APPENDIX E SUPPORT LIBRARIES CODE LISTING 175

$(MAKE) ~C demos clean

rsync
cd && rsync -avzt $(THISDIR) $(QNX_HOST) $(QNX_PARENTDIR)

rmake rsync
rsh $(QNX_HOST) ’(cd $(QNX_PARENTDIR)$(THISDIR) && make)’

rclean
cd &% rsync -avzt --delete $(THISDIR) $(QNX_HOST) $(QNX_PARENTDIR)

PHONY demos dep clean install rsync rmake rclean

E.2.2 ftask.h

/* ftask h */

#1fndef FTASK_INCLUDED
#define FTASK_INCLUDED

#1fdef __QNX__

#include <sys/sched h> /* sched_setscheduler, sched_yield */
#else

#include <sched h>

#enda1f

#include <sys/types h> /* pid_t */

struct ftask
{
int polacy,
int praoraty,
void (*start_func)(voad *),
void *start_func_arg,
void (*cleanup_func)(ant),
int allow_traigger,
int allow_peraodic_tamer,
1nt periodic_tamer _hz,
pid_t fid, /* filled in after fork */
union
{
pad_t trig_proxy, /* this 1s only used for qnx triggers */
int pipefds[2], /* only used for pipe triggers */
}l
}1

typedef struct ftask ftask,
#1fdef __cplusplus
extern "C" {

#endaf

/* public function prototypes */

extern int ftask_init(ftask *ft, /* handle */
int polacy, /* valid scheduling policy */
int priority, /* valid scheduling priority */
void (*start_func)(void *), /* task entry function */
void *start_func_arg, /* entry function argument */
void (*cleanup_func) (int), /* "destructor" */

int allow_trigger, /* triggering ability bool */

https://periodic.timer.hz

APPENDIX E SUPPORT LIBRARIES CODE LISTING 176

ant allow_periodic_tamer, /* use periodic timer bool */
int periodic_timer_hz), /* integer hz (1f enabled) */

extern int ftask_delay(double sec),

extern int ftask_sched_adjust_self(int policy, int priority),
extern int ftask_register_cleanup_self(void (*cleanup_func)(ant)),
extern int ftask_register_reread_self(void (*reread_func)(int)),
extern int ftask_delete(ftask *ft),

extern int ftask_destroy(ftask *it),

extern int ftask_traigger(ftask *ft),

extern int ftask_trigger_block(void),

extern int ftask_create(ftask *ft),

extern int ftask_wait_on_tasks(ftask x*ret),

extern ant ftask_same(ftask *first, ftask *second),

extern int ftask_periodic_timer_block(void),
extern double ftask_gettime(voad),

#1fdef __cplusplus

}

#endaf

#endaf

E.2.3 ftask_private.h

/* ftask_private h - internmal stuff for labftask */

#1fndef FTASK_PRIVATE_INCLUDED
#define FTASK_PRIVATE_INCLUDED

#define FTASK_DELETE_SIG SIGTERM
#define FTASK_DESTROY_SIG SIGKILL
#define FTASK_TRIGGER_SIG SIGUSR1
#define FTASK_REREAD_SIG SIGHUP

#1fdef DEBUG

#include <stdio h>

#define DTRACE(x) prantf x
#else

#define DTRACE(x)

#endaf

#endaf

E.2.4 timer_qgnx_private.h
/* ftask_hint_p h - pravate stuff */

#1fndef TIMER_QNX_PRIVATE_INCLUDED
#define TIMER_QNX_PRIVATE_INCLUDED

/* private function prototypes */
pid_t far timer_inthandler(void),
int timer_hint_attach(ant divisor),
void timer_hint_detach(void),

void timer_register_cleanup(void),
int timer_get_timer_hz(voad),

APPENDIX E SUPPORT LIBRARIES CODE LISTING 177

#iendaf

E.2.5 trigger_private.h

/* ftask_hant_p h - private stuff */

#1fndef TRIGGER_PRIVATE_INCLUDED
#define TRIGGER_PRIVATE_INCLUDED

/* private function prototypes */
int tragger_setup(ftask x*ft),

void tragger_register_cleanup(void),
int parent_prefork(ftask *ft),

int parent_postfork(ftask *ft),

#endaf

E.2.6 ftask.c

/* ftask ¢ */

#include <stdlib h> /* atexat */

#include <sys/types h> /* fork, kill, wait */
#include <unistd h> /* fork, getuid */
#include <signal h> /* sigaction, kill */

#include <sys/wait h> /* wait */
#include <errno h>

#include "ftask h"

#include "ftask_praivate h"
#include "timer_qnx_private h"
#include "trigger_private h"

int ftask_imit(ftask =ft,
int policy,
int prioraty,
void (*start_func)(void *),
void *start_func_arg,
void (*cleanup_func)(int),
int allow_trigger,
int allow_periodic_timer,
int periodic_timer_hz)

1f (ft)

ft->policy = policy,
ft->prioraity = priority,
ft->start_func = start_func,
ft->start_func_arg = start_func_arg,
ft->cleanup_func = cleanup_func,

- ft->allow_trigger = allow_trigger,

/* this implimentation doesn’t allow both a
* trigger and periodic timer, enforce that
* here */
1f (allow_periodic_timer &% allow_trigger)
{
DTRACE(("periodic timer and trigger not allowed\n")),
goto bad_init,

https://periodic.timer.hz

APPENDIX E SUPPORT LIBRARIES CODE LISTING

}

1f (allow_periodic_timer && (periodic_timer_hz <= 0))

{
DTRACE(("periodic timer cannot be negative\n")),
goto bad_inmit,

¥

ft~>allow_periodic_timer = allov_periodic_timer,
ft->periodic_timer_hz = periodic_timer_hz,
/* fid filled in after fork */

return O,
>
bad_ainit
errno = EINVAL,
return -1,

}

/* scheduling parameters are implicitly inheirited across fork */
int ftask_sched_adjust_self(int policy, int priority)

{

struct sched_param sp,

sp sched_priority = priority,

return (sched_setscheduler(0, policy, &sp)),
¥

/* signal handlers are also inheirited */

/* handler for SIGTERM */
int ftask_register_cleanup_self(void (*cleanup_func) (ant))

{

struct sigaction act,

act sa_handler = cleanup_func,
sigemptyset(kact sa_mask),
act sa_flags = 0,

return(sigaction(FTASK_DELETE_SIG, &act, NULL)),
¥

/* handler for SIGHUP */
i1nt ftask_register_reread_self(void (*reread_func)(int))

{

struct sigaction act,

act sa_handler = reread_func,
sigemptyset(&act sa_mask),
act sa_flags = 0,

return(sigaction(FTASK_REREAD_SIG, &act, NULL)),
}

int ftask_delete(ftask *ft)

{
return (kill(ft->fid, FTASK_DELETE_SIG)),

}

178

https://periodic.timer.hz

APPENDIX E SUPPORT LIBRARIES CODE LISTING

int ftask_destroy(ftask *ft)

{
return (kall(ft->fid, FTASK_DESTROY_SIG)),

}

void ftask_generic_cleanup.func(ant sag)

{
ex1t (EXIT_SUCCESS),

}

int ftask_create(ftask *ft)

{
/* might need to do some setup */
1f (parent_prefork(ft) == -1)

returan -1,

/* first off fork */
switch(ft->fad=fork())

{
case 0 /* child */
break,
case -1 /* err x/
return -1,
default /* parent */
return (parent_postfork(ft)),
}
/* set policy, priority */
1f (ftask_sched_adjust_self(ft->policy, ft->priority) == -1)
{

DTRACE(("ftask_sched_adjust_self failed for %d\n",
getpad())),
goto faal,

/* (zre)set all signal handlers possibly
* messed with to the default */

1f (ftask_register_cleanup_self(SIG_DFL) == -1)

{
DTRACE(("reseting cleanup failed for %d\n", getpid())),
goto fail,

¥

1f (ftask_register_reread_self(SIG_DFL) == -1)

{
DTRACE(("reseting reread failed for %d\n", getpid())),
goto fail,

¥

/* even 1f a cleanup routine 1sn’t requested for a
* periodic timer task, add ome that just calls exat(),
* this lets the atexit() call later on work */
1f ((ft->cleanup_func == NULL) && ft->allow_periodic_timer)
ft->cleanup_func = ftask_generic_cleanup_func,

/* same for triggers */
1f ((ft->cleanup_func == NULL) && ft->allow_trigger)
ft->cleanup_func = ftask_generic_cleanup_func,

179

APPENDIX E SUPPORT LIBRARIES CODE LISTING 180

/* register the cleanup function, 1f applicable */
1f (ft->cleanup_func)

{
1f (ftask_register_cleanup_self(ft->cleanup_func) == ~1)
{
DTRACE(("ftask_register_cleanup failed for %d\n",
getpid())), -
goto fail,
}
}

/* 1f triggering ability 1s requested */
1f (ft->allow_tragger)

{
1f (trigger_setup(ft) == -1)
DTRACE(("trigger setup failed for %d\n", getpid())),
goto fail,
}
traigger_register_cleanup(),
}
1f (ft->allow_periodic_timer)
{ '
int current_hz = timer_get_timer_hz(),
int div = current_hz / ft->periodic_timer_hz,
1f (div <= 0)
{
/* req hz > current hz, or current_hz fail */
/* increasing the timer freq not supported (yet) */
DTRACE(("bad div for %d\n", getpid())),
goto fail,
}
1f (getuid() '= 0) /* don’t even attempt if not root */
{
DTRACE(("you must be root to attach to the timer\n")),
goto fail,
}
1f (timer_hint_attach(div) == -1)
{
DTRACE(("tamer_hint_attach failed for %d\n",
getp1d())),
goto fail,
}
timer_register_cleanup(),
}

/* call the start routine */
1f (ft->start_func)
ft->start_func(ft->start_func_arg),

/* shouldn’t return, but call cleanup 1f available */
1f (ft->cleanup_func)

{

ft->cleanup_func(0),

https://current.hz

APPENDIX E SUPPORT LIBRARIES CODE LISTING

}

ex1t (EXIT,.SUCCESS), /* task complete successful */

fail
/* should print some message */
DTRACE(("ftask_create reached \"fail\" mark\n")),
ex1t (EXIT_FAILURE),
return -1, /* keep compiler happy */
}
int ftask_wait_on_tasks(ftask #*ret)
{
int status,
ret->fid = wait(&status),
return status,
}
/* more like similar */
int ftask_same(ftask *first, ftask *second)
{
1f (farst->fid == second->fid)
return 1,
return 0,
}
[k Hokk kkok Ak sk A ko ok ok sk R kR ok sk ko

E.2.7 ftask_time.c

#1fdef __QNX__

#include <sys/time h> /* nanosleep */
#else

#include <time h>

#endaf

#include <time h> /* clock_gettime */
#anclude "ftask h"

double ftask_gettime(void)

{

struct timespec ts,

clock_gettime (CLOCK_REALTIME, &ts),

return ((double)ts tv_sec + (double)(ts tv_nsec)/1000000000 0),
}

int ftask_delay(double sec)
{

struct timespec ts,

ts tv_sec = (time_t)sec, /* trunc */
ts tv.nsec =(time_t)((sec - (double)ts tv_sec)*1000000000 0),

return(nanosleep(&ts, NULL)),

181

APPENDIX E SUPPORT LIBRARIES CODE LISTING 182

E.2.8 timer._gnx.c

/* timer_qmx c */

#include <stdlib h> /* atexat */

#include <sys/irqinfo h> /* qnx_hint_attach */
#include <sys/proxy h> /* qnx_proxy_attach */
#include <sys/osinfo h> /* qnx_osinfo */
#include <sys/kernel h> /* FP_SEG, Receive */
#include <time h> /* qnx_ticksize */

#include “ftask h"
#include "ftask_private h"
#include "timer_gnx_pravate h"

#define FTASK_TIMER_IRQ 0 /% 386 pc timer interrupt */
/* a hardware interrupt handler, must be compiled

* with "-zu -Wc,-s" in the CFLAGS */

static volatile unsigned irqcounter = 0,
static volatile unsigned timer_ticks,
static pid_t timer_proxy,

static int qnx_interrupt_id,

#pragma off(check_stack),

pid_t far timer_inthandler(voad)

{
++1rqcounter,
1f (1rqcounter == timer_ticks)
{ -
irqcounter = 0,
return timer_proxy, _—
¥
return 0,
}

#pragma on(check_stack),

/* APIentry */
int ftask_periodic_timer_block(void)

{
return(Receive(timer_proxy, 0, 0)),
}
int timer_bkint_attack(ant davisor)
{
/* get a proxy */
1f ((timer_proxy=qnx_proxy._attach(0,0,0,-1)) == -1)
return -1,

tamer_ticks = divasor,

/* attach handler to hardware interrupt */

1f ((gnx_interrupt_id=qnx_haint_attach(FTASK_TIMER_IRQ,
&timer_inthandler, FP_SEG(&irgcounter))) == -1)
return -1,

return O,

APPENDIX E SUPPORT LIBRARIES CODE LISTING 183

}
void timer_hint_detach(void)
{
gnx_hint_detach(qnx_interrupt_id),
gnx_proxy_detach(timer_proxy),
}
int timer_get_timer_hz(void)
{
struct _osinfo osai,
unsigned usec,
1f (gnx_osinfo(0, (struct _osinfo *)&osi) == -1)
return -1,
usec = (unsigned)osi tick_size,
return (ant)(1000000¥ / usec),
}
#i1f O

/* this 1s a bad function, processes shouldn’t
* arbitrarily mess with the timer tick */
int ftask_set_timer_hz(aint hz)

{
long nsec,
nsec = 1000000000L / (long)hz,
/* standard ticksizes 5, i, 2, 5, 10, 25, 50, 55 ms
* 2000,1000,500,200,100, 40, 20, 18 2 Hz */
1f (qnx_tacksize(nsec, _TICKSIZE_STANDARD) == -1)
return -1,
return O,
}
#endaf

void timer_register_cleanup(void)

{
/* there should be a better way to do this make
* sure that the interrupt handler 1s released
* before the task exits */
atexit(timer_hint_detach),

}

E.2.9 trigger_pipe.c

#include <unistd h> /* pipe, read, write */
#include <stdlib.h> /* atexit *x/

#include <erxrno h>

#include "ftask h"

#include "ftask_private h"

static int readfd,

APPENDIX E SUPPORT LIBRARIES CODE LISTING

int parent_prefork(ftask *ft)

{
/* 1nitialize pipe */
return(pipe (ft->pipefds)),

}

int parent_postfork(ftask *ft)

{
/* give child a chance to run */
sched_yi1eld(),
/* parent doesn’t use reader side */
return (close(ft->pipefdsf0])),

}

int trigger_setup(ftask *£t)

{
readfd = ft->pipefds[0],
/* child doesn’t use writer side */
return (close(ft->pipefds(1])),

}

/* APIentry */
int ftask_trigger(ftask *ft)

{
int msg = 0,
1f (ft->allow_trigger)
{
1f (write(ft->pipefds[1], &msg, sizeof(msg)) == -1)
return -1,
return 0,
}
errno = EINVAL,
return -1,
}

/* APIentry */
int ftask_trigger_block(void)

{
int msg,
1f (read(readfd, &msg, sizeof(msg)) == -1)
return -1,
return O,
}

void trigger_detach(void)

}

close(readfd),

void trigger_register_cleanup(void)

atexit(trigger_detach),

184

APPENDIX E SUPPORT LIBRARIES CODE LISTING 185

E.2.10 trigger_gnx.c

#include <sys/proxy h> /* qux_proxy_attach */
#include <sys/kernel h> /* FP_SEG, Receive, Send */
#include <unistd h> /* getppid */

#include <stdlib h> /* atexit */

#include <errno h>
#include “"ftask h"
#include "ftask_private h"

static pad_t trig_proxy,
int parent_prefork(ftask *ft)
{
/* nothing */
return 0,
¥
int parent_postfork(ftask *ft)

1f (ft~>allow_traigger)

{
/* wait for the proxy number from child */
1f (Receive(ft->fid, (void *)&trig_proxy,
sizeof(trag_proxy)) == -1)
return -1,
ft->trig proxy = trig_proxy,
/* send back a null reply (0K) =/
1f (Reply(ft->fad, NULL, 0) == -1)
return -1,
¥
return 0,
¥
int trigger_setup(ftask *ft)
{
/* get a proxy */
1f ((trig_proxy = gnx_proxy_attach(0,0,0,~1)) == -1)
return -1,
/* let the parent know the proxy number, so that it
* can traigger later */
Send(getpp1d(), (void *)&trig _proxy, NULL,
sazeof (trag_proxy), NULL),
return O,
¥

/% APIentry x/
int ftask_trigger(ftask *ft)

{
1f (ft->allow_trigger)
{
return (Tragger(ft->trig_proxy)),
¥

errno = EINVAL,
return -1,

APPENDIX E SUPPORT LIBRARIES CODE LISTING 186

}

/* APlentry */
int ftask_trigger_block(void)
{

return(Receive(trig_proxy, 0, 0)),
}

void traigger_detach(voad)

aqnx_proxy._detach(trig_proxy),
}

void trigger_register_cleanup(voad)

atexat(trigger_detach),

E.2.11 trigger_sig.c

#include <signal h>
#include <errno h>
#include "ftask h"
#include "ftask_pravate h"

int parent_prefork(ftask *unused)

{
/* nothing */
return O,
}
int parent_postfork(ftask *unsused)
{
/* give child a chance to run */
sched_y1eld(),
sched_y1eld(),
sched_y1eld(),
sched_yield(),
return O,
}
void ftask_null_handler(ant 1gnored)
{
/* null handler, just return */
}

int trigger_setup(ftask *unused)

struct sigaction act,
sigset_t block_these,

sigemptyset (&block_these),
sigaddset (&block_these, FTASK_TRIGGER_SIG),
sigprocmask(SIG_BLOCK, &block_these, NULL),

act sa_handler = ftask_null_handler,
sigemptyset (kact sa_mask),
act sa_flags = 0,

return(sigaction(FTASK.TRIGGER_SIG, &act, NULL)),

APPENDIX E SUPPORT LIBRARIES CODE LISTING

}

/* APlentry */
int ftask_trigger(ftask *ft)

{
1f (ft->allow_trigger)
return (ki1ll(ft->fid, FTASK_TRIGGER_SIG)),
errno = EINVAL,
return -1,
}

/% APIentry */
int ftask_trigger_block(void)

{
/* this complication allows the trigger signal to
* be blocked, that 1s 1t won’t interrupt the
* task until 1t calls ftask_trigger_ block() */
sigset_t s,
sigemptyset(&s),
return(sigsuspend(&s)),
}

void trigger_register_cleanup(void)

{
/* nothing here */

}

Appendix F

User Interface Code Listing

F.1 vfd: Vacuum Flourescent Display program

F.1.1 Makefile

cc

DEFINES
INCLUDES
QUIET

OPTS

DEBUG
CFLAGS

LIBS

LIBS
LDFLAGS
LIBS_CONFIG
LIBS_CONFIG
LDFLAGS_CONFIG
FILES
FILES_CONFIG
0BJS
0BJS_CONFIG
ouT
OUT_CONFIG
DEPEND
BINDIR
CGI_BINDIR

all

$(0UT)

$(0UT_CONFIG)

install

dep

W on

+
)

+
n

LU I | [| | 1 Y | B [}

cc

-I /labfclient -I /cgi/labega

-Q -wx

-Orailnextm -4r -fp3 -fpi87

#-g

$(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
-L /labfclient

~-lfclient

$(QUIET) $(LIBS)

-L /cgi/labega -L /labfclient

-lcgas -lfclient

$(QUIET) $(LIBS_CONFIG)

vid.c
vidconfig ¢
$(FILES c= o)
$(FILES_CONFIG
vid

vidconfig cgi
makedepend
/opt/fcar/bin/
/usr/local/apache/cga-ban/

c= o)

$(0UT) $(OUT_CONFIG)

$(0BJS)

$(CC) $(LDFLAGS) $~ -o $Q

$(0BJS_CONFIG)
$(CC) $(LDFLAGS_CONFIG) $~ -o $€

$(0UT) $(OUT_CONFIG)
cp -f $(0UT) $(BINDIR)
cp -f $(OUT_CONFIG) $(CGI_BINDIR)

$ (DEPEND) -- $(CFLAGS) -D__QNX__ ~-- $(FILES) $(FILES_CONFIG)

188

APPENDIX F USER INTERFACE CODE LISTING

clean

$(RM) $(0UT) $(OUT_CONFIG) $(0BJS) $(OBJS_CONFIG) * err

F.1.2 vfd.h

/* vid h */

#1fndef VFD_INCLUDED
#define VFD_INCLUDED

#define VFD_DEVICE
#define VFD_SHM_NAME

#define MAX_DESC_LEN

struct vid_config

{

"//1/dev/serl" /¥ qnx node 1 == octagon hardware */
"vfd_shared_mem"

32 /* maximum description label length */

char bignum[MAX_DESC_LEN],
char rowl[MAX_DESC_LEN],
char row2[MAX_DESC_LEN],
char row3[MAX_DESC_LEN],
char row4[MAX_DESC_LEN],

1,

#define DEFAULT_BIG
#define DEFAULT_ROW1
#define DEFAULT_ROW2
//#define DEFAULT_ROW2
#define DEFAULT_ROW3
#define DEFAULT_ROW4

struct vid_screen

{

int bignum_value,

"vehicle_speed"
IISUCII
"1FuelPressure'
"vehicle_distance”
"mode"
"1BattPackVoltage"

int rowl_value,
int row2_value,
int row3_value,
int row4_value,
char *bignum_label,
char *rowl_label,
char *row2_label,
char *row3_label,
char *rowd_label,

}l

#define SOC_VALUE
#define SOC_LABEL

(1nt) (100 * s->cv([s->active] SOC)
|l'/' SUC"

#define vehicle_speed_VALUE (1nt)s->cv[s~>active] vehicle_speed
#define vehicle_speed_LABEL " mph *

#define vehicle_distance VALUE (ant)s->cv[s->active] vehicle_distance
#define vehicle_distance_LABEL * dast"

#define energy_level _VALUE (1nt) (100 * s->cv[s->active] energy_level)
#define energy_level _LABEL "4 En "

#define mode_VALUE
#define mode_LABEL

(1nt) (s->cv[s->active] mode)
" modell

#define 1EmMotorSpeed_VALUE (1nt) (s->analog[s~>active] in 1EmMotorSpeed)

APPENDIX F USER INTERFACE CODE LISTING

#define

#defaine
#define

#define
#defane

#define
#defane

#define
#define

#define
#define

#defaine

#define

#defane
#define

#define
#define

#define

1EmMotorSpeed _LABEL

1GenMotorSpeed VALUE
1GenMotorSpeed _LABEL

1IceEngineSpeed VALUE
1IceEngineSpeed LABEL

1AccelPedallevel _VALUE
1AccelPedallevel LABEL

1BrakePedallLevel _VALUE
1BrakePedallevel LABEL

1ActualEmTorque_VALUE
1ActualEmTorque_LABEL

1FuelPressure_VALUE
1FuelPressure_LABEL

1EmCurrent_VALUE
1EmCurrent_LABEL

1GenCurrent VALUE
1GenCurrent_LABEL

1BattPackTemp VALUE

/* asci1 es-sett translates to

#defane

#define
#defane

#define
#define

#defane
#defane

#define
#define

#define
#define

#define
#defane

#defane
#define

#defane
#define

#defane
#defaine

#defane
#defane

1BattPackTemp_LABEL

1BattPackVoltage VALUE
1BattPackVoltage LABEL

1BattPackCurrent_VALUE
1BattPackCurrent LABEL

1EmRotorTemp_VALUE
1EmRotorTemp_LABEL

1EmInvTemp_VALUE
1EmInvTemp_ LABEL

1TpsFeedback_VALUE
1TpsFeedback_LABEL

oGenSpeedReq_VALUE
oGenSpeedReq _LABEL

oGenRegenLamit_VALUE
oGenRegenLlimit_LABEL

oEmAccelReq_VALUE
oEmAccelReq_LABEL

oEmBrakeReq_VALUE
oEmBrakeReq_LABEL

oIceThrottlePos_VALUE
oIlceThrottlePos_LABEL

"TmRPM"

(ant) (s->analog[s->actave] 1n 1GenMotorSpeed)
“GnRPM"

(1nt) (s->analog[s->active] 1n 1IceEngineSpeed)
IIEnRPM“

(1nt)(s->analogls->active] in 1AccelPedallevel)
ll./. APS"

(1nt) (s->analog[s->active] in 1BrakePedallevel)
II% BPS"

(1nt) (s->analog[s->active] an 1ActualEmTorque)
"TmN-m"

(ant) ((s->analog[s->active] in 1FuelPressure)\
*100 OF/3600 OF)
" "/. CNG L

(ant) (s->analog[s->active] in 1EmCurrent)
IIA mll

(1nt) (s->analog[s->actave] ain 2GenCurrent)
IIA Genll

(ant) (s->analog[s->active] 1in 1BattPackTemp)
a degree symbol in the vid */
"c Bt "

(1nt) (s->analog[s->active] 1n 1BattPackVoltage)
Y bus"

(1nt) (s->analog[s->active] in iBattPackCurrent)
"A bus"

(2nt) (s->analog[s->active] 1in 1EmRotorTemp)
llc Rt n

(1nt) (s->analog[s->actave] 1n 1EmInvTemp)
Ilc It n

(1nt) (100 * s->analogl[s->active] in 1TpsFeedback)
Il'/. TPS“

(a2nt) (s->analogls->active] out oGenSpeedReq)
llrpm Gll

(ant) (100 * s->analogl[s->active] out oGenSpeedReq)
ll./. rgnll

(2nt) (100 * s->analog[s->active] out oEmAccelReq)
ll./l aTmll

(ant) (100 * s->analog[s->active] out.oEmBrakeReq)
L1} % bTm"

(1nt) (100 * s->analog[s->active] out olceThrottlePos)
ll’/. thrll

190

APPENDIX F USER INTERFACE CODE LISTING 191

#define oDisSpeedoO_VALUE (ant) (s->analog[s->active] out oDisSpeedo0)
#define oDisSpeedoO_LABEL " Spdo"
#define oDisSpeedol_VALUE (ant)(s->analog[s->active] out oDisSpeedol)
#define oDisSpeedol_LABEL " Spdi”

#define LOOKFOR(what, where) \
1f (strcmp(v->where, #what) == 0) \
{ \
vs where##_value = what##_VALUE, \
vs where##_label = what##_LABEL, \
}

#define LOOKFORBIG()
LOOKFOR(SOC, bagnum) else
LOOKFOR(vehicle_speed, bignum) else
LOOKFOR(energy_level, bignum)

Eaid

#define LOOKFORROW(row)

LOOKFOR(SOC,row) else
LOOKFOR (mode , row) else
LOOKFOR(vehicle_speed,row) else
LOOKFOR(vehicle_dastance,row) else
LOOKFOR(energy_level,row) else
LOOKFOR (1EmMotorSpeed, row) else
LOOKFOR (1GenMotorSpeed,row) else

LOOKFOR(1IceEnganeSpeed,row) else
LOOKFOR(1AccelPedallevel,row) else
LOOKFOR(1BrakePedalLevel,row) else
LOOKFOR (1ActualEmTorque, row) else

PR i i i i R i P g il PP P e Y

LOOKFOR(1FuelPressure,row) else
LOOKFOR(1EmCurrent,row) else
LOOKFOR(2GenCurrent,row) else
LOOKFOR(1BattPackTemp,row) else
LOOKFOR (1BattPackVoltage,row) else
LOOKFOR(1BattPackCurrent,row) else
LOOKFOR(2EmRotorTemp,row) else
LOOKFOR(1EmInvTemp,row) else
LOOKFOR(1TpsFeedback,row) else
LOOKFOR(oGenSpeedReq,row) else
LOOKFOR (oGenRegenLim1t,row) else
LOOKFOR (oEmAccelReq,row) else
LOOKFOR (oEmBrakeReq,row) else
LOOKFOR (oIceThrottlePos,row) else
LOOXFOR(oD1sSpeedo0,row) else

LOOKFOR(oD1sSpeedol,row)

#endaf

F.1.3 wvid.c

/* vid ¢ */
/* control Matrix Orbital Vacuum Fluorescent Display on /dev/serl */

#include <stdio h>

#include <stdlib h> /* ex1t, atox *x/

#include <fcntl h> /* shm_open */

#include <sys/mman h> /* shm_unlink, shm_open, mmap */

APPENDIX F USER INTERFACE CODE LISTING 192

#include <sys/types h> /% ltrunc */
#anclude <sys/stat h> /* umask */

#include <string h> /* memset */

#include <termios h> /* terminal control functions */
#include <unastd h> /* terminal control functions, close */
#anclude <time h> /* nanosleep */

#include <fclient h>
#include "vid h"

/* function prototypes */

void setup_vid.shm(voad),

/* global variables */
static volatile struct vid_config *v,
static volatile struct shared_hw_data *s,

void setup_vfd_shm()

{
int 14, /% temp file descriptor */
/* first get rad of any old segment (2f at exists) */
(vo1d)shm_unlink(VFD_SHM_NAME),
umask(0), /* no assumptions on file creat */
/* create shared memory object */
/* note mode rw-rv-rw (0666) so that the cgr config
* program can change variable even as a non-privileged user */
fd = shm_open(VFD_SHM_NAME, O_RDWR | O_CREAT, 06686),
1f (fd == ~-1) die("shm_open"),
/* set the shared memory object size */
1f (ltrunc(fd, sizeof(struct vid_config), SEEK_SEI) == -1)
die("ltrunc"),
/* map memory object to local space */
v = mmap(0, sizeof(struct vid_config),
PROT_READ | PROT_WRITE | PROT_NOCACHE,
MAP_SHARED, £d, 0),
1f (v == (voad *)-1) die("mmap"),
/* cleanup */
1f (close(fd) '= 0) die(“"close"),
/* this would be nice i1f it works
* unlink the shared mem segment, but 1t doesn’t really
* go away until its reference count 1s zero, that 1is,
* when this program exits */
/* 1f (shm_unlink(VFD_SHM_NAME) '=0) die("shm_unlink"), */
/* update doesn’t work */
/* 1nitialize the segment to zero */
memset ((void *)v, 0, sizeof(struct vid_config)),
}

int main(ant arge, char *argv[])

{
FILE *vidout, /* serial port */

APPENDIX F USER INTERFACE CODE LISTING

int vid_fd, /* file descriptor */
struct termios attr, /* serial port terminal attributes */
speed_t speed, /* serial port baud rate */

struct vid_screen vs,

/* setup our psuedo-private shared memory segment */
setup_vfd_shm(),

notice("vfd shm setup done"),

/* put default values in the vfd shared mem */
stracpy(v->bignum, DEFAULT_BIG, MAX_DESC_LEN),
strncpy(v->rowl, DEFAULT_ROW1, MAX_DESC_LEN),
strncpy(v->row2, DEFAULT_ROW2, MAX_DESC_LEN),
strncpy(v->row3, DEFAULT_ROW3, MAX_DESC_LEN),
strancpy(v->row4, DEFAULT_ROW4, MAX_DESC_LEN),

/* open the public fcar shared memory segment */
1f ((s = fclient_open_shm(0_RDONLY)) == NULL)
die("fclient_open_shm(0_RDONLY)"),

notice("attached to fcar shm ok"),

/* open the serial port to which the vfd is attached */
1f ((vfdout = fopen(VFD_DEVICE, "w")) == NULL) die("fopen"),
1f ((vfd_fd = fileno(vfdout)) == -1) die("fileno"),

/*** setup the serial port #**/
/* get current settings */
1f (tcgetattr(vid_fd, &attr) == -1) die("tcgetattr"),

/* change the speed */

speed = B19200,

1f ((cfsetispeed(&attr, speed) || cfsetospeed(fattr, speed)) '=0)
die("cfsetxspeed"),

/* terminal changes happen immediately */
1f (tcsetattr(vid_fd, TCSANOW, &attr) == -1) die(“"tcsetattr"),

/*** done with serial port setup **x/
notice("serial setup done"),

/* clearscreen, large characters on */
fprantf (vidout, "Ycc/c", ’\f’, Oxfe, ’n’),

while(s->cv{s->active] running) /+ fcar control process 1s runming */
{

int tens, ones, /* for big numbers */

struct timespec t, /* for nanosleep */

t tv_sec = 0,
t tv_nsec = 500000000L, /* half a second refresh rate */

/* bignum */
LOOKFORBIG(),

/% fabs */
1f (vs bignum_valuve < O OF)
vs bignum_value = -vs bignum_value,

193

https://tcsetattr(vfd.fd
https://tcgetattrCvfd.fd

APPENDIX F USER INTERFACE CODE LISTING 194

ones = vs bignum_value 7 10,
tens = (vs bignum_value - ones) / 10,

1f (tens > 9) tens = 0,

/* rous x/

LOOKFORROW(rowl), :
LOOKFORROW(zrow2),

LOOKFORROW(xrow3),

LOOKFORROW(zow4),

/* actually wrate out to the vid */

/* big numbers */

fprintf (vidout, "Ychekelc", Oxfe, ’#’, 1, tens), /* 3 */
fprantf (vidout, "/cichclc", Oxfe, *#’, 4, ones), /* 6 x/

/* go to row 4, column 7, bignum label */
fprantf(vidout, “%ckchelchs",
Oxfe, 'G’, 7, 4, vs bignum_label), /* 5 wide */

/* go to row i, column 12, rowl stuff */
fprintf(vidout, "Ycclelck0 2d%s",
Oxfe, ’G’, 12, 1, vs rowl_value, vs rowl_label),

/* go to row 2, column 12, row2 stuff */
fprantf(vidout, "Jcclhclc’0 2d%s",
Oxfe, ’G’, 12, 2, vs row2_value, vs row2_label),

/* go to row 3, column 12, row3 stuff */
1f (strstr(vs row3_label, "mode") '= NULL)
fprantf(vidout, "Yclclclcisis",
oxfe, ’G’, 12, 3,
(vs row3_value == ZEV_MODE) ? “ZEV"
(vs row3_value == ECON_MODE) ?¢ "HEV"
(vs row3_value == SPORT_MODE) 7 "SPT"
(vs row3_value == REVERSE_MODE) ? "REV"
(vs row3_value == PARK_MODE) 2 "PRK"
(vs row3_value == NEUTRAL_MODE) ? "NEU" neeom,
vs row3_label),
else
fprantf(vidout, "Yclclclck0 2d%s",
Oxfe, °G’, 12, 3, vs row3_value, vs row3_label),

/* go to row 4, column 12, row4 stuff */
fprantf(vidout, "%c%che’ck0 2d%s",
Oxfe, °G’, 12, 4, vs row4_value, vs rowéd_label),

/* done writing */

fflush(vfdout),

nanosleep(&t, NULL), !
}

notice("exating"),
1f (shm_unlink(VFD_SHM_NAME) ‘= 0)
die("shm_unlank"),

return O,

Appendix G

Diagnostic Program Code Listings

G.1 mon: Shared Memory Display Utility
G.1.1 Makefile

cC = cc
DEFINES =
INCLUDES = -I /libfclient
QUIET = -Q -wx
OPTS = -Orailnextm -4r -fp3 -fpi87
DEBUG = #-g
CFLAGS = $(QUIET) $(DEBUG) $(OP1S) $(DEFINES) $(INCLUDES)
LIBS = -L /labfclient
LIBS += ~1lfclient -lncurses
LDFLAGS = $(QUIET) $(LIBS)
FILES = mon ¢ inputs ¢ outputs ¢ cal ¢ mode ¢
0BJS = $(FILES c¢= o)
ouT = mon
DEPEND = makedepend
BINDIR = /opt/fcar/bin/
all $(0UT)
$(oUT $(0BJS)
$(CC) $(LDFLAGS) $~ -o $@
dep
$(DEPEND) -- $(CFLAGS) -D__QNX__ -- $(FILES)
install $(0UT)
cp -f $(0UT) $(BINDIR)
clean

$(RM) $(0UT) $(OBJS) * o * err

G.1.2 mon.h

/* mon h */

#1fndef MON_H
#define MON_H

195

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 196

#include <fclient h>

#define INPUTS_KEY 1’

#define OUTPUTS_KEY ‘o’

#define CALIBRATION_KEY ’c’

#define MODE_KEY ‘m’

#define QUIT_KEY ’q’

#define STATS_LINE LINES-1
#define COL1 0

#define COL2 (COLS/4+3)
#define COL3 (coLs/2)
#define COL4 (COLS*3/4+3)

/* types WA_NORMAL, WA_STANDOUT, WA_UNDERLINE, WA_REVERSE, WA_BLINK,
WA_DIM, WA_BOLD, WA_ALTCHARSET
*/

#define STATS_LINE_ATTR WA_BOLD

/* globals */
extern volatile struct shared_hw_data x*s,

/* function protoypes */

voaid finish(aint),

void show_inputs(void),

voad show_outputs(void),

voaid show_calibration(voad),

void show_mode(void),

void calibration_label(void),

void 1nputs_label(void),

void outputs_label(void),

void mode_label(void), -

#end1f

G.1.3 cal.c

/* cal ¢ */

#include <curses h>
#1nclude "mon h"

#define FIRST_COL(what)
sprintf(buf, #what) ,
mvaddstr(row,COL1,buf),
sprantf(buf, "% O 3f", s->cal what),
mvaddstr (row,COL2,buf),
row++

Pl P

#define SECOND_COL(what)
sprantf(buf, #what) ,
mvaddstr (row,COL3,buf),
sprantf (buf, "% 0 3f", s->cal what),
mvaddstr (row,C0OL4,buf),
row++

P i d

void show_calibration()

{

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 197

int row,
char buf[64],

row = 0,
/* 1nputs */
FIRST_COL(1EmMotorSpeedSen),
FIRST_COL(1EmMotorSpeed0ff),
FIRST_COL(1GenMotorSpeedSen),
FIRST_COL(1GenMotorSpeed0£ff),
FIRST_COL(1IceEngineSpeedSen),
FIRST_COL(1IceEngineSpeed0ff),
FIRST_COL(1AccelPedallLevelSen),
FIRST_COL(1AccelPedallevelOff),
FIRST_COL(1BrakePedallevelSen),
FIRST_COL(1BrakePedalLevelOff),
FIRST_COL(1ActualEmTorqueSen),
FIRST_COL(1ActualEmTorque0ff),
FIRST_COL(1FuelPressureSen),
FIRST_COL(1FuelPressure0ff),
FIRST_COL (1EmCurrentNegSen),
FIRST_COL(1EmCurrentNegOff),
FIRST_COL(1EmCurrentPosSen),
FIRST_COL(1EmCurrentPosOff),
FIRST._COL(1GenCurrentSen),
FIRST_COL(1GenCurrent0Off),
FIRST_COL(1BattPackVoltageSen),
FIRST_COL(1BattPackVoltageOff),
FIRST_COL(1BattPackCurrentSen),
row = 0,
SECOND_COL(1BattPackCurrent0Off),
SECOND_COL (1EmRotorTempSen) ,
SECOND_COL (1EmRotorTempOff),
SECOND_COL (2EmInvTempSen),
SECOND_COL(2EmInvTempOff),
SECOND_COL (1TpsFeedbackSen),
SECOND_COL (2TpsFeedbackOff),

/* outputs */

SECOND _COL (oGenSpeedReqSen) ,
SECOND_COL (oGenSpeedReq0ff),
SECOND_COL (oGenRegenLimitSen),
SECOND_COL(oGenRegenLim1t0ff),
SECOND_COL(oEmAccelRegSen),
SECOND_COL (oEmAccelReq0ff),
SECOND_COL (oEmBrakeRegSen) ,
SECOND.COL(oEmBrakeReqOff),
SECOND_COL(oIceThrottlePosSen),
SECOND_COL(oIceThrottlePos0ff),
SECOND_COL (oD2sSpeedoOAmplatude), /* speedometer based on sine */
SECOND_COL(oD2sSpeedoOPhasedngle),
SECOND_COL(oD1sSpeedolAmplitude),
SECOND_COL (oD1sSpeedoiPhaseAngle),
SECOND_COL (oPwrToDagRacksSen),
SECOND_COL (oPwrToD2gRacks0ff),

return,

G.1.4 inputs.c

/* inputs c */

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

#include <curses h>
#include "mon h"

#define FIRST_COL(what,where)

#define

#defaine
#define

#define
#defane

spraintf(buf, #what) ,
mvaddstr(row,COL1,buf),

sprantf (buf, "d", where what),
mvaddstr(row,COL2,buf),

row++

Pl

SECOND_COL(what,where)

sprintf(buf, #what) ,
mvaddstr(row,COL3,buf),
sprantf(buf, "% 0 3f", where what),
mvaddstr(row,COL4,buf),

row++

Pl

IDIG_FIRST_COL(what) FIRST_COL(what,s->digatal(s~>active] an)
IDIG_SECOND_COL(what) SECOND_COL(what,s->dagitalls->active] in)

IANA_FIRST_COL(what) FIRST_COL(what,s->analog[s->active] in)
IANA_SECOND_COL(what) SECOND_COL(what,s->analog(s->actaive] in)

void show_inputs()

{

int row,
char buf{64],

/* digital */

row = 0,

sprintf(buf, "Digital"), mvaddstr(row++,COL1,buf),
IDIG_FIRST_COL(aPark),

IDIG_FIRST_COL(2Reverse),
IDIG_FIRST_COL(1Neutral),
IDIG_FIRST_COL(1DraiveSport),
IDIG_FIRST_COL(aDraiveEcon),
IDIG_FIRST_COL(1ZEV),

IDIG_FIRST_COL(1Hvac),
IDIG_FIRST_COL(1EmTempWarn),
IDIG_FIRST.COL(1EmControllerReady),
IDIG_FIRST_COL(1EmFaultIndicator),
IDIG_FIRST_COL(2EmOvertempIndicator),
IDIG_FIRST_COL(1GenTempWarn),
IDIG_FIRST_COL(2GenControllerReady),
IDIG_FIRST_COL{(1GenFaultIndicator),
IDIG_FIRST_COL(1GenDirectionIndicatox),
IDIG_FIRST_COL(1IceFaultIndicator), /* 16 */

/* analog */

row = 0,

sprintf(buf, "Analog"), mvaddstr(row++,COL3,buf),
IANA_SECOND_COL (1EmMotorSpeed),
IANA_SECOND_COL(1GenMotorSpeed),
IANA_SECOND_COL(1IceEngineSpeed),
IANA_SECOND_COL(1AccelPedallevel),
IANA_SECOND_COL(1BrakePedalLevel),
IANA_SECOND_COL(1ActualEmTorque),
IANA_SECOND_COL(aiFuelPressure),
TANA_SECOND_COL (1EmCurrent),
IANA_SECOND_COL(1GenCurrent),

198

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

IANA_SECOND_COL(a1BattPackTemp),
IANA_SECOND_COL(i1BattPackVoltage),
IANA_SECOND_COL(aBattPackCurrent),
IANA_SECOND_COL(a1EmRotorTemp),
IANA_SECOND_COL(2EmInvTemp),
IANA_SECOND_COL(1TpsFeedback),

return,

G.1.5 mode.c

/* mode ¢ */

#include <curses h>
#include "mon h"

void show_mode()
{

it row,

row = 0,
mvpraintw(row, COL1, "SOC"),
mvpraintw(row, COL2, "0 3f", s->cv[s->active] SOC), row++,

mvprantw(row, COL1, "SOCcat"),
mvprantw(row, COL2, "is",

(s->cv[s->activel SOCcat == VVH) 7 nyyy"
(s->cv[s->active] S0Ccat == VH) ? nyg

(s->cv[s->active] SOCcat == H) ? g

(s=>cv[s->actave] SOCcat == L) ? npn

(s->cv[s->active] SOCcat == VL) ? wyLe

(s->cv[s->active] SO0Ccat == VVL) ? “yvL" " "), row++,

mvprintw(row,COL1l, "mode"),
mvprintw(row, COL2, “¥%s",

(s->cv[s->active] mode == ZEV_MODE) 7 "ZEV"
(s->cv[s->active] mode == ECON_MODE) 7 WECON"
(s=->cv[s~->active] mode == SPORT_MODE) 7 “SPORT"
(s->cv[s->active] mode == REVERSE_MODE) 7 "REVERSE"
(s->cv[s->active] mode == PARK_MODE) ~ "PARK"
(s->cv[s->active] mode == NEUTRAL_MODE) ? "NEUTRAL"
n" ") R r°H++ ,

mvprintw(row,COL1, "vehicle_speed"),
mvprintw(row, COL2, "% 0 3f", s->cv[s->active] vehicle_speed), rowt++,

mvprantw(row,COL1, "vehicle_distance"),
mvprantw(row, COL2, "} O 3f", s->cv[s-dactive] vehicle_distance); row++,

mvprintw(row,COLl, “energy_level"),
mvprantw(row, COL2, "% O 3f", s->cv[s->active] energy_level), row++,

mvpraintw(row,COL1, "kwh_volts"),
mvprantw(row, COL2, "% O 3f", s->cv[s->actave] kwh_volts), row++,

mvprintw(row,COL1, "kwh_amps"),
mvprintw(row, COL2, "4 O 3f", s->cv[s->active] kwh_amps), row++,

199

mvprintw(row,COL1, "IceReqState"),

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

mvprintw(row, COL2, "%s",
(s->cv[s->active] IceRegState == ON) 7 gN
(s->cv[s->active] IceReqState == QFF) ? “"OFF"

n ||) , Tow+t,

mvpraintw(row,COL1, "IceState"),

mvprintw(row, COL2, "%s",

(s=>cv[s->active] IceState == QON) ? "ON®
(s=->cv[s->active] IceState == OFF) 7 "OFF"
(s->cv[s~>active] IceState == WORKING) ? "WORKING"
(s=>cv[s->active] IceState == DEAD) 7 "DEAD"

L ll) , row++,

mvprintw(row,COL1, "hybrid_regime"),

mvprantw(row, COL2,

ll'/.sll ,

(s->cv[s->active] hybrid_regime == LO_REGIME) ? "LQ"
(s->cv[s->active] hybrid_regime == HI_REGIME) ? “HI"

u ll) , Tow++,

row = 0,

mvprintw(row, COL3,

mvprintw(row, COL4,
s->fcard_rv

mvprintw(row, COL3,
mvprintw(row, COL4,
s->fcard_rv

mvprintw(row, COL3,
mvpraintw(row, COL4,
s=->fcard_rv

mvprantw(row, COL3,
mvprantw(row, COL4,
s->fcard_rv

mvprintw(row, COL3,
mvprintw(row, COL4,
s~>fcard_rv

mvpraintw(row, COL3,
mvpraintw(row, COL4,

mvprantw(row, COL3,
mvprintw(row, COL4,

return,

‘

G.1.6 mon.c
/* mon ¢ *x/
#include <stdio h>

#include <stdlib h>
#include <straing h>

"timer_hertz"),
Il'/.ull .
fcard_hardware_timer_hz), row++,

"manager_prio"),
Il"/.dll ,
fcard_manager_prio), row++,

"hardware_task_prio"),
II'/.d" ,
fcard_hardware_task_prio), rowt++,

"kwh_task_prio"),
ll./.dll N
fcard_kwh_task_prio), row++,

"config_task_prio"),
II'/.dII .
fcard_config_task_prio), row++,

"active pointer"),
njd", s->active), row++,

"total seconds"),
"%u", s->seconds), row++,

200

https://s->fcard.rv
https://s->fcard.rv
https://s->fcard.rv
https://s->fc2ird.rv
https://fcard.hardware.timer.hz
https://s->fcard.rv

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

#include
#include
#1nclude

volatale

<curses h>
<sagnal h>
Ilmon h n

struct shared_hw_data x*s,

void fainish(ant sig)

{
curs_set(1),
endwan(),
ex1t(0),

}

void reinit(int sig)

{
erase(),
refresh(),
endwan(),
imatser(), /* initialize the curses library */
keypad(stdscr, TRUE), /* enable keyboard mappang */
nonl(), /* tell curses not to do NL->CR/NL on output */
cbreak(), /* take input chars one at a time, no wait for \n */
noecho(), /* don’t echo input */
/* leaveok(stdscr, TRUE), */ /* turn off cursor 1f possible */
curs_set(0), /* magic 777 x/
tameout (500), /* getch times out in 500 milliseconds */
return,

}

int main(ant argec, char *argv(])

{

voad (*last)(voad), /*
void (*last_label)(voad),

pointer to function that displays stuff */

(vo1d)sagnal (SIGINT, finash), /% goto finish on ctrl-c */
(voi1d)signal(SIGTERM, finish), /* goto finish on terminate */
(voad)signal (SIGWINCH, reinit), /* reinit on window size change */

1f (arge == 2)

{

/* catch the unique part */

1f (strstr(argv[i],

"c") 1= NULL)

last = show_calibration,

= calibration_label,

else 1f (strstr(argv[i], "in") '= NULL)

last = show_inputs,

= ainputs_label,

else 1f (strstr(argv[i], “out") '= NULL)

last = show_outputs,

= outputs_label,

else 1f (strstr(argv(1], "m") '= NULL)

last = show_mode,
last = mode_label,

{

last_label
>
{

last_label
>
{

last_label
>
{
}

201

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

else
{
prantf("Usage s [calibration|inputs|outputsimode]\n",
argv[0]),
ex1t(1l),
¥
¥
else
{
last = show_mode, /* default */
last_label = mode_label,
¥

/* open fcar shared mem */
1f ((s = fclient_open_shm(0O_RDONLY)) == NULL)

{

perror("fclient_open_shm_ro"),

ex1t(1),
}
initser(), /* 1nitialize the curses library */
keypad(stdscr, TRUE), /* enable keyboard mapping */
nonl(), /* tell curses not to do NL->CR/NL on output */
cbreak(), /* take input chars ome at a time, no wait for \n */
noecho(), /* don’t echo imput */
/* leaveok(stdscr, TRUE), */ /* turn off cursor 1f possible */
curs_set(0), /* magic 7?7 x/
tameout (500), /* getch times out in 500 milliseconds */
while(s)
{

erase(),

last(),

last_label(),

refresh(),

switch(getch())

{

case INPUTS_KEY
last = show_inputs,
last_label = inputs_label,
break,

case OUTPUTS_KEY
last = show_outputs,
last_label = outputs_label,
break,

case CALIBRATION_KEY
last = show_calibration,
last_label = calibration_label;
break;

case MODE_KEY
last = show_mode,
last_label = mode_label,
break,

case KEY_LEFT
1f (last == show_calibration)
{

last = show_mode,
last_label = mode_label,

}
else 1f (last == show_mode)

{

202

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 203

last = show_outputs,
last_label = outputs_label,

}
else 1f (last == show_outputs)
{
last = show_inputs,
last_label = inputs_label,
}
else 1f (last == show_lnputs)
{
last = show_calibration,
last_label = calibration_label,
}
break,
case KEY_RIGHT
1f (last == show_calibration)
{
last = show_inputs,
last_label = anputs_label,
}
else 1f (last == show_mode)
{
last = show_calibration,
last_label = calibration_label,
}
else 2f (last == show_outputs)
{
last = show_mode,
last_label = mode_label,
}
else 1f (last == show_inputs)
{
last = show_outputs,
last_label = outputs_label,
} —_
break,
case QUIT_KEY
fanish(0),
default
break,
}
}
/* doesn’t get here */
finish(0),
return O,

}

void calibration_label()
i

ant len,

char buf[80],

attron(STATS_LINE_ATTR),

len = sprantf(buf,"¥c - calibration", CALIBRATION_KEY),
mvaddstr (STATS_LINE,O,buf),

attroff (STATS_LINE_ATTR),

sprantf(buf, " Y%c - inputs Jc - outputs Y%c - mode Y%c - quit",
INPUTS_KEY, OUTPUTS_KEY, MODE_KEY, QUIT_KEY),
mvaddstr (STATS_LINE,len,buf),

APPENDIX G. DIAGNOSTIC PROGRAM CODE LISTINGS

voad 1nputs_label()

{

1

ant len, 1,
char buf[80],

len = sprantf(buf,"yc - calibration *, CALIBRATION_KEY),
mvaddstr (STATS_LINE,O,buf),

attron(STATS_LINE_ATTR),

1 = sprantf(buf,"’c - anputs", INPUTS_KEY),
mvaddstr (STATS_LINE, len, buf),

len += 1,

attroff(STATS_LINE_ATTR),

sprantf(buf," Zc - outputs Jc - mode Y%c - quit",
OUTPUTS_KEY, MODE_KEY, QUIT_KEY),
mvaddstr (STATS_LINE, len, buf),

void outputs_label()

{

}

ant len, 1,
char buf[80],

len = sprantf(buf,"’c - calibration Y%c - inputs ",
CALIBRATION_KEY, INPUTS_KEY),
mvaddstr (STATS_LINE,O,buf),

attron(STATS_LINE_ATTR),

1 = sprantf(buf,"’c - outputs", OUTPUTS_KEY),
mvaddstr (STATS_LINE, len, buf),

len += 1,

attroff (STATS_LINE_ATTR),

sprantf (buf," %c - mode Y%c - quat",
MODE_KEY, QUIT_KEY),
mvaddstr (STATS_LINE, len, buf),

voad mode_label()

{

int len, 1,
char buf[80],

len = sprantf(buf,"/c - calibration %c - inputs %c - outputs
CALIBRATION_KEY, INPUTS_KEY, OUTPUTS_KEY),
mvaddstr (STATS_LINE,OQ,buf),

attron(STATS_LINE_ATIR),

1 = sprantf(buf,"%c - mode", MODE_KEY),
mvaddstr (STATS_LINE, len, buf),

len += 1,

attroff (STATS_LINE_ATTR),

sprantf(buf," %c - quat", QUIT_KEY),
mvaddstr (STATS_LINE, len, buf),

204

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

G.1.7 outputs.c

/* anputs c */

#include <curses h>
#include "mon h"

#define

#define

#define
#define

#define
#define

FIRST_COL(what,where)
sprintf (buf, #what) ,
mvaddstr (row,COLY,busf),
sprantf(buf, "/d", where what), \
mvaddstr(row,COL2,buf), \

rowt++

PP ed

SECOND_COL (what ,where) \
sprantf(buf, #what) , \
mvaddstr (row,COL3,buf), \

sprantf(buf, "% O 3f", where what), \
mvaddstr(row,COL4,buf), \

row++

O0DIG_FIRST_COL(what) FIRST_COL(what,s->digital(s->active] out)
0DIG_SECOND_COL (what) SECOND_COL (what,s->digital[s->active] out)

OANA_FIRST_COL(what) FIRST_COL(what,s->analogls~->active] out)
OANA_SECOND_COL (what) SECOND_COL (what ,s->analog[s->active] out)

voad show_outputs()

{

int row,
char buf[64],

/* digital */

row = 0,

sprintf(buf, "Digital"), mvaddstr(row++,COL%,buf),
ODIG_FIRST_COL(oIceStarter),
ODIG_FIRST_COL(oTecEnable),
ODIG_FIRST_COL(oEmEnable),
ODIG_FIRST_COL(oEmDirection),
ODIG_FIRST_COL(oGenEnable),
ODIG_FIRST_COL(oPwrSteeringEnable),
0DIG_FIRST_COL(oThrottlePwrCycle),
0DIG_FIRST_COL(oSmartChargerEnable),

/* analog */

row = 0,

spraintf (buf, "Analog"), mvaddstr(row++,COL3,buf),
OANA_SECOND_COL (oGenSpeedReq) ,
OANA_SECOND_COL (oGenRegenLimit),
OANA_SECOND_COL(oEmAccelReq),
OANA_SECOND,.COL (oEmBrakeReq) ,
DANA_SECOND_COL(oIceThrottlePos),
OANA_SECOND_COL(oD1sSpeedo0),
OANA_SECOND_COL(oD1sSpeedol),
OANA_SECOND_COL (oPwrToDigRacks),

return,

205

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

G.2 flogger: Data Logging Utility
G.2.1 Makefile

cc = cc
DEFINES =
INCLUDES = -I /laibfclient
QUIET = -Q -wx
OPTS = -Orailnextm -4r -fp3 -{pa87
DEBUG = #-g
CFLAGS = $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
LIBS = -L /libfclient
LIBS += -1fclient
LDFLAGS = $(QUIET) $(LIBS)
FILES = flogger ¢
0BJS = $(FILES c= o)
ouT = flogger
DEPEND = makedepend
BINDIR = /opt/fcar/bain/
all $(ouT)
$(0UT) $(0BJS)
$(CC) $(LDFLAGS) $~ -o %0
dep
$(DEPEND) -- $(CFLAGS) -D__QNX__ -~ $(FILES)
install $(0UT)
cp -f $(0UT) $(BINDIR)
clean

$(RM) $(0UT) $(DBJS) * o * err

G.2.2 flogger.c

#include <stdio h> /* prantf */
#include <stdlad h> /* exat x/

#1nclude <fclient h> /* shared mem */
#include <time h> /* timestamp stuff */
#include <unistd h> /* sleep, getopt */
#include <string h> /* strdup, memcpy */
#include <time h> /* nanosleep */
#define DEFAULT_LOGFILE "flogger log"

#define DEFAULT_UPDATE 1 OF

#define DEFAULT_FLUSHCOUNT 10

struct logvalues

{
char tbuf[64],
struct calculated_values cv,
struct digital_hardware digital,
struct analog_hardware analog,
}l

/* global variables */
volatile struct shared_hw_data x*s,

206

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 207

/% function prototypes */
void usage(char x),

void usage(char *p)

{
prantf("Usage Js [-1 logfile] [-f flushtime] [-u update]\n",p),
prantf(" defanlts are \n"),
printf (" logfile ~ %s\n", DEFAULT_LOGFILE),
printf (" flushcount -~ %d updates\n", DEFAULT_FLUSHCOUNT),
prantf (" update - %f seconds\n", DEFAULT_UPDATE),
ex1t(1),

}

int dump_log(char *filename, struct logvalues *1, int count, int headers)

it 1,

FILE *f,

f = fopen(filename, “a"),

1f (f == NULL) dize(“fopen"),

1f (headers)
{
/* print headers */
fprintf(f,"tame," "SOC," "mode,"
“vehicle_speed," "vehicle_distance," "energy_level,"
"kwh_volts," "kwh_amps," "hybrid_regime,"),

fprintf(f,"shifter," "iHvac," "1EMTempWarn,"
"1EMControllerReady," "i1EMFaultIndicator,"
"1EmOvertempIndicator," "iGenTempWarn,"
"1GenControllerReady," "i1GenFaultIndicator,"
"1GenDarectionIndacator," “"aIceFaultIndicator,"),

fprantf(f,"olceStarter,” "oTecEnable," "oEmEnable,"
"oEmDarection," "oPwrSteeringEnable,"
"oThrottlePwrCycle," "oSmartChargerEnable,"),

fprintf(f,"1EmMotorSpeed," "iGenMotorSpeed," "i1IceEngineSpeed,"
"i1AccelPedallevel," "iBrakePedalLevel,"
"1ActualEmTorque,”" "iFuelPressure," "iEmCurrent,”
"1GenCurrent," "iBattPackTemp," "1BattPackVoltage,"
"1BattPackCurrent," "1EmRotorTemp," "1EmInvTemp,"
"1TpsFeedback, "),

fprantf(f,“oGenSpeedReq," "oGenRegenLimit," “oEmAccelReq,"
"oEmBrakeReq," "oIceThrottlePos," "oDisSpeedo0,"
“oD1sSpeedol," "oPwrToDigRacks\n"),
}

for (1=0,1<count,1++)

{

/* print out the data */

fprantf (£, s, A, %s, %, AL, 4E %L, %L, s, ",
1[1] tbuf,

1[1] <v SOC,

(1[2] cv mode == ZEV_MODE) * "ZEV"
(1{1] cv mode == ECON_MODE) ? "ECON"
(1{1] cv mode == SPORT_MODE) ? "SPORT"

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 208

(1[1] cv mode == REVERSE_MODE) ? "REVERSE"
(1[1] cv mode == PARK_MODE) ? "PARK"
(1[1] cv mode == NEUTRAL_MODE) ? "NEUTRAL" "unknown",

1[1] cv vehicle_speed,

1[1] cv vehicle_distance,

1[1] cv energy_level, -

1[1] cv kwh_volts,

1[1] cv kwh_amps,

(1[2] cv hybrad_regime == LO_REGIME) ? "LO_REGIME"
(1[1] cv hybrid_regime == HI_REGIME) ? "HI_REGIME"
"unknown"),

fprintf (£, ")s,%u, %u, %, %u, %, due, %, %u, Yu, %u, ",
(1[1] dagatal in 1Park) ? "Park"

(1[1] dagatal in 1Reverse) ? “"Reverse"

(1[1] digatal an iNeutral) ? "Neutral”

(1[1] dagatal in 1DraveSport) ? "DraveSport"
(1[a1] dagatal in iDraveEcon) ? “"DraiveEcon"
(1[1] dagatal an 1ZEV) ? "ZEV" "unknown",
1[1] dagatal an iHvac,

1[1] dagatal an 1EmTempWarn,

1[1] dagatal an 1EmControllerReady,

1[1] dagatal an iEmFaultIndicator,

1[1] dagatal in 1EmOvertemplndicator,

1[1] dagatal in 1GenTempWarn,

1[1] dagatal in 1GenControllerReady,

1[1] dagatal an iGenFaultIndicator,

1[1] dagatal in iGemDarectionlndicator,

1[1] dagaital in 1IceFaultIndicator),

fprantf (£, "%u, %, 4w, %u, %u, %, fn, ",
1[1] daigatal out oIceStarter,

1[1] digatal out oTecEnable,

1[1] dagatal out oEmEnable,

1[1] daigatal out oEmDarection,

1[1] digatal out oPwrSteeringEnable,
1[1] dagaital out oThrottlePwrCycle,
1[1] dagatal out oSmartChargerEnable),

fprantf(f,"%E, %, %E, UL UL UL UL AL UL UL UL UL UE UL UL,
1[1] analog in iEmMotorSpeed,
1[1] analog in 1GenMotorSpeed,
1[1] analog in 1IceEngineSpeed,
1[1] analog an iAccelPedallevel,
1[1] analog in 1BrakePedalLevel,
1[1] analog 1n.1ActualEmTorque,
1[1] analog in iFuelPressure,
1[1] analog 1n 1EmCurrent,

1[1] analog 1n 1GenCurrent,

1[1] analog in 1BattPackTemp,
1[1] analog :n 1BattPackVoltage,
1(1] analog in iBattPackCurrent,
1[1] analog in 1EmRotorTemp,
1[1] analog in iEmInvTemp,

1[1] analog in aTpsFeedback),

fpraintf (£,"4f, %L, %L, %L, %L, %L, %E, %E\n",
1[1] analog out oGenSpeedReg,

1[1] analog out oGenRegenlimait,

1[1] analog out oEmAccelReq,

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

1[1] analog out oEmBrakeReq,
1[2] analog out olceThrottlePos,
1[2] analog out oDisSpeedoO,
1[1] analog out oDisSpeedol,
1[1] analog out oPwrToDigRacks),

return (fclose(f)),

ant main(ant argec, char *argv[])

{

struct logvalues *1,
it c,

int errflag = 0,
char *logfile = DEFAULT_LOGFILE,
float update = DEFAULT_UPDATE,

int flushcount = DEFAULT_FLUSHCOUNT,
size_t size,

struct timespec t,

ant first_time = 1,

while ((c=getopt(argc,argv, "1 f u h")) '= -1)
{
switch (¢)
{
case 1’

logfile = strdup(optarg),
1f (logfile == NULL) die("strdup"),
break,

case ’f’
flushcount = atoi(optarg),
break,

case ’u’
update = atof(optarg),
break,

case ’h’
usage(argv([0]),
break,

case ’??
++terrflag,
break,

}

1f (errflag) usage(argv{0]),

size = (size_t)flushcount,

1 = (struct logvalues *)calloc(size, sizeof(struct logvalues)),

1f (1 == NULL) die("calloc"),

t tv.sec = (int)update,
t tv_nsec = (long) (((double)update -~ (double)t tv_sec)*le9),

/* open fcar shared mem */
1f ((s = fclient_open_shm(0_RDONLY)) == NULL)
die("fclient_open_shm(O_RDONLY)"),

209

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

while(s)
{
int 1,
time_t tm,
for(1=0,1<s1ze,1++)
{
tm = time(NULL),
strftime(1[1] tbuf, sizeof(1l[a] tbuf),
“hm/%d/hy HH YM %S", localtime(&tm)),
memcpy(&1[1] cv, &s->cv[s->active],
sizeof (struct calculated_values)),
memcpy(&1[1].digital, &s->digatalls->actaivel,
si1zeof(struct digital_hardware)),
memcpy(&1[1] analog, &s->analogls->active],
sizeof (struct analog_hardware)),
nanosleep(&t, NULL),
}
1f (first_time)
{
dump_log(logfile, 1, size, 1),
first_time = O,
}
else
dump_log(logfile, 1, size, 0),
}
free(l),
return O, -

210

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

211

G.3 trends.cgi: CGI Interface to Shared Memory History
G.3.1 Makefile

cc

DEFINES
INCLUDES
QUIET

OPTS

DEBUG
CFLAGS

LIBS

LIBS
LDFLAGS
LIBS_HELPER
LIBS_HELPER
LDFLAGS_HELPER
FILES
FILES_HELPER
O0BJS
0BJS_HELPER
ouT
OUT_HELPER
DEPEND
CGI_BINDIR

all

$(0UD)

$(OUT_HELPER)

install

dep

clean

cc

-1 / /libfclient -I /libega

= -Q -wx

= -Orailnextm -4r -fp3 -fpi87

= #-g

= $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
= -L /libcga

+= -lecga

$(QUIET) $(LIBS)

-L / /libfclient -L /libega
~lfclient -lcga

$(QUIET) $(LIBS_HELPER)
trends c

trend_helper c

$(FILES c= o)
$(FILES_HELPER c= o)
trends cgi

trend_helper cga
makedepend
/usr/local/apache/cgr-bain/

+
)

nuon o nnorn

$(0UT) $(OUT_HELPER)

$(0BJS)
$(cC) $(LDFLAGS) $~ -o $@

$(0BJS_HELPER)
$(CC) $(LDFLAGS_HELPER) $~ -o $@

$(0UT) $(OUT_HELPER)
cp -f $(0UT) $(OUT_HELPER) $(CGI_BINDIR)

$(DEPEND) -- $(CFLAGS) -D_._QNX__ -- $(FILES) $(FILES_HELPER)

$(RM) $(0UT) $(OUT_HELPER) $(O0BJS) $(OBJS_HELPER) * err

G.3.2 trends.h

/* trends h */

#1fndef TRENDS_INCLUDED
#define TRENDS_INCLUDED

#define WIDTH
#define HEIGHT

#1fdef DEBUG
#defane NOTFOUNDPATH \

"Location http //mechaero9 engr utk edu/"matt/images/notfound gifi\n\n"
#else
#define NOTFOUNDPATH \

"Location http //128 169 100 192/images/notfound gif\n\n"
#endaf

500
200

APPENDIX G

#defaine
#defaine

#end1f

G.3.3

BGCOLOR "ELEELEY
TEXTCOLOR *000000"

trends.c

/* trends ¢ */

#include
#include
#include
#include
#include

#define

#define

void sho
void dis

<stdio h>
<stdlib h>
<straing h>
<cgi h>

"trends h"

SHOW_OPTION(what) \
prantf("<option value=\"¥s\">

ALL_OPTIONS() \

SHOW_OPTION (1EmMotorSpeed),
SHOW_OPTION(2GenMotorSpeed),
SHOW_OPTION(1IceEngineSpeed),
SHOW_OPTION(2AccelPedallevel),
SHOW_OPTION(1BrakePedalLevel),
SHOW_OPTION(1ActualEmTorque),
SHOW_OPTION(1FuelPressure),
SHOW_OPTION(1EmCurrent),
SHOW_OPTION(1GenCurrent),
SHOW_OPTION(1BattPackTemp),
SHOW_OPTION(1BattPackVoltage),
SHOW_OPTION(1BattPackCurrent),
SHOW_OPTION(1EmRotorTemp),
SHOW_OPTION(2EmInvTemp),
SHOW_OPTION(1TpsFeedback),

SHOW_OPTION(oGenSpeedReq),
SHOW_OPTION(oGenRegenLimit),
SHOW_OPTION(oEmAccelReq),
SHOW_OPTION(oEmBrakeReq),
SHOW_OPTION(oIceThrottlePos),
SHOW_OPTION(oDisSpeedo0),
SHOW_OPTION(oDisSpeedol),
SHOW_OPTION(oPwrToDigRacks),

SHOW_OPTION(SOC),
SHOW_OPTION(vehicle_speed),
SHOW_OPTION(vehicle_distance),
SHOW_OPTION(kwh_volts),
SHOW_OPTION (kwh_amps),

w_choices(void),
play_graphs(void),

int main(int argc, char *argv[])

{

printf(“Content-type text/html\n\n"),

DIAGNOSTIC PROGRAM CODE LISTINGS

%s

PPl i G S VG A G GV A G A G A A G S A

\n", #what, #what)

212

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS 213

1f (strcmp(getenrv("REQUEST_METHOD"), "POST") == 0)
display_graphs(),

else
show_choices(),

return O,

}
void display_graphs()
{

char **cgivars,

cgivars = getcgivars(), /* cgivars [name value] pairs */

prantf (" \n\
<html> \n\
<head> \n\
<meta http-content-refresh=\"30\"> \n\
<title> Trend graphs </title> \n\
</head> \n\
<body> \n\
You may have to hold down the shift key when reloading \n\
to get updated info \n\
<form action=\"trends cgi\" method=post> \n\
<h2> Trend results </h2>
 \n\
<input type=\"submit\" value=\"Submit\"> \n\
<input type=\"reset\" value=\"Reset \"> \n\
<hr> \n"),

/% first row x/

printf(® \n\

<select name=\"graphi\"> \n\

<option value=\"Ys\" selected>default - ¥s\n", cgivars[1], cgavars([i]),
ALL_OPTIONSQ),

printf(" \n\
</select>
 \n\

\n\

<hr width=\"50%%\'">",

cgavars[1], cgivars([1], WIDTH, HEIGHT),

/* second row */

prantf (" \n\

<select name=\"graph2\"> \n\

<option value=\"¥s\" selected>default - %s\n", cgivars[3], cgivars[3]),
ALL_OPTIONSQ),

prantf (¥ \n\
</select>
 \n\

<aimg src=\"trend_helper cgi?%s\" alt=\"/s\" width=Yd, height=}d>\n\
<hr wadth=\"50%/\">",

cgivars[3], cgivars[3], WIDTH, HEIGHT),

/* third row */

prantf (" \n\

<select name=\'graph3\"> \n\

<option value=\"/s\" selected>default - %s\n", cgivars([5], cgivars[5]),
ALL_OPTIONSQ),

praintf(" \n\
</select>
 \n\

\n",
cgivars[5], cgivars[S], WIDTH, HEIGHT),

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

}

/* ending */

prantf ("

<hr>

<input type=\"submit\" value=\"Submit\">
<input type=\"reset\" value=\"Reset \">
</body>

void show_choices()

{

prantf("
<html>
<head>

<title> Choose tremnds to display </title>

</head>
<body>
<form action=\"trends cgi\" method=post>

<h2> Choose the trends you want to display </h2>

<input type=\"submit\" value=\"Submit\">
<input type=\"reset\" value=\"Reset \">
<hr>

<select name=\"graphi\">

<option value=\"none\" selected>none
ALL_OPTIONSQ),

printf("

</select>

<select name=\"graph2\">

<option value=\"none\" selected>none
ALL_OPTIONSQ),

prantf ("

</select>

<select name=\"graph3\">

<option value=\"none\" selected>none
ALL_OPTIONSQ),

prantf("

</select>

<hr>

<input type=\"submit\" value=\"Submit\">
<input type=\"reset\" value=\"Reset \">
</body>

</html>

G.3.4 trend_helper.c

/* trend_helper c */

#include <strang h>

#include <stdio h> /* printf, popen */
#include <stdlib h> /* exat x/
#include <fclient h>

#include <cgi h>

#include "trends h"

#define GNUPLOT_BIN

" /usr/local/bin/gnuplot"

#define DO_ANALOG_IN(what)

\n\
\n\
\n\
\n\
\n"),

\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n"),

\n\
\n\
\n\
\n\
\n"),

\n\
\n\
\n\
\n\
\n"),

\n\
\n\
\n\
\n\
\n\
\n\
\n\
\n");

214

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

1f (stremp(cgivars[0], #what) == 0)

\

{
for(1=0, 1<now, 1++)
{
fprintf(p, "%f\n", s->analogli] in what),
}
fprintf(p, "e\n"), /* end of data %/
fflush(p),
}

#define DO_ANALOG_OUT(what)

1f (stremp(cgivars[0], #what) == 0)

\

{
for(a=0, 1<now, 1++)
{
fprintf(p, "%f\n", s->analogl[i] out what),
}
fprintf(p, "e\n"), /% end of data */
fflush(p),
}

#define DO_CALC(what)

1f (stremp(cgavars(0], #what) == 0)

{
for(1=0,1<now,1++)
{
fprantf(p, "4f\n", s->cv[1] what),
}
fprantf(p, "e\n"), | /* end of data */
f£flush(p),
}

volatile struct shared_hw_data *s,

/* this opens a pipe with gnuplot and spits out a gif file */
int main(int argc, char *argv[])

{

char *xcgaivars,
FILE *p,

int 1,

int now,

/* first open shared mem */
1f ((s = fclient_open_shm(0O_RDONLY)) == NULL)
die("fclient_open_shm(0_RDONLY)"),

now = s->active,

/* get requested plot name */
cgavars = getcgavars(), /* returns name

value pairs */

1f ((now == 0) || (strcmp(cgivars[0], "none") == 0))

{
printf (NOTFOUNDPATH) ,
fflush(stdout),
exit (0),

~ P i P P i -~

P i

215

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

prantf(“"Content-type aimage/gif\n\n"),

fflush(stdout),

/* then open a pipe to gnuplot */

P = popen(GNUPLOT_BIN, "w"),
1f (p == NULL) die("popen"),

/¥ start talking to gnuplot */

fprantf(p, "set term gaf interlace transparent small size ’d,%d xbObObO\n",

WIDTH, HEIGHT),

fprantf(p, "plot ’-’ tatle ’%s’ with lines\n", cgivars[0]),

DO_ANALOG_IN(2EmMotorSpeed)
DO_ANALOG_IN(1GenMotorSpeed)
DO_ANALOG_IN(1IceEngineSpeed)
DO_ANALOG_IN(1AccelPedallevel)
DO_ANALOG_IN(1BrakePedallevel)
DO_ANALOG_IN(1ActualEmTorque)
DO_ANALOG_IN(1FuelPressure)
DO_ANALOG_IN(1EmCurrent)
DO_ANALOG_IN(1GenCurrent)
DO_ANALOG_IN(1BattPackTemp)
DO_ANALOG_IN(1BattPackVoltage)
DO_ANALOG_IN(1BattPackCurrent)
DO_ANALOG_IN(2EmRotorTemp)
DO_ANALOG_IN(2EmInvTemp)
DO_ANALOG_IN(1TpsFeedback)

DO_ANALOG_0UT (oGenSpeedReq)
DO_ANALOG_OUT(oGenRegenLimat)
DO_ANALOG_OUT(oEmAccelReq)
DO_ANALOG_0UT (oEmBrakeReq)
DO_ANALOG_OUT(oIceThrottlePos)
DO_ANALOG_OUT(oD1sSpeedo0)
DO_ANALOG_OUT(oD1sSpeedol)
DO_ANALOG_OUT(oPwrToDagRacks)

DO_CALC(S0C)
DO_CALC(vehicle_speed)
DO_CALC(vehicle_distance)
DO_CALC(kwh_volts)
DO_CALC (kwh_amps)

prantf (NOTFOUNDPATH),

pclose(p),

return O,

else
else
else
else
else
else
else
else
else
else
else
else
else
else
else

else
else
else
else
else
else
else
else

else
else
else
else
else

216

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

G.4 libcgi: C Language CGI Library

G.4.1 Makefile

requires gnu make

cc = cc
AR = ar
ARFLAGS = qcr
RANLIB = true i
DEFINES =
INCLUDES =
QUIET = -Q -wx
OPTS = -Orailnextm -4r -fp3 -fpi87
DEBUG = #-g
CFLAGS = $(QUIET) $(DEBUG) $(OPTS) $(DEFINES) $(INCLUDES)
FILES = get_cg1 ¢
0BJS = $(FILES c¢= o)
LIBOUT = libcgir.a
DEPEND = makedepend
LIBDIR = /opt/fcar/lib/
all $(LIBOUT)
$(LIBOUT) $(0BJS)
$(AR) $(ARFLAGS) $Q $~
$(RANLIB) $Q
dep
$(DEPEND) -~ $(CFLAGS) -D._QNX_._ -- $(FILES)
install $(LIBOUT)
cp -f $(LIBOUT) $(LIBDIR) -
clean —

rm -f $(0BJS) $(LIBOUT) core * err

G.4.2 cgih
/* cga h */

#1fndef CGI_INCLUDED
#define CGI_INCLUDED

#1fdef __cplusplus
extern "C" {
#endaf

extern char **getcgivars(void),

#1fdef __cplusplus
¥
#end1f

#endarf

G.4.3 get_cgi.c

/* get_cgr ¢ */

217

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

/*

* getcgivars c-- routine to read CGI imput variables into an

* array of strangs

*

* Written an 1996 by James Marshall, james@jmarshall com, except
* that the x2¢() and unescape_url() routines were lifted darectly
* from NCSA’s sample program util c, packaged with their HTTPD

*

* For the latest, see http //www jmarshall com/easy/cgi/

* "CGI Made Really Easy"

*

*/

#include <stdio h>
#include <straing h>
#include <stdlib h>
#include "cgi h*

/* Convert a two-char hex string into the char it represents */
char x2c(char *what)

{
register char digat,
digat=(what[0] >= A’ ? ((what[0] & Oxdf) - ’A’)+10 (what[0] - ’0’)),
digit*=16,
dagit+=(what[1]>= ’A’ ? ((what[1] & Oxdf) - ’A?)+10 (what[1] - ?0°)),
return(digat),

¥

/* Reduce any /xx escape sequences to the characters they represent */
voad unescape_url(char *url)

{
register int 1,3,
for(1=0,3=0, url[j], ++i,++3)
{
1£((urlf1] = url[jl) == %"
{
url[a] = x2c¢(&urll;+11),
I+= 2,
}
}
urla] = ’\0’,
}

/* Read the CGI input and place all name/val pairs into list
* Returns list containing namel, valuel, name2, value2, , NULL =*/
char **getcgivars()

register int 1,

char *request_method,
int content_length,
char *cgiinput,

char **cgivars,

char **pairlist,

int paircount,

char *nvpair,

char *eqpos,

/* Depending on the request method, read all CGI input into cgiinput

218

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

* (really should produce HIML error messages, instead of exit()ing) */

request_method= getenv("REQUEST_METHOD"),

1f (!'stremp(request_method, "GET") || fstrcmp(request_method, "HEAD"))
{
cgiinput= strdup(getenv("QUERY_STRING")),
}
else 1f ('strcmp(request_method, "POST"))
{
1f (stremp(getenv("CONTENT_TYPE"),
“application/x-www-form-urlencoded"))
printf ("getcgivars Unsupported Content-Type \n"),
exat (1),
}
1f ('(content_lengtk = atoi(getenv("CONTENT_LENGTH"))))
{
prantf(
"getcgivars No Content-Length was sent with the "
"POST request \n"),
exat (1),
}
1f ('(cgiinput= (char *) malloc(content_length+l)))
{
prantf("getcgivars Could not malloc for cgiinput \n"),
exat (1),
}
1f ('fread(cgiinput, content_length, 1, stdan))
{
prantf(“getcgivars Couldn’t read CGI "
“input from stdin \n"),
exat(l) ,
}
cgiinput [content_length]=’\0’,
}
else
{
prantf ("getcgivars unsupported REQUEST_METHOD\n"),
exit(1),
}

/* Change all plusses back to spaces */

for(1=0, cgiimputlil, 1++) 1f (cgiinput[1] == ’+’) cgiinput[a1] = * ?,

/* Farst, split on "&" to extract the name-value pairs into pairlist */
P p P

pairlist= (char **) malloc(256%sizeof(char *x)),
paircount= 0,
nvpair= strtok(cgiinput, "&"),

while (nvpair)

{
pairlist [paircount++}= strdup(avpair),
1f (' (paircounty256))

- pairlist= (char **) realloc(pairlist,
(paircount+256) *sizeof (char *x)),

nvpair= strtok(NULL, "&"),

}

pairlist[paircount]= 0 , /* terminate the list with NULL */

/* Then, from the list of pairs, extract the names and values */
cgivars= (char **) malloc((paircount*2+1)*sizeof(char *x)),
for (1= 0, 1<paircount, 1i++)

219

APPENDIX G DIAGNOSTIC PROGRAM CODE LISTINGS

{
1f (eqpos=strchr(pairlist[1], ’=’))
{
*eqpos= ’\0’,
unescape_url(cgivars[1*2+1]= strdup(egpos+1)),
}
else
{
unescape_url(cgivars[2*2+1]= strdup("")),
}
unescape_url(cgivars[1¥2]= strdup(pairlist(i])),
}

cgivars[paircount*2]= 0, /* terminate the list with NULL */

/* Free anything that needs to be freed */

free(cgirinput),

for (1=0, pairlast{i], a++) free(pairlist[il),
free(pairlist),

/* Return the list of name-value strings */
return cgaivars,

220

Vita

Matthew D Smith was born in Dallas, Texas, on April 11, 1975 His family moved early
in his childhood to Northeast Tennessee where he attended public schools In 1993 he
graduated from Umiversity High School and entered the University of Tennessee, Knoxville
After four years of undergraduate work and one year of co-op work, he received a Bachelor
of Science degree in Mechanical Engineering 1 1998 Continung on 1 the Mechanical
and Aerospace Engineering and Engineering Science department at UTK culminated n a

Master of Science degree in Mechanical Engineering m 2000

221

	The design and implementation of a dual hybrid electric vehicle control system
	Recommended Citation

	tmp.1693585443.pdf.2ckaN

